

IBM DB2 Universal Database
Administration Guide

Version 5.2

Document Number S10J-8157-01

IBM DB2 Universal Database ÉÂÔ

Administration Guide
Version 5.2

 S10J-8157-01

IBM DB2 Universal Database ÉÂÔ

Administration Guide
Version 5.2

 S10J-8157-01

Before using this information and the product it supports, be sure to read the general information under Appendix U,
“Notices” on page 1189.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . xxv
Who Should Use This book . xxvi
How This Book is Structured . xxvi
Introduction to Parallelism in DB2 Universal Database xxix

Overview of DB2 Concepts . xxix
Overview of DB2 Parallelism Concepts . xxxi
Types of Parallelism . xxxiii
Hardware Environments . xxxviii
Enabling Parallelism for Queries . xlvi
Enabling Utility Parallelism . xlvii

Part 1. Database Design and Implementation . 1

Chapter 1. Designing Your Logical Database 3
Decide What Data to Record in the Database . 3
Define Tables for Each Type of Relationship . 5

One-to-Many and Many-to-One Relationships 5
Many-to-Many Relationships . 6
One-to-One Relationships . 7

Provide Column Definitions for All Tables . 7
Identify One or More Columns as a Primary Key 9

Identifying Candidate Key Columns . 11
Be Sure Equal Values Represent the Same Entity 11
Consider Normalizing Your Tables . 12

First Normal Form . 13
Second Normal Form . 13
Third Normal Form . 15
Fourth Normal Form . 16

Planning for Constraint Enforcement . 17
Unique Constraints . 18
Referential Integrity . 18
Table Check Constraints . 23
Triggers . 23

Other Database Design Considerations . 24

Chapter 2. Designing Your Physical Database 27
Database Physical Directories . 27

Database Physical Files . 28
Estimating Space Requirements for Tables . 29

System Catalog Tables . 29
User Table Data . 30
Long Field Data . 31
Large Object (LOB) Data . 32
Index Space . 32

 Copyright IBM Corp. 1993, 1998 iii

Additional Space Requirements . 35
Log File Space . 35
Temporary Work Space . 36

Designing Nodegroups . 36
Nodegroup Design Considerations . 37

Designing and Choosing Table Spaces . 43
System Managed Space Table Space . 46
Database Managed Space Table Space . 50
Adding Containers to DMS Table Spaces 51
Table Space Design Considerations . 52

Chapter 3. Implementing Your Design . 61
Introductory Concepts for Database Implementation 61

Starting and Stopping DB2 . 62
| Starting DB2 UDB on Windows NT . 62

Using Multiple Instances of the Database Manager 62
Organizing and Grouping Objects by Schema 63
Enabling Intra-Partition Parallelism . 64
Enabling Data Partitioning . 64

Before Creating a Database . 66
Design Logical and Physical Database Characteristics 66
Create an Instance . 66
Establish Environment Variables and the Profile Registry 66

| DB2 Administration Server (DAS) . 72
Create a Node Configuration File . 79

| Creation of the Database Configuration File 80
Enable FCM Communications . 81

Creating a Database . 82
Definition of Initial Nodegroups . 83
Definition of Initial Table Spaces . 83
Definition of System Catalog Tables . 84
Definition of Database Directories . 85
Definition of Database Recovery Log . 86
Binding Utilities to the Database . 86
Cataloging a Database . 87
Creating Nodegroups . 88
Creating a Table Space . 89
Creating a Schema . 94
Creating a Table . 95
Creating a Trigger . 109
Creating a User-Defined Function (UDF) . 110

| Creating a User-Defined Type (UDT) . 112
Creating a View . 114

| Creating a Summary Table . 118
Creating an Alias . 119
Creating an Index . 120

Before Altering a Database . 124
Changing Logical and Physical Design Characteristics 124

iv Administration Guide

Changing Environment Variables and the Profile Registry Variables 124
Changing the Node Configuration File . 124
Changing the Database Configuration . 125

Altering a Database . 126
Dropping a Database . 126
Altering a Nodegroup . 126
Altering a Table Space . 127
Dropping a Schema . 128
Altering a Table . 128
Dropping a Trigger . 136
Dropping a User-Defined Function (UDF) . 136
Dropping a User-Defined Type (UDT) . 136

| Altering or Dropping a View . 137
Dropping an Index . 138

| Dropping a Summary Table . 138
Statement Dependencies When Changing Objects 139

Chapter 4. Controlling Database Access . 141
An Overview of DB2 Security . 141

Authentication . 141
Authorization . 142

| Selecting User IDs and Groups for Your Installation 143
Selecting an Authentication Method for Your Server 145
Authentication Considerations for Remote Clients 148
Partitioned Database Considerations . 148
Using DCE Security Services to Authenticate Users 149

How to Setup a DB2 User for DCE . 149
How to Setup a DB2 Server to Use DCE . 151
How to Setup a DB2 Client Instance to Use DCE 153
DB2 Restrictions Using DCE Security . 153

Privileges, Authorities, and Authorization . 154
System Administration Authority (SYSADM) 156
System Control Authority (SYSCTRL) . 157
System Maintenance Authority (SYSMAINT) 157
Database Administration Authority (DBADM) 158
Database Privileges . 159
Schema Privileges . 160
Table and View Privileges . 160
Package Privileges . 162
Index Privileges . 162

Controlling Access to Database Objects . 163
Granting Privileges . 163
Revoking Privileges . 164
Managing Implicit Authorizations by Creating and Dropping Objects 165
Allowing Indirect Privileges through a Package 166
Controlling Access to Data with Views . 166

| Monitoring Access to Data Using the Audit Facility 168
Tasks and Required Authorizations . 169

 Contents v

Using the System Catalog . 170
Retrieving Authorization Names with Granted Privileges 170
Retrieving All Names with DBADM Authority 171
Retrieving Names Authorized to Access a Table 171
Retrieving All Privileges Granted to Users 172
Securing the System Catalog Views . 172

| Chapter 5. Auditing DB2 Activities . 175
| Audit Facility Behavior . 177
| Audit Facility Usage Scenarios . 178
| Audit Facility Messages . 182
| Audit Facility Record Layouts . 183
| Audit Facility Tips and Techniques . 196
| Controlling DB2 Audit Facility Activities . 197

Chapter 6. Utilities for Moving Data . 203
Using the LOAD Utility . 203

Overview of the LOAD Process . 204
Details About LOAD . 206
LOAD Performance Considerations . 212

| LOAD Parameter Hints and Tips . 214
| LOAD Temporary Files . 219
| Using LOAD QUERY . 219
| Running Concurrent LOAD Jobs . 220

Restarting LOAD and Database Recovery 220
LOAD Exception Table . 223
Checking For Constraint Violations . 224

| Using the AutoLoader Utility . 225
| Modes of Operation . 225
| Planning to Use the AutoLoader Utility . 233
| Running the AutoLoader Utility . 233
| AutoLoader Hints and Tips . 234
| AutoLoader Sample Job . 235
| Loading into Multiple Database Partitions . 237
| AutoLoader Troubleshooting . 238
| Migration and Backward Compatibility . 239
| Moving DB2 File Manager Data . 240
| Load Utility Considerations . 240
| Export Utility Considerations . 241
| Import Utility Considerations . 243

Using the IMPORT Utility . 243
Using IMPORT with Buffered Inserts . 246
Import in a Client/Server Environment . 246
Differences Between the IMPORT and LOAD Utilities 247

Using the EXPORT Utility . 248
LOAD, IMPORT, and EXPORT File Formats 250

Delimited ASCII (DEL) File Format . 251
Nondelimited ASCII (ASC) File Format . 252

vi Administration Guide

WSF File Format . 253
PC/IXF File Format . 254

Moving Data Between Systems . 255
Moving Data Between DB2 Databases . 255
Moving Data Using the db2move Tool . 257
Moving Data With DB2 Connect . 260

| Moving Data Between Typed Tables . 262
Using Replication to Move Your Data . 266

Chapter 7. Recovering a Database . 269
Overview of Recovery . 269
Factors Affecting Recovery . 275

Recoverable and Non-Recoverable Databases 276
Database Logs . 277
Reducing Logging on Work Tables . 278
Point of Recovery . 279
Frequency of Backups and Time Required 280
Recovery Time Required . 281
Storage Considerations . 281
Keeping Related Data Together . 282
Recovery Performance Considerations . 282

Disaster Recovery Considerations . 284
Reducing the Impact of Media Failure . 284

Protecting Against Disk Failure . 285
Reducing the Impact of Transaction Failure . 286
System Clock Synchronization in a Partitioned Database System 287
Crash Recovery . 288

Getting to a Consistent Database . 288
Transaction Failure Recovery in a Partitioned Database Environment 289
Identifying the Failed Database Partition Server 292

Recovery Method: Version Recovery . 293
Backing Up a Database . 293
Restoring a Database . 298

Recovery Method: Roll-Forward Recovery . 303
| Backup Considerations . 303
| Restore Considerations . 306

Rolling Forward Changes in a Database . 308
Recovery History File Information . 324

| DB2 File Manager Considerations . 325
| Backup Utility Considerations . 325
| Restore and Rollforward Utility Considerations 326
| DB2 File Manager and Recovery Interactions 329
| Removing a Table from the Reconcile_Not_Possible State 332
| Reconciling DB2 File Manager . 333

ADSTAR Distributed Storage Manager . 334
Setting up an ADSTAR Distributed Storage Manager Client for UNIX-Based

Platforms . 335
Setting up an ADSTAR Distributed Storage Manager Client for Other Platforms 336

 Contents vii

Considerations for Using ADSTAR Distributed Storage Manager 337

Part 2. Distributed Transaction Processing . 343

Chapter 8. Distributed Databases . 345
Using a Single Database in a Transaction . 346
Using Multiple Databases in a Single Transaction 347

Updating a Single Database . 347
Updating Multiple Databases . 348

Other Configuration Considerations in Any Environment 353
Understanding the Two-Phase Commit Process 355
Recovering from Problems During Two-Phase Commit 358

Manual Recovery of Indoubt Transactions 359
Resynchronizing Indoubt Transactions if AUTORESTART=OFF 361

Recovery of Indoubt Transactions on the Host 361
Recovery when DB2 Connect Has the DB2 Syncpoint Manager Configured . 361
Recovery when DB2 Connect Does Not Use the DB2 Syncpoint Manager . . 362

Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 365
Setting Up a Database as a Resource Manager 365

| Updating Host or AS/400 Database Servers 366
Database Connection Considerations . 366
Making a Heuristic Decision . 367
Security Considerations . 369
Configuration Considerations . 370

| XA Function Supported . 371
XA Interface Problem Determination . 374

Configuring XA Transaction Managers to Use DB2 UDB 375
| Configuring IBM TXSeries CICS . 375
| Configuring IBM TXSeries Encina . 375
| Configuring BEA Tuxedo . 377
| Configuring Microsoft Transaction Server . 379

Part 3. Tuning Application Performance . 385

Chapter 10. Application Considerations . 387
Concurrency . 387

Repeatable Read . 388
Read Stability . 389
Cursor Stability . 390
Uncommitted Read . 390
Choosing the Isolation Level . 390
Specifying the Isolation Level . 391

Locking . 392
Attributes of Locks . 393
Locks and Application Performance . 395
Factors Affecting Locking . 401

viii Administration Guide

LOCK TABLE Statement . 404
CLOSE CURSOR WITH RELEASE . 405
Summary of Locking Considerations . 406

Adjusting the Optimization Class . 406
How Do You Set the Optimization Class? 409
How Much Optimization is Necessary? . 410

Quickly Retrieving the First Few Rows Using OPTIMIZE FOR n ROWS 412
Row Blocking . 414
Tuning Queries . 415

Using a select-statement . 416
Compound SQL . 418
Performance Considerations and Character Conversion 418

Extended UNIX Code (EUC) Code Page Support 419
Stored Procedures . 420
Activating a Database . 421
Parallel Processing of Applications . 421

Chapter 11. Environmental Considerations 423
Configuration Parameters Affecting Query Optimization 423
Nodegroup Impact on Query Optimization . 425
Table Space Impact on Query Optimization . 426
Indexing Impact on Query Optimization . 427

Indexing versus No Indexing . 428
Guidelines for Indexing . 429
Performance Tips for Administering Indexes 431

Chapter 12. System Catalog Statistics . 435
Collecting Statistics Using the RUNSTATS Utility 436

The Database Partition Where RUNSTATS is Executed 437
Analyzing Statistics . 437

Collecting and Using Distribution Statistics . 442
Understanding Distribution Statistics . 443
When Should You Use Distribution Statistics? 445
How Many Statistics Should You Keep? . 446
How Does the Optimizer Use Distribution Statistics? 447

Collecting and Using Detailed Index Statistics 451
Understanding Detailed Index Statistics . 452
When Should You Use Detailed Index Statistics? 454

User Update-Capable Catalog Statistics . 454
Rules for Updating Catalog Statistics . 455
Rules for Updating Table Statistics . 456
Rules for Updating Column Statistics . 456
Rules for Updating Distribution Statistics for Columns 457
Rules for Updating Index Statistics . 458
Updating Statistics for User-Defined Functions 459
Modelling Production Databases . 461

Chapter 13. Understanding the SQL Compiler 463

 Contents ix

Overview of the SQL Compiler . 463
Query Rewrite by the SQL Compiler . 466
Operation Merging . 466

Example - View Merges . 467
Example - Subquery to Join Transformations 468
Example - Redundant Join Elimination . 468
Example - Shared Aggregation . 468

| Example - Summary Tables . 469
Operation Movement . 471

Example - DISTINCT Elimination . 471
Example - General Predicate Pushdown . 472
Example - Decorrelation . 472

Predicate Translation . 473
Example - Addition of Implied Predicates . 474
Example - OR to IN Transformations . 474

| Accounting for Column Correlation . 475
Data Access Concepts and Optimization . 476

Index Scan Concepts . 477
Relation Scan versus Index Scan . 485

| Summary Table Scan . 485
Predicate Terminology . 487
Join Concepts . 489

| Replicated Summary Tables . 495
Join Strategies in a Partitioned Database . 496
Influence of Sorting on the Optimizer . 503

Optimization Strategies for Intra-Partition Parallelism 505
Parallel Scan Strategies . 505
Parallel Sort Strategies . 506
Parallel Temporary Tables . 507

| Parallel Aggregation Strategies . 507
Parallel Join Strategies . 507

Chapter 14. SQL Explain Facility . 509
Choosing an Explain Tool . 509
Using the SQL Explain Facility . 511
Introductory Concepts for Explain . 513

Explain Information for Data Objects . 514
Explain Information for Data Operators . 515

How Explain Information is Organized . 515
Explain Instance Information . 516
Explain Snapshot Information . 518
Explain Table Information . 518

Obtaining Explain Data . 520
Capturing Explain Table Information . 520
Capturing Explain Snapshot Information . 521

Guidelines on Using Explain Output . 522
Visual Explain . 524

x Administration Guide

Part 4. Tuning and Configuring Your System . 525

Chapter 15. Operational Performance . 527
How DB2 Uses Memory . 527

Setting Parameters That Affect Memory Usage 532
FCM Requirements . 533

Managing the Database Buffer Pool . 533
Managing Multiple Database Buffer Pools . 537

Choosing One or Many Buffer Pools . 538
Prefetching Data into the Buffer Pool . 539

Understanding Sequential Prefetching . 539
Understanding List Prefetching . 541
Prefetching and Intra-Partition Parallelism 541

Configuring I/O Servers for Prefetching and Parallel I/O 541
Enabling Parallel I/O . 543
Allocating Multiple Pages at a Time . 545

Sorting . 545
Different Types of Sorting . 545
Tuning the Parameters that Affect Sorting 546
Looking for Indicators of Sorting Performance Problems 546
Techniques for Managing Sorting Performance 547

Reorganizing Table Data . 548
| Avoiding the Need to Reorganize Tables . 549

Performance Considerations for DMS Devices 550
Managing Initialization Overhead . 551
Database Agents . 551
Using the Database System Monitor . 554
Extending Memory . 556

Chapter 16. Using the Governor . 557
Starting and Stopping the Governor . 557
The Governor Daemon . 559
Creating the Governor Configuration File . 560
Governor Log Files . 568
Querying Governor Log Files . 569
Running the Governor and Database Manager Performance 570

Chapter 17. Scaling Your Configuration . 571
Adding Processors to a Machine . 572
Adding Database Partitions to a Partitioned Database System 572

Adding Database Partitions to a Running System 573
Adding Database Partitions to a Stopped System 575

Dropping a Database Partition from a System 577

Chapter 18. Redistributing Data Across Database Partitions 579
How to Partition Data . 580
Adding and Dropping Database Partitions . 580

 Contents xi

Specifying a Target Partitioning Map . 580
How Data Is Redistributed Across Database Partitions 581
How Data Is Redistributed in Tables . 582
Recovering From Redistribution Errors . 582
Data Redistribution and Other Operations . 583
Following Data Redistribution . 583

Chapter 19. Benchmark Testing . 585
Benchmark Testing Methodology . 585
Preparing for Benchmark Testing . 586
Creating a Benchmark Program . 588
Executing the Benchmark Tests . 593

Chapter 20. Configuring DB2 . 597
Tuning Configuration Parameters . 597
Database Manager Parameters . 598

Database Manager Configuration Parameter Summary 599
Database Parameters . 602

Database Configuration Parameter Summary 604
Parameter Details by Function . 607
Capacity Management . 608

Database Shared Memory . 608
Application Shared Memory . 619
Agent Private Memory . 620
Agent/Application Communication Memory 631
Database Manager Instance Memory . 634
Locks . 638
I/O and Storage . 641
Agents . 647
Database Application Remote Interface (DARI) 656

Logging and Recovery . 659
Database Log Files . 659
Database Log Activity . 664
Recovery . 668
Distributed Unit of Work Recovery . 673

Database Management . 677
Attributes . 677
Status . 679
Compiler Settings . 681

Communications . 686
Communication Protocol Setup . 686
Distributed Services . 690
DB2 Discovery . 694

Parallel . 696
Connection Elapse Time (conn_elapse) . 696
Number of FCM Message Anchors (fcm_num_anchors) 697
Number of FCM Buffers (fcm_num_buffers) 697
Number of FCM Connection Entries (fcm_num_connect) 698

xii Administration Guide

Number of FCM Request Blocks (fcm_num_rqb) 699
Node Connection Retries (max_connretries) 699
Maximum Query Degree of Parallelism (max_querydegree) 700
Maximum Time Difference Among Nodes (max_time_diff) 701
Enable Intra-Partition Parallelism (intra_parallel) 701
Start and Stop Timeout (start_stop_time) . 702

Instance Management . 702
Diagnostic . 702
Database System Monitor Parameters . 704
System Management . 705
Instance Administration . 710

| DB2 File Manager . 717
| DataLink Access Token Expiry Interval (dl_expint) 717
| DataLink Number of Backups (dl_num_backup) 717
| DataLink Number of Copies (dl_num_copies) 718
| DataLink Time After Drop (dl_time_drop) . 718

Part 5. Ensuring the High Availability of Your System 719

Chapter 21. High Availability Cluster Multi-Processing (HACMP) on AIX . . 721
Hot Standby . 722

Examples . 722
Mutual Takeover . 725

Examples . 725
Additional HACMP Resources . 728

| Chapter 22. High Availability Cluster Multi-Processing, Enhanced Scalability
| (HACMP ES) for AIX . 729
| Cluster Configuration . 730
| Configuration of a DB2 Database Partition 735
| Example of a Mutual Takeover Configuration 736
| Example of a Hot Standby Takeover Configuration 736
| Configuration of a NFS Server Node . 737
| Example of a NFS Server Takeover Configuration 738
| Considerations When Configuring the SP Switch 738
| DB2 HACMP Configuration Examples . 739
| DB2 HACMP Startup Recommendations . 748
| HACMP ES Event Monitoring and User-Defined Events 749
| HACMP ES Script Files . 752
| DB2 Recovery Scripts Operations with HACMP ES 754
| Other Script Utilities . 756
| Monitoring HACMP Clusters . 757
| DB2 SP HACMP ES Installation . 758
| DB2 SP HACMP ES New Installation . 758
| DB2 SP HACMP ES Migration . 759
| DB2 SP HACMP ES Worksheets . 760

| Chapter 23. High Availability in the Windows NT Environment 767

 Contents xiii

| Failover Configurations . 768
| Hot Standby Configuration . 768
| Mutual Takeover Configuration . 769
| Using the DB2MSCS Utility . 770
| Specifying the DB2MSCS.CFG File . 770
| Setting up Failover for a Single-Partition Database System 774
| Setting up a Mutual Takeover Configuration for Two Single-Partition Database
| Systems . 774
| Setting up Multiple MSCS Clusters for a Partitioned Database System 775
| Maintaining the MSCS System . 776
| Fallback Considerations . 777
| Registering Database Drive Mapping for Mutual Takeover Configurations in a
| Partitioned Database Environment . 778
| Reconciling Database Drive Mapping . 779
| Example - Setting up Two Single-Partition Instances for Mutual Takeover 780
| Preliminary Tasks . 781
| Run the DB2MSCS Utility . 781
| Example - Setting up a Four-Node Partitioned Database System for Mutual
| Takeover . 783
| Preliminary Tasks . 784
| Run the DB2MSCS Utility . 785
| Register the Database Drive Mapping for ClusterA 786
| Register the Database Drive Mapping for ClusterB 786
| Administering DB2 in an MSCS Environment 786
| Starting and Stopping DB2 Resources . 787
| Running Scripts . 787
| Database Considerations . 791
| User and Group Support . 792
| Communications Considerations . 792
| System Time Considerations . 793
| Administration Server and Control Center Considerations in a Partitioned
| Database Environment . 793
| Limitations and Restrictions . 795

| Chapter 24. High Availability in the Solaris Operating Environment,
| Single-Partition Database . 797
| Cluster Components . 797
| Failover Configurations . 799
| Hot Standby Configuration . 799
| Mutual Takeover Configuration . 800
| Setting up Failover Support for a Database System 801
| Choosing a Failover Configuration . 801
| Creating a DB2 Instance . 802
| Registering the DB2 Resource with Sun Cluster 803
| Enable Failover for an Instance . 804
| Starting and Stopping DB2 . 804
| Running Scripts During a Failover . 805
| Unregistering DB2 for Failover . 805

xiv Administration Guide

| Client Application Considerations . 806

| Chapter 25. High Availability in the Solaris Operating Environment,
| Partitioned Database . 807
| Cluster Components . 807
| Failover Configurations . 809
| Hot Standby Configuration . 810
| Mutual Takeover Configuration . 811
| Setting Up Failover Support for a Database System 813
| Choosing a Failover Configuration . 814
| Preliminary Requirements . 815
| Scripts and Programs . 815
| Creating a DB2 Instance . 815
| Registering the DB2 Resource with Sun Cluster 2.1 816
| Enabling Failover for an Instance . 816
| Binding Database Partition Servers to a Logical Host 817
| How Failover Processing Works . 817
| Setting Up a Hot Standby Configuration . 817
| Setting Up a Mutual Takeover Configuration 818
| Starting and Stopping DB2 . 818
| Running Scripts During a Failover . 818
| Considerations for Table Spaces . 819
| Client Application Considerations . 819

Part 6. Appendixes . 821

Appendix A. How the DB2 Library Is Structured 823
SmartGuides . 823
Online Help . 824
DB2 Books . 825

Viewing Online Books . 829
Searching Online Books . 830
Printing the PostScript Books . 830
Ordering the Printed DB2 Books . 831

Information Center . 832

Appendix B. Planning Database Migration 833
Migration Considerations . 834

Migration Restrictions . 834
Security and Authorization . 834
Storage Requirements . 835
Release-to-Release Incompatibilities . 835
Migrating a Database . 836

Appendix C. Incompatibilities Between Releases 839
System Catalog Tables/Views . 840

System Catalog Views . 840
System Catalog Tables . 840

 Contents xv

Unique Table Identification . 842
Application Programming . 842

| NS, NW and NX Locks . 842
CREATE TABLE NOT LOGGED INITIALLY 843
DB2 Call Level Interface (DB2 CLI) Defaults 844
Obsolete DB2 CLI Keywords . 844
DB2 CLI SQLSTATEs . 845
DB2 CLI Mixing Embedded SQL, Without CONNECT RESET 845
DB2 CLI Use of VARCHAR FOR BIT DATA 845
DB2 CLI Data Conversion Values for SQLGetInfo 846
DB2 CLI/ODBC Configuration Keyword Defaults 846
Obsolete DB2 CLI/ODBC Configuration Keywords 847
DB2 CLI SQLSTATEs . 847
Stored Procedure Catalog Table . 848
PREP Command - LANGLEVEL . 848
Change to SMALLINT Constants . 848

| Down-level Client and Distinct Types Sourced on BIGINT 849
Error Handling . 850
Maximum Number of Sections in a Package 850
Bind Warnings . 851
Bind Options . 851
PREP with BINDFILE . 851
Varchar Structures in COBOL . 852
Incompatible APIs . 853
Supported Level of JDBC . 853
Calling Convention for Java Stored Procedures and UDFs 853
Java Runtime Environment . 854
Obsolete System Monitor Requests for DB2 PE Version 1.2 854

SQL . 855
Updating Partitioning Key Columns . 855
Column NGNAME . 855
Node Number Temporary Space Usage . 856
Authorities for Create and Drop Nodegroups 856
Target Map in REDISTRIBUTE NODEGROUP 856
Node Group for Create Table . 857
Revoking CONTROL on Tables or Views . 858
High Level Qualifiers for Objects in DB2 Version 5 858
Inoperative VIEWs . 859
Unusable VIEWs . 860
SQLCODE Changes . 860
WITH CHECK OPTION on CREATE VIEW 861
SQLSTATE Changes . 861
FOR BIT DATA Comparisons . 861
Code Page Conversion . 862
Isolation Levels and Blocking All . 863
ORDER BY Temporary Space Usage . 863
Using Quotes in SQL Statements . 864

Database Security and Tuning . 864

xvi Administration Guide

GROUP Authorizations . 864
Authentication Type . 865
SYSADM Groups . 865
Security Enhancements . 865

| Obsolete Profile Registry and Environment Variables 866
Utilities and Tools . 866

Executable Name Changes . 866
Backup and Restore - BUFF_SIZE Parameter 867
Backup and Restore - Changes Only Option 867
Backup and Restore - User Exits . 867
Backup and Restore - Authority . 868
Import - IMPORT REPLACE Option . 868

| LOAD TERMINATE . 869
REORG - Alternate Path Option . 869

Connectivity and Coexistence . 869
Distributed Transaction Processing - Connect Type 869
Distributed Transaction Processing - SQLERRD Changes 870
DDCS - SQLJSETP . 871
DDCS - DDCSSETP . 871
DDCS - SQLJTRC.CMD . 871
DDCS - SQLJBIND.CMD . 872
APPC and APPN Nodes . 872

Configuration Parameters . 873
ADSM_PASSWORD . 873

| Agent Pool Size (NUM_POOLAGENTS) . 873
MAXDARI and MAXCAGENTS . 874
LOGFILSIZ . 874
PCKCACHEFILSIZ . 875
APPLHEAPSZ and APP_CTL_HEAP_SZ . 876
BUFFPAGE and Multiple Buffer Pools . 876
NEWLOGPATH . 877
MULTIPAGE_ALLOC . 877
EXTENTSIZE vs SEGPAGES . 877
LOCKLIST . 878
BUFFPAGE and SORTHEAP . 878
Numeric Values for Database Manager Configuration Tokens 879
Numeric Values for Database Manager Configuration Tokens 879
New Generic Out-of-Range Return Codes 880
Segments versus 4KB Pages . 881
Obsolete Database Configuration Parameters 881
Obsolete Database Manager Configuration Parameters 881

| DB2_MMAP_READ and DB2_MMAP_WRITE 882

Appendix D. Memory Usage for DB2 Universal Database Version 5 883

Appendix E. Naming Rules . 885
Database Names . 885
Database and Database Alias Names . 885

 Contents xvii

User IDs and Passwords . 886
Schema Names . 887
Group and User Names . 887
Object Names . 887

Appendix F. DB2 Registry and Environment Variables 889

Appendix G. Using Distributed Computing Environment (DCE) Directory
Services . 917

Creating Directory Objects . 917
Database Objects . 917
Database Locator Objects . 919
Routing Information Objects . 920

Attributes of Each Object Class . 921
Details About Each Attribute . 922

Directory Services Security . 926
Configuration Parameters and Registry Variables 928

| CATALOG and ATTACH Commands, and the CONNECT Statement 929
CATALOG GLOBAL DATABASE Command 929
CONNECT Statement . 929
ATTACH Command . 930

How a Client Connects to a Database . 930
Connecting to Databases in the Same Cell 932
Connecting to a Database in a Different Cell 933

How Directories are Searched . 934
ATTACH Command . 934
CONNECT Statement . 935

Temporarily Overriding DCE Directory Information 936
Directory Services Tasks . 936

DCE Administrator Tasks . 936
Database Administrator Tasks . 937
Database User Tasks . 938

Directory Services Restrictions . 939

Appendix H. X/Open Distributed Transaction Processing Model 941
Application Program (AP) . 941
Transaction Manager (TM) . 943
Resource Managers (RM) . 943

Appendix I. Sample Tables . 945
The Sample Database . 945

To Install the Sample Database . 945
To Erase the Sample Database . 946
CL_SCHED Table . 946
DEPARTMENT Table . 946
EMPLOYEE Table . 947
EMP_ACT Table . 951
EMP_PHOTO Table . 953

xviii Administration Guide

EMP_RESUME Table . 953
IN_TRAY Table . 954
ORG Table . 954
PROJECT Table . 954
SALES Table . 955
STAFF Table . 956
STAFFG Table . 957

Sample Files with BLOB and CLOB Data Type 958
Quintana Photo . 959
Quintana Resume . 959
Nicholls Photo . 960
Nicholls Resume . 960
Adamson Photo . 961
Adamson Resume . 962
Walker Photo . 963
Walker Resume . 963

Appendix J. Catalog Views . 965
Updatable Catalog Views . 966
 “Roadmap” to Catalog Views . 966
“Roadmap” to Updatable Catalog Views . 967
SYSCAT.BUFFERPOOLS . 968
SYSCAT.BUFFERPOOLNODES . 969
SYSCAT.CHECKS . 970
SYSCAT.COLAUTH . 971
SYSCAT.COLCHECKS . 972
SYSCAT.COLDIST . 973
SYSCAT.COLUMNS . 974
SYSCAT.CONSTDEP . 976
SYSCAT.DATATYPES . 977
SYSCAT.DBAUTH . 978
SYSCAT.EVENTMONITORS . 979
SYSCAT.EVENTS . 980
SYSCAT.FUNCPARMS . 981
SYSCAT.FUNCTIONS . 982
SYSCAT.INDEXAUTH . 985
SYSCAT.INDEXES . 986
SYSCAT.KEYCOLUSE . 989
SYSCAT.NODEGROUPDEF . 990
SYSCAT.NODEGROUPS . 991
SYSCAT.PACKAGEAUTH . 992
SYSCAT.PACKAGEDEP . 993
SYSCAT.PACKAGES . 994
SYSCAT.PARTITIONMAPS . 997
SYSCAT.PROCEDURES . 998
SYSCAT.PROCPARMS . 999
SYSCAT.REFERENCES . 1000
SYSCAT.SCHEMAAUTH . 1001

 Contents xix

SYSCAT.SCHEMATA . 1002
SYSCAT.STATEMENTS . 1003
SYSCAT.TABAUTH . 1004
SYSCAT.TABCONST . 1006
SYSCAT.TABLES . 1007
SYSCAT.TABLESPACES . 1010
SYSCAT.TRIGDEP . 1011
SYSCAT.TRIGGERS . 1012
SYSCAT.VIEWDEP . 1013
SYSCAT.VIEWS . 1014
SYSSTAT.COLDIST . 1015
SYSSTAT.COLUMNS . 1016
SYSSTAT.FUNCTIONS . 1017
SYSSTAT.INDEXES . 1019
SYSSTAT.TABLES . 1022

| Appendix K. Catalog Views For Use With Structured Types 1023
| Updatable Catalog Views For Use With Structured Types 1024
| “Roadmap” to Catalog Views for Structured Types 1024
| “Roadmap” to Updatable Catalog Views For Structured Types 1025
| OBJCAT.ATTRIBUTES . 1027
| OBJCAT.CHECKS . 1028
| OBJCAT.COLCHECKS . 1029
| OBJCAT.COLUMNS . 1030
| OBJCAT.CONSTDEP . 1033
| OBJCAT.DATATYPES . 1034
| OBJCAT.FUNCPARMS . 1035
| OBJCAT.FUNCTIONS . 1036
| OBJCAT.HIERARCHIES . 1039
| OBJCAT.INDEXES . 1040
| OBJCAT.KEYCOLUSE . 1043
| OBJCAT.PACKAGEDEP . 1044
| OBJCAT.REFERENCES . 1045
| OBJCAT.TABCONST . 1046
| OBJCAT.TABLES . 1047
| OBJCAT.TRIGDEP . 1050
| OBJCAT.TRIGGERS . 1051
| OBJCAT.VIEWDEP . 1052
| OBJSTAT.TABLES . 1053

Appendix L. User Exit for Database Recovery 1055
Overview for OS/2 . 1055
Overview for UNIX-Based Operating Systems 1056
Invoking a User Exit Program . 1056
Sample User Exit Programs . 1056

Sample User Exit Programs for OS/2 . 1057
 Sample User Exit Programs for UNIX-Based Operating Systems 1058

Calling Format . 1058

xx Administration Guide

Calling Format for OS/2 . 1058
Calling Format for UNIX-Based or Windows NT Operating Systems 1059

Archive and Retrieve Considerations . 1060
Backup and Restore Considerations (DB2 for OS/2 only) 1062

Error Handling . 1063

Appendix M. Explain Tables and Definitions 1067
EXPLAIN_ARGUMENT Table . 1067
EXPLAIN_INSTANCE Table . 1071
EXPLAIN_OBJECT Table . 1072
EXPLAIN_OPERATOR Table . 1074
EXPLAIN_PREDICATE Table . 1076
EXPLAIN_STATEMENT Table . 1077
EXPLAIN_STREAM Table . 1079
Table Definitions for Explain Tables . 1081

EXPLAIN_ARGUMENT Table Definition 1082
EXPLAIN_INSTANCE Table Definition . 1083
EXPLAIN_OBJECT Table Definition . 1084
EXPLAIN_OPERATOR Table Definition 1085
EXPLAIN_PREDICATE Table Definition 1086
EXPLAIN_STATEMENT Table Definition 1087
EXPLAIN_STREAM Table Definition . 1088

Appendix N. SQL Explain Tools . 1089
Running db2expln and dynexpln . 1090
db2expln Syntax and Parameters . 1090
Usage Notes for db2expln . 1092
dynexpln Syntax and Parameters . 1093
Usage Notes for dynexpln . 1095
Description of db2expln and dynexpln Output 1096

Table Access . 1097
Temporary Tables . 1101
Joins . 1104
Data Streams . 1105
Insert, Update, and Delete . 1106
Row Identifier (RID) Preparation . 1106
Aggregation . 1107
Parallel Processing . 1108
Miscellaneous Statements . 1111

Examples of db2expln and dynexpln Output 1112
Example One: "No Parallelism" Plan . 1112

| Example Two: Single-Partition Database Plan with Intra-Partition Parallelism 1114
Example Three: Multipartition Database Plan with Inter-Partition Parallelism 1117

| Example Four: Multipartition Database Plan with Inter-Partition and
| Intra-Partition Parallelism . 1119

db2exfmt - Explain Table Format Tool . 1122

Appendix O. National Language Support (NLS) 1125

 Contents xxi

Deriving Code Page Values . 1125
Deriving Locales in Application Programs . 1126

How DB2 Derives Locales . 1126
| Country Code and Code Page Support . 1126

Character Sets . 1140
DBCS Character Sets . 1140

| Extended UNIX Code (EUC) Character Sets 1141
Character Set for Identifiers . 1142
Coding of SQL Statements . 1143

| Bidirectional CCSID Support . 1143
Collating Sequences . 1145
Specifying a Collating Sequence . 1148

Datetime Values . 1150
Date . 1150
Time . 1150
Timestamp . 1150
String Representations of Datetime Values 1150
Date Strings . 1151
Time Strings . 1151
Timestamp Strings . 1152
MBCS Considerations . 1152

Appendix P. Splitting Data with db2split 1157
Using db2split . 1157
Populating a Table in a New Table Space . 1158
Populating a Table in an Existing Table Space 1158
db2split Parameters . 1159
Example Data File for db2split . 1164
Getting a Partitioning Map with db2gpmap . 1166
Running db2split . 1166
db2split Header Information . 1167

Appendix Q. Issuing Commands to Multiple Database Partition Servers . 1169
Commands . 1169

Command Descriptions . 1170
Specifying the Command to Run . 1170
Running Commands in Parallel on UNIX-Based Platforms 1171
Monitoring rah Processes on UNIX-Based Platforms 1172

Prefix Sequences . 1173
Specifying the List of Machines . 1175

Eliminating Duplicate Entries from the List of Machines 1175
Controlling the rah Command . 1176

$RAHDOTFILES on UNIX-Based Platforms 1177
Setting the Default Environment Profile on Windows NT 1178

Determining Problems with rah on UNIX-Based Platforms 1178

| Appendix R. How DB2 for Windows NT Works with Windows NT Security 1181
| A Sample Scenario with Server Authentication: 1181

xxii Administration Guide

| A Sample Scenario with Client Authentication and a Windows NT Client
| Machine: . 1182
| A Sample Scenario with Client Authentication and a Windows 95 Client Machine: 1182
| Using a Backup Domain Controller with DB2 1183

| Appendix S. Configuring Multiple Logical Nodes 1185

| Appendix T. Using Virtual Interface Architecture (VIA) 1187

Appendix U. Notices . 1189
Trademarks . 1189
Trademarks of Other Companies . 1190

Index . 1191

Contacting IBM . 1193

 Contents xxiii

xxiv Administration Guide

About This Book

| This book provides information necessary to use and administer the year 2000 ready,
| DB2* relational database management system (RDBMS) products, including:

| ¹ Information required for designing, implementing and managing databases

| ¹ Information regarding the configuring and tuning of your database environment to
| improve performance.

Many of the tasks described in this book can be performed using different interfaces:

¹ The Command Processor , which allows you to access and manipulate databases
from a graphical interface. From this interface, you can also execute SQL
statements and DB2 utility functions. Most examples in this book illustrate the use
of this interface. For more information about using the command processor, see
the Command Reference manual.

¹ The application programming interface , which allows you to execute DB2 utility
functions within an application program. For more information about using the
application programming interface, see the API Reference manual.

¹ The Control Center , which allows you to graphically perform administrative tasks
such as configuring the system, managing directories, backing up and recovering
the system, scheduling jobs, and managing media. The Control Center also
contains Replication Administration to graphically setup the replication of data
between systems. execute DB2 utility functions through a graphical user interface.
To invoke the Control Center, use the db2cc command, or (for OS/2) select the
Control Center icon from the DB2 folder. For introductory help, select Getting
started from the Help pull-down of the Control Center window. The Visual Explain
and Performance Monitor tools are invoked from the Control Center.

| Error conditions when using the Control Center are recorded in the Control Center
| Administration Engine Log (db2cc.log). This log records information about the
| errors generated while using the Control Center. The log is always active while the
| Control Center is active. The log file is kept in the home directory of the executable
| that invokes the Control Center. That is, in the bin subdirectory of the sqllib
| subdirectory. The file can be viewed and updated using an ASCII file editor.

| The log file records the error message type, a time stamp, a process identifier
| (PID), a thread identifier (TID), and an SQL error message. The process ID and the
| thread ID are used to identify the operating system that generated the log.
| Combined with the Control Center trace information, DB2 Service and Support
| personnel are able to determine which Control Center task caused the error. The
| information is only of use to the DB2 Service and Support personnel.

| The log file can be edited by an ASCII file editor to remove log records that are no
| longer needed.

There are other tools available that you can use to perform administration tasks. They
include:

 Copyright IBM Corp. 1993, 1998 xxv

¹ The Script Center to store small applications called scripts. These scripts may
contain DB2 commands as well as operating system commands.

¹ The Alert Center to monitor the messages that result from other DB2 operations.

¹ The Tool Settings to change the settings for the Control Center, Alert Center, and
Replication.

¹ The Journal to schedule jobs to run unattended.

Who Should Use This book
This book is intended primarily for database administrators, system administrators,
security administrators and system operators who need to design, implement and
maintain a database to be accessed by local or remote clients. It can also be used by
programmers and other users who require an understanding of the administration and
operation of the DB2 relational database management system.

How This Book is Structured
The Administration Guide contains information about the following major topics:

¹ Introduction to Parallelism in DB2 Universal Database, presents an overview of
DB2 Universal Database and the types of parallelism provided by DB2.

Database Design and Implementation

¹ Chapter 1, Designing Your Logical Database, discusses the concepts and
guidelines for designing a logical database.

¹ Chapter 2, Designing Your Physical Database, discusses the guidelines for
designing a physical database, including considerations related to physical data
storage.

¹ Chapter 3, Implementing Your Design, discusses the concepts and guidelines for
creating a database and the objects within a database.

¹ Chapter 4, Controlling Database Access, describes how you can control access to
your database's resources.

| ¹ Chapter 5, Auditing DB2 Activities, describes how you can detect and monitor
| unwanted or unanticipated access to data.

¹ Chapter 6, Utilities for Moving Data, discusses the LOAD, AutoLoader, IMPORT
and EXPORT utilities. db2move and replication are also discussed.

¹ Chapter 7, Recovering a Database, discusses factors to consider when choosing
database and table space recovery methods, including backing up and restoring a
database or table space, and using the roll-forward recovery method.

Distributed Transaction Processing

¹ Chapter 8, Distributed Databases, discusses how you can access multiple
databases in a single transaction.

xxvi Administration Guide

¹ Chapter 9, Using DB2 with an XA-Compliant Transaction Manager, discusses how
you can use your databases in a distributed transaction processing environment
such as CICS.

Tuning Application Performance

¹ Chapter 10, Application Considerations, describes some techniques for improving
database performance when designing your applications.

¹ Chapter 11, Environmental Considerations, describes some techniques for
improving database performance when setting up your database environment.

¹ Chapter 12, System Catalog Statistics, describes how statistics about your data
can be collected and used to ensure optimal performance.

¹ Chapter 13, Understanding the SQL Compiler, describes what happens to an SQL
statement when it is compiled using the SQL compiler.

¹ Chapter 14, SQL Explain Facility, describes the Explain facility, which allows you
to examine the choices the SQL compiler has made to access your data.

Tuning and Configuring Your System

¹ Chapter 15, Operational Performance, provides an overview of how the database
manager uses memory and other considerations that affect run-time performance.

¹ Chapter 16, Using the Governor, provides an introduction to the use of a governor
to control some aspects of database management.

¹ Chapter 17, Scaling Your Configuration, introduces some considerations and tasks
associated with increasing the size of your database systems.

¹ Chapter 18, Redistributing Data Across Database Partitions, discusses the tasks
required in a partitioned database environment to redistribute data across
partitions.

¹ Chapter 19, Benchmark Testing, provides an overview of benchmark testing and
how to perform benchmark testing.

¹ Chapter 20, Configuring DB2, discusses the database manager and database
configuration files and the values for the configuration parameters.

| High Availability Systems

¹ Chapter 21, High Availability Cluster Multi-Processing (HACMP) on AIX, discusses
the support of IBM High Availability Cluster Multi-Processing (HACMP) for AIX by
DB2.

| ¹ Chapter 22, High Availability Cluster Multi-Processing, Enhanced Scalability
| (HACMP ES) for AIX, discusses the support of IBM High Availability Cluster
| Multi-Processing, Enhanced Scalability (HACMP ES) for AIX by DB2.

| ¹ Chapter 23, High Availability in the Windows NT Environment, discusses the
| support of Microsoft Cluster Server for Windows NT by DB2.

 About This Book xxvii

| ¹ Chapter 24, High Availability in the Solaris Operating Environment, Single-Partition
| Database, discusses the support of Sun Cluster 2.1 for the Sun Solaris Operating
| System by DB2.

| ¹ Chapter 25, High Availability in the Solaris Operating Environment, Partitioned
| Database, discusses the support of Sun Cluster 2.1 for the Sun Solaris Operating
| System by DB2 Extended Enterprise Edition.

Appendixes

| ¹ Appendix A, How the DB2 Library Is Structured, provides information about the
| structure of the DB2 library, including SmartGuides, online help, messages, and
| books.

¹ Appendix B, Planning Database Migration, provides information about migrating
databases to Version 5.

¹ Appendix C, Incompatibilities Between Releases, presents the incompatibilities
introduced with Version 5.

¹ Appendix D, Memory Usage for DB2 Universal Database Version 5, presents
memory requirements for each DB2 feature.

¹ Appendix E, Naming Rules, provides the rules to follow when naming databases
and objects.

¹ Appendix F, DB2 Registry and Environment Variables, presents profile registry
values and environment variables.

¹ Appendix G, Using Distributed Computing Environment (DCE) Directory Services,
provides information about how you can use DCE Directory Services.

¹ Appendix H, X/Open Distributed Transaction Processing Model, provides an
overview of the X/Open Distributed Transaction Processing model and the DB2
database support provided.

¹ Appendix I, Sample Tables, contains a description of the sample tables provided
with the database manager.

¹ Appendix J, Catalog Views, contains a description of each system catalog view,
including column names and data types.

¹ Appendix L, User Exit for Database Recovery, discusses how user exit programs
can be used with database log files and describes some sample user exit
programs.

¹ Appendix M, Explain Tables and Definitions, provides information about the tables
used by the DB2 Explain facility and how to create those tables.

¹ Appendix N, SQL Explain Tools, provides information on using the DB2 explain
tools: db2expln and dynexpln.

¹ Appendix O, National Language Support (NLS), introduces DB2 National
Language Support (NLS) including information about countries, languages, and
code pages.

xxviii Administration Guide

| ¹ Appendix P, Splitting Data with db2split, describes how to use the db2split utility to
| partition data and create partitioning maps.

¹ Appendix Q, Issuing Commands to Multiple Database Partition Servers, discusses
the use of the db2_all and rah shell scripts to send commands to all partitions in a
partitioned database environment.

| ¹ Appendix R, How DB2 for Windows NT Works with Windows NT Security,
| describes how DB2 works with Windows NT security.

| ¹ Appendix S, Configuring Multiple Logical Nodes, describes how to configure
| multiple logical nodes in a partitioned database environment.

| ¹ Appendix T, Using Virtual Interface Architecture (VIA), describes how to enable
| Virtual Interface Architecture for use with DB2 Extended Enterprise Edition in the
| Windows NT environment.

Introduction to Parallelism in DB2 Universal Database
This chapter provides an introduction to DB2 Universal Database and to the types of
parallelism provided by DB2. This chapter describes the following:

¹ Overview of basic DB2 concepts and DB2 parallelism concepts
¹ Types of parallelism

 ¹ Hardware environments
¹ Summary of parallelism possible for each hardware environment

 ¹ Enabling parallelism

DB2 provides the flexibility for you to run a wide range of hardware configurations. It
allows you to choose how to best match your hardware and application requirements
with a specific DB2 product configuration.

The remaining chapters in this part of the book assist you in the design and
implementation of your database. With the different levels of complexity in database
environments that DB2 supports, there are considerations and tasks specific to one or
more of these environments. These considerations and tasks are presented toward the
end of each section or chapter and introduced as being for a specific environment. In
some cases, entire sections or chapters are appropriate for only a specific environment.
After reading this chapter, you should be able to discern which chapters are appropriate
for your business needs and your environment.

Overview of DB2 Concepts
 A database manager (sometimes called an instance) is DB2 code that manages data.
It controls what can be done to the data, and manages system resources assigned to it.
Each instance is a complete environment. It contains all the database partitions defined
for a given parallel database system. An instance has its own databases (which other
instances cannot access), and all its database partitions share the same system
directories. It also has separate security from other instances on the same machine.

A nodegroup is a set of one or more database partitions. When you want to create
tables for the database, you first create the nodegroup where the table spaces will be

 About This Book xxix

stored, then you create the table space where the tables will be stored. See
“Nodegroups and Data Partitioning” on page xxxii for more information about
nodegroups. See “Overview of DB2 Parallelism Concepts” on page xxxi for the
definition of a database partition.

A database is organized into parts called table spaces. A table space's definition and
attributes are recorded in the database system catalog. Once a table space is created,
you can then create tables within this table space. A container is assigned to a table
space. A container is an allocation of physical storage (such as a file or device). Table
spaces reside in nodegroups.

A table consists of data logically arranged in columns and rows. The data in the table
is logically related, and relationships can be defined between tables. Data can be
viewed and manipulated based on mathematical principles and operations called
relations. Table data is accessed via SQL, a standardized language for defining and
manipulating data in a relational database. All database and table data is assigned to
table spaces.

| A query is used in applications or by users to retrieve data from a database. The query
| uses Structured Query Language (SQL) to create a statement in the form of

| SELECT <data_name> FROM <table_name>

| In this chapter we use the term “query” to identify a retrieval request (a SELECT
| statement) from a database.

Figure 1 on page xxxi illustrates the relationship among the objects just described. It
also illustrates that tables, indexes, and long data are stored in table spaces.

xxx Administration Guide

System

Instance(s)

Database(s)

tables

Table space

index(es)

long data

Nodegroup(s)

Figure 1. Relationship Among Some Database Objects

Overview of DB2 Parallelism Concepts
 DB2 extends the database manager to the parallel, multi-node environment. A
database partition is a part of a database that consists of its own data, indexes,
configuration files, and transaction logs. (See the Administration Getting Startedfor an
overview of indexes, configuration files, and transaction logs.) A database partition is
sometimes called a node or database node. (Node was the term used in the DB2
Parallel Edition for AIX Version 1 product.)

 About This Book xxxi

A single-partition database is a database having only one database partition. All data in
the database is stored in that partition. In this case nodegroups, while present, provide
no additional capability.

A partitioned database is a database with two or more database partitions. Tables can
be located in one or more database partitions. When a table is in a nodegroup
consisting of multiple partitions, some of its rows are stored in one partition and others
are stored in other partitions.

Usually, a single database partition exists on each physical node and the processors on
each system are used by the database manager at each database partition to manage
its part of the database's total data.

Because data is divided across database partitions, you can use the power of multiple
processors on multiple physical nodes to satisfy requests for information. Data retrieval
and update requests are decomposed automatically into sub-requests and executed in
parallel among the applicable database partitions. The fact that databases are split
across database partitions is transparent to users of SQL statements.

User interaction is through one database partition. It is known as the coordinator node
for that user. The coordinator runs on the same database partition as the application, or
in the case of a remote application, the database partition to which that application is
connected. Any database partition can be used as a coordinator node.

Nodegroups and Data Partitioning
 You can define named subsets of one or more database partitions in a database. Each
subset you define is known as a nodegroup. Each subset that contains more than one
database partition is known as a multi-partition nodegroup. Multi-partition nodegroups
can only be defined with database partitions that belong to the same instance.

Figure 2 on page xxxiii shows an example of a database with five partitions in which:

¹ A nodegroup spans all but one of the database partitions (Nodegroup 1)
¹ A nodegroup contains one database partition (Nodegroup 2)
¹ A nodegroup contains one database partition which acts as the coordinator node

(Nodegroup 3)

xxxii Administration Guide

Nodegroup 3

Nodegroup 2

Nodegroup 1

Database

Database
Partition

Database
Partition

Database
Partition

Database
Partition

Database
Partition

| Figure 2. Nodegroups in a Database

You create a new nodegroup using the CREATE NODEGROUP statement. See the
SQL Reference for more information. Data is divided across all the partitions in a
nodegroup. If you are using a multi-partition nodegroup, you must look at several
nodegroup design considerations. For more information in both of these areas, see
“Designing Nodegroups” on page 36.

Types of Parallelism
 Parts of a database-related task (such as a database query) can be executed in
parallel in order to speed up the task, often dramatically so. There are different ways a
task is performed in parallel. The nature of the task, the database configuration, and the
hardware environment determine how DB2 will perform a task in parallel. These
considerations are interrelated. You should consider them together when first deciding
on the physical and logical design of a database. This section describes the types of
parallelism.

DB2 supports the following types of parallelism:

 ¹ I/O
 ¹ Query

 About This Book xxxiii

 ¹ Utility

 I/O Parallelism
 For situations in which multiple containers exist for a table space, the database
manager can initiate parallel I/O. Parallel I/O refers to the process of reading from or
writing to two or more I/O devices at the same time to reduce elapsed time. Performing
I/O in parallel can result in significant improvements to I/O throughput.

I/O parallelism is a component of each hardware environment described in “Hardware
Environments” on page xxxviii. Table 1 on page xlvi lists the hardware environments
best suited for I/O parallelism.

 Query Parallelism
 There are two types of query parallelism: inter-query parallelism and intra-query
parallelism.

Inter-query parallelism refers to the ability of multiple applications to query a database
at the same time. Each query will execute independently of the others, but DB2 will
execute all of them at the same time. DB2 has always supported this type of
parallelism.

Intra-query parallelism refers to the processing of parts of a single query at the same
time using either intra-partition parallelism or inter-partition parallelism or both.

The term query parallelism is used throughout this book.

Intra-Partition Parallelism: Intra-partition parallelism refers to the ability to break up
a query into multiple parts. (Some of the utilities also perform this type of parallelism.
See “Utility Parallelism” on page xxxvii.)

Intra-partition parallelism subdivides what is usually considered a single database
operation such as index creation, database load, or SQL queries into multiple parts,
many or all of which can be executed in parallel within a single database partition.

xxxiv Administration Guide

A query is divided
into parts, each being
executed in parallel.

Database Partition

Data

SELECT... FROM...

Figure 3. Intra-Partition Parallelism

Figure 3 shows a query that is broken into four pieces that can be executed in parallel,
with the results returned more quickly than if the query was run in a serial fashion. The
pieces are copies of each other. To utilize intra-partition parallelism, you need to
configure the database appropriately. You can choose the degree of parallelism or let
the system do it for you. The degree of parallelism is the number of pieces of a query
that execute in parallel.

Table 1 on page xlvi lists the hardware environments best suited for intra-partition
parallelism.

Inter-Partition Parallelism: Inter-partition parallelism refers to the ability to break up
a query into multiple parts across multiple partitions of a partitioned database, on one
machine or multiple machines. The query is performed in parallel. (Some of the utilities
also perform this type of parallelism. See “Utility Parallelism” on page xxxvii.)

Inter-partition parallelism subdivides what is usually considered a single database
operation such as index creation, database load, or SQL queries into multiple parts,
many or all of which can be executed in parallel across multiple partitions of a
partitioned database in one machine or multiple machines.

 About This Book xxxv

Database Partition Database Partition Database Partition Database Partition

A query is divided
into parts, each being
executed in parallel.

Data Data Data Data

SELECT... FROM...

Figure 4. Inter-Partition Parallelism

Figure 4 shows a query that is broken into four pieces that can be executed in parallel,
with the results returned more quickly than if the query was run in a serial fashion in a
single partition.

The degree of parallelism is largely determined by the number of partitions you create
and how you define your nodegroups.

Table 1 on page xlvi lists the hardware environments best suited for inter-partition
parallelism.

Using Both Intra-Partition and Inter-Partition Parallelism: You can use
intra-partition parallelism and inter-partition parallelism at the same time. This
combination provides, in effect, two dimensions of parallelism. This results in an even
more dramatic increase in the speed at which queries are processed. Figure 5 on
page xxxvii illustrates this.

xxxvi Administration Guide

Database PartitionDatabase Partition

A query is divided
into parts, each being
executed in parallel.

DataData

SELECT... FROM...

SELECT... FROM... SELECT... FROM...

Figure 5. Both Inter-Partition and Intra-Partition Parallelism

 Utility Parallelism
 DB2's utilities can take advantage of intra-partition parallelism. They can also take
advantage of inter-partition parallelism; where multiple database partitions exist, the
utilities execute in each of the partitions in parallel. The following paragraphs describe
how some utilities take advantage of parallelism.

The LOAD utility can take advantage of intra-partition parallelism and I/O parallelism.
Loading data is a heavily CPU-intensive task. The LOAD utility takes advantage of
multiple processors for tasks such as parsing and formatting data. Also, the LOAD
utility can use parallel I/O servers to write the data to the containers in parallel. See
“LOAD Performance Considerations” on page 212 and the LOAD command in the
Command Reference for information on how to enable parallelism f or the LOAD utility.

| In a partitioned database environment, the AutoLoader utility takes advantage of
| intra-partition, inter-partition, and I/O parallelism by parallel invocations of load at each
| database partition where the table resides. For more information about the AutoLoader
| utility, see “Using the AutoLoader Utility” on page 225.

During index creation, the scanning and subsequent sorting of the data occurs in
parallel. DB2 exploits both I/O parallelism and intra-partition parallelism when creating
an index. This helps to speed up index creation when a CREATE INDEX command is
issued, during restart (if an index is marked invalid), and during the reorganization of
data.

Backing up and restoring data are heavily I/O bound tasks. DB2 exploits both I/O
parallelism and intra-partition parallelism when performing backups and restores.

 About This Book xxxvii

Backup exploits I/O parallelism by reading from multiple table space containers in
parallel, and asynchronously writing to multiple backup media in parallel. See the
BACKUP DATABASE command and the RESTORE DATABASE command in the
Command Reference for information on how to enable parallelism for these two
commands.

 Hardware Environments
 This section provides an overview of the following hardware environments:

¹ Single partition on a single processor (uniprocessor)
¹ Single partition with multiple processors (SMP)
¹ Multiple partition configurations

– Partitions with one processor (MPP)
– Partitions with multiple processors (cluster of SMPs)
– Logical database partitions (also known as Multiple Logical Nodes (MLN) in

DB2 Parallel Edition for AIX Version 1)

In each hardware environment section, considerations for capacity and scalability are
described. Capacity refers to the number of users and applications able to access the
database in large part determined by memory, agents, locks, I/O, and storage
management. Scalability refers to the ability for a database to grow and continue to
exhibit the same operating characteristics and response times.

Single Partition on a Single Processor
 This environment is made up of memory and disk, but contains only a single CPU.
This environment has been given many names such as: standalone database,
client/server database, serial database, uniprocessor system, and single
node/non-parallel environment. Figure 6 on page xxxix illustrates this environment.

xxxviii Administration Guide

CPU

Memory

Database Partition

Uniprocessor machine

Disks

Figure 6. Single Partition On a Single Processor

The database in this environment serves the needs of a department or small office
where the data and system resources (including only a single processor or CPU) are
managed by a single database manager.

Table 1 on page xlvi lists the types of parallelism best suited to take advantage of this
hardware configuration.

Capacity and Scalability: In this environment you can add more disks. Having one or
more I/O servers for each disk allows for more than one I/O operation to be taking
place at the same time. You can also add more hard disk space to this environment.

A single-processor system is restricted by the amount of disk space the processor can
handle. However, as workload increases a single CPU may become insufficient in
processing user requests any faster, regardless of other additional components, such
as memory or disk, that you may add.

If you have reached maximum capacity or scalability, you can consider moving to a
single partition system with multiple processors. This configuration is described in the
next section.

Single Partition with Multiple Processors
 This environment is typically made up of several equally powerful processors within the
same machine and is called a symmetric multi-processor (SMP) system. Resources

 About This Book xxxix

such as disk space and memory are shared. More disks and memory are found in this
machine compared to the single-partition database, single processor environment. This
environment is easy to manage since physically everything is together in one machine
and the sharing of memory and disks is expected.

With multiple processors available, different database operations can be completed
significantly more quickly than with databases assigned to only a single processor. DB2
can also divide the work of a single query among available processors to improve
processing speed. Other database operations such as the LOAD utility, the backup and
restore of table spaces, and index creation on existing data can take advantage of the
multiple processors. Figure 7 illustrates this environment.

CPU CPU CPU CPU

Database Partition

Memory

SMP machine

Disks

Figure 7. Single Partition Database Symmetric Multiprocessor System

Table 1 on page xlvi lists the types of parallelism best suited to take advantage of this
hardware configuration.

Capacity and Scalability: In this environment you can add more processors.
However, since it is possible for the different processors to attempt to access the same
data, limitations with this environment can appear as your business operations grow.
With shared memory and shared disks, you are effectively sharing all of the database
data. One application on one processor may be accessing the same data as another
application on another processor, possibly causing the second application to wait for
access to the data.

You can increase the I/O capacity of the database partition associated with your
processor, such as the number of disks. You can establish I/O servers to specifically
deal with I/O requests. Having one or more I/O servers for each disk allows for more
than one I/O operation to take place at the same time.

xl Administration Guide

If you have reached maximum capacity or scalablity, you can consider moving to a
system with multiple partitions. These configurations are described in the next section.

Multiple Partition Configurations
You can divide a database into multiple partitions, each on its own machine. Multiple
machines with multiple database partitions can be grouped together. This section
describes the following partition configurations:

¹ Partitions on systems each with one processor
¹ Partitions on systems each with multiple processors
¹ Logical database partitions

Partitions with One Processor: In this environment there are many database
partitions with each partition on its own machine and having its own processor,
memory, and disks. Figure 8 illustrates this. A machine consists of a CPU, memory,
and disk with all machines connected by a communications facility. Other names that
have been given to this environment include: a cluster, a cluster of uniprocessors, a
massively parallel processing (MPP) environment, or a shared-nothing configuration.
The latter name accurately reflects the arrangement of resources in this environment.
Unlike an SMP environment, an MPP environment has no shared memory or disks. The
MPP environment removes the limitations introduced through the sharing of memory
and disks.

CPU CPU CPU CPU

Memory Memory Memory Memory

Communications Facility

Uniprocessor machineUniprocessor machine Uniprocessor machine Uniprocessor machine

Database Partition Database Partition Database Partition Database Partition

Disks Disks Disks Disks

Figure 8. Massively Parallel Processing System

A partitioned database environment allows a database to remain a logical whole while
being physically divided across more than one partition. To applications or users, the
database can be used as a whole and the fact that data is partitioned remains

 About This Book xli

transparent to most users. The work to be done with the data can be divided out to
each of the database managers. Each database manager in each partition works
against its own part of the database.

Table 1 on page xlvi lists the types of parallelism best suited to take advantage of this
hardware configuration.

Capacity and Scalability: In this environment you can add more database partitions
(nodes) to your configuration. On some platforms, for example the RS/6000 SP, the
maximum is 512 nodes. However, there may be practical limits for managing a high
number of machines and instances.

If you have reached maximum capacity or scalability, you can consider moving to a
system where each partition has multiple processors. This configuration is described in
the next section.

Partitions with Multiple Processors: As an alternative to a configuration in which
each partition has a single processor is a configuration in which a partition has multiple
processors. This is known as an SMP cluster.

This configuration combines the advantages of SMP and MPP parallelism. This means
a query can be performed in a single partition across multiple processors. It also means
that a query can be performed in parallel across multiple partitions.

xlii Administration Guide

CPU CPUCPU CPUCPU CPUCPU CPU

Memory Memory

Database Partition

Communications Facility

Database Partition

SMP machine SMP machine

Disks Disks

Figure 9. Cluster of SMPs

Table 1 on page xlvi lists the types of parallelism best suited to take advantage of this
hardware configuration.

Capacity and Scalability: In this environment you can add more database partitions, as
in the previous section. You can also add more processors to existing database
partitions.

Logical Database Partitions: A logical database partition differs from a physical
partition in that it is not given control of an entire machine. Although the machine has
shared resources, the database partitions do not share the resources. Processors are
shared but disk and memory are not.

One reason for using logical database partitions is to provide scalability. Multiple
database managers running in multiple logical partitions may be able to make fuller use
of available resources than a single database manager could. This will become more
true as machines with even more more processors are manufactured. Figure 10 on
page xliv illustrates the fact that you may gain more scalability on an SMP machine by
adding more partitions, particularly for machines with many processors. By partitioning
the database, you can administer and recover each partition separately.

 About This Book xliii

CPU CPUCPU CPU

Database Partition 1 Database Partition 2

Big SMP machine

Communications Facility

Memory Memory

DisksDisks

Figure 10. Partitioned Database, Symmetric Multiprocessor System

Figure 11 on page xlv illustrates the fact that you can multiply the configuration shown
in Figure 10 to increase processing power.

xliv Administration Guide

CPU CPUCPU CPUCPU CPUCPU CPU

Database
Partition 1

Database
Partition 1

Database
Partition 2

Database
Partition 2

Big SMP machine Big SMP machine

Communications Facility

Communications Facility Communications Facility

Memory MemoryMemory Memory

DisksDisks Disks Disks

Figure 11. Partitioned Database, Symmetric Multiprocessor Systems Clustered Together

Note also that the ability to have two or more partitions coexist on the same machine
(regardless of the number of processors) allows greater flexibility in designing high
availability configurations and failover strategies. See Chapter 21, “High Availability
Cluster Multi-Processing (HACMP) on AIX” on page 721 for a description of how, upon
machine failure, a database partition can be automatically moved and restarted on
another machine already containing another partition of the same database.

Table 1 on page xlvi lists the types of parallelism best suited to take advantage of this
hardware environment.

Summary of Parallelism Best Suited To Each Hardware
Environment
The following table summarizes the types of parallelism best suited to the various
hardware environments.

 About This Book xlv

Table 1. Types of Parallelism Possible for Each Hardware Environment

Hardware Environment I/O
Parallelism

Intra-Query Parallelism

Intra-Partition
Parallelism

Inter-Partition
Parallelism

Single Partition,
Single Processor

Yes No(1) No

Single Partition,
Multiple Processors (SMP)

Yes Yes No

Multiple Partitions,
One Processor (MPP)

Yes No(1) Yes

Multiple Partitions,
Multiple Processors
(cluster of SMPs)

Yes Yes Yes

Logical Database Partitions Yes Yes Yes

Note: (1) There may be an advantage to setting the degree of parallelism (using one of the
configuration parameters) to greater than one even on a single CPU system, especially
if the queries you execute are not fully utilizing the CPU (for example if they are I/O
bound).

Enabling Parallelism for Queries
 There are two types of query parallelism: intra-partition parallelism and inter-partition
parallelism. Either type, or both types, can be used depending on whether the
environment is a single-partition or multi-partition environment.

Enabling Intra-Partition Query Parallelism
In order for intra-partition query parallelism to occur, you must modify database
configuration parameters and database manager configuration parameters.

INTRA_PARALLEL
Database manager configuration parameter. See “Enable Intra-Partition
Parallelism (intra_parallel)” on page 701 for more information.

DFT_DEGREE
Database configuration parameter. Provides the default for the DEGREE
bind option and the CURRENT DEGREE special register. See “Default
Degree (dft_degree)” on page 683 for more information.

DEGREE
Precompile or bind option for static SQL. See the Command Reference for
more information.

CURRENT DEGREE
Special register for dynamic SQL. See the SQL Reference for more
information.

For more information on the configuration parameter settings, and how to enable
applications to process in parallel, see “Parallel Processing of Applications” on
page 421.

xlvi Administration Guide

Enabling Inter-Partition Query Parallelism
Inter-partition parallelism occurs automatically based on the number of database
partitions and the distribution of data across these partitions.

Enabling Utility Parallelism
This section provides an overview of how to enable intra-partition parallelism for the
following utilities:

 ¹ Load
 ¹ Create index
¹ Backup database / table space
¹ Restore database / table space

Inter-partition parallelism for utilities occurs automatically based on the number of
database partitions.

 Load
To enable parallelism while loading data, use the following parameters on the LOAD
command:

 ¹ CPU_PARALLELISM
 ¹ DISK_PARALLELISM

See the Command Reference for information on the LOAD command.

| AutoLoader
| You can enable multiple split processes for the AutoLoader by specifying the
| MODIFIED BY ANYORDER parameter for the LOAD specification in the autoloader.cfg
| file. For more information, see “Additional Options and Considerations” on page 227.

 Create Index
To enable parallelism when creating an index:

¹ The INTRA_PARALLEL database manager configuration parameter must be ON
¹ The table must be large enough to benefit from parallelism

| ¹ Multiple processors must be enabled on an SMP machine.

See the SQL Reference for information on the CREATE INDEX statement.

Backup Database / Table Space
To enable parallelism when backing up a database or table space:

¹ The INTRA_PARALLEL database manager configuration parameter must be ON

To enable I/O parallelism when backing up a database or table space:

¹ Use more than one target media
¹ Configure table spaces for parallel I/O

See the Command Reference for information on the BACKUP DATABASE command.

 About This Book xlvii

Restore Database / Table Space
To enable parallelism when restoring a database or table space:

¹ The INTRA_PARALLEL parameter must be ON

To enable I/O parallelism when restoring a database or table space:

¹ Use more than one source media
¹ Configure table spaces for parallel I/O

See the Command Reference for information on the RESTORE DATABASE command.

xlviii Administration Guide

Part 1. Database Design and Implementation

 Copyright IBM Corp. 1993, 1998 1

2 Administration Guide

Chapter 1. Designing Your Logical Database

This section describes the following steps in database design:

¹ “Decide What Data to Record in the Database”
¹ “Define Tables for Each Type of Relationship” on page 5
¹ “Provide Column Definitions for All Tables” on page 7
¹ “Identify One or More Columns as a Primary Key” on page 9
¹ “Be Sure Equal Values Represent the Same Entity” on page 11
¹ “Consider Normalizing Your Tables” on page 12
¹ “Planning for Constraint Enforcement” on page 17
¹ “Other Database Design Considerations” on page 24.

Your goal in designing a database is to produce a representation of your environment
that is easy to understand and will serve as a basis for expansion. In addition, you want
a database design that will help you maintain consistency and integrity in your data.
You can do this by producing a design that will reduce redundancy and eliminate
anomalies that can occur during the updating of your database.

These steps are part of logical database design. Database design is not a linear
process; you will probably have to redo steps as you work out the design.

The physical implementation of the database design is described in Chapter 2,
“Designing Your Physical Database” on page 27 and Chapter 3, “Implementing Your
Design” on page 61.

Decide What Data to Record in the Database
The first step in developing a database design is to identify the types of data to be
stored in database tables. A database includes information about the entities in an
organization or business and their relationships to each other. In a relational database,
entities are defined as tables.

An entity is a person, object, or concept about which you wish to store information.
Some of the entities described in the sample tables are employees, departments, and
projects. (See Appendix I, “Sample Tables” on page 945, for a description of the
sample database.)

In the sample employee table, the entity “employee” has attributes, or properties, such
as employee number, name, work department, and salary amount. Those properties
appear as the columns EMPNO, FIRSTNME, LASTNAME, WORKDEPT, and SALARY.

An occurrence of the entity “employee” consists of the values in all of the columns for
one employee. Each employee has a unique employee number (EMPNO) that can be
used to identify an occurrence of the entity “employee.”

Each row in a table represents an occurrence of an entity or relationship. For example,
in the following table the values in the first row describe an employee named Haas.

 Copyright IBM Corp. 1993, 1998 3

Table 2. Occurrences of Employee Entities and their Attributes

EMPNO FIRSTNME LASTNAME WORKDEPT JOB

000010 Christine Haas A00 President

000020 Michael Thompson B01 Manager

000120 Sean O'Connell A00 Clerk

000130 Dolores Quintana C01 Analyst

000030 Sally Kwan C01 Manager

000140 Heather Nicholls C01 Analyst

000170 Masatoshi Yoshimura D11 Designer

There is a growing need to support non-traditional database applications such as
multimedia. Within your design, you may want to consider attributes to support
multimedia objects such as documents, video or mixed media, image, and voice.

In a table, each column of a row is related in some way to all the other columns of that
row. Some of the relationships expressed in the sample tables are:

¹ Employees are assigned to departments

Dolores Quintana is assigned to Department C01

¹ Employees perform a job

Dolores works as an Analyst

¹ Departments report to other departments

Department C01 reports to Department A00
Department B01 reports to Department A00

¹ Employees work on projects

Dolores and Heather both work on project IF1000

¹ Employees manage departments

Sally manages department C01.

Before you design your tables, you must understand entities and their relationships.
“Employee” and “department” are entities; Sally Kwan is part of an occurrence of
“employee,” and C01 is part of an occurrence of “department.”

The same relationship applies to the same columns in every row of a table. For
example, one row of a table expresses the relationship that Sally Kwan manages
Department C01; another, the relationship that Sean O'Connell is a clerk in Department
A00.

The information contained within a table depends on the relationships to be expressed,
the amount of flexibility needed, and the data retrieval speed desired.

4 Administration Guide

In addition to identifying data within your design, you should also identify other types of
information such as the business rules which apply to that data.

Define Tables for Each Type of Relationship
In a database, you can express several types of relationships. Consider the possible
relationships between employees and departments. An employee can work in only one
department; this relationship is single-valued for employees. On the other hand, one
department can have many employees; the relationship is multi-valued for departments.
The relationship between employees (single-valued) and departments (multi-valued) is
a one-to-many relationship. Relationships can be one-to-many, many-to-one,
one-to-one, or many-to-many.

The type of a given relationship can vary, depending on the specific environment. If
employees of a company belong to several departments, the relationship between
employees and departments is many-to-many.

You will want to define separate tables for different types of relationships.

The following topics are discussed within this section:

¹ “One-to-Many and Many-to-One Relationships”
¹ “Many-to-Many Relationships” on page 6
¹ “One-to-One Relationships” on page 7

One-to-Many and Many-to-One Relationships
To define tables for each one-to-many and many-to-one relationship:

¹ Group all the relationships for which the “many” side of the relationship is the same
entity.

¹ Define a single table for all the relationships in a group.

In the following example, the “many” side of the first and second relationships is
“employees” so we define an employee table, EMPLOYEE.

Table 3. Many-to-One Relationships

Entity Relationship Entity

Employees are assigned to departments

Employees work at jobs

Departments report to (administrative) departments

In the third relationship, “departments” is the “many” side, so we define a department
table, DEPARTMENT.

The following tables illustrate how these examples are represented:

 Chapter 1. Designing Your Logical Database 5

The EMPLOYEE table:

The DEPARTMENT table:

Figure 12. Assigning Many-to-One Facts to Tables

EMPNO WORKDEPT JOB

000010 A00 President

000020 B01 Manager

000120 A00 Clerk

000130 C01 Analyst

000030 C01 Manager

000140 C01 Analyst

000170 D11 Designer

DEPTNO ADMRDEPT

C01 A00

D01 A00

D11 D01

 Many-to-Many Relationships
A relationship that is multi-valued in both directions is a many-to-many relationship. An
employee can work on more than one project, and a project can have more than one
employee. The questions “What does Dolores Quintana work on?” and “Who works on
project IF1000?” both yield multiple answers. A many-to-many relationship can be
expressed in a table with a column for each entity (“employees” and “projects”), as
shown in the following example.

The following table illustrates how a many-to-many relationship (an employee can work
on many projects and a project can have many employees working on it) can be
represented:

6 Administration Guide

The employee activity (EMP_ACT) table:

Figure 13. Assigning Many-to-Many Facts to Tables

EMPNO PROJNO

000030 IF1000

000030 IF2000

000130 IF1000

000140 IF2000

000250 AD3112

 One-to-One Relationships
One-to-one relationships are single-valued in both directions. A manager manages one
department; a department has only one manager. The questions, “Who is the manager
of Department C01?” and “What department does Sally Kwan manage?” both have
single answers. The relationship can be assigned to either the department table or the
employee table. Because all departments have managers, but not all employees are
managers, it is most logical to add the manager to the department table as shown in
the following example.

The following tables illustrates how a one-to-one relationship can be represented:

The DEPARTMENT table:

Figure 14. Assigning One-to-One Facts to a Table

DEPTNO MGRNO

A00 000010

B01 000020

D11 000060

Provide Column Definitions for All Tables
To define a column in a relational table:

1. Choose a name for the column

Each column in a table must have a name that is unique within the table.
Selecting column names is described in detail in Appendix E, “Naming Rules” on
page 885.

 Chapter 1. Designing Your Logical Database 7

2. State what kind of data is valid for the column

The data type and length specify maximum length and the type of data that is valid
for the column. Data types may be chosen from those provided by the database
manager or you may choose to create your own user-defined types. For
information about the data types provided by DB2 and about user-defined types,
see the SQL Reference manual.

Examples of data type categories are: numeric, character string, double-byte (or
graphic) character string, date-time, and binary string.

Large object (LOB) data types support multi-media objects such as documents,
video, image and voice. These large objects are implemented using the following
data types:

¹ A binary large object (BLOB) string. Examples of BLOBs are photographs of
employees, voice, and video.

¹ A character large object (CLOB) string, where the sequence of characters can
be either single- or multi-byte characters, or a combination of both. An
example of a CLOB is a resume of an employee.

¹ A double-byte character for large object (DBCLOB) string, where the sequence
of characters are double-byte characters. An example of a DBCLOB is a
Japanese resume.

For a better understanding of large object support, refer to the SQL Reference
manual.

A user-defined type (UDT), is a type that is derived from an existing type. You may
need to define types that are derived from existing types that share similar
characteristics, but are considered to be separate and incompatible types.

| A structured type is a user-defined type that has a structure that is defined in the
| database. It contains a sequence of named attributes, each of which has a data
| type. A structured type may be defined as a subtype of another structured type,
| called its supertype. A subtype inherits all the attributes of its supertype and may
| have additional attributes defined. The set of structured types that are related to a
| common supertype is called a type hierarchy and the supertype that does not have
| any supertype is called the root type of the type hierarchy.

| A structured type may be used as the type of a table or a view. The names and
| data types of the attributes of the structured types, together with the object
| identifier, become the names and data types of the columns of this typed table or
| typed view. Rows of the typed table or typed view can be thought of as a
| representation of instances of the structured type.

| A structured type cannot be used as the data type of a column of a table or a view.
| There is also no support for retrieving a whole structured type instance into a host
| variable in an application program.

| A reference type is a companion type to the structured type. Similar to a distinct
| type, a reference type is a scalar type that shares a common representation with
| one of the built-in data types. This same representation is shared for all types in
| the type hierarchy. The reference type representation is defined when the root type

8 Administration Guide

| of a type hierarchy is created. When using a reference type, a structured type is
| specified as a parameter of the type. This parameter is called the target type of the
| reference.

| The target of a reference is always a row in a typed table or view. When a
| reference type is used, it may have a scope defined. The scope identifies a table
| (called the target table) or view (called the target view) that contains the target row
| of a reference value. The target table or view must have the same type as the
| target type of the reference type. An instance of a scoped reference type uniquely
| identifies a row in a typed table or typed view, called its target row.

A User-defined function (UDF) may be used for a number of reasons, including
invoking routines that allow comparison or conversion between user-defined types.
UDFs extend and add to the support provided by built-in functions of SQL and can
be used wherever a built-in function can be used. There are two types of UDFs:

¹ An external function, which is written in a programming language
¹ A sourced function, which will be used to invoke other UDFs

For example, two numeric data types are European Shoe Size and American Shoe
Size. Both types share the same representations of shoe size, but they are
incompatible because the measurement base is different and cannot be compared.
When this occurs, a user-defined function can be invoked to convert from one shoe
size to another.

| During your design, you may have to consider functions for your UDTs. For a
| better understanding of user-defined types, structured types, reference types, and
| user-defined functions, refer to the SQL Reference manual.

3. State which columns might need default values

Some columns cannot have meaningful values in all rows because:

¹ A value of the column is not applicable to the row.

For example, a column containing an employee's middle initial is not applicable
to an employee who has no middle initial.

¹ A value is applicable, but the value is not known at this time.

As an example, the MGRNO column might not contain a valid manager
number because the previous manager of the department has been
transferred and a new manager has not been appointed yet.

 In both situations, you can choose between allowing a null value (a special value
indicating that the column value is unknown or inapplicable) or allowing a non-null
default value to be assigned by the database manager or by the application.

Null values and default values are described in detail in the SQL Reference
manual.

Identify One or More Columns as a Primary Key
The unique key of a table is a column or an ordered collection of columns for which
each value identifies (functionally determines) a unique row. For example, an employee

 Chapter 1. Designing Your Logical Database 9

number column can be defined as a unique key, because each value in the column
identifies only one employee. No two employees can have the same employee number.

The primary key of a table is one of the unique keys defined on a table but is selected
to be the key of first importance on the table. There can only be one primary key on a
table.

A primary index is automatically created for the primary key. The primary index is used
by the database manager for efficient access to table rows and allows the database
manager to enforce the uniqueness of the primary key. At other times the database
manager may use other columns with indexes defined, and not only the primary key
and index, to access data when processing queries.

Several columns could qualify as a candidate to be the primary key for a table. Each of
the candidate columns could be considered unique. You could have all of the columns
as part of the primary key but this would create an overly complex primary key. You
should consider having just one of the columns as the primary key and then creating
unique constraints or unique indexes on one or more of the other columns.

In some cases, using a timestamp as part of the key can be helpful, for example when
a table does not have a “natural” unique key or if arrival sequence is the method used
to distinguish unique rows.

Primary keys for some of the sample tables are:

Table Key Column
Employee table EMPNO
Department table DEPTNO
Project table PROJNO

The following example shows part of the project table with the primary key column
indicated.

Table 4. A Primary Key on the PROJECT Table

PROJNO (Primary Key) PROJNAME DEPTNO

MA2100 Weld Line Automation D01

MA2110 Weld Line Programming D11

If every column in a table contains duplicate values, you cannot define a primary key
with only one column. In this case, you can list two or more columns for the primary
key. A key with more than one column is a composite key. The combination of column
values should define a unique entity. If a composite key cannot be easily assigned, you
may consider defining a new column that has unique values.

The following example shows a primary key containing more than one column; it is a
composite key.

10 Administration Guide

Table 5. A Composite Primary Key on the EMP_ACT Table

EMPNO (Primary
Key)

PROJNO (Primary
Key)

ACTNO
(Primary Key) EMPTIME

EMSTDATE
(Primary Key)

000250 AD3112 60 1.0 1982-01-01

000250 AD3112 60 .5 1982-02-01

000250 AD3112 70 .5 1982-02-01

Identifying Candidate Key Columns
To identify candidate keys, select the smallest number of columns that define a unique
entity. There may be more than one candidate key. In Table 19 on page 19, there
appear to be many candidate keys. The
 EMPNO column, the PHONENO, and the LASTNAME each uniquely identify the
employee.

The criteria for selecting a primary key from a pool of candidate keys should be
persistence, uniqueness, and stability of the key.

¹ Persistence means that the primary key is always present for the row.

¹ Uniqueness means that each key value is and always will be different for each row.

¹ Stability means that the primary key should not be changed to another value.

Of the three candidate keys in the example, only the employee number meets the
above criteria. An employee may not have a phone number when joining a company.
Last names can change, and, although they are unique at one point, are not always
guaranteed to be so. Therefore, the employee number column is the better choice for
the primary key. An employee is assigned a unique number only once, and that number
is generally not updated as long as the employee remains with the company. Since
each employee must have a number, the employee number column is persistent.

Be Sure Equal Values Represent the Same Entity
You can have more than one table describing properties of the same set of entities. For
example, the Employee Table shows the number of the department to which an
employee is assigned, and the Department Table shows which manager is assigned to
each department number. To retrieve both sets of properties simultaneously, you can
join the two tables on the matching columns, as shown in the following example. The
value in WORKDEPT and DEPTNO represent the same entity and represent a join path
between the DEPARTMENT and EMPLOYEE tables.

 Chapter 1. Designing Your Logical Database 11

The DEPARTMENT table:

The EMPLOYEE table:

Figure 15. A Join Path between Two Tables

DEPTNO DEPTNAME MGRNO ADMRDEPT

D21 Administration
Support

000070 D01

EMPNO FIRSTNAME LASTNAME WORKDEPT JOB

000250 Daniel Smith D21 Clerk

When you retrieve information about an entity from more than one table, make sure
equal values represent the same entity. The connecting columns can have different
names (like WORKDEPT and DEPTNO in the previous example), or they can have the
same name (like the columns called DEPTNO in the department and project tables).

Consider Normalizing Your Tables
The topic of normalizing tables draws much attention in database design.
Normalization helps you avoid redundancies and inconsistencies in your data. The
main idea in normalization is to reduce tables to a set of columns where all the non-key
columns depend on the entire primary key of the table. If this is not the case, the data
can become inconsistent during updating.

This section briefly reviews the rules for first, second, third, and fourth normal forms of
tables, and describes some reasons why they should or should not be followed. The
fifth normal form of a table, which is covered in many books on database design, is not
described here.

Here are brief descriptions of the normal forms presented later:

Form Description

First At each row and column position in the table there exists one value, never a
set of values. (See “First Normal Form” on page 13)

Second Each column that is not in the key provides a fact that depends on the entire
key. (See “Second Normal Form” on page 13)

Third Each non-key column provides a fact that is independent of other non-key
columns and depends only on the key. (See “Third Normal Form” on
page 15)

Fourth No row contains two or more independent multi-valued facts about an entity.
(See “Fourth Normal Form” on page 16)

12 Administration Guide

First Normal Form
A table satisfies the requirement of first normal form if for each row-and-column position
in the table there exists one value, never a set of values. A table that is in first normal
form does not necessarily meet the test for higher normal forms.

For example, the following table violates first normal form because the WAREHOUSE
column contains several values for each occurrence of PART.

Table 6. Table Violating First Normal Form

PART (Primary Key) WAREHOUSE

P0010 Warehouse A, Warehouse B, Warehouse C

P0020 Warehouse B, Warehouse D

The following example shows the table in first normal form.

Table 7. Table Conforms to First Normal Form

PART (Primary Key) WAREHOUSE (Primary Key) QUANTITY

P0010 Warehouse A 400

P0010 Warehouse B 543

P0010 Warehouse C 329

P0020 Warehouse B 200

P0020 Warehouse D 278

Second Normal Form
A table is in second normal form if each column that is not in the key provides a fact
that depends on the entire key.

This means that all data that is not part of the primary key must depend on all of the
columns in the key. This reduces repetition among database tables.

Second normal form is violated when a non-key column is a fact about a subset of a
composite key, as in the following example. An inventory table records quantities of
specific parts stored at particular warehouses; its columns are shown in the following
example.

 Chapter 1. Designing Your Logical Database 13

Table 8. Table Violates Second Normal Form

PART (Primary
Key)

WAREHOUSE
(Primary Key) QUANTITY WAREHOUSE_ADDRESS

P0010 Warehouse A 400 1608 New Field Road

P0010 Warehouse B 543 4141 Greenway Drive

P0010 Warehouse C 329 171 Pine Lane

P0020 Warehouse B 200 4141 Greenway Drive

P0020 Warehouse D 278 800 Massey Street

Here, the key consists of the PART and the WAREHOUSE columns together. Because
the column WAREHOUSE_ADDRESS depends only on the value of WAREHOUSE, the
table violates the rule for second normal form.

The problems with this design are:

¹ The warehouse address is repeated in every record for a part stored in that
warehouse.

¹ If the address of the warehouse changes, every row referring to a part stored in
that warehouse must be updated.

¹ Because of the redundancy, the data might become inconsistent, with different
records showing different addresses for the same warehouse.

¹ If at some time there are no parts stored in the warehouse, there might be no row
in which to record the warehouse address.

To satisfy second normal form, the information shown above, in Table 8, would be split
into the following two table s:

Table 9. Part-Stock Table Conforms to Second Normal Form

PART (Primary Key) WAREHOUSE (Primary Key) QUANTITY

P0010 Warehouse A 400

P0010 Warehouse B 543

P0010 Warehouse C 329

P0020 Warehouse B 200

P0020 Warehouse D 278

14 Administration Guide

Table 10. Warehouse Table Conforms to Second Normal Form

WAREHOUSE (Primary Key) WAREHOUSE_ADDRESS

Warehouse A 1608 New Field Road

Warehouse B 4141 Greenway Drive

Warehouse C 171 Pine Lane

Warehouse D 800 Massey Street

However, there is a performance consideration in having the two tables in second
normal form. Application programs that produce reports on the location of parts must
join both tables to retrieve the relevant information.

To better understand performance considerations, see Part 3, “Tuning Application
Performance” on page 385.

Third Normal Form
A table is in third normal form if each non-key column provides a fact that is
independent of other non-key columns and depends only on the key.

Third normal form is violated when a non-key column is a fact about another non-key
column. For example, the first table in the following example contains the columns
EMPNO and WORKDEPT. Suppose a column DEPTNAME is added. The new column
depends on WORKDEPT, whereas the primary key is the column EMPNO; thus the
table now violates third normal form.

Changing DEPTNAME for a single employee, John Parker, does not change the
department name for other employees in that department. The inconsistency that
results is shown in the updated version of the table in the following example.

Table 11. Unnormalized Employee-Department Table Before Update

EMPNO (Primary
Key) FIRSTNAME LASTNAME WORKDEPT DEPTNAME

000290 John Parker E11 Operations

000320 Ramlal Mehta E21 Software Support

000310 Maude Setright E11 Operations

The following example shows the content of the table following an update to the
DEPTNAME column for John Parker. Note that there are now two different department
names used for department number (WORKDEPT) E11:

 Chapter 1. Designing Your Logical Database 15

Table 12. Unnormalized Employee-Department Table After Update. Information in table has become
inconsistent.

EMPNO (Primary
Key) FIRSTNAME LASTNAME WORKDEPT DEPTNAME

000290 John Parker E11 Installation Mgmt

000320 Ramlal Mehta E21 Software Support

000310 Maude Setright E11 Operations

The table can be normalized by providing a new table, with columns for WORKDEPT
and DEPTNAME. In that case, an update like changing a department name is much
easier—the update only has to be made to the new table. An SQL query that shows the
department name along with the employee name is more complex to write because it
requires joining the two tables. This query will probably also take longer to execute than
the query of a single table. In addition, the entire arrangement takes more storage
space because the WORKDEPT column must appear in both tables. The following
tables are defined as a result of normalizing EMPDEPT.

Table 13. Employee Table After Normalizing the Employee-Department Table

EMPNO (Primary Key) FIRSTNAME LASTNAME WORKDEPT

000290 John Parker E11

000320 Ramlal Mehta E21

000310 Maude Setright E11

Table 14. Department Table After Normalizing the Employee-Department Table

DEPTNO (Primary Key) DEPTNAME

E11 Operations

E21 Software Support

Fourth Normal Form
A table is in fourth normal form if no row contains two or more independent multi-valued
facts about an entity.

Consider these entities: employees, skills, and languages. An employee can have
several skills and know several languages. There are two relationships, one between
employees and skills, and one between employees and languages. A table is not in
fourth normal form if it represents both relationships, as in the following example:

16 Administration Guide

Table 15. Table Violating Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key) LANGUAGE (Primary Key)

000130 Data Modelling English

000130 Database Design English

000130 Application Design English

000130 Data Modelling Spanish

000130 Database Design Spanish

000130 Application Design Spanish

Instead, the relationships should be represented in two tables, as in the following
examples.

Table 16. Employee-Skill Table in Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key)

000130 Data Modelling

000130 Database Design

000130 Application Design

Table 17. Employee-Language Table in Fourth Normal Form

EMPNO (Primary Key) LANGUAGE (Primary Key)

000130 English

000130 Spanish

If, however, the facts are interdependent—that is, the employee applies certain
languages only to certain skills—then the table should not be split.

Any data can be put into fourth normal form. A good rule when designing a database is
to arrange all data in tables in fourth normal form, and then decide whether the result
gives you an acceptable level of performance. If it does not, you are at liberty to
denormalize your design.

Planning for Constraint Enforcement
A constraint is a rule that the database manager enforces. Four types of constraint
handling are covered in this section:

Unique Constraints Ensures the unique values of a key in a table. Any
changes to the columns that compose the unique key
are checked for uniqueness.

 Chapter 1. Designing Your Logical Database 17

Referential Integrity Enforces referential constraints on insert, update, and
delete operations. It is the state of a database in which
all values of all foreign keys are valid.

Table Check Constraints Verify that changed data does not violate conditions
specified when a table was created or altered.

Triggers Define a set of actions that are executed when called by
an update, delete, or insert operation on a specified
table.

 Unique Constraints
A unique constraint is the rule that the values of a key are valid only if they are unique
within the table. Each column making up the key in a unique constraint must be defined
as NOT NULL. Unique constraints are defined in the CREATE TABLE or the ALTER
TABLE statements using the PRIMARY KEY clause or the UNIQUE clause.

A table can have any number of unique constraints; however, you can only define one
unique constraint as the primary key for a table. Also, a table cannot have more than
one unique constraint on the same set of columns.

When a unique constraint is defined, the database manager creates (if needed) a
unique index and designates it as either a primary or unique system-required index.
The enforcement of the constraint is through the unique index. Once a unique
constraint has been established on a column, the check for uniqueness during multiple
row updates is deferred until the end of the update.

A unique constraint can also be used as the parent key in a referential constraint.

 Referential Integrity
Referential integrity lets you define required relationships between and within tables.
The database manager maintains these relationships which are expressed as
referential constraints and require that all values of a given attribute or column of a
table also exist in some other table or column. For example, a typical referential
constraint might require that every employee in the EMPLOYEE table must be in a
department that exists in the DEPARTMENT table. No employee can be in a
department that does not exist.

| You can build referential constraints into a database to ensure that referential integrity
| is maintained and to allow the optimizer to exploit knowledge of these special
| relationships to process queries more effectively. When planning for referential
| integrity, identify the relationships to be established between database tables. You can
| identify a relationship by defining a primary key and referential constraints.

The following two tables are related, and show some of the relationships to be
discussed:

18 Administration Guide

Table 18. DEPARTMENT Table

DEPTNO (Primary Key) DEPTNAME MGRNO

A00 Spiffy Computer Service Div. 000010

B01 Planning 000020

C01 Information Center 000030

D11 Manufacturing Systems 000060

Table 19. EMPLOYEE Table

EMPNO (Primary
Key) FIRSTNAME LASTNAME

WORKDEPT
(Foreign Key) PHONENO

000010 Christine Haas A00 3978

000030 Sally Kwan C01 4738

000060 Irving Stern D11 6423

000120 Sean O'Connell A00 2167

000140 Heather Nicholls C01 1793

000170 Masatoshi Yoshimura D11 2890

The following definitions are useful for understanding referential integrity.

A unique key is a set of columns where no two values are duplicated in any other row.
You may define one unique key for each table as the primary key. The unique key may
also be known as a parent key when referenced by a foreign key.

A primary key is a unique key that is part of the definition of the table. Each table can
only have one primary key. In the preceding tables DEPTNO and EMPNO are the
primary keys of the DEPARTMENT and EMPLOYEE tables.

A foreign key is a column or set of columns in a table that refer to a unique key or
primary key of the same or another table. A foreign key is used to establish a
relationship with a unique key or primary key to enforce referential integrity among
tables. The column WORKDEPT in the EMPLOYEE table is a foreign key because it
refers to the primary key, column DEPTNO, in the DEPARTMENT table.

A composite key is a key that has more than one column. Unique primary and foreign
keys can be composite keys. For example, if departments were uniquely identified by
the combination of division number and department number, two columns would be
needed to comprise the key to the DEPARTMENT table.

A parent key is a primary key or unique key of a referential constraint.

A parent table is a table containing a parent key that is related to at least one foreign
key in the same or another table. A table can be a parent in an arbitrary number of
relationships. For example, the DEPARTMENT table, which has a primary key of

 Chapter 1. Designing Your Logical Database 19

DEPTNO, is a parent of the EMPLOYEE table, which contains the foreign key
WORKDEPT.

A parent row is a row of a parent table whose parent key value matches at least one
foreign key value in a dependent table. A row in a parent table is not necessarily a
parent row. The fourth row (D11) of the DEPARTMENT table is the parent row of the
third and sixth rows in the EMPLOYEE table. The second row (B01) of the
DEPARTMENT table is not the parent of any other rows.

A dependent table is a table containing one or more foreign keys. A dependent table
can also be a parent table. A table can be a dependent in an arbitrary number of
relationships. For example, the EMPLOYEE table contains the foreign key
WORKDEPT, which is dependent on the DEPARTMENT table that has a primary key.

A dependent row is a row of a dependent table that has a non-null foreign key value
that matches a parent key value. The foreign key value represents a reference from the
dependent row to the parent row. Since foreign keys may accept null values, a row in a
dependent table is not necessarily a dependent row.

A table is a descendent of a table if it is a dependent table or if it is a descendent of a
dependent table. A descendent table contains a foreign key that can be traced back to
the parent key of some table.

A referential cycle is a path that connects a table to itself. When a table is directly
connected to itself, it is a self-referencing table. If the EMPLOYEE table has another
column called MGRID that contains the EMPNO of each employee's manager, then the
EMPLOYEE table would be a self-referencing table. MGRID would be a foreign key for
the EMPLOYEE table.

A referential constraint is an assertion that non-null values of a designated foreign key
are valid only if they also appear as values of a unique key of a designated table. The
purpose of referential constraints is to guarantee that database relationships are
maintained and data entry rules are followed.

A self-referencing table is both a parent and a dependent in the same relationship. A
self-referencing row is a row that is a parent and a dependent of itself. The constraint
that exists in this situation is called a self-referencing constraint. For example, if the
value of the foreign key in a row of a self-referencing table matches the value of the
unique key in that row, then the row is self-referencing.

The following additional topic is discussed within this section:

¹ “Implications for SQL Operations”

Implications for SQL Operations
Enforcement of referential constraints has special implications for some SQL operations
that depend on whether the table is a parent or a dependent. This segment describes
the effects of referential integrity on the SQL INSERT, DELETE, UPDATE, and DROP
operations.

20 Administration Guide

The database manager does not automatically enforce referential constraints across
systems. As a result, if you wish to enforce referential constraints across systems, your
application programs must contain the necessary logic.

The following referential integrity rules are discussed:

 ¹ INSERT Rules
 ¹ DELETE Rules
 ¹ UPDATE Rules.

INSERT Rules: You can insert a row at any time into a parent table without any action
being taken in the dependent table. However, you cannot insert a row into a dependent
table, unless there is a row in the parent table with a parent key value equal to the
foreign key value of the row that is being inserted, unless the foreign key value is null.
The value of a composite foreign key is null if any component of the value is null.

This rule is implicit when a foreign key is specified.

When you try to insert a row into a table that has referential constraints, the INSERT
operation is not allowed if any of the non-null foreign key values are not present in the
parent key. If the INSERT operation fails for one row during an attempt to insert more
than one row, all rows in the statement are backed out.

DELETE Rules: When you delete a row from a parent table, the database manager
checks if there are any dependent rows in the dependent table with matching foreign
key values. If any dependent rows are found, several actions could be taken. You can
determine which action will be taken by specifying a delete rule when you create the
dependent table.

The delete rules for a dependent table (the table containing the foreign key) when a
primary key is deleted are:

RESTRICT Prevents any row in the parent table from being deleted
if any dependent rows are found. If you need to remove
both parent and dependent rows, delete dependent
rows first. Deleting the parent row first would violate the
referential constraint and is not allowed.

See the SQL Reference for an example where this is
different from NO ACTION.

NO ACTION Enforces the presence of a parent row for every child
after all the referential constraints are applied. See the
SQL Reference for an example where this is different
from RESTRICT.

CASCADE Implies that deleting a row in the parent table
automatically deletes any related rows in the dependent
table. This rule is useful when a row in the dependent
table has no significance without a row in the parent
table.

 Chapter 1. Designing Your Logical Database 21

Deleting the parent row first would automatically delete
the dependent rows referencing a primary key.
Therefore, the dependent rows would not need to be
deleted first. If some of these dependent rows have
dependents of their own, the delete rule for those
relationships will be applied. In other words, the
database manager can handle cascading deletions.

SET NULL Ensures that deletion of a row in the parent table sets
the values of the foreign key in any dependent rows to
null. Other parts of the row are unchanged.

If no delete rule is explicitly defined when the table is created, the NO ACTION rule will
be applied.

Any table that can be involved in a delete operation is said to be delete-connected. The
following restrictions apply to delete-connected relationships.

¹ A table cannot be delete-connected to itself in a referential cycle of more than one
table.

¹ When a table is delete-connected to another table through more than one
dependent relationship, these relationships must have the same delete rule, either
CASCADE or NO ACTION.

¹ When a self-referencing table is a dependent of another table in a CASCADE
relationship, the delete rule of the self-referencing relationship must also be
CASCADE.

You can, at any time, delete rows from a dependent table without taking any action on
the parent table. For example, in the department-employee relationship, an employee
could retire and have his row deleted from the employee table with no effect on the
department table. (Ignore, for the moment, the reverse relationship of
employee-department, in which the department manager ID is a foreign key referring to
the parent key of the employee table. If a manager retires, there is an effect on the
department table.)

UPDATE Rules: The database manager prevents the update of a unique key of a
parent row. When you update a foreign key in a dependent table, and the foreign key
is not null, it must match some value of the parent key of the parent table of the
relationship. If any referential constraint is violated by an UPDATE operation, an error
occurs and no rows are updated.

When a value in a column of the parent key is updated:

¹ If any row in the dependent table matches the original value of the key, the update
is rejected when the update rule is RESTRICT.

¹ If any row in the dependent table does not have a corresponding parent key when
the update statement is completed (excluding after triggers), the update is rejected
when the update rule is NO ACTION.

22 Administration Guide

To update the value of a parent key that is in a parent row, you must first remove the
relationship to any child rows in the dependent tables by either:

¹ Deleting the child rows; or,
¹ Update the foreign keys in dependent tables to include another valid key value.

When there is no dependency to the key value in the row, the row is no longer a parent
in a referential relationship and can be updated.

If part of a foreign key is being updated and no part of the foreign key value is null, the
new value of the foreign key must appear as a unique key value in the parent table. If
there is no foreign key dependent on a given unique key, that is, the row containing the
unique key is not a parent row, then part of the unique key may be updated. However,
no more than one row can be selected for updating in this case, because you are
working with a unique key where duplicate rows are not allowed.

Table Check Constraints
Business rules identified within your design can be enforced through table check
constraints. Table check constraints specify search conditions that are enforced for
each row of a table. These constraints are automatically activated when an update or
insert statement runs against the table. They are defined when using either CREATE
TABLE or ALTER TABLE statements.

A table check constraint can be used for validation. For example: the values of a
department number must lie within the range 10 to 100; the job title of an employee can
only be 'Sales', 'Manager', or 'Clerk'; or an employee who has been with the company
for more than 8 years must earn more than $40,500.

See Chapter 6, “Utilities for Moving Data” on page 203 for more information on the
impact of table check constraints on the IMPORT and LOAD commands.

 Triggers
A trigger is a defined set of actions that are executed when a delete, insert, or update
operation is carried out against a specified table. To help support business rules,
triggers can be defined. Triggers are stored in the database, therefore application
development is faster because you do not have to code the actions in every application
program. The trigger is coded once, stored in the database and automatically called by
the database manager, as required, when an application uses the database. This
ensures that the business rules related to the data are always enforced. If a business
rule does change, only a modification to the trigger is required instead of to each
application program.

For example, triggers can be used to automatically update summary or audit data.

A user-defined function (UDF) can be called within a triggered SQL statement. This
allows the triggered action to perform a non-SQL operation when the trigger is fired. For
example, e-mail can be sent as an alert mechanism. For more information on triggers,
see “Creating a Trigger” on page 109 and the Embedded SQL Programming Guide
manual.

 Chapter 1. Designing Your Logical Database 23

Other Database Design Considerations
 When designing a database, it is important to consider which tables each user should
be able to access. Access to tables is granted or revoked through authorizations. The
highest level of authority is the system administration authority (SYSADM). A user with
SYSADM authority can assign other authorizations, including the database
administrator authority (DBADM).

| There are other requirements that you may have to consider during your design, such
| as audit, history, summary, security, data typing, and parallel processing capability.

| For audit purposes, you may have to record every update made to your data for a
| specified period. For example, you may want to update an audit table each time an
| employee's salary was changed. Updates to this table could be made automatically if a
| trigger was established to enforce this behavior. Another way to carry out audit
| activities is through the use of the DB2 audit facility. See Chapter 5, “Auditing DB2
| Activities” on page 175 for more information.

For performance reasons, you may only want to access a selected amount of data,
while maintaining the base data as history. You should include within your design, the
requirements for maintaining this historical data, such as the number of months or
years of data that is required to be available before it can be purged.

| There may be situations identified within your design that deal with summary
| information. For example, you may have a table that has all of your employee
| information in it. However, you would like to have have the employee information
| divided into separate tables by division or department. In this case, a summary table
| for each division or department based on the data in the original table would be helpful.
| See “Creating a Summary Table” on page 118 for more information on summary
| tables.

Security implications should also be identified within your design. For example, you may
decide to support user access to certain types of data through security tables. You can
define access levels to various types of data and who can access this data.
Confidential data such as employee and payroll data, would have stringent security
restrictions imposed where only a select number of individuals could be authorized to
view this data, whereas certain time reporting data could be set up to be viewed
globally. For more information on security and authorizations, see Chapter 4,
“Controlling Database Access” on page 141.

| You can create tables that have a structured type associated with them. With such
| typed tables, you can establish a hierarchical structure with a defined relationship
| between those tables called a type hierarchy. The type hierarchy is made up of a single
| root type, supertypes, and subtypes.

| A reference type representation is defined when the root type of a type hierarchy is
| created. The target of a reference is always a row in a typed table or view.

24 Administration Guide

| See Chapter 3, “Implementing Your Design” on page 61 for more information on
| implementing a design that includes typed rows and tables. See Chapter 6, “Utilities for
| Moving Data” on page 203 for more information on moving data between typed tables
| that are in a hierarchical structure.

As your business grows, you may need the additional capacity and performance
capability provided by DB2 Extended Enterprise Edition. In this environment, your
database is partitioned across several machines or systems, each responsible for the
storage and retrieval of a portion of the overall database. In this environment, each
partition (or node) of the database works in parallel to handle SQL or utility operations.

Issues and considerations relating to parallel operations are presented as appropriate to
the topics presented in the following chapters. These issues and considerations are
typically found toward the end of each topic.

 Chapter 1. Designing Your Logical Database 25

26 Administration Guide

Chapter 2. Designing Your Physical Database

After you have completed Chapter 1, Designing Your Logical Database and before
Chapter 3, Implementing Your Design, there are a number of factors you should
consider about the physical environment in which your database and tables will be
implemented. These factors include understanding the files that will be created to
support and manage your database, understanding how much space will be required to
store your data, and determining how you should use table spaces that are required to
store your data.

The following topics are discussed:

¹ Database Physical Directories
¹ Estimating Space Requirements for Tables
¹ Additional Space Requirements

 ¹ Designing Nodegroups
¹ Designing and Choosing Table Spaces

Database Physical Directories
When a database is created, the database manager creates a separate subdirectory to
store control files (such as log header files) and to allocate containers to default table
spaces. Objects associated with the database are not always stored in the database
directory; they can be stored in various locations, including directly on devices.

The database is created in the instance that is defined in the DB2INSTANCE
environment variable or in the instance to which you have explicitly attached (using the
ATTACH command). See the “Using Multiple Instances of the Database Manager” on
page 62 for an introduction to instances.

| The naming scheme used on UNIX platforms is

| specified_path/$DB2INSTANCE/NODEnnnn/SQL00001

| The naming scheme used on Intel platforms is

| D:\$DB2INSTANCE\NODEnnnn\SQL00001

| where

| ¹ specified_path is the optional, user-specified location to install the instance.

| ¹ NODEnnnn is the node identifier in a partitioned database environment. The first
| node is NODE0000.

| ¹ “D:” is a “drive letter” identifying the volume where the root directory is located.

SQL00001 contains objects associated with the first database created, and subsequent
databases are given higher numbers: SQL00002 and so on.

The subdirectories are created in a directory with the same name as the database
manager instance to which you are attached when you are creating the database. (On

 Copyright IBM Corp. 1993, 1998 27

Intel platforms, the subdirectories are created under the root directory on a given
volume which is identified by a “drive letter.”) These instance and database
subdirectories are created within the path specified in the CREATE DATABASE
command, and the database manager maintains them automatically. Depending on
your platform, each instance might be owned by an instance owner, who has system
administrator (SYSADM) authority over the databases belonging to that instance.

To avoid potential problems, do not create directories that use the same naming
scheme, and do not manipulate directories that have already been created by the
database manager.

Database Physical Files
The following files are found within the database:

File Name Description

SQLDBCON This file stores the tuning parameters and flags for the database.
See Chapter 20, “Configuring DB2” on page 597 for information
about changing database configuration parameters.

SQLOGCTL.LFH This file is used to help track and control all of the database log
files.

Syyyyyyy.LOG Database log files, numbered from 0000000 to 9999999. The
number of these files is controlled by the logprimary and
logsecond configuration parameters. The size of the individual
files is controlled by the logfilsiz configuration parameter.

With circular logging, the files are reused and the same numbers
will remain. With archival logging, the file numbers will increase in
sequence as logs are archived and new logs are allocated. When
9999999 is reached, the number will wrap.

By default, these log files are stored in a directory called
SQLOGDIR. SQLOGDIR is found in the SQLnnnnn subdirectory.

SQLINSLK This file is used to help ensure that a database is only used by
one instance of the database manager.

SQLTMPLK This file is used to help ensure that a database is only used by
one instance of the database manager.

SQLSPCS.1 This file contains the definition and current state of all table
spaces in the database.

SQLSPCS.2 This file is a copy of SQLSPCS.1, and is created for protection in
case SQLSPCS.1 fails. Without one of these files, you will not be
able to access your database.

SQLBP.1 This file contains the definition of all of the buffer pools used in
the database.

SQLBP.2 This file is a copy of SQLBP.1 and is created for protection in
case SQLBP.1 fails. Without one of these files, you will not be
able to access your database.

28 Administration Guide

Notes:

1. Do not make any direct changes to these files. They can only be accessed
indirectly using the documented APIs and by tools that implement those APIs,
including the command line processor commands and the graphical Control Center.

2. Do not remove these files.

3. Do not move these files.

4. The only supported means of backing up a database or table space is through the
BACKUP API, including the command line processor and Control Center
implementations of that API.

Estimating Space Requirements for Tables
The following information provides a general rule for estimating the size of a database:

¹ “System Catalog Tables”
¹ “User Table Data” on page 30
¹ “Long Field Data” on page 31
¹ “Large Object (LOB) Data” on page 32
¹ “Index Space” on page 32

After reading these sections, you should read “Designing and Choosing Table Spaces”
on page 43.

Information is not provided for the space required by such things as:

¹ The local database directory file
¹ The system database directory file
¹ The file management overhead required by the operating system, including:

– file block size
– directory control space

Information such as row size and structure is precise. However, multiplication factors for
file overhead because of disk fragmentation, free space, and variable length columns
will vary in your own database since there is such a wide range of possibilities for the
column types and lengths of rows in a database. After initially estimating your database
size, create a test database and populate it with representative data. You will then find
a multiplication factor that is more accurate for your own particular database design.

System Catalog Tables
| When a database is initially created, system catalog tables are created. The system
| tables will grow as database objects and privileges are added to the database. Initially,
| they use approximately 2.5 MB of disk space.

The amount of space allocated for the catalog tables depends on the type of table
space and the extent size for the table space containing the catalog tables. For
example, if a DMS table space with an extent size of 32 is used, the catalog table
space will initially be allocated 20MB of space. For more information, see “Designing
and Choosing Table Spaces” on page 43.

 Chapter 2. Designing Your Physical Database 29

Note: For databases with multiple partitions, the catalog tables only reside on the
partition where the CREATE DATABASE was issued. Disk space for the catalog
tables is only required for that partition.

User Table Data
| By default, table data is stored on 4KB pages. Each 4 KB page contains 76 bytes of
| overhead for the database manager. This leaves 4020 bytes to hold user data (or
| rows), although no row can exceed 4005 bytes in length. A row will not span multiple
| pages. You can have a maximum of 500 columns when using a 4 KB page size.

 Note that the table data pages do not contain the data for columns defined with LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB data types. The rows in
a table data page do, however, contain a descriptor of these columns. (See “Long Field
Data” on page 31 and “Large Object (LOB) Data” on page 32 for information about
estimating the space required for the table objects that will contain the data stored
using these data types.)

| Typically, rows are inserted into the table in an approximate first-fit order. The file is
| searched (using a free space map) for the first available space that is large enough to
| hold the new row. When a row is updated, it is updated in place unless there is
| insufficient room left on the page to contain it. If this is the case, a record is created in
| the original row location which points to the new location in the table file of the updated
| row.

| If the ALTER TABLE APPEND ON statement is used, then data will always be
| appended and information about any free space on the data pages will not be kept.

See “Long Field Data” on page 31 and “Large Object (LOB) Data” on page 32 for
information about how LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB and
DBCLOB data is stored and for estimating the space required to store these types of
columns.

| For each user table in the database, the number of 4 KB pages can be estimated by
| calculating:

| ROUND DOWN(4020/(average row size + 10)) = records_per_page

| Then use records_per_page with:

| (number_of_records/records_per_page) * 1.1 = number_of_pages

| Note: This formula is only an estimate and is not guaranteed to be accurate.
| Accuracy of the estimate lessens if the length of records varies due to
| fragmentation and overflow records.

The average row size is the sum of the average column sizes. For information on the
size of each column, see CREATE TABLE in the SQL Reference.

| The factor of “1.1” is for overhead.

30 Administration Guide

| You also have the option to create buffer pools or table spaces that have an 8 KB page
| size. All tables created within this type of table space will have 8 KB page sizes. A
| single table or index object can then be as large as 128 GB in size (the maximum is 64
| GB for a single table or index object with a 4 KB page size). You can have a maximum
| of 1012 columns when using an 8 KB page size. Rows can be up to 8101 bytes in
| length.

| Having a larger page size allows for the possible reduction in the number of levels in
| any index. If you are working with OLTP applications which do random row reads and
| writes, a smaller page size is better because it wastes less buffer space with undesired
| rows. If you are working with DSS applications which access large numbers of
| consequtive rows at a time, a larger page size is better because it reduces the number
| of Input/Output requests required to read a specific number of rows. An exception in
| this latter cases occurs when the row size is smaller than the page size divided by 256.
| In such a case, there is wasted space on each page. (Recall that there can only be a
| maximum of 256 rows per page.) To reduce this wasted space, a smaller page size
| may be more appropriate.

| There are some restrictions when using an 8 KB page size. Using the extended storage
| cache is not allowed. LOB and LONG data cannot reside on pages 8 KB in size. When
| conducting backup and restore operations, a table space restore cannot be done from a
| 4 KB page size to an 8 KB page size; nor the reverse. In addition, you cannot import
| IXF data files that represent more than 755 columns.

Long Field Data
If a table has LONG VARCHAR or LONG VARGRAPHIC data, in addition to the byte
count of 20 for the LONG VARCHAR or LONG VARGRAPHIC descriptor (in the table
row), the data itself must be stored. Long field data is stored in a separate table object
which is structured differently from the other data types (see “User Table Data” on
page 30 and “Large Object (LOB) Data” on page 32).

Data is stored in 32KB areas that are broken up into segments whose sizes are
“powers of two” times 512 bytes. (Hence these segments can be 512 bytes, 1024
bytes, 2048 bytes, and so on, up to 32,700 bytes.)

Each of these data types is stored in a fashion that enables free space to be reclaimed
easily. Allocation and free space information is stored in 4KB allocation pages, which
appear infrequently throughout the object.

The amount of unused space in the object depends on the size of the long field data
and whether this size is relatively constant across all occurrences of the data. For data
entries larger than 255 bytes, this unused space can be up to 50 percent of the size of
the long field data.

 If character data is less than 4KB in length, and it fits in the record with the rest of the
data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data types should be used
instead of LONG VARCHAR or LONG VARGRAPHIC.

 Chapter 2. Designing Your Physical Database 31

Large Object (LOB) Data
If a table has BLOB, CLOB, or DBCLOB data, in addition to the byte count (between 72
and 312 bytes) for the BLOB, CLOB, or DBCLOB descriptor (in the table row), the data
itself must be stored. This data is stored in two separate table objects that are
structured differently than other data types (see “User Table Data” on page 30 and
“Long Field Data” on page 31).

To estimate the space required by large object data, you need to consider the two table
objects used to store data defined with these data types:

¹ LOB Data Objects

 Data is stored in 64MB areas that are broken up into segments whose sizes are
“powers of two” times 1024 bytes. (Hence these segments can be 1024 bytes,
2048 bytes, 4096 bytes, and so on, up to 64MB.)

To reduce the amount of disk space used by the LOB data, you can use the
COMPACT parameter on the lob-options-clause on the CREATE TABLE and
ALTER TABLE statements. The COMPACT option minimizes the amount of disk
space required by allowing the LOB data to be split into smaller segments so that it
will use the smallest amount of space possible. This does not involve data
compression but is simply using the minimum amount of space to the nearest 1KB
boundary. Without the COMPACT option, there is no attempt to reduce the space
used to the nearest 1KB boundary. Appending to LOB values stored using the
COMPACT option may result in slower performance compared to appending LOB
values for which the COMPACT option is not specified.

The amount of free space contained in LOB data objects will be influenced by the
amount of update and delete activity, as well as the size of the LOB values being
inserted.

¹ LOB Allocation Objects

 Allocation and free space information is stored in 4KB allocation pages separated
from the actual data. The number of these 4KB pages is dependent on the amount
of data, including unused space, allocated for the large object data. The overhead
is calculated as follows: one 4KB pages for every 64GB plus one 4KB page for
every 8MB.

If character data is less than 4KB in length, and it fits in the record with the rest of the
data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data types should be used
instead of BLOB, CLOB or DBCLOB.

 Index Space
For each index, the space needed can be estimated as:

(average index key size + 8) * number of rows * 2

where:

¹ The “average index key size” is the byte count of each column in the index key.
See the CREATE TABLE statement in the SQL Reference for information on how
to calculate the byte count for columns with different data types. (Note that to

32 Administration Guide

estimate the average column size for VARCHAR and VARGRAPHIC columns, use
an average of the current data size, plus one byte. Do not use the maximum
declared size.)

¹ The factor of 2 is for overhead, such as non-leaf pages and free space.

Note: For every column that allows nulls, add one extra byte for the null indicator.

 Temporary space is required when creating the index. The maximum amount of
temporary space required during index creation can be estimated as:

(average index key size + 8) * number of rows * 3.2

Where the factor of 3.2 is for index overhead as well as space required for the sorting
needed to create the index.

Note: In the case of non-unique indexes, only four (4) bytes are required to store
duplicate key entries. The estimates shown above assume no duplicates. The
space required to store an index may be over-estimated by the formula shown
above.

The following two calculations can be used to estimate the number of leaf pages. The
results are not guaranteed. The results are only an estimate, and the accuracy depends
largely on how well the averages used reflect the actual data.

Note: For SMS, the minimum space is 12KB. For DMS, the minimum is an extent.

| Following are two methods that you can use when calculating index space. The first
| method is a rough estimate, while the second method provides a more accurate
| estimate:

| ¹ The average number of keys per leaf page is roughly:

| (.9 * (U - (M*2))) * (D + 1)

| -------------------------------

| K + 6 + (4 * D)

| where:

| – U = the usable space on a page is approximately equal to the page size minus
| 100. For a page size of 4096, U is 3996.
| – M = U / (8 + minimumKeySize)
| – D = average number of duplicates per key value
| – K = averageKeySize

| Remember that minimumKeySize and averageKeysize must have an extra 1 byte
| for each nullable key part and an extra byte for the length of each variable length
| key part.

| If there are include columns, they should be accounted for in minimumKeySize and
| averageKeySize.

| The .9 can be replaced by any (100 - pctfree)/100, if a percent free other than the
| default of ten (10) percent was specified during the index creation.

| ¹ If you want a more accurate estimate:

 Chapter 2. Designing Your Physical Database 33

| L = number of leaf pages = X / (avg number of keys on leaf page)

| Where X is the total number of rows in the table.

| You can estimate the original size of an index as:

| (L + 2L/(average number of keys on leaf page)) * pagesize

| For DMS tablespaces, add together the total sizes for all indexes on a table, and
| round up to a multiple of the extent size for the table space where the index
| resides.

| You should provide additional space for index growth due to INSERT/UPDATE
| activity, which may result in page splits.

| Use the following calculations to obtain a more accurate estimate of the original
| index size, as well as an estimate of the number of levels in the index. (This may
| be of particular interest if include columns are being used in the index definition.)
| The average number of keys per non leaf page is roughly:

| (.9 * (U - (M*2))) * (D + 1)

| -------------------------------

| K + 12 + (8 * D)

| Where:

| U Is the same as for the leaf page calculation above.

| D Is the average number of duplicates per key value on non leaf pages
| (this will be much smaller than on leaf pages and you may want to
| simplify by setting to 0).

| M Is U / (8 + minimumKeySize for non leaf pages).

| K Is the averageKeySize for non leaf pages.

| The minimumKeySize and averageKeySize will be the same as on leaf pages, except
| when there are include columns. Include columns are not stored on the non leaf
| pages, so the size of include columns should be excluded from the minimumKeySize
| and averageKeySize for non leaf page calculations.

| You should not replace .9 with (100 - pctfree)/100 unless this value is greater
| than .9, because a maximum of 10% free space will be left on non-leaf pages
| during index creation.

| The number of non-leaf pages can be estimated as follows:

| P Is the number of pages (0 initially).

| L Is the number of leaf pages.

| N Is the number of keys for each non-leaf page.

| Y Is L/N.

| Z Is the number of levels in the tree (1 initially).

34 Administration Guide

| if L > 1 then {P++; Z++}

| While (Y > 1)

| {

| P = P + Y

| Y = Y / N

| Z++

| }

| So the total number of pages is T = (L + P + 2) * 1.0002. The additional .02% is
| for overhead such as space map pages.

| The amount of space required to create the index is estimated as T * pagesize,
| and the number of levels in index tree is estimated to be Z.

Additional Space Requirements
Additional space is also required as follows:

¹ “Log File Space”
¹ “Temporary Work Space” on page 36

Log File Space
The amount of space (in bytes) required for log files can range from:

(logprimary * (logfilsiz + 2) * 4096) + 8192

to:

((logprimary + logsecond) * (logfilsiz + 2) * 4096) + 8192

where:

¹ logprimary is the number of primary log files as defined in the database
configuration file (see “Number of Primary Log Files (logprimary)” on page 660)

¹ logsecond is the number of secondary log files as defined in the database
configuration file (see “Number of Secondary Log Files (logsecond)” on page 662)

¹ logfilsiz is the number of pages in each log file as defined in the database
configuration file (see “Size of Log Files (logfilsiz)” on page 659)

¹ 2 is the number of header pages required for each log file
¹ 4096 is the number of bytes in one page
¹ 8192 is the size (in bytes) of the log control file.

The upper limit of log space is dependent on the actual number of secondary log files
that the database manager requires at run time. This upper limit may never be used or
may only be used during occasional periods of high-volume activity.

Note: If the database is enabled for roll-forward recovery, special log space
requirements should be considered:

¹ With the logretain configuration parameter enabled, the log files will be archived in
the log path directory. The on-line disk space will eventually fill up, unless you
move the log files to a different location.

 Chapter 2. Designing Your Physical Database 35

¹ With the userexit configuration parameter enabled, a user exit program moves the
archived log files to a different location. Extra log space is still required to allow for:

– On-line archived logs that are waiting to be moved by the user exit program
– New log files being formatted for future use.

Temporary Work Space
Some SQL statements require temporary tables for processing (such as a work file for
sorts that cannot be done in memory). These require disk space for storage during the
time they are used. The amount required will be totally dependent on the queries and
the size of tables returned, and therefore cannot be estimated.

You can use the database system monitor and query table space APIs to help you
observe the amount of work space being used during the normal course of operations.

 Designing Nodegroups
 A nodegroup is a named set of one or more nodes that are defined as belonging to a
database. Each database partition that is part of the database system configuration
must already be defined in a partition configuration file called db2nodes.cfg. A
nodegroup can contain from one database partition to the entire number of database
partitions defined for the database system.

You create a new nodegroup using the CREATE NODEGROUP statement. You modify
a nodegroup using the ALTER NODEGROUP statement. You can add or drop one or
more database partitions from a nodegroup. The database partitions must be defined in
the db2nodes.cfg file before modifying the nodegroup. Table spaces (defined later)
reside within nodegroups. Tables reside within table spaces.

When a nodegroup is created or modified, a partitioning map is associated with it. A
partitioning map, in conjunction with a partitioning key and a hashing algorithm, is used
by the database manager to determine which database partition in the nodegroup will
store a given row of data. More information on partitioning maps, keys, and other
related issues are discussed later in this chapter.

With a non-partitioned database, no partitioning key or partitioning map is required.
There are no nodegroup design considerations if you are using a non-partitioned
database. A database partition is part of the database that consists of its own user
data, indexes, configuration files, and transaction logs. Default nodegroups that were
created when the database was created, are used by the database manager.
IBMCATGROUP is the default nodegroup for the table space containing the system
catalogs. IBMTEMPGROUP is the default nodegroup for the table spaces containing
the temporary tables. IBMDEFAULTGROUP is the default nodegroup for the table
spaces containing the user-defined tables the user chooses to put there.

If you are using a multiple partition nodegroup, consider the following design points:

¹ In a multiple partition nodegroup, you can only create a unique index if it is a
superset of the partitioning key.

36 Administration Guide

¹ Depending on the number of database partitions in the database, you may have
one or more single-partition nodegroups and one or more multiple partition
nodegroups present.

¹ There can be no duplicate database partitions within a nodegroup, although the
same database partition may be found in one or more nodegroups.

¹ To ensure fast recovery of the database partition with the system catalog tables,
avoid placing user tables on the same database partition. This is accomplished by
placing user tables in nodegroups that do not include the database partition in the
IBMCATGROUP nodegroup.

You should place small tables in single database partition nodegroups, except where
you want to take advantage of collocation with a larger table. Collocation is the
placement of rows from different tables that contain related data in the same database
partition. Collocated tables allow the database to utilize more efficient join strategies.
Collocated tables can reside in a single database partition nodegroup. Tables are
considered collocated if they reside in a multiple partition nodegroup, and have the
same number of columns in the partitioning key and the data types of the
corresponding columns are partition compatible. Rows in collocated tables with the
same partitioning key value are placed on the same database partition. Tables can be
in separate table spaces in the same nodegroup and still be considered collocated.

You should avoid extending medium-sized tables across too many database partitions.
For example, a 100 MB table may perform better on a 16-database partition nodegroup
than on a 32-database partition nodegroup.

You can use nodegroups to separate online-transaction-processing (OLTP) tables from
decision-support tables to ensure that the performance of OLTP transactions is not
impacted by decision-support transactions.

Nodegroup Design Considerations
Based on the logical design of your database, and the amount of data that the
database is required to process, you should have a good idea whether your database
needs to be partitioned. If you need to partition your database, you should consider the
following to complete your database design as it relates to nodegroup use:

 ¹ “Data Partitioning”
¹ “Partitioning Maps” on page 38
¹ “Partitioning Keys” on page 39
¹ “Table Collocation” on page 41
¹ “Partition Compatibility” on page 42

| ¹ “Replicated Summary Tables” on page 42

 Data Partitioning
 DB2 supports a partitioned storage model allowing you to store data across several
database partitions in the database. This means that the data is physically stored
across more than one database partition and yet can be accessed as if the data were
located in the same place. Applications and users accessing data in a partitioned
database do not need to be aware of the location of the data.

 Chapter 2. Designing Your Physical Database 37

The data, while physically split, is used and managed as a logical whole. Users can
choose how to partition their data by declaring partitioning keys. Users can also
determine which and how many database partitions their table data can be spread
across by selecting the table space and the associated nodegroup in which the data
should be stored. In addition, a partitioning map (which is user-updateable) is used with
a hashing algorithm to specify the mapping of partitioning key values to database
partitions which determines the placement and retrieval of each row of data. As a
result, you can spread the workload across a partitioned database for large tables while
allowing smaller tables to be stored on one or more database partitions. Each database
partition has local indexes on the data it stores resulting in increased performance for
local data access.

You are not restricted in your design to having all tables in their table spaces divided
equally across all database partitions in the database. DB2 supports partial
declustering, which means that you can divide tables and their table spaces across a
subset of database partitions in the system (that is, a nodegroup). You do not have to
divide all tables in their table spaces across all the database partitions in the system.

| An alternative to consider when you would like tables to be positioned on each
| database partition, is to use summary tables and then replicate those tables. A
| summary table could be created with the information you choose. Then you could
| replicate the summary table to each node. See “Replicated Summary Tables” on
| page 42 for more information on why you would want to do this.

 Partitioning Maps
In a partitioned database environment, the database manager has to have a way of
knowing which rows of a table are stored on which database partition in the database.
The database manager has to know where to go to look at or retrieve the data it needs.
Just as we need a map to find our way around a city to different locations, the
database manager needs a map, called a partitioning map, to find the right part of the
database (that is, which database partition) to go to get different parts of the data in the
database.

A partitioning map is an internally generated array containing either 4 096 entries for
multiple partition nodegroups, or a single entry for single partition nodegroups. For a
single partition nodegroup, the partitioning map has only one entry containing the
partition number of the database partition where all the rows of a database table are
stored. For multiple partition nodegroups, the partition numbers of the nodegroup are
specified in a round-robin fashion. Just as a city map is organized into sections using a
grid, the database manager uses a partitioning key to determine the location (the
database partition) where the data is stored.

For example, assume that you have a database created on four database partitions
(numbered 0–3). The partitioning map for the IBMDEFAULTGROUP nodegroup of this
database would be:

0 1 2 3 0 1 2 ...

38 Administration Guide

If a nodegroup had been created in the database using database partitions 1 and 2, the
partitioning map for that nodegroup would be:

1 2 1 2 1 2 1 ...

If the partitioning key for a table to be loaded in the database is an integer that has
possible values between 1 and 500 000, the partitioning key is hashed to a partition
number between 0 and 4 095. That number is used as an index into the partitioning
map to select the database partition for that row.

Figure 16 shows how the row with the partitioning key value (c1, c2, c3) is mapped to
partition 2, which, in turn, references database partition n5.

Row:

...

partitioning key

(..., c1, c2, c3, ...)

partitioning function maps (c1, c2, c3) to partition number 2

0 1 2 3 4 ... 4095

Partitioning Map: n0 n2 n5 n0 n6 ...

Figure 16. Data Distribution Using a Partition Map

A partition map is a flexible way of controlling where data is stored in a partitioned
database. If you have a need at some future time to change the data distribution across
the database partitions in your database, you can use the data redistribution utility. The
data redistribution utility allows you to re-balance or introduce skew into the data
distribution. For more information regarding this utility, see Chapter 18, “Redistributing
Data Across Database Partitions” on page 579.

You can use the Get Table Partitioning Information (sqlugtpi) API to obtain a copy of a
partitioning map that you can view. For more information on this API, see the API
Reference manual.

 Partitioning Keys
 A partitioning key is a column (or group of columns) that is used to determine the
partition in which a particular row of data is stored. A partitioning key is defined on a
table using the CREATE TABLE statement. If a partitioning key is not defined for a
table in a table space that is divided across more than one database partition in a
nodegroup, one is created by default from the first column of the primary key. If no
primary key is specified, the default partitioning key is the first non-long field column
defined on that table. (Long includes all long data types and all Large Object data
types). If you are creating a table in a table space associated with a single database
partition nodegroup and you want to have a partitioning key, you must define the
partitioning key explicitly. One is not created by default.

 Chapter 2. Designing Your Physical Database 39

If no columns satisfy the requirement of the default partitioning key, the table is created
without one. Tables without a partitioning key are only allowed in single database
partition nodegroups. You can add or drop partitioning keys at a later time following the
initial creation of the table using the ALTER TABLE statement. Altering the partition key
can only be done to a table in a table space that is associated with a single database
partition nodegroup.

Choosing a good partitioning key is important. When you make the choice, you must
know:

¹ How tables are to be accessed
¹ The nature of the query workload
¹ The join strategies employed by the database system.

If collocation is not a major consideration, a good partitioning key for a table is one that
spreads the data evenly on all database partitions in the nodegroup. The partitioning
key for each table in a table space that is associated with a nodegroup determines if
the tables are collocated. Tables are considered collocated when:

¹ The tables are placed in table spaces that are in the same nodegroup
¹ The partition keys in each table have the same number of columns
¹ The data types of the corresponding columns are partition-compatible.

This ensures that rows of collocated tables with the same partitioning key values are
located on the same partition. For more information on partition-compatibility, see
“Partition Compatibility” on page 42. For more information on table collocation, see
“Table Collocation” on page 41.

An inappropriate partitioning key can cause the distribution in the data of the table to be
uneven. Columns with unevenly distributed data and columns with a small number of
distinct values should not be chosen as a partitioning key. The number of distinct
values must be great enough to ensure an even distribution of rows across all database
partitions in the nodegroup. The cost of applying the partitioning hash algorithm is
proportional to the size of the partitioning key. The partitioning key cannot be more than
16 columns, but fewer columns make for better performance. Unnecessary columns
should not be included in the partitioning key.

The following points should be considered when defining partitioning keys:

¹ Creation of a table with only long data types (LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, and DBCLOB) is not allowed for multi-partition
tables.

¹ Once defined, alteration of the partition key definition is not allowed.

¹ You cannot update the partitioning key column value for a row in the table.

¹ You can only delete or insert partitioning key column values.

¹ The partitioning key should include the most frequently joined columns.

¹ The partitioning key should be made up of columns that often participate in a
GROUP BY clause.

40 Administration Guide

¹ Any unique key or primary key must contain all the partitioning key columns.

¹ In an online-transaction processing (OLTP) environment, all columns in the
partitioning key should participate in the transaction by using equal (=) predicates
with constants or host variables. For example, assume you have an employee
number, emp_no that is often used in transactions such as:

UPDATE emp_table SET ... WHERE

emp_no ═ host-variable

In a situation like this, the emp_no column is a good choice as a single column
partitioning key for the emp_table table.

Hash partitioning is the method whereby the placement of each row in the partitioned
table is determined. The method works as follows:

1. The hashing algorithm is applied to the value of the partitioning key.
2. The hashing algorithm generates a partitioning map number between zero (0) and

4095.
3. The partitioning map is created when a nodegroup is created. Each of the partition

numbers is sequentially repeated in a round-robin fashion to fill the partition map.
For more information on partitioning maps, see “Partitioning Maps” on page 38.

4. The partition map number is used as an index into the partitioning map. The
number at that location in the partitioning map is the number of the database
partition where the row is stored.

 Table Collocation
When logically designing your database, and based on the needs of your applications,
you may find that two or more tables will jointly provide data in response to frequently
asked queries. When physically designing your database, you want related data from
these two tables to be located as close together as possible. In an environment where
the database is physically divided among two or more database partitions, there must
be a way to keep the related pieces of the divided tables as close together as possible.
The ability to do this is called table collocation.

Tables are collocated when they are stored in the same nodegroup, and when their
partitioning keys are compatible. Placing both tables in the same nodegroup ensures a
common partitioning map. The tables may be in different table spaces, but the table
spaces must be associated with the same nodegroup. The data types of the
corresponding columns in each partitioning key must be partition-compatible. For
information about partition compatibility, see “Partition Compatibility” on page 42.

DB2 has the ability to recognize, when accessing more than one table for a join or
subquery, that the data to be joined is located at the same database partition. When
this happens, DB2 can choose to perform the join or subquery at the database partition
where the data is stored instead of having to move data between database partitions.
This ability to carry out joins or subqueries at the database partition has significant
performance advantages. For more information, see “Collocated Joins” on page 497.

 Chapter 2. Designing Your Physical Database 41

 Partition Compatibility
 The base data types of corresponding columns of partitioning keys are compared and
can be declared as being partition compatible. Partition compatible data types have the
property that two variables, one of each type, with the same value, are mapped to the
same partition number by the same partitioning algorithm.

Partition compatibility has the following characteristics:

¹ A base data type is compatible with another of the same base data type.
¹ Internal formats are used for DATE, TIME, and TIMESTAMP data types. They are

not compatible with each other, and none are compatible with CHAR.
¹ Partition compatibility is not affected by columns with NOT NULL or FOR BIT

DATA definitions.
¹ NULL values of compatible data types are treated identically. Different results might

be produced for NULL values of non-compatible data types.
¹ Base data types of a User Defined Type are used to analyze partition compatibility.
¹ Decimals of the same value in the partitioning key are treated identically, even if

their scale and precision differ.
¹ Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or

VARGRAPHIC) are ignored by the system-provided hashing algorithm.
| ¹ BIGINT, SMALLINT, and INTEGER are compatible data types.

¹ REAL and FLOAT are compatible data types.
¹ CHAR and VARCHAR of different lengths are compatible data types.
¹ GRAPHIC and VARGRAPHIC are compatible data types.
¹ LONG VARCHAR, LONG VARGRAPHIC, CLOB, DBLOB and BLOB data types

are not applicable for partition compatibility since they are not supported as
partitioning keys.

| Replicated Summary Tables
| A summary table is a table that is defined by a query that is also used to determine the
| data in the table. Summary tables can be used to improve the performance of queries.
| If the database manager determines that a portion of a query could be resolved using a
| summary table, the query may be rewritten by the database manager to use the
| summary table. This decision is based on certain settings such as CURRENT
| REFRESH AGE and CURRENT QUERY OPTIMIZATION special registers.

| In a partitioned database environment, you can replicate summary tables. You can use
| replicated summary tables to improve query performance. A replicated summary table
| is a table that is based on a table that you created in a table space (perhaps a table
| space created in a single-partition nodegroup), but you want all the table data replicated
| across all the database partitions in the nodegroup. To create the replicated summary
| table, you use the CREATE TABLE statement with the REPLICATED keyword. The
| REPLICATED keyword is only valid when the AS fullselect and REFRESH IMMEDIATE
| keywords are also used.

| See “Creating a Summary Table” on page 118 for information concerning summary
| tables.

42 Administration Guide

| By using replicated summary tables, you can obtain collocation between tables that are
| not typically collocated. Replicated summary tables are particularly useful for joins in
| which you have a large fact table and small dimension tables. To minimize the extra
| storage required and the impact of having to update every replica, good candidates for
| tables to be replicated would have the following characteristics:

| ¹ They are small.
| ¹ They are infrequently updated.

| Note: You should also consider replicating larger tables that are infrequently updated:
| in this situtation, the one-time cost of replication is offset by the performance
| benefits that can be obtained by collocation.

| By specifying a suitable predicate in the subselect used to define the replicated table,
| you can replicate both selected columns, selected rows, or both.

| For more information about replicated summary tables, see the CREATE TABLE
| statement in the SQL Reference. For more information about collocation, see
| “Collocated Joins” on page 497.

Designing and Choosing Table Spaces
A table space is a storage model that provides a level of indirection between a
database and the tables stored within that database. Table spaces reside in
nodegroups. Table spaces allow you to assign the location of database and table data
directly onto containers. (A container can be a directory name, a device name, or a file
name.) This can provide improved performance, more flexible configuration, and better
integrity.

Since table spaces reside in nodegroups, the table space selected to hold a table
defines how the data for the table is partitioned across the database partitions in a
nodegroup. A single table space can span several containers. It is possible for multiple
containers (from one or more table spaces) to be created on the same physical disk (or
drive, in Intel terms). For improved performance, each container should use a different
disk. The following diagram shows an example of the relationship between tables and
table spaces within a database and the containers and disks associated with the
database.

 Chapter 2. Designing Your Physical Database 43

Database

SCHED
Table Space

HUMANRES
Table Space

DEPARTMENT
Table

Container
0

Container
1

Container
2

Container
3

Container
4

Nodegroup

PROJECT
Table

EMPLOYEE
Table

Figure 17. Table Spaces and Tables Within a Database

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space which
spans Containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table space in
Container 4. This example shows each container existing on a separate disk.

The database manager attempts to balance the load of the data across the containers.
As a result, all containers will be used to store data. The number of pages that the
database manager writes to a container before using a different container is called the
extent size. The database manager does not always start storing table data in the first
container.

The following diagram shows the HUMANRES table space with an extent size of two
4KB pages, and with four containers each with a small number of allocated extents.
The DEPARTMENT and EMPLOYEE tables both have 7 pages and span all four
containers.

44 Administration Guide

Container 0 Container 1 Container 2 Container 3

HUMANRES Table Space

Extent
Size

4KB
Page

EMPLOYEE DEPARTMENT DEPARTMENT DEPARTMENT

DEPARTMENT EMPLOYEE EMPLOYEEEMPLOYEE{
{

Figure 18. Use of Container and Extents

A database must contain at least three table spaces:

¹ One catalog table space, which contains all the system catalog tables for the
database. This table space is called SYSCATSPACE and it cannot be dropped.
IBMCATGROUP is the default nodegroup for this table space.

¹ One or more user table spaces, which contain all user-defined tables. By default,
one table space, USERSPACE1, is created. IBMDEFAULTGROUP is the default
nodegroup for this table space.

| You should specify a table space name when you create a table, or the results
| may not be what you intend. If you do not specify a table space name, the table is
| placed according to the following rules: If the table space IBMDEFAULTGROUP
| exists with a sufficient page size, then use it. Otherwise, use a table space created
| by you if one exists with a sufficient page size. Otherwise, use USERSPACE1 if it
| exists with a sufficient page size. Otherwise, use USERSPACE8K if it exists with a
| sufficient page size. If none of these exist with a sufficient page size, then the table
| creation fails.

| The sufficient page size of a table is determined by either the byte count of the
| rows or the number of columns. The maximum number of bytes allowed in a row of
| a table is dependent on the page size of the table space in which the table is
| created. You should note that table spaces with a page size of 8 KB do not support
| LONG data. If you want to store a table with LOBs in a table space with 8 KB size
| pages, you must use DMS table spaces. You can use a table space with 8 KB size
| pages, and a table space with 4 KB size pages for the LONG data (remember that
| SMS doesn't support tables that span table spaces, while DMS does). If the
| number of columns or the row size would require an 8 KB page size table space

 Chapter 2. Designing Your Physical Database 45

| and there are no 8 KB table spaces available, an error is returned (SQLSTATE
| 42997).

¹ One or more temporary table spaces, which contain temporary tables. By default
one table space called TEMPSPACE1 is created. A database must have at least
one temporary table space. IBMTEMPGROUP is the default nodegroup for this
table space.

| Note: If queries are executing against tables in table spaces that are defined with
| with a page size of 8 KB, some of them may fail because of the lack of a
| temporary table space defined with a page size of 8 KB (for example, an
| ORDER BY on 1012 columns). You may need to create a temporary table
| space with an 8 KB page size.

If a database uses more than one temporary table space, temporary objects are
allocated among the temporary table spaces in a round robin fashion.

An application may encounter a temp-tablespace-full condition when one of the
table spaces is full even if there is still room in the other temporary table spaces.
Thus, you should observe the following guidelines when creating temporary table
spaces:

| – Create one SMS temporary table spaces for every page size.
| – Define the containers for these table spaces so that they share the same file
| system (or file systems).

Note: In a partitioned database environment, the catalog node will have all three table
spaces and the other database partitions will each have only TEMPSPACE1
and USERSPACE1.

There are two types of table spaces, both of which can be used in a single database:

¹ System Managed Space Table Space: The operating system's file manager
controls the storage space.

¹ Database Managed Space Table Space: The database manager controls the
storage space.

After understanding the differences between these two types of table spaces, see
“Table Space Design Considerations” on page 52.

System Managed Space Table Space
In a System Managed Space (SMS) table space, the operating system's file system
manager allocates and manages the space where the table is to be stored. The storage
model typically consists of many files, representing table objects, stored in the file
system space. The user decides on the location of the files, DB2 controls their names,
and the file system is responsible for managing them. By controlling the amount of data
written to each file, the database manager evenly spreads the data over the table
space containers. An SMS table space is the default table space.

In addition to the database physical files, each table has at least one SMS physical file
associated with it. See “SMS Physical Files” on page 48 for a list of these files and a
description of their contents.

46 Administration Guide

In an SMS table space, the file is extended one page at a time as the object grows.
When inserting a large number of rows, some delay may result from waiting for the
system to allocate another page.

Note: If you need improved insert performance, you can consider enabling multipage
file allocation. This allows the system to allocate or extend the file by more than
one page at a time. You must run db2empfa to enable multipage file allocation.
The db2empfa utility must be run on each database partition in a partitioned
database. Once multipage file allocation is enabled, it cannot be disabled. See
the Command Reference for more information on db2empfa.

You should explicitly define SMS table spaces using the MANAGED BY SYSTEM on
the CREATE DATABASE command or on the CREATE TABLESPACE statement. You
must consider two key factors when you design your SMS table spaces:

1. Containers for the table space

You must specify the number of containers that you wish to use for your table
space. It is very important to identify all the containers you want to use, since you
cannot add or delete containers after an SMS table space is created. In a
partitioned database environment, when a new partition is added to the nodegroup
for an SMS table space, the ALTER TABLESPACE statement can be used to add
containers for the new partition.

Each container used for an SMS table space identifies an absolute or relative
directory name. Each of these directories can be located on a different file system
(or physical disk). As a result, the maximum size of the table space can be
calculated by:

number of containers * (maximum file system size supported by the

 operating system)

Note: This formula assumes that there is a distinct file system mapped to each
container, and that each file system has the supported maximum of space
available. In practice, this may not be the case and the practical maximum
database size may be much smaller.

| Note: Care must be taken when defining the containers. There must not be any
| files or directories on the containers. If there are existing files or directories
| on the containers, error message “SQL0298N Bad container path.” is
| reported.

2. Extent size for the table space

 Similar to specifying the number of containers, the extent size can only be
specified when the table space is created. Because it cannot be changed later, it is
important to select an appropriate value for the extent size. See “Choosing an
Extent Size” on page 56 for more information.

When creating a table space, if you do not specify the extent size, the database
manager will create the table space using the default extent size, defined by the
dft_extent_sz database configuration parameter (see “Default Extent Size of Table
Spaces (dft_extent_sz)” on page 646). This configuration parameter is initially set
based on information provided when the database is created. If the

 Chapter 2. Designing Your Physical Database 47

DFT_EXTENTSIZE parameter is not specified on the CREATE DATABASE
command, the default extent size will be set to 32.

To choose the appropriate values for the number of containers and the extent size for
the table space, you must understand:

¹ The limitation that your operating system imposes on the size of a logical file
system.

For example, some operating systems have a 2GB limit. Therefore, if you want a
64GB table object, you will need at least 32 containers on this type of system.

Check the limitations on size and the number of containers on the platform where
you are working as part of your determination regarding the number of containers
and the extent size for the table space.

When you create the table space, you can specify containers that reside on
different files systems and as a result increase the amount of data that can be
stored in the database.

¹ How the database manager manages the data files and containers associated with
a table space.

The first table data file (SQL00001.DAT) is created in the first container specified
for the table space, and this file is allowed to grow to the extent size. After it
reaches this size, the database manager writes the data to SQL00001.DAT in the
next container. This process continues until all of the containers contain
SQL00001.DAT files, at which time, the database manager returns to the first
container to which data was written for that table. This process (known as striping)
continues through the container directories until either a container becomes full at
which time a -289 error is returned; or, no more space can be allocated from the
operating system at which time a disk-full error is returned. This mechanism is also
used for index (SQLnnnnn.INX), long field (SQLnnnnn.LF), and LOB
(SQLnnnnn.LB and SQLnnnnn.LBA) files.

Note: The SMS table space is full as soon as any one of its containers is full.
Thus, it is important to allocate the same amount of space for each
container.

To help spread data across the containers more evenly, the database manager
determines the container to start writing a table's data by taking the table's ID (1 in
the above example) modulo the number of containers. Containers are numbered
sequentially starting at 0.

See “SMS Physical Files” for more information about the files used in an SMS
table space.

SMS Physical Files
 The following files are found within an SMS table space directory container:

48 Administration Guide

File Name Description

SQLTAG.NAM There is one of these files in each container subdirectory, and
they are used by the database manager when you connect to the
database to verify that the database is complete and consistent.

SQLxxxxx.DAT Table file. All rows of a table are stored here, with the exception
of LONG VARCHAR, LONG VARGRAPHIC, CLOB, BLOB or
DBCLOB data.

SQLxxxxx.LF File containing LONG VARCHAR or LONG VARGRAPHIC data
(also called “long field data”). This file is only created if LONG
VARCHAR or LONG VARGRAPHIC columns exist in the table.

SQLxxxxx.LB Files containing BLOB, CLOB, or DBCLOB data (also called
“LOB data”). These files are only created if BLOB, CLOB, or
DBCLOB columns exist in the table.

SQLxxxxx.LBA Files containing allocation and free space information about the
SQLxxxxx.LB files.

SQLxxxxx.INX Index file for a table. All indexes for the corresponding table are
stored in this single file. It is only created if indexes have been
defined.

Note: When an index is dropped, the space is not physically
freed from the index (.INX) file until the index file is
deleted. The index file will be deleted if all the indexes on
the table are dropped (and committed) or if the table is
reorganized. If the index file is not deleted, the space will
be marked free once the drop has been committed, and
will be reused for future index creations or index
maintenance.

SQLxxxxx.DTR Temporary data file for a REORG of a DAT file. While
reorganizing a table, the REORG utility creates a table in one of
the temporary table spaces. These temporary table spaces can
be defined to use containers different from those used for the
user-defined tables.

SQLxxxxx.LFR Temporary data file for a REORG of a LF file. Notes for the .DTR
file apply here as well.

SQLxxxxx.RLB Temporary data file for a REORG of a LB file. Notes for the .DTR
file apply here as well.

SQLxxxxx.RBA Temporary data file for a REORG of a LBA file. Notes for the
.DTR file apply here as well.

 Chapter 2. Designing Your Physical Database 49

Notes:

1. Do not make any direct changes to these files. They can only be accessed
indirectly using the documented APIs and by tools that implement those APIs,
including the command line processor commands and the graphical Control Center.

2. Do not remove these files.

3. Do not move these files.

4. The only supported means of backing up a database or table space is through the
BACKUP API, including implementations of that API, such as those provided by the
command line processor and Control Center.

Database Managed Space Table Space
In a Database Managed Space (DMS) table space, the database manager controls the
storage space. The storage model consists of a limited number of devices, whose
space is managed by DB2. The Administrator decides which devices to use, and DB2
manages the space on the devices. This table space is essentially an implementation of
a special purpose file system designed to best meet the needs of the database
manager. The table space definition includes a list of the devices or files belonging to
the table space in which data can be stored.

 A DMS table space containing user-defined tables and data can be defined as:

¹ A regular table space to store normal table and index data
¹ A long table space to store long field or LOB data

When designing your DMS table spaces and containers, you should consider the
following:

¹ The database manager uses striping to ensure an even distribution of data across
all containers.

¹ The maximum size of the different types of table spaces:

| – Regular table and index data: 64GB (for 4 KB pages); 128GB (for 8 KB pages)
– Long field data: 2TB
– Temp data: 2TB

¹ Unlike SMS table spaces, the containers that make up a DMS table space do not
need to be the same size. Also, if any container is full, DMS table spaces use any
available free space from other containers.

¹ The space is preallocated.

 Because it is preallocated, the space must be available before the table space can
be created. When using device containers, the device must also exist with enough
space for the definition of the container. Each device can have only one container
defined to it, so to avoid wasted space, the size of the device and the size of the
container should be equivalent. If, for example, the device is allocated with 5000
pages and the device container is defined to allocate 3000 pages, then 2000 pages
on the device will not be usable.

50 Administration Guide

¹ One page in every container is reserved for overhead and the remaining pages will
be used one extent at a time. Only full extents are used in the container, so for
optimal space management, you can use the following formula to help you
determine the appropriate size to use when allocating a container:

(extent size * n) + 1

where, extent size is the size of each extent for the table space and n is the
number of extents you want to store in the container.

¹ The number of extents you require:

– Three extents in the table space are reserved for overhead
– At least two extents are required to store any user table data. (These two

extents allow for the regular data for one table, not for any index, long field or
large object data which require their own extents.)

¹ Device containers must use logical volumes with a “character special interface,” not
physical volumes.

¹ You can use files instead of devices with DMS table spaces. No operational
difference exists between a file and a device; however, a file can be less efficient
because of the runtime overhead associated with the filesystem. Files are useful
when:

– Devices are not directly supported
– A device is not available
– Maximum performance is not required
– You do not want to set up devices.

¹ Some operating systems allow you to have physical devices greater than 2GB in
size. You should consider partitioning the physical device into multiple logical
devices so that no container is bigger than the size allowed by the operating
system.

Adding Containers to DMS Table Spaces
 You can add a container to an existing table space to increase its storage capacity
with the ALTER TABLESPACE statement. The contents of the table space are then
re-balanced across all containers. Access to the table space is not restricted during the
re-balancing. If you need to add more than one container, you should add them at the
same time either in one ALTER TABLESPACE statement or within the same
transaction to prevent the database manager from having to re-balance the containers
more than once.

You should check how full the containers for a table space are by using the LIST
TABLESPACE CONTAINERS or the LIST TABLESPACES commands. Adding new
containers should be done before the existing containers are almost or completely full.
The new space across all the containers is not available until the re-balance is
complete.

Adding a container which is smaller than existing containers results in a uneven
distribution of data. This can cause parallel I/O operations, such as prefetching data, to
perform less efficiently than they otherwise could on containers of equal size.

 Chapter 2. Designing Your Physical Database 51

Table Space Design Considerations
 Based on the logical design of your database, you should have a good idea of the size
of each table, and as a result, of your database. Based on your understanding of this
information, you should consider the following to complete your database design as it
relates to table space use:

¹ Considerations for Table Space Input and Output (I/O)
¹ Mapping Table Spaces to Buffer Pools
¹ Mapping Table Spaces to Nodegroups
¹ Mapping Tables to Table Spaces
¹ Choosing an Extent Size
¹ Recommendations for Catalog and Temporary Table Spaces

 ¹ Workload Considerations
¹ Choosing an SMS or DMS Table Space

Considerations for Table Space Input and Output (I/O)
The type and design of your table space determines the efficiency of the I/O performed
against that table space. Here are some concepts that you should understand before
considering further the issues surrounding table space design and use.

Big-block reads
A read where several pages (usually an extent) is retrieved in a
single request. Reading several pages at once is more efficient than
reading each page separately.

Prefetching
The reading of pages in advance of those pages being referenced by
a query. The overall objective is to reduce response time. This can
be achieved if the prefetching of pages can occur asynchronously to
the execution of the query. The best response time is achieved when
either the CPU(s) or the I/O subsystem are operating at maximum
capacity.

Page cleaning
As pages are read and modified, these pages accumulate in the
database buffer pool. Whenever a page is read in, there must be a
buffer pool page to read it into. If the buffer pool is full of modified
pages, one of these modified pages must be written out to the disk
before the new page can be read in. To prevent the buffer pool from
becoming full, page cleaner tasks write out modified pages in order
to guarantee the availability of buffer pool pages for use by read
requests.

Whenever it is advantageous, DB2 performs big-block reads. This typically occurs when
retrieving data that is sequential or partially sequential in nature. The amount of data
read in one read depends on the extent size -- the bigger the extent size, the more
pages that are read at one time.

How the extent is stored on disk affects the I/O efficiency. When considering a DMS
table space using device containers, the data tends to be contiguous on disk and can

52 Administration Guide

be read with a minimum of seek time and disk latency. However, if files are being used,
the data may have been broken up by the file system and stored in more than one
location on disk. This occurs most often when using SMS table spaces where files are
extended one page at a time, making fragmentation more likely. Preallocation of a large
file for use by a DMS table space tends to be contiguous on disk, especially if the file
was allocated in a clean file space.

DB2 performing big-block reads is only one way in which query execution is assisted.
You can control how aggressive prefetching can be by tuning the PREFETCHSIZE
parameter on the CREATE TABLESPACE statement. (The default value for all table
spaces in the database is set by the dft_prefetch_sz configuration parameter.) The
PREFETCHSIZE parameter tells DB2 how many pages to read whenever a prefetch is
triggered. By setting PREFETCHSIZE to a multiple of the EXTENTSIZE parameter on
the CREATE TABLESPACE statement, you can cause multiple extents to be read in
parallel. (The default value for all table spaces in the database is set by the
dft_extent_sz configuration parameter. The EXTENTSIZE parameter specifies the
number of 4K pages that will be written to a container before skipping to the next
container.)

For example, suppose you had a table space that used three devices. If you set the
PREFETCHSIZE to be three times the EXTENTSIZE, then DB2 can do a big-block
read from each device in parallel, thereby significantly increasing the I/O throughput.
This assumes that each device is a separate physical device and that the controller has
sufficient bandwidth to handle the data stream from each device. Note that DB2 may
have to dynamically adjust the prefetch parameters at runtime based on query speed,
buffer pool utilization, and other factors.

You should know that some file systems use their own prefetching (such as the
Journaled File System on AIX). In some cases, the file system prefetching is set to be
more aggressive than the DB2 prefetching. This results in situations where you observe
that prefetching for SMS and DMS table spaces with file containers is outperforming
prefetching for DMS table spaces with devices. This is misleading since it is likely the
result of the additional level of prefetching that is occurring in the file system. DMS
table spaces should be able to outperform any equivalent configuration.

For prefetching or even reading to be efficient, a sufficient number of clean buffer pool
pages must exist into which to read the data. For example, there could be a parallel
prefetch request which reads three extents from a table space and where a modified
page must be written out from the buffer pool for each page being read. With the
potential for a buffer page to be written out for every page being read in, it is clear that
the prefetch request is slowed significantly perhaps to the point where it cannot keep up
with the query. Page cleaners should be configured in sufficient numbers to satisfy the
prefetch request. At least one page cleaner should be defined for each real disk used
by the database. For more information on these topics and performance, see the
Chapter 15, “Operational Performance” on page 527.

Mapping Table Spaces to Buffer Pools
 Each table space is associated with a specific buffer pool. The default buffer pool is
IBMDEFAULTBP. If another buffer pool is to be associated with a table space, the

 Chapter 2. Designing Your Physical Database 53

buffer pool must exist (it is defined with the CREATE BUFFERPOOL statement), and
the association is defined when the table space is created (using the CREATE
TABLESPACE statement). The association between the table space and the buffer pool
can be changed using the ALTER TABLESPACE statement.

| Having more than one buffer pool allows you to configure the memory used by the
| database to improve overall performance and to help with setting performance goals for
| specific applications. For example, for table spaces with one or more large tables which
| are accessed randomly by users, the size of the buffer pool can be limited since
| caching the data pages might not be beneficial. Another example would have the table
| space for an important online transaction application associated with a buffer pool that
| is larger than others. In this way, the data pages used by the application could be
| cached longer in the buffer pool resulting in lower response times. Care must be taken
| in configuring new buffer pools beyond the default. See “Managing the Database Buffer
| Pool” on page 533 for more information on buffer pools.

| Note: If you have determined that a page size of 8 KB is required within your
| database, then each table space with this page size must be mapped to a
| buffer pool with the same page size.

| The storage required for all the buffer pools must be available to the database manager
| when starting up the database. If DB2 is unable to obtain the storage required for all
| defined buffer pools, the database manager will start up with default buffer pools (one
| of 4 KB page size and one of 8 KB page size) of a minimal size, and issue a warning
| message.

In a partitioned database environment, you can create a buffer pool of the same size
for all partitions in the database. You can also create buffer pools of particular sizes on
different partitions. For more information on the CREATE BUFFERPOOL statement,
see the SQL Reference manual.

Mapping Table Spaces to Nodegroups
 In a partitioned database environment, each table space is associated with a specific
nodegroup. This allows for the characteristics of the table space to be applied to each
node in the nodegroup. The nodegroup must exist (it is defined with the CREATE
NODEGROUP statement), and the association between the table space and the
nodegroup is defined when the table space is created using the CREATE
TABLESPACE statement.

You cannot change the association between table space and nodegroup using the
ALTER TABLESPACE statement. You can only change the table space specification for
individual partitions within the nodegroup. If not in a partitioned database environment,
each table space is associated with a default nodegroup. The default nodegroup when
defining a table space is IBMDEFAULTGROUP unless a temporary table space is
being defined and then IBMTEMPGROUP is used. For more information on the
CREATE NODEGROUP statement, see the SQL Reference manual. For more
information on nodegroups and physical database design, see the “Designing
Nodegroups” on page 36.

54 Administration Guide

Mapping Tables to Table Spaces
When determining how to map tables to table spaces in your design, you should
consider:

¹ The partitioning of your tables.

At a minimum, you should ensure that the table space you choose is in the
nodegroup with the partitioning you desire.

¹ The amount of data in the table.

If you plan to store many small tables in a table space, consider using SMS for that
table space. The DMS advantages with I/O and space management efficiency are
not as important with small tables. The SMS advantages of allocating space one
page at a time, and only when needed, are more attractive with smaller tables. If
one of your tables is larger, or you need faster access to the data in the tables,
then a DMS table space with a small extent size should be considered.

You may wish to use a separate table space for each very large table and group
all small tables together in a single table space. This separation also allows you to
select an appropriate extent size based on the table space usage. (See “Choosing
an Extent Size” on page 56 for additional information.)

¹ The type of data in the table.

You may, for example, have tables containing historical data that is used
infrequently and as a result the end-user may be willing to accept a longer
response time for queries executed against this data. In this situation, you could
use a different table space for the historical tables and assign this table space to
less expensive physical devices that have slower access rates.

Alternatively, you may be able to identify some essential tables which require high
availability and fast response time. You may want to put these tables into a table
space assigned to a fast physical device that can help support these important
data requirements.

Using DMS table spaces, you can also spread your table across three different
table spaces: one for index data; one for LOB and long field data; one for regular
table data. This allows you to choose the table space characteristics and the
physical devices supporting those table spaces to best suit the type of data. For
example, you could put your index data on the fastest devices you have available,
and as a result, obtain significant performance improvements. If you split a table
across DMS table spaces, you should consider backing up and restoring all parts
of the table together if ROLLFORWARD recovery is enabled. SMS table spaces do
not support the spreading of your table across table spaces in this fashion.

¹ The administration requirements of your tables.

 Some administration functions can be performed at the table space level instead
of the database or table level. For example, taking a back up of a table space
instead of a database can help you make better use of your time and resources. It
allows you to frequently back up table spaces with large volumes of changes, while
only occasionally backing up tables spaces with very low volumes of changes.

 Chapter 2. Designing Your Physical Database 55

You may restore a database or a table space. If unrelated tables do not share
table spaces, you have the ability to restore a smaller portion of your database,
and as a result, reduce the time and resource requirements for the restore utility.

A general rule-of-thumb could be to group related tables in a set of table spaces.
These tables could be related through referential constraints, or through other
business constraints defined on the tables using triggers.

Another aspect to consider for administration of your tables, is how often you might
want to drop and redefine a particular table. If the frequency is high, you may want
to define the table in its own table space, since it is more efficient to drop a DMS
table space than it is to drop a table.

Choosing an Extent Size
The extent size for a table space indicates the number of pages of table data that will
be written to a container before data will be written to the next container. When
selecting an extent size, you should consider:

¹ The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table an extent at a time. As the table
is populated and an extent becomes full, a new extent is allocated.

A table is made up of the following separate table objects:

– A DATA object. This is where the regular column data is stored.

– An INDEX object. All indexes defined on the table are stored here.

– A LONG FIELD object. If your table has one or more LONG columns, they are
all stored here.

– Two LOB objects. If your table has one or more LOB columns, they are stored
in these two table objects:

- One table object for the LOB data

- A second table object for meta-data describing the LOB data

Each table object is stored separately, and therefore each allocates new extents as
needed. Each table object is also paired up with a meta-data object called an
extent map, which describes all the extents in the table space which belong to the
table object. Space for extent maps is also allocated an extent at a time.

The initial allocation of space for a table, therefore, is two extents for each table
object. If you have many small tables in a table space, you may have a relatively
large amount of space allocated to store a relatively small amount of data. In such
a case, you should specify a small extent size, or use an SMS table space which
allocates pages one at a time.

 If, on the other hand, you have a very large table that has a high growth rate, and
you are using an DMS table space with a small extent size, you could have
unnecessary overhead related to the frequent allocation of additional extents.

¹ The type of access to the tables.

56 Administration Guide

If access to the tables includes many queries or transactions that process large
quantities of data, prefetching data from the tables may provide significant
performance benefits. (See “Prefetching Data into the Buffer Pool” on page 539 for
information about data prefetching and recommendations on its relationship to the
extent size.)

¹ The minimum number of extents required.

There must be enough space in the containers for five extents of the table space,
otherwise the table space will not be created.

Recommendations for Catalog and Temporary Table Spaces
| For each database, one 4 KB SMS temporary table space and one 8 KB SMS
| temporary table space is recommended. (Having temporary table spaces of both sizes
| gives the query optimizer more flexibility in arriving at the optimal access plan.) The
| containers for these table spaces should be defined using the same file system (or file
| systems) to maximize disk sharing and minimize the total disk requirement.

| SMS is recommended over DMS because:

¹ Although DB2 supports multiple temporary table spaces, at runtime DB2 uses each
temporary table space in turn and not at the same time. DB2 controls which
temporary table space is used and not the user. Therefore each temporary table
space must be large enough to accommodate the largest possible temporary table.
As a result, it makes more sense to pool all the temporary space into one
temporary table space. Allowing for multiple temporary table spaces is still useful
when you want to change the definition of your table space. Since you must always
have at least one table space, you must be able to have two table spaces to
change the definition -- one with the old definition and one with the new definition.

¹ DB2 attempts to keep temporary tables in memory as much as possible. Since a
DMS table space is comprised of pre-allocated storage space, and since you need
to pre-allocate sufficient space to handle peak temporary space use, and since the
pre-allocated space is not free for use for any other purpose, the choice of a DMS
table space is not the best choice. With a SMS table space, temporary space is not
pre-allocated but only consumed when needed. When not needed by the database
manager, this space is free for other use.

DMS should only be considered if you need better performance than is possible if you
use SMS.

For each database, a SMS table space for the catalogs is recommended. SMS and not
DMS, is recommended for the following reasons:

¹ The database catalog consists of many tables of varying sizes. When using a DMS
table space, a minimum of two extents are allocated for each table object.
Depending on the extent size chosen, a significant amount of allocated and unused
space may result. If using a DMS table space, then a small extent size (two to four
pages) should be chosen; otherwise, a SMS table space should be used.

¹ There are large object (LOB) columns in the catalog tables. LOB data is not kept in
the buffer pool with other data but is read from disk each time it is needed.

 Chapter 2. Designing Your Physical Database 57

Reading from disk slows down the performance of DB2 where the LOB columns of
the catalogs are involved. Since a file system usually has its own place for storing
(or caching) data, using a SMS table space, or a DMS table space built on file
containers, make avoidance of I/O possible when the LOB has previously been
referenced.

Given these considerations, a SMS table space is a slightly better choice for the
catalogs.

Another factor to consider is if you will need to enlarge the catalog table space in the
future. While some platforms have support for enlarging the underlying storage for SMS
containers, and while the use of redirected restore to enlarge a SMS table space is
available, the use of a DMS table space would allow for easier addition of new
containers than the two other choices.

 Workload Considerations
 The primary type of workload being managed by DB2 in your environment can have an
effect on your choice of the type of table space used, and the page size for the table
space. An online transaction process (OLTP) workload is characterized by transactions
that make random access to data and that usually return small sets of data. Given that
the access is random, and to one or a few pages, then prefetching is not possible. The
important fact when considering I/O becomes the retrieving of a page of data with the
minimum cost possible.

DMS table spaces using device containers perform best in this situation. DMS table
spaces with file containers or SMS table spaces are also reasonable choices for OLTP
workloads if maximum performance is not required. With little or no sequential I/O
expected, the settings for the EXTENTSIZE and PREFETCHSIZE parameters on the
CREATE TABLESPACE statement are not important for I/O efficiency.

A query workload is characterized by transactions that make sequential or partially
sequential access to data and that usually return large sets of data. Efficient parallel
prefetch should be possible in the type of table space chosen. A DMS table space
using multiple device containers and where each container is on a separate disk, offers
the greatest potential for efficient prefetching. The value of the PREFETCHSIZE
parameter on the CREATE TABLESPACE statement should be set to the value of the
EXTENTSIZE parameter multiplied by the number of device containers. This allows
DB2 to prefetch from all containers in parallel.

A reasonable alternative with a query workload is to use files if the file system has its
own prefetching. The files can be either of DMS type using file containers, or of SMS
type. Note that if you use SMS, you need to have the directory containers map to
separate physical disks in order to achieve I/O parallelism.

A mixed workload is characterized by transactions that are a mixture of the two types
mentioned above. Your choice of SMS or DMS table spaces result from combining the
considerations and advice from each of the two types of workload. Your goal will be to
make single I/O requests as efficient as possible for OLTP workloads, and to maximize
the efficiency of parallel I/O for the query workload.

58 Administration Guide

| The considerations for determining the page size for a table space are as follows:

| ¹ For OLTP applications that perform random row reads and writes, a smaller page
| size is usually preferable, because it wastes less buffer pool space with unwanted
| rows.
| ¹ For DSS applications that access large numbers of consequtive rows at a time, a
| larger page size is usually better because it reduces the number of I/O requests
| that are required to read a specific number of rows. There is, however, an
| exception to this. If your row size is smaller than pagesize/256, there will be
| wasted space on each page (there is a maximum of 256 rows per page). In this
| situation, a smaller page size may be more appropriate.
| ¹ Larger page sizes may allow you to reduce the number of levels in the index.
| ¹ Larger pages support rows of greater length.

Choosing an SMS or DMS Table Space
There are a number of trade-offs to consider when determining which type of table
space you should use to store your data.

Advantages of a SMS Table Space:

¹ Space is not allocated by the system until it is required
¹ Creating a database requires less initial work since you do not have to predefine

the containers.

Advantages of a DMS Table Space:

¹ The size of a table space can be increased by adding containers, using the ALTER
TABLESPACE statement. Existing data is automatically rebalanced across the new
set of containers to retain optimal I/O efficiency.

¹ A table can be split across multiple table spaces based on the type of data being
stored:

– Long field and LOB data
 – Indexes

– Regular table data

You might want to separate your table data for performance reasons, or to
increase the amount of data stored for a table. For example, you could have a
table with 64 GB of regular table data, 64 GB of index data and 2 TB of long data.

| Note: If you are using 8 KB pages, the table data and index data can be as much
| as 128 GB.

¹ The location of the data on the disk can be controlled, if the operating system
allows this.

¹ If all table data is in a single table space, a table space can be dropped and
redefined with less overhead than dropping and redefining a table.

¹ In general, a well-tuned set of DMS table spaces will outperform SMS table
spaces.

In general, small personal databases are easiest to manage with SMS table spaces. On
the other hand, for large, growing databases you will probably only want to use SMS
table spaces for the temporary table spaces and separate DMS table spaces, with

 Chapter 2. Designing Your Physical Database 59

multiple containers, for each table. In addition, long fields and indexes would be stored
on their own table spaces.

If you choose to use DMS table spaces with device containers, you must be willing to
tune and administer your environment. For more information, see “Performance
Considerations for DMS Devices” on page 550.

60 Administration Guide

Chapter 3. Implementing Your Design

After determining the design of your database, you must create the database and the
objects within it. These objects include schemas, nodegroups, table spaces, tables,
views, aliases, user-defined types (UDTs), user-defined functions (UDFs), triggers,
constraints, indexes, and packages. You can create these objects using SQL
statements in the command line processor, from the Control Center (on the Windows
95, Windows NT, and OS/2 operating systems), or through APIs in applications.

For information on SQL statements, see the SQL Reference manual. For information on
command line processor commands and user APIs, see the Command Reference and
API Reference manuals respectively.

Note: Your platform may support a user interface where you can create database
objects. This interface can be used instead of the SQL statements, command
line processor commands, or user APIs. Check the Quick Beginnings manual
for your platform to determine if you have this capability.

The following topics are expanded and discussed in greater detail later in this chapter:

¹ Conceptual information you should know before you create a database
¹ How to Create Objects
¹ How to Alter Objects
¹ How to Delete Objects.

There may be operating system-specific differences with some of the topics discussed
below in those areas where DB2 Universal Database interacts with the operating
system. You may be able to take advantage of native operating system capabilities or
differences beyond those offered by DB2 UDB. You should refer to your appropriate
Quick Beginnings manuals and specific operating system documentation for precise
difference s.

As an example, Windows NT** supports an application type known as a “service.” DB2
for Windows NT can have a DB2 instance defined as a service. A service can be
started automatically at system boot, by a user through the Services control panel
applet, or by a Win32-based application that uses the service functions included in the
Microsoft** Win32** application programming interface (API). Services can execute
even when no user is logged on to the system.

Introductory Concepts for Database Implementation
Before you implement a database, you should understand the following concepts:

¹ “Starting and Stopping DB2” on page 62
| ¹ “Starting DB2 UDB on Windows NT” on page 62

¹ “Using Multiple Instances of the Database Manager” on page 62
¹ “Organizing and Grouping Objects by Schema” on page 63
¹ “Enabling Intra-Partition Parallelism” on page 64
¹ “Enabling Data Partitioning” on page 64

 Copyright IBM Corp. 1993, 1998 61

Starting and Stopping DB2
You may need to start or stop DB2 during normal business operations; for example, to
do maintenance. To start DB2 on your system, enter the command:

 db2start

This command can be run through the Control Center (on Windows 95, Windows NT,
or OS/2 operating systems), or at the server as an operating system command or as a
command line processor command. You must have SYSADM, SYSCTRL, or
SYSMAINT authority to run this command.

To stop DB2 on your system, you must do the following:

1. Attach to an instance of the database. You do not require any special authorization
for this.

| 2. Display all applications and users that are connected to the specific database that
| you want to stop. To ensure that no vital or critical applications are running, list
| applications. You need SYSADM, SYSCTRL or SYSMAINT authority for this.
| 3. Force all applications and users off the database. You require SYSADM or
| SYSCTRL authority to force users.

4. Stop the DB2 instance by typing the command:

 db2stop

The db2stop command can be run as an operating system command or as a Command
Line Processor command. This command can only be run at the server. No database
connections are allowed when running this command; however, if there are any
instance attachments, they are forced off before DB2 is stopped.

| Starting DB2 UDB on Windows NT
| The db2start command will launch DB2 as an NT Service. DB2 on Windows NT can
| still be run as a process by specifying the "/D" switch when invoking DB2START. DB2
| can also be started as a Service using the Control Panel or "NET START" command.

| In order to successfully launch DB2 as a service from DB2START, the user account
| must have the correct privilege as defined by the Windows NT operating system to start
| an NT Service. The user account can be a member of the Administrators, Server
| Operators, or Power Users group.

| When running in a partitioned database environment, each database partition server is
| started as an NT service.

Using Multiple Instances of the Database Manager
 Multiple instances of the database manager may be created on a single server. This
means that you can create several instances of the same product on a physical
machine, and have them running concurrently. This provides flexibility in setting up
environments.

You may wish to have multiple instances to:

62 Administration Guide

¹ Separate your development environment from your production environment.
¹ Separately tune each for the specific applications it will service.
¹ Protect sensitive information from administrators. For example, you may wish to

have your payroll database protected on its own instance so that owners of other
instances will not be able to see payroll data.

DB2 program files are physically stored in one location on a particular machine. Each
instance that is created points back to this location so the program files are not
duplicated for each instance created. Several related databases can be located within a
single instance.

 Instances are cataloged as either local or remote in the node directory. Your default
instance is defined by the DB2INSTANCE environment variable. You can attach to
other instances to perform maintenance and utility tasks that can only be done at an
instance level, such as creating a database, forcing off applications, monitoring a
database, or updating the database manager configuration. When you attempt to attach
to an instance that is not in your default instance, the node directory is used to
determine how to communicate with that instance.

 To attach to another instance, which may be remote, use the ATTACH command as
described in the Command Reference manual. For example:

db2 attach to testdb2

will attach you to the instance called testdb2 that was previously cataloged in the node
directory.

After performing maintenance activities for the testdb2 instance, you can then detach
from that instance by executing the following command:

 db2 detach

The Command Reference provides information about the type of connection that is
required to execute each command.

DB2 support for multiple instances varies by operating system. See the Quick
Beginnings guide appropriate to your platform for information on defining multiple DB2
instances on one machine.

Organizing and Grouping Objects by Schema
| Database object names may be made up of a single identifier or they may be schema
| qualified objects made up of two identifiers. The schema, or high-order part, of a
| schema qualified object provides a means to classify or group objects in the database.
| When an object such as a table, view, alias, distinct type, function, index, package or
| trigger is created, it is assigned to a schema. This assignment is done either explicitly
| or implicitly.

| Explicit use of the schema occurs when you use the high-order part of a two-part
| object name when referring to that object in a statement. For example, USER A issues
| a CREATE TABLE statement in schema C as follows:

 Chapter 3. Implementing Your Design 63

| CREATE TABLE C.X (COL1 INT)

| Implicit use of the schema occurs when you do not use the high-order part of a two-part
| object name. When this happens, the CURRENT SCHEMA special register is used to
| identify the schema name used to complete the high-order part of the object name. The
| initial value of CURRENT SCHEMA is the authorization ID of the current session user.
| If you wish to change this during the current session, you can use the SET SCHEMA
| statement to set the special register to another schema name. Refer to the SQL
| Reference for more information.

As described in “Definition of System Catalog Tables” on page 84, some objects are
created within certain schemas when the database is created.

| In dynamic SQL statements, a schema qualified object name implicitly uses the
| CURRENT SCHEMA special register value as the qualifier for unqualified object name
| references. In static SQL statements, the QUALIFIER precompile/bind option implicitly
| specifies the qualifier for unqualified database object names.

| Before creating your own objects, you need to consider whether you want to create
| them in your own schema or by using a different schema that logically groups the
| objects. If you are creating objects that will be shared, using a different schema name
| can be very beneficial. For more information on how to explicitly create a schema, see
| “Creating a Schema” on page 94.

Enabling Intra-Partition Parallelism
You must modify configuration parameters to take advantage of parallelism within a
database partition or within a non-partitioned database. For example, intra-partition
parallelism can be used to take advantage of the multiple processors on a symmetric
muti-processor (SMP) machine.

Use the GET DATABASE CONFIGURATION and the GET DATABASE MANAGER
CONFIGURATION commands to find out the values of individual entries in a specific
database, or in the database manager configuration file. To modify individual entries for
a specific database or in the database manager configuration file, use the UPDATE
DATABASE CONFIGURATION and the UPDATE DATABASE MANAGER
CONFIGURATION commands respectively.

Configuration parameters that affect intra-partition parallelism include the
max_querydegree and intra_parallel database manager parameters, and the dft_degree
database parameter. For more information on configuration parameters, see
Chapter 20, “Configuring DB2” on page 597.

Enabling Data Partitioning
When running in a multiple partition environment, you can create a database from any
node that exists in the db2nodes.cfg file using the CREATE DATABASE command or
the sqlecrea() application programming interface (API). For information, see the
Command Reference and API Reference manuals.

64 Administration Guide

Before creating a partitioned database, you must determine if you will be a local or
remote client to the instance where the database is to be created. Second, you must
attach to the instance. You must also select which database partition will be the catalog
node for the database. The database partition to which you attach and execute the
CREATE DATABASE command becomes the catalog node for that particular database.

The catalog node is the database partition on which all system catalog tables are
stored. All access to system tables must go through this database partition.

If possible, you should create each database in a separate instance. If this is not
possible (that is, you must create more than one database per instance), you should
spread the catalog nodes among the available database partitions. Doing this reduces
contention for catalog information at a single database partition.

Note: You should regularly do a backup of the catalog node and avoid putting data on
it (whenever possible), because other data increases the time required for the
backup.

When you create a database, it is automatically created across all the database
partitions defined in the db2nodes.cfg file.

When the first database in the system is created, a system database directory is
formed. It is appended with information about any other databases that you create. The
system database directory is sqldbdir and is located in the sqllib directory under your
home directory. This directory must reside on a shared file system, (for example, NFS
on UNIX platforms) because there is only one system database directory for all the
database partitions that make up the parallel database.

Also resident in the sqldbdir directory is the system intention file. It is called sqldbins,
and ensures that the database partitions remain synchronized. The file must also reside
on a shared file system since there is only one directory across all database partitions.
The file is shared by all the partitions making up the database.

Configuration parameters have to be modified to take advantage of data partitioning.
Use the GET DATABASE CONFIGURATION and the GET DATABASE MANAGER
CONFIGURATION commands to find out the values of individual entries in a specific
database, or in the database manager configuration file. To modify individual entries in
a specific database, or in the database manager configuration file, use the UPDATE
DATABASE CONFIGURATION and the UPDATE DATABASE MANAGER
CONFIGURATION commands respectively.

 The database manager configuration parameters affecting a partitioned database
include conn_elapse, fcm_num_anchors, fcm_num_buffers, fcm_num_connect,
fcm_num_rqb, max_connretries, max_coordagents, max_time_diff, num_poolagents,
and stop_start_time.

For more information on configuration parameters, see Chapter 20, “Configuring DB2”
on page 597.

 Chapter 3. Implementing Your Design 65

Before Creating a Database
Before creating a database, you should consider or carry out the following tasks:

¹ Design Logical and Physical Database Characteristics
¹ Create an Instance
¹ Establish Environment Variables and the Profile Registry
¹ DB2 Administration Server (DAS)
¹ Create a Node Configuration File
¹ Creation of the Database Configuration File
¹ Enable FCM Communications

Design Logical and Physical Database Characteristics
You must make logical and physical database design decisions before you create a
database. To find out more about logical database design, see Chapter 1, “Designing
Your Logical Database” on page 3. To find out more about physical database design,
see Chapter 2, “Designing Your Physical Database” on page 27.

Create an Instance
As part of your installation procedure, you create an instance of DB2. It is possible to
have more than one instance on a system. You may only work within one instance of
DB2 at a time.

 Use the db2icrt command to create an instance of DB2. When using this command,
you should provide the login name of the instance owner and optionally specify the
authentication type of the instance. The authentication type applies to all databases
created under that instance. The authentication type is a statement of where the
authenticating of users will take place. For more information on authentication, see
Chapter 4, “Controlling Database Access” on page 141. For more information on the
db2icrt command, see the Command Reference manual.

Establish Environment Variables and the Profile Registry
Environment and registry variables control your database environment.

Prior to the introduction of the DB2 profile registry, changing your environment variables
on Windows or OS/2 workstations (for example) required you to change an environment
variable and reboot. Now, your environment is controlled with a few exceptions by
registry variables stored in the DB2 profile registries. Use the db2set command to
update registry variables without rebooting; this information is stored immediately in the
profile registries.

| Note: The DB2 environment variables db2instance, db2node, db2path, and
| db2instprof may not, depending on the operating system, be stored in the DB2
| profile registries. In order to update these environment variables, the set
| command must be used and the system rebooted.

Using the profile registry allows for centralized control of the environment variables.
Appendix F, “DB2 Registry and Environment Variables” on page 889 lists many of the
environment variables and registry variables. Different levels of support are now

66 Administration Guide

provided through the different environment profiles. Remote administration of the
environment variables is also available when using the DB2 Administration Server.

There are four (4) profile registries. They are:

¹ The DB2 Instance Level Profile Registry. The majority of the DB2 environment
variables are placed within this registry. The environment variable settings for a
particular instance are kept in this registry.

¹ The DB2 Global Level Profile Registry. If an environment variable is not set for a
particular instance, this registry is used. This registry has the machine-wide
environment variable settings.

¹ The DB2 Instance Node Level Profile Registry. In a system where the database is
divided across different database partitions, this registry resides on every node
(that is, machine), and contains environment variable settings for all instances
storing data on the node.

¹ The DB2 Instance Profile Registry. This registry contains a list of all instance
names recognized by this system.

Users can override DB2 Instance Profile Registry environment variable settings for their
session by changing session environment variable settings using the db2set command.

DB2 configures the operating environment by checking for registry values and
environment variables and resolving them in the following order:

1. Environment variables set with the set command.
2. Registry values set with the instance node level profile (using the db2set -I

command with a node number as shown below).
3. Registry values set with the db2set command.
4. Registry values set with the instance profile (using the db2set -I command as

shown below).
5. Registry values set with the global profile (using the db2set -G command as shown

below).

Using the db2set Command
The db2set command supports the local declaration of the registry variables (and
environment variables) to a particular setting.

To display help information for the command, use:

 db2set ?

| To list the complete set of all supported registry variables, use:

| db2set -lr

To list all currently defined registry variables for this session, use:

 db2set

To show the current session value of a registry variable, use:

 db2set registry_variable_name

 Chapter 3. Implementing Your Design 67

To delete the current session value of a registry variable, use:

 db2set registry_variable_name=

To change a registry variable for this session only, use:

 db2set registry_variable_name=new_value

To change a registry variable default for all databases in the instance, use:

 db2set registry_variable_name=new_value

 -I instance_name

To change a registry variable default for all instances in the system, use:

db2set registry_variable_name=new_value -G

Note: The two parameters "-I" and "-G" cannot be used at the same time in the same
command.

To change a registry variable default for a particular node in an instance, use:

 db2set registry_variable_name=new_value

-I instance_name node_number

To reset all registry variables for an instance back to the defaults found in the Global
Profile Registry, use:

db2set -r registry_variable_name

To reset all registry variables for a node in an instance back to the defaults found in the
Global Profile Registry, use:

db2set -r registry_variable_name node_number

Setting Environment Variables on OS/2
On OS/2, you should have no environment variables defined in config.sys apart from
DB2PATH and DB2INSTPROF. All variables should be defined in the profile registries
using the db2set command except for those that remain true environment variables.

DB2INSTANCE also remains a true environment variable, however, it is not required if
you make use of the DB2INSTDEF registry variable. This registry variable defines the
default instance name to use if DB2INSTANCE is not set.

To set system environment variables, do the following: Edit the config.sys file, and
reboot the system to have the change take effect.

The different profile registries are located according to the following:

¹ The DB2 Instance Level Profile Registry file is located under:

 %DB2INSTPROF%\instance_name\PROFILE.ENV

Note: The instance_name is specific to the database partition you are working
with.

| ¹ The DB2 Global Level Profile Registry is located under:

68 Administration Guide

| %DB2INSTPROF%\DEFAULT.ENV

¹ The DB2 Instance Node Level Profile Registry is located under:

 %DB2INSTPROF%\instance_name\NODES\node_number.ENV

Note: The instance_name and the node_number are specific to the database
partition you are working with.

There is an additional registry file that keeps track of all defined nodes. The
information in this file is roughly equivalent to what is kept in the db2nodes.cfg file.

 %DB2INSTPROF%\instance_name\NODES.CFG

¹ The DB2 Instance Profile Registry is located under:

 %DB2INSTPROF%\PROFILES.REG

Setting Environment Variables on Windows NT and Windows 95
On the Windows NT and Windows 95 operating systems, all DB2 environment values
should be defined in the profile registries using the db2set command, except for those
that are true environment variables. For Windows NT, you should not have the DB2
environment variables defined in either your machine's user or system environment
variables sections. On Windows 95, you should not have DB2 environment variables
defined in your autoexec.bat file.

To determine the settings of an environment variable, use the echo command. For
example, to check the value of the db2path environment variable, enter:

 echo %db2path%

To set system environment variables, do the following:

On Windows 95: Edit the autoexec.bat file, and reboot the system to have the change
take effect.

On Windows NT 4.x: You can set the DB2 environment variables db2instance,
db2path, and db2instprof as follows:

¹ Select Start , Settings , Control Panel .
¹ Double-click on the System icon.
¹ In the System Control Panel, in the System Environment Variables section, do the

following:
1. If the db2instance variable does not exist:

a. Select any system environment variable.
b. Change the name in the Variable field to db2instance.
c. Change the Value field to the instance name, for example db2inst.

2. If the db2instance variable already exists, append a new value:
a. Select the db2instance environment variable.
b. Change the Value field to the instance name, for example db2inst.

 3. Select Set.
 4. Select OK.

5. Reboot your system for these changes to take effect.

 Chapter 3. Implementing Your Design 69

| The profile registries are located as follows:

| ¹ The DB2 Instance Level Profile Registry in the Windows NT operating system
| registry, with the path:

| \HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\PROFILES\instance_name

| Note: The instance_name is specific to the database partition you are working
| with.

| ¹ The DB2 Global Level Profile Registry in the Windows NT registry, with the path:

| \HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\GLOBAL_PROFILE

| ¹ The DB2 Instance Node Level Profile Registry in the Windows NT registry, with the
| path:

| ...\SOFTWARE\IBM\DB2\PROFILES\instance_name\NODES\node_number

| Note: The instance_name and the node_number are specific to the database
| partition you are working with.

| DB2 UDB provides the capability of accessing DB2 UDB registry variables at the
| instance level on a remote machine. Currently, DB2 UDB registry variables are stored
| in three different levels: machine or global level, instance level, and node level. The
| registry variables stored at the instance level (including the node level) can be
| redirected to another machine by using DB2REMOTEPREG. When
| DB2REMOTEPREG is set, DB2 UDB will access the DB2 UDB registry variables from
| the machine pointed to by DB2REMOTEPREG. For example,

| db2set DB2REMOTEPREG=rmtwkstn

| where rmtwkstn is the remote workstation name.

Note: Care should be taken in setting this option since all DB2 instance profiles and
instance listings will be located on the specified remote machine name.

This feature may be used in combination with setting DBINSTPROF to point to a
remote LAN drive on the same machine that contains the registry.

Setting Environment Variables on UNIX Systems
The scripts db2profile (for Korn shell) and db2cshrc (for Bourne shell or C shell) are
provided as examples to help you set up the database environment. You can find these
files in insthome/sqllib, where insthome is the home directory of the instance owner.

These scripts include statements to:

¹ Update a user's path with the following directories:
 – insthome/sqllib/bin

 – insthome/sqllib/adm

 – insthome/sqllib/misc

¹ Set db2instance to the default local instance_name for execution.

70 Administration Guide

An instance owner or SYSADM user may customize these scripts for all users of an
instance. Alternatively, users can copy and customize a script, then invoke a script
directly or add it to their .profile or .login files.

To change the environment variable for the current session, issue commands similar to
the following:

¹ For Korn shell:

 db2instance=inst1

 export db2instance

¹ For Bourne shell or C shell:

set db2instance inst1

In order for the DB2 profile registry to be administered properly, the following file
ownership rules must be followed on UNIX operating systems. (For information on DB2
Administration Server (DAS), see “DB2 Administration Server (DAS)” on page 72.)

¹ The DB2 Instance Level Profile Registry file is located under:

 $INSTHOME/sqllib/profile.env

The access permissions and ownership of this file should be:

-rw-r--r-- Instance_Owner DAS_Instance_Group profile.env

The $INSTHOME is the home path of the instance owner.
¹ The DB2 Global Level Profile Registry is located under:

– /var/db2/v5/default.env for AIX, Solaris, SINIX, and SCO operating systems.
– /var/opt/db2/v5/default.env for the HP-UX operating system.

The access permissions and ownership of this file should be:

-rw-r--r-- DAS_Instance_Owner DAS_Instance_Group default.env

¹ The DB2 Instance Node Level Profile Registry is located under:

 $INSTHOME/sqllib/nodes/node_number.env

The access permissions and ownership of the directory and this file should be:

drwxrwxr-x Instance_Owner DAS_Instance_Group nodes

-rw-r--r-- Instance_Owner DAS_Instance_Group node_number.env

Note: The Instance_Owner and the DAS_Instance_Owner should both be
members of the DAS_Instance_Group.

The $INSTHOME is the home path of the instance owner.
¹ The DB2 Instance Profile Registry is located under:

– /var/db2/v5/profiles.reg for AIX, Solaris, SINIX, and SCO operating
systems.

– /var/opt/db2/v5/profiles.reg for the HP-UX operating system.

The access permissions and ownership of this file should be:

-rw-r--r-- root system profiles.reg

 Chapter 3. Implementing Your Design 71

| DB2 Administration Server (DAS)
| DB2 Administration Server (DAS) is a special DB2 administration control point used
| only to assist with administration tasks on other DB2 servers. DAS assists the Control
| Center (CC) and Client Configuration Assistant (CCA) when working on the following
| administration tasks:

| ¹ Enabling remote administration of DB2 Servers.
| ¹ Providing the facility for job management, including the ability to schedule the
| execution of both DB2 and operating system command scripts. These command
| scripts are user-defined. The Control Center is used to define the schedule of jobs,
| view the results of completed jobs, and perform other administrative tasks against
| jobs located either remotely or locally to the DAS.
| ¹ Providing a means for discovering information about the configuration of DB2
| instances, databases, and other DB2 Administration Servers in conjunction with the
| DB2 Discovery utility. This information is used by the Client Configuration Assistant
| (CCA) and the Control Center (CC) to simplify and automate the configuration of
| client connections to DB2 databases.

| You can only have one DAS on a machine. DAS is configured during installation to
| start when the operating system is booted.

| DAS is used to perform remote tasks on the host system on behalf of a client request
| from the Control Center or the Client Configuration Assistant. Authorized access to
| DAS requires clients with SYSADM authority. All of the clients can be part of the
| SYSADM_GROUP configuration parameter.

| Some of the requested tasks may require specific authority to run. The DAS runs under
| the identifier of a specific user. The privileges granted to that user must be restricted to
| only those tasks or operations desired by the administrator, but provide sufficient
| authority to carry out all desired commands. Generally, the tasks or operations required
| include:

| ¹ Query the operating system (OS) configuration information.
| ¹ Query the OS for user and group information.
| ¹ Act against other DB2 instances to start or stop them.
| ¹ Execute scheduled jobs.
| ¹ Collect information for Connectivity and Protocol Configuration.

| For more information on setting up DAS communications, refer to the Quick Beginnings
| for your platform.

| Creating the DAS
| Typically, the DAS is created during DB2 installation. Refer to the Quick Beginnings for
| details.

| As an overview of what occurs during the installation process as it relates to DAS,
| consider the following:

| ¹ On the OS/2 or Windows NT platforms:

72 Administration Guide

| Enter db2admin create. If a specific user account is desired, you must use
| “/USER:” and “/PASSWORD:” when issuing db2admin create.)

| When creating the DAS, you can optionally provide a user account name and a
| user password. If valid, the user account name and password will identify the
| owner of the DAS. After you create the DAS, you can establish or modify its
| ownership by providing a user account name and user password with the
| db2admin setid command. Refer to the Command Reference for more information
| on this command.
| ¹ On UNIX platforms:

| 1. Ensure that you have root authority.

| 2. At a command prompt, issue the following command from the instance

| subdirectory in the path of the DB2 Universal Database instance:

| dasicrt ASName

| where ASName is the instance name of the Administration Server.

| Once you create an Administration Server, you should use it to establish directory
| structures and access permissions.

| Starting and Stopping the DAS
| To start the DAS, enter db2admin start

| To stop the DAS, enter db2admin stop

| Note: For both cases under Windows NT, the person using these commands must
| have SYSADM, SYSCTRL, or SYSMAINT authority.

| Note: For both cases under UNIX, the person using these commands must have
| logged on with the authorization ID of the DAS owner.

| Configuring the DAS
| To see the current values for those administration configuration parameters relevant to
| the DAS, enter:

| db2 get admin cfg

| To update individual entries in the database manager configuration file relevant to the
| DAS, enter:

| db2 update admin cfg using ...

| See the Command Reference for more information on which database manager
| configuration parameters can be modified.

| To reset the configuration parameters to the recommended database manager defaults,
| enter:

| db2 reset admin cfg

 Chapter 3. Implementing Your Design 73

| Changes to the database manager configuration file become effective only after they
| are loaded into memory (that is, when a db2admin stop is followed by a dbadmin start;
| or, in the case of a Windows NT platform, stopping and starting the service.)

| To set up the communications protocols for the DAS, see the Quick Beginnings for your
| platform.

| Security Considerations for the DAS
| On OS/2 or Windows NT only, use the following command to associate a user ID with
| the DAS:

| db2admin setid userid password

| Note: Do not use the Windows NT operating system to set the user ID for the DAS.
| There is no guarantee that the user will receive all required privileges.

| It is recommended that the user ID has SYSADM authority on each of the servers
| within the environment so that it can start or stop other instances if required.

| Removing the DAS
| To remove the DAS:

| ¹ On the OS/2 or Windows NT operating systems:

| 1. Stop the DAS, using db2admin stop.

| 2. Drop the DAS, using db2admin drop.

| ¹ On UNIX platforms:

| 1. Ensure that you have root authority.

| 2. From the instance subdirectory in the path of the DB2 Universal Database
| instance, issue:

| dasidrop ASName

| where the ASName is the instance name of the Administration Server.

| Setting Up DAS with EEE Systems
| The following information shows the steps necessary to configure DB2 EEE servers
| (Sun, NT, and AIX) for remote administration using the Control Center (CC).

| There are two (2) aspects to configuration: That which is required for the DB2
| Administration Server (DAS), and that which is recommended for the target,
| administered DB2 instance. In the three sections which follow, a section is devoted to
| each of the two configuration topics. Each of the configuration topics is preceded by a
| section describing the assumed environment.

| Example Environment

| Product/version: DB2 UDB EEE V5.2

| Install path: install_path

74 Administration Guide

| TCP services file: tcp_services_file

| DB2 Instance:

| name: db2inst

| owner ID: db2inst

| instance path: instance_path

| Nodes: 3 nodes, db2nodes.cfg:

| ¹ 0 hostA 0 hostA0switch
| ¹ 1 hostA 1 hostA1switch
| ¹ 2 hostB 0 hostBswitch

| DB name: db2instDB

| DAS:

| name: db2as

| owner/user ID: db2as

| instance path: das_path

| install/run host: hostA

| internode communications port: 16000 (unused port for hostA and hostB)

| Note: Please substitute site-specific values for the above fields. For example, the
| following table contains example pathnames for each supported EEE platform:

| Table 20. Example Pathnames for Each Supported EEE Platform

| Paths| DB2 UDB EEE V5.2 for
| AIX
| DB2 UDB EEE V5.2 for
| Solaris
| DB2 UDB EEE V5.2 for
| Windows NT

| install_path| /usr/lpp/db2_05_00| /opt/IBMdb2/V5.0| C:\sqllib

| instance_path| /home/db2inst/sqllib| /home/db2inst/sqllib| C:\profiles\db2inst

| das_path| /home/db2as/sqllib| /home/db2as/sqllib| C:\profiles\db2as

| tcp_services_file| /etc/services| /etc/services| C:\winnt\system32\drivers\
| etc\services

| DAS Configuration: The DAS is an administrative control point which performs
| certain tasks on behalf of the Command Center (CC). There can be at most one (1)
| DAS per physical machine. In the case of an EEE instance which consists of several
| machines, at least one of the machines must be running a DAS so that the CC can
| administer the EEE instance. This DAS (db2as) “represents” the system that is present
| in the CC navigator tree as the parent of the target DB2 instance (db2inst).

| For example, db2inst consists of three nodes distributed across two physical machines
| or hosts. The minimum requirement can be fulfilled by running db2das on either hostA
| or hostB.

 Chapter 3. Implementing Your Design 75

| Notes:

| 1. The number of partitions present on hostA does note have any bearing on the
| number of DASes that can be run on that host. You can run only one copy of
| db2as on hostA regardless of the multiple logical nodes (MLN) configuration for
| that host.

| 2. It is not necessary to create the DAS ID, db2as, on all hosts. Rather, it is
| necessary for it to exist only on the host upon which it is running. As well, it is not
| necessary for the home directory of the DAS ID to be mounted on all hosts. In
| particular with this example, the ID db2as must exist on hostA, is not required on
| hostB, and db2as's home directory does not need to be mounted on hostB.

| Control Center Communications with DAS: Service Ports: The Control Center (CC)
| communicates with the DAS using a TCP service port, 523. Since this port is reserved
| for exclusive use by DB2 UDB, it is not necessary to insert new entries into the
| tcp_services_file.

| Internode Administrative Communications: Service Ports: For some administrative
| tasks, the DAS must establish communications with all nodes. In order to do so, a
| named TCP port must be defined in the tcp_services_file for each host which
| participates in the instance.

| Note: Windows NT EEE will attempt to add the TCP port entry into the
| tcp_services_file for you.

| For example, db2inst is defined across two hosts, hostA and hostB. As specified in
| “Example Environment” on page 74, port 16000 is unused on both hosts. Therefore,
| the following line must be inserted into the tcp_services_file for both hostA and hostB.

| db2ccmsrv 16000/tcp

| The db2ccmsrv port name must be present, spelled exactly as shown above, and the
| same port number selected must be used on all hosts.

| Internode Administrative Communications: UNIX DB2 EEE Servers: Once the TCP
| port line is inserted into the tcp_services_file on hostA and hostB, it is necessary to
| start an administrative listener process or daemon, db2cclist, on all hosts that
| participate in the instance. You can do so manually from the command line, or
| configure the system to automatically invoke db2cclst every time the system boots:

| Manual: From the ID of the instance you wish to administer, db2inst, invoke
| the following command from either hostA or hostB:

| rah 'install_path/bin/db2cclst'

| For example, on AIX this command invocation would appear as:

| rah '/usr/lpp/db2_05_00/bin/db2cclst'

| Automatic: From an ID with Superuser privileges (like root) execute the following
| command on hostA and hostB:

| mkitab "db2cclst::once:su - db2inst -c install_path /bin/db2cclst"

76 Administration Guide

| For example, on AIX this command invocation would appear as:

| mkitab "db2cclst::once:su - db2inst -c install_path

| /usr/lpp/db2_05_00/bin/db2cclst"

| Every time either machine boots, db2cclist is invoked without user
| intervention.

| To verify that the listener daemon is active on each host, the following command can
| be invoked from the instance ID, db2inst:

| rah 'ps -ef ‘ grep db2cclst'

| If you do not find the db2cclst process running on each host, additional diagnostic
| information can be obtained by adding the following line to /etc/syslog.conf on each
| host:

| *.info /tmp/db2/user.info

| where the file /tmp/db2/user.info can be replaced with a more appropriate file.

| Note: The file must exist and the SYSLOG daemon must be asked to re-read its
| configuration file after the changes are made:

| kill -1 <syslogd PID>

| where syslogd PID can be obtained by executing

| ps -ef ‘ grep syslogd

| Then, after manually invoking the listener as described above, you can view the
| syslog file /tmp/db2/user.infoon the failing host for error messages generated
| by db2cclst.

| Internode Administrative Communications: Windows NT DB2 EEE Servers: The DB2
| Remote Command Service (db2rcmd.exe) automatically handles internode
| administrative communications. In the event that a failure does occur, the Windows NT
| registry will contain diagnostic information.

| Security: In order for the DAS to perform some administrative tasks against an
| instance, it must possess sufficient authority. In particular, the DAS must be a System
| Administrator (SYSADM) for the target, administered instance.

| It is necessary to grant the DAS such authority for all DB2 instances that it will
| administer. Candidate instances are those which are installed on the same machine as
| the DAS. For a DB2 EEE instance, at least one database partition server must be
| present on the same machine as the DAS for it to be eligible as described above.

| For example on UNIX, one way in which db2as can be granted the required authority to
| administer db2inst is to ensure that the primary groups of db2inst and db2as are
| identical. Alternatively, it is sufficient to make the primary group of db2inst a secondary
| group of db2as, and the primary group of db2as a secondary group of db2inst. Finally,
| another option would be to set the SYSADM_GROUP database administration
| configuration parameter for db2inst to the primary group of db2as.

 Chapter 3. Implementing Your Design 77

| On Windows NT, db2as must be a member of the Local Administrators group on hostA
| and hostB. In addition to the option of creating the db2as ID and adding it to the Local
| Administrators group on both hosts, one could create a domain ID for db2as and add
| this domain ID to the Local Administrators group on each host.

| Environment: Installation for the DAS should configure certain registry variables that
| are necessary for proper operation. To verify the current values for these variables,
| execute the following command from either the DB2 instance ID, db2inst, or the DAS
| ID, db2das:

| db2set -g

| At least the following parameters must be defined with the following values:

| DB2SYSTEM=hostA

| DB2ADMINSERVER=db2as

| As well, in order to communicate with the DAS from the Control Center (CC), ensure
| that the DB2COMM variable is set to TCPIP. To verify this setting, execute the
| following command from the DAS ID, db2as, and check at the global (-g) and instance
| (-i) levels (only one need be set):

| db2set -all

| Along the same lines, verify that the DB2COMM parameter is set to TCPIP for the DB2
| instance to enable communications between the CC and db2inst by issuing the
| following command from the db2inst ID:

| db2set -all

| If you modify this parameter for the DAS, then you must restart the DAS for the change
| to take effect. Restart of the DB2 instance is also required if this parameter is modified
| for the DB2 instance. For db2inst, you would issue a db2stop followed by a db2start,
| whereas db2admin stop and db2admin start would be issued for the DAS.

| Discovery of Administration Servers, Instances, and Databases: To enable discovery
| of other Administration Servers from the Control Center (CC), ensure that the following
| parameters are set by issuing the db2 get admin cfg command from the db2as ID:

| DISCOVER=SEARCH

| DISCOVER_COMM=TCPIP

| To ensure that db2inst can be discovered, ensure that the following parameters are set
| by issuing the db2 get dbm cfg command from the db2inst ID:

| DISCOVER_INST=ENABLE

| Note: This is the default value for the DISCOVER_INST parameter.

| Similarly, to ensure that the database db2instDB can be discovered, ensure that the
| following parameter is set by issuing the db2 get db cfg for db2instDB command from
| the db2inst ID:

| DISCOVER_DB=ENABLE

78 Administration Guide

| Note: This is the default value for the DISCOVER_DB parameter.

Create a Node Configuration File
If your database is to operate in a partitioned database environment, you must create a
node configuration file called db2nodes.cfg. This file must be located in the sqllib
subdirectory of the home directory for the instance before you can start the database
manager with parallel capabilities across multiple partitions. The file contains
configuration information for all database partitions in an instance, and is shared by all
database partitions for that instance.

| Windows NT Considerations: If you are using DB2 Extended Enterprise Edition on
| Windows NT, the node configuration file is created for you when you create the
| instance. Refer to the DB2 Extended Enterprise Edition for Windows NT Quick
| Beginnings for complete instructions on how to set up a partitioned database
| system.

Note: You should not create files or directories under the sqllib subdirectory other
than those created by DB2 to prevent the loss of data if an instance is deleted.
There are two exceptions. If your system supports stored procedures, put the
stored procedure applications in the function subdirectory under the sqllib
subdirectory. (For information on stored procedures, see “Stored Procedures” on
page 420.) The other exception is when user-defined distinct functions (UDFs)
have been created. UDF executables are allowed in the same directory.

The file contains one line for each database partition that belongs to an instance. Each
line has the following format:

nodenum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

nodenum The node number, which can be from 0 to 999, uniquely defines a node.
Node numbers must be in ascending sequence. You can have gaps in
the sequence.

Once a node number is assigned, it cannot be changed. (Otherwise the
information in the partitioning map, which specifies how data is
partitioned, would be compromised.)

If you drop a node, its node number can be used again for any new
node that you add.

The node number is used to generate a node name in the database
directory. It has the format:

 NODEnnnn

The nnnn is the node number, which is left-padded with zeros. This
node number is also used by the CREATE DATABASE and DROP
DATABASE commands.

 Chapter 3. Implementing Your Design 79

hostname The hostname of the IP address for inter-partition communications.
(There is an exception when netname is specified. In this situation,
netname is used for most communications, with hostname only being used
for DB2START, DB2STOP, and db2_all.)

logical-port This parameter is optional, and specifies the logical port number for the
node. This number is used with the database manager instance name to
identify a TCP/IP service name entry in the etc/services file.

The combination of the IP address and the logical port is used as a
well-known address, and must be unique among all applications to
support communications connections between nodes.

For each hostname, one logical-port must be either 0 (zero) or blank
(which defaults to 0). The node associated with this logical-port is the
default node on the host to which clients connect. You can override this
with the DB2NODE environment variable in db2profile script, or with
the sqlesetc() API.

If you have multiple nodes on the same host (that is, more than one
nodenum for a host), you should assign the logical-port numbers to the
logical nodes in ascending order, from 0, with no gaps.

netname This parameter is optional, and is used to support a host that has more
than one active TCP/IP interface, each with its own hostname.

The following example shows a possible node configuration file for an RS/6000 SP
system on which SP2EN1 has multiple TCP/IP interfaces, two logical nodes, and uses
SP2SW1 as the DB2 Universal Database interface. It also shows the node numbers
starting at 1 (rather than at 0), and a gap in the nodenum sequence:

nodenum hostname logical-port netname

1 SP2EN1 0 SP2SW1

2 SP2EN1 1 SP2SW1

4 SP2EN2 0

5 SP2EN3

You can update the db2nodes.cfg file using an editor of your choice. You must be
careful, however, to protect the integrity of the information in the file, as data
partitioning requires that the node number not be changed. The node configuration file
is locked when you issue DB2START and unlocked after DB2STOP ends the database
manager. The DB2START command can update the file, if necessary, when the file is
locked. For example, you can issue DB2START with the RESTART option or the
ADDNODE option.

Note: If the DB2STOP command is not successful and does not unlock the node
configuration file, issue DB2STOP FORCE to unlock it.

| Creation of the Database Configuration File
| A database configuration file is also created for each database. The creation of this
| file is done for you. This file contains values for various configuration parameters that
| affect the use of the database, such as:

80 Administration Guide

| ¹ Parameters specified and/or used when creating the database (for example,
| database code page, collating sequence, DB2 release level)
| ¹ Parameters indicating the current state of the database (for example, backup
| pending flag, database consistency flag, roll-forward pending flag)
| ¹ Parameters defining the amount of system resources that the operation of the
| database may use (for example, buffer pool size, database logging, sort memory
| size).

These parameters are described in detail in Chapter 20, “Configuring DB2” on
page 597, and throughout this book.

Performance Tip: Many of the configuration parameters come with default values, but
may need to be updated to achieve optimal performance for your database.

For multiple partitions: When you have a database that is partitioned across more
than one partition, the configuration file should be the same on all database partitions.
Consistency is required since the SQL compiler compiles distributed SQL statements
based on information in the local node configuration file and creates an access plan to
satisfy the needs of the SQL statement. Maintaining different configuration files on
database partitions could lead to different access plans, depending on which database
partition the statement is prepared. Use db2_all to create the same configuration file on
all database partitions.

Enable FCM Communications
In a partitioned database environment, most communication between database
partitions is handled by the Fast Communications Manager (FCM). To enable the FCM
at a database partition and allow communication with other database partitions, you
must create a service directory in the partition's /etc/services file as shown below.
The FCM uses the specified port to communicate. If you have defined multiple
partitions on the same host, you must define a range of ports as shown below.

| Windows NT Considerations: If you are using DB2 Extended Enterprise Edition in
| the Windows NT environment, the TCP/IP port range is automatically added to
| the services file by:

| ¹ The install program when it creates the instance or addes a new node
| ¹ The DB2ICRT utility when it creates a new instance
| ¹ The DB2NCRT utility when it adds the first node on the machine.

| For additional information, refer to the DB2 Extended Enterprise Edition for
| Windows NT Quick Beginnings.

The syntax of a service entry is as follows:

DB2_instance port/tcp #comment

DB2_instance
The value for instance is the name of the database manager instance.
All characters in the name must be lowercase. Assuming an instance
name of db2puser, you would specify DB2_db2puser

 Chapter 3. Implementing Your Design 81

port/tcp The TCP/IP port that you want to reserve for the database partition.

#comment Any comment that you want to associate with the entry. The comment
must be preceded by a pound sign (#).

If the /etc/services file is shared, you must ensure that the number of ports allocated
in the file is either greater than or equal to the largest number of multiple database
partitions in the instance. When allocating ports, also ensure that you account for any
processor that can be used as a backup.

If the /etc/services file is not shared, the same considerations apply, with one
additional consideration: you must ensure that the entries defined for the DB2 instance
are the same in all /etc/services files (though other entries that do not apply to your
partitioned database do not have to be the same).

If you have multiple database partitions on the same host in an instance, you must
define more than one port for the FCM to use. To do this, include two lines in the
etc/services file to indicate the range of ports you are allocating. The first line
specifies the first port, while the second line indicates the end of the block of ports. In
the following example, five ports are allocated for the instance sales. This means no
processor in the instance has more than five database partitions.

 DB2_sales 9000/tcp

 DB2_sales_END 9004/tcp

Note: You must specify END in uppercase only. Also you must ensure that you include
both underscore (_) characters.

Creating a Database
Creating a database sets up all the system catalog tables that are needed by the
database and allocates the database recovery log. The database configuration file is
created, and the default values are set. The database manager will also bind the
database utilities to the database.

The following database privileges are automatically granted to PUBLIC: CREATETAB,
BINDADD, CONNECT, and IMPLICIT_SCHEMA. SELECT privilege on the system
catalog views is also granted to PUBLIC.

The following command line processor command creates a database called personl, in
the default location, with the associated comment "Personnel DB for BSchiefer Co".

create database personl

with "Personnel DB for BSchiefer Co"

The tasks carried out by the database manager when you create a database are
discussed in the following sections:

¹ “Definition of Initial Nodegroups” on page 83
¹ “Definition of Initial Table Spaces” on page 83
¹ “Definition of System Catalog Tables” on page 84
¹ “Local Database Directory” on page 85

82 Administration Guide

¹ “System Database Directory” on page 85
¹ “Definition of Database Recovery Log” on page 86
¹ “Binding Utilities to the Database” on page 86
¹ “Creating Nodegroups” on page 88

| ¹ “Creating a Table Space” on page 89
| ¹ “Creating a Schema” on page 94
| ¹ “Creating a Table” on page 95
| ¹ “Creating a Trigger” on page 109
| ¹ “Creating a User-Defined Function (UDF)” on page 110
| ¹ “Creating a User-Defined Type (UDT)” on page 112
| ¹ “Creating a View” on page 114
| ¹ “Creating an Alias” on page 119
| ¹ “Creating an Index” on page 120
| ¹ “Creating a Summary Table” on page 118.

For additional information related to the physical implementation of your database, see
Chapter 2, “Designing Your Physical Database” on page 27.

If you wish to create a database in a different, possibly remote, database manager
instance, see “Using Multiple Instances of the Database Manager” on page 62. This
topic also provides an introduction to the command you need to use if you want to
perform any instance-level administration against an instance other than your default
instance, including remote instances.

Note: See the Command Reference for information about the default database
location and about specifying a different location with the CREATE DATABASE
command.

Definition of Initial Nodegroups
When a database is initially created, database partitions are created for all partitions
specified in the db2nodes.cfg file. Other partitions can be added or removed with the
ADD NODE and DROP NODE commands.

Three nodegroups are defined:

¹ IBMCATGROUP for the SYSCATSPACE table space, holding system catalog
tables

¹ IBMTEMPGROUP for the TEMPSPACE1 table space, holding temporary tables
created during database processing

¹ IBMDEFAULTGROUP for the USERSPACE1 table space, by default holding user
tables and indexes.

Definition of Initial Table Spaces
When a database is initially created, three table spaces are defined:

¹ SYSCATSPACE for the system catalog tables (see “Definition of System Catalog
Tables” on page 84)

¹ TEMPSPACE1 for temporary tables created during database processing.
¹ USERSPACE1 for user-defined tables and indexes

 Chapter 3. Implementing Your Design 83

If you do not specify any table space parameters with the CREATE DATABASE
command, the database manager will create these table spaces using system managed
storage (SMS) directory containers. These directory containers will be created in the
subdirectory created for the database (see “Database Physical Directories” on
page 27). The extent size for these table spaces will be set to the default.

If you do not want to use the default definition for these table spaces, you may specify
their characteristics on the CREATE DATABASE command. For example, the following
command could be used to create your database on OS/2:

CREATE DATABASE PERSONL

 CATALOG TABLESPACE

MANAGED BY SYSTEM USING ('d:\pcatalog','e:\pcatalog')

EXTENTSIZE 16 PREFETCHSIZE 32

 USER TABLESPACE

MANAGED BY DATABASE USING (FILE'd:\db2data\personl' 5000,

 FILE'd:\db2data\personl' 5000)

EXTENTSIZE 32 PREFETCHSIZE 64

 TEMPORARY TABLESPACE

MANAGED BY SYSTEM USING ('f:\db2temp\personl')

WITH "Personnel DB for BSchiefer Co"

In this example, the definition for each of the initial table spaces is explicitly provided.
You only need to specify the table space definitions for those table spaces for which
you do not want to use the default definition.

The coding of the MANAGED BY phrase on the CREATE DATABASE command
follows the same format as the MANAGED BY phrase on the CREATE TABLESPACE
command. For additional examples, see “Creating a Table Space” on page 89.

Before creating your database, see “Designing and Choosing Table Spaces” on
page 43.

Definition of System Catalog Tables
 A set of system catalog tables is created and maintained for each database. These
tables contain information about the definitions of the database objects (for example,
tables, views, indexes, and packages), and security information about the type of
access users have to these objects. These tables are stored in the SYSCATSPACE
table space.

These tables are updated during the operation of a database; for example, when a
table is created. You cannot explicitly create or drop these tables, but you can query
and view their content. When the database is created, in addition to the system catalog
table objects, the following database objects are defined in the system catalog:

¹ A set of user-defined functions (UDFs) is created in the SYSFUN schema. For
more information about these system-created functions, see the SQL Reference
manual.

84 Administration Guide

¹ A set of read-only views for the system catalog tables is created in the SYSCAT
schema. See Appendix J, “Catalog Views” on page 965 for information about
these views.

¹ A set of updatable catalog views is created in the SYSSTAT schema. These
updatable views allow you to update certain statistical information to investigate the
performance of a hypothetical database, or to update statistics without using the
RUNSTATS utility. See “Updatable Catalog Views” on page 966.

After your database has been created, you may wish to limit the access to the system
catalog views, as described in “Securing the System Catalog Views” on page 172.

Definition of Database Directories
Three directories are used when establishing or setting up a new database.

¹ Local Database Directory
¹ System Database Directory

 ¹ Node Directory

Local Database Directory
 A local database directory file exists in each path (or drive on other platforms) in which
a database has been defined. This directory contains one entry for each database
accessible from that location. Each entry contains:

¹ The database name provided with the CREATE DATABASE command
¹ The database alias name (which is the same as the database name, if an alias

name is not specified)
¹ A comment describing the database, as provided with the CREATE DATABASE

command
¹ The name of the root directory for the database
¹ Other system information.

To see the contents of this file for a particular database, issue the following command,
where location specifies the location of the database:

LIST DATABASE DIRECTORY ON location

System Database Directory
 A system database directory file exists for each instance of the database manager,
and contains one entry for each database that has been cataloged for this instance.
Databases are implicitly cataloged when the CREATE DATABASE command is issued
and can also be explicitly cataloged with the CATALOG DATABASE command. For
information about cataloging databases, see “Cataloging a Database” on page 87.

For each database created, an entry is added to the directory containing the following
information:

¹ The database name provided with the CREATE DATABASE command
¹ The database alias name (which is the same as the database name)
¹ The database comment provided with the CREATE DATABASE command
¹ The location of the local database directory

 Chapter 3. Implementing Your Design 85

¹ An indicator that the database is indirect, which means that it resides on the same
machine as the system database directory file

¹ Other system information.

To see the contents of this file, issue the LIST DATABASE DIRECTORY command
without specifying the location of the database directory file.

In a partitioned database environment, you must ensure that all database partitions
always access the same system database directory file, sqldbdir, in the sqldbdir
subdirectory of the home directory for the instance. Unpredictable errors can occur if
either the system database directory or the system intention file sqldbins in the same
sqldbdir subdirectory are symbolic links to another file that is on a shared file system.
These files are described in “Enabling Data Partitioning” on page 64.

 Node Directory
The database manager creates the node directory when the first database partition is
cataloged. To catalog a database partition, use the CATALOG NODE command. To list
the contents of the local node directory, use the LIST NODE DIRECTORY command.
The node directory is created and maintained on each database client. The directory
contains an entry for each remote workstation having one or more databases that the
client can access. The DB2 client uses the communication end point information in the
node directory whenever a database connection or instance attachment is requested.

The entries in the directory also contain information on the type of communication
protocol to be used to communicate from the client to the remote database partition.
Cataloging a local database partition creates an alias for an instance that resides on
the same machine. A local node should be cataloged when there is more than one
instance on the same workstation to be accessed from the user's client.

Definition of Database Recovery Log
A database recovery log keeps a record of all changes made to a database, including
the addition of new tables or updates to existing ones. This log is made up of a
number of log extents, each contained in a separate file called a log file.

The database recovery log can be used to ensure that a failure (for example, a system
power outage or application error) does not leave the database in an inconsistent state.
In case of a failure, the changes already made but not committed are rolled back, and
all committed transactions, which may not have been physically written to disk, are
redone. These actions ensure the integrity of the database.

For more information, see Chapter 7, “ Recovering a Database” on page 269.

Binding Utilities to the Database
When a database is created, the database manager attempts to bind the utilities in
db2ubind.lst to the database. This file is stored in the bnd subdirectory of your sqllib
directory.

86 Administration Guide

Binding a utility creates a package, which is an object that includes all the information
needed to process specific SQL statements from a single source file.

Note: If you wish to use these utilities from a client, you must bind them explicitly. See
the Quick Beginnings manual appropriate to your platform for information.

If for some reason you need to bind or rebind the utilities to a database, issue the
following commands using the command line processor:

connect to sample

 bind @db2ubind.lst

Note: You must be in the directory where these files reside to create the packages in
the sample database. The bind files are found in the BND subdirectory of the
SQLLIB directory. In this example, sample is the name of the database.

Cataloging a Database
When you create a new database, it is automatically cataloged in the system database
directory file. You may also use the CATALOG DATABASE command to explicitly
catalog a database in the system database directory file. The CATALOG DATABASE
command allows you to catalog a database with a different alias name, or to catalog a
database entry that was previously deleted using the UNCATALOG DATABASE
command.

 The following command line processor command catalogs the personl database as
humanres:

catalog database personl as humanres

with "Human Resources Database"

Here, the system database directory entry will have humanres as the database alias,
which is different from the database name (personl).

You can also catalog a database on an instance other than the default. In the following
example, connections to database B are to INSTANCE_C.

catalog database b as b at node instance_c

Note: The CATALOG DATABASE command is also used on client nodes to catalog
databases that reside on database server machines. For more information, see
the Quick Beginnings manual appropriate to your platform.

For information on the Distributed Computing Environment (DCE) cell directory, see
“DCE Directory Services” on page 88 and Appendix G, “Using Distributed Computing
Environment (DCE) Directory Services” on page 917.

Note: To improve performance, you may cache directory files, including the database
directory, in memory. (See “Directory Cache Support (dir_cache)” on page 636
for information about enabling directory caching.) When directory caching is
enabled, a change made to a directory (for example, using a CATALOG
DATABASE or UNCATALOG DATABASE command) by another application
may not become effective until your application is restarted. To refresh the

 Chapter 3. Implementing Your Design 87

directory cache used by a command line processor session, issue a db2
terminate command.

In addition to the application level cache, a database manager level cache is also used
for internal, database manager look-up. To refresh this “shared” cache, issue the
db2stop and db2start commands.

For more information about directory caching, see “Directory Cache Support
(dir_cache)” on page 636.

DCE Directory Services
DCE is an Open Systems Foundation** (OSF**) architecture that provides tools and
services to support the creation, use, and maintenance of applications in a distributed
heterogeneous computing environment. It is a layer between the operating system, the
network, and a distributed application that allows client applications to access remote
servers.

With local directories, the physical location of the target database is individually stored
on each client workstation in the database directory and node directory. The database
administrator can therefore spend a large amount of time updating and changing these
directories. The DCE directory services provide a central directory alternative to the
local directories. It allows information about a database or a database manager
instance to be recorded once in a central location, and any changes or updates to be
made at that one location.

DCE is not a prerequisite for running DB2, but if you are operating in a DCE
environment, see Appendix G, “Using Distributed Computing Environment (DCE)
Directory Services” on page 917 for more information.

 Creating Nodegroups
You create a nodegroup with the CREATE NODEGROUP statement. This statement
specifies the set of nodes on which the table space containers and table data are to
reside. This statement also:

¹ Creates a partitioning map for the nodegroup. For details about the partitioning
map, see “Partitioning Maps” on page 38.

¹ Generates a partitioning map ID.
¹ Inserts records into the following catalog tables:

 – SYSCAT.NODEGROUPS
 – SYSCAT.PARTITIONMAPS
 – SYSCAT.NODEGROUPDEF

Assume that you want to load some tables on a subset of the database partitions in
your database. You would use the following command to create a nodegroup of two
nodes (1 and 2) in a database consisting of at least 3 (0 to 2) nodes:

CREATE NODEGROUP mixng12 ON NODES (1,2)

For more information about creating nodegroups, see the SQL Reference manual.

88 Administration Guide

The CREATE DATABASE command or sqlecrea() API also create the default system
nodegroups, IBMDEFAULTGROUP, IBMCATGROUP, and IBMTEMPGROUP. (See
“Designing and Choosing Table Spaces” on page 43 for information.)

Creating a Table Space
Creating a table space within a database assigns containers to the table space and
records its definitions and attributes in the database system catalog. You can then
create tables within this table space.

The syntax of the CREATE TABLESPACE statement is discussed in detail in the SQL
Reference manual. For information on SMS and DMS table spaces, see “Designing and
Choosing Table Spaces” on page 43.

The following SQL statement creates an SMS table space on OS/2 or Windows NT
using three directories on three separate drives:

CREATE TABLESPACE RESOURCE

MANAGED BY SYSTEM

USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp')

 The following SQL statement creates a DMS table space on OS/2 using two file
containers each with 5,000 pages:

CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE

USING (FILE'd:\db2data\acc_tbsp' 5000,

 FILE'e:\db2data\acc_tbsp' 5000)

In the above two examples, explicit names have been provided for the containers. You
may also specify relative container names, in which case, the container will be created
in the subdirectory created for the database (see “Database Physical Directories” on
page 27).

In addition, if part of the path name specified does not exist, the database manager will
create it. If a subdirectory is created by the database manager, it may also be deleted
by the database manager when the table space is dropped.

The assumption in the above examples is that the table spaces are not associated with
a specific nodegroup. The default nodegroup IBMDEFAULTGROUP is used when the
following parameter is not specified in the statement:

 IN nodegroup

 The following SQL statement creates a DMS table space on a UNIX-based system
using three logical volumes of 10 000 pages each, and specifies their I/O
characteristics:

 Chapter 3. Implementing Your Design 89

CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE

USING (DEVICE '/dev/rdblv6' 10000,

DEVICE '/dev/rdblv7' 10000,

DEVICE '/dev/rdblv8' 10000)

 OVERHEAD 24.1

 TRANSFERRATE 0.9

The UNIX devices mentioned in this SQL statement must already exist and be able to
be written to by the instance owner and the SYSADM group.

The following example creates a DMS table space on a nodegroup called
ODDNODEGROUP in a UNIX partitioned database. ODDNODEGROUP must be
previously created with a CREATE NODEGROUP statement. In this case, the
ODDNODEGROUP nodegroup is assumed to be made up of database partitions
numbered 1, 3, and 5. On all database partitions, use the device /dev/hdisk0 for
10 000 4K pages. In addition, declare a device for each database partition of 40 000 4K
pages.

CREATE TABLESPACE PLANS

MANAGED BY DATABASE

USING (DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n1hd01' 40000) ON NODE 1

(DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n3hd03' 40000) ON NODE 3

(DEVICE '/dev/HDISK0' 10000, DEVICE '/dev/n5hd05' 40000) ON NODE 5

 UNIX devices are classified into two categories: character serial devices and
block-structured devices. For all file-system devices, it is normal to have a
corresponding character serial device (or raw device) for each block device (or cooked
device). The block-structured devices are typically designated by names similar to “hd0”
or “fd0.” The character serial devices are typically designated by names similar to
“rhd0,” “rfd0,” or “rmt0.” These character serial devices have faster access than block
devices. The character serial device names should be used on the CREATE
TABLESPACE command and not block device names.

The overhead and transfer rate help to determine the best access path to use when the
SQL statement is compiled. For information on the OVERHEAD and TRANSFERRATE
parameters, see Part 3, “Tuning Application Performance” on page 385.

DB2 can greatly improve the performance of sequential I/O using the sequential
prefetch facility, which uses parallel I/O. See “Understanding Sequential Prefetching” on
page 539 for details on this facility.

| You also have the ability to create a table space that uses a page size larger than the
| default 4 KB size. The following SQL statement creates an SMS table space on a
| UNIX-based system with an 8 KB page size.

| CREATE TABLESPACE SMS8K

| PAGESIZE 8192

| MANAGED BY SYSTEM

| USING ('FSMS_8K_1')

| BUFFERPOOL BUFFPOOL8K

90 Administration Guide

| Notice that the associated buffer pool must also have the same 8 KB page size.

| The created table space cannot be used until the buffer pool it references is activated.

The ALTER TABLESPACE SQL statement can be used to add a container to a DMS
table space and modify the PREFETCHSIZE, OVERHEAD, and TRANSFERRATE
settings for a table space. The transaction issuing the table space statement should be
committed as soon as possible, to prevent system catalog contention.

Note: The PREFETCHSIZE should be a multiple of the EXTENTSIZE. For example if
the EXTENTSIZE is 10, the PREFETCHSIZE should be 20 or 30. For more
information, see “Understanding Sequential Prefetching” on page 539.

Creating Table Spaces in Nodegroups
By placing a table space in a multiple database partition nodegroup, all of the tables
within the table space are divided or partitioned across each database partition in the
nodegroup. The table space is created into a nodegroup. Once in a nodegroup, the
table space must remain there; It cannot be changed to another nodegroup. The
CREATE TABLESPACE statement is used to associate a table space with a
nodegroup.

| RAW I/O
| DB2 for Windows NT supports direct disk access (raw I/O). This allows you to attach a
| direct disk access (raw) device to a Windows NT system. The following list
| demonstrates the physical and logical methods for identifying this type of device:

| ¹ To open a physical hard drive for direct disk access, use the following naming
| convention:

| \\.\PhysicalDriveN

| where N represents one of the physical drives in the system. For example, N could
| be replaced by 0, 1, 2, or any other positive integer.
| ¹ To open a logical raw partition (that is, an unformatted partition) use the following
| naming convention:

| \\.\N:

| where N: represents a logical drive letter in the system. For example, N: could be
| replaced by E: or any other drive letter on the system.

| For example:

| ¹ On Windows NT, \\.\d: or \\.\PhysicalDisk5

| Note: You must have Windows NT Version 4.0 with Service Pack 3 installed to be
| able to write logs to a device.

| ¹ On UNIX-based platforms, /dev/rdblog8

| Note: You can only specify a device on AIX, Windows NT, and Solaris platforms.

| There are advantages and disadvantages when you use raw devices to decide I/O
| configuration:

 Chapter 3. Implementing Your Design 91

| ¹ The advantages are:
| – You can attach more than 26 physical drives to a system.
| – The file I/O path length is shorter. This may improve performance on your
| system. You should conduct benchmarks to evaluate if there are measurable
| benefits for your work load.
| ¹ The disadvantages are:
| – The device cannot be shared by other applications; the entire device must be
| assigned to DB2.
| – The device cannot be operated upon by any operating system utility or
| third-party tool which would backup or copy from the device.
| – You can easily wipe out the file system on an existing drive if you specify the
| wrong physical drive number.

| DB2 for Windows NT uses raw devices to manage database storage. The following
| commands or SQL statements can be used to specify a raw device for the type of
| container being created:

| ¹ CREATE DATABASE
| ¹ CREATE TABLESPACE
| ¹ ALTER TABLESPACE

| The following is an example of the CREATE TABLESPACE statement:

| db2 create tablespace PAYROLL managed by database using
| (device '\\.\PhysicalDrive1' 100000)
| overhead 24.1 transferrate 0.9

| This creates a table space with one container on the second physical device, and
| consumes the first 409 600 000 bytes of the device. Note that in a Windows 95
| environment, table spaces cannot be composed of containers that are defined as raw
| devices.

| You can also use this method in conjunction with “Change the Database Log Path
| (newlogpath)” on page 663 to use raw devices to store log files. There are
| considerations when doing this, however:

| ¹ Only one device is allowed. You can define the device over multiple disks at the
| operating system level. DB2 will make an operating system call to determine the
| size of the device in 4 KB pages.

| If you use multiple disks, this will provide a larger device, and the striping that
| results can improve performance by faster I/O throughput.

| ¹ DB2 will attempt to write to the last 4 KB page of the device. If the device size is
| greater than 2 GB, the attempt to write to the last page will fail on operating
| systems that do not provide support for devices larger than 2 GB. In this situation,
| DB2 will attempt to use all pages, up to the supported limit.

| Information about the size of the device is used to indicate the size of the device
| (in 4 KB pages) available to DB2 under the support of the operating system. The
| amount of disk space that DB2 can write to is referred to as the
| device-size-available.

92 Administration Guide

| The first 4 KB page of the device is not used by DB2 (this space is generally used
| by operating system for other purposes.) This means that the total space available
| to DB2 is device-size = device-size-available - 1.

| ¹ The logsecond parameter is not used. DB2 will not allocate secondary logs. The
| size of active log space is the number of 4 KB pages that result from logprimary x
| logfilsiz.

| ¹ Log records are still grouped into log extents, each with a log file size (logfilsiz) of
| 4 KB pages. Log extents are placed in the raw device, one after another. Each
| extent also consists of an extra two pages for the extent header. This means that
| the number of available log extents the device can support is device-size /
| (logfilsiz+ 2)

| ¹ The device must be large enough to support the active log space. That is, the
| number of available log extents must be greater than (or equal to) the value
| specified for the logprimary configuration parameter.

| ¹ If you are using circular logging, the logprimary configuration parameter will
| determine the number of log extents that are written to the device. This may result
| in unused space on the device.

| ¹ If you are using log retention (logretain) without a user exit, after the number of
| available log extents are all used up, all operations that result in an update will
| receive a log full error. At this time, you must shut down the database and take an
| offline backup of it to ensure recoverability. After the database backup, the log
| records written to the device are lost. This means that you cannot use an earlier
| database backup to restore the database, then roll it forward. If you take a
| database backup before the number of available log extents are all used up, you
| can restore and roll forward the database.

| ¹ If you are using log retention (logretain) with a user exit, the user exit program is
| called for each log extent as it is filled with log records. The user exit program must
| be able to read the device, and to store the archived log as a file. DB2 will not call
| a user exit to retrieve log files to a raw device. Instead, during roll forward
| recovery, DB2 will read the extent headers to determine if the raw device contains
| the log file to be used. If the required log file is not found in the raw device, DB2
| will search the overflow log path. If the log file is still not found, DB2 will call the
| user exit to retrieve the log file into the overflow log path. If you do not specify an
| overflow log path for the rollforward command, DB2 will not call the user exit to
| retrieve the log during the roll-forward operations. For additional information about
| the calling the user exit program, see “Calling Format for UNIX-Based or Windows
| NT Operating Systems” on page 1059.

| ¹ If you are using DPropR and writing logs to a raw device, the read log API will not
| call the user exit to retrieve log files. Requested log records, however, will be still
| be returned if they are available on the device. If you request logs that pre-date the
| oldest ones on the device, they will not be returned (the behavior is similar to DB2
| not being able to find the log file that contains the requested log records).

 Chapter 3. Implementing Your Design 93

| Notes:

| 1. It is recommended that you do not use DPropR when you use a raw device for
| logging.

| 2. If you use the sqlurlog API, you should not use a raw device for logging.

Creating a Schema
While organizing your data into tables, it may also be beneficial to group tables (and
other related objects) together. This is done by defining a schema through the use of
the CREATE SCHEMA statement. Information about the schema is kept in the system
catalog tables of the database to which you are connected. As other objects are
created, they can be placed within this schema.

The syntax of the CREATE SCHEMA statement is described in detail in the SQL
Reference manual. The new schema name cannot already exist in the system catalogs
and it cannot begin with "SYS".

If a user has SYSADM or DBADM authority, then the user can create a schema with
any valid name. When a database is created, IMPLICIT_SCHEMA authority is granted
to PUBLIC (that is, to all users).

The definer of any objects created as part of the CREATE SCHEMA statement is the
schema owner. This owner can GRANT and REVOKE schema privileges to other
users.

The following is an example of a CREATE SCHEMA statement that creates a schema
for an individual user with the authorization ID "joe":

CREATE SCHEMA joeschma AUTHORIZATION joe

This statement must be issued by a user with DBADM authority.

 Schemas may also be implicitly created when a user has IMPLICIT_SCHEMA
authority. With this authority, users implicitly create a schema whenever they create an
object with a schema name that does not already exist.

| If users do not have IMPLICIT_SCHEMA authority, the only schema they can create is
| one that has the same name as their own authorization ID.

| Setting a Schema
| You may wish to establish a default schema for use by unqualified object references in
| dynamic SQL statements issued from within a specific DB2 connection. This is done by
| setting the special register CURRENT SCHEMA to the schema you wish to use as the
| default. Any user can set this special register: No authorization is required.

| The syntax of the SET SCHEMA statement is described in detail in the SQL Reference
| manual.

| The following is an example of how to set the CURRENT SCHEMA special register:

94 Administration Guide

| SET CURRENT SCHEMA = 'SCHEMA01'

| This statement can be used from within an application program or issued interactively.
| Once set, the value of the CURRENT SCHEMA special register is used as the qualifier
| (schema) for unqualified object references in dynamic SQL statements, with the
| exception of the CREATE SCHEMA statement where an unqualified reference to a
| database object exists.

| The initial value of the CURRENT SCHEMA special register is equal to the
| authorization ID of the current session user.

Creating a Table
After you determine how to organize your data into tables, the next step is to create
those tables, by using the CREATE TABLE statement. The table descriptions are
stored in the system catalog of the database to which you are connected.

The syntax of the CREATE TABLE statement is described in detail in the SQL
Reference. For information about naming tables, columns, and other database objects,
see Appendix E, “Naming Rules” on page 885.

 The CREATE TABLE statement gives the table a name, which is a qualified or
unqualified identifier, and a definition for each of its columns. You can store each table
in a separate table space, so that a table space will contain only one table. If a table
will be dropped and created often, it is more efficient to store it in a separate table
space and then drop the table space instead of the table. You can also store many
tables within a single table space. In a partitioned database environment, the table
space chosen also defines the nodegroup and the database partitions on which table
data is stored.

The table does not contain any data at first. To add rows of data to it, use one of the
following:

¹ The INSERT statement, described in the SQL Reference
¹ The LOAD or IMPORT commands, described in the Command Reference

It is possible to add data into the table without logging the change. This is done using
the NOT LOGGED INITIALLY parameter on the CREATE TABLE statement. Any
changes made to the table by an INSERT, DELETE, UPDATE, CREATE INDEX,
DROP INDEX, or ALTER TABLE operation in the same unit of work in which the table
is created are not logged. Logging begins in subsequent units of work.

A table consists of one or more column definitions. A maximum of 500 columns can be
defined for a table. Columns represent the attributes of an entity. The values in any
column are all the same type of information. See the SQL Reference for more
information.

| Note: The maximum of 500 columns is true when using a 4K page size. The
| maximum is 1012 columns when using an 8K page size.

 Chapter 3. Implementing Your Design 95

A column definition includes a column name, data type, and any necessary null
attribute, or default value (optionally chosen by the user).

The column name describes the information contained in the column and should be
something that will be easily recognizable. It must be unique within the table; however,
the same name can be used in other tables. See “Object Names” on page 887 for
information about naming rules.

The data type of a column indicates the length of the values in it and the kind of data
that is valid for it. The database manager uses character string, numeric, date, time and
large object data types. Graphic string data types are only available for database
environments using multi-byte character sets. In addition, columns can be defined with
user-defined distinct types, which are discussed in “Creating a User-Defined Type
(UDT)” on page 112.

 The default attribute specification indicates what value is to be used if no value is
provided. The default value can be specified, or a system-defined default value used.
Default values may be specified for columns with, and without, the null attribute
specification.

The null attribute specification indicates whether or not a column can contain null
values.

The following is an example of a CREATE TABLE statement that creates the
EMPLOYEE table in the RESOURCE table space. This table is defined in the sample
database:

CREATE TABLE EMPLOYEE

(EMPNO CHAR(6) NOT NULL PRIMARY KEY,

FIRSTNME VARCHAR(12) NOT NULL,

MIDINIT CHAR(1) NOT NULL WITH DEFAULT,

LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10M) NOT NULL)

 IN RESOURCE

| When creating a table, you can choose to have the columns of the table based on the
| attributes of a structured type.

| One of the options you may consider when creating a table concerns the creation of a
| subtable. A subtable is a typed table based on a structured type where attributes are
| inherited from other tables. The other tables can be either root tables or supertables. (A
| root table is a supertable.) This is discussed further in subsequent sections.

The following sections build on the previous example to cover other options you should
consider:

¹ “Large Object (LOB) Column Considerations” on page 97
¹ “Defining a Unique Constraint” on page 98
¹ “Defining Referential Constraints” on page 99

96 Administration Guide

¹ “Defining a Table Check Constraint” on page 102
| ¹ “Creating a User-Defined Structured Type” on page 113
| ¹ “Creating a Typed Table” on page 103
| ¹ “Populating a Typed Table” on page 104

¹ “Creating a Table in Multiple Table Spaces” on page 107
¹ “Creating a Table in a Partitioned Database” on page 108

| You can also create a table that is defined based on the result of a query. This type of
| table is called a summary table. For more information, see “Creating a Summary Table”
| on page 118.

Large Object (LOB) Column Considerations
Before creating a table that contains large object columns, you need to make the
following decisions:

1. Do you want to log changes to LOB columns?

If you do not want to log these changes, you must turn logging off by specifying the
NOT LOGGED clause when you create the table. For example:

CREATE TABLE EMPLOYEE

(EMPNO CHAR(6) NOT NULL PRIMARY KEY,

FIRSTNME VARCHAR(12) NOT NULL,

MIDINIT CHAR(1) NOT NULL WITH DEFAULT,

LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10M) NOT NULL NOT LOGGED)

 IN RESOURCE

If the LOB column is larger than 1 GB, logging must be turned off. (As a rule of
thumb, you may not want to log LOB columns larger than 10 MB.) As with other
options specified on a column definition, the only way to change the logging option
is to re-create the table.

Even if you choose not to log changes, LOB columns are shadowed to allow
changes to be rolled back, whether the roll back is the result of a system
generated error, or an application request. Shadowing is a recovery technique
where current storage page contents are never overwritten. That is, old, unmodified
pages are kept as “shadow” copies. These copies are discarded when they are no
longer needed to support a transaction rollback.

Note: When recovering a database using the RESTORE and ROLLFORWARD
commands, LOB data that was “NOT LOGGED”and was written since the last
backup will be replaced by binary zeros .

2. Do you want to minimize the space required for the LOB column?

You can make the LOB column as small as possible using the COMPACT clause
on the CREATE TABLE statement. For example:

 Chapter 3. Implementing Your Design 97

CREATE TABLE EMPLOYEE

(EMPNO CHAR(6) NOT NULL PRIMARY KEY,

FIRSTNME VARCHAR(12) NOT NULL,

MIDINIT CHAR(1) NOT NULL WITH DEFAULT,

LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10M) NOT NULL NOT LOGGED COMPACT)

 IN RESOURCE

There is a performance cost when appending to a table with a compact LOB
column, particularly if the size of LOB values are increased (because of storage
adjustments that must be made).

On platforms such as OS/2 where sparse file allocation is not supported and where
LOBs are placed in SMS table spaces, consider using the COMPACT clause.
Sparse file allocation has to do with how physical disk space is used by an
operating system. An operating system that supports sparse file allocation does not
use as much physical disk space to store LOBs as compared to an operating
system not supporting sparse file allocation. The COMPACT option allows for even
greater physical disk space “savings” regardless of the support of sparse file
allocation. Because you can get some physical disk space savings when using
COMPACT, you should consider using COMPACT if your operating system does
not support sparse file allocation.

| Note: DB2 system catalogs use LOB columns and may take up more space than
| in previous versions.

| 3. Do you want better performance for LOB columns, including those LOB columns in
| the DB2 system catalogs?

| There are large object (LOB) columns in the catalog tables. LOB data is not kept in
| the buffer pool with other data but is read from disk each time it is needed.
| Reading from disk slows down the performance of DB2 where the LOB columns of
| the catalogs are involved. Since a file system usually has its own place for storing
| (or caching) data, using a SMS table space, or a DMS table space built on file
| containers, make avoidance of I/O possible when the LOB has previously been
| referenced.

 Defining Constraints
This section discusses how to define constraints:

¹ “Defining a Unique Constraint”
¹ “Defining Referential Constraints” on page 99
¹ “Defining a Table Check Constraint” on page 102

For more information on constraints, see “Planning for Constraint Enforcement” on
page 17 and the SQL Reference.

Defining a Unique Constraint: Unique constraints ensure that every value in the
specified key is unique. A table can have any number of unique constraints, with at
most one unique constraint defined as a primary key.

98 Administration Guide

You define a unique constraint with the UNIQUE clause in the CREATE TABLE or
ALTER TABLE statements. The unique key can consist of more than one column.
More than one unique constraint is allowed on a table.

Once established, the unique constraint is enforced automatically by the database
manager when an INSERT or UPDATE statement modifies the data in the table. The
unique constraint is enforced through a unique index.

When a unique constraint is defined in an ALTER TABLE statement and an index
exists on the same set of columns of that unique key, that index becomes the unique
index and is used by the constraint.

You can take any one unique constraint and use it as the primary key. The primary key
can be used as the parent key in a referential constraint (along with other unique
constraints). There can be only one primary key per table. You define a primary key
with the PRIMARY KEY clause in the CREATE TABLE or ALTER TABLE statement.
The primary key can consist of more than one column.

A primary index forces the value of the primary key to be unique. When a table is
created with a primary key, the database manager creates a primary index on that key.

Some performance tips for indexes used as unique constraints include:

| ¹ The IMPORT utility aways extends indexes incrementally, as opposed to LOAD,
| which always completely rebuilds them.
| ¹ As a result, when preforming an initial load of an empty table with indexes, LOAD
| gives better performance than IMPORT. This is true no matter whether you are
| using the INSERT or REPLACE modes of LOAD.
| ¹ When appending a substantial amount of data to an existing table with indexes
| (using IMPORT INSERT, or LOAD INSERT), LOAD gives slightly better
| performance than IMPORT.
| ¹ When appending a small amount of data to an existing large table with indexes
| (using IMPORT INSERT, or LOAD INSERT), IMPORT may perform better than
| LOAD since IMPORT will not incur the cost of rebuilding the entire index.

¹ If you are using the IMPORT command for an initial large load of data, create the
unique key after the data has been imported or loaded. This avoids the overhead
of maintaining the index while the table is being loaded. It also results in the index
using the least amount of storage.

¹ If you are using the LOAD utility in REPLACE mode, create the unique key before
loading the data. In this case, creation of the index during the load is more efficient
than using the CREATE INDEX statement after the load.

Defining Referential Constraints: Referential integrity is imposed by adding
referential constraints to table and column definitions. Referential constraints are
established with the the FOREIGN KEY Clause, and the REFERENCES Clause in the
CREATE TABLE or ALTER TABLE statements.

The identification of foreign keys enforces constraints on the values within the rows of a
table or between the rows of two tables. The database manager checks the constraints

 Chapter 3. Implementing Your Design 99

specified in a table definition and maintains the relationships accordingly. The goal is to
maintain integrity whenever one database object references another.

For example, primary and foreign keys each have a department number column. For
the EMPLOYEE table, the column name is WORKDEPT, and for the DEPARTMENT
table, the name is DEPTNO. The relationship between these two tables is defined by
the following constraints:

¹ There is only one department number for each employee in the EMPLOYEE table,
and that number exists in the DEPARTMENT table.

¹ Each row in the EMPLOYEE table is related to no more than one row in the
DEPARTMENT table. There is a unique relationship between the tables.

¹ Each row in the EMPLOYEE table that has a non-null value for WORKDEPT is
related to a row in the DEPTNO column of the DEPARTMENT table.

¹ The DEPARTMENT table is the parent table, and the EMPLOYEE table is the
dependent table.

 The SQL statement defining the parent table, DEPARTMENT, is:

CREATE TABLE DEPARTMENT

 (DEPTNO CHAR(3) NOT NULL,

DEPTNAME VARCHAR(29) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT CHAR(3) NOT NULL,

 LOCATION CHAR(16),

PRIMARY KEY (DEPTNO))

 IN RESOURCE

The SQL statement defining the dependent table, EMPLOYEE, is:

CREATE TABLE EMPLOYEE

(EMPNO CHAR(6) NOT NULL PRIMARY KEY,

FIRSTNME VARCHAR(12) NOT NULL,

LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10m) NOT NULL,

FOREIGN KEY DEPT (WORKDEPT)

REFERENCES DEPARTMENT ON DELETE NO ACTION)

 IN RESOURCE

By specifying the DEPTNO column as the primary key of the DEPARTMENT table and
WORKDEPT as the foreign key of the EMPLOYEE table, you are defining a referential
constraint on the WORKDEPT values. This constraint enforces referential integrity
between the values of the two tables. In this case, any employees that are added to the
EMPLOYEE table must have a department number that can be found in the
DEPARTMENT table.

The delete rule for the referential constraint in the employee table is NO ACTION,
which means that a department cannot be deleted from the DEPARTMENT table if
there are any employees in that department.

100 Administration Guide

Although the previous examples use the CREATE TABLE statement to add a referential
constraint, the ALTER TABLE statement can also be used. See “Altering a Table” on
page 128.

Another example: The same table definitions are used as those in the previous
example. Also, the DEPARTMENT table is created before the EMPLOYEE table. Each
department has a manager, and that manager is listed in the EMPLOYEE table.
MGRNO of the DEPARTMENT table is actually a foreign key of the EMPLOYEE table.
Because of this referential cycle, this constraint poses a slight problem. You could add
a foreign key later (see “Adding Primary and Foreign Keys” on page 130). You could
also use the CREATE SCHEMA statement to create both the EMPLOYEE and
DEPARTMENT tables at the same time (see the example in the SQL Reference).

FOREIGN KEY Clause: A foreign key references a primary key or a unique key in the
same or another table. A foreign key assignment indicates that referential integrity is to
be maintained according to the specified referential constraints. You define a foreign
key with the FOREIGN KEY clause in the CREATE TABLE or ALTER TABLE
statement.

The number of columns in the foreign key must be equal to the number of columns in
the corresponding primary or unique constraint (called a parent key) of the parent table.
In addition, corresponding parts of the key column definitions must have the same data
types and lengths. The foreign key can be assigned a constraint name. If you do not
assign a name, one is automatically assigned. For ease of use, it is recommended that
you assign a constraint name and do not use the system-generated name.

The value of a composite foreign key matches the value of a parent key if the value of
each column of the foreign key is equal to the value of the corresponding column of the
parent key. A foreign key containing null values cannot match the values of a parent
key, since a parent key by definition can have no null values. However, a null foreign
key value is always valid, regardless of the value of any of its non-null parts.

The following rules apply to foreign key definitions:

¹ A table can have many foreign keys
¹ A foreign key is nullable if any part is nullable
¹ A foreign key value is null if any part is null.

REFERENCES Clause: The REFERENCES clause identifies the parent table in a
relationship, and defines the necessary constraints. You can include it in a column
definition or as a separate clause accompanying the FOREIGN KEY clause, in either
the CREATE TABLE or ALTER TABLE statements.

If you specify the REFERENCES clause as a column constraint, an implicit column list
is composed of the column name or names that are listed. Remember that multiple
columns can have separate REFERENCES clauses, and that a single column can have
more than one.

Included in the REFERENCES clause is the delete rule. In our example, the ON
DELETE NO ACTION rule is used, which states that no department can be deleted if

 Chapter 3. Implementing Your Design 101

there are employees assigned to it. Other delete rules include ON DELETE CASCADE,
ON DELETE SET NULL, and ON DELETE RESTRICT. See “DELETE Rules” on
page 21.

Implications for Utility Operations: The LOAD utility will turn off constraint checking for
self-referencing and dependent tables, placing these tables into check pending state.
After the LOAD utility has completed, you will need to turn on the constraint checking
for all tables for which it was turned off. For example, if the DEPARTMENT and
EMPLOYEE tables are the only tables that have been placed in check pending state,
you can execute the following command:

SET CONSTRAINTS FOR DEPARTMENT, EMPLOYEE IMMEDIATE CHECKED

The IMPORT utility is affected by referential constraints in the following ways:

¹ The REPLACE and REPLACE CREATE functions are not allowed if the object
table has any dependents other than itself.

To use these functions, first drop all foreign keys in which the table is a parent.
When the import is complete, re-create the foreign keys with the ALTER TABLE
statement.

¹ The success of importing into a table with self-referencing constraints depends on
the order in which the rows are imported.

Defining a Table Check Constraint: A table check constraint specifies a search
condition that is enforced for each row of the table on which the table check constraint
is defined. You create a table check constraint on a table by associating a
check-constraint definition with the table when the table is created or altered. This
constraint is automatically activated when an INSERT or UPDATE statement modifies
the data in the table. A table check constraint has no effect on a DELETE or SELECT
statement.

 A constraint name cannot be the same as any other constraint specified within the
same CREATE TABLE statement. If you do not specify a constraint name, the system
generates an 18-character unique identifier for the constraint.

A table check constraint is used to enforce data integrity rules not covered by key
uniqueness or a referential integrity constraint. In some cases, a table check constraint
can be used to implement domain checking. The following constraint issued on the
CREATE TABLE statement ensures that the start date for every activity is not after the
end date for the same activity:

CREATE TABLE EMP_ACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DECIMAL(5,2),

 EMSTDATE DATE,

 EMENDATE DATE,

CONSTRAINT ACTDATES CHECK(EMSTDATE <= EMENDATE))

 IN RESOURCE

102 Administration Guide

Although the previous example uses the CREATE TABLE statement to add a table
check constraint, the ALTER TABLE statement can also be used. See “Altering a
Table” on page 128.

| Creating a Typed Table
| You can create a typed table using a variant of the CREATE TABLE statement. After
| defining hierarchies of user-defined structured types as described in “Creating a
| User-Defined Structured Type” on page 113, you should consider the creation of typed
| tables. For example:

| CREATE TABLE Department OF Department_t

| (REF IS Oid USER GENERATED);

| CREATE TABLE Person OF Person_t

| (REF IS Oid USER GENERATED);

| CREATE TABLE Employee OF Employee_t UNDER Person

| INHERIT SELECT PRIVILEGES

| (Dept WITH OPTIONS SCOPE Department);

| CREATE TABLE Student OF Student_t UNDER Person

| INHERIT SELECT PRIVILEGES;

| CREATE TABLE Manager OF Manager_t UNDER Employee

| INHERIT SELECT PRIVILEGES;

| CREATE TABLE Architect OF Architect_t UNDER Employee

| INHERIT SELECT PRIVILEGES;

| The first typed table created above is Department. This table is defined to be OF type
| Department_t, so it will hold instances of that type. This means that it will have a
| column corresponding to each attribute of the structured type Department_t. Because
| typed tables contain objects that can be referenced by other objects, every typed table
| must have an “object identifier” (OID) column as its first column. In this example, the
| type of the OID column will be REF(Department_t), and its column name (Oid) is given
| in the REF IS...USER GENERATED clause. The USER GENERATED part of this
| clause indicates that the initial value for the OID column of each newly inserted row will
| be provided by the user when inserting a row; once inserted, the OID column cannot be
| updated.

| The next typed table above, Person, is of type Person_t. The type Person_t is the root
| of a type hierarchy, so we need to create a corresponding “table hierarchy” if we want
| to store instances of type Person_t and its subtypes. Thus, after creating the table
| Person, we create two “subtables” of the Person table, Employee and Student, and also
| two subtables of the Employee table, Manager and Architect. Just as a subtype inherits
| the attributes of its supertype, a subtable inherits the columns of its supertable —
| including the OID column. (Note: A subtable must reside in the same schema as its
| supertable.) Rows in the Employee subtable, for example, will therefore have a total of
| six columns: Oid, Name, Age, SerialNum, Salary, and Dept.

| The INHERIT SELECT PRIVILEGES clause specifies that the subtable being defined,
| such as, Employee, should (at least initially) be readable by the same users and groups
| as the “supertable,” such as, Person, UNDER which it is created. Any user or group

 Chapter 3. Implementing Your Design 103

| holding a SELECT privilege on the supertable will be granted SELECT privilege on the
| newly created subtable, with the subtable definer being the grantor of this privilege.

| Note: Privileges may be granted and revoked independently at every level of a table
| hierarchy. Thus, the inherited SELECT privileges on a subtable may be revoked
| after the subtable has been created if the definer of the subtable does not wish
| for them to remain granted. While doing so does not prevent a user with
| SELECT privilege on the supertable from seeing those columns of the
| subtable's rows, it does prevent them from seeing the additional columns that
| appear only at the level of the subtable because a user can only operate
| directly on a subtable if they hold the necessary privilege on that subtable.

| The WITH OPTIONS SCOPE clause in the CREATE statement for the Employee table
| declares that the Dept column of this table has a “scope” of Department. This means
| that the reference values in this column of the Employee table are intended to refer to
| objects in the Department table. The scope information is needed if the user wants to
| be able to dereference these references in SQL statements using the new SQL
| dereference operator (–>).

| This example has shown how a table hierarchy can be defined, based on a
| corresponding hierarchy of structured types, in order to create a database in which
| objects of particular types and subtypes can be stored and managed. Every table
| hierarchy has a “root table,” which has an OID column plus a column for each attribute
| of its declared type. In addition, it can have a number of “subtables,” each of which is
| created UNDER the root table or some other appropriate “supertable” within the table
| hierarchy. This example has also shown how scopes are specified for reference
| attributes.

| See SQL Reference for more information on the CREATE TABLE statement (or the
| CREATE VIEW statement) and how to establish subtype/supertype relationships
| between typed tables. (For an introduction to CREATE VIEW you could see “Creating a
| Typed View” on page 116.)

| Populating a Typed Table
| After creating the structured types and then creating the corresponding tables and
| subtables, you will have a database like the following:

104 Administration Guide

Person

Person_t

(Oid, Name, Age)

Department

Department_t

(Oid, Name, Headcount)

Employee

Employee_t

(SerialNum, Salary, REF (Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

| Figure 19.

| Once the hierarchy is established, you will need to populate the tables with data. This
| may be done as shown in the following example:

 Chapter 3. Implementing Your Design 105

| INSERT INTO Department (Oid, Name, Headcount)

| VALUES(Department_t('1'), 'Toy', 15);

| INSERT INTO Department (Oid, Name, Headcount)

| VALUES(Department_t('2'), 'Shoe', 10);

| INSERT INTO Person (Oid, Name, Age)

| VALUES(Person_t('a'), 'Andrew', 20);

| INSERT INTO Person (Oid, Name, Age)

| VALUES(Person_t('b'), 'Bob', 30);

| INSERT INTO Person (Oid, Name, Age)

| VALUES(Person_t('c'), 'Cathy', 25);

| INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)

| VALUES(Employee_t('d'), 'Dennis', 26, 105, 30000, Department_t('1'));

| INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)

| VALUES(Employee_t('e'), 'Eva', 31, 83, 45000, Department_t('2'));

| INSERT INTO Employee (Oid, Name, Age, SerialNum, Salary, Dept)

| VALUES(Employee_t('f'), 'Franky', 28, 214, 39000, Department_t('2'));

| INSERT INTO Student (Oid, Name, Age, SerialNum, Marks)

| VALUES(Student_t('g'), 'Gordon', 19, 10245, 90);

| INSERT INTO Student (Oid, Name, Age, SerialNum, Marks)

| VALUES(Student_t('h'), 'Helen', 20, 10357, 70);

| INSERT INTO Manager (Oid, Name, Age, SerialNum, Salary, Dept, Bonus)

| VALUES(Manager_t('i'), 'Iris', 35, 251, 55000, Department_t('1'), 12000);

| INSERT INTO Manager (Oid, Name, Age, SerialNum, Salary, Dept, Bonus)

| VALUES(Manager_t('j'), 'Christina', 10, 317, 85000, Department_t('1'), 25000);

| INSERT INTO Manager (Oid, Name, Age, SerialNum, Salary, Dept, Bonus)

| VALUES(Manager_t('k'), 'Ken', 55, 482, 105000, Department_t('2'), 48000);

| INSERT INTO Architect (Oid, Name, Age, SerialNum, Salary, Dept, StockOption)

| VALUES(Architect_t('l'), 'Leo', 35, 661, 92000, Department_t('2'), 20000);

| INSERT INTO Architect (Oid, Name, Age, SerialNum, Salary, Dept, StockOption)

| VALUES(Architect_t('m'), 'Brian', 7, 882, 112000,

| (SELECT Oid FROM Department WHERE name = 'Toy'), 30000);

| Notice from the example that first value in each inserted row is the OID for the data
| being inserted into the tables. Also, when inserting data into a subtable, note that data
| must be provided for its inherited columns. Finally, notice that any reference-valued
| expression of the appropriate type can be used to initialize a reference attribute. In
| most cases above, the Dept reference of the employees is input as an appropriately
| type-casted constant; however, in the case of Brian, the reference is obtained using a
| subquery.

| Following the above INSERT statements, we can now query the typed tables using
| their associated SQL extensions. For example, here is the result we would obtain if we
| now ask DB2 to "SELECT Name, Age FROM Person", which prints the names and
| ages of all persons (in Person or its subtables) in our database:

106 Administration Guide

| NAME AGE

| -------------------- -----------

| Andrew 20

| Bob 30

| Dennis 26

| Eva 31

| Franky 28

| Gordon 19

| Helen 20

| Iris 35

| Christina 10

| Ken 55

| Leo 35

| Brian 7

| 12 record(s) selected.

| Similarly, here is the result that obtained if we ask DB2 to "SELECT Name, Salary,
| Dept–>Name FROM Employee", which prints the names, salaries, and department
| names of all the employees in the database:

| NAME SALARY NAME

| -------------------- ----------- --------------------

| Dennis 30000 Toy

| Eva 45000 Shoe

| Franky 39000 Shoe

| Iris 55000 Toy

| Christina 85000 Toy

| Ken 105000 Shoe

| Leo 92000 Shoe

| Brian 112000 Toy

| 8 record(s) selected.

| Note: In the second SELECT statement above, the dereference operator (–>) is used.
| The dereference operator returns the named column value from the target table
| or subtable, or the target view or subview, of the scoped reference expression
| from the row with the matching OID column. Dept is the “scoped reference
| expression” (that is, a reference type that has a scope). Name is the name of an
| attribute of the target type of the scoped reference expression.

Creating a Table in Multiple Table Spaces
Data, index, and long column data can be stored in the same table space as the table
or in a different table space only for DMS. The following example shows how the
EMP_PHOTO table could be created to store the different parts of the table in different
table spaces:

 Chapter 3. Implementing Your Design 107

CREATE TABLE EMP_PHOTO

 (EMPNO CHAR(6) NOT NULL,

 PHOTO_FORMAT VARCHAR(10) NOT NULL,

 PICTURE BLOB(100K))

 IN RESOURCE

INDEX IN RESOURCE_INDEXES

 LONG IN RESOURCE_PHOTO

This example will cause the EMP_PHOTO data to be stored as follows:

¹ Indexes created for the EMP_PHOTO table will be stored in the
RESOURCES_INDEXES table space

¹ Data for the PICTURE column will be stored in the RESOURCE_PHOTO table
space

¹ Data for the EMPNO and PHOTO_FORMAT columns will be stored in the
RESOURCE table space.

See “Table Space Design Considerations” on page 52 for additional considerations on
the use of multiple DMS table spaces for a single table.

See the SQL Reference for more information.

Creating a Table in a Partitioned Database
Before creating a table that will be physically divided or partitioned, you need to
consider the following:

¹ Table spaces can span more than one database partition. The number of partitions
they scan depends on the number of partitions in a nodegroup.

¹ Tables can be collocated by being placed in the same table space or by being
placed in another table space that, together with the first table space, is associated
with the same nodegroup. For more information, see “Table Collocation” on
page 41.

One additional option exists when creating a table in a partitioned database
environment: the partitioning key. A partitioning key is a key that is part of the definition
of a table. It determines the partition on which each row of data is stored.

It is important to select an appropriate partitioning key because it cannot be changed
later. Furthermore, any unique indexes (and therefore unique or primary keys) must be
defined as a superset of the partitioning key. That is, if a partitioning key is defined,
unique keys and primary keys must include all of the same columns as the partitioning
key (they may have more columns).

If you do not specify the partitioning key explicitly, the following defaults are used.
Ensure that the default partitioning key is appropriate.

¹ If a primary key is specified in the CREATE TABLE statement, the first column of
the primary key is used as the partitioning key.

¹ If there is no primary key, the first column that is not a long field is used.
¹ If no columns satisfy the requirements for a default partitioning key, the table is

created without one (this is allowed only in single-partition nodegroups).

108 Administration Guide

Following is an example:

CREATE TABLE MIXREC (MIX_CNTL INTEGER NOT NULL,

MIX_DESC CHAR(20) NOT NULL,

MIX_CHR CHAR(9) NOT NULL,

MIX_INT INTEGER NOT NULL,

MIX_INTS SMALLINT NOT NULL,

MIX_DEC DECIMAL NOT NULL,

MIX_FLT FLOAT NOT NULL,

MIX_DATE DATE NOT NULL,

MIX_TIME TIME NOT NULL,

MIX_TMSTMP TIMESTAMP NOT NULL)

 IN MIXTS12

PARTITIONING KEY (MIX_INT) USING HASHING

In the preceding example, the table space is MIXTS12 and the partitioning key is
MIX_INT. If the partitioning key is not specified explicitly, it is MIX_CNTL. (If no primary
key is specified and no partitioning key is defined, the partitioning key is the first
non-long column in the list.)

A row of a table, and all information about that row, always resides on the same
database partition.

| The size limit for one partition of a table is 64 GB, or the available disk space,
| whichever is smaller. (This assumes a 4 KB page size for the table space.) The size of
| the table can be as large as 64 GB (or the available disk space) times the number of
| database partitions. If the page size for the table space was 8 KB, the size of the table
| can be as large as 128 GB (or the available disk space) times the number of database
| partitions.

Creating a Trigger
A trigger defines a set of actions that are executed in conjunction with, or triggered by,
an INSERT, UPDATE, or DELETE clause on a specified base table. Some uses of
triggers are to:

¹ Validate input data
¹ Generate a value for a newly-inserted row
¹ Read from other tables for cross-referencing purposes
¹ Write to other tables for audit-trail purposes

You can use triggers to support general forms of integrity or business rules. For
example, a trigger can check a customer's credit limit before an order is accepted or
update a summary data table.

The benefits of using a trigger are:

¹ Faster application development: Because a trigger is stored in the database, you
do not have to code the actions it does in every application.

¹ Easier maintenance: Once a trigger is defined, it is automatically invoked when the
table that it is created on is accessed.

 Chapter 3. Implementing Your Design 109

¹ Global enforcement of business rules: If a business policy changes, you only need
to change the trigger and not each application program.

The following SQL statement creates a trigger that increases the number of employees
each time a new person is hired, by adding 1 to the number of employees (NBEMP)
column in the COMPANY_STATS table each time a row is added to the EMPLOYEE
table.

CREATE TRIGGER NEW_HIRED

AFTER INSERT ON EMPLOYEE

FOR EACH ROW MODE DB2SQL

UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

A trigger body can include one or more of the following SQL statements: INSERT,
searched UPDATE, searched DELETE, full-selects, SET transition-variable, and
SIGNAL SQLSTATE. The trigger can be activated before or after the INSERT,
UPDATE, or DELETE statement to which it refers. See the SQL Reference for
complete syntax information on the CREATE TRIGGER statement. See the Embedded
SQL Programming Guide for information about creating and using triggers.

 Trigger Dependencies
| All dependencies of a trigger on some other object are recorded in the
| SYSCAT.TRIGDEP catalog. A trigger can depend on many objects. These objects and
| the dependent trigger are presented in detail in the SQL Reference discussion on the
| DROP statement.

If one of these objects is dropped, the trigger becomes inoperative but its definition is
retained in the catalog. To revalidate this trigger, you must retrieve its definition from
the catalog and submit a new CREATE TRIGGER statement.

If a trigger is dropped, its description is deleted from the SYSCAT.TRIGGERS catalog
view and all of its dependencies are deleted from the SYSCAT.TRIGDEP catalog view.
All packages having UPDATE, INSERT, or DELETE dependencies on the trigger are
invalidated.

If the dependent object is a view and it is made inoperative, the trigger is also marked
inoperative. Any packages dependent on triggers that have been marked inoperative
are invalidated. (For more information, see “Statement Dependencies When Changing
Objects” on page 139.)

Creating a User-Defined Function (UDF)
User-defined functions (UDFs) extend and add to the support provided by built-in
functions of SQL, and can be used wherever a built-in function can be used. You can
create UDFs as either:

¹ An external function, which is written in a programming language.
¹ A sourced function, whose implementation is inherited from some other existing

function.

There are three types of UDFs:

110 Administration Guide

Scalar Returns a single-valued answer each time it is called. For example, the
built-in function SUBSTR() is a scalar function. Scalar UDFs can be
either external or sourced.

Column Returns a single-valued answer from a set of like values (a column). It is
also sometimes called an aggregating function in DB2. An example of a
column function is the built-in function AVG(). An external column UDF
cannot be defined to DB2, but a column UDF which is sourced upon one
of the built-in column functions can be defined. This is useful for distinct
types.

For example, if there is a distinct type SHOESIZE defined with base type
INTEGER, a UDF AVG(SHOESIZE) which is sourced on the built-in
function AVG(INTEGER) could be defined, and it would be a column
function.

Table Returns a table to the SQL statement which references it. Table
functions may only be referenced in the FROM clause of a SELECT
statement. Such a function can be used to apply SQL language
processing power to data which is not DB2 data, or to convert such data
into a DB2 table.

For example, table functions can take a file and convert it to a table,
tabularize sample data from the World Wide Web, or access a Lotus
Notes database and return information such as the date, sender, and
text of mail messages. This information can be joined with other tables in
the database.

A table function can only be an external function. It cannot be a sourced
function.

Information about existing UDFs is recorded in the SYSCAT.FUNCTIONS and
SYSCAT.FUNCPARMS catalog views. The system catalog does not contain the
executable code for the UDF. (Therefore, when creating your backup and recovery
plans you should consider how you will manage your UDF executables.)

Statistics about the performance of UDFs are important when compiling SQL
statements. For information about how to update UDF statistics in the system catalog,
see “Updating Statistics for User-Defined Functions” on page 459.

A UDF cannot be dropped if a view, trigger, table check constraint, or another UDF is
dependent on it. If a UDF is dropped, packages that are dependent on it are marked
inoperative. (For more information, see “Statement Dependencies When Changing
Objects” on page 139.)

For details on using the CREATE FUNCTION statement to write a UDF to suit your
specific application, see the Embedded SQL Programming Guide. See the SQL
Reference for details on UDF syntax.

 Chapter 3. Implementing Your Design 111

| Creating a User-Defined Type (UDT)
| A user-defined type (UDT) is a named data type that is created in the database by the
| user. A UDT can be a distinct type which shares a common respresentation with a
| built-in data type or a structured type which has a sequence of named attributes that
| each have a type. A structured type can be a subtype of another structured type (called
| a supertype), defining a type hierarchy.

| UDTs support strong typing, which means that even though they share the same
| representation as other types, values of a given UDT are considered to be compatible
| only with values of the same UDT or UDTs in the same type hierarchy.

| The SYSCAT.DATATYPES catalog view allows you to see the UDTs that have been
| defined for your database. This catalog view also shows you the data types defined by
| the database manager when the database was created. For a complete list of all data
| types, see the SQL Reference.

| A UDT cannot be used as an argument for most of the system-provided, or built-in,
| functions. User-defined functions must be provided to enable these and other
| operations.

| You can drop a UDT only if:

| ¹ It is not used in a column definition for an existing table.
| ¹ It is not used as the type of an existing typed table or typed view.
| ¹ It is not used in a UDF function that cannot be dropped. A UDF cannot be dropped
| if a view, trigger, table check constraint, or another UDF is dependent on it.

| When a UDT is dropped, any functions that are dependent on it are also dropped.

| Creating a User-Defined Distinct Type
| A user-defined distinct type is a data type derived from an existing type, such as an
| integer, decimal, or character type. You can create a distinct type using the CREATE
| DISTINCT TYPE statement.

| The following SQL statement creates the distinct type t_educ as a smallint:

| CREATE DISTINCT TYPE T_EDUC AS SMALLINT WITH COMPARISONS

| Instances of the same distinct type can be compared to each other, if the WITH
| COMPARISONS clause is specified on the CREATE DISTINCT TYPE statement (as in
| the example). The WITH COMPARISONS clause cannot be specified if the source data
| type is a large object, a DATALINK, LONG VARCHAR, or LONG VARGRAPHIC type.

| Instances of distinct types cannot be used as arguments of functions or operands of
| operations that were defined on the source type. Similarly, the source type cannot be
| used in arguments or operands that were defined to use a distinct type.

| Once you have created a distinct type, you can use it to define columns in a CREATE
| TABLE statement:

112 Administration Guide

| CREATE TABLE EMPLOYEE

| (EMPNO CHAR(6) NOT NULL,

| FIRSTNME VARCHAR(12) NOT NULL,

| LASTNAME VARCHAR(15) NOT NULL,

| WORKDEPT CHAR(3),

| PHONENO CHAR(4),

| PHOTO BLOB(10M) NOT NULL,

| EDLEVEL T_EDUC)

| IN RESOURCE

| Creating the distinct also generates support to cast between the distinct type and the
| source type. Hence, a value of type T_EDUC can be cast to a SMALLINT value and
| SMALLINT value can be cast to a T_EDUC value.

| See the SQL Reference for complete syntax information on the CREATE DISTINCT
| TYPE statement. See the Embedded SQL Programming Guide for information about
| creating and using a distinct type.

| Creating a User-Defined Structured Type
| You can create a structured type using the CREATE TYPE statement. Subtyping is
| supported for structured types, and is expressed by using the CREATE TYPE...UNDER
| variant of the CREATE TYPE statement.

| For example, consider the following user-defined structured types:

| CREATE TYPE Department_t AS (Name VARCHAR(20), Headcount INT)

| WITHOUT COMPARISONS NOT FINAL MODE DB2SQL;

| CREATE TYPE Person_t AS (Name VARCHAR(20), Age INT)

| WITHOUT COMPARISONS NOT FINAL MODE DB2SQL;

| CREATE TYPE Employee_t UNDER Person_t

| AS (SerialNum INT, Salary INT, Dept REF(Department_t))

| WITHOUT COMPARISONS NOT FINAL MODE DB2SQL;

| CREATE TYPE Student_t UNDER Person_t AS (SerialNum INT, Marks INT)

| WITHOUT COMPARISONS NOT FINAL MODE DB2SQL;

| CREATE TYPE Manager_t UNDER Employee_t AS (Bonus INT)

| WITHOUT COMPARISONS NOT FINAL MODE DB2SQL;

| CREATE TYPE Architect_t UNDER Employee_t AS (StockOption INT)

| WITHOUT COMPARISONS NOT FINAL MODE DB2SQL;

| The AS clause provides the attribute definitions associated with the type.

| The WITHOUT COMPARISONS clause indicates that comparison functions are not
| supported for instances of the structured type.

| The NOT FINAL clause indicates that the structured type may be used as a supertype.

| The MODE DB2SQL clause is used to specify the mode of the type. DB2SQL is the
| only value for mode currently supported.

| The UNDER clause specifies that the structured type is being defined as a subtype of
| the specified supertype.

 Chapter 3. Implementing Your Design 113

| The first structured type above (Department_t) is a type with two attributes: Name and
| Headcount. The second structured type (Person_t) is another type with two attributes:
| Name and Age. The type Person_t has two subtypes, Employee_t and Student_t, that
| each inherit the attributes of Person_t but have several additional attributes that are
| specific to their particular types. Note that the Dept attribute of Employee_t is a
| reference, of type REF(Department_t), that can refer to an object of type Department_t.
| Finally, Manager_t and Architect_t are both subtypes of Employee_t; they inherit all the
| attributes of Employee_t and extend them further as appropriate for their types. Thus,
| an instance of type Manager_t will have a total of six attributes: Name, Age, SerialNum,

| Salary, Dept, and Bonus.

| This example showing user-defined structured types contains definitions for two “type
| hierarchies.” One is the Department_t type hierarchy, which consists only of the type
| Department_t (and therefore isn't much of a hierarchy). The other is the Person_t type
| hierarchy, which consists of the type Person_t, two subtypes of Person_t, namely
| Employee_t and Student_t, and two subtypes of Employee_t, namely Manager_t and
| Architect_t. The Department_t type and Person_t type are “root types” since they are
| not subtypes of any other type (that is, neither one has an UNDER clause in its type
| definition). The Employee_t type is a “subtype” of Person_t, or respectively Person_t is
| a “supertype” of Employee_t, since the structured type Employee_t is created UNDER
| the type Person_t and inherits its attributes.

| See SQL Reference for more information on the CREATE TYPE (Structured)
| statement.

Creating a View
Views are derived from one or more base tables or views, and can be used
interchangeably with base tables when retrieving data. When changes are made to the
data shown in a view, the data is changed in the table itself.

 A view can be created to limit access to sensitive data, while allowing more general
access to other data. For example, the EMPLOYEE table may have salary information
in it, which should not be made available to everyone. The employee's phone number,
however, should be generally accessible. In this case, a view could be created from the
LASTNAME and PHONENO columns only. Access to the view could be granted to
PUBLIC, while access to the entire EMPLOYEE table could be restricted to those who
have the authorization to see salary information. For information about read-only views,
see the SQL Reference manual.

With a view, you can make a subset of table data available to an application program
and validate data that is to be inserted or updated. A view can have column names that
are different from the names of corresponding columns in the original tables.

The use of views provides flexibility in the way your programs and end-user queries can
look at the table data.

The following SQL statement creates a view on the EMPLOYEE table that lists all
employees in Department A00 with their employee and telephone numbers:

114 Administration Guide

CREATE VIEW EMP_VIEW (DA00NAME, DA00NUM, PHONENO)

AS SELECT LASTNAME, EMPNO, PHONENO FROM EMPLOYEE

WHERE WORKDEPT = 'A00'

WITH CHECK OPTION

The first line of this statement names the view and defines its columns. The name
EMP_VIEW must be unique within its schema in SYSCAT.TABLES. The view name
appears as a table name although it contains no data. The view will have three
columns called DA00NAME, DA00NUM, and PHONENO, which correspond to the
columns LASTNAME, EMPNO, and PHONENO from the EMPLOYEE table. The
column names listed apply one-to-one to the select list of the SELECT statement. If
column names are not specified, the view uses the same names as the columns of the
result table of the SELECT statement.

 The second line is a SELECT statement that describes which values are to be
selected from the database. It may include the clauses ALL, DISTINCT, FROM,
WHERE, GROUP BY, and HAVING. The name or names of the data objects from
which to select columns for the view must follow the FROM clause.

 The WITH CHECK OPTION clause indicates that any updated or inserted row to the
view must be checked against the view definition, and rejected if it does not conform.
This enhances data integrity but requires additional processing. If this clause is
omitted, inserts and updates are not checked against the view definition.

The following SQL statement creates the same view on the EMPLOYEE table using the
SELECT AS clause:

CREATE VIEW EMP_VIEW

SELECT LASTNAME AS DA00NAME,

EMPNO AS DA00NUM,

 PHONENO

 FROM EMPLOYEE

WHERE WORKDEPT = 'A00'

WITH CHECK OPTION

You can create a view that uses a UDF in its definition. However, to update this view
so that it contains the latest functions, you must drop it and then re-create it. If a view is
dependent on a UDF, that function cannot be dropped.

The following SQL statement creates a view with a function in its definition:

CREATE VIEW EMPLOYEE_PENSION (NAME, PENSION)

AS SELECT NAME, PENSION(HIREDATE,BIRTHDATE,SALARY,BONUS)

 FROM EMPLOYEE

The UDF function PENSION calculates the current pension an employee is eligible to
receive, based on a formula involving their HIREDATE, BIRTHDATE, SALARY, and
BONUS.

In addition to using views as described above, a view can also be used to:

 Chapter 3. Implementing Your Design 115

| ¹ Alter a table without affecting application programs. This can happen by creating a
| view based on an underlying table. Applications that use the underlying table are
| not affected by the creation of the new view. New applications can use the created
| view for different purposes than those applications that use the underlying table.

¹ Sum the values in a column, select the maximum values, or average the values.

An alternative to creating a view is to use a nested or common table expression to
reduce catalog lookup and improve performance. See the SQL Reference for more
information about common table expressions.

| Creating a Typed View
| You can create a typed view using the CREATE VIEW statement. For example, to
| create a view of the typed Department table that we created earlier, we can define a
| structured type that has the desired attributes and then create a typed view using that
| type:

| CREATE TYPE VDepartment_t AS (Name VARCHAR(20))

| WITHOUT COMPARISONS NOT FINAL MODE DB2SQL;

| CREATE VIEW VDepartment OF VDepartment_t MODE DB2SQL

| (REF IS VOid USER GENERATED)

| AS SELECT VDepartment_t(Varchar(Oid)), Name FROM Department;

| The OF clause in the CREATE VIEW statement tells the system that the columns of the
| view are to be based on the attributes of the indicated structured type (in this case
| VDepartment_t).

| The MODE DB2SQL clause specifies the mode of the typed view. This is the only valid
| mode currently supported.

| The REF IS... clause is identical to that of the typed CREATE TABLE statement. It
| provides a name for the view's OID column (VOid in this case), which is the first column
| of the view. Typed views, like typed tables, require an OID column to be specified (in
| the case of a root view) or inherited (in the case of a subview, as will be shown
| shortly).

| The USER GENERATED clause specifies that the initial value for the OID column must
| be provided by the user when inserting a row. Once inserted, the OID column cannot
| be updated.

| To illustrate the creation of a typed view hierarchy, the following example defines a
| view hierarchy that omits some sensitive data and eliminates some type distinctions
| from the Person table hierarchy created earlier under “Creating a Typed Table” on
| page 103:

116 Administration Guide

| CREATE TYPE VPerson_t AS (Name VARCHAR(20))

| WITHOUT COMPARISONS NOT FINAL MODE DB2SQL;

| CREATE TYPE VEmployee_t UNDER VPerson_t

| AS (Salary INT, Dept REF(VDepartment_t))

| WITHOUT COMPARISONS NOT FINAL MODE DB2SQL;

| CREATE VIEW VPerson OF VPerson_t MODE DB2SQL

| (REF IS VOid USER GENERATED)

| AS SELECT VPerson_t (Varchar(Oid)), Name FROM ONLY(Person);

| CREATE VIEW VEmployee OF VEmployee_t MODE DB2SQL

| UNDER VPerson INHERIT SELECT PRIVILEGES

| (Dept WITH OPTIONS SCOPE VDepartment)

| AS SELECT VEmployee_t(Varchar(Oid)), Name, Salary,

| VDepartment_t(Varchar(Dept))

| FROM Employee;

| The two CREATE TYPE statements create the structured types that are needed to
| create the object view hierarchy for this example.

| The first typed CREATE VIEW statement above creates the root view of the hierarchy,
| VPerson, and is very similar to the VDepartment view definition. The difference is the
| use of ONLY(Person) to ensure that only the rows in the Person table hierarchy that are
| in the Person table are included in the VPerson view. This ensures that the Oid values
| in VPerson are unique compared with the Oid values in VEmployee. The second
| CREATE VIEW statement creates a subview VEmployee of the view VPerson. As was
| the case for the UNDER clause in the CREATE TABLE...UNDER statement, the
| UNDER clause when creating a view establishes the superview/subview relationship.
| (Note: The subview must be created in the same schema as its superview.) As was
| the case for typed tables, columns are inherited by subviews. Rows in the VEmployee
| view will inherit the columns VOid and Name from VPerson and have the additional
| columns Salary and Dept associated with the type VEmployee_t.

| The INHERIT SELECT PRIVILEGES clause has the same meaning here as in the
| typed CREATE TABLE statement.

| Similarly, the WITH OPTIONS clause in a typed view definition plays the same role as
| it does in a typed table definition — it allows column options such as SCOPE to be
| specified. As well, a new column option, READ ONLY (not used in our example), is
| provided for columns of typed views. This clause is used to force a superview column
| to be marked as read-only so that a later subview definition can legitimately specify an
| expression for the same column that is implicitly read-only.

| If a view has a reference column (like VEmployee's Dept column), a scope must be
| associated with the column if it is to be useable in SQL dereference operations. If no
| scope is specified for the reference column of the view and the underlying table or view
| column was scoped, then the underlying column's scope is passed on to the view's
| reference column. It can be explicitly given a scope by using WITH OPTIONS, as in our
| example where the Dept column of the VEmployee view gets the VDepartment view as its

 Chapter 3. Implementing Your Design 117

| scope. The column would remain unscoped if the underlying table or view column did
| not have a scope and none was explicitly assigned in the view definition (or later by
| using the ALTER VIEW statement).

| There are several important rules associated with restrictions on the queries for typed
| views found in the SQL Reference that you should read carefully before attempting to
| crea te and use a typed view.

| Creating a Summary Table
| A summary table is a table whose definition is based on the result of a query. As such,
| the summary table typically contains pre-computed results based on the data existing in
| the table or tables that its definition is based on. If the SQL compiler determines that a
| dynamic query will run more efficiently against a summary table than the base table,
| the query executes against the summary table, and you obtain the result faster than
| you otherwise would.

| The creation of a summary table with the replication option can be used to replicate
| tables across all nodes in a partitioned database environment. These are known as
| “replicated summary tables.” See “Replicated Summary Tables” on page 42 for more
| information.

| Note: Summary tables are not used with static SQL.

| To create a summary table, you use the CREATE SUMMARY TABLE statement with
| the AS fullselect clause and the REFRESH DEFERRED option. REFRESH DEFERRED
| is the only option currently supported; the IMMEDIATE option is not. Summary tables
| specified with REFRESH DEFERRED will not reflect changes to the underlying base
| tables. You should use summary tables where this is not a requirement. For example, if
| you run DSS queries, you would use the summary table to contain legacy data.

| A summary table defined with REFRESH DEFERRED may be used in place of a query
| when it:

| ¹ Conforms to the restrictions for a fullselect of a refresh immediate summary table,
| except:

| – The SELECT list is not required to include COUNT(*) or COUNT_BIG(*)

| – The SELECT list can include MAX and MIN column functions

| – A HAVING clause is allowed.

| The SQL special register CURRENT REFRESH AGE SQL is set to ANY or has a value
| of 99999999999999. The collection of nines is the maximum value allowed in this
| special register which is a timestamp duration value with a data type of
| DECIMAL(20,6).

| Note: Summary tables are not used to optimize static SQL.

| You use the CURRENT REFRESH AGE special register to specify the amount of time
| that the summary table with deferred refresh can be used for a dynamic query before it
| must be refreshed. To set the value of the CURRENT REFRESH AGE special register,

118 Administration Guide

| you can use the SET CURRENT REFRESH AGE statement. For more information
| about the CURRENT REFRESH AGE special register and the SET CURRENT
| REFRESH AGE statement, refer to the SQL Reference.

| Note: Setting the CURRENT REFRESH AGE special register to a value other than
| zero should be done with caution. By allowing a summary table that may not
| represent the values of the underlying base table to be used to optimize the
| processing of the query, the result of the query may not accurately represent
| the data in the underlying table. This may be reasonable when you know the
| underlying data has not changed, or you are willing to accept the degree of
| error in the results based on your knowledge of the data.

| With activity affecting the source data, a summary table over time will no longer contain
| accurate data. You will need to use the REFRESH TABLE statement. Refer to the SQL
| Reference for more information.

| If you want to create a new base table that is based on any valid fullselect, specify the
| DEFINITION ONLY keyword when you create the table. When the create table
| operation completes, the new table is not treated as a summary table, but rather as a
| base table. For example, you can create the exception tables used in LOAD and SET
| CONSTRAINTS as follows:

| CREATE TABLE XT AS

| (SELECT T.*, CURRENT TIMESTAMP AS TIMESTAMP,CLOB(",32K)

| AS MSG FROM T) DEFINITION ONLY

| Here are some of the key restrictions regarding summary tables:

| 1. You cannot alter a summary table.

| 2. You cannot alter the length of a column for a base table if that table has a
| summary table.

| 3. You cannot import data into a summary table.

| 4. You cannot create a unique index on a summary table.

| Refer to the SQL Reference for a complete statement of summary table restrictions.

Creating an Alias
An alias is an indirect method of referencing a table or view, so that an SQL statement
can be independent of the qualified name of that table or view. Only the alias definition
must be changed if the table or view name changes. An alias can be created on
another alias. An alias can be used in a view or trigger definition and in any SQL
statement, except for table check-constraint definitions, in which an existing table or
view name can be referenced.

The alias is replaced at statement compilation time by the table or view name. If the
alias or alias chain cannot be resolved to a table or view name, an error results. For
example, if WORKERS is an alias for EMPLOYEE, then at compilation time:

SELECT * FROM WORKERS

 Chapter 3. Implementing Your Design 119

becomes in effect

SELECT * FROM EMPLOYEE

An alias name can be used wherever an existing table name can be used, and can
refer to another alias if no circular or repetitive references are made along the chain of
aliases.

The following SQL statement creates an alias WORKERS for the EMPLOYEE table:

CREATE ALIAS WORKERS FOR EMPLOYEE

The alias name cannot be the same as an existing table, view, or alias, and can only
refer to a table within the same database. The name of a table or view used in a
CREATE TABLE or CREATE VIEW statement cannot be the same as an alias name in
the same schema.

 You do not require special authority to create an alias, unless the alias is in a schema
other than the one owned by your current authorization ID, in which case DBADM
authority is required.

An alias can be defined for a table, view, or alias that does not exist at the time of
definition. However, it must exist when an SQL statement containing the alias is
compiled.

When an alias, or the object to which an alias refers, is dropped, all packages
dependent on the alias are marked invalid and all views and triggers dependent on the
alias are marked inoperative.

Note: DB2 for MVS/ESA employs two distinct concepts of aliases: ALIAS and
SYNONYM. These two concepts differ from DB2 Universal Database as follows:

¹ ALIASes in DB2 for MVS/ESA:
– Require their creator to have special authority or privilege
– Cannot reference other aliases.

¹ SYNONYMs in DB2 for MVS/ESA:
– Can only be used by their creator
– Are always unqualified
– Are dropped when a referenced table is dropped
– Do not share namespace with tables or views.

Creating an Index
An index is a list of the locations of rows, sorted by the contents of one or more
specified columns. Indexes are typically used to speed up access to a table. However,
they can also serve a logical data design purpose. For example, a unique index does
not allow entry of duplicate values in the columns, thereby guaranteeing that no two
rows of a table are the same. Indexes can also be created to specify ascending or
descending order of the values in a column.

 An index is defined by columns in the base table. It can be defined by the creator of a
table, or by a user who knows that certain columns require direct access. Up to 16

120 Administration Guide

columns can be specified for an index. A primary index key is automatically created on
the primary key, unless a user-defined index already exists.

Any number of indexes can be defined on a particular base table and they can have a
beneficial effect on the performance of queries. However, the more indexes there are,
the more the database manager must modify during update, delete, and insert
operations. Creating a large number of indexes for a table that receives many updates
can slow down processing of requests. Therefore, use indexes only where a clear
advantage for frequent access exists.

An index key is a column or collection of columns on which an index is defined, and
determines the usefulness of an index. Although the order of the columns making up an
index key does not make a difference to index key creation, it may make a difference to
the optimizer when it is deciding whether or not to use an index.

If the table being indexed is empty, an index is still created, but no index entries are
made until the table is loaded or rows are inserted. If the table is not empty, the
database manager makes the index entries while processing the CREATE INDEX
statement.

| For a clustering index, new rows are inserted physically close to existing rows with
| similar key values. This yields a performance benefit during queries because it results
| in more a linear access pattern to data pages and more effective pre-fetching.

| If you want a primary key index to be a clustering index, a primary key should not be
| specified at CREATE TABLE. Once a primary key is created, the associated index
| cannot be modified. Instead, perform a CREATE TABLE without a primary key clause.
| Then issue a CREATE INDEX statement, specifying clustering attributes. Finally, use
| the ALTER TABLE statement to add a primary key that corresponds to the index just
| created. This index will be used as the primary key index.

| Generally, clustering is more effectively maintained if the clustering index is unique.

| Column data which is not part of the unique index key but which is to be
| stored/maintained in the index is called an include column. Include columns can be
| specified for unique indexes only. When creating an index with include columns, only
| the unique key columns are sorted and considered for uniqueness. Use of include
| columns improves the performance of data retrieval when index access is involved.

| Indexes for tables in a partitioned database are built using the same CREATE INDEX
| statement. They are partitioned based on the partitioning key of the table. An index on
| a table consists of the local indexes in that table on each node in the nodegroup. Note
| that unique indexes defined in a multiple partition environment must be a superset of
| the partitioning key.

Performance Tip: Create your indexes before using the LOAD utility if you are going to
carry out the following series of tasks:

 ¹ Create Table
 ¹ Load Table

 Chapter 3. Implementing Your Design 121

 ¹ Create Index
 ¹ Perform RUNSTATS

You should consider ordering the execution of tasks in the following way:

1. Create the table
2. Create the index

| 3. Load the table with the statistics yes option requested.

For more information on LOAD performance improvements, see “System Catalog
Tables” on page 29.

| Indexes are maintained after they are created. Subsequently, when application
| programs use a key value to randomly access and process rows in a table, the index
| based on that key value can be used to access rows directly. This is important,
| because the physical storage of rows in a base table is not ordered. When a row is
| inserted, unless there is a clustering index defined, the row is placed in the most
| convenient storage location that can accommodate it. When searching for rows of a
| table that meet a particular selection condition and the table has no indexes, the entire
| table is scanned. An index optimizes data retrieval without performing a lengthy
| sequential search.

The data for your indexes can be stored in the same table space as your table data, or
in a separate table space containing index data. The table space used to store the
index data is determined when the table is created (see “Creating a Table in Multiple
Table Spaces” on page 107).

The following two sections “Using an Index” and “Using the CREATE INDEX
Statement” provide more information on creating an index.

Using an Index
 An index is never directly used by an application program. The decision on whether to
use an index and which of the potentially available indexes to use is the responsibility
of the optimizer.

The best index on a table is one that:

¹ Uses high-speed disks
 ¹ Is highly-clustered
¹ Is made up of only a few narrow columns

For a detailed discussion of how an index can be beneficial, see “Index Scan Concepts”
on page 477.

Using the CREATE INDEX Statement
You can create an index that will allow duplicates (a non-unique index) to enable
efficient retrieval by columns other than the primary key, and allow duplicate values to
exist in the indexed column or columns.

The following SQL statement creates a non-unique index called LNAME from the
LASTNAME column on the EMPLOYEE table, sorted in ascending order:

122 Administration Guide

CREATE INDEX LNAME ON EMPLOYEE (LASTNAME ASC)

The following SQL statement creates a unique index on the phone number column:

CREATE UNIQUE INDEX PH ON EMPLOYEE (PHONENO DESC)

 A unique index ensures that no duplicate values exist in the indexed column or
columns. The constraint is enforced at the end of the SQL statement that updates rows
or inserts new rows. This type of index cannot be created if the set of one or more
columns already has duplicate values.

The keyword ASC puts the index entries in ascending order by column, while DESC
puts them in descending order by column. The default is ascending order.

| The following SQL statement creates a clustering index called INDEX1 on LASTNAME
| column of the EMPLOYEE table:

| CREATE INDEX INDEX1 ON EMPLOYEE (LASTNAME) CLUSTER

| To be effective, use clustering indexes with the PCTFREE parameter associated with
| the ALTER TABLE statement so that new data can be inserted on the correct pages
| which maintains the clustering order. Typically, the greater the INSERT activity on the
| table, the larger the PCTFREE value (on the table) that will be needed in order to
| maintain clustering. Since this index determines the order by which the data is laid out
| on physical pages, only one clustering index can be defined for any particular table.

If, on the other hand, the index key values of these new rows are, for example, always
new high key values, then the clustering attribute of the table will try to place them at
the end of the table. Having free space in other pages will do little to preserve
clustering. In this case, placing the table in append mode may be a better choice than a
clustering index and altering the table to have a large PCTFREE value. You can place
the table in append mode by issuing: ALTER TABLE APPEND ON. See “Changing
Table Attributes” on page 135 for additional overview information on ALTER TABLE.
Refer to the SQL Reference for additional detailed information on ALTER TABLE.

The above discussion also applies to new "overflow" rows that result from UPDATEs
which increase the size of a row.

| The PCTFREE clause of the CREATE INDEX statement specifies the percentage of
| each index page to leave as free space when the index is built. Leaving more free
| space on the index pages will result in fewer page splits. This will reduce the need to
| reorganize the table in order to regain sequential index pages which increases
| prefetching. And prefetching is one important component that may improve
| performance. Again, if there are always high key values, then you will want to consider
| lowering the value of the PCTFREE clause of the CREATE INDEX statement. In this
| way there will be limited wasted space reserved on each index page.

In multiple partition databases, unique indexes must be defined as supersets of the
partitioning key.

 Chapter 3. Implementing Your Design 123

| If you have a replicated summary table, its base table (or tables) must have a unique
| index, and the index key columns must be used in the query that defines the replicated
| summary table. For more information, see “Replicated Summary Tables” on page 42.

For intra-partition parallelism, index create performance is improved by using multiple
processors for the scanning and sorting of data that is performed during index creation.
The use of multiple processors is enabled by setting intra_parallel to YES(1) or
ANY(-1). The number of processors used during index create is determined by the
system and is not affected by the configuration parameters dft_degree or
max_querydegree, by the application runtime degree, or by the SQL statement
compilation degree. If the database configuration parameter index sort is NO, then
index create will not use multiple processors.

Before Altering a Database
| Some time after a database design has been implemented, you may be considering a
| change to the database design. As a result, you should reconsider the major design
| issues that you had with the previous design. You should consider the following:

| ¹ Changing Logical and Physical Design Characteristics
| ¹ Changing Environment Variables and the Profile Registry Variables
| ¹ Changing the Node Configuration File
| ¹ Changing the Database Configuration

Changing Logical and Physical Design Characteristics
Before you make changes affecting the entire database, you should review all the
logical and physical design decisions. For example, when altering a table space, you
should review your design decision regarding the use of SMS or DMS storage types.
(See “Designing and Choosing Table Spaces” on page 43.)

Changing Environment Variables and the Profile Registry Variables
You must consider which environment variables (if any) need to be changed on your
particular operating system. If any environment variables are changed, you need to
restart the system for the new environment variables to take effect. Review whether you
should reset the profile registry variables in the Global Profile registry before altering
your database. You can then reset the profile registry variables to those that are best
suited to the new database environment. If only profile registry variables have been
changed, the system does not need to be restarted.

Changing the Node Configuration File
| If you are planning changes to any nodegroups (both adding or deleting nodes, or
| moving existing nodes), you should see Chapter 17, “Scaling Your Configuration” on
| page 571 for details on what should be done.

124 Administration Guide

Changing the Database Configuration
| If you are planning changes to the database, you should review the values for the
| configuration parameters. Some of the values can be adjusted from time-to-time as part
| of the ongoing changes made to the database based on how it is used.

| To change the database configuration on the Windows NT and OS/2 platforms, use the
| Performance Configuration SmartGuide. This SmartGuide helps you tune performance
| and balance memory requirements for a single database per instance by suggesting
| which configuration parameters to modify and providing suggested values for them. To
| use this SmartGuide:

| 1. From the Control Center, click with mouse button 2 on the database for which you
| want to configure performance.

| 2. Select Configure Performance from the pop-up menu. The Performance
| Configuration SmartGuide opens.

| 3. Follow the steps in the SmartGuide and answer the questions it asks. (See the
| Administration Getting Started for a list of these questions.)

| 4. Note that if you select to update the parameters, they are not updated until:

| ¹ For database parameters, the first new connection to the database after all
| applications were disconnected.
| ¹ For database manager parameters, the next time you stop and start the
| instance.

| In most cases the values recommended by the Performance Configuration SmartGuide
| will provide better performance than the default values, because they are based on
| information about your workload and you own particular server. However, note that the
| values are designed to improve the performance of, though not necessarily optimize,
| your database system. They should be thought of as a starting point on which you can
| make further adjustments to obtain optimized performance.

| For details on how to refine your system by benchmarking, and to configure your
| system, see Chapter 19, “Benchmark Testing” on page 585 and Chapter 20,
| “Configuring DB2” on page 597.

| For multiple partitions: When you have a database that is partitioned across more
| than one partition, the configuration file should be the same on all database partitions.
| Consistency is required since the SQL compiler compiles distributed SQL statements
| based on information in the local node configuration file and creates an access plan to
| satisfy the needs of the SQL statement. Maintaining different configuration files on
| database partitions could lead to different access plans, depending on which database
| partition the statement is prepared. Use db2_all to create the same configuration file on
| all database partitions.

 Chapter 3. Implementing Your Design 125

Altering a Database
| There are nearly as many tasks when altering databases as there are in the creation of
| databases. These tasks update or drop aspects of the database previously created.
| The tasks include:

| ¹ Dropping a Database
| ¹ Altering a Nodegroup
| ¹ Altering a Table Space
| ¹ Dropping a Schema
| ¹ Altering a Table
| ¹ Dropping a Trigger
| ¹ Dropping a User-Defined Function (UDF)
| ¹ Dropping a User-Defined Type (UDT)
| ¹ Altering or Dropping a View
| ¹ Dropping an Index
| ¹ Dropping a Summary Table
| ¹ Statement Dependencies When Changing Objects.

Dropping a Database
Although some of the objects in a database can be altered, the database itself cannot
be altered: it must be dropped and re-created. Dropping a database can have
far-reaching effects, because this action deletes all its objects, containers, and
associated files. The dropped database is uncataloged in the database directories.

The following command deletes the database SAMPLE:

DROP DATABASE SAMPLE

| Note: If you intend to continue experimenting with the SAMPLE database, you should
| not drop it. If you have dropped the SAMPLE database, and find that you need
| it again, you can re-create it.

Altering a Nodegroup
| To add or drop database partitions from a nodegroup, you can use the ALTER
| NODEGROUP statement. When adding database partitions, the partitions must already
| be defined in the node configuration file. Refer to the SQL Reference for details on this
| statement.

| To add a new node to the db2nodes.cfg file, use the START DATABASE MANAGER
| command or dbstart. The db2nodes.cfg file is not updated with the new node until a
| db2stop followed by a db2start. Refer to the Command Reference for details on this
| statement.

 Once you add or drop nodes, you must redistribute the current data across the new
set of nodes in the nodegroup. To do this, use the REDISTRIBUTE NODEGROUP
command. For information, see Chapter 18, “Redistributing Data Across Database
Partitions” on page 579 and the Command Reference.

126 Administration Guide

Altering a Table Space
When you create a database, you create at least three table spaces: one catalog table
space (SYSCATSPACE); one user table space (default name is USERSPACE1); and
one temporary table space (whose default name is TEMPSPACE1). You must keep at
least one of each of these table spaces, And can add additional user and temporary
table spaces if you wish.

| Note: You cannot drop the catalog table space SYSCATSPACE, and there must
| always be at least one temporary table space. You also cannot change the
| page size.

This section discusses how to change table spaces as follows:

¹ “Adding a Container to a DMS Table Space”
¹ “Dropping a User Table Space”
¹ “Altering the Temporary Table Space” on page 128

Adding a Container to a DMS Table Space
You can increase the size of a DMS table space (that is, one created with the
MANAGED BY DATABASE clause) by adding one or more containers to the table
space.

The following example illustrates how to add two new device containers (each with
40 000 pages) to a table space on a UNIX-based system:

ALTER TABLESPACE RESOURCE

ADD (DEVICE '/dev/rhd9' 10000,

 DEVICE '/dev/rhd10' 10000)

The contents of the table space are re-balanced across all containers. Access to the
table space is not restricted during the re-balancing. If you need to add more than one
container, you should add them at the same time.

Note that the ALTER TABLESPACE statement allows you to change other properties of
the table space that can affect performance. For more information, see “Table Space
Impact on Query Optimization” on page 426.

Dropping a User Table Space
When you drop a user table space, you delete all the data in that table space, free the
containers, remove the catalog entries, and all objects defined in the table space are
either dropped or marked as invalid.

You cannot drop a table space if a table stores at least one of its parts in it and one or
more of its parts in another table space. The table must be dropped first.

 The following SQL statement drops the table space ACCOUNTING:

DROP TABLESPACE ACCOUNTING

For information on SQL statements, see the SQL Reference.

 Chapter 3. Implementing Your Design 127

You can reuse the containers in an empty table space by dropping the table space, but
you must COMMIT the DROP TABLESPACE command, or have had AUTOCOMMIT
on, before attempting to reuse the containers.

Altering the Temporary Table Space
You cannot drop the temporary table space, because the database must always have
at least one temporary table space. If you wish to change the specifications of this table
space, you must add a new temporary table space first and then drop the old
temporary table space.

The following SQL statement creates a new temporary table space called
TEMPSPACE2:

CREATE TEMPORARY TABLESPACE TEMPSPACE2

MANAGED BY SYSTEM USING ('d')

Once TEMPSPACE2 is created, you can then drop the original temporary table space
TEMPSPACE1 with the command:

DROP TABLESPACE TEMPSPACE1

You can reuse the containers in an empty table space by dropping the table space, but
you must COMMIT the DROP TABLESPACE command, or have had AUTOCOMMIT
on, before attempting to reuse the containers.

Dropping a Schema
| Before dropping a schema, all objects that were in that schema must be dropped
| themselves or moved to another schema. The schema name must be in the catalog
| when attempting the DROP statement; otherwise an error is returned. In the following
| example, the schema "joeschma" is dropped:

| DROP SCHEMA joeschma RESTRICT

Altering a Table
You should perform one or more of the following tasks when you modify a table as a
result of a table design. These tasks include:

¹ Adding Columns to an Existing Table
| ¹ Altering a Column

¹ Altering a Constraint
¹ Adding a Constraint
¹ Dropping a Constraint
¹ Renaming an Existing Table

| ¹ Altering a User-Defined Structured Type
| ¹ Updating Rows of Typed Table

¹ Dropping a Table
¹ Changing Partitioning Keys

| ¹ Changing Table Attributes
| ¹ Refreshing the Data in a Summary Table.

128 Administration Guide

Note that you cannot alter triggers for tables; you must drop any trigger that is no
longer appropriate (see “Dropping a Trigger” on page 136), and add its replacement
(see “Creating a Trigger” on page 109).

Adding Columns to an Existing Table
 When a new column is added to an existing table, only the table description in the
system catalog is modified, so access time to the table is not affected immediately.
Existing records are not physically altered until they are modified using an UPDATE
statement. When retrieving an existing row from the table, a null or default value is
provided for the new column, depending on how the new column was defined. Columns
that are added after a table is created cannot be defined as NOT NULL: they must be
defined as either NOT NULL WITH DEFAULT or as nullable.

Columns can be added with an SQL statement. The following statement uses the
ALTER TABLE statement to add three columns to the EMPLOYEE table:

ALTER TABLE EMPLOYEE

ADD MIDINIT CHAR(1) NOT NULL WITH DEFAULT

ADD HIREDATE DATE

ADD WORKDEPT CHAR(3)

A column definition includes a column name, data type, and any necessary constraints.
In addition to adding columns to a table, the ALTER TABLE statement can be used to
add or drop a primary or foreign key and to add or drop a table check constraint
definition. For more information about the ALTER TABLE statement, see the SQL
Reference manual.

| Altering a Column
| You can alter the characteristics of a column by increasing the length of an existing
| VARCHAR column. The number of characters may now increase up to 4000. For
| example:

| ALTER TABLE ALTER COLUMN

| COLNAM1 SET DATA TYPE VARCHAR(4000)

| You cannot alter the column of a typed table. However, you can add a scope to an
| existing reference type column that does not already have a scope defined. For
| example:

| ALTER TABLE ALTER COLUMN

| COLNAMT1 ADD SCOPE TYPTAB1

| For more information about the ALTER TABLE statement, see the SQL Reference
| manual.

Altering a Constraint
You can only alter constraints by dropping them and then adding new ones to take their
place. For more information, see:

¹ “Adding a Constraint” on page 130
¹ “Dropping a Constraint” on page 131

 Chapter 3. Implementing Your Design 129

For more information on constraints, see “Defining Constraints” on page 98.

Adding a Constraint
You add constraints with the ALTER TABLE statement. For more information on this
statement, including its syntax, see the SQL Reference manual.

For more information on constraints, see “Defining Constraints” on page 98.

Adding a Unique Constraint: Unique constraints can be added to an existing table.
The constraint name cannot be the same as any other constraint specified within the
ALTER TABLE statement, and must be unique within the table (this includes the names
of any referential integrity constraints that are defined). Existing data is checked against
the new condition before the statement succeeds.

The following SQL statement adds a unique constraint to the EMPLOYEE table that
represents a new way to uniquely identify employees in the table:

ALTER TABLE EMPLOYEE

ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

Adding Primary and Foreign Keys: The following examples show the ALTER TABLE
statement to add primary keys and foreign keys to a table:

ALTER TABLE PROJECT

ADD CONSTRAINT PROJECT_KEY

PRIMARY KEY (PROJNO)

ALTER TABLE EMP_ACT

ADD CONSTRAINT ACTIVITY_KEY

PRIMARY KEY (EMPNO, PROJNO, ACTNO)

ADD CONSTRAINT ACT_EMP_REF

FOREIGN KEY (EMPNO)

 REFERENCES EMPLOYEE

 ON DELETE RESTRICT

ADD CONSTRAINT ACT_PROJ_REF

FOREIGN KEY (PROJNO)

 REFERENCES PROJECT

ON DELETE CASCADE

To add constraints to a large table, it is more efficient to put the table into the check
pending state, add the constraints, and then check the table for a consolidated list of
violating rows. Use the SET CONSTRAINTS statement to explicitly set the check
pending state: if the table is a parent table, check pending is implicitly set for all
dependent and descendent tables.

 When a foreign key is added to a table, packages and cached dynamic SQL
containing the following statements may be marked as invalid:

¹ Statements that insert or update the table containing the foreign key
¹ Statements that update or delete the parent table.

See “Statement Dependencies When Changing Objects” on page 139 for information.

130 Administration Guide

Adding a Table Check Constraint: Check constraints can be added to an existing
table with the ALTER TABLE statement. The constraint name cannot be the same as
any other constraint specified within an ALTER TABLE statement, and must be unique
within the table (this includes the names of any referential integrity constraints that are
defined). Existing data is checked against the new condition before the statement
succeeds.

The following SQL statement adds a constraint to the EMPLOYEE table that the salary
plus commission of each employee must be more than $25,000:

ALTER TABLE EMPLOYEE

ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

To add constraints to a large table, it is more efficient to put the table into the
check-pending state, add the constraints, and then check the table for a consolidated
list of violating rows. Use the SET CONSTRAINTS statement to explicitly set the
check-pending state: if the table is a parent table, check pending is implicitly set for all
dependent and descendent tables.

When a table check constraint is added, packages and cached dynamic SQL that insert
or update the table may be marked as invalid. See “Statement Dependencies When
Changing Objects” on page 139 for more information.

Dropping a Constraint
You drop constraints with the ALTER TABLE statement. For more information on this
statement, including its syntax, see the SQL Reference manual.

For more information on constraints, see “Defining Constraints” on page 98.

Dropping a Unique Constraint: You can explicitly drop a unique constraint using the
ALTER TABLE statement. The name of all unique constraints on a table can be found
in the SYSCAT.INDEXES system catalog view.

 The following SQL statement drops the unique constraint NEWID from the EMPLOYEE
table:

ALTER TABLE EMPLOYEE

DROP UNIQUE NEWID

Dropping this unique constraint invalidates any packages or cached dynamic SQL that
used the constraint.

Dropping Primary and Foreign Keys: The following examples use the DROP
PRIMARY KEY and DROP FOREIGN KEY clauses in the ALTER TABLE statement to
drop primary keys and foreign keys on a table:

 Chapter 3. Implementing Your Design 131

ALTER TABLE EMP_ACT

DROP PRIMARY KEY

DROP FOREIGN KEY ACT_EMP_REF

DROP FOREIGN KEY ACT_PROJ_REF

ALTER TABLE PROJECT

DROP PRIMARY KEY

For information about the ALTER TABLE statement, see the SQL Reference manual.

When a foreign key constraint is dropped, packages or cached dynamic SQL
statements containing the following may be marked as invalid:

¹ Statements that insert or update the table containing the foreign key
¹ Statements that update or delete the parent table.

See “Statement Dependencies When Changing Objects” on page 139 for more
information.

Dropping a Table Check Constraint: You can explicitly drop or change a table check
constraint using the ALTER TABLE statement, or implicitly drop it as the result of a
DROP TABLE statement. The name of all check constraints on a table can be found in
the SYSCAT.CHECKS catalog view.

 The following SQL statement drops the table check constraint REVENUE from the
EMPLOYEE table:

ALTER TABLE EMPLOYEE

DROP CHECK REVENUE

When you drop a table check constraint, all packages and cached dynamic SQL
statements with INSERT or UPDATE dependencies on the table are invalidated. (See
“Statement Dependencies When Changing Objects” on page 139 for more information.)
To drop a table check constraint with a system-generated name, look for the name in
the SYSCAT.CHECKS catalog view.

Renaming an Existing Table
You can give an existing table a new name within a schema and maintain the
authorizations and indexes that were created on the original table.

| The existing table to be renamed can be an alias identifying a table. The existing table
| to be renamed must not be the name of a catalog table, a summary table, a typed
| table, or an object of other than table or alias.

The existing table cannot be referenced in any of the following:

 ¹ Views
 ¹ Triggers
 ¹ Referential constraints

| ¹ Summary table
| ¹ The scope of an existing reference column.

132 Administration Guide

Also, there must be no check constraints within the table. Any packages or cached
dynamic SQL statements dependent on the original table are invalidated. Finally, any
aliases referring to the original table are not modified.

You should consider checking the appropriate system catalog tables to ensure that the
table being renamed is not affected by any of these restrictions.

The SQL statement below renames the EMPLOYEE table within the COMPANY
schema to EMPL:

RENAME TABLE COMPANY.EMPLOYEE TO EMPL

Packages must be re-bound if they refer to a table that has just been renamed. The
packages can be implicitly re-bound if:

¹ Another table is renamed using the original name of the table, or
¹ An alias or view is created using the original name of the table.

One of these two choices must be completed before any implicit or explicit re-binding is
attempted. If neither choice is made, any re-bind will fail.

For more information about the RENAME TABLE statement, see the SQL Reference
manual.

| Altering a User-Defined Structured Type
| After the original creation of a structured type, you may need to alter or delete a
| structured type. These actions are presented below.

| Altering a Structured Type: After creating a structured type, you may find that you
| need to add or drop attributes associated with that structured type. This is done using
| the ALTER TYPE (Structured) statement.

| For example, you may find you need to add an attribute to an existing row type:

| ALTER TYPE Employee_t ADD ATTRIBUTE DeptNum INT;

| This example adds a new attribute, DeptNum, to the Employee_t structured type. Note
| that ALTER TYPE is only permitted on structured types that are not currently in use as
| the type of an existing table or subtable.

| In a similar way, you might also consider altering a typed table. However, such a
| change can only involve modifying the scope of a referenced type column. Also, when
| altering the characteristics of a column in a table, scope can only be added to an
| existing reference type column that does not already have a scope defined.

| See SQL Reference for more information on the ALTER TYPE(Structured) ALTER
| TABLE, and ALTER VIEW statements.

| Deleting Rows for Typed Tables: Rows can be deleted from typed tables using
| either searched or positioned DELETE statements. In addition, since a typed table may
| have subtables, the ONLY option may be used in the FROM clause if it is desirable to

 Chapter 3. Implementing Your Design 133

| avoid having subtable rows affected by the delete operation. This is applicable to both
| typed tables and typed views.

| See SQL Reference for more information on the DELETE statement.

| Updating Rows of Typed Table
| Rows can be updated in typed tables using either searched or positioned UPDATE
| statements. In addition, since a typed table may have subtables, the ONLY option may
| be used in the FROM clause if it is desirable to avoid having subtable rows affected by
| the update operation. This is applicable to both typed tables and typed views.

| See SQL Reference for more information on the UPDATE statement.

Dropping a Table
 A table can be dropped with a DROP TABLE SQL statement. The following statement
drops the table called EMPLOYEE:

DROP TABLE EMPLOYEE

| Note: When dropping typed tables, all subtables must be dropped before a supertable
| can be dropped.

When a table is dropped, the row in the SYSCAT.TABLES catalog that contains
information about that table is dropped, and any other objects that depend on the table
are affected. For example:

¹ All column names are dropped.
¹ Indexes created on any columns of the table are dropped.
¹ All views based on the table are marked inoperative. (See “Recovering Inoperative

Views” on page 137 for more information.)
¹ All privileges on the dropped table and dependent views are implicitly revoked.
¹ All referential constraints in which the table is a parent or dependent are dropped.

| ¹ All packages and cached dynamic SQL statements dependent on the dropped
| table are marked invalid, and remain so until the dependent objects are re-created.
| This includes packages dependent on any supertable above the subtable in the
| hierarchy that is being dropped. (See “Statement Dependencies When Changing
| Objects” on page 139 for more information.)
| ¹ Any reference columns for which the dropped table is defined as the scope of the
| reference become “unscoped.”

¹ An alias definition on the table is not affected, because an alias can be undefined
¹ All triggers dependent on the dropped table are marked inoperative.

| ¹ All files that are linked through any DATALINK columns are unlinked. The unlink
| operation is performed asynchronously which means the files may not be
| immediately available for other operations.

| Refer to the SQL Reference for more information on the DROP statement.

Changing Partitioning Keys
You can only change a partitioning key on tables in single-partition nodegroups. This is
done by first dropping the existing partitioning key and then creating another.

134 Administration Guide

The following SQL statement drops the partitioning key MIX_INT from the MIXREC
table:

ALTER TABLE MIXREC

DROP PARTITIONING KEY MIX_INT

For more information, see the ALTER TABLE statement in the SQL Reference manual.

You cannot change the partitioning key of a table in a multiple database partition
nodegroup. If you try to drop it, an error is returned.

The only methods to change the partitioning key of multiple database partition
nodegroups are either:

¹ Export all of the data to a single-partition nodegroup and then follow the above
instructions.

¹ Export all of the data, drop the table, redefine the partitioning key, and then import
all of the data.

Neither of these methods are practical for large databases; it is therefore essential that
you define the appropriate partitioning key before implementing the design of large
databases.

| Changing Table Attributes
| You may have reason to change table attributes such as the data capture option, the
| percentage of free space on each page (PCTFREE), the lock size, or the append
| mode.

| The amount of free space to be left on each page of a table is specified through
| PCTFREE, and is an important consideration for the effective use of clustering indexes.
| The amount to specify depends on the nature of the existing data and expected future
| data. PCTFREE is respected by LOAD and REORG but is ignored by insert, update
| and import activities.

| Setting PCTFREE to a larger value will maintain clustering for a longer period, but will
| also require more disk space.

| You can specify the size (granularity) of locks used when the table is accessed by
| using the LOCKSIZE parameter. By default, when the table is created row level locks
| are defined. Use of table level locks may improve the performance of queries by limiting
| the number of locks that need to be acquired and released.

| By specifying APPEND ON, you can improve the overall performance. It allows for
| faster insertions, while eliminating the maintenance of information about the free space.

| A table with a clustering index cannot be altered to have append mode turned on.
| Similarly, a clustering index cannot be created on a table with append mode.

 Chapter 3. Implementing Your Design 135

| Refreshing the Data in a Summary Table
| You can refresh the data in a summary table by using the REFRESH TABLE
| statement. The statement can be embedded in an application program, or issued
| dynamically. To use this statement, you must have either SYSADM or DBADM
| authority, or CONTROL privilege on the table to be refreshed.

| The following example shows how to refresh the data in a summary table:

| REFRESH TABLE SUMTAB1

| For more information about the REFRESH TABLE statement, refer to the SQL
| Reference.

Dropping a Trigger
A trigger object can be dropped using the DROP statement, but this procedure will
cause dependent packages to be marked invalid, as follows:

¹ If an update trigger without an explicit column list is dropped, then packages with
an update usage on the target table are invalidated.

¹ If an update trigger with a column list is dropped, then packages with update usage
on the target table are only invalidated if the package also had an update usage on
at least one column in the column-name list of the CREATE TRIGGER statement.

¹ If an insert trigger is dropped, packages that have an insert usage on the target
table are invalidated.

¹ If a delete trigger is dropped, packages that have a delete usage on the target
table are invalidated.

A package remains invalid until the application program is explicitly bound or rebound,
or it is run and the database manager automatically rebinds it.

Dropping a User-Defined Function (UDF)
A user-defined function (UDF) can be dropped using the DROP statement. Functions
implicitly generated by the CREATE DISTINCT TYPE statement cannot be dropped. It
is not possible to drop a function that is in either the SYSIBM schema or the SYSFUN
schema.

Other objects can be dependent on a function. All such dependencies must be removed
before the function can be dropped, with the exception of packages which are marked
inoperative. Such a package is not implicitly rebound. It must either be rebound using
the BIND or REBIND commands or it must be prepared by use of the PREP command.
See the Command Reference manual for more information on these commands.
Dropping a UDF invalidates any packages or cached dynamic SQL statements that
used it.

Dropping a User-Defined Type (UDT)
| You can drop a user-defined type (UDT) using the DROP TYPE statement. You cannot
| drop a UDT if it is used:

| ¹ In a column definition for an existing table or view (distinct types)

136 Administration Guide

| ¹ As the type of an existing typed table or typed view (structured type

The database manager will attempt to drop all functions that are dependent on this
distinct type. If the UDF cannot be dropped, the UDT cannot be dropped. A UDF
cannot be dropped if a view, trigger, table check constraint, or another UDF is
dependent on it. Dropping a UDT invalidates any packages or cached dynamic SQL
statements that used it.

For more information about the user-defined types, see the SQL Reference and
Embedded SQL Programming Guide manuals.

| Altering or Dropping a View
| The ALTER VIEW statement modifies an existing view by altering a reference type
| column to add a scope. Any other changes you are looking to make on a view require
| that you drop and then re-create the view.

| When altering the view, the scope must be added to an existing reference type column
| that does not already have a scope defined. Further, the column must not be inherited
| from a superview.

| The data type of the column-name in the ALTER VIEW statement must be REF (type of
| the typed table name or typed view name).

| Refer to the SQL Reference for additional information on the ALTER VIEW statement.

 The following example shows how to drop the EMP_VIEW:

DROP VIEW EMP_VIEW

Any views that are dependent on the view being dropped will be made inoperative.
(See “Recovering Inoperative Views” for more information.)

 Other database objects such as tables and indexes will not be affected although
packages and cached dynamic statements are marked invalid. See “Statement
Dependencies When Changing Objects” on page 139 for more information.

For more information on dropping and creating views, see the SQL Reference manual.

Recovering Inoperative Views
Views can become inoperative as a result of a revoked SELECT privilege on an
underlying table.

The following steps can help you recover an inoperative view:

¹ Determine the SQL statement that was initially used to create the view. You can
obtain this information from the TEXT column of the SYSCAT.VIEW catalog view.

¹ Re-create the view by using the CREATE VIEW statement with the same view
name and same definition.

¹ Use the GRANT statement to re-grant all privileges that were previously granted on
the view. (Note that all privileges granted on the inoperative view are revoked.)

 Chapter 3. Implementing Your Design 137

If you do not want to recover an inoperative view, you can explicitly drop it with the
DROP VIEW statement, or you can create a new view with the same name but a
different definition.

An inoperative view only has entries in the SYSCAT.TABLES and SYSCAT.VIEWS
catalog views; all entries in the SYSCAT.VIEWDEP, SYSCAT.TABAUTH,
SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views are removed.

Dropping an Index
You cannot change any clause of an index definition; you must drop the index and
create it again. (Dropping an index does not cause any other objects to be dropped but
may cause some packages to be invalidated.)

The following SQL statement drops the index called PH:

DROP INDEX PH

A primary key or unique key index cannot be explicitly dropped. You must use one of
the following methods to drop it:

¹ If the primary index or unique constraint was created automatically for the primary
key or unique key, dropping the primary key or unique key will cause the index to
be dropped. Dropping is done through the ALTER TABLE statement.

¹ If the primary index or the unique constraint was user-defined, the primary key or
unique key must be dropped first, through the ALTER TABLE statement. After the
primary key or unique key is dropped, the index is no longer considered the
primary index or unique index, and it can be explicitly dropped.

| Any packages and cached dynamic SQL statements that depend on the dropped
| indexes are marked invalid. See “Statement Dependencies When Changing Objects” on
| page 139 for more information. The application program is not affected by changes
| resulting from adding or dropping indexes.

| Dropping a Summary Table
| You cannot alter a summary table, but you can drop it. The following SQL statement
| drops the summary table XT:

| DROP TABLE XT

| All indexes, primary keys, foreign keys, and check constraints referencing the table are
| dropped. All views and triggers that reference the table are made inoperative. All
| packages depending on any object dropped or marked inoperative will be invalidated.
| See “Statement Dependencies When Changing Objects” on page 139 for more
| information on package dependencies.

| Recovering Inoperative Summary Tables
| Summary tables can become inoperative as a result of a revoked SELECT privilege on
| an underlying table.

| The following steps can help you recover an inoperative summary table:

138 Administration Guide

| ¹ Determine the SQL statement that was initially used to create the summary table.
| You can obtain this information from the TEXT column of the SYSCAT.VIEW
| catalog view.
| ¹ Re-create the summary table by using the CREATE SUMMARY TABLE statement
| with the same summary table name and same definition.
| ¹ Use the GRANT statement to re-grant all privileges that were previously granted on
| the summary table. (Note that all privileges granted on the inoperative summary
| table are revoked.)

| If you do not want to recover an inoperative summary table, you can explicitly drop it
| with the DROP TABLE statement, or you can create a new summary table with the
| same name but a different definition.

| An inoperative summary table only has entries in the SYSCAT.TABLES and
| SYSCAT.VIEWS catalog views; all entries in the SYSCAT.VIEWDEP,
| SYSCAT.TABAUTH, SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views are
| removed.

Statement Dependencies When Changing Objects
Statement dependencies include package and cached dynamic SQL statements. A
package is a database object that contains the information needed by the database
manager to access data in the most efficient way for a particular application program.
Binding is the process that creates the package the database manager needs in order
to access the database when the application is executed. The Embedded SQL
Programming Guide discusses how to create packages in detail.

| Packages and cached dynamic SQL statements can be dependent on many types of
| objects. Refer to the SQL Reference for a complete list of those objects.

These objects could be explicitly referenced, for example, a table or user-defined
function that is involved in an SQL SELECT statement. The objects could also be
implicitly referenced, for example, a dependent table that needs to be checked to
ensure that referential constraints are not violated when a row in a parent table is
deleted. Packages are also dependent on the privileges which have been granted to
the package creator.

 If a package or cached dynamic SQL statement depends on an object and that object
is dropped, the package or cached dynamic SQL statement will be placed in an
“invalid” state. If the object that is dropped is a user-defined function, the package is
placed in an “inoperative” state.

Packages or cached dynamic SQL statements in an “invalid” state are implicitly
rebound the next time they are accessed. They can also be explicitly rebound. If a
package or cached dynamic SQL statement was marked invalid because a trigger was
dropped, it will be rebound without the trigger.

Packages or cached dynamic SQL statements in an “inoperative” state must be
explicitly rebound before they can be used again. See the Embedded SQL
Programming Guide for more information about binding and rebinding packages.

 Chapter 3. Implementing Your Design 139

In some cases, it will not be possible to rebind the package. For example, if a table has
been dropped and not re-created, the package cannot be rebound. In this case, you
will need to either re-create the object or change the application so it does not use the
dropped object.

In many other cases, for example if one of the constraints was dropped, it will be
possible to rebind the package.

The following system catalog views help you to determine the state of a package and
the package's dependencies:

 ¹ SYSCAT.PACKAGEAUTH
 ¹ SYSCAT.PACKAGEDEP
 ¹ SYSCAT.PACKAGES

For more information about object dependencies, see the DROP statement in the SQL
Reference manual.

140 Administration Guide

Chapter 4. Controlling Database Access

One of the most important responsibilities of the database administrator and the system
administrator is database security. Securing your database involves several activities:

¹ Preventing accidental loss of data or data integrity through equipment or system
malfunction.

¹ Preventing unauthorized access to valuable data. You must ensure that sensitive
information is not accessed by those without a “need to know.”

¹ Preventing unauthorized persons from committing mischief through malicious
deletion or tampering with data.

| ¹ Monitoring access of data by users which is discussed in Chapter 5, “Auditing DB2
| Activities” on page 175.

The following topics are discussed:

¹ “An Overview of DB2 Security”
| ¹ “Selecting User IDs and Groups for Your Installation” on page 143

¹ “Selecting an Authentication Method for Your Server” on page 145
¹ “Authentication Considerations for Remote Clients” on page 148
¹ “Partitioned Database Considerations” on page 148
¹ “Using DCE Security Services to Authenticate Users” on page 149
¹ “Privileges, Authorities, and Authorization” on page 154
¹ “Controlling Access to Database Objects” on page 163
¹ “Tasks and Required Authorizations” on page 169
¹ “Using the System Catalog” on page 170

Planning for Security: Start by defining your objectives for a database access control
plan, and specifying who shall have access to what and under what circumstances.
Your plan should also describe how to meet these objectives by using database
functions, functions of other programs, and administrative procedures.

An Overview of DB2 Security
To protect data and resources associated with a database server, DB2 uses a
combination of external security services and internal access control information. To
access a database server you must pass some security checks before you are given
access to database data or resources. The first step in database security is called
authentication, where the user must prove he is who he says he is. The second step is
called authorization, where the database manager decides if the validated user is
allowed to perform the requested action or access the requested data.

 Authentication
Authentication of a user is completed using a security facility outside of DB2. The
security facility can be part of the operating system, a separate product, or, in certain
cases, not exist at all. On UNIX platforms, the security facility is in the operating system
itself. DCE Security Services is a separate product that provides the security facility for

 Copyright IBM Corp. 1993, 1998 141

a distributed environment. There are no security facilities on the Windows 95 or
Windows 3.1 operating systems.

The security facility requires two items to authenticate a user: first, the user is identified
to the security facility by a user ID; second, the user proves he is this identity by
providing a piece of information known only to the user and the security facility; for
example, a password.

Once authenticated,

¹ The user must then be identified to DB2 using an SQL authorization name or
authid. This name can be the same as the user ID, or a mapped value. For
example, on a UNIX platform, a DB2 authid is derived by transforming to upper
case letters a UNIX user ID that follows DB2 naming conventions. In another
example, within the DCE Security Services product, the DB2 authid is contained in
the DCE registry and is extracted from there once authentication has successfully
completed.

¹ A list of groups in which the user is a member is obtained. Group membership may
be used when authorizing the user. Groups are security facility entities that must
also map to DB2 authorization names. This mapping is done in a method similar to
that used for user IDs.

DB2 will obtain a list of groups up to a maximum of 64 groups. If a user is a
member of more than 64 groups, only the first 64 that map to valid DB2
authorization names will be added to the DB2 group list. No error is created when
this happens, and any groups after the first 64 are ignored by DB2.

DB2 uses the security facility to authenticate users in one of two ways:

¹ DB2 uses your successful security system login as evidence of your identity and
allows the following using that identity:

– Use of local commands to access local data
– Use of remote connections where the server trusts the client authentication.

¹ DB2 accepts a user ID and password combination and uses successful validation
of this pair by the security facility as evidence of your identity and allows:

– Use of remote connections where the server requires proof of authentication
– Use of operations where the user wants to execute a command under an

identity other than the identity used for login

 Authorization
Authorization is the process whereby DB2 obtains information about an authenticated
DB2 user that indicates the database operations a user may perform and what data
objects may be accessed. With each user request there may be more than one
authorization check depending on the objects and operations involved.

Authorization is performed using DB2 facilities. DB2 tables and configuration files are
used to record the permissions associated with each authorization name. The
authorization name of an authenticated user, and those of groups in which the user is a

142 Administration Guide

member, are compared against the recorded permissions. Based on the comparison,
DB2 decides whether to allow the user the requested access.

There are two types of permissions recorded by DB2: privileges and authority levels. A
privilege defines a single permission for an authorization name, enabling a user to
create or access database resources. Privileges are stored in the database catalogs
for a given database. Authority levels provide a method of grouping privileges and
control over higher level database manager maintenance and utility operations.
Database-specific authorities are stored in the database catalogs for each database;
system authorities are recorded by group membership and are stored in the database
manager configuration file for a given instance.

| Groups provide a convenient means of performing authorization for a collection of users
| without having to grant or revoke privileges for each user individually. Unless otherwise
| specified, group authorization names can be used anywhere authorization names are
| used for authorization purposes. In general, group membership is considered for
| dynamic SQL and non-database object authorizations (such as instance level
| commands and utilities) and is not considered for static SQL (the exeption to this
| general case being when privileges are granted to PUBLIC: these are considered when
| static SQL is processed). Specific cases where group membership does not apply are
| noted throughout DB2 documentation, where applicable.

“Privileges, Authorities, and Authorization” on page 154 presents further details on
these topics.

The following section (“Selecting an Authentication Method for Your Server” on
page 145) provides additional information about the system entry validation checking
that is particularly relevant if you have remote clients accessing the database.

| Selecting User IDs and Groups for Your Installation
| Security issues are important to the DB2 Administrator from the moment the product is
| installed. The respective platform-specific Quick Beginnings books present all of the
| information required to plan for, install, and configure DB2.

| The steps to completing the installation of DB2 require a user name, a group name,
| and a password. During the installation, the administrator has default values for each of
| these requirements. Once the defaults have been used during the installation of DB2,
| the administrator is strongly recommended to create new user names, group names,
| and passwords before creating the instances where the databases will reside. Using
| new user names, group name, and passwords will minimize the risk of a user other
| than the administrator learning of the defaults and using them in an improper fashion
| within instances and databases.

| Another security recommendation following the installation of DB2 is the changing of
| the default privileges granted to users. During the installation process, System
| Administration (SYSADM) privileges are granted by default to the following users on
| each operating system:

 Chapter 4. Controlling Database Access 143

| OS/2 A valid DB2 user ID which belongs to the UPM Administrator
| or Local Administrator group.

| Windows 95 Any Windows 95 user.

| Windows NT A valid DB2 username which belongs to the Administrators
| group.

| UNIX A valid DB2 username which belongs to the primary group of
| the instance owner's user ID.

| SYSADM privileges are the most powerful set of privileges available within DB2.
| (Privileges are discussed later in this chapter.) As a result, you may not want all of
| these users to have SYSADM privileges by default. DB2 provides the administrator with
| the ability to grant and revoke privileges to groups and individual user IDs.

| The platform-specific information to create and assign groups and user IDs is found in
| the various Quick Beginnings books. By updating the database manager configuration
| parameter SYSADM_GROUP, the administrator can control which group is defined as
| the System Administrative group with System Administrator privileges. You must follow
| the guidelines below to complete the security requirements for both DB2 installation and
| the subsequent instance and database creation.

| Any group defined as the System Administrative group (by updating SYSADM_GROUP)
| must exist. The name of this group should allow for easy identification as the group
| created for instance owners. User IDs and groups that belong to this group have
| system administrator authority for their respective instances.

| You should consider creating an instance owner user ID that is easily recognized as
| being associated with a particular instance. This user ID should have as one of its
| groups, the name of the SYSADM group created above. Another recommendation is to
| only use this instance owner user ID as a member of the instance owner group and not
| to use it in any other group. This should control the proliferation of user IDs and groups
| that could modify the instance environment.

| The created user ID should always be associated with a password to allow for
| authentication before entry into the data and databases within the instance. The
| recommendation when creating a password is to follow your organization's password
| naming guidelines.

| On UNIX-based platforms, a group for fenced User Defined Functions (UDFs) and
| stored procedures must be created, and any user IDs that use fenced UDFs or stored
| procedures must be a member of this group. As with the SYSADM group, the name of
| the fenced UDFs or stored procedures group should allow for easy identification. User
| IDs that belong to the fenced UDFs or stored procedures have whatever authority and
| privileges that are associated with the group as their default.

| For security reasons, we recommend you do not use the instance name as the Fenced
| ID. However, if you are not planning to use fenced UDFs or stored procedures, you can
| set the Fenced ID to the instance name instead of creating another user ID.

144 Administration Guide

| The recommendation is to create a user ID that will be recognized as being associated
| with this group. The user for fenced UDFs and stored procedures is specified as a
| parameter of the instance creation script (db2icrt ... -u <FencedID>). This is not required
| if you install the DB2 Client Application Enabler or the DB2 Software Developer's Kit.

| There are rules for the naming of all objects and users. Some of these rules are
| specific to the platform you are working on. For example, there is a rule regarding the
| use of upper and lower case letters in a name.

| ¹ On UNIX platforms, names must be in lower case.

| ¹ On OS/2, names must be in upper case.

| ¹ On Windows platforms, names are case irrelevant.

| See Appendix E, “Naming Rules” on page 885 for other naming rules.

| The db2icrt command creates the main SQL library (sqllib) directory under the home
| directory of the instance owner.

Selecting an Authentication Method for Your Server
Access to an instance or a database first requires that the user be authenticated. The
authentication type for each instance determines how and where a user will be verified.
The authentication type is stored in the database manager configuration file at the
server. It is initially set when the instance is created. See “Authentication Type
(authentication)” on page 713 for more information on this database manager
configuration parameter. There is one authentication type per instance, which covers
access to that database server and all the databases under its control.

The following authentication types are provided:

SERVER Specifies that authentication occurs on the server using local operating
system security. If a user ID and password are specified during the
connection or attachment attempt, they are compared to the valid user ID
and password combinations at the server to determine if the user is
permitted to access the instance. This is the default security mechanism.

Note: The server code detects whether a connection is local or remote.
For local connections, when authentication is SERVER, a user ID
and password are not required for authentication to be successful.

If the remote instance has SERVER authentication, the user ID and
password must be provided by the user or retrieved by DB2 and provided
to the server for validation even though the user has already logged on to
the local machine or to the domain.

CLIENT Specifies that authentication occurs on the database partition where the
application is invoked using operating system security. The user ID and
password specified during a connection or attachment attempt are
compared with the valid user ID and password combinations on the client

 Chapter 4. Controlling Database Access 145

node to determine if the user ID is permitted access to the instance. No
further authentication will take place on the database server.

If the user performs a local or client login, the user is known only to that
local client workstation.

If the remote instance has CLIENT authentication, two other parameters
determine the final authentication type: trust_allclnts and trust_clntauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.
Specifically, all clients are trusted clients except for Macintosh, Windows
3.1, and Windows 95 operating systems.

When the authentication type of CLIENT has been selected, an additional
option may be selected to protect against clients whose operating
environment has no inherent security.

To protect against unsecured clients, the administrator can select Trusted
Client Authentication by setting the trust_allclnts parameter to NO. This
implies that all trusted platforms can authenticate the user on behalf of the
server. Untrusted clients are authenticated on the Server and must provide
a user ID and password. You use the trust_allclnts configuration parameter
to indicate whether you are trusting clients. The default for this parameter
is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet have some
of those clients as those who do not have a native safe security
system for authentication.

You may also want to complete authentication at the server even for
trusted clients. To indicate where to validate trusted clients, you use the
trust_clntauth configuration parameter. The default for this parameter is
CLIENT. See “Trusted Clients Authentication (trust_clntauth)” on page 716
for more information on this parameter.

Note: For trusted clients only, if no user ID or password is explicitly
provided when attempting to CONNECT or ATTACH, then
validation of the user takes place at the client. The
trust_clntauthparameter is only used to determine where to validate
the information provided on the USER/USING clauses.

146 Administration Guide

Table 21. Trusted Client Options

TRUST_ALLCLNTS TRUST_CLNTAUTH

Trusted Client
Authentication
no password

Trusted Client
Authentication
with password

Untrusted
Client
Authentication
password
required

YES (default) CLIENT (default) CLIENT CLIENT N/A

YES (default) SERVER CLIENT SERVER N/A

NO CLIENT (default) CLIENT CLIENT SERVER

NO SERVER CLIENT SERVER SERVER

DCS Primarily used to catalog a database accessed using DB2 Connect. (Refer
to the DB2 Connect User's Guide section on Security for more details on
this topic.) When it is used to specify the authentication type for an
instance in the database manager configuration file, it means the same as
for authentication SERVER, unless the server is being accessed via the
Distributed Relational Database Architecture (DRDA) Application Server
(AS) architecture using the Advanced Program-To-Program
Communications (APPC) protocol. In this case, using DCS indicates that
authentication will occur at the server, but only in the APPC layer. Further
authentication will not occur in the DB2 code. This value is only supported
when the APPC SECURITY parameter for the connection is specified as
SAME or PROGRAM.

DCE Specifies that the user is authenticated using DCE Security Services. For
more information on DCE Security, see “Using DCE Security Services to
Authenticate Users” on page 149.

Note: When DB2 Connect is part of the system environment, the authentication types
have slightly different meanings. Also, here we are presenting the authentication
type that is stored in the database manager configuration file for the DB2
Universal Database. In DB2 Connect, the authentication types used are those
stored in the database directory. Refer to the section on Security in the DB2
Connect User's Guide for more details on this topic.

Notes:

1. The type of authentication you choose is only important if you have remote
database clients accessing the database. Most users accessing the database
through local clients are always authenticated on the same machine as the
database. An exception may exist when DCE Security Services are used. For
information about supporting and using remote clients, see your Quick Beginnings
manual.

2. Do not inadvertently lock yourself out of your instance when you are changing the
authentication information, since access to the configuration file itself is protected
by information in the configuration file. The following database manager
configuration file parameters control access to the instance:

 Chapter 4. Controlling Database Access 147

 ¹ AUTHENTICATION *
 ¹ SYSADM_GROUP *
 ¹ TRUST_ALLCLNTS
 ¹ TRUST_CLNTAUTH
 ¹ SYSCTRL_GROUP
 ¹ SYSMAINT_GROUP

* Indicates the two most important parameters, and those most likely to cause a
problem.

There are some things that can be done to ensure this does not happen: If you do
accidentally lock yourself out of the DB2 system, you have a failsafe option
available on all platforms that will allow you to override the usual DB2 security
checks to update the database manager configuration file using a highly privileged
local operating system security user. This user always has the privilege to update
the database manager configuration file and thereby correct the problem. However,
this security bypass is restricted to a local update of the database manager
configuration file. You cannot use a failsafe user remotely or for any other DB2
command. This special user is identified as follows:

¹ UNIX platforms: the instance owner
¹ NT platform: someone belonging to the local “administrators” group
¹ OS/2 platform: a UPM administrator
¹ Other platforms: there is no local security on the other platforms, so all users

pass local security checks anyway

| 3. See Appendix R, “How DB2 for Windows NT Works with Windows NT Security” on
| page 1181 for addtional information on Windows NT Security.

Authentication Considerations for Remote Clients
 When cataloging a database for remote access, the authentication type may be
specified in the database directory entry.

For databases accessed using DB2 Connect: If a value is not specified, SERVER
authentication is assumed.

For databases accessed remotely but not using DB2 Connect: The authentication type
is not required. However, if it is not specified the client must first contact the server to
obtain the value before beginning the authentication flow. If specified, authentication
can begin immediately provided the value specified matches that at the server. If a
mismatch is detected: DB2 attempts to recover, which may result in more flows to
reconcile the difference, or in an error if DB2 cannot recover. In the case of a
mismatch, the value at the server is assumed to be correct.

Partitioned Database Considerations
 In a partitioned database, each partition of the database must have the same set of
users and groups defined. If the definitions are not the same, the user may be

148 Administration Guide

authorized to do different things on different partitions. Consistency across all partitions
is recommended.

Using DCE Security Services to Authenticate Users
 When considering security for your distributed database environment, Distributed
Computing Environment (DCE) Security Services are a good option because DCE
provides:

¹ Centralized administration of users and passwords.

¹ No transmission of clear text passwords and user IDs.

¹ A single sign-on for users.

DB2 supports DCE default login contexts, connection login contexts, and delegated
contexts. A default login context is established when a user does a dce_login on a
client. Subsequent DB2 commands have access to this context and may perform user
authentication without further user intervention (that is, no requirement for a user ID or
password). A connection login context is established for a DB2 session using the user
ID and password provided on CONNECT or ATTACH using the USER/USING clause.
Finally, a delegated login context occurs when a DB2 client is used as part of a DCE
server application. The DCE server application (that is also a DB2 client), receives
requests from a DCE client application, from which point the original identity of the user
originates. Provided the DCE client and DCE server are correctly configured to allow
the DCE server to be a delegate for the DCE client, DB2 will obtain the delegated token
and forward this to the DB2 server. This allows the DB2 server to use the original
identity of the DCE client, rather than using the identity of the DCE server, to process
requests. Information on how to establish a delegated login context can be obtained
from the DCE documentation for your platform.

| Note: There are several vendor products that support DCE. To ensure that DB2 UDB
| for Windows NT can work with IBM's DCE product in the area of security
| services, two new DLLs have been provided: db2dces.ibm and db2dcec.ibm.
| (These DLL files are only appropriate for Windows NT.) If you purchase and use
| IBM's DCE product for security services, these two files must be copied to
| db2dces.dll and db2dcec.dll respectively. If you are considering another
| vendor's DCE product, you should contact the vendor service organization and
| the DB2 UDB service organization to discuss whether the vendor's DCE
| implementation for security services will work with DB2 UDB.

How to Setup a DB2 User for DCE
 Users must be registered in the Distributed Computing Environment (DCE) Registry
and have correct attributes before being used with DB2. See the appropriate
platform-specific DCE documentation for information on how to create a DCE principal.

Each DB2 user wishing to use a DCE-authenticated server must have a DCE principal
and account defined in the DCE Registry with the client flag enabled. This principal
must also have an entry in its Extended Registry Attributes (ERA) section showing what

 Chapter 4. Controlling Database Access 149

authorization name will be used for this principal when it connects to a particular DCE
authenticated server.

You may also wish to have user principals be members of groups in order to use group
privileges in the database. Similar information in the group ERA maps the group name
to a DB2 authorization name. The authorization name is a secondary authorization
name but the same restrictions apply. Please refer to your DCE documentation for
additional information on how to create groups and add members.

The information in the ERA maps a user's DCE principal or group name to a DB2
authorization name for a particular server DCE principal name. To use an ERA, an ERA
schema indicating the format of this attribute must be defined. This needs to be done
once per DCE cell and is accomplished by completing the following steps:

1. Login to DCE as a valid DCE administrator
2. Invoke dcecp and enter the following at the prompt:

> xattrschema create /.:/sec/xattrschema/db2map \

> -aclmgr {{principal r m r m } {group r m r m }} \

> -annotation {Schema entry for DB2 database access} \

> -encoding stringarray \

> -multivalued no \

> -uuid 1cbe84ca-9df3-11cf-84cd-02608c2cd17b

This creates the Extended Registry Attribute db2map.

To view this mapping, issue the following command at the dcecp prompt:

> xattrschema show /.:/sec/xattrschema/db2map

You will see the following:

{axlmgr

 {{principal {{query r} {update m} {test r} {delete m}}}

{group {{query r} {update m} {test r} {delete m}}}}}

{annotation {Schema entry for DB2 database access}}

{applydefs no}

{intercell rejects}

{multivalued no}

{reseved no}

{scope {}}

{trigbind {}}

{trigype none}

{unique no}

{uuid 1cbe84ca-9df3-11cf-84cd-02608c2cd17b}

Note: Restrictions on the contents of the authorization name recorded in the ERA are
not enforced by DCE. If a DCE principal or group is given an invalid
authorization name, an error results when an attempt is made by DB2 to
authenticate that user. (Recall that authentication may occur at CONNECT,
ATTACH, DB2START, or any other operation where authentication is required.)
It is also highly recommended that you ensure the assignment of authorization

150 Administration Guide

names to DCE principals is one-to-one and unique. DCE does not check these
conditions.

If a DB2 client is to access a DB2 UDB server, once they are registered as DCE
principals, the ERA information must be added to provide the mapping from the
principal name to the authorization name. This must be done once for each user or
group; and, is accomplished by completing the following steps:

¹ Login to DCE as a valid DCE administrator
¹ Invoke dcecp and at the prompt enter the following:

> principal modify principal_name \

> -add {db2map map_1 map_2...map_n}

where map_n uses the following format:

DCE_server_principal,DB2_authid

where DCE_server_principal is a valid DCE principal name for a DB2 UDB server
(or is the wildcard * which indicates this mapping is valid for any DB2 server not
already specified in another map_n entry) and DB2_authid is a valid DB2
authorization name.

| If a DCE group is to be used for a DCE principal, it must also have a mapping to a
| DB2 authid which has the proper authority such as SYSADM or SYSCTRL
| authority.

| Please note that the authorization identifier (authid) specified in the DCE schema
| used to map a DCE principal name to a DB2 authid must be specified in
| uppercase. Use of a lowercase or mixed case authid will result in an error.

How to Setup a DB2 Server to Use DCE
| Servers must be registered principals in the Distributed Computing Environment (DCE)
| Registry and have correct attributes before being used with DB2. See the appropriate
| platform-specific DCE documentation for information on how to create a DCE server
| principal.

The DCE Security client runtime code must be installed and accessible by the server
instance.

Each DB2 server that wishes to use DCE as an authentication mechanism must
register with DCE at the time of issuing DB2START. To avoid having to do this
manually, DCE provides a method whereby a server maintains its own user ID and
password (key) information in a special file called a keytab file. At DB2START, DB2
reads the database manager configuration file and obtains the authentication type for
the instance. If it finds the authentication type is DCE, DCE calls are made by the DB2
server to obtain the information from the keytab file. It is this information that is used to
register the server with DCE. This registration allows the server to accept DCE tokens
from DCE clients and to use them to authenticate these users.

The instance administrator must create the keytab file for the instance using DCE
commands. Detailed information on how to create a keytab file is included in the DCE
documentation for your platform. In that document, refer to the details associated with

 Chapter 4. Controlling Database Access 151

the keytab file and the commands dcecp keytab or rgy_edit. The DB2 keytab file must
be named keytab.db2 and must reside in the security subdirectory of the sqllib
directory for the instance. (For Intel-based operating systems, the file must reside in the
security subdirectory of the INSTANCENAME subdirectory of the sqllib directory.
INSTANCENAME is the instance name of the database you are working with.) It should
contain only one entry for the server principal for the specified instance; anything else
results in an error at DB2START time. On UNIX operating system platforms, this file
must be protected with file permissions to only allow read/write for the instance owner.

Following is an example of the creation of the keytab file:

¹ Login to DCE as a valid DCE user
¹ Invoke rgy_edit, and enter the following at the prompt:

> ktadd -p principal_name -pw principal_password \

> -f keytab.db2

| To start DB2 using DCE authentication once the DCE configuration is complete, you
| must tell DB2 it is to use DCE authentication by updating the database manager
| configuration file with authentication type “DCE.” This is done by issuing the following
| CLP command:

| db2 update database manager configuration using authentication DCE

| sysadm_group DCE_group_name

| Then perform a dce_login to a valid DB2 DCE user who has SYSADM authority and
| issue DB2START.

Note: Before starting DB2 using DCE authentication, ensure you have defined a DCE
user principal to be used as your SYSADM for the instance so that you have a
valid DCE user ID from which to start, stop, and administer the instance.
Please see “How to Setup a DB2 User for DCE” on page 149 for instructions
on how to do this.

In addition to these instructions, ensure the principal created is a member of the
SYSADM_GROUP for the instance. By default, this group name is DB2ADMIN
for DCE authentication when no group is explicitly specified (that is, when the
SYSADM_GROUP is null), but it can be updated before changing the
authentication type for the instance to a group name (authorization name) of
your choice. The DCE group that you select must have an ERA defined that
maps it to the specified SYSADM_GROUP authorization name.

| One of the functions of the DB2 Administration Server is to start DB2 instances.
| When AUTHENTICATION = DCE, the DCE principal used in the DB2 keytab file
| for the instance must have a valid DCE principal to DB2 authid mapping. This
| mapping is required for the DB2 Administration Server to start the DB2 instance.
| The valid mapping allows this ID to act as a client as well as a server.

152 Administration Guide

How to Setup a DB2 Client Instance to Use DCE
 A client-only instance may be established to use DCE authentication for local
operations by updating the database manager configuration file and setting the
authentication type to DCE. There is no requirement to have a keytab file for a
client-only instance since there is no server that needs to register to DCE. In general, it
is not recommended (or required) that a client-only DB2 instance use DCE
authentication, but it is supported.

A client that wishes to access a remote database using DCE security requires access
to the applicable DCE Security product. Optionally, the client may choose to catalog the
authentication type for the target database in the database directory. If the client
chooses to specify DCE authentication, the fully-qualified DCE server principal name
must also be specified. If DCE authentication is not specified in the directory, the
authentication and principal information is obtained from the server at CONNECT time.

DB2 Restrictions Using DCE Security
 Using DCE authentication places some restrictions on certain SQL functions provided
by DB2 and related to group support. The following restrictions exist when using DCE
authentication:

1. When using the GRANT or REVOKE statements, the keywords USER and GROUP
must be specified to qualify the authorization name specified, otherwise an error is
issued.

2. When using the AUTHORIZATION clause of the CREATE SCHEMA statement, the
group membership of the authorization name specified will not be considered in
evaluating the authorizations required to perform the statements that follow this
clause. This may result in an authorization failure during execution of the CREATE
SCHEMA statement.

3. When a package is rebound by a user other than the original binder of the
package, the privileges of the original binder are reevaluated. In this case, group
membership of the original binder are not considered when reevaluating privileges.
This may result in an authorization failure during rebinding.

| DCE authentication as performed by DB2 flows DCE Tickets obtained using the OSF
| DCE Generic Security Services Application Programming Interface (GSSAPI). As such,
| all authentication for DCE Security takes place at the database protocol layer. Certain
| communication mechanisms may provide additional communication layer security,
| which is not necessarily integrated with DCE. In cases where the communication layer
| authentication can be kept entirely independent of the database protocol layer
| authentication, no restrictions will be enforced. However, the criteria for both the
| database protocol layer and the communication layer authenticating must be satisfied
| before a connection can be successfully established. In cases where the database
| protocol layer and the communication protocol layer authentication mechanisms
| interact, their use may be restricted if some combinations result in a security exposure.

| DCE authentication may be used in conjunction with TCPIP SOCKS support; however,
| the two security mechanisms work independent of one another. This may mean that not
| only must the user provide a valid DCE login context, but must also be logged on to a
| local operating system user ID that meets the criteria of the SOCKS Server.

 Chapter 4. Controlling Database Access 153

| DCE authentication may be used in conjunction with NT Named Pipes; however, the
| two security mechanisms work independent of one another. Not only must the user
| provide a valid DCE login context, but he must also be logged on to the NT Domain to
| a user ID that meets the criteria for the NT Named Pipes support.

| In order to address possible confusion where DCE principals and local operating
| system user IDs are both used for authentication, as in the above two examples, an
| integrated DCE logon can be used. In this case, when logging on to a system, the user
| is automatically logged into the appropriate DCE principal as well. See the DCE
| documentation for your platform for details on how to use this feature, if it is supported.
| Note that in using this approach, the same name is used for the DCE principal and the
| local operating system ID. This may mean that the same value that is contained in the
| DCE encrypted ticket also flows on the wire unencrypted in the communication layer.

| DCE authentication can only be used with APPC communications when the SECURITY
| parameter is set to NONE. This is to avoid the possibility of sending an unencrypted
| principal and/or password in the communication layer, while using an encrypted DCE
| token for the same principal in the database protocol layer. DCE Security at the APPC
| layer is not supported by DB2 at this time.

Privileges, Authorities, and Authorization
Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects for
which they have the appropriate authorization, that is, the required privilege or authority.

 The following authorities exist:

¹ “System Administration Authority (SYSADM)” on page 156
¹ “Database Administration Authority (DBADM)” on page 158
¹ “System Control Authority (SYSCTRL)” on page 157
¹ “System Maintenance Authority (SYSMAINT)” on page 157

 The following types of privileges exist:

¹ “Database Privileges” on page 159
¹ “Schema Privileges” on page 160
¹ “Table and View Privileges” on page 160
¹ “Package Privileges” on page 162
¹ “Index Privileges” on page 162

Figure 20 on page 155 illustrates the hierarchical relationship between authorities and
privileges. In the hierarchy, the lower level authorities and privileges are subsets of
those above them.

154 Administration Guide

SYSADM

DBADM

SYSCTRL

IMPLICIT_SCHEMA
(Database)

Authorities

BINDADD
(Database)

CONTROL
(Indexes)

CONTROL
(Packages)

CONTROL
(Tables)

ALL
ALTER

DELETE
INDEX

INSERT
REFERENCES

SELECT
UPDATE

ALL
DELETE
INSERT
SELECT
UPDATE

ALTERIN
CREATEIN
DROPIN

BIND
EXECUTE

CONTROL
(Views)

(Schema
Owners)

CREATETAB
(Database)

CREATE_NOT_FENCED
(Database)

CONNECT
(Database)

Privileges

SYSMAINT

Figure 20. Hierarchy of Authorities and Privileges

A user or group can have one or more of the following levels of authorization:

¹ Administrative authority (SYSADM or DBADM) gives full privileges for a set of
objects.

¹ System authority (SYSCTRL or SYSMAINT) gives full privileges for managing the
system, but does not allow access to the data.

¹ Ownership privilege (also called CONTROL privilege in some cases) gives full
privileges for a specific object.

¹ Individual privileges may be granted to allow a user to carry out specific functions
on specific objects.

¹ Implicit privileges may be granted to a user who has the privilege to execute a
package. While users can run the application, they do not necessarily require
explicit privileges on the data objects used within the package. For more
information see “Allowing Indirect Privileges through a Package” on page 166.

Users with administrative authority (SYSADM or DBADM) or ownership privileges
(CONTROL) can grant and revoke privileges to and from others, using the GRANT and
REVOKE statements. (See “Controlling Access to Database Objects” on page 163.) It
is also possible to grant a table, view, or schema privilege to another user if that
privilege is held WITH GRANT OPTION. However, the WITH GRANT OPTION does

 Chapter 4. Controlling Database Access 155

not allow the person granting the privilege to revoke the privilege once granted. You
must have SYSADM authority, DBADM authority, or CONTROL privilege to revoke the
privilege.

A user or group can be authorized for any combination of individual privileges or
authorities. When a privilege is associated with a resource, that resource must exist.
For example, a user cannot be given the SELECT privilege on a table unless that table
has previously been created.

Note: Care must be taken when an authorization name is given authorities and
privileges and there is no user created with that authorization name. At some
later time, a user can be created with that authorization name and automatically
receive all of the authorities and privileges associated with that authorization
name.

See the Command Reference, the API Reference, or the SQL Referen ce for
information about what authorization is required for a particular command, API, or SQL
statement.

System Administration Authority (SYSADM)
SYSADM authority is the highest level of administrative authority. Users with SYSADM
authority can run utilities, issue database and database manager commands, and
access the data in any table in any database within the database manager instance. It
provides the ability to control all database objects in the instance, including databases,
tables, views, indexes, packages, schemas, aliases, data types, functions, procedures,
triggers, table spaces, nodegroups, buffer pools, and event monitors.

SYSADM authority is assigned to the group specified by the sysadm_group
configuration parameter (see “System Administration Authority Group Name
(sysadm_group)” on page 710). Membership in that group is controlled outside the
database manager through the security facility used on your platform. See the Quick
Beginningsfor information on how to use your system security facility to create, change,
or delete SYSADM authorities.

Only a user with SYSADM authority can perform the following functions:

¹ Migrate a database
¹ Change the database manager configuration file (including specifying the groups

having SYSCTRL or SYSMAINT authority)
¹ Grant DBADM authority.

In addition, a user with SYSADM authority can perform the functions of users with the
following authorities:

¹ “System Control Authority (SYSCTRL)” on page 157
¹ “System Maintenance Authority (SYSMAINT)” on page 157
¹ “Database Administration Authority (DBADM)” on page 158

Note: When users with SYSADM authority create databases, they are automatically
granted explicit DBADM authority on the database. If the database creator is
removed from the SYSADM group, and if you want to also prevent them from

156 Administration Guide

accessing that database as a DBADM, you must explicitly revoke this DBADM
authority.

System Control Authority (SYSCTRL)
 SYSCTRL authority is the highest level of system control authority. This authority
provides the ability to perform maintenance and utility operations against the database
manager instance and its databases. These operations can affect system resources,
but they do not allow direct access to data in the databases. System control authority is
designed for users administering a database manager instance containing sensitive
data.

SYSCTRL authority is assigned to the group specified by the sysctrl_group
configuration parameter (see “System Control Authority Group Name (sysctrl_group)”
on page 712). If a group is specified, membership in that group is controlled outside
the database manager through the security facility used on your platform.

Only a user with SYSCTRL authority or higher can do the following:

¹ Update a database, node, or distributed connection services (DCS) directory
¹ Force users off the system
¹ Create or drop a database
¹ Drop, create, or alter a table space
¹ Restore to new database.

In addition, a user with SYSCTRL authority can perform the functions of users with
“System Maintenance Authority (SYSMAINT)” authority.

Users with SYSCTRL authority also have the implicit privilege to connect to a database.

Note: When users with SYSCTRL authority create databases, they are automatically
granted explicit DBADM authority on the database. If the database creator is
removed from the SYSCTRL group, and if you want to also prevent them from
accessing that database as a DBADM, you must explicitly revoke this DBADM
authority.

System Maintenance Authority (SYSMAINT)
SYSMAINT authority is the second level of system control authority. This authority
provides the ability to perform maintenance and utility operations against the database
manager instance and its databases. These operations can affect system resources,
but they do not allow direct access to data in the databases. System maintenance
authority is designed for users maintaining databases within a database manager
instance that contains sensitive data.

SYSMAINT authority is assigned to the group specified by the sysmaint_group
configuration parameter (see “System Maintenance Authority Group Name
(sysmaint_group)” on page 712). If a group is specified, membership in that group is
controlled outside the database manager through the security facility used on your
platform.

 Chapter 4. Controlling Database Access 157

Only a user with SYSMAINT or higher system authority can do the following:

¹ Update database configuration files
¹ Backup a database or table space
¹ Restore to an existing database
¹ Perform roll forward recovery
¹ Start or stop a database instance
¹ Restore a table space

 ¹ Run trace
¹ Take database system monitor snapshots of a database manager instance or its

databases.

A user with SYSMAINT, DBADM, or higher authority can do the following:

¹ Query the state of a table space
¹ Update log history files
¹ Quiesce a table space
¹ Reorganize a table
¹ Collect catalog statistics using the RUNSTATS utility.

Users with SYSMAINT authority also have the implicit privilege to connect to a
database.

Database Administration Authority (DBADM)
 DBADM authority is the second highest level of administrative authority. It applies only
to a specific database, and allows the user to run certain utilities, issue database
commands, and access the data in any table in the database. When DBADM authority
is granted, BINDADD, CONNECT, CREATETAB, CREATE_NOT_FENCED, and
IMPLICIT_SCHEMA privileges are granted as well. Only a user with SYSADM authority
can grant or revoke DBADM authority. Users with DBADM authority can grant
privileges on the database to others and can revoke any privilege from any user
regardless of who granted it.

Only a user with DBADM or higher authority can do the following:

¹ Read log files
¹ Create, activate and drop event monitors
¹ Run the load utility.

A user with DBADM, SYSMAINT, or higher authority can do the following:

¹ Query the state of a table space
¹ Update log history files
¹ Quiesce a table space.
¹ Reorganize a table
¹ Collect catalog statistics using the RUNSTATS utility.

Note: A DBADM can only perform the above functions on the database for which
DBADM authority is held.

158 Administration Guide

 Database Privileges
Database privileges involve actions on a database as a whole:

¹ CONNECT allows a user to access the database
¹ BINDADD allows a user to create new packages in the database
¹ CREATETAB allows a user to create new tables in the database
¹ CREATE_NOT_FENCED allows a user to create a user-defined function (UDF) or

procedure that is “not fenced.” UDFs or procedures that are “not fenced” must be
extremely well tested because the database manager does not protect its storage
or control blocks from these UDFs or procedures. (As a result, a poorly written
and tested UDF or procedure that is allowed to run “not fenced” can cause serious
problems for your system.) (See the Embedded SQL Programming Guide or the
SQL Referencefor more information.)

¹ IMPLICIT_SCHEMA allows any user to create a schema implicitly by creating an
object using a CREATE statement with a schema name that does not already
exist. SYSIBM becomes the owner of the implicitly created schema and PUBLIC is
given the privilege to create objects in this schema.

Only users with SYSADM or DBADM authority can grant and revoke these privileges to
and from other users.

Note: When a database is created, the following privileges are automatically granted
to PUBLIC:

 ¹ CREATETAB
 ¹ BINDADD
 ¹ CONNECT
 ¹ IMPLICIT_SCHEMA
¹ SELECT privilege on the system catalog views.

To remove any privilege, a DBADM or SYSADM must explicitly revoke the privilege
from PUBLIC.

Implicit Schema Authority (IMPLICIT_SCHEMA) Considerations
When a new database is created, or when a database is migrated from the previous
release, PUBLIC is given IMPLICIT_SCHEMA database authority. With this authority,
any user can create a schema by creating an object and specifying a schema name
that does not already exist. SYSIBM becomes the owner of the implicitly created
schema and PUBLIC is given the privilege to create objects in this schema.

If control of who can implicitly create schema objects is required for the database,
IMPLICIT_SCHEMA database authority should be revoked from PUBLIC. Once this is
done, there are only three (3) ways that a schema object is created:

¹ Any user can create a schema using their own authorization name on a CREATE
SCHEMA statement.

¹ Any user with DBADM authority can explicitly create any schema which does not
already exist, and can optionally specify another user as the owner of the schema.

 Chapter 4. Controlling Database Access 159

¹ Any user with DBADM authority has IMPLICIT_SCHEMA database authority
(independent of PUBLIC) so that they can implicitly create a schema with any
name at the time they are creating other database objects. SYSIBM becomes the
owner of the implicitly created schema and PUBLIC has the privilege to create
objects in the schema.

A user always has the ability to explicitly create their own schema using their own
authorization name.

 Schema Privileges
Schema privileges involve actions on schemas in a database. A user may be granted
any of the following privileges:

¹ CREATEIN allows the user to create objects within the schema.

¹ ALTERIN allows the user to alter objects within the schema.

¹ DROPIN allows the user to drop objects from within the schema.

The owner of the schema has all of these privileges and the ability to grant them to
others. The objects that are manipulated within the schema object include: tables,
views, indexes, packages, data types, functions, triggers, procedures, and aliases.

Table and View Privileges
 Table and view privileges involve actions on tables or views in a database. A user
must have CONNECT privilege on the database to use any of the following privileges:

¹ CONTROL provides the user with all privileges for a table or view including the
ability to drop it, and to grant and revoke individual table privileges. You must have
SYSADM or DBADM authority to grant CONTROL. The creator of a table
automatically receives CONTROL privilege on the table. The creator of a view
automatically receives CONTROL privilege only if they have CONTROL privilege
on all tables and views referenced in the view definition, or they have SYSADM or
DBADM authority.

¹ ALTER allows the user to add columns to a table, to add or change comments on
a table and its columns, to add a primary key or unique constraint and to create or
drop a table check constraint. The user can also create triggers on the table,
although additional authority on all the objects referenced in the trigger (including
SELECT on the table if the trigger references any of the columns of the table) is
required. A user with ALTER privilege on all the descendent tables can drop a
primary key; a user with ALTER privilege on the table and REFERENCES privilege
on the parent table, or REFERENCES privilege on the appropriate columns, can
create or drop a foreign key. A user with ALTER privilege can also COMMENT ON
a table.

¹ DELETE allows the user to delete rows from a table or view.
¹ INDEX allows the user to create an index on a table. Creators of indexes

automatically have CONTROL privilege on the index. For more information, see
“Index Privileges” on page 162.

¹ INSERT allows the user to insert an entry into a table or view, and to run the
IMPORT utility.

160 Administration Guide

¹ REFERENCES allows the user to create and drop a foreign key, specifying the
table as the parent in a relationship. The user may have this privilege only on
specific columns.

¹ SELECT allows the user to retrieve rows from a table or view, to create a view on
a table, and to run the EXPORT utility.

¹ UPDATE allows the user to change an entry in a table, a view, or for one or more
specific columns in a table or view. The user may have this privilege only on
specific columns.

The privilege to grant these privileges to others may also be granted using the WITH
GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a table, all other
privileges on that table are automatically granted WITH GRANT OPTION. If you
subsequently revoke the CONTROL privilege on the table from a user, that user
will still retain the other privileges that were automatically granted. To revoke all
the privileges that are granted with the CONTROL privilege, you must either
explicitly revoke each individual privilege or specify the ALL keyword on the
REVOKE statement, for example:

 REVOKE ALL

ON EMPLOYEE FROM USER HERON

| When working with typed tables, there are implications regarding table and view
| privileges.

| Note: Privileges may be granted independently at every level of a table hierarchy. As
| a result, a user granted a privilege on a supertable within a hierarchy of typed
| tables may also indirectly affect any subtables. However, a user can only
| operate directly on a subtable if the necessary privilege is held on that subtable.

| The supertable/subtable relationships among the tables in a table hierarchy mean that
| operations such as SELECT, UPDATE, and DELETE will affect the rows of the
| operation's target table and all its subtables (if any). This behavior can be called
| “substitutability.” For example, suppose that you have created an Employee table of
| type Employee_t with a subtable Manager of type Manager_t. A manager is a
| (specialized) kind of employee, as indicated by the type/subtype relationship between
| the structured types Employee_t and Manager_t and the corresponding table/subtable
| relationship between the tables Employee and Manager. As a result of this relationship,
| the SQL query:

| SELECT * FROM Employee

| will return the object identifier and Employee_t attributes for both employees and
| managers. Similarly, the update operation:

| UPDATE Employee SET Salary = Salary + 1000

| will give a thousand dollar raise to managers as well as regular employees.

A user with SELECT privilege on Employee will be able to perform this SELECT
operation even if they do not have an explicit SELECT privilege on Manager. However,
such a user will not be permitted to perform a SELECT operation directly on the

 Chapter 4. Controlling Database Access 161

Manage subtable, and will therefore not be able to access any of the non-inherited
columns of the Manager table.

Similarly, a user with UPDATE privilege on Employee will be able to perform an
UPDATE operation on Employee, thereby affecting both regular employees and
managers, even without having the explicit UPDATE privilege on the Manager table.
However, such a user will not be permitted to perform UPDATE operations directly on
the Manager subtable, and will therefore not be able to update non-inherited columns of
the Manager table.

The following manuals provide information about the authorizations required to execute
specific commands, APIs, or SQL statements:

 ¹ SQL Reference
 ¹ Command Reference
 ¹ API Reference.

See “User Update-Capable Catalog Statistics” on page 454 for information about the
authorization required to update catalog statistics.

For information about how view privileges are determined, see the CREATE VIEW
statement in the SQL Reference manual.

 Package Privileges
A package is a database object that contains the information needed by the database
manager to access data in the most efficient way for a particular application program.
Package privileges enable a user to create and manipulate packages. The user must
have CONNECT privilege on the database to use any of the following privileges:

¹ CONTROL provides the user with the ability to rebind, drop, or execute a package
as well as the ability to extend those privileges to others. The creator of a package
automatically receives this privilege. A user with CONTROL privilege is granted the
BIND and EXECUTE privileges, and can grant BIND and EXECUTE privileges to
other users as well. To grant CONTROL privilege, the user must have SYSADM or
DBADM authority.

¹ BIND allows the user to rebind an existing package.

¹ EXECUTE allows the user to execute a package.

In addition to these package privileges, the BINDADD database privilege allows users
to create new packages or rebind an existing package in the database.

 Index Privileges
The creator of an index automatically receives CONTROL privilege on the index.
CONTROL privilege on an index is really the ability to drop the index. To grant
CONTROL privilege on an index, a user must have SYSADM or DBADM authority.

The table-level INDEX privilege allows a user to create an index on that table (see
“Table and View Privileges” on page 160).

162 Administration Guide

Controlling Access to Database Objects
 Controlling data access requires an understanding of direct and indirect privileges,
administrative authorities, and packages. This section explains these topics and
provides some examples.

Directly granted privileges are stored in the system catalog. Methods for auditing the
implementation of the database access control plan are discussed in “Using the System
Catalog” on page 170.

 Authorization is controlled in three ways:

¹ Explicit authorization is controlled through privileges controlled with the GRANT
and REVOKE statements

¹ Implicit authorization is controlled by creating and dropping objects
¹ Indirect privileges are associated with packages.

The following topics are discussed:

 ¹ “Granting Privileges”
¹ “Revoking Privileges” on page 164
¹ “Managing Implicit Authorizations by Creating and Dropping Objects” on page 165
¹ “Allowing Indirect Privileges through a Package” on page 166
¹ “Controlling Access to Data with Views” on page 166

| ¹ “Monitoring Access to Data Using the Audit Facility” on page 168.

 Granting Privileges
 The GRANT statement allows an authorized user to grant privileges. A privilege can be
granted to one or more authorization names in one statement; or to PUBLIC, which
makes the privileges available to all users. Note that an authorization name can be
either an individual user or a group.

On operating systems where users and groups exist with the same name, you should
specify whether you are granting the privilege to the user or group. Both the GRANT
and REVOKE statements support the keywords USER and GROUP. If these optional
keywords are not used, the database manager checks the operating system security
facility to determine whether the authorization name identifies a user or a group. If the
authorization name could be both a user and a group, an error is returned.

The following example grants SELECT privileges on the EMPLOYEE table to the user
HERON:

 GRANT SELECT

ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to the group
HERON:

 GRANT SELECT

ON EMPLOYEE TO GROUP HERON

 Chapter 4. Controlling Database Access 163

To grant privileges on most database objects, the user must have SYSADM authority,
DBADM authority, or CONTROL privilege on that object; or, the user must hold the
privilege WITH GRANT OPTION. Privileges can be granted only on existing objects. To
grant CONTROL privilege to someone else, the user must have SYSADM or DBADM
authority. To grant DBADM authority, the user must have SYSADM authority.

See the SQL Reference for more information about the GRANT statement.

 Revoking Privileges
 The REVOKE statement allows authorized users to revoke privileges previously
granted to other users. To revoke privileges on database objects, you must have
DBADM authority, SYSADM authority, or CONTROL privilege on that object. Note that
holding a privilege WITH GRANT OPTION is not sufficient to revoke that privilege. To
revoke CONTROL privilege from another user, you must have SYSADM or DBADM
authority. To revoke DBADM authority, you must have SYSADM authority. Privileges
can only be revoked on existing objects.

Note: A user without DBADM authority or CONTROL privilege on a table or view is
not able to revoke a privilege that they granted through their use of the WITH
GRANT OPTION. Also, there is no cascade on the revoke to those who have
received privileges granted by the person being revoked. For more information
on the authority required to revoke privileges, see the SQL Reference manual.

If a privilege has been granted to both a user and a group with the same name, you
must specify the GROUP or USER keyword when revoking the privilege. The following
example revokes the SELECT privilege on the EMPLOYEE table from the user
HERON:

 REVOKE SELECT

ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table from the
group HERON:

 REVOKE SELECT

ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all members of that
group. If an individual name has been directly granted a privilege, it will keep it until that
privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only the
privileges implicitly granted by the system are revoked. If a privilege on the view was
granted directly by another user, the privilege is still held.

If an explicitly-granted table (or view) privilege is revoked from a user with DBADM
authority, privileges will not be revoked from other views defined on that table. This is
because the view privileges are available through the DBADM authority and are not
dependent on explicit privileges on the underlying tables.

164 Administration Guide

If you have defined a view based on one or more underlying tables or views and you
lose the SELECT privilege to one or more of those tables or views, then the view
cannot be used.

Note: When CONTROL privilege is revoked from a user on a table or a view, the user
continues to have the ability to grant privileges to others. When given
CONTROL privilege, the user also receives all other privileges WITH GRANT
OPTION. Once CONTROL is revoked, all of the other privileges remain WITH
GRANT OPTION until they are explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid, but can be
validated if rebound by a user with appropriate authority. Packages can also be rebuilt if
the privileges are subsequently granted again to the binder of the application; running
the application will trigger a successful implicit rebind. If privileges are revoked from
PUBLIC, all packages bound by users having only been able to bind based on PUBLIC
privileges are invalidated. If DBADM authority is revoked from a user, all packages
bound by that user are invalidated including those associated with database utilities.
Attempting to use a package that has been marked invalid causes the system to
attempt to rebind the package. If this rebind attempt fails, an error occurs (SQLCODE
-727). In this case, the packages must be explicitly rebound by a user with:

¹ Authority to rebind the packages
¹ Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked. See the
SQL Reference for more information about the REVOKE and REBIND PACKAGE
statements.

If you have defined a trigger based on one or more privileges and you lose one or more
of those privileges, then the trigger cannot be used.

Managing Implicit Authorizations by Creating and Dropping Objects
The database manager implicitly grants certain privileges to a user who issues a
CREATE SCHEMA, CREATE TABLE, CREATE VIEW, or CREATE INDEX statement,
or who creates a new package using a PREP or BIND command. Privileges are also
granted when objects are created by users with SYSADM or DBADM authority.
Similarly, privileges are removed when an object is dropped.

When the created object is a table, index, or package, the user receives CONTROL
privilege on the object. When the object is a view, the CONTROL privilege for the view
is granted implicitly only if the user has CONTROL privilege for all tables and views
referenced in the view definition.

When the object explicitly created is a schema, the schema owner is given ALTERIN,
CREATEIN, and DROPIN privileges WITH GRANT OPTION. An implicitly created
schema has CREATEIN granted to PUBLIC.

For information about how view privileges are determined, see the CREATE VIEW
statement in the SQL Reference manual.

 Chapter 4. Controlling Database Access 165

Allowing Indirect Privileges through a Package
Access to data within a database can be requested by application programs, as well as
by persons engaged in an interactive workstation session. A package contains
statements that allow users to perform a variety of actions on many database objects.
Each of these actions requires one or more privileges.

Privileges granted to individuals binding the package and to PUBLIC are used for
authorization checking when static SQL is bound. Privileges granted through groups are
not used for authorization checking when static SQL is bound. The user who binds a
package must either have been explicitly granted all the privileges required to execute
the static SQL statements in the package or have been implicitly granted the necessary
privileges through PUBLIC. PUBLIC, group, and user privileges are all used when
checking to ensure the user has the appropriate authorization (BIND or BINDADD
privilege) to bind the package.

 Packages may include both static and dynamic SQL. To process a package with static
SQL, a user need only have EXECUTE privilege on the package. This user can then
indirectly obtain the privileges of the package binder for any static SQL in the package
but only within the restrictions imposed by the package.

To process a package with any dynamic SQL statements, the user must have
EXECUTE privilege on the package. The user needs EXECUTE privilege on the
package plus any privileges required to execute the dynamic SQL statements in the
package. The binder's authorities and privileges are used for any static SQL in the
package.

Controlling Access to Data with Views
 A view provides a means of controlling access or extending privileges to a table by
allowing:

¹ Access only to designated columns of the table.

 For users and application programs that require access only to specific columns of
a table, an authorized user can create a view to limit the columns addressed only
to those required.

¹ Access only to a subset of the rows of the table.

 By specifying a WHERE clause in the subquery of a view definition, an authorized
user can limit the rows addressed through a view.

To create a view, a user must have SYSADM authority, DBADM authority, or
CONTROL or SELECT privilege for each table or view referenced in the view definition.
The user must also be able to create an object in the schema specified for the view.
That is, CREATEIN privilege for an existing schema or IMPLICIT_SCHEMA authority on
the database if the schema does not already exist. See “Creating a View” on page 114
for more information.

The following scenario illustrates how views can restrict access to information.

166 Administration Guide

Many people may require access to information in the STAFF table, for different
reasons. For example:

¹ The personnel department needs to be able to update and look at the entire table.

This requirement can be easily met by granting SELECT and UPDATE privileges
on the STAFF table to the group PERSONNL:

GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

¹ Individual department managers need to look at the salary information for their
employees.

This requirement can be met by creating a view for each department manager.
For example, the following view can be created for the manager of department
number 51:

CREATE VIEW EMP051 AS

SELECT NAME,SALARY,JOB FROM STAFF

 WHERE DEPT=51

GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051 view just
like the STAFF table. When accessing the EMP051 view of the STAFF table, this
manager views the following information:

NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

¹ All users need to be able to locate other employees. This requirement can be met
by creating a view on the NAME column of the STAFF table and the LOCATION
column of the ORG table, and by joining the two tables on their respective DEPT
and DEPTNUMB columns:

CREATE VIEW EMPLOCS AS

SELECT NAME, LOCATION FROM STAFF, ORG

 WHERE STAFF.DEPT=ORG.DEPTNUMB

GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following information:

NAME LOCATION

Molinare New York

Lu New York

Daniels New York

Jones New York

Hanes Boston

 Chapter 4. Controlling Database Access 167

NAME LOCATION

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

O'Brien Atlanta

Quigley Atlanta

Naughton Atlanta

Abrahams Atlanta

Koonitz Chicago

Plotz Chicago

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

| Monitoring Access to Data Using the Audit Facility
| The DB2 audit facility generates, and allows you to maintain, an audit trail for a series
| of predefined database events. While not a facility that prevents access to data, the
| audit facility can monitor and keep a record of attempts to access or modify data
| objects.

168 Administration Guide

| SYSADM authority is required to use the audit facility administrator tool, db2audit.

| See Chapter 5, “Auditing DB2 Activities” on page 175 for a detailed description of the
| DB2 audit facility.

Tasks and Required Authorizations
 Not all organizations divide job responsibilities in the same manner. Table 22 lists
some other co mmon job titles, the tasks that usually accompany them, and the
authorities or privileges that are needed to carry out those tasks.

Table 22 (Page 1 of 2). Common Job Titles, Tasks, and Required Authorization

JOB TITLE TASKS REQUIRED AUTHORIZATION

Department Administrator Oversees the departmental
system; creates databases

SYSCTRL authority. SYSADM
authority if the department has its
own instance.

Security Administrator Authorizes other users for some or
all authorizations and privileges

SYSADM or DBADM authority.

Database Administrator Designs, develops, operates,
safeguards, and maintains one or
more databases

DBADM and SYSMAINT authority
over one or more databases.
SYSCTRL authority in some
cases.

System Operator Monitors the database and carries
out backup functions

SYSMAINT authority.

Application Programmer Develops and tests the database
manager application programs;
may also create tables of test data

BINDADD, BIND on an existing
package, CONNECT and
CREATETAB on one or more
databases, some specific schema
privileges, and a list of privileges
on some tables.

User Analyst Defines the data requirements for
an application program by
examining the system catalog
views

SELECT on the catalog views;
CONNECT on one or more
databases.

Program End User Executes an application program EXECUTE on the package;
CONNECT on one or more
databases. See the note following
this table.

Information Center Consultant Defines the data requirements for
a query user; provides the data by
creating tables and views and by
granting access to database
objects

DBADM authority over one or
more databases.

 Chapter 4. Controlling Database Access 169

Table 22 (Page 2 of 2). Common Job Titles, Tasks, and Required Authorization

JOB TITLE TASKS REQUIRED AUTHORIZATION

Query User Issues SQL statements to retrieve,
add, delete, or change data; may
save results as tables

CONNECT on one or more
databases; CREATEIN on the
schema of the tables and views
being created; and, SELECT,
INSERT, UPDATE, DELETE on
some tables and views.

If an application program contains dynamic SQL statements, the Program End User
may need other privileges in addition to EXECUTE and CONNECT (such as SELECT,
INSERT, DELETE, and UPDATE).

Using the System Catalog
Information about each database is automatically maintained in a set of views called
the system catalog, which is created when the database is generated. This system
catalog describes tables, columns, indexes, programs, privileges, and other objects.

Six of these views list the privileges held by users and the identity of the user granting
each privilege:

SYSCAT.DBAUTH Lists the database privileges
SYSCAT.TABAUTH Lists the table and view privileges
SYSCAT.COLAUTH Lists the column privileges
SYSCAT.PACKAGEAUTH Lists the package privileges
SYSCAT.INDEXAUTH Lists the index privileges
SYSCAT.SCHEMAAUTH Lists the schema privileges

Privileges granted to users by the system will have SYSIBM as the grantor. SYSADM,
SYSMAINT and SYSCTRL are not listed in the system catalog.

The CREATE and GRANT statements place privileges in the system catalog. Users
with SYSADM and DBADM authorities can grant and revoke SELECT privilege on the
system catalog views. The following examples show how to extract information about
privileges by using these SQL queries:

¹ “Retrieving Authorization Names with Granted Privileges”
¹ “Retrieving All Names with DBADM Authority” on page 171
¹ “Retrieving Names Authorized to Access a Table” on page 171
¹ “Retrieving All Privileges Granted to Users” on page 172
¹ “Securing the System Catalog Views” on page 172

Retrieving Authorization Names with Granted Privileges
 No single system catalog view contains information about all privileges. The following
statement retrieves all authorization names with privileges:

170 Administration Guide

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'DATABASE' FROM SYSCAT.DBAUTH

 UNION

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'TABLE ' FROM SYSCAT.TABAUTH

 UNION

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'PACKAGE ' FROM SYSCAT.PACKAGEAUTH

 UNION

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'INDEX ' FROM SYSCAT.INDEXAUTH

 UNION

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'COLUMN ' FROM SYSCAT.COLAUTH

 UNION

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'SCHEMA ' FROM SYSCAT.SCHEMAAUTH

ORDER BY GRANTEE, GRANTEETYPE, 3

Periodically, the list retrieved by this statement should be compared with lists of user
and group names defined in the system security facility. You can then identify those
authorization names that are no longer valid.

Note: If you are supporting remote database clients, it is possible that the
authorization name is defined at the remote client only and not on your
database server machine.

Retrieving All Names with DBADM Authority
 The following statement retrieves all authorization names that have been directly
granted DBADM authority:

SELECT DISTINCT GRANTEE FROM SYSCAT.DBAUTH

WHERE DBADMAUTH = 'Y'

Retrieving Names Authorized to Access a Table
 The following statement retrieves all authorization names that are directly authorized to
access the table EMPLOYEE with the qualifier JAMES:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH

WHERE TABNAME = 'EMPLOYEE'

AND TABSCHEMA = 'JAMES'

 UNION

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = 'EMPLOYEE'

AND TABSCHEMA = 'JAMES'

To find out who can update the table EMPLOYEE with the qualifier JAMES, issue the
following statement:

 Chapter 4. Controlling Database Access 171

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH

WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND

(CONTROLAUTH = 'Y' OR

UPDATEAUTH = 'Y' OR UPDATEAUTH = 'G')

 UNION

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.DBAUTH

WHERE DBADMAUTH = 'Y'

 UNION

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH

WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND

PRIVTYPE = 'U'

This retrieves any authorization names with DBADM authority, as well as those names
to which CONTROL or UPDATE privileges have been directly granted. However, it will
not return the authorization names of users who only hold SYSADM authority.

Remember that some of the authorization names may be groups, not just individual
users.

Retrieving All Privileges Granted to Users
 By making queries on the system catalog views, users can retrieve a list of the
privileges they hold and a list of the privileges they have granted to other users. For
example, the following statement retrieves a list of the database privileges that have
been directly granted to an individual authorization name:

SELECT * FROM SYSCAT.DBAUTH

WHERE GRANTEE = USER AND GRANTEETYPE = 'U'

The following statement retrieves a list of the table privileges that were directly granted
by a specific user:

SELECT * FROM SYSCAT.TABAUTH

 WHERE GRANTOR = USER

The following statement retrieves a list of the individual column privileges that were
directly granted by a specific user:

SELECT * FROM SYSCAT.COLAUTH

 WHERE GRANTOR = USER

The keyword USER in these statements is always equal to the value of a user's
authorization name. USER is a read-only special register. See the SQL Referencefor
more information on special registers.

Securing the System Catalog Views
 During database creation, SELECT privilege on the system catalog views is granted to
PUBLIC. (See “Database Privileges” on page 159 for other privileges that are
automatically granted to PUBLIC.) In most cases, this does not present any security
problems. For very sensitive data, however, it may be inappropriate, as these tables
describe every object in the database. If this is the case, consider revoking the
SELECT privilege from PUBLIC; then grant the SELECT privilege as required to

172 Administration Guide

specific users. Granting and revoking SELECT on the system catalog views is done in
the same way as for any view, but you must have either SYSADM or DBADM authority
to do this.

At a minimum, you should consider restricting access to the SYSCAT.DBAUTH,
SYSCAT.TABAUTH, SYSCAT.PACKAGEAUTH, SYSCAT.INDEXAUTH,
SYSCAT.COLAUTH, and SYSCAT.SCHEMAAUTH catalog views. This would prevent
information on user privileges, which could be used to target an authorization name for
break-in, becoming available to everyone with access to the database.

You should also examine the columns for which statistics are gathered (see
Chapter 12, “System Catalog Statistics” on page 435). Some of the statistics recorded
in the system catalog contain data values which could be sensitive information in your
environment. If these statistics contain sensitive data, you may wish to revoke SELECT
privilege from PUBLIC for the SYSCAT.COLUMNS and SYSCAT.COLDIST catalog
views.

 If you wish to limit access to the system catalog views, you could define views to let
each authorization name retrieve information about its own privileges.

For example, the following view MYSELECTS includes the owner and name of every
table on which a user's authorization name has been directly granted SELECT privilege:

CREATE VIEW MYSELECTS AS

SELECT TABSCHEMA, TABNAME FROM SYSCAT.TABAUTH

WHERE GRANTEETYPE = 'U'

AND GRANTEE = USER

AND SELECTAUTH = 'Y'

The keyword USER in this statement is always equal to the value of the authorization
name.

The following statement makes the view available to every authorization name:

GRANT SELECT ON TABLE MYSELECTS TO PUBLIC

And finally, remember to revoke SELECT privilege on the base table:

REVOKE SELECT ON TABLE SYSCAT.TABAUTH FROM PUBLIC

 Chapter 4. Controlling Database Access 173

174 Administration Guide

| Chapter 5. Auditing DB2 Activities

| Authentication, authorities, and privileges can be used to control known or anticipated
| access to data, but these methods may be insufficient to prevent unknown or
| unanticipated access to data. To assist in the detection of this latter type of data
| access, DB2 provides an audit facility. Successful monitoring of unwanted data access
| and subsequent analysis can lead to improvements in the control of data access and
| the ultimate prevention of malicious or careless unauthorized access to the data. The
| monitoring of application and individual user access, including system administration
| actions, can provide a historical record of activity on your database systems.

| The DB2 audit facility generates, and allows you to maintain, an audit trail for a series
| of predefined database events. The records generated from this facility are kept in an
| audit log file. The analysis of these records can reveal usage patterns which would
| identify system misuse. Once identified, actions can be taken to reduce or eliminate
| such system misuse.

| The audit facility acts at an instance level, recording all instance level activities and
| database level activities.

| When working in a partitioned database environment, many of the auditable events
| occur at the partition at which the user is connected (the coordinator node) or at the
| catalog node (if they are not the same partition). The implication of this is that audit
| records can be generated by more than one partition. Part of each audit record
| contains information on the coordinator node and originating node identifiers.

| The audit log (db2audit.log) and the audit configuration file (db2audit.cfg) are located in
| the instance's security subdirectory. At the time you create an instance, read/write
| permissions are set on these files, where possible, by the operating system. By default,
| the permissions are read/write for the instance owner only. It is recommended that you
| do not change these permissions.

| Users of the audit facility administrator tool, db2audit, must have SYSADM
| authority/privileges.

| The audit facility must be stopped and started explicitly. When starting, the audit facility
| uses existing audit configuration information. Since the audit facility is independent of
| the DB2 server, it will remain active even if the instance is stopped. In fact, when the
| instance is stopped, an audit record may be generated in the audit log.

| Authorized users of the audit facility can control the following actions within the audit
| facility:

| ¹ Start recording auditable events within the DB2 instance.

| ¹ Stop recording auditable events within the DB2 instance.

| ¹ Configure the behavior of the audit facility, including selecting the categories of the
| auditable events to be recorded.

 Copyright IBM Corp. 1993, 1998 175

| ¹ Request a description of the current audit configuration.

| ¹ Flush any pending audit records from the instance and write them to the audit log.

| ¹ Extract audit records by formatting and copying them from the audit log to a flat file
| or ASCII delimited files. Extraction is done for one of two reasons: In preparation
| for analysis of log records or in preparation for pruning of log records.

| ¹ Prune audit records from the current audit log.

| There are different categories of audit records that may be generated. In the description
| of the categories of events available for auditing (below), you should notice that
| following the name of each category is a one-word keyword used to identify the
| category type. The categories of events available for auditing are:

| ¹ Audit (AUDIT). Generates records when audit settings are changed or when the
| audit log is accessed.

| ¹ Authorization Checking (CHECKING). Generates records during authorization
| checking of attempts to access or manipulate DB2 objects or functions.

| ¹ Object Maintenance (OBJMAINT). Generates records when creating or dropping
| data objects.

| ¹ Security Maintenance (SECMAINT). Generates records when granting or revoking:
| Object or database privileges, or DBADM authority. Records are also generated
| when the database manager security configuration parameters SYSADM_GROUP,
| SYSCTRL_GROUP, or SYSMAINT_GROUP are modified.

| ¹ System Administration (SYSADMIN). Generates records when operations requiring
| SYSADM, SYSMAINT, or SYSCTRL authority are performed.

| ¹ User Validation (VALIDATE). Generates records when authenticating users or
| retrieving system security information.

| ¹ Operation Context (CONTEXT). Generates records to show the operation context
| when a database operation is performed. This category allows for better
| interpretation of the audit log file. When used with the log's event correlator field, a
| group of events can be associated back to a single database operation. For
| example, an SQL statement for dynamic SQL, a package identifier for static SQL,
| or an indicator of the type of operation being performed, such as CONNECT, can
| provide needed context when analyzing audit results.

| Note: The SQL statement providing the operation context might be very long and
| is completely shown within the CONTEXT record. This can make the
| CONTEXT record very large.

| ¹ You can audit failures, successes, or both.

| Any operation on the database may generate several records. The actual number of
| records generated and moved to the audit log depends on the number of categories of
| events to be recorded as specified by the audit facility configuration. It also depends on
| whether successes, failures, or both, are audited. For this reason, it is important to be
| selective of the events to audit.

176 Administration Guide

| Audit Facility Behavior
| The audit facility records auditable events including those affecting database instances.
| For this reason, the audit facility is an independent part of DB2 that can operate even if
| the DB2 instance is stopped. If the audit facility is active, then when a stopped instance
| is started, auditing of database events in the instance resumes.

| The timing of the writing of audit records to the audit log can have a significant impact
| on the performance of databases in the instance. The writing of the audit records can
| take place synchronously or asynchronously with the occurrence of the events causing
| the generation of those records. The value of the AUDIT_BUF_SZ database manager
| configuration parameter determines when the writing of audit records is done.

| If the value of this parameter is zero (0), the writing is done synchronously. The event
| generating the audit record will wait until the record is written to disk. The wait
| associated with each record causes the performance of DB2 to decrease.

| If the value of AUDIT_BUF_SZ is greater than zero, the record writing is done
| asynchronously. The value of the AUDIT_BUF_SZ when it is greater than zero is the
| number of 4 KB pages used to create an internal buffer. The internal buffer is used to
| keep a number of audit records before writing a group of them out to disk. The
| statement generating the audit record as a result of an audit event will not wait until the
| record is written to disk, and can continue its operation.

| In the asynchronous case, it could be possible for audit records to remain in an unfilled
| buffer for some time. To prevent this from happening for an extended period, the
| database manager will force the writing of the audit records regularly. An authorized
| user of the audit facility may also flush the audit buffer with an explicit request.

| There are differences when an error occurs dependent on whether there is
| synchronous or asynchronous record writing. In asynchronous mode there may be
| some records lost because the audit records are buffered before being written to disk.
| In synchronous mode there may be one record lost because the error could only
| prevent at most one audit record from being written.

| The setting of the ERRORTYPE audit facility parameter controls how errors are
| managed between DB2 and the audit facility. When the audit facility is active, and the
| setting of the ERRORTYPE audit facility parameter is AUDIT, then the audit facility is
| treated in the same way as any other part of DB2. An audit record must be written (to
| disk in synchronous mode; or to the audit buffer in asynchronous mode) for an audit
| event associated with a statement to be considered successful. Whenever an error is
| encountered when running in this mode, a negative SQLCODE is returned to the
| application for the statement generating an audit record. If the error type is set to
| NORMAL, then any error from db2audit is ignored and the operation's SQLCODE is
| returned. See “Audit Facility Usage Scenarios” on page 178 for additional details on the
| ERRORTYPE audit facility parameters (and other related parameters).

| Depending on the API or SQL statement and the audit settings for the DB2 instance,
| none, one, or several audit records may be generated for a particular event. For

 Chapter 5. Auditing DB2 Activities 177

| example, an SQL UPDATE statement with a SELECT subquery may result in one audit
| record containing the results of the authorization check for UPDATE privilege on a table
| and another record containing the results of the authorization check for SELECT
| privilege on a table.

| For dynamic data manipulation language (DML) statements, audit records are
| generated for all authorization checking at the time that the statement is prepared.
| Reuse of those statements by the same user will not be audited again since no
| authorization checking takes place at that time. However, if a change has been made to
| one of the catalog tables containing privilege information, then in the next unit of work,
| the statement privileges for the cached dynamic SQL statements are re-checked and
| one or more new audit records created.

| For a package containing only static DML statements, the only auditable event that
| could generate an audit record is the authorization check to see if a user has the
| privilege to execute that package. The authorization checking and possible audit record
| creation required for the static SQL statements in the package is carried out at the time
| the package is precompiled or bound. The execution of the static SQL statements
| within the package is not auditable. When a package is re-bound either explicitly by the
| user, or implicitly by the system, audit records are generated for the authorization
| checks required by the static SQL statements.

| For statements where authorization checking is performed at statement execution time
| (for example, data definition language (DDL), GRANT, and REVOKE statements), audit
| records are generated whenever these statements are used.

| Note: When executing DDL, the section number recorded for all events (except the
| context events) in the audit record will be zero (0) no matter what the actual
| section number of the statement might have been.

| Audit Facility Usage Scenarios
| By considering the syntax of the audit facility, we can review the way the facility can be
| used.

178 Administration Guide

db2audit

describe
extract
flush
prune

Audit Configuration

Audit Extraction

status

database database name
category

audit
checking
objmaint
secmaint
sysadmin
validate
context

audit
checking
objmaint
secmaint
sysadmin
validate
context

both
success
failure

Audit Configuration:

Audit Extraction:

status
failure
success

configure reset

all

all

start
stop

,

,

scope

delasc
file output file

errortype audit
normal

date
pathname

YYYYMMDDHH
Path_with_temp_space

| Figure 21. DB2AUDIT Syntax

| The following is a description and the implied use of each parameter:

 Chapter 5. Auditing DB2 Activities 179

| configure
| This parameter allows the modification of the db2audit.cfg configuration file
| in the instance's security subdirectory. Updates to this file can occur even
| when the instance is shut down. Updates occurring when the instance is
| active dynamically affect the auditing being done by DB2 across all
| partitions. The configure action on the configuration file causes the creation
| of an audit record if the audit facility has been started and the audit
| category of auditable events is being audited.

| The following are the possible actions on the configuration file:

| ¹ RESET. This action causes the configuration file to revert to the initial
| configuration (where SCOPE is all of the categories except CONTEXT,
| STATUS is FAILURE, ERRORTYPE is NORMAL, and AUDIT is OFF).
| This action will create a new audit configuration file if the original has
| been lost or damaged.

| ¹ SCOPE. This action specifies which category or categories of events
| are to be audited. This action also allows a particular focus for auditing
| and reduces the growth of the log. It is recommended that the number
| and type of events being logged be limited as much as possible,
| otherwise the audit log will grow rapidly.

| Note: Please notice that the default SCOPE is all categories except
| CONTEXT and may result in records being generated rapidly.
| In conjunction with the mode (synchronous or asynchronous),
| the selection of the categories may result in a significant
| performance reduction and significantly increased disk
| requirements.

| ¹ STATUS. This action specifies whether only successful or failing
| events, or both successful and failing events, should be logged.

| Note: Context events occur before the status of an operation is
| known. Therefore, such events are logged regardless of the
| value associated with this parameter.

| ¹ ERRORTYPE. This action specifies whether audit errors are returned
| to the user or are ignored. The value for this parameter can be:

| – AUDIT. All errors including errors occurring within the audit facility
| are managed by DB2 and all negative SQLCODEs are reported
| back to the caller.

| – NORMAL. Any errors generated by db2audit are ignored and only
| the SQLCODEs for the errors associated with the operation being
| performed are returned to the application.

| describe
| This parameter displays to standard output the current audit configuration
| information and status.

180 Administration Guide

| extract
| This parameter allows the movement of audit records from the audit log to
| an indicated destination. If no optional clauses are specified, then all of the
| audit records are extracted and placed in a flat report file. If the “extract”
| parameter is not specified, the audit record is placed a file called
| db2audit.out in the security directory. If output_file already exists, an
| error message is returned.

| The following are the possible options that can be used when extracting:

| ¹ FILE. The extracted audit records are placed in a file (output_file).

| ¹ DELASC. The extracted audit records are placed in a delimited ASCII
| format suitable for loading into DB2 relational tables. The output is
| placed in separate files: one for each category. The filenames are:

| – audit.del
| – checking.del
| – objmaint.del
| – secmaint.del
| – sysadmin.del
| – validate.del
| – context.del

| The DELASC choice also allows you to override the default audit
| character string delimiter (“0xff”) when extracting from the audit log.
| You would use DELASC DELIMITER followed by the new delimiter
| that you wish to use in preparation for loading into a table that will hold
| the audit records. The new load delimiter can be either a single
| character (such as !) or a four-byte string representing a hexadecimal
| number (such as 0xff). For more information, refer to “Audit Facility
| Tips and Techniques” on page 196.

| ¹ CATEGORY. The audit records for the specified categories of audit
| events are to be extracted. If not specified, all categories are eligible
| for extraction.

| ¹ DATABASE. The audit records for a specified database are to be
| extracted. If not specified, all databases are eligible for extraction.

| ¹ STATUS. The audit records for the specified status are to be
| extracted. If not specified, all records are eligible for extraction.

| flush
| This parameter forces any pending audit records to be written to the audit
| log. Also, the audit state is reset in the engine from “unable to log” to a
| state of “ready to log” if the audit facility is in an error state.

| prune
| This parameter allows for the deletion of audit records from the audit log. If
| the audit facility is active and the “audit” category of events has been
| specified for auditing, then an audit record will be logged after the audit log
| is pruned.

 Chapter 5. Auditing DB2 Activities 181

SQL1322N ¹SQL1323N

| The following are the possible options that can be used when pruning:

| ¹ ALL. All of the audit records in the audit log are to be deleted.

| ¹ DATE yyyymmddhh. The user can specify that all audit records that
| occurred on or before the date/time specified are to be deleted from
| the audit log. The user may optionally supply a

| pathname

| which the audit facility will use as a temporary space when pruning the
| audit log. This temporary space allows for the pruning of the audit log
| when the disk it resides on is full and does not have enough space to
| allow for a pruning operation.

| start
| This parameter causes the audit facility to begin auditing events based on
| the contents of the db2audit.cfg file. In a partitioned DB2 instance, auditing
| will begin on all partitions when this clause is specified. If the “audit”
| category of events has been specified for auditing, then an audit record will
| be logged when the audit facility is started.

| stop
| This parameter causes the audit facility to stop auditing events. In a
| partitioned DB2 instance, auditing will be stopped on all partitions when this
| clause is specified. If the “audit” category of events has been specified for
| auditing, then an audit record will be logged when the audit facility is
| stopped.

| Audit Facility Messages

| SQL1322N An error occurred when writing to the audit log file.

| Explanation: The DB2 audit facility encountered an error when invoked to record an audit event
| to the audit log file. There is no space on the file system where the audit log resides.

| User Response: The system administrator should free up space on this file system or prune the
| audit log to reduce its size.

| When more space is available, use db2audit to flush out any data in memory, and to reset the
| auditor to a ready state. Ensure that appropriate extracts have occurred, or a copy of the log has
| been made before pruning the log, as deleted records are not recoverable.

| sqlcode: 1322

| sqlstate: 50030

| SQL1323N An error occurred when accessing the audit configuration file.

| Explanation: The audit configuration file (db2audit.cfg) could not be opened, or was invalid.
| Possible reasons for this error are that the db2audit.cfg file either does not exist, or has been
| damaged.

| User Response: Take one of the following actions:

| ¹ Restore from a saved version of the file.

| ¹ Reset the audit facility configuration file by issuing

182 Administration Guide

| db2audit reset

| sqlcode: 1323

| sqlstate: 57019

| Audit Facility Record Layouts
| When an audit record is extracted from the audit log using the DELASC extract option,
| each record will have one of the formats shown in the following tables. Each table will
| begin by showing the contents of a sample record. The description of each item of the
| record is shown one row at a time in the associated table. If the item is important, the
| name of the item will be highlighted (bold). These items contain information that are of
| most interest to you.

| Notes:

| 1. Not all fields in the sample records will have values.

| 2. Some fields such as “Access Attempted” are stored in the delimited ASCII format
| as bitmaps. In this flat report file, however, these fields will appear as a set of
| strings representing the bitmap values.

| Table 23. Audit Record Layout for AUDIT Events

| timestamp=1998-06-24-11.54.05.151232;category=AUDIT;audit event=START;

| event correlator=0;event status=0;

| userid=boss;authid=BOSS;

| NAME| FORMAT| DESCRIPTION

| Timestamp| CHAR(26)| Date and time of the audit event.

| Category| CHAR(8)| Category of audit event. Possible values are:

| AUDIT

| Audit Event| VARCHAR(32)| Specific Audit Event.

| Possible values include: CONFIGURE, DB2AUD, EXTRACT,
| FLUSH, PRUNE, START, STOP, and UPDATE_ADMIN_CFG

| Event Correlator| INTEGER| Correlation identifier for the operation being audited. Can be used
| to identify what audit records are associated with a single event.

| Event Status| INTEGER| Status of audit event, represented by an SQLCODE where

| Successful event > = 0
| Failed event < 0

| User ID| VARCHAR(1024)| User ID at time of audit event.

| Authorization ID| VARCHAR(128)| Authorization ID at time of audit event.

 Chapter 5. Auditing DB2 Activities 183

| Table 24 (Page 1 of 2). Audit Record Layout for CHECKING Events

| timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit event=CHECKING_OBJECT;

| event correlator=2;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| object name=FOO;object type=DATABASE;

| access approval reason=DATABASE;access attempted=CONNECT;

| NAME| FORMAT| DESCRIPTION

| Timestamp| CHAR(26)| Date and time of the audit event.

| Category| CHAR(8)| Category of audit event. Possible values are:

| CHECKING

| Audit Event| VARCHAR(32)| Specific Audit Event.

| Possible values include: CHECKING_OBJECT and
| CHECKING_FUNCTION

| Event Correlator| INTEGER| Correlation identifier for the operation being audited. Can be used
| to identify what audit records are associated with a single event.

| Event Status| INTEGER| Status of audit event, represented by an SQLCODE where

| Successful event > = 0
| Failed event < 0

| Database Name| CHAR(8)| Name of the database for which the event was generated. Blank if
| this was an instance level audit event.

| User ID| VARCHAR(1024)| User ID at time of audit event.

| Authorization ID| VARCHAR(128)| Authorization ID at time of audit event.

| Origin Node
| Number
| SMALLINT| Node number at which the audit event occurred.

| Coordinator Node
| Number
| SMALLINT| Node number of the coordinator.

| Application ID| VARCHAR (255)| Application ID in use at the time the audit event occurred.

| Application Name| VARCHAR (1024)| Application Name in use at the time the audit event occurred.

| Package Schema| VARCHAR (128)| Schema of the package in use at the time of the audit event.

| Package Name| VARCHAR (128)| Name of package in use at the time the audit event occurred.

| Package Section
| Number
| SMALLINT| Section number in package being used at the time the audit event
| occurred.

| Object Schema| VARCHAR (128)| Schema of the object for which the audit event was generated.

| Object Name| VARCHAR (128)| Name of object for which the audit event was generated.

| Object Type| VARCHAR (32)| Type of object for which the audit event was generated. Possible
| values include: TABLE, VIEW, ALIAS, FUNCTION, INDEX,
| PACKAGE, DATA_TYPE, NODEGROUP, SCHEMA,
| STORED_PROCEDURE, BUFFERPOOL, TABLESPACE,
| EVENT_MONITOR, TRIGGER, DATABASE, INSTANCE,
| FOREIGN_KEY, PRIMARY_KEY, UNIQUE_CONSTRAINT,
| CHECK_CONSTRAINT, and NONE.

184 Administration Guide

| Table 24 (Page 2 of 2). Audit Record Layout for CHECKING Events

| timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit event=CHECKING_OBJECT;

| event correlator=2;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| object name=FOO;object type=DATABASE;

| access approval reason=DATABASE;access attempted=CONNECT;

| NAME| FORMAT| DESCRIPTION

| Access Approval
| Reason
| CHAR(10)| Indicates the reason why access was approved for this audit
| event. Possible values include: Those shown in the first list
| following this table.

| Access
| Attempted
| CHAR(10)| Indicates the type of access that was attempted. Possible values
| include: Those shown in the second list following this table.

| The following is the list of possible CHECKING access approval reasons:

| 0x0000000000000001 ACCESS DENIED
| Access is not approved; rather, it was denied.

| 0x0000000000000002 SYSADM
| Access is approved; the application/user has SYSADM authority.

| 0x0000000000000004 SYSCTRL
| Access is approved; the application/user has SYSCTRL authority.

| 0x0000000000000008 SYSMAINT
| Access is approved; the application/user has SYSMAINT authority.

| 0x0000000000000010 DBADM
| Access is approved; the application/user has DBADM authority.

| 0x0000000000000020 DATABASE PRIVILEGE
| Access is approved; the application/user has an explicit privilege on the
| database.

| 0x0000000000000040 OBJECT PRIVILEGE
| Access is approved; the application/user has an explicit privilege on the
| object or function.

| 0x0000000000000080 DEFINER
| Access is approved; the application/user is the definer of the object or
| function.

| 0x0000000000000100 OWNER
| Access is approved; the application/user is the owner of the object or
| function.

| 0x0000000000000200 CONTROL
| Access is approved; the application/user has CONTROL privilege on the
| object or function.

| 0x0000000000000400 BIND
| Access is approved; the application/user has bind privilege on the package.

 Chapter 5. Auditing DB2 Activities 185

| The following is the list of possible CHECKING access attempted types:

| 0x0000000000000002 ALTER
| Attempt to alter an object.

| 0x0000000000000004 DELETE
| Attempt to delete an object.

| 0x0000000000000008 INDEX
| Attempt to use an index.

| 0x0000000000000010 INSERT
| Attempt to insert into an object.

| 0x0000000000000020 SELECT
| Attempt to query a table or view.

| 0x0000000000000040 UPDATE
| Attempt to update data in an object.

| 0x0000000000000080 REFERENCE
| Attempt to establish referential constraints between objects.

| 0x0000000000000100 CREATE
| Attempt to create an object.

| 0x0000000000000200 DROP
| Attempt to drop an object.

| 0x0000000000000400 CREATEIN
| Attempt to create an object within another schema.

| 0x0000000000000800 DROPIN
| Attempt to drop an object found within another schema.

| 0x0000000000001000 ALTERIN
| Attempt to alter or modify an object found within another schema.

| 0x0000000000002000 EXECUTE
| Attempt to execute or run an application.

| 0x0000000000004000 BIND
| Attempt to bind or prepare an application.

| 0x0000000000008000 SET EVENT MONITOR
| Attempt to set event monitor switches.

| 0x0000000000010000 SET CONSTRAINTS
| Attempt to set constraints on an object.

| 0x0000000000020000 COMMENT ON
| Attempt to create comments on an object.

| 0x0000000000040000 GRANT
| Attempt to grant privileges on an object to another user ID.

| 0x0000000000080000 REVOKE
| Attempt to revoke privileges on an object from a user ID.

186 Administration Guide

| 0x0000000000100000 LOCK
| Attempt to lock an object.

| 0x0000000000200000 RENAME
| Attempt to rename an object.

| 0x0000000000400000 CONNECT
| Attempt to connect to an object.

| 0x0000000000800000 Member of SYS Group
| Attempt to access or use a member of the SYS group.

| Table 25 (Page 1 of 2). Audit Record Layout for OBJMAINT Events

| timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;audit event=CREATE_OBJECT;

| event correlator=3;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

| NAME| FORMAT| DESCRIPTION

| Timestamp| CHAR(26)| Date and time of the audit event.

| Category| CHAR(8)| Category of audit event. Possible values are:

| OBJMAINT

| Audit Event| VARCHAR(32)| Specific Audit Event.

| Possible values include: CREATE_OBJECT and DROP_OBJECT

| Event Correlator| INTEGER| Correlation identifier for the operation being audited. Can be used
| to identify what audit records are associated with a single event.

| Event Status| INTEGER| Status of audit event, represented by an SQLCODE where

| Successful event > = 0
| Failed event < 0

| Database Name| CHAR(8)| Name of the database for which the event was generated. Blank if
| this was an instance level audit event.

| User ID| VARCHAR(1024)| User ID at time of audit event.

| Authorization ID| VARCHAR(128)| Authorization ID at time of audit event.

| Origin Node
| Number
| SMALLINT| Node number at which the audit event occurred.

| Coordinator Node
| Number
| SMALLINT| Node number of the coordinator.

| Application ID| VARCHAR (255)| Application ID in use at the time the audit event occurred.

| Application Name| VARCHAR (1024)| Application Name in use at the time the audit event occurred.

| Package Schema| VARCHAR (128)| Schema of the package in use at the time of the audit event.

| Package Name| VARCHAR (128)| Name of package in use at the time the audit event occurred.

| Package Section
| Number
| SMALLINT| Section number in package being used at the time the audit event
| occurred.

| Object Schema| VARCHAR (128)| Schema of the object for which the audit event was generated.

 Chapter 5. Auditing DB2 Activities 187

| Table 25 (Page 2 of 2). Audit Record Layout for OBJMAINT Events

| timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;audit event=CREATE_OBJECT;

| event correlator=3;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

| NAME| FORMAT| DESCRIPTION

| Object Name| VARCHAR (128)| Name of object for which the audit event was generated.

| Object Type| VARCHAR (32)| Type of object for which the audit event was generated. Possible
| values include: TABLE, VIEW, ALIAS, FUNCTION, INDEX,
| PACKAGE, DATA_TYPE, NODEGROUP, SCHEMA,
| STORED_PROCEDURE, BUFFERPOOL, TABLESPACE,
| EVENT_MONITOR, TRIGGER, DATABASE, INSTANCE,
| FOREIGN_KEY, PRIMARY_KEY, UNIQUE_CONSTRAINT,
| CHECK_CONSTRAINT, and NONE.

| Table 26 (Page 1 of 2). Audit Record Layout for SECMAINT Events

| timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit event=GRANT;

| event correlator=4;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.boss.980624155728;application name=db2bp;

| package schema=NULLID;package name=SQLC28A1;

| package section=0;object schema=BOSS;object name=T1;object type=TABLE;

| grantor=BOSS;grantee=WORKER;grantee type=USER;privilege=SELECT;

| NAME| FORMAT| DESCRIPTION

| Timestamp| CHAR(26)| Date and time of the audit event.

| Category| CHAR(8)| Category of audit event. Possible values are:

| SECMAINT

| Audit Event| VARCHAR(32)| Specific Audit Event.

| Possible values include: GRANT, REVOKE, IMPLICIT_GRANT,
| IMPLICIT_REVOKE, and UPDATE_DBM_CFG.

| Event Correlator| INTEGER| Correlation identifier for the operation being audited. Can be used
| to identify what audit records are associated with a single event.

| Event Status| INTEGER| Status of audit event, represented by an SQLCODE where

| Successful event > = 0
| Failed event < 0

| Database Name| CHAR(8)| Name of the database for which the event was generated. Blank if
| this was an instance level audit event.

| User ID| VARCHAR(1024)| User ID at time of audit event.

| Authorization ID| VARCHAR(128)| Authorization ID at time of audit event.

| Origin Node
| Number
| SMALLINT| Node number at which the audit event occurred.

188 Administration Guide

| Table 26 (Page 2 of 2). Audit Record Layout for SECMAINT Events

| timestamp=1998-06-24-11.57.45.188101;category=SECMAINT;audit event=GRANT;

| event correlator=4;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.boss.980624155728;application name=db2bp;

| package schema=NULLID;package name=SQLC28A1;

| package section=0;object schema=BOSS;object name=T1;object type=TABLE;

| grantor=BOSS;grantee=WORKER;grantee type=USER;privilege=SELECT;

| NAME| FORMAT| DESCRIPTION

| Coordinator Node
| Number
| SMALLINT| Node number of the coordinator.

| Application ID| VARCHAR (255)| Application ID in use at the time the audit event occurred.

| Application Name| VARCHAR (1024)| Application Name in use at the time the audit event occurred.

| Package Schema| VARCHAR (128)| Schema of the package in use at the time of the audit event.

| Package Name| VARCHAR (128)| Name of package in use at the time the audit event occurred.

| Package Section
| Number
| SMALLINT| Section number in package being used at the time the audit event
| occurred.

| Object Schema| VARCHAR (128)| Schema of the object for which the audit event was generated.

| Object Name| VARCHAR (128)| Name of object for which the audit event was generated.

| Object Type| VARCHAR (32)| Type of object for which the audit event was generated. Possible
| values include: TABLE, VIEW, ALIAS, FUNCTION, INDEX,
| PACKAGE, DATA_TYPE, NODEGROUP, SCHEMA,
| STORED_PROCEDURE, BUFFERPOOL, TABLESPACE,
| EVENT_MONITOR, TRIGGER, DATABASE, INSTANCE,
| FOREIGN_KEY, PRIMARY_KEY, UNIQUE_CONSTRAINT,
| CHECK_CONSTRAINT, and NONE.

| Grantor| VARCHAR (128)| Grantor ID.

| Grantee| VARCHAR (128)| Grantee ID for which a privilege or authority was granted or
| revoked.

| Grantee Type| VARCHAR (32)| Type of the grantee that was granted to or revoked from. Possible
| values include: USER, GROUP, or BOTH.

| Privilege or
| Authority
| CHAR(10)| Indicates the type of privilege or authority granted or revoked.
| Possible values include: Those shown in the list following this
| table.

| The following is the list of possible SECMAINT privileges or authorities:

| 0x0000000000000001 Control Table
| Control privilege granted or revoked on a table.

| 0x0000000000000002 ALTER TABLE
| Privilege granted or revoked to alter a table.

| 0x0000000000000004 ALTER TABLE with GRANT
| Privilege granted or revoked to alter a table with granting of privileges
| allowed.

 Chapter 5. Auditing DB2 Activities 189

| 0x0000000000000008 DELETE TABLE
| Privilege granted or revoked to drop a table.

| 0x0000000000000010 DELETE TABLE with GRANT
| Privilege granted or revoked to drop a table with granting of privileges
| allowed.

| 0x0000000000000020 Table Index
| Privilege granted or revoked on an index.

| 0x0000000000000040 Table Index with GRANT
| Privilege granted or revoked on an index with granting of privileges
| allowed.

| 0x0000000000000080 Table INSERT
| Privilege granted or revoked on an insert on a table.

| 0x0000000000000100 Table INSERT with GRANT
| Privilege granted or revoked on an insert on a table with granting of
| privileges allowed.

| 0x0000000000000200 Table SELECT
| Privilege granted or revoked on a select on a table.

| 0x0000000000000400 Table SELECT with GRANT
| Privilege granted or revoked on a select on a table with granting of
| privileges allowed.

| 0x0000000000000800 Table UPDATE
| Privilege granted or revoked on an update on a table.

| 0x0000000000001000 Table UPDATE with GRANT
| Privilege granted or revoked on an update on a table with granting of
| privileges allowed.

| 0x0000000000002000 Table REFERENCE
| Privilege granted or revoked on a reference on a table.

| 0x0000000000004000 Table REFERENCE with GRANT
| Privilege granted or revoked on a reference on a table with granting of
| privileges allowed.

| 0x0000000000008000 Package BIND
| Bind privilege granted or revoked on a package.

| 0x0000000000010000 Package EXECUTE
| Execute privilege granted or revoked on a package.

| 0x0000000000020000 CREATEIN Schema
| Createin privilege granted or revoked on a schema.

| 0x0000000000040000 CREATEIN Schema with GRANT
| Createin privilege granted or revoked on a schema with granting of
| privileges allowed.

| 0x0000000000080000 DROPIN Schema
| Dropin privilege granted or revoked on a schema.

190 Administration Guide

| 0x0000000000100000 DROPIN Schema with GRANT
| Dropin privilege granted or revoked on a schema with granting of privileges
| allowed.

| 0x0000000000200000 ALTERIN Schema
| Alterin privilege granted or revoked on a schema.

| 0x0000000000400000 ALTERIN Schema with GRANT
| Alterin privilege granted or revoked on a schema with granting of privileges
| allowed.

| 0x0000000000800000 DBADM Authority
| DBADM authority granted or revoked.

| 0x0000000001000000 CREATETAB Authority
| Createtab authority granted or revoked.

| 0x0000000002000000 BINDADD Authority
| Bindadd authority granted or revoked.

| 0x0000000004000000 CONNECT Authority
| Connect authority granted or revoked.

| 0x0000000008000000 Create not fenced Authority
| Create not fenced authority granted or revoked.

| 0x0000000010000000 Implicit Schema Authority
| Implicit schema authority granted or revoked.

| Table 27 (Page 1 of 2). Audit Record Layout for SYSADMIN Events

| timestamp=1998-06-24-11.54.04.129923;category=SYSADMIN;audit event=DB2AUDIT;

| event correlator=1;event status=0;

| userid=boss;authid=BOSS;

| application id=*LOCAL.boss.980624155404;application name=db2audit;

| NAME| FORMAT| DESCRIPTION

| Timestamp| CHAR(26)| Date and time of the audit event.

| Category| CHAR(8)| Category of audit event. Possible values are:

| SYSADMIN

| Audit Event| VARCHAR(32)| Specific Audit Event.

| Possible values include: Those shown in the list following this
| table.

| Event Correlator| INTEGER| Correlation identifier for the operation being audited. Can be used
| to identify what audit records are associated with a single event.

| Event Status| INTEGER| Status of audit event, represented by an SQLCODE where

| Successful event > = 0
| Failed event < 0

| Database Name| CHAR(8)| Name of the database for which the event was generated. Blank if
| this was an instance level audit event.

| User ID| VARCHAR(1024)| User ID at time of audit event.

 Chapter 5. Auditing DB2 Activities 191

| Table 27 (Page 2 of 2). Audit Record Layout for SYSADMIN Events

| timestamp=1998-06-24-11.54.04.129923;category=SYSADMIN;audit event=DB2AUDIT;

| event correlator=1;event status=0;

| userid=boss;authid=BOSS;

| application id=*LOCAL.boss.980624155404;application name=db2audit;

| NAME| FORMAT| DESCRIPTION

| Authorization ID| VARCHAR(128)| Authorization ID at time of audit event.

| Origin Node
| Number
| SMALLINT| Node number at which the audit event occurred.

| Coordinator Node
| Number
| SMALLINT| Node number of the coordinator.

| Application ID| VARCHAR (255)| Application ID in use at the time the audit event occurred.

| Application Name| VARCHAR (1024)| Application Name in use at the time the audit event occurred.

| Package Schema| VARCHAR (128)| Schema of the package in use at the time of the audit event.

| Package Name| VARCHAR (128)| Name of package in use at the time the audit event occurred.

| Package Section
| Number
| SMALLINT| Section number in package being used at the time the audit event
| occurred.

| The following is the list of possible SYSADMIN audit events:

192 Administration Guide

| Table 28. SYSADMIN Audit Events

| START_DB2
| STOP_DB2
| CREATE_DATABASE
| DROP_DATABASE
| UPDATE_DBM_CFG
| UPDATE_DB_CFG
| CREATE_TABLESPACE
| DROP_TABLESPACE
| ALTER_TABLESPACE
| CREATE_NODEGROUP
| DROP_NODEGROUP
| ALTER_NODEGROUP
| CREATE_BUFFERPOOL
| DROP_BUFFERPOOL
| ALTER_BUFFERPOOL
| CREATE_EVENT_MONITOR
| DROP_EVENT_MONITOR
| ENABLE_MULTIPAGE
| MIGRATE_DB_DIR
| DB2TRC
| DB2SET
| ACTIVATE_DB
| ADD_NODE
| BACKUP_DB
| CATALOG_NODE
| CATALOG_DB
| CATALOG_DCS_DB
| CHANGE_DB_COMMENT
| DEACTIVATE_DB
| DROP_NODE_VERIFY
| FORCE_APPLICATION
| GET_SNAPSHOT
| LIST_DRDA_INDOUBT_TRANSACTIONS
| MIGRATE_DB
| RESET_ADMIN_CFG
| RESET_DB_CFG
| RESET_DBM_CFG
| RESET_MONITOR
| RESTORE_DB

| ROLLFORWARD_DB
| SET_RUNTIME_DEGREE
| SET_TABLESPACE_CONTAINERS
| UNCATALOG_DB
| UNCATALOG_DCS_DB
| UNCATALOG_NODE
| UPDATE_ADMIN_CFG
| UPDATE_MON_SWITCHES
| LOAD_TABLE
| DB2AUDIT
| SET_APPL_PRIORITY
| CREATE_DB_AT_NODE
| KILLDBM
| MIGRATE_SYSTEM_DIRECTORY
| DB2REMOT
| DB2AUD
| MERGE_DBM_CONFIG_FILE
| UPDATE_CLI_CONFIGURATION
| OPEN_TABLESPACE_QUERY
| SINGLE_TABLESPACE_QUERY
| CLOSE_TABLESPACE_QUERY
| FETCH_TABLESPACE
| OPEN_CONTAINER_QUERY
| FETCH_CONTAINER_QUERY
| CLOSE_CONTAINER_QUERY
| GET_TABLESPACE_STATISTICS
| DESCRIBE_DATABASE
| ESTIMATE_SNAPSHOT_SIZE
| READ_ASYNC_LOG_RECORD
| PRUNE_RECOVERY_HISTORY
| UPDATE_RECOVERY_HISTORY
| QUIESCE_TABLESPACE
| UNLOAD_TABLE
| UPDATE_DATABASE_VERSION
| CREATE_INSTANCE
| DELETE_INSTANCE
| SET_EVENT_MONITOR
| GRANT_DBADM
| REVOKE_DBADM
| GRANT_DB_AUTHORITIES
| REVOKE_DB_AUTHORITIES
| REDIST_NODEGROUP

 Chapter 5. Auditing DB2 Activities 193

| Table 29. Audit Record Layout for VALIDATE Events

| timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;

| event correlator=2;event status=-1092;

| database=FOO;userid=boss;authid=BOSS;execution id=newton;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| auth type=SERVER;

| NAME| FORMAT| DESCRIPTION

| Timestamp| CHAR(26)| Date and time of the audit event.

| Category| CHAR(8)| Category of audit event. Possible values are:

| VALIDATE

| Audit Event| VARCHAR(32)| Specific Audit Event.

| Possible values include: GET_GROUPS, GET_USERID,
| AUTHENTICATE_PASSWORD, and VALIDATE_USER.

| Event Correlator| INTEGER| Correlation identifier for the operation being audited. Can be used
| to identify what audit records are associated with a single event.

| Event Status| INTEGER| Status of audit event, represented by an SQLCODE where

| Successful event > = 0
| Failed event < 0

| Database Name| CHAR(8)| Name of the database for which the event was generated. Blank if
| this was an instance level audit event.

| User ID| VARCHAR(1024)| User ID at time of audit event.

| Authorization ID| VARCHAR(128)| Authorization ID at time of audit event.

| Execution ID| VARCHAR(1024)| Execution ID in use at the time of the audit event.

| Origin Node
| Number
| SMALLINT| Node number at which the audit event occurred.

| Coordinator Node
| Number
| SMALLINT| Node number of the coordinator.

| Application ID| VARCHAR (255)| Application ID in use at the time the audit event occurred.

| Application Name| VARCHAR (1024)| Application Name in use at the time the audit event occurred.

| Authentication
| Type
| VARCHAR (32)| Authentication type at the time of the audit event.

| Package Schema| VARCHAR (128)| Schema of the package in use at the time of the audit event.

| Package Name| VARCHAR (128)| Name of package in use at the time the audit event occurred.

| Package Section
| Number
| SMALLINT| Section number in package being used at the time the audit event
| occurred.

194 Administration Guide

| Table 30. Audit Record Layout for CONTEXT Events

| timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;audit event=EXECUTE_IMMEDIATE;

| event correlator=3;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| package section=203;text=create table audit(c1 char(10), c2 integer);

| NAME| FORMAT| DESCRIPTION

| Timestamp| CHAR(26)| Date and time of the audit event.

| Category| CHAR(8)| Category of audit event. Possible values are:

| CONTEXT

| Audit Event| VARCHAR(32)| Specific Audit Event.

| Possible values include: Those shown in the list following this
| table.

| Event Correlator| INTEGER| Correlation identifier for the operation being audited. Can be used
| to identify what audit records are associated with a single event.

| Event Status| INTEGER| Status of audit event, represented by an SQLCODE where

| Successful event > = 0
| Failed event < 0

| Database Name| CHAR(8)| Name of the database for which the event was generated. Blank if
| this was an instance level audit event.

| User ID| VARCHAR(1024)| User ID at time of audit event.

| Authorization ID| VARCHAR(128)| Authorization ID at time of audit event.

| Origin Node
| Number
| SMALLINT| Node number at which the audit event occurred.

| Coordinator Node
| Number
| SMALLINT| Node number of the coordinator.

| Application ID| VARCHAR (255)| Application ID in use at the time the audit event occurred.

| Application Name| VARCHAR (1024)| Application Name in use at the time the audit event occurred.

| Package Schema| VARCHAR (128)| Schema of the package in use at the time of the audit event.

| Package Name| VARCHAR (128)| Name of package in use at the time the audit event occurred.

| Package Section
| Number
| SMALLINT| Section number in package being used at the time the audit event
| occurred.

| Statement Text
| (statement)
| CLOB (32K)| Text of the SQL statement, if applicable. Null if no SQL statement
| text is available.

| The following is the list of possible CONTEXT audit events:

 Chapter 5. Auditing DB2 Activities 195

| Table 31. CONTEXT Audit Events

| CONNECT
| CONNECT_RESET
| ATTACH
| DETACH
| DARI_START
| DARI_STOP
| BACKUP_DB
| RESTORE_DB
| ROLLFORWARD_DB
| OPEN_TABLESPACE_QUERY
| FETCH_TABLESPACE
| CLOSE_TABLESPACE_QUERY
| OPEN_CONTAINER_QUERY
| CLOSE_CONTAINER_QUERY
| FETCH_CONTAINER_QUERY
| SET_TABLESPACE_CONTAINERS
| GET_TABLESPACE_STATISTIC
| READ_ASYNC_LOG_RECORD
| QUIESCE_TABLESPACE
| LOAD_TABLE
| UNLOAD_TABLE
| UPDATE_RECOVERY_HISTORY
| PRUNE_RECOVERY_HISTORY
| SINGLE_TABLESPACE_QUERY
| LOAD_MSG_FILE
| UNQUIESCE_TABLESPACE
| ENABLE_MULTIPAGE
| DESCRIBE_DATABASE
| DROP_DATABASE
| CREATE_DATABASE
| ADD_NODE
| FORCE_APPLICATION

| SET_APPL_PRIORITY
| RESET_DB_CFG
| GET_DB_CFG
| GET_DFLT_CFG
| UPDATE_DBM_CFG
| SET_MONITOR
| GET_SNAPSHOT
| ESTIMATE_SNAPSHOT_SIZE
| RESET_MONITOR
| OPEN_HISTORY_FILE
| CLOSE_HISTORY_FILE
| FETCH_HISTORY_FILE
| SET_RUNTIME_DEGREE
| UPDATE_AUDIT
| DBM_CFG_OPERATION
| DISCOVER
| OPEN_CURSOR
| CLOSE_CURSOR
| FETCH_CURSOR
| EXECUTE
| EXECUTE_IMMEDIATE
| PREPARE
| DESCRIBE
| BIND
| REBIND
| RUNSTATS
| REORG
| REDISTRIBUTE
| COMMIT
| ROLLBACK
| REQUEST_ROLLBACK
| IMPLICIT_REBIND

| Audit Facility Tips and Techniques
| In most cases, when working with CHECKING events, the object type field in the audit
| record is the object being checked to see if the required privilege or authority is held by
| the user ID attempting to access the object. For example, if a user attempts to ALTER
| a table by adding a column, then the CHECKING event audit record will indicate the
| access attempted was “ALTER” and the object type being checked was “TABLE” (note:
| not the column since it is table privileges that must be checked).

| However, when the checking involves verifying if a database authority exists to allow a
| user ID to CREATE or BIND an object, or to delete an object, then although there is a
| check against the database, the object type field will specify the object being created,
| bound, or dropped (rather than the database itself).

196 Administration Guide

| When creating an index on a table, the privilege to create an index is required,
| therefore the CHECKING event audit record will have an access attempt type of “index”
| rather than “create.”

| When binding a package that already exists, then an OBJMAINT event audit record is
| created for the DROP of the package and then another OBJMAINT event audit record
| is created for the CREATE of the new copy of the package.

| SQL Data Definition Language (DDL) may generate OBJMAINT or SECMAINT events
| that are logged as successful. It is possible however that following the logging of the
| event, a subsequent error may cause a ROLLBACK to occur. This would leave the
| object as not created; or the GRANT or REVOKE actions as incomplete. The use of
| CONTEXT events becomes important in this case. Such CONTEXT event audit
| records, especially the statement that ends the event, will indicate the nature of the
| completion of the attempted operation.

| When extracting audit records in a delimited ASCII format suitable for loading into a
| DB2 relational table, you should be clear regarding the delimiter used within the
| statement text field. This can be done when extracting the delimited ASCII file and is
| done using:

| db2audit extract delasc delimiter <load delimiter>

| The load delimiter can be a single character (such as ") or a four-byte string
| representing a hexadecimal value (such as “0xff”). Examples of valid commands are:

| db2audit extract delasc

| db2audit extract delasc delimiter !

| db2audit extract delasc delimiter 0xff

| If you have used anything other than the default load delimiter (“"”) as the delimiter
| when extracting, you should use the MODIFIED BY option on the LOAD command. A
| partial example of the LOAD command with “0xff” used as the delimiter follows:

| db2 load from context.del of del modified by chardel0xff replace into ...

| This will override the default load character string delimiter which is “0xff.”

| Controlling DB2 Audit Facility Activities
| As part of our discussion on the control of the audit facility activities, we will use a
| simple scenario: A user, newton, runs an application called testapp that connects and
| creates a table. This same application is used in each of the examples discussed
| below.

| We begin by presenting an extreme example: You have determined to audit all
| successful and unsuccessful audit events, therefore you will configure the audit facility
| in the following way:

| db2audit configure scope all status both

 Chapter 5. Auditing DB2 Activities 197

| Note: This creates audit records for every possible auditable event. As a result, many
| records are written to the audit log and this reduces the performance of your
| database manager. This extreme case is shown here for demonstration
| purposes only; there is no recommendation that you configure the audit facility
| with the command shown above.

| After beginning the audit facility with this configuration (using “db2audit start”), and then
| running the testapp application, the following records are generated and placed in the
| audit log. By extracting the audit records from the log, you will see the following records
| generated for the two actions carried out by the application:

| Action Type of Record Created

| CONNECT
| timestamp=1998-06-24-08.42.10.555345;category=CONTEXT;audit event=CONNECT;

| event correlator=2;

| database=FOO;application id=*LOCAL.newton.980624124210;application name=testapp;

| timestamp=1998-06-24-08.42.10.944374;category=VALIDATE;audit event=AUTHENTICATION;

| event correlator=2;event status=0;

| database=FOO;userid=boss;authid=BOSS;execution id=newton;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| auth type=SERVER;

| timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;

| event correlator=2;event status=-1092;

| database=FOO;userid=boss;authid=BOSS;execution id=newton;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| auth type=SERVER;

| timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;

| event correlator=2;event status=-1092;

| database=FOO;userid=boss;authid=BOSS;execution id=newton;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| auth type=SERVER;

| timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;

| event correlator=2;event status=-1092;

| database=FOO;userid=boss;authid=BOSS;execution id=newton;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| auth type=SERVER;

| timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit event=CHECKING_OBJECT;

| event correlator=2;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| object name=FOO;object type=DATABASE;

| access approval reason=DATABASE;access attempted=CONNECT;

| timestamp=1998-06-24-08.42.11.801554;category=CONTEXT;audit event=COMMIT;

| event correlator=2;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| timestamp=1998-06-24-08.42.41.450975;category=CHECKING;audit event=CHECKING_OBJECT;

| event correlator=2;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| object schema=NULLID;object name=SQLC28A1;object type=PACKAGE;

| access approval reason=OBJECT;access attempted=EXECUTE;

| CREATE TABLE

198 Administration Guide

| timestamp=1998-06-24-08.42.41.476840;category=CONTEXT;audit event=EXECUTE_IMMEDIATE;

| event correlator=3;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| package section=203;text=create table audit(c1 char(10), c2 integer);

| timestamp=1998-06-24-08.42.41.539692;category=CHECKING;audit event=CHECKING_OBJECT;

| event correlator=3;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

| access approval reason=DATABASE;access attempted=CREATE;

| timestamp=1998-06-24-08.42.41.570876;category=CHECKING;audit event=CHECKING_OBJECT;

| event correlator=3;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| package section=0;object name=BOSS;object type=SCHEMA;

| access approval reason=DATABASE;access attempted=CREATE;

| timestamp=1998-06-24-08.42.41.957524;category=OBJMAINT;audit event=CREATE_OBJECT;

| event correlator=3;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

| timestamp=1998-06-24-08.42.42.018900;category=CONTEXT;audit event=COMMIT;

| event correlator=3;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| As you can see, there are a significant number of audit records generated from the
| audit configuration that requests the auditing of all possible audit events and types.

| In most cases, you will configure the audit facility for a more restricted or focused view
| of the events you wish to audit. For example, you may want to only audit those events
| that fail. In this case, the audit facility could be configured as follows:

| db2audit configure scope audit,checking,objmaint,secmaint,sysadmin,

| validate status failure

| Note: This configuration is the initial audit configuration or the one that occurs when
| the audit configuration is reset.

| After beginning the audit facility with this configuration, and then running the testapp
| application, the following records are generated and placed in the audit log. (And we
| assume testapp has not been run before.) By extracting the audit records from the log,
| you will see the following records generated for the two actions carried out by the
| application:

| Action Type of Record Created

| CONNECT

 Chapter 5. Auditing DB2 Activities 199

| timestamp=1998-06-24-08.42.11.527490;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;

| event correlator=2;event status=-1092;

| database=FOO;userid=boss;authid=BOSS;execution id=newton;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| auth type=SERVER;

| timestamp=1998-06-24-08.42.11.561187;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;

| event correlator=2;event status=-1092;

| database=FOO;userid=boss;authid=BOSS;execution id=newton;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| auth type=SERVER;

| timestamp=1998-06-24-08.42.11.594620;category=VALIDATE;audit event=CHECK_GROUP_MEMBERSHIP;

| event correlator=2;event status=-1092;

| database=FOO;userid=boss;authid=BOSS;execution id=newton;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| auth type=SERVER;

| CREATE TABLE

| (none)

| The are far fewer audit records generated from the audit configuration that requests the
| auditing of all possible audit events (except CONTEXT) but only when the event
| attempt fails. By changing the audit configuration you can control the type and nature of
| the audit records that are generated.

| The audit facility can allow you to create audit records when those you want to audit
| have been successfully granted privileges on an object. In this case, you could
| configure the audit facility as follows:

| db2audit configure scope checking status success

| After beginning the audit facility with this configuration, and then running the testapp
| application, the following records are generated and placed in the audit log. (And we
| assume testapp has not been run before.) By extracting the audit records from the log,
| you will see the following records generated for the two actions carried out by the
| application:

| Action Type of Record Created

| CONNECT

200 Administration Guide

| timestamp=1998-06-24-08.42.11.622984;category=CHECKING;audit event=CHECKING_OBJECT;

| event correlator=2;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| timestamp=1998-06-24-08.42.41.450975;category=CHECKING;audit event=CHECKING_OBJECT;

| event correlator=2;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| object schema=NULLID;object name=SQLC28A1;object type=PACKAGE;

| access approval reason=OBJECT;access attempted=EXECUTE;

| timestamp=1998-06-24-08.42.41.539692;category=CHECKING;audit event=CHECKING_OBJECT;

| event correlator=3;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| package section=0;object schema=BOSS;object name=AUDIT;object type=TABLE;

| access approval reason=DATABASE;access attempted=CREATE;

| timestamp=1998-06-24-08.42.41.570876;category=CHECKING;audit event=CHECKING_OBJECT.

| event correlator=3;event status=0;

| database=FOO;userid=boss;authid=BOSS;

| application id=*LOCAL.newton.980624124210;application name=testapp;

| package schema=NULLID;package name=SQLC28A1;

| package section=0;object name=BOSS;object type=SCHEMA;

| access approval reason=DATABASE;access attempted=CREATE;

| CREATE TABLE

| (none)

 Chapter 5. Auditing DB2 Activities 201

202 Administration Guide

Chapter 6. Utilities for Moving Data

The LOAD utility moves data into tables, extends existing indexes, and generates
statistics. LOAD moves the data much faster than the IMPORT utility when large
amounts of data are involved. Data, unloaded using the EXPORT utility, can be loaded
with the LOAD utility.

The AutoLoader utility splits large amounts of data and loads the split data into the
different partitions of a partitioned database.

The IMPORT and EXPORT utilities move data between a table or view and another
database or spreadsheet program; between DB2 databases; and between DB2
databases and host databases using DB2 Connect.

 DataPropagator Relational (DPROPR) is a component of DB2 Universal Database that
allows automatic copying of table updates to other tables in other DB2 relational
databases.

Note: Other vendor's products that move data in and out of databases are also
available, but are not discussed here.

The following topics are discussed:

¹ Using the LOAD Utility
¹ Using the AutoLoader Utility
¹ Using the IMPORT Utility
¹ Using the EXPORT Utility
¹ LOAD, IMPORT, and EXPORT File Formats
¹ Moving Data Between Systems

Notes:

| 1. Remember that the instance owner must have read permission to all input data
| files used in the LOAD process. LOAD is a DB2 server process owned by the
| instance owner and, as a result, uses the instance owner ID to access all of the
| files needed in the process. The creators/owners of the data to be loaded must
| grant the appropriate file permissions to the instance owner.

2. Remember to ensure you have the required file permissions when accessing data
from local area networks (LANs).

3. If DB2 for Windows NT has been defined as a Service to the Windows NT
operating system, the Service must have a User Account with the required
Read/Write file permissions to use LAN resources (drives, directories, and files).

Using the LOAD Utility
The LOAD utility is intended for the initial load or an append of a table where large
amounts of data are moved. There are no restrictions on the data types used by the
LOAD utility including large objects (LOBs) and user-defined types (UDTs). The LOAD

 Copyright IBM Corp. 1993, 1998 203

utility speeds up the task of loading large amounts of data into a database. LOAD is
faster than IMPORT because LOAD writes formatted pages directly into the database
while IMPORT does SQL INSERTs. The data being loaded must be local to the server
(unlike IMPORT and EXPORT where data can be passed from the client).

| In addition to the overview to the LOAD utility above, here are some details about the
| LOAD utility that may be of interest to you if you are concerned about recovering your
| database after a failure involving the database. See Chapter 7, “ Recovering a
| Database” on page 269 for more information on this subject. Logging is required for
| fully recoverable databases. The LOAD utility almost completely eliminates the logging
| associated with the loading of data. In place of logging, you have the option of making
| a copy of the loaded portion of the table. LOAD does not fire triggers; and does not
| perform referential, and table, constraint checking (other than validating the uniqueness
| of the unique indexes). Tables with such options defined may be populated faster, or
| more simply, using IMPORT. If you have a database environment that allows for
| database recovery following a failure, you can do one of the following:

¹ Use the non-recoverable LOAD option (and not require a backup)
| ¹ Explicitly request that a copy of the loaded portion of the table be made
| ¹ Take a backup of the table space(s) in which the table resides immediately after
| the completion of the load operation.

| Note: You are not able to LOAD data into typed tables.

The LOAD utility can take advantage of a hardware configuration where multiple
processors and/or multiple storage devices are used such as in a symmetric
multiprocessor (SMP) environment. There are several ways in which parallel processing
of large amounts of data can take place using the LOAD utility. One way is through the
use of multiple storage devices which allows for I/O parallelism during the LOAD
process. Another way involves the use of the multiple processors in an SMP
environment which allows for intra-partition parallelism. And both can be used together
to provide even faster loading of the data.

The following topics provide more information:

¹ Overview of the LOAD Process
¹ Details About LOAD
¹ LOAD Performance Considerations

| ¹ LOAD Parameter Hints and Tips
| ¹ LOAD Temporary Files
| ¹ Using LOAD QUERY
| ¹ Running Concurrent LOAD Jobs

¹ Restarting LOAD and Database Recovery
¹ LOAD Exception Table
¹ Checking For Constraint Violations

Overview of the LOAD Process
 There are multiple phases to the LOAD process: Load, where the data is written into
the table; Build, where the indexes are created; and Delete, where the rows that
caused a unique key violation are removed from the table. You must run the SET

204 Administration Guide

CONSTRAINTS SQL statement after the load completes if there are tables left in the
check pending state to validate the table for referential integrity and check constraints.
The LOAD utility generates messages about the progress of each phase. If a failure
occurs during the LOAD process, these messages will assist you in deciding how to
recover.

 During the Load phase, data is loaded into the table; index keys and table statistics
are collected if necessary. Save points, or points of consistency, are established at
intervals specified by you in the SAVECOUNT parameter on the LOAD command. These
points of consistency are not established exactly on the number of rows specified with
the SAVECOUNT parameter; rather the number of rows are converted to a page count,
and rounded up to intervals of the extent size. Messages let you know how many input
rows were successfully loaded at the time of the save point. If a failure occurs, you
should use the number of input rows at the last successful consistency point with the
RESTARTCOUNT parameter during a restart. If the failure occurs near the beginning of the
LOAD process and you were doing a REPLACE, you might consider restarting the load
using the REPLACE option.

 During the Build phase, indexes are created based on the index keys collected in the
Load phase. The index keys are sorted during the Load phase and index statistics are
collected. The statistics collected are similar to those collected during RUNSTATS. If a
failure occurs, the Build phase restarts from the beginning.

Unique key violations are placed into the exception table, if one was specified, and
messages on rejected rows are put into the message file. Following the completion of
the LOAD process: review these messages, correct any problems, and insert the
corrected rows into the table.

Note: The recording of warnings has a detrimental effect on the performance of the
LOAD. If performance is important, and you anticipate a large number of
warnings, you should consider using the NOROWWARNINGS filetype modifier. If this
filetype modifier was specified, these warnings are suppressed.

During the Delete phase, all rows causing a unique key violation are deleted. If a failure
occurs, this phase should be restarted by you from the beginning. Information on the
rows containing the invalid keys is stored in a temporary file. After you request a restart
to begin at the Delete phase, the violating rows are deleted based on the information in
a temporary file. You must not modify any data in any temporary files. Also, you must
restart the LOAD command with the same parameters, otherwise the Delete phase will
fail. If the temporary file has been modified, or does not exist, you should restart the
LOAD command at the Build phase. Once the index is re-built, any invalid keys are
placed in the exception table if it exists, and duplicate keys are deleted.

| Note: The Delete phase is used to remove records from the tables that were inserted
| in the Load phase which were discovered during the Build phase to have
| violated a uniqueness condition (for example, they are duplicate records).
| However, each deletion event is recorded or logged. If you have a large number
| of records that violate the uniqueness condition, then the log could fill up during
| the Delete phase.

 Chapter 6. Utilities for Moving Data 205

 Since regular logging is not performed, LOAD uses pending states to preserve
consistency of the database. The Load and Build phases of the LOAD process place
any associated table spaces into a load pending state. The Delete phase of the LOAD
process places any associated table spaces into a delete pending state. If you
complete the LOAD process but you do not have either logretain or userexit “on”;
and, you have not specified the COPY YES option nor the NONRECOVERABLE option, then
any associated table spaces are placed in a backup pending state. These states can
be checked by using the LIST TABLESPACES command. (For more information on
LIST TABLESPACES, see the Command Reference manual.) One last possible state
associated with the LOAD process is concerned with referential and check constraints.
Dependent tables may be placed in a check pending state following the completion of
the LOAD process.

LOAD can also be used with a non-recoverable option. This allows you to perform a
non-recoverable LOAD without affecting the recoverability of all other tables in the
database. When this type of LOAD is run, there is no requirement for either using the
COPY YES option or having a backup taken.

 If a LOAD fails, the table space(s) involved could be in an inconsistent state because
there is no logging. For this reason, the table spaces are left in a load pending state.
To remove the load pending state, you will have to restart the LOAD, perform a LOAD
REPLACE on the same table on which the LOAD failed, or recover the table space(s)
using a RESTORE with the most recent backup (either table space or database
backup) and then carry out further recovery actions. (You could also drop the table
space and then re-create it.)

For more information on how to recover, see Chapter 7, “ Recovering a Database” on
page 269.

Details About LOAD
 The LOAD utility inserts data into a table from an input file, from a device, or using a
named pipe, any of which must reside on the node where the database resides. The
table must exist. (Indexes on the table may or may not exist. LOAD only builds indexes
that are already defined on the table.) If the table receiving the new data already
contains data, you can replace or append to the existing data.

Note: If you are loading a table that already contains data and the database is
non-recoverable, make sure that you have a backed-up copy of the database,
or the table space for the table being loaded, before using LOAD so that you
can recover from errors.

If the existing table is a parent table containing a primary or unique key
referenced by a foreign key in a dependent table, replacing data in the parent
table places the dependent table in a check pending state. The SET
CONSTRAINTS statement must then be used to validate the referential and
check constraints.

The table spaces in which the loaded table resides are quiesced in exclusive mode. For
more information on QUIESCE, see the Command Reference manual.

206 Administration Guide

Note: In the following command line processor example, and in the other in the other
examples in this chapter, relative path names are used. Please be aware that
relative path names are only allowed on calls from a client on the same node as
the database. The use of fully-qualified path names is recommended.

The following is an example of the command line processor syntax for the LOAD
command:

db2 load from stafftab.ixf of ixf messages staff.msgs

insert into userid.staff copy yes use adsm data buffer 20

This example assumes no indexes are involved, any warning or error messages are
placed in staff.msgs, a copy of the changes made is stored in ADSTAR Distributed
Storage Manager (ADSM), and 20 pages of buffer space are to be used during the
load. See “ADSTAR Distributed Storage Manager” on page 334 for more information
on using ADSM.

| The following is a different example of the command line processor syntax for the
| LOAD command:

| db2 load from stafftab.ixf of ixf messages staff.msgs

| remote file stafftmp replace into staff using . sort buffer 200

| This example is similar to the previous one in the use of the MESSAGES parameter.
| The differences from the previous example are: Instead of INSERTing the data, the
| data in the table is being replaced; instead of taking a COPY using ADSM, parameters
| are used to assist with index creation by using the USING and the SORT BUFFER
| parameters. The REMOTE FILE parameter is used to declare stafftmp as a base file
| name for temporary files such as “stafftmp.msg,” “stafftmp.log,” and “stafftmp.rid.” The
| current directory of the user, indicated by using ., is used as the working directory to
| hold the temporary files needed for index creation. Two hundred (200) pages of buffer
| space are used to sort index keys. For more information on the LOAD command, see
| the Command Reference manual.

 Since you will typically be loading large amounts of data using the LOAD command, a
LOAD QUERY command can be used to check the progress of the LOAD process if
the REMOTE FILE option has been specified. You require a connection to the same
database and a separate CLP session to enter this command. This command can be
used by local and remote users. For more information on the LOAD QUERY command,
see the Command Reference manual.

The LOAD utility can also be invoked by the application programming interfaces (APIs)
sqluload and sqlgload . For more information on the requirements when loading data
to a table using these APIs, see the API Reference manual.

You should also review the following points. Each represents a task that you may need
to perform and each is carried out as part of the LOAD command. For more information
on any of the following tasks, see the API Reference and/or the Command Reference
manuals.

 Chapter 6. Utilities for Moving Data 207

¹ Definition of the path(s) and the input filename(s) in which the LOBs are stored.
The use of LOBSINFILE in the MODIFIED BY parameter will tell the LOAD utility that
all LOB data is being loaded from files.

¹ Determine if column values being loaded have implied decimal points or not. The
use of IMPLIEDDECIMAL in the MODIFIED BY parameter will tell the LOAD utility that
there are decimal points to be applied to the data as it enters the table. For
example, with the IMPLIEDDECIMAL, the value 12345 is loaded into a
DECIMAL(8,2) column as 123.45, NOT 12345.00.

| ¹ Definition of the path(s) and the input filename(s) in which rejected rows are stored.
| The use of DUMPFILE in the MODIFIED BY parameter will tell the LOAD utility the
| name and location of the exception file to which rejected rows are written. When
| running in a partitioned database environment, the name provided is suffixed with
| an extension which identifies the partition number where the exceptions were
| generated. For example, if the following were used on the MODIFIED BY parameter:

| DUMPFILE = "/u/usrname/dumpit"

| On partition zero (0) this will generate a file

| /u/usrname/dumpit.000

| On partition five (5) this will generate a file

| /u/usrname/dumpit.005

| All partitions where exceptions are recorded in an exception file will have the
| filename with suffizes like those show here.
| ¹ There are several MODIFIED BY parameters that can be used to control the amount
| of free space available after a table is loaded. These parameters can be used
| individually or together to provide free space to allow for INSERT and UPDATE
| growth to the table following the completion of the LOAD. Using up the free space
| keeps related rows in close together and generally keeps the performance of table
| better than if no free space were considered.

| – totalfreespace allows you to append empty data pages to the end of the
| loaded table. The number used with this parameter is the percentage of the
| total pages in the table that is to be appended to the end of the table as free
| space. Therefore, if you used twenty (20) with this parameter, and the table
| has 100 data pages, twenty additional empty pages are appended. The total
| number of data pages in the table will then be 120.

| – pagefreespace allows you to control the amount of free space allowed on each
| loaded data page. The number used with this parameter is the percentage of
| each data page that is to be left as free space. The first row in a page is
| added without restriction. Therefore, with very large rows and a large number
| used with this parameter, there may be less space left free on each page than
| indicated by the value used with this parameter.

| – indexfreespace allows you to control the amount of free space allowed on
| each loaded index page. The number used with this parameter is the
| percentage of each index page that is to be left as free space. The first index
| entry in a page is added without restriction. Additional index entries are placed
| in the index page, provided the percent free space threshold can be
| maintained. The default value is the one used at CREATE INDEX time. This

208 Administration Guide

| value takes precedence over the PCTFREE value specified in the CREATE
| INDEX statement.

| If you determine to use pagefreespace and you have an index on the table, you
| should consider using indexfreespace.When deciding on the amount of free space
| to leave for each, consider that the size of each row being inserted into the table
| will likely be larger than the size of the associated key to be inserted into the index.
| In addition, the page size of the table spaces for the table and the index may be
| different.

¹ Determine whether statistics will be gathered during the load process. (This option
is not supported if the load is in INSERT or RESTART mode.) Gathering statistics
is only valid when indexes are already defined on the table prior to the load.

¹ Define the method to use for loading the data: column location, column name, or
relative column position.

¹ Determine whether to keep a copy of the changes made. (This option is not
supported if forward log recovery is disabled for the database; that is,
LOGRETAIN=OFF and USEREXIT=OFF.) If no copy is made, and forward log
recovery is not disabled, the table space is left in a backup pending state at the
completion of the load.

For more information on how to recover, see Chapter 7, “ Recovering a Database”
on page 269.

| ¹ Sort the data on the clustering index values before loading it into the table.
¹ Declare the location of the directories holding temporary files during the creation of

indexes. The directories are defined by the USING parameter. When defining the
directory, if it is unqualified and a local connection, the directory will be qualified
using the current directory of the user running the load. If the directory is
unqualified and part of a remote connection, the load will fail. If the parameter is
not defined by the USING parameter, the default is to create the files in the tmp

subdirectory in the directory defined by the DB2INSTPROF environment variable.
You should be aware that the amount of information stored in this directory will be
at least equal to the size of all the indexes and possibly twice that size.

In a partitioned database environment, there could be a scenario where several
load operations are underway on separate database partitions. Each load operation
may attempt to write to the tmp sub-directory at the same time. This could
adversely affect the performance within this sub-directory.

In such an environment, you should specify a tmp sub-directory that is local to the
database partition where the load operation is invoked. This will reduce the
contention at the common tmp sub-directory and may improve the load
performance on each database partition.

| ¹ For all other temporary files either a base name defined by REMOTE FILE is used or,
| the default name db2utmp is used. There are many temporary files that the load
| process may create: The temporary files for sorting go in the path specified by the
| USING option; other temporary files go in the path specified by the REMOTE FILE
| option. Only the remote message temporary file is of any interest to you. You can
| use the LOAD QUERY command to view the messages that are generated by the
| load process, or write them to a local file that you can view later. Refer to the
| “Restarting the LOAD Using RESTART” on page 221 for additional information on

 Chapter 6. Utilities for Moving Data 209

| using the REMOTE FILE parameter. Also see the Command Reference for further
| information on these topics.

| The remote files reside on the server machine and are accessed by the DB2
| instance exclusively. Therefore, any filename qualification given to this parameter
| must reflect the directory structure of the server, not the client, and the DB2
| instance owner must have read and write permission on the file. This latter point is
| true even if the user running the LOAD utility is the instance owner. The user has
| to specify a REMOTE FILE location which is writable by the instance owner if the
| user is not the instance owner.

| Attention: If you want to perform concurrent loads, you must ensure that the
| REMOTE FILE specified for each load is unique; otherwise, results are
| unpredictable.

| There are several ways in which the remote filename may be selected and
| qualified when the user has just given a partially qualified name, or no name at all.

| Notes:

| 1. No remote filename is given in a load operation where the user is on the same
| machine as the database instance. In this case, the load utility uses the name
| db2utmp and qualifies it with the current working directory of the user. Two
| loads from the same directory with this option will clash in the use of the
| remote filename. Therefore, this option is not recommended.

| 2. No remote filename is given in a load operation where the user is on a
| different machine than the database instance. In this case, the load utility will
| generate a name that will reside in the database directory. This effectively
| prevents the user from using the load query facility, since the facility requires
| the name of the remote file. In addition, the filename generated is not
| guaranteed to be unique, and therefore clashes may occur between different
| load operations. Therefore, this option is not recommended.

| 3. A non-fully-qualified filename is given in a load operation, where the user is on
| the same machine as the database instance. In this case, the name is
| qualified by using the current directory of the user. The user must ensure that
| the two loads are not issued from the same directory with the same remote
| filename.

| 4. A non-fully-qualified filename is given in a load operation, where the user is on
| a different machine than the database instance. In this case, the load utility
| will reject the filename. It must be fully-qualified from the client.

| 5. A fully-qualified filename is given in a load operation. This will be the filename
| used. The user must ensure that two loads are not issued with the same
| remote filename. This is the recommended usage.

| You should use a remote filename if you wish to use the LOAD QUERY tool. It is
| difficult to determine the remote filename if you do not provide the one to be used.
| For more information on LOAD and the importance of the filename, see “Restarting
| the LOAD Using RESTART” on page 221.

| To load data into a table, you must have either SYSADM or DBADM authority.

210 Administration Guide

There are restrictions and limitations with the LOAD utility:

¹ Attempts to create or drop tables in a table space that is in load pending state will
fail.

¹ You cannot load data into a database accessed through DB2 Connect or to a
downlevel server other than DB2 Version 2.

Note: Options only available with this release of DB2 cannot be used with a
server from the previous release.

¹ If a REPLACE is performed on a table and an error occurs during the LOAD, the
original data in the table is lost. Keep the LOAD input to allow the LOAD to be
restarted if an error occurs during the process.

¹ If there is no value for a NOT NULL column, the row is rejected since the LOAD
utility attempts to load a NULL value. This condition also applies when there is no
value for a NOT NULL WITH DEFAULT column. If a NOT NULL WITH DEFAULT column is
not one of the columns being loaded, it is filled with the DEFAULT values.

¹ Triggers are not activated on newly-loaded rows. Any business rules forming these
triggers are not enforced by the LOAD command.

The LOAD utility optionally updates table and index statistics as part of the load
process if run in REPLACE mode. If data is appended into a table, statistics are not
gathered for the table. Run RUNSTATS following the completion of the load process to
collect up-to-date statistics for the table. If gathering statistics on a table with a unique
index, and duplicate keys are deleted during the Delete phase, then the statistics are
not updated to account for the deleted records. If you think you will have duplicate
records, you should not collect statistics during the LOAD but run RUNSTATS after the
LOAD process.

To ensure the loaded data doesn't cause referential integrity or check constraint
violations, any loaded table that is a parent table will cause all dependent tables to be
placed in a check pending state. To remove the table from the restricted state, you
must run the SET CONSTRAINTS statement.

 With LOAD, there is a possibility of unequal code page situations involving possible
expansion or contraction of the character data. Such situations could occur with
Japanese or Traditional-Chinese Extended UNIX Code (EUC) and double-byte
character sets (DBCS) which may have different length encodings for the same
character. An option, NOCHECKLENGTHS, is used to toggle between two situations:

1. Comparison of input data length to target column length is performed before
reading in any data. If the input length is larger than the target, NULLs are inserted
for that column if it is nullable. Otherwise, the request is rejected. This is the
default.

2. No initial comparison is performed and, on a row-by-row basis, an attempt is made
to load the data. If the data is too long after translation is complete, the row is
rejected. Otherwise, the data is loaded. Specifying NOCHECKLENGTHS will enable this
behavior.

 Chapter 6. Utilities for Moving Data 211

LOAD Performance Considerations
 The performance of LOAD depends on the nature and size of the data, the number of
indexes, the options used, and whether the SET CONSTRAINTS statement is required.
Use of SET CONSTRAINTS lengthens the total time needed to load the table and
make it usable again. (For more information on the SET CONSTRAINTS statement,
see the SQL Reference manual.)

The LOAD utility performs almost equally well in either INSERT mode or REPLACE
mode.

Index creation will reduce the performance of the load process, especially when data is
added to a table already containing data. If there are many indexes on a table which
already has a large amount of data and only a small percentage of data to be loaded,
you should consider using the IMPORT utility instead of the LOAD utility. Unique
indexes also reduce the performance of the load process if duplicates are encountered.
In most cases it is still more efficient to create the index during the LOAD than to
complete the LOAD and then use the CREATE INDEX command for each of the
indexes.

The LOAD utility automatically attempts to provide the best performance possible by
determining the best values for DISK_PARALLELISM, CPU_PARALLELISM, DATA_BUFFER, and
SORT_BUFFER if these parameters have not be specified by the user at the time the utility
is run. Optimization of these values is done based on the size and the free space
available in the utility heap. Consider allowing the LOAD utility to choose the values for
these parameters and then attempt to tune the parameters for your particular needs.

Performance of the LOAD can be improved by:

¹ Using the FASTPARSE option in the MODIFIED BY parameter reduces the data
checking done on the user-supplied column values, and performance is enhanced.
This option should only be used when the data being loaded is known to be valid.
This may improve the performance of the LOAD process by about 10 or 20
percent.

| ¹ When creating indexes during the LOAD, you require at least as much disk space
| as the sum of the index sizes and possibly twice as much. The space used is
| temporary; that is, it is located outside the database in the directories specified for
| the USING parameter or in the tmp directory defined by the DB2INSTPROF
| environment variable.

| You should specify as many devices for the temporary sort directories as you can
| so that there is opportunity for parallel I/O during sorting.

| If during a LOAD the process is abnormally terminated, the temporary files used to
| sort must be manually removed before restarting the LOAD. The temporary files
| are located in the directories specified for the USING parameter or in the tmp
| directory defined by the DB2INSTPROF environment variable. You must remove
| the files located in those directories before proceeding.

212 Administration Guide

| Notes:

| 1. Data is striped across the directories specified by the USING parameter in
| round-robin fashion. If any of these directories becomes full, the sort operation
| will fail. This means that if one of the sort directories is quite small and
| becomes full, the sort operation (and consequently, the load) may fail, even
| though addition space is still available in the remaining sort directories.

| 2. The LOAD utility can only address up to 2 GB per index per tmp directory. If
| you have an index where you expect the sort data to grow to 4 GB, you must
| specify at least two tmp directories.

¹ Specifying as large a value for the sort buffer as possible. The sort buffer memory
is allocated from the utility heap. Ensure that the utility heap is defined to be large
enough.

| ¹ Specifying whether or not to preserve the order of the input data being loaded. The
| default is to preserve the order. Specify ANYORDER on the LOAD command to
| override this default and gain additional performance improvements.

| Note: If the data to be loaded is presorted, ANYORDER may corrupt the presorted
| order: the benefits that the presorting would have provided will be lost for
| subsequent queries.

¹ Using the SORT BUFFER and DATA BUFFER parameters. The SORT BUFFER will improve
performance only if indexes are created when using LOAD. The DATA BUFFER

parameter specifies the total amount of memory allocated to the LOAD utility as a
buffer. The SORT BUFFER parameter specifies the amount of memory allocated for
sorting index keys. (This assumes there is real storage to handle the increased
buffer size and prevent increased paging.) Both buffer allocations come from the
utility heap. You can modify the util_heap_sz database configuration parameter
accordingly. See “Utility Heap Size (util_heap_sz)” on page 613.

| ¹ Controlling the parallelism used during the LOAD in a machine environment where
| symmetric multi-processor (SMP) exploitation is possible. You can control
| parallelism by using the parameter CPU_PARALLELISM. This parameter controls the
| degree of parallelism used when parsing, converting, and formatting records.

| The maximum value for this parameter is 30, if there is sufficient memory to
| support this value. If there is not, LOAD will ajdust the value of CPU_PARALLELISM

| down until LOAD determines that the value will fit into memory.

| Notes:

| 1. When tables include either LOB or LONG VARCHAR data, CPU_PARALLELISM is
| forced to one. Parallelism is not supported in this case.

| 2. Although use of this parameter is not restricted to SMP hardware, you may not
| obtain any discernable performance benefit by using it in non-SMP
| environments.

¹ By using the parameter DISK_PARALLELISM. This parameter controls the degree of
parallelism used when writing data to the table space containers.

The maximum value for this parameter is either 50 or 4 * CPU_PARALLELISM. The
default value for this parameter is the greater of the number of containers (up to

 Chapter 6. Utilities for Moving Data 213

50) or CPU_PARALLELISM/4. In both situations, the value of CPU_PARALLELISM is the
value that is actually used by LOAD.

| ¹ Using the BINARY NUMERICS and PACKED DECIMAL parameters when loading
| positional ASC data that has fixed record lengths, to improve the load time
| involving numeric data.

| ¹ Installing high performance sorting libraries from third party vendors to create
| indexes during the load. An example of a third party sort product is: SyncSort**.
| Support for this and other sort products is through the use of the DB2SORT
| environment variable (registry value). See “Establish Environment Variables and
| the Profile Registry” on page 66 for more information on environment variables.

The COPY YES/NO option specifies whether to create a copy of the input data during
LOAD or not. If "YES" is chosen, performance is reduced because all the data being
loaded is copied at the same time. This choice is faster than accepting a backup
pending state and having to do a backup later before accessing the table. If "NO" is
chosen, and forward recovery in enabled, then the table is placed in a backup pending
state.

| LOAD Parameter Hints and Tips
| The parameters associated with the LOAD command offer you many options and
| alternatives when loading data into tables. All of the options, however, can be
| overwhelming because of their number (for newer users) and the way that they can
| interact with each other. This section provides additional hints and tips on most LOAD
| parameters with a particular focus on those affecting load performance.

| DATA BUFFER and SORT BUFFER
| The database configuration parameter Utility Heap Size (util_heap_sz) is
| the source of the memory used by the following utilities within DB2:

| ¹ BACKUP -- The size of the buffer used to backup a database (see
| backbufsz).

| ¹ RESTORE -- The size of the buffer used to restore a database (see
| restbufsz).

| ¹ LOAD.

| ¹ Load recovery.

| The default for the Utility Heap Size configuration parameter is 5 000 pages
| (each 4 KB in size). Depending on the amount of storage available on your
| system, you should consider allocating more pages for use by the DB2
| utilities.

| Within the load utility, the memory allocated from the Utility Heap is divided
| among many areas of which the DATA BUFFER and the SORT BUFFER
| are two of the important ones. Because LOAD is only one of several
| utilities that use memory from the Utility Heap, it is recommended that for
| planning purposes you consider that no more than fifty percent of the
| pages defined by the Utility Heap Size configuration parameter as being

214 Administration Guide

| available for LOAD usage. The remainder of the memory is available to the
| other utilities mentioned above.

| The DATA BUFFER controls the size of the buffer used to load data into a
| table. The recommendation is that this buffer should be several extents in
| size. The extent size is defined within DB2 and can be one or many 4 KB
| pages in size. An extent is the unit of movement for data within DB2. This
| parameter is useful when working with large objects (LOBs), and it reduces
| I/O waiting time.

| The SORT BUFFER controls the size of the buffer to sort index keys
| associated with the data being loaded into a table. This buffer is used
| during the index create phase of the LOAD process. It is only used if there
| are indexes on the table data being loaded. If used, this buffer is more
| important than the DATA BUFFER when considering the performance of
| the load operation. The recommendation is that the SORT BUFFER size
| be set as large as possible (depending on the overall storage available on
| your system and the other considerations mentioned above).

| To set the configuration parameter for the Utility Heap Size, you should do
| the following from the command line:

| ¹ GET DB CFG
| ¹ UPDATE DB CFG FOR database_alias USING util_heap_sz = nnnnn
| (where "nnnnn" is the number of 4 KB pages)
| ¹ If on the server -- DB2STOP followed by DB2START

| Changes to the database configuration file become effective only after they
| are loaded into memory. All applications must disconnect from the
| database before this can occur. For a server configuration parameter, this
| occurs during the execution of DB2STOP followed by a DB2START. For a
| client configuration parameter, this occurs when the application is restarted.
| If the client is the command line processor, it is necessary to use
| TERMINATE. (TERMINATE breaks the application connection to a
| database and terminates the back-end process.)

| CPU_PARALLELISM
| Use CPU_PARALLELISM to exploit Symmetric Multi-Processor (SMP)
| parallelism (if this is part of your machine's capability). The parameter
| specifies the number of processes or threads used by the load utility to
| parse, convert, and format data records. The maximum number allowed is
| 30. Using this parameter whenever possible has a strong positive impact in
| reducing the time taken to complete the load operation.

| Also, if this parameter is not specified, the load utility will select a
| reasonable default based on the number of CPUs on the system.

| DISK_PARALLELISM
| Use DISK_PARALLELISM to exploit the available number of containers
| that can be written to when loading data. The parameter specifies the
| number of processes or threads used by the load utility to write data
| records to disk. The maximum default number allowed is the greater of
| four times the CPU_PARALLELISM value or 50. Using this parameter

 Chapter 6. Utilities for Moving Data 215

| whenever possible has a strong positive impact in reducing the time taken
| to complete the load operation.

| By default, DISK_PARALLELISM is equal to the sum of the table space
| containers on all table spaces containing objects for the table being loaded,
| except where this default exceeds the maximum default number allowed
| (see above).

| SAVECOUNT
| This parameter sets the interval for the establishment of consistency points
| for the data being loaded. If SAVECOUNT must be used, then ensure the
| value used with this parameter is set sufficiently high. The synchronization
| of activities performed to establish a point of consistency takes time. If
| done too frequently, there will be a noticeable slowing of the load
| performance. Depending on the estimated number of rows to be loaded,
| the value used with this parameter is recommended to be greater than one
| million.

| The value shown from the LOAD QUERY command can be used if the
| LOAD fails and needs to be restarted. When loading, we recommend the
| REMOTE FILE parameter be used. After the failure, LOAD QUERY using
| the remote file will give you the last consistency point. You can then rerun
| the load with RESTARTCOUNT n (where "n" is the last consistency point
| value and with the RESTART parameter.

| STATISTICS YES
| If STATISTICS YES is requested during the load, the performance of the
| load will decrease. The most significant decrease in the performance of the
| load occurs when DETAILED INDEXES ALL is chosen. Even with this
| performance decrease, you should consider using this option. The load
| utility collects statistics faster this way than using the RUNSTATS
| command following the completion of the LOAD.

| To perform their best, applications require the use of the best distribution
| and index statistics possible. To update the DB2 system statistics, you
| should use STATISTICS YES during the load operation; or, use the
| RUNSTATS command following the load. Once the statistics are updated,
| applications may need the new access paths to the table data based on
| the latest statistics. New access paths to a table can be created by
| rebinding the application packages using the BIND command.

| The Statistics Heap Size (stat_heap_sz) out of the agent private memory is
| used when collecting statistics. Typically, LOAD is used when loading data
| into large tables. Therefore, the default for the stat_heap_sz configuration
| parameter is not recommended when using STATISTICS YES on the
| LOAD command; a larger value is recommended.

| NONRECOVERABLE, COPY NO, COPY YES
| If you are working with a recoverable database, there are parameters that
| are related to this type of database and that have an effect on the
| performance of the load operation. A recoverable database is one where
| you have determined that the data found there is important and must not

216 Administration Guide

| be lost. The ability to backup and restore databases or table spaces is one
| part of what it means to have a recoverable database. The other part is the
| ability to apply any changes to the database between the times the
| backups are taken. This part is called roll-forward recovery and involves
| the saving of the activity against the database in logs. The information from
| these saved logs is applied to the restored database so that no information
| is lost as a result of a problem with the database.

| You can decide the level of recoverability you wish for your database. You
| can decide to backup and restore a database or table space without
| needing the roll-forward capability. In such a case, you may not need the
| logs since you have another way to reconstruct the activity against the
| database between backups. For example, you may be collecting all
| transactions against the database and applying them in batch mode; and,
| you may also not be allowing any ad hoc user updates to the database. In
| this example, there is no need to log all changes to the database.

| The load operation does not log each record added to the table as part of
| the load operation.

| By choosing the NONRECOVERABLE parameter, there is no performance
| penalty since no additional activity beyond the movement of the data into
| the table is required. In addition, the load operation completes without
| leaving the table spaces in a backup pending state. During a subsequent
| restore and roll-forward recovery where this LOAD command is one of the
| operations being rolled-forward when recovering, the table that is the object
| of the load is not updated and is marked "invalid". Further actions against
| this table are ignored. After the roll-forward is complete, the table cannot
| be used and can only be dropped. This may be an acceptable course of
| action in your work environment depending on the table.

| By choosing COPY NO and you have a roll-forward recovery enabled (by
| having either logretain or userexit parameters on), the table space where
| the table being loaded resides is placed in a backup pending state. A
| database or table space must be backed up before the data in the table
| can be accessed. The forced back up establishes a point of consistency for
| the table space or database. Recovery would then begin with the
| restoration of this backup. (Roll-forward could then follow.)

| COPY NO is the default when using the LOAD command.

| You can only choose COPY YES if roll-forward recovery is enabled. A copy
| of all changes to the table being loaded is saved. In a subsequent restore
| and roll-forward recovery where this LOAD command is one of the
| operations being rolled-forward when recovering, the changes are applied
| to the table and the table is usable following the completion of the
| roll-forward activity. The copying of each change as the table is being
| loaded causes increased I/O activity, which may increase the load time on
| an I/O-bound system. Specifying multiple devices or directories (on
| different disks) can offset some of the performance penalty resulting from
| this operation.

 Chapter 6. Utilities for Moving Data 217

| The syntax when using the COPY YES option is:

| db2 load form <filename> of DEL replace into <tablename>
| copy yes <dir1>, <dir2>, <dir3>, <dir4>, ...

| where

| <dirN> are devices or directories.

| You might select this option if you are adding new data to an existing table
| already containing data. You have decided you do not want to take a
| backup of the table space or database involved. Recovery would begin with
| the restoration of a backup taken before the load operation. Roll-forward
| could then follow including going through the load operation using the
| changes saved using the COPY YES option.

| WARNINGCOUNT
| During the load operation there may be warnings and errors generated.
| The parameters WARNINGCOUNT, FOR EXCEPTION, and MESSAGES
| can be used to keep track of the warnings and errors. If you are expecting
| a significant number of warnings, then set the WARNINGCOUNT
| parameter to zero (0) or do not use this optional parameter. The load
| operation will continue to completion regardless of the number of warnings
| issued.

| If you are expecting only a few warnings or no warnings, then set the
| WARNINGCOUNT parameter to approximately the number you are
| expecting, or to twenty (20) if you are expecting no warnings. The load
| operation will stop after the WARNINGCOUNT number is reached. This will
| allow you the opportunity to correct the data (or drop and re-create the
| table being loaded) before attempting to complete the load operation.
| Although not having a direct effect on the performance of the load
| operation, use of WARNINGCOUNT can assist with the successful
| completion of your load operations. If you encounter unexpected warnings
| during load processing, the establishment of a WARNINGCOUNT threshold
| will prevent having to wait to the full completion of the load operation
| before determining there was a problem.

| USING
| If indexes are defined on the table, the load utility sorts all of the index
| keys in order to rebuild the indexes. If the number of records in the table is
| large, then the sort may not fit into the available memory (SORT BUFFER)
| and sorted data may need to overflow to disk. You can decrease the I/O
| overhead of sorting by striping the sort overflow to a series of disks. This is
| done with the USING option as follows:

| db2 load from <filename> of IXF insert into <tablename>
| using <dir1>, <dir2>, <dir3>, <dir4>, ...

| where

| <dirN> are directories.

| Here is a suggested method to determine how many directories are
| required:

218 Administration Guide

| If D is the number of directories specified, and L is the file size limit (which
| varies by operating system), and I is the estimated size of the sum of all
| the indexes, then the value of D is established using the following equation:

| D > (2 * I) / L

| For example, assume the sum of all the indexes in your database is about
| 2.8 GB. If the file size limit for your system is 2 GB, then L = 2. Putting
| these two values into the equation results in:

| D > (2 * 2.8) / 2

| Therefore, rounding D to the next highest integer, you would specify three
| (3) directories in the USING clause.

| LOAD Temporary Files
| You have control over the disk space used when working with LOAD. If you uniquely
| specify the location of the remote files used by the LOAD, you know where the
| temporary files will be created and thus know which disk will have space temporarily
| used.

| The REMOTE FILE parameter specifies the directory path and the base name to be
| used when creating temporary files during a load operation. For example, we could
| declare the path and base name as:

| REMOTE FILE /u/bobdir/bob

| During the load processing, LOAD may generate the following temporary files:

| /u/bobdir/bob.msg

| /u/bobdir/bob.rid

| /u/bobdir/bob.log

| Each of these files is temporary and are all removed when the load processing
| completes without difficulty. The files are temporary in nature and are binary in format
| so that they are not designed to be viewed by you during load processing.

| If you do not use the REMOTE FILE parameter on the LOAD command, the load
| process uses “db2utmp” as the base name and the directory path is the current working
| directory (if the LOAD command is executed on the server). If the LOAD command is
| not executed on the server and you do not use the REMOTE FILE parameter with an
| explicit directory path and base name, it may be difficult to determine where the
| temporary files are located.

| Using LOAD QUERY
| When using the LOAD QUERY command, you simply specify the base name to see the
| messages information on the load process.

| The base name is declared using the LOAD command and the REMOTE FILE
| parameter. For example, we could declare the path and base name as:

| REMOTE FILE /u/bobdir/bob

 Chapter 6. Utilities for Moving Data 219

| To check the status of the load process, you could issue the following commands:

| db2 connect to database_name

| db2 load query /u/bobdir/bob

| You could also declare a location to place the warning and error messages that occur
| during load processing. This is done by using the TO parameter on the LOAD QUERY
| command and declaring a fully-qualified path and a unique file name.

| See the Command Reference for additional details on the LOAD QUERY command.

| Running Concurrent LOAD Jobs
| It is extremely important when running concurrent LOAD jobs that you know the
| following:

| When running concurrent LOADs, the remote files must be unique. If they are not
| unique such as in the situation where you do not use the REMOTE FILE parameter on
| any of your concurrent LOAD commands, then LOAD does not enforce uniqueness.
| You will receive indeterminate results.

Restarting LOAD and Database Recovery
| A LOAD can be restarted following a failure using RESTART or RESTARTCOUNT.
| The REMOTE FILE information is important when using a LOAD RESTART command.
| A copy image of the loaded data can be created for use when recovering a database.

The following discuss these considerations in more detail:

¹ REMOTE FILE Considerations
¹ Restarting the LOAD Using RESTART
¹ Restarting the LOAD Using RESTARTCOUNT
¹ Eliminating a Phantom Quiesce
¹ Creating a Copy Image of Loaded Data

| REMOTE FILE Considerations
| The RESTART LOAD command restarts the load process after a previous load was
| interrupted. As part of the task of restarting, LOAD RESTART will need to use the
| information that has been saved in the remote files.

| The REMOTE FILE parameter specifies the directory path and the base name to be
| used when creating temporary files during a load operation. For example, we could
| declare the path and base name as:

| REMOTE FILE /u/bobdir/bob

| During the load processing, LOAD may generate the following temporary files:

| /u/bobdir/bob.msg

| /u/bobdir/bob.rid

| /u/bobdir/bob.log

220 Administration Guide

| Each of these files is temporary and are all removed when the load processing
| completes without difficulty. The files are temporary in nature and are binary in format
| so that they are not designed to be viewed by you during load processing.

| If you do not use the REMOTE FILE parameter on the LOAD command, the load
| process uses “db2utmp” as the base name and the directory path is the current working
| directory (if the LOAD command is executed on the server). If the LOAD command is
| not executed on the server and you do not use the REMOTE FILE parameter with an
| explicit directory path and base name, it may be difficult to determine where the
| temporary files are located.

| Restarting the LOAD Using RESTART
| LOAD RESTART requires the information in the remote files. The specification of a
| fully-qualified path removes any possible ambiquity over the location of these files
| during the restart of the load process.

| Note: It may still be possible to restart without having a fully-qualified path for the
| temporary remote files but only if the LOAD is restarted from the same directory
| where the original LOAD command was issued.

Restarting the LOAD Using RESTARTCOUNT
If a failure occurs while loading data, you can restart the load from the last save point
or point of consistency; or reload the entire table by using the REPLACE option.

The remote file specified in the LOAD restart operation should be the one that was
specified in the LOAD command that failed.

There are a number of options available should you decide to restart the load.

If you decide to restart using the RESTARTCOUNT number option, then you must use the
number of rows at the last successful consistency point. To determine that value, use
the LOAD QUERY command with either the name specified with the REMOTE FILE

option or the default name db2utmp. By choosing RESTARTCOUNT number, the LOAD
restarts from the row following the row identified by the number and attempts to finish
the load.

Note: The RESTARTCOUNT number can only be used with the last successfully completed
consistency point. If the last consistency point started but did not complete (that
is, SQL3519W is not followed by SQL3520W), then you must carry out the
action as described in the help for message SQL3519W.

If you do not want to continue loading rows, or if the failure was during the Build phase,
you can use the RESTARTCOUNT B option. The LOAD process brings the table to the state
of the last save point or point of consistency and then restarts the Build phase. By
choosing this option the LOAD restarts, does not attempt to load additional rows, and
builds the indexes for the rows already loaded.

If the message file states that the Build phase completed and all temporary files are
unmodified as left by the LOAD, you can use the RESTARTCOUNT D option. The

 Chapter 6. Utilities for Moving Data 221

information on the rows containing duplicate keys stored in the temporary files is used
to delete those rows.

The restarted LOAD command should continue until the completion of the LOAD
process.

Note: For minor errors such as nonexistent data files or an invalid dcoldata, the LOAD
will clean up and take the table out of the load pending state. You must do the
LOAD again in either REPLACEor INSERT mode with correct parameters.

| Eliminating a Phantom Quiesce
| A quiesce on table spaces is persistent across any system failure. This is important to
| know when working with LOAD since it uses a quiesce in exclusive mode while carrying
| out the load process.

| A quiesce is owned by a connection. When you lose a connection, the quiesce remains
| but it has no owner. This is called a “phantom quiesce.”

| To remove a phantom quiesce, you must:

| ¹ Connect to the database.

| ¹ Use the LIST TABLESPACES command to determine which table space is
| QUIESCED. See the Command Reference for more information on the LIST
| TABLESPACES command.

| ¹ Re-quiesce the table space using the current quiesce state. In the case of a LOAD
| on the table BOBTAB use:

| db2 quiesce tablespaces for table BOBTAB exclusive

| Once completed, your connection now owns the quiesce and you can issue the
| LOAD RESTART command. A LOAD REPLACE could also be issued at this point
| instead of the LOAD RESTART.

Creating a Copy Image of Loaded Data
If the table being loaded is part of a recoverable database, then logging is in effect.
Since LOAD does not log the changes made to the table, you have the option of
specifying COPY YES to create a copy of the data being loaded. This copy is used during
roll-forward recovery to re-create the changes to the database done by LOAD.

When using this option you should also consider using multiple devices or directories to
allow for the best possible I/O exploitation.

For more information on the load copy location file, see “Using the Load Copy Location
File” on page 319.

If forward recovery is enabled (logretain or userexit is “on”) and the COPY option was
not used, all table spaces in which the loaded table resides are left in a backup
pending state. A backup of the database or the table space(s) is required to remove
this pending status. The backup is done before any other units of work against the
database or table space can be started.

222 Administration Guide

For more information on how to recover, see Chapter 7, “ Recovering a Database” on
page 269.

During forward recovery, if the load copy is not available, then the table spaces (of the
loaded table) which are being rolled forward will be set to the restore pending state.
These table spaces must be restored from a backup image taken after the table load.

An error is returned if you specify NONRECOVERABLE and COPY YES. There is no need for a
copy in such a case since it would not be needed during recovery.

LOAD Exception Table
The exception table is a user-created table which mimics the definition of the table
being loaded. It is specified by the FOR EXCEPTION option on the LOAD command. The
table is used to store copies of rows that violate unique index rules.

Note: Any rows rejected before the building of the index on the loaded table because
of invalid data are not inserted into the exception table.

Rows are added to the existing information in the exception table. The existing
information may include rows listing check constraint or foreign key violations; or invalid
rows from a previous LOAD. If you want only the invalid rows from this LOAD, you will
need to remove the existing rows before invoking LOAD.

The exception table used with the LOAD utility is identical to the exception table(s)
used by the SET CONSTRAINTS statement. An exception table should be created to
perform a load which has a unique index and may have duplicate records. If an
exception table is not provided for the LOAD, and duplicate records are found, then the
LOAD will continue. However, only a warning message is issued about the deleted
duplicate records and the deleted duplicate records are not placed anywhere.

After completing the load, information in the exception table can be used any way you
wish. You may want to use the information to correct any data that was in error and
insert the rows into the original table.

The exception table message column has the following structure:

 Chapter 6. Utilities for Moving Data 223

Table 32. Exception Table Message Column Structure for LOAD

Field number Contents Size Comments

1 Number of violations 5 characters Right justified padded with
'0'

2 Type of first violation. Only
"I" is used by LOAD

1 character 'I' - Unique Index violation

3 Length of constraint/index
token

5 characters Right justified padded with
'0'

4 Constraint/index token length from the previous
field

Note: Only Unique Index violations will be reported by LOAD. The Check Constraint and Foreign Key violations will be reported
by running the SET CONSTRAINTS statement with the IMMEDIATE CHECKED FOR EXCEPTION options. Only one unique index
violation in a row is reported. LONG or Large Object (LOB) data is not inserted into the exception table. Index token is
the “IID” value from SYSCAT.INDEXES that identifies the index.

See the SQL Reference manual for more information on exception tables.

Checking For Constraint Violations
The loaded table may be in the check pending state if it has table check constraints or
referential integrity constraints defined on it. The STATUS flag of the SYSCAT.TABLES in
the row corresponding to the loaded table indicates the check pending state of the
table. For the loaded table to be usable, the STATUS must have a value of “N” indicating
the normal state of the table.

To remove a table from the check pending state, use the SET CONSTRAINT
statement. For more information on the SET CONSTRAINTS statement, see the SQL
Reference manual. One or more tables may be submitted to be checked in a single
invocation. For a dependent table to be checked, the parent table must not be in the
check pending state. In the case of a referential integrity cycle, all the tables involved in
the cycle must be included in a single invocation of the SET CONSTRAINTS statement.

To manage the loading of several tables, consider the position of each within referential
relationships along with the table size and time windows available to carry out the load.
It may be convenient, for example, to check the parent table for check constraint
violations while the dependent table is loaded. This can only occur if the two tables are
not in the same table space.

Exception tables are convenient for a consolidated report of all the rows that have
constraints violated. If the exception table option is not used, only the first violation is
reported. This may be a cause for frustration when dealing with large tables having
more than one constraint violation. The same exception table used for the LOAD utility
may be used for checking constraint violations. As with the LOAD utility, there is no
checking done when running the SET CONSTRAINTS statement to ensure that the
exception table is empty. The extra timestamp column in the exception table may be
used to distinguish newly-inserted rows from the old ones, if necessary.

The SET CONSTRAINTS statement does not activate any DELETE triggers as a result of
deleting rows that violate constraints. It must be noted, however, that once the table is

224 Administration Guide

removed from the check pending state, triggers are active. This implies that, if we
correct data and INSERT rows from the exception table into the loaded table, any
INSERT trigger defined on the table will be activated. The implications of this on the data
should be considered and, if necessary, suitable action should be taken. One option is
to drop the INSERT trigger, INSERT rows from the exception table, and then re-create the
INSERT trigger.

| If the underlying table (or tables) of a summary table are put in the check pending
| state, then all summary tables with REFRESH IMMEDIATE will be put into the check
| pending state. To take the summary table out of the check pending state, run the
| REFRESH TABLE statement against the table. You can also load the summary table
| and issue the SET CONSTRAINTS IMMEDIATE UNCHECKED statement. Refer to the
| SQL Reference for more information about these statements.

| Using the AutoLoader Utility
| In a partitioned database, large amounts of data are positioned across many partitions.
| Partitioning keys are used to determine the particular database partition where each
| portion of the data resides. Therefore, data must pass through a splitting phase before
| it can be loaded at the correct database partition.

| The entire "split and load" process is accomplished by the AutoLoader utility. The
| AutoLoader utility uses a hashing algorithm to partition the data into as many output
| sockets as there are database partitions in the nodegroup in which the table was
| defined. It then loads from these output sockets concurrently across the set of database
| partitions in the nodegroup. A key feature of the AutoLoader utility is that it uses
| sockets for all data transfer required in the split and load process. It also allows the use
| of multiple database partitions for the splitting phase, thereby improving the
| performance significantly.

| The authority required to use the AutoLoader utility is the same as that required by the
| LOAD command; that is, SYSADM or DBADM authority. Also, the location of the LOAD
| dumpfile, the remote message file, and the directory used for sorting all have to be
| write-accessible by the instance owner.

| Note: The location of the input files to the load operation cannot be a tape device.
| Also, AutoLoader does not support the ROWCOUNT option on the LOAD
| command. If the ROWCOUNT option is used, an error is returned.

| In all examples shown relating to AutoLoader, keep in mind that the UNIX form for
| directories and paths is used. The separator between directories and subdirectories
| may vary dependent on the platform where the AutoLoader is used.

| Modes of Operation
| In all of the modes presented below, the input file locations (one or more) must be
| readable by the AutoLoader wherever the AutoLoader might be run.

| The AutoLoader utility may be run in one of the following modes:

 Chapter 6. Utilities for Moving Data 225

| SPLIT_AND_LOAD In this mode, data is split and then loaded on the correct database
| partitions. Sockets are used to transfer data. When working in this
| mode, multiple input files are allowed.

| SPLIT_ONLY With this choice, the data is only split. A set of split data files is
| generated for the requested output database partitions. You must
| have sufficient storage for each of the split data files. The output from
| the split function writes the files in the location pointed to by the
| parameter SPLIT_FILE_LOCATION or in the AutoLoader current working
| directory. The directory location has to be “write-accessible.” Data is
| split into separate files that are named using the convention
| filename.xxx where xxx is the partition number to which the split file
| belongs. If there are multiple input data files in the LOAD command,
| they will all be split. However, only one split-file is generated for each
| database partition. The filename of the split-file is the same as the
| filename of the first input data file.

| LOAD_ONLY Data is expected to be already split into separate files that are named
| using the following convention filename.xxx or filename.00xxx where
| xxx is the partition number to which the split file belongs. AutoLoader
| expects to find these files in the SPLIT_FILE_LOCATION or in the
| current AutoLoader working directory. The directory location has to
| allow read-access to the AutoLoader, wherever the AutoLoader might
| be run. These split files are loaded concurrently on their
| corresponding partitions. If there are multiple input data files in your
| LOAD command (such as infile1, infile2, and so on), then
| AutoLoader loads infile1.xxx if it exists. Otherwise, it loads
| infile1.00xxx if it exists. If neither exist, AutoLoader flags an error
| and returns. If both exist, AutoLoader loads infile1.xxx. Once the
| first infile1 of either file type (xxx or 00xxx) is loaded, checking then
| begins for infile2 checking in the same order to determine which file
| type is to be used. If infile2.xxx exists, it is loaded. Otherwise,
| infile2.00xxx is loaded if it exists. If neither exists, the load operation
| is done. If either of the two infile2 files is loaded, the same checking
| for infile3 is carried out and this process is repeated until all of the
| input files are loaded.

| ANALYZE This option generates a customized optimal partitioning map for a
| nodegroup. It is recommended that a data file with a large number of
| records be specified as input. The output for the analysis is written
| into the file specified by the MAP_FILE_OUTPUT parameter. The
| output from the ANALYZE mode can be used with the
| MAP_FILE_INPUT parameter when performing a future AutoLoader
| function. Note that the larger the number of records used, the better
| the representation to the actual data that can be analyzed, and the
| better the resulting new partitioning map. The map will produce a
| more even distribution of data across each of the database partitions
| in the nodegroup. When working in this mode, multiple input files are
| allowed.

226 Administration Guide

| Additional Options and Considerations
| When working with the AutoLoader configuration file, there are many options available
| for your use beyond the declaration of the mode of operation you wish to carry out.

| RELEASE Level The release level of this configuration file. Do not delete or
| modify this line in the configuration file.

| LOAD Command The most important part of the configuration file is the LOAD
| command. The AutoLoader requires the presence of the LOAD
| command to direct the handling of the data even if the mode of
| operation selected does not suggest any loading is required.
| For example, the AutoLoader extracts useful information from
| the LOAD command even when performing only a
| SPLIT_ONLY mode operation. The LOAD command lets the
| AutoLoader “know” where the data is coming from, what type
| of data it is (ASCII or Delimited ASCII), how the data is to be
| loaded, and where the data is going (the table name).

| Ensure that you specify a complete LOAD command that
| includes the schema name, file name, file type, and table
| name. Also, the AutoLoader utility requires that the LOAD
| command conforms to the format of the “db2 -f” file, except for
| the extra leading “db2” keyword. There is no need to use the
| special escape shell characters in the LOAD command.
| Finally, if the last character on a line is a backslash (“\”)
| character, the next line is a continuation of the current line. In
| this case the backslash and the end-of-line character(s) are
| ignored.

| The Command Reference provides the details on all the
| parameters available using the LOAD command.

| DATABASE Parameter The DATABASE parameter is used to identify the database
| where the data is loaded. If no name is given for the
| DATABASE parameter, "SAMPLE" is used as the default.

| HOSTNAME Parameter The HOSTNAME parameter provides the name of the remote
| machine where the data file resides. This remote file machine
| may be an MVS host or another workstation. If not specified,
| and FILE_TRANSFER_CMD is set, then the host name
| “nohost” is passed to the FILE_TRANSFER_CMD in the
| <hostname> argument. There is no default associated with this
| parameter.

| FILE_TRANSFER_CMD Parameter The FILE_TRANSFER_CMD parameter provides a
| fully-qualified path and executable, batch file, or script that
| carries out data transfer from the host. If you are going to
| receive input from a remote host, you need to know what the
| AutoLoader utility requires to do this. The previous AutoLoader
| utility supported a concept of host file transfer, whereby the
| AutoLoader utility could be configured to transfer data files

 Chapter 6. Utilities for Moving Data 227

| from a remote host. This option has been replaced by the
| “FILE_TRANSFER_CMD” feature.

| The FILE_TRANSFER_CMD parameter identifies a
| fully-qualified path to an executable, batch file, or script that is
| used to transfer data from a remote host. The fully-qualified
| path must be accessible by the AutoLoader. The full path,
| including the execution file name, must not exceed 254
| characters.

| Before executing the executable, batch file, or script shown in
| the FILE_TRANSFER_CMD, the AutoLoader establishes
| named-pipes in anticipation of the data being sent from the
| host.

| The number of named-pipes to be created is equivalent to the
| number of files or devices listed following the FROM clause on
| the LOAD command. This same information from the LOAD
| command is also used to create the parameters to pass to the
| executable, batch file, or script used to transfer the data from
| the remote host.

| Based on this information, AutoLoader creates the following
| command line:

| <COMMAND> <logpath> <hostname> <basepipename>
| <nummedia> <source media list>

| where

| ¹ <COMMAND> is the fully-qualified path to an executable,
| batch file, or script (FILE_TRANSFER_CMD) used to
| move data from the host

| and the remaining items are parameters that may be used by
| the command

| ¹ <logpath> is the AutoLoader log path. The COMMAND
| program may use this path to write out diagnostic or
| temporary data.

| ¹ <hostname> is the host name given with the HOSTNAME
| parameter.

| ¹ <basepipename> is the base name for named-pipes that
| db2atld will create, and expect to receive data from the
| host by means of the executable, batch file, or script.

| Note: The AutoLoader utility generates the base name
| and guarantees it to be unique on this system. The
| base name is added to by the utility to create the
| named-pipes needed.

| ¹ <nummedia> is the number of files or devices providing
| data (following FROM on LOAD).

228 Administration Guide

| ¹ <source media list> is the names of each of the files or
| devices providing data (following FROM on LOAD).

| Note: Double quotes are added around each of these
| names to account for possible special characters
| in the names.

| An AIX sample called atldftp.drv is found under the autoloader

| sub-directory of the samples sub-directory of the sqllib
| sub-directory. The AIX sample shows how FTP can be used to
| move data from a remote host.

| SPLIT_FILE_LOCATION Parameter The SPLIT_FILE_LOCATION parameter is used
| in two instances:

| ¹ To provide the path name to the location of the split files if
| the utility is in a LOAD_ONLY mode.

| ¹ To provide the path name to the location where to place
| those files that have been split if the utility is in a
| SPLIT_ONLY mode.

| If not specified, and in SPLIT_ONLY mode, the split files are
| placed in the current working directory. If not specified, and in
| LOAD_ONLY mode, the AutoLoader utility looks for the split
| files in the current working directory.

| OUTPUT_NODES Parameter The database partitions on which the load is to be
| performed are identified by the OUTPUT_NODES parameter.
| The supplied partition numbers must be a subset of database
| partitions on which the table is defined. The default for this
| parameter is that all database partitions where the table is
| defined will have data loaded into them.

| SPLIT_NODES Parameter The list of database partitions participating in the splitting
| process is shown in the SPLIT_NODES parameter. Splitting
| database partitions may be the same or different from the
| database partitions being loaded. If not defined, the
| AutoLoader automatically determines how many partitions are
| needed for splitting, and which partitions are used for splitting,
| in order to achieve optimal performance. How to determine the
| number of partitions follows these rules:

| ¹ If there is no ANYORDER modifier in the LOAD
| command, there will always be only one splitter used in
| the AutoLoader session; and,

| – If there is only one partition in the OUTPUT_NODES
| parameter, or the working partition of AutoLoader is
| not an element of OUTPUT_NODES, then the
| working partition of AutoLoader is used as the splitting
| partition.

 Chapter 6. Utilities for Moving Data 229

| – Otherwise, the first partition other than the working
| partition of AutoLoader found in OUTPUT_NODES is
| used as the split partition.

| ¹ If there is an ANYORDER modifier in the LOAD
| command,

| – First, the number of splitters is determined by,

| (number of partitions in OUTPUT_NODES)/4 + 1

| – Then the number of splitting partitions (from the
| previous step) are chosen from the
| OUTPUT_NODES, excluding the working partition of
| AutoLoader.

| RUN_STAT_NODE Parameter In conjunction with the “STATISTICS YES” specification
| on the LOAD command, you can specify the node (database
| partition) on which you would like to gather statistics. If left
| blank or -1, the default is the first database partition in the
| output partition list.

| MODE Parameter The MODE parameter specifies the mode to run AutoLoader
| in. The mode can be one of: SPLIT_ONLY, LOAD_ONLY,
| ANALYZE, or SPLIT_AND_LOAD (the default). In addition to
| the complete split and load operation, other valid values are:

| ¹ SPLIT_ONLY ... Load process is not performed. Output
| from the splitting database partitions is written to files in
| the SPLIT_FILE_LOCATION or in the current AutoLoader
| working directory.

| ¹ LOAD_ONLY ... Data must be pre-split. The split files are
| sent to correct database partition for loading. The split
| filenames must follow the convention filename.xxx where
| filename was provided in the LOAD command and xxx is
| the nodenumber. Also, it is assumed that filename.xxx is
| in the SPLIT_FILE_LOCATION or in the current
| AutoLoader working directory.

| ¹ ANALYZE ... This option is used to generate an optimal
| partition map for a nodegroup.

| LOGFILE Parameter The LOGFILE parameter is used to provide the base name of
| the temporary and permanent files used by the AutoLoader
| utility. This name is used as a base name to create the
| following files.

230 Administration Guide

| <logfile>.split.cfg ...
| configuration file for all splitters

| <logfile>.split.<3-digit-node-number>.log ...

| log file for each splitter

| <logfile>.pmap.<pid> ...

| internal temporary file, where <pid> is the process id

| of this AutoLoader job

| <logfile>.load.<3-digit-node-number> ...

| the message file for each loading process if there is no

| message file specified in the LOAD command

| You may include a path in the LOGFILE parameter, however
| you must ensure the existence and accessibility of the path.
| The default is “./autoloader.log.”

| Note: In the case where there are multiple concurrent
| AutoLoader sessions, you must ensure either the base
| name of LOGFILE or the path name of LOGFILE is
| unique.

| AUTHENTICATION and PASSWORD Parameters If a password is required for remote
| invocation of the splitter program, or client/server database
| connections when loading, the AUTHENTICATION parameter
| is needed. This parameter is used in conjunction with the
| PASSWORD parameter which defines the password to be
| used for remote splitter invocation or client/server database
| connections when loading. The default for AUTHENTICATION
| is NO (no password checking) and the PASSWORD parameter
| is ignored (if it is provided). Authentication can be achieved
| several ways:

| ¹ If AUTHENTICATION=YES then:

| – If DB2ATLD_PWFILE is defined, the first word in the
| file pointed to by the value of DB2ATLD_PWFILE will
| be the password.

| Note: DB2ATLD_PWFILE is a registry value that
| defines the fully-qualified path to a password
| file created by you. The password file and
| fully-qualified path must be accessible by the
| AutoLoader utility.

| – If DB2ATLD_PWFILE is not defined, use the value
| provided by the PASSWORD configuration file
| parameter.

| – If the PASSWORD parameter is not present, prompt
| the user for the password.

| ¹ If AUTHENTICATION=NO then:

| – If PASSWORD is not specified, then ignore the value
| of DB2ATLD_PWFILE, and do not use the password
| for establishing a connection.

 Chapter 6. Utilities for Moving Data 231

| – If PASSWORD is specified, then the actual
| authentication method depends on the file and path
| given in the DB2ATLD_PWFILE registry variable at
| the time the AutoLoader utility is invoked. If
| DB2ATLD_PWFILE yields a file, the first word in the
| content of the file is used as the password when
| connecting. If DB2ATLD_PWFILE is not set, no
| password is used.

| MAX_NUM_SPLITTERS Parameter You can establish the maximum number of splitter
| processes used in an AutoLoader job using the
| MAX_NUM_SPLITTERS parameter. The default is 25 splitters.

| FORCE Parameter The FORCE parameter forces the AutoLoader job to continue
| even if the AutoLoader detects (at startup time) that some
| target partitions or table spaces are offline. If "NO", and some
| partitions are unavailable, then no data will be processed. If
| "YES", database partitions which are available will be loaded,
| and all others will be ignored. The default for this parameter is
| "NO".

| STATUS_INTERVAL Parameter The number of megabytes to be loaded before
| generating a progress message can be entered using the
| STATUS_INTERVAL parameter. The unit of measurement is
| megabytes (MB). The default is 100 MB. Valid values are
| whole numbers in the range of 1 to 4000.

| PORTS Parameter The range of TCP ports used to create sockets for internal
| communications in AutoLoader is controlled using the PORTS
| parameter. The default range is 6000 up to 6063. If defined at
| the time of the AutoLoader invocation, the value of the
| DB2ATLD_PORTS DB2 registry variable replaces the value of
| the PORTS configuration parameter.

| CHECK_LEVEL Parameter The CHECK_LEVEL parameter is used to determine
| whether there should be checks for the truncation of records
| during input or output. The default is NOCHECK (no check for
| truncation at input or output). CHECK is the only other value
| allowed.

| MAP_FILE_INPUT Parameter When using a partitioning map, the MAP_FILE_INPUT
| parameter is used to give the input file name pointing to to the
| file containing the customized partitioning map. When using
| ANALYZE mode, the output file name for the partitioning map
| is identified using the MAP_FILE_OUTPUT parameter. If the
| partitioning map is customized rather than a default map, this
| parameter must be specified. You can get a customized
| partitioning map by either using the db2gpmap program to
| extract the map from the database system catalog table; or
| you can run the ANALYZE mode of db2atld to generate an
| optimal map. The map generated by the ANALYZE mode must

232 Administration Guide

| be moved to each database partition in your database before
| actual loading can proceed.

| MAP_FILE_OUTPUT Parameter This is the name for the partitioning map when used
| with the db2atld program executed in ANALYZE mode. An
| optimal partitioning map with even distribution across all
| database partitions is generated. If it is not specified and the
| running mode is ANALYZE, an error is returned.

| TRACE Parameter The number of records to trace when you need to review a
| dump of all of the data conversion process and output of
| hashing values is determined by the TRACE parameter. The
| default is 0 (no tracing).

| NEWLINE Parameter The parameter NEWLINE defines the character used to delimit
| each record in the data file. This parameter is only meaningful
| if the input data file is a fixed-length ASC file with each record
| delimited by a new line character, and the RECLEN option of
| the MODIFIED BY clause in the LOAD command is specified.
| If YES, AutoLoader always checks if the record is terminated
| by a new line character or not. It also checks if the record
| length is the same as the expected RECLEN or not. The
| default for this parameter is NO.

| Planning to Use the AutoLoader Utility
| The AutoLoader utility is invoked using db2atld. A sample configuration file,
| autoloader.cfg, is found under the autoloader sub-directory of the samples sub-directory
| of the sqllib sub-directory. The db2atld uses a configuration file to carry out the
| AutoLoader actions. It is recommended that you copy, rename, and modify the sample
| configuration file to establish the configuation you wish to use to split and load your
| data.

| Before using the AutoLoader utility, you should:

| 1. Create a temporary working directory and copy your configuration file into it. This
| directory must be accessible from all the participating split database partitions. It is
| from this directory that you will use the AutoLoader utility.

| 2. Ensure the SVCENAME parameter of your database manager configuration, and the
| DB2COMM profile registry variable, are set up correctly. This is important since the
| AutoLoader utility makes remote database connections from the working partition
| (where you run the utility) to the database partitions where the table is defined.

| 3. Modify your configuration file according to the directions included in the sample file.

| Running the AutoLoader Utility
| The AutoLoader utility is executed by typing the following command:

| db2atld [-c config_file]

| with one or more of the following options:

 Chapter 6. Utilities for Moving Data 233

| -c Uses the config_file specified as the configuration file for the AutoLoader utility. If
| not specifically mentioned, the default is 'autoloader.cfg'.

| The AutoLoader utility creates several log and messages files. See “Additional Options
| and Considerations” on page 227 and the LOGFILE parameter for details on the
| generated files.

| AutoLoader Hints and Tips
| There are some items you should consider before using the AutoLoader utility:

| ¹ You should familiarize yourself with the AutoLoader operations by using the utility
| with small amounts of data.

| ¹ If the input data is already sorted, or in some chosen order, and you wish to
| maintain that during the loading process, then only one database partition should
| be used for splitting. Parallel splitting cannot guarantee that the data is loaded in
| the same order it was received.

| ¹ If LOBs are being inserted or loaded from within separate files (that is, if you are
| using the LOBSINFILE option of the LOAD utility), then all directories containing
| the LOB files should be made accessible (that is, readable) to all the database
| partitions where loading is taking place. The log path in the LOAD command must
| be fully-qualified when working with large objects (LOBs).

| ¹ All temporary AutoLoader files reside at the directory specified in the LOGFILE

| parameter of the AutoLoader configuration file. This directory has to be
| network-accessible with both read and write access to all partitions where splitting
| is to be done. By setting different directories for temporary files, you can run
| multiple concurrent AutoLoader jobs to load data into separate tables in different
| table spaces.

| ¹ The maximum number of active database connections in an AutoLoader job is the
| number of loading partitions defined in the OUTPUT_NODES parameter of the
| AutoLoader configuration file. Ensure the MAXAPPLS (maximum number of active
| applications) configuration parameter in your database configuration is big enough.

| ¹ If the AUTHENTICATION parameter in the database manager configuration is set to
| “server” and the table being loaded is defined on multiple physical database
| partitions, you have to specify AUTHENTICATION=YES in the AutoLoader
| configuration file. Otherwise, AutoLoader will fail.

| ¹ You can force an AutoLoader job to continue even if the AutoLoader detects (at
| startup time) that some loading partitions or associated table spaces are offline, by
| setting FORCE=YES in your AutoLoader configuration file.

| ¹ To monitor the progress of an AutoLoader job, you can tune the STATUS_INTERVAL

| parameter in the AutoLoader configuration file. AutoLoader prints out a
| progressive series of messages as each interval is reached to the console. Each
| message states how many megabytes of data have been processed.

| ¹ Better performance can be expected if the splitting partitions (as defined by the
| SPLIT_NODES parameter) are different from the loading partitions (as defined by the
| OUTPUT_NODES parameter) since there is less contention for CPU cycles. Further, the

234 Administration Guide

| AutoLoader utility itself should be invoked on a database partition that is not
| participating in either the splitting or loading operations. On a SMP system, you
| can improve performance if you ensure there is at least one splitter task for every
| CPU available.

| ¹ If you are using multiple database partitions to split and then LOAD the data, the
| use of a SAVECOUNT greater than zero (0) on the LOAD command is not
| supported.

| AutoLoader Sample Job
| Using a small amount of data, we can see the output produced from the AutoLoader
| utility.

| In this example, the following configuration file was used:

| ###############

| # release level

| ###############

| RELEASE=V5.01

| ##################

| # CLP load command

| ##################

| db2 load from /home/user/atld_work/test.dat of del replace into user.test

| ###############

| # database name

| ###############

| database=wsdb

| #################

| # split partition list

| #################

| SPLIT_NODES=(0,2)

| ##############

| # running mode

| ##############

| mode=split_and_load

| ################

| # log file token

| ################

| logfile=mylog

| ######################################

| # frequency of progressive information

| #

| # print out progressive info every 10

| # mega-bytes of data

| ######################################

| STATUS_INTERVAL=10

 Chapter 6. Utilities for Moving Data 235

| The following output was generated:

| /home/user/atld_work/ $ db2atld -c sample.atld.cfg

| Utility program: "db2atld". Version: "05010".

| Start reading autoloader configuration file: sample.atld.cfg

| Finish reading autoloader configuration file: sample.atld.cfg

| Start initializing autoloader process.

| Finish initializing autoloader process.

| The Autoloader is now issuing all LOAD requests.

| The LOAD operation has begun on partition "0".

| The LOAD operation has begun on partition "1".

| The LOAD operation has begun on partition "2".

| The LOAD operation has begun on partition "3".

| The Autoloader is now issuing all split requests.

| Start db2split on node "0" in background.

| Start db2split on node "2" in background.

| The utility has read "10" megabytes from the source data.

| The utility has read "20" megabytes from the source data.

| The utility has read "30" megabytes from the source data.

| The utility has read "40" megabytes from the source data.

| The utility has read "50" megabytes from the source data.

| The utility has read "60" megabytes from the source data.

| The utility has read "70" megabytes from the source data.

| The utility has read "80" megabytes from the source data.

| The utility has read "90" megabytes from the source data.

| The utility has read "100" megabytes from the source data.

| The utility has read "110" megabytes from the source data.

| The utility has read "120" megabytes from the source data.

| The utility has read "130" megabytes from the source data.

| The utility has completed reading "130" megabytes from the user data.

| The Autoloader is waiting for all splitters to complete.

| The Autoloader is waiting for all LOAD operations to complete.

| The remote execution of the splitter utility on partition "2"

| finished with remote execution code "0".

| The remote execution of the splitter utility on partition "0"

| finished with remote execution code "0".

236 Administration Guide

| Operation Node SQL Code Result

| ___

| LOAD 000 +00000000 Success.

| ___

| LOAD 001 +00000000 Success.

| ___

| LOAD 002 +00000000 Success.

| ___

| LOAD 003 +00000000 Success.

| ___

| SPLIT 000 +00000000 Success.

| ___

| SPLIT 002 +00000000 Success.

| ___

| PSPLIT 000 +00000000 Success.

| ___

| RESULTS: 4 of 4 LOADs completed successfully.

| ___

| Rows Read 1310848

| Rows Skipped 0

| Rows Loaded 1310848

| Rows Rejected 0

| Rows Deleted 0

| Rows Committed 1310848

| The first line of the example shows the path and the temporary working directory
| accessible from each of the participating database partitions. The name of the
| configuration file to be used is also shown: in this case sample.atld.cfg.

| The main body of the messages generated by the AutoLoader process show the
| initialization of the participating database partitions. The progress of the data through
| the split and load process is shown. Next, the termination of the AutoLoader processes
| is recorded.

| A summary table of the operations, the partitions being used, any SQL codes that are
| returned, and some statement regarding the results of the operation, is presented as
| one of the outputs from the utility. If the SQL Code column records anything other than
| a zero (0) return code, a review of the message file will show the specific warnings or
| errors that were recorded.

| Finally, a summary list of the records that were part of the AutoLoader job is shown.

| Loading into Multiple Database Partitions
| If you are loading data into a table in a multiple database partition nodegroup, the
| LOAD utility requires that the files that are to be loaded were split and contain the
| correct header information. The LOAD utility verifies the header information that the
| split operation of AutoLoader writes to each data file to ensure that the data goes to the
| correct location.

 Chapter 6. Utilities for Moving Data 237

| If you are loading data into a table in a single database partition nodegroup, the files do
| not have to be split, even if the table is defined to have a partitioning key. In this
| situation, you would specify the NOHEADER option of the LOAD utility.

| The LOAD utility checks that the partitioning map used by the split operation of
| AutoLoader is the same one specified when the table is being loaded. If not, an error is
| returned. It also checks that the file partition is loaded at the correct database partition,
| and that the data types of the partitioning key columns specified during splitting match
| the current definition in the catalog. The nodegroup to which the table is loaded cannot
| be redistributed between the time that the data file is partitioned and the time that the
| parts are loaded into the corresponding database table. If redistribution has been done,
| the utility cannot load the partitioned data.

| LOAD supports the following flat file formats:

| ¹ Non-delimited ASCII (ASC)

| ¹ Delimited ASCII (DEL)

| ¹ PC/IXF Format (IXF)

| However, AutoLoader can only be used to split DEL and ASC files.

| Note: IXF files cannot be split, but can be loaded into a single database partition
| nodegroup using the 'NOHEADER' option in the LOAD command.

| When the ROWCOUNT clause is used on the LOAD command in the AutoLoader
| process, ROWCOUNT is not supported and an error is returned. The use of the
| ROWCOUNT clause is only valid in a non-partitioned database environment.

| There is a special consideration when using AutoLoader with a LOAD command that
| uses a DUMPFILE specification on the MODIFIED BY clause. If a column that is part of
| the partitioning key is invalid or rejected, all of the data associated with that row is not
| loaded. The row is not placed in the DUMPFILE location as you might expect; however,
| a record of the row causing the problem is placed in the splitter log file. You should
| check the splitter log file after the completion of the AutoLoader process since the
| DUMPFILE location may not have all rejected records that were not loaded.

| See “AutoLoader Troubleshooting” for more information on potential problems.

| AutoLoader Troubleshooting
| 1. If it appears that db2atld is hanging, you can:
| ¹ Use the STATUS_INTERVAL parameter of the AutoLoader configuration file to
| monitor the progress of an AutoLoader job. AutoLoader prints successive
| messages onto the console indicating the number of megabytes of data that
| have been processed.
| ¹ Check the <logfile>.split.<3-digit-node-number>.log files to see the status
| of the splitter processes on each splitting database partition. If things are going
| well and the TRACE parameter is set in the db2atld configuration file, there
| should be trace messages for a certain number of records in these log files.

238 Administration Guide

| ¹ Check the LOAD messages file or the
| <logfile>.load.<3-digit-node-number> files to see if there are any load error
| messages.
| ¹ If you do find errors that would suggest one of the AutoLoader processes
| encountered errors, then you should interrupt the current AutoLoader job.
| 2. If db2atld still fails you can try the following to diagnose the problem:
| ¹ Change MODE in your db2atld configuration file to SPLIT_ONLY. Run
| db2atld again. Check the split data files to see if there is anything abnormal in
| them.
| ¹ If the split files look correct, then try to load one of those split files manually on
| the right database partition.
| ¹ If the data loads OK, then there might be some db2atld functional problems or
| database system problems. Please contact your IBM service representative.

| When working with the db2atld utility, you may issue:

| db2atld -h

| which will show a -d option. This option is reserved for future use.

| Migration and Backward Compatibility
| There are a few migration and backward compatibility issues associated with this latest
| version of the AutoLoader utility.

| ¹ The previous AutoLoader utility was called db2autold. The lastest version is called
| db2atld.

| ¹ db2atld uses sockets as internal communications channels (as opposed to named
| pipes), and it chooses a TCP port number from the default range of 6063 down to
| 6000. However, if your system requires the use of this range for other applications,
| you have two (2) choices when you migrate:

| 1. The PORTS parameter in the AutoLoader configuration file is used to specify a
| port range other than the default.

| 2. A DB2ATLD_PORTS DB2 registry variable is defined by showing the range as

| <lower-port-number>:<higher-port-number>

| The priority sequence to determine the TCP port range is: DB2ATLD_PORTS, PORTS
| in the configuration file, and the default.

| ¹ If a password is needed for the client-to-server database connection, there are two
| choices when migrating:

| 1. The parameters, AUTHENTICATION and PASSWORD in the AutoLoader configuration
| file are used. If AUTHENTICATION=YES and PASSWORD is defined, the password is
| used for authentication. If AUTHENTICATION=YES and PASSWORD is not defined,
| you are prompted for a password.

| 2. The DB2 registry value DB2ATLD_PWFILE is defined and states a file where the
| password is stored. If specified, the contents of the file are evaluated and the
| first character string found (delimited by a blank) will be used as the password.

 Chapter 6. Utilities for Moving Data 239

| Since the registry value is evaluated last, if it is defined it will be used to
| override other password values.

| Moving DB2 File Manager Data
| To move data, you can use the load, import, and export utilities. The following sections
| describe considerations for using these utilities with DB2 File Manager data.

| For information about the file formats that you can use with these utilities, see the
| Command Reference.

| Load Utility Considerations
| Use the load utility for the initial load or an append of a table where large amounts of
| data are moved. The LOAD command is faster than the IMPORT command, because it
| writes formatted pages directly into the database while IMPORT performs SQL
| INSERTs.

| If you are loading data to a table with a DATALINK column that is defined as FILE LINK
| CONTROL, perform the following steps before invoking the LOAD utility. (If all the
| DATALINK columns are defined with NO LINK CONTROL, these steps are not
| necessary.)

| 1. Ensure that DB2 File Manager is installed on the file servers that will be referred to
| by the DATALINK column values.

| 2. Ensure that the database is registered with the File Manager.

| 3. Copy to the appropriate file servers all files that will be inserted as DATALINK
| values.

| 4. Define the prefix name (or names) to the File Managers on the file servers. For
| more information, refer to the description of how to register databases with the File
| Manager in the Quick Beginnings for DB2 File Manager book.

| 5. If you intend to refer to a new file server in an input file, add the file server name
| (or names) to the DB2 file server configuration file.

| Troubleshooting the Load Utility
| It is possible that while running the load utility, the connection between DB2 and the file
| server may fail. This causes the load to fail. If this occurs:

| ¹ Start the file server and DB2 File Manager.

| ¹ Issue the LOAD RESTART command. The load utility restarts from the last
| consistency point. See the Command Reference for additional information on this
| command.

| Any links that fail during the load process are considered to be a type of data integrity
| violation, and they are handled in much the same way as violations of unique
| constraints. Consequently an exception is defined that can occur only if the table under
| load has one or more DATALINK columns. For additional information, refer to the
| description of exceptions in the SQL Reference.

240 Administration Guide

| Export Utility Considerations
| All the database data for a table resides in the database, while the files referred to by
| DATALINK columns reside on file servers. The EXPORT utility has to move both the
| database data, and the data files on the corresponding file servers. To do this, the
| EXPORT utility produces one control file per file server. The name of the control file
| that is created is the same as the name of the file server (for example, the control file
| for the file server fs1 is “fs1”). The control files are created in a newly created directory
| that has the name dlfmYYYY, where YYYY is a system-generated pattern. This directory
| is created under the same directory where the EXPORT datafile is created.

| A control file lists the names of the corresponding DB2 File Manager files that are
| referenced by the DATALINK columns of rows that are exported. DATALINK values
| that have the “no link” control property are not placed in the control file.

| You issue the dlfm_export command at each file server, and specify the control file that
| was generated for that file server. The dlfm_export command produces an archive of
| the files listed in the control file.

| Running the Export Utility
| To ensure that a consistent copy of the table and the corresponding files that are
| referenced by the DATALINK columns are copied for export, perform the following
| steps:

| 1. Ensure that no update transactions are in progress when EXPORT is run by
| issuing the following command:

| QUIESCE TABLESPACES FOR TABLE tablename SHARE

| 2. Run the EXPORT utility

| 3. Run the dlfm_export command with root authority at each file server. As input to
| dlfm_export, specify the control file (server_name), that is generated by the
| EXPORT utility. You need to run dlfm_export as root in order to successfully
| archive files that the DLFM administrator may not have access to.

| 4. Create the table available for updates by issuing the following command:

| QUIESCE TABLESPACES FOR TABLE tablename RESET

| The EXPORT utility executes as an SQL application. The rows and columns that satisfy
| the select-statement conditions are extracted from the database. For the DATALINK
| columns, the select-statement should not specify any scalar function. The EXPORT
| utility extracts parts of the DATALINK value, such as the link type, file server name, file
| path name, and comments.

| When the EXPORT utility executes successfully, the following files are generated:

| ¹ The database export data file as specified in the EXPORT command. A
| DATALINK column value in this file is in the same format as that used by the
| LOAD or IMPORT utilities. If the DATALINK column value is NULL, it is treated in
| the same way as for other NULL columns.

 Chapter 6. Utilities for Moving Data 241

| ¹ Control files for each file server (each control file has the same name as its file
| server). The control file lists the complete path and file names of all the files that
| should be exported from that file server.

| Use the dlfm_export utility to export files from a file server as follows:

| dlfm_export control_file_name tar_file_name

| where control_file_name is the file name generated by running the EXPORT utility on
| the DB2 client; and, tar_file_name is the name of the archive file that will be generated.
| The default tar_file_name is “export.tar” in the current working directory.

| A corresponding utility called dlfm_import is provided to retrieve and restore files from
| the archive that dlfm_export generates. This utility must be used whether the archived
| files are being restored on the same, or a different, file server.

| Use the dlfm_import utility to retrieve files from the archive as follows:

| dlfm_import tar_file_name

| where tar_file_name is the name of the archive file that will be used to recover the files.
| The default tar_file_name is “export.tar” in the current working directory.

| Notes:

| 1. Both dlfm_export and dlfm_import utilities must be run with root authority. For
| dlfm_export, this is required because there may be some files needing to be
| archived that the DLFM administrator does not have access to. In dlfm_import's
| case, root authority is required because the user may decide to restore the
| archived files on a different file server which may not have the same directory
| structure and user IDs as the file server on which the dlfm_export utility was run.

| 2. The DB2 File Manager does not have to be up and running in order for dlfm_export
| and dlfm_import utilities to run.

| 3. When running the dlfm_import utility on a file server other than the one where
| dlfm_export was run, the files will be restored in the right paths. However, the files
| will be owned by root in case some of the user ID's do not exist on the new
| machine. Before inserting these files into their database, it is your responsibility as
| the administrator to ensure that all files have the right permissions, belong to the
| right user IDs, and so on.

| Exporting Between Instances
| The figure below shows how to export the DB2 data and the files that are referenced by
| the instance called “SystemA” to the instance called “SystemB.” SystemA uses the file
| servers DLFM1 and DLFM2. SystemB uses the file servers DLFMX and DLFMY. The
| files on DLFM1 will be exported to DLFMX and the DLFM2 files will be exported to
| DLFMY.

242 Administration Guide

| InstanceA with File Servers DLFM1 and DLFM2| Step

| DB2 Data on File| File1 with filename
| for DLFM1
| File2 with filename
| for DLFM2
| 1) Run the dlfm_export command
| (as root) on both file servers. This
| will produce an archive on both file
| servers.

| InstanceB with File Servers DLFMX and DLFMY

| On DLFMX, restore
| from archive
| On DLFMY, restore
| from archive
| 2) Run dlfm_import (as root) on
| both file servers

| 3) Run the IMPORT command on
| InstanceB with the parameter
| DL_URL_REPLACE_PREFIX to
| specify the appropriate file server
| for each exported file.

| After you run the import utility on InstanceB, the InstanceA data and all files referenced by DATALINK columns
| are now imported.

| Import Utility Considerations
| All the database data for a table resides within the database, while the files referred to
| in the DATALINK columns reside on the file servers. The import utility has to move both
| the database data, and the files on the corresponding file servers.

| Before running the import utility in the target database, you should perform the following
| steps:

| 1. Copy the files that you want to link to the appropriate file servers.

| 2. Define the prefix name (or names) to the File Managers on the file servers. (You
| may have to perform other administration tasks, such as registering the database.)

| 3. Update the file server information of the DATALINK columns to include the URLs
| from the exported data for the SQL table (if required).

| 4. Define the file servers at the target configuration in the DB2 File Manager
| configuration file.

| Then run the import utility in the target database system.

| When the import utility executes on the target database, data related to DATALINK
| columns (and the other columns) is loaded into the underlying tables using SQL
| INSERT. During the INSERT, the DATALINK column is linked to the file on the
| appropriate file server.

Using the IMPORT Utility
The IMPORT utility inserts data from an input file into a table or view. If the table or
view receiving the imported data already contains data, you can either replace or
append the existing data with the data in the file.

 Chapter 6. Utilities for Moving Data 243

Notes:

1. If the existing table is a parent table containing a primary key that is referenced by
a foreign key in a dependent table, its data cannot be replaced, only added to.

| 2. You cannot import data into a summary table.

The following is an example of the command line processor syntax for the IMPORT
command:

db2 import from stafftab.ixf of ixf insert into userid.staff

The following information is required when importing data to a table or view:

¹ The path and the input file name where the data to import is stored.
¹ The name or alias of the table or view where the data is imported.
¹ The format of the data in the input file. This format can be IXF, WSF, DEL, or ASC.

See “LOAD, IMPORT, and EXPORT File Formats” on page 250 for details.
¹ Whether the data in the input file is to be inserted, updated, replaced, or appended

to the existing data in the table or view.
¹ A message file name.

| ¹ When working with typed tables, you may need to provide the method or order by
| which to progress through all of the structured types. One method is to proceed
| from top of the hierarchy (or the root table) down the hierarchy (subtables) to the
| very bottom subtable; then back up to its supertable; down to the next “right-most”
| subtable(s); then back up to next higher supertable; down to its subtables; and so
| on. The method would proceed top-to-bottom, left-to-right through all of the
| supertables and subtables in the hierarchy. The order of going through the tables is
| called a “traverse” order. This order is important when moving data between table
| hierarchies because it will determine where the data is moved in relation to other
| data. The traverse order is the order of subtables within a typed table hierarchy. If
| you are using PC/IXF format, the default traverse order is recommended. If you are
| specifying the traverse order, remember that the subtables must be traversed in
| the PRE-ORDER fashion (that is, each branch in the hierarchy must be traversed
| to the bottom before a new branch is started).
| ¹ When working with typed tables, you may need to provide the subtable list. This
| list shows which subtables and attributes into which to import data.

When importing into large object (LOB) columns, the data can come either from the
same file as the rest of the column data, or from separate files. In the latter case, there
is one file for each LOB instance.

The column data in the file contains either the data to load into the column, or a
filename where the data to load is stored. The default is the file contains the data to
load into the column.

244 Administration Guide

Notes:

1. When LOB data is stored in the file, no more than 32KB of data is allowed.
Truncation warnings are ignored.

2. All of the LOB data must be stored in the main file or each LOB stored in separate
files. The main file cannot have a mixture of LOB data and file names.

For more information on importing LOBs from files, see the LOBSINFILE option in the
Command Reference manual.

You may also provide the following information:

¹ The method to use for importing the data: column location, column name, or
relative column position.

¹ The number of rows to INSERT before committing the changes to the table. If you
periodically do a COMMIT, this reduces the number of rows that are lost if a failure
and a rollback occur during the import.

¹ The number of records in the file to skip before beginning the import. If an error
occurs during an import, you may specify this information to restart the import
operation immediately following the last row that was successfully imported and
committed.

¹ The names of the columns within the table or view into which the data is to be
inserted.

To import data into a new table, you must have SYSADM authority, DBADM authority,
or CREATETAB privilege for the database. To replace data in an existing table or view,
you must have SYSADM authority, DBADM authority, or CONTROL privilege for the
table or view. To append data to an existing table or view, you must have SELECT and
INSERT privileges for the table or view.

With IMPORT, there is a possibility of unequal code page situations involving possible
expansion or contraction of the character data. Such situations could occur with
Japanese or Traditional-Chinese Extended UNIX Code (EUC) and double-byte
character sets (DBCS) which may have different length encodings for the same
character. An option, NOCHECKLENGTHS, is used to toggle between two situations:

1. Comparison of input data length to target column length is performed before
reading in any data. If the input length is larger than the target, NULLs are inserted
for that column if it is nullable. Otherwise, the request is rejected. This is the
default.

2. No initial comparison is performed and, on a row-by-row basis, an attempt is made
to import the data. If the data is too long after translation is complete, the row is
rejected. Otherwise, the data is imported. Specifying NOCHECKLENGTHS will enable
this behavior.

The IMPORT utility casts user-defined distinct types (UDTs) to similar base data types
automatically. This saves you from having to explicitly cast UDTs to the base data
types. Casting allows for comparisons between UDTs and the base data types in SQL.

Use the IMPORT utility to re-create a table that was saved by using the EXPORT utility.
The table must have been exported to an IXF file. When creating a table from an IXF

 Chapter 6. Utilities for Moving Data 245

file, not all attributes of the original table are preserved. For example, the referential
constraints, foreign key definitions, and user-defined data types are not retained. If the
IXF file was created with the LOBSINFILE option, then the length of the original LOB is
lost. Attributes of the original table that are preserved or retained are:

 ¹ Column information
 – Names

– Types including user-defined distinct types. (User-defined distinct types are
preserved as their base type.)

– Lengths (except for lob_file types)
– Codepages (if applicable)

 ¹ Index information
 – Name
 – Creator

– Column names of key parts (with a restriction if + or − are in the names)
– Ascending or descending

 – Uniqueness

Note: Before running the import utility, you must be connected or connected implicitly
to the database into which the data will be imported. Also, the utility issues a
COMMIT or ROLLBACK statement; therefore, you should complete all
transactions and release all locks by performing either a COMMIT or
ROLLBACK before using the utility.

Using IMPORT with Buffered Inserts
In a partitioned database environment, the IMPORT utility can be enabled to use
buffered inserts. This reduces the messaging that occurs when data is loaded, resulting
in better performance.

To cause the IMPORT utility to use buffered inserts, the BIND command must be used.
The import package, db2uimpm.bnd has to be rebound against the database with the
INSERT BUF option. This can be achieved using the following commands:

db2 connect to your_database

db2 BIND db2uimpm.bnd INSERT BUF

However, any one of the individual inserts that are buffered can fail. It is not possible to
report the failing row and error back to the user as IMPORT usually does. Therefore,
buffered inserts should only be enabled with the IMPORT utility if the user is not
concerned about error reporting.

Import in a Client/Server Environment
When you import a file to a remote database, a stored procedure may be called to
perform the import on the server. A stored procedure will not be called when:

¹ The application and database code pages are different
¹ The file being imported is a multiple-part PC/IXF file
¹ The method used for importing the data is either column name or relative column

position

246 Administration Guide

¹ The target column list provided is longer than 4K
¹ An OS/2 or DOS client is importing a file from diskette
¹ LOBPATHS or LOBSINFILE is specified
¹ NULL INDICATORS are specified for ASC files.

When importing using a stored procedure, messages are created in the message file
using the default language installed on the server. The messages are in the language
of the application if the language at the client and the server are the same.

The import utility creates two temporary files in the tmp directory indicated by the
DB2INSTPROF environment variable on the database server. One file is for data and the
other file is for messages generated by the import utility.

If you receive an error about writing or opening data on the server, make sure that:

¹ This directory exists
¹ Sufficient disk space for the files exists
¹ Write-permission to this directory for the system administrator exists.

Differences Between the IMPORT and LOAD Utilities
This table gives you a quick comparison between the two utilities highlighting the
important differences between them.

The IMPORT utility The LOAD utility

Significantly slower than the LOAD utility on large
amounts of data.

Significantly faster than the IMPORT utility on large
amounts of data because of LOAD's writing of
formatted pages directly into the database.

Limited intra-partition parallelism exploitation. Exploitation of intra-partition parallelism. Typically, this
requires symmetric multiprocessor (SMP) machines.

No FASTPARSE support. Support for FASTPARSE datatype. Reduced data
checking on user-supplied data.

No CODEPAGE support. Support for CODEPAGE datatype. Converts character
data (and numeric data specified in characters) from
the code page given with this datatype to the
database code page during the load operation.

| Supports hierarchical data.| Does not support hierarchical data.

| Creation of table, hierarchy, and indexes supported
| with PC/IXF format.
| Tables and indexes must exist.

Creation of table and indexes supported with IXF
format.

Table and indexes must exist.

WSF format is supported. WSF format is not supported.

No BINARYNUMERICS support. Support for BINARYNUMERICS datatype.

No PACKEDDECIMAL support. Support for PACKEDDECIMAL datatype.

Can import into views and tables. (Aliases are
supported.)

Can load into tables only. (Aliases are supported.)

 Chapter 6. Utilities for Moving Data 247

The IMPORT utility The LOAD utility

The table space(s) that the table and its indexes
reside in are online for the duration of the import.

The table space(s) that the table and its indexes
reside in are offline for the duration of the load.

All rows are logged. Minimal logging is performed.

Triggers will be fired. Triggers are not supported.

If an import is interrupted and a commitcount was
specified, the table is usable and will contain the rows
that were loaded up to the last commit. The user has
the choice to restart the import or use the table as is.

If a load is interrupted and a savecount was specified,
the table remains in load pending state and cannot be
used until the load is restarted to continue the load or
the table space is restored from a backup image
created some time before the load.

Space required is approximately the size of the largest
index plus about 10%. This space requirement is used
from the temporary table spaces within the database.

Space required is approximately the sum of the size of
all indexes defined on the table and possibly twice this
size. The space required is temporary space outside
of the database.

All constraints are validated during an import. Uniqueness is verified during a load but all other
constraints must be checked using the SET
CONSTRAINTS statement.

The keys of each row are inserted into the index one
at a time during import.

During a load, all the keys are sorted and the index is
built after the data has been loaded.

If up-to-date statistics are required after an import,
RUNSTATS must be run afterwards.

Statistics can be gathered during the load if all the
data in the table is being replaced.

You can import into a host database through DB2
Connect.

You cannot load into a host database.

Files that are imported must reside on the node where
import is invoked.

Files/pipes that are loaded must reside on the node
where the database resides.

No backup image is required. The backup image can be created during the LOAD
procedure.

Using the EXPORT Utility
The EXPORT utility exports data from a database into an operating system file. The
output file has the format specified by the data format parameter.

The following is an example of the command line processor syntax for the EXPORT
command:

db2 export to staff.ixf of ixf select * from userid.staff

The following information is required when exporting data:

¹ A SELECT statement specifying the data to be exported.
¹ The path and name of the operating system file that stores the exported data.
¹ The format of the data in the input file. This format can be IXF, WSF, or DEL. See

“LOAD, IMPORT, and EXPORT File Formats” on page 250.
¹ A message file name.

248 Administration Guide

| ¹ When working with typed tables, you may need to provide the subtable traverse
| order within the hierarchy. If the PC/IXF format is to be used, then the default order
| is recommended. When specifying the order, recall that the subtables must be
| traversed in the PRE-ORDER fashion.

| When working with typed tables, you cannot provide a SELECT statement directly.
| Instead, you must specify the target subtable name, and optionally a WHERE clause.
| The EXPORT command uses this information along with the traverse order to generate
| and execute the needed SELECT statement.

When exporting from LOB columns, the default action is to select the first 32K bytes of
data. The data is placed either in the same file as the rest of the column data, or into
separate files. In the latter case, each LOB value is placed in separate files by using
the FILETMOD option LOBSINFILE and the LOBPATHS/LOBFILE parameters. For more
information, see the Command Reference.

Note: Extensions from 000 to 999 are automatically added to the base name given in
the LOBFILE parameter — one for each LOB file.

You may also provide the following information:

¹ A method that allows you to specify new column names when exporting to IXF or
WSF files. If this method is not specified, the column names from the table or view
are used in the exported file.

¹ A file type modifier to specify additional format information when creating DEL and
WSF files.

You must have SYSADM authority, DBADM authority, CONTROL privilege, or SELECT
privilege for each table participating in the export.

A table may be saved by using the EXPORT utility and specifying the IXF file format.
The saved table may be re-created using the IMPORT utility. The EXPORT utility will
fail if the data you want to export exceeds the space available on the file system on
which the exported file will be created. In this case, you should limit the amount of data
selected by specifying conditions on the WHERE clause so that the export file will fit on
the target file system. You will have to run the EXPORT utility multiple times to export
all the data you desire.

Note: Before running the export utility, you must be connected or connected implicitly
to the database from which the data will be exported. Also, the utility will issue a
COMMIT statement; therefore, you should complete all transactions and release
all locks by performing either a COMMIT or ROLLBACK before calling it.

When you want to use the EXPORT utility in a multiple database partition environment,
you can use db2_all to have the utility carry out the task at each database partition.
The SELECT statement used with EXPORT must be able to only get the data found
locally. The selection condition appears as follows:

SELECT * FROM tablename WHERE NODENUMBER(column-name) = CURRENT NODE

 Chapter 6. Utilities for Moving Data 249

Only the rows from tablename found on the local database partition are exported to the
filename (like staff.ixf in the previous example) where there is a file with this name at
every database partition. The contents of these files are overwritten by the output from
the EXPORT command.

LOAD, IMPORT, and EXPORT File Formats
 Four types of files can be imported to a database, and three types can be exported or
loaded. The type indicates the format of the data within the operating system file. The
supported file formats are:

DEL Delimited ASCII, for exchanging files with a wide variety of industry applications,
especially other database products. This is a commonly used way of storing data
that separates column values with a special delimiting character.

ASC Non-delimited ASCII for importing or loading data from other applications that
create flat text files with aligned column data.

WSF Work-Sheet formats, for exchange with products such as Lotus** 1-2-3** and
Symphony**. The LOAD utility does not support this data type. The database
manager supports WSF files generated and/or supported by:

¹ Lotus 1-2-3 Release 1, 1A, 2 and 2J
¹ Lotus Symphony Release 1.0 and 1.1

IXF PC version of the Integrated Exchange Format, the preferred method for
exchange within the database manager. Use PC/IXF to export data from a table
so it can be imported later into the same or another table.

For DEL, WSF, and ASC data file formats, define the table, including its column names
and data types, before importing the file. The data types in the operating system file
fields are converted into the corresponding type of data in the database table. The
IMPORT utility accepts data with minor incompatibility problems, including character
data imported with possible padding or truncation, and numeric data imported into
different types of numeric fields.

For IXF data file formats, the table does not need to exist before beginning the import.
It can be automatically created when the data is imported. User-defined distinct types
(UDTs) are not made part of the new table column types; instead, the base type is
used.

Similarly, when exporting to the IXF data file format, UDTs are stored as base data
types in the IXF file.

| When working with typed tables and using the PC/IXF data file format, the types and
| tables do not need to exist before beginning the IMPORT command. The types and
| tables can be automatically created when the data is imported. User-defined distinct
| types (UDTs) are not made part of the new table column types; instead, the base type
| is used.

The following topics describe these file formats:

250 Administration Guide

¹ Delimited ASCII (DEL) File Format
¹ Nondelimited ASCII (ASC) File Format
¹ WSF File Format
¹ PC/IXF File Format

For more information on using these formats, see the Command Reference .

Delimited ASCII (DEL) File Format
A DEL file is a sequential ASCII file with row and column delimiters. It can be used to
exchange data with a variety of products using different column delimiters.

Each DEL file is a stream of ASCII characters consisting of cell values ordered by row
and then by column. Rows in the data stream are separated by row delimiters. Within a
row, the individual cell values are separated by column delimiters. When a file is
defined as DEL, spaces that precede the first character or follow the last character of a
cell value are discarded.

You can override the default characters for the column delimiter (,), the character string
delimiter ("), and the decimal point (.).

The following is an example of a DEL file:

 "Smith, Bob",4973,15.46

 "Jones, Bill",12345,16.34

 "Williams, Sam",452,193.78

Each line ends with a row delimiter which is the end-of-line indicator used by the
operating system. In the case of UNIX-based implementations, the end-of-line indicator
is an ASCII line feed (LF) character. In the case of Intel-based implementations, the
end-of-line indicator is an ASCII carriage return/line feed (CRLF) sequence. Each line
ends with a line feed (LF) character which is the row delimiter. In this example, a row is
"Smith, Bob",4973,15.46.

Quotes (that is, character string delimiters: ") are required so that the commas in the
names are not interpreted as being column delimiters. In the example DEL file above,
the first column contains "Smith, Bob" "Jones, Bill" "Williams, Sam".

If you change the column delimiter to a semicolon (;), the character string delimiter to a
single quote ('), and the decimal point character to a comma (,), the same file would
appear as follows:

 'Smith, Bob';4973;15,46

 'Jones, Bill';12345;16,34

 'Williams, Sam';452;193,78

When importing or exporting DEL files, keep in mind the following:

¹ For the character string and column delimiters:
– A space (X'20') is never a valid delimiter or column delimiter.
– The period (.) is not a valid character string delimiter, because it conflicts with

periods in time and timestamp values.

 Chapter 6. Utilities for Moving Data 251

– When exporting to a DEL file, for the character delimiter string choose a
character that does not occur within the data to be exported. An attempt to
export character data containing a character string delimiter will cause a
warning message. An attempt to import such a file will produce erroneous
results.

¹ Import of character strings that are not enclosed in character string delimiters is
allowed. The end of a nondelimited character string is determined by the first
occurrence of a space, a character string delimiter, or a row delimiter.

¹ A null value is indicated by the absence of a cell value where one would normally
occur, or by a string of spaces.

¹ Because some other products restrict the length of character fields, the EXPORT
command sends a warning message whenever a character column greater than
254 characters is selected for export. The IMPORT command accommodates fields
as long as the longest possible length, which is 32 700 bytes.

¹ When working with DB2 on Intel-based operating systems, the first occurrence of
an end-of-file character (X'1A') that is not within a character string indicates the
end of the file. No data following the end-of-file character is imported. If the
NOEOFCHAR option is specified, this character is ignored.

¹ Integer, decimal, and scientific notation constants can be imported into numeric
database columns that are within the proper range.

¹ The acceptable forms for importing date and time data are based on the country
code of the target database.

When exporting DEL files, all dates by default are in YYYYMMDD format. To get ISO
format (YYYY-MM-DD), specify DATEISO in the FILETMOD attribute.

Code Page Considerations: When you are importing or exporting a DEL file, the code
page for the data is assumed to be the same as that of the application executing the
utility. If it is different, unpredictable results may occur. When loading a DEL file, the
code page for the data is assumed to be the same as that of the database.

Any graphic data extracted (using EXPORT) by a client running under Japanese or
Traditional-Chinese EUC code pages will be encoded using the EUC encoding rather
than the UCS-2 internal representation when it is written to the file. Any graphic data
imported to (using IMPORT) or loaded by (using LOAD) clients running under these
code pages will be converted from the EUC encoding to the UCS-2 internal
representation before the data is inserted or loaded, respectively, into the database.

Nondelimited ASCII (ASC) File Format
An ASC file is a sequential ASCII file with row delimiters. It can be used to exchange
data with any ASCII product that can create data in a columnar format, including word
processors.

Each ASC file is a stream of ASCII characters consisting of data values organized by
row and column. Rows in the data stream are separated by a row delimiter, which is
the end-of-line indicator used by the operating system. In the case of UNIX-based
implementations, the end-of-line indicator is an ASCII line feed (LF) character. In the
case of Intel-based implementations, the end-of-line indicator is an ASCII carriage

252 Administration Guide

return/line feed (CRLF) sequence. If the RECLEN=x option is used, each “x” characters is
considered one row.

Each column within a row is defined by a beginning-ending location pair. Each pair
represents locations specified as byte positions within a row. (The first position within a
row is byte position 1.) The first element of each location pair is the byte within the row
where the column begins and the second element is the byte where the column ends.
The columns may overlap. Within one ASCII file, every row has the same column
definitions.

No special processing is done for column names. Each row is considered to be data,
which means that ASC files are assumed to have no row or column names.

See the API Reference and the Command Reference for more information about ASCII
fil e formats used for import.

Code Page Considerations: When you are importing an ASC file, the code page for
the data is assumed to be the same as that of the application executing the utility. If it
is different, unpredictable results may occur. When loading an ASC file, the code page
for the data is assumed to be the same as that of the database.

Any graphic data extracted (using EXPORT) by a client running under Japanese or
Traditional-Chinese EUC code pages will be encoded using the EUC encoding rather
than the UCS-2 internal representation when it is written to the file. Any graphic data
imported to (using IMPORT) or loaded by (using LOAD) clients running under these
code pages will be converted from the EUC encoding to the UCS-2 internal
representation before the data is inserted or loaded, respectively, into the database.

WSF File Format
 Lotus 1-2-3 and Symphony products use the same basic format, with additional
functions added at each new release. The database manager supports the subset of
the worksheet records that are the same for all the Lotus products. That is, for the
releases of Lotus 1-2-3 and Symphony products supported by the database manager,
all file names with any three-character extension are accepted, for example: WKS,
WK1, WRK, WR1, WJ2.

Each WSF file represents one worksheet. The database manager uses the following
conventions to interpret worksheets and to provide consistency in worksheets
generated by its export operations:

¹ Cells in the first row (ROW value 0) are reserved for descriptive information about
the entire worksheet. All data within this row is optional. It is ignored during import.

¹ Cells in the second row (ROW value 1) are used for column labels.
¹ The remaining rows are data rows (records, or rows of data from the table).
¹ Cell values under any column heading are values for that particular column or field.
¹ A null value is indicated by the absence of a real cell content record (for example,

no integer, number, label, or formula record) for a particular column within a row of
cell content records.

Note: A row of all nulls will be neither imported nor exported.

 Chapter 6. Utilities for Moving Data 253

In order to create a file that is compliant with WSF format, some loss of data may occur
when exporting from a table into a file with WSF format.

Code Page Considerations: Data in the WSF files use a Lotus code point mapping
that is not necessarily the same as existing code pages supported by DB2. As a result,
when importing or exporting a WSF file, data is converted from the Lotus code points
to/from the code points used by the application code page. DB2 supports conversion
between the Lotus code points and code points defined by code pages 437, 819, 850,
860, 863, and 865.

Note: For multi-byte character set users, no conversions are performed.

PC/IXF File Format
The personal computer (PC) version of the IXF format is a specific format used by the
database manager. IMPORT and LOAD accept only PC/IXF files, not host IXF files.
PC/IXF is a structured description of a database table that contains an external
representation of the internal table. Data exported in PC/IXF format can be imported
into another DB2 for Universal Database product database. The code page value
stored in the IXF file must pass code page checks with the application environment and
database. The IMPORT utility can be invoked with the parameter settings indicating that
code page mismatches are to be ignored.

 Keep the following rules in mind when importing PC/IXF files into tables and views:

¹ A non-nullable PC/IXF column can be loaded or imported into a nullable column.
¹ A nullable PC/IXF column can be loaded or imported into a non-nullable column,

although some rows may be rejected.
¹ Numeric columns accept columns of any numeric type, although some data may be

rejected because it is out of range.
¹ Fixed-length string columns in the PC/IXF file that are too long for the target

column are not compatible and are not imported or loaded. Variable-length string
columns with actual lengths that are not compatible with the target column are
processed according to the compatibility rules used when adding data to a table or
view. The data is padded on the right with spaces if necessary.

¹ Date, time, and timestamp columns accept data from PC/IXF columns with
matching types and from character PC/IXF columns. Data values from character
PC/IXF columns must be valid input values for dates, times, or timestamps for
successful insertion into each of the corresponding type columns.

¹ A file with more than 1024 columns will be rejected.
¹ Large object (LOB) files can only go into large objects (LOBs).
¹ Large objects (LOBs) can go into CHAR fields.

Code Page Considerations: A PC/IXF file does not have to be using the same code
page as the application running the import or load utility. The code page of the data in
the PC/IXF file is stored in the file.

If the PC/IXF file and the application performing the import or load are using the same
code page, processing occurs as for a regular application. If they are using different
code pages, processing depends on how the import or load utility were invoked:

254 Administration Guide

¹ If the FORCEIN option has been specified, the file code page is ignored and the
import or load assume that the data is in the application code page.

¹ If the FORCEIN option is not specified, the results depend on whether a code page
conversion table exists for the file code page and the application code page for
IMPORT or the database code page for LOAD.

– If a conversion table exists, the IMPORT utility or LOAD utility converts the
data, and the utility continues with a warning that the conversion has occurred.

– If there is no conversion table, the IMPORT utility or LOAD utility ends with an
error.

When exporting a PC/IXF file using the LOBSINFILE option and then importing or
loading to a client having a different code page, any CLOBs or DBCLOBs are not
converted. The CLOBs and DBCLOBs are kept in separate files when the rest of the
data is imported or loaded. To properly import or load CLOB and DBCLOB data, the
utility must be used as an application having the same code page as the PC/IXF file.

Any graphic data imported to (using IMPORT) or loaded by (using LOAD) clients
running under Japanese or Traditional-Chinese Extended Unix Code (EUC) code pages
will be assumed to be encoded using the UCS-2 code set. Mixed character data is
assumed to be encoded using the EUC code set. Similarly, any graphic data extracted
(using EXPORT) by clients running under either of the two EUC code pages remains
encoded as UCS-2. This is done to improve performance.

Moving Data Between Systems
The IMPORT and EXPORT utilities may be used to transfer data between DB2
databases, and to and from DRDA host databases.

DataPropagator Relational (DPROPR) is another method for moving data between
databases in an enterprise.

The following topics provide more information:

¹ Moving Data Between DB2 Databases
¹ Moving Data Using the db2move Tool
¹ Moving Data With DB2 Connect

| ¹ Moving Data Between Typed Tables
¹ Using Replication to Move Your Data

Moving Data Between DB2 Databases
Compatibility considerations are most important when loading or importing/exporting
data between Intel-based and UNIX-based platforms.

| If you are working with typed tables in a hierarchy, you can move the hierarchy in
| addition to the data from a source database to a target database. When the REPLACE
| option is used when moving data between hierarchies, you can only replace the data
| for an entire hierarchy, not individual subtables.

For more information, see the following topics:

 Chapter 6. Utilities for Moving Data 255

 ¹ PC/IXF Format
¹ Delimited ASCII (DEL) File Formats
¹ WSF File Format

 PC/IXF Format
PC/IXF is the recommended format for transferring data between DB2 databases.
PC/IXF files allow the Load utility or the Import utility to process numeric data, normally
machine dependent, in a machine independent fashion. For example, numeric data is
stored and handled differently in Intel** and other hardware architectures.

To provide compatibility of PC/IXF files between all products in the DB2 family the
EXPORT utility creates files with numeric data in Intel format, and the IMPORT utility
expects it in this format.

Note: Depending on the hardware platform, DB2 products convert numeric values
between Intel and non-Intel formats (using byte reversal) during both export and
import operations.

Multiple Part Files: UNIX-based implementations of DB2 do not create multiple-part
PC/IXF files during export. However, they will allow you to import such a file that was
created by DB2 for OS/2. When importing this type of file, all parts should be in the
same directory, otherwise an error is returned by the utility.

The single-part PC/IXF files created by the UNIX-based implementations of DB2 export
utility can be imported by DB2 for OS/2.

Delimited ASCII (DEL) File Formats
DEL files have differences based on the operating system on which they were created.
The differences are:

¹ Row separator characters
– Intel-based text files use a carriage return/line feed (CRLF) sequence
– UNIX-based text files use a line feed (LF) character

 ¹ End-of-file character
– Intel-based text files have an end-of-file character (X'1A')
– UNIX-based text files do not have an end-of-file character

Since DEL export files are text files, they may be transferred from one operating system
to another. File transfer programs handle the above differences if you transfer the file
using the text mode. Using the binary mode to transfer the file does not convert row
separator and end-of-file characters as required.

If character data fields contain row separator characters, these will also be converted
during the file transfer. This conversion will cause an inappropriate change to the data
and as a result, when the file is imported into a database on the different platform, data
shrinkage or expansion may occur. For this reason, we recommend that you do not
use DEL export files to move data between DB2 databases.

256 Administration Guide

WSF File Format
Numeric data in WSF format files is stored using Intel machine format. This format
allows Lotus WSF files to be transferred and used in different Lotus operating
environments (for example, Intel-based and UNIX-based systems).

As a result of this consistency in internal formats, exported WSF files from DB2
products can be used by Lotus 1-2-3 and Symphony running on a different platform.
DB2 products can also import WSF files that were created on different platforms.

Transfer WSF files between operating systems platforms in binary, not text mode.

Do not use the WSF file format to transfer data between DB2 databases, since a loss
of data may occur. Use the PC/IXF file format instead.

Moving Data Using the db2move Tool
db2move is a tool that can help move large numbers of tables between DB2 databases
located on workstations. db2move queries the system catalog tables for a particular
database and compiles a list of all user tables. The tool then exports these tables in
PC/IXF format. The PC/IXF files can be imported or loaded to another local DB2
database on the same system, or can be transferred to another workstation platform
and imported or loaded to a DB2 database on that platform.

db2move calls the DB2 export, import, and load APIs depending on the action requested
by the user. Therefore, the requesting user ID must have the correct authorization
required by the APIs or the request will fail. Also, db2move inherits the limitations and
restrictions of the APIs. db2move is found in the misc subdirectory of the sqllib

directory.

The syntax of the tool is:

db2move dbname action [options...]

The dbname is the name of the database. The action must be one of: EXPORT,
IMPORT or LOAD. The options are:

-tc table-creators. The default is all creators.

This is an EXPORT action only. If specified, only those tables created by the
creators listed with this option are exported. If not specified, the default is to use
all creators. When specifying multiple creators, each must be separated by
commas; no blanks are allowed between creator IDs. The maximum number of
creators that can be specified is 10. This option can be used with the “-tn”
table-names option to select the tables for export.

The wildcard character, asterisk (*), can be used in table-creators and can be
placed anywhere in the string.

-tn table-names. The default is all user tables.

This is an EXPORT action only. If specified, only those tables whose names
match exactly to those in the specified string are exported. If not specified, the
default is to use all user tables. When specifying multiple table-names, each must

 Chapter 6. Utilities for Moving Data 257

be separated by commas; no blanks are allowed between table-names. The
maximum number of table-names that can be specified is 10. This option can be
used with the “-tc” table-creators option to select the tables for export. db2move
will only export those tables whose names are matched with specified
table-names and whose creators are matched with specified table-creators.

The wildcard character, asterisk (*), can be used in table-names and can be
placed anywhere in the string.

-io import-option. The default is REPLACE_CREATE.

Valid options include INSERT, INSERT_UPDATE, REPLACE, CREATE, and
REPLACE_CREATE.

-lo load-option. The default is INSERT.

Valid options include INSERT and REPLACE.

-l lobpaths. The default is the current directory.

This option shows the absolute path names where LOB files are created (as part
of EXPORT) or searched for (as part of IMPORT or LOAD). When specifying
multiple lobpaths, each must be separated by commas; no blanks are allowed
between lobpaths. If the first path runs out of space (during EXPORT) or the files
are not found in the path (during IMPORT or LOAD), the second path will be
used. Each subsequent path will be used for the same reasons should the same
conditions exist.

If the action is an EXPORT and lobpaths are specified, all files in the lobpath
directories are deleted , the directories are removed, and new directories are
created. If not specified, the current directory is used for the lobpath.

-u userid. The default is the logged on user ID.

Both user ID and password are optional. However, if one is specified, both must
be specified. If db2move is run on a client connecting to a remote server, user ID
and password should be specified.

-p password. The default is the logged on password.

Both user ID and password are optional. However, if one is specified, both must
be specified. If db2move is run on a client connecting to a remote server, user ID
and password should be specified.

The following are several examples showing the db2move:

¹ db2move sample export

This will export all tables in sample; the defaults are used for all options.
¹ db2move sample export -tc userid1,us*rid2 -tn tbname1,*tbname2

This will export all tables created by “userid1” or user IDs LIKE “us%rid2”; and,
table-name is “tbname1” or table-names LIKE “%tbname2.”

¹ db2move sample import -l D:\LOBPATH1,C:\LOBPATH2

258 Administration Guide

This example is applicable for Intel-based platforms only. This will import all tables
in sample; any LOB files are to be searched for using lobpaths “D:\LOBPATH1”
and “C:\LOBPATH2.”

¹ db2move sample load -l /home/userid/lobpath,/tmp

This example is applicable for UNIX-based platforms only. This will load all tables
in sample; any LOB files are to be searched for using the lobpath subdirectory in
the userid subdirectory of the the home directory or in the tmp subdirectory.

¹ db2move sample import -io replace -u userid -p password

This will import all tables in sample in REPLACE mode; the user ID and password
are used.

Usage notes:

1. This tool exports, imports, or loads user-created tables. If you want to duplicate a
database from one platform to another platform db2move only helps you to move
the tables. You need to consider moving all other objects associated with the
tables such as: aliases, views, triggers, user-defined functions, and so on. db2look
can help you move some of these objects by extracting the data definition
language (DDL) statements from the database. db2look is another tool that is
found under the misc subdirectory in the sqllib subdirectory.

2. When EXPORT, IMPORT, or LOAD APIs are called by db2move, the FileTypeMod

parameter is set to “lobsinfile.” That is, LOB data is kept in separate files from
PC/IXF files. There are 26 000 file names available for LOB files.

3. LOAD action must be run locally on the machine where the database and data file
reside. When the LOAD API is called by db2move, the CopyTargetList parameter is
set to NULL. That is, no copying is done. If logretain is on, the LOAD cannot be
rolled forward later on. The table space where the loaded tables reside is placed in
“backup pending” state and is not accessible. A full database backup or a table
space backup is required to take the table space out of the “backup pending” state.

The db2move LOAD action is not supported in DB2 Universal Database where
partitioned databases may be used.

Notes when using EXPORT:

 ¹ Input: None.
 ¹ Output:

EXPORT.out The summarized result of the EXPORT action.

db2move.lst The list of original table names, their corresponding PC/IXF file
names (tabnnn.ixf), and message file names (tabnnn.msg). This
list, the exported PC/IXF files, and LOB files (tabnnnc.yyy) are
used as input to the db2move IMPORT or LOAD action.

tabnnn.ixf The exported PC/IXF file of a table.

tabnnn.msg The export message file of the corresponding table.

tabnnnc.yyy The exported LOB files of a table.

“nnn” is the table number. “c” is a letter of the alphabet. “yyy” is a
number ranging from 001 to 999.

 Chapter 6. Utilities for Moving Data 259

These files are created only if the table being exported contains
LOB data. If created, these LOB files are placed in the “lobpath”
directories. There are a total of 26 000 possible names for the
LOB files.

system.msg The message file containing system messages for creating or
deleting file or directory commands. This is only used if the action
is EXPORT and a lobpath is specified.

Notes when using IMPORT:

 ¹ Input:

db2move.lst An output file from the EXPORT action.

tabnnn.ixf An output file from the EXPORT action.

tabnnnc.yyy An output file from the EXPORT action.

 ¹ Output:

IMPORT.out The summarized result of the IMPORT action.

tabnnn.msg The import message file of the corresponding table.

Notes when using LOAD:

 ¹ Input:

db2move.lst An output file from the EXPORT action.

tabnnn.ixf An output file from the EXPORT action.

tabnnnc.yyy An output file from the EXPORT action.

 ¹ Output:

LOAD.out The summarized result of the LOAD action.

tabnnn.msg The LOAD message file of the corresponding table.

Moving Data With DB2 Connect
You may be working in a more complex environment where you need to move data
between a host database system and the workstation environment. In such an
environment, you may work with DB2 Connect; as the gateway for the data from the
host to the workstation as well as the reverse.

The following section discusses the considerations when importing and exporting data
using DB2 Connect.

Using Import and Export Utilities
The import and export utilities let you move data from a DRDA server database to a file
on the DB2 Connect workstation or vice versa. You can then use this data with any
other application or RDBMS that supports this import/export format. For example, you
can export data from DB2 for MVS/ESA into a delimited ASCII file and later import it
into a DB2 for OS/2 database.

260 Administration Guide

You can perform export and import functions from a database client or from the DB2
Connect workstation.

Notes:

1. The data to be imported or exported must comply with the size and data type
restrictions of both databases.

2. To improve import performance, you can use compound SQL. Specify
COMPOUND=number in the import API or the CLP filetype-mod string parameter to
group the specified number of SQL statements into a block. This may reduce
network overhead and improve response time.

3. For information on the syntax of the import and export utilities from the command
line processor, see the Command Reference manual.

Moving Data from a Workstation to a DRDA Server: To export to a DRDA server
database:

1. Export the rows of information from the DB2 table into a PC/IXF file.

2. If the DRDA server database does not contain a table having attributes compatible
with the information to be imported into it, create a compatible table.

3. Using the INSERT option, import the PC/IXF file to a table in the DRDA server
database.

Moving Data from a DRDA Server to a Workstation: To import data from a DRDA
server database:

1. Export the rows of information from the DRDA server database table to a PC/IXF
file.

2. Use the PC/IXF file for importing to a DB2 table.

Restrictions: With the DB2 Connect program, import or export operations must meet
the following conditions:

¹ The file type must be PC/IXF.

¹ Index definitions are not stored on export or used on import.

¹ A table with attributes that are compatible with those of the data must exist before
you can import to it. Importing through the DB2 Connect program cannot create a
table because INSERT is the only supported option.

¹ A commit count interval must not be specified with import.

If these conditions are violated, the operation will fail and an error message will be
generated.

Mixed Single-Byte and Double-Byte Data: If you import and export mixed data
(columns containing both single-byte and double-byte data), consider the following:

¹ On systems that store data in EBCDIC (MVS, OS/390, OS/400, VM, and VSE),
shift-out and shift-in characters mark the start and end of double-byte data. When

 Chapter 6. Utilities for Moving Data 261

you define column lengths for your database tables, be sure to allow enough room
for these characters.

¹ Variable-length character columns are recommended unless the data in a column
has a consistent pattern. If it does, fixed length is acceptable.

Replacement for SQLQMF Utility: The function of the SQLQMF utility with DDCS for
OS/2 has been replaced by the DB2 Connect Import/Export functions. The advantages
are:

¹ No need for QMF on the host

¹ No need to logon to the host (a TSO id is still required on DB2 for MVS/ESA or
DB2 for OS/390)

¹ Supports DB2 for MVS, DB2 for OS/390, DB2 for OS/400, and DB2 for VM and
VSE

¹ Good performance achieved by using compound SQL

¹ Supports several file formats, in addition to ASCII

¹ Can be run from a client machine with no SNA connectivity.

Refer to the Command Reference for further information on using these commands.

| Moving Data Between Typed Tables
| EXPORT and IMPORT can be used to move data out of, and into, typed tables. These
| tables may be in a hierarchy. The complexity of the data movement involving
| hierarchies includes the requirements to:

| ¹ Move data from one hierarchy to an identical hierarchy.

| ¹ Move data from one hierarchy to a sub-section of a larger hierarchy.

| ¹ Move data from a sub-section of a large hierarchy to a separate hierarchy.

| A special case also exists when using IMPORT: The CREATE option allows for the
| creation of the table hierarchy and also the type hierarchy. If the type hierarchy already
| exists there is no creation required.

| Concepts Associated With Moving Data Between Typed Tables
| Identification of types in a hierarchy is “database dependent.” This means that in
| different databases, the same type has a different identifier. Therefore, when moving
| data between these databases, a mapping of the same types must be done to ensure
| the data is moved correctly.

| When using EXPORT, before each typed row is written out, an identifier is translated to
| an “index-value.” This index-value can be any number from one (1) to the number of
| relevant types in the hierarchy. These index-values are obtained by numbering each
| type when moving through the hierarchy in a specific order. This order is called
| “traverse order.”

262 Administration Guide

| Traverse Order Considerations
| There is a default traverse order where all relevant types refer to all reachable types in
| the hierarchy from a given starting point in the hierarchy. There is also a
| “user-specified traverse order” where the user defines in a traverse order list those
| relevant types to be used. The same default or user-specified traverse order must be
| used when using the EXPORT utility and when using the IMPORT utility.

| Default Traverse Order: The default traverse order behaves differently in different file
| formats. You should assume identical table hierarchy and type relationships in each
| case presented below.

| The PC/IXF file format EXPORT creates a record of all relevant types, their definition,
| and relevant tables. EXPORT also completes the mapping of an index-value to each
| table. During the IMPORT, the index-value to table mapping is used to ensure accurate
| movement of the data to the target database. When using the PC/IXF file format, you
| should use the default traverse order.

| With the ASC/DEL/WSF file formats, although the source and target hierarchies may be
| structurally identical, the order in which the typed rows and the typed tables were
| created could be different. This would result in time differences that the default traverse
| order would identify when proceeding through the hierarchies. The creation time of
| each type determines the order taken through the hierarchy at both the source and the
| target when using the default traverse order. You must ensure that the order of creation
| of each type in both the source and the target hierarchies is identical in addition to
| ensuring the structural identity between source and target. If you cannot, then you must
| use the user-specified traverse order.

| User-Specified Traverse Order: When you wish to control the traverse order through
| the hierarchies, you must be aware of the following conditions:

| ¹ You are responsible to ensure the same traverse order is used when using the
| EXPORT utility and when using the IMPORT utility.

| ¹ Given the identical definition of subtables in both the source and the target
| databases; and, given the identical hierarchical relationship among the subtables in
| both the source and target databases; and, given the identical traverse order is
| used as described in the previous point, the IMPORT utility guarantees the
| accurate movement of the data to the target database.

| ¹ While you determine the starting point and the path down the hierarchy when
| defining the traverse order, each branch must be traversed to the end before the
| next branch in the hierarchy can be started. The EXPORT and IMPORT utilities will
| look for violations of this condition in the specified traverse order and return an
| error message if encountered.

| Selection During Data Movement
| The movement of data from one hierarchical structure of typed tables to another is
| through a specific traverse order and the creation of an intermediate flat file.

 Chapter 6. Utilities for Moving Data 263

| Control of what is placed from the source database into the intermediate file is through
| the EXPORT utility (in conjunction with the traverse order). You only need to specify
| the target table name along with the WHERE clause. The EXPORT takes this selection
| criteria and creates the appropriate intermediate file. Only the selected data from the
| source database is moved to the target database.

| Control of what is placed from the intermediate file into the target database is through
| the IMPORT utility. You can optionally specify an attributes list at the end of each
| subtable name to restrict those attributes moved to the target database. If no attributes
| list is used, all of the columns for that subtable are moved.

| Control of the size and placement of the hierarchy being moved is through the IMPORT
| utility with the CREATE, INTO table-name, UNDER, and AS ROOT TABLE parameters.
| See the Command Reference for more information on the IMPORT utility parameters.

| Other Considerations When Moving Data Between Typed Tables
| Both the REPLACE and REPLACE CREATE options for the IMPORT utility are only
| supported for an entire hierarchy.

| Examples of Moving Data Between Typed Tables
| Some examples will be presented here based on the following defined hierarchical
| structure:

Person

Person_t

(Oid, Name, Age)

Department

Department_t

(Oid, Name, Headcount)

Employee

Employee_t

(SerialNum, Salary, REF (Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

| Figure 22.

| In the most basic of examples, we would like to export an entire hierarchy and re-create
| the entire hierarchy during the import. The order of activity is as follows:

264 Administration Guide

| DB2 CONNECT TO Source_db

| DB2 EXPORT TO entire_hierarchy.ixf OF IXF HIERARCHY STARTING Person

| DB2 CONNECT TO Target_db

| DB2 IMPORT FROM entire_hierarchy.ixf OF IXF CREATE INTO

| HIERARCHY STARTING Person AS ROOT TABLE

| Each type in the hierarchy is created if they do not already exist. Should these types
| already exist, they must have the same definition in the target database as those
| defined in the source database. An SQL error is returned (SQL20013N) if they are not
| the same. Also, since we are creating a new hierarchy, none of the subtables defined in
| the data file being moved to the target database (Target_db) can exist. Each of the
| tables in the source database hierarchy is created. Finally, any data from the source
| database is imported into the correct subtables of the target database.

| In a more complex example, we would like to export the entire hierarchy of the source
| database and import it to the target database. In addition, although we will export all of
| the data from the source database for those people in the database over the age of 20,
| we will only import selected data into the target database. The order of activity is as
| follows:

| DB2 CONNECT TO Source_db

| DB2 EXPORT TO entire_hierarchy.del OF DEL HIERARCHY (Person,

| Employee, Manager, Architect, Student) WHERE Age>=20

| DB2 CONNECT TO Target_db

| DB2 IMPORT FROM entire_hierarchy.del OF DEL INSERT INTO (Person,

| Employee(Salary), Architect) IN HIERARCHY (Person, Employee,

| Manager, Architect, Student)

| In this example, within the target database the Person, Employee, and Architect tables
| must all exist. Data is imported into the Person, Employee, and Architect subtables.
| That is, we will import:

| ¹ All columns in Person into Person.

| ¹ All columns in Person plus Salary in Employee into Employee.

| ¹ All columns in Person plus Salary in Employee plus all columns in Architect into
| Architect.

| Columns SerialNum nor REF(Employee_t) will not be imported into Employee or its
| subtables (that is, Architect, which is the only subtable having data imported into it).

| Note: Because Architect is a subtable of Employee, and the only IMPORT column
| specified for Employee is Salary, Salary will also be the only Employee-specific
| column imported into Architect rows. That is, the SerialNum nor the
| REF(Employee_t) columns are not imported into either Employee or Architect
| rows.

| Data for the Manager and Student tables is not imported.

| In a final example, we can export from a regular table and import as a single subtable
| in a hierarchy. The EXPORT command operates on a regular (non-typed) table, so
| there is no Type_id column in the data file. The modifier NO_TYPE_ID is used to

 Chapter 6. Utilities for Moving Data 265

| indicate this to the IMPORT command so that IMPORT will not expect the first column
| to be the Type_id column. The order of the activity is as follows:

| DB2 CONNECT TO Source_db

| DB2 EXPORT TO Student_sub_table.del OF DEL SELECT * FROM

| Regular_Student

| DB2 CONNECT TO Target_db

| DB2 IMPORT FROM Student_sub_table.del OF DEL METHOD P(1,2,3,5,4)

| MODIFIED BY NO_TYPE_ID INSERT INTO HIERARCHY (Student)

| In this example, within the target database the Student table must exist. Since Student
| is a subtable, the modifier NO_TYPE_ID is used to indicate there is no Type_id in the first
| column. However, you must ensure there is an Object_id column that exists in addition
| to all of the other attributes that exist in the Student table. And Object-id is expected to
| be the first column in each row imported into the Student table.

| Note: The METHOD clause reverses the order of the last two attributes.

| See Command Reference for more information on the exporting and importing of data
| when working with typed tables in a hierarchical structure.

Using Replication to Move Your Data
Replication allows you to copy data on a regular basis to multiple remote databases. If
you need to have updates to a master database automatically copied to other
databases, you can use the replication features of DB2 to specify what data should be
copied, which database tables the data should be copied to, and how often the updates
should be copied. The replication features in DB2 are a part of a larger IBM solution for
replicating data in small and large enterprises—IBM Relational Data Replication (IBM
Replication).

The IBM Replication tools are a set of IBM DataPropagator Relational (DPROPR)
programs and DB2 Universal Database tools that copy data between distributed
relational database management systems:

¹ Between DB2 Universal Database platforms.
¹ Between DB2 Universal Database platforms and host databases supporting

Distributed Relational Database Architecture (DRDA) connectivity.
¹ Between host databases that support Distributed Relational Database Architecture

(DRDA) connectivity.

Based on the DPROPR V1 offering, IBM Replication tools allow you to copy data
automatically between DB2 relational databases, as well as nonrelational and non-IBM
databases.

You can use the IBM Replication tools to define, synchronize, automate, and manage
copy operations from a single control point for data across your enterprise. The
replication tools in DB2 Universal Database offer replication between relational
databases only. The tool set manages the copying (replication) of data in a
store-and-forward manner.

266 Administration Guide

Why Use Replication?
Replication allows you to give end-users and applications access to production data
without putting extra load on the production database. You can copy the data to a
database local to an end-user or application, rather than have them access the data
remotely. A typical replication scenario involves a source table with copies in one or
more remote databases, for example, a central bank and its local branches. A change
occurs in the “master” or source database. At a predetermined time, an automatic
update of all of the other DB2 relational databases takes place and all the changes are
copied to the target database tables.

The replication tools allow you to customize the copy table structure. You can use SQL
when copying to the target database to subset, aggregate, or otherwise enhance the
data being copied. You can also create the copy tables structure to fit your needs:
read-only copies that duplicate the source table, show data at a certain point in time,
provide a history of changes, or stage data to be copied to additional target tables.
Additionally, you can create read-write copies that can be updated by end-users or
applications and have the changes replicated back to the master table. You can
replicate views of source tables and views of copies. Event-driven replication is also
possible.

The replication tools currently support DB2 on MVS/ESA, AS/400, AIX, OS/2, VM and
VSE, Windows NT, HP, and the Solaris Operating environment. You can also replicate
to non-IBM databases, such as Oracle, Microsoft SQL Server, and Lotus Notes.

| The IBM Replication Tools by Component
 There are two components of the IBM Replication tools solution: IBM DPROPR
Capture and IBM DPROPR Apply. You can setup these two components with the DB2
Control Center. The operation of these two components, and the monitoring of them,
happen outside of the Control Center.

The IBM DPROPR Capture program captures the changes from the source tables. A
source table can be an external table containing SQL data from a file system or
nonrelational database manager loaded outside DPROPR; an existing table in the
database; or, a table that has previously been updated by the IBM DPROPR Apply
program, which allows changes to be copied back to the source or to other target
tables.

The changes are copied into a change data table, where they are stored until the target
system is ready to copy them. The Apply program then takes the changes from the
change data table and copies them to the target tables.

You use the Control Center to set up the replication environment, define source and
target tables, specify the timing of the automated copying, specify SQL enhancements
to the data, and define relationships between the source and the target tables.

For more information, see the DB2 Replication Guide and Reference, S95H-0999.

 Chapter 6. Utilities for Moving Data 267

268 Administration Guide

Chapter 7. Recovering a Database

A database can become unusable because of hardware or software failure (or both),
and the different failure situations may require different recovery actions. You should
have a strategy in place to protect your database against the possibility of these failure
situations. When designing a strategy, you should also rehearse it. This will allow you
to detect any shortcomings in the plan, and to avoid problems if you have to recover
the database.

This chapter discusses the different recovery methods that can be used in the event
there is a problem involving the database. Also discussed are considerations and
decisions that will assist in determining the recovery method best suited to your
business environment. Each recovery method is described along with the associated
concepts, and the commands provided with the product to support these methods.

The following are major topics within this chapter:

¹ Overview of Recovery
¹ Factors Affecting Recovery
¹ Disaster Recovery Considerations
¹ Reducing the Impact of Media Failure
¹ Reducing the Impact of Transaction Failure
¹ System Clock Synchronization in a Partitioned Database System

 ¹ Crash Recovery
¹ Recovery Method: Version Recovery
¹ Recovery Method: Roll-Forward Recovery
¹ ADSTAR Distributed Storage Manager

If you have tables that contain DATALINK columns, also refer to “DB2 File Manager
Considerations” on page 325.

One type of problem that requires point-in-time roll-forward recovery is the corruption of
data that is caused by errant logic or incorrect input in an application. You can use
roll-forward recovery to recover the database to a point in time that is close to when the
application began working with the database. Or, you can attempt to back out the
effects of the application on the database by executing the transactions in reverse. You
must exercise caution if you decide to follow the second approach. This chapter does
not provide further information about application errors.

Overview of Recovery
You need to know the strategies available to you to help when there are problems with
the database. Typically you will deal with media and storage problems, power
interruptions, and application failures. You need to know that you can back up your
database, or individual table spaces, and then rebuild them should they be damaged or
corrupted in some way. The rebuilding of the database is called recovery. Crash
recovery automatically attempts to recover the database after a failure. There are two
ways to recover a damaged database: version recovery and roll-forward recovery.

 Copyright IBM Corp. 1993, 1998 269

Non-recoverable databases have both the logretain and userexit database configuration
parameters turned “off.” This means that the only logs that are kept are those required
for crash recovery. These logs are known as active logs, and they contain current
transaction data. Version recovery using offline backups is the primary means of
recovery for problems with a non-recoverable database. (An offline backup means that
no other application can use the database when the backup operation is in progress.)
When you restore the database, you can only restore it offline, and it is restored to the
same state it was in when you took the backup image.

| Recoverable databases have either the logretain or userexit (or both) database
| configuration parameters turned “on.” Active logs are still available for crash recovery,
| but you also have the archived logs, which contain committed transaction data. When
| you restore the database, you can only restore it offline, and it is restored to the same
| state it was in when you took the backup image. However, with forward recovery, you
| can then roll the database forward (that is, past the time of the backup image) by using
| the active and archived logs to either a specific point in time, or to the end of the active
| logs.

Unlike non-recoverable databases, you can perform the backup operation for a
recoverable database either offline or online (online meaning that other applications can
connect to the database during the backup operation). The database restore and roll
forward operations must always be performed offline. Although during an online backup
operation, changes may also be occurring on the tables, the roll-forward recovery
method ensures that all table changes are captured and reapplied if that backup is
restored.

If you have a recoverable database, you can also back up, restore, and roll forward
individual table spaces in it. When you back up a table space online, it is still available
for use, and changes made to its tables during the backup are recorded in the logs.
When you perform an online restore or roll forward on a table space, the table space
itself is not available for use until the operation completes, but users are not prevented
from accessing tables in other table spaces.

Crash recovery protects a database from being left in an inconsistent, or unusable,
state. Transactions, or units of work, against the database can be interrupted
unexpectedly. For example, should a failure (power interruption, application failure)
occur before all of the changes that are part of the unit of work are completed and
committed, the database is left in an inconsistent and unusable state.

270 Administration Guide

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 23. Rolling Back Units of Work

The database then needs to be moved to a consistent and usable state. This is done
by rolling back incomplete transactions and completing committed transactions that
were still in memory when the crash occurred.

You can do this by entering a RESTART DATABASE command. If you want this done
in every case of a failure, then you should consider the use of the automatic restart
enable (autorestart) configuration parameter. The default for this configuration
parameter is that the RESTART DATABASE routine will be started every time it is
needed. When (autorestart) is enabled, the next connect request to the database after
the failure causes RESTART DATABASE to be executed.

Crash recovery moves the database to a consistent and usable state. If, however,
crash recovery occurs for a database that is enabled for forward recovery (that is, the
logretain or userexit configuration parameter is “on”), and an error occurs during crash
recovery that is attributable to an individual table space, that table space is taken
offline, and cannot be accessed until it is repaired. Crash recovery continues. See
“Rolling Forward Changes in a Table Space” on page 312 for more information. At the
completion of crash recovery, the other table spaces in the database are still usable
and connections to the database can be established. (There are exceptions involving
the table spaces that have the temporary tables or the system catalog tables. These
will be discussed under roll-forward recovery.)

Following crash recovery, you may need to take additional action. You may need to
work with the table spaces taken offline as mentioned above. You may need to conduct
a version recovery or a roll-forward recovery, depending on the error.

There are two recovery methods supported by DB2:

1. Version recovery allows for the restoration of a previous version or image of the
database that was made using the BACKUP command.

 Chapter 7. Recovering a Database 271

BACKUP
database

image

BACKUP
database

TIME

create

RESTORE
database

1

2

3

4

Units of work

Figure 24. Restoring a Database

A database restore will rebuild the entire database using a backup of the database
made at some point earlier. A backup of the database allows you to restore a
database to a state identical to the time when the backup was made. Every unit of
work from the time of the backup to the time of the failure is lost. (To re-create
these units of work requires the roll-forward recovery method, which is discussed
later.)

Using the version recovery method, you must schedule and perform a full backup
of the database on a regular basis.

In a partitioned database environment, the database is located across many
database partition servers (or nodes). You must restore all database partitions, and
the backups that you use for the RESTORE must all have been taken at the same
time. (Each database partition is backed up and restored separately.) A backup of
each database partition taken at the same time is known as a version backup.

2. To use the roll-forward recovery method, you must have taken a backup of the
database as well as archived the logs (by enabling either the logretain or userexit
database configuration parameters, or both. For information on the decisions that
you must make regarding the logging procedure that you use, see “Database Logs”
on page 277.) If you restore the database and specify WITHOUT ROLLING
FORWARD, it is the same as the version recovery method. The database is
restored to a state identical to the time when the offline backup was made. If you
restore the database and do not specify WITHOUT ROLLING FORWARD for the
restore operation, the database will be in the roll-forward pending state at the end
of the restore. This allows roll-forward recovery to take place.

The two types of roll-forward recovery to consider are:

272 Administration Guide

a. Database roll-forward recovery follows the restore of the database with the
application of database logs. The database logs record all changes made to
the database. This method completes the recovery of the database to its state
at a particular point in time, or to its state just before the failure (that is, to the
end of the active logs.)

BACKUP
database

image

TIME

create

BACKUP
database

RESTORE
databaseUnits of work

ROLLFORWARD

changes in logs

n archived logs
active logs

Figure 25. Database Roll-Forward Recovery

b. When the database is enabled for forward recovery, it is also possible to back
up and restore table spaces. To perform table space restore, you need a
backup image of either the entire database (that is, all of the table spaces) or
of one or more individual table spaces. This method restores the selected
table spaces to a state identical to the time the backup was taken.

Notes:

1) Those table spaces not selected at the time of the BACKUP will not be in
the same state as those that were restored.

2) Using the roll-forward recovery method with table spaces, you must
identify “key” table spaces in the database to be recovered as well as
schedule and perform a backup of the database or the “key” table spaces
on a regular basis.

In a partitioned database system, the database is located across many database
partitions. In this environment, if you are performing point-in-time roll-forward
recovery, all database partitions must be rolled forward to ensure that all partitions
are at the same level. If you need to restore a single database partition, you can

 Chapter 7. Recovering a Database 273

perform roll-forward recovery to the end of the logs to bring it up to the same level
as the other database partitions in the database.

TIME

create

1

2

3

4

Units of work

BACKUP
table space

image

BACKUP
table space(s)

RESTORE
table space(s)

Figure 26. Restoring One or More Table Spaces

Table space roll-forward recovery is required in the following two situations:

| 1. If one or more table spaces are in a roll-forward pending state because of crash
| recovery, first correct the problem with the table space. Then you can use the
| ROLLFORWARD command to apply the logs against the table spaces to either a
| point in time, or to the end of the logs.

| Note: If the table space in error contains the system catalog tables, you will not
| be able to start the database. You must restore the SYSCATSPACE table
| space, then perform roll-forward recovery on it to the end of the logs.

274 Administration Guide

TIME

Units of work

Note that there is no RESTORE

ROLLFORWARD

changes in logs

n archived logs
1 active log

| Figure 27. Table Space Roll-Forward Recovery

| 2. After a table space restore, the table space is always in the roll-forward pending
| state, and it must be rolled forward. Again, use the ROLLFORWARD command to
| apply the logs against the table spaces to either a point in time, or to the end of
| the logs.

In a partitioned database system, if you are rolling forward a table space to a point in
time, you do not have to supply the list of nodes (database partitions) on which the
table space resides. The database manager submits the rollforward request to all
database partitions.

| In a partitioned database system, if you are rolling forward a table space to the end of
| the logs, you have to supply the list of nodes if you do not want to roll the table space
| forward on all database partitions. If you want to roll forward all table spaces on all
| database partitions that are in the roll-forward pending state to the end of the logs, you
| do not have to supply the list of nodes. By default, the ROLLFORWARD request is sent
| to all database partitions.

Factors Affecting Recovery
To decide which database recovery method to use, you must consider the following key
factors:

¹ Will the database be recoverable or non-recoverable?
¹ How near to the time of failure will you need to recover the database (the point of

recovery)?
¹ How much time can be spent recovering the database? This would include:

– Time between backups (will affect roll-forward recovery)?
– Time the database is usable or accessible (backing up online or offline based

on data availability needs)?
¹ How much storage space can be allocated for backup copies and archived logs?
¹ Will you be using table space level or full database level backups?

 Chapter 7. Recovering a Database 275

In general, a database maintenance and recovery strategy should ensure that all
information is available when it is required for database recovery. The strategy should
include a regular schedule for taking database backups, as well as scheduled backups
when a database is created, or in the case of a partitioned database system, when the
system is scaled by adding or dropping database partition servers (nodes). In addition
to these basic requirements, a good strategy will include elements that reduce the
likelihood and impact of database failure.

The following topics provide additional information:

¹ Recoverable and Non-Recoverable Databases
 ¹ Database Logs
¹ Reducing Logging on Work Tables
¹ Point of Recovery
¹ Frequency of Backups and Time Required
¹ Recovery Time Required

 ¹ Storage Considerations
¹ Keeping Related Data Together
¹ Recovery Performance Considerations

While the general focus of this chapter is on the database, your overall recovery
planning should also include recovering:

¹ The operating system and DB2 executables
¹ Applications, UDFs, and stored procedure code in operating system libraries
¹ Commands for creating DB2 instances and non-DB2 resources
¹ Operating system security
¹ Load copies from a LOAD operation (if you specify COPY YES for the LOAD)

Recoverable and Non-Recoverable Databases
If you can re-create data easily, the database holding that data is a candidate to be a
non-recoverable database. For example:

¹ Tables that hold data from an outside source that is used for read-only applications
(and the data is not mixed with existing data) should be considered for placement
within a non-recoverable database.

¹ Tables with small amounts of data. Here recovery is not a problem. Rather, there is
just not enough logging done for the data to justify the added complexity of
managing log files and rolling forward after a restore.

¹ Large tables where small numbers of rows are periodically added. Again, there is
not enough volatility to justify managing log files and rolling forward after a restore.

If you cannot re-create data easily, then the database holding that data is a candidate
to be a recoverable database. The following are examples of data that should be part of
a recoverable database:

¹ Data that you cannot re-create. This includes data whose source is destroyed after
the data is loaded, and data that is manually entered into tables.

¹ Data that is modified by application programs or workstation users after it is loaded
into the database.

276 Administration Guide

 Database Logs
All databases have logs associated with them. These logs keep records of database
changes.

| Active logs are used by crash recovery to prevent a failure (system power, application
| error) from leaving a database in an inconsistent state. The RESTART DATABASE
| command uses the active logs, if needed, to move the database to a consistent and
| usable state by means of crash recovery. During crash recovery, changes recorded in
| these logs that were made to the data but not committed because of the failure are
| rolled back. Changes that were committed but were not physically written from memory
| (buffer pool) to disk (database containers) are redone. These actions ensure the
| integrity of the database. The ROLLFORWARD command may also use the active logs,
| if needed, during a point-in-time recovery or a recovery to the end of the logs. Active
| logs are located in the database log path directory.

Archived logs are used specifically for roll-forward recovery. They can be:

Online archived logs
When all changes in the active log are no longer needed for normal
processing, the log is closed, and becomes an archived log. An archived
log is said to be online when it is stored in the database log path directory.

Offline archived logs
You also have the ability to store archived logs in a location other than the
database log path directory, by using a user exit program. (See
Appendix L, “User Exit for Database Recovery” on page 1055 for
additional information.) An archived log is said to be offline when it is no
longer found in the database log path directory.

Roll-forward recovery can use both archived logs and active logs to rebuild a database
either to the end of the logs, or to a specific point in time. The roll-forward function
achieves this by reapplying committed changes that are found in the archived and
active logs to the restored database.

Roll-forward recovery can also use logs to rebuild a table space by re-applying
committed updates in both archived and active logs. You can recover a table space to
the end of the logs, or to a specific point in time.

 Chapter 7. Recovering a Database 277

TIME

Units of work Units of work

update update

Logs are used between backups to track the changes to the databases.

BACKUP
database

n archived logs
1 active log

n archived logs
1 active log

Figure 28. Active and Archived Database Logs in Roll-forward Recovery

Two database configuration parameters allow you to change where archived logs are
stored: the newlogpath parameter and the userexit parameter. Changing the
newlogpath parameter also affects where active logs are stored. For more information,
see “Change the Database Log Path (newlogpath)” on page 663 and “User Exit Enable
(userexit)” on page 668.

To determine which log extents in the database log path directory are archived logs,
check the value of the database configuration parameter loghead. This parameter
indicates the lowest numbered log that is active. Those logs with sequence numbers
less than loghead are archived logs and can be moved. For more information, see “Log
Head Identification (loghead)” on page 664.

Notes:

1. If you erase an active log, the database becomes unusable and must be restored
before it can be used again. Also, you will be able to roll forward the changes from
the logs only up to the first log that was erased.

2. If you are concerned that your active logs may be damaged (due to a disk crash),
you should consider mirroring the volumes on which the logs are stored. By having
multiple copies of the logs, you will not lose any transactions, which may happen
when active logs are damaged.

Reducing Logging on Work Tables
| If your application creates and populates work tables from master tables, and you are
| not concerned about the recoverability of these work tables because they can be easily
| re-created from the master tables, you may want to create the work tables with the
| NOT LOGGED INITIALLY parameter of the CREATE TABLE statement. The advantage
| of using the NOT LOGGED INITIALLY parameter is that any changes made on the
| table (including Insert, Delete, Update, or Create Index operations) in the same unit of
| work that creates the table will not be logged. This not only reduces the logging that is

278 Administration Guide

| done, but also obtains better performance for your application. You can also obtain the
| same behavior for existing tables by using the ALTER TABLE statement with the NOT
| LOGGED INITIALLY parameter.

| Notes:

| 1. You can create more than one table with the NOT LOGGED INITIALLY parameter
| in the same unit of work.

| 2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the following when
deciding to use the NOT LOGGED INITIALLY parameter:

| ¹ All changes to the table must be flushed out to disk at commit time. This means
| that the commit may take longer.

¹ An error received for any operation in a unit of work in which the table is created
will result in the rollback of the entire unit of work. In this case, the application
receives the SQLCODE -1476 (SQLSTATE 40506).

¹ When rolling forward, you cannot recover these tables. If the roll-forward operation
encounters a table that was created with the NOT LOGGED INITIALLY parameter,
this table will be marked as unavailable. After the database is recovered, any
attempt to access the table will result in SQL1477N being returned.

Note: When a table is created, row locks are held on the catalog tables until a
COMMIT is done. To take advantage of the no logging behavior, you must
populate the table in the same unit of work in which it is created. This has
implications for concurrency. For more information, see “Concurrency” on
page 387.

See the SQL Reference for more information about creating tables.

Point of Recovery
The version and roll-forward recovery methods provide different points of recovery. The
version method involves making an offline, full database backup copy of the database
at scheduled times. With this method, the backup copy of the database is only as
current as the time that the last backup was made. For instance, if you make a backup
copy at the end of each day and you lose the database midway through the next day,
you will lose a half-day's worth of changes.

In the roll-forward recovery method, changes made to the database are retained in
logs. With this method, you first restore the database or table space(s) using a backup
copy; then you use the logs to reapply changes that were made to the database since
the backup copy was created.

With roll-forward recovery enabled, you can take advantage of online backup and table
space level backup. For full database and table space roll-forward recovery, you can
choose to recover to the end of the logs or to a specified point-in-time. For instance, if
an application corrupted the database, you could start with a restored copy of the

 Chapter 7. Recovering a Database 279

database, and roll-forward changes up until just before that application started. All units
of work in the logs after the time specified will not be reapplied.

You can also roll forward table spaces to the end of the logs, or to a specific point in
time. For more information about rolling forward table spaces, see “Rolling Forward
Changes in a Table Space” on page 312.

Frequency of Backups and Time Required
Your recovery plan should allow for regularly scheduled backups, since backing up a
database requires time and system resource.

You should take full database backups regularly, even if you archive the logs (which
allows for roll-forward recovery). If your recovery strategy includes roll-forward recovery,
a recent full database backup will mean that there are fewer archived logs to apply to
the database, which reduces the amount of time required by the ROLLFORWARD utility
to recover the database.

You should also consider not overwriting backups and logs, saving more than one full
database backup and its associated logs as an extra precaution.

You can do a backup while the database is either online or offline. If it is online, other
applications or processes can continue to connect to the database as well as read and
modify data while the backup task is running. If the backup is performed offline, only
the backup task can be connected to the database. The implication of offline backup is
that the rest of your organization cannot connect to the database while the backup task
is running.

To reduce the time when the database is not available, consider using online backups.
Online backups are supported only if roll-forward recovery is enabled. If roll-forward
recovery is enabled and you have a complete set of logs, you can rebuild the database
should the need arise.

Notes:

| 1. You can only use an online backup if you have the database log (or logs) that span
| the time that backup operation both started and completed.

2. Offline backups are faster than online backups.

If a database contains large amounts of long field and LOB data, backing up the
database could be very time-consuming. The BACKUP command provides the
capability to back up selected table spaces. If you use DMS table spaces, you can
store different types of data in their own table spaces to reduce the time required for
backups. You can keep table data in one table space, the LONG and LOB data in
another table space, and the INDEX data in another table space. By storing long field
and LOB data in separate table spaces, the time required to complete the back up of
the data can be reduced by choosing not to back up the table spaces containing the
long field and LOB data. If the long field and LOB data is critical to your business,
backing up these table spaces should be considered against the time required to
complete the restore task for these table spaces. If the LOB data can be reproduced

280 Administration Guide

from a separate source then, when creating or altering a table to include LOB columns,
choose the NOT LOGGED option.

If you reorganize a table, you should back up the affected table spaces after the
operation completes. If you have to restore the table spaces, you will not have to roll
forward through the data reorganization.

Note: If you back up a table space that contains table data without the table spaces
containing the associated the LONG or LOB fields, you cannot perform
point-in-time roll-forward recovery on that table space. All the table spaces that
contain any type of data for a table must be rolled forward simultaneously to the
same point in time.

Recovery Time Required
The time required to recover a database is made up of two parts: the time required to
complete the restore of the backup; and, if the database is enabled for forward
recovery, the time required to apply the logs during the roll-forward operation. When
formulating a recovery plan, you should determine what is a reasonable amount of time
for your business operations to be impacted while the database is being recovered.

| Note: The setting of the enable intra-partition parallelism (intra_parallel) database
| manager configuration parameter does not affect the performance of either
| backup or restore operations. Multiple processes will be used for both of these
| operations, regardless of the setting of the intra_parallel parameter.

Testing your overall recovery plan will assist you in determining whether the time
required to recover the database is reasonable given your business requirements.
Following each test, you may want to increase the frequency with which you take a
backup. If roll-forward recovery is part of your strategy, this will reduce the number of
logs that are archived between backups and, as a result, reduce the time required to
roll forward the database after a restore.

 Storage Considerations
When deciding which recovery method to use, consider the storage space required.

The version recovery method requires space to hold the backup copy of the database
and the restored database. The roll-forward recovery method requires space to hold the
backup copy of the database or table spaces, the restored database, and the archived
database logs.

If a table contains long field or large object (LOB) columns, you should consider placing
this data into a separate table space. This will affect your storage space considerations
as well as affect your plan for recovery. With a separate table space for long field and
LOB data, and knowing the time required to back up long field and LOB data, you may
decide to use a recovery plan that only infrequently saves a backup of this long
field/LOB table space. You may also choose, when creating or altering a table to
include LOB columns, not to log changes to that column. This will reduce the size of
the log space required and the corresponding log archive space.

 Chapter 7. Recovering a Database 281

The backup of an SMS table space which contains LOBs can be bigger than the size of
the original table space. The backup can be as much as 40 per cent larger depending
on the LOB data size in the table space. For example, if you take a backup of a 1GB
SMS table space (with LOBs), you will need more than 1GB of disk space when you
restore it. This situation only occurs on file systems that support sparse allocation (for
example, UNIX operating systems).

To prevent a media failure from destroying a database and your ability to rebuild it, you
should keep the database backup, the database logs, and the database itself on
different devices. For this reason, it is highly recommended that you use the
newlogpath configuration parameter to put database logs on a separate device once
the database is created. (This and other configuration parameters related to logging are
discussed in “Rolling Forward Changes in a Database” on page 308.)

Because the database logs can take a large amount of storage, if you plan on using the
roll-forward recovery method you must decide how to manage the archived logs. Your
choices are the following:

1. Dedicate enough space in the database log path directory to retain the logs.
2. Manually copy the logs to a storage device or directory other than the database log

path directory after they are no longer in the active set of logs.
3. Use a user exit program to copy these logs to another storage device in your

environment. (See Appendix L, “User Exit for Database Recovery” on page 1055
for more information.)

Note: Under OS/2, the database manager supports a user exit program to handle the
storage of both backup copies of databases and database logs on standard and
non-standard devices. See Appendix L, “User Exit for Database Recovery” on
page 1055 for more information.

Keeping Related Data Together
As part of your database design, you will know the relationships that exist between
tables. These relationships can be at the application level, where transactions update
more than one table, or at the database level, where referential integrity exists between
tables, or where triggers on one table affect another table. You should consider these
relationships when developing a recovery plan. You will want to back up related sets of
data together. The sets of data can be established at either the table space or the
database level. By keeping related sets of data together, you can recover to a point
where all of the data is consistent. This is especially important if you want to be able to
perform point-in-time roll-forward recovery on table spaces.

Recovery Performance Considerations
The following items should be considered when thinking about recovery performance:

¹ You can improve performance for databases that are frequently updated by placing
the logs on a separate device. All database changes are written in the logs.

In the case of an online transaction processing (OLTP) environment, often more
I/O is needed for the logs than to store a data row. Placing the logs on a separate

282 Administration Guide

physical disk will minimize disk arm movement that would be required to move
between a log and the physical database files.

You should also consider what other files are on the disk. For example, moving the
logs to the same disk used for system paging in a system that has insufficient real
memory will defeat your tuning efforts.

¹ To reduce the amount of time required to complete a restore:
– Adjust the restore buffer size. The buffer size must be a multiple of the buffer

size that was used during the backup.
– Increase the number of buffers.

If you use multiple buffers and I/O channels, you should use at least twice as
many buffers as channels to ensure that the channels do not have to wait for
data. The size of the buffers used will also contribute to the performance of the
restore operation. The ideal restore buffer size should be a multiple of the
extent size for the table space(s).

If you have multiple table spaces with different extent sizes, specify a value
that is a multiple of the largest extent size.

– Use multiple source devices.
| – Set the PARALLELISM option for the restore operation to be at least one (1)
| greater than the number of source devices.
| ¹ If a table contains large amounts of long field and LOB data, restoring it could be
| very time-consuming. If the database is enabled for forward recovery, the
| RESTORE command provides the capability to restore selected table spaces. If
| the long field and LOB data is critical to your business, restoring these table
| spaces should be considered against the time required to complete the back up
| task for these table spaces. By storing long field and LOB data in separate table
| spaces, the time required to complete the restore of the data can be reduced by
| choosing not to restore the table spaces containing the long field and LOB data. If
| the LOB data can be reproduced from a separate source, when creating or altering
| a table to include LOB columns, choose the NOT LOGGED option. If you choose
| not to restore the table spaces that contain long field and LOB data, but you need
| to restore the table spaces that contain the table, you must roll forward to the end
| of the logs so that all table spaces that contain the table are consistent.

| Note: If you back up a table space that contains table data without the table
| spaces containing the associated the LONG or LOB fields, you cannot
| perform point-in-time roll-forward recovery on that table space. All the table
| spaces that contain any type of data for a table must be rolled forward
| simultaneously to the same point in time.

| Recall that long field and LOB data for the same table must be placed in the same
| table space.

¹ The following apply for both backup and restore operations:
– Multiple I/O buffers and devices should be used.
– Allocate at least twice as many buffers as there are devices being used.
– Do not overload the I/O device controller bandwidth.
– Use more buffers of smaller size rather than a few large buffers.
– Tune the number and the size of the buffers according to the system's

resources.

 Chapter 7. Recovering a Database 283

It is also recommended that you monitor and measure within your own system
environment. The recommendations are only a starting point: each business and each
environment is unique.

Disaster Recovery Considerations
The term disaster recovery is used to describe the activities that need to be done to
restore the database in the event of a fire, earthquake, vandalism, or other catastrophic
events. A plan for disaster recovery can include one or more of the following:

¹ A site to be used in the event of an emergency
¹ A different machine on which to recover the database
¹ Off-site storage of database backups and archived logs

If your plan for disaster recovery is to recover the entire database on another machine,
you require at least one full database backup and all the archived logs for the
database. When operating your business with this consideration, you may choose to
keep a standby database up-to-date by applying the logs to it as they are archived. Or,
you may choose to keep the database backup and log archives in the standby site, and
perform a restore/rollforward only after a disaster has occurred. (In this case, a recent
database backup is clearly desirable.) With a disaster, however, it is generally not
possible to recover all of the transactions up to the time of the disaster.

| The usefulness of a table space backup for disaster recovery depends on the scope of
| the failure. Typically, disaster recovery requires that you restore the entire database, so
| when a major disaster occurs, a full database backup is needed on a standby site
| (even if you have a separate backup image of every table space, you cannot use them
| to recover the database). If the disaster is a damaged disk, then a table space backup
| (for each table space using that disk) can be used to recover. If you have lost access to
| a container because of a disk failure (or for any other reason), you can restore the
| container to a different location. For additional information, see “Redefining Table
| Space Containers During RESTORE” on page 301.

With critical business data being stored in your database, you should plan for the
possibility of a natural or man-made disaster affecting your database. Both table space
backups and full database backups can have a role to play in any disaster recovery
plan. The DB2 facilities available for backing up, restoring, and rolling forward data
changes provide a foundation for a disaster recovery plan. You should ensure that you
have tested recovery procedures in place to protect your business.

Reducing the Impact of Media Failure
To reduce the possibility of having to recover from a media failure, and to simplify
recovering from this type of failure, you should:

¹ Mirror or duplicate the disks that hold the data and logs for important databases.

¹ In a partitioned database environment, set up a more rigorous procedure for
handling the data and logs on the catalog node. Because this node is very
important for maintaining the database, you should put it on a more reliable disk,

284 Administration Guide

duplicate it, and take more frequent backups of it. Also try to avoid putting user
data on it.

Note: When an I/O error occurs on a table space, the database will “crash.” Following
a restart of the database, the table space with the I/O error is disabled while the
rest of the database remains accessible.

Protecting Against Disk Failure
If you are concerned about damaged data or active logs due to a disk crash, an area
you might wish to consider at some point is the use of some form of tolerance to disk
failures. Generally, this would be accomplished through the use of a disk array. A disk
array consists of a collection of disk drives that appear as a single large disk drive to an
application.

Disk arrays involve disk striping, which is the distribution of a file across multiple disks,
mirroring of disks and data parity checks. Through the use of a disk array, the data and
logs are protected from disk faults, and you will not lose any transactions which may
otherwise happen if disk fault tolerance were not implemented.

Disk arrays are sometimes referred to simply as RAID (Redundant Array of Inexpensive
Disks). The specific term RAID generally applies only to hardware disk arrays. Disk
arrays can also be provided through software in the operating system or application
level. The point of distinction between hardware and software disk arrays is how CPU
processing of I/O requests is handled. For hardware disk arrays, disk controllers
manage the I/O activity, whereas with software disk arrays this is done by the operating
system or application.

Hardware Disk Arrays (RAID)
With a RAID disk array, multiple disks are used and managed by a disk controller,
complete with its own CPU. All of the logic required to manage the disks forming the
array is contained on the disk controller and so this implementation is operating system
independent.

There are five types of RAID architectures, RAID-1 through RAID-5, and each provides
disk fault-tolerance. Each of the five has some trade-off in function and performance.
By definition, RAID refers to a redundant array. RAID-0, which provides only data
striping and not fault-tolerant redundancy, is purposely excluded in this discussion
about protecting your data in the event of a disk failure. Although the RAID specification
defines five architectures, only RAID-1 and RAID-5 are typically used today.

RAID-1 is also known as disk mirroring or duplexing. Disk mirroring duplicates data
(complete file) from one disk onto a second disk using a single disk controller. Disk
duplexing is the same as mirroring except disks are attached to a second disk controller
(like two SCSI adapters). Data protection is good. Either disk can fail and data is still
accessible from the other disk. With duplexing, a disk controller could fail as well and
still have complete protection of data. Performance with RAID-1 is also good but the
trade-off in this implementation is that the required disk capacity is twice that of the
actual amount of data, since data is duplicated on pairs of drives.

 Chapter 7. Recovering a Database 285

RAID-5 involves data and parity striping by sectors. RAID-5 stripes data, sector(s) at a
time, across all disks. Parity is interleaved with data information rather than stored on a
dedicated drive. Data protection is good. If any disk fails, the data can still be
accessed by using the information from the other disks along with the striped parity
information. Read performance is good though write performance is considerably worse
than that of RAID-1 or normal disk. A RAID-5 configuration requires a minimum of three
identical disks. The amount of extra disk space required for overhead varies with the
number of disks in the array. In the case of a RAID-5 configuration of 5 disks, the
space overhead is 20%.

In using a RAID disk array, a failed disk (except RAID-0) will not prevent users from
accessing data on the array. When hot-pluggable or hot-swappable disks are used in
the array, a replacement disk can be swapped with the failed disk while the array is in
use. For RAID-5, if two disks fail at the same time, all data is lost (but the chance of
two disk failures at once is very rare).

You might consider using RAID-1 or software-mirrored disks, described in the next
section, for your logs since this provides for recoverability to the point of failure and
offers good write performance, which is important for logs. In situations where reliability
is crucial so that time cannot be lost in recovering data in case of a disk failure, and
write performance is not quite so critical, consider using RAID-5 disks. Further, if write
performance is crucial and you are willing to achieve this with the cost of additional disk
space, consider RAID-1 for your data as well as logs.

Software Disk Arrays
A software disk array accomplishes much the same as a hardware disk array but the
management of the disk traffic is done by either an operating system task or an
application program running on the server. The key point is that like all other programs,
the software array must contend for CPU and system resources. This is not a good
option for a CPU-constrained system and it should be remembered that overall disk
array performance is dependent on the server's CPU load and capacity.

A typical software disk array provides disk-mirroring, as with RAID-1. Although
redundant disks are required, a software disk array is comparatively inexpensive to
implement since costly RAID disk controllers are not required. One caution with
software disk arrays is that having the operating system boot drive in the disk array will
prevent your system from starting if that drive fails. If the drive fails before the disk
array is running, the disk array cannot start to allow access to the drive. Generally, a
boot drive separate from the disk array is also required.

Reducing the Impact of Transaction Failure
To reduce the impact of a transaction failure, try to ensure the following:

¹ Uninterrupted power supplies.

¹ Adequate disk space for database logs.

¹ Reliable communication links among the database partition servers in a partitioned
database environment.

286 Administration Guide

¹ Synchronization of the system clocks in a partitioned database environment. See
“System Clock Synchronization in a Partitioned Database System” on page 287 for
more information.

System Clock Synchronization in a Partitioned Database System
You should maintain relatively synchronized system clocks across the database
partition servers to ensure smooth database operations and unlimited forward
recoverability. The time difference among the database partition servers plus any
potential operational and communication delays for a transaction should be less than
the value found in the Maximum Time Difference Among Nodes (max_time_diff)
database manager configuration parameter.

To ensure that the log record timestamps reflect the sequence of transactions, DB2 in a
partitioned database system uses the system clock on each machine as the basis for
the timestamps in the log records. If, however, the system clock is set ahead, the log
clock is automatically set ahead with it. Although the system clock can be set
backwards, the clock for the logs cannot, and remains at the same advanced time until
the system clock exceeds this time. At this time, the log time again reflects the system
clock. The implication of this is that a short-term system clock error on a database node
can have long-lasting effect on the timestamps of database logs.

As a hypothetical example, assume that the system clock on database partition server
A is mistakenly set to November 7, 1999 when the year is 1997, and assume that the
mistake is quickly corrected after an update transaction is committed in the database
partition at that database partition server. If the database is in continual use, and is
regularly updated over time, any point in time between November 7, 1997 and
November 7, 1999 is virtually unreachable through roll-forward recovery. When the
commit on database partition server A is done the timestamp in the database log is set
to 1999, and the clock of the database log stays at November 7, 1999, until the system
clock exceeds this time. If you attempt to roll forward to a point in time within the
incorrect time frame, the operation will stop at the first timestamp that is beyond the
specified stop point, which is November 7, 1997.

Although DB2 cannot control updates to the system clock, the max_time_diff database
manager configuration parameter reduces the possibility of this type of problem
occurring in the database system:

¹ The configurable values for this parameter range from 1 minute to 24 hours. For
information about setting max_time_diff, see “Maximum Time Difference Among
Nodes (max_time_diff)” on page 701.

¹ When the first connection request is made to a non-catalog node, this database
partition server sends its time to the catalog node for the database. The catalog
node then checks that the time on the node requesting the connection and its own
time are within the tolerance specified by the max_time_diff parameter. If the value
specified by the parameter is exceeded, the connection is not allowed.

¹ An update transaction that involves more than two database partition servers in the
database must verify that the time on the participating database partition servers is

 Chapter 7. Recovering a Database 287

synchronized before the update can be committed. If two or more database
partition servers have a greater time difference than that allowed by max_time_diff,
the transaction is rolled back to prevent the incorrect time from being propagated
into other database partition servers.

To correct and prevent an incorrect timestamp in a database log from being propagated
further:

1. Adjust the system clock to the correct time.

2. Restore the database partition on the appropriate database partition server with a
backup that was taken before the time was incorrectly set.

3. Roll forward the changes to the end of the log for the database partition.

4. Take a back-up copy of the database partition immediately after the changes are
rolled forward.

After you do these steps, the log time will be adjusted, the incorrect timestamp will not
be propagated, and you will be able to do point-in-time recovery on the database
partition from the last backup that you took of the partition.

 Crash Recovery
Crash recovery using the RESTART DATABASE command or the automatic restart
enable configuration parameter (autorestart) protects a database from being left in an
inconsistent, or unusable, state.

The following topics provide additional information:

¹ Getting to a Consistent Database
¹ Transaction Failure Recovery in a Partitioned Database Environment

| ¹ Identifying the Failed Database Partition Server

Getting to a Consistent Database
Database commands and applications can fail for various reasons. A transaction failure
is not the failure of a database action when it is caused by an incorrect parameter, a
limit being exceeded, or a rollback caused by a deadlock. Rather, it is a severe error or
condition that causes the database or database manager to end abnormally, and
requires that the database be recovered. Examples include events such as a power
failure on a machine (causing the database manager and database partitions on it to be
down), or a COMMIT/ROLLBACK failure that causes the database to go down because
the disk that contains the database log is full, and no additional log files can be
allocated for writing the COMMIT/ROLLBACK record.

While applications or commands are running against a database, an interruption in
power or the failure of an application may cause the immediate cessation or stopping of
all activity with the database. One or more of the applications or commands may have
started working with the data in the database but were not complete. Also, some
committed units of work may not have been flushed to disk. The partially completed (or
nonflushed) units of work leave the database in an inconsistent, or unusable, state.

288 Administration Guide

See the following topics for more information:

¹ Planning to Use Automatic Restart
¹ Enabling Automatic Restart

Planning to Use Automatic Restart
The only consideration is whether you want the rollback of incomplete units of work at
the time of a failure to be done automatically by the database manager. If you do, use
the automatic restart enable (autorestart) configuration parameter. If not, you should be
prepared to issue the RESTART DATABASE command when a database failure
occurs.

Enabling Automatic Restart
Automatic restart is enabled through the autorestart database configuration parameter.
The default for this parameter is that automatic restart is “on.” See “Auto Restart
Enable (autorestart)” on page 669 for more information.

Transaction Failure Recovery in a Partitioned Database Environment
Typically, database recovery is required on both the failed database partition server and
any other database partition server that was participating in the same transaction or
application. Database recovery on the failed database partition server is often called
crash recovery. Crash recovery occurs on the database partition server that failed after
the condition that caused the failure is corrected (for example, the power supply is
reactivated). Database recovery on the other (still active) database partition servers
occurs immediately after the failure is detected. Sometimes called database partition
failure recovery, in this recovery process, resources are transparently cleaned up for
the failed transaction or application.

For more information, see “Failure Recovery on an Active Database Partition Server” on
page 290, and “Transaction Failure Recovery on the Failed Database Partition Server”
on page 290.

Two-Phase Commit Protocol
The discussion of two-phase commit protocol here is to introduce crash recovery in a
partitioned database system. For more information about two-phase commit, refer to
“Understanding the Two-Phase Commit Process” on page 355.

In a partitioned database environment, the database partition server on which an
application is submitted is the coordinator node, and the first agent that works for the
application is the coordinator agent. The coordinator agent is responsible for distributing
work to other database partition servers, and it keeps track of which ones are involved
in the transaction. When the application issues a COMMIT for a transaction, the
coordinator agent commits the transaction by using the two-phase commit protocol. In
the first phase, the coordinator node distributes a PREPARE request to all the other
database partition servers that are participating in the transaction. These servers then
respond with one of the following:

READ-ONLY No data change occurred at this server

 Chapter 7. Recovering a Database 289

YES Data change occurred at this server

NO Because of an error, the server is not prepared to commit

If one of the servers responds “NO,” the transaction is rolled back. Otherwise, the
coordinator node begins the second phase.

In the second phase, the coordinator node writes a COMMIT log record, then
distributes a COMMIT request to all the servers that responded “YES.” After all the
other database partition servers have committed, they send an acknowledgment of the
COMMIT to the coordinator node. The transaction is complete when the coordinator
agent has received all COMMIT acknowledgments from all the participating servers. At
this point, the coordinator agent writes a FORGET log record.

Failure Recovery on an Active Database Partition Server
If any database partition server detects that another server is down, all work that is
associated with the failed database partition server is stopped:

¹ If the still active database partition server is the coordinator node for an application
and the application was running on the failed database partition server (and not
ready to COMMIT), the coordinator agent is interrupted to do failure recovery. If the
coordinator agent is in the second phase of COMMIT processing, the application
receives the SQL error message SQL0279N, and loses its database connection.
Otherwise, the coordinator agent will distribute a ROLLBACK request to all other
servers participating in the transaction, and SQL1229N is returned to the
application.

| ¹ If the failed database partition server was the coordinator node for the application,
| agents that are still working for the application on the active servers are interrupted
| to do failure recovery. The current transaction is rolled back locally on each server,
| unless it has been prepared and is waiting for the transaction outcome. In this
| situation, the transaction is left indoubt on the active database partition servers,
| and the coordinator node is not aware of this (because it is not available). See
| “Recovering from Problems During Two-Phase Commit” on page 358 for more
| information about how an indoubt transaction is resolved.

| ¹ If the application connected to the failed database partition server (before it failed),
| but neither the local database partition server nor the failed database partition
| server is the coordinator node, agents working for this application are interrupted.
| The coordinator node will either send a rollback or a disconnect message to the
| other database partition servers. The transaction will only be indoubt on database
| partition servers that are still active if the coordinator node returns SQL0279.

Any process (such as an agent or deadlock detector) that attempts to send a request to
the failed server is informed that it cannot send the request.

Transaction Failure Recovery on the Failed Database Partition
Server
If the failure caused the database manager to end abnormally, when the processor is
restarted, you can issue DB2START with the RESTART option to restart the database

290 Administration Guide

manager. If you cannot restart the processor, you can also use DB2START to restart
the database manager on a different processor. For more information, see the START
DATABASE MANAGER command and API in the Command Reference and API
Reference respectively.

An abnormal end may result in database partitions on the server being left in an
inconsistent state (meaning that they are unusable). To make them usable, crash
recovery is required to make them consistent. Crash recovery can be triggered on a
database partition server:

¹ Explicitly with a RESTART DATABASE command

¹ Implicitly by a CONNECT request when the autorestart database configuration
parameter is on.

Crash recovery reapplies the log records in the active log files to ensure that the effect
of all complete transactions are in the database. After all the changes are reapplied, all
uncommitted transactions are rolled back locally, except for indoubt transactions. In a
partitioned database environment, there are two types of indoubt transaction:

¹ On a database partition server that is not the coordinator node, a transaction is
indoubt if it is prepared but not yet committed.

¹ On the coordinator node, a transaction is indoubt if it is committed but not yet
logged as complete (that is, the FORGET record is not yet written). This situation
occurs when the coordinator agent has not received all the COMMIT
acknowledgments from all the servers that worked for the application.

Crash recovery attempts to resolve all the indoubt transactions by doing one of the
following. The action that is taken depends on whether the database partition server
was the coordinator node for an application:

¹ If the server that restarted is not the coordinator node for the application, it sends a
query message to the coordinator agent to discover the outcome of the transaction.

¹ If the server that restarted is the coordinator node for the application, it sends a
message to all the other agents (subordinate agents) that the coordinator agent is
still waiting for COMMIT acknowledgments.

It is possible that crash recovery may not be able to resolve all the indoubt transactions
(for example, some of the database partition servers are not available). In this situation,
the SQL warning message SQL1061W is returned. You should note that indoubt
transactions hold resources, such as locks and active log space. It is possible to get to
a point where no changes can be made to the database because the active log space
is held up by indoubt transactions. For this reason, you should investigate if indoubt
transactions remain after crash recovery, and recover all database partition servers that
are required to resolve the indoubt transactions as quickly as possible.

If one or more servers that are required to resolve an indoubt transaction cannot be
recovered in time, and access is required to database partitions on other servers, you
can manually resolve the indoubt transaction by making an heuristic decision. You can
use the LIST INDOUBT TRANSACTIONS command to query, commit, and roll back the

 Chapter 7. Recovering a Database 291

indoubt transaction on the server. For more information, see the LIST INDOUBT
TRANSACTIONS command and API in the Command Reference and API Reference
manuals respectively.

Note: The LIST INDOUBT TRANSACTIONS command is also used for transactions in
a distributed transaction environment. See Chapter 8, “Distributed Databases”
on page 345 and Chapter 9, “Using DB2 with an XA-Compliant Transaction
Manager” on page 365 for more information about distributed environments. To
distinguish between the two types of indoubt transactions, the “originator” field in
the output that is returned by LIST INDOUBT TRANSACTIONS displays one of
the following:

¹ DB2 Universal Database Extended Enterprise Edition, which indicates that
the transaction originated in the partitioned database environment.

¹ XA, which indicates that the transaction originated in the distributed
environment.

Identifying the Failed Database Partition Server
When a database partition server fails, the application will typically receive one of the
following SQLCODEs. The method for detecting which database manager failed
depends on the SQLCODE received:

SQL0279N This SQLCODE is received when a database partition server involved in a
transaction is terminated during COMMIT processing.

SQL1224N This SQLCODE is received when the database partition server that failed is
the coordinator node for the transaction.

SQL1229N This SQLCODE is received when the database partition server that failed is
not the coordinator node for the transaction.

Determining which database partition server failed is a two-step process. The SQLCA
associated with SQLCODE SQL1229N contains the node number of the server that
detected the error in the sixth array position of the sqlerrd field. (The node number that
is written for the server corresponds to the node number in the db2nodes.cfg file.) On
the database partition server that detects the error, a message that indicates the node
number of the failed server is written in the db2diag.log file.

Note: If multiple logical nodes are being used on a processor, the failure of one logical
node may cause other logical nodes on the same processor to fail.

Typically, to recover from the failure of a database partition server:

1. Correct the problem that caused the failure.

2. Restart the database manager with the DB2START command from any database
partition server.

3. Restart the database with the RESTART DATABASE command on the failed
database partition server or servers.

292 Administration Guide

Recovery Method: Version Recovery
| Version recovery using the BACKUP command in conjunction with the RESTORE
| command puts the database in a state that has been previously saved. You use this
| recovery method with non-recoverable databases (that is, databases for which you do
| not have archived logs).

In this section, planning considerations and how to invoke the specific utilities or
commands to carry out the method are reviewed. Then, any concepts or related issues
that allow effective use of this method are presented.

The following topics provide additional information:

¹ Backing Up a Database
¹ Restoring a Database
¹ Recovery History File Information

Backing Up a Database
To make a backup copy of the database, you use the BACKUP command or the
Control Center. Within the Control Center, you select the database to be backed up and
then select the backup action.

CREATE
database

BACKUP
database

BACKUP
database

image

TIME

create

RESTORE
database

Units of work

Figure 29. Creating a Database Image

In a partitioned database system, you back up database partitions individually using the
BACKUP DATABASE command. The operation is local to the database partition server
where you issue the command. You can, however, issue db2_all from one of the
database partition servers in the instance to submit the backup command on a list of
servers, which you identify by their node number. If you do this, you must back up the
catalog node first, then back up the other database partitions. You can also use the
Control Center to backup database partitions.

 Chapter 7. Recovering a Database 293

In a partitioned database system, you can use the LIST NODES command to determine
the list of nodes (database partition servers) that have user tables on them. Because
this recovery method does not support roll-forward recovery, regularly back up the
database on this list of nodes.

You must keep in mind the recovery method to be used. The following sections provide
requirements and other considerations that apply to this task:

¹ Planning to Use the BACKUP Command
¹ Invoking the BACKUP Command
¹ Backup Images Created by BACKUP

Planning to Use the BACKUP Command
Your planning considerations should include:

¹ You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the BACKUP
command.

¹ The database may be local or remote. The backup remains on the database server
unless a storage management product such as ADSTAR* Distributed Storage
Manager (ADSM) is used.

¹ You can back up a database to a fixed disk, a tape, or a location managed by
ADSM or another vendor storage management product. See “ADSTAR Distributed
Storage Manager” on page 334 for information on ADSM.

Under OS/2, you can also back up to diskette or to a user exit.

Note: In OS/2, when backing up a database online to a user exit, note that the
database will be quiesced before the backup starts. As such, the backup
will wait for all transactions to either commit or rollback before it starts.
While the backup is running, all new transactions will wait until the backup
is complete, and, once the backup is completed, all transactions will
continue processing as usual.

¹ Under Windows NT and Windows 95, you can back up to diskette.

¹ Under OS/2, a user exit is used when backing up to tape because the operating
system has no native tape support.

Under UNIX-based operating systems and Windows NT, native tape support is
available.

| Note: If you use a variable block size with your tape devices, ensure that the DB2
| buffer size is either less than or equal to the maximum variable block size
| that the device is configured for. Otherwise, the backup will succeed but the
| resulting image is not guaranteed to be recoverable.

| ¹ Multiple files may be created to contain the backed up data from the database.

¹ In a partitioned database environment, an offline backup uses an exclusive
connection to the database at that database partition server (that is, the operation
requires an exclusive connection to the database partition), so no other application
can be connected to the database partition. When you do an offline backup of the
catalog node, there can be no activity on the entire database, including backups of

294 Administration Guide

the database on non-catalog database partition servers. You can use db2_all to
back up the database, but you must ensure that the catalog node is backed up
first. After the catalog node is backed up, the other database partitions can be
backed up at the same time.

¹ In a partitioned database system, you should also keep a copy of the
db2nodes.cfg file with any backup copies you take, as protection against possible
damage to this file.

If you have tables that contain DATALINK columns, also see “Backup Utility
Considerations” on page 325.

Invoking the BACKUP Command
The following considerations are useful when running the BACKUP command:

¹ You must start the database manager (DB2START) before running the BACKUP
command or API. When using the Control Center, you do not need to explicitly
start the database manager.

¹ When using the command, API, or task under Control Center, you must specify a
database alias name, not the database name itself.

¹ To reduce the amount of time required to complete a backup:

| – Increase the value of the PARALLELISM parameter.

| Using this parameter can dramatically reduce the amount of time required to
| complete the backup. The PARALLELISM parameter defines the number of
| processes or threads that are started to read data from the database. Each
| process or thread is assigned to back up a specific table space. When it
| completes backing up the table space, it requests another. You should note,
| however, that each process or thread requires both memory and CPU
| overhead: for a heavily loaded system, you should leave the PARALLELISM
| parameter at its default value of 1.

– Increase the backup buffer size.
– Increase the number of buffers.

If you use multiple buffers and I/O channels, you should use at least twice as
many buffers as channels to ensure that the channels do not have to wait for
data. The size of the buffers used will also contribute to the performance of the
backup operation. The ideal backup buffer size should be a multiple of the
extent size for the table space(s).

If you have multiple table spaces with different extent sizes, specify a value
that is a multiple of the largest extent size.

You may specify the number of pages to use for each backup buffer when you
invoke the BACKUP command. The minimum number of pages is 16. If you do
not specify the number of pages, each buffer will be allocated based on the
database manager configuration parameter backbufsz. If there is not enough
memory available to allocate the buffer, an error will be returned.

For details about the configuration parameter, see “Default Backup Buffer Size
(backbufsz)” on page 614.

 Chapter 7. Recovering a Database 295

– Use multiple target devices.

¹ In OS/2, when backing up a database to removable media, such as tape, the
database manager writes information to media volume 1. Once the first media is in
the drive, do not remove the media unless the operating system backup facility
prompts you for media 2.

¹ You cannot back up a database that is not in a usable state except for a database
in the backup pending state.

| – If a database is in a partially restored state due to a system crash during any
| stage of restoring the database, you must successfully restore the database
| before you can back it up.

– If a database was created with a previous release of the database manager
and the database has not been migrated, you must migrate the database
before you can back it up.

See Appendix B, “Planning Database Migration” on page 833, for information
about migrating a database.

| – If any of the table spaces in a database is in an “abnormal” state, you cannot
| back up the database, unless it is in the backup pending state.

¹ If a system crash occurs during a critical stage of backing up a database, you
cannot successfully connect to the database until you re-issue the BACKUP
command.

¹ The BACKUP command provides a concurrency control for multiple processes that
are making backup copies of different databases. The control keeps the backup
target device open until the entire backup process has ended.

If an error occurs during a backup process and the open container cannot be
closed, other backup processes to the same target drive may receive access
errors. To correct any access errors, you must completely exit the backup process
that caused the error and disconnect from the target device.

¹ If you are using the BACKUP command for concurrent backup processes to tape,
ensure that the processes do not target the same tape.

Backup Images Created by BACKUP
Backup images are created at the target specified when you call the BACKUP
command:

¹ In the directory for disk or diskette backups
¹ At the device specified for tape backups
¹ At an ADSTAR Distributed Storage Manager (ADSM) server
¹ At another vendor's server
¹ For OS/2, through the use of a user exit

The recovery history file is updated automatically with summary information whenever
you carry out a backup or restore of a full database. This file can be a useful tracking
mechanism for restore activity within a database. This file is created in the same

296 Administration Guide

directory as the database configuration file. For more information on the recovery
history file, see “Recovery History File Information” on page 324.

In UNIX-based environments, the file name(s) created on disk will consist of a
concatenation of the following information, separated by periods; on other platforms a
four-level subdirectory tree is used:

Database alias A 1-to-8 character database alias name that was
supplied when the backup command was invoked.

Type Type of backup taken, where: “0” is for full
database.

Instance name A 1-to-8 character name of the current instance of
the database manager that is taken from the
DB2INSTANCE environment variable.

Node number The node number.

Catalog node number The node number of the database's catalog node.

Time stamp A 14-character representation of the date and time
the backup was performed. The timestamp is in
the format yyyymmddhhnnss, where:

yyyy is the year (1995 to 9999)
mm is the month (01 to 12)
dd is the day of the month (01 to 31)
hh is the hour (00 to 23)
nn is the minutes (00 to 59)
ss is the seconds (00 to 59)

Sequence number A 3-digit sequence number used as a file
extension.

In UNIX-based operating systems, the format would appear as:

Database alias.Type.Instance name.nodennnn.catnnnnn.timestamp.number

On other operating systems, the format would appear as:

Database alias.Type\Instance name.nodennn\catnnnn\yyyymmdd\hhmmss.number

For example in UNIX-based environments, a database named STAFF on the DB201
instance may be backed up on disk to a file named:

STAFF.0.DB201.NODE0000.CATN0000.19950922120112.001

For tape-directed output, file names are not created; however, the above information is
stored in the backup header for later verification purposes.

 Chapter 7. Recovering a Database 297

Notes:

1. If you want to use tape media for database back-up and restore operations, a tape
device must be available through the standard operating system interface. On a
large partitioned database system, however, it may not be practical to have a tape
device dedicated to each database partition server. You can connect the tape
devices to one or more ADSM servers, so that access to these tape devices is
provided to each database partition server.

2. On a partitioned database system, you can also use products that provide virtual
tape device functions, such as REELlibrarian 4.2 or CLIO/S. You use these
products to access the tape device connected to other nodes (database partition
servers) through a pseudo tape device. Access to the remote tape device is
provided transparently, and the pseudo tape device can be accessed through the
standard operating system interface.

Restoring a Database
The following sections provide requirements and other considerations that apply to the
RESTORE command:

¹ Planning to Use the RESTORE Command
¹ Invoking the RESTORE Command
¹ Redefining Table Space Containers During RESTORE
¹ Restoring to an Existing Database
¹ Restoring to a New Database

CREATE
database

BACKUP
database

BACKUP
database

BACKUP
database

image

BACKUP
database

image

BACKUP
database

image

TIME

create create create

BACKUP
database

RESTORE
database

Units of work Units of work Units of work

Figure 30. Restoring a Database Using a Backup Image

Planning to Use the RESTORE Command
You should consider the following:

298 Administration Guide

¹ You must have SYSADM, SYSCTRL, or SYSMAINT, authority to restore to an
existing database from a full database backup. To restore to a new database, you
must have SYSADM or SYSCTRL authority.

¹ You can only use this command if the database has been previously backed up
with the BACKUP command.

¹ If you use the Control Center, you cannot restore backups that were taken previous
to the current version of DB2.

¹ In OS/2, the RESTORE command can call a user exit program only if a user exit
program was used to backup the database.

¹ You can choose at the time of the restore which type of restore is to be carried out.
You can select from the following types:

– A full restore of everything from the backup
– A restore of only the recovery history file

¹ The RESTORE command can use the ADSTAR Distributed Storage Manager
(ADSM) utility, and any restrictions of that utility should also be considered. (See
“ADSTAR Distributed Storage Manager” on page 334.)

¹ Another vendor storage management product may also be used if that product was
used to store the original backup.

¹ A database restore requires an exclusive connection: that is, no applications can
be running against the database when the task is started. Once it starts, it
prevents other applications from accessing the database until the restore is
completed.

¹ The database may be local or remote.

If you have tables that contain DATALINK columns, see both “Restore and Rollforward
Utility Considerations” on page 326 and “Restoring Databases from an Offline Backup
without Rolling Forward” on page 327.

Invoking the RESTORE Command
The following considerations are useful when running the RESTORE command:

¹ The database manager must be started before restoring a database.
¹ The database to which you restore the data may be the same one as the data was

originally backed up from, or it may be different. You may restore the data to a new
or an existing database.

¹ During the restore procedures, you have the ability to optionally select to use
multiple buffers to improve the performance of the restore procedure. The multiple
internal buffers may be filled with data from the backup media.

You may specify the number of pages to use for each restore buffer when you
invoke the RESTORE command. The value you specify must be a multiple of the
number of pages that you specified for the backup buffer. The minimum number of
pages is 16. If you do not specify the number of pages, each buffer will be
allocated based on the database manager configuration parameter restbufsz. If

 Chapter 7. Recovering a Database 299

there is not enough memory available to allocate the buffer, an error will be
returned.

For details about the configuration parameter, see “Default Restore Buffer Size
(restbufsz)” on page 614.

¹ The TAKEN AT parameter of the RESTORE DATABASE command requires the
timestamp for the backup. The timestamp can be exactly as it was displayed after
the completion of a successful BACKUP command, that is in the format
yyyymmddhhmmss.

You can also specify a partial timestamp. For example, assume that you have two
different backups with the timestamps 19971001010101 and 19971002010101. If
you specify 19971002 for TAKEN AT, the 19971002010101 backup is used.

If TAKEN AT is not specified, there must only be one backup on the source media.
¹ The backup copy of the database to be used by the RESTORE command can be

located on a fixed disk, a tape or a location managed by the ADSTAR* Distributed
Storage Manager (ADSM) utility or another vendor storage management product.
See “ADSTAR Distributed Storage Manager” on page 334 for information on
ADSM.

| If you use ADSM and do not specify the TAKEN AT parameter, ADSM retrieves
| the latest backup copy.

Under OS/2, the backup copy of the database could also be located on diskette or
through a user exit.

Under Windows 95 and Windows NT, the backup copy of the database could also
be located on diskette.

¹ Once the RESTORE command starts, the database is not usable until the
RESTORE command completes successfully.

¹ If a system failure occurs during any stage of restoring a database, you cannot
connect to the database until you reuse the RESTORE command and successfully
complete the restore.

¹ If the code page of the database being restored does not match a code page
available to an application; or, if the database manager does not support code
page conversions from the database code page to a code page that is available to
an application; then the restored database will not be usable.

¹ In OS/2, if you backed up your database using the sqluback API in a previous
release of DB2, then you must use the sqludres API to restore your database.
However, this API is no longer supported by the command line. To restore a
back-level backup from the command line, use the db2resdb utility provided in the
misc subdirectory of the sqllib directory. This utility will make the call to the
sqludres API on your behalf, restore the database to the target drive, then attempt
to migrate it to the current release.

The syntax for this utility is:

db2resdb <dbname> <source drive> <target drive>

where

300 Administration Guide

dbname = The name of the database which was backed up

source drive = The drive letter where the backup resides

target drive = The drive letter where the database is to be created

Redefining Table Space Containers During RESTORE
During a backup of a database, a record is kept of all the table space containers in use
by the table spaces that are backed up. During a RESTORE, all containers listed in the
backup are checked to see if they currently exist and are accessible. If one or more of
the containers is inaccessible because of a media failure (or for any other reason), the
RESTORE will fail. In order to allow a restore in such a case, the redirecting of table
space containers is supported during the RESTORE. This support includes adding,
changing, or removing of table space containers.

There are cases in which you want to restore even though the containers listed in the
backup do not exist on the system. An example of such a case is where you wish to
recover from a disaster on a system other than that from which the backup was taken.
The new system may not have the necessary containers defined. In order to allow a
RESTORE in this case, the redirecting of table space containers at the time of the
RESTORE to alternate containers is supported.

In both situations, this type of RESTORE is commonly referred to as a redirected
restore .

You can redefine table space containers through the restore task from within the
Control Center. You can also use the REDIRECT parameter of the RESTORE
command to specify the redirection. If you are using the Control Center, one way of
performing a redirected restore is to use the Containers page of the Restore Database
notebook. This page provides function that you can use to add new containers, change
the path of an existing container, or remove a container. If, during the process of the
restore database operation an invalid container path is detected, the Control Center will
prompt you to either change the container path, or remove the container.

Notes:

1. Directory and file containers are automatically created if they do not exist. No
redirection is necessary unless the containers are inaccessible for some other
reason. The database manager does not automatically create device containers.

2. The ability to perform container redirection on any RESTORE provides
considerable flexibility in managing table space containers. For example, even
though we do not directly support adding containers to SMS table spaces, you
could accomplish this by simply specifying an additional container on a redirected
restore. Similarly, you could move a DMS table space from file containers to device
containers.

3. Redirected restore is also supported through a number of APIs. Although you could
write a program to perform redirected restore for a specific case, these APIs are
primarily intended for developers who want to produce a general purpose utility.

 Chapter 7. Recovering a Database 301

Restoring to an Existing Database
You may restore a backup copy of a full database backup to an existing database. To
restore to an existing database, you must have SYSADM, SYSCTRL, or SYSMAINT
authority. The backup image may differ from the existing database in its alias name, its
database name, or its database seed.

A database seed is a unique identifier of a database that remains constant for the life of
the database. This seed is assigned by the database manager when the database is
first created. The seed is unchanged following a restore of a backup even if the backup
has a different database seed. DB2 always uses the seed from the backup.

When restoring to an existing database, the restore task performs the following
functions:

¹ Delete table, index, and long field contents for the existing database, and replace
them with the contents from the backup.

¹ Replace table space table entries for each table space being restored.
¹ Retain recovery history file unless the one on disk is damaged. If the file on the

disk is damaged, the database manager will copy the file from the backup.
¹ Retain the authentication for the existing database.
¹ Retain the database directories for the existing database that define where the

database resides and how it is cataloged.
¹ When the database seeds are different:

– Delete the logs associated with the existing database
– Copy the database configuration file from the backup
– Change the database configuration file to indicate that the default log file path

should be used for logging
¹ When the database seeds are the same:

– Retain the current database configuration file, unless the file is corrupted, in
which case this file will be copied from the backup.

– Delete the logs if the image is of a non-recoverable database. The log path
(which is specified by the logpath parameter) is also changed to the value
specified in the database configuration file that is in the backup.

Restoring to a New Database
As an alternative to restoring a database to a database that already exists, you may
create a new database and then restore the backup of the data. To restore to a new
database, you must have SYSADM or SYSCTRL authority.

Note: The code pages of the backup and the target database must match. If they do
not, first create the new database specifying the correct code page, then restore
it.

When you restore to a new database, the RESTORE command will perform the
following functions:

¹ Create a new database, using the database name and database alias name that
was specified by the target database alias parameter. (If this target database alias
was not specified, the RESTORE command will create a database with the name
and alias the same as the source database alias parameter.)

302 Administration Guide

¹ Restore the database configuration file from the backup.
¹ Modify the database configuration file to indicate that the default log file path

should be used for logging.
¹ Restore the authentication type from the backup.
¹ Restore the database comments from the backup for the database directories.
¹ Restore the recovery history file for the database.

Recovery Method: Roll-Forward Recovery
| Roll-forward recovery using the BACKUP command in conjunction with the RESTORE
| and ROLLFORWARD commands puts the database or table space in a state that has
| been previously saved.

When you first create a database, only circular logging is enabled for it. This means
that logs are re-used (in a circular fashion), and are not saved or archived. With circular
logging, roll-forward recovery is not possible: only crash recovery or version recovery is
enabled. When log archiving is performed, however, roll-forward recovery is possible,
because the logs record changes to the database after the time that the backup was
taken. You perform log archiving by activating either (or both) of the logretain and
userexit database configuration parameters. When either of these parameters are
enabled, the database is enabled for roll-forward recovery.

| When the database is recoverable, you can perform backup, restore, and roll-forward
| recovery at both the database and the table space level. The backups of the database
| and table space can be online. Online restore and rollforward are also available at the
| table space level.

Roll-forward recovery re-applies the completed units of work recorded in the logs to the
restored database, table space, or table spaces. You can specify that roll-forward
recovery is to the end of the logs, or to a particular point in time.

Roll-forward recovery can follow the completion of a full database restore as described
in “Restoring a Database” on page 298. It can also be done with table spaces that are
in a roll-forward pending state. For considerations on rolling forward a table space, see
“Rolling Forward Changes in a Table Space” on page 312

For more information about the database configuration parameters associated with
logging, see “Configuration Parameters for Database Logging” on page 309.

| Backup Considerations
| Following are the backup considerations that apply when your database is enabled for
| forward recovery. For general information that applies to performing backups, refer to
| the following:

| ¹ “Backing Up a Database” on page 293
| ¹ “Planning to Use the BACKUP Command” on page 294
| ¹ “Invoking the BACKUP Command” on page 295
| ¹ “Backup Images Created by BACKUP” on page 296.

 Chapter 7. Recovering a Database 303

| ¹ Roll-forward recovery is not enabled by the default setting (“Off”) of the logretain
| and userexit configuration parameters. The default for both parameters is set to
| “Off” because, initially, there is no backup that you can use to recover the
| database; initially, the database cannot be recovered, so you cannot perform
| forward recovery on it.

| To enable a new database for roll-forward recovery, you must enable at least one
| of these configuration parameters before taking the first backup of the database.
| When you change the value of one or both parameters, the database will be put
| into the backup pending state, which requires that you take an offline backup of the
| database. After the backup operation completes successfully, the database can be
| used.
| ¹ You cannot back up a database that is not in a usable state except for a database
| in the backup pending state.
| – If a database or a table space is in a partially restored state due to a system
| crash during any stage of restoring the database, you must successfully
| restore the database or the table space before you can back it up.
| – If any of the table spaces in a database is in an “abnormal” state, you cannot
| back up the database or that table space, unless it is in the backup pending
| state.

| ¹ You can back up a database or table space to a fixed disk, a tape, or a location
| managed by ADSM or another vendor storage management product. See
| “ADSTAR Distributed Storage Manager” on page 334 for information on ADSM.

| Under OS/2, you can also back up to diskette or to a user exit.
| ¹ If your database is enabled for roll-forward recovery and you are using a tape
| system that does not support the ability to uniquely reference a backup, it is
| recommended that you do not keep multiple backup copies of the same database
| on the same tape.
| ¹ Multiple files may be created to contain the backed up data from the database or
| table space.

| In OS/2, when you restore from a user exit and roll forward the database, the path
| to the database is the only reference used to locate the containers. Therefore, all
| the containers for that database that are on the backup tape are restored.
| ¹ To reduce the amount of time required to complete a backup:
| – Use table space backups.

| You can back up (and subsequently recover) part of a database by using the
| TABLESPACE option of the BACKUP command. This makes administering
| data, index, and long fields/large objects (LOBs) in separate table spaces
| easier.
| – Increase the value of the PARALLELISM parameter so that it reflects the
| number of table spaces that are being backed up.
| ¹ The considerations for backing up table spaces are as follows:
| – A table space backup and a table space restore cannot be run at the same
| time, even if the backup and restore are working on different table spaces.
| – If you have tables that span more than one table space, you should backup
| (and restore) the set of table spaces together.

304 Administration Guide

| – If each table space is on a different disk, a media error only affects a particular
| table space, not the entire database. The table space with the error is placed
| in a roll-forward pending state. You can still use the other table spaces in the
| database, unless the table space in this state has the system catalog tables. In
| this situation, you cannot connect to the database.
| – The system catalog table space can be restored independent of the rest of the
| database if a table-space level backup containing the system catalog table
| space is available.
| – The backup will fail if a list of the table spaces to be backed up contains a
| temporary table space.
| ¹ The considerations for a partitioned database environment are as follows:

| If you want to be able to do forward recovery, you must regularly back up the
| database on the list of nodes, and you must have at least one backup of the rest of
| the nodes in the system (even those that do not contain user data for that
| database). Two situations require the backed-up image of a database partition at a
| database partition server that does not contain user data for the database:
| – You added a database partition server to the database system after taking the
| last backup, and you need to do forward recovery on this database partition
| server.
| – Point-in-time recovery is used, which requires that all database partitions in the
| system are in the roll-forward pending state.

| The recovery history file is updated automatically with summary information whenever
| you carry out a backup or restore of a full database or table space. This file can be a
| useful tracking mechanism for restore activity within a database. This file is created in
| the same directory as the database configuration file. For more information on the
| recovery history file, see “Recovery History File Information” on page 324.

| In UNIX-based environments, the file name(s) created on disk will consist of a
| concatenation of the following information, separated by periods; on other platforms a
| four-level subdirectory tree is used:

| Database alias A 1-to-8 character database alias name that was
| supplied when the backup command was invoked.

| Type Type of backup taken, where: “0” is for full
| database, “3” is for table space, and “4” is for copy
| from a table load.

| Instance name A 1-to-8 character name of the current instance of
| the database manager that is taken from the
| DB2INSTANCE environment variable.

| Node number The node number.

| Catalog node number The node number of the database's catalog node.

| Time stamp A 14-character representation of the date and time
| the backup was performed. The timestamp is in
| the format yyyymmddhhnnss, where:

| yyyy is the year (1995 to 9999)

 Chapter 7. Recovering a Database 305

| mm is the month (01 to 12)
| dd is the day of the month (01 to 31)
| hh is the hour (00 to 23)
| nn is the minutes (00 to 59)
| ss is the seconds (00 to 59)

| Sequence number A 3-digit sequence number used as a file
| extension.

| Restore Considerations
| Following are the restore considerations that apply when your database is enabled for
| forward recovery. For general information that applies to performing restores, refer to
| the following:

| ¹ “Restoring a Database” on page 298
| ¹ “Planning to Use the RESTORE Command” on page 298
| ¹ “Invoking the RESTORE Command” on page 299
| ¹ “Redefining Table Space Containers During RESTORE” on page 301
| ¹ “Restoring to an Existing Database” on page 302
| ¹ “Restoring to a New Database” on page 302.

| ¹ You can restore a backup copy of a full database backup or table space backup to
| an existing database. To restore to an existing database, you must have SYSADM,
| SYSCTRL, or SYSMAINT authority. The backup image may differ from the existing
| database in its alias name, its database name, or its database seed.
| ¹ When you restore to an existing database, and the database seeds are the same,
| the logs are retained.
| ¹ You can only use the RESTORE command if the database or table space has
| been previously backed up with the BACKUP command.
| ¹ A database enabled for roll-forward recovery must be rolled forward after it is
| restored, otherwise it will be in the roll-forward pending state, and will be unusable.
| (The exception occurs when a restore WITHOUT ROLLFORWARD is specified.)
| You cannot turn roll-forward off if the backup is taken online or if the backup is
| taken at the table space level.
| ¹ The backup copy of the database or table space to be used by the RESTORE
| command can be located on a fixed disk, a tape or a location managed by the
| ADSTAR* Distributed Storage Manager (ADSM) utility or another vendor storage
| management product. See “ADSTAR Distributed Storage Manager” on page 334
| for information on ADSM.

| If you use ADSM and do not specify the TAKEN AT parameter, ADSM retrieves
| the latest backup copy.

| Under OS/2, the backup copy of the database or table space could also be located
| on diskette or through a user exit.

| Under Windows 95 and Windows NT, the backup copy of the database or table
| space could also be located on diskette.
| ¹ While restore and roll-forward are independent operations, your recovery strategy
| may have restore as the first phase of a complete roll-forward recovery of a
| database. After a successful restore, a database that was configured for

306 Administration Guide

| roll-forward recovery at the time the backup was taken enters a roll-forward
| pending state, and is not usable until the ROLLFORWARD command has been run
| successfully.

| When the ROLLFORWARD command is issued:
| – If the database is in the roll-forward pending state, the database is rolled
| forward.
| – If the database is not in the roll-forward pending state, but table spaces in the
| database are, when you issue the ROLLFORWARD command and specify a
| list of table spaces, only those table spaces are rolled forward. If you do not
| specify a list, all table spaces that are in the roll-forward pending state are
| rolled forward.

| Another database RESTORE is not allowed when the roll-forward process is
| running.

| Notes:

| 1. If you are restoring from a full database backup that was created using the
| offline option of the BACKUP command, you can bypass this roll-forward
| pending state during the restore process. Using the WITHOUT ROLLING
| FORWARD option allows you to use the restored database immediately
| without rolling forward the database.

| 2. If you are restoring from a backup that was created using the online option of
| the BACKUP command, you cannot bypass this roll-forward pending state.

| ¹ The considerations for restoring table spaces are as follows:
| – You can only restore a table space if the table space currently exists, and it is
| the same table space. (The “same table space” means that the table space
| was not dropped and re-created between taking the backup image and the
| attempt to restore the table space.)
| – You cannot restore a table space backup to a new database.
| – If you backed up tables that spanned more than one table space, you should
| restore the set of table spaces together.
| – Once the RESTORE command starts for a table space backup, the table
| space is not usable until the RESTORE command followed by a roll-forward
| recovery completes successfully.
| – A table space restore can be online (share mode) or offline (exclusive mode).
| – If a system failure occurs during the restoring of a table space backup, only
| the table space being restored is unusable. The other table spaces in the
| database can still be used.
| – You cannot perform an online table space restore of the system catalog tables.
| – When doing a partial or subset RESTORE, you can use either a table space
| backup, or a full database backup and choose one or more table spaces from
| that image. All the log files associated with the table space (or table spaces)
| must exist from the time the backup was created.

| In a partitioned database system, if you intend to roll forward a table space (or
| table spaces) to the end of the logs, you do not have to restore it at each
| database partition (node). You only need to restore it at the database partitions
| that require recovery. If you intend to roll forward a table space to a point in

 Chapter 7. Recovering a Database 307

| time, you must restore the table space at each database partition before rolling
| forward.
| – In OS/2, a partial or subset restore is not possible when restoring from a user
| exit.
| ¹ The considerations for redirected restore are as follows:
| – During a backup of a database or one or more table spaces, a record is kept
| of all the table space containers in use by the table spaces that are backed
| up. During a RESTORE, all containers listed in the backup are checked to see
| if they currently exist and are accessible. If one or more of the containers is
| inaccessible because of a media failure (or for any other reason), the
| RESTORE will fail. To allow a restore in such a case, the redirecting of table
| space containers is supported during the RESTORE. This support includes
| adding, changing, or removing of table space containers.
| – A RESTORE is often followed by a ROLLFORWARD to reapply changes
| recorded in the database logs after the point in time where the backup was
| taken. During a roll-forward operation, you may re-execute or re-run a
| transaction which carries out an ALTER TABLESPACE with the ADD option (to
| add a container). For the ROLLFORWARD to be successful, the container to
| be added must be accessible. If the container is not accessible, then the
| roll-forward for the table space is suspended, and the table space is left in a
| roll-forward pending state.
| – You may or may not wish to re-do the add container operations in the
| database logs. In fact, you may not know which containers may have been
| added since the backup was taken. Therefore, you cannot anticipate which
| containers are needed. Alternatively, depending on why you are performing a
| redirected restore, you may simply prefer the list of containers you specified at
| the time of the restore, and do not want any other containers added. To
| control this behavior, you can indicate at the time of the restore whether you
| want the ROLLFORWARD to re-create the containers during the roll-forward
| recovery. (You can edit the list of table space containers on the
| CONTAINERS - CHANGE window of the Restore Database or Restore Table
| Space notebook in the Control Center.)

Rolling Forward Changes in a Database
 Roll-forward recovery builds on a restored database and allows you to restore a
database to a particular time that is after the time that the database backup was taken.
This point can be either the end of the logs, or a point between the time of the
database backup and the end of the logs.

You might use point-in-time recovery if an active or an archived log is not available. In
this situation, you could roll forward to the point where the log is missing. You might
also roll forward to a point in time if a bad transaction was run against the database. In
this situation, you would restore the database, then roll forward to just before the time
that the bad transaction was run.

308 Administration Guide

CREATE
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

ROLLFORWARD

changes in logs
Units of workUnits of work

update update

n archived logs
1 active log

n archived logs
1 active log

Figure 31. Roll-Forward Recovery

You can also perform point-in-time roll-forward recovery on table spaces. For additional
information, see “Rolling Forward Changes in a Table Space” on page 312.

To use this method, the database must be configured to enable roll-forward recovery.
Considerations for the database configuration file and database logs are presented in
the following topics:

¹ Configuration Parameters for Database Logging
¹ Rolling Forward Changes in a Table Space
¹ Planning to Use the ROLLFORWARD Command
¹ Invoking the ROLLFORWARD Command
¹ Using the Load Copy Location File
¹ Considerations for Managing Log Files

 ¹ Losing Logs

If you have tables that contain DATALINK columns, also see “Restoring Databases and
Table Spaces and Rolling Forward to the End of the Logs” on page 328 and “Restoring
Databases and Table Spaces and Rolling Forward to a Point in Time” on page 328.

Configuration Parameters for Database Logging
The database configuration file contains parameters related to roll-forward recovery.
The default parameters do not support this recovery, so if you plan to use it, you need
to change some of these defaults. For additional information, see Chapter 20,
“Configuring DB2” on page 597.

Primary logs (logprimary)
This parameter specifies the number of primary logs that will be created.

A primary log, whether empty or full, requires the same amount of disk
space. Thus, if you configure more logs than you need, you use disk space
unnecessarily. If you configure too few logs, you can encounter a log-full
condition. As you select the number of logs to configure, you must consider
the size you make each log and whether your application can handle a
log-full condition.

 Chapter 7. Recovering a Database 309

If you are enabling an existing database for roll-forward recovery, change
the number of primary logs to the sum of the number of primary and
secondary logs, plus 1. Additional information is logged for long varchar
and LOB fields in a database enabled for roll-forward recovery.

Secondary logs (logsecond)
This parameter specifies the number of secondary log files that are created
and used for recovery log files (only as needed).

When the primary log files become full, the secondary log files (of size
logfilsiz) are allocated one at a time as needed, up to a maximum number
as controlled by this parameter. An error code will be returned to the
application, and activity against the database will be stopped, if more
secondary log files are required than are allowed by this parameter.

See “Number of Secondary Log Files (logsecond)” on page 662 for
recommendations on how to use secondary logs.

Log size (logfilsiz)
This parameter determines the number of pages for each of the configured
logs. A page is 4KB in size.

The size of each primary log has a direct bearing on performance. When
the database is configured to retain logs, each time a log is filled, a request
is issued for allocation and initialization of a new log. Increasing the size of
the log reduces the number of requests required to allocate and initialize
new logs. (Keep in mind, however, that with a larger log size it takes more
time to format each new log). The formatting of new logs is transparent to
applications connected to the database so that database performance is
unaffected by formatting.

Assuming that you have an application that keeps the database open to
minimize the processing time to open a database (see “Recovery
Performance Considerations” on page 282), the value for the log size
should be determined by the amount of time it takes to make offline
archived log copies.

The data transfer speed of the device you use to store offline archived
logs, and the software used to make the copies, must at a minimum match
the average rate at which the database manager writes data in the logs. If
the transfer speed cannot keep up with new log data being generated, you
may run out of disk space if logging activity continues for a sufficiently long
period of time, determined by the amount of free disk space. If this
happens, database processing will stop.

The data transfer speed is most significant when using tape or some
optical medium. (Refer to Appendix L, “User Exit for Database Recovery”
on page 1055 for information on using different media for storing logs.)
Some tape devices require the same amount of time to copy a file,
regardless of its size. You must determine the capability of your archiving
device.

310 Administration Guide

Additionally, tape devices have some unique considerations. The frequency
of the archiving request is important. If the time for any copy operation is
five minutes, the log size should be large enough to hold five minutes of
log data during your peak work load. Also, the tape device may have
design limits that restrict the number of operations per day. These factors
must be considered when you determine the log size.

Minimizing log file loss is also an important consideration in setting the log
size. Archiving takes an entire log. If you use a single large log, you
increase the time between archiving. If the medium containing the log fails,
some transaction information will probably be lost. Decreasing the log size
increases the frequency of archiving but can reduce the amount of
information loss in case of a media failure since the smaller logs before the
one lost can be used.

Log Buffer (logbufsz)
This parameter allows you to specify the amount of database shared
memory to use as a buffer for log records before writing these records to
disk. The log records are written to disk when one of the following occurs:

¹ A transaction commits
¹ The log buffer is full
¹ As a result of some other internal database manager event.

Buffering the log records will result in more efficient logging file I/O,
because the log records will be written to disk less frequently and more log
records will be written at each time.

Number of Commits to Group (mincommit)
This parameter allows you to delay the writing of log records to disk until a
minimum number of commits have been performed. This delay can help
reduce the database manager overhead associated with writing log records
and, as a result, improve performance when you have multiple applications
running against a database and many commits are requested by the
applications within a very short time frame.

This grouping of commits will only occur when the value of this parameter
is greater than 1, and when the number of applications connected to the
database is greater than the value of this parameter. When commit
grouping is being performed, application commit requests are held until the
earlier of either one second elapsing or the number of commit requests
equals the value of this parameter.

New log path (newlogpath)
| The database logs are initially created in SQLOGDIR, which is a
| subdirectory of the database directory. You can change the location where
| active logs and future archive logs are placed by changing the value for
| this configuration parameter to point to either a different directory, or to a
| device. Archive logs that are currently stored in the database log path
| directory are not moved to the new location if the database is configured
| for roll-forward recovery.

 Chapter 7. Recovering a Database 311

| Because you can change the log path location, the logs needed for
| roll-forward recovery may exist in different directories or on different
| devices. You can change this configuration parameter during the
| roll-forward process to allow you to access logs in multiple locations.

| The change to the value of newlogpath will not be applied until the
| database is in a consistent state. A database configuration parameter
| indicates the status of the database. See “Database is Consistent
| (database_consistent)” on page 680 for additional information about this
| status indicator. See “Considerations for Managing Log Files” on page 321
| for information about the roles database logs play if a database is not in a
| consistent state.

Log retain (logretain)
This parameter causes archived logs to be kept in the database log path
directory. Enabling it allows the database manager to use the roll-forward
recovery method. You do not require userexit to be enabled when the
logretain configuration parameter is enabled. Either one of the two
parameters is sufficient to allow the roll-forward recovery method.

Using this parameter means that the circular logging, that is the default, is
being overridden.

User exit (userexit)
This parameter causes the database manager to call a user exit program
for archiving and retrieving logs. With the user exit enabled, roll-forward
recovery is allowed. You do not require logretain to be enabled when the
userexit configuration parameter is enabled. Either one of the two
parameters is sufficient to allow the roll-forward recovery method.

Using this parameter means that the circular logging, that is the default, is
being overridden. Userexit implies logretain but the reverse is not true.

See Appendix L, “User Exit for Database Recovery” on page 1055, for
information about the user exit program.

The active log path is important when using either the userexit configuration parameter
or the logretain configuration parameter to allow roll-forward recovery. When the
userexit configuration parameter is set, the user exit is called to archive log files away
from the active log path. When the logretain configuration parameter is set, this ensures
that the log files remain in the active log path. The active log path is determined either
by the Path to Log Files or Changed Path to Log Files (newlogpath).

Rolling Forward Changes in a Table Space
If the database is enabled for forward recovery, you have the option of backing up,
restoring, and rolling forward table spaces instead of using the entire database. You
may want to implement a recovery strategy for individual table spaces because this can
save time: it takes less time to recover a portion of the database than it does to recover
the entire database. For example, if a disk is bad and it only contains one table space,
the table space can be restored and rolled forward without having to recover the entire
database (and without impacting user access to the rest of the database). Also,
table-space-level backups allow you to back up critical portions of the database more

312 Administration Guide

frequently than other portions, which requires less time than backing up the entire
database.

If, in a partitioned database environment, some database partitions are in the
roll-forward pending state, and, on other database partitions, some table spaces are in
the roll-forward pending state (but the database partition is not), you must first roll
forward the database partitions, then roll forward the table spaces.

If the data and long objects of a table are in separate table spaces, and the table has
been reorganized, the table spaces for both the data and long objects must be restored
and rolled forward together. You should take a back up of the affected table spaces
after the table is reorganized.

Different states are associated with a table space to indicate its current status:

¹ A table space will be placed in the roll-forward pending state after it is restored, or
following an I/O error. When the I/O error is corrected, the table space must be
rolled forward to remove the roll-forward pending state. If the table space has been
restored, it must be rolled forward.

¹ A table space will be placed in the roll-forward-in-progress state when a
roll-forward operation is in progress on that table space. The table space will be
removed from the roll-forward-in-progress state when ROLLFORWARD completes
successfully.

| The table space could also be in the roll-forward-in-progress state if the roll forward
| operation did not complete, or AND STOP was not specified for the operation.

¹ A table space will be placed in the restore pending state after a ROLLFORWARD
CANCEL or a ROLLFORWARD in which an unrecoverable error occurs on that
table space. The table space must be restored and rolled forward again.

¹ A table space will be placed in the backup pending state after a ROLLFORWARD
to a point in time, or after a LOAD NO COPY operation. The table space must be
backed up before it can be used.

After a table space is restored, it is always in the roll-forward pending state (that is, if
you restore a table space and specify the WITHOUT ROLLING FORWARD parameter,
the WITHOUT ROLLING FORWARD is ignored). To make the table space usable, you
must perform roll-forward recovery on it. You have the option of rolling forward to the
end of the logs, or rolling forward to a point in time. If you want to roll forward a table
space to a point in time, you should be aware of the following:

¹ You cannot roll forward system catalog tables to a point in time. These must be
rolled forward to the end of the logs to ensure that all table spaces in the database
remain consistent.

¹ A table space that is to be rolled forward to a point in time must have been
restored from a backup that is earlier than the point in time specified for the roll
forward.

| ¹ If you do not want to roll the table space forward, you can specify
| ROLLFORWARD STOP, which is the same as rolling the table space forward to
| the time of the restored backup.

 Chapter 7. Recovering a Database 313

| Note: You cannot do this if the backup image was taken online. In this situation
| you must roll forward to at least the end of the backup.

| ¹ If you are rolling forward to a point in time, and a table is contained in multiple
| table spaces, all table spaces that contain the table must be rolled forward
| simultaneously. If, for example, the table data is contained in one table space, and
| the index for the table is contained in another table space, you must roll forward
| both table spaces simultaneously to the same point in time.

¹ Before rolling forward a table space, use the LIST TABLESPACES SHOW DETAIL
command. This command returns information on the “Minimum Recover Time,”
which is the earliest point in time to which the table space can be rolled forward.
The minimum recovery time is updated when DDL statements are executed against
the table space, or against tables in the table space. The table space must be
rolled forward to at least the minimum recovery time so that is synchronized with
the information in the system catalog tables.

Because the recovered table space must be consistent with the system catalog
tables, you cannot perform a table space roll forward to recover a dropped table
space or table, because the catalog table will indicate that the object was
previously dropped. This means that you should not create dummy tables in those
table spaces that you want to recover separately from the database.

| ¹ You can issue QUIESCE TABLESPACES FOR TABLE to create a
| transaction-consistent point in time that you can use for rolling forward table
| spaces. When you quiesce table spaces for a table (in share, intent to update or
| exclusive), the request will wait (through locking) for all running transactions that
| are accessing objects in the table spaces to complete while blocking new requests
| against the table spaces. When the quiesce request is granted, all outstanding
| transactions are already completed (committed or rolled back) and the table spaces
| are in a consistent state. You can look in the recovery history file to find quiesce
| points and check whether they are past the minimum recovery time to determine a
| desirable time to stop the roll forward.

¹ If you want to roll forward a table space to a point in time and a table in the table
space participates in a referential integrity relationship with another table that is
contained in another table space, you should roll forward both table spaces
simultaneously to the same point in time. If you do not, both table spaces will be in
the check pending state at the end of the point-in-time roll forward operation. If you
roll forward both table spaces at the same time, the constraint will remain active at
the end of the point-in-time roll forward operation.

| ¹ If you want to roll forward a table space to a point in time and a table in the table
| space is either of the following:
| – An underlying table for a summary table that is in another table space
| – A summary table for a table in another table space

| You should roll forward both table spaces to the same point in time. If you do not,
| the summary table is placed in the check pending state at the end of the
| roll-forward operation.

¹ You should be careful that a point-in-time table space roll forward operation does
not cause a transaction to be rolled back in some table spaces, and committed in
others. This can happen when:

314 Administration Guide

– Point-in-time roll forward is performed on a subset of the table spaces that
were updated by a transaction, and the point in time is before the time that the
transaction committed.

– Any table contained in the table space being rolled forward to a point in time
has an associated trigger, or is updated by a trigger that affects table spaces
other than the one that is being rolled forward.

You should find a point in time to stop rolling forward that will prevent this from
happening.

| ¹ After a table space point-in-time roll forward operation completes, the table space
| (or table spaces) is placed in the backup pending state. You must take a backup of
| the table space because all updates made to it between the point in time that you
| rolled forward to and the current time have been removed. You can no longer roll
| forward the table space to the current time from a previous database or table
| space backup. The following example shows why the table space backup is
| required, and how it is used. (To make the table space available, you can either
| back up the entire database, the table space that is in the backup pending state, or
| a set of table spaces that includes the table space that is in the backup pending
| state.)

| Database Time of roll forward of Restore

| backup. table space TABSP1 to database.

| T2. Back up TABSP1. Roll forward

| to end of logs.

| T1 T2 T3 T4

|]]]]

|]]]]

|]--

|] Logs are not

| applied to TABSP1

| between T2 and T3

| when it is rolled

| forward to T2.

| In the preceding example, you back up the database at time T1. Then, at time T3,
| you roll forward table space TABSP1 to the point in time T2, then take a back up
| of the table space after T3. (Because the table space is in the backup pending
| state, you must take a backup of it. The timestamp of the table space backup is
| after T3, but the table space is at time T2. Log records are not applied to TABSP1
| from between T2 and T3.) At time T4, you restore the database with the backup
| you took at T1 and roll forward to the end of the logs. The table space TABSP1 will
| be placed into the restore pending state when time T3 is reached.

| The table space is put into the restore pending state at T3 because the database
| manager assumes that operations were performed on TABSP1 between T3 and T4
| without the log changes between T2 and T3 having been applied to the table
| space. If the log changes between T2 and T3 were reapplied as part of the
| ROLLFORWARD on the database, this assumption would be violated. The required
| backup of a table space that must be taken after it is rolled forward to a point in
| time allows you to roll that table space forward past a previous point-in-time roll
| forward (T3 in the example).

 Chapter 7. Recovering a Database 315

| Assuming that you want to recover table space TABSP1 to T4, you would restore
| the table space from a backup that was taken after T3 (either the required backup,
| or a later one) then roll forward TABSP1 to the end of the logs.

| In the preceding example, the most efficient way of restoring the database to time
| T4 would be to perform the required steps in the following order. Because you
| restore the table space before rolling forward the database, resource is not used to
| apply log records to the table space when the database is rolled forward, which
| would happen if you rolled forward the database before you restored the table
| space.
| 1. Restore the database.
| 2. Restore the table space.
| 3. Roll forward the database.
| 4. Roll forward the table space.

If you cannot find back up image of TABSP1 that is after time T3, or you want to
restore TABSP1 to T3 or before, you can:

¹ Roll forward the table space to the T3 point in time. You do not need to restore the
table space again because it was restored from the database backup.

¹ Restore the table space again from the backup of the database that you took at
time T1, then roll forward the table space to a time that precedes time T3.

¹ Drop the table space.

In a partitioned database environment you must roll forward all portions of the table
space to the same point in time at the same time. This ensures that the table space is
consistent across database partitions.

Planning to Use the ROLLFORWARD Command
Before using the ROLLFORWARD command you should consider the following items:

¹ You must have SYSADM, SYSCTRL, or SYSMAINT authority.
¹ The database may be local or remote.

| ¹ In a partitioned database environment, the rollforward must be issued from the
| catalog node of the database.

¹ The database must be configured for roll-forward recovery (that is, either logretain,
userexit, or both must be enabled). When a database is first configured for the
roll-forward function, you must make a backup copy of it.

¹ A database must be restored successfully (using the RESTORE command) before
it can be rolled forward; but a table space does not. A table space may be
temporarily put into the roll-forward pending state, but not require a restore to fix it
(for example, if a power interruption occurs).

| ¹ A database roll forward runs offline. The database is not available for use until the
| roll forward completes (either by reaching the end of the logs during a table space
| rollforward, or by specifying STOP on the ROLLFORWARD command). You can,
| however, perform an online roll forward of table spaces as long as SYSCATSPACE
| is not included. When you perform an online roll-forward operation on a table
| space, it is not available for use, but the other table spaces in the database are.
| ¹ When rolling forward, you should:
| 1. Issue ROLLFORWARD (without the STOP option).

316 Administration Guide

| 2. Issue ROLLFORWARD QUERY STATUS.

| If you perform end-of-log forward recovery, the QUERY STATUS can indicate
| that a log file (or files) is missing if the point in time returned by QUERY
| STATUS is earlier than you expect.

| If you perform point-in-time forward recovery, the QUERY STATUS will help
| you ensure that the roll forward is to the correct point.
| 3. Issue ROLLFORWARD STOP. After a ROLLFORWARD STOP, it is not
| possible to roll forward additional changes.

¹ You can perform a partial or subset restore of a backup created using the current
version of DB2. This cannot be done with earlier versions of DB2.

¹ A table space requires roll-forward recovery if it is in a roll-forward pending state. It
is in this state following a table space level restore or being taken offline because
of a media error.

TIME

update

ROLLFORWARD

changes in logs

update

Units of workUnits of work

Media
error

BACKUP
table space(s)

BACKUP
table space(s)

n archived logs
1 active log

n archived logs
1 active log

Figure 32. Table Space Roll-forward Recovery

¹ You do not have to recover your database with the latest backup copy of the
database: you can start with any backup, as long as you have the logs associated
with and following that backup.

¹ You should continue to make periodic backups of a database in order to reduce
recovery time.

| ¹ If you need to cancel a roll-forward operation (that is, ROLLFORWARD STOP was
| not specified, or the ROLLFORWARD command failed) to start it over again, you
| can use ROLLFORWARD CANCEL to cancel the operation.

| If you use ROLLFORWARD CANCEL against a database, this places the database
| into the restore pending state, whether or not a roll forward is in progress against
| the database.

 Chapter 7. Recovering a Database 317

| ROLLFORWARD CANCEL behavior for table spaces is as follows:
| – If you issue ROLLFORWARD CANCEL and you specify a list of table spaces
| that are in the roll-forward pending state, they are put in the restore pending
| state.

| Note: If no table space list is specified, SQL4906 is issued.

| – If multiple table spaces are being rolled forward to the end of the logs and you
| specify ROLLFORWARD CANCEL with a list, only the table spaces that are in
| the list are put in the restore pending state. The table spaces that are not in
| the list remain in the rollforward-in-progress state. If you specify
| ROLLFORWARD CANCEL without a list, all table spaces that are in the
| rollforward-in-progress state are put in the restore pending state.
| – If you issue ROLLFORWARD CANCEL and one or more table spaces are
| being rolled forward to a point in time, they are all put in the restore pending
| state, whether you specify a list or not. Even if you specify a list, the list is
| ignored and all table spaces that are in the roll-forward-in-progress state are
| put in the restore pending state.

| Note: You cannot use ROLLFORWARD CANCEL to cancel a roll-forward operation
| that is running. You can only use it to cancel a roll-forward operation that
| completed but did not have ROLLFORWARD STOP issued for it, or for a
| roll-forward operation that failed before completing.

| If you have tables that contain DATALINK columns, also see “Restore and Rollforward
| Utility Considerations” on page 326.

Invoking the ROLLFORWARD Command
There are a number of considerations before invoking the ROLLFORWARD command:

¹ When you invoke the ROLLFORWARD command, you can specify a time to limit
the transactions that will be recovered from the database logs. If you are restoring
from a backup that was created using the online option of the BACKUP command,
the time on the ROLLFORWARD command must be later than the online backup
end time.

¹ A log uses a timestamp associated with the completion of a unit of work. The
timestamp in the logs uses the Coordinated Universal Time (CUT), which helps to
avoid having the same timestamp associated with different logs (because of a
change in time associated with daylight savings time, for example). The timestamp
used on the backup is based on the local time that the BACKUP started. As a
result, when you call the ROLLFORWARD command, you must specify the time in
Coordinated Universal Time.

Notes:

1. The special register, CURRENT TIMEZONE, holds the difference between
CUT and the local time at the application server database. Local time is the
CUT plus the current timezone contents.

| 2. If you are rolling forward a table space (or table spaces) to a point in time, you
| must roll forward at least to the minimum recovery time, which is the last
| update to the system catalogs for this table space, or its tables.

318 Administration Guide

¹ If you stop the ROLLFORWARD task before it passes the point that the online
backup ended, the database is left in a roll-forward pending state. If a table space
is being rolled forward, it is left in the rollforward-in-progress state.

Using the Load Copy Location File
 The DB2LOADREC environment variable is used to identify the file with the load copy
location information. This file is used during roll-forward recovery to locate the load
copy. It has information on:

 ¹ Media type
¹ Number of media devices to be used
¹ Location of the load copy generated during table load
¹ Filename of the load copy, if applicable

If the location file does not exist or no matching entry is found in the file, the information
from the log record is used.

The information in the file may be overwritten before the roll-forward recovery takes
place.

Notes:

1. In a partitioned database environment, the DB2LOADREC environment variable
must be in the db2profile file.

2. In a partitioned database environment, the load copy file must exist at each
database partition server, and the file name (including the path) must be the same.

The following information is provided in the location file. The first five parameters must
have valid values and are used to identify the load copy. The entire structure is
repeated for each load copy recorded. For example:

 Chapter 7. Recovering a Database 319

TIMestamp 19950725182542 * Timestamp generated at load time

SCHema PAYROLL * Schema of table loaded

TABlename EMPLOYEES * Table name

DATabasename DBT * Database name

DB2instance TORONTO * DB2INSTANCE

BUFfernumber NULL * Number of buffers to be used for recovery

SESsionnumber NULL * Number of sessions to be used for recovery

TYPeofmedia L * Type of media - L for local device

A for ADSM

O for other vendors

LOCationnumber 3 * Number of locations

 ENTry /u/toronto/dbt.payroll.employes.001

 ENT /u/toronto/dbt.payroll.employes.002

 ENT /dev/rmt0

TIM 19950725192054

SCH PAYROLL

TAB DEPT

DAT DBT

DB2 TORONTO

SES NULL

BUF NULL

TYP A

TIM 19940325192054

SCH PAYROLL

TAB DEPT

DAT DBT

DB2 TORONTO

SES NULL

BUF NULL

TYP O

SHRlib /@sys/lib/backup_vendor.a

Notes:

¹ The first 3 characters for each keyword are significant. All keywords are required in
the specified order. No blank lines will be accepted.

¹ The timestamp is in the format yyyymmddhhmmss.
¹ All fields are mandatory except for BUF and SES which may be NULL. If SES is

NULL, the value specified by configuration parameter NUMLOADRECSES will be
used. If BUF is NULL, the default is SES+2.

¹ The type of media may be local device (L for tape, disk or diskettes), ADSM (A) or
other vendor (O). If it is 'L', the number of locations followed by the location entries
are required. If the type is 'A', no further input is required. If the type is 'O', the
shared library name is required. For details about using ADSM and other vendor
products as backup media, see “ADSTAR Distributed Storage Manager” on
page 334.

¹ The SHRlib parameter points to a library that has function to store the LOAD
COPY data.

Note: If you run LOAD COPY NO and do not take a backup copy of the database or
affected table spaces after running LOAD, you cannot restore the database or
table spaces to a point in time after the LOAD was performed. That is, you

320 Administration Guide

cannot use roll-forward recovery to rebuild the database or table spaces to a
state after the LOAD. You can only restore the database or table spaces to a
point in time that precedes the LOAD.

If you want to use a particular load copy, the LOAD timestamps are recorded in the
recovery history file for the database. In a partitioned database environment, the
recovery history file is local to each database partition.

For more information on LOAD, see “Using the LOAD Utility” on page 203.

Considerations for Managing Log Files
There are items to be considered when managing database logs:

¹ The numbering scheme for archived logs starts with S0000000.LOG, and goes
through S9999999.LOG (10 000 000 logs). The database manager restarts using
S0000000.LOG under these conditions:

– When a database configuration file is changed to enable the roll-forward
function.

– When a database configuration file is changed to disable the roll-forward
function.

– When the logs wrap; that is, after log S9999999.LOG is used.

When the roll-forward recovery method completes successfully, the last log is
truncated, and logging begins with the next sequential log. The practical effect is
that any log in the log path directory with a sequence number greater than the last
log used for roll-forward recovery is re-used. You should keep a copy of the logs
elsewhere if you want to be able to re-execute the ROLLFORWARD command
using these old logs. (You may use a user exit program to copy the logs to another
location.)

You can have duplicate names for different logs because:
– The database manager starts renaming logs with S0000000.LOG (as

described above),
– The database manager reuses log names after restoring a database (with or

without roll-forward recovery).

The database manager ensures that an incorrect log is not applied during
roll-forward recovery, but it cannot detect the location of the required log. You
must ensure that the correct logs are available for roll-forward recovery.

¹ If you moved log files to a location other than that specified by the logpath
database configuration parameter, use the OVERFLOW LOG PATH parameter of
the ROLLFORWARD command to specify the additional path to them.

If you are rolling forward changes in a database or table space and the roll-forward
operation cannot find the next log, the log name is returned in the SQLCA,
indicating the next log file needed, and roll-forward recovery stops. At this time, if
there are no more logs available, you can use the ROLLFORWARD command to
stop processing.

If you terminate the roll-forward recovery (by specifying the STOP option on the
ROLLFORWARD command) and the log containing the completion of a transaction
has not been applied to the database or table space, the incomplete transaction

 Chapter 7. Recovering a Database 321

will be rolled back to ensure that the database or table space is left in a consistent
state.

¹ Archived logs are placed in the SQLOGDIR subdirectory by default. To place them
elsewhere, either enable the database for user exit, or use the OVERFLOW LOG
PATH parameter of the ROLLFORWARD command to point to them when you roll
forward.

¹ If you enable a user exit by changing the database configuration file, the archived
logs can be redirected to a user-defined storage device such as a tape drive. Also,
you can use a user exit program to manage the storage of archived logs. See
Appendix L, “User Exit for Database Recovery” on page 1055 for information
about a user exit program.

¹ If you change the newlogpath parameter, any existing archived logs are unaffected.
You must keep track of the location of the logs.

¹ If a database enabled for roll-forward recovery is restored either without being
rolled forward or with being rolled forward to a specific time, an archived log may
be associated with two or more different log sequences of a database, because log
names are reused. (Figure 33 provides an illustration of the logs that are created.
If you now do a restore using “Backup 2” you must take extra care since there are
two log sequences which could be used.) Before discarding an archived log, you
must ensure that you do not need it.

Restore Backup 2
and Roll Forward to

end of log 12.

Backup 1

. . .

. . .

Backup 2 Backup 3

S0000010.LOG S0000011.LOG S0000012.LOG S0000013.LOG S0000014.LOG

S0000013.LOG S0000014.LOG

Figure 33. Reusing Log File Names

¹ If during a full database recovery you have rolled forward to a point in time and
stopped in the middle of the logs, you have created a new log sequence. The two
(2) log sequences cannot be combined. If you have an online backup that spans
through the first log sequence, you must use the first log sequence to complete the
roll forward recovery.

¹ If you have created a new log sequence after recovery, any table space backups
taken in the old log sequence are invalidated. Restore rejects the table space
backups in this case. There may be instances where restore fails to recognize that
the backup is no longer valid (particularly for online backups) and the restore is
successful. However, roll-forward for the table space will fail and the table space is
left in a roll-forward pending state.

322 Administration Guide

In the diagram above, assume that a table space backup, Backup 3, is completed
between S0000013.LOG and S0000014.LOG in the top log sequence. If we restored
and rolled forward using database Backup 2, we would need to roll-forward through
S0000012.LOG. After this we could continue to roll-forward through either the top log
sequence or the newer bottom log sequence. If we rolled forward through the
bottom sequence, we would not be able to use the table space Backup 3 to do a
table space restore and roll-forward recovery.

To be able to complete a table space roll-forward to end of logs using the table
space Backup 3, we would have to restore using database Backup 2 and then
roll-forward using the top log sequence. Once the table space Backup 3 has been
restored, you can then request a roll-forward to end of logs.

¹ A log uses a timestamp associated with the completion of a unit of work. The
timestamp in the logs uses the Coordinated Universal Time (CUT), which helps to
avoid having the same timestamp associated with different logs (because of a
change in time associated with daylight savings time, for example). The timestamp
used on the backup is based on the local time. As a result, when you call the
ROLLFORWARD command, you must specify the time in Coordinated Universal
Time.

Note: The special register, CURRENT TIMEZONE, holds the difference between
CUT and the local time at the application server database. Local time is the
CUT plus the current timezone contents.

 Losing Logs
¹ Dropping a database erases all logs in the current database log path directory.

Before dropping a database, you may need to make copies of the logs.
¹ If you are rolling forward a database to a point-in-time, the last log used in the

roll-forward recovery and all existing logs following that are reused. You lose the
ability to recover past that particular point-in-time. Therefore, you should copy all
the logs in the current database log path directory before beginning a point-in-time
recovery.

When the roll-forward processing completes, the log file with the last committed
transaction is truncated, and logging begins with the next sequential log. If you do
not have a copy of the log before it was truncated and those with higher sequence
numbers, you cannot recover the database past the specified point-in-time. (Once
normal database activity occurs following the roll-forward, new logs are created
which can then be used in any subsequent recovery.)

¹ If you change the log path directory and then remove the subdirectory or erase any
logs in that subdirectory called for in the log path, the database manager will look
for the logs in the default log path, SQLOGDIR, when the database is opened. If
the logs are not found, the database will enter a backup pending state, and you
must back up the database before it is usable.

This backup must be made even if the subdirectory contained empty logs.
¹ If you lose the log containing the point in time of the end of the online backup and

you are rolling forward the corresponding restored image, the database will not be
usable. To make the database usable, you must restore the database from a
different backup and all associated logs.

 Chapter 7. Recovering a Database 323

You may encounter a situation similar to the following: You would like to do a
point-in-time recovery on a full database but you are concerned that you might lose a
log during the recovery process. (This scenario could occur if you have an extended
number of archived logs between the time of the last backup database image and the
point-in-time where you would like to have the database recovered.)

First, you should copy all of the applicable logs to a “safe” location. Then you can run
the RESTORE command and use the roll-forward recovery method to the point-in-time
you wish for the database. If any of the logs that you need is damaged or lost during
this process, you have a backup copy of all of the logs elsewhere.

Recovery History File Information
A recovery history file is created with each database and is automatically updated
whenever there is a:

¹ Back up of a database or table space
¹ Restore of a database or table space
¹ Roll forward of a database or table space

| ¹ Alter of a table space
¹ Quiesce of a table space
¹ Load of a table

| ¹ Reorganization of a table
| ¹ Update of table statistics.

CREATE
database

BACKUP
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

RHF is the Recovery History File

RHF

create

RHF

update

RHF

update

RHF

update

RHF

update

ROLLFORWARD

changes in logs
Units of workUnits of work Units of work

Figure 34. Creating and Updating the Recovery History File

You can use the summarized backup information in this file to recover all or part of the
database to a given point in time. The information in the file includes:

¹ The part of the database that was copied and how
¹ The time the copy was made
¹ The location of the copy (stating both the device information and the logical way to

access the copy)

324 Administration Guide

¹ The last time a restore was done.

Every backup operation (both table space and full database) includes a copy of the
recovery history file. The recovery history file is linked to the database. Dropping a
database deletes the recovery history file. Restoring a database to a new location
restores the recovery history file. Restoring does not overwrite the existing history
recovery file.

If the current database is unusable or not available and the associated recovery history
file is damaged or deleted, an option on the RESTORE command allows only the
recovery history file to be restored. The recovery history file can then be reviewed to
provide information on which backup to use to restore the database.

The size of the file is controlled by the rec_his_retentn configuration parameter (see
“Recovery History Retention Period (rec_his_retentn)” on page 671) that specifies a
retention period (in days) for the entries in the file. Even if the number for this
parameter is set to zero (0), the most recent full database backup plus its restore set is
kept. (The only way to remove this copy is to use the PRUNE with FORCE option.) The
retention period has a default of 366 days. The period can be set to an indefinite
number of days by using -1. In this case, explicit pruning of the file is required.

You can query and run commands against the recovery history file by using an API
function call, the command line processor, or the Control Center. The five basic queries
and commands are: OPEN, CLOSE, GET NEXT, UPDATE, and PRUNE. (For more
information on the command syntax see the Command Reference. For more
information on the API function call, see the API Reference. For more information on
the Control Center, access the Control Center from your workstation.)

| Detailed information about the history file is recorded in the SQLUHINFO structure. For
| more information about this structure, refer to the API Reference.

| DB2 File Manager Considerations
| The following sections provide information that applies if you are using the backup,
| restore, and rollforward utilities, and you have tables that contain DATALINK columns.
| For a full description of DATALINK columns, refer to the CREATE TABLE statement in
| the SQL Reference.

| Backup Utility Considerations
| DB2 ensures that by the time the backup utility completes, linked files at DB2 File
| Manager sites are also backed up. (The backup utility can run either online or offline,
| and the backup image can be of either a database or a table space.) The description
| that follows only applies to files that are linked by DATALINK columns that have the
| RECOVERY parameter set to YES. (Files that are referenced by DATALINK columns
| for which RECOVERY=NO is specified are not backed up.)

| When files are linked, the DB2 File Managers schedule them to be copied
| asynchronously to an archive server such as ADSM, or to disk. When the backup utility
| runs, DB2 ensures that all files scheduled for copying have been copied. At the

 Chapter 7. Recovering a Database 325

| beginning of backup processing, DB2 also ensures that all DB2 File Managers that are
| specified in the DB2 configuration file are running. If a DB2 File Manager has one or
| more linked files, it must be available until the backup operation completes. If a DB2
| File Manager becomes unavailable before the backup operation completes, the backup
| operation is declared as incomplete.

| A successful backup operation can cause the DB2 File Manager to clean up the
| archived versions of files on the archive server (either disk or ADSM). When a file is
| unlinked, it is either deleted or returned to its previous permissions, depending on the
| value specified for the ON UNLINK parameter. The dl_num_backup database
| configuration parameter specifies the number of DB2 backups (either database or table
| space) before archived versions of the files are removed. For more information about
| this configuration parameter, see “DataLink Number of Backups (dl_num_backup)” on
| page 717.

| When unlinked files are removed, the information about the unlinked files is also
| removed from the DB2 File Manager registration tables.

| Restore and Rollforward Utility Considerations
| The information that follows applies if you have a DATALINK column (or columns) that
| is defined with RECOVERY=YES option for a table. If a table has a DATALINK column
| defined with the RECOVERY=NO option, the table is put in the reconcile_pending state
| at the end of the restore operation. See “Reconciling DB2 File Manager” on page 333
| for more information.

| During restore operations, tables with DATALINK columns may be put into one of the
| following states.

| ¹ reconcile_not_possible

| When a table is in the reconcile_not_possible state, it is available for unrestricted
| manipulative actions for columns other than the DATALINK columns. When a
| DATALINK column is involved in a SELECT statement, a warning is issued. You
| can issue UPDATE calls to DATALINK columns (with some restrictions: see
| “Removing a Table from the Reconcile_Not_Possible State” on page 332 for
| details). You cannot issue INSERT and DELETE statements because they involve
| the DATALINK column.
| ¹ reconcile_pending

| When a table is in the reconcile_pending state, it is available for unrestricted
| manipulative actions for columns other than the DATALINK columns. When a
| DATALINK column is involved in a SELECT statement, a warning is issued. You
| cannot issue any DML statements such as UPDATE, INSERT, or DELETE.

| These states are reported in the db2diag.log file when the restore or rollforward utilities
| run. You can also use the db2dart command to obtain this information.

| When you restore a database or table space and do not specify the WITHOUT
| DATALINK option, the following conditions must be satisfied for the restore operation to
| succeed:

326 Administration Guide

| ¹ All DB2 File Managers that are recorded in the backup file must be available.

| ¹ Information about all DATALINK columns that are recorded in the backup file must
| exist in the appropriate DB2 File Manager registration tables.

| If all the information about the DATALINK columns is not recorded in the
| registration tables, the table with the missing DATALINK column information is put
| into the reconcile_not_possible state after the restore operation (or the roll-forward
| operation, if used) completes.

| DB2 also checks whether the backup file that is provided is earlier than the value
| for dl_num_backup from the most recent backup. If the backup file is earlier,
| meaning that the archived files from this earlier backup have been removed and
| cannot be restored, all tables that have the DATALINK columns are also put into
| the reconcile_not_possible state.

| In both situations, the table is not put in the check pending state. Instead, it
| remains available to users, but the values in the DATALINK columns may not
| reference the files accurately (for example, a file may not be found that matches a
| value for the DATALINK column).

| If you do not want this behavior, you can put the table into the check pending state
| by issuing the SET CONSTRAINTS for tablename TO DATALINK RECONCILE
| PENDING command.

| If, after a restore operation, you have a table in the reconcile_not_possible state,
| you can fix the DATALINK column data in one of the ways suggested under
| “Removing a Table from the Reconcile_Not_Possible State” on page 332.

| Note: In the process of marking a file from the unlinked state to the linked state, that
| file may have to be retrieved from an archive server to the file system. If an
| error occurs during this process (for example, a file cannot be copied into the
| file system because of duplicate file names), the corresponding table is placed
| into the reconcile_pending state.

| Restoring Databases from an Offline Backup without Rolling
| Forward
| Note: You can only restore without rolling forward at the database level, and not the
| table-space level. To restore a database without rolling forward, you could either
| restore a nonrecoverable database (that is, a database that uses circular
| logging), or you would specify the WITHOUT ROLLING FORWARD parameter
| for the restore utility.

| If you use the restore utility with the WITHOUT DATALINK option, all tables with
| DATALINK columns are placed in the reconcile_pending state and no reconciliation is
| performed with the DB2 File Manager during the restore operation.

| If you do not use the WITHOUT DATALINK option, and all the DB2 File Managers are
| available and all information about the DATALINK columns is fully recorded in the
| registration tables, the following occurs for each DB2 File Manager recorded in the
| backup file:

 Chapter 7. Recovering a Database 327

| ¹ All files that were linked after the backup image that was used for the database
| restore are marked as unlinked (because they are not recorded in the backup
| image as being linked).

| ¹ All files that were unlinked after the backup image, but were linked before the
| backup image was taken, are marked as linked (because they are recorded in the
| backup image as being linked). If the file was subsequently linked to another table
| in another database, the restored table is put into the reconcile_pending state.

| Restoring Databases and Table Spaces and Rolling Forward to the
| End of the Logs
| If you restore then roll forward the database or table space to the end of the logs
| (meaning that all logs are provided), a reconciliation check is not required (regardless of
| whether the WITHOUT DATALINK parameter is specified). If you are not sure whether
| all the logs were provided for the roll-forward operation, or think that you may need to
| reconcile DATALINK values:

| 1. Issue the SQL statement for the table (or tables) involved:

| SET CONSTRAINTS FOR tablename TO DATALINK RECONCILE PENDING

| This puts the table in reconcile_pending state and check-pending state.

| 2. If you do not want a table in the check-pending state, issue the following SQL
| statement:

| SET CONSTRAINTS FOR tablename IMMEDIATE CHECKED

| This takes the table out of the check-pending state, but leaves it in the
| reconcile_pending state. You must use the reconcile utility to take the table out of
| this state. For more information, see “Reconciling DB2 File Manager” on page 333.

| Restoring Databases and Table Spaces and Rolling Forward to a
| Point in Time
| The point in time specified for a roll-forward operation can be a quiesce point. The
| quiesce point is the timestamp that is associated with a QUIESCE TABLESPACES
| FOR TABLE tablename command. You can find this timestamp in the database history
| file.

| Note: This quiesce point only applies to the table spaces that have been quiesced.

| You do not need to perform a reconcile check for the tables in a table space that is
| rolled forward to a quiesce point, as a fast reconcile is automatically performed for all
| the tables in that table space. Tables in table spaces that are not rolled forward to a
| quiesce point, however, will be in the reconcile_pending state at the end of the
| roll-forward operation. You should use the reconcile utility to remove them from this
| state. For more information, see “Reconciling DB2 File Manager” on page 333.

| Point-in-Time Roll-Forward Example: Following is a simple scenario showing the
| files that need to be retained in order to handle backup and recovery. The example
| shows changes to the value of a single row in column of type DATALINK together with
| the files that the DB2 File Manager needs to retain to support recovery. For this
| example, the assumption is made that there is no support for point-in-time recovery of

328 Administration Guide

| these files earlier than the last backup. DB2 File Manager does not have such a
| restriction. Observe that fileA exists until time 3, at which time it is deleted because it
| was unlinked at time 2, and the policy for the database in this example is to keep the
| unlinked files until the next backup is run (that is, the dl_num_backup database
| configuration parameter is set to 1).

| Time| 1| 2| 3| 4| 5| 6| 7

| Activity| Create| Update| Backup| Update| Update| Delete| Restore
| to 5

| Column
| Value
| valueA| valueB| valueB| valueC| valueD| -| valueD

| Linked
| File
| fileA| fileB| fileB| fileC| fileD| -| fileD

| Extra
| Files Kept
| by File
| Manager

| fileA| fileB| fileB,
| fileC
| fileB,
| fileC, fileD
| fileB,
| fileC

| Note: Recovery of linked files is always done in conjunction with the rest of the
| database.

| DB2 File Manager and Recovery Interactions
| The following table shows the different types of recovery that you can perform, the DB2
| File Manager processing that occurs during restore and roll-forward processing, and
| whether you need to run the Reconcile utility after the recovery is complete:

| Type of Recovery| DB2 File Manager
| Processing during
| Restore

| DB2 File Manager
| Processing during
| Rollforward

| Reconcile

| Non-recoverable database (logretain=NO)

| Database restore| Fast reconcile is
| performed
| N/A| Can be optionally run if
| problem with file links is
| suspected

| Database restore using
| WITHOUT DATALINK
| option

| Tables put in
| reconcile_pending state
| N/A| Required

| Recoverable database (logretain=YES)

| Database restore using
| WITHOUT ROLLING
| FORWARD option

| Fast reconcile is
| performed
| N/A| Optional

| Database restore using
| WITHOUT ROLLING
| FORWARD and
| WITHOUT DATALINK
| options

| Tables put in
| reconcile_pending state
| N/A| Required

 Chapter 7. Recovering a Database 329

| Type of Recovery| DB2 File Manager
| Processing during
| Restore

| DB2 File Manager
| Processing during
| Rollforward

| Reconcile

| Database restore and
| roll forward to end of
| logs

| No action| No action| Optional

| Database restore using
| WITHOUT DATALINK
| option and roll forward to
| end of logs

| No action| No action| Optional

| Table space restore and
| roll forward to end of
| logs

| No action| No action| Optional

| Table space restore
| using WITHOUT
| DATALINK option and
| roll forward to end of
| logs

| No action| No action| Optional

| Database restore and
| roll forward to a point in
| time

| No action| Tables put in
| reconcile_pending state
| Required

| Database restore using
| WITHOUT DATALINK
| option and roll forward to
| a point in time

| No action| Tables put in
| reconcile_pending state
| Required

| Table space restore and
| roll forward to a point in
| time

| No action| Tables put in
| reconcile_pending state
| Required

| Table space restore
| using WITHOUT
| DATALINK option and
| roll forward to a point in
| time

| No action| Tables put in
| reconcile_pending state
| Required

| Database restore and
| roll forward to a quiesce
| point

| No action| Fast reconcile is
| performed on tables in
| quiesced table spaces
| only; other tables are put
| in reconcile_pending
| state

| Optional for tables in
| quiesced table spaces;
| required for all other
| tables

| Database restore using
| WITHOUT DATALINK
| option and roll forward to
| a quiesce point

| No action| Fast reconcile is
| performed on tables in
| quiesced table spaces
| only; other tables are put
| in reconcile_pending
| state

| Optional for tables in
| quiesced table spaces;
| required for all other
| tables

330 Administration Guide

| Type of Recovery| DB2 File Manager
| Processing during
| Restore

| DB2 File Manager
| Processing during
| Rollforward

| Reconcile

| Table space restore and
| roll forward to a quiesce
| point

| No action| Fast reconcile is
| performed on tables in
| quiesced table spaces
| only; other tables are put
| in reconcile_pending
| state

| Optional for tables in
| quiesced table spaces;
| required for all other
| tables

| Table space restore
| using WITHOUT
| DATALINK option and
| roll forward to a quiesce
| point

| No action| Fast reconcile is
| performed on tables in
| quiesced table spaces
| only; other tables are put
| in reconcile_pending
| state

| Optional for tables in
| quiesced table spaces;
| required for all other
| tables

| Database restore to a
| different database name,
| alias, hostname, or
| instance with no roll
| forward (see note 2 on
| page 332)

| Tables put in
| reconcile_not_possible
| state

| N/A| Optional, but tables in
| reconcile_not_possible
| state must be manually
| fixed

| Database restore to a
| different database name,
| alias, hostname or
| instance and roll forward

| No action| Tables put in
| reconcile_not_possible
| state

| Optional, but tables in
| reconcile_not_possible
| state must be manually
| fixed

| Database restore from
| an unusable backup
| (image may be too old
| or was invalidated by the
| File Manager) with no
| roll forward (see note 2
| on page 332)

| Tables put in
| reconcile_not_possible
| state

| N/A| Optional, but tables in
| reconcile_not_possible
| state must be manually
| fixed

| Database restore from
| an unusable backup
| (image may be too old
| or was invalidated by the
| File Manager) and roll
| forward

| No action| Tables put in
| reconcile_not_possible
| state

| Optional, but tables in
| reconcile_not_possiblestate
| must be manually fixed

| Table space restore from
| an unusable backup
| (image may be too old
| or was invalidated by the
| File Manager) and roll
| forward

| No action| Tables put in
| reconcile_not_possible
| state

| Optional, but tables in
| reconcile_not_possible
| state must be manually
| fixed

 Chapter 7. Recovering a Database 331

| Type of Recovery| DB2 File Manager
| Processing during
| Restore

| DB2 File Manager
| Processing during
| Rollforward

| Reconcile

| Database restore from
| an unusable backup
| (image may be too old
| or was invalidated by the
| File Manager) using the
| WITHOUT DATALINK
| option and no roll
| forward (see note 2 on
| page 332)

| Tables put in
| reconcile_pending state
| N/A| Required

| Database restore from
| an unusable backup
| (image may be too old
| or was invalidated by the
| File Manager) using the
| WITHOUT DATALINK
| option and roll forward

| No action| Tables put in
| reconcile_not_possible
| state

| Optional, but tables in
| reconcile_not_possible
| state must be manually
| fixed

| Table space restore from
| an unusable backup
| (image may be too old
| or was invalidated by the
| File Manager) using the
| WITHOUT DATALINK
| option and roll forward

| No action| Tables put in
| reconcile_not_possible
| state

| Optional, but tables in
| reconcile_not_possible
| state must be manually
| fixed

| Notes:

| 1. If you roll forward with just the STOP option, you cannot use the DLREPORT
| option because reconcile processing is not performed. The DLREPORT option is
| only useful if you roll forward to a quiesce point, which performs a fast reconcile on
| tables in the quiesced table spaces.

| 2. A restore using an offline backup and the WITHOUT ROLLING FORWARD option
| (logretain is on), or a restore using an offline backup (logretain is off).

| Removing a Table from the Reconcile_Not_Possible State
| A restored table (or tables) with a DATALINK column is put into the
| reconcile_not_possible state:

| ¹ If a table space is restored from a backup that is earlier than the value specified for
| the dl_num_backup database configuration parameter. For more information, see
| “DataLink Number of Backups (dl_num_backup)” on page 717.

| ¹ If a table (or table space) was dropped and the time specified by the dl_time_drop
| database configuration parameter has passed. For more information, see “DataLink
| Time After Drop (dl_time_drop)” on page 718.

| DB2 still allows the table to be accessed, even though the DATALINK column values
| may not be valid. If you want to prevent access to a table with possibly inconsistent

332 Administration Guide

| DATALINK column values, issue the SET CONSTRAINTS for tablename TO
| DATALINK RECONCILE PENDING command. You can update the DATALINK values
| as follows:

| ¹ Using the SQL UPDATE statement, set the data location part of a DATALINK
| column to a zero-length URL if the column is not nullable, or to NULL if the column
| is nullable. (You can, optionally, also update the comment part of the DATALINK
| column.) The UPDATE succeeds when the table is in the reconcile_not_possible
| state because DB2 does not interact with the file server to unlink the file.

| ¹ Restore the files on the appropriate file servers. Then run an application that issues
| SELECT statements to read the DATALINK column values, and issues UPDATE
| statements to update the DATALINK column with the same values. Note that the
| reconcile_not_possible state must be on while the DATALINK column values are
| being updated. After the update operation completes, the files will be marked as
| linked on the appropriate file servers.

| You then reset the reconcile_not_possible state by issuing the following command:

| SET CONSTRAINTS FOR tablename DATALINK RECONCILE PENDING IMMEDIATE UNCHECKED

| Reconciling DB2 File Manager
| You use the reconcile utility to reconcile data links. The utility is initiated from DB2, and
| involves all the DB2 file servers that are referenced by the DATALINK column values. It
| validates that the referenced files either exist on the file server, or that links can be
| re-established. The following sections describe how DB2 detects whether you need to
| reconcile data links, and how to reconcile them.

| If a DB2 File Manager file reference does not exist or cannot be re-established, the
| reconcile utility places a copy of the rows in error along with a reason for each into a
| report, then modifies the offending rows. You can use the report to update the rows to
| make the required corrections. The report uses the naming convention report.exp (the
| .exp extension is supplied by the reconcile utility). For example, you can invoke the
| reconcile utility with the following statement:

| db2 reconcile dept dlreport /u/scottba/report

| This command reconciles the table called dept, and writes exceptions to the exception
| report report.exp, which is created in the directory /u/scottba.

| Detection of Situations That Require Reconciliation
| Following are some situations when you may need to run the reconcile utility:

| ¹ The entire database is restored and rolled forward to a point in time. Because the
| entire database is rolled forward to a committed transaction, no tables will be in the
| check pending state (due to referential constraints or check constraints). All data in
| the database is brought to a consistent state. The DATALINK columns, however,
| may not be synchronized with the metadata in the DB2 File Manager, and
| reconciliation is required.

 Chapter 7. Recovering a Database 333

| In this situation, tables with DATALINK columns will already be in the
| reconcile_pending state. You should issue the reconcile utility for each of these
| tables.

| ¹ A particular DB2 File Manager loses track of its metadata. This can occur for
| different reasons. For example:

| – The DB2 File Manager was cold started.
| – The DB2 File Manager metadata was restored to a back-level state.

| In some situations, such as SQL UPDATEs and DELETEs, DB2 may be able to
| detect a problem with the metadata in a DB2 File Manager. In these situations,
| DB2 would fail the SQL statement with -2076. You would put the table in the
| reconcile_pending state by using the SET CONSTRAINTS statement, then run the
| reconcile utility on that table.

| ¹ A file system is not available (for example, because of a disk crash) and is not
| restored to the current state. In this situation, files may be missing.

| An error like this will typically be discovered by an application when it cannot
| access the file whose file reference it obtained from the database. You should put
| the table in the reconcile_pending state and run the reconcile utility on it. Some of
| the files may be restored from the archive server if their corresponding DATALINK
| columns had RECOVERY=YES. In any case, the reconcile utility will record the
| exceptions in the exception report. You can then restore those files or issue SQL
| UPDATEs to fix the column.

| Summary of Procedure for Reconciliation
| If you need to reconcile data links because of point-in-time recovery or because DB2
| File Manager and DB2 control information do not match:

| 1. Put the table in the reconcile_pending state by issuing the SET CONSTRAINTS
| statement. (In some situations, DB2 will do this for you.)

| 2. Use the reconcile utility to resolve the links, and take the appropriate actions for
| the exceptions in the exception report.

ADSTAR Distributed Storage Manager
| When calling the BACKUP and RESTORE commands, you can specify that you want to
| use the ADSTAR Distributed Storage Manager (ADSM) product to manage the
| database or table space backup. You can use ADSM Version 2.x and later with DB2.
| The following topics provide additional information:

| ¹ Setting up an ADSTAR Distributed Storage Manager Client for UNIX-Based
| Platforms
| ¹ Setting up an ADSTAR Distributed Storage Manager Client for Other Platforms
| ¹ Considerations for Using ADSTAR Distributed Storage Manager

334 Administration Guide

Setting up an ADSTAR Distributed Storage Manager Client for UNIX-Based
Platforms

Before the database manager can use the ADSM option, the following set-up activities
must be performed:

| 1. On SunOS and Solaris environments, perform the following steps. (For other
| UNIX-based platforms, begin at step 2.)
| a. Ensure that the required level of operating system is installed: SunOS 5.5.1 or
| Solaris 2.5.1.
| b. Install the ADSM patch IP20999 to upgrade ADSM to Version 2.1.0.6. Ensure
| that you remove all previous ADSM packages before installing the patch.
| c. Verify that ADSM (patch IP20999) is installed in the directories
| /opt/IBMDSMap5, /opt/IBMDSMba5, and /opt/IBMDSMsa5.
| d. Create the following symbolic links in the directory /usr/lib, if they do not
| already exist:

| libApiDS.so -> libApiDS.so.1

| libApiDS.so.1 -> /opt/IBMDSMap5/api/libApiDS.so.2

2. Create or modify the ADSM user configuration options file /usr/sbin/dsm.opt, and
the ADSM system configuration options file /usr/sbin/dsm.sys to suit your
environment.

3. On SunOS and Solaris environments, perform the following steps. (For other
UNIX-based platforms, continue at step 4.)

a. Copy /usr/sbin/dsm.opt and /usr/sbin/dsm.sys to the directory
/opt/IBMDSMap5.

b. Copy /opt/IBMDSMap5/solaris/dsmaptica to the directory /opt/IBMDSMap5.

4. Set the environment variables used by ADSM:

| DSMI_DIR identifies the user-defined directory path where the API trusted
| agent file (dsmapicta or dsmtca) are located.

| Note: For the SunOS and Solaris environments, this should be
| set to /opt/IBMDSMap5.

DSMI_CONFIG identifies the user-defined directory path to the dsm.opt file,
which contains the ADSM user options.

Note: For the SunOS and Solaris environments, this should be
set to /opt/IBMDSMap5/dsm.opt.

DSMI_LOG identifies the user-defined directory path where the error log
(dsierror.log) will be created.

5. Establish the ADSM password.

For an ADSM client to be able to interface with an ADSM server, it must have a
password for the server. The executable file dsmapipw is installed in the
INSTHOME/sqllib/adsm directory of the instance owner. This executable allows you
to establish and reset the ADSM password.

 Chapter 7. Recovering a Database 335

To execute the dsmapipw command, you must be logged in as the “root” user.
When this command is executed, you will be prompted for the following
information:
¹ old password, which is the current password for the ADSM node, as

recognized by the ADSM server. The first time you execute this command, this
password will be the one provided by the ADSM administrator at the time your
node was registered on the ADSM server.

¹ new password, which is the new password for the node that will be stored at
the ADSM server. (Note that you will be prompted twice for the new password,
to check for input errors.)

Note: The user executing the BACKUP or RESTORE commands does not need
to know this password. The only times you need to run this command are
to establish a password for the initial connection and if the password has
been reset on the ADSM server.

6. If the database manager is running, you should:
¹ Stop the database manager using the db2stop command.
¹ Start the database manager using the db2start command.

Setting up an ADSTAR Distributed Storage Manager Client for Other Platforms
Before the database manager can use the ADSM option, the following set-up activities
must be performed:

1. Set the environment variables used by ADSM:

| DSMI_DIR identifies the user-defined directory path where the API trusted
| agent file (dsmapicta or dsmtca) are located.

DSMI_CONFIG identifies the user-defined directory path to the dsm.opt file,
which contains the ADSM user options.

DSMI_LOG identifies the user-defined directory path where the error log
(dsierror.log) will be created.

2. If applicable to your operating system, create (or modify) the ADSM system
configuration options file (dsm.sys).

3. Create (or modify) the dsm.opt ADSM user configuration options file. The
environment variable DSMI_CONFIG points to this file.

4. Establish the ADSM password.

For an ADSM client to be able to interface with an ADSM server, it must have a
password for the server. The executable file dsmapipw is installed in the
\sqllib\adsm directory of the instance owner. This executable allows you to
establish and reset the ADSM password.

To execute the dsmapipw command, you must be logged in as the local
administrator. When this command is executed, you will be prompted for the
following information:
¹ old password, which is the current password for the ADSM node, as

recognized by the ADSM server. The first time you execute this command, this
password will be the one provided by the ADSM administrator at the time your
node was registered on the ADSM server.

336 Administration Guide

¹ new password, which is the new password for the node that will be stored at
the ADSM server. (Note that you will be prompted twice for the new password,
to check for input errors.)

Note: The user executing the BACKUP or RESTORE commands does not need
to know this password. The only times you need to run this command are
to establish a password for the initial connection and if the password has
been reset on the ADSM server.

5. If the database manager is running, you should:
¹ Stop the database manager using the db2stop command.
¹ Start the database manager using the db2start command.

Considerations for Using ADSTAR Distributed Storage Manager
To use specific features within ADSM, you may be required to give the fully-qualified
path name of the object using the feature. (Remember that on Intel platforms the \ will
be used instead of /.) The fully-qualified path name of:

¹ A full database backup object is:
/<database>/NODEnnnn/FULL_BACKUP.timestamp.seq_no

¹ A table space backup object is:
/<database>/NODEnnnn/TSP_BACKUP.timestamp.seq_no

¹ A load copy object is: /<database>/NODEnnnn/LOAD_COPY.timestamp.seq_no

where <database> is the database alias name, and NODEnnnn is the node number.

Note: The names shown in upper case must be entered as shown.

¹ In the case where you have multiple backups using the same database alias name,
the timestamp and sequence number become the distinguishing part of the fully
qualified name. You will need to query ADSM in order to determine which backup
version to use.

¹ Individual backups are not known to the ADSM graphical user interface. Backup
images are pooled into file spaces which ADSM manages. Individual backups can
only be manipulated through the ADSM APIs, or through db2adutl which uses
these APIs.

¹ The ADSM server will time-out a session if the ADSM client does not respond for
the period of time specified by the COMMTIMEOUT parameter in the server's
configuration file. Three factors may contribute to the occurrence of this timeout
problem:

– The COMMTIMEOUT parameter is set too low at the ADSM server. For example,
during a restore, if large DMS table spaces are being created, a timeout may
occur.

The recommended value for this parameter is 6 000 seconds.
– The database manager backup (or restore) buffer is too large.
– The database activity is too high during an online backup.

¹ The database manager uses the full backup option of ADSM; ADSM incremental
backups are not supported

¹ Use multiple sessions to increase throughput.
| ¹ On non-UNIX-based platforms, the backup and restore utilities do not allow more
| than one (1) ADSM session.

 Chapter 7. Recovering a Database 337

Managing Backups and Log Archives on ADSM
The db2adutl utility allows you to query, extract, and delete backups, logs, and load
copy images saved using ADSM. The utility is installed in the INSTHOME/sqllib/misc
directory on UNIX platforms and in the \sqllib\misc directory on Intel platforms.

| All of the options available through the db2adutl utility are shown:

db2adutl

TABLBESPACE
FULL
LOADCOPY

TABLESPACE
FULL
LOADCOPY

TABLESPACE
FULL
LOADCOPY

SHOW INACTIVE

SHOW INACTIVE

KEEP n

OLDER

TAKEN AT

THAN n days

TAKEN AT timestamp

timestamp

timestamp

LOGS

LOGS

LOGS

EXTRACT

DELETE

VERIFY

DATABASE PASSWORD

DB

NODE

NODE NAME WITHOUT PROMPTING

database passwordnode number

node

name

name

QUERY

BETWEEN sn1 AND sn2

BETWEEN sn1 AND sn2

BETWEEN sn1 AND sn2

TABLESPACE
FULL

SHOW INACTIVE TAKEN AT timestamp

| Figure 35. Syntax for db2adutl

| Where:

338 Administration Guide

| QUERY Queries the ADSM server for DB2 objects.

| EXTRACT Copies DB2 objects from the ADSM server to the local machine and
| directory.

| DELETE Either deactivates backup objects or deletes log archives on the ADSM
| server.

| VERIFY Performs consistency checking on the backup copy that is on the server.
| (Note that this parameter causes the entire backup image to be transferred
| over the network.)

| TABLESPACE Includes only table space backup images.

| FULL Includes only full database backup images.

| LOADCOPY Includes only load copy images.

| LOGS Includes only log archive images.

| BETWEEN sn1 AND sn2 Specifies to use the logs between log sequence number 1
| and log sequence number 2.

| SHOW INACTIVE Includes backup objects that have been deactivated.

| TAKEN AT timestamp Specifies a backup image by its timestamp.

| KEEP n Deactivates all objects of the specified type except for the most recent n by
| timestamp.

| OLDER THAN timestamp or n_days Specifies that objects with a timestamp earlier
| than timestamp or n days will be deactivated.

| DATABASE database_name Specifies to work with objects associated with
| database_name only.

| NODE node_number Specifies to work with objects created by node node_number
| only.

| PASSWORD password Specifies the ADSM client password for this node (if required).
| If a specific database is specified and the password is not provided, the
| value specified for the adsm_password database configuration parameter is
| passed to ADSM; otherwise, no password is used.

| NODENAME node_name Specifies to work with images associated with a specific
| ADSM node name only.

| WITHOUT PROMPTING You are not prompted for verification before objects are
| deleted.

You can choose which database you wish to work with when you use each command
through the use of the DATABASE parameter. For the EXTRACT and DELETE
commands, you can request not to see the prompts to confirm your choices through
use of the WITHOUT PROMPTING parameter.

 The QUERY command of this utility allows you to list backups. logs, and load copy
images. The backups can be full database, table spaces, or both. When using this
command, the default is to list both types of backups, any load copy images, and any

 Chapter 7. Recovering a Database 339

logs. You can select a range of logs to be listed instead of seeing all of the logs. You
can also request to see the inactive backups.

The EXTRACT command of this utility allows you to copy from ADSM to your current
directory backups, logs, or both at the ADSM server. The backups can be full database,
table spaces, or both. When using this command, the default without qualifiers is to list
the active backups and each log. You can then select which backups and/or logs to
extract. You can also select a range of logs to be listed instead of seeing all of the logs.
You can also request to see the inactive backups. A specific backup for extraction can
be selected by using the TAKEN AT <timestamp> parameter.

The DELETE command of this utility allows you to delete logs or deactivate backups
from ADSM. When using this command, the default without qualifiers is to list the active
backups and each log. You can then select which backups and/or logs to
delete/deactivate. You can qualify the command with KEEP n to keep the most recent n
backups. You can also qualify the command with OLDER [THAN] <timestamp> or n DAYS.
This will delete backups older than the given date (timestamp) or older than the days
specified. You can also select a range of logs to be listed instead of seeing all of the
logs. A specific backup for deletion can be selected by using the TAKEN AT <timestamp>
parameter.

For DB2, we recommend that the ADSM default policy be used. With the changes to
the backup naming conventions, each backup is now unique. In order to delete old
backups, the policy must be set up so that no active copies are kept.

For examples of using this utility, see “Examples of Using db2adutl.”

Examples of Using db2adutl:
db2 backup database rawsampl use adsm

Backup successful. The timestamp for this backup is : 19970929130942

db2adutl query

Query for database RAWSAMPL

Retrieving full database backup information.

full database backup image: 1, Time: 19970929130942, Oldest log: S0000053.LOG, Sessions used: 1

full database backup image: 2, Time: 19970929142241, Oldest log: S0000054.LOG, Sessions used: 1

Retrieving tablespace backup information.

tablespace backup image: 1, Time: 19970929094003, Oldest log: S0000051.LOG, Sessions used: 1

tablespace backup image: 2, Time: 19970929093043, Oldest log: S0000050.LOG, Sessions used: 1

tablespace backup image: 3, Time: 19970929105905, Oldest log: S0000052.LOG, Sessions used: 1

Retrieving log archive information.

Log file: S0000050.LOG

Log file: S0000051.LOG

Log file: S0000052.LOG

Log file: S0000053.LOG

Log file: S0000054.LOG

Log file: S0000055.LOG

340 Administration Guide

db2adutl delete full taken at 19950929130942 db rawsampl

Query for database RAWSAMPL

Retrieving full database backup information. Please wait.

full database backup image: RAWSAMPL.0.db26000.0.19970929130942.001

Do you want to deactivate this backup image (Y/N)? y

Are you sure (Y/N)? y

db2adutl query

Query for database RAWSAMPL

Retrieving full database backup information.

full database backup image: 2, Time: 19950929142241, Oldest log: S0000054.LOG, Sessions used: 1

Retrieving tablespace backup information.

tablespace backup image: 1, Time: 19950929094003, Oldest log: S0000051.LOG, Sessions used: 1

tablespace backup image: 2, Time: 19950929093043, Oldest log: S0000050.LOG, Sessions used: 1

tablespace backup image: 3, Time: 19950929105905, Oldest log: S0000052.LOG, Sessions used: 1

Retrieving log archive information.

Log file: S0000050.LOG

Log file: S0000051.LOG

Log file: S0000052.LOG

Log file: S0000053.LOG

Log file: S0000054.LOG

Log file: S0000055.LOG

 Chapter 7. Recovering a Database 341

342 Administration Guide

Part 2. Distributed Transaction Processing

 Copyright IBM Corp. 1993, 1998 343

344 Administration Guide

 Chapter 8. Distributed Databases

In the DB2 database manager, a transaction is commonly referred to as a unit of work.
A unit of work is a recoverable sequence of operations within an application process,
and is the basic building block used by the database manager to ensure that a
database is in a consistent state. Any reading or writing to the database is done within
a unit of work. A point of consistency (or commit point) is a time when all recoverable
data that an application accesses is consistent with related data.

For example, a bank transaction might involve the transfer of funds from a savings
account to a checking account. After the application subtracts the amount from the
savings account, the two accounts are inconsistent; they are not consistent again until
the amount is added to the checking account. When both steps are completed, the
point of consistency is reached, and the changes can be committed and are made
available to other applications.

| A unit of work starts when the first SQL statement is issued against the database. The
| application must end the unit of work by issuing either a COMMIT or a ROLLBACK
| statement. The COMMIT statement makes permanent all changes made within a unit of
| work, whereas the ROLLBACK statement removes these changes from the database. If
| the application ends normally without either of these statements, the unit of work is
| automatically committed. If it ends abnormally while in the middle of a unit of work, the
| unit of work is automatically rolled back. Once issued, a COMMIT or ROLLBACK
| cannot be stopped. With some multi-threaded applications, if the application ends
| normally without either of these statements, the unit of work is automatically rolled
| back. Similarly on some operating systems (such as Windows platforms), if the
| application ends normally without either of these statements, the unit of work is
| automatically rolled back. The recommendation when writing your applications is to
| always explicitly COMMIT or ROLLBACK your completed unit of work.

In the above banking example, only if both requests are processed successfully, should
the application direct the database manager to commit the changes. If either request is
not processed successfully, the updates should be rolled back, leaving both tables as
they were before the transaction began. This ensures that requests are neither lost nor
duplicated.

The following topics provide additional information:

¹ “Using a Single Database in a Transaction” on page 346
¹ “Using Multiple Databases in a Single Transaction” on page 347

– “Updating a Single Database” on page 347
– “Updating Multiple Databases” on page 348

¹ “Other Configuration Considerations in Any Environment” on page 353
¹ “Understanding the Two-Phase Commit Process” on page 355
¹ “Recovering from Problems During Two-Phase Commit” on page 358

– “Manual Recovery of Indoubt Transactions” on page 359
– “Resynchronizing Indoubt Transactions if AUTORESTART=OFF” on page 361

¹ “Recovery of Indoubt Transactions on the Host” on page 361.

 Copyright IBM Corp. 1993, 1998 345

For information on creating applications using distributed databases, see the Embedded
SQL Programming Guide and the CLI Guide and Reference manuals.

Using a Single Database in a Transaction
The simplest form of database usage is to read and write to only one database within a
single transaction (unit of work). This type of database access is called remote unit of
work.

Update

Update

Read

Database Client

Savings
Account

Checking
Account

Transaction
Fee

Figure 36. Using a Single Database in a Transaction

Figure 36 shows an example of a database client running a funds transfer application
that accesses a database containing checking and savings account tables, as well as a
banking fee schedule. The application performing the transfer includes the following
steps:

1. Accept the amount to transfer from the user interface
2. Subtract the amount from the savings account and determine the new balance
3. Read the fee schedule to determine the transaction fee for a savings account with

the given balance
4. Subtract the transaction fee from the savings account
5. Add the amount of the transfer to the checking account
6. Commit the transaction (unit of work).

To set up this funds transfer application, you must:

1. Create the tables for the savings account, checking account and banking fee
schedule in the same database (Chapter 3, “Implementing Your Design” on
page 61)

2. (If physically remote...) Set up the database server to use the appropriate
communications protocol, as described in the Quick Beginnings manuals

3. (If physically remote...) Catalog the node and database to identify the database on
the above database server, as described in the Quick Beginnings manuals

4. Pre-compile your application program to specify a type 1 connection, that is,
specify CONNECT(1) on the PREP command, as described in the Embedded SQL
Programming Guide manual.

346 Administration Guide

Using Multiple Databases in a Single Transaction
When using multiple databases in a single transaction, the requirements for setting up
and administering your environment are different, depending on the number of
databases that are being updated in the transaction. For more information, see:

¹ “Updating a Single Database”
¹ “Updating Multiple Databases” on page 348.

Updating a Single Database
If your data is distributed across multiple databases, you may wish to update one
database while reading from one or more other databases. This type of access can be
performed within a single unit of work (transaction). This type of database access is
called multisite update or two-phase commit. See “Updating Multiple Databases” on
page 348 for another example of a multisite update.

Savings
Account

Update

Database Client

Read

Checking
Account

Transaction
Fee

Update

Figure 37. Using Multiple Databases in a Single Transaction

Figure 37 shows an example of a database client running a funds transfer application
that accesses two database servers: one containing the checking and savings accounts
and another containing the banking fee schedule. This example is similar to the
example provided in “Using a Single Database in a Transaction” on page 346, except
for the number of databases and the location of the tables. As discussed previously, the
application performing the transfer includes the following steps:

1. Accept the amount to transfer from the user interface

2. Subtract the amount from the savings account and determine the new balance

3. Read the fee schedule to determine the transaction fee for a savings account with
the given balance

 Chapter 8. Distributed Databases 347

4. Subtract the transaction fee from the savings account

5. Add the amount of the transfer to the checking account

6. Commit the transaction (unit of work).

To set up the above environment, you must:

1. Create the necessary tables in the appropriate databases (Chapter 3,
“Implementing Your Design” on page 61)

2. (If physically remote...) Set up the database servers to use the appropriate
communications protocols, as described in the Quick Beginnings manuals

3. (If physically remote...) Catalog the nodes and databases to identify the databases
on the above database servers, as described in the Quick Beginnings manuals

4. Pre-compile your application program, as described in the Embedded SQL
Programming Guide to specify:

a. A type 2 connection, that is, specify CONNECT(2) on the PREP command
b. One-phase commit, that is SYNCPOINT(ONEPHASE) on the PREP command.

Performance Tip: You should note that, unlike the scenario described in “Updating
Multiple Databases,” updating a single database while reading multiple databases only
requires a one-phase commit (SYNCPOINT(ONEPHASE) on PREP command). Using a
one-phase commit process requires less overhead than a two-phase commit process.
Therefore, performance is better when using SYNCPOINT(ONEPHASE) rather than
SYNCPOINT(TWOPHASE) for applications that only update a single database within a
unit of work.

Host and AS/400 Server Additional Information:

¹ If the databases containing the tables used in the above example are located on
DB2 for MVS/ESA, OS/390, OS/400, VM or VSE host systems, then the DB2
Connect product is needed. See the DB2 Connect User's Guide for additional
information on how to set up and use DB2 Connect.

| ¹ See the DRDA Connectivity Guide for more information on connectivity issues.

Updating Multiple Databases
If your data is distributed across multiple databases, you may also wish to read and
update several databases in a single transaction. This type of database access is called
a multisite update. This type of environment is more complex than that described in
“Updating a Single Database” on page 347. As a result, additional topics will be
introduced below.

348 Administration Guide

Savings
Account

Update

Database Client

Read

Checking
Account

Transaction
Fee

Update

Figure 38. Updating Multiple Databases

Figure 38 shows an example similar to Figure 37 on page 347, except the checking
and savings accounts are located in different databases. The application performing the
transfer includes the same steps as described in “Updating a Single Database” on
page 347.

1. Accept the amount to transfer from the user interface

2. Subtract the amount from the savings account and determine the new balance

3. Read the fee schedule to determine the transaction fee for a savings account with
the given balance

4. Subtract the transaction fee from the savings account

5. Add the amount of the transfer to the checking account

6. Commit the transaction (unit of work).

To set up the above environment, you must:

1. Create the necessary tables in the appropriate databases (Chapter 3,
“Implementing Your Design” on page 61)

2. (If physically remote...) Set up the database servers to use the appropriate
communications protocols, as described in the Quick Beginnings manuals

 Chapter 8. Distributed Databases 349

3. (If physically remote...) Catalog the nodes and databases to identify the databases
on the above database servers, as described in the Quick Beginnings manuals

4. Pre-compile your application program, as described in the Embedded SQL
Programming Guide to specify:

a. A type 2 connection, that is, specify CONNECT(2) on the PREP command
b. Two-phase commit, that is SYNCPOINT(TWOPHASE) on the PREP

command.

5. Configure the DB2 transaction manager (TM), as described in “Using the DB2
Transaction Manager.” This section also provides information about how the
two-phase commit process works.

Using the DB2 Transaction Manager
The database manager provides transaction manager functions that can be used to
coordinate the updating of several databases within a single unit of work. The
database client automatically coordinates the unit of work and uses a transaction
manager database to register each transaction (unit of work) and to track the
completion status of that transaction.

| If you are using an XA-compliant transaction manager such as IBM TXSeries, BEA
| Tuxedo, or Microsoft Transaction Series, please refer to Chapter 9, “Using DB2 with an
| XA-Compliant Transaction Manager” on page 365 for integration instructions.

| When using DB2 UDB to coordinate your transactions you need to meet certain
| configuration requirements. If you use TCP/IP exclusively for communications and DB2
| UDB and DB2 for OS/390 are the only database server involved in your transactions
| then configuration is simplified over environments that do not meet these criteria.

| DB2 UDB and DB2 for OS/390 Using TCP/IP Connectivity: If all the following are
| true in your environment:

| ¹ All communications with remote database servers uses TCP/IP exclusively
| ¹ DB2 Universal Database or DB2 for OS/390 are the only database servers involved
| in the transaction
| ¹ DB2 for OS/390 access is not via the DB2 Syncpoint Manager.

| The DB2 Syncpoint Manager is required when:
| – SNA connectivity is used with host or AS/400 database servers for multi-site
| updates.
| – An XA-compliant transaction manager (such as IBM TXSeries CICS) is
| coordinating the two-phase commit.

| This applies to both SNA and TCP/IP connectivity with host or AS/400
| database servers. For detailed information, see Chapter 9, “Using DB2 with an
| XA-Compliant Transaction Manager” on page 365.

| then the configuration steps for multisite update are simplified. There is no need to
| catalog the Transaction Manager Database at each remote database server. Nor is
| there a need to catalog each remote database server at the Transaction Manager
| database instance. This information is exchanged between the DB2 client, the

350 Administration Guide

| designated transaction manager database instance , and the DB2 UDB and/or DB2 for
| OS/390 database servers automatically without manual database configuration.

| The database that will be used as the transaction manager database is determined at
| the database client by the database manager configuration parameter tm_database
| (see “Transaction Manager Database Name (tm_database)” on page 673). Consider
| the following factors when setting this configuration parameter:

| ¹ The transaction manager database can be:

| – A DB2 UDB database
| – A DB2 for OS/390 Version 5 or later database.

| This is the recommended database server to use as the transaction manager
| database. OS/390 systems are, generally, more secure than workstation
| servers. This reduces the possibility of accidental power downs, reboots, and
| so on. Therefore the recovery logs, used in the event of resynchronization,
| are more secure.

| ¹ If the keyword 1ST_CONN is defined for the tm_database parameter, the first
| database to which the application connects in the transaction will be used as the
| transaction manager database.

| Care must be taken when using 1ST_CONN. You should only use this configuration if
| it is easy to ensure that all involved databases are cataloged correctly, for
| example, in the following situations:

| – The database client initiating the transaction is in the same instance that
| contains the participating databases, including the transaction manager
| database.
| – You are using DCE directory services to catalog and manage access to your
| databases.

| Note that if your application attempts to disconnect from the database being used
| as the transaction manager database, you will receive a warning message and the
| connection will be held until the unit of work is committed.

| Other Environments: If your transactions involve any of the following situations:

| ¹ TCP/IP is not used exclusively for communications with remote database servers
| (for example, NETBIOS is used).
| ¹ DB2 Common Server V2 database server is accessed.
| ¹ DB2 for MVS V3 or V4, DB2 for AS/400, or DB2 for VM&VSE is acccessed.
| ¹ DB2 for OS/390 is accessed using SNA.
| ¹ The DB2 Syncpoint Manager is used to access host or AS/400 database servers.

| then the configuration steps for multisite update are more involved than the preceding
| discussion.

| The database that will be used as the transaction manager database is determined at
| the database client by the database manager configuration parameter tm_database
| (see “Transaction Manager Database Name (tm_database)” on page 673). Consider
| the following factors when setting this configuration parameter:

 Chapter 8. Distributed Databases 351

| ¹ The transaction manager database can be:

| – A DB2 Universal Database database

| This is the recommended database.
| – A DB2 common server V2 database.

| ¹ Catalog databases and nodes to allow the following:

| – All database manager instances participating in a distributed transaction must
| be able to connect to the transaction manager database that was specified by
| the client's tm_database configuration parameter. An instance participates in a
| distributed transaction if the transaction connects to one or more databases
| contained in that instance. If, for example, the tm_database parameter is set to
| DB2TRMGR at the database client, you should be able to issue the following
| command from each participating instance:

| CONNECT TO DB2TRMGR

| The result of this command should connect you to the same database, on the
| same node from every participating instance, as well as the database client.

| – The database manager instance containing the transaction manager database
| must be able to connect to all other databases participating in the distributed
| transaction. If, for example, the client connects to the SAVINGS_DB,
| CHECKING_DB and FEE_DB, the instance containing the transaction
| manager database must also be able to connect to those databases using the
| same names or aliases that the database client uses.

| Note: The transaction manager database must not be cataloged using the
| alias option to specify an alternative name.

| ¹ If the keyword 1ST_CONN is defined for the tm_database parameter, the first
| database to which the application connects in the transaction will be used as the
| transaction manager database. In this situation, all databases used in any
| transaction initiated from the database client must be able to connect to one
| another using the same database aliases as are used at the database client. This
| effectively means that each database within a network must have a unique alias
| across the network.

| Care must be taken when using 1ST_CONN. You should only use this configuration if
| it is easy to ensure that all involved databases are cataloged correctly, for
| example, in the following situations:

| – The database client initiating the transaction is in the same instance that
| contains the participating databases, including the transaction manager
| database
| – You are using DCE directory services to catalog and manage access to your
| databases.

| Note that if your application attempts to disconnect from the database being used
| as the transaction manager database, you will receive a warning message and the
| connection will be held until the unit of work is committed.

352 Administration Guide

| The above rules regarding cataloging of aliases affect your ability to recover from
| problems (see “Recovering from Problems During Two-Phase Commit” on page 358).

Other Configuration Considerations in Any Environment
You should consider the values of the following configuration parameters when you are
setting up your environment. For additional information about setting these parameters,
also refer to the DB2 Connect User's Guide.

Client
(CAE and application)

DB2 Connect

OS/390 mainframe

DB2 Server

Figure 39. Configuration Considerations

¹ The following are database manager configuration parameters:
– “Transaction Manager Database Name (tm_database)” on page 673

The tm_database database manager configuration parameter identifies the
name of the Transaction Manager (TM) database for each DB2 instance.

| – “Sync Point Manager Name (spm_name)” on page 675

| The spm_name database manager configuration parameter identifies the name
| of the DB2 Syncpoint Manager (SPM) instance to the database manager. It is
| defined in the system database directory and, if remote, in the node directory.

| For resynchronization to be successful, the name must be unique across your
| network.
| – “Transaction Resync Interval (resync_interval)” on page 674

| The resync_interval database manager configuration parameter identifies the
| time interval in seconds for which the DB2 Transaction Manager (TM)
| database manager, DB2 server database manger, and the DB2 Syncpoint
| Manager (SPM) should retry the recovery of any outstanding indoubt
| transactions.

 Chapter 8. Distributed Databases 353

| – “Sync Point Manager Log File Size (spm_log_file_sz)” on page 675

| The spm_log_file_sz database manager configuration parameter identifies the
| SPM log file size in 4K pages.

– “Sync Point Manager Resync Agent Limit (spm_max_resync)” on page 676

The spm_max_resync database manager configuration parameter identifies
the number of agents that can simultaneously perform resync operations.

| – “Sync Point Manager Log File Path (spm_log_path)” on page 674

| The spm_log_path database manager configuration parameter identifies the
| log path for the SPM log files.

¹ The following are database configuration parameters:
– “Maximum Number of Active Applications (maxappls)” on page 648

The maxappls database configuration parameter specifies the maximum
number of active applications allowed.

| The value of this parameter must be equal to or greater than the sum of the
| connected applications plus the number of these same applications which may
| be concurrently in the process of completing a two-phase commit or rollback.
| This sum should then have added to it the anticipated number of indoubt
| transactions which might exist at any one time. See “Recovering from
| Problems During Two-Phase Commit” on page 358 for more information on
| indoubt transactions.

As a result, if you have an environment like the one just described, you may
need to increase the value of the maxappls parameter. Increasing the value
helps ensure that all processes can be accommodated.

– “Auto Restart Enable (autorestart)” on page 669

This database configuration parameter specifies whether the RESTART
DATABASE routine will be invoked automatically when needed. The default is
yes (that is, enabled).

A database containing indoubt transactions will require the RESTART
DATABASE command/routine to be invoked in order to start up. If the
autorestart option is not enabled, when the last connection to the database is
dropped, the next connection will fail and require an explicit RESTART
DATABASE again. This condition will exist until the indoubt transaction has
been removed either by the transaction manager's resync operation, or
through a heuristic operation performed by the administrator. When the
RESTART DATABASE is issued, a message will be displayed if there are any
indoubt transactions in the database. The administrator can then use the LIST
INDOUBT TRANSACTION command and other command line processor
commands to find out information about those indoubt transactions.

| Note: Before installing either a fixpack for, or a new version of DB2, you should
| ensure that no indoubt transactions exist with any host or AS/400 server. Use
| the LIST DRDA INDOUBT TRANSACTION command to determine if any
| indoubt transactions exist.

354 Administration Guide

Understanding the Two-Phase Commit Process
The following example illustrates the steps of the example transaction (described in
“Updating Multiple Databases” on page 348) and the participants in the transaction. If
an error occurs during the two-phase commit process, understanding how a transaction
is managed will help you to resolve the problem.

 Chapter 8. Distributed Databases 355

Savings
AccountClient

Connect

Select

Checking
Account

Transaction
Fee

Transaction
Manager

Connect 1

3

2

5

6

4

7

8

9

10

11

12

13

Update

Update
Connect

Connect

Commit

Update

Figure 40. Updating Multiple Databases

356 Administration Guide

| .0/ The application is prepared for two-phase commit. This can be accomplished
| through precompilation options (refer to the Embedded SQL Programming Guide
| for details). This can also be accomplished through the DB2 CLI configuration
| (refer to the CLI Guide and Reference for details).

| .1/ When the database client wants to connect to SAVINGS_DB, it first internally
| connects to the Transaction Manager (TM) database. The TM database returns an
| acknowledgment to the database client.

.2/ The connection to the SAVINGS_DB takes place and is acknowledged.

.3/ The database client begins the update to the SAVINGS_ACCOUNT table. This
begins the unit of work. The TM database responds to the database client
providing a transaction ID for the unit of work. Note that the registration of a unit of
work occurs when the first SQL statement in the unit of work is run, not
necessarily during connect time.

.4/ After receiving the transaction ID, the database client registers the unit of work
with the database containing the SAVINGS_ACCOUNT table. A response is sent
back to the client to indicate that the unit of work has been registered successfully.

.5/ SQL statements issued against the SAVINGS_DB are handled in the normal
manner. The response to each statement is returned in the SQLCA when working
with SQL statements embedded in a program. (The SQLCA is described in the
Embedded SQL Programming Guide and the SQL Reference.)

.6/ The transaction ID is registered at the FEE_DB database containing the
TRANSACTION_FEE table, during the first access to that database within the unit
of work.

.7/ Any SQL statements against the FEE_DB database are handled in the normal
fashion.

.8/ Additional SQL statements can be executed against the SAVINGS_DB by setting
the connection as appropriate. Since the unit of work has already been registered
with the SAVINGS_DB .4/, the database client does not need to perform the
registration step again.

.9/ Connecting to and using the CHECKING_DB follows the same rules as described
by .6/ and .7/.

.10/ When the database client requests that the unit of work be committed, a prepare
message is sent to all databases participating in the unit of work. Each database
writes a “PREPARED” record to their log files and replies to the database client.

.11/ After the database client receives a positive response from all of the databases, it
sends a message to the transaction manager database to inform it that the unit of
work is now ready to be committed (PREPARED). The transaction manager
database writes a “PREPARED” record to its log file and sends a reply to inform
the client that the second phase of the commit process can be started.

.12/ During the second phase of the commit process, the database client sends a
message to all participating databases to tell them to commit. Each database
writes a “COMMITTED” record to its log file and releases the locks that were held

 Chapter 8. Distributed Databases 357

for this unit of work. When the database has completed committing the changes, it
sends a reply to client.

.13/ After the database client receives a positive response from all participating
databases, it sends a request to the transaction manager database to inform it that
the unit of work has been completed. The transaction manager database then:

¹ Writes a “COMMITTED” record to its log file, to indicate that the unit of work is
complete

¹ Replies to the client to indicate it has finished.

Recovering from Problems During Two-Phase Commit
 Recovering from error situations is a normal task associated with application
programming, system administration, database administration and system operation.
Distributing databases over several remote servers increases the potential for error
situations resulting from network or communication failures. To ensure data integrity,
the database manager provides the two-phase commit process which is illustrated in
“Understanding the Two-Phase Commit Process” on page 355 as points .10/, .11/ and
.12/. The following explain how the database manager handles errors during this
two-phase commit process:

¹ First Phase Error

If a database responds that it failed to prepare to commit the unit of work, the
database client will roll back the unit of work during the second phase of the
commit process. A prepare message will not be sent to the transaction manager
database in this case.

During the second phase, the client sends a rollback message to all participating
databases that successfully prepared to commit in the first phase. Each database
then writes an “ABORT” record to their log file and releases the locks held for this
unit of work.

¹ Second Phase Error

Error handling at this stage is dependent on whether the second phase will commit
or roll back the transaction. The second phase will only roll back the transaction if
the first phase encountered an error.

If one of the participating databases fails to commit the unit of work (possibly due
to a communications failure), the transaction manager database will retry the
commit on the failed database. The database manager configuration parameter
resync_interval (“Transaction Resync Interval (resync_interval)” on page 674) is
used to determine how long the transaction manager database will wait between
attempts to commit the unit of work.

If the transaction manager database fails, it will resynchronize the unit of work
when it is restarted. The resynchronization process will attempt to complete all
indoubt transactions, that is, those transactions that have finished the first phase
and have not completed the second phase of the commit. The database manager
where the transaction manager database resides will perform the resynchronization
by:

358 Administration Guide

1. Connecting to the databases that replied that they were “PREPARED” to
commit during the first phase of the commit process.

2. Attempting to commit the indoubt transaction at that database. (If the indoubt
transaction cannot be found, the database manager assumes that the
database successfully committed the transaction during the second phase of
the commit process.)

3. Committing the indoubt transaction in the transaction manager database, after
all indoubt transactions have been committed in the participating databases.

| If one of the participating databases fails and is restarted, the database manager
| for this database will query the status of the transaction manager database for the
| status of this transaction to determine whether the transaction should be rolled
| back. If the transaction is not found in the log, the database manager assumes the
| transaction was rolled back and will roll back the indoubt transaction for this
| database. Otherwise, the database will wait for a commit request from the
| transaction manager database.

| If the transaction was coordinated by a Transaction Processing Monitor
| (XA-compliant transaction manager), then the database will always depend on the
| Transaction Processing Monitor to initiate the resynchronization.

Manual Recovery of Indoubt Transactions
If, for some reason, you cannot wait for the transaction manager to automatically
resolve the indoubt transaction, there are some actions you can take to manually
resolve the states of indoubt transactions. This manual process is sometimes referred
to as “making a heuristic decision.”

The LIST INDOUBT TRANSACTIONS command (and a related set of APIs) allows you
to query, commit, and roll back indoubt transactions. In addition, it also allows you to
“forget” transactions that have been heuristically committed or rolled back by removing
the log records and releasing the log space. For information about the command and
APIs, see the Command Reference and the API Reference manuals.

You should use this command (or APIs) with extreme caution and as a last resort. The
best solution is to wait for the transaction manager to drive the resynchronization
process. You could experience data integrity problems if you manually commit or roll
back a transaction in one of the participating databases, and the opposite action is
taken for another of the databases. Recovering from data integrity problems requires
you to understand the application logic, the data changed or rolled back, and then to
perform a point-in-time recovery of the database, or manually undo/redo the database
changes.

If you cannot wait for the transaction manager to initiate the resynchronization process
and you must release the resources tied up by an indoubt transaction, then heuristic
operations are necessary. This situation could occur if the transaction manager will not
be available for an extended period of time to do the resync, and the indoubt
transaction is tying up resources that are urgently needed. An indoubt transaction ties
up the resources that were associated with this transaction before the transaction
manager or participating database became unavailable. These resources include things

 Chapter 8. Distributed Databases 359

such as the locks on tables and indexes, log space, and storage taken up by the
transaction. Each indoubt transaction also decreases (by one) the maximum number of
concurrent transactions that can be handled by the database.

 There are no foolproof ways to perform heuristic operations. You can use the following
steps as a guideline:

1. Connect to the database for which you require all transactions to be complete.
2. Use the LIST INDOUBT TRANSACTIONS command to display the indoubt

transactions. The xid represents the global transaction ID and is identical in other
databases participating in this transaction, including the transaction manager
database.

3. For each indoubt transaction, use your knowledge about the application and the
tm_database configuration parameter to determine the transaction manager
database as well as the other participating databases.

4. Connect to the transaction manager database.
¹ If you were able to connect to this database, use the LIST INDOUBT

TRANSACTIONS command to display the indoubt transactions recorded in the
transaction manager database.

| – If there is an indoubt transaction with the same xid as recorded in step 2
| and with type TM, you can connect to each database participating in the
| transaction, and heuristically commit the transaction using the LIST
| INDOUBT TRANSACTIONS WITH PROMPTING command.
| – If there is not an indoubt transaction with the same xid as recorded in
| step 2 and with type TM, you can connect to the each database
| participating in the transaction, and heuristically roll back the transaction
| using the LIST INDOUBT TRANSACTIONS WITH PROMPTING
| command.

¹ If you cannot connect to the transaction manager database, you will have to
use the status of the transaction in the other participating databases to
determine what action you should take.

– If at least one of the other databases has committed the transaction, then
you should heuristically commit the transaction in all the participating
databases (using the LIST INDOUBT TRANSACTIONS WITH
PROMPTING command).

– If at least one of the other databases has rolled back the transaction, then
you should heuristically roll back the transaction in all the participating
databases (using the LIST INDOUBT TRANSACTIONS WITH
PROMPTING command).

– If the transaction is in “PREPARED” (indoubt) state in all of the
participating databases, then you should heuristically roll back the
transaction in all the participating databases (using the LIST INDOUBT
TRANSACTIONS WITH PROMPTING command).

– If you are unable to connect to one or more of the other participating
databases, then you should heuristically roll back the transaction in all the
participating databases (using the LIST INDOUBT TRANSACTIONS WITH
PROMPTING command).

Note: The LIST INDOUBT TRANSACTIONS command includes “type” information to
show you the role of the database in each indoubt transaction:

360 Administration Guide

TM Indicates the indoubt transaction is using the database as a transaction
manager database.

RM Indicates the indoubt transaction is using the database as a resource
manager, meaning that it is one of the databases participating in the
transaction, but is not the transaction manager database.

Resynchronizing Indoubt Transactions if AUTORESTART=OFF
For configuration considerations in the DB2 Universal Database two-phase commit
environment, refer to “Other Configuration Considerations in Any Environment” on
page 353.

In particular, if the autorestart database configuration parameter is OFF and there are
indoubt transactions in either the TM or RM databases, the RESTART DATABASE
command is required in order to start up the resynchronization process. If issuing the
RESTART DATABASE command from the command line processor, use different
sessions. If you restart a different database from the same session, the connection
established by the previous restart database command will be dropped. The database
will need to be restarted again if the last connection to it is dropped. Issue DB2
TERMINATE to drop the connection after there are no indoubt transactions listed by the
DB2 LIST INDOUBT TRANSACTIONS command.

Recovery of Indoubt Transactions on the Host
| If your application has accessed a host or AS/400 database server within a transaction,
| there are some differences in how indoubt transactions are recovered.

| To access host or AS/400 database servers, DB2 Connect is used. The recovery steps
| differ if DB2 Connect has the DB2 Syncpoint Manager configured.

Recovery when DB2 Connect Has the DB2 Syncpoint Manager Configured
The recovery of indoubt transactions at host or AS/400 servers is normally performed
automatically by the Transaction Manager (TM) and the DB2 Syncpoint Manager
(SPM). An indoubt transaction at a host or AS/400 server does not hold any resources
at the local DB2 location, but does hold resources at the host or AS/400 server as long
as the transaction is indoubt at that location. If the administrator of the host or AS/400
server determines that a heuristic decision must be made, then the administrator may
contact the local DB2 database administrator (for example via telephone) to determine
whether to commit or roll back the transaction at the host or AS/400 server. If this
occurs, the LIST DRDA INDOUBT TRANSACTIONS command can be used to
determine the state of the transaction at the DB2 Connect instance. The following steps
can be used as a guideline for most situations involving an SNA communications
environment.

1. Connect to the SPM as shown below.

 Chapter 8. Distributed Databases 361

db2 => connect to db2spm

 Database Connection Information

 Database product = SPM0500

 SQL authorization ID = CRUS

 Local database alias = DB2SPM

| 2. Issue the LIST DRDA INDOUBT TRANSACTIONS command to display the indoubt
| transactions known to the SPM. The example below shows one indoubt transaction
| known to the SPM. The db_name is the local alias for the host or AS/400 server.
| The partner_lu is the fully qualified luname of the host or AS/400 server. This
| provides the best identification of the host or AS/400 server, and should be
| provided by the caller from the host or AS/400 server. The luwid provides a unique
| identifier for a transaction and is available at all hosts and AS/400 servers. If the
| transaction in question is displayed, then the uow_status field can be used to
| determine the outcome of the transaction if the value is C (commit) or R (rollback).
| If you issue the LIST DRDA INDOUBT TRANSACTIONS command with the WITH
| PROMPTING parameter, you can commit, roll back, or forget the transaction
| interactively. For more information, refer to the Command Reference.

| db2 => list drda indoubt transactions
| DRDA Indoubt Transactions:

| 1.db_name: DBAS3 db_alias: DBAS3 role: AR

| uow_status: C partner_status: I partner_lu: USIBMSY.SY12DQA

| corr_tok: USIBMST.STB3327L

| luwid: USIBMST.STB3327.305DFDA5DC00.0001

| xid: 53514C2000000017 00000000544D4442 0000000000305DFD A63055E962000000

| 00035F

3. If an indoubt transaction for the partner_lu and for the luwid is not displayed, or if
the LIST DRDA INDOUBT TRANSACTIONS command returns as follows:

db2 => list drda indoubt transactions
SQL1251W No data returned for heuristic query.

then the transaction was rolled back.

| There is another unlikely but possible situation that may occur. If an indoubt
| transaction with the proper luwid for the partner_lu is displayed, but the uow_status
| is "I", the SPM doesn't know whether the transaction is to be committed or rolled
| back. In this situation, you should use the WITH PROMPTING parameter to either
| commit or roll back the transaction on the DB2 Connect workstation. Then allow
| DB2 Connect to resynchronize with the host or AS/400 server based on the
| heuristic decision.

Recovery when DB2 Connect Does Not Use the DB2 Syncpoint Manager
Use the information in this section when TCP/IP connectivity is used to update DB2 for
OS/390 in a multisite update from either DB2 Connect Personal Edition or DB2 Connect
Enterprise Edition, and the DB2 Syncpoint Manager is not used. The recovery of
indoubt transactions in this situation differs from that for indoubt transactions involving
the DB2 Syncpoint Manager. When an indoubt transaction occurs in this environment,
an alert entry is generated at the client, at the database server, and (or) at the

362 Administration Guide

Transaction Manager (TM) database, depending on who detected the problem. The
alert entry is placed in the db2alert.log file. For more information on alerts, see the
Troubleshooting Guide manual.

The resynchronization of any indoubt transactions occurs automatically as soon as the
TM and the participating databases and their connections are all available again. You
should allow automatic resynchronization to occur rather than heuristically force a
decision at the database server. If, however, you must do this then use the following
steps as a guideline.

Note: Because the DB2 Syncpoint Manager is not involved, you cannot use the LIST
DRDA INDOUBT TRANSACTIONS command.

1. On the OS/390 host, issue the command DISPLAY THREAD TYPE(INDOUBT).

From this list identify the transaction that you want to heuristically complete. Refer
to the DB2 for OS/390 Command Reference for details of the DISPLAY command.
The LUWID displayed can be matched to the same luwid at the Transaction
Manager Database.

2. Issue the RECOVER THREAD(<LUWID>) ACTION(ABORT]COMMIT) command,
depending on what you want to do.

Refer to the DB2 for OS/390 Command Reference for details of the RECOVER
command.

 Chapter 8. Distributed Databases 363

364 Administration Guide

Chapter 9. Using DB2 with an XA-Compliant Transaction Manager

You may want to use your databases with an XA-compliant transaction manager if you
have resources other than DB2 databases that you want to participate in a two-phase
commit transaction. If your transactions only access DB2 databases, you should use
the DB2 transaction manager as described in “Updating Multiple Databases” on
page 348.

The following topics are provided to assist you in using the database manager with an
XA-compliant transaction manager such as IBM TXSeries CICS, IBM TXSeries Encina,
BEA Tuxedo, or Microsoft Transaction Server:

¹ “Setting Up a Database as a Resource Manager”
¹ “Database Connection Considerations” on page 366
¹ “Making a Heuristic Decision” on page 367
¹ “Security Considerations” on page 369
¹ “Configuration Considerations” on page 370

| ¹ “XA Function Supported” on page 371
| ¹ “XA Interface Problem Determination” on page 374
| ¹ “Configuring IBM TXSeries CICS” on page 375
| ¹ “Configuring IBM TXSeries Encina” on page 375
| ¹ “Configuring BEA Tuxedo” on page 377
| ¹ “Configuring Microsoft Transaction Server” on page 379.

If you are using an XA-compliant transaction manager, or are implementing one, please
search our technical support web site. The URL to the web site is:
http://www.software.ibm.com/data/db2/library/

Once there, choose “DB2 Universal Database.” Then search the web site with keyword
“XA” for the latest available information on XA-compliant transaction managers.

Setting Up a Database as a Resource Manager
Each database is defined as a separate resource manager (RM) to the transaction
manager (TM), and the database must be identified with an XA open string that has the
following syntax:

| "database_alias<,userid<,password>>"

| The database_alias is required to specify the database alias name of the database.
| This alias name is the same as the database name unless you have explicitly cataloged
| an alias name after you created the database. The username and password are
| optional, and, depending on the authentication method, are used to provide
| authentication information to the database.

When setting up a database as a resource manager, you do not require the XA close
string. This string will be ignored by the database manager if it is provided.

 Copyright IBM Corp. 1993, 1998 365

A program can access different databases using the SQL CONNECT statement. Each
transaction can access one or more databases as described in Chapter 8, “Distributed
Databases” on page 345. Every database to be accessed in the transaction must be
defined as a resource manager using an XA open string. If a database is not defined as
a resource manager, that database cannot be used within a transaction controlled by
an XA-compliant transaction manager.

| The database manager allows both non-XA and global transactions to access local and
| remote instances of the database manager. If all the databases reside on machines
| separated from the TP Monitor machine, the TP Monitor machine uses the database
| client to forward the XA and SQL requests to the databases. You must have, at a
| minimum, the DB2 Client Application Enabler installed on the same machine as the XA
| Transaction Manager. Database servers that are accessed by applications controlled by
| the XA Transaction Manager can be either local or remote.

| Updating Host or AS/400 Database Servers
| Host and AS/400 database servers may be updatable depending upon the architecture
| of the XA Transaction Manager. If the work and the commit sequence occur within the
| same DB2 context (typically the same operating system thread), and the work is
| committed before starting a new transaction, then host and AS/400 database servers
| can participate in the transaction. See the Embedded SQL Programming Guide for
| information about the SQL statements that are allowed in this environment.

| If you will be updating host or AS/400 database servers, you will require DB2 Connect
| with the DB2 Syncpoint Manager configured. Refer to the DB2 Connect Enterprise
| Edition Quick Beginnings manual for instructions.

Database Connection Considerations
| The sections that follow describe the database connection considerations:

| ¹ “RELEASE Statement”
| ¹ “Transactions Accessing Partitioned Databases (DB2 UDB EEE)”

| RELEASE Statement
| If a RELEASE statement is used to release a connection to a database, a CONNECT
| statement, rather than SET CONNECTION, should be used to reconnect to that
| database.

| Transactions Accessing Partitioned Databases (DB2 UDB EEE)
| In a partitioned database environment, user data may be partitioned across database
| partitions. An application accessing the database connects and sends requests to one
| of the database partitions (the coordinator node). Different applications can connect to
| different database partitions, and the same application can choose different database
| partitions for different connections.

| For a given transaction executing against a database in a partitioned environment, all
| access must be through the same database partition. That is, the same database

366 Administration Guide

| partition must be used from the start of the transaction until (and including) the time that
| the transaction is committed.

| Any transaction executing against the partitioned database must be committed before
| disconnecting.

Making a Heuristic Decision
| An XA-compliant transaction manager (Transaction Processing Monitor) uses a
| two-phase commit process similar to that used by the DB2 transaction manager as
| described in “Understanding the Two-Phase Commit Process” on page 355. The
| primary difference between the two environments is that the TP Monitor provides the
| function of logging and controlling the transaction, instead of the DB2 transaction
| manager and the transaction manager database.

Errors similar to those discussed for the DB2 transaction manager (see “Recovering
from Problems During Two-Phase Commit” on page 358) can occur when using an
XA-compliant transaction manager. Similar to the DB2 transaction manager, an
XA-compliant transaction manager will attempt to resynchronize indoubt transactions.

If, for some reason, you cannot wait for the transaction manager to automatically
resolve the indoubt transaction, there are some actions you can take to manually
resolve the states of indoubt transactions. This manual process is sometimes referred
to as “making a heuristic decision.”

The LIST INDOUBT TRANSACTIONS command using the WITH PROMPTING option
(or the use of a related set of APIs) allows you to query, commit, and roll back indoubt
transactions. In addition, it also allows you to “forget” transactions that have been
heuristically committed or rolled back by removing the log records and releasing the log
space. For information about the command and APIs, see the Command Reference
and the API Reference manuals.

Note: The LIST INDOUBT TRANSACTIONS command (and APIs) can only be used
for Universal Database versions of DB2. Other types of resource managers,
including those controlled by DRDA2-compliant database managers may have
other ways to query indoubt transactions and to make heuristic decisions for
their resources.

You should use this command (or APIs) with extreme caution and as a last resort. The
best solution is to wait for the transaction manager to drive the resynchronization
process. You could experience data integrity problems if you manually commit or roll
back a transaction in one of the participating databases, and the opposite action is
taken for another of the databases. Recovering from data integrity problems requires
you to understand the application logic, the data changed or rolled back, and then to
perform a point-in-time recovery of the database, or manually undo/redo the database
changes.

If you cannot wait for the transaction manager to initiate the resynchronization process
and you must release the resources tied up by an indoubt transaction, then heuristic
operations are necessary. This situation could occur if the transaction manager will not

 Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 367

be available for an extended period of time to do the resynchronization and the indoubt
transaction is tying up resources that are urgently needed. An indoubt transaction ties
up the resources that were associated with this transaction before the transaction
manager or resource managers became unavailable. For the database manager, these
resources include things such as the locks on tables and indexes, log space, and
storage taken up by the transaction. Each indoubt transaction also decreases (by one)
the maximum number of concurrent transactions that can be handled by the database.

There are no foolproof ways to perform heuristic operations. You can use the following
steps as a guideline:

1. Connect to the database for which you require all transactions to be complete.
2. Use the LIST INDOUBT TRANSACTIONS command to display the indoubt

transactions. The xid represents the global transaction ID and is identical to the
xid used by the transaction manager and by other resource managers participating
in this transaction.

3. For each indoubt transaction, use your knowledge about the application and the
operating environment to determine the other participating resource managers.

4. Determine if the transaction manager is available:
¹ If the transaction manager is available , and the indoubt transaction in a

resource manager was caused by the resource manager not being available in
the second commit phase, or for an earlier resynchronization process, then
you should check the transaction manager's log to determine what action has
been taken against the other resource managers. You should then take the
same action for the database, that is, using the LIST INDOUBT
TRANSACTION command, either heuristically commit or heuristically roll back
the transaction in the database.

¹ If the transaction manager is not available , you will need to use the status of
the transaction in the other participating resource managers to determine what
action you should take:

– If at least one of the other resource managers has committed the
transaction, you should heuristically commit the transaction in all the
resource managers. (For common server versions of DB2, you can use
the LIST INDOUBT TRANSACTIONS command to initiate the heuristic
actions.)

– If at least one of the other resource managers has rolled back the
transaction, you should heuristically roll back the transaction.

– If the transaction is in “PREPARED” (indoubt) state in all of the
participating resource managers, you should heuristically roll back the
transaction.

– If one or more of the other resource managers is not available, you should
heuristically roll back the transaction.

Do not perform the heuristic forget function unless a heuristically committed or rolled
back transaction causes a log full condition, as indicated by the Logfull condition in the
output of the LIST INDOUBT TRANSACTIONS command. The heuristic forget function
releases the log space occupied by this indoubt transaction. The implication is that if a
transaction manager eventually performs a resynchronization operation for this indoubt
transaction, it could potentially make the wrong decision to commit or roll back other

368 Administration Guide

resource managers because there is no log record found for the transaction in this
resource manager. In general a "missing" log record implies that the resource manager
had rolled back the transaction.

 Security Considerations
As mentioned in “Application Program (AP)” on page 941, the TP monitor pre-allocates
a set of server processes and runs the transactions from different users under the IDs
of the server processes. To the database, each server process appears as a big
application that has many units of work, all being run under the same ID associated
with the server process.

For example, in an AIX environment using CICS, when a CICS for AIX region is started
up, it is associated with the AIX username with which it is defined. All the CICS
Application Server processes are also being run under this CICS for AIX "master" ID,
which is usually defined as "cics". CICS users can invoke CICS transactions under their
DCE login ID, and while in CICS, they can also change their ID using the CESN signon
transaction.1

In either case, the end user's ID is not available to the RM. Consequently a CICS
Application Process might be running transactions on behalf of many users, but they all
appear to the RM as if it is a single program with many units of work from the same
"cics" ID. Optionally, you may specify a user ID and password on the XA Open string,
and that user ID will be used instead of the "cics" ID to connect to the database.

For static SQL statements, there is not much impact because the binder's privileges,
not the end user's privileges, are used to access the database. This does mean,
however, that the EXECUTE privilege of the database packages must be granted to the
server's ID and not the end user's.

For dynamic statements, which have their access authentication done at run-time, this
means that the access privileges of the database objects must be granted to the
server's ID and not to the actual user of those objects. Instead of relying on the
database to control the access of specific users, you must rely on the TP Monitor
system to determine which users can run which programs. The server ID must be
granted all privileges that its SQL users require.

To determine who has accessed a database table or view, you can perform the
following steps:

1

Note that CICS for AIX can also interface with an external security manager to verify the signon ID and password. An administrator
can also define which users can run specific CICS programs through the control of the Transaction Definition (TD). (TD in CICS for
AIX is equivalent to the combination of Program Control Table (PCT) and Transaction List Table (XLT) in the other CICS family
members.)

Several security measures can be used to restrict the usage of CICS by AIX users. A user must first be allowed to run the cicsh
command to gain access to the CICS region. A user who is not defined in the CICS User Definition (UD) with specific security and
transaction level keys can only have public level access.

 Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 369

1. From the SYSCAT.PACKAGEDEP catalog view, obtain a list of all packages that
depend on the table or view.

2. Determine the names of the server programs (for example, CICS programs) that
correspond to these packages through the naming convention used in your
installation.

3. Determine the client programs (for example, CICS transaction IDs) that could
invoke these programs, and then use the TP Monitor's log (for example, CICS log)
to determine who had run these transactions or programs and at what times.

 Configuration Considerations
You should consider the values of the following configuration parameters when you are
setting up your TP Monitor environment:

¹ “Transaction Processor Monitor Name (tp_mon_name)” on page 708

The tp_mon_name database configuration parameter identifies the name of the
transaction processor (TP) monitor product being used. For example, "CICS" or
"ENCINA".

¹ “APPC Transaction Program Name (tpname)” on page 688

The tpname database configuration parameter identifies the name of the remote
transaction program that the database client must use when issuing an allocate
request to the database server when using the APPC communications protocol.
This database manager configuration parameter is set in the configuration file at
the server and must be the same as the transaction processor (TP) name
configured in the SNA transaction program. See the Quick Beginnings manuals for
more information.

| ¹ “Transaction Manager Database Name (tm_database)” on page 673

| Because DB2 does not coordinate transactions in the XA environment, this
| parameter is not used for XA-coordinated transactions.

¹ “Maximum Number of Active Applications (maxappls)” on page 648

The maxappls database configuration parameter specifies the maximum number of
active applications allowed.

| The value of this parameter must be equal to or greater than the sum of the
| connected applications plus the number of these same applications which may be
| concurrently in the process of completing a two-phase commit or rollback. This
| sum should then have added to it the anticipated number of indoubt transactions
| which might exist at any one time. See “Recovering from Problems During
| Two-Phase Commit” on page 358 for more information on indoubt transactions.

As a result, for a Transaction Processing Monitor environment (for example, CICS
for AIX) you may need to increase the value of the maxappls parameter. Increasing
the value helps ensure that all TP Monitor processes can be accommodated.

¹ “Auto Restart Enable (autorestart)” on page 669

This database configuration parameter specifies whether the RESTART
DATABASE routine will be invoked automatically when needed. The default is yes
(that is, enabled).

370 Administration Guide

A database containing indoubt transactions will require the RESTART DATABASE
command/routine to be invoked in order to start up. If the autorestart option is not
enabled, when the last connection to the database is dropped, the next connection
will fail and require an explicit RESTART DATABASE again. This condition will
exist until the indoubt transaction has been removed either by the transaction
manager's resync operation, or through a heuristic operation performed by the
administrator. When the RESTART DATABASE is issued, a message will be
displayed if there are any indoubt transactions in the database. The administrator
can then use the LIST INDOUBT TRANSACTION command and other command
line processor commands to find out information about those indoubt transactions.

| XA Function Supported
| DB2 Universal Database supports the XA91 specification defined in X/Open CAE
| Specification Distributed Transaction Processing: The XA Specification manual, with the
| following exceptions:

| ¹ Asynchronous services

| The XA specification allows the interface to use asynchronous services where the
| result of a request can be checked at some later time. The database manager
| requires the use of the requests to be invoked in synchronous mode.
| ¹ Static registration

| The XA interface allows for two ways to register an RM: static registration and
| dynamic registration. DB2 UDB implements dynamic registration which is more
| advanced and efficient. Refer to “Resource Managers (RM)” on page 943 for more
| details about these two methods.
| ¹ Association Migration

| DB2 Universal Database does not support transaction migration between threads
| of control.

| XA Switch Usage and Location
| As required by the XA interface, the database manager provides a db2xa_switch
| external C variable of type xa_switch_t to return the XA switch structure to the TM.
| Other than the addresses of the various XA functions, the following fields are returned:

| Field Value

| name The product name of the database manager: for example, DB2 for AIX

| flags TMREGISTER] TMNOMIGRATE

| Explicitly states that DB2 UDB uses dynamic registration and the TM
| should not use association migration. Also implicitly states that
| asynchronous operation is not supported.

| version Must be zero.

| XA Open and Close Strings Usage
| The database manager open string has the following syntax:

| "database_alias<,username,password>"

 Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 371

| The database_alias is required to specify the database alias name of the database.
| This alias name is the same as the database name unless you have explicitly cataloged
| an alias name after you created the database. The username and password are
| optional, and are used to provide authentication information to the database if the
| database is set up with authentication=SERVER.

| The database manager does not use the XA close string and its content will be ignored.

| Using the DB2 Universal Database XA Switch
| The XA architecture requires that a Resource Manager (RM) provide a switch that gives
| the XA Transaction Manager (TM) access to the resource manager's xa_ routines. An
| RM's switch uses a structure called xa_switch_t. The switch contains the RM's name,
| non-null pointers to the RM's xa entry points, a flag, and a version number.

| See the following sections for information on how to use the switch on different
| platforms:

| ¹ “UNIX Platforms”
| ¹ “OS/2 Platform”
| ¹ “Windows NT Platform” on page 373.

| For a C sample program, see “Example C Code” on page 373.

| UNIX Platforms: DB2 UDB's switch can be obtained in any of the following ways:

| ¹ Through one additional level of indirection. In a C program, this can be
| accomplished by defining the macro:

| #define db2xa_switch (*db2xa_switch)

| prior to a use of db2xa_switch.
| ¹ By calling db2xacic

| DB2 UDB provides an API, db2xacic, which returns the address of the
| db2xa_switch structure. This function is prototyped as:

| struct xa_switch_t * SQL_API_FN db2xacic()

| With either method, you must link your application with libdb2.

| OS/2 Platform: DB2 UDB's switch can be obtained in any of the following ways:

| ¹ Through one additional level of indirection. In a C program, this can be
| accomplished by defining the macro:

| #define db2xa_switch (*db2xa_switch)

| prior to a use of db2xa_switch.
| ¹ Calling db2xacic

| DB2 UDB provides an API, db2xacic, which returns the address of the
| db2xa_switch structure. This function is prototyped as:

| struct xa_switch_t * SQL_API_FN db2xacic()

372 Administration Guide

| With either method, you must link your application with db2app.lib.

| Windows NT Platform: The interface to the db2xa_switch data structure is different
| for DB2 UDB for Windows NT because of operating system differences.

| The pointer to the xa_switch structure, db2xa_switch, is exported as DLL data. This
| implies that a Windows NT application using this structure must reference it in one of
| three ways:

| ¹ Through one additional level of indirection. In a C program, this can be
| accomplished by defining the macro:

| #define db2xa_switch (*db2xa_switch)

| prior to a use of db2xa_switch.
| ¹ If using the Microsoft Visual C++ compiler, db2xa_switch can be defined as:

| extern __declspec(dllimport) struct xa_switch_t db2xa_switch

| ¹ DB2 UDB provides an API, db2xacic, which returns the address of the
| db2xa_switch structure. This function is prototyped as:

| struct xa_switch_t * SQL_API_FN db2xacic()

| With any of these methods, ensure that you link with db2app.lib.

| Example C Code: The following code illustrates the different ways the db2xa_switch

| can be accessed via a C program: on any UDB platform. Be sure to link with the
| appropriate library previously specified.

| #include <stdio.h>
| #include <xa.h>

| struct xa_switch_t * SQL_API_FN db2xacic();

| #ifdef DECLSPEC_DEFN

| extern __declspec(dllimport) struct xa_switch_t db2xa_switch;

| #else

| #define db2xa_switch (*db2xa_switch)

| extern struct xa_switch_t db2xa_switch;

| #endif

| main()

| {

| struct xa_switch_t *foo;

| printf ("%s \n", db2xa_switch.name);

| foo = db2xacic();

| printf ("%s \n", foo->name);

| return ;

| }

| Making the Transaction Manager Known to DB2 Universal
| Database
| DB2 must resolve the entry points to ax_reg and ax_unreg with the TM in order to be
| able to dynamically register a transaction:

 Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 373

| ¹ On UNIX platforms, this is done automatically when the application links in the DB2
| and TM libraries.
| ¹ On OS/2 and Windows NT, DB2 UDB must explicitly load the dynamic link library
| (DLL) that exports both these entry points at runtime. To accomplish this, the DLL
| name and path are retrieved from the tp_mon_name database manager
| configuration parameter.

XA Interface Problem Determination
When an error is detected during an XA request from the TM, the application program
may not be able to get the error code from the TM. If your program abends or gets a
cryptic return code from the TP Monitor or the TM, you should check the First Failure
Service Log, which reports XA error information when diagnostic level 3 or greater is in
use.

For more information about the First Failure Service Log, see the Troubleshooting
Guide manual. In addition to this source of information for problem determination, you
should also consult the console message, TM error file or other product-specific
information provided by the external transaction processing software being used. Refer
to the documentation of your transaction processing product for more details in this
area.

The database manager writes all XA specific errors to the First Failure Service Log with
SQLCODE -998 (transaction or heuristic errors) and the appropriate reason codes. The
following are some of the more common reasons for errors:

¹ Invalid syntax in the XA open string.
¹ Failure to connect to the database specified in the open string as a result of one of

the following:
– The database has not been cataloged
– The database has not been started
– The server application's username/password is not authorized to connect to

the database.
 ¹ Communications error.

The following example displays an XA open error generated on an AIX platform due to
a missing XA open string.

Tue Apr 4 15:59:08 1995

toop pid(83378) process (xatest) XA DTP Support sqlxa_open Probe:101

DIA4701E Database "" could not be opened for distributed transaction

processing.

String Title : XA Interface SQLCA pid(83378)

SQLCODE = -998 REASON CODE: 4 SUBCODE: 1

Dump File : /u/toop/diagnostics/83378.dmp Data : SQLCA

Figure 41. Error Log for XA Open Error

374 Administration Guide

Configuring XA Transaction Managers to Use DB2 UDB
| The sections that follow describe how to configure specific products to use DB2 as a
| resource manager. You can use any of the following:

| ¹ “Configuring IBM TXSeries CICS”
| ¹ “Configuring IBM TXSeries Encina”
| ¹ “Configuring BEA Tuxedo” on page 377
| ¹ “Configuring Microsoft Transaction Server” on page 379.

| Configuring IBM TXSeries CICS
| For information about how to configure IBM TXSeries CICS to use DB2 as a resource
| manager, refer to your IBM TXSeries CICS Administration Guide. TXSeries
| documentation can be viewed online at starting at
| http://www.transarc.com/dfs/public/www/htdocs/.hosts/external/Library/index.html

| Host and AS/400 database servers can participate in CICS-coordinated transactions.

| Configuring IBM TXSeries Encina
| The following are the various API and configuration parameters required for the
| integration of Encina Monitor and DB2 Universal Database servers or DB2 for MVS,
| DB2 for OS/390, DB2 for AS/400, or DB2 for VSE&VM when accessed via DB2
| Connect. TXSeries documentation can be viewed online starting at
| http://www.transarc.com/dfs/public/www/htdocs/.hosts/external/Library/index.html

| Host and AS/400 database servers can participate in Encina-coordinated transactions.

| Configuring DB2
| To configure DB2:

| 1. Each database name must be defined in the DB2 database directory. If the
| database is a remote database, then a Node Directory entry must also be defined.
| You can perform the configuration using the GUI Client Configuration Assistant
| (CCA), or the DB2 Command Line Processor (CLP). For example:

| DB2 CATALOG DATABASE inventdb AS inventdb AT NODE host1 AUTH SERVER

| DB2 CATALOG TCPIP NODE host1 REMOTE hostname1 SERVER svcname1

| 2. The DB2 client can optimize its internal processing for Encina if it knows that it is
| dealing with Encina. You can specify this by setting the tp_mon_name database
| manager configuration parameter to ENCINA. The default is for no special
| optimization. If tp_mon_name is set, then the application must ensure the thread
| that performs the unit of work also immediately commits the work after ending it.
| No other unit of work may be started. If this is not your environment, then ensure
| that the value for tp_mon_name value is NONE (or via the CLP, the value is set to
| NULL). The tp_mon_name can be updated by invoking the CCA or by the CLP:

| ¹ On AIX use: UPDATE DATABASE MANAGER CONFIGURATION USING TP_MON_NAME

| ENCINA

 Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 375

| ¹ On Windows NT use: UPDATE DATABASE MANAGER CONFIGURATION USING

| TP_MON_NAME libEncServer:E

| In Intel environments, this parameter contains the path and name of the DLL in
| an external transaction manager product containing the functions ax_reg and
| ax_unreg, and also informs DB2 which TP Monitor is being used.

| Configuring Encina for Each Resource Manager
| To configure Encina for each resource manager, an administrator must define the Open
| String, Close String, and Thread of Control Agreement for each DB2 database as a
| resource manager before the resource manager can be registered for transactions in an
| application. The configuration can be performed using the Enconcole full screen
| interface, or the Encina command line interface. For example:

| monadmin create rm inventdb -open "inventdb,user1,password1"

| There is one resource manager configuration for each DB2 database, and each
| resource manager (RM) configuration must have an rm name ("logical RM name"). To
| simplify the situation, you should make it identical to the database name.

| The XA Open String contains information that is required to establish a connection to
| the database. The content of the string is RM specific. The XA Open String of DB2
| UDB contains the alias name of the database to be opened, and optionally a userid and
| password to be associated with the connection. Note that the database name defined
| here must also be cataloged into the regular database directory required for all
| database access. The name can be up to 8 bytes long.

| The XA Close String is not used by DB2.

| The Thread of Control Agreement determines if an application agent thread can handle
| more than one transaction at a time. DB2 V5.0 supports the default of
| TMXA_SERIALIZE_ALL_OPERATIONS, where a thread can be reused only after a
| transaction has completed.

| If you are accessing DB2 for OS/390, DB2 for MVS, DB2 for AS/400, or DB2 for
| VSE&VM, then you must use the DB2 Syncpoint Manager. Please refer to the DB2
| Connect Enterprise Edition Quick Beginnings manual for configuration instructions.

| Referencing a DB2 Database from an Encina Application
| To reference a DB2 database from an Encina application:

| 1. Use the Encina Scheduling Policy API to specify how many application agents can
| be run from a single TP Monitor application process. For example:

| rc = mon_SetSchedulingPolicy (MON_EXCLUSIVE)

| For DB2 (DB2 Universal Database, host, or AS/400 database servers), you should
| use the default setting of MON_EXCLUSIVE. This ensures that:

| ¹ The application process is locked during the life time of the transaction.

| ¹ The application acts single threaded.

376 Administration Guide

| Note: If you are using the ODBC or DB2 Call Level Interface, you must disable
| the multithread support. You can do this by setting the CLI configuration
| parameter DISABLEMULTITHREAD = 1 (disables multithreading). The default
| for DB2 Universal Database is DISABLEMULTITHREAD = 0 (enables
| multithreading). Please see the CLI Guide and Reference.

| 2. Use the Encina RM Registration API to provide the XA switch and the logical RM
| name to be used by Encina when referencing the RM in an application process.
| For example:

| rc = mon_RegisterRmi (&db2xa_switch, /* xa switch */

| "inventdb", /* logical RM name */

| &rmiId); /* internal RM id */

| The XA Switch contains the addresses of the XA routines in the RM that the TM
| can call, and it also specifies the functionality that is provided by the RM. The XA
| Switch of DB2 Universal Database is db2xa_switch, and it resides in the DB2
| Client Application Enabler library (db2app.dll on INTEL platforms and libdb2 on
| UNIX-based platforms).

| The logical RM name is the one used by Encina, and is not the actual database
| name that is used by the SQL application that runs under Encina. The actual
| database name is specified in the XA Open String in the Encina RM Registration.
| To simplify the situation, the logical RM name is set to be the same as the
| database name in this example.

| The third parameter returns an internal identifier or handle that is used by the TM
| to reference this connection.

| Note: When using Encina for transaction processing with DB2 through the TM-XA
| interface, note that Encina nested transactions are not currently supported by
| the DB2 XA interface. If possible, avoid using these transactions. If you cannot,
| ensure that SQL work is done in only one member of the Encina transaction
| family.

| Configuring BEA Tuxedo
| Note: Applications that access host or AS/400 database servers in a Tuxedo
| environment are limited to read-only access to these servers.

| To configure Tuxedo to use DB2 as a resource manager, perform the following steps:

| 1. Install Tuxedo as specified in the documentation for that product. Ensure that you
| perform all basic Tuxedo configuration, including the log files and environment
| variables.

| You also require a compiler and the DB2 Software Developer's Kit. Install these if
| necessary.

| 2. At the Tuxedo server ID, set the DB2INSTANCE environment variable to reference
| the instance that contains the databases that you want Tuxedo to use. Also set the
| PATH variable to include the DB2 program directories. Then confirm that the
| Tuxedo server ID can connect to the DB2 databases.

 Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 377

| 3. For Windows NT only. Update the tp_mon_name database manager configuration
| parameter with the name of the DLL that contains the ax_reg and ax_unreg
| routines. In Tuxedo, this DLL is called libtux.

| 4. Add a definition for DB2 to the Tuxedo resource manager definition file. In the
| examples that follow, UDB_XA is the locally defined Tuxedo resource manager name
| for DB2, and db2xa_switch is the DB2-defined name for a structure of type
| xa_switch_t.:

| ¹ For AIX. In the file ${TUXDIR}/udataobj/RM, add the definition:

| # DB2 Version 5.0

| UDB_XA:db2xa_switch:-L${DB2DIR} /lib -ldb2

| Where {TUXDIR} is the directory where you installed Tuxedo, and {DB2DIR} is
| the DB2 instance directory.

| ¹ For Windows NT. In the file %TUXDIR%\udataobj\rm, add the definition:

| # DB2 Version 5.0

| UDB_XA;db2xa_switch;%DB2DIR%\lib\db2api.lib

| Where %TUXDIR% is the directory where you installed Tuxedo, and
| %DB2DIR% is the DB2 instance directory.

| 5. Build the Tuxedo transaction monitor server program for DB2:

| ¹ For AIX:

| ${TUXDIR}/bin/buildtms -r UDB_XA -o ${TUXDIR}/bin/TMS_UDB

| Where {TUXDIR} is the directory where you installed Tuxedo.

| ¹ For Windows NT:

| %TUXDIR%\bin\buildtms -r UDB_XA -o %TUXDIR%\bin\TMS_UDB

| 6. Build the application servers. In the examples that follow, the -r option specifies
| the resource manager name, the -f option (used one or more times) specifies the
| files that contain the application services, the -s option specifies the application
| service names for this server, and the -o option specifies the output server file
| name.:

| ¹ For AIX:

| ${TUXDIR}/bin/buildserver -r UDB_XA -f svcfile.o -s SVC1,SVC2 -o UDBserver

| Where {TUXDIR} is the directory where you installed Tuxedo.

| ¹ For Windows NT:

| %TUXDIR%\bin\buildserver -r UDB_XA -f svcfile.o -s SVC1,SVC2 -o UDBserver

| Where %TUXDIR% is the directory where you installed Tuxedo.

| 7. Set up the Tuxedo configuration file to reference the DB2 server. In the *GROUPS
| section of the UBBCONFIG file, add an entry similar to:

| UDB_GRP LMID=simp GRPNO=3

| TMSNAME=TMS_UDB TMSCOUNT=2

| OPENINFO="UDB_XA:SAMPLE,db2_user,,db2_user_pwd"

378 Administration Guide

| Where the TMSNAME parameter specifies the transaction monitor server program
| that you built previously, and the OPENINFO parameter specifies the resource
| manager name. This is followed by the database name and the DB2 user and
| password, which are used for authentication.

| The application servers that you built previously are referenced in the *SERVERS
| section of the Tuxedo configuration file.

| 8. Start Tuxedo:

| tmboot -y

| After the command completes, Tuxedo messages should indicate that the servers
| are started. In addition, if you issue the DB2 command LIST APPLICATIONS ALL,
| you should see two connections (in this situation, specified by the TMSCOUNT
| parameter in the UBD group in the Tuxedo configuration file, UBBCONFIG.

| Configuring Microsoft Transaction Server
| DB2 UDB V5.2 can be fully integrated with Microsoft Transaction Server (MTS) Version
| 2.0. Applications running under MTS on Windows 32-bit operating systems can use
| MTS to coordinate two-phase commit with multiple DB2 UDB, host, and AS/400
| database servers, as well as with other MTS-compliant resource managers.

| Enabling MTS Support in DB2
| You can enable DB2 to support Microsoft Transaction Server by setting the
| tp_mon_name database manager configuration parameter to “MTS.” You do this on the
| machine where the DB2 Client Application Enabler (CAE) Version 5.2 client runs with
| MTS.

| Use the following CLP command to enable support:

| db2 update dbm cfg using tp_mon_name MTS

| A sample application will be provided to verify the installation. When this sample
| becomes available, it will be identified on the IBM web site. Set your URL to
| http://www.software.ibm.com/data/db2/library and search for a DB2 Universal Database
| Technote with the keyword MTS.

| MTS Software Prerequisites
| MTS support requires the DB2 Client Application Enabler (CAE) Version 5.2, or higher,
| and MTS must be at Version 2.0 with Hotfix 0772.

| The installation of the DB2 ODBC driver on Windows 32-bit operating systems will
| automatically add a new keyword into the registry:

| HKEY_LOCAL_MACHINE\software\ODBC\odbcinit.ini\IBM DB2 ODBC Driver:

| Keyword Value Name: CPTimeout

| Data Type: REG_SZ

| Value: 60

 Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 379

| Installation and Configuration
| Following is a summary of installation and configuration considerations for MTS. To use
| DB2's MTS support, the user must:

| 1. Install MTS on the same machine where the MTS application runs.

| 2. On the same machine, install the DB2 Client Application Enabler (CAE) Version 5.2
| client and set the database manager configuration parameter tp_mon_name to
| “MTS.”

| 3. In order to use a host or AS/400 database server:

| a. Either install DB2 Connect Enterprise Edition (EE) on the same machine as
| MTS, or install DB2 Connect EE on a separate machine to act as a gateway to
| the host or AS/400 server.

| b. Configure and enable the DB2 Syncpoint Manager on the DB2 Connect EE
| machine.

| Note: Additional technical information may be provided on the IBM web site to assist
| you with installation and configuration of DB2 MTS support. Set your URL to
| "http://www.software.ibm.com/data/db2/library", and search for a DB2 Universal
| Database "Technote" with the keyword "MTS".

| Verifying the Installation
| 1. Configure DB2 Client Application Enabler (CAE) and DB2 Connect EE to access
| your DB2 UDB, host, or AS/400 server.

| 2. Verify the connection from the DB2 CAE machine to the DB2 UDB database
| servers.

| 3. Verify the connection from the DB2 Connect machine to your host or AS/400
| database server with DB2 CLP and issue a few queries.

| 4. Verify the connection from the DB2 CAE machine via the DB2 Connect gateway to
| your host or AS/400 database server and issue a few queries.

| Supported DB2 Database Servers
| The following servers are supported for multi-site update using MTS-coordinated
| transactions:

| ¹ DB2 Universal Database Enterprise Edition Version 5.2
| ¹ DB2 Extended Enterprise Edition Version 5.2
| ¹ DB2 for OS/390
| ¹ DB2 for MVS
| ¹ DB2 for AS/400
| ¹ DB2 for VM&VSE
| ¹ DB2 Parallel Edition Version 1.2
| ¹ DB2 common server Version 2
| ¹ DB2 Universal Database for AIX with PTF U453782
| ¹ DB2 Universal Database for HP-UX with PTF U453784
| ¹ DB2 Universal Database Enterprise Edition for OS/2 with PTF WR09033
| ¹ DB2 Universal Database for SOLARIS with PTF U453783

380 Administration Guide

| ¹ DB2 Universal Database Enterprise Edition for Windows NT with PTF WR09034
| ¹ DB2 Universal Database Extended Enterprise Edition for UNIX or Windows NT.

| MTS Transaction Time-Out and DB2 Connection Behavior
| You can set the transaction time-out value in the MTS Explorer tool. Please refer to the
| online MTS Administrator Guide for more details.

| If a transaction takes longer than the transaction time-out value (default is 60 seconds),
| MTS will asynchronously issue an abort to all Resource Managers involved, and the
| whole transaction is aborted.

| For the connection to a DB2 server, the abort is translated into a DB2 rollback request.
| Like any other database requests, the rollback request will be serialized on the
| connection to guarantee the integrity of the data on the database server.

| As a result:

| ¹ If the connection is idle, the rollback is executed immediately.
| ¹ If a long running SQL statement is being executed, the rollback request will wait
| until the SQL statement finished before it is executed.

| Connection Pooling
| Connection pooling enables an application to use a connection from a pool of
| connections, so that the connection does not need to be reestablished for each use.
| Once a connection has been created and placed in a pool, an application can reuse
| that connection without performing a complete connection process. The connection is
| pooled when the application disconnects from the ODBC data source, and will be given
| to a new connection whose attributes are the same.

| Connection pooling has been a feature of ODBC driver Manager 2.x. With the latest
| ODBC driver manager (version 3.5) that was shipped with MTS, connection pooling has
| some configuration changes and new behavior for ODBC connections of transactional
| MTS COM objects (see “Reusing ODBC Connections Between COM Objects
| Participating in the Same Transaction” on page 382).

| ODBC driver Manager 3.5 requires that the ODBC driver register a new keyword in the
| registry before it allows connection pooling to be activated. The keyword is:

| Key Name: SOFTWARE\ODBC\ODBCINST.INI\IBM DB2 ODBC DRIVER

| Name: CPTimeout

| Type: REG_SZ

| Data: 60

| Because the IBM DB2 ODBC driver fully supports connection pooling, this keyword is
| now installed with Fix Pack 3 (WR09024) for Client Application Enabler for Windows NT
| or Client Application Enabler for Windows 95.

| The default value (60) means the connection will be pooled for 60 seconds before it
| actually is disconnected. A value of 0 means the pooled connections will never time
| out.

 Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 381

| In a busy environment, it is better to increase the CPTimeout value to a large number
| (Microsoft sometimes suggests 10 minutes for certain environments) to prevent too
| many physical connects and disconnects, because these consume a large amount of
| system resources, including system memory and communications stack resource.

| Reusing ODBC Connections Between COM Objects Participating in
| the Same Transaction
| ODBC connections in MTS COM objects have connection pooling turned on
| automatically (whether or not the COM object is transactional) .

| For multiple MTS COM objects participating in the same transaction, the connection
| can be reused between two or more COM objects in the following manner.

| Suppose there are two COM objects, COM1 and COM2 that connect to the same
| ODBC datasource and participate in the same transaction.

| After COM1 connects and does its work, it disconnects and the connection is pooled.
| However, this connection will be reserved for the use of other COM objects of the same
| transaction. It will be available to other transactions only after the current transaction
| ends.

| When COM2 is invoked in the same transaction, it is given the pooled connection. MTS
| will ensure that the connection can only be given to the COM objects that are
| participating in the same transaction.

| On the other hand, if COM1 does not explicitly disconnect, then it will tie up the
| connection until the transaction ends. When COM2 is invoked in the same transaction,
| a separate connection will be acquired. Subsequently, this transaction ties up two
| connections instead of one.

| This reuse of connection feature for COM objects participating in the same transaction
| is preferable for the following reasons:

| ¹ It uses fewer resources in both the client and the server. Only one connection is
| needed.

| ¹ It eliminates the possibility that two connections participating in the same
| transaction (accessing the same database server and accessing the same data)
| can lock one another, because DB2 servers treat different connections from MTS
| COM objects as separate transactions.

| Tuning TCP/IP Communications
| If a small CPTimeout value is used in a high-workload environment where too many
| physical connects and disconnects occur at the same time, the TCP/IP stack may
| encounter resource problems.

| To alleviate this problem, you should use the TCP/IP Registry Entries. These are
| described in the Windows NT Resource Guide, Volume 1. The registry key values are
| located in HKEY_LOCAL_MACHINE-> SYSTEM-> CurrentControlSet-> Services->
| TCPIP-> Parameters.

382 Administration Guide

| The default values and suggested settings are as follows:

| Name| Default Value| Suggested Value

| KeepAlive time| 7200000 (2 hours)| Same

| KeepAlive interval| 1000 (1 second)| 10000 (10 seconds)

| TcpKeepCnt| 120 (2 minutes)| 240 (4 minutes)

| TcpKeepTries| 20 (20 re-tries)| Same

| TcpMaxConnectAttempts| 3| 6

| TcpMaxConnectRetransmission| 3| 6

| TcpMaxDataRetransmission| 5| 8

| TcpMaxRetransmissionAttempts| 7| 10

| If the registry value is not defined, then create it.

| Testing DB2 With The MTS "BANK" Sample Application
| You can use the "BANK" sample program that is shipped with MTS to test the setup of
| the Client Application Enabler products and MTS.

| Follow these steps:

| 1. Change the file \Program Files\Common Files\ODBC\Data Sources\

| MTSSamples.dsn so that it looks like this:

| [ODBC]

| DRIVER=IBM DB2 ODBC DRIVER

| UID=your_user_id

| PWD=your_password

| DSN=your_database_alias

| Description=MTS Samples

| where:

| ¹ your_user_idand your_password are the user-ID and password used to
| connect to the host.

| ¹ your_database_alias is the database alias used to connect to the database
| server.

| 2. Go to ODBC Admin in the Control Panel, click on System DSN tab and add the
| data source:

| a. Choose IBM ODBC Driver and click on Finish.

| b. When presented with the list of database aliases, choose the one that was
| specified previously.

| c. Click on OK

| 3. Use DB2 CLP to connect to a DB2 database under the ID your_user_id, as
| above.

 Chapter 9. Using DB2 with an XA-Compliant Transaction Manager 383

| a. Bind the db2cli.lst:

| db2 bind @C:\sqllib\bnd\db2cli.lst blocking all grant public

| b. Bind the utilities.

| If the server is a DRDA host server, bind ddcsmvs.lst, ddcs400.lst, or
| ddcsvm.lst, depending on the host that you are connecting to (OS/390,
| AS/400, or VSE or VM). For example:

| db2 bind @C:\sqllib\bnd\@ddcsmvs.lst blocking all grant public

| Otherwise, bind the db2ubind.lst:

| db2 bind @C:\sqllib\bnd\@db2ubind.lst blocking all grant public

| c. Then create the sample table and data for the MTS sample application as
| follows:

| DB2 CREATE TABLE ACCOUNT (ACCOUNTNO INT, BALANCE INT)

| DB2 INSERT INTO ACCOUNT VALUES(1, 1)

| 4. On the DB2 client, ensure that the database manager configuration parameter
| tp_mon_name is set to "MTS".

| 5. Run the "BANK" application. Select the Account button and the Visual C++
| option, then submit the request. Other options may use SQL that is specific to SQL
| Server, and may not work.

384 Administration Guide

Part 3. Tuning Application Performance

 Copyright IBM Corp. 1993, 1998 385

386 Administration Guide

 Chapter 10. Application Considerations

There are a number of factors that can impact the runtime performance of your
application. This chapter describes the following topics that should be considered when
you are designing and coding your application:

 ¹ Concurrency
 ¹ Locking
¹ Adjusting the Optimization Class
¹ Quickly Retrieving the First Few Rows Using OPTIMIZE FOR n ROWS

 ¹ Row Blocking
 ¹ Tuning Queries
 ¹ Compound SQL
¹ Performance Considerations and Character Conversion

 ¹ Stored Procedures
¹ Activating a Database
¹ Parallel Processing of Applications.

You should also refer to the Embedded SQL Programming Guide for additional
information which can affect the performance of your applications, for example:

¹ Writing programs using embedded static SQL
¹ Writing programs using embedded dynamic SQL.

 Concurrency
The integrity of the data in a relational database must be maintained as multiple users
access and change the data. Concurrency is the sharing of resources by multiple
interactive users or application programs at the same time. The database manager
controls this access to prevent undesirable effects, such as:

¹ Lost updates. Two applications, A and B, might both read the same row from the
database and both calculate new values for one of its columns based on the data
these applications read. If A updates the row with its new value and B then also
updates the row, the update performed by A is lost.

¹ Access to uncommitted data. Application A might update a value in the database,
and application B might read that value before it was committed. Then, if the value
of A is not later committed, but backed out, the calculations performed by B are
based on uncommitted (and presumably invalid) data.

¹ Nonrepeatable reads. Some applications involve the following sequence of events:
application A reads a row from the database, then goes on to process other SQL
requests. In the meantime, application B either modifies or deletes the row and
commits the change. Later, if application A attempts to read the original row again,
it receives the modified row or discovers that the original row has been deleted.

¹ Phantom Read Phenomenon. The phantom read phenomenon occurs when:

1. Your application executes a query that reads a set of rows based on some
search criterion.

 Copyright IBM Corp. 1993, 1998 387

2. Another application inserts new data or updates existing data that would
satisfy your application's query.

3. Your application repeats the query from step 1 (within the same unit of work).

When the query is repeated (step 3), some additional (“phantom”) rows are
returned as part of the result set that were not returned when the query was initially
executed (step 1).

An isolation level determines how data is locked or isolated from other processes while
the data is being accessed. The isolation level will be in effect for the duration of the
unit of work. Applications that use a cursor declared using the WITH HOLD clause will
keep the chosen isolation level for the duration of the unit of work in which the OPEN
CURSOR was performed. (For more information, refer to the SQL Reference manual.)
See “Specifying the Isolation Level” on page 391 for information on how the isolation
level is specified.

DB2 supports the following isolation levels:

 ¹ Repeatable Read
 ¹ Read Stability
 ¹ Cursor Stability
 ¹ Uncommitted Read.

(Note that some DRDA database servers support the no commit isolation level. On
other databases, it behaves like the uncommitted read isolation level. Refer to the SQL
Reference for information on this isolation level.)

See also:

¹ “Choosing the Isolation Level” on page 390
¹ “Specifying the Isolation Level” on page 391.

 Repeatable Read
Repeatable read (RR) locks all the rows an application references within a unit of work.
Using repeatable read, a SELECT statement issued by an application twice within the
same unit of work in which the cursor was opened, gives the same result each time.
With repeatable read, lost updates, access to uncommitted data, and phantom rows are
not possible.

The repeatable read application can retrieve and operate on the rows as many times as
needed until the unit of work completes. However, no other applications can update,
delete, or insert a row that would affect the result table, until the unit of work completes.
Repeatable read applications cannot see uncommitted changes of other applications.

With repeatable read, every row that is referenced is locked, not just the rows that are
retrieved. Appropriate locking is performed so that another application cannot insert or
update a row that would be added to the list of rows referenced by your query, if the
query was re-executed. This prevents phantom rows from occurring. This means that if
you scan 10 000 rows and apply predicates to them, locks are held on all 10 000 rows,
even though only 10 rows qualify.

388 Administration Guide

Note: The repeatable read isolation level ensures that all returned data remains
unchanged until the time the application sees the data, even when temporary
tables or row blocking are used.

Since repeatable read may acquire and hold a considerable number of locks, these
locks may exceed the number of locks available as a result of the locklist and maxlocks
configuration parameters. (See “Maximum Percent of Lock List Before Escalation
(maxlocks)” on page 639 and “Maximum Storage for Lock List (locklist)” on page 615.)
In order to avoid lock escalation, the optimizer may elect to immediately acquire a
single table level lock for an index scan, if it believes that lock escalation is very likely
to occur. (See “Lock Escalation” on page 398 for a discussion of lock escalation.) This
functions as though the database manager has issued a LOCK TABLE statement on
your behalf. If you do not want a table level lock to be obtained ensure that enough
locks are available to the transaction or use the Read Stability isolation level.

 Read Stability
Read stability (RS) locks only those rows that an application retrieves within a unit of
work. It ensures that any qualifying row read during a unit of work is not changed by
other application processes until the unit of work completes, and that any row changed
by another application process is not read until the change is committed by that
process. That is, “nonrepeatable read” behavior is not possible.

Unlike repeatable read, with read stability, if your application issues the same query
more than once, you may see additional phantom rows (the phantom read
phenomenon). Recalling the example of scanning 10 000 rows, read stability only locks
the rows that qualify. Thus, with read stability, only 10 rows are retrieved, and a lock is
held only on those ten rows. Contrast this with repeatable read, where in this example,
locks would be held on all 10 000 rows. The locks that are held can be share, next
share, update, or exclusive locks. (For more information on lock attributes, see
“Attributes of Locks” on page 393.)

Note: The read stability isolation level ensures that all returned data remains
unchanged until the time the application sees the data, even when temporary
tables or row blocking are used.

One of the objectives of the read stability isolation level is to provide both a high degree
of concurrency as well as a stable view of the data. To assist in achieving this
objective, the optimizer ensures that table level locks are not obtained until lock
escalation occurs. (See “Lock Escalation” on page 398 for more information about lock
escalation).

The read stability isolation level is best for applications that include all of the following:

¹ Operate in a concurrent environment
¹ Require qualifying rows to remain stable for the duration of the unit of work
¹ Do not issue the same query more than once within the unit of work, or do not

require that the query get the same answer when issued more than once in the
same unit of work.

 Chapter 10. Application Considerations 389

 Cursor Stability
Cursor stability (CS) locks any row accessed by a transaction of an application while
the cursor is positioned on the row. This lock remains in effect until the next row is
fetched or the transaction is terminated. However, if any data on a row is changed, the
lock must be held until the change is committed to the database.

No other applications can update or delete a row that a cursor stability application has
retrieved while any updatable cursor is positioned on the row. Cursor stability
applications cannot see uncommitted changes of other applications.

Recalling the example of scanning 10 000 rows, if you use cursor stability, you will only
have a lock on the row under your current cursor position. The lock is removed when
you move off that row (unless you update that row).

With cursor stability, both nonrepeatable read and the phantom read phenomenon are
possible. Cursor stability is the default isolation level and should be used when you
want the maximum concurrency while seeing only committed rows from other
applications.

 Uncommitted Read
Uncommitted read (UR) allows an application to access uncommitted changes of other
transactions. The application also does not lock other applications out of the row it is
reading, unless the other application attempts to drop or alter the table. Uncommitted
read works differently for read-only and updatable cursors.

Read-only cursors can access most uncommitted changes of other transactions.
However, tables, views, and indexes that are being created or dropped by other
transactions are not available while the transaction is processing. Any other changes by
other transactions can be read before they are committed or rolled back.

Cursors that are updatable operating under the uncommitted read isolation level will
behave as if the isolation level was cursor stability.

Recalling the example of scanning 10 000 rows, if you use uncommitted read, you do
not acquire any row locks.

With uncommitted read, both nonrepeatable read behavior and the phantom read
phenomenon are possible.

The uncommitted read isolation level is most commonly used for queries on read-only
tables, or if you are only executing select-statements and you do not care whether you
see uncommitted data from other applications.

Choosing the Isolation Level
Table 33 on page 391 summarizes the different isolation levels in terms of the
undesirable effects described in Embedded SQL Programming Guide manual.

390 Administration Guide

Table 34 provides a simple heuristic that may help you choose an initial isolation level
for your applications. Consider this table as a starting point, and refer to the previous
discussions of the various levels for factors that might make another value more
appropriate for your requirements.

Choosing the appropriate isolation level for an application is very important to avoid the
phenomena that are intolerable for that application. The isolation level affects not only
the degree of isolation among applications but also the performance characteristics of
an individual application since the CPU and memory resources, required to obtain and
free locks, vary with the isolation level. The potential for deadlock situations also varies
with the isolation level.

Table 33. Summary of isolation levels

Isolation Level

Access to
Uncommitted
Data

Nonrepeatable
Reads

Phantom Read
Phenomenon

Repeatable Read (RR) Not Possible Not Possible Not Possible

Read Stability (RS) Not Possible Not Possible Possible

Cursor Stability (CS) Not Possible Possible Possible

Uncommitted Read (UR) Possible Possible Possible

Table 34. Guidelines for choosing an isolation level

Application Type
High data stability
required

High data stability not
required

Read-write transactions RS CS

Read-only transactions RR UR

Specifying the Isolation Level
The isolation level is specified at precompile time or when an application is bound to a
database. For an application written in a supported compiled language, use the
ISOLATION option of the command line processor PREP or BIND commands. The
isolation level can also be specified by using the PREP or BIND APIs. If no isolation
level is specified, the default of cursor stability is used.

If a bind file is created at precompile time, the isolation level is stored in the bind file. If
no isolation level is specified at bind time, the default is the isolation level used during
precompilation.

You can determine the isolation level of a package by executing the following query:

SELECT ISOLATION FROM SYSCAT.PACKAGES

WHERE PKGNAME = 'XXXXXXXX'

AND PKGSCHEMA = 'YYYYYYYY'

where XXXXXXXX is the name of the package and YYYYYYYY is the schema name of the
package. Both of these names must be in all capital letters.

 Chapter 10. Application Considerations 391

| When a database is created, multiple bind files used to support the different isolation
| levels for SQL in REXX are bound to the database (on those servers that support
| REXX). Other command line processor packages are also bound to the database when
| a database is created. Refer to the Embedded SQL Programming Guide for more
| information about bind files.

REXX and the command line processor connect to a database using a default isolation
level of cursor stability. Changing to a different isolation level does not change the
connection state. It must be executed in the CONNECTABLE AND UNCONNECTED
state or in the IMPLICITLY CONNECTABLE state. (See the CONNECT TO statement
in the SQL Reference for details about connection states.) You cannot be connected to
a databa se when issuing this command.

The isolation level being used can be checked by a REXX application by checking the
value of the SQLISL REXX variable. The value is updated every time the CHANGE
SQLISL command is executed.

| The DB2_RR_TO_RS profile registry variable can be used to prevent Repeatable Read
| (RR) isolation level access to user tables. This registry value can be set to “YES” using
| db2set in environments where RR isolation semantics are not required. Before taking
| effect, you must stop and start the database. Following the db2start, this change
| affects the entire instance. Once set, if a request to access a user table using RR is
| received, the request is modified internally to use the Read Stability (RS) isolation level
| instead. No warning is given when this occurs.

If you are using the command line processor you may change the isolation level using
the CHANGE ISOLATION LEVEL command. Refer to the Command Reference manual
for more information.

For DB2 Call Level Interface (DB2 CLI), you may change the isolation level as part of
the DB2 CLI configuration. In addition, many commercially-written applications also
provide a method to allow you to choose the isolation level. Refer to the CLI Guide
and Reference manual for more information.

 Locking
The database manager provides concurrency control and prevents uncontrolled access
by means of locks. A lock is a means of associating a database manager resource with
an application to control how other applications can access the same resource. The
application with which the resource is associated is said to hold or own the lock.

The database manager imposes locks to prohibit applications from accessing
uncommitted data written by other applications (unless the uncommitted read isolation
level is used). This principle protects data integrity (that is, the consistency and security
of data). Locks can also prohibit the updating of rows (such as for a repeatable read
application).

To satisfy data integrity, the database manager acquires locks implicitly, under
database manager control. Except for the uncommitted read isolation level, it is never

392 Administration Guide

necessary for an application to request a lock explicitly to ensure that uncommitted data
is hidden from other processes.

Because of the basic principle of locking, you do not need to take action to control
locks in most cases. Still, applications acquire locks on the basis of certain general
parameters. Knowledge of your local situation can help you make better use of your
system resources by changing those parameters. To assist you, the following topics on
locking are discussed:

¹ Attributes of Locks
¹ Locks and Application Performance
¹ Factors Affecting Locking
¹ LOCK TABLE Statement
¹ CLOSE CURSOR WITH RELEASE
¹ Summary of Locking Considerations

Attributes of Locks
Database manager locks have the following basic attributes:

Object The resource being locked. The only types of explicitly lockable objects
are tables. The database manager also imposes locks on other types of
resources, such as rows, tables and table spaces. The object being
locked represents the granularity of the lock.

Duration The length of time a lock is held. Lock durations are affected by isolation
levels which are discussed in “Concurrency” on page 387.

Mode The type of access allowed for the lock owner as well as the type of
access permitted for concurrent users of the locked object. It is
sometimes referred to as the state of the lock.

Modes and their effects are shown in order of increasing control over
resources:

IN (Intent None)
The lock owner can read any data in the table, including
uncommitted data, but cannot change any of it. No row locks
are acquired by the lock owner. Other concurrent applications
can read or update the table. Both table spaces and tables can
be locked in this mode.

IS (Intent Share)
The lock owner can read data in the locked table, but not
change this data. When an application holds the IS table lock,
the application acquires an S or NS lock on each row read. In
either case, other applications can read or update the table.
Both table spaces and tables can be locked in this mode.

NS (Next Key Share)
This lock is acquired on rows of a table, instead of a Share
lock. The lock owner and all concurrent applications can read,
but not change, the locked row. Only individual rows can be

 Chapter 10. Application Considerations 393

locked in NS mode. This lock is acquired in place of a share (S)
lock on data that is read with the RS or CS isolation levels.

S (Share)
The lock owner and any concurrent applications can read, but
not change, the locked data. Individual rows can be Share
locked. If a table is Share locked, no row locks are acquired by
the lock owner. Other concurrent applications can read the
table. Both rows and tables can be locked in this mode.

IX (Intent Exclusive)
The lock owner and concurrent applications can read and
change data in the table. When the owner reads data, it
acquires an S, NS, X, or U lock on each row. It also acquires
an X lock on each row that it updates. Other concurrent
applications can both read and update the table. Both table
spaces and tables can be locked in this mode.

SIX (Share with Intent Exclusive)
The lock owner can both read and change data in the table.
The lock owner acquires X locks on the rows it updates, but
does not acquire locks on rows that it reads. Other concurrent
applications can read the table. Only a table object can be
locked in this mode.

U (Update)
| The lock owner can update data in the locked object and
| acquire X locks on the rows prior to updates. Other units of
| work can read the data, but cannot attempt to update it. Both
| rows and tables can be locked in this mode.

NX (Next Key Exclusive)
This lock is acquired on the next row when a row is deleted
from an index or inserted into the index of a table. The lock
owner can read but not change the locked row. Only individual
rows can be locked in NX mode. This is similar to an X lock
except that it is compatible with the NS lock.

NW (Next Key Weak Exclusive)
This lock is acquired on the next row when a row is inserted
into the index of a non-catalog table. The lock owner can read
but not change the locked row. Only individual rows can be
locked in NW mode. This is similar to X and NX locks except
that it is compatible with the W and NS locks.

X (Exclusive)
The lock owner can both read and change data in the locked
object. Tables can be Exclusive locked, meaning that no row
locks will be acquired. Only uncommitted read applications can
access the locked table. Both rows and tables can be locked in
this mode.

394 Administration Guide

W (Weak Exclusive)
This lock is acquired on the row when a row is inserted into a
non-catalog table. The lock owner can change the locked row.
Only individual rows are locked in W mode. This lock is similar
to an X lock except that it is compatible with the NW lock. Only
uncommitted read applications can access the locked row.

Z (Superxclusive)
This lock is acquired on a table in certain conditions, such as
when the table is altered or dropped, an index on the table is
created or dropped, or a table is reorganized. No other
concurrent application can read or update the table. Both table
space and table objects can be locked in this mode.

Note that only tables and table spaces will obtain the “intent” lock
modes. That is, intent locks are not obtained for rows.

Locks and Application Performance
Application programmers need to be aware of several related factors concerning the
uses of locks and their effect on the performance of applications. These factors include
the following:

¹ Concurrency and Granularity
 ¹ Lock Compatibility
 ¹ Lock Conversion
 ¹ Lock Escalation
¹ Lock Waits and Timeouts

 ¹ Deadlocks.

Concurrency and Granularity
| A lock held by one application can prevent access by another application. Therefore,
| for maximum concurrency, a row level lock is better than a table lock. But locks require
| storage and processing time to manage. Therefore, for minimizing storage and
| processing time, a single table lock is better than many row locks.

| You can define the size (granularity) of locks at row or table level through ALTER
| TABLE. By default, row locks are used. With permanent table locks, as defined by
| ALTER TABLE, only S and X locks are granted. Performance is improved since the
| application does not need to acquire and release as many row locks. You may prefer to
| get a permanent table lock using ALTER TABLE rather than a single transaction table
| lock using LOCK TABLE statement in the following cases:

| ¹ Your table is read-only, and you will always need S locks. A table level lock will
| improve performance while allowing others to obtain S locks on the table.

| ¹ The table will be accessed by a single user for maintenance, where the person
| requires an X lock, for a limited period of time. Defining a table level lock through
| ALTER TABLE on the table, will provide the person with an X lock at a table level.
| Once the person is finished, they can use ALTER TABLE to return the table to row
| level locking.

 Chapter 10. Application Considerations 395

| Use of this option will not prevent normal lock escalation from occurring.

| In addition, note that using ALTER TABLE to push locks to the table level is a global
| approach, affecting all applications and users that access that table. Another choice is
| for individual applications to use the LOCK TABLE statement. This allows you to go to
| table locks at an application level, not a database level.

 Lock Compatibility
Table 35 indicates whether a lock request is granted if another process holds or is
requesting a lock on the same resource in a given state. A no indicates that the
requestor must wait until all incompatible locks are released by other processes. Note
that a timeout can occur when waiting for a lock. A yes indicates that the lock is
granted (unless someone else is waiting for the resource).

396 Administration Guide

Table 35. Lock Type Compatibility

State of Held Resource

State Being
Requested none IN IS NS S IX SIX U NX X Z NW W

none yes yes yes yes yes yes yes yes yes yes yes yes yes

IN yes yes yes yes yes yes yes yes yes yes no yes yes

IS yes yes yes yes yes yes yes yes no no no no no

NS yes yes yes yes yes no no yes yes no no yes no

S yes yes yes yes yes no no yes no no no no no

IX yes yes yes no no yes no no no no no no no

SIX yes yes yes no no no no no no no no no no

U yes yes yes yes yes no no no no no no no no

NX yes yes no yes no no no no no no no no no

X yes yes no no no no no no no no no no no

Z yes no no no no no no no no no no no no

NW yes yes no yes no no no no no no no no yes

W yes yes no no no no no no no no no yes no

Abbreviations:

I Intent
N None
NS Next Key Share
S Share
NX Next Key Exclusive
X Exclusive
U Update
Z Super Exclusive
NW Next Key Weak Exclusive
W Weak Exclusive

For details of these lock types, refer to the discussion in “Attributes of Locks” on page 393.

Legend:

¹ yes - grant lock requested immediately
¹ no - wait for held lock to be released or timeout to occur

Assume that application A holds a lock on a table that application B also wants to
access. The database manager requests, on behalf of application B, a lock of some
particular mode. If the mode of the lock held by A permits the lock requested by B, the
two locks (or modes) are said to be compatible.

If the lock mode requested for application B is not compatible with the lock held by
application A, application B cannot continue. Instead, it must wait not only until
application A releases its lock, but until all existing incompatible locks are released.

 Chapter 10. Application Considerations 397

 Lock Conversion
Lock conversion occurs when a process accesses a data object on which it already
holds a lock, and the mode of access requires a more restrictive lock than the one
already held. A process can hold only one lock on a data object at any time, although it
can (indirectly through a query) request a lock many times on the same data object.
The operation of changing the mode of the lock already held is called a conversion.

The conversion case for rows is simple: As an example, a conversion occurs if an X is
needed and an S or U is held.

There are more distinct lock modes for tables than for rows. IX (Intent Exclusive) and S
(Shared) locks are special cases, however. Neither S nor IX is considered to be more
restrictive than the other, so if one of these is held and the other required, the resulting
conversion is to a SIX (Share with Intent Exclusive) lock. All other conversions result in
the requested lock mode becoming the mode of the lock held, if the requested mode is
more restrictive.

A query to update a row can also produce a dual conversion. Suppose the row had
been read through an index access and was locked as S. The table containing the row
would have a covering intention lock. Suppose it is an IS rather than an IX. Then, if the
row is subsequently changed, the table lock is converted to an IX, and the row to an X.

As a reminder, the application of locks usually takes place implicitly during the
execution of a query. Understanding the kinds of locks obtained for different queries
and table and index combinations can assist you in designing and tuning your
application. See “Factors Affecting Locking” on page 401 for more information on this
topic.

 Lock Escalation
| Lock escalation is an internal mechanism to reduce the number of locks held.
| Escalation is from many row locks (in a single table) to a single table lock.

Lock escalation occurs when too many locks (of any type) are currently held.

Lock escalation can occur for a specific database agent if the agent exceeds its
allocation of the lock list (see “Maximum Percent of Lock List Before Escalation
(maxlocks)” on page 639).

Such escalation is handled internally; the only externally detectable result might be a
reduction in concurrent access on one or more tables. Normally, in a properly
configured database, lock escalation occurs infrequently.

An example of lock escalation is when an application designer uses an index on a large
table to increase performance and concurrency; however, the application accesses a
large percentage of records in the table. The database manager is not able to predict
(in this case) that so much of the table will be locked, and locks each record individually
rather than only locking the table either S or X.

398 Administration Guide

Sometimes, the process receiving the escalation request (internally) holds few or no
record locks on any table. The reason for this escalation is that one process (or
processes) can be holding many locks (although this amount is below the database
configuration parameter of locks per process) but not quite enough to trigger the
escalation request. The process might not request another lock or access the database
again except to end the transaction. Then another process can request the lock or
locks that trigger the escalation request.

If lock escalation reduces concurrency to an unacceptable level, you can do the
following:

¹ Increase the number of locks allowed by increasing the value of the maxlocks
and/or the locklist parameters in the database configuration file. (See “Maximum
Percent of Lock List Before Escalation (maxlocks)” on page 639 and “Maximum
Storage for Lock List (locklist)” on page 615.) This might be the choice if
concurrent access to the table by other processes is most important. However, the
overhead of obtaining record level locks can induce more delay to other processes
than is saved by concurrent access to a table. (When changing these parameters
in a partitioned database, ensure that the parameters are updated on all partitions).

¹ Locate and adjust the offending process (or processes), which may or may not be
the one escalating or rolling back, and issue LOCK TABLE statements explicitly.

¹ Change the degree of isolation. Note that this may lead to decreased concurrency
or reduced isolation.

¹ Increase the frequency of commits. This tends to reduce the number of locks in
existence at a given time. For more information about isolation levels and
concurrency, see “Concurrency” on page 387.

Lock Waits and Timeouts
Without lock timeout detection, in an abnormal situation, your application may have to
wait for a lock to be released. This might occur, for example, when a transaction is
waiting for a lock held by another user's application, and the other user has left their
workstation without performing some interaction to allow their application to commit
their transaction which would release the lock. Obviously, this results in poorer
application performance. To avoid stalling your program in such a case, you can use
the locktimeout configuration parameter to set the maximum time that any application
waits to obtain a lock. (See “Lock Timeout (locktimeout)” on page 640.)

Using this parameter helps avoid global deadlocks, especially in distributed unit of work
(DUOW) applications. If the lock times out, that is, if the time that the lock request is
pending is greater than the locktimeout value, your application receives an error and
your transaction is rolled back. For example, if program1 tries to acquire a lock which is
already held by program2, program1 returns SQLCODE -911 (SQLSTATE 40001) with
reason code 68 if the timeout is expired.

 Deadlocks
| In the database manager, contention for locks by processes using the database can
| result in deadlocks. For example, Process 1 locks table A in X (exclusive) mode and

 Chapter 10. Application Considerations 399

| Process 2 locks table B in X mode; if Process 1 then tries to lock table B in X mode
| and Process 2 tries to lock table A in X mode, the processes will be in a deadlock. In a
| deadlock, both processes are suspended until their second lock request is granted, and
| neither request is granted until one of the processes performs a commit or rollback.
| This state remains indefinitely until an external agent activates one of the processes
| and forces it to perform a rollback.

Deadlocks in the lock system are handled in the database manager by an
asynchronous system background process called the deadlock detector. The deadlock
detector becomes active periodically as determined by the dlchktime configuration
parameter (see “Time Interval for Checking Deadlock (dlchktime)” on page 638). When
the deadlock detector becomes active, it examines the lock system for deadlocks. If the
database has been partitioned then each partition sends lock graphs to the catalog
node where global deadlock detection takes place.

If a deadlock is found, the deadlock detector selects a deadlocked process to roll back.
The selected process is awakened, and it returns to the calling application with
SQLCODE -911 (SQLSTATE 40001), with reason code 2. The database manager rolls
back the selected process automatically. When the rollback has completed, the locks
belonging to the victim process are released, and the other processes involved in the
deadlock can eventually proceed.

Selecting the proper interval for the deadlock detector is necessary to ensure good
performance. An interval that is too short would cause unnecessary overhead, and one
that is too long would allow a deadlock to delay a process for an unacceptable amount
of time. For example, a wakeup interval set to 30 minutes could allow a deadlock to
exist for nearly 30 minutes. The application designer must balance the possible delays
in resolving deadlocks with the overhead of detecting them.

In a partitioned database, the interval should be the same on all partitions (the
dlchktime configuration parameter must be updated to the same value on all partitions).
If the value is smaller at the catalog node than at other partitions, phantom deadlocks
may be detected. If the value is larger at the catalog node than at other partitions, it
may appear as if more than two intervals pass before a deadlock is detected. If a large
number of deadlocks are detected in a partitioned database, you should increase the
value of the dlchktime parameter to account for lock waits and communication waits.

Another problem can occur when an application with more than one independent
process accessing the database is structured in such a way as to make deadlocks
likely. An example is an application in which several processes access the same table
for reads and then writes. If the processes do read-only SQL queries at first and then
do SQL updates on the same table, the chances of deadlocks occurring increase
because of potential contention between the processes for the same data. For instance,
if two processes read the table, and then update the table, they get into a state where
process A is trying to get an X lock on a row, on which process B has an S lock and
vice versa. The result could be a deadlock. To avoid these deadlocks, applications that
access data with the intention of modifying it should use the FOR UPDATE OF clause
when performing a select. This clause ensures that a U lock is imposed when process
A attempts to read the data.

400 Administration Guide

Factors Affecting Locking
The mode and granularity of database manager locks are determined by a combination
of factors: the type of processing the application performs, how it accesses data, and
several parameters that you can specify.

 Application Processing
For the purpose of determining lock attributes, processing can be classified as one of
four types:

Read-only This type includes all select-statements which are intrinsically
read-only (refer to the SQL Reference for information about
cursors), have an explicit FOR READ ONLY clause, or are
ambiguous but for which the SQL compiler presumes to be
read-only due to the value of the BLOCKING option specified
on the PREP or BIND command. It requires only Share locks
(S or IS).

Intent to change This type includes all select-statements with the FOR UPDATE
clause, or which the SQL compiler presumes to be intended
for change as a result of the interpretation of the ambiguous
statement. It uses Share and Update locks (S, U, and X for
rows, IX, U, X for tables).

Change This type includes UPDATE, INSERT, and DELETE, but not
UPDATE WHERE CURRENT OF or DELETE WHERE
CURRENT OF. It requires Exclusive locks (X or IX).

Cursor controlled This type includes UPDATE WHERE CURRENT OF and
DELETE WHERE CURRENT OF. It also requires Exclusive
locks (X or IX).

A statement that inserts, updates or deletes against a target table, based on the result
from a sub-select statement, does two types of processing. The locks for the tables
returned in the sub-select are determined by the rules for read-only processing; for the
target table, by the rules for change processing.

 Access Paths
An access path is the method selected by the optimizer for retrieving data from a
specific table reference. (See “Data Access Concepts and Optimization” on page 476.)
The access path chosen by the optimizer can have a significant effect on the lock
modes. For example, when an index scan is used to locate a specific row, the optimizer
will likely choose row-level locking (IS) for the table. This type of access would be used
to select information for a single employee from the EMPLOYEE table, that has an
index on employee number (EMPNO), with a statement such as the following:

 SELECT *

 FROM EMPLOYEE

WHERE EMPNO = '000310';

Similarly, when no index is used, the entire table must be scanned in sequence to find
the selected rows, and may acquire a single table level lock (S). For example, this type

 Chapter 10. Application Considerations 401

of access might be used to select all the male employees, using a statement such as
this:

 SELECT *

 FROM EMPLOYEE

WHERE SEX = 'M';

The following tables provide an overview of which locks are obtained for what kind of
access plan. See “Application Processing” on page 401 for definitions of the column
headings. Also see “Data Access Concepts and Optimization” on page 476 for
definitions of the access method. Note that cursor controlled type processing uses the
lock mode of the underlying cursor until the application finds a row to update or delete.
For this type of processing, no matter what the lock mode of a cursor, an exclusive lock
will always be obtained to perform the update or delete.

In the following tables, if only one lock mode is shown, it is a table level lock mode. If
two lock modes are shown, the first is the table level lock mode and the second is the
row level lock mode.

Table 36. Lock Modes for Table Scans

Isolation Level Read-only Intent to Change Change

Access Method: Table scan with no predicates

RR S U X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Table Scan with predicates

RR S U U

RS IS / NS IX / U IX / U

CS IS / NS IX / U IX / U

UR IN IX / U IX / U

Table 37 (Page 1 of 2). Lock Modes for Index Scans

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with no predicates

RR S IX / U X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan a single qualifying row

RR IS / S IX / U IX / X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

402 Administration Guide

Table 38 shows the lock modes for cases in which reading of the data pages is
deferred to allow the list of rows to be:

¹ Further qualified using multiple indexes. See “Multiple Index Access” on page 482
for more information.

¹ Sorted for efficient prefetching. See “Understanding List Prefetching” on page 541
for more information.

The deferred access of the data pages implies that access to the row occurs in two
steps and this results in more complex locking scenarios. There are two major
categories which depend on the isolation level. Since the repeatable read isolation level
keeps all locks acquired until the end of the transaction, the locks acquired in the first
step are held and there is no need to acquire further locks in the second step. For the
read stability and cursor stability isolation levels, locks must be acquired during the
second step. To maximize concurrency, we don't acquire locks during the first step and
rely on the re-application of all predicates to ensure that only qualifying rows are
returned.

Table 37 (Page 2 of 2). Lock Modes for Index Scans

Isolation Level Read-only Intent to Change Change

UR IN IX / U IX / X

Access Method: Index Scan with start and stop predicates only

RR IS / S IX / S IX / X

RS IS / NS IX / U IX / X

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan with predicates

RR IS / S IX / S IX / U

RS IS / NS IX / U IX / U

CS IS / NS IX / U IX / U

UR IN IX / U IX / U

Table 38 (Page 1 of 2). Lock Modes for Index Scans used for Deferred Data Page Access

Isolation Level Read-only Intent to Change Change

Access Method: Index Scan with no predicates

RR IS / S IX / S X

RS IN IN IN

CS IN IN IN

UR IN IN IN

Access Method: Deferred Data Page Access, after an index scan with no predicates

RR IN IX / S X

RS IS / NS IX / U IX / X

 Chapter 10. Application Considerations 403

The access path is not controlled by the user; it is chosen by the Optimizer.

The access path used can affect the mode and granularity of a lock. For example, in an
application using the repeatable read (RR) isolation level, an UPDATE query that uses
a table scan without predicates, would use an X lock on the table. If rows were located
through an index, the database manager might choose to lock individual rows of the
table.

Table 38 (Page 2 of 2). Lock Modes for Index Scans used for Deferred Data Page Access

Isolation Level Read-only Intent to Change Change

CS IS / NS IX / U IX / X

UR IN IX / U IX / X

Access Method: Index Scan with predicates

RR IS / S IX / S IX / S

RS IN IN IN

CS IN IN IN

UR IN IN IN

Access Method: Index Scan with start and stop predicates only

RR IS / S IX / S IX / X

RS IN IN IN

CS IN IN IN

UR IN IN IN

Access Method: Deferred Data Page Access, after an index scan with predicates

RR IN IX / S IX / S

RS IS / NS IX / U IX / U

CS IS / NS IX / U IX / U

UR IN IX / U IX / U

LOCK TABLE Statement
You can override the rules for acquiring initial lock modes by using the LOCK TABLE
statement in an application.

The statement locks an entire table. Only the table specified in the LOCK TABLE
statement is locked. Parent and dependent tables of the specified table are not locked.
You must determine whether locking other tables that can be accessed is necessary to
achieve the desired result in terms of concurrency and performance. The lock is not
released until the unit of work is committed or rolled back.

If a table is normally shared among several users, you might want to lock it for the
following reasons:

404 Administration Guide

LOCK TABLE IN SHARE MODE
You want to access data that is consistent in time; that is, data current for
a table at a specific point in time. If the table experiences frequent activity,
the only way to ensure that the entire table remains stable is to lock it. For
example, your application wants to take a snapshot of a table. However,
during the time your application needs to process some rows of a table,
other applications are updating rows you have not yet processed. This is
allowed with repeatable read, but this action is not what you want.

As an alternative, your application can issue the LOCK TABLE IN SHARE
MODE statement: no rows can be changed, regardless of whether you
have retrieved them or not. You can then retrieve as many rows as you
need, knowing that the rows you have retrieved have not been changed
just before you retrieved them.

With LOCK TABLE IN SHARE MODE, other users can retrieve data from
the table, but they cannot update, delete, or insert rows into the table.

LOCK TABLE IN EXCLUSIVE MODE
You want to update a large part of the table. It is less expensive and more
efficient to prevent all other users from accessing the table than it is to lock
each row as it is updated, and then unlock the row later when all changes
are committed.

With LOCK TABLE IN EXCLUSIVE MODE, all other users are locked out;
no other applications can access the table unless they are uncommitted
read applications.

For more details on the LOCK TABLE statement, refer to the SQL Reference manual.

| An alternative to the use of the LOCK TABLE statement is the ALTER TABLE
| statement with the LOCKSIZE parameter. For more details on the ALTER TABLE
| statement, refer to the SQL Reference manual.

CLOSE CURSOR WITH RELEASE
When you close a cursor with the CLOSE CURSOR statement that includes the WITH
RELEASE clause, all read locks (if any) that have been held for the cursor are
released. Read locks are IS, S, and U table locks as well as S, NS, and U row locks.
For more information on lock modes, see “Attributes of Locks” on page 393.

The WITH RELEASE clause has no effect for cursors that are operating under the CS
or UR isolation levels. When specified for cursors that are operating under the RS or
RR isolation levels, the WITH RELEASE clause ends some of the guarantees of those
isolation levels. Specifically, an RS cursor may experience the nonrepeatable read
phenomenon, and an RR cursor may experience either the nonrepeatable read or
phantom read phenomenon.

If a cursor that is originally RR or RS is reopened after being closed using the WITH
RELEASE clause, then new read locks will be acquired.

 Chapter 10. Application Considerations 405

Summary of Locking Considerations
The following are points to remember about locking:

¹ Small units of work (frequent COMMIT statements) promote concurrent access of
data by many users. Include COMMIT statements when your application is logically
at a point of consistency; that is, when the data you have changed is consistent.
When a COMMIT is issued, locks are released (except for table locks associated
with cursors declared WITH HOLD).

¹ Locks are acquired even if your application merely reads rows, so it is still
important to commit read-only units of work. This is because shared locks are
acquired by repeatable read, read stability, and cursor stability isolation levels in
read-only applications. With repeatable read and read stability, all locks are held
until a COMMIT is issued, preventing other processes from updating the locked
data, unless you close your cursor using the WITH RELEASE clause. In addition,
catalog locks are acquired even in uncommitted read applications using dynamic
SQL.

¹ The database manager ensures that your application does not retrieve
uncommitted data (rows that have been updated by other applications but are not
yet committed) unless you are using the uncommitted read isolation level.

¹ You can lock the entire table that you want to protect by issuing a LOCK TABLE
statement:

– To allow other applications to retrieve, but not update, delete, or insert rows
– To prevent other applications (other than those with an uncommitted read

isolation level) from accessing the rows of a table.

¹ When you close a cursor with the CLOSE CURSOR statement that includes the
WITH RELEASE clause, all read locks (if any) that have been held for the cursor
are released.

¹ When changing the configuration parameters affecting locking in a partitioned
database, ensure that the changes are made to all of the partitions in the
database.

Adjusting the Optimization Class
When an SQL query is compiled, a number of optimization techniques can be used to
determine the most efficient access plan for that query. Using more optimization
techniques results in:

1. Improvements in run-time performance
2. Increased query compilation time
3. Increased system resource usage.

For this reason, you may wish to limit the number of techniques applied to optimizing
your query by setting the optimization class. This can be particularly useful if you have:

¹ Very small databases or very simple dynamic queries

¹ Limited memory available at compile time on your database server

406 Administration Guide

¹ A desire to reduce the query compilation (for example, PREPARE) time.

You may select from any of the query optimization classes described below, although
class 0 and class 9 should be used only in special circumstances. Class 5 is the
default. Classes 0, 1, and 2 use the Greedy join enumeration algorithm; for complex
queries this algorithm considers far fewer alternative plans, and incurs significantly less
compilation time, than classes 3 and above. Classes 3 and above use the Dynamic
Programming join enumeration algorithm; this algorithm considers far more alternative
plans, and can incur significantly more compilation time, than classes 0, 1, and 2 as the
number of tables increases.

0 - This class directs the optimizer to use a minimal amount of optimization to
generate an access plan. For example:

¹ Any non-uniform distribution statistics are not considered by the optimizer.
¹ Only basic query rewrite rules are applied (see “Query Rewrite by the SQL

Compiler” on page 466 for information about query rewrite).
¹ Greedy join enumeration occurs (see “Search Strategies for Selecting

Optimal Join” on page 493).
¹ Only nested loop join and index scan access methods are enabled (see

“Join Concepts” on page 489 and “Index Scan Concepts” on page 477).
¹ List prefetch and index ANDing are disabled as access methods.
¹ The star join strategy is not considered.

This class should only be used in special circumstances requiring the lowest
possible query compilation overhead. An application consisting entirely of very
simple dynamic SQL statements which access well-indexed tables is a good
example of where query optimization class 0 is appropriate.

1 - This class directs the optimizer to use a degree of optimization which is roughly
comparable to DB2/6000 Version 1, plus some additional low cost features not
found in Version 1. In particular:

¹ Any non-uniform distribution statistics are not considered by the optimizer.
¹ Only a subset of the query rewrite rules are applied, including those

provided in DB2/6000 Version 1.
¹ Greedy join enumeration (see “Search Strategies for Selecting Optimal

Join” on page 493.)
¹ List prefetch and index ANDing are disabled as access methods.

Optimization class 1 is quite similar to class 0 except that Merge Scan joins and
table scans are also available.

2 - This class directs the optimizer to use a degree of optimization which
significantly improves upon that of class 1, while keeping the compilation cost
significantly lower than classes 3 and above for complex queries. In particular:

¹ All available statistics, including both frequency and quantile non-uniform
distribution statistics, are utilized.

¹ All of the query rewrite rules are applied, except computationally intensive
rules which are applicable only in very rare cases.

¹ Greedy join enumeration (see “Search Strategies for Selecting Optimal
Join” on page 493) is used.

 Chapter 10. Application Considerations 407

¹ A wide range of access methods are considered, including list prefetch.
¹ The star join strategy is considered, if applicable.

Optimization class 2 is quite similar to class 5 except that it uses Greedy join
enumeration rather than Dynamic Programming. This class has the most
optimization of all the optimization classes that use the Greedy join enumeration
algorithm, which considers fewer alternatives for complex queries, and therefore
consumes less compilation time than classes 3 and above. It is therefore
recommended for very complex queries in a decision support or on-line analytic
processing (OLAP) environment. In such cases, there is a good chance the
same query is executed infrequently, so that its access plan is unlikely to remain
in the cache until the next occurence of the query.

3 - This class requests that a moderate amount of optimization be performed to
generate an access plan. This class comes closest to matching the query
optimization characteristics of DB2 for MVS/ESA or OS/390. This optimization
class has the following characteristics:

¹ Non-uniform distribution statistics, which track frequently occurring values
are used, if available.

¹ Most query rewrite rules, including subquery-to-join transformations are
applied.

¹ Dynamic programming join enumeration (see “Search Strategies for
Selecting Optimal Join” on page 493):

– Limited use of composite inner tables (see “Composite Tables” on
page 495)

– Limited use of Cartesian products for star schemas involving “look-up”
tables (see “Search Strategies for Star Join” on page 494)

¹ A wide range of access methods are considered, including list prefetch and
index ANDing.

This class is suitable for a broad range of applications. Using this class gives
the optimizer a better chance of selecting an excellent access plan for queries
with four or more joins. However, the optimizer might fail to consider a better
plan which would be chosen with the default query optimization class.

5 - This class directs the optimizer to use a significant amount of optimization to
generate an access plan. For example, class 5 has the following characteristics:

¹ All available statistics including both frequency and quantile non-uniform
distribution statistics.

| ¹ All of the query rewrite rules are applied including the routing of queries to
| summary tables, except for those computationally intensive rules which are
| applicable only in very rare cases.

¹ Dynamic programming join enumeration (see “Search Strategies for
Selecting Optimal Join” on page 493):

– Limited use of composite inner tables (see “Composite Tables” on
page 495)

408 Administration Guide

– Limited use of Cartesian products for star schemas involving “look-up”
tables (see “Search Strategies for Star Join” on page 494)

| ¹ A wide range of access methods are considered, including list prefetch,
| index ANDing, and summary table routing.

When the optimizer detects that the additional resources and processing time
are not warranted for complex dynamic SQL queries, optimization is reduced.
The extent or size of the reduction is dependent on the machine size and the
number of predicates.

When the query optimizer reduces the amount of query optimization performed,
it continues to apply all the query rewrite rules that would normally be applied.
However, it does use the greedy join enumeration method and reduces the
number of access plan combinations that are considered.

Query optimization class 5 is an excellent choice for a mixed environment
consisting of both transactions and complex queries. This optimization class has
been designed to apply the most valuable query transformations and other
query optimization techniques in an efficient manner.

7 - This class directs the optimizer to use a significant amount of optimization to
generate an access plan. It is the same as query optimization class 5 except
that it does not reduce the amount of query optimization for complex dynamic
SQL queries.

9 - This class directs the optimizer to use all available optimization techniques.
These include:

¹ All available statistics

¹ All query rewrite rules

¹ All possibilities for join enumerations, including Cartesian products and
unlimited composite inners

¹ All access methods.

This class can greatly expand the number of possible access plans that are
considered by the optimizer. This class should be used to determine whether
more comprehensive optimization can generate a better access plan for very
complex and very long-running queries using large tables. Explain and
performance measurements should be used to verify that a better plan has been
found.

How Do You Set the Optimization Class?
The way to request a specific query optimization class depends on whether you are
using static or dynamic SQL.

¹ Static SQL statements use the optimization class specified on the PREP and BIND
commands. The QUERYOPT column in the SYSCAT.PACKAGES catalog table
records the optimization class used to bind the package. If the package is rebound
either implicitly or using the REBIND PACKAGE command, this same optimization
class will be used for the static SQL statements. If you want to change the
optimization class used for these static SQL statements, you must use the BIND

 Chapter 10. Application Considerations 409

command. If you do not specify the optimization class, DB2 uses the default
optimization as specified by dft_queryopt.

¹ Dynamic SQL statements use the optimization class specified by the CURRENT
QUERY OPTIMIZATION special register which is set using the SQL SET
statement. For example, the following statement sets the optimization class to 1:

SET CURRENT QUERY OPTIMIZATION = 1

To ensure that a dynamic SQL statement always uses the same optimization class,
you may want to include this SET statement in your application program. For more
information, refer to the SQL Reference.

If the CURRENT QUERY OPTIMIZATION register has not been set, dynamic
statements will be bound using the default query optimization class. The default
value for both dynamic and static SQL is determined by value of the configurable
database parameter DFT_QUERYOPT. Class 5 is the default query optimization
class unless you have changed the default. (For more information on this
parameter, see “Default Query Optimization Class (dft_queryopt)” on page 683.)
The default values for the bind option and the special register are taken from the
DFT_QUERYOPT configuration parameter.

How Much Optimization is Necessary?
Most statements will be adequately optimized using a reasonable amount of resources
with the default query optimization class. The query compilation time and resource
consumption, at a given optimization class, is primarily influenced by the complexity of
the query, particularly the number of joins and subqueries. However, compilation time
and resource usage are also affected by the amount of optimization performed for the
various optimization classes. For any optimization class, you can expect to see a
greater difference in query compilation time and resource consumption for a very
complex query than for a simple one.

The following may help you select which optimization class to use:

¹ Start by using the default query optimization class.

¹ If you wish to use a class other than the default, try class 1, 2 or 3 first.

¹ Use a low optimization class (0 or 1) for queries having very short run-times, that
is, queries taking less than one second. (See the following discussion for additional
criteria about when to choose a low optimization class.)

¹ Use optimization class 1 or 2 if you have many tables with many of the join
predicates that are on the same column, and if compilation time is a concern.

¹ Use a higher optimization class (3, 5, or 7) for long running queries, that is, queries
taking more than 30 seconds.

¹ Under normal circumstances, you should not use optimization class 9.

¹ For queries that run a long time, run the query using db2batch to determine how
much of the time is spent in compilation and how much is spent in execution.

– If most of the time is spent in compilation then reduce the optimization class.

410 Administration Guide

– If most of the time is spent in execution then consider a higher optimization
class.

Note that query optimization classes 1, 2, 3, 5, and 7 are all suitable for general
purpose use.

Only if you require further reductions in query compilation time and you know the kind
of SQL (for example, extremely simple statements) that will be executed should you
consider class 0. This SQL will tend to have the following characteristics:

¹ Access to a single or only a few tables
¹ Fetches a single or only a few rows
¹ Uses fully qualified, unique indexes.

Online transaction processing (OLTP) transactions are good examples of this kind of
SQL.

Complex queries may require different amounts of optimization to select the best
access plan. You may wish to consider using higher optimization classes for queries
exhibiting the following characteristics:

¹ Access to large tables
¹ A large number of predicates

 ¹ Many subqueries
 ¹ Many joins
¹ Many set operators, such as UNION and INTERSECT
¹ Many qualifying rows
¹ GROUP BY and HAVING operations
¹ Nested table expressions
¹ A large number of views.

Decision support queries or month-end reporting queries against fully normalized
databases are good examples of complex queries where at least the default query
optimization class should be used.

Another reason to use higher query optimization classes is SQL which was produced
by a query generator. Many query generators create SQL which is not efficient. Poorly
written queries, including those produced by a query generator, may require additional
optimization to make it possible to select a good access plan. Using query optimization
class 2 and higher can improve poorly written SQL queries.

The use of static or dynamic SQL, and whether the same dynamic SQL is repeatedly
executed are also important considerations. For static SQL, the query compilation time
and resources are expended just once and the resulting plan can be used many times.
In general, static SQL should always use the default query optimization class. Dynamic
statements are bound and executed at run time; therefore, you should consider whether
the overhead of additional optimization for dynamic statements improves your overall
performance. However, if the same dynamic SQL statement is executed repeatedly,
the selected access plan will be cached. For the purposes of selecting a query
optimization class, the statement can be treated like a static SQL statement.

 Chapter 10. Application Considerations 411

(Refer to the Embedded SQL Programming Guide for information on when to use static
and dynamic SQL.)

If you think you have a query that could benefit from additional optimization, but you are
not sure, or you are concerned about compilation time and resource usage, you may
want to perform some benchmark testing. This testing can help you quantify the
benefits obtained from different optimization classes. See Chapter 19, “Benchmark
Testing” on page 585 for general techniques and the specific use of the db2batch tool.
When designing and running your benchmark test, consider whether the SQL
statements in your application are static or dynamic:

¹ For dynamic SQL statements, your testing should compare the average run time
for the statement. You can use the following formula to help you calculate the
average run time:

compile time + sum of execution times for all iterations

 --

number of iterations

where, the number of iterations represents the number of times that you expect
that the SQL statement will be executed each time it is compiled.

Note: Following the initial compilation, dynamic SQL statements are recompiled
when a change to the environment requires the statement to be recompiled.
Once cached, a SQL statement does not need to be compiled again since
subsequent PREPARE statements will re-use the cached statement
assuming the environment does not change. (See “Catalog Cache Size
(catalogcache_sz)” on page 611 and “Package Cache Size (pckcachesz)”
on page 617 for information about a cache that can improve performance
when working with dynamic SQL statements.)

¹ For static SQL statements, your testing should compare the statement run times.

Note: While you may also be interested in the compile time of static SQL, the
total (compile and run) time for the statement is difficult to use in any
meaningful context. Comparing the total time does not recognize the fact
that a static SQL statement can be run many times for each time it is
bound and that it is generally not bound during run time.

Quickly Retrieving the First Few Rows Using OPTIMIZE FOR n ROWS
A SELECT statement defines a set of rows which satisfy the search criteria. The DB2
optimizer assumes the application will retrieve all the qualifying rows. This assumption
is most appropriate in OLTP and batch environments. However, in “browse”
applications it is common for a query to define a very large potential answer set but
only retrieve the first few rows, typically only as many rows as are required to fill the
screen.

The default assumption made by the optimizer may not be the best for these browse
applications. The OPTIMIZE FOR clause provides a mechanism for an application to
declare its intent to retrieve only a subset of the result or to give priority to the retrieval
of the first few rows. Once this intent is understood, the optimizer can give preference

412 Administration Guide

to access plans that minimize the response time for retrieving the first few rows. Also,
the number of rows that are sent to the client as a single block (see “Row Blocking” on
page 414) are bounded by the value of “n” in the OPTIMIZE FOR clause. Therefore,
the OPTIMIZE FOR clause affects both how the qualifying rows are retrieved from the
database by the server, and how the qualifying rows are returned to the client.

For example, suppose you are querying the employee table for the employees with the
highest salary on a regular basis.

 SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY

 FROM EMPLOYEE

ORDER BY SALARY DESC

You have defined a descending index on the SALARY column. However, since
employees are ordered by employee number, the salary index is likely to be very poorly
clustered. The optimizer, in trying to avoid many random synchronous I/Os, would likely
choose to use the list prefetch access method (see “Understanding List Prefetching” on
page 541) which requires the row identifiers of all rows that qualify to be sorted. This
can cause a delay before the first qualifying rows can be returned to the application. By
adding the OPTIMIZE FOR clause to the statement as follows:

 SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY

 FROM EMPLOYEE

ORDER BY SALARY DESC

OPTIMIZE FOR 20 ROWS

the optimizer would likely choose to use the SALARY index directly with the knowledge
that in all likelihood only the twenty employees with the highest salaries would be
retrieved. Regardless of how many rows could be blocked, a block of rows is returned
to the client every twenty rows.

Use of the OPTIMIZE FOR clause causes the optimizer to favor access plans that
avoid bulk operations or operations that interrupt the flow of rows, such as sorts. You
are most likely to influence an access path by using OPTIMIZE FOR 1 ROW. As a
result, using this clause could have the following effects:

¹ Join sequences with composite inners are less likely since they require a
temporary table.

¹ The join method could change. A nested loop join is the most likely choice,
because it has low overhead cost and is usually more efficient if you only want to
retrieve a few rows.

¹ An index that matches the ORDER BY clause is more likely to be picked. This
occurs because no sort would be needed for the ORDER BY.

¹ List prefetch is less likely to be picked since this access method requires a sort.
¹ Sequential prefetch is less likely to be requested by DB2 because it infers that you

only want to see a small number of rows.
¹ In a join query, the table with the columns in the ORDER BY clause is likely to be

picked as the outer table if there is an index on that outer table that gives the
ordering needed for the ORDER BY clause.

 Chapter 10. Application Considerations 413

Although the OPTIMIZE FOR clause applies to all optimization classes (see “Adjusting
the Optimization Class” on page 406), it works best for optimization class 3 and higher.
The use of the greedy join enumeration method (see “Search Strategies for Selecting
Optimal Join” on page 493) in optimization classes below 3 sometimes results in
access plans for multi-table joins that do not lend themselves to quickly retrieving the
first few rows.

The OPTIMIZE FOR clause does not prevent you from retrieving all the qualifying rows.
However the total elapsed time to retrieve all the qualifying rows may be significantly
greater than if the optimizer had been allowed to optimize for the entire answer set.

If you have a packaged application that uses the call level interface (DB2 CLI or ODBC)
it is possible to have DB2 CLI automatically append an OPTIMIZE FOR clause to the
end of each query statement using the OPTIMIZEFORNROWS keyword in the
db2cli.ini configuration file. For additional information refer to the CLI Guide and
Reference manual.

| When retrieving rows using a SELECT statement, you might also want to consider
| using the FETCH FIRST clause. This clause sets the maximum number of rows that
| can be retrieved from within a SELECT statement. Limiting the result table to the first
| several rows can improve performance. The database manager ceases processing the
| query once the specified number of rows have been retrieved.

| If both the FETCH FIRST clause and the OPTIMIZE FOR clause are specified, the
| lower of the two values is used to influence the communications buffer size. The two
| values are considered independent of each other for optimization purposes. See “Using
| a select-statement” on page 416 for more information on the interaction between these
| two clauses.

 Row Blocking
Row blocking is a technique that reduces database manager overhead by retrieving a
block of rows in a single operation. These rows are stored in a cache, and each
FETCH request in the application gets the next row from the cache. When all the rows
in a block have been processed, another block of rows is retrieved by the database
manager.

The cache is allocated when an application issues an OPEN CURSOR request and is
deallocated when the cursor is closed. The size of the cache is determined by a
configuration parameter which is used to allocate memory for the I/O block. The
parameter used depends on whether the client is local or remote:

¹ For local applications, the parameter aslheapsz is used to allocate the cache for
row blocking. (See “Application Support Layer Heap Size (aslheapsz)” on
page 631 for information about this parameter.)

¹ For remote applications, the parameter rqrioblk on the client workstation is used to
allocate the cache for row blocking. The cache is allocated on the database client.
(See “Client I/O Block Size (rqrioblk)” on page 632 for information about this
parameter.)

414 Administration Guide

For local applications, you can use the following formula to estimate how many rows
are returned per block, where:

¹ aslheapsz is in pages of memory
¹ 4096 is the number of bytes per page
¹ orl is the output row length in bytes:

Rows per block = aslheapsz * 4096 / orl

For remote applications, you can use the following formula to estimate how many rows
are returned per block, where:

¹ rqrioblk is in bytes of memory
¹ orl is the output row length in bytes:

Rows per block = rqrioblk / orl

Note that if you use the OPTIMIZE FOR n ROWS clause in a SELECT statement, the
number of rows per block will be the minimum of the following:

¹ The value calculated in the above formula
¹ The value of n in the OPTIMIZE FOR clause

Use the BLOCKING option on the PREP and BIND commands to specify one of the
following types of row blocking:

UNAMBIG Blocking occurs for read-only cursors and cursors not specified as
“FOR UPDATE OF.” Ambiguous cursors are treated as updateable.

ALL Blocking occurs for read-only cursors and cursors not specified as
“FOR UPDATE OF.” Ambiguous cursors are treated as read-only.

NO Blocking does not occur for any cursors. Ambiguous cursors are
treated as read-only.

For details of these types of row blocking, refer to the PREP and BIND command
descriptions in the Command Reference manual.

If no option is specified on the PREP and BIND commands, the default row blocking
type is UNAMBIG. For the command line processor and call level interface, the default
row blocking type is ALL.

Refer to the SQL Reference for more information about cursors.

 Tuning Queries
This section provides specific considerations and guidelines to help you fine-tune the
SQL statements in an application program. As a general rule, these guidelines may
help design a program that minimizes the use of system resources and the amount of
time needed to access data in a very large table. Depending on the amount of
optimization that takes place when the SQL statement is compiled, you may not need
to fine-tune your SQL statements. The SQL compiler can rewrite your SQL into more
efficient forms. See “Query Rewrite by the SQL Compiler” on page 466 and “Adjusting
the Optimization Class” on page 406.

 Chapter 10. Application Considerations 415

It is also important to note that the access plan chosen by the optimizer is also affected
by other factors, including environmental considerations and system catalog statistics. If
you conduct benchmark testing of the performance of your applications, you can make
adjustments that can improve the access plan.

Using a select-statement
The SQL language is a high-level language with much flexibility. As a result, different
select-statements can be written to retrieve the same data. However, the performance
can vary for the different forms and the different classes of optimization.

It is important to note the SQL compiler (including the query rewrite and optimization
phases) must choose an access plan that will produce the result set for the query you
have coded. Therefore, as noted in many of the following guidelines, you should code
your query to obtain only the data that you need. This ensures that the SQL compiler
can choose the best access plan for your needs.

The guidelines for using a select-statement are:

¹ Specify only those columns that are needed in the select list. Although it may be
simpler to specify all columns with an asterisk (*), needless processing and
returning of unwanted columns can result.

¹ Limit the number of rows selected by using predicates to restrict the answer set to
only those rows that you require. (See “Predicate Terminology” on page 487 for
more information about the different types of predicates and their relative impact on
performance.)

¹ When the number of rows you want to use is significantly less than the total
number of rows that could be returned, specify the OPTIMIZE FOR clause for the
select-statement. This clause affects both the choice of access plans as well as the
number of rows that are blocked in the communication buffer. (For more
information, see “Row Blocking” on page 414.)

| ¹ When the number of rows to be retrieved is small, there is no need to specify the
| OPTIMIZE FOR k ROWS clause in addition to the FETCH FIRST n ROWS ONLY
| clause. However, if n is large and you want optimize by getting the first k rows
| quickly with a possible delay for the subsequent k rows, specify both. The
| communication buffers are sized based on the lesser of n and k.

| SELECT EMPNAME, SALARY FROM EMPLOYEE

| ORDER BY SALARY DESC

| OPTIMIZE FOR 20 ROWS

| FETCH FIRST 100 ROWS ONLY

¹ Specifying the FOR READ ONLY (or FOR FETCH ONLY) clause can improve
performance by allowing your query to take advantage of row blocking. It can also
improve data concurrency since exclusive locks will never be held on the rows
retrieved by a query with this clause specified. It also allows additional query
rewrites to take place.

¹ Specifying the FOR UPDATE OF clause can also improve performance, for cursors
that will be updated, by allowing the database manager to initially choose more

416 Administration Guide

appropriate locking levels, thus avoiding potential deadlocks (see “Deadlocks” on
page 399) and lock conversions (see “Lock Conversion” on page 398).

¹ Avoid numeric data type conversions whenever possible. When comparing values,
it may be more efficient to use items that have the same data type. If conversions
are necessary, inaccuracies due to limited precision, and performance costs due to
run-time conversions, may result.

If possible, use the following data types:

– Character rather than varying character for short columns
– Integer rather than float or decimal
– Datetime rather than character.
– Numeric rather than character.

¹ SQL statements containing clauses or operations such as DISTINCT, or ORDER
BY, require data to be ordered to perform the operation. If you want to decrease
the chances that a sort operation will be used, omit the specification of these
clauses if they are not required.

¹ To check for existence of rows in a table, do not use:

SELECT COUNT(*) FROM

and check for a value of nonzero unless you know that the table will be very small.
As the table gets larger, counting all the rows will impact performance. Instead it is
suggested that you try to select a single row. This can be done by either opening a
cursor and fetching one row, or by doing a single-row (SELECT INTO) selection.
(Remember to check for the SQLCODE -811 error if more than one row is found
from the select-statement.)

¹ If update activity is low and your tables are large, define indexes on columns that
are frequently used as predicates.

The following suggestions apply specifically to select-statements that access several
tables.

¹ Use join predicates when joining tables. (A join predicate is a comparison between
two columns from different tables in a join.)

¹ Define indexes on the columns in the join predicate to allow the join to be
processed more efficiently. This will also benefit UPDATE and DELETE statements
that contain select-statements that access several tables.

¹ If possible, avoid using expressions or OR clauses with join predicates. In this
case, some join techniques cannot be used by the database manager and, as a
result, the most efficient join method may not be chosen.

| ¹ If possible, ensure that the tables joined are both partitioned on the join column in
| a partitioned database environment.

For more information see “Join Concepts” on page 489.

Also, refer to the Embedded SQL Programming Guide for more information on coding
SQL statements with joins

 Chapter 10. Application Considerations 417

 and subqueries.

 Compound SQL
Compound SQL allows you to group several SQL statements into a single executable
block. The SQL statements contained within the block (sub-statements) could be
executed individually; however, by creating and executing a block of statements, you
reduce the database manager overhead. For remote clients, compound SQL also
reduces the number of requests that have to be transmitted across the network.

There are two types of compound SQL:

 ¹ Atomic

The application receives a response from the database manager when all
sub-statements have completed successfully, or when one sub-statement ends in
an error. If one sub-statement ends in an error, the entire block is considered to
have ended in an error, and any changes made to the database within the block
will be rolled back.

 ¹ Not Atomic

The application receives a response from the database manager when all
sub-statements have completed. All sub-statements within a block are executed
regardless of whether or not the preceding sub-statement completed successfully.
The group of statements can only be rolled back if the unit of work containing the
NOT ATOMIC compound SQL is rolled back.

¹ Atomic compound SQL is not supported with DB2 Connect

¹ Compound SQL is supported within Database Application Remote Interface (DARI)
routines (stored procedures)

¹ Compound SQL is supported through:

– Embedded static SQL (refer to the SQL Reference manual)
– DB2 Call Level Interface (refer to the CLI Guide and Reference manual).

Performance Considerations and Character Conversion
When your application and database are not using the same code page, a mapping of
the data from one code page to the other code page takes place, if possible. To
properly map data between application and database code pages, some data
conversion may be required.

This mapping and data conversion introduce a certain amount of overhead into the
processing time for applications that are running in a code page that is different from
the database code page. Your application's performance can be improved if the
application and database are using the same code page or the identity collating
sequence.

Character conversion can occur in the following situations:

418 Administration Guide

¹ When a client or application accessing a database is running in a code page that is
different from the code page of the database.

Database conversion will occur on the database server machine: From the
application code page to the database code page; and, from the database
code page to the application code page.

¹ When a client or application importing (or loading) a file runs in a code page
different from the file being imported (or loaded).

¹ When DB2 Connect is used to access data on a DRDA server.

Character conversion will not occur for:

 ¹ File names.
¹ Data targeted for, or coming from, a column assigned the FOR BIT DATA attribute,

or data used in an SQL operation whose result is FOR BIT or BLOB data.
¹ A DB2 product or platform that does not have a supported conversion function to,

or from, EUC or UCS-2 installed. You receive an SQLCODE -332 (SQLSTATE
57017) when running your application.

For more information about EUC code page support and National Language Support
(NLS) considerations, see the Appendix O, “National Language Support (NLS)” on
page 1125 appendix later in this book.

Depending on the operating system environment DB2 database managers use a
conversion function and conversion tables, or DBCS conversion APIs, when converting
multi-byte code pages.

Note: Character string conversions between multi-byte code pages, like DBCS with
EUC, may result in either an increase or a decrease in the length of the string.

Code points assigned to different characters in a country's PC DBCS, EUC, and UCS-2
code sets may produce different results when sorting the same characters. If sorting is
required across code sets for different countries, you should see the Appendix O,
“National Language Support (NLS)” on page 1125 appendix later in this book.

Extended UNIX Code (EUC) Code Page Support
Use of host variables that use graphic data in C or C++ applications require special
considerations including special precompiler, application performance, and application
design issues.

If applications are developed requiring EUC code sets, you should see the API
Reference manual.

Database and client application support for graphic (that is, double byte character) data
must overcome the two bytes wide restriction when dealing with many characters found
in both the Japanese and Traditional Chinese EUC code pages. Graphic data from
these EUC code pages is stored and manipulated using the UCS-2 code set.

 Chapter 10. Application Considerations 419

 Stored Procedures
In a database application environment, many situations are repetitive; for example,
receiving a fixed set of data, performing the same multiple requests against a database,
or returning a fixed set of data. Stored procedures permit one call to a remote database
to execute a preprogrammed procedure. One call may represent several accesses to
the database.

Processing a single SQL statement for a remote database requires sending two
transmissions: one request and one receive. However, an application can contain many
SQL statements. Without stored procedures, many transmissions are required for an
application to complete its work.

When a database client uses a stored procedure, it requires only two transmissions for
the entire process, thereby reducing the number of network transmissions. To invoke a
stored procedure, the requesting application must connect to the database containing
the procedure before calling it.

Typically these stored procedures are run in processes separate from the database
agents. This separation requires that the stored procedure and agent processes must
communicate through a router. To obtain the best possible performance for a stored
procedure, it is possible to identify a stored procedure as being “trusted,” or “not
fenced”, and as a result, run the procedure directly in the database agent process.
What do we mean by “trusted” and “not fenced”?

¹ Not fenced refers to the fact that there is nothing separating the stored procedure
from the database control structures that are used by the database agent.

¹ Trusted indicates that as an administrator, you are confident that the stored
procedure will not accidentally or maliciously damage the database control
structures. That is, you trust them to operate in a fashion which will not jeopardize
your database integrity.

Both of these terms mean the same thing, that is, if your stored procedure is “not
fenced”, then your stored procedure is “trusted”. Due to the associated risk of damaging
your database, you should only use not fenced stored procedures when you need to
obtain the maximum possible performance benefits. In addition, you should ensure that
the procedure is well coded and has been thoroughly tested before allowing it to run as
a not fenced stored procedure. If a fatal error does occur while running one of these not
fenced stored procedures, the database manager will determine whether the error
occurred in the application or database manager code, and perform the appropriate
recovery.

There are two ways to create a stored procedure as being not fenced:

¹ Use the CREATE PROCEDURE command and specify the NOT FENCED clause.
¹ Put the procedure in a special directory, as defined in the Quick Beginnings

manual for your platform. (This method does not work for Java stored procedures.)

To run a stored procedure, the end-user running the application that calls the procedure
must have one of the following privileges at run time:

420 Administration Guide

¹ EXECUTE or CONTROL privilege for the package associated with the stored
procedure

¹ SYSADM or DBADM authority

For information on writing programs using stored procedures, refer to the Embedded
SQL Programming Guide manual.

Activating a Database
When a database is started, several types of data are cached. For example, data
buffers are cached in the buffer pool, and packages and dynamic SQL statements are
cached in the package cache.

If frequent, short periods occur during which no user is connected to the database, and
these periods are interspersed with other periods during which a few users are
connected to the database, the benefits provided by caching are lost because the
cache is frequently destroyed. To avoid this situation, consider activating the database
by issuing the following command:

DB2 ACTIVATE DATABASE database

This command activates the specified database and starts up all necessary services, so
that the database is available for connection and use by any application. Databases
initialized by ACTIVATE DATABASE can be shut down by DEACTIVATE DATABASE
or by db2stop. For more information about these commands, see the Command
Reference manual.

Parallel Processing of Applications
“Introduction to Parallelism in DB2 Universal Database” on page xxix describes the
various parallel environments supported by DB2. Applications run in some
environments (such as those that make use of Inter-query parallelism) can effectively
ignore the environment. Applications run in other environments, however, can modify
certain settings to maximize performance.

A type of parallel environment supported by DB2 is one which requires symmetric
multi-processor (SMP) machines. In this environment, more than one processor shares
access to the database. This allows parallel execution of complex SQL requests which
can be divided among the processors.

You can specify the degree of parallelism to implement when compiling your application
by using the CURRENT DEGREE special register, or the DEGREE bind option.
"Degree" simply refers to the number of concurrently executing parts of a query. There
is no strict relation between the number of processors and the value selected for the
degree of parallelism. The total number of processors available for use in your
hardware platform need not be requested while running your applications; you can
select more or less than this number.

Each degree of parallelism adds to the system memory and CPU overhead.

 Chapter 10. Application Considerations 421

As a result of using a number of degrees of parallelism, some configuration parameters
could be modified to use this parallelism more effectively. Configuration parameters
controlling the amount of shared memory and prefetching should be reviewed and
modified as necessary in an environment with a high degree of parallelism. See
“Parallel” on page 696 for a list of parameters related to parallel operations and
partitioned database environments.

There is a database manager configuration parameter, intra_parallel, that enables or
disables instance parallelism support. The default is "NO" for a uni-processor system
and "YES" for SMP machines. An upper limit, or maximum, for the run time degree of
parallelism is established in the database configuration parameter, max_querydegree.
There is a database configuration parameter, dft_degree, to specify the default value for
the CURRENT DEGREE special register and the DEGREE bind option.

For more information on the application use and implications from using more than one
degree of parallelism, see the Embedded SQL Programming Guide manual.

| If a query is run with DEGREE = ANY, the database manager chooses the degree of
| intra-partition parallelism based on a number of factors including the number of
| processors and the characteristics of the query. The actual degree used at runtime may
| be lower than the number of processors depending on these factors.

| The degree of parallelism is determined by the SQL optimizer when the statement is
| compiled and may be adjusted before query execution depending on the database
| activity. The degree of parallelism may be lower than that chosen by the SQL optimizer
| if the system is heavily utilized. This occurs since intra-partition parallelism aggressively
| uses system resources to reduce the elapsed time of the query which may adversely
| affect the performance of other database users.

| The degree of parallelism chosen by the SQL optimizer can be found by using the SQL
| Explain Facility to display the access plan. The degree of parallelism used at runtime
| can be found by using the database System Monitor. See Chapter 14, “SQL Explain
| Facility” on page 509 and Appendix N, “SQL Explain Tools” on page 1089 for more
| information on the SQL Explain Facility and related tools. Refer to the System Monitor
| Guide and Reference for additional monitor information.

| Note: The "degree" of parallelism can be set independent of the hardware
| environment. This means that you can use a degree of parallelism without
| having an SMP machine. For example, "I/O-bound" queries on a uni-processor
| machine may benefit from declaring a degree of "2" or more. In this case, the
| uni-processor may not have to wait for input or output tasks to complete before
| working on a new query. Declaring a degree of "2" or more does not directly
| control I/O parallelism on a uni-processor machine. Utilities such as LOAD can
| control I/O parallelism independent from such a declaration. The keyword ANY
| can also be used when changing the dft_degree. The use of ANY means that
| the optimizer determines the degree of intra-partition parallelism.

In many cases, database agents are used to coordinate parallel execution. See
“Database Agents” on page 551 for more information, and a list of the various
database manager configuration parameters.

422 Administration Guide

 Chapter 11. Environmental Considerations

 In addition to the factors you should consider when you are designing and coding your
application (described in Chapter 10, “Application Considerations” on page 387), there
are environmental factors that can influence the access plan chosen for your
application:

¹ Configuration Parameters Affecting Query Optimization
¹ Nodegroup Impact on Query Optimization
¹ Table Space Impact on Query Optimization
¹ Indexing Impact on Query Optimization

Also refer to Chapter 12, “System Catalog Statistics” on page 435 for more information
about factors that affect the SQL optimizer.

When tuning your applications and environment, you should rebind your applications
after you make changes in any of the above areas. This ensures that the best access
plan is being used.

Configuration Parameters Affecting Query Optimization
 Several configuration parameters affect the access plan chosen by the SQL compiler.
Many of these are appropriate to a single-partition database and some are only
appropriate to a partitioned database. When working with configuration parameters in a
partitioned database, it is recommended that the values used for each parameter be the
same on all partitions.

Following is a list of configuration parameters that affect the access plan chosen by the
SQL compiler:

¹ “Buffer Pool Size (buffpage)” on page 608.

When selecting the access plan, the optimizer considers the I/O cost of fetching
pages from disk to the buffer pool. In its calculations, the optimizer will estimate the
number of I/Os required to satisfy a query. This estimate includes a prediction of
buffer pool usage, since additional physical I/Os are not required to read rows in a
page that is already in the buffer pool. The optimizer considers the value of the
npages column in the BUFFERPOOLS system catalog tables in estimating whether
a page will be found in the buffer pool.

The I/O costs of reading the tables can have an impact on :

– How two tables are joined, as described in “Outer versus Inner Determination”
on page 492.

– Whether an unclustered index will be used to read the data (see “Clustered
Indexes” on page 483).

You can have more than one buffer pool in a database. You can also have more
than one buffer pool in a partitioned database. The new buffer pool can be
selectively added to each of the partitions in the database or across all partitions.

 Copyright IBM Corp. 1993, 1998 423

The npages column in the BUFFERPOOLS and BUFFERPOOLSNODE system
catalog tables are used for estimating in a partitioned database.

| ¹ “Default Degree (dft_degree)” on page 683.

| The dft_degree configuration parameter specifies the default value for the
| CURRENT DEGREE special register and the DEGREE bind option. A value of one
| (1) means no intra-partition parallelism. A value of minus one (-1) means the
| optimizer determines the degree of intra-partition parallelism based on the number
| of processors and the type of query.

¹ “Default Query Optimization Class (dft_queryopt)” on page 683.

When compiling SQL queries, you can use the query optimization class to direct
the optimizer to use different degrees of optimization. For more information on
selecting a suitable query optimization class, see “Adjusting the Optimization Class”
on page 406.

¹ “Average Number of Active Applications (avg_appls)” on page 649.

 The avg_appls parameter is used by the SQL optimizer to help estimate how
much of the buffer pool will be available at run-time for the access plan chosen.
Higher values for this parameter can influence the optimizer to choose an access
plan for queries that will be more conservative in its buffer pool usage. A value of 1
for this parameter will cause the optimizer to treat the entire buffer pool as being
available to the application.

¹ “Sort Heap Size (sortheap)” on page 621.

 A sort is considered to be “piped” if it does not require a temporary table to store
the final, sorted list of data. That is, the results of the sort can be read in a single,
sequential access. Piped sorts result in better performance than non-piped sorts
and will be used if possible. (See “Influence of Sorting on the Optimizer” on
page 503 for a definition of non-piped sorts compared to piped sorts.)

When choosing an access plan, the optimizer estimates the cost of the sort
operations, including evaluating whether a sort can be piped, by:

– Estimating the amount of data to be sorted
– Looking at the sortheap parameter to determine if there is enough space for

the sort to be piped.

¹ “Maximum Storage for Lock List (locklist)” on page 615 and “Maximum Percent of
Lock List Before Escalation (maxlocks)” on page 639.

When the isolation level (see “Concurrency” on page 387) being used is
repeatable read (RR) , the SQL optimizer will consider the values of the locklist
and maxlocks parameters to determine whether it is likely that row level locks will
be escalated to a table level lock. If the optimizer predicts that lock escalation will
occur for a table access, then it will choose a table level lock for the access plan,
rather than incurring the overhead of lock escalation during the execution of the
query.

¹ “CPU Speed (cpuspeed)” on page 706.

424 Administration Guide

The CPU speed is used by the SQL optimizer to estimate the cost of performing
certain operations. The optimizer uses these CPU cost estimations along with
various I/O cost estimations to select the best access plan for a query.

The CPU speed of a machine can have a significant influence on the access plan
chosen. This configuration parameter is automatically set to an appropriate value
when the database is installed or migrated. You should only adjust this parameter
if you are modelling a production environment on a test system, or to assess the
impact of a hardware change. Using this parameter to model a different hardware
environment allows you to observe the access plan that will be chosen for that
environment.

¹ “Statement Heap Size (stmtheap)” on page 623.

 The size of the statement heap does not influence the optimizer in choosing
different access paths; however, it can affect the amount of optimization that will be
performed for complex SQL statements.

If the stmtheap parameter is not set large enough, you may receive an SQL
warning indicating that there is not enough memory available to process the
statement. For example, SQLCODE +437 (SQLSTATE 01602) can indicate that the
amount of optimization that has been used to compile a statement is less than the
amount that you requested when you specified the query optimization class. (See
“Adjusting the Optimization Class” on page 406 for more information.)

¹ “Maximum Query Degree of Parallelism (max_querydegree)” on page 700.

 When this parameter has a value of "ANY", then the optimizer chooses the degree
of parallelism to be used. If other than "ANY" is present, then the user-specified
value is used to determine the degree of parallelism for the application.

¹ “Communications Bandwidth (comm_bandwidth)” on page 705.

 Communications bandwidth is used by the optimizer to determine access paths.
The optimizer uses the value in this parameter to estimate the cost of performing
certain operations between the database partition servers of a partitioned
database.

For additional information, see “Tuning Configuration Parameters” on page 597.

Nodegroup Impact on Query Optimization
In partitioned databases, collocation of tables is recognized by the optimizer and used
when determining the best access plan for a query. The assumption is that tables that
are frequently involved in join queries should, when divided among partitions in a
partitioned database, ideally have the rows from each table being joined located on the
same database partition. During the join operation, the collocation of the data from both
tables that are part of the join would prevent the need to move data from one partition
to another. Placing both tables in the same nodegroup ensures that the data from the
tables is collocated together.

See “Table Collocation” on page 41 for more information on collocating tables.

 Chapter 11. Environmental Considerations 425

Also, within a partitioned database, the spreading of the data over more partitions
reduces the estimated time (or cost) to execute a query. The number of tables, the
location of the data in those tables, and the type of query (whether a join is required as
noted above) all affect the cost of the query.

Table Space Impact on Query Optimization
 Certain characteristics of your table spaces can affect the access plan chosen by the
SQL compiler:

¹ Physical disk characteristics

Physical disk characteristics can have a significant impact on the I/O cost
associated when executing a query. When selecting an access plan the SQL
optimizer considers these I/O costs, including any cost differences for accessing
data from different table spaces. Two columns in the SYSCAT.TABLESPACES
system catalog are used by the optimizer to help estimate the I/O costs of
accessing data from a table space:

– OVERHEAD, which provides an estimate (in milliseconds) of the time required
by the physical disk before any data is read into memory. This overhead
activity includes the disk's I/O controller overhead as well as the disk latency
time, which includes the disk seek time.

 You may use the following formula to help you estimate the overhead cost:

OVERHEAD = average seek time in milliseconds

+ 0.5 * rotational latency

where:

- 0.5 represents an average overhead of one half rotation
- Rotational latency is calculated, in milliseconds for each full rotation, as

follows:

1 / RPM * 60 * 1000

where you:
¹ Divide by rotations per minute to get minutes per rotation
¹ Multiply by 60 seconds per minute
¹ Multiply by 1000 milliseconds per second.

– TRANSFERRATE, which provides an estimate (in milliseconds) of the time
required to read one page of data into memory.

 You may use the following formula to help you estimate the transfer cost in
milliseconds per page:

| TRANSFERRATE = 1 / spec_rate * 1000 / 1,024,000 * page_size

where:

- spec_rate represents the disk specification for the transfer rate, in MB per
second

- Divide by spec_rate to get Seconds per MB
- Multiply by 1000 milliseconds per second

426 Administration Guide

- Divide by 1,024,000 bytes per MB
| - Multiply by page the size (either 4 KB or 8 KB)

Each of the containers assigned to a table space may reside on different physical
disks. For best results, all physical disks used for a given table space should have
the same OVERHEAD and TRANSFERRATE characteristics. If these
characteristics are not the same, you should use the average when setting the
values for OVERHEAD and TRANSFERRATE.

You can obtain media specific values for these columns from the hardware
specifications or through experimentation. These values may be specified on the
CREATE TABLESPACE and ALTER TABLESPACE statements.

This I/O cost information could influence the optimizer in a number of ways,
including whether or not to use an index to access the data, and which table to
select for the inner and outer tables in a join.

 ¹ Prefetching

When considering the I/O cost of accessing data from a table space, the optimizer
will also consider the potential impact that prefetching data and index pages from
disk can have on the query performance. Prefetching data and index pages can
reduce the overhead and waiting time associated with reading the data into the
buffer pool. For more information, see “Prefetching Data into the Buffer Pool” on
page 539.

The optimizer uses the information from the PREFETCHSIZE and EXTENTSIZE
columns in SYSCAT.TABLESPACES to estimate the amount of prefetching that will
occur for a table space. The EXTENTSIZE can only be set when creating a table
space (for example using the CREATE TABLESPACE statement), while
PREFETCHSIZE can be set when creating a table space and also using the
ALTER TABLESPACE statement.

 The following shows an example of the syntax to change the characteristics of the
RESOURCE table space:

ALTER TABLESPACE RESOURCE

 PREFETCHSIZE 64

 OVERHEAD 19.3

 TRANSFERRATE 0.9

After making any changes to your table spaces you should consider rebinding your
applications and use the RUNSTATS utility to collect the latest statistics about the
indexes to ensure the best access plans are being used.

Indexing Impact on Query Optimization
It is important to remember that you do not decide when an index should be used; the
database manager makes the decision based on the available table and index
information. However, you play an important role in the process by creating the
necessary indexes that can improve performance. It is also important for you to collect
statistics about the indexes (using the RUNSTATS utility) after you create an index, or
change the prefetch quantity (as mentioned above), and on an ongoing basis to keep

 Chapter 11. Environmental Considerations 427

the statistics up to date. This means you must understand the kinds of indexes that
you can create and the ways to create them.

Indexing versus No Indexing
For each table referenced in a database query, if no index exists on the table, then a
table scan must be performed on that table. The larger the table, the longer a table
scan takes. A table scan occurs when the database manager sequentially accesses
every row of a table. This can be compared to an index scan that occurs when the
database manager accesses data using an index. (See “Index Scan Concepts” on
page 477.)

An index will be selected for use if the optimizer estimates that an index scan will be
faster than a table scan. Index files generally are smaller and require less time to read
than an entire table, particularly as tables grow larger. In addition, the entire index may
not need to be scanned. The predicates applied to the index reduce the number of
rows to be read from the data pages.

Each index entry consists of a search-key value and a pointer to the row containing that
value. The values are arranged in ascending or descending order of the search-key
value, which makes it possible to bracket the search, given the right predicates. An
index can also be used to obtain rows in an ordered sequence, eliminating the need for
the database manager to sort the rows after they are read from the table.

| A unique index may contain include columns in addition to the search-key value and
| row pointer.

Note: You cannot control whether an index is used by the database manager. For
example, the result of a query cannot be guaranteed to be produced in an
ordered sequence simply by the existence of an index on the table being
queried. The database manager may use this index during the processing of the
query but is not required to. Only the existence of an ORDER BY clause can
“guarantee” the order of a result set.

 Indexes can reduce access time significantly; however, indexes can also have adverse
effects on performance. Before creating indexes, consider the effects of multiple
indexes on disk space and processing time:

¹ Each index takes up a certain amount of storage or disk space. The exact amount
is dependent on the size of the table and the size and number of columns included
in the index.

¹ Each INSERT or DELETE operation performed on a table requires additional
updating of each index on that table. This is also true for each UPDATE operation
that changes an index key.

¹ The LOAD utility rebuilds any existing indexes.
| ¹ The indexfreespace MODIFIED BY parameter can be specified on the LOAD
| command to override the index PCTFREE used when the index was created.

¹ Each index potentially adds an alternative access path for a query, which the
optimizer will consider, and therefore increases the query compilation time.

Indexes should be carefully chosen to address the needs of the application program.

428 Administration Guide

To determine whether an index is used in a specific package you may use the SQL
Explain facility, described in Chapter 14, “SQL Explain Facility” on page 509.

Guidelines for Indexing
Which indexes should be created depends on the data and its intended uses. The
following guidelines can help you determine which indexes would be most useful:

¹ Define primary keys and unique keys, wherever they apply, by using the CREATE
UNIQUE INDEX statement. (Refer to the SQL Reference for more information.)
Unique indexes can help the optimizer avoid performing certain operations such as
sorts.

| ¹ Define unique indexes with include columns to improve the performance of data
| retrieval. Columns are good candidates for INCLUDE columns of unique indexes if
| they:

| – Are accessed frequently and therefore would benefit from index-only access

| – Are not required to limit the range of index scans

| – Do not affect the ordering or uniqueness of the index key.

| See “Creating an Index” on page 120 for more information on INCLUDE columns.
¹ Use indexes to optimize frequent queries to tables with more than a few data

pages, as can be determined by the NPAGES column in the SYSCAT.TABLES
catalog view:

– Create an index on any column you will use when joining tables.

– Create an index on any column from which you will be searching for particular
values on a regular basis.

¹ Avoid creating indexes that are partial keys of other index keys on the columns.
For example, if there is an index on columns a, b, and c, then a second index on
columns a and b is not generally useful.

¹ Use indexes on foreign keys to improve performance of delete and update
operations on the parent table.

¹ Use indexes on columns that will frequently be used to sort the data.
¹ In creating a multiple-column index, if you have more than one choice for the first

key column, choose the one most often specified with the “=” predicate or specify
the columns with the greatest number of distinct values first.

¹ Creating indexes, arbitrarily on all columns, not only consumes much disk space,
but also causes prepare times to be large. This will be particularly true for complex
queries, against which an optimization class with dynamic programming join
enumeration is used. (See “Adjusting the Optimization Class” on page 406).

¹ The following provides a rule-of-thumb for the typical number of indexes you will
define for a table. This number is based on the primary use of your database:

– For online transaction processing (OLTP) environments, you should only have
one or two indexes

– For query (read-only) environments, you could have more than five indexes
– For mixed query/OLTP environments, you could have between two and five

indexes.

 Chapter 11. Environmental Considerations 429

| ¹ Consider defining a clustering index to help keep newly inserted rows clustered
| according to that index. A clustering index should significantly reduce the need for
| reorganizing the table.

| Note: When a clustering index is defined, the table should be loaded with a free
| space reserved on each data page to allow inserts to take place on those
| pages. (Free space is reserved by using the PCTFREE keyword on the
| ALTER TABLE statement; or, the pagefreespace MODIFIED BY clause of
| the LOAD command.)

| ¹ Consider using the PCTFREE keyword when creating indexes. PCTFREE reserves
| space on index pages for future updates to the index. This may reduce the
| frequency of page splits and increase performance.

The following are typical circumstances in which creating an index can improve
performance:

¹ An index can be created on columns that are used in WHERE clauses of the
queries and transactions that are most frequently processed.

The WHERE clause:

WHERE WORKDEPT='A01' OR WORKDEPT='E21'

will generally benefit from an index on WORKDEPT, unless those values occur
frequently.

¹ An index can be created on a column or columns to order the rows in collating
sequence. Ordering is required not only in the ORDER BY clause, but also by
other features, such as the DISTINCT and GROUP BY clauses.

The following example uses the DISTINCT clause:

SELECT DISTINCT WORKDEPT

 FROM EMPLOYEE

The database manager can use an index defined for ascending or descending
order on WORKDEPT to eliminate duplicate values. This same index could also be
used to group values in the following example with a GROUP BY clause:

SELECT WORKDEPT, AVERAGE(SALARY)

 FROM EMPLOYEE

GROUP BY WORKDEPT

¹ An index can be created to name each column that is referenced in a statement.
When an index is specified in this way, the resulting index-only access means data
can be retrieved more efficiently by avoiding table access.

For example, assume the following SQL statement is issued:

 SELECT LASTNAME

 FROM EMPLOYEE

WHERE WORKDEPT IN ('A00','D11','D21')

If an index is defined for the WORKDEPT and LASTNAME columns of the EMPLOYEE table,
the statement might be processed more efficiently by scanning the index than by
scanning the entire table. Note that since the predicate is on WORKDEPT, this column
should be the first column of the index.

430 Administration Guide

| ¹ Include columns on an index is another way to improve the use of indexes on
| tables. Using the previous example, you could define unique index as:

| CREATE UNIQUE INDEX x ON employee (workdept) INCLUDE (lastname)

| Specifying lastname as an include column rather than as part of the index key
| means that lastname is stored only on the leaf pages of the index.

Performance Tips for Administering Indexes
The following can help you understand how performance can be impacted by properly
using and managing indexes:

 1. Index Creation

| When creating indexes on large tables, and having an SMP machine, consider
| setting intra_parallel to YES (1) or SYSTEM (-1) to take advantage of parallel
| performance improvements.

Multiple processors can be used to scan and sort data. The only time when it is not
advantageous to have multiple processors during index creation occurs when the
indexsort database configuration parameter is NO. (The default for the parameter
is YES). The parameter controls whether sorting of index keys is done during index
creation.

2. Index Table Space

 Indexes may be stored in a different table space from that used to store other
table data. This can allow for more efficient use of DASD devices by reducing the
movement of read/write heads. You can also create your index table spaces so
they will be stored on faster physical devices.

A table space may also be assigned a separate buffer pool which may protect the
index pages from being pushed out of the buffer by the presence of lots of data
pages.

When indexes are not placed in separate table spaces, both data and index pages
use the same extent size and prefetch quantity. If you use a different table space
for indexes, you have the option of selecting different values for all the
characteristics of a table space. Since indexes are typically smaller than tables and
are spread over fewer containers, it is common to find smaller extent sizes such as
8 and 16. For more information see, “Index Page Prefetch” on page 484. Use of
faster devices for a table space will be considered by the SQL optimizer, as
described in “Table Space Impact on Query Optimization” on page 426. For more
information about table spaces, see “Designing and Choosing Table Spaces” on
page 43.

3. Degree of Clustering

If your SQL statement requires ordering (for example, ORDER BY, GROUP BY,
DISTINCT) and there is an appropriate index to satisfy the ordering, there may be
times that the database manager does not choose the index. This could happen
when:

 Chapter 11. Environmental Considerations 431

¹ Index clustering is poor (see the CLUSTERRATIO and CLUSTERFACTOR
columns of SYSCAT.INDEXES)

¹ The table is small enough that it is cheaper to scan the table and sort the
answer set in memory

¹ There are competing indexes for accessing the table.

| It is recommended that you perform a REORG, or a sort and LOAD, after creating
| a clustering index. In general a table can only be clustered on one index. Your
| tables and indexes should be built in the sequence of the clustering index for that
| table. A clustering index attempts to maintain a particular order of data, improving
| the CLUSTERRATIO or CLUSTERFACTOR statistics collected by the RUNSTATS
| utility.

| You should also consider using PCTFREE when altering a table before loading or
| reorganizing that table. In order for clustering to be maintained, each table needs
| to have space available on each data page for additional inserts. When the space
| is available, additional inserts are able to be clustered with the existing data. As a
| result, you will want to consider loading your data into the table after leaving a
| percentage of free space on each page for the clustering of additional data. You
| can do this by first creating the table, then altering the table with the PCTFREE
| parameter. In a similar way, before reorganizing your data, you should consider
| altering the table with the PCTFREE parameter. Otherwise, the reorganization will
| eliminate all extra space if PCTFREE has not been set.

| Clustering is not currently maintained during updates. That is, if one updates a
| record such that its key value in the clustering index is changed, the record will not
| necessarily be moved to a new page to maintain the clustering order. To maintain
| clustering, instead of using UPDATE, use DELETE and then INSERT.

 4. RUNSTATS Utility

After creating a new index, you should use the RUNSTATS utility to collect index
statistics. These statistics allow the optimizer to determine whether using the index
can improve access performance. See “Collecting Statistics Using the RUNSTATS
Utility” on page 436 for more information on this topic.

5. Reorganizing an Index

To get the best performance you can from your indexes, you should consider
reorganizing your indexes periodically. Updates to your tables may cause index
page prefetch to become less effective. To keep the effectiveness of index page
prefetch you must reorganize the index.

You can reorganize the index by either dropping and re-creating the index, or by
using the REORG utility. For more information, see “Reorganizing Table Data” on
page 548.

| To prevent having to re-organize often, you can specify PCTFREE when creating
| an index. Specifying the PCTFREE parameter during index creation results in free
| space being left on each index leaf page as it is created. As a result, during future
| activity involving the index, records can be inserted into the index with less
| likelihood of causing index page splits. Index page splits cause index pages to not
| be contiguous nor sequential. This results in decreased ability to perform index

432 Administration Guide

| page prefetching. Choosing an appropriate PCTFREE for an index may eliminate
| or reduce the frequency when you have to reorganize indexes.

| Note: The PCTFREE specified when you create the index is used when the index
| is re-created during reorganization.

Dropping and re-creating the index gets a new set of pages that are roughly
contiguous and sequential. This improves index page prefetch when it occurs.

Although more costly to accomplish, the REORG utility also ensures clustering of
the data pages. This clustering has greater benefit for index scans accessing a
significant number of data pages.

If you work in a symmetric multi-processor (SMP) system environment, the REORG
utility will use multiple processors when intra_parallel is YES or ANY.

 6. Use EXPLAIN

Periodically, run EXPLAIN on your most frequently used queries and check that
each of your indexes is used at least once. If an index is not used in any query,
consider dropping that index.

Also, use EXPLAIN to see if table scans on large tables are processed as the inner
of nested loop joins. This would indicate that an index on the join predicate column
is either missing or thought to be ineffective at applying the join predicate. Or,
perhaps the join predicate is not present.

 Chapter 11. Environmental Considerations 433

434 Administration Guide

Chapter 12. System Catalog Statistics

When optimizing SQL queries, the decisions made by the SQL compiler are heavily
influenced by the optimizer's model of the database contents. This data model is used
by the optimizer to estimate the costs of alternative access paths that could be used to
resolve a particular query.

A key element in the data model is the set of statistics gathered about the data
contained in the database and stored in the system catalog tables. This includes
statistics for tables, indexes, columns, and user-defined functions (UDFs). A change in
the data statistics can result in a change in the choice of access plan selected as the
most efficient method of accessing the desired data. After running statistics, you may
want to rebind applications.

Examples of the statistics available which help define the data model to the optimizer
include:

¹ The number of pages in a table and the number of pages that are not empty
¹ The degree to which rows have been moved from their original page to other

(overflow) pages.
¹ The number of rows in a table
¹ The number of distinct values in a column
¹ The degree of clustering of an index. That is, the extent to which the physical

sequence of rows in a table follows an index.
¹ The number of index levels and the number of leaf pages in each index
¹ The number of occurrences of frequently used column values (see “Collecting and

Using Distribution Statistics” on page 442)
¹ The distribution of column values across the range of values present in the column

(see “Collecting and Using Distribution Statistics” on page 442)
¹ Cost estimates for user-defined functions (UDFs).

Statistics for objects are updated in the system catalog tables only when explicitly
requested. Some or all of the statistics may be updated by:

¹ Using the RUNSTATS (run statistics) utility (see “Collecting Statistics Using the
RUNSTATS Utility” on page 436)

¹ Using LOAD, with statistics collection options specified
¹ Coding SQL UPDATE statements that operate against a set of predefined catalog

views (see “User Update-Capable Catalog Statistics” on page 454). Note that
statistics for user-defined functions must be updated using this technique (see
“Updating Statistics for User-Defined Functions” on page 459). Except for UDFs,
the catalogs should only be updated manually for modelling a production
environment on a test system or for “what-if analysis.” Statistics should not be
updated on production systems.

Additional Information:

The SYSCAT and SYSSTAT catalogs contain information on the statistics gathered.
See Appendix J, “Catalog Views” on page 965:

 Copyright IBM Corp. 1993, 1998 435

¹ For information about all the catalog views and the columns they contain.
¹ For information about all the update-capable catalog views and the columns they

contain. You can also refer to this section if you are only interested in the statistical
columns of the catalog table.

¹ For information about table statistics.
¹ For information about column statistics.
¹ For information about column distribution statistics.
¹ For information about index statistics.
¹ For information about user-defined function statistics.

Collecting Statistics Using the RUNSTATS Utility
The RUNSTATS utility updates statistics in the system catalog tables to help with the
query optimization process. Without these statistics, the database manager could make
a decision that would adversely affect the performance of an SQL statement. The
RUNSTATS utility allows you to collect statistics on the data contained in the tables,
indexes, or both tables and indexes.

Use the RUNSTATS utility to collect statistics based on both the table and the index
data to provide accurate information to the access plan selection process in the
following situations:

¹ When a table has been loaded with data, and the appropriate indexes have been
created.

¹ When a table has been reorganized with the REORG utility.
¹ When there have been extensive updates, deletions, and insertions that affect a

table and its indexes. (“Extensive” in this case may mean that 10 to 20 percent of
the table and index data has been affected.)

¹ Before binding application programs whose performance is critical
¹ When comparison with previous statistics is desired. Running statistics on a

periodic basis permits the discovery of performance problems at an early stage, as
described below.

¹ When the prefetch quantity is changed.
¹ When you have used the REDISTRIBUTE NODEGROUP utility.

When you are working in a partitioned database, collect the statistics related to a table
and its indexes by executing the RUNSTATS operation at a single node. (The node at
which the utility executes is determined by whether the node at which you issue the
command contains table data or not. See “The Database Partition Where RUNSTATS
is Executed” on page 437 for details.) Because the statistics stored in the catalogs are
supposed to represent table-level information, the node-level statistics collected by the
database manager are multiplied where appropriate by the number of nodes across
which the table is partitioned. This provides an approximation of the actual statistics
that would be collected by executing RUNSTATS at every node and aggregating these
statistics.

Note: The DB2 query optimizer assumes that attribute values (data) are placed
equally and evenly across the database partitions of the system. If the
placement of data is not equal, you should run this command on a database
partition that you think has a representative table distribution.

436 Administration Guide

The Database Partition Where RUNSTATS is Executed
When you invoke RUNSTATS on a table, you must be connected to the database in
which the table is stored, but the database partition from which you issue the command
does not have to contain a partition for this table:

¹ If you issue RUNSTATS from a database partition that contains a partition for the
table, the utility executes at this database partition.

¹ If you issue RUNSTATS from a database partition that does not contain a table
partition, the request is sent to the first database partition in the nodegroup that
holds a partition for the table. The utility then executes at this database partition.

 Analyzing Statistics
Analyzing the statistics can indicate when reorganization is necessary. Some of these
indications are:

¹ Clustering of indexes

If cluster ratio statistics are collected, their value will be in the range from 0 to 100.
If cluster factor statistics are collected, their value will be a number between 0 and
1. Only one of these two clustering statistics will be recorded in the
SYSCAT.INDEXES catalog. In general, only one of the indexes in a table can have
a high degree of clustering. A value of -1 is used to indicate that no statistics are
available.

If you wish to compare ratio values, multiply the cluster factor by 100 to obtain a
percentage value for the amount of clustering.

Index scans that are not index-only accesses might perform better with higher
cluster ratios. A low cluster ratio leads to more I/O for this type of scan, since after
the first access of each data page, it is less likely that the page is still in the buffer
pool the next time it is accessed. Increasing the buffer size can improve the
performance of an unclustered index. (See “Understanding List Prefetching” on
page 541 for information about how the database manager can improve index
scan performance for indexes with low cluster ratios and see “Clustered Indexes”
on page 483 for information about how the optimizer uses index statistics.)

If the table data was initially clustered with respect to a certain index, and the
above clustering information indicates that the data is now poorly clustered for that
same index, you may wish to reorganize the table to re-cluster the data with
respect to that index.

¹ Overflow of rows

The overflow number indicates the number of rows that do not fit on their original
pages. This can occur when VARCHAR columns are updated with longer values.
In such cases, a pointer is kept at the row's original location. This can hurt
performance, because the database manager must follow the pointer to find the
row's contents, which increases the processing time and may also increase the
number of I/Os.

 Chapter 12. System Catalog Statistics 437

As the number of overflow rows grows higher, the potential benefit of reorganizing
your table data also increases. Reorganizing the table data will eliminate the
overflowing of rows.

¹ Comparison of file pages

The number of pages with rows can be compared with the total number of pages
that a table contains. Empty pages will be read for a table scan. Empty pages can
occur when entire ranges of rows are deleted.

As the number of empty pages grows higher, so does the need for a table
reorganization. Reorganizing the table can compress the amount of space used by
a table, by reclaiming these empty pages. In addition to more efficient use of disk
space, reclaiming unused pages can also improve the performance of table scan,
since fewer pages will be read into the buffer pool.

¹ Number of leaf pages

The number of leaf pages predicts how many index page I/Os are needed for a
complete scan of an index.

Random update activity can cause page splits to occur that increase the size of the
index beyond the minimum amount of space required. When indexes are rebuilt
during the reorganization of a table, it is possible to build each index with the
minimum amount of space possible. For more information on the minimum space
requirements for an index, see “Creating an Index” on page 120 and “Indexing
Impact on Query Optimization” on page 427.

| Note: A default of ten percent free space is left on each index page when the
| indexes are rebuilt. You can increase the free space amount by using the
| PCTFREE parameter when first creating the index. Then, whenever you
| reorganize the index, the PCTFREE value is used. Having a free space
| larger than ten percent may be important if you wish to reduce the number
| of times you need to reorganize the index. The free space is used to
| accomodate additional index inserts.

RUNSTATS can also help you determine how performance is related to changes in
your database. The statistics show the data distribution within a table. When used
routinely, RUNSTATS provides data about tables and indexes over a period of time,
thereby allowing performance trends to be identified for your data model as it evolves
over time.

Ideally, you should rebind application programs after running statistics, because the
query optimizer may choose a different access plan given the new statistics.

If you do not have enough time available to collect all of the statistics at one time, you
may choose to periodically run RUNSTATS to update only a portion of the statistics that
could be gathered. If inconsistencies are found as a result of activity on the table
between the periods where you run RUNSTATS with a selective partial update, then a
warning message (SQL0437W, reason code 6) is issued. For example, you first use
RUNSTATS to gather table distribution statistics. Subsequently, you use RUNSTATS to
gather index statistics. If inconsistencies are detected as a result of activity on the table,
then the table distribution statistics are dropped and the warning message is issued. It

438 Administration Guide

is recommended that you run RUNSTATS to gather table distribution statistics when
this happens.

You should periodically use RUNSTATS to gather both table and index statistics at
once, to ensure that the index statistics are synchronized with the table statistics. Index
statistics retain most of the table and column statistics collected from the last run of
RUNSTATS. If the table has been modified extensively since the last time its table
statistics were gathered, gathering only the index statistics for that table will leave the
two sets of statistics out of synchronization.

You may wish to collect statistics based only on index data in the following situations:

¹ A new index has been created since the utility was performed and you do not want
to re-collect statistics on the table data.

¹ There have been a lot of changes to the data that affect the first column of an
index.

The RUNSTATS utility allows you to collect varying levels of statistics. For tables, you
can collect basic level statistics or you can also collect distribution statistics for the
column values within a table (see “Collecting and Using Distribution Statistics” on
page 442). For indexes, you can collect basic level statistics or you can also collect
detailed statistics which can help the optimizer better estimate the I/O cost of an index
scan. (See “Clustered Indexes” on page 483 for information about these “detailed”
statistics).

| Note: Statistics are not collected for LONG or large object (LOB) columns. For row
| types, the table level statistics NPAGES, FPAGES, and OVERFLOW are not
| collected for a sub-table.

The following tables show the catalog statistics that are updated by the RUNSTATS
utility:

Table 39. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES)

Statistic Description RUNSTATS Option

Table Indexes

FPAGES number of pages being
used by a table

Yes Yes

NPAGES number of pages
containing rows

Yes Yes

OVERFLOW number of rows that
overflow

Yes No

CARD number of rows in table
(cardinality)

Yes Yes (Note 2)

Note:

1. For a partitioned database, the values for each statistic are estimated from the value of the count at
the database partition multiplied by the number of database partitions.

2. If the table has no indices defined and you request statistics for indexes, no new CARD statistics are
updated. The previous CARD statistics are retained.

 Chapter 12. System Catalog Statistics 439

Table 40. Column Statistics (SYSCAT.COLUMNS and SYSSTAT.COLUMNS)

Statistic Description RUNSTATS Option

Table Indexes

COLCARD column cardinality Yes (Note 1) Yes (Note 2)

AVGCOLLEN average length of
column

Yes Yes (Note 2)

HIGH2KEY second highest value in
column

Yes Yes (Note 2)

LOW2KEY second lowest value in
column

Yes Yes (Note 2)

Note:

1. COLCARD is estimated for all columns in the table. In a partitioned database, if the column is the
single-column partitioning key for the table, the value of the count is estimated as the count at the
database partition multiplied by the number of database partitions.

2. Column statistics are gathered for the first column in the index key.

Table 41 (Page 1 of 2). Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)

Statistic Description RUNSTATS Option

Table Indexes

NLEAF number of index leaf
pages

No Yes (Note 3)

NLEVELS number of index levels No Yes

CLUSTERRATIO degree of clustering of
table data

No Yes (Note 2)

CLUSTERFACTOR finer degree of clustering No Detailed (Notes 1,2)

DENSITY Ratio (percentage) of
SEQUENTIAL_PAGES
to number of pages in
the range of pages
occupied by the index
(Note 4)

No Yes

FIRSTKEYCARD number of distinct values
in first column of the
index

No Yes (Note 3)

FIRST2KEYCARD number of distinct values
in first two columns of
the index

No Yes (Note 3)

FIRST3KEYCARD number of distinct values
in first three columns of
the index

No Yes (Note 3)

FIRST4KEYCARD number of distinct values
in first four columns of
the index

No Yes (Note 3)

440 Administration Guide

Table 41 (Page 2 of 2). Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)

Statistic Description RUNSTATS Option

Table Indexes

FULLKEYCARD number of distinct values
in all columns of the
index

No Yes (Note 3)

PAGE_FETCH_PAIRS page fetch estimates for
different buffer sizes

No Detailed (Notes 1,2)

SEQUENTIAL_PAGES number of leaf pages
located on disk in index
key order, with few or no
large gaps between
them

No Yes

Note:

1. Detailed index statistics are gathered by specifying the DETAILED clause on the RUNSTATS
command, or by specifying A, Y or X for the statsopt parameter when calling the RUNSTATS API.

2. CLUSTER_FACTOR and PAGE_FETCH_PAIRS are not collected with the DETAILED clause unless
the table is of a respectable size. If the table is greater than about 25 pages, then CLUSTERFACTOR
and PAGE_FETCH_PAIRS statistics are collected. In this case, CLUSTERRATIO is -1 (not collected).
If the table is a relatively small table, only CLUSTERRATIO is filled in by RUNSTATS while
CLUSTERFACTOR and PAGE_FETCH_PAIRS are not. If the DETAILED clause is not specified, only
the CLUSTERRATIO statistic is collected.

3. For a partitioned database, the value is estimated from the value of the count at the database partition
multiplied by the number of database partitions.

4. This statistic measures the percentage of pages in the file containing the index that belongs to that
table. For a table having only one index defined on it, DENSITY should normally be 100. DENSITY is
used by the optimizer to estimate how many irrelevant pages from other indexes might be read, on
average, if the index pages were prefetched.

Table 42 (Page 1 of 2). Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST)

Statistic Description RUNSTATS Option

Table Indexes

DISTCOUNT If TYPE is Q, the
number of distinct values
that are less than or
equal to COLVALUE
statistics

Distribution (Note 2) No

TYPE Indicator of whether row
provides frequent-value
or quantile statistics

Distribution No

SEQNO Frequency ranking of a
sequence number to
help uniquely identify the
row in the table

Distribution No

 Chapter 12. System Catalog Statistics 441

Table 42 (Page 2 of 2). Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST)

Statistic Description RUNSTATS Option

Table Indexes

COLVALUE Data value for which
frequency or quantile
statistic is collected

Distribution No

VALCOUNT Frequency with which
the data value occurs in
column, or for quantiles,
the number of values
less than or equal to the
data value (COLVALUE)

Distribution No

Note:

1. Column distribution statistics are gathered by specifying the WITH DISTRIBUTION clause on the
RUNSTATS command, or by specifying A, D or Y for the statsopt parameter when calling the
RUNSTATS API. Note that distribution statistics may not be gathered unless there is a sufficient lack
of uniformity in the column values.

2. DISTCOUNT is collected only for columns that are the first key column in an index.
3. In a partitioned database, VALCOUNT is the estimated value of the count at the database partition

multiplied by the number of database partitions. The exception to this is where the TYPE is 'F' and the
column is the single-column partitioning key of the table, in which case VALCOUNT is simply the
count at the database partition.

For more information about column distribution statistics, see “Collecting and Using
Distribution Statistics.”

Statistics for user-defined functions are not collected by the RUNSTATS utility. You
must manually update the statistics for these functions. See “User Update-Capable
Catalog Statistics” on page 454 and “Updating Statistics for User-Defined Functions” on
page 459.

Collecting and Using Distribution Statistics
The database manager can collect, maintain, and use “frequent-value statistics” and
“quantiles,” two types of statistics that estimate, in a concise way, the distribution of the
data values in a column. Use of these statistics by the optimizer can lead to
significantly more accurate estimates of the number of rows in a column that satisfy
given equality or range predicates. These more accurate estimates in turn increase the
likelihood that the optimizer will choose an optimal plan.

You may collect statistics about the distribution of these data values by using the WITH
DISTRIBUTION clause on the RUNSTATS command. While collecting these additional
statistics results in additional overhead for the RUNSTATS utility, the SQL compiler can
use this information to help ensure the best access plan is chosen.

In some cases, the database manager will not collect distribution statistics and no error
will be returned. For example:

442 Administration Guide

¹ The num_freqvalues and num_quantiles configuration parameters are set to zero
(0) to indicate that you do not want to collect distribution statistics. For more
information about these parameters, see:

– “How Many Statistics Should You Keep?” on page 446
– “Number of Frequent Values Retained (num_freqvalues)” on page 684
– “Number of Quantiles for Columns (num_quantiles)” on page 685.

¹ The distribution of the data is known without the use of distribution statistics. For
example, a column that does not have any data value appearing more than once,
that is, each data value in the column is unique.

¹ The data type is one for which statistics are not collected. That is, the column is
defined using a long field or large object data type.

¹ In the case of quantiles, there is only one non-NULL value in the column.

Distribution statistics are exact for the first column of indexes. For each additional
column, the database manager uses hashing and sampling techniques to estimate the
distribution statistics because calculating exact statistics would require too much time
and memory to be practical. These techniques are accepted statistical methods with
accepted degrees of accuracy.

The following topics provide information to help you understand and use these
distribution statistics:

¹ Understanding Distribution Statistics
¹ When Should You Use Distribution Statistics?
¹ How Many Statistics Should You Keep?
¹ How Does the Optimizer Use Distribution Statistics?
¹ Modelling Production Databases
¹ Rules for Updating Distribution Statistics for Columns

Understanding Distribution Statistics
For a fixed number N>=1, the N most frequent values in a column consist of the data
value having the highest frequency (that is, number of duplicates), the data value
having the second highest frequency, and so forth, down to the data value having the
Nth highest frequency. The corresponding frequent-value statistics consist of these “N”
data values, together with the frequencies of these values in the column.

The K-quantile for a column is the smallest data value, V, such that at least “K” rows
have data values less than or equal to V. A K-quantile can be computed by sorting the
rows in the column according to increasing data values; the K-quantile is the data value
in the Kth row of the sorted column.

For example, consider the following column of data:

 Chapter 12. System Catalog Statistics 443

 C1

 --

 B

 E

 Y

 B

 F

 G

 E

 A

 J

 K

 E

 L

This column can be sorted to obtain the following ordered values:

 C1'

 --

 A

 B

 B

 E

 E

 E

 F

 G

 J

 K

 L

 Y

There are nine distinct data values in column C1. For N = 2, the frequent value
statistics are:

 SEQNO COLVALUE VALCOUNT

----- --------- --------

 1 E 3

 2 B 2

If the number of quantiles being collected is 5 (see “Number of Quantiles for Columns
(num_quantiles)” on page 685), then the K-quantiles for this column for K = 1, 3, 6, 9,
and 12 are:

 SEQNO COLVALUE VALCOUNT

----- --------- --------

 1 A 1

 2 B 3

 3 E 6

 4 J 9

 5 Y 12

444 Administration Guide

In this example, the 6-quantile is equal to E since the sixth row in the sorted column
has a data value equal to E (and 6 rows in the original column have data values less
than or equal to E).

The same quantile value may occur more than once, if it is a common value. A
maximum of two quantiles will be stored for a given value. The first of these two
quantiles has a COLCOUNT that gives the number of rows strictly less than
COLVALUE, and the second of the two quantiles gives the number of rows less than or
equal to COLVALUE.

When Should You Use Distribution Statistics?
To decide whether distribution statistics should be kept for a given table, two factors
should be considered:

1. The use of static or dynamic SQL.

Distribution statistics are most useful for dynamic SQL and static SQL that does
not use host variables. When using SQL with host variables, the optimizer makes
limited use of distribution statistics.

2. The lack of uniformity in the data distributions.

Keeping distribution statistics is advisable if at least one column in the table has a
highly “non-uniform” distribution of data and the column appears frequently in
equality or range predicates; that is, in clauses such as the following:

WHERE C1 = KEY;

WHERE C1 IN (KEY1, KEY2, KEY3);

WHERE (C1 = KEY1) OR (C1 = KEY2) OR (C1 = KEY3);

WHERE C1 <= KEY;

WHERE C1 BETWEEN KEY1 AND KEY2;

There can be two types of non-uniformity in a data distribution, possibly occurring
together:

¹ One type of non-uniformity occurs when the data, instead of being evenly
spread out between the highest and lowest data value, is clustered in some
sub-interval, as in the following column, where the data is clustered in the
range (5,10):

 C1

 0.0

 5.1

 6.3

 7.1

 8.2

 8.4

 8.5

 9.1

 93.6

 100.0

It can be useful to keep quantiles when this type of non-uniformity is present.

 Chapter 12. System Catalog Statistics 445

The following example shows a query that can be used to help determine
whether a high degree of non-uniformity exists in a column.

SELECT C1, COUNT(*) AS OCCURRENCES

 FROM T1

GROUP BY C1

ORDER BY OCCURRENCES DESC;

¹ Another type of non-uniformity occurs when certain data values have a much
higher frequency than other data values, as in a column having data values
with the following frequencies:

 Data Value Frequency

 ---------- ---------

 20 5

 30 10

 40 10

 50 25

 60 25

 70 20

 80 5

It can be useful to keep both quantiles and frequent-value statistics when this
type of non-uniformity is present.

You may collect distribution statistics by using the WITH DISTRIBUTION clause on the
RUNSTATS command, or by specifying D, E, or A for the statsopt parameter when
calling the RUNSTATS API. For more information, refer to the Command Reference or
the API Reference manuals.

How Many Statistics Should You Keep?
Keeping a large number of column distribution statistics can lead to improved selection
of access plans by the optimizer, but the cost of collecting these statistics and
compiling your queries increases accordingly. The size of the statistics heap (see
“Statistics Heap Size (stat_heap_sz)” on page 624) may place limitations on the
number of statistics that can be computed and stored.

When distribution statistics are requested, the database manager stores a default of the
10 most frequent values for a column. Keeping between 10 and 100 frequent values
should suffice for most practical situations. Ideally, enough frequent-value statistics
should be retained so that the frequencies of the remaining values are either
approximately equal to each other or negligible compared to the frequencies of the
most frequent values.

To set the number of frequent values to collect, use the num_freqvalues configuration
parameter, as described in “Number of Frequent Values Retained (num_freqvalues)” on
page 684. The database manager may collect less than this number of frequent value
statistics, because these statistics will only be collected for data values that occur more
than once. If collecting only quantile statistics, this parameter can be set to zero.

When distribution statistics are requested, the database manager stores a default of 20
quantiles for a column. This value guarantees a maximum estimation error of

446 Administration Guide

approximately 2.5% for any simple single-sided range predicate (>, >=, <, or <=), and a
maximum error of 5% for any BETWEEN predicate. A rough rule of thumb for
determining the number of quantiles is:

¹ Determine the maximum error that is tolerable in estimating the number of rows of
any range query, as a percentage, P

¹ The number of quantiles should be approximately 100/P if the predicate is a
BETWEEN predicate, and 50/P if the predicate is any other type of range predicate
(<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4% for
BETWEEN predicates and of 2% for ">" predicates. In general, at least 10 quantiles
should be kept, and more than 50 quantiles should be necessary only for extremely
non-uniform data.

To set the number of quantiles, use the num_quantiles configuration parameter as
described in “Number of Quantiles for Columns (num_quantiles)” on page 685. If
collecting only frequent value statistics, this parameter can be set to zero. Setting this
parameter to “1” will also result in no quantile statistics being gathered since the entire
range of values will fit in one quantile.

How Does the Optimizer Use Distribution Statistics?
Why collect and store distribution statistics? The answer lies in the fact that an
optimizer needs to estimate the number of rows in a column that satisfy an equality or
range predicate in order to select the least expensive access plan. The more accurate
the estimate, the greater the likelihood that the optimizer will choose the optimal access
plan. For example, consider the query

SELECT C1, C2

 FROM TABLE1

WHERE C1 = 'NEW YORK'

AND C2 <= 10

and suppose that there is an index on C1 and an index on C2. One possible access
plan is to use the index on C1 to retrieve all rows with C1 = 'NEW YORK' and then check
each retrieved row to see if C2 <= 10. An alternative plan is to use the index on C2 to
retrieve all rows with C2 <= 10 and then check each retrieved row to see if C1 = 'NEW

YORK'. Typically, the primary cost in executing the above query is the cost of the
retrieving the rows, and so it is desirable to choose the plan the that requires the
minimum number of retrievals. To choose the best plan, it is necessary to estimate the
number of rows that satisfy each predicate.

When you do not request distribution statistics, the optimizer maintains only the
second-highest data value (HIGH2KEY), second-lowest data value (LOW2KEY),
number of distinct values (COLCARD), and number of rows (CARD) for a column. The
number of rows that satisfy an equality or range predicate is then estimated under the
assumption that the frequencies of the data values in a column are all equal and the
data values are evenly spread out over the interval (LOW2KEY, HIGH2KEY).
Specifically, the number of rows satisfying an equality predicate C1 = KEY is estimated

 Chapter 12. System Catalog Statistics 447

as CARD/COLCARD, and the number of rows satisfying a range predicate C1 BETWEEN

KEY1 AND KEY2 is estimated as:

KEY2 - KEY1

 ------------------- x CARD (1)

HIGH2KEY - LOW2KEY

These estimates are accurate only when the true distribution of data values in a column
is reasonably uniform. When distribution statistics are unavailable and either the
frequencies of the data values differ widely from each other or the data values are
clustered in a few sub-intervals of the interval (LOW_KEY,HIGH_KEY), the estimates
can be off by orders of magnitude and the optimizer may choose a less than optimal
access plan.

When distribution statistics are available, the errors described above can be greatly
reduced by using frequent-value statistics to compute the number of rows that satisfy
an equality predicate and using frequent-value statistics and quantiles to compute the
number of rows that satisfy a range predicate.

Example of Impact on Equality Predicates:

Consider first a predicate of the form C1 = KEY. If KEY is one of the N most frequent
values, then the optimizer simply uses the frequency of KEY that is stored in the catalog.
If KEY is not one of the N most frequent values, the optimizer estimates the number of
rows that satisfy the predicate under the assumption that the (COLCARD - N)
non-frequent values have a uniform distribution. That is, the number of rows is
estimated as:

CARD - NUM_FREQ_ROWS

 -------------------- (2)

COLCARD - N

where NUM_FREQ_ROWS is the total number of rows with a value equal to one of the
N most frequent values.

For example, consider a column (C) for which the frequency of the data values is as
follows:

 Data Value Frequency

 ---------- ---------

 1 2

 2 3

 3 40

 4 4

 5 1

Suppose that frequent-value statistics based on only the most frequent value (that is, N
= 1) are available. For this column, CARD = 50 and COLCARD = 5. For the predicate C
= 3, exactly 40 rows satisfy it. Assuming a uniform data distribution, the number of rows
that satisfy the predicate is estimated as 50/5 = 10, an error of -75%. Using
frequent-value statistics, the number of rows is estimated as 40, with no error.

448 Administration Guide

Similarly, 2 rows satisfy the predicate C = 1. Without frequent-value statistics, the
number of rows that satisfy the predicate is estimated as 10, an error of 400%. You
may use the following formula to calculate the estimation error (as a percentage):

estimated rows - actual rows

 ----------------------------- X 100

 actual rows

Using the frequent value statistics (N = 1), the optimizer will estimate the number of
rows containing this value using the formula (2) given above, for example:

(50 - 40)

--------- = 3

(5 - 1)

and the error is reduced by an order of magnitude as shown below:

3 - 2

------- = 50%

 2

The number of rows that satisfy a range predicate can be estimated using quantiles, as
illustrated by the following examples. Consider a column (C) given by:

 C

 0.0

 5.1

 6.3

 7.1

 8.2

 8.4

 8.5

 9.1

 93.6

 100.0

and suppose that K-quantiles are available for K = 1, 4, 7, and 10:

 K K-quantile

 --- ----------

 1 0.0

 4 7.1

 7 8.5

 10 100.0

First consider the predicate C <= 8.5. For the data given above, exactly 7 rows satisfy
this predicate. Assuming a uniform data distribution and using formula (1) from above,
with KEY1 replaced by LOW2KEY, the number of rows that satisfy the predicate is
estimated as:

8.5 - 5.1

---------- x 10 *= 0

93.6 - 5.1

 Chapter 12. System Catalog Statistics 449

where *= means “approximately equal to.” The error in this estimation is approximately
-100%.

Using quantiles, the number of rows that satisfy this same predicate (C <= 8.5) is
estimated by locating 8.5 as one of the K-quantile values and using the corresponding
value of K, namely 7, as the estimate. In this case, the error is reduced to 0.

Now consider the predicate C <= 10. Exactly 8 rows satisfy this predicate. Unlike the
previous example, the value 10 is not one of the stored K-quantiles. Assuming a
uniform data distribution and using formula (1), the number of rows that satisfy the
predicate is estimated as 1, an error of -86%.

Using quantiles, the optimizer estimates the number of rows that satisfy the predicate
as r_1 + r_2, where r_1 is the number of rows satisfying the predicate C <= 8.5 and
r_2 is the number of rows satisfying the predicate C > 8.5 AND C <= 10.. As in the
above example, r_1 = 7. To estimate r_2 the optimizer uses linear interpolation:

100.0 - 10.0

r_2 *= ------------ x (# rows with value > 8.5 and <= 100.0)

100.0 - 8.5

100.0 - 10.0

= ----------- x (10 - 7)

100.0 - 8.5

 *= 3

The final estimate is r_1 + r_2 *= 10, and the absolute error is reduced by more than
a factor of 3.

The reason that the use of quantiles improves the accuracy of the estimates in the
above examples is that the real data values are "clustered" in the range 5 - 10, but the
standard estimation formulas assume that the data values are spread out evenly
between 0 and 100.

The use of quantiles also improves accuracy when there are significant differences in
the frequencies of different data values. Consider a column having data values with the
following frequencies:

 Data Value Frequency

 ---------- ---------

 20 5

 30 5

 40 15

 50 50

 60 15

 70 5

 80 5

Suppose that K-quantiles are available for K = 5, 25, 75, 95, and 100:

450 Administration Guide

 K K-quantile

 ---- ----------

 5 20

 25 40

 75 50

 95 70

 100 80

Also suppose that frequent value statistics are available based on the 3 most frequent
values.

Consider the predicate C BETWEEN 20 AND 30. From the distribution of the data values,
you can see that exactly 10 rows satisfy this predicate. Assuming a uniform data
distribution and using formula (1), the number of rows that satisfy the predicate is
estimated as:

30 - 20

------- x 100 = 25

70 - 30

which has an error of 150%.

Using frequent-value statistics and quantiles, the number of rows that satisfy the
predicate is estimated as r_1 + r_2, where r_1 is the number of rows that satisfy the
predicate (C = 20) and r_2 is the number of rows that satisfy the predicate C > 20 AND
C <= 30. Using formula (2), r_1 is estimated as:

100 - 80

-------- = 5

7 - 3

Using linear interpolation, r_2 is estimated as:

30 - 20

------- x (# rows with value > 20 and <= 40)

40 - 20

30 - 20

= ------- x (25 - 5)

40 - 20

 = 10,

yielding a final estimate of 15 and reducing the error by a factor of 3.

Collecting and Using Detailed Index Statistics
| As an option, you may collect more detailed statistics on indexes that help the optimizer
| better estimate the cost of accessing a table using that index. This can be done in one
| of two ways: First, you can use the DETAILED clause on the RUNSTATS command;
| or, second, you can specify A, Y, or X for the satsopt parameter when calling the
| RUNSTATS API. The DETAILED statistics PAGE_FETCH_PAIRS and
| CLUSTERFACTOR will be collected only if the table is of a sufficient size: around 25
| pages. In this case, CLUSTERFACTOR will be a value between 0 and 1; and

 Chapter 12. System Catalog Statistics 451

| CLUSTERRATIO will be -1 (not collected). For tables smaller than 25 pages,
| CLUSTERFACTOR will be -1 (not collected), and CLUSTERRATIO will be a value
| between 0 and 100; even if the DETAILED clause is specified for an index on that
| table.

Understanding Detailed Index Statistics
The DETAILED statistics attempt to capture, in a concise way, the number of physical
I/Os that will be required to access the data pages of a table when a complete index
scan is performed under different buffer sizes. As RUNSTATS scans through the pages
of the index, it models the different buffer sizes, and gathers estimates of how often a
page fault occurs. For example, with only 1 (one) buffer page available, every new
page reference by the index will result in a page fault, and, in a worse case, every row
could reference a different page, resulting in at most CARDINALITY I/Os. At the other
extreme, when the buffer is big enough to hold the entire table (subject to the maximum
buffer size), then each of the table's NPAGES pages will be physically read exactly
once. The number of physical I/Os must therefore be a monotone, non-increasing
function of the buffer size.

RUNSTATS fits a piece-wise linear curve to these estimates, which is stored as a string
of 11 pairs in the PAGE_FETCH_PAIRS statistic. The first value in each pair is a
hypothetical buffer size, and the second value in each pair is the estimated number of
physical I/Os to fetch the data pages in a complete scan of the index, with a buffer of
that size totally available to that index scan. The optimizer then uses the
PAGE_FETCH_PAIRS statistic to estimate the number of physical I/Os for data-page
fetches in any complete or partial index scan using that index.

The shape of the curve stored in PAGE_FETCH_PAIRS for an index will depend upon
the clustering behavior of that index.

452 Administration Guide

1

1

Cardinality

Npages
Buffer Size

P
hy

si
ca

l I
/O

s

Npages

Figure 42. Three Curves for Clustered and Unclustered Indexes

There are three types of curves that are possible:

1. Curve 1 (dashed-line) is a highly-unclustered index that needs a buffer almost as
large as the table before re-referenced pages are found in the buffer. This
represents a situation in which references to the same page are widely spread
throughout the index's key values, so a medium-sized buffer isn't sufficient to avoid
re-referencing the same page multiple times. This is the worst scenario, as it
requires the most buffer space to perform well. The optimizer is likely to use the list
prefetch access strategy for such indexes, in an attempt to cluster the data-page
accesses for the qualifying key values of the index. If this index is used frequently,
it should be a prime candidate for reorganization.

2. Curve 2 (solid-line) is more locally unclustered. For very small buffers, it is as
unclustered as curve 1, but once a few buffer pages are available to contain the
most recently referenced data, the data-page hit ratio improves significantly. This
represents the somewhat favorable situation in which, although the index isn't

 Chapter 12. System Catalog Statistics 453

particularly clustered, references to the same data pages are in a close proximity to
one another among the index's key values.

3. Curve three (dotted-line) is somewhere between these two extremes, improving at
a uniform rate as the buffer is increased. This is usually the more common case for
unclustered indexes, and represents what the optimizer will assume in the absence
of DETAILED indexes.

When Should You Use Detailed Index Statistics?
You should use DETAILED index statistics when your queries reference columns that
are not all in the index. In addition, DETAILED index statistics should be used when:

¹ There are multiple unclustered indexes with varying degrees of clustering
¹ The degree of clustering is non-uniform among the key values
¹ The values in the index are updated non-uniformly.

It may be quite hard to determine these situations without previous knowledge, and
without attempting to force an index scan under varying buffer sizes and using the
monitor to observe the physical I/Os that result. Probably the cheapest way to
determine whether any of these situations are occurring is to collect the DETAILED
statistics for an index and retain them if the PAGE_FETCH_PAIRS that result are
non-linear.

User Update-Capable Catalog Statistics
The ability to update selected system catalog statistics allows you to:

¹ Model query performance on a development system using production system
statistics

¹ Perform “what if” query performance analysis.

You should not update statistics on a production system because you may hinder the
optimizer from finding the best access plan for your query.

To update the values of these statistical columns, use the SQL UPDATE statement
against the views defined in the SYSSTAT schema. You can update statistics for:

¹ Tables for which you hold explicit CONTROL privilege. You can also update
statistics for columns and indexes for these tables.

¹ User-defined functions (UDFs) that you own (see “Updating Statistics for
User-Defined Functions” on page 459 for guidance).

You can also update these statistics if your user ID has explicit DBADM authority for
the database; that is, your user ID is recorded as having DBADM authority in the
SYSCAT.DBAUTH table. Belonging to a DBADM group does not explicitly provide this
authority.

Using these views, a DBADM can see statistics rows for all users. A user without
DBADM authority can only see those rows which contain statistics for objects over
which they have CONTROL privilege.

454 Administration Guide

The following shows an example of updating the table statistics for the EMPLOYEE
table:

 UPDATE SYSSTAT.TABLES

 SET CARD = 10000,

NPAGES = 1000,

FPAGES = 1000,

OVERFLOW = 2

WHERE TABSCHEMA = 'userid'

 AND TABNAME = 'EMPLOYEE'

You must be careful when updating catalog statistics. Arbitrary updates can have a
serious impact on the performance of subsequent queries. You may wish to use any of
the following methods to replace any updates you applied to these tables:

¹ ROLLBACK the unit of work in which the changes have been made (assuming the
unit of work has not been committed).

¹ Using the RUNSTATS utility you can recalculate and refresh the catalog statistics.
¹ Update the catalog statistics to indicate that statistics have not been gathered. (For

example, setting column NPAGES to -1 indicates that the number-of-pages statistic
has not been collected.)

¹ Replace the catalog statistics with the data they contained prior to your update.
This method would only be possible if you used the db2look tool, as described in
“Modelling Production Databases” on page 461, to capture the statistics before you
made any changes.

In a some cases, the optimizer may determine that some particular statistical value or
combination of values are not valid, it will use default values and issue a warning. Such
circumstances are rare, however, since most of the validation is done when updating
the statistics.

Additional Information: For information about updating catalog statistics, see:

¹ “Rules for Updating Catalog Statistics”
¹ “Rules for Updating Table Statistics” on page 456
¹ “Rules for Updating Column Statistics” on page 456
¹ “Rules for Updating Distribution Statistics for Columns” on page 457
¹ “Rules for Updating Index Statistics” on page 458
¹ “Updating Statistics for User-Defined Functions” on page 459
¹ “Modelling Production Databases” on page 461

Rules for Updating Catalog Statistics
When you update catalog statistics, the most important general rule is to ensure that
valid values, ranges, and formats of the various statistics are stored in the statistic
views. It is also important to preserve the consistency of relationships between various
statistics.

For example, COLCARD in SYSSTAT.COLUMNS must be less than CARD in
SYSSTAT.TABLES (the number of distinct values in a column can't be greater than the
number of rows). Assume that you want to reduce COLCARD from 100 to 25, and
CARD from 200 to 50. If you update SYSCAT.TABLES first, you should get an error

 Chapter 12. System Catalog Statistics 455

(since CARD would be less than COLCARD). The correct order is to update COLCARD
in SYSCAT.COLUMNS first, then update CARD in SYSSTAT.TABLES. The situation
occurs in reverse if you want to increase COLCARD to 250 from 100, and CARD to
300 from 200. In this case, you must update CARD first, then COLCARD.

When a conflict is detected between an updated statistic and another statistic, an error
is issued. However, errors may not always be issued when conflicts arise. In some
situations, the conflict is difficult to detect and report in an error, especially if the two
related statistics are in different catalogs. For this reason, you should be careful to
avoid causing such conflicts.

The most common checks you should make, before updating a catalog statistic, are:

1. Numeric statistics must be -1 or greater than or equal to zero.

2. Numeric statistics representing percentages (for example, CLUSTERRATIO in
SYSSTAT.INDEXES) must be between 0 and 100.

| Note: For row types, the table level statistics NPAGES, FPAGES, and OVERFLOW
| are not updatable for a sub-table.

Rules for Updating Table Statistics
There are only four statistic values that you can update in sysstat.tables: CARD,
FPAGES, NPAGES, and OVERFLOW. Keep in mind that:

1. CARD must be greater than all COLCARD values in SYSSTAT.COLUMNS that
correspond to that table.

2. CARD must be greater than NPAGES.

3. FPAGES must be greater than NPAGES.

4. NPAGES must be less than or equal to any "Fetch" value in the
PAGE_FETCH_PAIRS column of any index (assuming this statistic is relevant for
the index).

5. CARD must not be less than or equal to any "Fetch" value in the
PAGE_FETCH_PAIRS column of any index (assuming this statistic is relevant for
the index).

Rules for Updating Column Statistics
When you are updating statistics in SYSSTAT.COLUMNS, follow the guidelines below.
For details on updating column distribution statistics, see “Rules for Updating
Distribution Statistics for Columns” on page 457.

1. HIGH2KEY and LOW2KEY (in SYSSTAT.COLUMNS) must adhere to the following
rules:

¹ The datatype of any HIGH2KEY, LOW2KEY value must correspond to the
datatype of the user column for which the statistic is attributed. Because
HIGH2KEY is a VARCHAR column, you must enclose the value in quotation
marks. For example, to set HIGH2KEY to 25 for an INTEGER user column,
your update statement would include SET HIGH2KEY = '25'.

456 Administration Guide

¹ The length of HIGH2KEY, LOW2KEY values must be the smaller of 33 or the
maximum length of the target column's datatype

¹ HIGH2KEY must be greater than LOW2KEY whenever there are 3 or more
distinct values in the corresponding column. In the case of less than 3 distinct
values in the column, HIGH2KEY can be equal to LOW2KEY.

2. The cardinality of a column (COLCARD statistic in SYSSTAT.COLUMNS) cannot
be greater than the cardinality of its corresponding table (CARD statistic in
SYSSTAT.TABLES).

3. No statistics are supported for columns with datatypes: LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, DBCLOB.

Rules for Updating Distribution Statistics for Columns
“User Update-Capable Catalog Statistics” on page 454 provides general information
about how to update catalog statistics. You may wish to refer to that section before
attempting to update column distribution statistics.

In order for all the statistics in the catalog to be consistent, you must exercise care
when updating the distribution statistics. Specifically, for each column, the catalog
entries for the frequent data statistics and quantiles must satisfy the following
constraints:

1. Frequent value statistics (in the SYSSTAT.COLDIST catalog)
¹ The values in column VALCOUNT must be non-increasing for increasing

values of SEQNO
¹ The number of values in column COLVALUE must be less than or equal to the

number of distinct values in the column, which is stored in column COLCARD
in catalog view SYSSTAT.COLUMNS.

¹ The sum of the values in column VALCOUNT must be less than or equal to
the number of rows in the column, which is stored in column CARD in catalog
view SYSSTAT.TABLES

¹ In most cases, the values in the column COLVALUE should lie between the
second-highest and second-lowest data values for the column, which are
stored in columns HIGH2KEY and LOW2KEY, respectively, in catalog view
SYSSTAT.COLUMNS. There may be one frequent value greater than
HIGH2KEY and one frequent value less than LOW2KEY.

2. Quantiles (in the SYSSTAT.COLDIST catalog)
¹ The values in column COLVALUE must be non-decreasing for increasing

values of SEQNO
¹ The values in column VALCOUNT must be strictly increasing for increasing

values of SEQNO
¹ The largest value in column COLVALUE must have a corresponding entry in

column VALCOUNT equal to the number of rows in the column
¹ In most cases, the values in the column COLVALUE should lie between the

second-highest and second-lowest data values for the column, which are
stored in columns HIGH2KEY and LOW2KEY, respectively, in catalog view
SYSSTAT.COLUMNS.

 Chapter 12. System Catalog Statistics 457

Suppose that distribution statistics are available for a column C1 with “R” rows and you
wish to modify the statistics to correspond to a column with the same relative
proportions of data values, but with “(F x R)” rows. To scale up the frequent-value
statistics by a factor of F, each entry in column VALCOUNT must be multiplied by F.
Similarly, to scale up the quantiles by a factor of F, each entry in column VALCOUNT
must be multiplied by F. If these rules are not followed, the optimizer may use the
wrong filter factor causing unpredictable performance when you run the query.

Rules for Updating Index Statistics
When you update the statistics in SYSSTAT.INDEXES, follow the rules described
below:

1. PAGE_FETCH_PAIRS (in SYSSTAT. INDEXES) must adhere to the following
rules:

¹ Individual values in the PAGE_FETCH_PAIRS statistic must be separated by a
series of blank delimiters.

¹ Individual values in the PAGE_FETCH_PAIRS statistic must not be longer
than 10 digits and must be less than the maximum integer value (MAXINT =
2147483647).

¹ There must always be a valid PAGE_FETCH_PAIRS value if the
CLUSTERFACTOR is greater than zero.

¹ There must be exactly 11 pairs in a single PAGE_FETCH_PAIR statistic.
¹ Buffer size entries of PAGE_FETCH_PAIRS must be ascending in value.
¹ If the buffer size value is the same as that in the previous pair, the page fetch

value must be the same as that in the previous pair.
¹ Any buffer size value in a PAGE_FETCH_PAIRS entry cannot be greater than

MIN(NPAGES, 524287) where NPAGES is the number of pages in the
corresponding table (in SYSSTAT.TABLES).

¹ “Fetches” entries of PAGE_FETCH_PAIRS must be descending in value, with
no individual “Fetches” entry being less than NPAGES. “Fetch” size values in a
PAGE_FETCH_PAIRS entry cannot be greater than the CARD (cardinality)
statistic of the corresponding table.

¹ If buffer size value is the same in two consecutive pairs, then page fetch value
must also be the same in both the pairs (in SYSSTAT.TABLES).

A valid PAGE_FETCH_UPDATE is:

 PAGE_FETCH_PAIRS =

'100 380 120 360 140 340 160 330 180 320 200 310 220 305 240 300

260 300 280 300 300 300'

where

NPAGES = 300

 CARD = 10000

CLUSTERRATIO = -1

CLUSTERFACTOR = 0.9

2. CLUSTERRATIO and CLUSTERFACTOR (in SYSSTAT.INDEXES) must adhere to
the following rules:

¹ Valid values for CLUSTERRATIO are -1 or between 0 and 100.

458 Administration Guide

¹ Valid values for CLUSTERFACTOR are -1 or between 0 and 1.
¹ At least one of the CLUSTERRATIO and CLUSTERFACTOR values must be

-1 at all times.
¹ If CLUSTERFACTOR is a positive value, it must be accompanied by a valid

PAGE_FETCH_PAIR statistic.

3. The following rules apply to FIRSTKEYCARD, FIRST2KEYCARD,
FIRST3KEYCARD, FIRST4KEYCARD, and FULLKEYCARD:

¹ FIRSTKEYCARD must be equal to FULLKEYCARD for a single-column index.
¹ FIRSTKEYCARD must be equal to COLCARD for the corresponding column.
¹ If any of these index statistics are not relevant, you should set them to -1. For

example, if you have an index with only 3 columns, set FIRST4KEYCARD to
-1.

¹ For multiple column indexes, if all the statistics are relevant, the relationship
between them must be:

FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD

<= FULLKEYCARD <= CARD

4. The following rules apply to SEQUENTIAL_PAGES and DENSITY:

¹ Valid values for SEQUENTIAL_PAGES are -1 or between 0 and NLEAF.
¹ Valid values for DENSITY are -1 or between 0 and 100.

Updating Statistics for User-Defined Functions
Using the SYSSTAT.FUNCTIONS catalog view, you may update statistics for
user-defined functions (UDFs). If these statistics are available, the optimizer will use
them when estimating costs for various access plans. If statistics are not available the
statistic column values will be -1 and the optimizer will use default values that assume
a simple UDF.

The following table provides information about the statistic columns that you may
update for UDFs:

Table 43 (Page 1 of 2). Function Statistics (SYSCAT.FUNCTIONS and SYSSTAT.FUNCTIONS)

Statistic Description

IOS_PER_INVOC Estimated number of read/write requests executed
each time a function is executed.

INSTS_PER_INVOC Estimated number of machine instructions executed
each time a function is executed.

IOS_PER_ARGBYTE Estimated number of read/write requests executed per
input argument byte.

INSTS_PER_ARGBYTES Estimated number of machine instructions executed
per input argument byte.

PERCENT_ARGBYTES Estimated average percent of input argument bytes
that the function will actually process.

INITIAL_IOS Estimated number of read/write requests executed
only the first/last time the function is invoked.

 Chapter 12. System Catalog Statistics 459

Table 43 (Page 2 of 2). Function Statistics (SYSCAT.FUNCTIONS and SYSSTAT.FUNCTIONS)

Statistic Description

INITIAL_INSTS Estimated number of machine instructions executed
only the first/last time the function is invoked.

CARDINALITY Estimated number of rows generated by a table
function.

For example, consider a UDF (EU_SHOE) that converts an American shoe size to the
equivalent European shoe size. (These two shoe sizes could be UDTs.) For this UDF,
you should set the statistic columns as follows:

¹ INSTS_PER_INVOC should be set to the estimated number of machine
instructions required to:
 – Invoke EU_SHOE

– Initialize the output string
– Return the result.

¹ INSTS_PER_ARGBYTE should be set to the estimated number of machine
instructions required to convert the input string into a European shoe size.

¹ PERCENT_ARGBYTES would be set to 100 indicating that the entire input string is
to be converted

¹ INITIAL_INSTS, IOS_PER_INVOC, IOS_PER_ARGBYTE, and INITIAL_IOS should
all be set to 0, since this UDF only performs computations.

PERCENT_ARGBYTES would be used by a function that does not always process the
entire input string. For example, consider a UDF (LOCATE) that accepts two arguments
as input and returns the starting position of the first occurrence of the first argument
within the second argument. Assume that the length of the first argument is small
enough to be insignificant relative to the second argument and, on average, 75 percent
of the second argument is searched. Based on this information,
PERCENT_ARGBYTES should be set to 75. The above estimate of the average of 75
percent is based on the following additional assumptions:

¹ Half the time the first argument will not be found resulting in the entire second
argument being searched

¹ The first argument is equally likely to appear anywhere within the second
argument, resulting in half of the second argument being searched (on average)
when the first argument is found.

INITIAL_INSTS or INITIAL_IOS can be used to record the estimated number of
machine instructions or read/write requests performed only the first or last time the
function is invoked. This could be used, for example, to record the cost of setting up a
scratchpad area.

To obtain information about I/Os and instructions used by a user-defined function, you
can use output provided by your programming language compiler or by monitoring tools
available for your operating system.

460 Administration Guide

Modelling Production Databases
Sometimes you may wish to have your test system contain a subset of your production
system's data. However, access plans selected for such a test system are not
necessarily the same as those that would be selected on the production system, unless
the catalog statistics and the configuration parameters for the test system are updated
to match those of the production system.

A productivity tool, db2look, is provided that can be run against the production database
to generate the update statements required to make the catalog statistics of the test
database match those in production. These update statements can be generated by
using db2look in mimic mode (-m option). In this case, db2look will generate a
command processor script containing all the statements required to mimic the catalog
statistics of the production database.

You can recreate database data objects, including tables and indexes, by extracting
DDL statements with db2look -e. You can run the command processor script created
from this command against another database to recreate the database. You can use
the -e option with the -m option.

After running the update statements produced by db2look, against the test system, the
test system can be used to validate the access plans to be generated in production.
Since the optimizer uses the type and configuration of the table spaces to estimate I/O
costs, the test system must have the same table space geometry or layout. That is, the
same number of containers of the same type: either SMS or DMS.

For more information on how to use this productivity tool, type the following on a
command line:

 db2look -h

You can also see the Command Reference manual.

 Chapter 12. System Catalog Statistics 461

462 Administration Guide

Chapter 13. Understanding the SQL Compiler

When an SQL query is compiled, a number of steps are performed before the “best”
access plan is either executed or written to the system catalog tables containing
information about application packages.

In a partitioned database environment, all of the work done on a SQL query by the SQL
Compiler takes place at the database partition to which you connect. Once the
executable access plan is created, the compiled query is distributed to all database
partitions in the database.

The following topics provide more information about the steps performed by the SQL
Compiler:

¹ Overview of the SQL Compiler
¹ Query Rewrite by the SQL Compiler

 ¹ Operation Merging
 ¹ Operation Movement
 ¹ Predicate Translation
¹ Data Access Concepts and Optimization
¹ Optimization Strategies for Intra-Partition Parallelism.

The following sections also provide information about factors external to the compiler
which can affect the results produced by the compiler:

¹ Chapter 10, “Application Considerations” on page 387
¹ Chapter 11, “Environmental Considerations” on page 423
¹ Chapter 12, “System Catalog Statistics” on page 435.

Chapter 14, “SQL Explain Facility” on page 509 describes how you can examine the
access plan chosen by the SQL compiler.

Overview of the SQL Compiler
 The SQL compiler performs several steps before producing an access plan that you
can execute. These steps are shown in Figure 43 on page 464.

This diagram shows that the Query Graph Model is a key component of the SQL
compiler. The query graph model is an internal, in-memory database that is used to
represent the query throughout the query compilation process as described below:

 ¹ Parse Query

The first task of the SQL compiler is to analyze the SQL query to validate the
syntax. If any syntax errors are detected, the SQL compiler stops processing and
the appropriate SQL error is returned to the application attempting to compile the
SQL statement. When parsing is complete, an internal representation of the query
is created.

 ¹ Check Semantics

 Copyright IBM Corp. 1993, 1998 463

SQL Query

Visual
Explain

db2exfmt
Tool

db2expln
Tool

SQL Compiler

Check
Semantics

Rewrite
Query

Optimize
Access Plan

Generate
Executable Code

Execute Plan

Query
Graph
Model

Access
Plan

Parse Query

Executable
Plan

Explain
Tables

Figure 43. Steps performed by SQL Compiler

The second task of the compiler is to further validate the SQL statement by
checking to ensure that the parts of the statement make sense given the other
parts. A simple example of this semantic checking ensures that the data type of the
column specified for the YEAR scalar function is a datetime data type. Also during
this second stage, the compiler adds the behavioral semantics to the query graph
model, including the effects of referential constraints, table check constraints,
triggers, and views.

464 Administration Guide

The query graph model contains all of the semantics of queries, including query
blocks, subqueries, correlations, derived tables, expressions, data types, data type
conversions, code page conversions, and partitioning keys.

 ¹ Rewrite Query

The third phase of the SQL compiler uses the global semantics provided in the
query graph model to transform the query into a form that can be optimized more
easily. See “Query Rewrite by the SQL Compiler” on page 466 for more
information.

Working in a partitioned database environment, some query operations are more
computationally intensive like those involving:

 – Aggregation
– Redistribution of rows

 – Correlated subqueries.

In this environment, with some queries, decorrelation can occur as part of the
rewrite of the query.

Any transformations that occur on a query are written back to the query graph
model. That is, the query graph model represents the rewritten query.

¹ Optimize Access Plan

 The SQL optimizer portion of the SQL compiler uses the query graph model as
input, and generates many alternative execution plans for satisfying the user's
request. It estimates the execution cost of each alternative plan, using the statistics
for tables, indexes, columns and functions, and chooses the plan with the smallest
estimated execution cost. The optimizer uses the query graph model to analyze the
query semantics and to obtain information about a wide variety of factors, including
indexes, base tables, derived tables, subqueries, correlations and recursion. That
the environment includes a partitioned database is also considered as well as the
ability to enhance the chosen plan for the possibility of intra-query parallelism in a
symmetric multi-processor (SMP) environment. This information is used by the
optimizer to help select the best access plan for the query. See “Data Access
Concepts and Optimization” on page 476 for more information.

The output from this step of the SQL compiler is an “access plan.” This access
plan provides the basis for the information captured in the Explain tables. The
information used to generate the access plan can be captured with an explain
snapshot. (See Chapter 14, “SQL Explain Facility” on page 509 for more
information on Explain topics.)

¹ Generate “Executable” Code

The final step of the SQL Compiler uses the access plan and the query graph
model to create an executable access plan, or section, for the query. This code
generation step uses information from the query graph model to avoid repetitive
execution of expressions that only need to be computed once for a query.
Examples for which this optimization is possible include code page conversions
and the use of host variables.

 Chapter 13. Understanding the SQL Compiler 465

Information about access plans for static SQL is stored in the system catalog
tables. When the package is executed, the database manager will use the
information stored in the system catalog tables to determine how to access the
data and provide results for the query. It is this information that is used by the
db2expln tool. (See Chapter 14, “SQL Explain Facility” on page 509 for more
information on Explain topics.)

It is recommended that RUNSTATS be done periodically on tables used in queries
where good performance is desired. The optimizer will then be better equipped with
relevant statistical information on the nature of the data. If RUNSTATS is not done (or
the optimizer suspects that RUNSTATS was done on empty or near empty tables), the
optimizer may either use defaults or attempt to derive certain statistics based on the
number of file pages used to store the table on disk (FPAGES).

Query Rewrite by the SQL Compiler
The SQL compiler includes a query rewrite stage which transforms SQL statements into
forms that can be optimized more easily, and as a result, can improve the access path
chosen. Rewriting queries is particularly important for queries which are very complex,
including those queries with many subqueries or many joins. Query generator tools
often create these types of very complex queries.

You can influence the number of query rewrite rules that are applied to an SQL
statement by changing the optimization class (see “Adjusting the Optimization Class” on
page 406).

You can see some of the results of the query rewrite through the use of the Explain
facility or Visual Explain.

There are three major categories of rewriting that the SQL compiler may perform:

 ¹ Operation Merging
 ¹ Operation Movement
 ¹ Predicate Translation.

 Operation Merging
| The SQL compiler will rewrite queries to merge query operations, in an attempt to
| construct the query so that it has the fewest number of operations, especially SELECT
| operations. The following examples are provided to illustrate some of the operations
| that can be merged by the SQL compiler:

| ¹ Example - View Merges

| Using views in a SELECT statement can restrict the join order of the table and can
| also introduce redundant joining of tables. By merging the views during query
| rewrite, these restrictions can be lifted.

| ¹ Example - Subquery to Join Transformations

466 Administration Guide

| The use of subqueries in a SELECT statement can force a join method and the
| selection of inner and outer tables for the join. During query rewrite, the subquery
| can sometimes be merged into the main query as a join, which gives the optimizer
| more choices to choose the most efficient access plan.

| ¹ Example - Redundant Join Elimination

| During query rewrite redundant joins can be removed to further simplify the
| SELECT statement that will be optimized.

| ¹ Example - Shared Aggregation

| When using different functions, rewriting the query can reduce the number of
| calculations that need to be done.

| ¹ Example - Summary Tables

| If they exist, summary tables can be used instead of regular tables. They are of
| smaller size and so require less processing.

Example - View Merges
Suppose you have access to the following two views of the EMPLOYEE table, one
showing employees with a high level of education and the other view showing
employees earning more than $35,000:

CREATE VIEW EMP_EDUCATION (EMPNO, FIRSTNME, LASTNAME, EDLEVEL) AS

SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL

 FROM EMPLOYEE

WHERE EDLEVEL > 17

CREATE VIEW EMP_SALARIES (EMPNO, FIRSTNAME, LASTNAME, SALARY) AS

SELECT EMPNO, FIRSTNME, LASTNAME, SALARY

 FROM EMPLOYEE

WHERE SALARY > 35000

Now suppose you perform the following query to list the employees who have a high
education level and who are earning more than $35,000:

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY

FROM EMP_EDUCATION E1,

 EMP_SALARIES E2

WHERE E1.EMPNO = E2.EMPNO

During query rewrite, these two views could be merged to create the following query:

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY

FROM EMPLOYEE E1,

 EMPLOYEE E2

WHERE E1.EMPNO = E2.EMPNO

AND E1.EDLEVEL > 17

 AND E2.SALARY > 35000

By merging the SELECT statements from the two views with the user-written SELECT
statement, the optimizer can consider more choices when selecting an access plan. In
addition, if the two views that have been merged use the same base table, additional

 Chapter 13. Understanding the SQL Compiler 467

rewriting may be performed as described in “Example - Redundant Join Elimination” on
page 468.

Example - Subquery to Join Transformations
The SQL compiler will take a query containing a subquery, such as:

SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO

 FROM EMPLOYEE

WHERE WORKDEPT IN

 (SELECT DEPTNO

 FROM DEPARTMENT

WHERE DEPTNAME = 'OPERATIONS')

and convert it to a join query of the form:

SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME, PHONENO

FROM EMPLOYEE EMP,

 DEPARTMENT DEPT

WHERE EMP.WORKDEPT = DEPT.DEPTNO

AND DEPT.DEPTNAME = 'OPERATIONS'

A join is generally much more efficient to execute than a subquery.

Example - Redundant Join Elimination
Queries can sometimes be written or generated which have unnecessary joins.
Queries such as the following could also be produced during the query rewrite stage as
described in “Example - View Merges” on page 467.

SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY

FROM EMPLOYEE E1,

 EMPLOYEE E2

WHERE E1.EMPNO = E2.EMPNO

AND E1.EDLEVEL > 17

 AND E2.SALARY > 35000

In this query, the SQL compiler can eliminate the join and simplify the query to:

SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL, SALARY

 FROM EMPLOYEE

WHERE EDLEVEL > 17

 AND SALARY > 35000

Example - Shared Aggregation
Using multiple functions within a query can generate several calculations which take
time. Reducing the number of calculations to be done within the query results in an
improved plan. The SQL compiler takes a query using multiple functions such as:

SELECT SUM(SALARY+BONUS+COMM) AS OSUM,

AVG(SALARY+BONUS+COMM) AS OAVG,

COUNT(*) AS OCOUNT

 FROM EMPLOYEE;

and transforms the query in the following way:

468 Administration Guide

 SELECT OSUM,

 OSUM/OCOUNT

 OCOUNT

FROM (SELECT SUM(SALARY+BONUS+COMM) AS OSUM,

COUNT(*) AS OCOUNT

FROM EMPLOYEE) AS SHARED_AGG;

This rewrite reduces the query from 2 sums and 2 counts to 1 sum and 1 count.

| Example - Summary Tables
| Following is an example of a multidimensional analysis that could take advantage of
| summary tables. A summary table is created with the sum and count of sales for each
| level of:

| ¹ Product hierarchy
| ¹ Location hierarchy
| ¹ Time hierarchy, composed of year, month, day.

| A wide range of queries can pick up their answers from this stored aggregate data. The
| following example calculates the sum of product group sales, by state, by month.
| Queries that can take advantage of such pre-computed sums would include:

| ¹ Sales by month and product group
| ¹ Total sales for years after 1990
| ¹ Sales for 1995 or 1996
| ¹ Sum of sales for a product group or product line
| ¹ Sum of sales for a specific product group or product line AND for 1995, 1996
| ¹ Sum of sales for a specific country.

| While the precise answer is not included in the summary table for any of these queries,
| the cost of computing the answer using the summary table could be significantly less
| than using a large base table, because a portion of the answer is already computed.
| For example:

 Chapter 13. Understanding the SQL Compiler 469

| CREATE TABLE PG_SALESSUM

| AS (

| SELECT l.id AS prodline, pg.id AS pgroup,

| loc.country, loc.state

| YEAR(pdate) AS year, MONTH(pdate) AS month,

| SUM(ti.amount) AS amount,

| COUNT(*) AS count

| FROM cube.transitem AS ti, cube.trans AS t,

| cube.loc AS loc, cube.pgroup AS pg,

| cube.prodline AS l

| WHERE ti.transid = t.id

| AND ti.pgid = pg.id

| AND pg.lineid = l.id

| AND t.locid = loc.id

| AND YEAR(pdate) > 1990

| GROUP BY l.id, pg.id, loc.country, loc.state,

| year(pdate), month(pdate)

|)

| DATA INITIALLY DEFERRED REFRESH DEFERRED;

| REFRESH TABLE SALESCUBE;

| The following are sample queries that would obtain significant performance
| improvements because they are able to use the results in the summary table that are
| already computed. The first example returns the total sales for 1995 and 1996:

| SET CURRENT REFRESH AGE=ANY

| SELECT YEAR(pdate) AS year, SUM(ti.amount) AS amount

| FROM cube.transitem AS ti, cube.trans AS t,

| cube.loc AS loc, cube.pgroup AS pg,

| cube.prodline AS l

| WHERE ti.transid = t.id

| AND ti.pgid = pg.id

| AND pg.lineid = l.id

| AND t.locid = loc.id

| AND YEAR(pdate) IN (1995, 1996)

| GROUP BY year(pdate);

| The second example returns the total sales by product group for 1995 and 1996:

470 Administration Guide

| SET CURRENT REFRESH AGE=ANY

| SELECT pg.id AS "PRODUCT GROUP",

| SUM(ti.amount) AS amount

| FROM cube.transitem AS ti, cube.trans AS t,

| cube.loc AS loc, cube.pgroup AS pg,

| cube.prodline AS l

| WHERE ti.transid = t.id

| AND ti.pgid = pg.id

| AND pg.lineid = l.id

| AND t.locid = loc.id

| AND YEAR(pdate) IN (1995, 1996)

| GROUP BY pg.id;

 Operation Movement
The SQL compiler will rewrite queries to move query operations in an attempt to
construct the query with the minimum number of operations and predicates. The
following examples are provided to illustrate some of the operations that can be moved
by the SQL compiler:

¹ Example - DISTINCT Elimination

During query rewrite, the optimizer can move where the DISTINCT operation is
performed, to reduce the cost of this operation. In the example provided, the
DISTINCT operation is removed completely.

¹ Example - General Predicate Pushdown

During query rewrite, the order of applying predicates can be changed so that more
selective predicates are applied to the query as early as possible.

¹ Example - Decorrelation

When in a partitioned database environment the movement of results sets between
database partitions is costly. Reducing the size of what must be broadcast to other
database partitions and/or the number of broadcasts is one of the objectives when
rewriting queries.

Example - DISTINCT Elimination
If the EMPNO column was defined as the primary key of the EMPLOYEE table, the
following query:

SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME

 FROM EMPLOYEE

would be rewritten by removing the DISTINCT clause:

SELECT EMPNO, FIRSTNME, LASTNAME

 FROM EMPLOYEE

In the above example, since the primary key is being selected, the SQL compiler knows
that each row returned will already be unique. In this case, the DISTINCT key word is

 Chapter 13. Understanding the SQL Compiler 471

redundant. If the query was not rewritten, the optimizer would build a plan with the
necessary processing (a sort, for example) to ensure that the columns are distinct.

Example - General Predicate Pushdown
Altering the level at which a predicate is normally applied can result in improved
performance. For example, given the following view which provides a list of all
employees in department “D11”:

CREATE VIEW D11_EMPLOYEE

(EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM)

AS SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM

 FROM EMPLOYEE

WHERE WORKDEPT = 'D11'

And given the following query:

SELECT FIRSTNME, PHONENO

 FROM D11_EMPLOYEE

WHERE LASTNAME = 'BROWN'

The query rewrite stage of the compiler will push the predicate LASTNAME = 'BROWN' up
into the view D11_EMPLOYEE. This allows the predicate to be applied sooner and
potentially more efficiently. The actual query that could be executed in this example is:

SELECT FIRSTNME, PHONENO

 FROM EMPLOYEE

WHERE LASTNAME = 'BROWN'

AND WORKDEPT = 'D11'

Pushdown of predicates is not limited to views. Other situations in which predicates
may be pushed down include UNIONs, GROUP BYs, and derived tables (nested table
expressions or common table expressions).

Example - Decorrelation
In a partitioned database environment, the SQL compiler can rewrite the following
query:

Find all the employees who are working on programming projects and are underpaid.

SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,

E.SALARY+E.BONUS+E.COMM AS COMPENSATION

FROM EMPLOYEE E, PROJECT P

WHERE P.EMPNO = E.EMPNO

AND P.PROJNAME LIKE '%PROGRAMMING%'

AND E.SALARY+E.BONUS+E.COMM <

 (SELECT AVG(E1.SALARY+E1.BONUS+E1.COMM)

FROM EMPLOYEE E1, PROJECT P1

WHERE P1.PROJNAME LIKE '%PROGRAMMING%'

AND P1.PROJNO = A.PROJNO

AND E1.EMPNO = P1.EMPNO)

472 Administration Guide

Since this query is correlated, and since both PROJECT and EMPLOYEE are unlikely
to be partitioned on PROJNO, the broadcast of each project to each database partition
is possible. In addition, the subquery would have to be evaluated many times.

The SQL compiler can rewrite the query as follows:

¹ Determine the distinct list of employees working on programming projects,
DIST_PROJS, otherwise we'll aggregate on non-distinct project numbers multiple
times, yielding incorrect results:

WITH DIST_PROJS(PROJNO, EMPNO) AS

(SELECT DISTINCT PROJNO, EMPNO

FROM PROJECT P1

WHERE P1.PROJNAME LIKE '%PROGRAMMING%')

¹ Using the distinct list of employees working on the programming projects, join this
to the employee table, to get the average compensation per project,
AVG_PER_PROJ:

AVG_PER_PROJ(PROJNO, AVG_COMP) AS

(SELECT P2.PROJNO, AVG(E1.SALARY+E1.BONUS+E1.COMM)

FROM EMPLOYEE E1, DIST_PROJS P2

WHERE E1.EMPNO = P2.EMPNO

GROUP BY P2.PROJNO)

¹ Then the new query would be:

SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,

E.SALARY+E.BONUS+E.COMM AS COMPENSATION

FROM PROJECT P, EMPLOYEE E, AVG_PER_PROG A

WHERE P.EMPNO = E.EMPNO

AND P.PROJNAME LIKE '%PROGRAMMING%'

AND P.PROJNO = A.PROJNO

AND E.SALARY+E.BONUS+E.COMM < A.AVG_COMP

The rewritten SQL query computes the AVG_COMP per project (AVG_PRE_PROJ) and can
then broadcast the result to all database partitions containing the EMPLOYEE table.

 Predicate Translation
The SQL compiler will rewrite queries to translate existing predicates to more optimal
predicates for the specific query. The following examples are provided to illustrate some
of the predicates that could be translated by the SQL compiler:

¹ Example - Addition of Implied Predicates

During query rewrite, predicates can be added to the query to allow the optimizer
to consider additional table joins when selecting the best access plan for the query.

¹ Example - OR to IN Transformations

During query rewrite, an OR predicate can be translated into an IN predicate to
allow for a more efficient access plan to be chosen. The SQL compiler can also
translate an IN predicate into an OR predicate if this transformation would allow a
more efficient access plan to be chosen.

 Chapter 13. Understanding the SQL Compiler 473

Example - Addition of Implied Predicates
The following query produces a list of the managers whose departments report to “E01”
and the projects for which those managers are responsible:

SELECT DEPT.DEPTNAME DEPT.MGRNO, EMP.LASTNAME, PROJ.PROJNAME

FROM DEPARTMENT DEPT,

 EMPLOYEE EMP,

 PROJECT PROJ

WHERE DEPT.ADMRDEPT = 'E01'

AND DEPT.MGRNO = EMP.EMPNO

 AND EMP.EMPNO = PROJ.RESPEMP

The query rewrite will add the following implied predicate:

DEPT.MGRNO = PROJ.RESPEMP

As a result of this rewrite, the optimizer can consider additional joins when it is trying to
select the best access plan for the query.

In addition to the above predicate transitive closure, query rewrite will also derive
additional local predicates based on the transitivity implied by equality predicates. For
example, the following query lists the names of the departments (whose department
number is greater than “E00”) and employees who work in that department.

SELECT EMPNO, LASTNAME, FIRSTNAME, DEPTNO, DEPTNAME

FROM EMPLOYEE EMP,

 DEPARTMENT DEPT

WHERE EMP.WORKDEPT = DEPT.DEPTNO

AND DEPT.DEPTNO > 'E00'

For this query, the rewrite stage will add the following implied predicate:

EMP.WORKDEPT > 'E00'

As a result of this rewrite, the optimizer reduces the number of rows to be joined.

Example - OR to IN Transformations
Suppose an OR clause connects two or more simple equality predicates on the same
column, as in the following example:

 SELECT *

 FROM EMPLOYEE

WHERE DEPTNO = 'D11'

OR DEPTNO = 'D21'

OR DEPTNO = 'E21'

If there is no index on the DEPTNO column, converting the OR clause to the following
IN predicate will allow the query to be processed more efficiently:

 SELECT *

 FROM EMPLOYEE

WHERE DEPTNO IN ('D11', 'D21', 'E21')

474 Administration Guide

Note: In some cases, the database manager may convert an IN predicate to a set of
OR clauses so that index ORing may be performed. See “Multiple Index
Access” on page 482 for more information about index ORing.

| Accounting for Column Correlation
| You may have applications which contain queries constructed with joins that have more
| than one join predicate joining two tables. While this may sound complicated, such a
| situation is not unusual where you are attempting to determine relationships between
| similar, related columns between tables.

| For example, a manufacturer makes products from raw material of various colors,
| elasticities and qualities. The finished product has the same color and elasticity as the
| raw material from which it is made. The manufacturer issues the query:

| SELECT PRODUCT.NAME, RAWMATERIAL.QUALITY FROM PRODUCT, RAWMATERIAL

| WHERE PRODUCT.COLOR = RAWMATERIAL.COLOR

| AND PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

| This query returns the names and raw material quality of all products. There are two
| join predicates:

| PRODUCT.COLOR = RAWMATERIAL.COLOR

| PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

| When the DB2 UDB optimizer chooses a plan for executing this query, it calculates how
| selective each of the two predicates are, and assumes that they are independent, that
| is, that all variations of elasticity occur for each color, and that conversely for each level
| of elasticity there is raw material of every color. It then uses statistics on how many
| levels of elasticity and how many different colors there are in each table to calculate the
| overall selectivity of the pair of predicates. Based on this it may choose, for example, a
| Nested Loop Join in preference to a Merge Join, or vice versa.

| However, it may be that these two predicates are not independent. For example, it may
| be that the highly elastic materials are available in only a few colors, and the very
| inelastic materials are only available in a few other colors (different from the elastic
| ones). Then the combined selectivity of the predicates is less (eliminates fewer rows)
| so the query will return more rows. To see this, imagine the extreme case where there
| is just one level of elasticity for each color and vice versa. Now either one of the
| predicates logically could be omitted entirely since it is implied by the other. The
| optimizer's choice of plan may no longer be the best, for example it may be that the
| Nested Loop join plan is selected but the Merge Join would be faster.

| With other database products, database administrators have tried to solve this
| performance problem by updating statistics in the catalog to try to make one of the
| predicates appear to be less selective, but this approach can cause unwanted
| side-effects on other queries.

| DB2 UDB's optimizer attempts to detect and compensate for correlation of join
| predicates if you:

 Chapter 13. Understanding the SQL Compiler 475

| 1. Set the DB2 registry variable DB2_CORRELATED_PREDICATES=Y (or any value
| indicating true). This registry variable will take effect after issuing a db2start.

| 2. Define unique indexes on the correlated columns, that is, on the columns of a table
| which appear in the correlated predicates.

| In the above example, you could define a unique index covering either:

| PRODUCT.COLOR, PRODUCT.ELASTICITY

| or

| RAWMATERIAL.COLOR, RAWMATERIAL.ELASTICITY

| or both.

| In order for correlation to be detected, the non-include columns of this index must be
| correlated columns, and no other columns. The index may optionally contain include
| columns.

| In general there may be more than 2 correlated columns in join predicates so you
| should ensure that you define the unique index to cover all of them.

| In many cases the correlated columns in one table form its primary key. A primary key
| is always unique so if there's a primary key on the correlated columns, there's no need
| to define another unique index.

| After doing this, ensure that statistics on tables are up to date and that they have not
| been altered away from the true values for any reason, for example to attempt to
| influence the optimizer.

| When DB2_CORRELATED_PREDICATES is true, the optimizer will use the KEYCARD
| information of unique index statistics to detect cases of correlation, and dynamically
| adjust combined selectivities of the correlated predicates, thus obtaining a more
| accurate estimate of the join size and cost.

Data Access Concepts and Optimization
When compiling an SQL statement, the SQL optimizer estimates the execution cost of
different ways of satisfying your request. Based on this evaluation, the optimizer selects
what it believes to be the optimal access plan. An access plan specifies the order of
operations required to resolve an SQL statement. When an application program is
bound, a package is created. This package contains access plans for all of the static
SQL statements in that application program. Access plans for dynamic SQL statements
are created at the time that the application is executed.

There are two ways of accessing data in a table: by directly reading the table (relation
scan), or by first accessing an index on that table (index scan).

 A relation scan occurs when the database manager sequentially accesses every row of
a table. See “Index Scan Concepts” on page 477 to learn how an index scan works

476 Administration Guide

and see “Relation Scan versus Index Scan” on page 485 to understand under what
conditions each type of scan is used.

The following topics describe other methods that can also be used in an access plan to
access data in a table, and to produce the results for your query:

¹ “Predicate Terminology” on page 487
¹ “Join Concepts” on page 489
¹ “Join Strategies in a Partitioned Database” on page 496
¹ “Influence of Sorting on the Optimizer” on page 503

Other Related Topics:

¹ “Adjusting the Optimization Class” on page 406, provides information about
controlling the number of alternative access plans evaluated by the SQL compiler

¹ Chapter 14, “SQL Explain Facility” on page 509, provides information about how
you can obtain information about the access plan chosen by the SQL compiler.

Index Scan Concepts
 An index scan occurs when the database manager accesses an index to do any or all
of the following:

¹ Narrow down the set of qualifying rows (by scanning the rows in a certain range of
the index) before accessing the base table. The index scan range (the start and
stop points of the scan) is determined by the values in the query against which
index columns are being compared.

¹ Order the output.
¹ Fully retrieve the requested data. If all of the requested data is in the index, the

base table will not be accessed. This is known as an Index-only access.

The following additional topics are provided:

 ¹ Index Structure
¹ Index Scans to Delimit a Range
¹ Index Scans to Order Data

 ¹ Index-Only Access
¹ Multiple Index Access

 ¹ Clustered Indexes
¹ Index Page Prefetch

 Index Structure
 The database manager uses a B+ tree structure for storing its indexes. A B+ tree has
one or more levels, as shown in the following diagram (where RID means row ID):

 Chapter 13. Understanding the SQL Compiler 477

‘E ’ ‘Z ’‘N ’

‘F ’ ‘N ’‘L ’

(‘F’,rid) (‘M’,rid)
(‘N’,rid)

(‘G’,rid)
(‘I’,rid)
(‘K’,rid)

ROOT
NODE

INTERMEDIATE
NODES

LEAF
NODES

.

.

.

.

.

.

Figure 44. B+ Tree Structure

The top level is called the root node. The bottom level consists of leaf nodes, where the
actual index key values are stored, as well as a pointer to the actual row in the table.
Levels between the root and leaf node levels are called intermediate nodes.

In looking for a particular index key value, Index Manager searches the index tree,
starting at the root node. The root contains one key for each node at the next level. The
value of each of these keys is the largest existing key value for the corresponding node
at the next level. For example, if an index has three levels as shown in Figure 44, then
to find an index key value, Index Manager would search the root node for the first key
value greater than or equal to the key being looked for. This root node key would point
to a specific intermediate node. The same procedure would be followed with that
intermediate node to determine which leaf node to go to. The final index key would be
found in the leaf node. Using Figure 44, the key being looked for is “I.” The first key in
the root node greater than or equal to “I” is “N.” This points to the middle node at the
next level. The first key in that intermediate node that is greater than or equal to “I” is
“L.” This points to a specific leaf node where the index key for “I” along with its
corresponding row ID(s) are found (the row ID of the corresponding rows in the base
table).

Index Scans to Delimit a Range
In determining whether an index can be used for a particular query, the optimizer
evaluates each column of the index starting with the first column to see if it can be
used to satisfy:

478 Administration Guide

¹ Any of the EQUAL predicates in the statement's WHERE clause
¹ Any other predicates in the WHERE clause.

 A predicate is an element of a search condition in a WHERE clause that expresses or
implies a comparison operation. Predicates that can be used to delimit the range of an
index scan are those involving an index column in which one of the following is true:

¹ The index column is being tested for equality against a constant, a host variable,
an expression that evaluates to a constant, or a keyword

¹ The test against the index column is “IS NULL” or “IS NOT NULL”
¹ The test is for equality against a basic subquery (that is, one that does not contain

ANY, ALL, or SOME), and the subquery does not have a correlated column
reference to its immediate parent query block (that is, the SELECT for which this
subquery is a subselect).

¹ The test is an inequality predicate meeting the conditions described below.

For example, given an index with the following definition:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

the following predicates could be used in delimiting the range of the scan of index IX1:

WHERE NAME = :hv1

AND DEPT = :hv2

or

WHERE MGR = :hv1

AND NAME = :hv2

AND DEPT = :hv3

Note that in the second example the WHERE predicates do not have to be specified in
the same order as the key columns appear in the index. And, although host variables
are used in the examples, parameter markers, expressions, or constants would have
the same effect.

In the following WHERE clause, only the predicates for NAME and DEPT would be
used in delimiting the range of the index scan, but not the predicates for SALARY or
YEARS:

 WHERE NAME = :hv1

 AND DEPT = :hv2

AND SALARY = :hv4

AND YEARS = :hv5

This is because there is a key column (MGR) separating these columns from the first
two index key columns, so the ordering would be off. However, once the range is
determined by the NAME = :hv1 and DEPT = :hv2 predicates, the remaining predicates
can be evaluated against the remaining index key columns.

 Chapter 13. Understanding the SQL Compiler 479

In addition to the equality predicates described above, certain inequality predicates may
be used to delimit the range of an index scan. The following discusses the two types of
inequality predicates: strict inequality and inclusive inequality.

Strict Inequality Predicates: The strict inequality operators which can be used for
range delimiting predicates are > and <.

For delimiting a range for an index scan, only one column with strict inequality
predicates will be considered. In the following example, the predicates on the NAME
and DEPT columns can be used to delimit the range, but the predicate on the MGR
column cannot be used.

 WHERE NAME = :hv1

 AND DEPT > :hv2

 AND DEPT < :hv3

 AND MGR < :hv4

Inclusive Inequality Predicates: The following are inclusive inequality operators which
can be used for range delimiting predicates:

¹ >= and <=
 ¹ BETWEEN
 ¹ LIKE

For delimiting a range for an index scan, multiple columns with inclusive inequality
predicates will be considered. In the following example, all of the predicates can be
used to delimit the range of the index scan:

 WHERE NAME = :hv1

AND DEPT >= :hv2

AND DEPT <= :hv3

 AND MGR <= :hv4

To further illustrate this example, suppose that :hv2 = 404, :hv3 = 406, and :hv4 =

12345. The database manager will scan the index for all of departments 404 and 405,
but it will stop scanning department 406 when it reaches the first manager that has an
employee number (MGR column) greater than 12345.

For additional information, see “Range Delimiting and Index SARGable Predicates” on
page 487.

Index Scans to Order Data
If the query involves ordering, an index can be used to order the data if the ordering
columns appear consecutively in the index, starting from the first index key column.
(Ordering or sorting can result from operations such as ORDER BY, DISTINCT,
GROUP BY, “= ANY” subquery, “> ALL” subquery, “< ALL” subquery, INTERSECT or
EXCEPT, UNION.) An exception to this is when the index key columns are compared
for equality against “constant values” (that is, any expression that evaluates to a
constant). In this case the ordering column can be other than the first index key
columns. For example, in the query:

480 Administration Guide

WHERE NAME = 'JONES'

AND DEPT = 'D93'

ORDER BY MGR

the index could be used to order the rows since NAME and DEPT will always be the
same values and will thus be ordered. Another way of saying this is that the preceding
WHERE and ORDER BY clauses are equivalent to:

WHERE NAME = 'JONES'

AND DEPT = 'D93'

ORDER BY NAME, DEPT, MGR

A unique index can also be used to truncate an order requirement. For example, given
the following index definition and order by clause:

UNIQUE INDEX IX0: PROJNO ASC

SELECT PROJNO, PROJNAME, DEPTNO

 FROM PROJECT

ORDER BY PROJNO, PROJNAME

additional ordering on the PROJNAME column is not required since the IX0 index
ensures that PROJNO is unique. This uniqueness ensures that there is only one
PROJNAME value for each PROJNO value.

 Index-Only Access
In some cases, all of the required data can be retrieved from the index without
accessing the table. This is known as an index-only access.

To illustrate an index-only access, consider the following index definition:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

and the following query can be satisfied by accessing only the index, and without
reading the base table:

SELECT NAME, DEPT, MGR, SALARY

 FROM EMPLOYEE

WHERE NAME = 'SMITH'

In other cases, there may be columns that do not appear in the index. To obtain the
data for these columns, rows of the base table must be read. For example, given the
IX1 index, the following query needs to access the base table to obtain the PHONENO
and HIREDATE column data:

SELECT NAME, DEPT, MGR, SALARY, PHONENO, HIREDATE

 FROM EMPLOYEE

WHERE NAME = 'SMITH'

 Chapter 13. Understanding the SQL Compiler 481

| By creating a unique index with include columns, you can improve the performance of
| data retrieval by increasing the number of access attempts based solely on indexes.

| To illustrate the use of include columns, consider the following index definition:

| CREATE UNIQUE INDEX IX1 ON EMPLOYEE

| (NAME ASC)

| INCLUDE (DEPT, MGR, SALARY, YEARS)

| This creates a unique index which enforces uniqueness of the NAME column yet stores
| and maintains data for DEPT, MGR, SALARY, and YEARS columns.

| The following query can be statisfied by accessing only the index and without reading
| the base table:

| SELECT NAME, DEPT, MGR, SALARY

| FROM EMPLOYEE

| WHERE NAME='SMITH'

Multiple Index Access
In all of the above examples, a single index scan was performed to produce the results.
To satisfy the predicates of a WHERE clause, the optimizer can choose to scan
multiple indexes. For example, given the following two index definitions:

 INDEX IX2: DEPT ASC

 INDEX IX3: JOB ASC,

 YEARS ASC

the following predicates could be resolved using these two indexes:

WHERE DEPT = :hv1

 OR (JOB = :hv2

AND YEARS >= :hv3)

In this example, scanning index IX2 will produce a list of row IDs (RIDs) that satisfy the
DEPT = :hv1 predicate. Scanning index IX3 will produce a list of RIDs satisfying the JOB

= :hv2 AND YEARS >= :hv3 predicate. These two lists of RIDs can be combined and
duplicates removed before accessing the table. This is known as index ORing.

Index ORing may also be used for predicates using the IN expression, as in the
following example:

WHERE DEPT IN (:hv1, :hv2, :hv3)

With index ORing you are looking to eliminate duplicate RIDs, however with index
ANDing you are looking for RIDs that occur in every index scanned. Index ANDing may
occur with applications where there are multiple indexes on corresponding columns
within the same table and a query using multiple “and” predicates is run against that
table. Multiple index scans against each indexed column in such a query produce
qualifying rows that have their RID values hashed to dynamically create bitmaps. The
second bitmap is used to probe the first bitmap to generate the qualifying rows that are
fetched to create the final returned data set.

482 Administration Guide

For example, given the following two index definitions:

INDEX IX4: SALARY ASC

INDEX IX5: COMM ASC

the following predicates could be resolved using these two indexes:

WHERE SALARY BETWEEN 20000 AND 30000

AND COMM BETWEEN 1000 AND 3000

In this example, scanning index IX4 produces a dynamic bitmap index satisfying the
SALARY BETWEEN 20000 AND 30000 predicate. Scanning IX5 and probing the dynamic
bitmap index for IX4 results in the list of qualifying RIDs that satisfy both predicates.
This is known as “dynamic bitmap ANDing.” It only occurs if the table has sufficient
cardinality and the columns have sufficient values in the qualifying range, or sufficient
duplication if equality predicates are used.

Note: In the accessing of any single table, DB2 does not combine index ANDing and
index ORing.

 Clustered Indexes
When selecting the access plan, the optimizer considers the I/O cost of fetching pages
from disk to the buffer pool. In its calculations, the optimizer will estimate the number of
I/Os required to satisfy a query. This estimate includes a prediction of buffer pool
usage, since additional I/Os are not required to read rows in a page that is already in
the buffer pool.

 For index scans, the optimizer uses information from the system catalog tables
(SYSCAT.INDEXES) to help estimate I/O cost of reading data pages into the buffer
pool. The following columns from the SYSCAT.INDEXES table are used:

| ¹ CLUSTERRATIO indicating the degree to which the table data in relation to this
| index is clustered. A higher number means that the rows are ordered on the data
| pages in index key sequence. Therefore, all of the rows on a data page can be
| read while the page is in buffer. If the value of this column is -1, the optimizer will
| attempt to use PAGE_FETCH_PAIRS and CLUSTERFACTOR.

| or

¹ PAGE_FETCH_PAIRS containing several pairs of numbers which model the
number of I/Os required to read the data pages into buffer pools of various sizes
together with CLUSTERFACTOR. When collecting statistics for an index, this
information is considered a detailed statistic.

If statistics are not available, the optimizer will use default values for the statistics,
which assume poor clustering of the data to the index. See also Chapter 12, “System
Catalog Statistics” on page 435 and “Collecting Statistics Using the RUNSTATS Utility”
on page 436.

| You can specify a clustering index that will be used both to cluster the rows during a
| table reorganization and to preserve this characteristic during insert processing. (See
| “Reorganizing Table Data” on page 548 for information about table reorganization.)
| Subsequent updates and inserts may make the index less well clustered (as measured

 Chapter 13. Understanding the SQL Compiler 483

| by the statistics gathered by RUNSTATS), so you may need to periodically reorganize
| the table. To reduce the frequency of reorganization on a volatile database, use the
| PCTFREE parameter when altering a table. This will allow for additional inserts to be
| clustered with the existing data.

| The degree to which the data is clustered with respect to the index can have a
| significant impact on performance and you should try to keep one of the indexes on the
| table close to 100 percent clustered.

| In general, only one index can be one hundred percent clustered, except in those cases
| where the keys are a superset of the keys of the clustering index; or, where there is de
| facto correlation between the key columns of the two indexes.

| See “Performance Tips for Administering Indexes” on page 431 for more information on
| performance reasons to use clustering indexes. Refer to the SQL Reference, CREATE
| INDEX, for more information on how to create a clustering index.

Clustering Page Reads Using List Prefetch: If the optimizer uses an index to access
rows, it can defer reading the data pages until all the RIDs (row identifiers) have been
obtained from the index. For example, given the previously defined index IX1:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

and the following search criteria:

WHERE NAME BETWEEN 'A' and 'I'

the optimizer could perform an index scan on IX1 to determine the rows (and data
pages) to retrieve. If the data was not clustered according to this index, list prefetch will
include a step to sort the list of RIDs obtained from the index scan. See “Understanding
List Prefetching” on page 541 for more information.

Index Page Prefetch
When appropriate, the database manager detects sequential access to index pages
and will generate prefetch requests. This will significantly reduce the elapsed time for
nonselective index scans, and selective index scans accessing a significant portion of
the index.

The optimizer uses index statistics such as DENSITY and SEQUENTIAL_PAGES, the
characteristics of the table spaces in which the index resides, and the effect of any
range delimiting predicates, to estimate the amount of index page prefetch that will
occur. These estimates are factored into the overall cost estimate for using a particular
index.

See “Understanding Sequential Prefetching” on page 539 for more information.

484 Administration Guide

Relation Scan versus Index Scan
 The optimizer will choose a relation scan when an index cannot be used for the query,
or if the optimizer determines that an index scan would be more costly. An index scan
could be more costly when:

¹ The table is small
¹ Index clustering is low
¹ Most of the table is accessed.

You may use the SQL Explain facilities to determine whether your access plan uses a
relation scan or an index scan. See Chapter 14, “SQL Explain Facility” on page 509.

| Summary Table Scan
| The query rewrite will access a summary table if it determines that the query can be
| answered by using the data in the summary table instead of accessing the base table
| or tables.

| Notes:

| 1. The optimization level must be 5 or greater for the optimizer to be able to consider
| a summary table scan.

| 2. Summary tables are only accessed for dynamic SQL.

| Following is an example of a multidimensional analysis that could take advantage of
| summary tables. A summary table is created with the sum and count of sales for each
| level of:

| ¹ Product hierarchy
| ¹ Location hierarchy
| ¹ Time hierarchy, composed of year, month, day.

| A wide range of queries can pick up their answers from this stored aggregate data. The
| following example calculates the sum of product group sales, by state, by month.
| Queries that can take advantage of such pre-computed sums would include:

| ¹ Sales by month and product group
| ¹ Total sales for years after 1990
| ¹ Sales for 1995 or 1996
| ¹ Sum of sales for a product group or product line
| ¹ Sum of sales for a specific product group or product line AND for 1995, 1996
| ¹ Sum of sales for a specific country.

| While the precise answer is not included in the summary table for any of these queries,
| the cost of computing the answer using the summary table could be significantly less
| than using a large base table, because a portion of the answer is already computed.
| For example:

 Chapter 13. Understanding the SQL Compiler 485

| CREATE TABLE PG_SALESSUM

| AS (

| SELECT l.id AS prodline, pg.id AS pgroup,

| loc.country, loc.state

| YEAR(pdate) AS year, MONTH(pdate) AS month,

| SUM(ti.amount) AS amount,

| COUNT(*) AS count

| FROM cube.transitem AS ti, cube.trans AS t,

| cube.loc AS loc, cube.pgroup AS pg,

| cube.prodline AS l

| WHERE ti.transid = t.id

| AND ti.pgid = pg.id

| AND pg.lineid = l.id

| AND t.locid = loc.id

| AND YEAR(pdate) > 1990

| GROUP BY l.id, pg.id, loc.country, loc.state,

| year(pdate), month(pdate)

|)

| DATA INITIALLY DEFERRED REFRESH DEFERRED;

| REFRESH TABLE SALESCUBE;

| The following are sample queries that would obtain significant performance
| improvements because they are able to use the results in the summary table that are
| already computed. The first example returns the total sales for 1995 and 1996:

| SET CURRENT REFRESH AGE=ANY

| SELECT YEAR(pdate) AS year, SUM(ti.amount) AS amount

| FROM cube.transitem AS ti, cube.trans AS t,

| cube.loc AS loc, cube.pgroup AS pg,

| cube.prodline AS l

| WHERE ti.transid = t.id

| AND ti.pgid = pg.id

| AND pg.lineid = l.id

| AND t.locid = loc.id

| AND YEAR(pdate) IN (1995, 1996)

| GROUP BY year(pdate);

| The second example returns the total sales by product group for 1995 and 1996:

486 Administration Guide

| SET CURRENT REFRESH AGE=ANY

| SELECT pg.id AS "PRODUCT GROUP",

| SUM(ti.amount) AS amount

| FROM cube.transitem AS ti, cube.trans AS t,

| cube.loc AS loc, cube.pgroup AS pg,

| cube.prodline AS l

| WHERE ti.transid = t.id

| AND ti.pgid = pg.id

| AND pg.lineid = l.id

| AND t.locid = loc.id

| AND YEAR(pdate) IN (1995, 1996)

| GROUP BY pg.id;

 Predicate Terminology
A user application requests a set of rows from the database with an SQL statement,
qualifying the specific rows desired through the use of predicates. When the optimizer
decides how to evaluate an SQL statement, each predicate falls into one of four
categories. The category is determined by how and when that predicate is used in the
evaluation process. These categories are listed below, ordered in terms of performance
from best to worst:

1. Range delimiting predicates
2. Index SARGable predicates
3. Data SARGable predicates

 4. Residual predicates.

SARGable refers to something that can be used as a search argument.

“Summary of Predicate Usage” on page 488 provides a comparison of the
characteristics that affect the performance of the various predicate categories.

Range Delimiting and Index SARGable Predicates
Range delimiting predicates are those used to bracket an index scan. They provide
start and/or stop key values for the index search. Index SARGable predicates are not
used to bracket a search, but can be evaluated from the index because the columns
involved in the predicate are part of the index key. For example, given the previously
defined index IX1 (in the section “Index Scan Concepts” on page 477) and the
following WHERE clause:

WHERE NAME = :hv1

 AND DEPT = :hv2

AND YEARS > :hv5

the first two predicates (NAME = :hv1, DEPT = :hv2) would be range delimiting
predicates, while YEARS > :hv5 would be an index SARGable predicate.

The database manager will make use of the index data in evaluating these predicates
rather than reading the base table. These index SARGable predicates reduce the
number of data pages accessed by reducing the set of rows that need to be read from

 Chapter 13. Understanding the SQL Compiler 487

the table. These types of predicates do not affect the number of index pages that are
accessed.

Data SARGable Predicates
Predicates that cannot be evaluated by Index Manager, but can be evaluated by Data
Management Services are called data SARGable predicates. Typically, these
predicates require the access of individual rows from a base table. If required, Data
Management Services will retrieve the columns needed to evaluate the predicate, as
well as any others to satisfy the columns in the SELECT list that could not be obtained
from the index.

For example, given a single index defined on the PROJECT table:

 INDEX IX0: PROJNO ASC

And given the following query, the DEPTNO = 'D11' predicate is considered to be data
SARGable.

SELECT PROJNO, PROJNAME, RESPEMP

 FROM PROJECT

WHERE DEPTNO = 'D11'

ORDER BY PROJNO

 Residual Predicates
Residual predicates, typically, are those that require I/O beyond the simple accessing of
a base table. Examples of residual predicates include those using correlated
subqueries, using quantified subqueries (subqueries with ANY, ALL, SOME, or IN), or
reading LONG VARCHAR or LOB data (stored in a file separate from the table). These
predicates are evaluated by Relational Data Services.

Sometimes predicates, which are applied to the index only, have to be reapplied when
the data page is accessed. For example, access plans using index ORing or index
ANDing, (see “Multiple Index Access” on page 482), always reapply the predicates as
residual predicates, when the data page is accessed.

Summary of Predicate Usage
The use of predicates in a query can help to reduce the amount of data read to satisfy
the query. Different categories of predicates have different impacts on the performance
of a query and these impacts are considered by the optimizer. The following table
shows the ranking of the different types of predicates and how each type of predicate
can influence performance.

488 Administration Guide

Table 44. Summary of Predicate Type Characteristics

Characteristic Predicate Type

Range Delimiting Index SARGable Data SARGable Residual

Reduce index I/O Yes No No No

Reduce data page
I/O

Yes Yes No No

Reduce number of
rows passed
internally

Yes Yes Yes No

Reduce number of
qualifying rows

Yes Yes Yes Yes

 Join Concepts
A join is where rows from one table are concatenated to rows of one or more other
tables. For example, given the following two tables:

 TABLE1 TABLE2

 ----------------- -----------------

 PROJ PROJ_ID PROJ_ID NAME

 ------ ------- ------- ------

 A 1 1 Sam

 B 2 3 Joe

 C 3 4 Mary

 D 4 1 Sue

 2 Mike

Joining Table1 and Table2 where the ID columns are equal would be represented by
the following SQL statement:

SELECT PROJ, x.PROJ_ID, NAME

FROM TABLE1 x, TABLE2 y

WHERE x.PROJ_ID = y.PROJ_ID

and would yield the following set of result rows:

 PROJ PROJ_ID NAME

 ------ ------- ------

 A 1 Sam

 A 1 Sue

 B 2 Mike

 C 3 Joe

 D 4 Mary

When joining two tables, one table is selected as the outer table and the other as the
inner. The outer table is accessed first and is only scanned once. Whether the inner
table is scanned multiple times depends on the type of join and which indexes are
present. Whether your query joins two tables or more than two tables, the optimizer will

 Chapter 13. Understanding the SQL Compiler 489

only join two tables at a time. If needed, temporary, intermediary results tables will be
created.

The optimizer will choose one of the two join methods (nested loop join or merge join)
depending on the existence of a join predicate (defined in “Merge Join” on page 491),
as well as various costs involved as determined by table and index statistics.

Nested Loop Join
A nested loop join is performed in one of two ways:

1. By scanning through the inner table for each accessed row of the outer table

For example, if column A in tables T1 and T2 has the following values:

Outer Table T1: column A Inner Table T2: column A

 ------------------------ ------------------------

 2 3

 3 2

 3 2

 3

 1

The steps for doing the nested loop:
¹ Read the first row from T1. The value for A is “2”
¹ Scan T2 until a match (“2”) is found, and then join the two rows
¹ Scan T2 until the next match (“2”) is found, and then join the two rows
¹ Scan T2 to the end of the table
¹ Go back to T1 and read the next row (“3”)
¹ Scan T2, starting at the first row, until a match (“3”) is found, and then join the

two rows
¹ Scan T2 until the next match (“3”) is found, and then join the two rows
¹ Scan T2 to the end of the table
¹ Go back to T1 and read the next row (“3”)
¹ Scan T2 as before, joining all rows which match (“3”).

2. By doing an index lookup on the inner table for each accessed row of the outer
table.

This method can be used for the specified predicates if there is a predicate of the
following form:

expr(outer_table.column) relop inner_table.column

where relop is a relative operator (for example =, >, >=, <, or <=) and expr is a
valid expression on the outer table. The following are examples:

OUTER.C1 + OUTER.C2 <= INNER.C1

and

OUTER.C4 < INNER.C3

This method could be a way to significantly reduce the number of rows accessed in
the inner table for each access of the outer table (although it depends on a number
of factors, including the selectivity of the join predicate).

490 Administration Guide

When evaluating a nested loop join, the optimizer will also determine whether or not to
sort the outer table before performing the join. By ordering the outer table, based on the
join columns, the number of read operations to access pages from disk for the inner
table may be reduced, since it is more likely they will already be in the buffer pool. If
the join uses a highly clustered index to access the inner table, the number of index
pages accessed may be minimized if the outer table has been sorted.

In addition, the optimizer may also choose to perform the sort before the join, if it
expects that the join will make a later sort more expensive. A later sort could be
required to support a GROUP BY, DISTINCT, ORDER BY or merge join.

 Merge Join
Merge join (sometimes known as merge scan join or sort merge join) requires a
predicate of the form table1.column = table2.column. This is called an equality join
predicate. Merge join requires ordered input on the joining columns, either through
index access or by sorting. In order for a merge join to be used, the join column cannot
be a LONG field column or a large object (LOB) column.

The joined tables are scanned simultaneously. The outer table of the merge join is
scanned just once. The inner table is also scanned once unless there are repeated
values in the outer table. If there are repeated values in the outer table, a group of rows
in the inner table may be scanned again. For example, if column A in tables T1 and T2
has the following values:

Outer Table T1: column A Inner Table T2: column A

 ------------------------ ------------------------

 2 1

 3 2

 3 2

 3

 3

The steps for doing the merge join are:

¹ Read the first row from T1. The value for A is “2”
¹ Scan T2 until a match is found, and then join the two rows
¹ Keep scanning T2 while the columns match, joining rows.
¹ When the “3” in T2 is read, go back to T1 and read the next row
¹ The next value in T1 is “3,” which matches T2, so join the rows
¹ Keep scanning T2 while the columns match, joining rows
¹ The end of T2 is reached
¹ Go back to T1 to get the next row — note that the next value in T1 is the same as

the previous value from T1, so T2 is scanned again starting at the first “3” in T2
(the database manager remembers this position).

| Hash Join
| Hash join requires one or more predicates of the form table1.columnX =
| table2.columnY, and for which the column types are the same . For columns of type
| CHAR, the length must be the same. For columns of type DECIMAL, the precision and

 Chapter 13. Understanding the SQL Compiler 491

| scale must be the same. The column type cannot be a LONG field column, or a large
| object (LOB) column.

| First, one table (called the INNER table) is scanned and the rows copied into memory
| buffers drawn from the sort heap allocation (see the “Sort Heap Size (sortheap)” on
| page 621 database configuration parameter). The memory buffers are divided into
| partitions based on a “hash code” computed from the column(s) of the join predicate(s).
| If the size of the first table exceeds the available sort heap space, buffers from selected
| partitions are written to temporary tables. After finishing the processing of the INNER
| table, the second table (called the OUTER table) is scanned. Rows of the OUTER table
| are matched to rows from the INNER table by first comparing a “hash code” generated
| from the columns of the join predicate(s). Then, if the “hash code” of the OUTER row
| matches the “hash code” of the INNER row, the actual join predicate columns are
| compared.

| OUTER table rows corresponding to partitions not written to a temporary table are
| matched immediately with INNER table rows in memory. Otherwise, if the
| corresponding INNER table partition was written to a temporary table, the OUTER row
| is also written to a temporary table. Finally, matching pairs of partitions from temporary
| tables are read and the “hash codes” of their rows are matched and join predicates
| checked.

Outer versus Inner Determination
When joining, how are the inner and outer tables determined? The following are
general guidelines for how the optimizer decides which table will be the inner and which
will be the outer.

| In the case of a hash join , the inner table is kept in memory buffers. If there are too
| few memory buffers, then the hash join is obliged to spill. The optimizer attempts to
| avoid this and so will pick the smaller of the two tables as the inner table, and the
| larger one as the outer table.

The order in which the tables are accessed is particularly important for a nested loop
join because the outer table is accessed once but the inner table is accessed once for
each row of the outer table. The optimizer chooses the outer and inner tables based on
cost estimates. These cost estimates are influenced by the following factors:

 ¹ Size

The smaller table is often chosen to be the outer table to reduce the number of
times the inner table must be re-accessed. However, prefetch can cause just the
opposite to be true. Prefetching can reduce the cost of accessing a large table
substantially. However, usually prefetching is only effective for the outer table of a
join. Therefore, the larger table may be accessed first. See “Prefetching Data into
the Buffer Pool” on page 539 for more information.

 ¹ Predicates

A table is more likely to be chosen as the outer table if selective predicates can be
applied to it because the inner table is only accessed for rows which satisfy the
predicates applied to the outer table.

492 Administration Guide

 ¹ Buffering

If the entire inner table must be scanned for each row of the outer table (that is, an
index lookup cannot be performed on the inner table), the smaller of the two tables
may be chosen as the inner table to take advantage of buffering. This will be
influenced by table size and buffer pool size. Note that since join decisions are
influenced by buffer pool size, the access plan for your applications may change, if
you rebind your applications to the database, after changing the buffer pool size.

Your ability to create more than one buffer pool, and change the size of that buffer
pool, and control the table spaces that use that buffer pool, can affect when
buffering is used within inner and outer tables.

 ¹ Indexes

If it is possible to do an index lookup on one of the tables, then that table is a good
candidate to use as the inner table. It could then be accessed with an index key
lookup using the outer table's join key predicate as one of the key values. If a table
does not have an index, it would not be a good candidate for the inner table since
in that case the entire inner table would have to be scanned for every row of the
outer table.

 ¹ Order requirements

The table associated with a required order might be assessed first. For example, if
the output of the join between t1 and t2 was to be ordered on t1.c, accessing t1 as
the outer with an index on t1.c might be a good choice. The output of the join
would be ordered and no sort would be required.

SELECT * FROM t1, t2

WHERE t1.a = t2.b

ORDER BY t1.c

The order in which the tables are accessed is somewhat less important for a merge
join because both the inner and outer tables are read only once. However, portions of
the inner table which correspond to duplicate join values in the outer are kept in an
in-memory buffer. The buffer is reread if the next outer row is the same as the previous
outer row, otherwise the buffer is reset. If the number of duplicate join values exceeds
the capacity of the in-memory buffer, not all of the duplicates are kept. This will only
happen when the duplication on any value is large and the value has a matching value
in the outer table.

With all of these considerations for duplicate values, in most cases it is the table with
fewer duplicates that will be chosen as the outer table in a join. Ultimately, however, the
optimizer chooses the outer and inner tables based on detailed cost estimates.

Search Strategies for Selecting Optimal Join
The optimizer can determine optimal join methods using different search strategies. The
search strategy that will be used is determined by the optimization class in use (see
“Adjusting the Optimization Class” on page 406). The search strategies and their
characteristics are:

¹ Greedy join enumeration

 Chapter 13. Understanding the SQL Compiler 493

– Efficient with respect to space and time
– Single direction enumeration; that is, once a join method is selected for two

tables, it will not be changed during further optimization
– May miss best access plan when joining many tables. If your query only joins

two or three tables, the access plan chosen by the greedy join enumeration
will be the same as the access plan chosen by dynamic programming join
enumeration. This is particularly true if the query has many join predicates
(either explicitly specified, or implicitly generated through predicate transitive
closure) on the same column.

¹ Dynamic programming join enumeration

– Space and time requirements grow exponentially larger as the number of
tables being joined increases

– Efficient and exhaustive search for best access plan
– Similar to strategy used by DB2 for MVS/ESA.

The join enumeration algorithm is a key determinant of the number of plan
combinations that are explored by the optimizer.

Search Strategies for Star Join
In general, the tables referenced in a query should be connected by join predicates. If
two tables are joined without the presence of a join predicate, the Cartesian product of
the two tables is formed. That is, every qualifying row of the first table is joined with
every qualifying row of the second, creating a result table consisting of the cross
product of the size of the two tables that is typically very large. Since such a plan is
unlikely to perform very well, the optimizer avoids even determining the cost of such an
access plan. The only exception to this occurs when the optimization class is set to 9,
or the following special case for “Star Schemas.” For more information, see “Adjusting
the Optimization Class” on page 406.

The cases where access plans involving Cartesian products perform well are usually
large decision support databases designed with the Star Schema technique. The star
schema is a database design in which the bulk of the raw data is kept in a single large
table with many columns and is commonly known as a “fact” table. Many of the
columns contain encoded values that characterize the dimensions of the particular
datum stored in the fact table. In order to allow easy analysis of some subset of the
facts, dimension tables are used to decode the encoded values. A typical query would
consist of multiple local predicates referencing decoded values in the dimension tables
and would contain join predicates connecting the dimension tables to the fact table. For
these kinds of queries it may be beneficial to perform the Cartesian product of multiple
small dimension tables before accessing the large fact table. This technique is
beneficial when multiple join predicates match a multi-column index.

DB2 has the ability to recognize queries against databases designed with star schemas
having at least three (3) dimension tables, and to increase the search space to include
potential plans that involve forming the Cartesian product of dimension tables. If the
plan involving the Cartesian products has the lowest estimated cost, it will be selected
by the optimizer.

494 Administration Guide

The Star Schema technique discussed above was focussed on the situation where
primary key indexes were used in the join. Another scenario could involve foreign key
indexes. Given that the foreign key columns in the fact table are single-column indexes
and that there is a relatively high selectivity across all dimension tables, the following
Star Join technique can be used:

1. Each dimension table is processed by:
¹ Performing a semi-join between the dimension table and the foreign key index

on the fact table
¹ Hashing the row ID (RID) values to dynamically create a bitmap.

2. Each bitmap is used with “and” predicates against the previous bitmap (see
“Multiple Index Access” on page 482).

3. Determine the surviving RIDs after processing the last bitmap.
4. Optionally sort these RIDs.
5. Fetch a base table row.
6. Re-join the fact table with each of its dimension tables, accessing the dimension

tables' columns that are needed for the SELECT clause
7. Reapply the predicates (residual predicates)

Using this technique, there is no requirement to have multi-column indexes.

 Composite Tables
Another important parameter determines the shape of the sequence of joins in a query.
The result of joining a pair of tables is a new table known as a composite. Typically,
this resulting composite table becomes the outer table of a join with another inner table.
This is known as a “composite outer.” In some situations, particularly when using the
greedy join enumeration technique, it is useful to take the result of joining two tables
and make that the inner table of a later join. When the inner table of a join itself
consists of the result of joining two or more tables, we say that the plan contains a
“composite inner.” For example, in the following query:

SELECT COUNT(*)

FROM T1, T2, T3, T4

WHERE T1.A = T2.A AND

T3.A = T4.A AND

T2.Z = T3.Z

it may be beneficial to join table T1 and T2 (T1xT2), then join T3 to T4 (T3xT4) and
finally select the first join result as the outer and the second join result as the inner. In
the final plan ((T1xT2) x (T3xT4)) the join result (T3xT4) is known as a composite
inner. Depending on the query optimization class, the optimizer places different
constraints on the maximum number of tables that may be the inner table of a join.
Composite inners are allowed with optimization classes 5, 7, and 9.

| Replicated Summary Tables
| By using replicated summary tables in a partitioned database environment, you can
| improve performance by having the database manage pre-computed values of the base
| table data. For example, the query below would benefit from creating the replicated
| summary table below. The following assumptions are made:

 Chapter 13. Understanding the SQL Compiler 495

| ¹ The SALES table is in the multipartition nodegroup REGIONTABLESPACE, and is
| partitioned on the REGION column.

| ¹ The EMPLOYEE and DEPARTMENT tables are in a single-partition nodegroup.

| CREATE TABLE R_EMPLOYEE

| AS (

| SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT

| FROM EMPLOYEE

|)

| DATA INITIALLY DEFERRED REFRESH IMMEDIATE

| IN REGIONTABLESPACE

| REPLICATED;

| REFRESH TABLE R_EMPLOYEE;

| The following example calculates sales by employee, the total for the department, and
| the grand total:

| SELECT d.mgrno, e.empno, SUM(s.sales)

| FROM department AS d, employee AS e, sales as S

| WHERE s.sales_person = e.lastname

| AND e.workdept = d.deptno

| GROUP BY ROLLUP(d.mgrno, e.empno)

| ORDER BY d.mgrno, e.empno;

| Instead of using the EMPLOYEE table, which is on only one database partition, the
| database manager will use the R_EMPLOYEE table, which is replicated on each of the
| database partitions that the SALES tables is on. The performance enhancement occurs
| because the employee information does not have to be moved across the network to
| each database partition to calculate the join.

Join Strategies in a Partitioned Database
The following sections describe the join strategies that are possible in a partitioned
database environment. The DB2 optimizer automatically selects the best join strategy
depending on the requirements of each application. The join strategies are presented
here to help you understand what is happening in each strategy. A “table queue” is a
mechanism for transferring rows between database partitions, or between processors in
a single partition database.

In the descriptions that follow, a directed table queue is one whose rows are hashed to
one of the receiving database partitions. A broadcast table queue is one whose rows
are sent to all of the receiving database partitions (that is, it is not hashed). In the
diagrams for this section q1, q2, and q3 refer to table queues in the examples. Also the
tables that are referenced are divided across two database partitions for the purpose of
these scenarios. The arrows indicate the direction in which the table queues are sent.
The coordinator node is partition 0.

One consideration for those tables involved in frequent joins in a partitioned database is
that of table collocation. Table collocation provides the means in a partitioned database
to locate data from one table with the data from another table at the same partition

496 Administration Guide

based on the same partitioning key. Once collocated, data to be joined can participate
in a query without having to be moved to another database partition as part of the
query activity. Only the answer set for the join is moved to the coordinator node. See
“Table Collocation” on page 41 for more information on this subject.

For information on join dependencies, refer to the SQL Reference manual.

 Collocated Joins
For the optimizer to consider a collocated join, the joined tables must be collocated,
and all pairs of the corresponding partitioning key must participate in the equijoin
predicates. An example is shown in Figure 45.

| Note: Replicated summary tables enhance the likelihood of collocated joins. See
| “Replicated Summary Tables” on page 495 for more information.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

RESULTS

Both the LINEITEM and ORDERS tables are partitioned on the

ORDERKEY column. The join is done locally at each database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

q1

q1

Figure 45. Collocated Join Example

Broadcast Outer-Table Joins
This parallel join strategy can be used if there are no equijoin predicates between the
joined tables. It can also be used in other situations in which it is the most cost-effective
join method. Typically, this would occur when there is one very large table and one very
small table, neither of which is partitioned on the join predicate columns. Rather than

 Chapter 13. Understanding the SQL Compiler 497

partition both tables, it may be “cheaper” to broadcast the smaller table to the larger
table. An example is shown in Figure 46 on page 498.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is sent to all database partitions that have the LINEITEM table.
Table queue q2 is broadcast to all database partitions of the inner table.

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

q2 q2

q1

q1

q2q2

Figure 46. Broadcast Outer-Table Join Example

Directed Outer-Table Joins
In this join strategy, each row of the outer table is sent to one database partition of the
inner table (based on the partitioning attributes of the inner table). The join occurs on
this database partition. An example is shown in Figure 47 on page 499.

498 Administration Guide

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

The LINEITEM table is partitioned on the ORDERKEY column.
The ORDERS table is partitioned on a different column.
The ORDERS table is hashed and sent to the correct LINEITEM
table database partition.
In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert into q1

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert into q1

q2 q2

q1

q1

q2q2

Figure 47. Directed Outer-Table Join Example

Directed Inner-Table and Outer-Table Joins
With this strategy, rows of the outer and inner tables are directed to a set of database
partitions, based on the values of the joining columns. The join occurs on these
database partitions. An example is shown in Figure 48 on page 500.

 Chapter 13. Understanding the SQL Compiler 499

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

Neither table is partitioned on the ORDERKEY column.

Both tables are hashed and are sent to new database

partitions where they are joined.

Both table queue q2 and q3 are directed.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q2q2

q3 q3

q2

q3

q1

q1

q2

q3

Figure 48. Directed Inner-Table and Outer-Table Join Example

Broadcast Inner-Table Joins
With this strategy, the inner table is broadcast to all the database partitions of the outer
join table. An example is shown in Figure 49 on page 501.

500 Administration Guide

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

The LINEITEM table is sent to all database partitions that have the ORDERS table.
Table queue q3 is broadcast to all database partitions of the outer table.

Figure 49. Broadcast Inner-Table Join Example

Directed Inner-Table Joins
With this strategy, each row of the inner table is sent to one database partition of the
outer join table (based on the partitioning attributes of the outer table). The join occurs
on this database partition. An example is shown in Figure 50 on page 502.

 Chapter 13. Understanding the SQL Compiler 501

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is partitioned on the ORDERKEY column.

The LINEITEM table is partitioned on a different column.

The LINEITEM table is hashed and sent to the correct ORDERS table database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

Figure 50. Directed Inner-Table Join Example

 Table Queues
A table queue is used:

¹ To pass table data from one database partition to another when using
inter-partition parallelism

¹ To pass table data within a database partition when using intra-partition parallelism
¹ To pass table data within a database partition when using a single partition

database.

Each table queue is used to pass the data in a single direction.

502 Administration Guide

The compiler decides where table queues are required, and includes them in the plan.
When the plan is executed, the connections between the database partitions initiate the
table queues. The table queues close as processes end.

There are several types of table queues:

¹ Asynchronous table queues. These table queues are known as asynchronous
because they read rows in advance of any FETCH being issued by the application.
When the FETCH is issued, the row is retrieved from the table queue.

Asynchronous table queues are used when you specify the FOR FETCH ONLY
clause on the SELECT statement. If you are only fetching rows, the asynchronous
table queue is faster.

¹ Synchronous table queues. These table queues are known as synchronous
because they read one row for each FETCH that is issued by the application. At
each database partition, the cursor is positioned on the next row to be read from
that database partition.

Synchronous table queues are used when you do not specify the FOR FETCH
ONLY clause on the SELECT statement. In a partitioned database environment, if
you are updating rows, the database manager will use the synchronous table
queues.

¹ Merging table queues. These table queues preserve order.

¹ Non-merging table queues. These table queues are also known as “regular” table
queues. They do not preserve order.

¹ Listener table queues. These table queues are use with correlated subqueries.
Correlation values are passed down to the subquery and the results are passed
back up to the parent query block using this type of table queue.

Influence of Sorting on the Optimizer
When the optimizer chooses an access plan, it considers the performance impact of
sorting data. Sorting occurs when no index exists to satisfy the requested ordering of
fetched rows. Sorting could also occur when the sort is determined by the optimizer to
be less expensive than an index scan. The optimizer may carry out one of the following
actions when sorting the data:

¹ “Piping” the results of the sort when the query is executed. See “Piped versus
Non-Piped Sorts” and “Configuration Parameters Affecting Query Optimization” on
page 423.

¹ Iinternal handling of the sort within the database manager. See “Aggregation and
Sort Push-down Operators” on page 504.

Piped versus Non-Piped Sorts
At the completion of a sort, if the final sorted list of data can be read in a single
sequential pass, the results can be piped. Piping is quicker than the use of other
(non-piped) means of communicating the results of the sort. The optimizer chooses to
pipe the results of a sort whenever possible.

 Chapter 13. Understanding the SQL Compiler 503

Independent of whether a sort is piped, the time to sort will depend on a number of
factors, including the number of rows to be sorted, the key size and the row width. If
the rows to be sorted occupy more than the space available in the sort heap, several
sort passes are performed, where each pass sorts a subset of the entire set of rows.
Each sort pass is stored in a temporary table in the buffer pool. (As part of the buffer
pool management, it is possible that pages from this temporary table may be written to
disk.) Once all the sort passes are complete, these sorted subsets must be merged into
a single sorted set of rows. If the sort is piped, as the rows are merged they are
handed directly to Relational Data Services.

For more information, see “Looking for Indicators of Sorting Performance Problems” on
page 546, or the discussion of the sortheap configuration parameter in “Configuration
Parameters Affecting Query Optimization” on page 423.

Aggregation and Sort Push-down Operators
In some cases, the optimizer can choose to “push-down” a sort or aggregation
operation to the Data Management Services component from the Relational Data
Services component. Pushing down these operations improves performance by allowing
the Data Management Services component to pass data directly to a sort or
aggregation routine. Without this push-down, Data Management Services would first
pass this data to Relational Data Services, which would then interface with the sort or
aggregation routines. For example, the following query benefits from this optimization:

SELECT WORKDEPT, AVG(SALARY) AS AVG_DEPT_SALARY

 FROM EMPLOYEE

GROUP BY WORKDEPT

| Aggregation in Sort
| When sorting is used to produce the order required for a GROUP BY operation the
| optimizer has the option of performing some or all of the GROUP BY's aggregation
| while doing the sort. This is advantageous if the number of rows in each group is large.
| It is even more advantageous if doing some of the grouping during the sor reduces or
| eliminates the need for the sort to spill to disk.

| When aggregation in sort is used, there are up to three (3) stages of aggregation
| required to ensure proper results are calculated. The first stage of aggregation, “partial
| aggregation,” calculates the aggregate values until the sort heap is filled. Partial
| aggregation is the process whereby unaggregated data is taken in and partial
| aggregates are produced. If the sort heap is filled, the rest of the data is spilled to disk
| and includes all of the partial aggregations that have been calculated in the current
| filling of the sort heap. Following the reset of the sort heap, new aggregations are
| started.

| The second stage of aggregation, “intermediate aggregation,” takes all of the spilled
| sort runs, and aggregates further on the grouping keys. The aggregation cannot be
| completed because the grouping key columns are a subset of the partitioning key
| columns. Intermediate aggregation takes in existing partial aggregates and produce
| new partial aggregates. This stage is optional, and is used for both intra-partition
| parallelism, and for inter-partition parallelism. In the last case, the grouping is finished

504 Administration Guide

| when a global grouping key is available. In inter-partition parallelism, this would occur
| when the grouping key is a subset of the partitioning key dividing groups across
| partitions, and thus requiring repartitioning to complete the aggregation. A similar case
| exists in intra-partition parallelism when each agent finishes merging it's spilled sort
| runs before reducing to a single agent to complete the aggregation.

| The last stage of aggregation, “final aggregation,” takes all of the partial aggregates and
| completes the aggregation. Final aggregation takes in partial aggregates and produces
| final aggregates. This step always takes place in a GROUP BY operator. Sort cannot
| do complete aggregation because there is no way to guarantee that the sort will not
| split. Complete aggregation takes in unaggregated data and produces final aggregates.
| This method of aggregation is typically used when grouping data that is already in the
| correct order and when partitioning does not prohibit it's use.

Optimization Strategies for Intra-Partition Parallelism
The optimizer may choose an access plan so that a query is executed in parallel within
a database partition if a degree of parallelism is specified when the SQL statement is
compiled.

At execution time, multiple database agents called “subagents” are created to execute
the query. The number of subagents is less than or equal to the degree of parallelism
determined when the SQL statement was compiled. For more information on setting the
degree of parallelism for SQL statements refer to “Parallel Processing of Applications”
on page 421. For more information on agents and subagents, refer to “Database
Agents” on page 551.

In a partitioned database, the degree of parallelism applies to each partition. For
example, the portion of the query that is executing at a given database partition is
further parallelized based on the degree of parallelism determined at that database
partition for that SQL statement.

The access plan is parallelized by dividing it into a portion that is run by each subagent
and a portion that is run by the coordinating agent. The subagents pass data through
table queues to the coordinating agent or to other subagents. In a partitioned database,
subagents may send or receive data through table queues from subagents in other
database partitions.

This section describes parallelization strategies within a single database partition.

Parallel Scan Strategies
Relational scans and index scans can be performed in parallel on the same table or
index. For parallel relational scans, the table is divided into ranges of pages or rows. A
range of pages or rows is assigned to a subagent. A subagent scans its assigned
range and is assigned another range when it has completed its work on the current
range.

For parallel index scans, the index is divided into ranges of records based on index key
values and the number of index entries for a key value. The parallel index scan

 Chapter 13. Understanding the SQL Compiler 505

proceeds like the parallel table scan with subagents being assigned a range of records.
A subagent is assigned a new range when it has complete its work on the current
range.

The scan unit (either a page or a row) and the scan granularity are determined by the
optimizer.

The parallel scan provides an even distribution of work among the subagents. The goal
of the parallel scan is to balance the load among the subagents and keep them equally
busy. If the number of busy subagents equals the number of available processors and
the disks are not overworked with I/O requests, then the machine resources are being
used effectively.

Other access plan operations may cause data imbalance as the query executes. The
optimizer chooses parallel strategies so that data balance is maintained.

Parallel Sort Strategies
The optimizer may choose one of the following parallel sort strategies:

 Round-robin Sort
This is also known as a “redistribution sort.” This is an efficient shared memory sort that
attempts to redistribute the data as evenly as possible to all subagents. It uses a
round-robin clock type algorithm to provide the even distribution. It first creates an
individual sort for each subagent. During the insert phase, subagents insert into each of
the individual sorts in a round-robin fashion. This achieves a more even distribution of
data.

 Partitioned Sort
This is similar to the round-robin sort in that a sort is created for each subagent. The
subagents apply a hash function to the sort columns to determine into which sort a row
should be inserted. For example, if the inner and outer of a merge join are a partitioned
sort, a subagent can use merge join to join the corresponding partitions. This allows the
merge join to execute in parallel.

 Replicated Sort
This sort is used where all subagents require all the sort output. One sort is created
and subagents are synchronized during insertion into the sort. When the sort is
completed, each subagent reads the entire sort. This sort may be used to rebalance the
data stream if the number of rows is small.

 Shared Sort
This sort is the same as a replicated sort, except the subagents open a parallel scan on
the sorted result. This distributes the data among the subagents in a way similar to the
round-robin sort.

506 Administration Guide

Parallel Temporary Tables
Subagents can cooperate to produce a temporary table by inserting rows into the same
table. This is called a shared temporary table. The subagents can open private scans
or parallel scans on the shared temporary table depending on whether the data stream
is to be replicated or partitioned.

| Parallel Aggregation Strategies
| Aggregation operations can be performed in parallel by subagents. An aggregation
| operation requires the data to be ordered on the grouping columns. If a subagent can
| be guaranteed to receive all the rows for a set of grouping column values, it can
| perform a complete aggregation. This can happen if the stream is already partitioned on
| the grouping columns because of a previous partitioned sort.

| Otherwise the subagent can perform a partial aggregation and use another strategy to
| complete the aggregation. Some of these strategies are:

| ¹ Send the partially aggregated data to the coordinator agent through a merging
| table queue. The coordinator completes the aggregation.

| ¹ Insert the partially aggregated data into a partitioned sort. The sort is partitioned on
| the grouping columns. This guarantees that all rows for a set of grouping columns
| are contained in one sort partition.

| ¹ If the stream needs to be replicated for balance reasons, the partially aggregated
| data can be inserted into a replicated sort. Each subagent completes the
| aggregation using the replicated sort, and receives an identical copy of the
| aggregation result.

Parallel Join Strategies
Join operations can be performed in parallel by subagents. Parallel join strategies are
determined by the characteristics of the data stream.

A join can be parallelized by partitioning and/or replicating the data stream on the inner
and outer of the join. For example, a nested loop join can be parallelized if its outer
stream is partitioned due to a parallel scan and the inner stream is reevaluated
independently by each subagent. A merged join can be parallelized if its inner and
outer streams are value-partitioned due to partitioned sorts.

 Chapter 13. Understanding the SQL Compiler 507

508 Administration Guide

Chapter 14. SQL Explain Facility

 The SQL explain facility is part of the SQL Compiler that can be used to capture
information about the environment where the static or dynamic SQL statement is
compiled. The information captured allows you to understand the structure and potential
execution performance of SQL statements, including:

¹ Sequence of operations to process the query
 ¹ Cost information
¹ Predicates and selectivity estimates
¹ Statistics for all objects referenced in the SQL statement at the time of the explain.

This information can help you:

¹ Understand the execution plan chosen for a query
¹ Assist in designing application programs
¹ Determine when an application should be rebound
¹ Assist in database design.

The following topics are provided:

¹ “Choosing an Explain Tool”
¹ “Using the SQL Explain Facility” on page 511
¹ “Introductory Concepts for Explain” on page 513
¹ “How Explain Information is Organized” on page 515
¹ “Obtaining Explain Data” on page 520
¹ “Guidelines on Using Explain Output” on page 522
¹ “Visual Explain” on page 524.

The explain output is stored in relational tables and, as an option, in a format which
may be graphically displayed using the Visual Explain tool. You should consider using
the explain tables to find those queries that are of interest to you. For more information
on the tables used by the explain facility and how to create those tables, see
Appendix M, “ Explain Tables and Definitions” on page 1067.

Choosing an Explain Tool
 DB2 provides the most comprehensive explain facility in the industry with detailed
optimizer information on the access plan chosen for an explained SQL statement.
Several methods are provided to give you the flexibility you need to capture and access
explain information.

Detailed optimizer information that allows for in-depth analysis of an access plan is kept
in explain tables separate from the actual access plan itself. There are three ways to
get information from the explain tables:

1. Write your own queries (based on the explain table descriptions as shown in
Appendix M, “ Explain Tables and Definitions” on page 1067)

2. Use the db2exfmt tool

 Copyright IBM Corp. 1993, 1998 509

3. Use Visual Explain (to view explain snapshot information)

The explain tables are accessible on all supported platforms and contain information for
both static and dynamic SQL statements. You can access the explain tables using SQL
statements which allows for easy manipulation of the output and for comparison among
different queries, or for comparisons of the same query over time. When using the
explain tables, you are required to create your own statements to access the tables. If
you wish the information from the explain tables to be presented in a predefined format,
you can use the db2exfmt tool. For more information about this tool, see “db2exfmt -
Explain Table Format Tool” on page 1122.

Note: The location of this tool (and others like db2batch, dynexpln, db2vexp, and
db2_all) is in the misc subdirectory of the sqllib directory. If this tool has been
moved from this path, then the command line entry mentioned above may not
work.

Visual Explain allows for the analysis of access plan and optimizer information from the
explain tables through a graphical interface. Both static and dynamic SQL statements
can be analyzed using this tool. Visual Explain is typically invoked from within the
Control Center. The Control Center is available from the command line by typing db2cc.
Also, Visual Explain can be invoked directly from the command line for a single SQL
statement using the db2vexp command. On some platforms, Visual Explain can be
invoked using a folder from within the DB2 Universal Database folder. Visual Explain is
not available on all supported platforms. You should check the Quick Beginnings
manual for your platform to see if Visual Explain is supported. Visual Explain does allow
you to view snapshots captured or taken on another platform. For example, a Windows
NT Client can graph snapshots generated on a DB2 for HP-UX server. To do this, both
of the platforms must be at a Version 5 level or later. The output from Visual Explain is
not easily manipulated for further analysis nor is the information accessible to other
applications. For more information on the db2vexp command, type db2vexp -h on the
command line or see the Command Reference manual. For more information on Visual
Explain in general, re fer to the online help in the Control Center by typing db2cc.

 Information about access plans for static SQL statements is generated and stored in
the system catalog as part of a package. To see the access plan information available
for one or more packages, the db2expln tool is available from the command line.
db2expln shows the actual implementation of the chosen access plan. It does not show
optimizer information.

The dynexpln tool, which uses db2expln within it, provides a quick way to explain
dynamic SQL statements that contain no parameter markers. This use of db2expln from
within dynexpln is done by transforming the input SQL statement into a static statement
within a pseudo-package. When this occurs, the information may not always be
completely accurate. If complete accuracy is desired, you should use the Explain
facility.

The db2expln tool does provide a relatively compact and English-like overview of what
operations will occur at run-time by examining the actual access plan generated (see
465 for more information on how the code is generated). Additional detail s on using

510 Administration Guide

db2expln and interpreting the output can be found in Appendix N, “SQL Explain Tools”
on page 1089.

Table 45 summarizes the different tools available with the DB2 explain facility and their
individual characteristics. Use this table to select the tool most suitable for your
environment and needs.

Table 45. Explain Facility Tools

Desired Characteristics
Visual
Explain db2vexp

Explain
tables db2exfmt db2expln dynexpln

GUI-interface Yes Yes

Text output Yes Yes Yes

“Quick and dirty” static SQL
analysis

 Yes

Static SQL supported Yes Yes Yes Yes

Dynamic SQL supported Yes Yes Yes Yes Yes*

CLI applications supported Yes Yes Yes

Available to DRDA Application
Requesters

 Yes

Detailed optimizer information Yes Yes Yes Yes

Suited for analysis of multiple
statements

 Yes Yes Yes Yes

Information accessible from within
an application

 Yes

Notes on this table:

* Indirectly using db2expln; there are some limitations.

Using the SQL Explain Facility
The different means of capturing explain information include using:

1. EXPLAIN and EXPLSNAP BIND/PREP options
2. CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special

registers
3. EXPLAIN SQL statement
4. db2vexp tool (also directly calls Visual Explain to display the information)

 There are three reasons you may wish to collect and use explain data:

1. To understand the steps (the access plan) that the database manager must
perform to satisfy your query. “Data Access Concepts and Optimization” on
page 476 provides information which you may need to reference if you wish to
understand the explain output.

 Chapter 14. SQL Explain Facility 511

2. To help evaluate your performance tuning initiatives. There are a number of actions
you can take to help improve the performance of your queries. Many of these
possible actions are described in sub-topics of the following:
¹ Chapter 10, “Application Considerations” on page 387
¹ Chapter 11, “Environmental Considerations” on page 423
¹ Chapter 12, “System Catalog Statistics” on page 435.

After making a change in any of these areas, you can use the SQL explain facility
to determine the impact, if any, that the change has on the access plan chosen.
For example, if you add an index based on the recommendations provided in
“Indexing Impact on Query Optimization” on page 427, the explain data can help
you determine whether the index is, in fact, being used as you expected.

While the explain output will provide you with information to allow you to determine
the access plan that was chosen and its relative cost, the only way to accurately
measure the performance improvement for a query is to use benchmark testing
techniques, as described in Chapter 19, “Benchmark Testing” on page 585.

3. To help you understand the reasons for changes in query performance, you need
to have the explain information both before and after your change in order to
analyze the impact. Therefore, when compiling a SQL statement to the database,
you should:
¹ Use the explain facility to capture the plan information before your changes,

and save the resulting explain tables.
¹ Save and/or print the current catalog statistics if you do not want to, or cannot,

access Visual Explain to view this information. (The db2look productivity tool,
described in “Modelling Production Databases” on page 461, could be used to
help perform this task.)

¹ Save and/or print the data definition language (DDL) statements, including
those for CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE
TABLESPACE.

The above information provides you with a before picture that you can use as a
reference point for future analysis. For dynamic SQL statements, you can also
collect this information when you run your application for the first time. For static
SQL statements, you can also collect this information at bind time.

When you wish to analyze the reason for a performance change, you can compare
the before data to information you collect about the query and environment when
you are starting your analysis (the after data).

As a simple example, your analysis could show that an index is no longer being
used as part of the access path. Using the catalog statistics information in Visual
Explain, you might notice that the number of index levels (NLEVELS column) is
now substantially higher than when the query was first bound to the database. You
might then choose to:
¹ Reorganize the index
¹ Collect new statistics for your table and indexes
¹ Gather explain information when rebinding your query.

Following these actions, you might notice that the index is once again being used
in the access plan and that performance of the query is no longer a problem.

512 Administration Guide

Introductory Concepts for Explain
 You can use explain information to analyze the access plan that the optimizer has
chosen based on the choices described in “Data Access Concepts and Optimization” on
page 476. For example, explain information may indicate that an index scan (see
“Index Scan Concepts” on page 477) was chosen by the optimizer. In addition, it can
also allow you to determine the following:

¹ How many index columns are used as search criteria, as described in “Range
Delimiting and Index SARGable Predicates” on page 487

¹ Whether index-only access is used, as described in “Index-Only Access” on
page 481

¹ Whether list prefetch will be used to read the pages, as described in
“Understanding List Prefetching” on page 541.

As another example, the explain information could also help you understand how two
tables are joined:

¹ The join method
¹ The order in which the tables are joined
¹ The occurrence and type of sorts.

Although you can use explain for SELECT, SELECT INTO, UPDATE, INSERT,
VALUES, VALUES INTO, and DELETE SQL statements, the primary use of explain is
to observe the access paths for the SELECT parts of your statements.

To satisfy an SQL query, the database manager typically:

¹ Uses one or more data objects (a table, an index, or both)
¹ Performs one or more operations (for example, table scan, index scan, and join)
¹ Returns the result set to the calling application.

For a simple SQL query, such as:

SELECT DEPTNO, DEPTNAME

 FROM DEPARTMENT

 the following, graphical representation of the steps performed could be displayed by
Visual Explain:

 Chapter 14. SQL Explain Facility 513

RETURN

TBSCAN

DEPARTMENT

The table object called
DEPARTMENT.

The TBSCAN operator
which performs a table
scan on the DEPARTMENT
table.

The RETURN operator
which gives the query
results back to the
calling application.

Figure 51. Graphical Display of Explain Output

The following topics discuss the type of details you can view for objects and operators:

¹ “Explain Information for Data Objects”
¹ “Explain Information for Data Operators” on page 515

Explain Information for Data Objects
 A single access plan may use one or more data objects to satisfy the SQL statement.

Object Statistics: The explain facility records facts about the object, such as:

¹ The creation time
¹ The last time that statistics were collected for the object (see Chapter 12, “System

Catalog Statistics” on page 435)
¹ An indication of whether or not the data in the object is ordered
¹ The number of columns in the object
¹ The estimated number of rows in the object
¹ The number of pages that the object occupies in the buffer pool
¹ The total estimated overhead, in milliseconds, for a single random I/O to the

specified table space where this object is stored
¹ The estimated transfer rate, in milliseconds, to read a 4K page from the specified

table space
¹ Prefetch and extent sizes, in 4K pages
¹ The degree of data clustering with the index
¹ The number of leaf pages used by this object's index and the number of levels in

the tree
¹ The number of distinct full key values in this object's index
¹ The total number of overflow records in the table.

514 Administration Guide

Explain Information for Data Operators
 A single access plan may perform several operations on the data to satisfy the SQL
statement and provide results back to you. The SQL compiler determines the
operations required; for example, a table scan, an index scan, a nested loop join, or a
group-by. Details of many of these operators are provided in “Data Access Concepts
and Optimization” on page 476.

In addition to showing the various operators used in an access plan, explain information
is also available for each operator as well as the cumulative effects of the access plan.

Estimated Cost Information: The following estimated, cumulative costs can be
displayed for the operators. These costs are for the chosen access plan, up to and
including the operator for which the information is captured.

¹ The total cost (in timerons)
¹ The number of 4KB page I/Os
¹ The number of CPU instructions
¹ The cost (in timerons) of fetching the first row, including any initial overhead

required
¹ The communication cost (in frames).

Timerons are a made-up, relative unit of measure.

Operator Properties: The following information is recorded by the explain facility to
describe the properties of each operator:

¹ The set of tables that have been accessed
¹ The set of columns that have been accessed
¹ The columns on which the data is ordered, if the optimizer determined that this

ordering can be used by subsequent operators
¹ The set of predicates that have been applied
¹ The estimated number of rows that will be returned (cardinality).

How Explain Information is Organized
 All explain information is organized around the concept of an explain instance. An
explain instance represents one invocation of the explain facility for one or more SQL
statements. An explain instance represents the explain information for:

¹ All the eligible SQL statements in one package for static SQL statements
¹ One particular SQL statement for dynamic SQL statements
¹ Each EXPLAIN SQL statement (whether dynamic or static).

The explain information captured within one explain instance includes the SQL
Compilation environment as well as the access plan chosen to satisfy the SQL
statement being compiled. Explain information is organized into 3 subsets:

Explain Instance Information Compilation environment information captured for
each explain instance.

Explain Snapshot Information Information used by Visual Explain.

 Chapter 14. SQL Explain Facility 515

Explain Table Information Information collected when explain table
information is requested.

Explain Instance Information
 Explain instance information is stored in the EXPLAIN_INSTANCE table. Additional
specific information about each SQL statement explained within an explain instance is
stored in the EXPLAIN_STATEMENT table.

Explain Instance Identification: You can uniquely identify each explain instance and
correlate the information for the SQL statements to a given invocation of the facility with
this information:

¹ The user who requested the explain information
¹ When the explain request began
¹ The name of the package from which the explained SQL statement came
¹ The schema of the package from which the explained SQL statement came.
¹ An indication whether a snapshot was part of the explain request.

Environmental Settings: Environmental information concerning how the SQL compiler
optimized your queries is captured. The environmental information includes the
following:

¹ The version and release number for the level of DB2 being used.

¹ The degree of parallelism used to compile the query. The CURRENT DEGREE
special register, the DEGREE bind option, the SET RUNTIME DEGREE API, and
the dft_degree configuration parameter may be used to determine the degree of
parallelism to be used when compiling a particular query.

¹ Whether the SQL statement was dynamic or static.

¹ The query optimization class used to compile the query. See “Adjusting the
Optimization Class” on page 406 for more information.

¹ The type of cursor blocking specified when compiling the query. For more
information about cursors, refer to the SQL Reference manual. For more
information about cursor blocking, see “Row Blocking” on page 414.

¹ The isolation level used when compiling the query. See “Concurrency” on
page 387 for more information.

¹ The values of various configuration parameters when the query was compiled. See
“Configuration Parameters Affecting Query Optimization” on page 423 for more
information about the configuration parameters that can affect query optimization,
including the following parameters that are recorded when an explain snapshot is
taken:

– “Buffer Pool Size (buffpage)” on page 608
– “Sort Heap Size (sortheap)” on page 621
– “Average Number of Active Applications (avg_appls)” on page 649
– “Database Heap (dbheap)” on page 610
– “Maximum Storage for Lock List (locklist)” on page 615
– “Maximum Percent of Lock List Before Escalation (maxlocks)” on page 639

516 Administration Guide

– “CPU Speed (cpuspeed)” on page 706
– “Communications Bandwidth (comm_bandwidth)” on page 705.

 SQL Statement Identification: For each explain instance, multiple SQL statements
may have been explained. Along with information that uniquely identifies the explain
instance, the following information helps identify each individual SQL statement.

¹ The type of statement: SELECT, DELETE, INSERT, UPDATE, positioned DELETE,
positioned UPDATE.

¹ The statement and section number of the package issuing the SQL statement, as
recorded in SYSCAT.STATEMENTS catalog view.

Within the EXPLAIN_STATEMENT table, the QUERYTAG and QUERYNO fields
contain identifiers and are set for you as part of the explain process.

For dynamic explain SQL statements submitted during a CLP or CLI session, when
EXPLAIN MODE or EXPLAIN SNAPSHOT is active, the QUERYTAG is set to “CLP” or
“CLI.” When this happens, the QUERYNO is defaulted to a number that is incremented
by one or more for each statement.

For all other dynamic explain SQL statements (not from CLP, CLI, or using the
EXPLAIN SQL statement) the QUERYTAG is set to blanks, and the QUERYNO will
always be “1.”

 Cost Estimation: For each statement explained, an estimate of the relative cost of
executing the chosen access plan is recorded. This cost is given using a made-up,
relative unit of measure called timerons. Estimates of elapsed times are not provided,
for the following reasons:

¹ The SQL optimizer does not estimate elapsed time but rather resource
consumption.

¹ The optimizer does not model all factors that can affect elapsed time; it ignores
those that do not affect the efficiency of the access plan. The elapsed time is
affected by a number of run-time factors including: the system workload; the
amount of resource contention; the amount of parallel processing and I/O; the cost
of returning rows to the user; and the communication time between the client and
server.

Statement Text: For each statement explained, two versions of the text of the SQL
statement are recorded. One version is the text as received by the SQL Compiler. The
other is a version of the statement text that has been reverse-translated from the
internal compiler representation of the query. This translation, while looking similar to
other SQL statements, does not necessarily follow correct SQL syntax nor does it
necessarily reflect the actual content of the internal representation as a whole. This
translation is provided simply to allow an understanding of the SQL context from which
the SQL optimizer chose the access plan. Comparing the user-written statement text to
the internal representation of the SQL statement can help you to understand how the
SQL compiler has rewritten your query for better optimization. (See “Query Rewrite by
the SQL Compiler” on page 466.) It also shows you other elements in the environment

 Chapter 14. SQL Explain Facility 517

affecting your statement such as triggers and constraints. Some keywords used by this
“optimized” text are:

$Cn The name of a derived column, where n represents an integer
value.

$CONSTRAINT$ The tag used to indicate the name of a constraint added to the
original SQL statement during compilation. Seen in conjunction
with the $WITH_CONTEXT$ prefix.

$DERIVED.Tn The name of a derived table, where n represents an integer
value.

$INTERNAL_FUNC$ The tag used to indicate the presence of a function used by
the SQL Compiler for the explained query but not available for
general use.

$INTERNAL_PRED$ The tag used to indicate the presence of a predicate added by
the SQL Compiler during compilation of the explained query.
Again, such a predicate is not available for general use. An
internal predicate is used by the compiler to satisfy additional
context added to the original SQL statement as the result of
triggers and constraints.

RID The tag used to identify the Row Identifier (RID) column for a
particular row.

$TRIGGER$ The tag used to indicate the name of a trigger added to the
original SQL statement during compilation. Seen in conjunction
with the $WITH_CONTEXT$ prefix.

$WITH_CONTEXT$(...) This prefix will appear at the start of the text when additional
triggers or constraints have been added into the original SQL
statement. Following this prefix will appear a list of the names
of any triggers or constraints affecting the compilation and
resolution of the SQL statement.

Explain Snapshot Information
When an explain snapshot is requested, additional explain information is recorded
describing the access plan selected by the SQL optimizer. This information is stored in
the SNAPSHOT column of the EXPLAIN_STATEMENT table in the format required by
Visual Explain. This format is not usable by other applications.

Additional information on the contents of the explain snapshot information is available
from Visual Explain itself and in:

¹ “Explain Information for Data Objects” on page 514
¹ “Explain Information for Data Operators” on page 515

Explain Table Information
When explain table information is requested, additional information is recorded
describing the access plan selected by the SQL optimizer. This information is stored in
the following explain tables:

¹ EXPLAIN_ARGUMENT. This table represents the unique characteristics for each
individual operator, if any.

518 Administration Guide

¹ EXPLAIN_INSTANCE. This table is the main control table for all Explain
information. Each row of data in the Explain tables is explicitly linked to one unique
row in this table. Basic information about the source of the SQL statements being
explained and environment information is kept in this table.

¹ EXPLAIN_OBJECT. This table identifies those data objects required by the access
plan generated to satisfy the SQL statement.

¹ EXPLAIN_OPERATOR. This table contains all the operators needed to satisfy the
SQL statement by the SQL compiler.

¹ EXPLAIN_PREDICATE. This table identifies which predicates are applied by a
specific operator.

¹ EXPLAIN_STATEMENT. This table contains the text of the SQL statement as it
exists for the different levels of Explain information. The original SQL statement as
entered by the user is stored in this table along with the version used (by the
optimizer) to choose an access plan to satisfy the SQL statement.

¹ EXPLAIN_STREAM. This table represents the input and output data streams
between individual operators and data objects. The data objects themselves are
represented in the EXPLAIN_OBJECT table. The operators involved in a data
stream are represented in the EXPLAIN_OPERATOR table.

Each rectangular object node of Visual Explain corresponds to a row in the
EXPLAIN_OBJECT table. Each octagonal “operator” node of Visual Explain
corresponds to a row in the EXPLAIN_OPERATOR table. Each link between operators
or operator's objects corresponds to a row of the EXPLAIN_STREAM table.

The explain table information is similar in content to that recorded for an explain
snapshot, however, this information is stored in ordinary relational tables which can be
accessed using standard SQL statements.

Explain tables, like the Visual Explain access plan graph, are designed to reflect the
relationships between operators and data objects within the access plan. The following
diagram shows the relationships between these tables.

 Chapter 14. SQL Explain Facility 519

Explain Predicate
Table

Explain Argument
Table

Explain Stream
Table

Explain Object
Table

Explain Operator
Table

Figure 52. Overview of Explain Table Relationships (not all tables are shown).

It is possible to have explain tables that are common to more than one user. The
explain tables can be defined for one user. Aliases can then be defined using the same
name for each additional user pointing to the defined tables. Each user sharing the
common explain tables must have insert permission on those tables.

See Appendix N, “SQL Explain Tools” on page 1089 for more information on the
Explain tables and how to create the tables. Additional information on the contents of
the explain table information is available in:

¹ “Explain Information for Data Objects” on page 514
¹ “Explain Information for Data Operators” on page 515

 The db2exfmt tool provided in the misc subdirectory under the sqllib directory can be
used to format the contents of the explain tables into a legible, organized output.

Obtaining Explain Data
 Before you can obtain explain data for an SQL statement, you must have a set of
explain tables defined using the same schema as the authorization ID that invokes the
explain facility. See “Table Definitions for Explain Tables” on page 1081 for information
on how to create the tables.

Capturing Explain Table Information
 Once these tables are defined, explain data is captured when an SQL statement is
compiled and explain data has been requested:

¹ For static SQL statements, explain table information will be captured when either
EXPLAIN ALL or EXPLAIN YES options are specified on the BIND or PREP
command; or, a static EXPLAIN SQL statement is used in the source program.

520 Administration Guide

¹ For dynamic SQL statements, explain table information will be captured for any of
the following situations:

– An EXPLAIN SQL statement. All explain information is captured and placed in
the explain tables unless the FOR SNAPSHOT clause is used.

An example of an EXPLAIN SQL statement:

EXPLAIN PLAN FOR <any valid DELETE, INSERT, SELECT, SELECT INTO,
UPDATE, VALUES, or VALUES INTO SQL statement>

– The CURRENT EXPLAIN MODE special register is set to YES. This setting
will cause the SQL compiler to capture explain data and allow the SQL
statement to execute, returning the results of the query.

– The CURRENT EXPLAIN MODE special register is set to EXPLAIN. This
setting will cause the SQL compiler to capture explain data, but will not
execute the SQL statement.

– The EXPLAIN ALL option has been specified on the BIND or PREP command.
This setting will cause the SQL compiler to capture explain data for dynamic
SQL at run-time, even if the setting of the CURRENT EXPLAIN MODE special
register is NO. The SQL statement will also execute, returning the results of
the query.

Note: Explain information is only captured when the SQL statement is compiled.
Following the initial compilation, dynamic SQL statements are only
recompiled when a change to the environment requires the statement be
recompiled. If the same PREPARE statement is issued consecutively for
the same SQL statement, the SQL statement will only be compiled, and
explain data captured, the first time the PREPARE statement is issued,
assuming the environment does not change.

For more information about using the EXPLAIN SQL statement refer to the SQL
Reference manual. For more information about using the CURRENT EXPLAIN MODE
registers, refer to the SQL Reference manual. For more information about the BIND
and PREP commands, refer to the Command Reference manual.

Capturing Explain Snapshot Information
Explain snapshot data is captured when an SQL statement is compiled and explain
data has been requested:

¹ For static SQL statements, an explain snapshot will be captured when either
EXPLSNAP ALL or EXPLSNAP YES options are specified on the BIND or PREP
command; or, a static EXPLAIN SQL statement, using a FOR SNAPSHOT or
WITH SNAPSHOT clause, is used in the source program.

¹ For dynamic SQL statements, an explain snapshot will be captured in any of the
following situations:

– An EXPLAIN SQL statement using a FOR SNAPSHOT or a WITH
SNAPSHOT clause. The FOR SNAPSHOT clause has no explain table
information captured except the information associated with explain snapshot.
The WITH SNAPSHOT clause has all explain table information captured in
addition to the information associated with explain snapshot.

 Chapter 14. SQL Explain Facility 521

An example of an explain snapshot using the EXPLAIN SQL statement:

EXPLAIN PLAN FOR SNAPSHOT FOR <any valid DELETE, INSERT, SELECT,
SELECT INTO, UPDATE, VALUES, or VALUES INTO SQL statement>

Only an explain snapshot is taken and the captured information is placed in
the EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables.

– The CURRENT EXPLAIN SNAPSHOT special register is set to YES. This
setting will cause the SQL compiler to take a snapshot of explain data and
allow the SQL statement to execute, returning the results of the query.

– The CURRENT EXPLAIN SNAPSHOT special register is set to EXPLAIN. This
setting will cause the SQL compiler to take a snapshot of explain data, but will
not execute the SQL statement.

– The EXPLSNAP ALL option has been specified on the BIND or PREP
command. This setting will cause the SQL compiler to take a snapshot of
explain data at run-time, even if the setting of the CURRENT EXPLAIN
SNAPSHOT special register is NO. The SQL statement will also execute,
returning the results of the query.

Note: Explain information is only captured when the SQL statement is compiled.
Following the initial compilation, dynamic SQL statements are only
recompiled when a change to the environment requires the statement be
recompiled. If the same PREPARE statement is issued consecutively for
the same SQL statement, the SQL statement will only be compiled, and
explain data captured, the first time the PREPARE statement is issued,
assuming the environment does not change.

For more information about using the EXPLAIN SQL statement and the FOR
SNAPSHOT or WITH SNAPSHOT clauses refer to the SQL Reference manual. For
more information about using the CURRENT EXPLAIN SNAPSHOT registers, refer to
the SQL Reference manual. For more information about the BIND and PREP
commands, refer to the Command Reference manual.

Guidelines on Using Explain Output
 There are a number of ways in which analyzing the explain data can help you to tune
your queries and environment. For example:

¹ Are Indexes Being Used?

As discussed in “Indexing Impact on Query Optimization” on page 427, the proper
indexes can have a significant benefit on performance. Using the explain output,
you can determine if the indexes you have created to help a specific set of queries
are being used. In the explain output, you should look for index usage in the
following areas:
 – Join predicates
 – Local predicates

– GROUP BY clause
– ORDER BY clause
– The select list.

522 Administration Guide

You can also use the explain facility to evaluate whether a different index can be
used instead of an existing index, or no index at all. After creating a new index,
collect statistics for that index (using the RUNSTATS command) and recompile
your query. Over time you may notice through the explain data that instead of an
index scan, a table scan is now being used. This can result from a change in the
clustering of the table data. If the index that was previously being used now has a
low cluster ratio, you may want to:

– Reorganize your table to cluster the data according to that index
– Use the RUNSTATS command to update the catalog statistics for the table

and index
– Recompile your query
– Re-examine the explain output to determine whether reorganizing your table

has impacted the access plan.
¹ Is the Type of Access Appropriate for Your Application?

You can analyze the explain output and look for types of access to the data that,
as a rule, are not optimal for the type of application you are running. For example:

– Online Transaction Processing (OLTP) Queries

OLTP applications are prime candidates to use index scans with range
delimiting predicates, because they tend to return only a few rows that are
qualified using an equality predicate against a key column. If your OLTP
queries are using a table scan, you may want to analyze the explain data to
determine the reasons why an index scan was not used.

 – Browse-Only Queries

The search criteria for a “browse” type query may be very vague, causing a
large number of rows to qualify. If the user will usually only look at a few
screens of the output data, you may want to try to ensure that the entire
answer set need not be computed before some results are returned. In this
case, the goals of the user are different from the basic operating principle of
the optimizer, which attempts to minimize resource consumption for the entire
query, not just the first few screens of data.

For example, if the explain output shows that both merge scan join and sort
operators were used in the access plan, then the entire answer set will be
materialized in a temporary table before any rows are returned to the
application. In this case, you can attempt to change the access plan by using
the OPTIMIZE FOR clause on the SELECT statement. (For more information
on the OPTIMIZE FOR clause, see “Quickly Retrieving the First Few Rows
Using OPTIMIZE FOR n ROWS” on page 412.) In this way, the optimizer can
attempt to choose an access plan that does not produce the entire answer set
in a temporary table before returning the first rows to the application.

¹ What Type of Join Method is Being Used?

If a query joins two tables, you can check the type of join processing being used.
Joins involving more rows, such as those in decision-support queries, usually run
faster with a merge join. Joins involving only a few rows, such as OLTP queries,
typically run faster with nested loop joins. However, there may be extenuating
circumstances in either case, such as the use of local predicates or indexes, that

 Chapter 14. SQL Explain Facility 523

would change how these typical joins would work. (See “Nested Loop Join” on
page 490 and “Merge Join” on page 491 for information about how these two join
methods operate.)

 Visual Explain
 Visual Explain can be used to study queries in more detail when compared to the other
methods, especially those that contain more complex sequences of operations. Visual
Explain is not available on all supported platforms. You should check the Quick
Beginnings for your platform to see if Visual Explain is supported.

Visual Explain lets you view the access plan for explained SQL statements as a graph.
You can use the information available from the graph to tune your SQL queries for
better performance. Visual Explain also lets you dynamically explain a SQL statement
and view the resulting access plan graph.

 The optimizer chooses an access plan and Visual Explain displays the information as
an access plan graph in which tables and indexes, and each operation on them, are
represented as nodes, and the flow of data is represented by the links between the
nodes.

To display an access plan graph, you must have created an explain snapshot. From
an access plan graph, you can view the details for:

¹ Tables and indexes (and their associated columns)
¹ Operators (such as table scans, sorts, and joins)
¹ Table spaces and functions.

You can also use Visual Explain to:

¹ View the statistics that were used at the time of optimization. You can then
compare these statistics to the current catalog statistics to help you determine
whether rebinding the package might improve performance.

¹ Determine whether or not an index was used to access a table. If an index was not
used, Visual Explain can help you determine which columns might benefit from
being indexed.

¹ View the effects of performing various tuning techniques by comparing the before
and after versions of the access plan graph for a query.

¹ Obtain information about each operation in the access plan, including the total
estimated cost and number of rows retrieved (cardinality).

For additional detail on Visual Explain, you should refer to the online information
available through the Control Center. The Control Center can be accessed by typing
db2cc on the command line.

524 Administration Guide

Part 4. Tuning and Configuring Your System

 Copyright IBM Corp. 1993, 1998 525

526 Administration Guide

 Chapter 15. Operational Performance

The following topics provide information on how you can influence performance of an
SQL query during run-time:

¹ How DB2 Uses Memory
¹ Managing the Database Buffer Pool
¹ Managing Multiple Database Buffer Pools
¹ Prefetching Data into the Buffer Pool
¹ Configuring I/O Servers for Prefetching and Parallel I/O

 ¹ Sorting
¹ Reorganizing Table Data
¹ Performance Considerations for DMS Devices
¹ Managing Initialization Overhead

 ¹ Database Agents
¹ Using the Database System Monitor

 ¹ Extending Memory.

 The following also provide information on how performance can be influenced:

¹ Chapter 2, “Designing Your Physical Database” on page 27
¹ Chapter 10, “Application Considerations” on page 387
¹ Chapter 11, “Environmental Considerations” on page 423
¹ Chapter 12, “System Catalog Statistics” on page 435.

How DB2 Uses Memory
 Many of the configuration parameters available in DB2 affect memory usage on the
system. Some may affect memory on the server, some on the client, and some on
both. Furthermore, memory is allocated and de-allocated at different times and from
different areas of the system.

A system administrator should also take into consideration balancing overall memory
usage on the system. Different applications running on the operating system may use
memory in different ways. For example, some applications may use the file system
cache, while the database manager uses its own buffer pool for data caching instead of
the operating system facility. See “Setting Parameters That Affect Memory Usage” on
page 532 for additional considerations.

Figure 53 on page 528 shows that the database manager uses different types of
memory.

Memory is allocated for each instance of the database manager at the following times:

¹ When the database manager is started (db2start), the area marked “Global
Control Blocks” is allocated, and this area remains allocated until the database
manager is stopped (db2stop). This area contains information that is needed by the
database manager to manage activity across all database connections. When the

 Copyright IBM Corp. 1993, 1998 527

Global Control
Blocks for the

database manager

. . .

. . .

. . .

Database
Global Memory

Application
Global Memory

* - 1 (one) can be the coordinating agent.
- only 1 per application

Agent
Private Memory

Database
Global Memory

Application
Global Memory

Agent
Private Memory

(numdb)

(maxappls)

(maxagents)

(1)

(1)

(1)
*

Figure 53. Types of memory used by the database manager

first application connects to a database, both global and private memory areas are
allocated.

| ¹ When a database is activated or connected to for the first time, the “database
| global memory” is allocated. The database global memory is used across all
| applications that might connect to the database and contains memory areas such
| as the buffer pools, lock list, database heap and utility heap.

| ¹ When an application connects to a database, the “application global memory” is
| allocated (this occurs only in a partitioned database environment, or if the
| intra_parallel configuration parameter is enabled). This memory is used by agents
| working on behalf of the application to share data and coordinate activities
| amongst themselves.

| ¹ When an agent is assigned to work for a particular application (as the result of a
| connect request, or, in a parallel environment, a new SQL request), “agent private
| memory” is allocated for that agent. The agent private memory area is allocated for
| the agent and contains memory allocations that will be used only by this specific
| agent, such as the sort heap and the application heap.

528 Administration Guide

| Once a database is already in use by one application, any subsequent connecting
| applications will only have agent private memory and application global shared
| memory allocated on their behalf.

| Figure 53 on page 528 shows how configuration parameter settings can affect
| memory. In particular, the parameters in the following list can limit the amount of
| memory that is allocated for specific purposes. (In a partitioned database environment,
| this memory is required on every database partition.)

¹ numdb defines the maximum number of concurrent active databases (in use by
different applications). Since each database has its own global memory area, the
amount of memory that can potentially be allocated grows if the value of this
parameter increases.

¹ maxappls defines the maximum number of applications that can simultaneously
connect to a single database. It affects the amount of memory that can potentially
be allocated for “Agent Private Memory” and “Application Global Memory” for that
database. (Note that this parameter can be set differently for every database.)

| ¹ maxagents (and max_coordagents for parallel environments) limit the number of
| database manager agents that can exist simultaneously across all active
| databases. Along with maxappls, these parameters limit the amount of memory
| allocated for “Agent Private Memory” and “Application Global Memory.” (For
| information on agents, see “Database Agents” on page 551.)

Figure 54 on page 530 summarizes how much memory is used to support applications.
The following configuration parameters allow you to control the size of this memory, by
limiting the number of "memory segments" (portions of logical memory) and their size.

| Global Control Block
Memory space is required for the database manager to run. This space
can be very large, especially in parallel environments. You can predict and
control the size of this space by reviewing the following sections:

¹ “Database Agents” on page 551. Agents running on behalf of
applications require substantial memory space, especially if the value
of maxagents is not appropriate.

¹ “FCM Requirements” on page 533. For parallel systems, the fast
communications manager (FCM) requires substantial memory space,
especially if the value of fcm_num_buffers is not appropriate.

| Database Global Memory
Database Global Memory is affected by the following configuration
parameters:

¹ The number of memory segments is limited by numdb (see “Maximum
Number of Concurrently Active Databases (numdb)” on page 707).

¹ The maximum size of memory segments is determined by the values
of the following parameters:

– “Buffer Pool Size (buffpage)” on page 608 (if a buffer pool size is
-1), or the explicit sizes that were specified when the buffer pools
were created or altered

 Chapter 15. Operational Performance 529

Database Global Memory

Agent Private Memory

Note: Box size does not indicate relative size of memory.

(pckcachesz)

Buffer Pools
(buffpage)

Utility Heap
(util_heap_sz)

Database Heap
(dbheap)

Backup Buffer
(backbufsz)

Restore Buffer
(restbufsz) (catalogcache_sz)

Agent/Application
Shared Memory

Application Support
Layer Heap (aslheapsz)

Sort Heap
(sortheap)

Statement
Heap

(stmtheap)

Query Heap (query_heap_sz)

DRDA Heap
(drda_heap_sz)

Statistics HeapAgent Stack
(stat_heap_sz)(agent_stack_sz)

UDF Memory
(udf_mem_sz)

Client I/O Block

Client I/O Block

(rqrioblk)

(rqrioblk)

Application
Heap

(applheapsz)

User or Application Process
(Local Client)

User or Application Process
(Remote Client)

Global Control Block
(for the database manager)

Application Global Memory

(app_ctl_heap_sz)

Log Buffer

Lock List

Extended Memory Cache

(locklist)

(logbufsz)

Package Cache

Catalog Cache

Figure 54. How memory is used by the database manager.

530 Administration Guide

– “Maximum Storage for Lock List (locklist)” on page 615
– “Database Heap (dbheap)” on page 610
– “Utility Heap Size (util_heap_sz)” on page 613
– “Extended Storage Memory Segment Size (estore_seg_sz)” on

page 646
– “Number of Extended Storage Memory Segments

(num_estore_segs)” on page 647.
| – “Package Cache Size (pckcachesz)” on page 617.

| Application Global Memory
| Application Global Memory is affected by the following configuration
| parameter:

| ¹ “Application Control Heap Size (app_ctl_heap_sz)” on page 619.

| For parallel systems, space is also required for the application control
| heap, which is shared between the agents that are working on behalf of the
| same application at one database partition. The heap is allocated when the
| first agent to receive a request from the application requests a connection.
| The agent can be either a coordinating agent or a subagent (see
| “Database Agents” on page 551).

Agent Private Memory

¹ The number of memory segments is limited by the lower of:
– The total of maxappls for all active databases (see “Maximum

Number of Active Applications (maxappls)” on page 648)
| – The value of maxagents (see “Maximum Number of Agents
| (maxagents)” on page 653).

¹ The maximum size of memory segments is determined by the values
of the following parameters:

– “Application Heap Size (applheapsz)” on page 623
– “Sort Heap Size (sortheap)” on page 621
– “Statement Heap Size (stmtheap)” on page 623
– “Statistics Heap Size (stat_heap_sz)” on page 624
– “Query Heap Size (query_heap_sz)” on page 625
– “DRDA Heap Size (drda_heap_sz)” on page 626
– “UDF Shared Memory Set Size (udf_mem_sz)” on page 626
– “Agent Stack Size (agent_stack_sz)” on page 627.

| Agent/Application Shared Memory

¹ The total number of agent/application shared memory segments (for
local clients) is limited by the lower of:

– The total of maxappls for all active databases (see “Maximum
Number of Active Applications (maxappls)” on page 648)

– The value of maxagents (see “Maximum Number of Agents
(maxagents)” on page 653), or (for parallel systems)
max_coordagents (see “Maximum Number of Coordinating Agents
(max_coordagents)” on page 654).

| ¹ Agent/Application Shared Memory is also affected by the following:

 Chapter 15. Operational Performance 531

| – “Application Support Layer Heap Size (aslheapsz)” on page 631.

| – “Client I/O Block Size (rqrioblk)” on page 632.

Setting Parameters That Affect Memory Usage
 Parameters that allocate memory should never be set at their highest values, even on
systems with the maximum amount of memory installed, unless such a value has been
carefully justified. Many of the parameters can allow the database manager to very
easily and quickly take up all of the available memory on a machine. In addition, the
management of a large amount of memory can take significant additional work on the
part of the database manager and thus incur even more overhead.

Some UNIX-based operating systems allocate swap space when a process allocates
memory and not when it is paged out to swap space. In these cases, you should
ensure the total shared memory size is backed with the equivalent amount of paging
space.

For most of the configuration parameters, memory is only committed as it is required.
These parameters reflect the maximum size of a particular memory heap. The notable
exceptions to this rule are the following parameters for which memory is fully committed
based on the parameter value:

¹ “Buffer Pool Size (buffpage)” on page 608 (if a buffer pool size is -1), or the explicit
sizes that were specified when the buffer pools were created or altered

| ¹ “Sort Heap Threshold (sheapthres)” on page 622
¹ “Maximum Storage for Lock List (locklist)” on page 615
¹ “Application Support Layer Heap Size (aslheapsz)” on page 631
¹ “Number of FCM Message Anchors (fcm_num_anchors)” on page 697
¹ “Number of FCM Buffers (fcm_num_buffers)” on page 697
¹ “Number of FCM Connection Entries (fcm_num_connect)” on page 698
¹ “Number of FCM Request Blocks (fcm_num_rqb)” on page 699.

The appropriate values for these types of parameters can best be determined by
benchmarking, where typical and worst-case SQL statements are run against the server
and the values of the parameters are modified until the point of diminishing return for
performance is found. If performance versus parameter values were graphed, the point
where the curve begins to plateau or decline would indicate the point at which
additional allocation provides no additional value to the application and is therefore
simply wasting memory. (See Chapter 19, “Benchmark Testing” on page 585.)

The upper limits of memory allocation for several parameters may be beyond the
memory capabilities of existing hardware and operating systems. These limits were
chosen to allow for future growth.

For valid parameter ranges, see the parameter descriptions in Chapter 20, “Configuring
DB2” on page 597.

532 Administration Guide

 FCM Requirements
Start with default values when configuring the following Fast Communications Manager
(FCM) configuration parameters:

¹ “Number of FCM Buffers (fcm_num_buffers)” on page 697
¹ “Number of FCM Request Blocks (fcm_num_rqb)” on page 699
¹ “Number of FCM Connection Entries (fcm_num_connect)” on page 698
¹ “Number of FCM Message Anchors (fcm_num_anchors)” on page 697

To tune these parameters, use the database system monitor to monitor the low water
mark for the free buffers, free message anchors, free connection entries, and the free
request blocks. If the low water mark is less than 10 percent of the number of the
corresponding free data item, increase the value of the corresponding parameter. For
information on the database system monitor, see “Using the Database System Monitor”
on page 554.

For information on FCM, see “Enable FCM Communications” on page 81.

Managing the Database Buffer Pool
 A buffer pool is an area of storage into which database pages (containing table rows or
index entries) are temporarily read and changed. The purpose of the buffer pool is to
improve database system performance. Data can be accessed much faster from
memory than from a disk. Therefore, the fewer times the database manager needs to
read from or write to a disk, the better the performance.

The configuration of one or more buffer pools is the single most important tuning area,
since it is here that most of the data manipulation takes place for applications
connected to the database (excluding large objects and long field data).

When an application accesses a row of a table for the first time, the database manager
places the page containing that row in the buffer pool. The next time any application
requests data, the buffer pool is checked first. If the requested data is found on pages
kept in the buffer pool, the database manager does not need to go out to disk storage
to retrieve the requested data. Avoiding the need to retrieve data from disk storage
results in faster performance.

Pages stay in the buffer pool until the database is shut down, or until the space
occupied by a page is required for another page. The space chosen in the buffer pool
to bring in another page is selected using criteria such as the following:

¹ The last reference to a page
¹ The likelihood of the page being referenced again by the last agent that looked at

the page
¹ The type of page
¹ Whether or not a page was changed in memory but not written out to disk.

(Changed pages are always written to disk before being overwritten.)

 Chapter 15. Operational Performance 533

Note: After changed pages are written out to disk, they are not removed from the
buffer pool unless the space they occupy is needed for other pages. Until they
are overwritten, they can be accessed again if their data is needed.

| When creating a buffer pool, by default the page size is 4 KB. You can choose to have
| the page size set at either 4 KB or 8 KB when creating the buffer pool. If buffer pools
| are created using an 8 KB page size, only table spaces created using an 8 KB page
| size can then be associated with them. You cannot alter the page size of the buffer
| pool following its creation.

Pages in the buffer pool can have different attributes:

¹ In-use pages are currently being read or updated. They can be read, but not
updated, by other agents.

¹ “Dirty” pages are pages where data has been changed but has not yet been written
to disk. After a page is written to disk, it is considered “clean,” and remains in the
buffer pool. The space occupied by clean pages can be used for new pages, and
is available for migration to an associated extended storage cache (if defined).

Pages can be written from the buffer pool to disk when the percentage of space
occupied by changed pages in the buffer pool has exceeded the value specified by the
chngpgs_thresh configuration parameter. You also may need to configure the database
to include more than one page-cleaner agent. These agents write out changed pages to
disk so that the database agents can find usable space in the buffer pool.

Page cleaner agents perform I/O that would otherwise have to be performed by the
database agents. As a result, your applications can run faster, because transactions are
not forced to wait while their database agents write pages to disk. (Page-cleaner agents
are sometimes referred to as asynchronous page cleaners or asynchronous buffer
writers because they can run in parallel with the database agents.)

To change the number of page-cleaner agents, use the num_iocleaners configuration
parameter (the default is to create one page-cleaner agent). For information, see
“Number of Asynchronous Page Cleaners (num_iocleaners)” on page 642.

Writing pages to disk also allows for faster recovery of the database should a system
crash occur, because the database manager is able to rebuild more of the buffer pool
from disk rather than having to use the database log files. As a result, page cleaning is
requested if the size of the log that would need to be read during recovery exceeds the
following maximum:

logfilsiz * softmax

where:

¹ logfilsiz represents the size of the log files (see “Size of Log Files (logfilsiz)” on
page 659)

¹ softmax represents the percentage of log files to be recovered following a database
crash (see “Recovery Range and Soft Checkpoint Interval (softmax)” on
page 666).

534 Administration Guide

For example, if the value of softmax is 250, then 2.5 log files will contain the
changes that need to be recovered if a crash occurs.

You may use the database system monitor to help you track the number of times that
page cleaning is requested to minimize log read time during recovery. For more
information see the pool_lsn_gap_clns (buffer pool log space cleaners triggered)
monitor element description in the System Monitor Guide and Reference manual.

The size of the log that would need to be read during recovery is the difference
between the location of the following in the log:

¹ The most recently written log record
¹ The log record that describes the oldest change to data in the buffer pool.

The following figure illustrates how the work of managing the buffer pool can be shared
between page-cleaner agents and database agents, compared to the database agents
performing all of the I/O.

 Chapter 15. Operational Performance 535

Without Page Cleaners

With Page Cleaners

Buffer Pool

Buffer Pool

Database Agent

Database Agent

Asynchronous
Page Cleaner

Database Agent

Database Agent

Oops, there is no
room for this page

1.

There is room for
this page

Write the
pages to disk

Take out
dirty pages

Now I can
put this page in

3.

2. I have to move a
dirty page

A

A

Buffer Pool

A

AA

Figure 55. Asynchronous Page Cleaner. “Dirty” pages are written out to disk.

536 Administration Guide

Managing Multiple Database Buffer Pools
Each database requires at least one buffer pool. However, depending on your needs
you may choose to create several buffer pools, each of a different size, for a single
database. The CREATE, ALTER, and DROP BUFFERPOOL statements allow you to
create, change, or remove a buffer pool. You can specify which data is cached in a
buffer pool with the CREATE TABLESPACE and ALTER TABLESPACE statements.

| The buffpage configuration parameter specifies the size of any buffer pool, if the buffer
| pool's size is specified as -1 in the SYSCAT.BUFFERPOOLS catalog view. (Otherwise
| this parameter is ignored.) A buffer pool's size can be set with the DDL statements
| ALTER BUFFERPOOL or CREATE BUFFERPOOL.

| A new or migrated database has a default buffer pool called IBMDEFAULTBP.
| Migrated databases have a default buffer pool with a size determined by the buffpage
| configuration parameter (because the SIZE of the buffer pool in the
| SYSCAT.BUFFERPOOLS catalog view is set to -1 for migration). New databases have
| a default buffer pool with a size determined by the platform. Once a database is
| created or migrated, then other buffer pools can be created for it.

| When working on your database design, you may have determined that tables with 8
| KB page sizes were best. As a result, you should create a buffer pool with an 8 KB
| page size (along with one or more table spaces with the same page size).

In a partitioned database environment, each buffer pool for a database has the same
default definition on all database partitions (unless it was otherwise specified in the
CREATE BUFFERPOOL statement, or the buffer pool's size was changed for a
particular database partition with the ALTER BUFFERPOOL statement).

| When you create a table space with a page size of 4K and do not assign it to a specific
| buffer pool, the table space is assigned to the default buffer pool. If you create a table
| space with a page size of 8K, you should assign it to a buffer pool that uses 8K pages.
| If this buffer pool is currently not active, DB2 will attempt to assign the table space to
| an active buffer pool that uses 8K pages (if one is available). This assignment, if made,
| is temporary. When the database is activated again, and the originally specified buffer
| pool is active, then DB2 assigns the table space to that buffer pool.

| You cannot use the ALTER TABLESPACE statement to add the table space to a buffer
| pool that uses a different page size.

 When creating or altering buffer pools, the total memory that is required by all buffer
pools must be available to the database manager so that all of the buffer pools can be
allocated when the database is started. Should this memory not be available when a
database is started, the database manager attempts to start the default buffer pool
(IBMDEFAULTBP), but only with a minimal size. A warning message is returned with
each failed attempt to start a buffer pool; the database continues in this operational
state until its configuration is changed and the database can be fully restarted.

 Chapter 15. Operational Performance 537

Note: Although the size and attributes associated with the default buffer pool can be
changed, it cannot be dropped. Also, there is a minimum size for each buffer
pool that is based on the platform being used.

There are advantages to having a large amount of memory allocated to buffer pools.
For example, larger buffer pool sizes:

¹ Enable often-requested data pages to be kept in the buffer pool, allowing for
quicker access. Fewer I/O operations can reduce I/O contention, thereby providing
better response time and reducing the processor resource needed for I/O
operations.

¹ Provide the opportunity to achieve higher transaction rates with the same response
time.

¹ Prevent I/O contention for frequently used disk storage devices such as catalog
tables and frequently referenced user tables and indexes. Sorts required by queries
also benefit from reduced I/O contention on the disk storage devices containing the
temporary table spaces.

Choosing One or Many Buffer Pools
If any of the following conditions apply to your system, you should use only a single
buffer pool:

¹ The total buffer space is less than 10 000 4-KB pages.
¹ People with the application knowledge to do specialized tuning are not available.
¹ You are working on a test system.

If your system is not constrained by these conditions, then consider using more than
one buffer pool for the following potential performance improvements:

¹ You can put temporary table spaces into a separate buffer pool to provide better
performance for queries that require temporary storage, especially sort-intensive
queries.

¹ If you have data that must be accessed repeatedly and quickly by many short
update transaction applications, then you should consider moving the table space
containing the data into a separate buffer pool. If this buffer pool is sized
appropriately, its pages have a better chance of being found, contributing to a
lower response time and a lower transaction cost.

¹ You can isolate data into separate buffer pools to favor certain applications, data,
and indexes. For example, you might want to put tables and indexes that are
updated frequently into a buffer pool that is separate from those tables and indexes
that are frequently queried but infrequently updated. This change will reduce the
impact of the frequent updates (on the first set of tables) on the frequent queries
(on the second set of tables).

¹ You can use smaller buffer pools for the data accessed by applications that are
seldomly used, especially in the case where an application requires very random
access into a very large table. In such a case, there is no need to keep the data in
buffer pool memory for longer than a single query. It is better to keep a small buffer

538 Administration Guide

pool for this data, and free up the extra memory for other uses (for example, for
other buffer pools).

¹ After separating different activities and data into separate buffer pools, good and
relatively inexpensive performance diagnosis data can be produced from statistics
and accounting traces.

Prefetching Data into the Buffer Pool
Prefetching index and data pages into the buffer pool can help improve performance by
reducing the time spent waiting for I/O to complete. To prefetch pages means that one
or more pages are retrieved from disk in anticipation of their use. There are two
categories of prefetch:

¹ Sequential prefetch is a mechanism that reads consecutive pages into the buffer
pool before the pages are required by the application. (See “Understanding
Sequential Prefetching.”)

¹ List prefetch, or list sequential prefetch, is a way to access data pages efficiently,
even when the data pages needed are not consecutive. (See “Understanding List
Prefetching” on page 541.)

These two methods of reading data pages are in addition to a normal read. A normal
read is used when just one or a few consecutive pages are retrieved. During a normal
read, one page of data is transferred.

For further information on enabling prefetching, see also “Configuring I/O Servers for
Prefetching and Parallel I/O” on page 541.

Understanding Sequential Prefetching
 Reading several consecutive pages into the buffer pool using a single I/O operation
can greatly reduce the overhead associated with running your application. In addition,
performing multiple I/O operations in parallel to read in several ranges of pages at the
same time can help reduce the time your application needs to wait for I/O operations to
complete.

Prefetching is started when the database manager determines that sequential I/O is
appropriate and that prefetching may help to improve performance. In cases such as
table scans and table sorts, the database manager can easily determine that sequential
prefetch will improve I/O performance. In these cases, the database manager
automatically starts sequential prefetch. The following example could require a table
scan and would be a good candidate for sequential prefetch:

SELECT NAME FROM EMPLOYEE

 The number of pages that the database manager will prefetch can be defined for each
table space using the PREFETCHSIZE clause with either the CREATE TABLESPACE
or ALTER TABLESPACE statements. The value specified is maintained in the
PREFETCHSIZE column of the SYSCAT.TABLESPACES system catalog table.

 Chapter 15. Operational Performance 539

It is a good practice to explicitly set the PREFETCHSIZE value as a multiple of the
EXTENTSIZE value for your table space and the number of table space containers.
(The extent size is the number of pages that the database manager writes to a
container before using a different container; see “Designing and Choosing Table
Spaces” on page 43.) For example, if the extent size is 16 pages and the table space
has two containers, you could choose to set the prefetch quantity to 32 pages.

The database manager monitors buffer pool usage to ensure that prefetching of data
does not remove pages from the buffer pool if those pages are needed by another unit
of work. To avoid problems, the database manager may choose to limit the number of
pages being prefetched to a quantity less than you specified for the table space.

 The setting of the prefetch size can have significant performance implications,
particularly for large table scans. You can use the database system monitor and other
system monitor tools to help you tune PREFETCHSIZE for your table spaces. For
example, you can gather information about whether:

¹ There are I/O waits for your query, using monitoring tools available for your
operating system.

¹ Prefetch is occurring, by looking at the pool_async_data_reads (buffer pool
asynchronous data reads) data element provided by the database system monitor.
See the System Monitor Guide and Reference for more information.

If there are I/O waits and the query is prefetching data, you can try increasing the value
of PREFETCHSIZE. It is possible that the prefetcher is not the cause of the I/O wait, in
which case increasing the PREFETCHSIZE value will not improve the performance of
your query.

In all types of prefetch, multiple I/O operations may be performed in parallel when the
prefetch size is a multiple of the extent size for the table space and the extents of the
table space are in separate containers. For better performance the containers should
be configured to use separate physical devices. For more information on parallel
prefetching, see “Configuring I/O Servers for Prefetching and Parallel I/O” on page 541.

Understanding Sequential Detection
 There are cases for which it is not immediately obvious whether sequential prefetch
will improve performance. In these cases, the database manager can monitor I/O and if
sequential page reading is occurring the database manager can activate prefetching.
Prefetching in this case can be activated and deactivated by the database manager
when it deems it appropriate. This type of sequential prefetch is known as sequential
detection and applies to both index and data pages. You may use the seqdetect
configuration parameter (see “Sequential Detection Flag (seqdetect)” on page 644) to
control whether the database manager should perform sequential detection. If
sequential detection is turned on, it could determine that the following SQL statement
would benefit from sequential prefetch:

SELECT NAME FROM EMPLOYEE

WHERE EMPNO BETWEEN 100 AND 3000

540 Administration Guide

In this example, the optimizer may have chosen to scan the table using an index on the
EMPNO column. If the table is highly clustered with respect to this index, then the data
page reads will be almost sequential and prefetching may improve performance. In this
case, data page prefetch will occur.

Index page prefetch may also occur in this example. If a large number of index pages
have to be examined and the database manager detects that sequential page reading
of the index pages is occurring, then index page prefetching will occur.

Understanding List Prefetching
List prefetch, or list sequential prefetch, is a way to access data pages efficiently, even
when the data pages needed are not contiguous. List prefetch can be used in
conjunction with either single or multiple index access.

Prefetching and Intra-Partition Parallelism
Prefetching is very important to the performance of intra-partition parallelism, which
uses multiple subagents when scanning an index or a table. These parallel scans
introduce larger data consumption rates, which require higher prefetch rates.

The cost of inadequate prefetching is higher for parallel scans than serial scans. If
prefetching does not occur when executing a serial scan, the query runs more slowly
because the agent always needs to wait for I/O. If prefetching does not occur when
executing a parallel scan, all subagents may need to wait for one subagent that is
waiting for I/O.

Because of its importance, prefetching is performed more aggressively with
intra-partition parallelism. The sequential detection mechanism tolerates larger gaps
between adjacent pages so that the pages can be considered sequential. The width of
these gaps increases with the number of subagents involved in the scan.

Configuring I/O Servers for Prefetching and Parallel I/O
 To enable prefetching, the database manager starts separate threads of control, known
as I/O servers, to perform page reading. As a result, the query processing is divided
into two parallel activities: data processing (CPU) and data page I/O. The I/O servers
wait for prefetch requests from the CPU processing activity. These prefetch requests
contain a description of the I/O needed to satisfy the anticipated data needs. The
reason for prefetching determines when and how the database manager generates the
prefetch requests. (See “Understanding Sequential Prefetching” on page 539 and
“Understanding List Prefetching” for more information.)

The following figure illustrates how I/O servers are used to prefetch data into a buffer
pool.

 Chapter 15. Operational Performance 541

Buffer Pool

Database Agent Database Agent

Asynchronous
Prefetch

Request

Database Agent

I/O ServerI/O Server

I/O Server
Queue

5

6

4

3

2

Logical
Buffer

Read

Big
Block
Read

Create
4K pages

User
Application

User
Application

User
Application

1

Figure 56. Prefetching Data using I/O Servers

The following steps are illustrated in Figure 56:

.1/ The user application passes the SQL request to the database agent.

.2/ The database agent determines that prefetching should be used to obtain the data
required to satisfy the SQL request and writes a prefetch request to the I/O server
queue.

542 Administration Guide

.3/, .4/ The first available I/O server will read the prefetch request from the queue and
read the data from the table space into the buffer pool. Depending on the number
of prefetch requests in the queue and the number of I/O servers configured by the
num_ioservers configuration parameter, multiple I/O servers can be fetching data
from the table space at the same time.

.5/ The database agent performs the necessary actions against the data pages in the
buffer pool in order to return the result of the SQL request back to the user
application.

 Configuring enough I/O servers with the num_ioservers configuration parameter can
greatly enhance the performance of queries for which prefetching of data can be used.
Having some extra I/O servers configured will not hurt performance because extra I/O
servers are not used and their memory pages will get paged out. Each I/O server
process is numbered and the database manager will always use the lowest numbered
process that is available and, as a result, some of the upper numbered processes may
never be used.

To determine the number of I/O servers that you should configure, consider the
following:

¹ The amount of concurrent activity against the database. That is, the number of
database agents that could be writing prefetch requests to the I/O server queue at
any given time.

¹ The highest degree to which the I/O servers can work in parallel. For more
information, see “Enabling Parallel I/O.”

Enabling Parallel I/O
For situations in which multiple containers exist for a table space, the database
manager can initiate parallel I/O. Parallel I/O refers to the ability of the database
manager to use multiple I/O servers to process the I/O requirements of a single query.
Each I/O server is assigned the I/O workload for a separate container, allowing several
containers to be read in parallel. Performing I/O in parallel can result in significant
improvements to I/O throughput.

While a separate I/O server will handle the workload for each container, the actual
number of I/O servers that can perform I/O in parallel will be limited to the number of
physical devices over which the requested data is spread. This also means you need
as many I/O servers as the number of physical devices.

How parallel I/O is initiated and used is dependent on the reason for performing the I/O:

 ¹ Sequential prefetch

For sequential prefetch, parallel I/O is initiated when the prefetch size is a multiple
of the extent size for a table space. Each prefetch request is then broken into
multiple, smaller, requests along the extent boundaries. These smaller requests
are then assigned to different I/O servers.

 ¹ List prefetch

 Chapter 15. Operational Performance 543

For list prefetch, each list of pages is divided into smaller lists according to the
container in which the data pages are stored. These smaller lists are then assigned
to different I/O servers.

¹ Database or table space backup and restore

For backing up or restoring data, the number of parallel I/O requests are equal to
the backup buffer size divided by the extent size up to a maximum value equal to
the number of containers.

¹ Database or table space restore

For restoring data, the parallel I/O requests are initiated and split in a manner that
is the same as that used for sequential prefetch. Instead of restoring the data into
the buffer pool, the data is moved directly from the restore buffer to disk.

 ¹ Load

When loading data you can specify the level of I/O parallelism with the LOAD
command's DISK_PARALLELISM option. (If it is not specified, a default is used
based on the cumulative number of table space containers for all table spaces
associated with the table.)

For optimal performance of parallel I/O, ensure that:

¹ There are enough I/O servers. You should configure the number of I/O servers to
be slightly higher than the number of containers used for all table spaces within the
database.

¹ The extent size and prefetch size are sensible for the table space. Prefetch size
should not be too large, to prevent over-use of the buffer pool. (An ideal size is a
multiple of the extent size and the number of table space containers.) The extent
size should be fairly small, with a good value being in the range of 8 to 32 pages.

¹ The containers are configured to reside on separate physical drives.

¹ All containers are the same size to ensure a consistent degree of parallelism.

If one or more containers are smaller than the others, they will reduce the potential
for optimized parallel prefetch. For example:

– After a smaller container is filled up, additional data is stored in the remaining
containers, causing the containers to become unbalanced. Unbalanced
containers reduce the performance of parallel prefetching, because the number
of containers from which data can be prefetched may be less than the total
number of containers.

– If a smaller container is added at a later date and the data is rebalanced, the
smaller container will contain less data than the other containers. Its small
amount of data relative to the other containers will not optimize parallel
prefetching.

– If one container is larger and all of the other containers fill up, it will be the
only container to store additional data. The database manager will not be able
to use parallel prefetch to access this additional data.

544 Administration Guide

¹ There is adequate I/O capacity when using intra-partition parallelism. Intra-partition
parallelism can be used on SMP machines to reduce a query's elapsed time by
running the query on multiple processors. Sufficient I/O capacity is required to
keep each processor busy, usually requiring additional physical drives to provide
the I/O capacity.

Prefetching must occur at higher rates to use I/O capacity effectively. The prefetch
size should be higher for prefetching to occur at higher rates. The prefetch size
should be a multiple of the extent size and the number of table space containers.
Ideally, containers should be configured to reside on separate physical drives.

The number of physical drives required could depend on the speed and capacity of
the drives and the I/O bus, and on the speed of the processors.

Allocating Multiple Pages at a Time
The database manager expands the database as needed when the multipage_alloc
database configuration parameter is set to YES. (See “MultiPage File Allocation
Enabled (multipage_alloc)” on page 681.) The default value for this parameter is NO,
causing the database manager to expand the database file one page at a time.

To set multipage_alloc to YES (and gain the associated performance improvement),
use the db2empfa tool in the sqllib/bin directory. (For more information on this tool, see
the Command Reference.)

 Sorting
 Sorting is often required for a query, and the proper configuration of the sort heap
areas can be crucial to the query's performance. Sorting is required when:

¹ No index exists to satisfy a requested ordering (for example a SELECT statement
that uses the ORDER BY clause)

¹ An index exists but sorting would be more efficient than using the index
¹ Creating an index (if the indexsort configuration parameter is set to yes).

Different Types of Sorting
Sorting involves two steps:

1. A sort phase
2. Return of the results of the sort phase.

How the sort is handled within these two steps results in different categories or types
by which we can describe the sort. When considering the sort phase, the sort can be
categorized as “overflowed” or “non-overflowed.” When considering the return of the
results of the sort phase, the sort can be categorized as “piped” or “non-piped.”

Overflowed and Non-Overflowed
 If the information being sorted cannot fit entirely into the sort heap (a block
of memory that is allocated each time a sort is performed) it overflows into
temporary database tables. Sorts that do not overflow always perform
better than those that do.

 Chapter 15. Operational Performance 545

Piped and Non-Piped
 If sorted information can return directly without requiring a temporary table
to store a final, sorted list of data, it is referred to as a “piped sort.” If the
sorted information requires a temporary table to be returned, it is referred
to as a “non-piped sort.” A piped sort always performs better than a
non-piped sort.

Tuning the Parameters that Affect Sorting
The following situations affect the performance of sorting:

¹ The settings for the following configuration parameters:

“Sort Heap Size (sortheap)” on page 621
Specifies the amount of memory to be used for each sort

“Sort Heap Threshold (sheapthres)” on page 622
Controls the total amount of memory for sorting available across the
entire instance for all sorts.

¹ Statements that involve a large amount of sorting
¹ Missing indexes that could help avoid unnecessary sorting
¹ Application logic that does not minimize sorting
¹ Parallel sorting, which improves the performance of sorts but can only occur if the

statement uses intra-partition parallelism (see “Enabling Parallel I/O” on page 543).

Looking for Indicators of Sorting Performance Problems
| To tell if you have an overall problem with sorting, look at the total CPU time spent
| sorting compared to the time spent on the whole application. The database system
| monitor can help (see “Using the Database System Monitor” on page 554). In
| particular, the Performance Monitor (which is made up of the “Snapshot Monitor” and
| “Event Monitor” and is available from the Control Center), shows total sort time by
| default, along with other times such as I/O and lock wait.

If total sort time is a large proportion of the other times then look at the following
values, which are also shown by default:

Percentage of overflowed sorts
This variable (on the performance details view of the Snapshot Monitor)
shows the percentage of sorts that overflowed. If the percentage of
overflowed sorts is high, increase the sortheap and/or sheapthres
configuration parameters if there were any post-threshold sorts. (To
determine if there were any post threshold sorts, use the Snapshot
Monitor.)

Post threshold sorts
If post threshold sorts are high, increase sheapthres and/or decrease
sortheap.

In general, make the overall sort memory available across the instance (sheapthres) as
large as possible without causing excessive paging. It is possible for a sort to be done
entirely in sort memory. However, if this causes the operating system to perform

546 Administration Guide

excessive page swapping to accommodate that sort memory you can lose the
advantage of a large sort heap. So, whenever you adjust the sorting configuration
parameters, use an operating system monitor to track any changes in system paging.

| Note: With the improvement in the DB2 partial key binary sorting technique to include
| non-integer data type keys, some additional memory is required when sorting
| long keys. If you believe long keys are being used, increase the sortheap

| configuration parameter.

Also note that in a piped sort, the sort heap does not get freed until the application
closes the cursor associated with that sort. So a piped sort can use up memory until
the cursor is closed.

Techniques for Managing Sorting Performance
You can use the database system monitor and benchmarking techniques to help set
the sortheap and sheapthres configuration parameters. Do the following for each
database manager and its databases:

¹ Set up and run a representative workload.
¹ For each applicable database, collect average values for the following performance

variables over the benchmark workload period:
– Total sort heap in use

 – Active sorts

These performance variables are shown on the performance details view of the
Snapshot Monitor.

¹ Set sortheap to the average total sort heap in use for each database.
| ¹ Set the sheapthres by doing the the following:
| 1. Determine which database in the instance has the largest sortheap value.
| 2. Determine the average size of the sort heap for this database.

| If this is too difficult to determine, use 80% of the maximum sort heap
| 3. Set sheapthres to the average number of active sorts times the average size
| of the sort heap computed above.

| This is a recommended initial setting. You can then use benchmark techniques
| to refine this value.

You can also identify particular applications and statements where sorting is a
significant performance problem:

¹ Set up event monitors at the application and statement level to help you identify
applications with the longest total sort time.

¹ Within each of these applications, find the statements with the longest total sort
time.

¹ Tune these statements using a tool such as Visual Explain.
¹ Ensure that appropriate indexes exist. You can use Visual Explain to identify all the

sort operations for a given statement. Then investigate whether or not an
appropriate index exists for each table accessed by the statement.

Note: You can search through the explain tables to identify which queries have sort
operations. (See Appendix N, “SQL Explain Tools” on page 1089.)

 Chapter 15. Operational Performance 547

Reorganizing Table Data
| The performance of SQL statements that use indexes can be impaired after many
| updates, deletes, or inserts have been made. Generally, newly inserted rows cannot be
| placed in a physical sequence that is the same as the logical sequence defined by the
| index (unless you use clustered indexes). This means that the database manager must
| perform additional read operations to access the data, because logically sequential data
| may be on different physical data pages that are not sequential.

In general, reorganizing a table takes more time than running statistics. Performance
may be improved sufficiently by obtaining the current statistics for your data and
rebinding your applications, so try this first. If this does not improve performance, the
data in the tables and indexes may not be arranged efficiently, so reorganization may
help. The information in this section applies not only to reorganizing your own tables,
but also to the system catalog tables which may also require reorganization.

 The REORGCHK command returns information about the physical characteristics of a
table, and whether or not it would be beneficial to reorganize that table. This command
can be used through the command line processor. See the Command Reference for
more information, including how to interpret the command output.

| The REORG utility optionally rearranges data into a physical sequence according to a
| specified index. REORG has an option to specify the order of rows in a table with an
| index, thereby clustering the table data according to the index and improving the
| CLUSTERRATIO or CLUSTERFACTOR statistics collected by the RUNSTATS utility.
| As a result, SQL statements requiring rows in the indexed order can be processed
| more efficiently. REORG also stores the tables more compactly by removing unused,
| empty space (though if you specified PCTFREE when you used ALTER TABLE, that
| space remains unused).

You may wish to consider the following factors to determine when to reorganize your
table data:

¹ The volume of insert, update, and delete activity
¹ Any significant change to the performance of queries which use an index with a

high cluster ratio
¹ Running statistics (RUNSTATS) does not improve the performance of queries
¹ The REORGCHK command indicates a need to reorganize your table
¹ The cost of reorganizing your table, including the CPU time, the elapsed time, and

the reduced concurrency resulting from the REORG utility locking the table until the
reorganization is complete.

To execute the REORG utility, you must have SYSADM, SYSMAINT, SYSCTRL or
DBADM authority, or CONTROL privilege on the table.

The REORG utility uses temporary tables that can be significantly larger than the
original table, if columns were added to a table, or a table has LOB columns. If these
temporary tables are larger, the resulting permanent table, created by the REORG
utility, will also be larger.

548 Administration Guide

The REORG utility allows you to specify a temporary table space, which is used to
create the temporary REORG table. If a temporary table space is not specified, the
REORG utility will create the temporary REORG tables in the table space that contains
the table being reorganized. The following guidelines can assist you in determining
whether to use a temporary table space:

¹ It is generally recommended that you specify a temporary SMS table space.

¹ Do not specify a temporary table space if you think that the REORG table will fit in
the same DMS table space as the base table. In this case, the REORG utility will
operate much faster than if a temporary table space was specified, but the table
space will need enough available free space for a second copy of the table. This
second copy could be smaller or larger than the original table, depending on how
much unused space exists in the original table and on whether the reorganization
will expand the size of LOBs. Using the same DMS table space also increases the
amount of space required for logging, because a log record is written for each
extent consumed by the reorganized table.

¹ Using a temporary DMS table space is generally not recommended since you can
only have one REORG in progress using this type of table space.

| Remember that you may be reorganizing a table within a table space that is using 8 KB
| pages. The temporary table space used during the reorganization must have the same
| size pages.

If the REORG utility does not complete successfully, do not delete any temporary files,
tables or table spaces. These files and tables are used by the database manager to roll
back the changes made by the REORG utility, or to complete the reorganization,
depending on how far the reorganization had progressed before the failure.

In a partitioned database, the REORG utility reorganizes data on each partition. If the
utility fails on any partition, only the failing partition is rolled back. If you specify a
directory path to store temporary tables, this path is extended by the database manager
at each database partition. Therefore, if you specify a path that is shared by other
database partitions, the temporary files are stored in different subdirectories (identified
by node name) under this path.

| Avoiding the Need to Reorganize Tables
| To reduce the need for reorganizing a table, do the following after you have created the
| table:

| ¹ Alter table to add PCTFREE
| ¹ Create clustering index with PCTFREE on index
| ¹ Sort the data
| ¹ Load the data.

| Now you have a table with a clustering index. The clustering index, in conjunction with
| PCTFREE on table, will preserve the original sorted order. With sufficient space on
| pages, new data can be inserted on the correct pages thereby maintaining the
| clustering characteristics of the clustering index. If, as more data is inserted, and the

 Chapter 15. Operational Performance 549

| pages of the table become full, records are appended to the end of the table, and the
| table gradually becomes unclustered.

| It is recommended that you perform a REORG or a sort and LOAD after creating a
| clustering index. A clustering index attempts to maintain a particular order of data
| improving the CLUSTERRATIO or CLUSTERFACTOR statistics collected by the
| RUNSTATS utility.

| The amount of free space to be left on each page during a REORG is determined by
| the PCTFREE value of the table. If this value has not been set, REORG will fill up the
| pages as the data is being reorganized.

Performance Considerations for DMS Devices
If you are using Database Managed Storage (DMS) device containers for your table
spaces, you need to understand the following so you can effectively administer your
environment:

| ¹ File system caching

| File system caching is performed as follows:

| – For DMS file containers (and all SMS containers), the operating system may
| cache pages in the file system cache

| – For DMS device container table spaces, the operating system does not cache
| pages in the file system cache.

¹ Buffering of data

| Table data read from disk is normally available in the database's buffer pool (see
| “Managing the Database Buffer Pool” on page 533). In some cases, a data page
| can be freed from the buffer pool before the application has actually used that
| page. (This can happen if the buffer pool space is required for other data pages.)
| For table spaces using system managed storage (SMS) or database managed
| storage (DMS) file containers, see the description of file system caching above.
| This can eliminate I/O that would otherwise have been required.

Table spaces using database managed storage (DMS) device containers do not
use the file system or its cache. As a result, you may wish to increase the size of
the database buffer pool and reduce the size of the file system cache to offset the
fact that double buffering is not being done with DMS table spaces that use device
containers.

If you notice, through the use of system-level monitoring tools, that I/O is higher for
a DMS table space using device containers compared to the equivalent SMS table
space, this difference could be due to the double buffering discussed above.

¹ Using LOB or LONG data

When an application retrieves either LOB or LONG data, the database manager
does not use its buffers to cache the data. Every time an application needs one of
these pages, the database manager must retrieve it from disk.

550 Administration Guide

If LOB or LONG data is stored in SMS or DMS-file table spaces, see the
description of file system caching above

Because system catalogs contain some LOB columns, it is recommended that you
keep them in SMS (or alternatively in DMS-file) table spaces.

Managing Initialization Overhead
The ACTIVATE DATABASE command starts up selected databases. Using this
command in a partitioned database results in an attempt to activate the selected
partitioned database on all database partitions. By using this command, no application
time is spent on database initialization or startup.

Databases that you have initialized using the ACTIVATE DATABASE command must
be shut down with the DEACTIVATE DATABASE command or with the db2stop
command; the last application disconnecting from the database will not shut it down.
For more information on the ACTIVATE and DEACTIVATE commands, refer to the
Command Reference manual.

If a database has not been started, and a CONNECT TO (or an implicit connect) is
encountered in an application, then the application must wait while the database
manager starts up the required database before it can do any work with that database.
This is a startup cost that is borne by the first application to access a particular
database. In a partitioned database, this startup cost is incurred on each database
partition. Once the database is started, all other applications can connect to and use
the database without a time cost associated with the database startup.

 Database Agents
DB2 servers must facilitate communication between the database manager and client
and local applications. UNIX-based environments use an architecture based on
processes. For example, the DB2 communications listeners are created as processes.
Intel operating systems such as OS/2 and Windows NT use an architecture based on
threads to maximize performance. For example, the DB2 communications listeners are
created as threads within the DB2 server's system controller process. For each
database being accessed, various processes/threads are started to deal with the
various database tasks (for example, prefetching, communication, and logging).

One of the most crucial processes/threads are those of database agents, which
facilitate the operations of applications with databases. Each process/thread of a client
application has a single coordinator agent that operates on a database. Once the
coordinator agent is created, it performs all database requests on behalf of its
application, and communicates to other agents using inter-process communications
(IPC) or remote communication protocols. Each agent operates with its own private
memory and shares database manager and database global resources such as the
buffer pool with other agents.

In partitioned database environments environments and enviroments with intra-partition
parallelism enabled, the coordinator agent distributes database requests to subagents,

 Chapter 15. Operational Performance 551

and these agents perform the requests for the application. Once the coordinator agent
is created, it handles all database requests on behalf of its application by coordinating
the subagents that perform requests on the database.

When a client disconnects from a database or detaches from an instance the
coordinating agent will be:

¹ Freed and marked as idle, if the maximum number of pool agents has not been
reached

¹ Terminated and its storage freed, if the maximum number of pool agents has been
reached.

When idle, agents are not performing work on behalf of any applications, are waiting to
be assigned, and reside in an agent pool. These agents are available for requests from
coordinator agents operating on behalf of client programs, or for subagents operating
on behalf of existing coordinator agents. The number of available agents is dependent
on the database manager configuration parameters maxagents and num_poolagents.

If no idle agents exist when an agent is required, a new agent must be dynamically
created. Creating a new agent involves a certain amount of overhead and as a result,
improved CONNECT and ATTACH performance can be noticed if there is an idle agent
that can be activated for a client.

When a subagent is working on behalf of an application, it is considered to be
associated with that application. After completing the assigned work, it may be placed
in the agent pool, but it remains associated with the original application. When the
application requests additional work, the database manager first checks the idle pool for
associated agents when finding an agent to work for the application.

For partitioned database environments and environments with intra-partition parallelism
enabled, each partition (that is, each database server or node) has its own pool of
agents from which subagents are drawn. Because of this pool, subagents do not have
to be created and destroyed each time one is needed or is finished its work. The
subagents can remain as associated agents in the pool and be used by the database
manager for new requests from the application they are associated with.

The following database manager configuration parameters affect the number of
database agents:

¹ “Maximum Number of Agents (maxagents)” on page 653. Once the number of
agents reaches this value, all subsequent requests that require a new agent are
denied until the number of agents falls below the value. This value applies to the
total number of agents, whether coordinating agents or subagents, that are working
on all applications.

¹ “Agent Pool Size (num_poolagents)” on page 655. The number of agents in the
agent pool cannot exceed this value.

¹ “Initial Number of Agents in Pool (num_initagents)” on page 656. When the
database manager is started, a pool of idle agents is created based on this value.
This speeds up performance for initial queries.

552 Administration Guide

| ¹ “Maximum Number of Coordinating Agents (max_coordagents)” on page 654. For
| partitioned database environments and environments with intra-partition parallelism
| enabled, this value limits the number of coordinating agents.

¹ “Maximum Number of Concurrent Agents (maxcagents)” on page 652 . This value
controls the number of tokens permitted by the database manager. For each
database transaction (unit of work) that occurs when a client is connected to a
database, a coordinating agent must obtain permission to process the transaction
(known as a processing token) from the database manager. Only agents with a
processing token are permitted by the database manager to execute a unit of work
against a database. If a token is not available, the agent will wait until one is
available, at which time the requested unit of work will be processed.

| This parameter can be useful in an environment in which peak usage requirements
| exceed system resources (memory, CPU, and disk). In such an environment, the
| peak load may cause excessive performance degradation because of, for example,
| paging. You can use this parameter to control the load and avoid the performance
| degradation.

For partitioned database environments and environments with intra-partition parallelism
enabled, the impact to performance and memory costs within the system is strongly
related to how your agent pool is tuned:

¹ The database manager configuration parameter for agent pool size
(num_poolagents) affects the total number of subagents that can be kept
associated with applications on a partition (that is, node). If the pool size is too
small (and the pool is full), a subagent will disassociate itself from the application it
worked on and terminate. This situation leads to poor performance, because
subagents must be constantly created and reassociated to applications.

In addition, if the value of num_poolagents is too small, one application may fill the
pool with associated subagents. Thus, when another application requires a new
subagent and has no subagents in its associated agent pool, it will “steal”
subagents from the agent pools of other applications. This situation is rather costly,
and causes poor performance.

¹ The above situations must be weighed against the resource costs of allowing too
many agents to be active at any given time.

For example, if the value of num_poolagents is too large, associated subagents
may sit unused in the pool for long periods of time. These subagents use
database manager resources that will not be available for other tasks.

In addition to the database agents, there are other asynchronous activities performed
by the database manager which run as their own process (or thread), including:

¹ Database I/O servers (or I/O prefetchers) (see “Prefetching Data into the Buffer
Pool” on page 539)

¹ Database asynchronous page cleaners (see “Managing the Database Buffer Pool”
on page 533)

 ¹ Database loggers
¹ Database deadlock detectors

 Chapter 15. Operational Performance 553

 ¹ Event monitors
¹ Communication and IPC listeners
¹ Table space container rebalancers.

For more information on identifying the various DB2 processes, see the
Troubleshooting Guide.

Using the Database System Monitor
The DB2 database manager maintains data about its operation, its performance, and
the applications using it. This data is maintained as the database manager runs, and
can provide important performance and troubleshooting information. For example, you
can find out:

¹ The number of applications connected to a database, their status, and which SQL
statements each application is executing, if any.

¹ Information that shows how well the database manager and database are
configured, and helps you to tune them.

¹ When deadlocks occurred for a specified database, which applications were
involved, and which locks were in contention.

¹ The list of locks held by an application or a database. If the application cannot
proceed because it is waiting for a lock, there is additional information on the lock,
including which application is holding it.

Because collecting some of this data introduces overhead on the operation of DB2,
monitor switches are available to control which information is collected. To set monitor
switches explicitly, use the UPDATE MONITOR SWITCHES command or the sqlmon()
API. (You must have SYSADM, SYSCTRL, or SYSMAINT authority.)

There are two ways to access the data maintained by the database manager:

¹ Taking a snapshot

Use the GET SNAPSHOT command from the command line; the Control Center on
the OS/2, Windows 95, or Windows NT operating systems for a graphical interface;
or write your own application, using the sqlmonss() API call.

The Control Center, available from the DB2 folder or with the db2cc command,
provides a performance monitor tool that samples monitor data at regular intervals
by taking snapshots. This graphical interface provides either graphs or textual
views of the snapshot data, in both detail and summary form. You can also define
performance variables using data elements returned by the database monitor.

| The Control Center's Snapshot Monitor tool also allows you to define exception
| conditions by specifying threshold values on performance variables. When a
| threshold value is reached, you can predefine any of the following actions to occur:
| notification through a window or audible alarm, and/or execution of a script or
| program.

554 Administration Guide

| If you are taking a snapshot from the Control Center, you cannot perform an action
| that either alters, changes, or deletes a database object (such as an instance or
| database) while you are performing snapshot monitoring on either that object, or on
| any it its child objects. (In addition, if you are monitoring a partitioned database
| system, you cannot refresh the view of partitioned database objects.) For example,
| you cannot monitor database A if you want to remove its instance. If, however, you
| are monitoring the instance only, you can alter database A.

| To stop all monitoring for an instance (including any of its child objects), select
| Stop all monitoring from the pop-up menu for the instance. You should always
| stop monitoring from the instance, as this ensures that all locks that are held by the
| performance monitor are released.

¹ Using an event monitor

An event monitor captures system monitor information after particular events have
occurred, such as the end of a transaction, the end of a statement, or the detection
of a deadlock. This information can be written to files or to a named pipe.

To use an event monitor:

1. Create its definition with the Control Center or the SQL statement CREATE
EVENT MONITOR. This statement stores the definition in database system
catalogs.

2. Activate the event monitor through the Control Center, or with the SQL
statement:

SET EVENT MONITOR evname STATE 1

If writing to a named pipe, start the application reading from the named pipe
before activating the event monitor. You can either write your own application
to do this, or use db2evmon . Once the event monitor is active and starts
writing events to the pipe, db2evmon will read them as they are being
generated and write them to standard output.

3. Read the trace. If using a file event monitor, you can view the binary trace that
it creates in either of the following ways:

– Use the db2evmon tool to format the trace to standard output.

– Click on the Event Analyzer icon in the Control Center (on the Windows
95, Windows NT, or OS/2 systems) to use a graphical interface to view
the trace, search for keywords, and filter out unwanted data.

| Note: If the database system that you are monitoring is not running on
| the same machine as the Control Center, you must copy the event
| monitor file to the same machine as the Control Center before you
| can view the trace. An alternative method is to place the file in a
| shared file system accessible to both machines.

For information on the system database monitor and the event monitor, see the System
Monitor Guide and Reference. For a scenario of how to use them from the Control
Center, see the : CIT DOCID='GSADMIN'.Administration Getting Started.

 Chapter 15. Operational Performance 555

 Extending Memory
Your machine may have more real memory than the maximum amount of addressable
memory (for example, addressable memory is usually between 2 GB and 4 GB on
most platforms). You can configure any additional memory beyond addressable
memory as an extended storage cache. Such an extended storage cache can be used
by any of the defined buffer pools and should improve the performance of the database
manager. The extended storage cache is defined in terms of memory segments.

DB2 makes use of addressable memory in your machine with buffer pools (see
“Managing the Database Buffer Pool” on page 533). The extended storage cache is
used by the buffer pools as a secondary level of caching (with the buffer pools
performing the first level of caching). Ideally buffer pools can hold the data that is most
frequently accessed, while the extended storage cache can hold data that is accessed,
but less frequently.

The following database configuration parameters influence the amount and the size of
the memory available for extended storage:

¹ num_estore_segs defines the number of extended storage memory segments. The
default for this configuration parameter is zero, which specifies that no extended
storage cache exists. (See “Number of Extended Storage Memory Segments
(num_estore_segs)” on page 647.)

¹ estore_seg_sz defines the size of each extended memory segment. This size is
limited by the platform on which the extended storage cache is being used. (See
“Extended Storage Memory Segment Size (estore_seg_sz)” on page 646.)

Because an extended storage cache is an extension to a buffer pool, it must always be
associated with one or more specific buffer pools. Therefore, you must declare which
buffer pools can take advantage of a cache once it is created. The CREATE and
ALTER BUFFERPOOL statements have the attributes NOT EXTENDED STORAGE
and EXTENDED STORAGE that control cache usage. By default neither
IBMDEFAULTBP nor any newly created buffer pool will use extended storage.

The database manager cannot directly manipulate data that resides in the extended
storage cache. However, it can transfer data from the extended storage cache to the
buffer pool much faster than from disk storage.

When a row of data is needed from a page in an extended storage cache, the entire
page is read into the corresponding buffer pool. If the row is changed while in the buffer
pool, the page is not written back to the extended storage cache until it has been
written to disk storage. The extended storage cache holds only pages that have been
read into the buffer pool and have been discarded; they are kept in case they are
needed again.

A buffer pool and its associated extended storage cache, if defined, are created when a
database is activated or first connected to.

| Note: Use of the extended storage cache is not allowed if objects using an 8K page
| size exist in the database.

556 Administration Guide

Chapter 16. Using the Governor

You use the governor to monitor and change the behavior of applications that run
against a database.

The governor consists of two parts:

¹ A front-end utility
 ¹ A daemon

When you start the governor, you issue a start command from the governor front-end
utility, which then starts the governor daemon. By default, a daemon is started on every
partition in a partitioned database, but you can also use the front-end utility to start a
single daemon at a specific partition to monitor the activity against the database
partition found there. Or, a daemon can monitor the activity on a single-partition
database. See “Starting and Stopping the Governor” for details.

Each governor daemon collects statistics about the applications running against a
database. It then checks these statistics against the rules that you specified in a
governor configuration file that applies to that specific database. (See “Creating the
Governor Configuration File” on page 560 for details.) The governor then acts
according to these rules. For example, a rule may indicate that an application is using
too much resource. In this situation, the governor may change the application's priority
or force it off the database, according to the instructions you specified in the governor
configuration file.

If the action associated with a rule is to change the application's priority, the governor
changes the priority of agents on the database partition on which the governor detected
the resource violation. If the action associated with a rule is to force an application, the
application is forced even if the governor that detected the resource violation is running
on the application's coordinator node or in a partitioned database environment.

The governor also logs any actions that it takes. You can query the log files to review
the actions that the governor has taken. For details, see “Governor Log Files” on
page 568 and “Querying Governor Log Files” on page 569.

Starting and Stopping the Governor
| You use the db2gov governor front-end utility to start or stop the governor (on either all
| database partitions or on a single database partition). You require SYSADM or
| SYSCTRL authority to use the utility.

The syntax for db2gov is as follows:

 Copyright IBM Corp. 1993, 1998 557

db2gov
nodenum

nodenum
stop

node-num

node-num

config-file log-filestart database

database

Figure 57. Syntax for db2gov

The parameters are as follows:

start database
Starts the governor daemon to monitor the specified database. For
database, you can specify either the database name or the database alias.

The database name you specify must be the same name as that specified
in the governor configuration file. The governor checks these two names to
ensure that you are using the correct configuration file. If the front-end
utility is started with one alias name and the governor configuration file
contains a different alias, an error is reported because the governor cannot
determine whether the names are aliases for the same database.

If you are in a partitioned database environment, when you start the
governor on all partitions, the front-end utility first checks that the
configuration file does not contain errors. It then reads the node
configuration file and sends a command to each database partition to start
the governor front-end utility on each database partition with the start
option (which, in turn, starts the daemon at each database partition).

Note: Because the governor monitors at the database level, one daemon
runs for each database that is being monitored. (In a partitioned
database environment, one daemon runs for each database
partition.) If the governor is running for more than one database,
there will be more than one daemon running at that database
server.

nodenum node-num
Specifies the database partition on which to start the governor daemon.
The number is the same as that specified in the node configuration file.

When you start the governor on a single database partition, the front-end
utility creates a daemon to validate the governor configuration file. The
governor daemon ensures that another daemon is not already running on
that partition.

config-file
Specifies the configuration file to use when monitoring the database.

The default location for the configuration file is the sqllib directory. If the
specified file is not there, the front-end assumes that the specified name is
the full name of the file.

558 Administration Guide

log-file
Specifies the base name of the file to which the governor writes log
records. The log file is stored in the log subdirectory of the sqllib

directory. The number of the database partition on which the governor is
running is automatically appended to the log file name (for example,
mylog.0, mylog.1, mylog.2).

stop database
Stops the governor daemon that is monitoring the specified database.

If you are in a partitioned database environment, the front-end utility stops
the governor on all database partitions by reading the node configuration
file, and then sending a command to each database partition to call the
governor front-end utility with the stop parameter. This stops the daemon at
each database partition.

nodenum node-num
Specifies the database partition on which to stop the governor daemon.
The number is the same as that specified in the node configuration file.

| When the front-end utility stops the governor daemon on a single database
| partition, it communicates with the daemon on that database partition by
| creating, moving, or deleting files in the tmp subdirectory of the sqllib

| directory. You should not attempt to delete or modify these files.

The Governor Daemon
When the governor daemon is started (either by the db2gov front-end utility or by
waking up), it runs in a loop. The first task it does is to check whether its governor
configuration file has changed or has not yet been read. If either condition is true, the
daemon reads the rules in the file. This allows you to change the behavior of the
governor daemon while it is running.

After this, the governor daemon issues a snapshot request to obtain statistics for each
application and agent working on the database.

Note: On some platforms, the CPU statistics are not available from the DB2 Monitor.
Where this is the case, the account rule and the CPU limit will not be available.

| The governor then checks the statistics for each application against the rules in the
| governor configuration file. If a rule applies to an application, the governor can: force
| the application; change the application's priority, which indirectly changes all the agent
| priorities of both agents and subagents that are working for it on that node; or, change
| the schedule for the application which, indirectly changes the agent priorities working on
| the application, depending on the action specified by the rule. The governor writes a
| record of any action it takes to a log file.

Note: The governor cannot be used as an alternate means to adjust agent priorities if
the agentpri database manager configuration parameter is anything other than
the system default.

 Chapter 16. Using the Governor 559

When the governor finishes checking all of the applications, it sleeps for the interval
specified in the configuration file. Once this time has elapsed, the governor wakes up
and begins the execution loop again.

When the governor encounters an error or stop signal, it does clean-up processing
before ending. The clean-up processing resets all application agent priorities (using a
list of applications whose priorities have been set). It then resets the priorities of any
agents that are no longer working on an application. This ensures that agents do not
remain running with nondefault priorities after the governor ends. If an error occurs, a
message is written to the db2diag.log file to indicate that the governor ended
abnormally.

Note: The governor daemon is not a database application, and, therefore, does not
maintain a connection to the database. (It does have an instance attachment,
however.) The governor daemon can detect when the database manager ends
because it can issue snapshot requests.

Creating the Governor Configuration File
When you start the governor, you specify the name of the configuration file that
contains the rules to be used to govern applications running against the database. The
governor acts based on these rules.

If your requirements for governing the database change, you can edit the configuration
file without stopping the governor. Each governor daemon will detect that the file has
changed, and reread it.

You must create the configuration file in a directory that is mounted across all the
database nodes, because the governor daemon on each node must be able to read the
same configuration file.

The configuration file consists of rules and comments. Most entries can be specified in
uppercase, lowercase, or mixed case characters. The exception is applname which is
case sensitive.

You delimit comments within the { } braces. The rules include:

¹ The database to which the rules apply.

¹ The length of time the governor sleeps before waking up to check the applications.

¹ The rules that specify how to govern the applications. These rules are made of
smaller components called rule clauses.

Each rule in the file must be followed by a semicolon (;).

The following rules specify the database being monitored, and the interval at which the
daemon wakes up after working through its loop of activities (which are described in
“The Governor Daemon” on page 559). Each of these rules are only specified once in
the file.

560 Administration Guide

dbname
The name or alias of the database to be monitored.

account nnn
Account records are written containing CPU usage statistics for each
connection at the specified number of minutes.

| Note: This option is not available in Windows NT or OS/2 environments.

| If a short connect session occurs entirely within the account interval, no log
| record is written. When log records are written, they contain CPU statistics
| that reflect CPU usage since the previous log record for the connection. If
| the governor is stopped then restarted, CPU usage may be reflected in two
| log records; these can be identified through the application IDs in the log
| records. For more information about governor log files, see “Governor Log
| Files” on page 568.

interval
The interval, in seconds, at which the daemon wakes up. If no interval is
specified, an interval of 120 seconds is used.

You combine the following rule clauses to form a rule (that is, the full rule is followed by
a semicolon, and not each individual clause). The clauses specify the time during which
the rule applies, the limit on resource that can be used, and, optionally, specific users
or applications and any action for the governor to take if a limit specified in the rule is
exceeded. The clauses can only be specified once in a rule, but can be specified in
more than one rule. The clauses must be specified in the order shown. In the
description that follows, a [] indicates an optional clause.

[desc]
Specifies a text description for the rule. The description must be enclosed
by either single or double quotation marks.

[time]
Specifies the time period during which the rule is to be evaluated.

The time period must be specified in the following format time hh:mm

hh:mm, for example, time 8:00 18:00. If this clause is not specified, the rule
is valid 24 hours a day.

[authid]
Specifies one or more authorization ids (authid) under which the application
is executing. Multiple authids must be separated by a comma (,), for
example authid gene, michael, james. If this clause does not appear in a
rule, the rule applies to all authids.

[applname]
Specifies the name of the executable (or object file) that makes the
connection to the database.

Multiple application names must be separated by a comma (,), for example,
applname db2bp, batch, geneprog. If this clause does not appear in a rule,
the rule applies to all application names.

 Chapter 16. Using the Governor 561

Notes:

1. Application names are case sensitive.

2. The database manager truncates all application names to 20
characters. You should ensure that the application you want to govern
is uniquely identified by the first 20 characters of its application name;
otherwise, an unintended application may be governed.

Application names specified in the governor configuration file are
truncated to 20 characters to match their internal representation.

setlimit
| Specifies one or more limits for the governor to check. The limits can only
| be -1 or greater than 0 (for example, cpu -1 locks 1000 rowssel 10000).
| At least one of the limits (cpu, locks, rowsread, uowtime) must be specified,
| and any limit not specified by the rule is not limited by that particular rule.
| The governor can check the following limits:

| cpu nnn
| Specifies the number of CPU seconds that can be consumed
| by an application. If you specify -1, the governor does not limit
| the application's CPU usage.

| Note: This option is not available in Windows NT or OS/2
| environments.

| locks nnn
| Specifies the number of locks that an application can hold. If
| you specify -1, the governor does not limit the number of locks
| held by the application.

| rowssel nnn
| Specifies the number of rows that are returned to the
| application. This value will only be non-zero at the coordinator
| node. If you specify -1, the governor does not limit the number
| of rows that can be selected.

| uowtime nnn
| Specifies the number of seconds that can elapse from the time
| that a unit of work (UOW) first becomes active. If you specify
| -1, the elapsed time is not limited.

| Note: If you used the sqlmon (Database System Monitor
| Switch) API to deactivate the unit of work switch, this
| will affect the ability of the governor to govern
| applications based on the unit of work elapsed time.
| The governer uses the monitor to collect information
| about the system. If you turn off the switches in the
| database manager configuration file, then it is turned
| off for the entire instance, and governer will no longer
| recieve this information.

562 Administration Guide

| idle nnn
| Specifies the number of idle seconds allowed for a connection
| before a specified action is taken. If you specify -1, the
| connection's idle time is not limited.

| rowsread nnn
| Specifies the number of rows an application can select. If you
| specify -1, there is no limit on the number of rows the
| application can select.

| Note: This limit is not the same as rowssel. The difference is
| that rowsread is the count of the number of rows that
| had to be read in order to return the result set. The
| number of rows read includes reads of the catalog
| tables by the engine and may be diminished when
| indices are used.

[action]
Specifies the action to take if one or more of the specified limits is
exceeded. You can specify the following actions.

| Note: If a limit is exceeded and the action clause is not specified, the
| governor reduces the priority of agents working for the application
| by 10.

priority nnn
Specifies to change the priority of agents working for the
application. Valid values vary depending on your operating
system.

For example, valid priority range on Windows NT is from -6 to
+6. See “Priority of Agents (agentpri)” on page 651 for more
information on priority ranges and how to use them.

For this parameter to be effective:

| ¹ On UNIX-based platforms, the agentpri database manager
| parameter must be set to the default value; otherwise, it
| overrides the priority clause.
| ¹ On OS/2 and Windows NT platforms, the agentpri
| database manager parameter and priority action may be
| used together.

force
Specifies to force the agent that is servicing the application.
(Issues a FORCE APPLICATION to terminate the coordinator
agent.)

schedule [class]
Scheduling improves the priorities of the agents working on the
applications with the goal of minimizing the average response
times while maintaining fairness across all applications.

 Chapter 16. Using the Governor 563

The governor enforces its schedule by setting priorities for the
agents working on the applications, using query cost estimates
from the DB2 internal query compiler. If the class option is
specified, all applications chosen by the rule are scheduled
among themselves only. If this option is not specified, the
governor uses one or more classes, with scheduling done
within each class.

Within each class, how an application is prioritized is based
on:

¹ The number of locks held by the application within the
class. (An application holding up many other applications
due to locking is given a high priority.)

¹ The application's age. (An application in the system for a
long time is given a high priority.)

¹ The application's estimated remaining running time. (An
application close to finishing is given a high priority.)

Applications that are not covered by any schedule run with the
highest authority.

| Note: If you used the sqlmon (Database System Monitor
| Switch) API to deactivate the statement switch, this will
| affect the ability of the governor to govern applications
| based on the statement elapsed time. The governer
| uses the monitor to collect information about the
| system. If you turn off the switches in the database
| manager configuration file, then it is turned off for the
| entire instance, and governer will no longer recieve this
| information.

| The schedule action can:

| ¹ Ensure that applications in different groups each get time
| without all applications splitting time evenly.

| For instance, if 12 applications (three short, five medium,
| and six long) are running at the same time, they may all
| have poor response times because they are splitting the
| CPU. The database administrator can set up two groups,
| medium-length applications and long-length applications.
| Using priorities, the governor permits all the short
| applications to run, and ensures that at most three
| medium and three long applications run simultaneously.
| To achieve this, the governor configuration file contains
| one rule for medium-length applications, and another rule
| for long applications. The following example shows a
| portion of a governor configuration file that illustrates this
| point:

564 Administration Guide

| desc "Group together medium applications in 1 schedule class"

| applname medq1, medq2, medq3, medq4, medq5

| setlimit cpu -1

| action schedule class;

| desc "Group together long applications in 1 schedule class"

| applname longq1, longq2, longq3, longq4, longq5, longq6

| setlimit cpu -1

| action schedule class;

| ¹ Ensure that each of several user groups (for example,
| organizational departments) gets equal prioritization.

| If one group is running a large number of applications, the
| administrator can ensure that other groups are still able to
| obtain reasonable response times for their applications.
| For instance, in a case involving three departments
| (Finance, Inventory, and Planning), all the Finance users
| could be put into one group, all the Inventory users could
| be put into a second, and all the Planning users could be
| put into a third group. The processing power would be
| split more or less evenly among the three departments.
| The following example shows a portion of a governor
| configuration file that illustrates this point:

| desc "Group together Finance department users"

| authid tom, dick, harry, mo, larry, curly

| setlimit cpu -1

| action schedule class;

| desc "Group together Inventory department users"

| authid pat, chris, jack, jill

| setlimit cpu -1

| action schedule class;

| desc "Group together Planning department users"

| authid tara, dianne, henrietta, maureen, linda, candy

| setlimit cpu -1

| action schedule class;

| ¹ Let the governor schedule all applications.

| If the class option is not included with the action, the
| governor creates its own classes based on how many
| applications fall under the schedule action, and puts
| applications into different classes based on the DB2 query
| compiler's cost estimate for the query the application is
| running. The administrator can choose to have all
| applications scheduled by not qualifying which applications
| are chosen. That is, no applname or authid clauses are
| supplied, and the setlimit clause causes no restrictions.

 Chapter 16. Using the Governor 565

Note: If a limit is exceeded and the action clause is not specified, the
governor reduces the priority of agents working for the application.

If more than one rule applies to an application, the rule that is closest to the end of the
configuration file is applied to the application. An exception occurs if -1 is specified for a
clause in a rule. In this situation, the value specified for the clause in the subsequent
rule can only override the value previously specified for the same clause: other clauses
in the previous rule are still operative. For example, one rule indicates that the priority
of an application is to be decreased if its elapsed time is greater than 1 hour, or if it
selects more than 100 000 rows (that is, rowssel 100000 uowtime 3600). A subsequent
rule indicates that the same application can have unlimited elapsed time (that is,
uowtime -1). In this situation, if the application runs for more than 1 hour, its priority
won't be changed (that is, uowtime -1 overrides uowtime 3600), but if it selects more
than 100 000 rows, its priority will be lowered (as rowssel 100000 is still valid).

 Figure 58 on page 567 shows an example of a configuration file.

566 Administration Guide

| { Wake up once a second, the database name is ibmsampl

| do accounting every 30 minutes. }

| interval 1; dbname ibmsampl; account 30;

| desc "CPU restrictions apply 24 hours a day to everyone"

| setlimit cpu 600 rowssel 1000000 rowsread 5000000;

| desc "Allow no UOW to run for more than an hour"

| setlimit uowtime 3600 action force;

| desc 'Slow down a subset of applications'

| applname jointA, jointB, jointC, quryA

| setlimit cpu 3 locks 1000 rowssel 500 rowsread 5000;

| desc "Have governor prioritize these 6 long apps in 1 class"

| applname longq1, longq2, longq3, longq4, longq5, longq6

| setlimit cpu -1

| action schedule class;

| desc "Schedule all applications run by the planning dept"

| authid planid1, planid2, planid3, planid4, planid5

| setlimit cpu -1

| action schedule;

| desc "Schedule all CPU hogs in one class which will control consumption"

| setlimit cpu 3600

| action schedule class;

| desc "Slow down the use of db2 CLP by the novice user"

| authid novice

| applname db2bp.exe

| setlimit cpu 5 locks 100 rowssel 250;

| desc "During day hours do not let anyone run for more than 10 seconds"

| time 8:30 17:00 setlimit cpu 10 action force;

| desc "Allow users doing performance tuning to run some of

| their applications during lunch hour"

| time 12:00 13:00 authid ming, geoffrey, john, bill

| applname tpcc1, tpcc2, tpcA, tpvG setlimit cpu 600 rowssel 120000 action force;

| desc "Some people should not be limited -- database administrator

| and a few others. As this is the last specification in the

| file, it will override what came before."

| authid gene, hershel, janet setlimit cpu -1 locks -1 rowssel -1 uowtime -1;

| desc "Increase the priority of an important application so it always

| completes quickly"

| applname V1app setlimit cpu 1 locks 1 rowssel 1 action priority -20;

Figure 58. Example Governor Configuration File

 Chapter 16. Using the Governor 567

Governor Log Files
When a governor daemon forces an application, reads the governor configuration file,
changes an application's priority, encounters an error or warning, starts, or ends, it
writes a record to a log file. A separate log file exists for each governor daemon. This
prevents file-locking bottlenecks that would result from many governor daemons writing
to the same file at the same time. You can use the db2govlg utility to merge the log
files together and query them. This utility is described in “Querying Governor Log Files”
on page 569.

The log files are stored in the log subdirectory of the sqllib directory. You provide the
base name for the log file when you issue the db2gov command. You should ensure
that the log file name contains the database name, because there will be a log file for
each node of each database that is being governed. In a partitioned database
environment, the node number of the database partition that the governor is running on
is automatically appended to the log file name to ensure that the filename is unique for
each governor.

Each record in the log file has the following format:

Date Time NodeNum RecType Message

The Date and Time field is in the yyyy-mm-dd-hh.mm.ss format, so that you can merge
the log files for each database partition by sorting on this field.

The NodeNum field indicates the number of the database partition on which the
governor is running.

The RecType field contains different values, depending on the type of log record being
written to the log. The values that can be recorded are:

¹ START to indicate that the governor was started
¹ FORCE to indicate that an application was forced
¹ PRIORITY to indicate that the priority of an application was changed
¹ ERROR to indicate an error
¹ WARNING to indicate a warning
¹ READCFG to indicate that the governor read the configuration file
¹ STOP to indicate that the governor was stopped
¹ ACCOUNT to indicate the application's accounting statistics.

The fields are:

 – authid

 – appl_id

 – written_usr_cpu

 – written_sys_cpu

 – appl_con_time

¹ SCHEDULE to indicate that a change in agent priorities occurred.

568 Administration Guide

Because standard values are written, you can query the log files for different types of
actions. The Message field provides other nonstandard information that varies
according to the value under the Rectype field. For instance, a FORCE or NICE record
indicates application information in the Message field, while an ERROR record includes an
error message.

An example log file is as follows:

1995-12-11 14.54.52 0 START Database = TQTEST

1995-12-11 14.54.52 0 READCFG Config = /u/db2instance/sqllib/tqtest.cfg

1995-12-11 14.54.53 0 ERROR SQLMON Error: SQLCode = -1032

1995-12-11 14.54.54 0 ERROR SQLMONSZ Error: SQLCode = -1032

Querying Governor Log Files
Each governor daemon writes to its own log file. You can use db2govlg utility to query
the log file. You can list the log files for a single partition, or for all database partitions,
sorted by date and time. You can also query on the basis of the RecType log field. The
syntax for db2govlg is as follows:

db2govlg
nodenum rectypenode-num record-type

log-file database

Figure 59. Syntax for db2govlg

The parameters are as follows:

log-file
The base name of the log file (or files) that you want to query.

database
The database that the governor is monitoring.

nodenum node-num
The node number of the database partition on which the governor is
running.

rectype record-type
The type of record that you want to query. The record types are:

 ¹ START
 ¹ READCFG
 ¹ STOP
 ¹ FORCE
 ¹ NICE
 ¹ ERROR
 ¹ WARNING
 ¹ ACCOUNT

 Chapter 16. Using the Governor 569

There are no authorization restrictions for using this utility. This allows all users to query
whether the governor has affected their application. If you want to restrict access to this
utility, you can change the group permissions for the db2govlg file.

Running the Governor and Database Manager Performance
The governor can affect database manager performance because it requests snapshots
of the database manager. If the governor uses too much CPU, you can increase its
wake-up interval to reduce its CPU usage.

570 Administration Guide

Chapter 17. Scaling Your Configuration

You may find that the size of your configuration is not appropriate for your needs. You
may have tried increasing your configuration memory, or storage capacity, or both, but
this has not provided you with sufficient improvement to meet your current or future
needs.

You should consider scaling your configuration as discussed in the remainder of this
chapter if:

¹ You had a single-partition configuration with a single processor that was being
used to its maximum capacity. As a result, you have decided to change
configurations and have:

– Determined a symmetric multiprocessor (SMP) configuration is your best
choice for a new environment. You perhaps made this choice because you
want to take advantage of the processing power available with more than one
processor. Each processor shares memory and storage system resources. All
of the processors are within one system, so there are no additional
considerations such as communication lines between systems, perhaps no
additional administration staff to support any new systems, and coordination of
tasks between systems is not an issue. DB2 Universal Database supports this
environment.

– Determined a partitioned database configuration is your best choice for a new
environment. You perhaps made this choice because you want to take
advantage of the processing power available with more than one processor
that is physically separate from the first. Each processor has its own memory
and storage system resources without having to share with the other
processor. While you may have the additional considerations mentioned
above (communications, staff, and coordination of tasks), there are advantages
to this choice such as the ability to balance data and user access across more
than one system. DB2 Universal Database supports this environment.

¹ You currently have a SMP configuration and you are planning to add one or more
additional processors. In this case, you are already familiar with those
considerations associated with this type of environment. By adding one or more
additional processors, you are simply adding complexity to your environment
without adding new considerations. DB2 Universal Database supports this
environment.

¹ You have a partitioned database configuration and you are planning to add one or
more additional database partitions. In this case, you are already familiar with
those considerations associated with this type of environment. By adding one or
more additional database partitions, you are simply adding complexity to your
environment without adding new considerations. DB2 Universal Database supports
this environment.

¹ You have a partitioned database configuration and you are planning to add one or
more additional database partitions each of which may be in a SMP configuration.
DB2 Universal Database supports this environment.

 Copyright IBM Corp. 1993, 1998 571

When you scale your system by changing the environment, you should be aware of the
impact that such a change can have on your database procedures such as backing up
and restoring the database.

When you add a new database partition, you cannot drop or create a database until the
procedure is complete, and the new server is successfully integrated into the system.

Adding Processors to a Machine
The first thing to be done is to ensure that you have installed one or more additional
processors in your machine. To allow the DB2 database manager to take advantage of
the new processors, there are configuration parameters that should be reviewed and
perhaps updated. (Some operating systems, like Solaris, can dynamically vary
processors on- and off-line.) The parameters that are used to determine the number of
processors used and may need to be updated include:

¹ “Enable Intra-Partition Parallelism (intra_parallel)” on page 701
¹ “Default Degree (dft_degree)” on page 683
¹ “Maximum Query Degree of Parallelism (max_querydegree)” on page 700

You should also consider the parameters associated with applications that may need to
be updated. Refer to “Parallel Processing of Applications” on page 421 for more
information.

Utilities in DB2 such as load, backup, and restore can take advantage of the additional
processors. Refer to Chapter 6, “Utilities for Moving Data” on page 203 and Chapter 7,
“ Recovering a Database” on page 269 for information on these utilities.

Adding Database Partitions to a Partitioned Database System
You can add database partitions to the partitioned database system either when it is
running, or when it is stopped. The following sections describe how to do this task.
Because adding a new server can be time consuming, you may want to do it when the
database manager is already running. The procedure is described in “Adding Database
Partitions to a Running System” on page 573.

The ADD NODE command is used to add a database partition to a system. This
command can be invoked:

¹ As an option on db2start
 ¹ Using:

– The command line processor ADD NODE command
 – The sqleaddn_api

 – The sqlepstart_api.

The method you use to invoke the command is dependent upon whether your system is
stopped (using db2start) or running (using any of the other choices).

When a new database partition is added to the system using the ADD NODE
command, all existing databases in the instance are created on the new database

572 Administration Guide

partition. You can also specify which containers for temporary table spaces will be used
with the databases that are created. The containers can be:

¹ The same as those defined for the catalog node for each database. (This is the
default.)

¹ The same as those defined for another database partition.

¹ Not created at all. The ALTER TABLESPACE statement must be used to add
temporary table space containers to each database before the database can be
used.

A database on the new partition cannot be used to contain data until one or more
nodegroups are altered to include the new database partition. See “Adding and
Dropping Database Partitions” on page 580 for more information on how to alter a
nodegroup.

| Note: If there are no databases defined in the system and you are running DB2
| Extended Enterprise Edition on a UNIX-based system, edit the db2nodes.cfg

| file to add a new database partition definition; do not use any of the following
| procedures, as an error will result. See “Altering a Nodegroup” on page 126for
| more information on how to update the node configuration file.

| If you are running DB2 Extended Enterprise Edition on the Windows NT
| platform, do not edit the node configuration file manually. Instead, use the
| db2ncrt command to add the new database partition definition. Refer to the
| DB2 Extended Enterprise Edition for Windows NT Quick Beginnings for details.

| Windows NT Considerations: If you are using DB2 Extended Enterprise Edition on
| Windows NT and have no databases in the instance, you should use the
| DB2NCRT command to scale the database system. For information about this
| command, refer to the DB2 Extended Enterprise Edition for Windows NT Quick
| Beginnings. If, on the other hand, you already have databases, you should use
| the DB2START ADDNODE command, as this ensures that a database partition
| is created for each existing database when you scale the system. For
| information about the DB2START command and the parameters that you must
| use on Windows NT, refer to the Command Reference. On Windows NT, you
| should never manually edit the node configuration file (db2nodes.cfg), as this
| can introduce inconsistencies into the file.

Adding Database Partitions to a Running System
You can add new database partitions to a partitioned database system while it is
running and while applications are connected to databases. However, a newly added
server does not become available to all databases until the database manager is shut
down and restarted.

To add a database partition to a multiple server system:

| 1. If the database partition is to be created on a server that already exists in the
| system, go to the next step. Otherwise, do the following:

| ¹ On UNIX platforms,

 Chapter 17. Scaling Your Configuration 573

| a. Install the new server. This includes making executables accessible (using
| shared file-system mounts or local copies), synchronizing operating
| system files with those on existing processors, ensuring that the sqllib
| directory is accessible as a shared file system, and ensuring that the
| relevant operating system parameters (such as the maximum number of
| processes) are set to the appropriate values.

| b. Register the host name with the name server or in the hosts file in the etc
| directory on all database partitions.

| ¹ On Windows NT platforms,

| a. Install the new server.

| b. Run the ADD NODE command on the new server. This command causes
| a database partition to be created locally for every database that already
| exists in the system. The database parameters for the new database
| partitions are set to the default value, and each database partition remains
| empty until you move data to it.

| c. Go to point three (3).

| 2. Run the DB2START command on any database partition, specifying the
| NODENUM, ADDNODE, HOSTNAME, PORT, and NETNAME parameters. On the
| Windows NT platform, you must also specify the COMPUTER, USER, and
| PASSWORD parameters. For more information about the DB2START command,
| refer to the Command Reference.

| You can also optionally specify the source for any temporary table space container
| definitions that need to be created with the databases. If no table space information
| is provided, the temporary table space container definitions are retrieved from the
| catalog node for each database.

| When the command completes, the new server is stopped. The node configuration
| file is not updated with the new server information until DB2STOP is executed. This
| ensures that the ADD NODE command (which is called when the ADDNODE
| parameter is specified) runs on the correct database partition. When the utility
| ends, the new server is stopped.

3. Stop the database manager by running the DB2STOP command.

When you stop all the database partitions in the system, the node configuration file
is updated to include the new database partition.

4. Start the database manager by running the DB2START command.

The newly added database partition is now started along with the rest of the
system.

When all the database partitions in the system are running, system-wide activities,
such as creating or dropping a database, can be done.

| Note: You may have to issue the DB2START command twice for all database
| partition servers to access the new db2nodes.cfg file.

5. Optionally, take a backup of all databases on the new database partition.

574 Administration Guide

6. Optionally, redistribute data to the new database partition. For details, see
Chapter 18, “Redistributing Data Across Database Partitions” on page 579.

Adding Database Partitions to a Stopped System
You can add new database partition to a partitioned database system while it is
stopped. The newly added server becomes available to all databases when the
database manager is started up again. You have two options. You can either have the
database manager update the node configuration file for you, or you can do it manually.
The preliminary steps for both procedures are the same.

| Note: You should not update the node configuration file manually while working on
| Windows NT. Instead, you should use the database manager to update this file.

To add a new database partition to a multiple server system:

1. Issue DB2STOP to stop all the database partitions.

2. If the server is to be created on a processor that already exists in the system, go to
the next step. Otherwise, do the following:

a. Install the new processor. This includes making executables accessible (using
shared file-system mounts or local copies), synchronizing operating system
files with those on existing processors, ensuring that sqllib directory is
accessible as a shared file system, and ensuring that the relevant operating
system parameters (such as the maximum number of processes) are set to
the appropriate values.

b. Register the host name with the name server or in the hosts file in the etc
directory on all database partitions.

c. If you want the database manager to update the db2nodes.cfg file for you,
continue with the instructions in “Having the Database Manager Update the
Node Configuration File.”

| Note: On Windows NT, you should not edit the db2nodes.cfg file manually,
| as this can introduce inconsistencies into the file. Instead, you should
| have the database manager update this file.

If you want to update the db2nodes.cfg file yourself, continue with the
instructions in “Updating the Node Configuration File Manually” on page 576.

Having the Database Manager Update the Node Configuration File
Continue the procedure as follows:

1. Run the DB2START command on the new database partition specifying
NODENUM, ADDNODE, HOSTNAME, PORT, and NETNAME parameters. On the
Windows NT platform, you must also specify the COMPUTER, USER, and
PASSWORD parameters. For more information about the DB2START command,
refer to the Command Reference. The values that you specify for these parameters
are used to update the node configuration file.

When the command completes, the new server is stopped. The node configuration
file is not updated with the new server information until DB2STOP is executed. This

 Chapter 17. Scaling Your Configuration 575

ensures that the ADD NODE command (which is called when the ADDNODE
parameter is specified) runs on the correct database partition. When the utility
ends, the new server is stopped.

2. Issue the DB2STOP command.

When you issue the DB2STOP command, the node configuration file is updated to
include the new server.

3. Issue the DB2START command to start the database system.

| Note: You may have to issue the DB2START command twice for all database
| partition servers to access the new node configuration file.

4. Optionally, take a backup of all databases on the new database partition.

5. Optionally, redistribute data to the new server. For details, see Chapter 18,
“Redistributing Data Across Database Partitions” on page 579.

Updating the Node Configuration File Manually
| Note: On Windows NT, you should not edit the node configuration file manually, as
| this can introduce inconsistencies into the file. Instead, you should have the
| database manager update this file.

Continue the procedure as follows:

1. Edit the db2nodes.cfg file and add the new database partition to it.

2. Issue the following command to start the new node:

DB2START NODENUM nodenum

Specify the number you are assigning to the new database partitioned server as
the value of nodenum.

3. If the new server is to be a logical database partition (that is, it is not node 0), use
db2set command to update the DB2NODE registry value, specifying the number of
the server you are adding.

4. Run the ADD NODE command on the new server.

This command also causes a database partition to be created locally for every
database that already exists in the system. The database parameters for the new
database partitions are set to the default value, and each database partition
remains empty until you move data to it.

5. When the ADD NODE command completes, issue the DB2START command to
start the other database partitions in the system.

You should not attempt to do any system-wide activities, such as creating or
dropping a database, until all database partitions are successfully started.

6. Optionally, take a backup of all new database partitions on the new server.

7. Optionally, redistribute data to the new database partition. For details, see
Chapter 18, “Redistributing Data Across Database Partitions” on page 579.

576 Administration Guide

Dropping a Database Partition from a System
You can drop a database partition by using the DB2STOP command with the DROP
NODENUM parameter, or the sqlepstp API. Before doing this, you must first ensure
that the database partition being dropped is not being used by any database. To check,
issue the DROP NODE VERIFY command.

You should ensure that all transactions for which this database partition was the
coordinator have all committed or rolled back successfully. This may require doing
crash recovery on other servers.

For example, if you drop the coordinator database partition (that is, the coordinator
node), and another database partition participating in a transaction crashed before the
coordinator node was dropped, the crashed database partition will not be able to query
the coordinator node for the outcome of any indoubt transactions.

To drop a database partition from a partitioned database system:

1. Redistribute the data for every database that resides on this node. This ensures
that the partitioning map is kept current. For details, see Chapter 18,
“Redistributing Data Across Database Partitions” on page 579.

2. Issue the DROP NODE VERIFY command or the sqledrpn API to verify that the
server is not in use.

Depending on the message you receive, proceed with either step 3 or step 4.

3. If you receive message SQL6034W (Node not used in any database), you can do
the following:

a. Issue the DB2STOP command with the DROP NODENUM parameter to drop
the database partition. After the command completes successfully, the system
is stopped.

b. If you want to, start the database manager with the DB2START command.

4. If you receive message SQL6035W (Node in use by database), do the following:

a. Use the REDISTRIBUTE NODEGROUP command to redistribute the data
from the database partition you are dropping to other database partitions from
the database alias, as indicated in message SQL6035W. You cannot drop the
database partition until this is done.

b. Drop any event monitors defined on the database partition.

c. Return to step 2 and continue.

 Chapter 17. Scaling Your Configuration 577

578 Administration Guide

Chapter 18. Redistributing Data Across Database Partitions

Only if you are working in a partitioned database environment do you need to be
concerned with redistribution of data. If you are in a single partition database
environment there is no need for you to use the information found here.

You use the Data Redistribution utility to move data among the database partitions in
an existing nodegroup. You can use it to do the following:

¹ Balance data volumes and processing loads across database partitions.

This is useful if you have a database table in which all the data is accessed on a
regular basis.

¹ Introduce skew in the data distribution across database partitions.

This is useful if you have a database table in which only some of the data is
accessed on a regular basis. In this situation, you could redistribute the table so
that the infrequently accessed data is on a small number of database partitions in
the nodegroup, and the frequently accessed data is distributed over a larger
number of partitions. This would improve access performance and throughput on
the most frequently run applications.

¹ Add database partitions to a nodegroup. (Provided for backward compatibility only
with DB2 for Parallel Edition. The recommended way to add a database partition is
to use the ALTER NODEGROUP command.)

¹ Drop database partitions from a nodegroup. (Provided for backward compatibility
only with DB2 for Parallel Edition. The recommended way to drop a database
partition is to use the ALTER NODEGROUP command.)

To preserve table collocation, this operation is applied to all tables in a nodegroup, and
redistribution is done at the nodegroup level rather than at the table level.

To achieve the data distribution that you want, the utility uses a partitioning map to
move the rows of the tables among the database partitions of the nodegroup.
Depending on the option you specify, the utility can generate a target partitioning map
or can use an existing partitioning map as input.

Notes:

1. You should specify a log file size based on the log space requirements you think
that the Data Redistribution operation will need. You should also ensure that the
log is large enough to accommodate the INSERT and DELETE operations done at
each database partition where data is being redistributed.

| 2. If you want to redistribute the data in a nodegroup that contains replicated
| summary tables, you must first drop these tables, redistribute the nodegroup, then
| re-create the tables. You cannot redistribute a nodegroup that contains replicated
| summary tables.

 Copyright IBM Corp. 1993, 1998 579

How to Partition Data
| By default, the Data Redistribution utility assumes that the same number of rows hash
| to each hash partition, therefore it partitions the hash partitions uniformly across all the
| database partitions of the nodegroup. If the same number of rows do not hash to each
| hash partition, you can use a distribution file to specify the current distribution. This file
| contains a value for each of the 4 096 hash partitions. Each value is used as the weight
| of the corresponding hash partition. The Data Redistribution utility generates a target
| partitioning map in which all the database partitions have about the same weight. Thus,
| the distribution file can be used to achieve uniform data distribution even if the data
| distribution is skewed.

The AutoLoader utility can be used to create a data distribution file using the ANALYZE
option. You can use this file as input to the Data Redistribution utility. For more
information, see “Using the AutoLoader Utility” on page 225.

| Alternatively, you can use the PARTITION and NODENUMBER SQL functions to
| determine the current data distribution across hash partitions or database partitions.
| (You use the PARTITION function to determine the distribution across hash partitions.)
| You can use this information to derive both a distribution file and a target partitioning
| map.

Adding and Dropping Database Partitions
You can use the ALTER NODEGROUP statement to add or drop database partitions
from a nodegroup. When adding database partitions, the partitions must already be
defined in the node configuration file.

Following the use of the ALTER NODEGROUP statement, a new partitioning map is
created. This new partitioning map can become the target partitioning map when using
the Data Redistribution utility. (The other way to create the target partitioning map is to
create it yourself.)

| If you use the ALTER NODEGROUP statement with the WITHOUT TABLESPACES
| clause, you must add table space containers to a new database partition (or partitions)
| before redistributing the data. For additional information about the ALTER
| NODEGROUP statement, refer to the SQL Reference.

Specifying a Target Partitioning Map
The Data Redistribution utility uses a partitioning map to do the data redistribution. It
can create its own target partitioning map, or you can provide one for the utility to use.
If you create one, the entry or entries determine the type of nodegroup that results from
the data redistribution:

¹ 1 entry for a single-partition nodegroup
¹ 4 096 entries for a multipartition nodegroup

580 Administration Guide

If the target partitioning map has more than one database partition, all tables in the
nodegroup must have a partitioning key defined.

The target partitioning map can only contain database partition numbers that are
defined in the SYSCAT.NODEGROUPDEF catalog table, excluding those with an
IN_USE value of 'T'. ('T' means that the partition is not in the target partitioning map.)
All database partitions that have an IN_USE value of 'D' (meaning to drop) and do not
appear in the target partitioning map are dropped when the redistribution operation has
completed successfully.

How Data Is Redistributed Across Database Partitions
The Data Redistribution operation is done on the set of tables in the specified
nodegroup of a database. (The application must be connected to the database at the
catalog database partition before executing the operation.) The utility uses both the
source partitioning map and the target partitioning map to identify which hash partitions
have been assigned to a new location (that is, a new database partition number). All
rows that correspond to a partition that has a new location are moved from the
database partition specified in the source partitioning map to the database partition
specified in the target partitioning map.

The Data Redistribution utility does the following:

1. Obtains a new partitioning map ID for the target partitioning map, and inserts it into
the SYSCAT.PARTITIONMAPS catalog view.

2. Updates the REBALANCE_PMAP_ID column in the SYSCAT.NODEGROUPS
catalog view for the nodegroup with the new partitioning map ID.

3. Adds any new database partitions to the SYSCAT.NODEGROUPDEF catalog view.

4. Sets the IN_USE column in the SYSCAT.NODEGROUPDEF catalog view to 'D' for
any database partition that is to be dropped.

5. Does a COMMIT for the catalog updates.

6. Creates database files for all new database partitions.

7. Redistributes the data on a table-by-table basis for every table in the nodegroup.
This is described in “How Data Is Redistributed in Tables” on page 582.

8. Deletes database files and deletes entries in the SYSCAT.NODEGROUPDEF
catalog view for database partitions that were previously marked to be dropped.

9. Updates the nodegroup record in the SYSCAT.NODEGROUPS catalog view to set
PMAP_ID to the value of REBALANCE_PMAP_ID and REBALANCE_PMAP_ID to
NULL.

10. Deletes the old partitioning map from the SYSCAT.PARTITIONMAPS catalog view.

11. Does a COMMIT for all changes.

 Chapter 18. Redistributing Data Across Database Partitions 581

How Data Is Redistributed in Tables
When doing data redistribution on a table, the utility does the following:

1. Locks the row for the table in the SYSTABLES catalog table.

2. Invalidates all packages that involve this table. The partitioning map ID associated
with the table will change because the table is being redistributed. Because the
packages are invalidated, the compiler must obtain the new partitioning information
for the table and generate packages accordingly.

3. Locks the table in exclusive mode.

| 4. Redistributes the data in the table via DELETEs and INSERTs.

5. If the redistribution operation succeeds, it:

a. Issues a COMMIT for the table.

b. Continues with the next table in the nodegroup.

If the operation fails before the table is fully redistributed, the utility:

a. Issues a ROLLBACK on updates to the table.

b. Ends the entire redistribution operation and returns an error.

Recovering From Redistribution Errors
After the redistribution operation begins to execute, a file is written to the redist
sub-directory of the sqllib directory. This status file lists any operations that are done
on database partitions, the names of the tables that were redistributed, and the
completion status of the operation. If a table cannot be redistributed, its name and the
applicable SQLCODE is listed in the file. If the redistribution operation cannot begin
because of an incorrect input parameter, the file is not written and an SQLCODE is
returned.

The file has the following naming convention:

databasename.nodegroupname.timestamp (for UNIX platforms)

databasename\nodegroupname\date\time (for non-UNIX platforms)

Note: On non-UNIX platforms, only the first eight (8) bytes of the nodegroupname are
used.

If the data redistribution operation fails, some tables may be redistributed, while others
are not. This occurs because data redistribution is performed a table at a time. You
have two options for recovery:

¹ Use the CONTINUE option to continue the operation to redistribute the remaining
tables.

¹ Use the ROLLBACK option to undo the redistribution and set the redistributed
tables back to their original state. The rollback operation can take about the same
amount of time as the original redistribution operation.

582 Administration Guide

Before you can use either option, a previous data redistribution operation must have
failed such that the REBALANCE_PMID column in the SYSNODEGROUPS catalog
table is set to a non-NULL value.

If you happen to delete the status file by mistake, you can still attempt a CONTINUE
operation.

Data Redistribution and Other Operations
You can do the following operations on objects of the nodegroup while the utility is
running. You cannot, however, do them on the table that is being redistributed. You
can:

¹ Create indexes on other tables. The CREATE INDEX statement uses the
partitioning map of the affected table.

¹ Drop other tables. The DROP TABLE statement uses the partitioning map of the
affected table.

¹ Drop indexes on other tables. The DROP INDEX statement uses the partitioning
map of the affected table.

¹ Query other tables.

¹ Update other tables.

¹ Create new tables in a table space defined in the nodegroup. The CREATE TABLE
statement uses the target partitioning map.

¹ Create table spaces in the nodegroup.

You cannot do the following operations while the utility is running:

¹ Another redistribution operation on the nodegroup

¹ An ALTER TABLE on any table in the nodegroup

¹ Drop the nodegroup

¹ Alter the nodegroup.

Following Data Redistribution
After completing the redistribution of data across a nodegroup, it is strongly
recommended that you do a RUNSTATS to update the statistics associated with the
tables that may have been redistributed.

For more information on the RUNSTATS command, refer to the Command Reference
manual.

 Chapter 18. Redistributing Data Across Database Partitions 583

584 Administration Guide

 Chapter 19. Benchmark Testing

Benchmarking is a normal part of the application development life cycle. It is a team
effort involving both application developers and database administrators (DBAs), and
should be performed against your application in order to determine and improve
performance. Assuming that the application code has been written as efficiently as
possible, additional performance gains can be realized from tuning the database and
database manager configuration parameters to meet the requirements of the
application.

There are several different types of benchmarking. A transaction per second benchmark
would determine the throughput capabilities of the database manager under certain
limited laboratory conditions. An application benchmark would test the same throughput
capabilities, but under conditions that are closer to those under which your application
will run when it is implemented. Benchmarking for the purpose of tuning configuration
parameters is based upon these “real-world” conditions, and involves repeatedly
running SQL taken from your application with varying parameter values until your
application runs as efficiently as possible.

The benchmarking methods described in this section are oriented towards the
configuration parameters. However, the same basic technique can be used for tuning
other factors that affect performance, such as:

 ¹ SQL statements
 ¹ Indexes
¹ Table space configuration

 ¹ Application code
 ¹ Hardware configuration.

Benchmarking is helpful in understanding how the database manager responds under
varying conditions. You could create scenarios that test deadlock handling, utility
performance, different methods of loading data, transaction rate characteristics as more
users are added, and even the effect on the application of using a new release of the
product.

The following topics are provided:

¹ “Benchmark Testing Methodology”
¹ “Preparing for Benchmark Testing” on page 586
¹ “Creating a Benchmark Program” on page 588
¹ “Executing the Benchmark Tests” on page 593.

Benchmark Testing Methodology
 This benchmarking technique is based on the scientific method. A repeatable
environment will be created in which the same test, run under the same conditions, will
yield comparable results.

 Copyright IBM Corp. 1993, 1998 585

Benchmarking can also begin by running the test application in a normal environment.
As a performance problem is narrowed down, specialized test cases can be developed
to limit the scope of the function that is being tested and observed. The specialized test
cases need not emulate an entire application in order to obtain valuable information.
Start with simple measurements, and increase the complexity only when warranted.

Characteristics of good benchmarks (or measurements) include:

¹ Each test is repeatable.
¹ Each iteration of a test is started in the same system state.
¹ There are no functions or applications active in the system other than those being

measured (unless the scenario includes some amount of other activity going on in
the system).

Note: Applications that are started use memory even when they are minimized or
idle. This increases the likelihood of paging skewing the results of the
benchmark and violating the repeatability rule.

¹ The hardware and software used for benchmarking matches your production
environment.

As with any benchmarking, a scenario must be devised and then executed. The
following information applies these concepts to the DB2 environment.

¹ “Preparing for Benchmark Testing”
¹ “Creating a Benchmark Program” on page 588
¹ “Executing the Benchmark Tests” on page 593.

Preparing for Benchmark Testing
 The logical design of your application's database should be complete before
performance benchmarking is started. Tables, views, and indexes need to be set up
and populated. Tables should be normalized, application packages bound, and tables
populated with realistic data.

You should have determined the final physical design of the database. The database
manager objects should be placed in their final disk locations, log files sized, work files
and backup locations determined, and backup procedures tested. In addition, packages
should be checked to make sure that performance options such as row blocking are
enabled when possible.

You should have reached a point in the application's programming and testing phases
that will enable you to create your benchmark programs (see next section). An
application's practical limits may be revealed during the benchmark testing; however,
the purpose of the benchmark described here is to measure performance, not to detect
defects or abends.

Your benchmarking test program will need to run in as accurate a representation of the
final production environment as possible; ideally, on the same model of server with the
same memory and disk configurations. This is especially important when the application
will ultimately involve large numbers of users and large amounts of data. The operating

586 Administration Guide

system itself and any communications or file-serving facilities used directly by the
benchmark should also have been tuned.

It is also important to benchmark with a production-size database. An individual SQL
statement should return as much data and involve as much sorting as it will once it is
implemented in production. Adhering to this rule will ensure that the application will
incur representative memory requirements.

 The type of SQL statements to be benchmarked should be either representative or
worst-case, as described below:

Representative SQL
Representative SQL includes those statements that are executed during typical
operations of the application being benchmarked. The statements that are
selected will depend on the nature of the application. For example, a data-entry
application might test an INSERT statement, while a banking transaction might
test a FETCH, an UPDATE, and several INSERTs. The frequency of execution
and volume of data processed by the statements chosen should be considered
average. If the volumes are excessive, the statements should be considered
under the worst-case category, even if they are typical SQL statements.

Worst-case SQL
Statements falling in this category include:

¹ Statements that are executed frequently.
¹ Statements that have high volumes of data being processed.
¹ Statements that are time-critical.

For example, an application that is run when a telephone call is received
from a customer and the statements must be run to retrieve and update the
customer's information while the customer is waiting.

¹ Statements with the largest number of tables being joined or with the most
complex SQL in the application.

For example, a banking application that produces combined customer
statements of monthly activity for all their different types of accounts. A
common table may list customer address and account numbers; however,
several other tables must be joined to process and integrate all of the
necessary account transaction information. Multiply the work necessary for
one account by the several thousand accounts that must be processed
during the same period, and the potential time savings drives the
performance requirements.

¹ Statements that have a poor access path, such as one that is not executed
very often and is not supported by the indexes that have been created for
the table(s) involved.

¹ Statements that have a long elapsed time.
¹ A statement that is only executed at application initialization but has

disproportionate resource requirements.

For example, an application that generates a list of account work that must
be processed during the day. When the application is started, the first major
SQL statement causes a 7-way join, which creates a very large list of all the

 Chapter 19. Benchmark Testing 587

accounts for which this application user is responsible. The statement might
only be run a few times per day, but takes several minutes to run when it
has not been tuned properly.

Creating a Benchmark Program
 There are a variety of factors to consider when designing and implementing a
benchmark program. Since the main purpose of the program is to simulate a user
application, the overall structure of the program can vary. You can use the entire
application as the benchmark and simply introduce a means for timing the SQL
statements to be analyzed. For large or complex applications, it may be more practical
to just include blocks containing the important statements.

To test the performance of specific SQL statements, another approach would be to
include these statements alone in the benchmark program along with the necessary
CONNECT, PREPARE, OPEN, and other statements and a timing mechanism.

Another factor to consider is the type of benchmark to use. One option is to run a set of
SQL statements repeatedly over a time interval. The ratio of the number of statements
executed and this time interval would give the throughput for the application. Another
option would be to simply determine the time required to execute individual SQL
statements.

Regardless of the type of benchmark program, an efficient timing system is necessary
to calculate the elapsed time, whether for individual SQL statements or the application
as a whole. For simulating applications in which individual SQL statements would be
executed in isolation, it may be important to consider times for CONNECT, PREPARE,
and COMMIT statements. However, for programs processing many different
statements, perhaps only a single CONNECT or COMMIT is necessary, so focusing on
just the execution time for an individual statement may be the priority.

While the elapsed time for each query is an important factor in performance analysis, it
may not necessarily reveal bottlenecks. For example, information on CPU usage,
locking, and buffer pool I/O could show that the application is I/O bound instead of
using the CPU to its full capacity. A benchmark program should allow you to obtain this
kind of data for a more detailed analysis if needed.

Not all applications will need to send the entire set of rows retrieved from a query to
some output device. For example, some may use the whole answer set as input for
another program (that is, none of the rows are sent to output). Formatting data for
screen output usually has high CPU cost and may not reflect user need. In order to
provide an accurate simulation, a benchmark program should reflect the row handling of
the specific application. If rows do get sent to an output device, inefficient formatting
could consume the majority of CPU processing time and misrepresent the actual
performance of the SQL statement itself.

The db2batch Benchmark Tool: A benchmark tool (db2batch) is provided in the misc
subdirectory of your instance sqllib directory. This tool takes many of the points made
above regarding the creating of a benchmark program into consideration. This tool will

588 Administration Guide

read SQL statements from either a flat file or standard input, dynamically describe and
prepare the statements, and return an answer set. It also provides the added flexibility
of allowing you to control the size of the answer set, as well as the number of rows that
should be sent from this answer set to an output device.

You can also specify the level of performance-related information supplied, including
the elapsed time, CPU and buffer pool usage, locking, and other statistics collected
from the database monitor. If you are timing a set of SQL statements, db2batch will also
summarize the performance results and provide both arithmetic and geometric means.
For more information on invocation syntax, and options, type db2batch -h on a
command line.

The Command Reference manual can also be referenced for more information on
db2batch.

The following is an example of how db2batch could be used with an input file
db2batch.sql:

-- db2batch.sql

-- ------------

--#SET PERF_DETAIL 3 ROWS_OUT 5

-- This query lists employees, the name of their department

-- and the number of activities to which they are assigned for

-- employees who are assigned to more than one activity less than

-- full-time.

--#COMMENT Query 1

select lastname, firstnme,

deptname, count(*) as num_act

from employee, department, emp_act

where employee.workdept = department.deptno and

employee.empno = emp_act.empno and

emp_act.emptime < 1

group by lastname, firstnme, deptname

having count(*) > 2;

--#SET PERF_DETAIL 1 ROWS_OUT 5

--#COMMENT Query 2

select lastname, firstnme,

deptname, count(*) as num_act

from employee, department, emp_act

where employee.workdept = department.deptno and

employee.empno = emp_act.empno and

emp_act.emptime < 1

group by lastname, firstnme, deptname

having count(*) <= 2;

Figure 60. Sample Benchmark Input File: db2batch.sql

Using the following invocation of the benchmark tool:

db2batch -d sample -f db2batch.sql

 Chapter 19. Benchmark Testing 589

Produces the following output:

--#SET PERF_DETAIL 3 ROWS_OUT 5

Query 1

Statement number: 1

select lastname, firstnme,

deptname, count(*) as num_act

from employee, department, emp_act

where employee.workdept = department.deptno and

employee.empno = emp_act.empno and

emp_act.emptime < 1

group by lastname, firstnme, deptname

having count(*) > 2

Figure 61. Sample Output From db2batch (Part 1)

590 Administration Guide

LASTNAME FIRSTNME DEPTNAME NUM_ACT

JEFFERSON JAMES ADMINISTRATION SYSTEMS 3

JOHNSON SYBIL ADMINISTRATION SYSTEMS 4

NICHOLLS HEATHER INFORMATION CENTER 4

PEREZ MARIA ADMINISTRATION SYSTEMS 4

SMITH DANIEL ADMINISTRATION SYSTEMS 7

Number of rows retrieved is: 5

Number of rows sent to output is: 5

Elapsed Time is: 0.074 seconds

Locks held currently = 0

Lock escalations = 0

Total sorts = 5

Total sort time (ms) = 0

Sort overflows = 0

Buffer pool data logical reads = 13

Buffer pool data physical reads = 5

Buffer pool data writes = 0

Buffer pool index logical reads = 3

Buffer pool index physical reads = 0

Buffer pool index writes = 0

Total buffer pool read time (ms) = 23

Total buffer pool write time (ms) = 0

Asynchronous pool data page reads = 0

Asynchronous pool data page writes = 0

Asynchronous pool index page reads = 0

Asynchronous pool index page writes = 0

Total elapsed asynchronous read time = 0

Total elapsed asynchronous write time = 0

Asynchronous read requests = 0

LSN Gap cleaner triggers = 0

Dirty page steal cleaner triggers = 0

Dirty page threshold cleaner triggers = 0

Direct reads = 8

Direct writes = 0

Direct read requests = 4

Direct write requests = 0

Direct read elapsed time (ms) = 0

Direct write elapsed time (ms) = 0

Rows selected = 5

Log pages read = 0

Log pages written = 0

Catalog cache lookups = 3

Catalog cache inserts = 3

Buffer pool data pages copied to ext storage = 0

Buffer pool index pages copied to ext storage = 0

Buffer pool data pages copied from ext storage = 0

Buffer pool index pages copied from ext storage = 0

Total Agent CPU Time (seconds) = 0.02

Post threshold sorts = 0

Piped sorts requested = 5

Piped sorts accepted = 5

Figure 62. Sample Output From db2batch (Part 1)

 Chapter 19. Benchmark Testing 591

--#SET PERF_DETAIL 1 ROWS_OUT 5

Query 2

Statement number: 2

select lastname, firstnme,

deptname, count(*) as num_act

from employee, department, emp_act

where employee.workdept = department.deptno and

employee.empno = emp_act.empno and

emp_act.emptime < 1

group by lastname, firstnme, deptname

having count(*) <= 2

LASTNAME FIRSTNME DEPTNAME NUM_ACT

GEYER JOHN SUPPORT SERVICES 2

GOUNOT JASON SOFTWARE SUPPORT 2

HAAS CHRISTINE SPIFFY COMPUTER SERVICE DIV. 2

JONES WILLIAM MANUFACTURING SYSTEMS 2

KWAN SALLY INFORMATION CENTER 2

Number of rows retrieved is: 8

Number of rows sent to output is: 5

Elapsed Time is: 0.037 seconds

Summary of Results

==================

 Elapsed Agent CPU Rows Rows

Statement # Time (s) Time (s) Fetched Printed

1 0.074 0.020 5 5

2 0.037 Not Collected 8 5

Arith. mean 0.055

Geom. mean 0.052

Figure 63. Sample Output from db2batch (Part 2)

The above sample output includes specific data elements returned by the database
system monitor. For more information about these and other monitor elements, see the
System Monitor Guide and Reference manual.

In the next example, just the summary table is produced.

db2batch -d sample -f db2batch.sql -r /dev/null,

Produces just the summary table. Using the -r option, outfile1 was replaced by
/dev/null and outfile2 (which contains just the summary table) is empty, so db2batch

sends the output to the screen:

592 Administration Guide

Summary of Results

==================

 Elapsed Agent CPU Rows Rows

Statement # Time (s) Time (s) Fetched Printed

1 0.074 0.020 5 5

2 0.037 Not Collected 8 5

Arith. mean 0.055

Geom. mean 0.052

Figure 64. Sample Output from db2batch -- Summary Table Only

This benchmarking tool also has a CLI option. With this option, you can specify a cache
size. In the following example, db2batch is run in CLI mode with a cache size of 30
statements:

db2batch -d sample -f db2batch.sql -cli 30

Executing the Benchmark Tests
One type of database benchmark involves choosing a configuration parameter and
running the test with different values for that parameter until the maximum benefit is
achieved. A single test should include executing the application through several
iterations (for example, 10 times) with the same parameter value to get an average
timing, which will better show the effect of parameter changes.

When running your benchmark, the first iteration should be considered a separate case
from the subsequent iterations. This is because the results from the first iteration will
include some start-up activities (such as initializing the buffer pool). Consequently, this
iteration will take somewhat longer than the others. Although the information from this
iteration may be realistically valid, it will not be statistically valid. Therefore, when
calculating the average timing for a specific set of parameter values, use the timings
from the second and subsequent iterations.

You may want to consider using the Performance Configuration SmartGuide to create
the first iteration of the benchmark. The questions asked as part of the Performance
Configuration SmartGuide will provide insight into some of those things to consider
when adjusting the configuration of your environment for subsequent iterations during
your benchmark activity. To use the Performance Configuration SmartGuide, enter
db2cc to get into the Control Center and proceed from there.

If you are benchmarking using individual queries, you need to ensure that you minimize
the potential effects of previous queries. This can be accomplished by flushing the
buffer pool which can be done by reading a number of pages (irrelevant to your query)
to fill the buffer pool.

After completing the iterations for a single set of parameter values, a single parameter
can be changed. However, between each iteration, the following tasks should be
performed to restore the benchmark environment to its original state:

 Chapter 19. Benchmark Testing 593

¹ Return the application data and database manager statistics to their original state.
If the catalog statistics were updated for the test, ensure the same values for the
statistics are used for every iteration. The data used in the tests must be consistent
if it is updated in the course of the tests. This can be done by:

– Using the RESTORE utility to restore the entire database. The backup copy of
the database would be in its previous state, and ready for the next test.

– Using the IMPORT or LOAD utility to restore an exported copy of the data.
This method allows you to restore only the data that has been affected.
REORG and RUNSTATS utilities should be run against the tables and indexes
containing this data.

¹ Return the application to its original state by re-BINDing it to the database.

The following are additional considerations when benchmarking on OS/2:
¹ If paging occurs during the scenario, ensure that SWAPPER.DAT has returned to

the original size.
¹ Re-boot the system for repeatability, if necessary.

Output from the benchmark program should include an identifier for each test, the
iteration of the program execution, the statement number, and the timing for the
execution. A summary of benchmarking results after a series of measurements might
look like the following:

 Test Iter. Stmt Timing SQL Statement

Numbr Numbr Numbr (hh:mm:ss.ss)

 002 05 01 00:00:01.34 CONNECT TO SAMPLE

 002 05 10 00:02:08.15 OPEN cursor_01

 002 05 15 00:00:00.24 FETCH cursor_01

 002 05 15 00:00:00.23 FETCH cursor_01

 002 05 15 00:00:00.28 FETCH cursor_01

 002 05 15 00:00:00.21 FETCH cursor_01

 002 05 15 00:00:00.20 FETCH cursor_01

 002 05 15 00:00:00.22 FETCH cursor_01

 002 05 15 00:00:00.22 FETCH cursor_01

 002 05 20 00:00:00.84 CLOSE cursor_01

 002 05 99 00:00:00.03 CONNECT RESET

Figure 65. Benchmark Sample Results

Note: The data in the above report is shown for illustration purposes only. It does not
represent measured results.

Examining this report would indicate that the CONNECT (statement 01) took 1.34
seconds, the OPEN CURSOR (statement 10) took 2 minutes and 8.15 seconds, the
FETCHES (statement 15) returned seven rows with the longest delay being .28
seconds, the CLOSE CURSOR (statement 20) took .84 seconds, and the CONNECT
RESET (statement 99) took .03 seconds.

It might be beneficial for your program to output your data in a delimited ASCII format
so that it could later be imported into a database table or a spreadsheet for further
statistical analysis.

594 Administration Guide

Sample output for a benchmark report might be:

PARAMETER VALUES FOR EACH BENCHMARK TEST

TEST NUMBER 001 002 003 004 005

locklist 63 63 63 63 63

>> buffpage 1000 1175 1250 1325 1400 <<

 maxappls 8 8 8 8 8

 applheapsz 48 48 48 48 48

dbheap 128 128 128 128 128

sortheap 256 256 256 256 256

maxlocks 22 22 22 22 22

stmtheap 1024 1024 1024 1024 1024

SQL STMT AVERAGE TIMINGS (seconds)

01 01.34 01.34 01.35 01.35 01.36

10 02.15 02.00 01.55 01.24 01.00

15 00.22 00.22 00.22 00.22 00.22

20 00.84 00.84 00.84 00.84 00.84

99 00.03 00.03 00.03 00.03 00.03

Figure 66. Benchmark Sample Timings Report

Note: The data in the above report is shown for illustration purposes only. It does not
represent any measured results.

Examining the data in this example shows that changing the buffpage parameter
successively lowered the OPEN CURSOR times from 2.15 seconds to 1.00 second.
(The assumption is that there is only one (1) buffer pool with the size (NPAGES) set to
-1. This means the size of the buffer pool is controlled by the buffpage parameter.)

In summary, the following steps/iterations may be followed to benchmark a database
application:

Step 1 Leave the database and database manager tuning parameters at their
default values except for:

¹ Those parameters significant to the workload and the objectives of the
test. (You rarely have enough time to perform benchmark testing to tune
all of the parameters, so you may want to start by using your best guess
for some of the parameters and tune from that point.)

¹ Log sizes, which should be determined during unit and system testing of
your application. (See “Size of Log Files (logfilsiz)” on page 659 for more
information.)

¹ Any parameters that must be changed to enable your application to run
(that is, the changes needed to prevent negative SQL return codes from
such events as running out of memory for the statement heap).

Run your set of iterations for this initial case and calculate the average timing.

Step 2 Select one and only one tuning parameter to be tested, and change its value.

Step 3 Run another set of iterations and calculate the average timing.

 Chapter 19. Benchmark Testing 595

Step 4 Depending on the results of the benchmark test, do one of the following:

¹ If performance improves, change the value of the same parameter and
return to Step 3. Keep changing this parameter until the maximum benefit
is shown.

¹ If performance degrades or remains unchanged, return the parameter to
its previous value, return to Step 2, and select a new parameter. Repeat
this procedure until all parameters have been tested.

Note: If you were to graph the performance results, you would be
looking for the point where the curve begins to plateau or decline.

You can write a driver program to help you with your benchmark testing. This driver
program could be written using a language such as REXX or, for UNIX-based
platforms, using shell scripts.

This driver program would execute the benchmark program, pass it the appropriate
parameters, drive the test through multiple iterations, restore the environment to a
consistent state, set up the next test with new parameter values, and collect/consolidate
the test results. These driver programs can be flexible enough that they could be used
to run the entire set of benchmark tests, analyze the results, and provide a report of the
final and best parameter values for the given test.

596 Administration Guide

 Chapter 20. Configuring DB2

 DB2 has been designed with an extensive array of tuning and configuration
parameters. These parameters fall into two general categories:

¹ “Database Manager Parameters” on page 598
¹ “Database Parameters” on page 602.

In addition to descriptions of the individual parameters, the following topics are
available:

¹ “Tuning Configuration Parameters”
¹ “Parameter Details by Function” on page 607 (each functional area has its own list

of configuration parameters)
¹ “Establish Environment Variables and the Profile Registry” on page 66

There may be performance-related environment variables for your specific platform
that you should consider using in addition to the performance-related configuration
parameters.

¹ Chapter 15, “Operational Performance” on page 527
¹ Chapter 19, “Benchmark Testing” on page 585.

You should review all of the parameter summaries in Table 46 on page 600 and
Table 48 on page 604, and then focus on the descript ions and tuning of those which
will provide you with the greatest benefit in your working environment.

Tuning Configuration Parameters
The disk space and memory allocated by the database manager on the basis of default
values of the parameters may be sufficient to meet your needs in some situations,
however, you may not be able to achieve maximum performance using these default
values.

Since the default values are oriented towards machines with relatively small memory
and dedicated as database servers, you may need to modify them if your environment
has:

 ¹ Large databases
¹ Large numbers of connections
¹ High performance requirements for a specific application
¹ Unique query or transaction loads or types
¹ Different machine configuration or usage.

Each transaction processing environment is unique in one or more aspects. These
differences can have a profound impact on the performance of the database manager
when using the default configuration. For this reason, you are strongly advised to tune
your configuration for your environment.

Different types of applications and users have different response time requirements and
expectations. Applications could range from simple data entry screens to strategic

 Copyright IBM Corp. 1993, 1998 597

applications involving dozens of complex SQL statements accessing dozens of tables
per unit of work. For example, response time requirements could vary considerably in a
telephone customer service application versus a batch report generation application.

The other related topics can be used to help you benchmark your application to tune
the configuration parameters:

¹ Database Manager Parameters
¹ “Database Parameters” on page 602
¹ “Parameter Details by Function” on page 607 (each functional area has its own list

of configuration parameters)
¹ Chapter 15, “Operational Performance” on page 527
¹ Chapter 19, “Benchmark Testing” on page 585
¹ Database system monitor element descriptions in the System Monitor Guide and

Reference.

Database Manager Parameters
Database manager parameters are stored in a file named db2systm. This file is created
when the instance of the database manager is created. In UNIX-based environments,
this file can be found in the sqllib subdirectory for the instance of the database
manager. In all other environments, the default location of this file is the instance
subdirectory of the sqllib directory. If the DB2INSTPROF variable is set, the file is in
the instance subdirectory of the directory specified by the DB2INSTPROF variable.

In a partitioned database environment, this file resides on a shared file system so that
all database partition servers have access to the same file. The configuration of the
database manager is the same on all database partition servers.

Most of the parameters either affect the amount of system resources that will be
allocated to a single instance of the database manager, or they configure the setup of
the database manager and the different communications subsystems based on
environmental considerations. In addition, there are other parameters that serve
informative purposes only and cannot be changed. All of these parameters have global
applicability independent of any single database stored under that instance of the
database manager.

The db2systm file cannot be directly edited. It can only be changed or viewed using a
supplied API or by a tool which calls that API.

Attention: If you edit the file using a method other than those provided by the product,
you may make your system unusable. We strongly recommend that you do not change
this file using methods other than those documented and supported by DB2.

 You may use one of the following three methods to reset, update, and view the
database manager configuration parameters:

¹ Using the DB2 Control Center. The DB2 Control Center provides both the
Configure Instance notebook and the Performance Configuration SmartGuide to
alter the value of configuration parameters. This SmartGuide generates values to

598 Administration Guide

parameters based on the responses you provide to a set of questions, such as the
workload and the type of transactions that run against the database. See the
on-line help available with the Control Center for information on using these
interfaces.

¹ Using the command line processor. Commands to change the settings can be
quickly and conveniently entered. See the Command Reference for more
information about the following commands:

– GET DATABASE MANAGER CONFIGURATION (or GET DBM CFG)
– UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE DBM CFG)
– RESET DATABASE MANAGER CONFIGURATION (or RESET DBM CFG)

¹ Using the application programming interfaces (APIs). The APIs can easily be called
from an application. See the API Reference for more information.

After changing the parameters, the database manager must be stopped (db2stop) and
then restarted (db2start) for the new parameter values to take effect. For clients,
changes in the database manager configuration parameters take effect the next time
the client connects to a server. While new parameter values are not immediately
effective, viewing the parameter settings will always show the latest updates.

| Note: You do not need to restart the database manager if you update the value of the
| dft_monswitches parameter; this parameter is updated automatically when you
| change its value.

Database Manager Configuration Parameter Summary
The following table lists the parameters in the database manager configuration file for
database servers. When changing the database manager configuration parameters,
consider the detailed information for each parameter. Specific operating environment
information including defaults is part of each parameter description.

The column “Performance Impact” in the following table provides an indication of the
relative importance of each parameter as it relates to system performance. It is
impossible for this column to apply accurately to all environments; you should view this
information as a generalization.

¹ High — indicates the parameter can have a significant impact on performance.
You should consciously decide the values of these parameters; which in some
cases, will mean that you accept the default provided.

¹ Medium — indicates the parameter can have some impact on performance. Your
specific environment and needs will determine how much tuning effort should be
focussed on these parameters.

¹ Low — indicates that the parameter has a less general or less significant impact
on performance.

¹ None — indicates that the parameter does not directly impact performance. While
you do not have to tune these parameters for performance, they can be very
important for other aspects of your system configuration, such as enabling
communication support.

 Chapter 20. Configuring DB2 599

Table 46 (Page 1 of 3). Configurable Database Manager Configuration Parameters

Parameter Performance Impact Additional Information

agentpri High “Priority of Agents (agentpri)” on page 651

agent_stack_sz Low “Agent Stack Size (agent_stack_sz)” on page 627

aslheapsz High “Application Support Layer Heap Size (aslheapsz)” on
page 631

audit_buf_sz High “Audit Buffer Size (audit_buf_sz)” on page 619

authentication Low “Authentication Type (authentication)” on page 713

backbufsz Medium “Default Backup Buffer Size (backbufsz)” on page 614

| catalog_noauth| None| “Cataloging Allowed without Authority (catalog_noauth)” on
| page 714

comm_bandwidth Medium “Communications Bandwidth (comm_bandwidth)” on page 705

conn_elapse Medium “Connection Elapse Time (conn_elapse)” on page 696

cpuspeed Low (see note) “CPU Speed (cpuspeed)” on page 706

dft_account_str None “Default Charge-Back Account (dft_account_str)” on page 709

dft_client_adpt None “Default Client Adapter Number (dft_client_adpt)” on page 693

dft_client_comm None “Default Client Communication Protocol (dft_client_comm)” on
page 693

dft_monswitches

 ¹ dft_mon_bufpool
 ¹ dft_mon_lock
 ¹ dft_mon_sort
 ¹ dft_mon_stmt
 ¹ dft_mon_table
 ¹ dft_mon_uow

Medium “Default Database System Monitor Switches
(dft_monswitches)” on page 704

dftdbpath None “Default Database Path (dftdbpath)” on page 714

diaglevel Low “Diagnostic Error Capture Level (diaglevel)” on page 702

diagpath None “Diagnostic Data Directory Path (diagpath)” on page 703

dir_cache Medium “Directory Cache Support (dir_cache)” on page 636

dir_obj_name None “Object Name in DCE Namespace (dir_obj_name)” on
page 691

dir_path_name None “Directory Path Name in DCE Namespace (dir_path_name)”
on page 691

dir_type None “Directory Services Type (dir_type)” on page 690

discover Medium “Discovery Mode (discover)” on page 694

discover_comm Low “Search Discovery Communications Protocols
(discover_comm)” on page 695

discover_inst Low “Discover Server Instance (discover_inst)” on page 695

dos_rqrioblk High “DOS Requester I/O Block Size (dos_rqrioblk)” on page 633

drda_heap_sz Low “DRDA Heap Size (drda_heap_sz)” on page 626

fcm_num_anchors High “Number of FCM Message Anchors (fcm_num_anchors)” on
page 697

fcm_num_buffers High “Number of FCM Buffers (fcm_num_buffers)” on page 697

fcm_num_connect High “Number of FCM Connection Entries (fcm_num_connect)” on
page 698

600 Administration Guide

Table 46 (Page 2 of 3). Configurable Database Manager Configuration Parameters

Parameter Performance Impact Additional Information

fcm_num_rqb High “Number of FCM Request Blocks (fcm_num_rqb)” on
page 699

fileserver None “IPX/SPX File Server Name (fileserver)” on page 688

indexrec Medium “Index Re-creation Time (indexrec)” on page 669

intra_parallel High “Enable Intra-Partition Parallelism (intra_parallel)” on
page 701

ipx_socket None “IPX/SPX Socket Number (ipx_socket)” on page 689

java_heap_sz High “Maximum Java Interpreter Heap Size (java_heap_sz)” on
page 637

jdk11_path None “Java Development Kit 1.1 Installation Path (jdk11_path)” on
page 710

keepdari Medium “Keep DARI Process Indicator (keepdari)” on page 657

maxagents High “Maximum Number of Agents (maxagents)” on page 653

maxcagents High “Maximum Number of Concurrent Agents (maxcagents)” on
page 652

max_connretries Medium “Node Connection Retries (max_connretries)” on page 699

max_coordagents High “Maximum Number of Coordinating Agents
(max_coordagents)” on page 654

maxdari Medium “Maximum Number of DARI Processes (maxdari)” on
page 658

max_querydegree High “Maximum Query Degree of Parallelism (max_querydegree)”
on page 700

max_time_diff Medium “Maximum Time Difference Among Nodes (max_time_diff)” on
page 701

maxtotfilop Medium “Maximum Total Files Open per Application (maxtotfilop)” on
page 650

min_priv_mem Medium “Minimum Committed Private Memory (min_priv_mem)” on
page 629

mon_heap_sz Low “Database System Monitor Heap Size (mon_heap_sz)” on
page 635

nname None “NetBIOS Workstation Name (nname)” on page 686

numdb Low “Maximum Number of Concurrently Active Databases
(numdb)” on page 707

num_initagents Medium “Initial Number of Agents in Pool (num_initagents)” on
page 656

num_poolagents High “Agent Pool Size (num_poolagents)” on page 655

objectname None “IPX/SPX DB2 Server Object Name (objectname)” on
page 689

priv_mem_thresh Medium “Private Memory Threshold (priv_mem_thresh)” on page 629

query_heap_sz Medium “Query Heap Size (query_heap_sz)” on page 625

restbufsz Medium “Default Restore Buffer Size (restbufsz)” on page 614

resync_interval None “Transaction Resync Interval (resync_interval)” on page 674

route_obj_name None “Routing Information Object Name (route_obj_name)” on
page 692

rqrioblk High “Client I/O Block Size (rqrioblk)” on page 632

 Chapter 20. Configuring DB2 601

Table 46 (Page 3 of 3). Configurable Database Manager Configuration Parameters

Parameter Performance Impact Additional Information

sheapthres High “Sort Heap Threshold (sheapthres)” on page 622

spm_log_file_sz Low “Sync Point Manager Log File Size (spm_log_file_sz)” on
page 675

| spm_log_path| Medium| “Sync Point Manager Log File Path (spm_log_path)” on
| page 674

spm_max_resync Low “Sync Point Manager Resync Agent Limit (spm_max_resync)”
on page 676

spm_name None “Sync Point Manager Name (spm_name)” on page 675

ss_logon None “LOGON Required for DB2START/DB2STOP (ss_logon)” on
page 715

start_stop_time Low “Start and Stop Timeout (start_stop_time)” on page 702

svcename None “TCP/IP Service Name (svcename)” on page 687

sysadm_group None “System Administration Authority Group Name
(sysadm_group)” on page 710

sysctrl_group None “System Control Authority Group Name (sysctrl_group)” on
page 712

sysmaint_group None “System Maintenance Authority Group Name
(sysmaint_group)” on page 712

tm_database None “Transaction Manager Database Name (tm_database)” on
page 673

tp_mon_name None “Transaction Processor Monitor Name (tp_mon_name)” on
page 708

tpname None “APPC Transaction Program Name (tpname)” on page 688

trust_allclnts None “Trust All Clients (trust_allclnts)” on page 715

trust_clntauth None “Trusted Clients Authentication (trust_clntauth)” on page 716

udf_mem_sz Low “UDF Shared Memory Set Size (udf_mem_sz)” on page 626

Note: The cpuspeed parameter can have a significant impact on performance but you should use the default value, except in
very specific circumstances, as documented in the parameter description.

Table 47. Informational Database Manager Configuration Parameters

Parameter Additional Information

nodetype “Machine Node Type (nodetype)” on page 708

release “Configuration File Release Level (release)” on page 677

 Database Parameters
Parameters for an individual database are stored in a configuration file named
SQLDBCON. This file is stored along with other control files for the database in the
SQLnnnnn directory, where nnnnn is a number assigned when the database was created.
(For more information about the location of this directory, see “Database Physical
Directories” on page 27.) Each database has its own configuration file, and most of the
parameters in the file specify the amount of resources allocated to that database. The

602 Administration Guide

file also contains descriptive information, as well as flags that indicate the status of the
database.

In a partitioned database environment this file exists for each database partition. If you
want to have all the database partitions (or a subset of them) share the same database
configuration values, use db2_all . An alternative is to write a script or application to
update the multiple database configuration files. Each of the configuration files would
then have the same values.

The SQLDBCON file cannot be directly edited, and can only be changed or viewed via a
supplied API or by a tool which calls that API.

Attention: If you edit the file using a method other than those provided by DB2, you
may make the database unusable. We strongly recommend that you do not change this
file using methods other than those documented and supported by DB2.

You may use one of the following three methods to reset, update, and view the
database configuration parameters:

¹ Using the Control Center. The DB2 Control Center provides both the Configure
Database notebook and the Performance Configuration SmartGuide to alter the
value of configuration parameters. This SmartGuide generates values to
parameters based on the responses you provide to a set of questions, such as the
workload and the type of transactions that run against the database. See the
on-line help available with the Control Center for information on using these
interfaces.

¹ Using the command line processor. Commands to change the settings can be
quickly and conveniently entered. See the Command Reference for more
information about the following commands:

– GET DATABASE CONFIGURATION (or GET DB CFG)
– UPDATE DATABASE CONFIGURATION (or UPDATE DB CFG)
– RESET DATABASE CONFIGURATION (or RESET DB CFG)

¹ Using the application programming interfaces (APIs). The APIs can easily be called
from a host-language program. (See the API Reference for more information.)

Updates to most changeable parameters will not take effect while applications are
connected to the database. All applications must first disconnect from the database. (If
the database was activated, then it must be deactivated and reactivated.) Then, at the
first new connect to the database, the changes will take effect. You should note that
some parameter changes, such as newlogpath, logfilsiz and logprimary, may take a
noticeable amount of time to take effect due to the overhead associated with allocating
space. You may wish to make a test connection to the database so the change will be
made at the time of the test connection and any overhead will not affect other users. If
you are concerned about the overhead as discussed here, consider using the
ACTIVATE DATABASE command as found in the Command Reference.

| Note: You do not need to disconnect from the database if you update the value of the
| mincommit parameter; this parameter is updated automatically when you
| change its value.

 Chapter 20. Configuring DB2 603

Changing some database configuration parameters can influence the access plan
chosen by the SQL optimizer. These database parameters are discussed in
“Configuration Parameters Affecting Query Optimization” on page 423. After changing
any of the parameters discussed there, you should consider rebinding your applications
to ensure the best access plan is being used for your SQL statements.

While new parameter values may not be immediately effective, viewing the parameter
settings will always show the latest updates.

Note: A number of database configuration parameters (including logretain and
userexit) are described as having acceptable values of either “Yes” or “No,” or
“On” or “Off” in the help and other DB2 books. To clarify what may be
confusing, “Yes” should be considered equivalent to “On” and “No” should be
considered equivalent to “Off.”

Database Configuration Parameter Summary
The following table lists the parameters in the database configuration file. When
changing the database configuration parameters, consider the detailed information for
the parameter.

The column “Performance Impact” in the following table provides an indication of the
relative importance of each parameter as it relates to system performance. It is
impossible for this column to apply accurately to all environments; you should view this
information as a generalization.

¹ High — indicates the parameter can have a significant impact on performance.
You should consciously decide the values of these parameters; which in some
cases, will mean that you accept the default provided.

¹ Medium — indicates the parameter can have some impact on performance. Your
specific environment and needs will determine how much tuning effort should be
focussed on these parameters.

¹ Low — indicates that the parameter has a less general or less significant impact
on performance.

¹ None — indicates that the parameter does not directly impact performance. While
you do not have to tune these parameters for performance, they can be very
important for other aspects of your system configuration, such as enabling
communication support.

Table 48 (Page 1 of 3). Configurable Database Configuration Parameters

Parameter Performance Impact Additional Information

adsm_mgmtclass None “ADSTAR Distributed Storage Manager Management Class
(adsm_mgmtclass)” on page 671

adsm_nodename None “ADSTAR Distributed Storage Manager Node Name
(adsm_nodename)” on page 672

adsm_owner None “ADSTAR Distributed Storage Manager Owner Name
(adsm_owner)” on page 673

adsm_password None “ADSTAR Distributed Storage Manager Password
(adsm_password)” on page 672

604 Administration Guide

Table 48 (Page 2 of 3). Configurable Database Configuration Parameters

Parameter Performance Impact Additional Information

app_ctl_heap_sz Medium “Application Control Heap Size (app_ctl_heap_sz)” on
page 619

applheapsz Medium “Application Heap Size (applheapsz)” on page 623

| audit_buf_sz| Medium| “Audit Buffer Size (audit_buf_sz)” on page 619

autorestart Low “Auto Restart Enable (autorestart)” on page 669

avg_appls High “Average Number of Active Applications (avg_appls)” on
page 649

| buffpage| High (when active)| “Buffer Pool Size (buffpage)” on page 608

catalogcache_sz Medium “Catalog Cache Size (catalogcache_sz)” on page 611

chngpgs_thresh High “Changed Pages Threshold (chngpgs_thresh)” on page 641

copyprotect None “Copy Protection Enable (copyprotect)” on page 679

dbheap Medium “Database Heap (dbheap)” on page 610

dft_degree High “Default Degree (dft_degree)” on page 683

dft_extent_sz Medium “Default Extent Size of Table Spaces (dft_extent_sz)” on
page 646

dft_loadrec_ses Medium “Default Number of Load Recovery Sessions
(dft_loadrec_ses)” on page 671

dft_prefetch_sz Medium “Default Prefetch Size (dft_prefetch_sz)” on page 645

dft_queryopt Medium “Default Query Optimization Class (dft_queryopt)” on
page 683

dft_sqlmathwarn None “Continue upon Arithmetic Exceptions (dft_sqlmathwarn)” on
page 681

dir_obj_name None “Object Name in DCE Namespace (dir_obj_name)” on
page 691

discover_db Medium “Discover Database (discover_db)” on page 694

dlchktime Medium “Time Interval for Checking Deadlock (dlchktime)” on
page 638

| dl_expint| None| “DataLink Access Token Expiry Interval (dl_expint)” on
| page 717

| dl_num_backup| None| “DataLink Number of Backups (dl_num_backup)” on page 717

| dl_num_copies| None| “DataLink Number of Copies (dl_num_copies)” on page 718

| dl_time_drop| None| “DataLink Time After Drop (dl_time_drop)” on page 718

estore_seg_sz Medium “Extended Storage Memory Segment Size (estore_seg_sz)”
on page 646

indexrec Medium “Index Re-creation Time (indexrec)” on page 669

indexsort Low (see 606) “Index Sort Flag (indexsort)” on page 644

locklist High “Maximum Storage for Lock List (locklist)” on page 615

locktimeout Medium “Lock Timeout (locktimeout)” on page 640

logbufsz High “Log Buffer Size (logbufsz)” on page 613

logfilsiz Medium “Size of Log Files (logfilsiz)” on page 659

logprimary Medium “Number of Primary Log Files (logprimary)” on page 660

logretain Low “Log Retain Enable (logretain)” on page 667

logsecond Medium “Number of Secondary Log Files (logsecond)” on page 662

 Chapter 20. Configuring DB2 605

Table 48 (Page 3 of 3). Configurable Database Configuration Parameters

Parameter Performance Impact Additional Information

maxappls High “Maximum Number of Active Applications (maxappls)” on
page 648

maxfilop Medium “Maximum Database Files Open per Application (maxfilop)” on
page 650

maxlocks High “Maximum Percent of Lock List Before Escalation (maxlocks)”
on page 639

mincommit High “Number of Commits to Group (mincommit)” on page 664

newlogpath Low “Change the Database Log Path (newlogpath)” on page 663

num_estore_segs Medium “Number of Extended Storage Memory Segments
(num_estore_segs)” on page 647

num_freqvalues Low “Number of Frequent Values Retained (num_freqvalues)” on
page 684

num_iocleaners High “Number of Asynchronous Page Cleaners (num_iocleaners)”
on page 642

num_ioservers High “Number of I/O Servers (num_ioservers)” on page 643

num_quantiles Low “Number of Quantiles for Columns (num_quantiles)” on
page 685

pckcachesz High “Package Cache Size (pckcachesz)” on page 617

rec_his_retentn None “Recovery History Retention Period (rec_his_retentn)” on
page 671

seqdetect High “Sequential Detection Flag (seqdetect)” on page 644

softmax Medium “Recovery Range and Soft Checkpoint Interval (softmax)” on
page 666

sortheap High “Sort Heap Size (sortheap)” on page 621

stat_heap_sz Low “Statistics Heap Size (stat_heap_sz)” on page 624

stmtheap Medium “Statement Heap Size (stmtheap)” on page 623

userexit Low “User Exit Enable (userexit)” on page 668

util_heap_sz Low “Utility Heap Size (util_heap_sz)” on page 613

Note: Changing the indexsort parameter to a value other than the default can have a negative impact on the performance of
creating indexes. You should always try to use the default for this parameter.

Table 49 (Page 1 of 2). Informational Database Configuration Parameters

Parameter Additional Information

backup_pending “Backup Pending Indicator (backup_pending)” on page 680

codepage “Code Page for the Database (codepage)” on page 678

codeset “Codeset for the Database (codeset)” on page 678

collate_info “Collating Information (collate_info)” on page 678

country “Country code for the Database (country)” on page 678

database_consistent “Database is Consistent (database_consistent)” on page 680

database_level “Database Release Level (database_level)” on page 677

log_retain_status “Log Retain Status Indicator (log_retain_status)” on page 680

loghead “Log Head Identification (loghead)” on page 664

606 Administration Guide

Table 49 (Page 2 of 2). Informational Database Configuration Parameters

Parameter Additional Information

logpath “Location of Log Files (logpath)” on page 664

multipage_alloc “MultiPage File Allocation Enabled (multipage_alloc)” on
page 681

nextactive “Next Active Log (nextactive)” on page 664

numsegs “Default Number of SMS Containers (numsegs)” on page 646

release “Configuration File Release Level (release)” on page 677

restore_pending “Restore Pending (restore_pending)” on page 681

rollfwd_pending “Roll Forward Pending Indicator (rollfwd_pending)” on
page 680

territory “Territory for the Database (territory)” on page 678

user_exit_status “User Exit Status Indicator (user_exit_status)” on page 681

Parameter Details by Function
This following sections provide additional details to assist in understanding and tuning
the different configuration parameters. This discussion of the individual parameters is
organized based on their function or purpose:

¹ “Capacity Management” on page 608
¹ “Logging and Recovery” on page 659
¹ “Database Management” on page 677
¹ “Communications” on page 686
¹ “Parallel” on page 696
¹ “Instance Management” on page 702.

The discussion of each parameter includes the following information:

Configuration Type Indicates which configuration file contains the setting for the
parameter:

¹ Database manager (which affects an instance of the
database manager and all databases defined within that
instance)

¹ Database (which affects a specific database)

Parameter Type Indicates whether or not you can change the parameter value:

 ¹ Configurable

A range of values are possible and the parameter may
need to be tuned based on the database administrator's
knowledge of the applications and/or from benchmarking
experience.

 ¹ Informational

These parameters are changed only by the database
manager itself and will contain information such as the

 Chapter 20. Configuring DB2 607

release of DB2 that a database was created under or an
indication that a required backup is pending.

 Capacity Management
There are a number of configuration parameters at both the database and database
manager levels that can impact the throughput on your system. These parameters are
categorized in the following groups:

¹ “Database Shared Memory”
¹ “Application Shared Memory” on page 619
¹ “Agent Private Memory” on page 620
¹ “Agent/Application Communication Memory” on page 631
¹ “Database Manager Instance Memory” on page 634
¹ “Locks” on page 638
¹ “I/O and Storage” on page 641
¹ “Agents” on page 647
¹ “Database Application Remote Interface (DARI)” on page 656.

For an introduction to DB2's memory management, see “How DB2 Uses Memory” on
page 527.

Database Shared Memory
The following parameters affect the database global memory allocated on your system:

¹ “Buffer Pool Size (buffpage).”
¹ “Database Heap (dbheap)” on page 610.
¹ “Catalog Cache Size (catalogcache_sz)” on page 611.
¹ “Log Buffer Size (logbufsz)” on page 613.
¹ “Utility Heap Size (util_heap_sz)” on page 613.
¹ “Default Backup Buffer Size (backbufsz)” on page 614.
¹ “Default Restore Buffer Size (restbufsz)” on page 614.
¹ “Maximum Storage for Lock List (locklist)” on page 615.
¹ “Package Cache Size (pckcachesz)” on page 617.
¹ “Sort Heap Size (sortheap)” on page 621. This parameter only affects database

global memory if you have shared sorts.
¹ “Audit Buffer Size (audit_buf_sz)” on page 619. This parameter only affects

database global memory if you are auditing the database.

See “How DB2 Uses Memory” on page 527 for information about how database global
memory relates to the rest of the memory allocated by the database manager.

Buffer Pool Size (buffpage)
Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 1000 [2*maxappls - 524 288]

608 Administration Guide

OS/2 and NT 250 [2*maxappls - 524 288]

Unit of Measure Pages (4KB)

When Allocated When the first application connects to the database

When Freed When last application disconnects from the database

Related Parameters

¹ “Changed Pages Threshold (chngpgs_thresh)” on
page 641

¹ “Database Heap (dbheap)” on page 610
¹ “Number of Asynchronous Page Cleaners

(num_iocleaners)” on page 642

Each database has at least one buffer pool (IBMDEFAULTBP, which is created when
the database is created), and can have more. All buffer pools reside in global memory,
which is available to all applications using the database. The memory is allocated on
the machine where the database is located. If the buffer pools are large enough to keep
the required data in memory, less disk activity will occur. Conversely, if the buffer pools
are not large enough, the overall performance of the database can be severely curtailed
and the database manager can become I/O-bound as a result of a high amount of disk
activity (I/O) required to process the data your application requires.

The buffpage parameter controls the size of a buffer pool when the CREATE
BUFFERPOOL or ALTER BUFFERPOOL statement was run with NPAGES -1;
otherwise, the buffpage parameter is ignored and the buffer pool will be created with
the number of pages specified by the NPAGES parameter.

To determine whether the buffpage parameter is active for a buffer pool, do a:

SELECT * from SYSCAT.BUFFERPOOLS.

Each buffer pool that has an NPAGES value of -1 uses buffpage.

Notes:

1. When a database is created in DB2 Version 5, one buffer pool (IBMDEFAULTBP)
is automatically created, and its NPAGES is set to 1 000 for UNIX-based platforms,
and 250 for all other platforms.

2. When a database is migrated to DB2 Version 5, one buffer pool (IBMDEFAULTBP)
is automatically created, and its NPAGES is set to -1.

There is a trade-off between the buffer pool size and the memory allocations of other
system users. Memory requirements of database servers are so important on multi-user
high transaction rate servers, that database servers and file or communication servers
are often separated and reside on different machines.

| All buffer pools are allocated when the first application connects to the database, or
| when the database is explicitly activated. As an application requests data out of the
| database, pages containing that data are transferred to one of the buffer pools from

 Chapter 20. Configuring DB2 609

| disk. (Note that database data is stored in pages within the tables on the disk.) Pages
| are not written back to disk until the page is changed and one of the following occurs:

| ¹ All applications disconnect from the database
| ¹ The database is explicitly deactivated
| ¹ The database quiesces (that is, all connected applications have committed)
| ¹ Its space is required for another page that needs to be read into the buffer pool
| ¹ A page cleaner is available (num_iocleaners) and is activated by the database
| manager.

Recommendations:

¹ Instead of using the buffpage configuration parameter, you can use the CREATE
BUFFERPOOL and ALTER BUFFERPOOL SQL statements to create and change
buffer pools and their sizes.

¹ The size of the buffer pool is used by the optimizer in determining access plans.
You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

| ¹ Because the sizes of all the buffer pools can have a major impact on performance,
| you should consider the following factors to ensure that excessive page swapping
| does not occur:
| – The amount of installed memory on your machine.
| – The memory required by other applications running concurrently with the
| database manager on the same machine.

| Page swapping results when there is not enough memory to hold the page that is
| being accessed. The result is that the page is written (“swapped”) to temporary
| disk storage to make room for the other page. When the page on the temporary
| disk storage is needed, it is “swapped back” into memory.

¹ You may wish to allocate as much as 75% of the machine's memory to the
database buffer pools when you have the following:
 – Multiple users

– A machine used only as a database server
– A large amount of repeated access to the same data and index pages
– One database on the machine.

¹ For every buffer pool page allocated, some space is used in the database heap for
internal control structures.

If the total size of the buffer pool (or buffer pools) is increased, you may also need
to increase dbheap.

You may use the database system monitor to calculate the buffer pool hit ratio, which
can help you tune your buffer pools. See the System Monitor Guide and Reference.

Database Heap (dbheap)
Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 1200 [32 – 60 000]

610 Administration Guide

OS/2 and NT Database Server with local and remote
clients
600 [32 – 60 000]

OS/2 and NT Database Server with local clients
300 [32 – 60 000]

Unit of Measure Pages (4KB)

When Allocated First connection to the database

When Freed When last application disconnects from the database

Related Parameters

¹ “Catalog Cache Size (catalogcache_sz)”
¹ “Log Buffer Size (logbufsz)” on page 613

There is one database heap per database, and the database manager uses it on behalf
of all applications connected to the database. It contains control block information for
tables, indexes, table spaces, and buffer pools. It also contains space for the event
monitor buffers, the log buffer, (logbufsz) and the catalog cache (catalogcache_sz).
Therefore, the size of the heap will be dependent on the number of control blocks
stored in the heap at a given time. The control block information is kept in the heap
until all applications disconnect from the database.

The minimum amount the database manager needs to get started is allocated at the
first connection. The data area is expanded as needed up to the maximum specified by
dbheap.

Recommendation: This value will need to be increased when an application receives
an error indicating that there is not enough storage available in the database heap to
process the statement.

You may use the database system monitor to track the highest amount of memory that
was used for the database heap. See the db_heap_top (maximum database heap
allocated) monitor element description in the System Monitor Guide and Reference for
more information.

When setting this parameter, you should consider:

¹ The value of logbufsz, because the log buffer is allocated from the database heap.

¹ The value of catalogcache_sz, because the catalog cache is allocated from the
database heap.

Catalog Cache Size (catalogcache_sz)
Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 64 [1 – dbheap]

 Chapter 20. Configuring DB2 611

OS/2 and NT Database Server with local and remote
clients
32 [1 – dbheap]

OS/2 and NT Database Server with local clients
16 [1 – dbheap]

Unit of Measure Pages (4KB)

Related Parameters

¹ “Database Heap (dbheap)” on page 610
¹ “Log Buffer Size (logbufsz)” on page 613

This parameter indicates the maximum amount of space that the catalog cache can use
from the database heap (dbheap). The catalog cache is used to store table descriptor
information that is used when a table, view or alias is referenced during the compilation
of an SQL statement.

Use of this cache can help improve performance of binding SQL statements (including
dynamic SQL), if the same tables, views, or aliases have been referenced in previous
statements.

Running any DDL statements against a table will purge that table's entry in the catalog
cache. Otherwise a table entry is kept in the cache until space is needed for a different
table, but it will not be removed from the cache until any units of work referencing that
table have completed.

Recommendation: Start with the default value and tune it by using the database
system monitor.

See the System Monitor Guide and Reference for information about the following
monitor elements:

¹ cat_cache_lookups (catalog cache lookups)
¹ cat_cache_inserts (catalog cache inserts)
¹ cat_cache_overflows (catalog cache overflows)
¹ cat_cache_heap_full (catalog cache heap full)

These database system monitor elements can help you determine whether you should
adjust this configuration parameter. When tuning this parameter, you should increase it
in small increments, for example, two pages at a time.

Note: The catalog cache only exists at the catalog node in a multinode environment.

In general, more cache space is required if a unit of work contains several dynamic
SQL statements or if you are binding packages that contain a lot of static SQL
statements.

When you set the size of the catalog cache, also consider the size of the log files
(logbufsz), because both catalogcache_sz and logbufsz are allocated from the database
heap (dbheap).

612 Administration Guide

Log Buffer Size (logbufsz)
Configuration Type Database

Parameter Type Configurable

Default [Range] 8 [4 – 512]

Unit of Measure Pages (4KB)

Related Parameters

¹ “Catalog Cache Size (catalogcache_sz)” on page 611
¹ “Database Heap (dbheap)” on page 610
¹ “Number of Commits to Group (mincommit)” on page 664

This parameter allows you to specify the amount of the database heap (defined by the
dbheap parameter) to use as a buffer for log records before writing these records to
disk. The log records are written to disk when one of the following occurs:

¹ A transaction commits or a group of transactions commit, as defined by the
mincommit configuration parameter

¹ The log buffer is full
¹ As a result of some other internal database manager event.

This parameter must also be less than or equal to the dbheap parameter. Buffering the
log records will result in more efficient logging file I/O because the log records will be
written to disk less frequently and more log records will be written at each time.

Recommendation: Increase the size of this buffer area if there is considerable read
activity on a dedicated log disk, or there is high disk utilization. When increasing the
value of this parameter, you should also consider the dbheap parameter since the log
buffer area uses space controlled by the dbheap parameter.

You may use the database system monitor to determine how much of the log buffer
space is used for a particular transaction (or unit of work).

For more information see the log_space_used (unit of work log space used) monitor
element description in the System Monitor Guide and Reference.

When you set the log buffer size, also consider the size of the catalog cache
(catalogcache_sz), because both logbufsz_sz and catalogcache_sz are allocated from
the database heap (dbheap).

Utility Heap Size (util_heap_sz)
Configuration Type Database

Parameter Type Configurable

Default [Range] 5000 [16 – 524 288]

Unit of Measure Pages (4KB)

When Allocated As required by the database manager utilities

 Chapter 20. Configuring DB2 613

When Freed When the utility no longer needs the memory

Related Parameters

¹ “Default Backup Buffer Size (backbufsz)”
¹ “Default Restore Buffer Size (restbufsz)”

This parameter indicates the maximum amount of memory that can be used
simultaneously by the BACKUP, RESTORE and LOAD and load recovery utilities.

Recommendation: Use the default value unless your utilities run out of space, in which
case you should increase this value. If memory on your system is constrained, you may
wish to lower the value of this parameter to limit the memory used by the database
utilities. If the parameter is set too low, you may not be able to concurrently run utilities.
You need to set this parameter large enough to accommodate all of the buffers that you
want to allocate for the concurrent utilities.

Default Backup Buffer Size (backbufsz)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 1024 [16 – 524 288]

Unit of Measure Pages (4KB)

When Allocated When the backup utility is called

When Freed When the backup utility completes its processing

Related Parameters

¹ “Default Restore Buffer Size (restbufsz)”
¹ “Utility Heap Size (util_heap_sz)” on page 613

This parameter specifies the size of the buffer used when backing up the database if
the buffer size is not explicitly specified when calling the backup utility. For more
information about the backup utility, see the Command Reference .

When backing up a database, the data is first copied to an internal buffer. Data is then
written from this buffer to the backup media when the buffer is full.

Tuning this buffer size can help improve the performance of the backup utility as well
as minimize the impact on the performance of other concurrent database operations.

Default Restore Buffer Size (restbufsz)
Configuration Type Database manager

614 Administration Guide

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 1024 [16 – 524 288]

Unit of Measure Pages (4KB)

When Allocated When the restore utility is called

When Freed When the restore utility completes its processing

Related Parameters

¹ “Default Backup Buffer Size (backbufsz)” on page 614
¹ “Utility Heap Size (util_heap_sz)” on page 613

This parameter specifies the size of the buffer used when restoring the database if a
buffer size is not explicitly specified when calling the restore utility. For more information
about the restore utility, see the Command Reference .

When restoring a database, the data is first copied from the backup media to an
internal buffer. Data is then written from this buffer to the target database media when
the buffer is full.

Tuning this buffer size can help improve the performance of the restore database utility
as well as minimize the impact on the performance of other concurrent database
operations.

Maximum Storage for Lock List (locklist)
Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 100 [4 – 60 000]

OS/2 and NT Database Server with local and remote
clients
50 [4 – 60 000]

OS/2 and NT Database Server with local clients
25 [4 – 60 000]

Unit of Measure Pages (4KB)

When Allocated When the first application connects to the database

When Freed When last application disconnects from the database

 Chapter 20. Configuring DB2 615

Related Parameters

¹ “Maximum Percent of Lock List Before Escalation
(maxlocks)” on page 639

¹ “Maximum Number of Active Applications (maxappls)” on
page 648

This parameter indicates the amount of storage that is allocated to the lock list. There is
one lock list per database and it contains the locks held by all applications concurrently
connected to the database. Locking is the mechanism that the database manager uses
to control concurrent access to data in the database by multiple applications. Both rows
and tables can be locked.

Each lock requires 32 or 64 bytes of the lock list, depending on whether other locks are
held on the object:

¹ 64 bytes are required to hold a lock on an object that has no other locks held on it
¹ 32 bytes are required to record a lock on an object that has an existing lock held

on it.

When the percentage of the lock list used by one application reaches maxlocks, the
database manager will perform lock escalation, from row to table, for the locks held by
the application (described below). Although the escalation process itself does not take
much time, locking entire tables (versus individual rows) decreases concurrency, and
overall database performance may decrease for subsequent accesses against the
affected tables. Suggestions of how to control the size of the lock list are:

¹ Perform frequent COMMITs to release locks.
¹ When performing many updates, lock the entire table before updating (using the

SQL LOCK TABLE statement). This will use only one lock, keeps others from
interfering with the updates, but does reduce concurrency of the data.

| You can also use the LOCKSIZE parameter of the ALTER TABLE statement to
| control how locking is done for a specific table. For details, refer to the SQL
| Reference.

Use of the Repeatable Read isolation level may result in an automatic table lock.
For more information on isolation levels, see Chapter 10, “Application
Considerations” on page 387.

¹ Use the Cursor Stability isolation level when possible to decrease the number of
share locks held. If application integrity requirements are not compromised use
Uncommitted Read instead of Cursor Stability to further decrease the amount of
locking.

Once the lock list is full, performance can degrade since lock escalation will generate
more table locks and fewer row locks, thus reducing concurrency on shared objects in
the database. Additionally there may be more deadlocks between applications (since
they are all waiting on a limited number of table locks), which will result in transactions
being rolled back. Your application will receive an SQLCODE of -912 when the
maximum number of lock requests has been reached for the database.

616 Administration Guide

Recommendation: If lock escalations are causing performance concerns you may
need to increase the value of this parameter or the maxlocks parameter. You may use
the database system monitor to determine if lock escalations are occurring.

For more information see the lock_escals (lock escalations) monitor element description
in the System Monitor Guide and Reference.

The following steps may help in determining the number of pages required for your lock
list:

1. Calculate a lower bound for the size of your lock list:

(512 * 32 * maxappls) / 4096

where 512 is an estimate of the average number of locks per application and 32 is
the number of bytes required for each lock against an object that has an existing
lock.

2. Calculate an upper bound for the size of your lock list:

(512 * 64 * maxappls) / 4096

where 64 is the number of bytes required for the first lock against an object.

3. Estimate the amount of concurrency you will have against your data and based on
your expectations, choose an initial value for locklist that falls between the upper
and lower bounds that you have calculated.

4. Using the database system monitor, as described below, tune the value of this
parameter.

You may use the database system monitor to determine the maximum number of locks
held by a given transaction.

For more information see the locks_held_top (maximum number of locks held) monitor
element description in the System Monitor Guide and Reference. .

This information can help you validate or adjust the estimated number of locks per
application. In order to perform this validation, you will have to sample several
applications, noting that the monitor information is provided at a transaction level, not
an application level.

You may also want to increase locklist if maxappls is increased, or if the applications
being run perform infrequent commits.

You should consider rebinding applications (using the REBIND PACKAGE command)
after changing this parameter.

For more information on application performance and influencing query optimization,
see Part 3, “Tuning Application Performance” on page 385.

Package Cache Size (pckcachesz)
Configuration Type Database

 Chapter 20. Configuring DB2 617

Parameter Type Configurable

Default [Range] -1 [-1, 32 – 64 000]

Unit of Measure Pages (4KB)

When Allocated When the database is initialized

When Freed When the database is shutdown

This parameter is allocated out of the database global memory, and is used for caching
static and dynamic SQL statements on a database. In a partitioned database system,
there is one package cache for each database partition.

Caching packages allows the database manager to reduce its internal overhead by
eliminating the need to access the system catalogs when reloading a package; or, in
the case of dynamic SQL, eliminating the need for compilation. Sections are kept in the
package cache until one of the following occurs:

¹ The database is shut down
¹ The package or dynamic SQL statement is invalidated
¹ The cache runs out of space.

This caching of the section for a static or dynamic SQL statement can improve
performance especially when the same statement is used multiple times by applications
connected to a database. This is particularly important in a transaction processing
application.

By taking the default (-1) in a server or partitioned database environment, the value
used to calculate the page allocation is eight times the value specified for the maxappls
configuration parameter. The exception to this occurs if eight times maxappls is less
than 32. In this situation, the default value of -1 will set pckcachesz to 32.

Recommendation: When tuning this parameter, you should consider whether the extra
memory being reserved for the package cache might be more effective if it was
allocated for another purpose, such as the bufferpool. For this reason, you should use
benchmarking techniques when tuning this parameter.

Tuning this parameter is particularly important when several sections are used initially
and then only a few are run repeatedly. If the cache is too large, memory is wasted
holding copies of the initial sections.

See the System Monitor Guide and Reference for information about the following
monitor elements:

¹ pkg_cache_lookups (package cache lookups)
¹ pkg_cache_inserts (package cache inserts)

These database system monitor elements can help you determine whether you should
adjust this configuration parameter.

Note: The package cache is a working cache, so you cannot set this parameter to
zero. There must be sufficient memory allocated in this cache to hold all

618 Administration Guide

sections of the SQL statements currently being executed. If there is more space
allocated than currently needed, then sections are cached. These sections can
simply be executed the next time they are needed without having to load or
compile them.

Audit Buffer Size (audit_buf_sz)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 0 [0 – 65 000]

Unit of Measure Pages (4KB)

When Allocated When DB2 is started

When Freed When DB2 is stopped

This parameter specifies the size of the buffer used when auditing the database. For
more information about the audit facility, refer to Chapter 5, “Auditing DB2 Activities” on
page 175.

The default value for this parameter is zero (0). If the value is zero (0), the audit buffer
is not used. If the value is greater than zero (0), space is allocated for the audit buffer
where the audit records will be placed when they are generated by the audit facility.
The value times 4 KB pages is the amount of space allocated for the audit buffer. The
audit buffer cannot be allocated dynamically; DB2 must be stopped and then restarted
before the new value for this parameter takes effect.

By changing this parameter from the default to some value larger than zero (0), the
audit facility writes records to disk asynchronously compared to the execution of the
statements generating the audit records. This improves DB2 performance over leaving
the parameter value at zero (0). The value of zero (0) means the audit facility writes
records to disk synchronously with (at the same time as) the execution of the
statements generating the audit records. The synchronous operation during auditing
decreases the performance of applications running in DB2.

Application Shared Memory
 The following parameter specifies the work area that is used by all agents (both
coordinating and subagents) that work for an application:

¹ “Application Control Heap Size (app_ctl_heap_sz)”

Application Control Heap Size (app_ctl_heap_sz)
Configuration Type Database

 Chapter 20. Configuring DB2 619

Parameter Type Configurable

Default [Range]

Database Server with local and remote clients
128 [1–64 000]

Database Server with local clients
64 [1–64 000]

Partitioned Database Server with local and remote clients
256 [1–64 000]

Unit of Measure Pages (4KB)

When Allocated When an application starts

When Freed When an application completes

| Related Parameters “Enable Intra-Partition Parallelism (intra_parallel)” on page 701

This parameter determines the maximum size, in 4 KB pages, for the application
control shared memory. Application control heaps are allocated from this shared
memory.

| One application control heap is allocated for each application at the database where the
| application is active (or, in the case of a partitioned database system, at each database
| partition where the application is active). The heap is allocated during connect
| processing by the first agent to receive a request for the application at the database (or
| database partition). The heap is required to share information between agents working
| on behalf of the same application (in a partitioned database environment, the sharing
| occurs at the database partition level: sharing does not occur across database
| partitions).

Notes:

1. In a partitioned database environment, this heap is used to store copies of the
executing sections of SQL statements for agents and subagents. Symmetric
multiprocessor agents (SMP) subagents, however, use applheapsz, as do agents
in all other environments.

| 2. Allocation only occurs for other databases that have the intra_parallel parameter
| set on, and the CURRENT DEGREE special register set to a value greater than
| one (1). For more information about the CURRENT DEGREE special register, refer
| to the SQL Reference.

Recommendation: Initially, start with the default value. You may have to set the value
higher if you are running complex applications, or if you have a system that contains a
large number of database partitions.

Agent Private Memory
 The following parameters affect the amount of memory used for each database agent:

¹ “Sort Heap Size (sortheap)” on page 621.
¹ “Sort Heap Threshold (sheapthres)” on page 622.

620 Administration Guide

¹ “Statement Heap Size (stmtheap)” on page 623.
¹ “Application Heap Size (applheapsz)” on page 623.
¹ “Statistics Heap Size (stat_heap_sz)” on page 624.
¹ “Query Heap Size (query_heap_sz)” on page 625.
¹ “DRDA Heap Size (drda_heap_sz)” on page 626.
¹ “UDF Shared Memory Set Size (udf_mem_sz)” on page 626.
¹ “Agent Stack Size (agent_stack_sz)” on page 627.
¹ “Minimum Committed Private Memory (min_priv_mem)” on page 629.
¹ “Private Memory Threshold (priv_mem_thresh)” on page 629.
¹ “Maximum Java Interpreter Heap Size (java_heap_sz)” on page 637. On

UNIX-based platforms, java_heap_sz is allocated per agent.

See “How DB2 Uses Memory” on page 527 for information about how the private agent
memory relates to the rest of the memory allocated by the database manager.

Sort Heap Size (sortheap)
Configuration Type Database

Parameter Type Configurable

Default [Range] 256 [16 – 524 288]

Unit of Measure Pages (4KB)

When Allocated As needed to perform sorts

When Freed When sorting is complete

Related Parameters “Sort Heap Threshold (sheapthres)” on page 622

This parameter defines the maximum number of private memory pages to be used for
private sorts, or the maximum number of shared memory pages to be used for shared
sorts. If the sort is a private sort, then this parameter affects agent private memory. If
the sort is a shared sort, then this parameter affects the database shared memory.
Each sort has a separate sort heap that is allocated as needed, by the database
manager. This sort heap is the area where data is sorted. If directed by the optimizer, a
smaller sort heap than the one specified by this parameter is allocated using
information provided by the optimizer.

Recommendation:

¹ Appropriate indexes can minimize the use of the sort heap.
¹ Increase the size of this parameter when frequent large sorts are required.
¹ When increasing the value of this parameter, you should examine whether the

sheapthres parameter in the database manager configuration file also needs to be
adjusted.

¹ The sort heap size is used by the optimizer in determining access paths. You
should consider rebinding applications (using the REBIND PACKAGE command)
after changing this parameter.

 Chapter 20. Configuring DB2 621

Sort Heap Threshold (sheapthres)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range]

UNIX 20 000 [250 – 2 097 152]

OS/2 and NT 10 000 [250 – 2 097 152]

Unit of Measure Pages (4KB)

Related Parameters “Sort Heap Size (sortheap)” on page 621

| Private and shared sorts use memory from two different memory sources. The size of
| the shared sort memory area is statically predetermined (and not preallocated) at the
| time of the first connection to a database based on the value of sheapthres. The size of
| the private sort memory area is unrestricted.

| The sheapthres parameter is used differently for private and shared sorts:

| ¹ For private sorts, this parameter is an instance-wide soft limit on the total amount
| of memory that can be consumed by private sorts at any given time. When the
| total private-sort memory consumption for an instance reaches this limit, the
| memory allocated for additional incoming private-sort requests will be considerably
| reduced.

| ¹ For shared sorts, this parameter is a a database-wide hard limit on the total
| amount of memory consumed by shared sorts at any given time. When this limit is
| reached, no further shared-sort memory requests will be allowed (until the total
| shared-sort memory consumption falls below the limit specified by sheapthres).

| Examples of those operations that use the sort heap include: hash joins and operations
| where the table is in memory.

Explicit definition of the threshold prevents the database manager from using excessive
amounts of memory for large numbers of sorts.

Recommendation: Ideally, you should set this parameter to a reasonable multiple of
the largest sortheap parameter you have in your database manager instance. This
parameter should be at least two times the largest sortheap defined for any database
within the instance.

If you are doing private sorts and your system is not memory constrained, an ideal
value for this parameter can be calculated using the following steps:

1. Calculate the typical sort heap usage for each database:

622 Administration Guide

(typical number of concurrent agents running against the database)

* (sortheap, as defined for that database)

2. Calculate the sum of the above results, which provides the total sort heap that
could be used under typical circumstances for all databases within the instance.

For information about performing sorts in an SMP environment, see “Parallel Sort
Strategies” on page 506.

You should use benchmarking techniques to tune this parameter to find the proper
balance between sort performance and memory usage. See Chapter 19, “Benchmark
Testing” on page 585 for more information. Also see “Sorting” on page 545 for more
information on sorting.

You can use the database system monitor to track the sort activity.

For more information see the following monitor element description in the System
Monitor Guide and Reference:

¹ post_threshold_sorts (post threshold sorts)

Statement Heap Size (stmtheap)
Configuration Type Database

Parameter Type Configurable

Default [Range] 2048 [128 – 60 000]

Unit of Measure Pages (4KB)

When Allocated For each statement during precompiling or binding

When Freed When precompiling or binding of each statement is complete

The statement heap is used as a work space for the SQL compiler during compilation
of an SQL statement. This parameter specifies the size of this work space.

This area does not stay permanently allocated, but is allocated and released for every
SQL statement handled. Note that for dynamic SQL statements, this work area will be
used during execution of your program; whereas, for static SQL statements, it is used
during the bind process but not during program execution.

Recommendation: In most cases the default value of this parameter will be
acceptable. If you have very large SQL statements and the database manager issues
an error (that the statement is too complex) when it attempts to optimize a statement,
you should increase the value of this parameter in regular increments (such as 256 or
1024) until the error situation is resolved.

Application Heap Size (applheapsz)
Configuration Type Database

Parameter Type Configurable

 Chapter 20. Configuring DB2 623

Default [Range] 128 [16 – 60 000]

64 [16 – 60 000] (multinode)

Unit of Measure Pages (4KB)

When Allocated When an agent is initialized to do work for an application

When Freed When an agent completes the work to be done for an
application

Related Parameters “Application Control Heap Size (app_ctl_heap_sz)” on
page 619

This parameter defines the number of private memory pages available to be used by
the database manager on behalf of a specific agent or subagent.

The heap is allocated when an agent or subagent is initialized for an application. The
amount allocated will be the minimum amount needed to process the request given to
the agent or subagent. As the agent or subagent requires more heap space to process
larger SQL statements, the database manager will allocate memory as needed, up to
the maximum specified by this parameter.

Note: In a partitioned database environment, the application control heap
(app_ctl_heap_sz) is used to store copies of the executing sections of SQL
statements for agents and subagents. SMP subagents, however, use
applheapsz, as do agents in all other environments.

Recommendation: Increase the value of this parameter if your applications receive an
error indicating that there is not enough storage in the application heap.

The application heap (applheapsz) is allocated out of agent private memory.

Statistics Heap Size (stat_heap_sz)
Configuration Type Database

Parameter Type Configurable

Default [Range] 4384 [1096 – 524 288]

Unit of Measure Pages (4KB)

When Allocated When the RUNSTATS utility is started

When Freed When the RUNSTATS utility is completed

Related Parameters

¹ “Number of Frequent Values Retained (num_freqvalues)”
on page 684

¹ “Number of Quantiles for Columns (num_quantiles)” on
page 685

This parameter indicates the maximum size of the heap used in collecting statistics
using the RUNSTATS command.

624 Administration Guide

Recommendation: The default value is appropriate when no distribution statistics are
collected or when distribution statistics are only being collected for relatively narrow
tables. The minimum value is not recommended when distribution statistics are being
gathered, as only tables containing 1 or 2 columns will fit in the heap.

You should adjust this parameter based on the number of columns for which statistics
are being collected. Narrow tables, with relatively few columns, require less memory for
distribution statistics to be gathered. Wide tables, with many columns, require
significantly more memory. If you are gathering distribution statistics for tables which
are very wide and require a large statistics heap, you may wish to collect the statistics
during a period of low system activity so you do not interfere with the memory
requirements of other users.

Query Heap Size (query_heap_sz)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients

Parameter Type Configurable

Default [Range] 1000 [2 – 524 288]

Unit of Measure Pages (4KB)

When Allocated When an application (either local or remote) connects to the
database

When Freed When the application disconnects from the database, or
detaches from the instance

Related Parameters “Application Support Layer Heap Size (aslheapsz)” on
page 631

This parameter specifies the maximum amount of memory that can be allocated for the
query heap. A query heap is used to store each query in the agent's private memory.
The information for each query consists of the input and output SQLDA, the statement
text, the SQLCA, the package name, creator, section number, and consistency token.
This parameter is provided to ensure that an application does not consume
unnecessarily large amounts of virtual memory within an agent.

The query heap is also used as the source of memory for the memory allocated for
blocking cursors. This memory consists of a cursor control block and a fully resolved
output SQLDA.

The initial query heap allocated will be the same size as the application support layer
heap, as specified by the aslheapsz parameter. The query heap size must be greater
than or equal to two (2), and must be greater than or equal to the aslheapsz parameter.
If this query heap is not large enough to handle a given request, it will be reallocated to
the size required by the request (not exceeding query_heap_sz). If this new query heap

 Chapter 20. Configuring DB2 625

is more than 1.5 times larger than aslheapsz, the query heap will be reallocated to the
size of aslheapsz when the query ends.

Recommendation: In most cases the default value will be sufficient. As a minimum,
you should set query_heap_sz to a value at least five times larger than aslheapsz. This
will allow for queries larger than aslheapsz and provide additional memory for three or
four blocking cursors to be open at a given time.

If you have very-large LOBs, you may need to increase the value of this parameter so
the query heap will be large enough to accommodate those LOBs.

DRDA Heap Size (drda_heap_sz)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 128 [16 – 60 000]

Unit of Measure Pages (4KB)

When Allocated

¹ The DRDA Application Server (AS) allocates a DRDA
heap each time a DRDA Application Requester(AR)
connects to a DB2 database

¹ DB2 Connect allocates a DRDA heap each time it
connects to a DRDA AS.

When Freed When a DRDA AR disconnects from the database

This parameter indicates the number of pages to allocate for the memory used by DB2
Connect and the DRDA Application Server Support Feature. The following items affect
the amount of memory allocated out of this heap:

¹ The number of cursors opened by an application
¹ The number of input host variables
¹ The number of items in the select list
¹ The size of input and output data
¹ The length of SQL statements being bound or prepared.

Recommendation: Use the default value unless you receive an error code indicating
that you do not have enough DRDA heap.

UDF Shared Memory Set Size (udf_mem_sz)
Configuration Type Database manager

626 Administration Guide

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 256 [128 – 60 000]

Unit of Measure Pages (4KB)

When Allocated When a UDF starts

When Freed When a UDF completes

This parameter is common to both fenced and unfenced User Defined Functions
(UDFs). For a fenced UDF, it specifies the default allocation for memory to be shared
between the database process and the UDF. In a single-partition database
environment, there is only one shared memory set. In a partitioned database
environment, there is a shared memory set for each database partition server, and all
application agents and sub-agents running on that server use the same shared memory
set.

| For an unfenced UDF it specifies the size of the private memory set. In a
| single-partition database environment, the heap is allocated from private memory. In a
| partitioned database environment, the heap is allocated from the Application Global
| memory for each database partition server and all agents and subagents running on
| behalf of the application on that database partition server use the same shared memory
| set.

For both fenced and unfenced UDFs, this memory is used to pass data to a UDF and
back to a database.

If no UDFs are used in applications, the memory is not allocated. If both fenced and
unfenced UDFs are running in the same application, two memory allocations result: one
for fenced UDFs, and one for unfenced UDFs.

For more information about user-defined functions, see the Embedded SQL
Programming Guide and the SQL Reference .

Recommendation: The default setting should be adequate for all cases not involving
the passing of LOB data to a UDF. For cases which pass LOB data to a UDF, you may
need to increase the amount of memory allocated. You should set the value of this
parameter at least 2 pages larger than the size of the input arguments and the result of
the external function.

| Note: The memory requirement for UDFs tends to be additive, so the number of UDFs
| referenced in an application will affect the optimal setting for this parameter.

Agent Stack Size (agent_stack_sz)
Configuration Type Database manager

 Chapter 20. Configuring DB2 627

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range]

OS/2 64 [8 – 1000]

NT 16 [8 – 1000]

Unit of Measure Pages (4KB)

When Allocated When an agent is initialized to do work for an application

When Freed When an agent completes the work to be done for an
application

The agent stack is the virtual memory that is allocated by DB2 for each agent. This
memory is committed when it is required to process an SQL statement. You can use
this parameter to optimize memory utilization of the server for a given set of
applications. More complex queries will use more stack space, compared to the space
used for simple queries.

This parameter does not apply to UNIX-based platforms.

Recommendation: In most cases you should be able to use the default stack size.
Only if your environment includes many highly complex queries should you need to
increase the value of this parameter. If the stack size is not large enough to process
your SQL statement, an error entry will be logged to the db2diag.log file, and an SQL
code will be issued. You need to increase agent_stack_sz and restart the database
instance.

You may be able to reduce the stack size in order to make more address space
available to other clients, if your environment matches the following:

¹ Contains only simple applications (for example light OLTP), in which there are
never complex queries

¹ Requires a relatively large number of concurrent clients (for example, more than
100).

| The agent stack size and the number of concurrent clients are inversely related: a
| larger stack size reduces the potential number of concurrent clients that can be running.
| This occurs because address space is limited on the OS/2 and Windows NT platforms.
| For example, on OS/2, assume that you have 400MB of address space (though the
| amount depends on the config.sys file). If you set the value for agent_stack_sz to 1MB,
| you will not be able to get more than 400 agents. (In fact, because of other
| requirements for address space, such as buffer pools, you will probably get far fewer
| agents.) This means that if you have set maxagents to a larger value (for example,
| 5000), you will never approach this limit.

628 Administration Guide

Minimum Committed Private Memory (min_priv_mem)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 32 [32 – 112 000]

Unit of Measure Pages (4KB)

When Allocated When the database manager is started

When Freed When the database manager is stopped

Related Parameters “Private Memory Threshold (priv_mem_thresh)”

This parameter specifies the number of pages that the database server process will
reserve as private virtual memory, when a database manager instance is started
(db2start). If the server requires more private memory, it will try to obtain more from
the operating system when required.

This parameter does not apply to UNIX-based systems.

Recommendation: Use the default value.

You should only change the value of this parameter if you want to commit more
memory to the database server. This action will save on allocation time. You should be
careful, however, that you do not set that value too high, as it can impact the
performance of non-DB2 applications.

Private Memory Threshold (priv_mem_thresh)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 1296 [-1; 32 – 112 000]

Unit of Measurement Pages (4KB)

Related Parameters “Minimum Committed Private Memory (min_priv_mem)”

This parameter is used to determine the amount of unused agent private memory that
will be kept allocated, ready to be used by new agents that are started. It does not
apply to UNIX-based platforms.

 Chapter 20. Configuring DB2 629

When an agent is terminated, instead of automatically deallocating all of the memory
that was used by that agent, the database manager will only deallocate excess memory
allocations, which is determined by the following formula:

Private memory allocated -

(private memory used + priv_mem_thresh)

If this formula produces a negative result, no action will be taken.

The following table provides an example to illustrate when memory will be allocated and
deallocated. This example uses 100 as an arbitrary setting for priv_mem_thresh.

A value of “-1,” will cause this parameter to use the value of the min_priv_mem
parameter.

Recommendation: When setting this parameter, you should consider the client
connection/disconnection patterns as well as the memory requirements of other
processes on the same machine.

If there is only a brief period during which many clients are concurrently connected to
the database, a high threshold will prevent unused memory from being decommitted
and made available to other processes. This case results in poor memory management
which can affect other processes which require memory.

If the number of concurrent clients is more uniform and there are frequent fluctuations
in this number, a high threshold will help to ensure memory is available for the client
processes and reduce the overhead to allocate and deallocate memory.

 Description of Action Memory
Allocated

Memory Used

A number of agents are running and have allocated
memory.

1000 1000

A new agent is started and uses 100 pages of
memory.

1100 1100

A agent using 200 pages of memory terminates.
(Notice that 100 pages of memory is freed, while 100
pages is kept allocated for future possible use.)

1000 900

A agent using 50 pages of memory terminates. (Notice
that 50 pages of memory is freed and 100 extra pages
are still allocated, compared to what is being used by
the existing agents.)

950 850

A new agent is started and requires 150 pages of
memory. (100 of the 150 pages are already allocated
and the database manager only needs to allocate 50
additional pages for this agent.)

1000 1000

630 Administration Guide

Agent/Application Communication Memory
 The following parameters affect the amount of memory that is allocated to allow data
to be passed between your application and agent processes:

¹ “Application Support Layer Heap Size (aslheapsz)”
¹ “Client I/O Block Size (rqrioblk)” on page 632
¹ “DOS Requester I/O Block Size (dos_rqrioblk)” on page 633

See “How DB2 Uses Memory” on page 527 for information about how this
agent/application shared memory relates to the rest of the memory allocated by the
database manager.

Application Support Layer Heap Size (aslheapsz)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 15 [1 – 524 288]

Unit of Measure Pages (4KB)

When Allocated When the database manager agent process is started for the
local application

When Freed When the database manager agent process is terminated

Related Parameters “Query Heap Size (query_heap_sz)” on page 625

The application support layer heap represents a communication buffer between the
local application and its associated agent. This buffer is allocated as shared memory by
each database manager agent that is started.

If the request to the database manager, or its associated reply, do not fit into the buffer
they will be split into two or more send-and-receive pairs. The size of this buffer should
be set to handle the majority of requests using a single send-and-receive pair. The size
of the request is based on the storage required to hold:

¹ The input SQLDA
¹ All of the associated data in the SQLVARs
¹ The output SQLDA
¹ Other fields which do not generally exceed 250 bytes.

In addition to this communication buffer, this parameter is also used to determine the
I/O block size when a blocking cursor is opened. This memory for blocked cursors is
allocated out of the application's private address space, so you should determine the
optimal amount of private memory to allocate for each application program. If the
database client cannot allocate space for a blocking cursor out of an application's
private memory, a non-blocking cursor will be opened.

 Chapter 20. Configuring DB2 631

The data sent from the local application is received by the database manager into a set
of contiguous memory allocated from the query heap. The aslheapsz parameter is used
to determine the initial size of the query heap (for both local and remote clients). The
maximum size of the query heap is defined by the query_heap_sz parameter.

Recommendation: If your application's requests are generally small and the application
is running on a memory constrained system, you may wish to reduce the value of this
parameter. If your queries are generally very large, requiring more than one send and
receive request, and your system is not constrained by memory, you may wish to
increase the value of this parameter.

Use the following formula to calculate the number of pages for aslheapsz:

aslheapsz >= (sizeof(input SQLDA)

+ sizeof(each input SQLVAR)

+ sizeof(output SQLDA)

+ 250) / 4096

You should also consider the effect of this parameter on the number and potential size
of blocking cursors. Large row blocks may yield better performance if the number or
size of rows being transferred is large (for example, if the amount of data is greater
than 4096 bytes). However, there is a trade-off in that larger record blocks increase the
size of the working set memory for each connection.

Larger record blocks may also cause more fetch requests than are actually required by
the application. You can control the number of fetch requests using the OPTIMIZE FOR
clause on the SELECT statement in your application. For more information about the
OPTIMIZE FOR clause, see “Quickly Retrieving the First Few Rows Using OPTIMIZE
FOR n ROWS” on page 412.

Client I/O Block Size (rqrioblk)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 32 767 [4096 – 65 535]

Unit of Measure Bytes

When Allocated

¹ When a remote client application issues a connection
request for a server database

¹ When a blocking cursor is opened, additional blocks are
opened at the client

632 Administration Guide

When Freed

¹ When the remote application disconnects from the server
database

¹ When the blocking cursor is closed

Related Parameters “DOS Requester I/O Block Size (dos_rqrioblk)”

This parameter specifies the size of the communication buffer between remote
applications and their database agents on the database server. When a database client
requests a connection to a remote database, this communication buffer is allocated on
the client. On the database server, a communication buffer of 32767 bytes is initially
allocated, until a connection is established and the server can determine the value of
rqrioblk at the client. Once the server knows this value, it will reallocate its
communication buffer if the client's buffer is not 32767 bytes.

In addition to this communication buffer, this parameter is also used to determine the
I/O block size at the database client when a blocking cursor is opened. This memory for
blocked cursors is allocated out of the application's private address space, so you
should determine the optimal amount of private memory to allocate for each application
program. If the database client cannot allocate space for a blocking cursor out of an
application's private memory, a non-blocking cursor will be opened.

Recommendation: For non-blocking cursors, a reason for increasing the value of this
parameter would be if the data (for example, large object data) to be transmitted by a
single SQL statement is so large that the default value is insufficient.

You should also consider the effect of this parameter on the number and potential size
of blocking cursors. Large row blocks may yield better performance if the number or
size of rows being transferred is large (for example, if the amount of data is greater
than 4096 bytes). However, there is a trade-off in that larger record blocks increase the
size of the working set memory for each connection.

Larger record blocks may also cause more fetch requests than are actually required by
the application. You can control the number of fetch requests using the OPTIMIZE FOR
clause on the SELECT statement in your application. For more information on the
OPTIMIZE FOR clause, see “Quickly Retrieving the First Few Rows Using OPTIMIZE
FOR n ROWS” on page 412.

DOS Requester I/O Block Size (dos_rqrioblk)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 4096 [4096 – 65 535]

 Chapter 20. Configuring DB2 633

Unit of Measurement Bytes

When Allocated

¹ When a remote DOS or Windows 3.1 client issues a
connection request to a server database

¹ When a blocking cursor is opened, additional blocks are
opened at the client

When Freed

¹ When the remote application disconnects from the
database

¹ When a blocking cursor is closed

Related Parameters “Client I/O Block Size (rqrioblk)” on page 632

This parameter specifies the size of the communication buffer between DOS/Windows
applications and their database agents on the database server. This parameter is
similar to the rqrioblk parameter, except it allows you to set a different value for blocks
used with DOS/Windows clients. In a DB2 configuration file, you can set both the
rqrioblk parameter (used for OS/2 clients) and the dos_rqrioblk parameter (used for
DOS clients).

In addition to this communication buffer, this parameter is also used to determine the
I/O block size at the database client when a blocking cursor is opened. This memory for
blocked cursors is allocated out of the application's private address space, so you
should determine the optimal amount of private memory to allocate for each application
program. If the database client cannot allocate space for a blocking cursor out of an
application's private memory, a non-blocking cursor will be opened.

Recommendation: For non-blocking cursors, a reason for increasing the value of this
parameter would be if the data (for example, large object data) to be transmitted by a
single SQL statement is so large that the default value is insufficient.

You should also consider the effect of this parameter on the number and potential size
of blocking cursors. Large row blocks may yield better performance if the number or
size of rows being transferred is large (for example, if the amount of data is greater
than 4096 bytes). However, there is a trade-off in that larger record blocks increase the
size of the working set memory for each connection.

Larger record blocks may also cause more fetch requests than are actually required by
the application. You can control the number of fetch requests using the OPTIMIZE FOR
clause on the SELECT statement in your application. For more information on the
OPTIMIZE FOR clause, see “Quickly Retrieving the First Few Rows Using OPTIMIZE
FOR n ROWS” on page 412.

Database Manager Instance Memory
 The following parameters affect memory that is allocated and used at an instance
level:

¹ “Database System Monitor Heap Size (mon_heap_sz)” on page 635

634 Administration Guide

¹ “Directory Cache Support (dir_cache)” on page 636
¹ “Maximum Java Interpreter Heap Size (java_heap_sz)” on page 637

Database System Monitor Heap Size (mon_heap_sz)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range]

UNIX 48 [0 – 60 000]

OS/2 and NT Database Server with local and remote
clients
24 [0 – 60 000]

OS/2 and NT Database Server with local clients
12 [0 – 60 000]

Unit of Measure Pages (4KB)

When Allocated When the database manager is started with the db2start
command

When Freed When the database manager is stopped with the db2stop
command

Related Parameters “Default Database System Monitor Switches
(dft_monswitches)” on page 704

This parameter determines the amount of the memory, in pages, to allocate for
database system monitor data. Memory is allocated from the monitor heap when you
perform database monitoring activities such as taking a snapshot, turning on a monitor
switch, resetting a monitor, or activating an event monitor.

A value of zero prevents the database manager from collecting database system
monitor data.

Recommendation: The amount of memory required for monitoring activity depends on
the number of monitoring applications (applications taking snapshots or event monitors),
which switches are set, and the level of database activity.

The following formula provides an approximation of the number of pages required for
the monitor heap:

 Chapter 20. Configuring DB2 635

(number of monitoring applications + 1) *

(number of databases *

(800 + (number of tables accessed * 20)

+ ((number of applications connected + 1) *

(200 + (number of table spaces * 100)))))

 / 4096

If the available memory in this heap runs out, one of the following will occur:

¹ A level 2 error message is written to the db2alert.log and db2diag.log files, when
the first application connects to the database for which this event monitor is
defined.

¹ An error code is returned to your application, if an event monitor being started
dynamically using the SET EVENT MONITOR statement fails.

¹ An error code is returned to your application, if a monitor command or API
subroutine fails.

Directory Cache Support (dir_cache)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] Yes [Yes; No]

When Allocated

¹ When an application issues its first connect, the private
cache is allocated

¹ When a database manager instance is started (db2start),
the shared cache is allocated.

When Freed

¹ When an the application process terminates, the private
cache is freed

¹ When a database manager instance is stopped (db2stop),
the shared cache is freed.

By setting dir_cache to “yes” the database, node and DCS directory files will be cached
in memory. The use of the directory cache reduces connect costs by eliminating
directory file I/O and minimizing the directory searches required to retrieve directory
information. There are two types of directory caches:

¹ A private cache that is allocated and used for each application process, on the
machine at which the application is running.

¹ A shared cache that is allocated and used for some of the internal database
manager processes.

636 Administration Guide

Note: Only the private cache is applicable to Windows, Windows 95, Windows NT,
and Macintosh environments.

For private caches, when an application issues its first connect, each directory file is
read and the information is cached in private memory for this application. The cache is
used by the application process on subsequent connect requests and is maintained for
the life of the application process. If a database is not found in the private cache, the
directory files are searched for the information, but the cache is not updated. If the
application modifies a directory entry, the next connect within that application will cause
the cache for this application to be refreshed. The private cache for other applications
will not be refreshed. When the application process terminates, the cache is freed. (To
refresh the directory cache used by a command line processor session, issue a db2
terminate command.)

For shared caches, when a database manager instance is started (db2start), each
directory file is read and the information is cached in shared memory. This cache is
used by some of the database manager processes and is maintained until the instance
is stopped (db2stop). If a directory entry is not found in this cache, the directory files
are searched for the information. This shared cache is never refreshed during the time
the instance is running.

Recommendation: Use directory caching if your directory files do not change
frequently and performance is critical.

In addition, on remote clients, directory caching can be beneficial if your applications
issue several different connection requests. In this case, caching reduces the number of
times a single application must read the directory files.

Directory caching can also improve the performance of taking database system monitor
snapshots. In addition, you should explicitly reference the database name on the
snapshot call, instead of using database aliases.

Note: Errors may occur when performing snapshot calls if directory caching is turned
on and if databases are cataloged, uncataloged, created, or dropped after the
database manager is started.

Maximum Java Interpreter Heap Size (java_heap_sz)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 512 [0 - 4 096]

Unit of Measure Pages (4KB)

When Allocated When a Java application starts

 Chapter 20. Configuring DB2 637

When Freed When a Java application completes

Related Parameters “Java Development Kit 1.1 Installation Path (jdk11_path)” on
page 710

This parameter determines the maximum size of the heap that is used by the Java
interpreter.

There is one heap for each DB2 process (one for each agent or subagent on
UNIX-based platforms, and one for each instance in other platforms), and there is also
one heap for each fenced UDF and fenced stored procedure process. In all situations,
only the agents or processes that run Java UDFs or stored procedures ever allocate
this memory. On partitioned database systems, the heap is multiplied by the number of
database partition servers.

 Locks
 The following parameters influence how locking is managed in your environment:

¹ “Time Interval for Checking Deadlock (dlchktime)”
¹ “Maximum Percent of Lock List Before Escalation (maxlocks)” on page 639
¹ “Lock Timeout (locktimeout)” on page 640

See also “Maximum Storage for Lock List (locklist)” on page 615.

“Locking” on page 392 provides a general overview of how the database manager uses
locking to maintain data integrity.

Time Interval for Checking Deadlock (dlchktime)
Configuration Type Database

Parameter Type Configurable

Default [Range] 10 000 (10 seconds) [1000 – 600 000]

Unit of Measure Milliseconds

Related Parameters

¹ “Maximum Storage for Lock List (locklist)” on page 615
¹ “Maximum Percent of Lock List Before Escalation

(maxlocks)” on page 639

A deadlock occurs when two or more applications connected to the same database wait
indefinitely for a resource. The waiting is never resolved because each application is
holding a resource that the other needs to continue.

The deadlock check interval defines the frequency at which the database manager
checks for deadlocks among all the applications connected to a database.

638 Administration Guide

Notes:

1. In a partitioned database environment, this parameter applies to the catalog node
only.

2. In a partitioned database environment, a deadlock is not flagged until after the
second iteration.

Recommendation: Increasing this parameter decreases the frequency of checking for
deadlocks, thereby increasing the time that application programs must wait for the
deadlock to be resolved.

Decreasing this parameter increases the frequency of checking for deadlocks, thereby
decreasing the time that application programs must wait for the deadlock to be resolved
but increasing the time that the database manager takes to check for deadlocks. If the
deadlock interval is too small, it can decrease run-time performance, because the
database manager is frequently performing deadlock detection. If this parameter is set
lower to improve concurrency, you should ensure that maxlocksand locklist are set
appropriately to avoid unnecessary lock escalation, which can result more lock
contention and as a result, more deadlock situations.

Maximum Percent of Lock List Before Escalation (maxlocks)
Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 10 [1 – 100]

OS/2 and NT 22 [1 – 100]

Unit of Measure Percentage

Related Parameters

¹ “Maximum Storage for Lock List (locklist)” on page 615
¹ “Maximum Number of Active Applications (maxappls)” on

page 648

Lock escalation is the process of replacing row locks with table locks, reducing the
number of locks in the list. This parameter defines a percentage of the lock list held by
an application that must be filled before the database manager performs escalation.
When the number of locks held by any one application reaches this percentage of the
total lock list size, lock escalation will occur for the locks held by that application. Lock
escalation also occurs if the lock list runs out of space.

The database manager determines which locks to escalate by looking through the lock
list for the application and finding the table with the most row locks. If after replacing
these with a single table lock, the maxlocks value is no longer exceeded, lock
escalation will stop. If not, it will continue until the percentage of the lock list held is
below the value of maxlocks. The maxlocks parameter multiplied by the maxappls
parameter cannot be less than 100.

 Chapter 20. Configuring DB2 639

Recommendation: When setting maxlocks, you should consider the size of the lock list
(locklist):

maxlocks = 100 *

(512 locks per application

* 32 bytes per lock

* 2) / (locklist * 4096 bytes)

This sample formula allows any application to hold twice the average number of locks.

You can increase maxlocks if few applications run concurrently since there will not be a
lot of contention for the lock list space in this situation.

You may use the database system monitor to help you track and tune this configuration
parameter.

For more information see the locks_held_top (maximum number of locks held) monitor
element description in the System Monitor Guide and Reference .

The control of lock escalation through this parameter is important to the optimizer since
it uses this parameter to determine access paths. You should consider rebinding
applications (using the REBIND PACKAGE command) after changing this parameter.

Lock Timeout (locktimeout)
Configuration Type Database

Parameter Type Configurable

Default [Range] -1 [-1; 0 – 30 000]

Unit of Measurement Seconds

Related Parameters

¹ “Maximum Storage for Lock List (locklist)” on page 615
¹ “Maximum Percent of Lock List Before Escalation

(maxlocks)” on page 639

This parameter specifies the number of seconds that an application will wait to obtain a
lock. This helps avoid global deadlocks for applications.

| If you set this parameter to 0, locks are not waited for. In this situation, if no lock is
| available at the time of the request, the application immediately receives a -911.

| If you set this parameter to -1, lock timeout detection is turned off. In this situation a
| lock will be waited for (if one is not available at the time of the request) until either of
| the following:

| ¹ The lock is granted
| ¹ A deadlock occurs.

Recommendation: In a transaction processing (OLTP) environment, you can use an
initial starting value of 30 seconds. In a query-only environment you could start with a

640 Administration Guide

higher value. In both cases, you should use benchmarking techniques to tune this
parameter.

The value should be set to quickly detect waits that are occurring because of an
abnormal situation, such as a transaction that is stalled (possibly as a result of a user
leaving their workstation). You should set it high enough so valid lock requests do not
time-out because of peak workloads, during which time, there is more waiting for locks.

You may use the database system monitor to help you track the number of times an
application (connection) experienced a lock timeout or that a database detected a
timeout situation for all applications that were connected. For more information see the
locks_timeouts (number of lock timeouts) monitor element description in the System
Monitor Guide and Reference.

High values of the lock_timeout monitor element can be caused by:

¹ Too low a value for this configuration parameter.
¹ An application (transaction) that is holding lock(s) for an extended period. You can

use the database system monitor to further investigate these applications.
¹ A concurrency problem, that could be caused by lock escalations (from the

row-level to a table-level). See “Maximum Percent of Lock List Before Escalation
(maxlocks)” on page 639 and “Maximum Storage for Lock List (locklist)” on
page 615 for more information.

For more information on the use of this parameter see “Lock Waits and Timeouts” on
page 399.

I/O and Storage
 The following parameters can influence I/O and storage costs related to the operation
of your database:

¹ “Changed Pages Threshold (chngpgs_thresh)”
¹ “Number of Asynchronous Page Cleaners (num_iocleaners)” on page 642
¹ “Number of I/O Servers (num_ioservers)” on page 643
¹ “Index Sort Flag (indexsort)” on page 644
¹ “Sequential Detection Flag (seqdetect)” on page 644
¹ “Default Prefetch Size (dft_prefetch_sz)” on page 645
¹ “Default Number of SMS Containers (numsegs)” on page 646
¹ “Default Extent Size of Table Spaces (dft_extent_sz)” on page 646
¹ “Extended Storage Memory Segment Size (estore_seg_sz)” on page 646
¹ “Number of Extended Storage Memory Segments (num_estore_segs)” on

page 647

Changed Pages Threshold (chngpgs_thresh)
Configuration Type Database

Parameter Type Configurable

| Default [Range] 60 [5 – 99]

Unit of Measure Percentage

 Chapter 20. Configuring DB2 641

Related Parameters “Number of Asynchronous Page Cleaners (num_iocleaners)”
on page 642

Asynchronous page cleaners will write changed pages from the buffer pool (or the
buffer pools) to disk before the space in the buffer pool is required by a database
agent. This means that the agents will not wait for a changed page to be written out,
before being able to read a page, and your application's transactions should run faster.

You may use this parameter to specify the level (percentage) of changed pages at
which the asynchronous page cleaners will be started, if they are not currently active.
When the page cleaners are started, they will build a list of the pages to write to disk.
Once they have completed writing those pages to disk, they will become inactive again
and wait for the next trigger to start.

In a read-only (for example, query) environment, these page cleaners are not used.

Recommendation: For databases with a heavy update transaction workload, you can
generally ensure that there are enough clean pages in the buffer pool by setting the
parameter value to be equal-to or less-than the default value. A percentage larger than
the default can help performance if your database has a small number of very large
tables.

Number of Asynchronous Page Cleaners (num_iocleaners)
Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [0 – 255]

Unit of Measure Counter

Related Parameters

¹ “Buffer Pool Size (buffpage)” on page 608
¹ “Changed Pages Threshold (chngpgs_thresh)” on

page 641

This parameter allows you to specify the number of asynchronous page cleaners for a
database. These page cleaners write changed pages from the buffer pool to disk before
the space in the buffer pool is required by a database agent. This means that the
agents will not wait for changed pages to be written out, before being able to read a
page. As a result, your application's transactions should run faster.

If you set the parameter to zero (0), no page cleaners are started and as a result, the
database agents will perform all of the page writes from the buffer pool to disk. This
parameter can have a significant performance impact on a database stored across
many physical storage devices, since in this case there is a greater chance that one of
the devices will be idle. If no page cleaners are configured, your applications may
encounter periodic log full conditions.

If the applications for a database primarily consist of transactions that update data, an
increase in the number of cleaners will speed up performance. Increasing the page

642 Administration Guide

cleaners will also decrease recovery time from soft failures, such as power outages,
because the contents of the database on disk will be more up-to-date at any given time.

Recommendation: Consider the following factors when setting the value for this
parameter:

 ¹ Application type
| – If it is a query-only database that will not have updates, set this parameter to
| be zero (0). The exception would be if the query work load results in many
| TEMP tables being created (you can determine this by using the exlain utility).

– If transactions are run against the database, set this parameter to be between
one and the number of physical storage devices used for the database.

 ¹ Workload

Environments with high update transaction rates may require more page cleaners
to be configured.

¹ Buffer pool sizes (buffpage)

Environments with large buffer pools may also require more page cleaners to be
configured.

You may use the database system monitor to help you tune this configuration
parameter using information from the event monitor about write activity from a buffer
pool:

¹ The parameter can be reduced if both of the following conditions are true:
– pool_data_writes is approximately equal to pool_async_data_writes
– pool_index_writes is approximately equal to pool_async_index_writes.

¹ The parameter should be increased if either of the following conditions are true:
– pool_data_writes is much greater than pool_async_data_writes
– pool_index_writes is much greater than pool_async_index_writes.

For more information see the following monitor elements descriptions in the System
Monitor Guide and Reference:

¹ pool_data_writes (buffer pool data writes)
¹ pool_index_writes (buffer pool index writes)
¹ pool_async_data_writes (buffer pool asynchronous data writes)
¹ pool_async_index_writes (buffer pool asynchronous index writes).

Number of I/O Servers (num_ioservers)
Configuration Type Database

Parameter Type Configurable

Default [Range] 3 [1 – 255]

Unit of Measure Counter

When Allocated When an application connects to a database

When Freed When an application disconnects from a database

 Chapter 20. Configuring DB2 643

Related Parameters

¹ “Default Prefetch Size (dft_prefetch_sz)” on page 645
¹ “Sequential Detection Flag (seqdetect)” on page 644

I/O servers are used on behalf of the database agents to perform prefetch I/O and
asynchronous I/O by utilities such as backup and restore. This parameter specifies the
number of I/O servers for a database. No more than this number of I/Os for prefetching
and utilities can be in progress for a database at any time. An I/O server waits while an
I/O operation that it initiated is in progress. Non-prefetch I/Os are scheduled directly
from the database agents and as a result are not constrained by num_ioservers.

Recommendation: In order to fully exploit all the I/O devices in the system, a good
value to use is generally one or two more than the number of physical devices on
which the database resides. It is better to configure additional I/O servers, since there is
minimal overhead associated with each I/O server and any unused I/O servers will
remain remain idle.

For more information, see “Prefetching Data into the Buffer Pool” on page 539 and
“Configuring I/O Servers for Prefetching and Parallel I/O” on page 541.

Index Sort Flag (indexsort)
Configuration Type Database

Parameter Type Configurable

Default [Range] Yes [Yes; No]

This parameter indicates whether sorting of index keys will occur during index creation.
Performance of index creation is enhanced by performing a sort first, particularly for
indexes with low cluster ratios or cluster factors. Performance of queries can also be
better if indexes are created with a sort. The cost of this performance enhancement is
the increased disk space required for the sort, which could require twice the amount of
space as creating an index without performing an initial sort.

Recommendation: Use the default setting (“Yes”), unless you do not have enough disk
space. Note that the disk space required for this sort is approximately equal to the
amount of space needed to SELECT the columns of the index from the table with an
ORDER BY clause on those columns.

If you have a symmetric multiprocessor (SMP) environment and specify “No” for this
parameter, the multiple processing that is possible in an SMP environment is not used
during index creation.

Sequential Detection Flag (seqdetect)
Configuration Type Database

Parameter Type Configurable

Default [Range] Yes [Yes; No]

Related Parameters “Default Prefetch Size (dft_prefetch_sz)” on page 645

644 Administration Guide

The database manager can monitor I/O and if sequential page reading is occurring the
database manager can activate I/O prefetching. This type of sequential prefetch is
known as sequential detection. You may use the seqdetect configuration parameter to
control whether the database manager should perform sequential detection.

If this parameter is set to “no,” prefetching takes place only if the database manager
knows it will be useful, for example table sorts, table scans, or list prefetch.

Recommendation: In most cases, you should use the default value for this parameter.
Try turning sequential detection off, only if other tuning efforts were unable to correct
serious query performance problems.

Default Prefetch Size (dft_prefetch_sz)
Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 32 [0 – 32 767]

OS/2 and NT 16 [0 – 32 767]

Unit of Measure Pages (4KB)

Related Parameters

¹ “Default Extent Size of Table Spaces (dft_extent_sz)” on
page 646

¹ “Number of I/O Servers (num_ioservers)” on page 643

When a table space is created, PREFETCHSIZE n can be optionally specified, where n is
the number of pages the database manager will read if prefetching is being performed.
If you do not specify the prefetch size on the CREATE TABLESPACE statement, the
database manager uses the value given by this parameter.

For more information, see “Prefetching Data into the Buffer Pool” on page 539.

Recommendation: Using system monitoring tools, you can determine if your CPU is
idle while the system is waiting for I/O. Increasing the value of this parameter may help
if the table spaces being used do not have a prefetch size defined for them.

This parameter provides the default for the entire database, and it may not be suitable
for all table spaces within the database. For example, a value of 32 may be suitable for
a table space with an extent size of 32 pages, but not suitable for a table space with an
extent size of 25 pages. Ideally, you should explicitly set the prefetch size for each
table space.

To help minimize I/O for table spaces defined with the default extent size
(dft_extent_sz), you should set this parameter as a factor or whole multiple of the value
of the dft_extent_sz parameter. For example, if the dft_extent_sz parameter is 32, you
could set dft_prefetch_sz to 16 (a factor of 32) or to 64 (a whole multiple of 32). If the

 Chapter 20. Configuring DB2 645

prefetch size is a multiple of the extent size, the database manager may perform I/O in
parallel, if the following conditions are true:

¹ The extents being prefetched are on different physical devices
¹ Multiple I/O servers are configured (num_ioservers).

Default Number of SMS Containers (numsegs)
Configuration Type Database

Parameter Type Informational

Unit of Measure Counter

This parameter, which only applies to SMS table spaces, indicates the number of
containers that will be created within the default table spaces. This parameter will show
the information used when you created your database, whether it was specified
explicitly or implicitly on the CREATE DATABASE command. The CREATE
TABLESPACE statement does not use this parameter in any way.

For more information, see “Database Physical Directories” on page 27.

Default Extent Size of Table Spaces (dft_extent_sz)
Configuration Type Database

Parameter Type Configurable

Default [Range] 32 [2 – 256]

Unit of Measure Pages (4KB)

Related Parameters “Default Prefetch Size (dft_prefetch_sz)” on page 645

When a table space is created, EXTENTSIZE n can be optionally specified, where n is the
extent size. If you do not specify the extent size on the CREATE TABLESPACE
statement, the database manager uses the value given by this parameter.

For more information see “Designing and Choosing Table Spaces” on page 43.

Recommendation: In many cases, you will want to explicitly specify the extent size
when you create the table space. Before choosing a value for this parameter, you
should understand how you would explicitly choose an extent size for the CREATE
TABLESPACE statement. For more information see “Table Space Impact on Query
Optimization” on page 426.

Extended Storage Memory Segment Size (estore_seg_sz)
Configuration Type Database

Parameter Type Configurable

Default [Range] 16 000 [0 – 1048575]

Unit of Measure Pages (4KB)

646 Administration Guide

Related Parameters “Number of Extended Storage Memory Segments
(num_estore_segs)” on page 647

This parameter specifies the number of pages in each of the extended memory
segments in the database. There are platform-dependent considerations when setting
this configuration parameter.

Recommendation: This parameter only has an effect when extended storage is
available, and is used as shown by the num_estore_segs parameter. When specifying
the number of pages to be used in each extended memory segment, you should also
consider the number of extended memory segments by reviewing and modifying the
num_estore_segs parameter. For more information about extended storage, see
“Extending Memory” on page 556.

Number of Extended Storage Memory Segments
(num_estore_segs)
Configuration Type Database

Parameter Type Configurable

Default [Range] 0 [0 – 214 7483 647]

Related Parameters “Extended Storage Memory Segment Size (estore_seg_sz)” on
page 646

This parameter specifies the number of extended storage memory segments available
for use by the database.

The default is no extended storage memory segments.

Recommendation: Only use this parameter to establish the use of extended storage
memory segments if your platform environment has more memory than the maximum
address space and you wish to use this memory. When specifying the number of
segments, you should also consider the size of the each of the segments by reviewing
and modifying the estore_seg_sz parameter.

When both the num_estore_segs and estore_seg_sz configuration parameters are set,
you should specify which bufferpools will use the extended memory through the
CREATE/ALTER BUFFERPOOL statements. For more information about extended
storage, see “Extending Memory” on page 556.

 Agents
The following parameters can influence the number of applications that can be run
concurrently and achieve optimal performance:

¹ “Maximum Number of Active Applications (maxappls)” on page 648
¹ “Average Number of Active Applications (avg_appls)” on page 649
¹ “Maximum Database Files Open per Application (maxfilop)” on page 650
¹ “Maximum Total Files Open per Application (maxtotfilop)” on page 650
¹ “Priority of Agents (agentpri)” on page 651
¹ “Maximum Number of Agents (maxagents)” on page 653

 Chapter 20. Configuring DB2 647

¹ “Maximum Number of Concurrent Agents (maxcagents)” on page 652
¹ “Maximum Number of Coordinating Agents (max_coordagents)” on page 654
¹ “Agent Pool Size (num_poolagents)” on page 655
¹ “Initial Number of Agents in Pool (num_initagents)” on page 656

Maximum Number of Active Applications (maxappls)
Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 40 [1 – 5000]

OS/2 and NT Database Server with local and remote
clients
20 [1 – 5000]

OS/2 and NT Database Server with local clients
10 [1 – 5000]

Unit of Measure Counter

Related Parameters

¹ “Maximum Number of Agents (maxagents)” on page 653
¹ “Maximum Number of Coordinating Agents

(max_coordagents)” on page 654
¹ “Maximum Percent of Lock List Before Escalation

(maxlocks)” on page 639
¹ “Maximum Storage for Lock List (locklist)” on page 615
¹ “Average Number of Active Applications (avg_appls)” on

page 649

This parameter specifies the maximum number of concurrent applications that can be
connected (both local and remote) to a database. Since each application that attaches
to a database causes some private memory to be allocated, allowing a larger number
of concurrent applications will potentially use more memory.

| The value of this parameter must be equal to or greater than the sum of the connected
| applications, plus the number of these same applications that may be concurrently in
| the process of completing a two-phase commit or rollback. Then add to this sum the
| anticipated number of indoubt transactions that might exist at any one time. For more
| information on indoubt transactions, see “Recovering from Problems During Two-Phase
| Commit” on page 358.

When an application attempts to connect to a database, but maxappls has already
been reached, an error is returned to the application indicating that the maximum
number of applications have been connected to the database.

In a partitioned database environment, this is the maximum number of applications that
can be concurrently active against a database partition. This parameter limits the
number of active applications against the database partition on a database partition

648 Administration Guide

server, regardless of whether the server is the coordinator node for the application or
not. The catalog node in a partitioned database environment requires a higher value for
maxappls than is the case for other types of environments because, in the partitioned
database environment, every application requires a connection to the catalog node.

Recommendation: Increasing the value of this parameter without lowering the
maxlocks parameter or increasing the locklist parameter could cause you to reach the
database limit on locks (locklist) rather than the application limit and as a result cause
pervasive lock escalation problems.

To a certain extent, the maximum number of applications is also governed by
maxagents. An application can only connect to the database, if there is an available
connection (maxappls) as well as an available agent (maxagents). In addition, the
maximum number of applications is also controlled by the max_coordagents
configuration parameter, because no new applications (that is, coordinator agents) can
be started if max_coordagents has been reached.

Average Number of Active Applications (avg_appls)
Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [1 – maxappls]

Unit of Measure Counter

Related Parameters

¹ “Maximum Number of Active Applications (maxappls)” on
page 648

This parameter is used by the SQL optimizer to help estimate how much buffer pool will
be available at run-time for the access plan chosen. Increasing this parameter can
influence the optimizer to choose an access plan for queries that will be more
conservative in its buffer pool usage.

Recommendation: When running DB2 in a multi-user environment, particularly with
complex queries and a large buffer pool, you may want the SQL optimizer to know that
multiple query users are using your system so that the optimizer should be more
conservative in assumptions of buffer pool availability.

When setting this parameter, you should estimate the number of heavy query
applications that typically use the database. This estimate should exclude all light OLTP
applications. If you have trouble estimating this number, you can multiply the following:

¹ An average number of all applications running against your database. The
database system monitor can provide information about the number of applications
at any given time and using a sampling technique, you can calculate an average
over a period of time. The information from the database system monitor includes
both OLTP and non-OLTP applications.

¹ Your estimate of the percentage of heavy query applications.

 Chapter 20. Configuring DB2 649

As with adjusting other configuration parameters that affect the optimizer, you should
adjust this parameter in small increments. This allows you to minimize path selection
differences.

You should consider rebinding applications (using the REBIND PACKAGE command)
after changing this parameter.

Maximum Database Files Open per Application (maxfilop)
Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 64 [2 – 1950]

OS/2 and NT 64 [2 – 32 768]

Unit of Measure Counter

Related Parameters

¹ “Maximum Total Files Open per Application (maxtotfilop)”
¹ “Maximum Number of Active Applications (maxappls)” on

page 648

This parameter specifies the maximum number of file handles that can be open for
each database agent. If opening a file causes this value to be exceeded, some files in
use by this agent are closed. If maxfilop is too small, the overhead of opening and
closing files so as not to exceed this limit will become excessive and may degrade
performance.

Both SMS table spaces and DMS table space file containers are treated as files in the
database manager's interaction with the operating system, and file handles are
required. More files are generally used by SMS table spaces compared to the number
of containers used for a DMS file table space. Therefore, if you are using SMS table
spaces, you will need a larger value for this parameter compared to what you would
require for DMS file table spaces.

You can also use this parameter to ensure that the overall total of file handles used by
the database manager does not exceed the operating system limit by limiting the
number of handles per agent to a specific number; the actual number will vary
depending on the number of agents running concurrently.

Maximum Total Files Open per Application (maxtotfilop)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

650 Administration Guide

Parameter Type Configurable

Default [Range] 16 000 [100 – 32 768]

Unit of Measure Counter

Related Parameters “Maximum Database Files Open per Application (maxfilop)” on
page 650

This parameter defines the maximum number of files that can be opened by all agents
and other threads executing in a single database manager instance. If opening a file
causes this value to be exceeded, an error is returned to your application.

Note: This parameter does not apply to UNIX-based platforms.

Recommendation: When setting this parameter, you should consider the number of
file handles that could be used for each database in the database manager instance.
To estimate an upper limit for this parameter:

1. Calculate the maximum number of file handles that could be opened for each
database in the instance, using the following formula:

maxappls * maxfilop

2. Calculate the sum of above results and verify that it does not exceed the
parameter maximum.

If a new database is created, you should re-evaluate the value for this parameter.

You should also validate the total file handles that may be used on your system does
not exceed the system maximum using the following formula:

(sum of maxtotfilop for all instances on machine)

+ (estimate of file handles required by other applications)

 <= 65535

Priority of Agents (agentpri)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range]

AIX -1 [41 - 125]

Other UNIX
-1 [41 - 128]

Windows NT
-1 [0 - 6]

OS/2 -1 [200 - 231; 300 - 331; 400 - 431]

 Chapter 20. Configuring DB2 651

This parameter controls the priority given both to all agents, and to other database
manager instance processes and threads, by the operating system scheduler. In a
partitioned database environment, this also includes both coordinating and parallel
agents, the parallel system controllers, and the FCM daemons. This priority determines
how CPU time is given to the DB2 processes, agents, and threads relative to the other
processes and threads running on the machine. When the parameter is set to -1, no
special action is taken and the database manager is scheduled in the normal way that
the operating system schedules all processes and threads. When the parameter is set
to a value other than -1, the database manager will create its processes and threads
with a static priority set to the value of the parameter. Therefore, this parameter allows
you to control the priority with which the database manager processes and threads will
execute on your machine.

You can use this parameter to increase database manager throughput. The values for
setting this parameter are dependent on the operating system on which the database
manager is running. For example, in a UNIX-based environment, numerically low values
yield high priorities. When the parameter is set to a value between 41 and 125, the
database manager creates its agents with a UNIX static priority set to the value of the
parameter. This is important in UNIX-based environments because numerically low
values yield high priorities for the database manager, but other processes (including
applications and users) may experience delays because they cannot obtain enough
CPU time. You should balance the setting of this parameter with the other activity
expected on the machine.

In an OS/2 environment, higher numeric values yield higher priorities.

For more guidance on using priorities in your operating environment, see the Quick
Beginnings book for your platform.

Recommendation: The default value should be used initially. This value provides a
good compromise between response time to other users/applications and database
manager throughput.

If database performance is a concern, you can use benchmarking techniques to
determine the optimum setting for this parameter. You should take care when
increasing the priority of the database manager because performance of other user
processes can be severely degraded especially when the CPU utilization is very high.
Increasing the priority of the database manager processes and threads can have
significant performance benefits.

| Note: If you set this parameter to a non-default value on UNIX-based platforms, you
| cannot use the governor to alter agent priorities.

Maximum Number of Concurrent Agents (maxcagents)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients

652 Administration Guide

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] -1 (max_coordagents) [-1; 1 – max_coordagents]

Unit of Measure Counter

Related Parameters

¹ “Maximum Number of Active Applications (maxappls)” on
page 648

¹ “Maximum Number of Agents (maxagents)”
¹ “Maximum Number of Coordinating Agents

(max_coordagents)” on page 654

The maximum number of database manager coordinator agents that can be
concurrently executing a database manager transaction. This parameter is used to
control the load on the system during periods of high simultaneous application activity.
For example, you may have a system requiring a large number of connections but with
a limited amount of memory to serve those connections. Adjusting this parameter can
be useful in such an environment, where a period of high simultaneous activity could
cause excessive operating system paging.

This parameter does not limit the number of applications that can have connections to a
database. It only limits the number of database manager agents that can be processed
concurrently by the database manager at any one time, thereby limiting the usage of
system resources during times of peak processing.

A value of −1 indicates that the limit is max_coordagents.

Recommendation: In most cases the default value for this parameter will be
acceptable. In cases where the high concurrency of applications is causing problems,
you can use benchmark testing to tune this parameter to optimize your performance.

Maximum Number of Agents (maxagents)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 200 [1 – 64 000]

400 [1 – 64 000] on Partitioned Database Server with local
and remote clients

Unit of Measure Counter

 Chapter 20. Configuring DB2 653

Related Parameters

¹ “Maximum Number of Active Applications (maxappls)” on
page 648

¹ “Maximum Number of Concurrent Agents (maxcagents)”
on page 652

¹ “Maximum Number of Coordinating Agents
(max_coordagents)”

¹ “Maximum Number of DARI Processes (maxdari)” on
page 658

¹ “Minimum Committed Private Memory (min_priv_mem)” on
page 629

¹ “Agent Pool Size (num_poolagents)” on page 655

This parameter indicates the maximum number of database manager agents, whether
coordinating agents or subagents, available at any given time to accept application
requests. If you want to limit the number of coordinating agents, use the
max_coordagents parameter.

This parameter can be useful in memory constrained environments to limit the total
memory usage of the database manager, because each additional agent requires
additional memory.

Recommendation: The value of maxagents should be at least the sum of the values
for maxappls in each database allowed to be accessed concurrently. If the number of
databases is greater than the numdb parameter, then the safest course is to use the
product of numdb with the largest value for maxappls.

Each additional agent requires some resource overhead that is allocated at the time the
database manager is started.

Maximum Number of Coordinating Agents (max_coordagents)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] -1 (maxagents - num_initagents) [-1, 0–maxagents]

For partitioned database environments and environments in
which intra_parallel is set to “Yes,” the default is maxagents -
num_initagents; otherwise, the default is maxagents. This
ensures that, in non-partitioned database environments,
max_coordagents always equals maxagents, unless the
system is configured for intra-partition parallelism.

654 Administration Guide

If you do not have a partitioned database environment, and
have not enabled the intra_parallel parameter,
max_coordagents must equal maxagents.

Related Parameters

¹ “Initial Number of Agents in Pool (num_initagents)” on
page 656

¹ “Agent Pool Size (num_poolagents)”
¹ “Maximum Number of Agents (maxagents)” on page 653
¹ “Enable Intra-Partition Parallelism (intra_parallel)” on

page 701

This parameter determines the maximum number of coordinating agents that can exist
at one time on a server in a partitioned or non-partitioned database environment.

One coordinating agent is acquired for each local or remote application that connects to
a database or attaches to an instance. Requests that require an instance attachment
include CREATE DATABASE, DROP DATABASE, and Database System Monitor
commands.

Agent Pool Size (num_poolagents)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] -1 [-1, 0-maxagents]

Using the default, the value for a server with a non-partitioned
database and local clients is the larger of maxagents/50 or
max_querydegree.

Using the default, the value for a server with a non-partitioned
database and local and remote clients is the larger of
maxagents/50 x max_querydegree or maxagents -
max_coordagents.

Using the default, the value for an database partition server is
the larger of maxagents/10 x max_querydegree or maxagents -
max_coordagents.

Related Parameters

¹ “Initial Number of Agents in Pool (num_initagents)” on
page 656

¹ “Maximum Number of Agents (maxagents)” on page 653
¹ “Maximum Query Degree of Parallelism

(max_querydegree)” on page 700

 Chapter 20. Configuring DB2 655

¹ “Maximum Number of Coordinating Agents
(max_coordagents)” on page 654

This parameter is a guideline for how large you want the agent pool to grow (and
replaces the max_idleagents parameter that was used in DB2 Version 2).

The agent pool contains subagents and idle agents. Idle agents can be used as parallel
subagents or as coordinating agents. If more agents are created than is indicated by
the value of this parameter, they will be terminated when they finish executing their
current request, rather than be returned to the pool.

If the value for this parameter is 0, agents will be created as needed, and may be
terminated when they finish executing their current request. If the value is maxagents,
and the pool is full of associated subagents, the server cannot be used as a coordinator
node, because no new coordinating agents can be created.

Recommendation: If you run a decision-support environment in which few applications
connect concurrently, set num_poolagents to a small value to avoid having an agent
pool that is full of idle agents.

If you run a transaction-processing environment in which many applications are
concurrently connected, increase the value of num_poolagents to avoid the costs
associated with the frequent creation and termination of agents.

Initial Number of Agents in Pool (num_initagents)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 0 [0–num_poolagents]

Related Parameters

¹ “Maximum Number of Agents (maxagents)” on page 653
¹ “Agent Pool Size (num_poolagents)” on page 655
¹ “Maximum Number of Coordinating Agents

(max_coordagents)” on page 654

This parameter determines the initial number of idle agents that are created in the
agent pool at DB2START time.

Database Application Remote Interface (DARI)
 The following parameters can affect the Database Application Remote Interface (DARI)
applications:

¹ “Keep DARI Process Indicator (keepdari)” on page 657

656 Administration Guide

¹ “Maximum Number of DARI Processes (maxdari)” on page 658

| Note: The term DARI refers to stored procedures.

Keep DARI Process Indicator (keepdari)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] Yes [Yes; No]

Related Parameters “Maximum Number of DARI Processes (maxdari)” on
page 658

This parameter indicates whether or not a DARI process is kept after a DARI call is
complete. DARI processes are created as separate system entities in order to isolate
user-written DARI code from the database manager agent process. This parameter is
only applicable on database servers.

If keepdari is set to no, a new DARI process is created and destroyed for each DARI
invocation. If keepdari is set to yes, a DARI process is reused for subsequent DARI
calls. When the database manager is stopped, all outstanding DARI processes will be
terminated.

Setting this parameter to yes will result in additional system resources being consumed
by the database manager for each DARI process that is activated, up to the value
contained in the maxdari parameter. This is only true when no existing DARI process is
available to process a subsequent DARI call. This parameter is ignored if maxdari is set
to 0.

Recommendation: In an environment in which the number of DARI requests is large
relative to the number of non-DARI requests, and system resources are not
constrained, then this parameter can be set to yes. This will improve the DARI
performance by avoiding the initial DARI process creation overhead since an existing
DARI process will be used to process the call.

For example, in an OLTP debit-credit banking transaction application, the code to
perform each transaction could be performed in a stored procedure which executes in a
DARI process. In this application, the main workload is performed out of DARI
processes. If this parameter is set to no, each transaction incurs the overhead of
creating a new DARI process, resulting in a significant performance reduction. If,
however, this parameter is set to yes, each transaction would try to use an existing
DARI process, which would avoid this overhead.

 Chapter 20. Configuring DB2 657

Maximum Number of DARI Processes (maxdari)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] -1 (max_coordagents) [-1; 0 – max_coordagents]

Unit of Measure Counter

Related Parameters

¹ “Maximum Number of Agents (maxagents)” on page 653
¹ “Keep DARI Process Indicator (keepdari)” on page 657
¹ “Maximum Number of Coordinating Agents

(max_coordagents)” on page 654

This parameter indicates the maximum number of DARI process that may reside at the
database server. Once this limit is reached, no new DARI requests may be invoked.
This parameter is only applicable on database servers.

There can be no more than one DARI process active per coordinating agent, so the
maximum number of DARI processes is also dictated by the maximum number of
coordinating agents (max_coordagents).

Recommendation: If your environment features the use of the DARI facility within the
database manager, then this parameter can be used to ensure that an appropriate
number of DARI processes are available to handle the DARI calls made at any one
time within the database manager.

If the parameter is set to −1, the maximum number of DARI processes will be the same
as the value set in the max_coordagents parameter.

If you find that the default value is not appropriate for your environment because an
inappropriate amount of system resource is being given to DARI processes which is
affecting performance of the database manager, the following may be useful in
providing a starting point for tuning this parameter:

maxdari = # of applications allowed to make DARI calls at one time

If keepdari is set to yes, then each DARI process that is created will continue to exist
and use system resources even after the DARI call has been processed and returned
to the agent.

If your environment is tightly constrained and you cannot afford the process resources
associated with DARI, you can disable DARI by setting this parameter to zero (0).

658 Administration Guide

Logging and Recovery
 Recovering your environment can be very important to prevent the loss of critical data.
A number of parameters are available to help you manage your environment and to
ensure that you can perform adequate recovery of your data or transactions. These
parameters are grouped into the following categories:

¹ “Database Log Files”
¹ “Database Log Activity” on page 664
¹ “Recovery” on page 668
¹ “Distributed Unit of Work Recovery” on page 673.

Database Log Files
 The following parameters provide information about number, size and status of the files
used for database logging:

¹ “Size of Log Files (logfilsiz)”
¹ “Number of Primary Log Files (logprimary)” on page 660
¹ “Number of Secondary Log Files (logsecond)” on page 662
¹ “Change the Database Log Path (newlogpath)” on page 663
¹ “Location of Log Files (logpath)” on page 664
¹ “Next Active Log (nextactive)” on page 664
¹ “Log Head Identification (loghead)” on page 664

Size of Log Files (logfilsiz)
Configuration Type Database

Parameter Type Configurable

Default [Range]

UNIX 1000 [4 – 65 535]

| NT 250 [4 – 65 535]

OS/2 250 [4 – 4 095]

Unit of Measure Pages (4KB)

Related Parameters

¹ “Number of Primary Log Files (logprimary)” on page 660
¹ “Number of Secondary Log Files (logsecond)” on

page 662
¹ “Recovery Range and Soft Checkpoint Interval (softmax)”

on page 666

This parameter defines the size of each primary and secondary log file. The size of
these log files limits the number of log records that can be written to them before they
become full and a new log file is required.

The use of primary and secondary log files as well as the action taken when a log file
becomes full are dependent on the type of logging that is being performed:

 Chapter 20. Configuring DB2 659

 ¹ Circular logging

A primary log file can be reused when the changes recorded in it have been
committed. If the log file size is small and applications have processed a large
number of changes to the database without committing the changes, a primary log
file can quickly become full. If all primary log files become full, the database
manager will allocate secondary log files to hold the new log records.

¹ Log Retention logging

When a primary log file is full, the log is archived and a new primary log file is
allocated.

Recommendation: You must balance the size of the log files with the number of
primary log files:

¹ The value of the logfilsiz should be increased if the database has a large number
of update, delete and/or insert transactions running against it which will cause the
log file to become full very quickly.

A log file that is too small can affect system performance because of the overhead
of archiving old log files, allocating new log files, and waiting for a usable log file.

¹ The value of the logfilsiz should be reduced if disk space is scarce, since primary
logs are preallocated at this size.

A log file that is too large can reduce your flexibility when managing archived log
files and copies of log files, since some media may not be able to hold an entire
log file.

If you are using log retention, the current active log file is closed and truncated when
the last application disconnects from a database. When the next connection to the
database occurs, the next log file is used. Therefore, if you understand the logging
requirements of your concurrent applications you may be able to determine a log file
size which will not allocate excessive amounts of wasted space.

For more information, see the description of this parameter in “Configuration
Parameters for Database Logging” on page 309.

Number of Primary Log Files (logprimary)
Configuration Type Database

Parameter Type Configurable

Default [Range] 3 [2 – 128]

Unit of Measure Counter

When Allocated

¹ The database is created

¹ A log is moved to a different location (which occurs when
the logpath parameter is updated)

660 Administration Guide

¹ Following a increase in the value of this parameter
(logprimary), during the next database connection after all
users have disconnected

¹ A log file has been archived and a new log file is allocated
(the logretain or userexit parameter must be enabled)

¹ If the logfilsiz parameter has been changed, the active log
files are re-sized during the next database connection
after all users have disconnected.

When Freed Not freed unless this parameter decreases. If decreased,
unneeded log files are deleted during the next connection to
the database.

Related Parameters

¹ “Size of Log Files (logfilsiz)” on page 659
¹ “Number of Secondary Log Files (logsecond)” on

page 662
¹ “Log Retain Enable (logretain)” on page 667
¹ “User Exit Enable (userexit)” on page 668

The primary log files establish a fixed amount of storage allocated to the recovery log
files. This parameter allows you to specify the number of primary log files to be
preallocated.

Under circular logging, the primary logs are used repeatedly in sequence. That is,
when a log is full, the next primary log in the sequence is used if it is available. A log is
considered available if all units of work with log records in it have been committed or
rolled-back. If the next primary log in sequence is not available, then a secondary log is
allocated and used. Additional secondary logs are allocated and used until the next
primary log in the sequence becomes available or the limit imposed by the logsecond
parameter is reached. These secondary log files are dynamically deallocated as they
are no longer needed by the database manager.

The number of primary and secondary log files must comply with the following equation:

¹ (logprimary + logsecond) <= 128

Recommendation: The value chosen for this parameter depends on a number of
factors, including the type of logging being used, the size of the log files, and the type
of processing environment (for example, length of transactions and frequency of
commits).

Increasing this value will increase the disk requirements for the logs because the
primary log files are preallocated during the very first connection to the database.

If you find that secondary log files are frequently being allocated, you may be able to
improve system performance by increasing the log file size (logfilsiz) or by increasing
the number of primary log files.

 Chapter 20. Configuring DB2 661

For databases that are not frequently accessed, in order to save disk storage, set the
parameter to 2. For databases enabled for roll-forward recovery, set the parameter
larger to avoid the overhead of allocating new logs almost immediately.

You may use the database system monitor to help you size the primary log files.

For more information see the following monitor element descriptions in the System
Monitor Guide and Reference:

¹ sec_log_used_top (maximum secondary log space used)
¹ tot_log_used_top (maximum total log space used)
¹ sec_logs_allocated (secondary logs allocated currently)

Observation of these monitor values over a period of time will aid in better tuning
decisions, as average values may be more representative of your ongoing
requirements.

Number of Secondary Log Files (logsecond)
Configuration Type Database

Parameter Type Configurable

Default [Range] 2 [0 – 126]

Unit of Measure Counter

When Allocated As needed when logprimary is insufficient (see detail below)

When Freed Over time as the database manager determines they will no
longer be required.

Related Parameters

¹ “Size of Log Files (logfilsiz)” on page 659
¹ “Number of Primary Log Files (logprimary)” on page 660
¹ “Log Retain Enable (logretain)” on page 667
¹ “User Exit Enable (userexit)” on page 668

This parameter specifies the number of secondary log files that are created and used
for recovery log files (only as needed). When the primary log files become full, the
secondary log files (of size logfilsiz) are allocated one at a time as needed, up to a
maximum number as controlled by this parameter. An error code will be returned to the
application, and the database will be shutdown, if more secondary log files are required
than are allowed by this parameter.

See “Number of Primary Log Files (logprimary)” on page 660 for more information
about how secondary logs are used.

Recommendation: Use secondary log files for databases that have periodic needs for
large amounts of log space. For example, an application that is run once a month may
require log space beyond that provided by the primary log files. Since secondary log
files do not require permanent file space they are advantageous in this type of situation.

662 Administration Guide

Change the Database Log Path (newlogpath)
Configuration Type Database

Parameter Type Configurable

| Default [Range] Null [any valid path or device]

Related Parameters

¹ “Location of Log Files (logpath)” on page 664
¹ “Database is Consistent (database_consistent)” on

page 680

| This parameter allows you to specify a string of up to 242 bytes to change the location
| where the log files are stored. The string can point to either a path name, or to a raw
| device. If the string points to a path name, it must be a fully qualified path name, not a
| relative path name.

| Note: In a partitioned database environment, the node number is automatically
| appended to the path. This is done to maintain the uniqueness of the path in
| multiple logical node configurations.

| To specify a device, specify a string that the operating system identifies as a device.
| For example:

| ¹ On Windows NT, \\.\d: or \\.\PhysicalDisk5

| Note: You must have Windows NT Version 4.0 with Service Pack 3 installed to be
| able to write logs to a device.

| ¹ On UNIX-based platforms, /dev/rdblog8

| Note: You can only specify a device on AIX, Windows NT, and Solaris platforms.

The new setting does not become the value of logpath until both of the following occur:

¹ The database is in a consistent state, as indicated by the database_consistent
parameter.

¹ All users are disconnected from the database

When the first new connection is made to the database, the database manager will
move the logs to the new location specified by logpath.

Recommendation: Ideally, the log files will be on a physical disk which does not have
high I/O. For instance, avoid putting the logs on the same disk as the operating system
or high volume databases. This will allow for efficient logging activity with a minimum of
overhead such as waiting for I/O.

You may use the database system monitor to track the number of I/O's related to
database logging.

For more information, see the following monitor element descriptions in the System
Monitor Guide and Reference:

¹ log_reads (number of log pages read)

 Chapter 20. Configuring DB2 663

¹ log_writes (number of log pages written).

The preceding data elements return the amount of I/O activity related to database
logging. You can use an operating system monitor tool to collect information about
other disk I/O activity, then compare the two types of I/O activity.

Location of Log Files (logpath)
Configuration Type Database

Parameter Type Informational

Related Parameters “Change the Database Log Path (newlogpath)” on page 663

This parameter contains the current path being used for logging purposes. You cannot
change this parameter directly as it is set by the database manager after a change to
the newlogpath parameter becomes effective.

When a database is created, the recovery log file for it is created in a subdirectory of
the directory containing the database. The default is a subdirectory named SQLOGDIR
under the directory created for the database.

Next Active Log (nextactive)
Configuration Type Database

Parameter Type Informational

This parameter contains the name of log file that will be used once the current active
log is full. When log retention is being used, all log files with a sequence number
greater than or equal to this file's sequence number are not used, although they are
preallocated to enhance performance and ensure the space is available when required.

Log Head Identification (loghead)
Configuration Type Database

Parameter Type Informational

This parameter contains the name of the log file that is currently active.

Database Log Activity
 The following parameters can influence the type and performance of database logging:

¹ “Number of Commits to Group (mincommit)”
¹ “Recovery Range and Soft Checkpoint Interval (softmax)” on page 666
¹ “Log Retain Enable (logretain)” on page 667
¹ “User Exit Enable (userexit)” on page 668

Number of Commits to Group (mincommit)
Configuration Type Database

Parameter Type Configurable

664 Administration Guide

Default [Range] 1 [1 – 25]

Unit of Measure Counter

This parameter allows you to delay the writing of log records to disk until a minimum
number of commits have been performed. This delay can help reduce the database
manager overhead associated with writing log records and as a result improve
performance when you have multiple applications running against a database and many
commits are requested by the applications within a very short time frame.

This grouping of commits will only occur when the value of this parameter is greater
than one and when the number of applications connected to the database is greater
than or equal to the value of this parameter. When commit grouping is being performed,
application commit requests are held until either one second has elapsed or the number
of commit requests equals the value of this parameter.

| Changes to the value specified for this parameter take effect immediately; you do not
| have to wait until all applications disconnect from the database.

Recommendation: Increase this parameter from its default value if multiple read/write
applications typically request concurrent database commits. This will result in more
efficient logging file I/O as it will occur less frequently and write more log records each
time it does occur.

You could also sample the number of transactions per second and adjust this
parameter to accommodate the peak number of transactions per second (or some large
percentage of it). Accommodating peak activity would minimize the overhead of writing
log records during heavy load periods.

If you increase mincommit, you may also need to increase the logbufsz parameter to
avoid having a full log buffer force a write during these heavy load periods. In this case,
the logbufsz should be equal to:

mincommit * (log space used, on average, by a transaction)

You may use the database system monitor to help you tune this parameter in the
following ways:

¹ Calculating the peak number of transactions per second:

Taking monitor samples throughout a typical day, you can determine your heavy
load periods. You can calculate the total transactions by adding the following
monitor elements:

– commit_sql_stmts (commit statements attempted)
– rollback_sql_stmts (rollback statements attempted)

Using this information and the available timestamps, you can calculate the number
of transactions per second.

¹ Calculating the log space used per transaction:

Using sampling techniques over a period of time and a number of transactions, you
can calculate an average of the log space used with the following monitor element:

 Chapter 20. Configuring DB2 665

– log_space_used (unit of work log space used)

For more information about the database system monitor, see the System Monitor
Guide and Reference.

Recovery Range and Soft Checkpoint Interval (softmax)
Configuration Type Database

Parameter Type Configurable

Default [Range] 100 [1 – 100 * logprimary]

Unit of Measure Percentage of total number of primary log files

Related Parameters

¹ “Size of Log Files (logfilsiz)” on page 659
¹ “Number of Primary Log Files (logprimary)” on page 660

This parameter is used to:

¹ Influence the number of logs that need to be recovered following a crash (such as
a power failure). For example, if the default value is used, the database manager
will try to keep the number of logs that need to be recovered to 1. If you specify
300 as the value of this parameter, the database manager will try to keep the
number of logs that need to be recovered to 3.

To influence the number of logs required for crash recovery, the database manager
uses this parameter to trigger the page cleaners to ensure that pages older than
the specified recovery window are already written to disk.

¹ Determine the frequency of soft checkpoints.

At the time of a database failure resulting from an event such as a power failure, there
may have been changes to the database which:

¹ Have not been committed, but updated the data in the buffer pool
¹ Have been committed, but have not been written from the buffer pool to the disk
¹ Have been committed and written from the buffer pool to the disk.

When a database is restarted, the log files will be used to perform a crash recovery of
the database which ensures that the database is left in a consistent state (that is, all
committed transactions are applied to the database and all uncommitted transactions
are not applied to the database).

To determine which records from the log file need to be applied to the database, the
database manager uses a log control file. This log control file is periodically written to
disk, and, depending on the frequency of this event, the database manager may be
applying log records of committed transactions or applying log records that describe
changes that have already been written from the buffer pool to disk. These log records
have no impact on the database, but applying them introduces some overhead into the
database restart process.

666 Administration Guide

The log control file is always written to disk when a log file is full, and during soft
checkpoints. You can use this configuration parameter to trigger additional soft
checkpoints.

The timing of soft checkpoints is based on the difference between the “current state”
and the “recorded state,” given as a percentage of the logfilsiz. The “recorded state” is
determined by the oldest valid log record indicated in the log control file on disk, while
the “current state” is determined by the log control information in memory. (The oldest
valid log record is the first log record that the recovery process would read.) The soft
checkpoint will be taken if the value calculated by the following formula is greater than
or equal to the value of this parameter:

((space between recorded and current states) / logfilsiz) * 100 * logprimary

Recommendation: You may want to increase or reduce the value of this parameter,
depending on whether your acceptable recovery window is greater than or less than
one log file. Lowering the value of this parameter will cause the database manager both
to trigger the page cleaners more often and to take more frequent soft checkpoints.
These actions can reduce both the number of log records that need to be processed
and the number of redundant log records that are processed during crash recovery.

Note however, that more page cleaner triggers and more frequent soft checkpoints
increase the overhead associated with database logging, which can impact the
performance of the database manager. Also, more frequent soft checkpoints may not
reduce the time required to restart a database, if you have:

¹ Very long transactions with few commit points.
¹ A very large buffer pool and the pages containing the committed transactions are

not written back to disk very frequently. (Note that the use of asynchronous page
cleaners can help avoid this situation. See “Number of Asynchronous Page
Cleaners (num_iocleaners)” on page 642.)

In both of these cases, the log control information kept in memory does not change
frequently and there is no advantage in writing the log control information to disk,
unless it has changed.

Log Retain Enable (logretain)
Configuration Type Database

Parameter Type Configurable

Default [Range] No [Yes; No]

Related Parameters

¹ “User Exit Enable (userexit)” on page 668
¹ “Log Retain Status Indicator (log_retain_status)” on

page 680
¹ “Backup Pending Indicator (backup_pending)” on

page 680

 Chapter 20. Configuring DB2 667

If either logretain or userexit are enabled, the active log files will be retained and
become online archive log files for use in roll-forward recovery. This is called log
retention logging.

After logretain, or userexit, or both of these parameters are enabled, you must make a
full backup of the database. This state is indicated by the backup_pending flag
parameter.

If both of these parameters are de-selected, roll-forward recovery becomes unavailable
for the database because logs will no longer be retained. In this case, the database
manager deletes all log files in the logpath directory (including online archive log files),
allocates new active log files, and reverts to circular logging.

User Exit Enable (userexit)
Configuration Type Database

Parameter Type Configurable

Default [Range] No [Yes; No]

Related Parameters

¹ “Log Retain Enable (logretain)” on page 667
¹ “User Exit Status Indicator (user_exit_status)” on

page 681
¹ “Backup Pending Indicator (backup_pending)” on

page 680

If this parameter is enabled, log retention logging is performed regardless of how the
logretain parameter is set. This parameter also indicates that a user exit program
should be used to archive and retrieve the log files. Log files are archived when the
database manager closes the log file. They are retrieved when the ROLLFORWARD
utility needs to use them to restore a database.

After logretain, or userexit, or both of these parameters are enabled, you must make a
full backup of the database. This state is indicated by the backup_pending flag
parameter.

If both of these parameters are de-selected, roll-forward recovery becomes unavailable
for the database because logs will no longer be retained. In this case, the database
manager deletes all log files in the logpath directory (including online archive log files),
allocates new active log files, and reverts to circular logging.

For more information on the user exit program, see Appendix L, “User Exit for
Database Recovery” on page 1055.

 Recovery
 The following parameters affect various aspects of database recovery:

¹ “Auto Restart Enable (autorestart)” on page 669
¹ “Index Re-creation Time (indexrec)” on page 669

668 Administration Guide

¹ “Default Number of Load Recovery Sessions (dft_loadrec_ses)” on page 671
¹ “Recovery History Retention Period (rec_his_retentn)” on page 671

See also “Distributed Unit of Work Recovery” on page 673.

The following parameters are used when working with ADSTAR Distributed Storage
Manager (ADSM):

¹ “ADSTAR Distributed Storage Manager Management Class (adsm_mgmtclass)” on
page 671

¹ “ADSTAR Distributed Storage Manager Password (adsm_password)” on page 672
¹ “ADSTAR Distributed Storage Manager Node Name (adsm_nodename)” on

page 672
¹ “ADSTAR Distributed Storage Manager Owner Name (adsm_owner)” on page 673

Auto Restart Enable (autorestart)
Configuration Type Database

Parameter Type Configurable

Default [Range] On [On; Off]

When this parameter is set on, the database manager automatically calls the restart
database utility, if needed, when an application connects to a database. Crash recovery
is the operation performed by the restart database utility. It is performed if the database
terminated abnormally while applications were connected to it. An abnormal termination
of the database could be caused by a power failure or a system software failure. It
applies any committed transactions that were in the database buffer pool but were not
written to disk at the time of the failure. It also backs out any uncommitted transactions
that may have been written to disk.

If autorestart is not enabled, then an application that attempts to connect to a database
which needs to have crash recovery performed (needs to be restarted) will receive a
SQL1015N error. In this case, the application can call the restart database utility, or you
can restart the database by selecting the restart operation of the recovery tool.

Index Re-creation Time (indexrec)
Configuration Type Database and Database Manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range]

UNIX Database Mgr. restart [restart; access]

OS/2 and NT Database Mgr.
access [restart; access]

 Chapter 20. Configuring DB2 669

Database Use system setting [system; restart;
access]

Related Parameters “Auto Restart Enable (autorestart)” on page 669

This parameter indicates when the database manager will attempt to re-build invalid
indexes. There are three possible settings for this parameter:

SYSTEM use system setting which will cause invalid indexes to be re-built at
the time specified in the database manager configuration file. (Note:
This setting is only valid for database configurations.)

The API constant for this value is SQLF_INX_REC_SYSTEM. The
numeric value is 0.

ACCESS during index access which will cause invalid indexes to be re-built
when the index is first accessed.

The API constant for this value is SQLF_INX_REC_REFERENCE.
The numeric value is 1.

RESTART during database restart which will cause invalid indexes to be re-built
when a RESTART DATABASE command is either explicitly or
implicitly issued. Note that a RESTART DATABASE command is
implicitly issued if the autorestart parameter is enabled.

The API constant for this value is SQLF_INX_REC_RESTART. The
numeric value is 2.

Indexes can become invalid when fatal disk problems occur. If this happens to the data
itself, the data could be lost. However, if this happens to an index, the index can be
recovered by re-creating it. If an index is re-built while users are connected to the
database, two problems could occur:

¹ An unexpected degradation in response time may occur as the index file is
re-created. Users accessing the table and using this particular index would wait
while the index was being re-built.

¹ Unexpected locks may be held after index re-creation, especially if the user
transaction that caused the index to be re-created never performed a COMMIT or
ROLLBACK.

Recommendation: The best choice for this option on a high-user server and if restart
time is not a concern, would be to have the index re-built at DATABASE RESTART
time as part of the process of bringing the database back online after a crash.

Setting this parameter to “ACCESS” will result in a degradation of the performance of
the database manager while the index is being re-created. Any user accessing that
specific index or table would have to wait until the re-creating is complete.

If this parameter is set to “RESTART,” the time taken to restart the database will be
longer due to index re-creation but normal processing would not be impacted once the
database has been brought back online.

670 Administration Guide

Default Number of Load Recovery Sessions (dft_loadrec_ses)
Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [1 – 30 000]

Unit of Measurement Counter

This parameter specifies the default number of sessions that will be used during the
recovery of a table load. The value should be set to an optimal number of I/O sessions
to be used to retrieve a load copy. The retrieval of a load copy is an operation similar to
restore. You can override this parameter through entries in the copy location file
specified by the environment variable DB2LOADREC.

The default number of buffers used for load retrieval is two more than the value of this
parameter. You can also override the number of buffers in the copy location file.

This parameter is applicable only if roll forward recovery is enabled.

For more information about load recovery, see “Creating a Copy Image of Loaded
Data” on page 222.

Recovery History Retention Period (rec_his_retentn)
Configuration Type Database

Parameter Type Configurable

Default [Range] 366 [-1; 0 – 30 000]

Unit of Measure Days

This parameter is used to specify the number of days that historical information on
backups should be retained. If the recovery history file is not needed to keep track of
backups, restores, and loads, this parameter can be set to a small number.

If value of this parameter is -1, the recovery history file can only be pruned explicitly
using the available commands or APIs. If the value is not -1, the recovery history file is
pruned after every full database backup.

No matter how small the retention period, the most recent full database backup plus its
restore set will always be kept, unless you use the PRUNE utility with the FORCE
option. For more information about this utility, see the Command Reference .

ADSTAR Distributed Storage Manager Management Class
(adsm_mgmtclass)
Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

 Chapter 20. Configuring DB2 671

The ADSTAR Distributed Storage Manager management class tells how the ADSM
server should manage the backup versions of the objects being backed up.

The default is that there is no ADSM management class.

The management class is assigned from the ADSTAR Distributed Storage Manager
administrator. Once assigned, you should set this parameter to the management class
name. When performing any ADSM backup, the database manager uses this parameter
to pass the management class to ADSM.

ADSTAR Distributed Storage Manager Password (adsm_password)
Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

This parameter is used to override the default setting for the password associated with
the ADSTAR Distributed Storage Manager (ADSM) product. The password is needed to
allow you to restore a database that was backed up to ADSM from another node.

Note: If the adsm_nodename is overridden during a backup done with DB2 (for
example, with the BACKUP DATABASE command), the adsm_password may
also have to be set.

The default is that you can only restore a database from ADSM on the same node from
which you did the backup. It is possible for the adsm_nodename to be overridden
during a backup done with DB2.

For more information on ADSTAR Distributed Storage Manager, see “ADSTAR
Distributed Storage Manager” on page 334.

ADSTAR Distributed Storage Manager Node Name
(adsm_nodename)
Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

This parameter is used to override the default setting for the node name associated
with the ADSTAR Distributed Storage Manager (ADSM) product. The node name is
needed to allow you to restore a database that was backed up to ADSM from another
node.

The default is that you can only restore a database from ADSM on the same node from
which you did the backup. It is possible for the adsm_nodename to be overridden
during a backup done through DB2 (for example, with the BACKUP DATABASE
command).

672 Administration Guide

For more information on ADSTAR Distributed Storage Manager, see “ADSTAR
Distributed Storage Manager” on page 334.

ADSTAR Distributed Storage Manager Owner Name (adsm_owner)
Configuration Type Database

Parameter Type Configurable

Default [Range] Null [any string]

This parameter is used to override the default setting for the owner associated with the
ADSTAR Distributed Storage Manager (ADSM) product. The owner name is needed to
allow you to restore a database that was backed up to ADSM from another node. It is
possible for the adsm_owner to be overridden during a backup done through DB2 (for
example, with the BACKUP DATABASE command).

Note: The owner name is case sensitive.

The default is that you can only restore a database from ADSM on the same node from
which you did the backup.

For more information on ADSTAR Distributed Storage Manager, see “ADSTAR
Distributed Storage Manager” on page 334.

Distributed Unit of Work Recovery
 The following parameters affect the recovery of Distributed Unit of Work (DUOW)
transactions:

¹ “Transaction Manager Database Name (tm_database)”
¹ “Transaction Resync Interval (resync_interval)” on page 674

| ¹ “Sync Point Manager Log File Path (spm_log_path)” on page 674
¹ “Sync Point Manager Name (spm_name)” on page 675
¹ “Sync Point Manager Log File Size (spm_log_file_sz)” on page 675
¹ “Sync Point Manager Resync Agent Limit (spm_max_resync)” on page 676

Transaction Manager Database Name (tm_database)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 1ST_CONN [any valid database name]

This parameter identifies name of the Transaction Manager (TM) database for each
DB2 instance. A TM database can be a local database or a remote database that is not

 Chapter 20. Configuring DB2 673

accessed through DRDA protocols. The TM database is a database that is used as a
logger and coordinator, and is used to perform recovery for indoubt transactions.

You may set this parameter to 1ST_CONN which will set the TM database to be the
first database to which a user connects.

For more information, see Chapter 8, “Distributed Databases” on page 345.

Recommendation: For simplified administration and operation you may wish to create
a few databases over a number of instances and use these databases exclusively as
TM databases.

Transaction Resync Interval (resync_interval)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

| Default [Range] 180 [1 – 60 000]

Unit of Measurement Seconds

This parameter specifies the time interval in seconds for which a Transaction Manager
(TM), Resource Manager (RM) or Sync Point Manager (SPM) should retry the recovery
of any outstanding indoubt transactions found in the TM, the RM, or the SPM. This
parameter is applicable when you have transactions running in a distributed unit of work
(DUOW) environment.

For more information see Chapter 8, “Distributed Databases” on page 345.

Recommendation: If, in your environment, indoubt transactions will not interfere with
other transactions against your database, you may wish to increase the value of this
parameter. If you are using a DB2 Connect gateway to access DRDA2 Application
Servers, you should consider the effect indoubt transactions may have at the
Application Servers even though there will be no interference with local data access. If
there are no indoubt transactions, the performance impact will be minimal.

| Sync Point Manager Log File Path (spm_log_path)
| Configuration Type Database manager

| Applies to

| ¹ Database Server with local and remote clients
| ¹ Database Server with local clients
| ¹ Partitioned Database Server with local and remote clients

| Parameter Type Configurable

674 Administration Guide

| Default sqllib/spmlog [any valid path or device]

| This parameter specifies the directory where the Sync Point Manager (SPM) logs are
| written. By default, the logs are written to the sqllib/spmlog directory, which, in a
| high-volume transaction environment, can cause an I/O bottleneck. Use this parameter
| to have the SPM log files placed on a faster disk than the current sqllib/spmlog
| directory. This allows for better concurrency among the SPM agents.

| For more information on the Sync Point Manager, see the appendix on “LU 6.2 Sync
| Point Manager Considerations” in the Quick Beginnings or the DB2 Connect Enterprise
| Edition Quick Beginnings appropriate to your operating system environment. For more
| information on recovery of indoubt DRDA transactions, see “Recovery of Indoubt
| Transactions on the Host” on page 361.

Sync Point Manager Name (spm_name)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null [any valid database name]

This parameter identifies the name of the Sync Point Manager (SPM) instance to the
database manager. The spm_name must be defined in the system database directory
and, if remote, in the node directory.

For more information on the Sync Point Manager, see the appendix on “LU 6.2 Sync
Point Manager Considerations” in the Quick Beginnings or the DB2 Connect Enterprise
Edition Quick Beginnings appropriate to your operating system environment. For more
information on recovery of indoubt DRDA transactions, see “Recovery of Indoubt
Transactions on the Host” on page 361.

Sync Point Manager Log File Size (spm_log_file_sz)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 256 [4 – 1 000]

Unit of Measure Pages (4KB)

 Chapter 20. Configuring DB2 675

This parameter identifies the Sync Point Manager (SPM) log file size in 4K pages. The
log file is contained in the spmlog sub-directory under sqllib and is created the first
time SPM is started.

For more information on the Sync Point Manager, see the appendix on “LU 6.2 Sync
Point Manager Considerations” in the Quick Beginnings or the DB2 Connect Enterprise
Edition Quick Beginnings appropriate to your operating system environment.

For more information on recovery of indoubt DRDA transactions, see “Recovery of
Indoubt Transactions on the Host” on page 361.

Recommendation: The Sync Point Manager log file size should be large enough to
maintain performance, but small enough to prevent wasted space. The size required
depends on the number of transactions using protected conversations, and how often
COMMIT or ROLLBACK is issued.

To change the size of the SPM log file:

1. Determine that there are no indoubt transactions by using the LIST DRDA
INDOUBT TRANSACTIONS command.

2. If there are none, stop the database manager.
3. Update the Database Manager Configuration with a new SPM log file size.
4. Go to the $HOME/sqllib directory and issue rm -fr spmlog to delete the current

SPM log. (Note: This shows the AIX command. Other systems may require a
different remove or delete command.)

5. Start the database manager. (A new SPM log of the specified size is created
during the startup of the database manager.)

Sync Point Manager Resync Agent Limit (spm_max_resync)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 20 [10 – 256]

This parameter identifies the number of agents that can simultaneously perform resync
operations.

For more information on recovery of indoubt DRDA transactions, see “Recovery of
Indoubt Transactions on the Host” on page 361. For more information on the Sync
Point Manager, see the appendix on “LU 6.2 Sync Point Manager Considerations” in
the Quick Beginnings or the DB2 Connect Enterprise Edition Quick
Beginningsappropriate to your operating system environment.

676 Administration Guide

 Database Management
 A number of parameters are available which provide information about your database
or influence the management of your database. These are grouped as follows:

 ¹ “Attributes”
¹ “Status” on page 679
¹ “Compiler Settings” on page 681.

 Attributes
 The following parameters provide general information about the database:

¹ “Configuration File Release Level (release)”
¹ “Database Release Level (database_level)”
¹ “Territory for the Database (territory)” on page 678
¹ “Country code for the Database (country)” on page 678
¹ “Codeset for the Database (codeset)” on page 678
¹ “Code Page for the Database (codepage)” on page 678
¹ “Collating Information (collate_info)” on page 678
¹ “Copy Protection Enable (copyprotect)” on page 679

With the exception of copyprotect, these parameters are provided for informational
purposes only.

Configuration File Release Level (release)
Configuration Type Database manager, Database

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Informational

Related Parameters “Database Release Level (database_level)”

This parameter specifies the release level of the configuration file.

Database Release Level (database_level)
Configuration Type Database

Parameter Type Informational

Related Parameters “Configuration File Release Level (release)”

This parameter indicates the release level of the database manager which can use the
database. In the case of an incomplete or failed migration, this parameter will reflect the
release level of the unmigrated database and may differ from the release parameter
(the release level of the database configuration file). Otherwise the value of
database_level will be identical to value of the release parameter.

 Chapter 20. Configuring DB2 677

Territory for the Database (territory)
Configuration Type Database

Parameter Type Informational

Related Parameters “Country code for the Database (country)”

This parameter shows the territory used to create the database. Territory is used by the
database manager to determine country parameter values. For more information about
how the database manager uses the territory, see the Quick Beginnings .

Country code for the Database (country)
Configuration Type Database

Parameter Type Informational

Related Parameters “Territory for the Database (territory)”

This parameter shows the country code used to create the database. The country
parameter is derived based on the territory parameter. For more information, see the
Quick Beginnings .

Codeset for the Database (codeset)
Configuration Type Database

Parameter Type Informational

Related Parameters “Code Page for the Database (codepage)”

This parameter shows the codeset that was used to create the database. Codeset is
used by the database manager to determine codepage parameter values. For more
information about how the database manager uses the codeset, see the Quick
Beginnings .

Code Page for the Database (codepage)
Configuration Type Database

Parameter Type Informational

Related Parameters “Codeset for the Database (codeset)”

This parameter shows the code page that was used to create the database. The
codepage parameter is derived based on the codeset parameter. For more information,
see the Quick Beginnings .

Collating Information (collate_info)
This parameter can only be displayed using the GET DATABASE CONFIGURATION
API. It cannot be displayed through the command line processor or the Control Center.

Configuration Type Database

Parameter Type Informational

678 Administration Guide

This parameter provides 260 bytes of database collating information. The first 256 bytes
specify the database collating sequence, where byte “n” contains the sort weight of the
code point whose underlying decimal representation is “n” in the code page of the
database.

The last 4 bytes contain internal information about the type of the collating sequence.
You can treat it as an integer applicable to the platform of the database. There are
three values:

¹ 0 – The sequence contains non-unique weights
¹ 1 – The sequence contains all unique weights
¹ 2 – The sequence is the identity sequence, for which strings are compared byte for

byte.

If you use this internal type information, you need to consider byte reversal when
retrieving information for a database on a different platform.

You can specify the collating sequence at database creation time.

Copy Protection Enable (copyprotect)
Configuration Type Database

Parameter Type Configurable

Default [Range] No [Yes; No]

This parameter enables the copy-protect attribute and is disabled by default. Prior to
Version 2 of the database manager, the default was to enable the copy-protect
attribute.

This parameter does not apply to UNIX-based environments.

The backup database and restore database utilities are not affected by the copyprotect
parameter. It is possible to back up a copy-protected database, restore it to a different
workstation, and then catalog and access the database.

Attention: Remove copy-protection from all databases before reinstalling either the
database manager or the operating system. If you do not remove copy-protection, you
will receive an error when you attempt to access the database. After you have
reinstalled, you can enable copy-protection.

 Status
 The following parameters provide information about the state of the database:

¹ “Backup Pending Indicator (backup_pending)” on page 680
¹ “Database is Consistent (database_consistent)” on page 680
¹ “Roll Forward Pending Indicator (rollfwd_pending)” on page 680
¹ “Log Retain Status Indicator (log_retain_status)” on page 680
¹ “User Exit Status Indicator (user_exit_status)” on page 681
¹ “Restore Pending (restore_pending)” on page 681
¹ “MultiPage File Allocation Enabled (multipage_alloc)” on page 681

 Chapter 20. Configuring DB2 679

Backup Pending Indicator (backup_pending)
Configuration Type Database

Parameter Type Informational

| If set on, this parameter indicates that you must do a full backup of the database before
| accessing the it. This parameter is only on if the database configuration is changed so
| that the database moves from being nonrecoverable to recoverable (that is, initially both
| the logretain and userexit parameters were set to NO, then either one or both of these
| parameters is set to YES, and the update to the database configuration is accepted).

Database is Consistent (database_consistent)
Configuration Type Database

Parameter Type Informational

This parameter indicates whether the database is in a consistent state.

YES indicates that all transactions have been committed or rolled back so that the data
is consistent. If the system “crashes” while the database is consistent, you do not need
to take any special action to make the database usable.

NO indicates that a transaction is pending or some other task is pending on the
database and the data is not consistent at this point. If the system “crashes” while the
database is not consistent, you will need to restart the database using the RESTART
DATABASE command to make the database usable. For more information about the
RESTART DATABASE command, see the Command Reference.

Roll Forward Pending Indicator (rollfwd_pending)
Configuration Type Database

Parameter Type Informational

This parameter can indicate one of the following states:

¹ DATABASE , meaning that a roll-forward recovery procedure is required for this
database

¹ TABLESPACE , meaning that one or more table space needs to be rolled forward
¹ NO, meaning that the database is usable and no roll-forward recovery is required.

The recovery (using ROLLFORWARD DATABASE) must complete before you can
access the database or table space. For more information about ROLLFORWARD
DATABASE, see the Command Reference .

Log Retain Status Indicator (log_retain_status)
Configuration Type Database

Parameter Type Informational

Related Parameters “Log Retain Enable (logretain)” on page 667

680 Administration Guide

If set, this parameter indicates that log files are being retained for use in roll-forward
recovery.

This parameter is set when the logretain parameter setting becomes active.

User Exit Status Indicator (user_exit_status)
Configuration Type Database

Parameter Type Informational

Related Parameters “User Exit Enable (userexit)” on page 668

If set ON, this indicates that the database manager is enabled for roll-forward recovery
and that the user exit program will be used to archive and retrieve log files when called
by the database manager.

Restore Pending (restore_pending)
Configuration Type Database

Parameter Type Informational

This parameter states whether a RESTORE PENDING status exists in the database.

MultiPage File Allocation Enabled (multipage_alloc)
Configuration Type Database

Parameter Type Informational

Multipage file allocation is used to improve insert performance. It applies to SMS table
spaces only. If enabled, all SMS table spaces are affected: there is no selection
possible for individual SMS table spaces.

The default for the parameter is NO: multipage file allocation is not enabled.

Following database creation, the parameter may be set to YES which indicates that
multipage file allocation is enabled. This is done using the db2empfa tool. Once set to
YES, the parameter cannot be changed back to NO.

 Compiler Settings
 The following parameters provide information to influence the compiler:

¹ “Continue upon Arithmetic Exceptions (dft_sqlmathwarn)”
¹ “Default Degree (dft_degree)” on page 683
¹ “Default Query Optimization Class (dft_queryopt)” on page 683
¹ “Number of Frequent Values Retained (num_freqvalues)” on page 684
¹ “Number of Quantiles for Columns (num_quantiles)” on page 685

Continue upon Arithmetic Exceptions (dft_sqlmathwarn)
Configuration Type Database

Parameter Type Configurable

 Chapter 20. Configuring DB2 681

Default [Range] No [No, Yes]

This parameter sets the default value that determines the handling of arithmetic errors
and retrieval conversion errors as errors or warnings during SQL statement compilation.
For static SQL statements, the value of this parameter is associated with the package
at bind time. For dynamic SQL DML statements, the value of this parameter is used
when the statement is prepared.

Attention: If you change the dft_sqlmathwarn value for a database, the behaviour of
check constraints, triggers, and views that include arithmetic expressions may change.
This may in turn have an impact on the data integrity of the database. You should only
change the setting of dft_sqlmathwarn for a database after carefully evaluating how the
new arithmetic exception handling behaviour may impact check constraints, triggers,
and views. Once changed, subsequent changes require the same careful evaluation.

As an example, consider the following check constraint, which includes a division
arithmetic operation:

A/B > 0

When dft_sqlmathwarn is “No” and an INSERT with B=0 is attempted, the division by
zero is processed as an arithmetic error. The insert operation fails because DB2 cannot
check the constraint. If dft_sqlmathwarn is changed to “Yes,” the division by zero is
processed as an arithmetic warning with a NULL result. The NULL result causes the “>”
predicate to evaluate to UNKNOWN and the insert operation succeeds. If
dft_sqlmathwarn is changed back to “No,” an attempt to insert the same row will fail,
because the division by zero error prevents DB2 from evaluating the constraint. The
row inserted with B=0 when dft_sqlmathwarn was “Yes” remains in the table and can
be selected. Updates to the row that cause the constraint to be evaluated will fail, while
updates to the row that do not require constraint re-evaluation will succeed.

Before changing dft_sqlmathwarn from “No” to “Yes,” you should consider rewriting the
constraint to explicitly handle nulls from arithmetic expressions. For example:

(A/B > 0) AND (CASE

WHEN A IS NULL THEN 1

WHEN B IS NULL THEN 1

WHEN A/B IS NULL THEN 0

 ELSE 1

 END

= 1)

can be used if both A and B are nullable. And, if A or B is not-nullable, the
corresponding IS NULL WHEN-clause can be removed.

Before changing dft_sqlmathwarn from “Yes” to “No,” you should first check for data
that may become inconsistent, for example by using predicates such as the following:

WHERE A IS NOT NULL AND B IS NOT NULL AND A/B IS NULL

When inconsistent rows are isolated, you should take appropriate action to correct the
inconsistency before changing dft_sqlmathwarn. You can also manually re-check

682 Administration Guide

constraints with arithmetic expressions after the change. To do this, first place the
affected tables in a check pending state (with the OFF clause of the SET
CONSTRAINTS statement), then request that the tables be checked (with the
IMMEDIATE CHECKED clause of the SET CONSTRAINTS statement). Inconsistent
data will be indicated by an arithmetic error, which prevents the constraint from being
evaluated.

Recommendation : Use the default setting of no, unless you specifically require queries
to be processed that include arithmetic exceptions. Then specify the value of yes. This
situation can occur if you are processing SQL statements that, on other database
managers, provide results regardless of the arithmetic exceptions that occur.

Default Degree (dft_degree)
Configuration Type Database

Parameter Type Configurable

Default [Range] 1 [-1, 1 – 32 767]

Related Parameters “Maximum Query Degree of Parallelism (max_querydegree)”
on page 700

This parameter specifies the default value for the CURRENT DEGREE special register
and the DEGREE bind option.

The default value is 1.

A value of 1 means no intra-partition parallelism. A value of -1 means the optimizer
determines the degree of intra-partition parallelism based on the number of processors
and the type of query.

The degree of intra-partition parallelism for a SQL statement is specified at statement
compilation time using the CURRENT DEGREE special register or the DEGREE bind
option. The maximum runtime degree of intra-partition parallelism for an active
application is specified using the SET RUNTIME DEGREE command. The Maximum
Query Degree of Parallelism (max_querydegree) configuration parameter specifies the
maximum query degree of intra-partition parallelism for all SQL queries.

The actual runtime degree used is the lowest of:

¹ max_querydegree configuration parameter
¹ application runtime degree
¹ SQL statement compilation degree

Default Query Optimization Class (dft_queryopt)
Configuration Type Database

Parameter Type Configurable

Default [Range] 5 [0 – 9]

Unit of Measurement Query Optimization Class (see below)

 Chapter 20. Configuring DB2 683

The query optimization class is used to direct the optimizer to use different degrees of
optimization when compiling SQL queries. This parameter provides additional flexibility
by setting the default query optimization class used when neither the SET CURRENT
QUERY OPTIMIZATION statement nor the QUERYOPT bind command are used.

The query optimization classes currently defined are:

0 - minimal query optimization.
1 - roughly comparable to DB2 Version 1.
2 - slight optimization. Specifies a level of optimization higher than that of Version
1, but at significantly less optimization cost than levels 3 and above, especially for
very complex queries.
3 - moderate query optimization.
5 - significant query optimization with heuristics to limit the effort expended on
selecting an access plan. This is the default.
7 - significant query optimization.
9 - maximal query optimization

Recommendation: For more information and guidance for selecting a suitable query
optimization class, see “Adjusting the Optimization Class” on page 406.

For more information on how a program can retrieve and modify database configuration
parameters, see API Reference.

Number of Frequent Values Retained (num_freqvalues)
Configuration Type Database

Parameter Type Configurable

Default [Range] 10 [0 – 32 767]

Unit of Measure Counter

Related Parameters

¹ “Number of Quantiles for Columns (num_quantiles)” on
page 685

¹ “Statistics Heap Size (stat_heap_sz)” on page 624

This parameter allows you to specify the number of “most frequent values” that will be
collected when the WITH DISTRIBUTION option is specified on the RUNSTATS
command. Increasing the value of this parameter increases the amount of statistics
heap (stat_heap_sz) used when collecting statistics.

The “most frequent value” statistics help the optimizer understand the distribution of
data values within a column. A higher value results in more information being available
to the SQL optimizer but requires additional catalog space. When 0 is specified, no
frequent-value statistics are retained, even if you request that distribution statistics be
collected.

Updating this parameter can help the optimizer obtain better selectivity estimates for
some predicates (=, <, >, IS NULL, IS NOT NULL) over data that is non-uniformly

684 Administration Guide

distributed. More accurate selectivity calculations may result in the choice of more
efficient access plans.

After changing the value of this parameter, you need to:

¹ Run the RUNSTATS command after all users have disconnected from the
database and you have reconnected to the database

¹ Rebind any packages containing static SQL.

For more information, see “Collecting and Using Distribution Statistics” on page 442.

Recommendation: In order to update this parameter you should determine the degree
of non-uniformity in the most important columns (in the most important tables) that
typically have selection predicates. This can be done using an SQL SELECT statement
that provides an ordered ranking of the number of occurrences of each value in a
column. You should not consider uniformly distributed, unique, long, or LOB columns. A
reasonable practical value for this parameter lies in the range of 10 to 100.

Note that the process of collecting frequent value statistics requires significant CPU and
memory (stat_heap_sz) resources.

Number of Quantiles for Columns (num_quantiles)
Configuration Type Database

Parameter Type Configurable

Default [Range] 20 [0 – 32 767]

Unit of Measure Counter

Related Parameters

¹ “Number of Frequent Values Retained (num_freqvalues)”
on page 684

¹ “Statistics Heap Size (stat_heap_sz)” on page 624

This parameter controls the number of quantiles that will be collected when the WITH
DISTRIBUTION option is specified on the RUNSTATS command. Increasing the value
of this parameter increases the amount of statistics heap (stat_heap_sz) used when
collecting statistics.

The “quantile” statistics help the optimizer understand the distribution of data values
within a column. A higher value results in more information being available to the SQL
optimizer but requires additional catalog space. When 0 or 1 is specified, no quantile
statistics are retained, even if you request that distribution statistics be collected.

Updating this parameter can help obtain better selectivity estimates for range predicates
over data that is non-uniformly distributed. Among other optimizer decisions, this
information has a strong influence on whether an index scan or a table scan will be
chosen. (It is more efficient to use a table scan to access a range of values that occur
frequently and it is more efficient to use an index scan for a range of values that occur
infrequently.)

 Chapter 20. Configuring DB2 685

After changing the value of this parameter, you need to:

¹ Run the RUNSTATS command after all users have disconnected from the
database and you have reconnected to the database

¹ Rebind any packages containing static SQL.

For more information, see “Collecting and Using Distribution Statistics” on page 442.

Recommendation: This default value for this parameter guarantees a maximum
estimation error of approximately 2.5% for any single-sided range predicate (>, >=, <, or
<=), and a maximum error of 5% for any BETWEEN predicate. A rough rule of thumb
for determining the number of quantiles is:

¹ Determine the maximum error that is tolerable in estimating the number of rows of
any range query, as a percentage, P

¹ The number of quantiles should be approximately 100/P if most of your predicates
are BETWEEN predicates, and 50/P if most of your predicates are other types of
range predicates (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4% for
BETWEEN predicates and of 2% for ">" predicates. A reasonable practical value for
this parameter lies in the range of 10 to 50.

 Communications
 The following groups of parameters provide information about using DB2 in a
client/server environment:

¹ “Communication Protocol Setup”
¹ “Distributed Services” on page 690
¹ “DB2 Discovery” on page 694

Communication Protocol Setup
 You can use the following parameters to configure your database clients and database
servers:

¹ “NetBIOS Workstation Name (nname)”
¹ “TCP/IP Service Name (svcename)” on page 687
¹ “APPC Transaction Program Name (tpname)” on page 688
¹ “IPX/SPX File Server Name (fileserver)” on page 688
¹ “IPX/SPX DB2 Server Object Name (objectname)” on page 689
¹ “IPX/SPX Socket Number (ipx_socket)” on page 689

NetBIOS Workstation Name (nname)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients

686 Administration Guide

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null

This parameter allows you to assign a name for each node, or workstation, in the
NetBIOS LAN environment. This nname is the basis for the actual NetBIOS names that
will be registered for a NetBIOS protocol workstation. You must ensure that each node
in the NetBIOS LAN environment has a unique nname.

Since the NetBIOS protocol establishes its communication connections using these
NetBIOS names, the nname parameter must be set for both client and server nodes.

Client applications must know the nname of the server that contains the database to be
accessed. The server's nname must be cataloged into the client node directories as the
“server NNAME” parameter using the CATALOG NETBIOS NODE command, for
example.

If nname at the server node changes to a new name, all clients accessing databases
on that server must catalog this new name for the server.

TCP/IP Service Name (svcename)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Partitioned Database Server with local and remote clients

Database Server with local and remote clients

Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null

This parameter contains the name of the TCP/IP port which a database server will use
to await communications from remote client nodes. This name must be the first of two
consecutive ports reserved for use by the database manager; the second port is used
to handle interrupt requests from down-level clients.

In order to accept connection requests from a database client using TCP/IP, the
database server must be listening on a port designated to that server. The system
administrator for the database server must reserve a port (number n) and define its
associated TCP/IP service name in the services file at the server. If the database
server needs to support requests from down-level clients, a second port (number n+1,
for interrupt requests) needs to be defined in the services file at the server.

The database server port (number n) and its TCP/IP service name need to be defined
in the services file on the database client. Down-level clients also require the interrupt
port (number n+1) to be defined in the client's services file.

 Chapter 20. Configuring DB2 687

The location of the services file depends on your operating environment. For example:

¹ In UNIX — /etc/services
¹ In OS/2 — \tcpip\etc\services

| ¹ In OS/2 Warp — \mptn\etc\services.

The svcename parameter should be set to the service name associated with the main
connection port so that when the database server is started, it can determine on which
port to listen for incoming connection requests. If you are supporting or using a
down-level client, the service name for the interrupt port is not saved in the
configuration file. The interrupt port number can be derived based on the main
connection port number (interrupt port number = main connection port + 1).

See the Quick Beginnings for more information about setting up TCP/IP for database
servers.

APPC Transaction Program Name (tpname)
Configuration Type Database manager

Applies to Database Server with local and remote clients

Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null

This parameter defines the name of the remote transaction program that the database
client must use when it issues an allocate request to the database server when using
the APPC communication protocol. This parameter must be set in the configuration file
at the database server.

This parameter must be the same as the transaction program name that is configured
in the SNA transaction program definition. See the Quick Beginnings for more
information about setting up APPC for your DB2 product.

Recommendation: The only accepted characters for use in this name are:

¹ Alphabetics (A through Z; or a through z)
¹ Numerics (0 through 9)
¹ Dollar sign ($), number sign (#), at sign (@), and period (.)

IPX/SPX File Server Name (fileserver)
Configuration Type Database manager

Applies to Database Server with local and remote clients

Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null

688 Administration Guide

Related Parameters

¹ “IPX/SPX DB2 Server Object Name (objectname)” on
page 689

¹ “IPX/SPX Socket Number (ipx_socket)”

This parameter specifies the name of the NetWare** fileserver where the internetwork
address of the database manager is registered. The internetwork address of the
database manager is stored in the bindery at the NetWare file server. If the registered
fileserver name changes, all clients that access the server instance must:

¹ UNCATALOG the server node
¹ CATALOG the server node, specifying the new fileserver name.

For more information, see the Quick Beginnings manual appropriate for your platform.

IPX/SPX DB2 Server Object Name (objectname)
Configuration Type Database manager

Applies to Database Server with local and remote clients

Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null

Related Parameters

¹ “IPX/SPX File Server Name (fileserver)” on page 688
¹ “IPX/SPX Socket Number (ipx_socket)”

This parameter provides the name of the database manager instance in an IPX/SPX
network. Each server instance registered to a NetWare fileserver must have a unique
name. If this name changes at the database server, all clients that access the server
must uncatalog the server node and recatalog it again, specifying the new object name.

IPX/SPX Socket Number (ipx_socket)
Configuration Type Database manager

Applies to Database Server with local and remote clients

Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 879E [879E – 87A2] To ensure that there are no conflicts,
five socket numbers (879E to 87A2) are uniquely registered
with Novell for use by DB2.

Related Parameters

¹ “IPX/SPX File Server Name (fileserver)” on page 688
¹ “IPX/SPX DB2 Server Object Name (objectname)”

 Chapter 20. Configuring DB2 689

This parameter specifies a “well-known” socket number and represents the connection
end point in a DB2 server's internetwork address. The socket number must be unique
for each DB2 server instance on a given machine, and unique among all Novell**
IPX/SPX applications running on this same machine. This is to guarantee that the DB2
server is able to listen to incoming IPX/SPX connections using this socket number.

 Distributed Services
 You can use the following parameters to configure your database clients and database
servers to make use of DCE Directory services:

¹ “Directory Services Type (dir_type)”
¹ “Directory Path Name in DCE Namespace (dir_path_name)” on page 691
¹ “Object Name in DCE Namespace (dir_obj_name)” on page 691
¹ “Routing Information Object Name (route_obj_name)” on page 692
¹ “Default Client Communication Protocol (dft_client_comm)” on page 693
¹ “Default Client Adapter Number (dft_client_adpt)” on page 693

For information about how DB2 uses DCE directories, see Appendix G, “Using
Distributed Computing Environment (DCE) Directory Services” on page 917.

Directory Services Type (dir_type)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ UNIX and OS/2 Client
¹ UNIX and OS/2 Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] NONE [NONE; DCE]

Related Parameters

¹ “Object Name in DCE Namespace (dir_obj_name)” on
page 691

¹ “Directory Path Name in DCE Namespace
(dir_path_name)” on page 691

¹ “Routing Information Object Name (route_obj_name)” on
page 692

¹ “Default Client Communication Protocol (dft_client_comm)”
on page 693

¹ “Default Client Adapter Number (dft_client_adpt)” on
page 693

This parameter indicates whether or not DCE directory services is used.

If this parameter is set to NONE, only local directory files will be searched for the target
of the CONNECT or ATTACH requests. However, you can still use the dir_path_name
and dir_obj_name parameters to record the name of your database instance and

690 Administration Guide

databases in the DCE namespace. The API constant for this value is
SQLF_DIRTYPE_NONE. The numeric value is 0.

If this parameter is set to DCE, then when an application running within this database
manager instance cannot find the target of its CONNECT or ATTACH requests, the
DCE directory will be searched. The API constant for this value is
SQLF_DIRTYPE_DCE. The numeric value is 1.

Directory Path Name in DCE Namespace (dir_path_name)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ UNIX and OS/2 Client
¹ UNIX and OS/2 Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default /.:/subsys/database/

Related Parameters

¹ “Object Name in DCE Namespace (dir_obj_name)”
¹ “Directory Services Type (dir_type)” on page 690
¹ “Routing Information Object Name (route_obj_name)” on

page 692

The unique name of the database manager instance in the global namespace is made
up of this value and the value in the dir_obj_name parameter.

All client applications running within this instance also use it as the default path name
for their CONNECT or ATTACH requests, unless it is overridden by the value of the
DB2DIRPATHNAME environment variable.

Recommendation: Use the name provided by your DCE administrator.

Object Name in DCE Namespace (dir_obj_name)
Configuration Type Database manager, Database

Applies to

¹ Database Server with local and remote clients
¹ UNIX and OS/2 Client
¹ UNIX and OS/2 Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null

 Chapter 20. Configuring DB2 691

Related Parameters

¹ “Directory Services Type (dir_type)” on page 690
¹ “Directory Path Name in DCE Namespace

(dir_path_name)”

The object name representing your database manager instance (or your database) in
the directory. The concatenation of this value and the dir_path_name value yields a
global name that uniquely identifies the database manager instance or database in the
namespace governed by the directory services specified in the dir_type parameter.

This parameter is only meaningful if the dir_path_name parameter is specified.

The total length of the configuration parameters dir_path_name and dir_obj_name must
be less than 255 characters.

Recommendation: For more information, see Appendix G, “Using Distributed
Computing Environment (DCE) Directory Services” on page 917.

Routing Information Object Name (route_obj_name)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null

Related Parameters

¹ “Directory Path Name in DCE Namespace
(dir_path_name)” on page 691

¹ “Directory Services Type (dir_type)” on page 690

This parameter specifies the name of the default routing information object entry that
will be used by all client applications attempting to access a DRDA server. It applies to
OS/2 and UNIX-based environments only.

If the value of this parameter starts with /.:/ or /.../, then the value will be used as is.
Otherwise, it will be appended to the dir_path_name parameter (or
DB2DIRPATHNAME environment variable) value to form the full name of the routing
information object.

You can use the environment variable DB2ROUTE to override this default.

This parameter is only meaningful if the dir_type parameter is set to DCE.

692 Administration Guide

Recommendation: For more information, see Appendix G, “Using Distributed
Computing Environment (DCE) Directory Services” on page 917.

Default Client Communication Protocol (dft_client_comm)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] Null [Null; TCPIP; APPC; IPXSPX (OS/2 only); NETBIOS
(OS/2 only)]

Related Parameters “Directory Services Type (dir_type)” on page 690

This parameter indicates the communication protocols that the client applications on
this instance can use for remote connections. Its content is a character string, made up
of one or more tokens. If you are specifying more than one token, separate them with a
comma. The order of the tokens is significant in terms of preference.

This parameter can only be used with DCE, and applies to OS/2 and UNIX-based
environments only.

You can temporarily override the value of this parameter by setting the
DB2CLIENTCOMM environment variable.

If the value of this parameter is NULL and the environment variable has not been set,
the first protocol specified in the server's global directory object is used.

This parameter is ignored if dir_type is set to NONE.

Recommendation: The protocol that is used most often should be specified first.

Default Client Adapter Number (dft_client_adpt)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients

Parameter Type Configurable

Default [Range] 0 [0–15]

Related Parameters

¹ “Default Client Communication Protocol
(dft_client_comm).”

 Chapter 20. Configuring DB2 693

¹ “Directory Services Type (dir_type)” on page 690. (When
dir_type is set to DCE.)

This parameter defines the default client adapter number for the NETBIOS protocol
whose server nname is extracted from DCE Cell Directory Services (CDS). This
parameter is applicable to the OS/2 environment only.

This parameter can only be used with DCE.

You can temporarily override the value of this parameter by setting the
DB2CLIENTADPT environment variable. If this environment variable contains a
non-numeric or out-of-range number, adapter number 0 (zero) is used.

 DB2 Discovery
 You can use the following parameters to establish DB2 Discovery:

¹ “Discover Database (discover_db)”
¹ “Discovery Mode (discover)”
¹ “Search Discovery Communications Protocols (discover_comm)” on page 695
¹ “Discover Server Instance (discover_inst)” on page 695

Discover Database (discover_db)
Configuration Type Database

Parameter Type Configurable

Default [Range] Enable [Disable, Enable]

This parameter is used to prevent information about a database from being returned to
a client when a discovery request is received at the server.

The default for this parameter is that discovery is enabled for this database.

The numeric value for Enable is 0. The numeric value for Disable is 1.

By changing this parameter value to Disable, it is possible to hide databases with
sensitive data from the discovery process. This can be done in addition to other
database security controls on the database.

Discovery Mode (discover)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] search [disable, known, search]

694 Administration Guide

Related Parameters “Search Discovery Communications Protocols
(discover_comm)” on page 695

This parameter defines the default discovery action when DB2 starts.

The default discovery action is “search.” When this value is specified, DB2 Discovery
uses the protocols specified by the discover_comm parameter to search the network for
databases. The API constant for this value is SQLF_DSCVR_SEARCH. The numeric
value is 2.

If the value “known” is specified, the Client Configuration Assistant allows you to specify
the connection information for a DB2 server on the network, and returns the databases
that it finds on that server. The API constant for this value is SQLF_DSCVR_KNOWN.
The numeric value is 1.

By selecting “disable” for this parameter, DB2 Discovery is not started on administration
servers, and requests to administration servers and non-administration servers are not
honored. There is no API constant for “disable.” The numeric value is 0.

For more information on DB2 Discovery, see the Quick Beginnings manual appropriate
to your platform.

Search Discovery Communications Protocols (discover_comm)
Configuration Type Database manager

Applies To

 ¹ Client
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] None [Any combination of NETBIOS and TCPIP]

Related Parameters “Discovery Mode (discover)” on page 694

This parameter defines the communications protocols that clients use to issue search
discovery requests, and servers use to listen for search discovery requests. More than
one protocol may be specified, separated by commas; or, the parameter may be left
blank.

The default for this parameter is "None" meaning that there are no communications
protocols.

Discover Server Instance (discover_inst)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients

 Chapter 20. Configuring DB2 695

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] enable [enable, disable]

This parameter specifies whether this instance can be detected by DB2 Discovery. The
default, “enable,” specifies that the instance can be detected, while “disable” prevents
the instance from being discovered.

The numeric value for Disable is 0. The numeric value for Enable is 1.

For more information on DB2 Discovery, see the Quick Beginnings manual appropriate
to your platform.

 Parallel
 The following parameters relate to parallel operations and partitioned database
environments:

¹ “Connection Elapse Time (conn_elapse)”
¹ “Number of FCM Message Anchors (fcm_num_anchors)” on page 697
¹ “Number of FCM Buffers (fcm_num_buffers)” on page 697
¹ “Number of FCM Connection Entries (fcm_num_connect)” on page 698
¹ “Number of FCM Request Blocks (fcm_num_rqb)” on page 699
¹ “Node Connection Retries (max_connretries)” on page 699
¹ “Maximum Query Degree of Parallelism (max_querydegree)” on page 700
¹ “Maximum Time Difference Among Nodes (max_time_diff)” on page 701
¹ “Enable Intra-Partition Parallelism (intra_parallel)” on page 701
¹ “Start and Stop Timeout (start_stop_time)” on page 702

Connection Elapse Time (conn_elapse)
Configuration Type Database manager

Applies To Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 10 [0–100]

Unit of Measure Seconds

Related Parameters “Node Connection Retries (max_connretries)” on page 699

This parameter specifies the number of seconds within which a TCP/IP connection is to
be established between two database partition servers. If the attempt completes within
the time specified by this parameter, communications are established. If it fails, another
attempt is made to establish communications. If the connection is attempted the
number of times specified by the max_connretries parameter and always times out, an
error is issued.

696 Administration Guide

Number of FCM Message Anchors (fcm_num_anchors)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients

¹ Database Server with local clients

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] -1 [-1, 128–fcm_num_rqb]

On non-partitioned database systems, parallel_enable
parameter must be active before this parameter can be used.

Related Parameters

¹ “Number of FCM Request Blocks (fcm_num_rqb)” on
page 699

¹ “Enable Intra-Partition Parallelism (intra_parallel)” on
page 701

This parameter specifies the number of FCM message anchors. Agents use the
message anchors to send messages among themselves. The default (-1) indicates 75
percent of the value specified for fcm_num_rqb.

Number of FCM Buffers (fcm_num_buffers)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients

¹ Database Server with local clients

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

| Default [Range] 512, 1 024, or 4 096 [128–65 300]

| ¹ Database Server with local and remote clients: the default
| is 1 024

| ¹ Database Server with local clients: the default is 512

| ¹ Partitioned Database Server with local and remote clients:
| the default is 4 096

| On single-partition database systems, the parallel_enable
| parameter must be active before this parameter can be used.

This parameter specifies the number of 4 KB buffers that are used for internal
communications (messages) both among and within the database servers in a

 Chapter 20. Configuring DB2 697

partitioned database environment. For more information about FCM, see “Enable FCM
Communications” on page 81.

If you have multiple logical nodes on a processor, you may find it necessary to increase
the value of this parameter. You may also find it necessary to increase the value of this
parameter if you run out of message buffers because of the number of users on the
system, the number of database partition servers on the system, or the complexity of
the applications.

If you are using multiple logical nodes, on non-AIX systems, one pool of
fcm_num_buffers buffers is shared by all the multiple logical nodes on the same
machine, while on AIX:

¹ If there is enough room in the general memory that is used by the database
manager, the FCM buffer heap will be allocated from there. In this situation, each
database partition server will have fcm_num_buffers buffers of its own; the
database partition servers will not share a pool of FCM buffers (this is new to DB2
Version 5).

¹ If there is not enough room in the general memory that is used by the database
manager, the FCM buffer heap will be allocated from a separate memory area (AIX
shared memory set), that is shared by all the multiple logical nodes on the same
machine. One pool of fcm_num_buffers will be shared by all the multiple logical
nodes on the same machine. This is the same as non-AIX systems and is also the
same as DB2 Parallel Edition Version 1.2 on AIX.

Recommendation for existing Parallel Edition customers on AIX: If you are using
multiple logical nodes, the value of fcm_num_buffers you used in Parallel Edition
Version 1.2 may now result in significantly more storage being used per machine. For
example, a four-node multiple logical node configuration may end up with four times as
many FCM buffers as before.

Re-examine the value you are using; consider how many FCM buffers in total will be
allocated on the machine (or machines) where the multiple logical nodes reside. You
may want to change fcm_num_buffers to account for the behavior described above.

Number of FCM Connection Entries (fcm_num_connect)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients

¹ Database Server with local clients

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] -1 [-1, 128–fcm_num_rqb]

On non-partitioned database systems, the parallel_enable
parameter must be active before this parameter can be used.

698 Administration Guide

Related Parameters “Number of FCM Request Blocks (fcm_num_rqb)” on
page 699

This parameter specifies the number of FCM connection entries. Agents use
connection entries to pass data among themselves. The default (-1) indicates 75
percent of the value specified for fcm_num_rqb.

Number of FCM Request Blocks (fcm_num_rqb)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients

¹ Database Server with local clients

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

| Default [Range] 256, 512, or 2 048 [128–120 000]

| ¹ Database Server with local and remote clients: the default
| is 512

| ¹ Database Server with local clients: the default is 256

| ¹ Partitioned Database Server with local and remote clients:
| the default is 2 048

| On non-partitioned database systems, the parallel_enable
| parameter must be active before this parameter can be used.

This parameter specifies the number of FCM request blocks. Request blocks are the
media through which information is passed between the FCM daemon and an agent, or
between agents.

The requirement for request blocks will vary according to the number of users on the
system, the number of database partition servers in the system, and the complexity of
queries that are run. Initially, start with the default number, and use the results from the
Database System Monitor when fine tuning this parameter.

Node Connection Retries (max_connretries)
Configuration Type Database manager

Applies To Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 5 [0–100]

Related Parameters “Connection Elapse Time (conn_elapse)” on page 696

If the attempt to establish communication between two database partition servers fails
(for example, the value specified by the conn_elapse parameter is reached),
max_connretries specifies the number of connection retries that can be made to a

 Chapter 20. Configuring DB2 699

database partition server. If the value specified for this parameter is exceeded, an error
is returned.

Maximum Query Degree of Parallelism (max_querydegree)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients

¹ Database Server with local clients

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] -1 (ANY) [ANY, 1–32 767] (ANY means system determined)

Related Parameters

¹ “Default Degree (dft_degree)” on page 683
¹ “Enable Intra-Partition Parallelism (intra_parallel)” on

page 701

| This parameter specifies the maximum degree of intra-partition parallelism that is used
| for any SQL statement executing on this instance of the database manager. An SQL
| statement will not use more than this number of parallel operations within a partition
| when the statement is executed. If you are not using SMP hardware, the intra_parallel
| parameter must be set to “YES” to enable the database partition to use intra-partition
| parallelism. (If you are using SMP hardware, the intra_parallel parameter can be set to
| “YES” or to “SYSTEM” to enable the intra-partition parallelism.)

The default value for this configuration parameter is -1. This value means that the
system uses the degree of parallelism determined by the optimizer; otherwise, the
user-specified value is used.

Note: The degree of parallelism for an SQL statement can be specified at statement
compilation time using the CURRENT DEGREE special register or the DEGREE
bind option.

The maximum query degree of parallelism for an active application can be modified
using the SET RUNTIME DEGREE command. The actual runtime degree used is the
lower of:

¹ max_querydegree configuration parameter
¹ Application runtime degree
¹ SQL statement compilation degree

| An exception regarding the determination of the actual query degree of parallelism
| occurs when creating an index. In this case, if intra_parallel is “YES” and the table is
| large enough to benefit from the use of multiple processors, then creating an index
| uses the number of online processors (to a maximum of 6) plus one. There is no effect
| from the other parameter, bind option, or special register mentioned above.

700 Administration Guide

Maximum Time Difference Among Nodes (max_time_diff)
Configuration Type Database manager

Applies To Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 60 [1–1 440]

Unit of Measure Minutes

Each database partition server has its own system clock. This parameter specifies the
maximum time difference, in minutes, that is permitted among the database partition
servers listed in the node configuration file.

If two or more database partition servers are associated with a transaction and their
clocks are not synchronized to within the time specified by this parameter, the
transaction is rejected and a warning or an error message is logged in the db2diag.log
file. (The transaction is rejected only if data modification is associated with it.)

DB2 Universal Database Extended Enterprise Edition uses Coordinated Universal Time,
(UTC) so different time zones are not a consideration when you set this parameter. The
Coordinated Universal Time is the same as Greenwich Mean Time.

Enable Intra-Partition Parallelism (intra_parallel)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients

¹ Database Server with local clients

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] SYSTEM (-1) [SYSTEM (-1), NO (0), YES (1)]

A value of -1 causes the parameter value to be set to “YES” or
“NO” based on the hardware on which the database manager
is running.

Related Parameters “Maximum Query Degree of Parallelism (max_querydegree)”
on page 700

This parameter specifies whether the database manager can use intra-partition
parallelism.

In a symmetric multiprocessor (SMP) environment, the default for this parameter is
"YES". In a non-SMP environment, the default for this parameter is "NO". This
parameter can be used on both partitioned and non-partitioned database systems.

Some of the operations that can take advantage of parallel performance improvements
when this parameter is "YES" include database queries and index creation.

 Chapter 20. Configuring DB2 701

| Note: If you change this parameter value, packages may be rebound to the database.
| If this occurs, a performance degradation may occur during the rebinding.

Start and Stop Timeout (start_stop_time)
Configuration Type Database manager

Applies To Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 10 [1–1 440]

Unit of Measure Minutes

This parameter is applicable in a partitioned database environment only. It specifies the
time, in minutes, within which all database partition servers must respond to a
DB2START or a DB2STOP command. It is also used as the timeout value during an
ADDNODE operation.

Database partition servers that do not respond to a DB2START command within the
specified time send a message to the db2start error log in the log subdirectory of the
sqllib subdirectory of the home directory for the instance. You should issue a
DB2STOP on these nodes before restarting them.

Database partition servers that do not respond to a DB2STOP command within the
specified time send a message to the db2stop error log in the log subdirectory of the
sqllib subdirectory of the home directory for the instance. You can either issue
DB2STOP for each database partition server that does not respond, or for all of them.
(Those that are already stopped will return stating that they are stopped.)

 Instance Management
 A number of parameters can help you manage your database manager instances.
These are grouped into the following categories:

 ¹ “Diagnostic”
¹ “Database System Monitor Parameters” on page 704
¹ “System Management” on page 705
¹ “Instance Administration” on page 710

 Diagnostic
 The following parameters allow you to control diagnostic information available from the
database manager:

¹ “Diagnostic Error Capture Level (diaglevel)”
¹ “Diagnostic Data Directory Path (diagpath)” on page 703

Diagnostic Error Capture Level (diaglevel)
Configuration Type Database manager

702 Administration Guide

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] 3 [0 – 4]

Related Parameters “Diagnostic Data Directory Path (diagpath)”

The type of diagnostic errors recorded in the error log file is determined by this
parameter. Valid values are:

0 – No diagnostic data captured

1 – Severe errors only

2 – All errors

3 – All errors and warnings

4 – All errors, warnings and informational messages

It is the diagpath configuration parameter that is used to specify the directory that will
contain the error log file, event log (on Windows NT only), alert log file, and any dump
files that may be generated based on the value of the diaglevel parameter.

Recommendation: You may wish to increase the value of this parameter to gather
additional problem determination data to help resolve a problem.

Diagnostic Data Directory Path (diagpath)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] Null [any valid path name]

Related Parameters “Diagnostic Error Capture Level (diaglevel)” on page 702

This parameter allows you to specify the fully qualified path for DB2 diagnostic
information. This directory could possibly contain dump files, trap files, an error log and
an alert log file, depending on your platform.

If this parameter is null, the diagnostic information will be written to files in one of the
following directories or folders:

¹ For OS/2, Windows, Windows 95, and Windows NT:

 Chapter 20. Configuring DB2 703

– If the DB2INSTPROF environment variable or keyword is not set, information
will be written to x:\SQLLIB\DB2INSTANCE, where x: is the drive reference in the
DB2PATH environment variable or keyword and DB2INSTANCE is the name of
the instance owner.

Note: The directory does not have to be named SQLLIB.

– If the DB2INSTPROF environment variable or keyword is set, information will
be written to x:\DB2INSTPROF\DB2INSTANCE, where DB2INSTPROF is the name
of the instance profile directory.

¹ For UNIX-based environments: INSTHOME/sqllib/db2dump, where INSTHOME is the
home directory of the instance owner.

¹ For Macintosh environments: DB2 folder.

Recommendation: Use the default or have a centralized location for the diagpath of
multiple instances.

In a multinode environment, the path you specify must reside on a shared file system.

Database System Monitor Parameters
 The following parameter allows you to control various aspects of the database system
monitor:

¹ “Default Database System Monitor Switches (dft_monswitches)”

Default Database System Monitor Switches (dft_monswitches)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default All switches turned off

This parameter is unique in that it allows you to set a number of switches which are
each internally represented by a bit of the parameter. Depending on the interface you
are using to update the database manager configuration, you may be able to update
this parameter directly. You may also update each of these switches independently by
setting the following parameters:

dft_mon_uow Default value of the snapshot monitor's unit of work (UOW)
switch

dft_mon_stmt Default value of the snapshot monitor's statement switch

dft_mon_table Default value of the snapshot monitor's table switch

dft_mon_bufpool Default value of the snapshot monitor's buffer pool switch

dft_mon_lock Default value of the snapshot monitor's lock switch

704 Administration Guide

dft_mon_sort Default value of the snapshot monitor's sort switch

| Changes to any of these database system monitor switches take effect immediately;
| that is, you do not have to stop and restart the database manager.

Note: An existing monitoring application will not automatically use the new default
value for a switch. To use the new value (or values), the application must
terminate and re-attach to the instance.

For more information about the snapshot monitor and how it uses monitor switches, see
the System Monitor Guide and Reference.

Recommendation: Any switch that is turned ON instructs the database manager to
collect monitor data related to that switch. Collecting additional monitor data increases
database manager overhead which can impact system performance.

All monitoring applications inherit these default switch settings when the application
issues its first monitoring request (for example, setting a switch, activating the event
monitor, taking a snapshot). You should turn on a switch in the configuration file only if
you want to collect data starting from the moment the database manager is started.
(Otherwise, each monitoring application can set its own switches and the data it collects
becomes relative to the time its switches are set.)

 System Management
 The following parameters relate to system management:

¹ “Communications Bandwidth (comm_bandwidth)”
¹ “CPU Speed (cpuspeed)” on page 706
¹ “Maximum Number of Concurrently Active Databases (numdb)” on page 707
¹ “Transaction Processor Monitor Name (tp_mon_name)” on page 708
¹ “Machine Node Type (nodetype)” on page 708
¹ “Default Charge-Back Account (dft_account_str)” on page 709
¹ “Java Development Kit 1.1 Installation Path (jdk11_path)” on page 710

Communications Bandwidth (comm_bandwidth)
Configuration Type Database manager

Applies to Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] -1 [.1 – 100 000]

A value of -1 causes the parameter value to be reset to the
default. The default value is calculated based on whether a
high speed switch is being used.

Unit of Measure Megabytes per second

The value calculated for the communications bandwidth, in megabytes per second, is
used by the SQL optimizer to estimate the cost of performing certain operations
between the database partition servers of a partitioned database system. The optimizer

 Chapter 20. Configuring DB2 705

does not model the cost of communications between a client and a server, so this
parameter should reflect only the nominal bandwidth between the database partition
servers, if any.

You can explicitly set this value to model a production environment on your test system
or to assess the impact of upgrading hardware.

Recommendation: You should only adjust this parameter if you want to model a
different environment.

The communications bandwidth is used by the optimizer in determining access paths.
You should consider rebinding applications (using the REBIND PACKAGE command)
after changing this parameter.

CPU Speed (cpuspeed)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] -1 [1e-10 – 1] A value of -1 will cause the parameter value to
be reset based on the running of the measurement program.

The CPU speed, in milliseconds per instruction, is used by the SQL optimizer to
estimate the cost of performing certain operations. The value of this parameter is set
automatically when you install the database manager based on one of the following:

¹ Data from the db2spec.dat file located in the cfg sub-directory. For example, in
AIX-based environments this file is located in the $DB2INSTANCE/sqllib/cfg
directory. This file contains SPECint92** benchmark results. Information from this
file will be used if SPECint92 benchmark data can be located for both of the
following:

– The machine on which the database manager instance is running
– The IBM RISC System/6000 model 530H. (SPECint92 data is used to calibrate

machines relative to the 530H which is why the data for the 530H is required.)

Note: You may update the db2spec.dat file if you have SYSADM authority. You
should carefully follow the instructions contained in that file.

¹ Output from a program designed to measure CPU speed. This program is
executed, if benchmark results are not available for any of the following reasons:

– The platform does not have support for the db2spec.dat file
– The db2spec.dat file is not found
– The data for the IBM RISC System/6000 model 530H is not found in the file
– The data for your machine is not found in the file.

706 Administration Guide

You can explicitly set this value to model a production environment on your test system
or to assess the impact of upgrading hardware. By setting it to -1, cpuspeed will be
re-computed.

Recommendation: You should only adjust this parameter if you want to model a
different environment.

The CPU speed is used by the optimizer in determining access paths. You should
consider rebinding applications (using the REBIND PACKAGE command) after
changing this parameter.

Maximum Number of Concurrently Active Databases (numdb)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range]

UNIX 8 [1 – 256]

OS/2 and NT Database Server with local and remote
clients
8 [1 – 256]

OS/2 and NT Database Server with local clients
3 [1 – 256]

Unit of Measure Counter

This parameter specifies the number of local databases that can be concurrently active
(that is, have applications connected to them). In a partitioned database environment, it
limits the number of active database partitions on a database partition server, whether
that server is the coordinator node for the application or not.

Since each database takes up storage and an active database uses a new shared
memory segment, you can reduce system resource usage by limiting the number of
separate databases on your machine. However, arbitrarily reducing the number of
databases is not the answer. That is, putting all data, no matter how unrelated, in one
database will reduce disk space, but may not be a good idea. It is generally a good
practice to only keep functionally related information in the same database.

Recommendation: It is generally best to set this value to the actual number of
databases that are already defined to the database manager and to add a reasonable
increment to account for future growth in the number of databases over the short term
(for example, 6 months to 1 year). The actual increment should not be excessively
large, but it should allow you to add new databases without having to frequently update
this parameter.

 Chapter 20. Configuring DB2 707

Changing the numdb parameter may impact the total amount of memory allocated. As a
result, frequent updates to this parameter are not recommended. When updating this
parameter, you should consider the other configuration parameters that can allocate
memory for a database or an application connected to that database, including:

¹ “Buffer Pool Size (buffpage)” on page 608
¹ “Maximum Storage for Lock List (locklist)” on page 615
¹ “Application Heap Size (applheapsz)” on page 623
¹ “Application Control Heap Size (app_ctl_heap_sz)” on page 619
¹ “Sort Heap Size (sortheap)” on page 621
¹ “Statement Heap Size (stmtheap)” on page 623
¹ “Application Support Layer Heap Size (aslheapsz)” on page 631
¹ “Database Heap (dbheap)” on page 610
¹ “Database System Monitor Heap Size (mon_heap_sz)” on page 635
¹ “Statistics Heap Size (stat_heap_sz)” on page 624

Transaction Processor Monitor Name (tp_mon_name)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Valid Values CICS; ENCINA; blank or some other value (for UNIX, OS/2,
and Windows NT; none for Solaris or SINIX)

This parameter identifies the name of the transaction processing (TP) monitor product
being used. If applications are run in a CICS environment, this parameter should be set
to “CICS”; if Encina Monitor is being used, this parameter should be set to “ENCINA.”

In OS/2 and NT environments, this parameter contains the path and name of the DLL
in an external transaction manager product containing functions ax_reg and ax_unreg, if
an XA Distributed Transaction Processing environment is being used. Specify
“dll-name:C” for CICS, or “dll-name:E” for ENCINA. The maximum length of the string
that can be specified for this parameter is 19 characters.

Machine Node Type (nodetype)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Informational

708 Administration Guide

This parameter provides information about the DB2 products which you have installed
on your machine and, as a result, information about the type of database manager
configuration. The following are the possible values returned by this parameter and the
products associated with that node type:

¹ Database Server with local and remote clients – a DB2 server product,
supporting local and remote database clients, and capable of accessing other
remote database servers.

| The API constant for this node type is SQLF_NT_SERVER. The numeric value is
| 1.

¹ Client – a database client capable of accessing remote database servers.

| The API constant for this node type is SQLF_NT_REQUESTER. The numeric
| value is 2.

¹ Database Server with local clients – a DB2 relational database management
system, supporting local database clients and capable of accessing other, remote
database servers.

| The API constant for this node type is SQLF_NT_STAND_REQ. The numeric value
| is 3.

¹ Partitioned Database Server with local and remote clients – a DB2 server
product, supporting local and remote database clients, and capable of accessing
other remote database servers, and capable of partition parallelism.

| The API constant for this node type is SQLF_NT_MPP. The numeric value is 4.

Default Charge-Back Account (dft_account_str)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] Null [any valid string]

With each application connect request, an accounting identifier consisting of a DB2
Connect-generated prefix and the user supplied suffix is sent from the application
requester to a DRDA application server. This accounting information provides a
mechanism for system administrators to associate resource usage with each user
access.

The suffix is supplied by the application program calling the sqlesact() API or the user
setting the environment variable DB2ACCOUNT. If a suffix is not supplied by either the
API or environment variable, DB2 Connect uses the value of this parameter as the
default suffix value. This parameter is particularly useful for down-level database clients
(anything prior to version 2) that do not have the capability to forward an accounting
string to DB2 Connect.

 Chapter 20. Configuring DB2 709

Recommendation: Set this accounting string using the following:

¹ Alphabetics (A through Z)
¹ Numerics (0 through 9)

 ¹ Underscore (_).

Java Development Kit 1.1 Installation Path (jdk11_path)
Configuration Type Database manager

Applies To

¹ Database Server with local and remote clients

¹ Database Server with local clients

¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] Null [Valid path]

Related Parameters

¹ “Maximum Java Interpreter Heap Size (java_heap_sz)” on
page 637

This parameter specifies the directory under which the Java Development Kit 1.1 is
installed. The CLASSPATH and other environment variables used by the Java
interpreter are computed from the value of this parameter.

Because there is no default for this parameter, you should specify a value for this
parameter when you install the Java Development Kit.

 Instance Administration
 The following parameters relate to security and administration of your database
manager instance:

¹ “System Administration Authority Group Name (sysadm_group)”
¹ “System Control Authority Group Name (sysctrl_group)” on page 712
¹ “System Maintenance Authority Group Name (sysmaint_group)” on page 712
¹ “Authentication Type (authentication)” on page 713

| ¹ “Cataloging Allowed without Authority (catalog_noauth)” on page 714
¹ “Default Database Path (dftdbpath)” on page 714
¹ “LOGON Required for DB2START/DB2STOP (ss_logon)” on page 715
¹ “Trust All Clients (trust_allclnts)” on page 715
¹ “Trusted Clients Authentication (trust_clntauth)” on page 716

System Administration Authority Group Name (sysadm_group)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client

710 Administration Guide

¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default

UNIX Null

OS/2 Null

Windows 95 Null

Windows NT Null

Related Parameters

¹ “System Control Authority Group Name (sysctrl_group)” on
page 712

¹ “System Maintenance Authority Group Name
(sysmaint_group)” on page 712

System administration (SYSADM) authority is the highest level of authority within the
database manager and controls all database objects. This parameter defines the group
name with SYSADM authority for the database manager instance.

SYSADM authority is determined by the security facilities used in a specific operating
environment. The following considerations apply when system security (that is,
authorization) is CLIENT, SERVER, or DCS. Considerations for DCE security are
described below.

¹ In the Windows 95 operating system the SYSADM group must be NULL.

This parameter must be “NULL” for Windows 95 clients when system security is
used because the Windows 95 operating system does not store group information,
thereby providing no way of determining if a user is a member of a designated
SYSADM group. When a group name is specified, no user is considered to be a
member of it and no user is considered to have administration authority.

¹ For the Windows NT operating system, this parameter can be set to any local
group that has a name of 16 characters or fewer, and is defined in the Windows
NT security database. If “NULL” is specified for this parameter, all members of the
Administrators group have SYSADM authority.

¹ For UNIX-based systems, if “NULL” is specified as the value of this parameter, the
SYSADM group defaults to the primary group of the instance owner.

If the value is not “NULL,” the SYSADM group can be any valid UNIX group name.

¹ In OS/2, if the value specified for this parameter is “NULL,” users defined as
administrators in user profile management have SYSADM authority.

If a group name is specified for this parameter, only users who belong to the group
have SYSADM authority. The group specified can be any of the User Profile
Management (user profile management) groups. For more information on User
Profile Management groups, see your Quick Beginnings for OS/2 book.

 Chapter 20. Configuring DB2 711

If DCE security is used and sysadm_group is “NULL,” the default DCE group name
DB2ADMIN is used. A valid DCE principal whose authid mapping is DB2ADMIN must
already exist. You can specify a different group name (this also applies for Windows 95
clients).

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG USING
SYSADM_GROUP NULL. You must specify the keyword “NULL” in uppercase. You can
also use the Configure Instance notebook in the DB2 Control Center.

System Control Authority Group Name (sysctrl_group)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null

Related Parameters

¹ “System Administration Authority Group Name
(sysadm_group)” on page 710

¹ “System Maintenance Authority Group Name
(sysmaint_group)”

This parameter defines the group name with system control (SYSCTRL) authority.
SYSCTRL has privileges allowing operations affecting system resources, but not
allowing direct access to data.

Attention: This parameter must be NULL for Windows 95 clients when system security
is used (that is, authorization is CLIENT, SERVER, or DCS). This is because the
Windows 95 operating system does not store group information, thereby providing no
way of determining if a user is a member of a designated SYSCTRL group. When a
group name is specified, no user is considered to be a member of it and no user is
considered to have system control authority. This is not true when DCE authentication
is used. In this situation, group names can be specified.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG USING
SYSCTRL_GROUP NULL. You must specify the keyword “NULL” in uppercase. You
can also use the Configure Instance notebook in the DB2 Control Center.

System Maintenance Authority Group Name (sysmaint_group)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client

712 Administration Guide

¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default Null

Related Parameters

¹ “System Administration Authority Group Name
(sysadm_group)” on page 710

¹ “System Control Authority Group Name (sysctrl_group)” on
page 712

This parameter defines the group name with system maintenance (SYSMAINT)
authority. SYSMAINT has privileges to perform maintenance operations on all
databases associated with an instance without having direct access to data.

Attention: This parameter must be NULL for Windows 95 clients when system security
is used (that is, authorization is CLIENT, SERVER, or DCS). This is because Windows
95 does not store group information, thereby providing no way of determining if a user
is a member of a designated SYSMAINT group. When a group name is specified, no
user is considered to be a member of it and no user is considered to have system
control authority. This is not true when DCE authentication is used. In this situation,
group names can be specified.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG USING
SYSMAINT_GROUP NULL. You must specify the keyword “NULL” in uppercase. You
can also use the Configure Instance notebook in the DB2 Control Center.

Authentication Type (authentication)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
 ¹ Client
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] SERVER [CLIENT; SERVER; DCS; DCE]

This parameter determines how and where authentication of a user takes place. If
authentication is SERVER, then the user ID and password are sent from the client to
the server so authentication can take place on the server. A value of CLIENT indicates
that all authentication takes place at the client, so no authentication needs to be
performed at the server. For a client-only node, CLIENT, SERVER, and DCS are
effectively the same. A value of DCE means that authentication is performed using
DCE Security Services. If you are using APPC and a communications product that does
not expose the client's password to the DB2 server, you can specify DCS to obtain:

¹ SERVER-type authentication for non-DRDA clients

 Chapter 20. Configuring DB2 713

¹ CLIENT-type authentication for DRDA clients

For more information on when and why to use DCE or DCS, see “Authentication” on
page 141.

The following show the constants to use for possible values for this parameter:

¹ The API constant for SERVER is SQL_AUTHENTICATION_SERVER. The numeric
value is 0.

¹ The API constant for CLIENT is SQL_AUTHENTICATION_CLIENT. The numeric
value is 1.

¹ The API constant for DCS is SQL_AUTHENTICATION_DCS. The numeric value is
2.

¹ The API constant for DCS is SQL_AUTHENTICATION_DCE. The numeric value is
3.

Recommendation: Typically, the default (SERVER) is adequate. If you have incoming
requests that are handled by either DB2 Connect or DCE, refer to “Authentication” on
page 141.

| Cataloging Allowed without Authority (catalog_noauth)
| Configuration Type Database manager

| Applies to

| ¹ Database Server with local and remote clients
| ¹ Database Server with local clients
| ¹ Partitioned Database Server with local and remote clients

| Parameter Type Configurable

| Default [Range] 0 [0 – 1]

| This parameter specifies whether users are able to catalog and uncatalog databases
| and nodes, or DCS and ODBC directories, without SYSADM authority. The default
| value (0) for this parameter indicates that SYSADM authority is required. When this
| parameter is set to 1 (yes), SYSADM authority is not required.

Default Database Path (dftdbpath)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range]

UNIX Home directory of instance owner [any
existing path]

714 Administration Guide

OS/2 and Windows NT
Drive on which DB2 is installed [any
existing path]

This parameter contains the default file path used to create databases under the
database manager. If no path is specified when a database is created, the database is
created under the path specified by the dftdbpath parameter.

| In a partitioned database environment, you should ensure that the path on which the
| database is being created is not an NFS-mounted path (on UNIX-based platforms), or a
| network drive (in the Windows NT environment). The specified path must physically
| exist on each database partition server. To avoid confusion, it is best to specify a path
| that is locally mounted on each database partition server. The maximum length of the
| path is 205 characters. The system appends the node name to the end of the path.

Given that databases can grow to a large size and that many users could be creating
databases (depending on your environment and intentions), it is often convenient to be
able to have all databases created and stored in a specified location. It is also good to
be able to isolate databases from other applications and data both for integrity reasons
and for ease of backup and recovery.

| For UNIX-based environments, the length of the dftdbpath name cannot exceed 215
| characters and must be a valid, absolute, path name. For OS/2 and Windows NT, the
| dftdbpath can be a drive letter, optionally followed by a colon.

Recommendation: If possible, put high volume databases on a different disk than
other frequently accessed data, such as the operating system files and the database
logs.

LOGON Required for DB2START/DB2STOP (ss_logon)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Database Server with local clients

Parameter Type Configurable

Default [Range] YES [NO (0), YES (1)]

This parameter is applicable to the OS/2 environment only. By accepting the default for
this parameter, a LOGON user ID and password is required before issuing a
DB2START or DB2STOP.

Trust All Clients (trust_allclnts)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Partitioned Database Server with local and remote clients

 Chapter 20. Configuring DB2 715

Parameter Type Configurable

Default [Range] YES [NO, YES]

Related Parameters

¹ “Authentication Type (authentication)” on page 713
¹ “Trusted Clients Authentication (trust_clntauth)”

This parameter is only active when the authentication parameter is set to CLIENT.

This parameter and trust_clntauth are used to determine where users are validated to
the database environment.

By accepting the default of “YES” for this parameter, all clients are treated as trusted
clients. This means that the server assumes that a level of security is available at the
client and the possibility that users can be validated at the client.

This parameter can only be changed to “NO” if the authentication parameter is set to
CLIENT. If this parameter is set to “NO,” the untrusted clients must provide a userid
and password combination when they connect to the server. Untrusted clients are
operating system platforms that do not have a security subsystem for authenticating
users.

For more information on trusted clients, see “Selecting an Authentication Method for
Your Server” on page 145.

Trusted Clients Authentication (trust_clntauth)
Configuration Type Database manager

Applies to

¹ Database Server with local and remote clients
¹ Partitioned Database Server with local and remote clients

Parameter Type Configurable

Default [Range] CLIENT [CLIENT, SERVER]

Related Parameters

¹ “Authentication Type (authentication)” on page 713
¹ “Trust All Clients (trust_allclnts)” on page 715

This parameter specifies whether a trusted client is authenticated at the server or the
client when the client provides a userid and password combination for a connection.
This parameter (and trust_allclnts) is only active if the authentication parameter is set to
CLIENT. If a user ID and password are not provided, the client is assumed to have
validated the user, and no further validation is performed at the server.

If this parameter is set to “CLIENT” (the default), the trusted client can connect without
providing a userid and password combination, and the assumption is that the operating
system has already authenticated the user. If it is set to “SERVER,” the user ID and
password will be validated at the server.

716 Administration Guide

| The numeric value for CLIENT is 0. The numeric value for SERVER is 1.

For more information on trusted clients, see “Selecting an Authentication Method for
Your Server” on page 145.

| DB2 File Manager
| The following parameters relate to DB2 File Manager:

| ¹ “DataLink Access Token Expiry Interval (dl_expint)”
| ¹ “DataLink Number of Backups (dl_num_backup)”
| ¹ “DataLink Number of Copies (dl_num_copies)” on page 718
| ¹ “DataLink Time After Drop (dl_time_drop)” on page 718

| DataLink Access Token Expiry Interval (dl_expint)
| Configuration Type Database

| Parameter Type Configurable

| Default [Range] 60 [-1, 1 – 31 536 000]

| Unit of Measure Seconds

| This parameter specifies the interval of time (in seconds) for which the file access token
| generated is valid. The number of seconds the token is valid begins from the time it is
| generated. The File Manager Filter checks the validity of the token containing this
| expiry time.

| For information about file access tokens, refer to the DB2 File Manager Quick
| Beginnings book.

| The default value for this parameter is sixty (60) seconds. Minus one (-1) implies that
| the token will effectively not expire.

| This parameter applies to the DATALINK columns which specify “READ PERMISSION
| DB.”

| DataLink Number of Backups (dl_num_backup)
| Configuration Type Database

| Parameter Type Configurable

| Default [Range] 1 [1 – 31]

| This parameter specifies the number of the most recent DB2 backups for which a File
| Manager keeps backup information. Files that are unlinked from the database are
| garbage collected based on this value. A value of one (1) means that the unlinked files
| are garbage collected at the completion of the next DB2 backup.

| The default value for this parameter is one (1) backup.

| This parameter applies to the DATALINK columns which specify “Recovery=Yes.”

 Chapter 20. Configuring DB2 717

| DataLink Number of Copies (dl_num_copies)
| Configuration Type Database

| Parameter Type Configurable

| Default [Range] 0 [0 – 15]

| This parameter specifies the number of additional copies of a file to be made in the
| archive server (such as an ADSM server) when a file is linked to the database.

| The default value for this parameter is zero (0).

| This parameter applies to the DATALINK columns which specify “Recovery=Yes.”

| DataLink Time After Drop (dl_time_drop)
| Configuration Type Database

| Parameter Type Configurable

| Default [Range] 1 [0 – 365]

| Unit of Measure Days

| This parameter specifies the interval of time (in days) files would be retained on an
| archive server (such as an ADSM server) after a DROP TABLE, DROP DATABASE, or
| DROP TABLESPACE is issued.

| The default value for this parameter is one (1) day. A value of zero (0) means that the
| files are deleted immediately from the archive server when the DROP command or
| statement is issued. (The actual file is not deleted unless the ON UNLINK DELETE
| parameter was specified for the DATALINK column.)

| A non-zero value applies to the DATALINK columns that specify “Recovery=Yes.”

718 Administration Guide

Part 5. Ensuring the High Availability of Your System

 Copyright IBM Corp. 1993, 1998 719

720 Administration Guide

Chapter 21. High Availability Cluster Multi-Processing (HACMP) on
AIX

DB2 UDB provides high availability failover support on many platforms. On AIX, DB2
UDB supports failover through the capabilities of IBM High Availability Cluster
Multi-Processing (HACMP). Failover capability allows for the automatic transfer of
workload from one processor to another should there be a hardware failure.

HACMP provides increased availability through clusters of processors which share
resources such as disks or network access. If one processor fails then another in the
cluster can substitute for the failed one.

| Note: Do not use a “kill -9” against the db2start process in a high availability
| environment. This action is not recommended in any environment, but in
| particular such an action may invalidate failover recovery in your high availability
| environment.

There are three modes of failover support provided, a brief description of each mode
and its application to DB2 follows. In each case we use the simple scenario of a two
processor HACMP cluster.

Hot Standby
One processor is being actively used to run your DB2 instance and the
second is in standby mode ready to take over the instance if there is an
operating system or hardware failure involving the first processor.

Mutual Takeover
Both processors are either used to run separate DB2 instances, or one is
use to run a DB2 instance while the other is used to run DB2 applications.
If there is an operating system or hardware failure on one of the
processors, the other processor takes over the tasks of the failing
processor. Once the failover is complete, the remaining processor is doing
the work of both processors.

Concurrent Access
Multiple processors can be used to scale to a single database instance
using the DB2 Universal Database Extended Enterprise Edition product.
This is done using a shared-nothing model and partitioning the data such
that one or more partitions are running on each processor in the cluster. If
an operating system or hardware failure occurs on one of the processors,
then the other processor will take over the partitions of the failing
processor. DB2 UDB Extended Enterprise Edition does not require the use
of a Concurrent Resource Manager to provide redundancy. DB2 co-exists
with the Concurrent Resource Manager, but does not require its capability.
Redundancy is managed by using the previous two modes. The capabilities
of this mode are only required by database managers with a shared
architecture.

 Copyright IBM Corp. 1993, 1998 721

Each of the above configurations can be used to failover one or more partitions of a
partitioned database. In addition, each can failover a complete instance of a single
partition installation.

 Hot Standby
The Hot Standby capability can be used to failover the entire instance of a single
partition database or a partition of a partitioned database configuration. If one processor
fails then another processor in the cluster can substitute for the failed processor by
automatically transferring the instance. In order to achieve this, the database instance
and the actual database must be accessible to both the primary and failover processor.
This requires that the following installation and configuration tasks be performed:

¹ The DB2 installation path can either be on a path shared by both systems or on a
non-shared filesystem. If using a non-shared file system the installation levels must
be identical.

¹ The DB2 instance path, as with the installation path can either be on a shared
filesystem or on a manually mirrored filesystem.

¹ Database and the associated containers must be on file systems (or devices)
accessible to both systems.

¹ There are sample scripts which can be tailored to perform the failover tasks. Refer
to the subsequent examples for more details on these scripts.

¹ For failover of a partition in a partitioned database configuration, the partition is
restarted on the second processor: the failover script changes the db2nodes.cfg file
to point to the failed partition on the new processor and starts the partition on that
processor.

¹ When a failover occurs, the external communications addresses for supported
communication protocols are transparently transferred as part of the failover
procedure.

For detailed information on the actual installation requirements and instance creation,
refer to HACMP for AIX, Version 4.2: Installation Guide, SC23-1940.

 Examples
| Each of the following examples has a sample script stored, on AIX-based installations,
| in sqllib/samples/hacmp.

 Instance Failover
The first example of a hot standby failover scenario consists of a single two processor
HACMP cluster running a single-partition database DB2 instance. Figure 67 on
page 723 shows, at a high level, this configuration. This diagram is intended to depict
the major elements of the cluster, not a complete configuration. For information on
configuring your HACMP cluster, refer to “Additional HACMP Resources” on page 728.

722 Administration Guide

Client
Workstation

Network: LAN

Network: RS232 LINKProcessor 1 Processor 2

Processor 1
LAN Connection

Processor 2
LAN Connection

Processor 1 Standby
LAN Connection

db2inst

Figure 67. Instance Failover Example

Both processors have access to the installation directory, the instance directory, and
the database directory. The database instance "db2inst" is being actively executed on
processor 1, processor 2 is not active and is being used as a hot standby. A failure
occurs on processor 1 and the instance is taken over by processor 2. Once the failover
is complete both remote and local applications can access the database within instance
"db2inst". The database will either have to be manually restarted; or, if AUTORESTART
is on, the first connection to the database will cause the restart. In the sample script
provided, it is assumed that AUTORESTART is off and the failover script performs the
restart for the database. See “Overview of Recovery” on page 269 for additional
information on AUTORESTART.

Sample script:

 hacmp-s1.sh

 Partition Failover
The second example is slightly more complex than that of a simple instance failover: In
this example, we are actually using a partition of an instance as opposed to the entire
instance. We will use the two processor HACMP cluster as in the previous example, but

 Chapter 21. High Availability Cluster Multi-Processing (HACMP) on AIX 723

the machine will represent one of the partitions of a partitioned database server.
Processor 1 will be running a single partition of the overall configuration and processor
2 will be used as the failover processor. When processor 1 fails, the partition is
restarted on the second processor. The failover updates the db2nodes.cfg file, pointing
the partition to processor 2's hostname and netname, and then restarting the partition at
the new processor. Once complete, all other partitions forward the requests targeted for
this partition to processor 2.

The following is a portion of the db2nodes.cfg file before and after the failover. In this
example, node number 2 is running on processor 1 of the HACMP machine which has
a hostname of “node201” and the netname is the same. After the failover, node number
2 is running on processor 2 of the HACMP machine which has a hostname of
“node202” and the netname is the same. The failover script will execute the command
between the before and after definitions.

| Before:

| 1 node101 0 node101

| 2 node201 0 node201 <= HACMP

| 3 node301 0 node301

| db2start nodenum 2 restart hostname node202 port 0 netname node202

| After:

| 1 node101 0 node101

| 2 node202 0 node202 <= HACMP

| 3 node301 0 node301

Sample script:

 hacmp-s2.sh

Multiple Logical Node Failover
A more complex variation of the previous example involves the failover of multiple
logical nodes from one processor to another. Again, we are using the same two
processor HACMP cluster configuration as above. However, in this scenario, processor
1 is running 3 logical partitions. The setup is the same as that for the simple partition
failover scenario, but in this case when processor 1 fails each of the logical partitions
must be started on processor 2. Each logical partition must be started in the order that
it is defined in the db2nodes.cfg file: the logical partition with port number 0 must
always be started first.

The following is a portion of a db2nodes.cfg file which has 3 logical partitions defined
on processor one of the two processor HACMP cluster scenario. The example uses the
same hostnames and netnames as the previous example.

724 Administration Guide

| Before:

| 1 node101 0 node101

| 2 node201 0 node201 <= HACMP

| 3 node201 1 node201 <= HACMP

| 4 node201 2 node201 <= HACMP

| 5 node301 0 node301

| db2start nodenum 2 restart hostname node202 port 0 netname node202

| db2start nodenum 3 restart hostname node202 port 1 netname node202

| db2start nodenum 4 restart hostname node202 port 2 netname node202

| After:

| 1 node101 0 node101

| 2 node202 0 node202 <= HACMP

| 3 node202 1 node202 <= HACMP

| 4 node202 2 node202 <= HACMP

| 5 node301 0 node301

Sample script:

 hacmp-s3.sh

 Mutual Takeover
DB2's exploitation of the mutual takeover mode has the same basic characteristics as
that for the hot standby mode. In this mode, one processor can failover the
single-partition database instance, or the partitions of a partitioned database, of a failed
processor while running another instance or other partitions of a partitioned database
configuration. As with the hot standby configuration, the installation path, the instance
directory, and the database must be mutually accessible by each processor which may
be involved in failover processing. The installation and instance paths can either be on
a shared filesystem or mirrored on separate filesystems.

When utilizing the mutual takeover mechanism, for instance failover, the instances must
be defined in such a manner that both instances can be run on the same processor at
the same time. For detailed information on the actual installation requirements and
instance creation, refer to HACMP for AIX, Version 4.2: Installation Guide, SC23-1940.

 Examples
| Each of the following examples has a sample script stored, on AIX-based installations,
| in sqllib/samples/hacmp.

Mutual DB2 Instance Failover
In order to illustrate a mutual instance failover, we will use the simple case of a HACMP
system with two processors known as “node10” and “node20.”

 Chapter 21. High Availability Cluster Multi-Processing (HACMP) on AIX 725

Client
Workstation

Network: LAN

Network: RS232 LINKNode 10 Node 20

Node 10 Standby
LAN Connection

Node 20 Standby
LAN Connection

Node 10
LAN Connection

Node 20
LAN Connection

db2inst 1 db2inst 2

Figure 68. Instance Failover Example

In this example, we have two instances “db2inst1” and “db2inst2”: both are instances
created from a single installation path on a shared filesystem. Instance “db2inst1” is
created with a path of

/u/db2inst1

and instance “db2inst2” is created with a path of

/u/db2inst2

Both of these paths are on a shared filesystem accessible to both processors. Each
instance has a single database, with a unique path, again on a shared resource
accessible by both processors.

Both instances are accessed via remote clients over the TCP/IP protocol: “db2inst1”
uses the service name “db2inst1_port” (port number 5500) and “db2inst2” uses the
service name “db2inst2_port” (port number 5550). Remote clients accessing the
“db2inst1” instance have this instance cataloged in their node directory using “node10”
as the host name. Remote clients accessing the “db2inst2” instance have this instance
cataloged in their node directory using “node20” as the host name. Under normal
operating conditions, “db2inst1” is executing on “node10” and “db2inst2” is executing on

726 Administration Guide

“node20.” If “node10” were to fail, the failover script will start “db2inst1” on “node20”
and the external IP address associated with “node10” will be switched over to “node20.”
Once the instance has been started by the failover script and the database restarted,
the remote clients accessing this instance can connect to the database within this
instance as if it were executing on “node10.”

Sample script:

 hacmp-s4.sh

Mutual DB2 Partition Failover
Mutual failover of partitions in a partitioned database server environment requires that
the failover of the partition occur as a logical node on the failover processor. If we have
two partitions of a partitioned database server running on separate processors of a two
processor HACMP cluster configured for mutual takeover, the partitions must failover as
logical nodes. The default partition at each node must be defined as logical node 0, this
means that when a partition fails over from one processor to another it will start as a
logical node which does not have any direct remote communication protocol listeners.
As such, the partition cannot be used as a coordinator node.

One other important consideration when configuring a system for mutual partition
takeover concerns the local partition database path. When a database is created in a
partitioned database environment, it is created on a root path which is not shared
across the partitioned database servers. For example, consider the following statement:

CREATE DATABASE db_a1 ON /dbpath

This statement is executed under instance “db2inst” and creates the database db_a1 on
the path /dbpath. Each partition creates its actual database partition on its local
/dbpath filesystem under /dbpath/db2inst/nodexxxx where xxxx represents the node
number. With HACMP failover it will attempt to mount the /dbpath filesystem which is
already being used by the other processor. As such, the failover script must mount the
filesystem under a different logical point and set up a symbolic link from that filesystem
to the appropriate /dpath/db2inst/nodexxxx path.

The following example shows a portion of the db2nodes.cfg file before and after the
failover. In this example, node number 2 is running on processor 1 of the HACMP
machine which has a hostname of “node201” and the netname is the same. Node
number 3 is running on processor 2 of the HACMP machine which has a hostname of
“node202” and again the netname is the same. The failover script will execute the
command between the before and after definitions.

 Chapter 21. High Availability Cluster Multi-Processing (HACMP) on AIX 727

| Before:

| 1 node101 0 node101

| 2 node201 0 node201 <= HACMP

| 3 node202 0 node202 <= HACMP

| 4 node301 0 node301

| db2start nodenum 2 restart hostname node202 port 1 netname node202

| After:

| 1 node101 0 node101

| 2 node202 1 node202 <= HACMP

| 3 node202 0 node202 <= HACMP

| 4 node301 0 node301

After the failover, any remote clients trying to directly access node number 2 as the
coordinator will have to re-catalog the node entry for the database to point to the
failover node. It is not recommended that you use a mutual failover scenario for
coordinator nodes. If you require redundancy with your coordinator node, you should
you use the hot standby mode.

Sample script:

 hacmp-s5.sh

Additional HACMP Resources
For a complete understanding of the HACMP concepts, installation and configuration
refer to the following books:

¹ HACMP for AIX, Version 4.2: Concepts and Facilities, SC23-1938
¹ HACMP for AIX, Version 4.2: Installation Guide, SC23-1940
¹ HACMP for AIX, Version 4.2: Planning Guide, SC23-1939

728 Administration Guide

| Chapter 22. High Availability Cluster Multi-Processing, Enhanced
| Scalability (HACMP ES) for AIX

| Enhanced Scalability is a feature of HACMP for AIX Version 4.2.2 which currently only
| runs on RS/6000 SP nodes.

| This feature provides the same failover recovery as HACMP and has identical event
| structure to previous HACMP versions. There are several documented differences to
| this event structure documented in the HACMP for AIX, V4.2.2, Enhanced Scalability
| Installation and Administration Guide. Beyond these standard items, the Enhanced
| Scalability feature provides:

| ¹ Larger HACMP clusters with scalability up to 16 nodes per cluster.

| ¹ Additional error coverage through “User-Defined Events.” Monitored areas can
| trigger user-defined events which can be as diverse as the death of a process or
| the fact that paging space is nearing capacity. Once detected, events are triggered.

| Such events include pre- and post-events that can be added to the failover
| recovery process, if needed. Extra functions that are specific to the different
| implementations can be placed within the HACMP pre- and post-event streams.

| A rules file (/usr/sbin/cluster/events/rules.hacmprd) exists and contains the
| HACMP events. User-defined events are added to this file and the script files to be
| run when events occur are part of this definition. The rules file is described in more
| detail later.

| ¹ HACMP client utilities for monitoring and detecting status changes in one or more
| clusters from AIX physical nodes outside the HACMP cluster.

| ¹ Although not an enhancement, the discussion of HACMP ES concludes with an
| overview of the installation and migration planning required for this feature.

| Note: Do not use a “kill -9” against the db2start process in a high availability
| environment. This action is not recommended in any environment, but in
| particular such an action may invalidate failover recovery in your high availability
| environment.

| The nodes in HACMP ES clusters exchange messages called “heartbeats” or
| “keepalive” packets which inform the other nodes regarding the availability of each node
| in the cluster. A node that has stopped responding causes the remaining nodes in the
| cluster to invoke recovery. The recovery process is called a “node_down event” and
| may also be referred to as “failover.” The completion of the recovery process is
| followed by work done on the node that is down with the goal being the re-integration of
| the node into the cluster. This is called a “node_up event.”

| There are two types of events: standard events that are anticipated within the
| operations of HACMP ES; and, user-defined events which are associated with the
| monitoring of parameters in hardware and software components.

 Copyright IBM Corp. 1993, 1998 729

| One of the standard events is the node_down event. When planning what should be
| done as part of the recovery process, HACMP allows two failover options: Hot (or idle)
| Standby; and, Mutual Takeover.

| Cluster Configuration
| In a hot standby configuration, the AIX processor node that is the takeover node is not

| running any other workload. In a mutual takeover configuration, the AIX processor node
| that is the takeover node is running other workload.

| Generally, DB2 UDB EEE runs in mutual takeover mode with partitions on each node.
| One exception is a scenario where the catalog node is part of a hot standby
| configuration.

| When planning a large DB2 installation on a RS/6000 SP using HACMP ES, you need
| to consider how to divide the nodes of the cluster within or between the RS/6000 SP
| frames. Having a node and its backup in different SP frames can allow takeover in the
| event one frame goes down (that is, the frame power/switch board fails). However,
| such failures are expected to be exceedingly rare because there are N+1 power
| supplies in each SP frame and each SP switch has redundant paths along with N+1
| fans and power. In the case of a frame failure, manual intervention may be required to
| recover the remaining frames. This recovery procedure is documented in the SP
| Administration Guide. HACMP ES provides for recovery of SP node failures; recovery
| of frame failures is dependent on proper layout of clusters within the SP frame(s).

| Another planning consideration involves how to manage big clusters: It is easier to
| manage a small cluster than a big one; however, it is also easier to manage one big
| cluster than many smaller ones. When planning, consider how your applications will be
| used in your cluster environment. If there is a single, large, homogeneous application
| running on, for example, 16 nodes then it is probably easier to manage as a single
| cluster rather than as eight (8) two-node clusters. If the same 16 nodes contain many
| different applications with different networks, disks, and node relationships then it is
| probably better to group the nodes into smaller clusters. Keep in mind that nodes
| integrate into an HACMP cluster one at a time; it will be faster to start a configuration of
| multiple clusters rather than one large cluster. HACMP ES supports both single and
| multiple clusters as long as a node and its backup are in the same cluster.

| HACMP ES failover recovery allows pre-defined (also known as “cascading”)
| assignment of a resource group to a physical node. The failover recovery procedure
| also allows floating (also known as “rotating”) assignment of a resource group to a
| physical node. IP addresses; external disk volume groups, filesystems, NFS
| filesystems; and, application servers within each resource group specify either an
| application or application component which can be manipulated by HACMP ES
| between physical nodes by failover and reintegration. Failover and reintegration
| behavior is specified by the type of resource group created, and by the number of
| nodes placed in the resource group.

| As an example, consider a DB2 database partition (logical node): If its log and table
| space containers were placed on external disks, and other nodes were linked to that

730 Administration Guide

| disk, it would be possible for those other nodes to access these disks and restart the
| database partition (on a takeover node). It is this type of operation that is automated by
| HACMP. HACMP ES can also be used to recover NFS file systems used by DB2
| instance main user directories.

| Read the HACMP ES documentation thoroughly as part of your planning for recovery
| with DB2 UDB EEE. You should read the Concepts, Planning, Installation, and
| Administration guides. Then you can layout the recovery architecture for your
| environment. For the subsystems you have identified for recovery based on the
| identified points of failure, identify the HACMP clusters you need and the recovery
| nodes for each (either hot standby or mutual takeover). This architecture and planning
| is a starting point for completing the HACMP worksheets found in the documentation
| (mentioned above).

| It is strongly recommended that both disks and adapters are mirrored in your external
| disk configuration. For DB2 physical nodes that are configured for HACMP, care is
| required to ensure that nodes can vary on the volume group from the shared external
| disks. In a mutual takeover configuration, this arrangement requires some additional
| planning so that the paired nodes can access each other's volume groups without
| conflicts. Within DB2 UDB EEE this means that all container names must be unique
| across all databases.

| One way to achieve uniqueness in the names is to include the partition number as part
| of the name. You can specify a node expression for container string syntax when
| creating either SMS or DMS containers. When you specify the expression, either the
| node number is part of the container name, or, if you specify additional arguments, the
| result of the argument is part of the container name. You use the argument “ $N”
| ([blank]$N) to indicate the node expression. The argument must occur at the end of the
| container string and can only be used in one of the following forms. In the table below,
| the node number is assumed to be five (5):

| Table 50. Arguments for Creating Containers

| Syntax| Example| Value

| [blank]$N| “ $N”| 5

| [blank]$N+[number]| “ $N+1011”| 1016

| [blank]$N%[number]| “ $N%3”| 2

| [blank]$N+[number]%[number]| “ $N+12%13”| 4

| [blank]$N%[number]+[number]| “ $N%3+20”| 22

| Notes:

| 1. % is modulus.

| 2. In all cases, the operators are evaluated from left to right.

| Following are some examples of creating containers using this special argument:

| ¹ Creating containers for use on a two-node system.

 Chapter 22. HACMP ES for AIX 731

| CREATE TABLESPACE TS1 MANAGED BY DATABASE USING

| (device '/dev/rcont $N' 20000)

| The following containers would be used:

| /dev/rcont0 - on Node 0

| /dev/rcont1 - on Node 1

| ¹ Creating containers for use on a four-node system.

| CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

| (file '/DB2/containers/TS2/container $N+100' 10000)

| The following containers would be used:

| /DB2/containers/TS2/container100 - on Node 0

| /DB2/containers/TS2/container101 - on Node 1

| /DB2/containers/TS2/container102 - on Node 2

| /DB2/containers/TS2/container103 - on Node 3

| ¹ Creating containers for use on a two-node system.

| CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

| ('/TS3/cont $N%2, '/TS3/cont $N%2+2')

| The following containers would be used:

| /TS/cont0 - on Node 0

| /TS/cont2 - on Node 0

| /TS/cont1 - on Node 1

| /TS/cont3 - on Node 1

| The following pictures show some of the planning involved to ensure a highly available
| external disk configuration and the ability to access all volume groups without conflict.

732 Administration Guide

DB2 SSA I/O Subsystem Configuration - No single point of failure

Disks
(1)

Disks
(1)

Disks
(2)

Disks
(2)

Disks
(1)

Disks
(1)

Disks
(2)

Disks
(2)

A1

A1

A2

A2

B1

B1

B2

B2

DB2-1

A1

A1

A2

A2

B1

B1

B2

B2

DB2-2 Disks are twintailed
between nodes.

Note:
Both adapters and
disks are mirrored.

(mirror copy)

| Figure 69. No Single Point of Failure

 Chapter 22. HACMP ES for AIX 733

DB2 SSA I/O Subsystem Configuration -
Volume group and logical volume setup

DB2-1 DB2-2 - keep vg, lv fs names unique
- set vgs not to vary on at ipl

db2 database testdata on filesystem /database instance name powertp

Volume group DB2vg1

- lv dbdlv11 (mountpoint
/database/powertp/NODE0001)
- lv dbd11log (jfslog)
- lv dbdlv12 (raw data)
- lv dbdlv13 (raw data)
(and so on.)

Volume group DB2vg2

- lv dbdlv21 (mountpoint
/database/powertp/NODE0002)
- lv dbd21log (jfslog)
- lv dbdlv22 (raw data)
- lv dbdlv23 (raw data)
(and so on.)

| Figure 70. Volume Group and Logical Volume Setup

| Once configured, each database partition in an instance is started by HACMP ES one
| physical node at a time. Using multiple clusters is recommended for starting parallel
| DB2 configurations that are larger than four (4) nodes.

| Note: Each HACMP node in a cluster is started one at a time. For a 64-node parallel
| DB2 configuration, it is faster to start 32, two-node HACMP clusters in parallel
| rather than four (4), sixteen-node clusters.

| A script file, rc.db2pe, is packaged with DB2 UDB EEE to assist in configuring for
| HACMP ES failover or recovery in either “hot standby” or “mutual takeover” nodes. In
| addition, DB2 buffer pool sizes can be customized during failover in mutual takeover
| configurations from within rc.db2pe. (Buffer pool size modification is needed to ensure
| proper performance when two database partitions run on one physical node. See the
| next section for additional information.) The script file, rc.db2pe, is installed on each
| node in /usr/bin.

734 Administration Guide

| Configuration of a DB2 Database Partition
| When you create an application server in a HACMP configuration of a DB2 database
| partition, specify rc.db2pe as a start and stop script in the following way:

| /usr/bin/rc.db2pe <instance> <dpn> <secondary dpn> start <use switch>
| /usr/bin/rc.db2pe <instance> <dpn> <secondary dpn> stop <use switch>

| where:

| <instance> is the instance name.

| <dpn> is the database partition number.

| <secondary dpn> is the 'companion' database partition number in

| 'mutual takeover' configurations only; in 'hot standby' configurations

| it is the same as <dpn>.

| <use switch> is usually blank; when blank, by default this indicates that

| the SP Switch network is used for hostname field in the db2nodes.cfg file

| (all traffic for DB2 is routed over the SP switch); if not blank, the name

| used is the hostname of the SP node to be used.

| Note: The DB2 command LIST DATABASE DIRECTORY is used from within
| rc.db2pe to find all databases configured for this database partition. The
| rc.db2pe script file then looks for /usr/bin/reg.parms.DATABASE and
| /usr/bin/failover.parms.DATABASE files, where DATABASE is each of the
| databases configured for this database partition. In a “mutual takeover”
| configuration, it is recommended you create these parameter files
| (reg.parms.xxx and failover.parms.xxx). In the failover.parms.xxx file, the
| settings for BUFFPAGE, DBHEAP, and any others affecting buffer pools should
| be adjusted to account for the possibility of more than one buffer pool. Buffer
| pool size modification is needed to ensure proper performance when two or
| more database partitions run on one physical node. Sample files
| reg.parms.SAMPLE and failover.parms.SAMPLE are provided for your use.

| One of the important parameters in this environment is START_STOP_TIME. This database
| manager configuration parameter has a default value of ten (10) minutes. However,
| rc.db2pe sets this parameter to two (2) minutes. You should modify this parameter
| within rc.db2pe so that it is set to ten (10) minutes or perhaps something slightly larger.
| The length of time in the context of a failed database partition is the time between the
| failure of the partition and the recovery of that partition. If there are frequent
| “COMMIT”s used in the applications running on a partition, then ten minutes following
| the failure on a database partition should be sufficient time to rollback uncommitted
| transactions and reach a point of consistency for the database on that partition. If your
| workload is heavy and/or you have many partitions, you may need to increase the
| parameter value until there is no longer an additional problem beyond that of the
| original partition failure. (The additional problem would be the timeout message
| resulting from exceeding the START_STOP_TIME value while waiting for the rollback to
| complete at the failed database partition.)

 Chapter 22. HACMP ES for AIX 735

| Example of a Mutual Takeover Configuration
| The assumption in this example is that the mutual takeover configuration will exist
| between physical nodes one and two with a DB2 instance name of “POWERTP.” The
| database partitions are one and two, and the database name is “TESTDATA” on
| filesystem /database.

| Resource group name: db2_dp_1

| Node Relationship: cascading

| Participating nodenames: node1_eth, node2_eth

| Service_IP_label: nfs_switch_1 (<<< this is the switch alias address)

| Filesystems: /database/powertp/NODE0001

| Volume Groups: DB2vg1

| Application Servers: db2_dp1_app

| Application Server Start Script: /usr/bin/rc.db2pe powertp 1 2 start

| Application Server Stop Script: /usr/bin/rc.db2pe powertp 1 2 stop

| Resource group name: db2_pd_2

| Node Relationship: cascading

| Participating nodenames: node2_eth, node1_eth

| Service_IP_label: nfs_switch_2 (<<< this is the switch alias address)

| Filesystems: /database/powertp/NODE0002

| Volume Groups: DB2vg2

| Application Servers: db2_dp2_app

| Application Server Start Script: /usr/bin/rc.db2pe powertp 2 1 start

| Application Server Stop Script: /usr/bin/rc.db2pe powertp 2 1 stop

| Example of a Hot Standby Takeover Configuration
| The assumption in this example is that the hot standby takeover configuration will exist
| between physical nodes one and two with a DB2 instance name of “POWERTP.” The
| database partition is one, and the database name is “TESTDATA” on filesystem
| /database.

| Resource group name: db2_dp_1

| Node Relationship: cascading

| Participating nodenames: node1_eth, node2_eth

| Service_IP_label: nfs_switch_1 (<<< this is the switch alias address)

| Filesystems: /database/powertp/NODE0001

| Volume Groups: DB2vg1

| Application Servers: db2_dp1_app

| Application Server Start Script: /usr/bin/rc.db2pe powertp 1 1 start

| Application Server Stop Script: /usr/bin/rc.db2pe powertp 1 1 stop

| Note: In both examples, the resource groups contain a Service IP switch alias
| address. This switch alias address is used for:

| 1. NFS access to a file server for the DB2 instance owner filesystems.

| 2. Other client access that needs to be maintained in the case of a failover,
| ADSM connection, or other similar operations.

| If your implementation does not require these aliases, they can be removed. If
| removed, be sure to set the MOUNT_NFS parameter to “NO” in rc.db2pe.

736 Administration Guide

| Configuration of a NFS Server Node
| Just as with the configuration of a DB2 database partition presented above, the
| rc.db2pe script can be used to make available NFS-mounted directories of DB2 parallel
| instance user directories. This can be accomplished by setting the MOUNT_NFS
| parameter to “YES” in rc.db2pe and configuring the NFS failover server pair as follows:

| ¹ Configure the home directory and export it as “root” using /etc/exports and
| exportfs command to the IP address used on the nodes in the same subnet as
| the NFS Server's IP address. Include both the HACMP boot and service
| addresses. The NFS Server's IP address is the same address as the service
| address in HACMP that can be taken over by a backup. The home directory of the
| DB2 instance owner should be NFS-mounted directly, not automounted. (The use
| of the automounter is not supported by the scripts as a DB2 instance owner home
| directory.)

| ¹ Using SMIT or a bottom-line configuration, a separate /etc/filesystems entry
| should be created for this filesystem so that all nodes in the DB2 parallel grouping,
| including the file server, can mount using the NFS filesystem command.

| For example, an /nfshome JFS filesystem can be exported to all nodes as /dbhome.
| Each node creates a NFS filesystem /dbname which is nfs_server:/nfshome.
| Therefore, the home directory of the DB2 instance owner would be
| /dbhome/powertp when the instance name is “powertp.”

| Ensure the NFS parameters for the mount in /etc/filesystems are “hard,” “bg,”
| “intr,” and “rw.”

| ¹ Ensure the DB2 instance owner definitions associated with the home directory
| /dbhome/powertp in /etc/passwd are the same on all nodes.

| The user definitions in an SP environment are typically created on the Control
| Workstation and “supper” or “pcp” is used to distribute /etc/passwd,
| /etc/security/passwd, /etc/security/user, and /etc/security/group to all
| nodes.

| ¹ Do NOT configure the “nfs_filesystems to export” in HACMP resource groups for the
| volume group and the filesystem that is exported. Instead, configure it normally to
| NFS. The scripts for the NFS server will control the exporting of the filesystems.

| ¹ Ensure the major number of the volume group where the filesystem resides is the
| same on both the primary node and the takeover node. This is accomplished by
| using importvg with the -V parameter.

| ¹ Verify that the MOUNT_NFS parameter is set to “YES” in rc.db2pe and that each
| node has the NFS filesystem to mount in /etc/filesystems. If this is not the case,
| then rc.db2pe will not be able to mount the filesystem and start DB2.

| ¹ If the DB2 instance owner was already created and you are copying the user's
| directory structure to the filesystem you are creating, ensure you tar (-cvf) the
| directory. This ensures the preservation of the symbolic links.

| ¹ Do not forget to mirror both the adapters and the disks for the logical volumes and
| the filesystem logs of the filesystem you are creating.

 Chapter 22. HACMP ES for AIX 737

| Example of a NFS Server Takeover Configuration
| The assumptions in this example are that there is an NFS server filesystem /nfshome in
| the volume group nfsvg over the IP address “nfs_server.” The DB2 instance name is
| “POWERTP” and the home directory is /dbhome/powertp.

| Resource group name: nfs_server

| Node Relationship: cascading

| Participating nodenames: node1_eth, node2_eth

| Service_IP_label: nfs_server (<<< this is the switch alias address)

| Filesystems: /nfshome

| Volume Groups: nfsvg

| Application Servers: nfs_server_app

| Application Server Start Script: /usr/bin/rc.db2pe powertp NFS SERVER start

| Application Server Stop Script: /usr/bin/rc.db2pe powertp NFS SERVER stop

| Note: In this example:

| ¹ /etc/filesystems on all nodes would contain an entry for /dbhome as
| mounting nfs_server:/nfshome. nfs_server is a Service IP switch alias
| address.

| ¹ /etc/exports on the nfs_server node and the backup node would include
| the boot and service addresses and contain an entry for /nfsfs

| -root=nfs_switch_1, nfs_switch_2,

| Considerations When Configuring the SP Switch
| When implementing HACMP ES with the SP switch, consider the following:

| ¹ There are “base” and “alias” addresses on the SP switch. The base addresses are
| those defined in the SP System Data Repository (SDR), and are configured by
| rc.switch when the system is “booted.” The alias addresses are IP addresses
| configured, in addition to the base address, into the css0 interface through use of
| the ifconfig command with an alias attribute. For example:

| ifconfig css0 inet alias sw_alias_1 up

| ¹ When configuring the DB2 db2nodes.cfg file, SP switch “base” IP address names
| should be used for both “hostname” and “netname” fields. Switch IP address
| aliases are ONLY used to maintain NFS connectivity. DB2 failover is acheived by
| restarting DB2 with the db2start restart command (which updates
| db2nodes.cfg).

| ¹ Do not confuse the switch addresses with the etc/hosts aliases. Both the SP
| switch addresses and the SP switch alias addresses are real in either etc/hosts or
| DNS. The switch alias addresses are not another name for the SP switch base
| address: Each has its own separate address.

| ¹ The SP switch base addresses are always present on a node when it is up.
| HACMP ES does not configure or move these addresses between nodes.

| ¹ If you intend to use SP switch alias addresses, configure these to HACMP as boot
| and service addresses for “heartbeating” and IP address takeover. If you do not
| intend to use SP switch alias addresses, configure the base SP switch address to
| HACMP as a service address for “heartbeating” ONLY (no IP address takeover).

738 Administration Guide

| Do not, in any configuration, configure alias addresses AND the switch base
| address; this configuration is not supported by HACMP ES.

| ¹ Only the SP switch alias addresses are moved between nodes for an IP takeover
| configuration and not the SP switch base addresses.

| ¹ The need for SP switch aliases arises because there can only be one SP switch
| adapter per node. Using alias addresses allows a node to takeover another node's
| switch alias IP address without adding another switch adapter. This is useful in
| nodes that are “slot-constrained.” For more information on handling recovery from
| SP switch adapter failures, see the network failure section under “HACMP ES
| Script Files” on page 752 later in this document.

| ¹ If you configure the SP switch for IP address takeover, you will need to create two
| (2) extra alias IP addresses per node: One as a boot address and one as a service
| address.

| ¹ Do not forget to use “HPS” in the HACMP ES network name definition for a SP
| switch base IP address or a SP switch alias IP address.

| ¹ rc.cluster in HACMP automatically ifconfigs-in the SP switch boot address
| when HACMP is started. No additional configuration is required other than the
| creating the IP address and name, and defining them to HACMP.

| ¹ The SP switch Eprimary node is moved between nodes by the SP Parallel System
| Support Program (PSSP), and not HACMP. If an Eprimary node goes off-line, the
| PSSP automatically has a backup node assume responsibility as the Eprimary
| node. The switch network is unaffected by this change and remains up.

| ¹ The Eprimary node of the SP switch is the server that implements the Estart and
| Efence/Eunfence commands. The HACMP scripts attempt to Eunfence or to Estart
| a node when HACMP is started and make the switch available should it be defined
| as one of its networks. For this reason, ensure the Eprimary node is available
| when you start HACMP. The HACMP code waits up to twelve (12) minutes for an
| Eprimary failover to complete before it exits with an error.

| DB2 HACMP Configuration Examples
| The following examples show different possible failover support configurations and what
| happens when failure occurs.

 Chapter 22. HACMP ES for AIX 739

DB2 HACMP Mutual Takeover with NFS Failover - Normal

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

Node 5:

node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:

node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node 6
DB2 data
and logs

node 5
DB2 data
and logs

/nfshome
and log

| Figure 71. Mutual Takeover with NFS Failover - Normal

| The previous figure and the next two figures each have the following notes associated
| with them:

| 1. HACMP adapters are defined for ethernet, and SP Switch alias boot and service
| aliases — base addresses are untouched. Remember to use a “HPS” string in the
| HACMP network name.

740 Administration Guide

| 2. The NFS_server/nfshome is mounted as /dbhome on all nodes through switch
| aliases.

| 3. The db2nodes.cfg file contains SP Switch base addresses. The db2nodes.cfg file
| is changed by the DB2START RESTART command after a DB2 database partition
| (logical node) failover.

| 4. The Switch alias boot addresses are not shown.

| 5. Nodes can be in different SP frames.

 Chapter 22. HACMP ES for AIX 741

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

DB2 HACMP Mutual Takeover with NFS Failover - NFS failover

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)
nfs_backup (alias)
nfs_server (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node88_eth (ethernet - HACMP service addr)
node88_sw (switch base addr)
nfs_backup (HACMP service addr)
nfs_server (HACMP service addr)

Node 88:

- nfs_server SP Switch alias IP addr and nfs mounted /nfshome moved from node 87 to 88.

- SP switch arp code has functionality to update all switch arp caches with this move.

/nfshome

and log

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node 6
DB2 data
and logs

node 5
DB2 data
and logs

| Figure 72. Mutual Takeover with NFS Failover - NFS Failover

742 Administration Guide

DB2 HACMP Mutual Takeover with NFS Failover - DB2 failover

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)
nfs_client5 (alias)
nfs_client6 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)
node5_sw (switch base addr)
nfs_client5 (HACMP service addr)
nfs_client6 (HACMP service addr)

Node 5:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:
node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

- switch IP address takeover allows other servers (like ADSM) to retain connectivity.

- Node 5 runs 2 logical nodes of DB2.

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node5_sw 1 node5_sw
...

/nfshome

and log

node 6
DB2 data
and logs

node 5
DB2 data
and logs

| Figure 73. Mutual Takeover with NFS Failover - DB2 Failover

 Chapter 22. HACMP ES for AIX 743

DB2 HACMP Hot Standby with NFS Failover - Normal

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

node5_sw (base)

nfs_client5 (alias)

SP Switch Adapter

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)

nfs_client6 (alias)

SP Switch Adapter

SP

SWITCH

BOARD

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

nfs_client5 (HACMP service addr)

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr)

nfs_client6 (HACMP service addr)

Node 6:

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:
node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
...

Note: Hot Standby node can back up more than one node, depending on disk cabling.

/nfshome

and log

node 5
DB2 data
and logs

| Figure 74. Hot Standby with NFS Failover - Normal

| The previous figure and the next figure each have the following notes associated with
| them:

744 Administration Guide

| 1. HACMP adapters are defined for ethernet, and SP Switch alias boot and service
| aliases — base addresses are untouched. Remember to use a “HPS” string in the
| HACMP network name.

| 2. The NFS_server/nfshome is mounted as /dbhome on all nodes through switch
| aliases.

| 3. The db2nodes.cfg file contains SP Switch base addresses. The db2nodes.cfg file
| is changed by the DB2START RESTART command after a DB2 database partition
| (logical node) failover.

| 4. The Switch alias boot addresses are not shown.

 Chapter 22. HACMP ES for AIX 745

node87_sw (base)

nfs_server (alias)

SP Switch Adapter

DB2 HACMP Hot Standby with NFS Failover- DB2 Failover

SP

SWITCH

BOARD

Hot Standby node can back up more than one node, depending on disk cabling.

node88_sw (base)

nfs_backup (alias)

SP Switch Adapter

node6_sw (base)
nfs_client6 (alias)
nfs_client5 (alias)

SP Switch Adapter

Node 6:

node88_eth (ethernet - HACMP service addr)

node88_sw (switch base addr)

nfs_backup (HACMP service addr)

Node 88:

node6_eth (ethernet - HACMP service addr)
node6_sw (switch base addr)
nfs_client6 (HACMP service addr)
nfs_client5 (HACMP service addr)

node87_eth (ethernet - HACMP service addr)

node87_sw (switch base addr)

nfs_server (HACMP service addr)

Node 87:

(db2nodes.cfg)
...
4 node6_sw 0 node6_sw
...

Note:

node 5
DB2 data
and logs

/nfshome
and log

| Figure 75. Hot Standby with NFS Failover - DB2 Failover

746 Administration Guide

DB2 HACMP Mutual Takeover without NFS Failover - Normal

SP

SWITCH

BOARD

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node6_sw 0 node6_sw
...

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr - HACMP

service addr)

Node 5:
node6_eth (ethernet - HACMP service addr)

node6_sw (switch base addr - HACMP

service addr)

Node 6:

node5_sw (base)

SP Switch Adapter

node6_sw (base)

SP Switch Adapter

node 6
DB2 data
and logs

node 5
DB2 data
and logs

| Figure 76. Mutual Takeover without NFS Failover - Normal

| The previous figure and the next figure each have the following notes associated with
| them:

| 1. HACMP adapters are defined for ethernet, and SP Switch base addresses.
| Remember that when bases addresses are configured to HACMP as service
| addresses, there is no boot address (only a “heartbeat”).

| 2. Do not forget to use a “HPS” string in the HACMP network name for the SP
| Switch.

| 3. The db2nodes.cfg file contains SP Switch base addresses. The db2nodes.cfg file
| is changed by the DB2START RESTART command after a DB2 database partition
| (logical node) failover.

| 4. No NFS failover functions are shown.

| 5. Nodes can be in different SP frames.

 Chapter 22. HACMP ES for AIX 747

DB2 HACMP Mutual Takeover without NFS Failover - DB2 failover

SP

SWITCH

BOARD

- Node 5 runs 2 logical nodes of DB2.

(db2nodes.cfg)
...
4 node5_sw 0 node5_sw
5 node5_sw 1 node5_sw
...

node5_sw (base)

SP Switch Adapter

node5_eth (ethernet - HACMP service addr)

node5_sw (switch base addr)

Node 5:

node 6
DB2 data
and logs

node 5
DB2 data
and logs

| Figure 77. Mutual Takeover without NFS Failover - DB2 Failover

| DB2 HACMP Startup Recommendations
| It is recommended that you do not specify HACMP to be started at boot time in
| /etc/inittab. HACMP should be started manually after the nodes are booted. This
| allows for non-disruptive maintenance of a failed node.

| As an example of “disruptive maintenance,” consider the case where a node has a
| hardware failure and crashed. At such a time, service needs to be performed. Failover
| would be automatically initiated by HACMP and recovery completed successfully.
| However, the failed node needs to be fixed. If HACMP was configured to be started on
| reboot in /etc/inittab, then this node would attempt to reintegrate after boot
| completion which is not desirable in this situation.

| As an example of “non-disruptive maintenance,” consider manually starting HACMP on
| each node. This allows for non-disruptive service of failed nodes since they can be
| fixed and reintegrated without affecting the other nodes. The ha_cmd script is provided
| for controlling HACMP start and stop commands from the control workstation.

748 Administration Guide

| HACMP ES Event Monitoring and User-Defined Events
| The following is an example of a user-defined event: Perhaps you want to shut down
| DB2 database partitions on an AIX physical node when paging space reaches a certain
| percentage of fullness, and to log this occurrence. An example to correct a paging
| space shortage by shutting down a database partition and forcing a transaction abort to
| free paging space is provided. The examples are found in the /SAMPLES directory.
| Another common example is process death: You may want to restart a DB2 database
| partition, or you may want failover to occur if a process dies on a given node.

| With HACMP ES there is a rules file, /user/sbin/cluster/events/rules.hacmprd, that
| contains HACMP events.

| Each event in the file is made up of nine lines which are:

| 1. Event name. Each event name must be unique.

| 2. State. This is the qualifier for the event. The event name and state are the rule
| triggers. HACMP ES Cluster Manager initiates recovery only if it finds a rule with a
| trigger corresponding to the event name and state.

| 3. Resource Program Path. This is a full-path specification of the xxx.rp file
| containing the recovery program.

| 4. Recovery Type. This is reserved for future use.

| 5. Recovery Level. This is reserved for future use.

| 6. Resource Variable Name. This is used for Event Manager events.

| 7. Instance Vector. This is used for Event Manager events. Within Event
| Management, this is a set of elements, where each element is a name and value
| pair of the form “name=value.” The values uniquely identify the copy of the
| resource in the system and, by extension, the copy of the resource variable.

| 8. Predicate. This is used for Event Manager events. Within Event Management, this
| is the relational expression between a resource variable and other elements that,
| when true, the Event Management subsystem generates an event to notify Cluster
| Manager and the appropriate application.

| 9. Rearm Predicate. This is used for Event Manager events. Within Event
| Management, this is a predicate used to generate an event that alternates the
| status of the primary predicate. This predicate is typically the inverse of the primary
| predicate. It can also be used with the event predicate to establish an upper and a
| lower boundary for a condition of interest.

| Each object requires one line in the event definition even if the line is not used. If these
| lines are removed, HACMP ES Cluster Manager cannot parse the event definition
| properly. And this may cause the system to hang. Any line beginning with “#” is treated
| as a comment line and is not treated as part of the event definition.

| Note: The rules file requires exactly nine lines for each event definition not counting
| any comment lines. When adding a user-defined event at the bottom of the

 Chapter 22. HACMP ES for AIX 749

| rules file, it is important to remove the unnecessary empty line at the end of the
| file, or the node will hang.

| An example of an event definition for node_up follows:

| ##### Beginning of the Event Definition: node_up

| #

| TE_JOIN_NODE

| 0

| /usr/sbin/cluster/events/node_up.rp

| 2

| 0

| # 6) Resource variable - only used for event management events

| # 7) Instance vector - only used for event management events

| # 8) Predicate - only used for event management events

| # 9) Rearm predicate - only used for event management events

| ###### End of the Event Definition: node_up

| This is an example of just one of the event definitions that are found in the
| rules.hacmprd file.

| In this example, when the node_up event occurs, the recovery program
| /usr/sbin/cluster/events/node_up.rp is executed. According to the rules, the proper
| values are specified in the state, recovery type, and recovery level lines in the
| definition. There are four (4) empty lines for: resource variable, instance variable,
| predicate, and rearm predicate.

| Users can add their own events to react to non-standard HACMP ES events. For
| example, to define the event that the /tmp file system is over 90 per cent full, the
| rules.hacmprd file must be modified.

| Many events are predefined in the IBM Parallel System Support Program (PSSP).
| These events can be exploited when used within user-defined events. To make this
| happen, do the following:

| 1. Stop the cluster.

| 2. Edit the rules.hacmprd file. Backup the file before modifying it. Add the predefined
| PSSP event manually. If you need synchronizing points across all nodes in the
| cluster, use the barrier command in the recovery program. (Read more about the
| barrier command and synchronization of recovery programs in the HACMP
| Concepts, Installation, and Administration Guides.)

| 3. Restart the cluster. The rules.hacmprd file is stored in memory when Cluster
| Manager is started. To accurately implement the changes, restart all the clusters.
| There should not be any inconsistent rules in a cluster.

| 4. Cluster Manager uses all events in the rules.hacmprd file.

750 Administration Guide

| HACMP ES uses PSSP event detection to treat user-defined events. The PSSP Event
| Management subsystem provides comprehensive event detection by monitoring various
| hardware and software resources.

| Resource states are represented by resource variables. Resource conditions are
| represented as expressions called predicates.

| Event Management receives resource variables from the Resource Monitor, which
| observes the state of specific system resources and transforms this state into several
| resource variables. These variables are periodically passed to Event Management.
| Event Management applies predicates that are specified by the HACMP ES Cluster
| Manager in rules.hacmprd to each resource variable. When the predicate is evaluated
| as being true, an event is generated and sent to the Cluster Manager. Cluster Manager
| initiates the voting protocol and the recovery program file (xxx.rp) is executed on a set
| of nodes specified by “node sets” in the recovery program and according to event
| priority.

| The recovery program file (xxx.rp) is made up of one or more recovery program lines.
| Each line is declared in the following format:

| relationship command_to_run expected_status NULL

| There must be at least one space between each value in the format. “Relationship” is
| a value used to decide which program should run on which kind of node. Three types
| of relationship are supported:

| ¹ All. The specified command or program is executed on all nodes of the current
| HACMP cluster.

| ¹ Event. The specified command or program is executed only on the nodes where
| the event occurred.

| ¹ Other. The specified command or program is executed on all nodes where the
| event did not occur.

| “Command_to_run” is a quote-delimiting string with or without a full-path definition to an
| executable program. Only HACMP-delivered event scripts can use a relative-path
| definition. With other scripts or programs, the full-path definition must be used (even if
| these programs are located in the same directory as the HACMP event scripts).
| “Expected_states” is the return code of the specified command or program. It is an
| integer value or an “x.” If “x” is used, Cluster Manager does not care about the return
| code. For all other codes, it must be equal to the expected return code. If it is not,
| Cluster Manager detects the event failure. The handling of this event “hangs” the
| process until the problem is solved through a manual intervention to recover. Without
| manual intervention, the node does not hit the barrier to synchronize with the other
| nodes. Synchronization across all nodes is a requirement for the Cluster Manager to
| control all the nodes. “NULL” is a field reserved for future use. The word “NULL” must
| appear at the end of each line except the barrier line. If you specify multiple recovery
| commands between two barrier commands, or before the first one, the recovery
| commands are executed in parallel on the node itself and between the nodes.

 Chapter 22. HACMP ES for AIX 751

| The barrier command is used to synchronize all the commands across all the cluster
| nodes. When a node hits the barrier statement in the recovery program, Cluster
| Manager initiates the barrier protocol on this node. Since the barrier protocol is a
| two-phase protocol, when all nodes have met the barrier in the recovery program and
| “voted” to approve the protocol, then all nodes are notified that both phases have
| completed.

| In summary, the following actions make up the process:

| 1. Either Group Services/ES for predefined events, or Event Management for
| user-defined events, notifies Cluster Manager of the event.

| 2. HACMP ES Cluster Manager reads the rules.hacmprd file and determines the
| recovery program mapped to the event.

| 3. HACMP ES Cluster Manager runs the recovery program which consists of a
| sequence of recovery commands.

| 4. The recovery program executes the recovery commands which may be shell
| scripts or binary commands.

| Note: The recovery commands are the same as the HACMP event scripts in
| HACMP for AIX.

| 5. HACMP ES Cluster Manager receives the return status from the recovery
| commands. An unexpected status “hangs” the cluster until manual intervention
| using smit cm_rec_aids or the /usr/sbin/cluster/utilities/clruncmd command
| is carried out.

| HACMP ES Script Files
| Included with DB2 UDB EEE are sample scripts for failover/recovery and for
| user-defined events. The scripts will work “as is” or you can customize or change the
| recovery action.

| ¹ DB2 database partition recovery script rc.db2pe. This is the script file used to start
| and stop the HACMP configuration on a database partition. It also works as a
| HACMP start and stop script for a NFS server of the DB2 instance owner.

| ¹ DB2-specific user-defined events for HACMP ES. Six default events are included:
| one for process recovery, two for paging space, and three for NFS and
| automounter recovery.

| ¹ DB2 instance NFS fileserver failover. This script provides for failover recovery of
| the server of the filesystem for a DB2 instance to a backup.

| ¹ Network failover. The scripts network_up_complete, network_back and
| network_down_complete, network_down allow SP DB2 database partitions to failover
| if their SP Switch adapter should fail.

| ¹ Scripts to define monitoring events for the SP GUI Perspectives are included.
| Monitoring of failover and user-defined recovery is possible through the Event and
| Hardware Perspectives. Read the documentation for PSSP Administration to find
| out more about Perspectives.

752 Administration Guide

| ¹ Installation scripts to install and remove core scripts and events on the HACMP ES
| nodes.

| ¹ Script files to create and remove the SP Perspectives problem management
| (pman) resources for monitoring the HACMP and DB2 configuration.

| The script files are located in the DB2 UDB EEE $INSTNAME/sqllib/samples/hacmp/es

| directory.

| The recovery scripts need to be installed on each node that will run recovery. The script
| files can be centrally installed from the SP control workstation or other designated SP
| node. To install, complete the following tasks:

| 1. Copy the scripts from the $INSTNAME/sqllib/samples/hacmp/es directory to one of
| either the SP control workstation or another SP node that can run the pcp and
| pexec commands. (The pcp and pexec commands are required for the install so
| ensure that you have the ability to run them.)

| 2. Customize the reg.parms.SAMPLE and failover.parms.SAMPLE files for your
| environment by setting key parameters such as BUFFPAGE for failover
| configurations. Typically for mutual takeover configurations, your failure settings will
| be adjusted lower to one-half the size of your regular settings or less. Also, you will
| use a copy of these files renamed with your own name (instead of “SAMPLE”).

| 3. Customize as necessary the five (5) parameters NFS_RETRIES,
| START_RETRIES, MOUNT_NFS, STOP_RETRIES, and FAILOVER in the
| rc.db2pe file. The three retries and the single failover settings should be adequate
| for almost all implementations. The MOUNT_NFS setting should be configured
| depending on whether you will be using the package for NFS server availability.
| You should specify this setting if you wish rc.db2pe to mount and verify the NFS
| home directory of the DB2 instance owner for you. Setting the FAILOVER
| parameter to “YES” will cause the running of db2_proc_restart and attempt to
| restart a DB2 database partition. If unsuccessful in this attempt, HACMP will be
| shutdown with a failover.

| 4. Customize db2_paging_action, db2_proc_recovery, and nfs_auto_recovery in the
| event file. Also, edit pwq to change this to the DB2 instance owner. Customize the
| db2_paging_action to indicate the action to take if paging space gets more that
| ninety percent full. (If this does occur, the DB2 database partition is stopped.)
| Modify the script if additional recovery actions are required.

| 5. Use db2_inst_ha to install the scripts and events on the nodes you specify.

| Note: HACMP ES must be pre-installed on these nodes before you begin.

| The syntax of db2_inst_ha is:

| db2_inst_ha $INSTNAME/sqllib/samples/hacmp/es <nodelist> <DATABASENAME>

| where

| $INSTNAME/sqllib/samples/hacmp/es is the directory where the scripts/event are located
| <nodelist> is the pcp or pexec style of nodes; for example, 1-16 or 1,2,3,4
| <DATABASENAME> is the name of the database for regular and failover
| parameter files.

 Chapter 22. HACMP ES for AIX 753

| The reg.parms.SAMPLE and failover.parms.SAMPLE will be copied to each node
| and renamed reg.parms.DATABASENAME. db2_inst_ha will copy files to each node
| in /usr/bin and update the HACMP event files:
| /usr/sbin/cluster/events/rules.hacmprd,
| /usr/sbin/cluster/events/network_up_complete, and
| /usr/sbin/cluster/events/network_down_complete.

| 6. Configure your system and scripts with HACMP.

| 7. Use the create_db2_events command to install the monitoring events for problem
| management resources (pman) and the SP GUI Perspectives. Additional
| configuration and customization in Perspectives is needed. For more information on
| Perspectives, read the PSSP Administration Guide.

| 8. Use the ha_db2stop command to shutdown the database partitions without HACMP
| ES failover recovery taking place. To use this command, copy the file to the
| database user's home directory and make sure permissions and ownership are set
| for that user. To stop the database without failover recovery, then as that user,
| type:

| ha_db2stop

| Note: You must wait for the command to return. Exiting by using a ctrl-C interrupt,
| or by killing the process, may re-enable failover recovery prematurely. This
| would result in not all database partitions being stopped.

| DB2 Recovery Scripts Operations with HACMP ES
| HACMP ES invokes the DB2 recovery scripts in the following way:

| ¹ node_up_local (starting a node)

| 1. HACMP will run the node_up sequence, acquiring volume groups, logical
| volumes, filesystems, and IP addresses specified in resource groups owned
| (via cascading) or assigned (via rotating) to this node.

| 2. When node_up_local_complete is run, the application server definition which
| contains rc.db2pe is initiated to start the database partition specified in the
| application server definitions on this physical node.

| Note: rc.db2pe, when running in start mode, adjusts the DB2 parameters
| specified in reg.parms.DATABASE for each DATABASE in the database
| directory that matches a parameter (parms) file.

| Each node, when starting, follows this sequence. If you have multiple HACMP
| clusters and start them in parallel, multiple nodes are brought up at once.

| ¹ node_down_remote (failover)

| 1. HACMP will acquire volume groups, logical volumes, filesystems, and IP
| addresses specified in the resource group on the designated takeover node.

| 2. When node_down_remote_complete is run, HACMP will run rc.db2pe as the
| application server start script specified in the resource group for this database
| partition.

754 Administration Guide

| Note: rc.db2pe, when running in a takeover mode (mutual takeover), will stop
| the DB2 database partition running on it, adjust the DB2 parameters
| specified in failover.parms.DATABASE for each DATABASE in the
| database directory that matches a parameter (parms) file, and then
| starts both database partitions on the physical takeover node.

| ¹ node_up_remote (reintegration of a failed node - cascading mutual takeover
| resource group)

| 1. When node_up_remote is run on the old takeover node, the application server
| definition causes rc.db2pe to be run in stop mode.

| Note: rc.db2pe, when running in a reintegration mode (mutual takeover), will
| stop both of the database partitions running on it, adjust the DB2
| parameters specified in reg.parms.DATABASE for each DATABASE in
| the database directory that matches a parameter (parms) file, and then
| starts just the database partition to be kept on this physical takeover
| node.

| 2. The old takeover node releases volume groups, logical volumes, filesystems,
| and IP addresses specified in resource groups to be owned by the
| reintegrating node.

| 3. HACMP will re-acquire volume groups, logical volumes, filesystems, and IP
| addresses specified in the resource group now owned by the reintegrating
| node.

| 4. When node_up_local_complete is run, the application server definition which
| contains rc.db2pe is initiated to start the DB2 database partition specified in
| the application server definition on this reintegrating physical node.

| Note: rc.db2pe, when running in start mode will adjust the DB2 parameters
| specified in reg.parms.DATABASE for each DATABASE in the database
| directory that matches a parameter (parms) file.

| ¹ node_down_local (node stop or stop with takeover)

| 1. When node_down_local is run on the stopping node, the application server
| definition causes rc.db2pe to be run in stop mode.

| Note: rc.db2pe, when running in a stop mode will adjust the DB2 parameters
| specified in failover.parms.DATABASE for each DATABASE in the
| database directory that matches a parameter (parms) file, and then
| stops the DB2 database partition (this is for takeover).

| 2. HACMP releases volume groups, logical volumes, filesystems, and IP
| addresses specified in resource groups now owned by the node.

| ¹ db2_proc_recovery (db2 process death)

| 1. All nodes run the db2_proc_restart script. The node which had the failure
| restarts the correct DB2 database partition.

| ¹ db2_paging_recovery (paging space recovery)

| 1. All nodes run the db2_paging_action script. If a node has more than seventy
| (70) percent of paging space filled, a wall command is issued. If a node has

 Chapter 22. HACMP ES for AIX 755

| more than ninety (90) percent of paging space filled, then DB2 database
| partitions on this physical node are stopped and restarted.

| ¹ nfs_auto_recovery (nfs or automount process failure)

| 1. All nodes run the rc.db2pe script in NFS mode. If a NFS process stops
| running, then it is restarted. In a similar way, if the automount process stops
| running then it is restarted.

| ¹ network_down_complete (network failure - SP switch)

| 1. The net_down script is called. This verifies the network as the SP switch
| network and verifies it is down. If so, it waits a user-defined time interval. The
| default time interval is one hundred (100) seconds.

| 2. If the SP switch network comes back as indicated by network_up_complete

| event, then no recovery is effected.

| 3. If the time limit is reached, then HACMP is stopped with failover.

| Note: All events can be monitored through SP problem management and the SP
| Perspectives GUI.

| Other Script Utilities
| There are other script utilities available for your use which include:

| ¹ ha_cmd is a command provided to start HACMP on SP nodes from the control
| workstation. The syntax of the command is:

| ha_cmd <noderange> <START|STOP|TAKE|FORCE>

| where <noderange> is a pcp or pexec style of SP noderange. For example,
| ha_cmd 3-6 START would start HACMP on nodes 3,4,5,6. ha_cmd 5 TAKE would
| shutdown HACMP on node 5 for takeover.

| ¹ ha_mon is a command for monitoring HACMP hacmp_out files from the SP control
| workstation. To invoke this command, type ha_mon <node> where <node> is the SP
| node to be monitored. ha_mon will “tail -f” the /tmp/hacmp.out file on the node you
| specify.

| ¹ db2_turnoff_recov is a command designed for extremely rare situations. This
| command temporarily disables all HACMP (non-failover) recovery. No DB2
| process, paging, NFS, or automounter recovery is initiated. This function removes
| the event stanzas for that recovery from the HACMP rules file. HACMP must be
| stopped and restarted. To invoke this command, type db2_turnoff_recov

| <nodelist>.

| ¹ db2_turnon_recov is a command to re-enable HACMP (non-failover) recovery. This
| command would be used after db2_turnoff_recov to restore HACMP rules files so
| that user-defined event recovery can occur. HACMP must be stopped and
| restarted. To invoke this command, type db2_turnon_recov <nodelist>.

756 Administration Guide

| Monitoring HACMP Clusters
| There are scripts provided for creating SP problem management (pman) events to
| monitor the DB2 HACMP ES configuration, in addition to those monitoring utilities
| already present in HACMP ES. To monitor HACMP status form the SP control
| workstation, do the following:

| ¹ Install the HACMP client code on the control workstation.

| ¹ Edit the /usr/sbin/cluster/etc/clhosts file and include the SP ethernet IP
| addresses of the nodes you wish to monitor.

| ¹ Use the command startsrc -s clinfo to start monitoring the clusters.

| HACMP supplies an interface for monitoring the clusters: /usr/sbin/cluster/clstat.

| To use the problem management monitoring with SP Perspectives GUI for HACMP RS
| and user-defined events:

| 1. Use create_db2_events <nodelist> where <nodelist> is a pcp or pexec style of
| nodes and where the events are to be monitored. create_db2_events creates five
| (5) pman events for monitoring by Perspectives.

| Note: The Resource Variables PSSP.pm.User_state12-16 are used in the creation
| of these events. If these resource variables are already being used for
| some other purpose, create_db2_events and update_db2_events must be
| updated to use different resource variables.

| 2. Start Perspectives on the control workstation. From the launch pad, choose the
| event Perspective. You should see five (5) events: db2_hacmp_recovery,
| db2_process_recovery, db2_paging_err, db2_nfs_err, and Errlog_PERM_entry.

| 3. Double-click on each event. On the screen that appears, you need to register
| (within the Definition Table) a condition for the event. Click next to the down arrow
| by Name: "unnamed", and select the same name as the event you specify as the
| condition. Select the "Response Options" tab. Click on the button on the top of the
| display (“Send Message to Perspectives event session”). If you desire, you can
| specify commands, Errlog entries, as well as SNMP traps for these event
| occurrences. The event log displays are maintained only across Perspective
| sessions; therefore, you might want to create AIX error log entries for each. Hit the
| “OK” Button, and close the window.

| 4. Next, go back to the Perspectives launch pad. Select the hardware Perspective.

| 5. When the Hardware frame GUI appears, select at the top of the menu “View” and
| then “Monitor.” You are then provided with a list of events that can be monitored
| for your SP. Scrolling to the bottom of the list, you will find two additional events:
| one for HACMP DB2 recovery (db2_ha_ind), and the other for SP node PERM
| errors (Errlog_PERM_mon. Select those you wish to monitor. (When an event occurs
| for a node, it will receive a red “X” in its display. If all monitored conditions are
| “OK,” the display for the node is green.) Typically, host_responds,
| switch_responds, and node_power_LED are used. You can also monitor the DB2
| HACMP recovery as well as PERM errors on the node.

 Chapter 22. HACMP ES for AIX 757

| Note: The db2_hacmp_mon and db2_hacmp_recovery variables for pman and
| Perspectives do not reflect HACMP cluster status. Rather, these variables
| reflect the status of the rc.db2pe operation to start or stop DB2. The “real”
| HACMP status is shown in the HACMP clstat monitor and reflects the HACMP
| cluster state. If you wish db2_hacmp_ind to reflect monitoring similar to HACMP
| Status, add the following line to your /etc/inittab file:

| haind:2:wait:/usr/bin/db2_update_events HAIND OFF 2>&1 >/dev/null

| If you are planning on using NetView for your implementation, consider using HAVIEW
| (which is part of HACMP) for monitoring your configuration. Please use NetView
| documentation for information on configuring that product.

| DB2 SP HACMP ES Installation
| To assist in the planning for the installation of HACMP ES on DB2 UDB, a step-by-step
| overview of the installation and migration processes is presented here.

| DB2 SP HACMP ES New Installation
| When planning for and implementing HACMP ES in an environment where you have
| not installed HACMP before, you should consider the following tasks:

| 1. Install the AIX operating system on each of the SP nodes according to the SP
| Installation and Administration Guides. Ensure proper paging space is available on
| both the control workstation and each of the SP nodes. Also ensure switch
| configuration has been considered and implemented along with any other
| modifiable configuration parameters. In addition, SP monitoring (Perspectives) you
| desire to use should be put in place. Ensure the SP dsh, pcp, and pexec
| commands work.

| 2. Design your database layout. This should, at a minimum, include the number of
| nodes to be used, the mapping of DB2 database partitions to physical nodes, the
| disk requirements per node/partition, and table space considerations. You should
| also consider who the main DB2 instance owner will be and the access
| authorization this and other users will require.

| 3. Plan your external SSA disk configuration including redundant adapters, mirrored
| disks, and the twin-tailing of disks.

| 4. Using your database layout and SSA configuration, complete the HACMP
| worksheets found in the HACMP Planning, Installation, and Administration Guides.
| Using these worksheets, you should be able to complete the worksheets later in
| this document.

| 5. Implement your external SSA disk configuration. Make sure microcode levels are
| consistent across all drives and use the Maymap utility for validating and filling in
| any gaps in your worksheets.

| 6. Install DB2 UDB EEE on each SP node.

| 7. Install HACMP ES on each SP node.

758 Administration Guide

| 8. Install the DB2 UDB EEE HACMP ES on SP Package using the db2_inst_ha

| command.

| 9. Create the DB2 main instance user and validate it can access all nodes. This is
| not a highly available user at this point. This can be temporarily a SP user on the
| SP control workstation.

| 10. Create your DB2 instance and database. Ensure it is operating by using db2start

| command. Then ensure it is stopped by using db2stop before proceeding to the
| next step.

| 11. If you wish to implement or load the database before adding HACMP, then you
| should do this now.

| 12. Configure HACMP ES on the SP nodes topology and resource groups according to
| the HACMP worksheets and the information in this document.

| 13. Beginning with your NFS server node for the DB2 main instance user, change this
| user (by modifying /etc/security/user and /etc/passwd on all nodes in
| accordance with what is specified in this document. This user will become a highly
| available NFS user; and this node and its backup will update /etc/exports. All
| nodes will be able to mount this directory using NFS (with an entry in
| /etc/filesystems on each node) through the switch alias IP addresses.

| 14. “Tar” the home directory of the main instance user and “un-tar” the home directory
| in the new location.

| 15. Create a NFS filesystem on each of the SP nodes to mount a new main instance
| home directory.

| 16. Start HACMP on the NFS server node. Verify that it comes up successfully by
| investigating /tmp/hacmp.out. The ha_mon command can be used to monitor this file
| as it is written.

| 17. Bring up the other nodes one at a time; verifying each successful completion by
| investigating /tmp/hacmp.out. The ha_mon command can be used to monitor this file
| as it is written.

| 18. Setup the optional monitoring through Perspectives and Problem Management.

| 19. Validate failover functionality on each node by simulating a concurrent maintenance
| action on each node. The ha_cmd nodenum TAKE can be used to stop HACMP
| gracefully with takeover. Verify the takeovers and reintegrations succeed by
| interrogation of /tmp/hacmp.out and your monitoring tools.

| DB2 SP HACMP ES Migration
| If you are migrating from a non-HACMP installation to one with HACMP, you should
| review the step-by-step overview that follows:

| 1. Convert your existing external disks to a highly-available, twin-tailed, mirrored
| configuration. Add any extra hardware and disks to achieve this configuration
| remembering that names of different logical volumes on different nodes must be
| unique when they are twin-tailed. This applies to volume groups, logical volumes,
| and filesystems.

 Chapter 22. HACMP ES for AIX 759

| 2. Complete the HACMP planning and the related worksheets. Also, complete the
| worksheets in this document.

| 3. Implement your external SSA disk configuration changes. Ensure microcode levels
| are consistent across all drives and use the Maymap utility to validate and
| eliminate any gaps in the worksheets.

| 4. Install HACMP ES on each SP node.

| 5. Install the “DB2 UDB EEE HACMP ES on SP” Package using the db2_inst_ha

| command.

| 6. Configure HACMP ES on the SP nodes topology and resource groups according to
| the HACMP worksheets and the information in this document.

| 7. Beginning with your NFS server node for the DB2 main instance user, change this
| user (by modifying /etc/security/user and /etc/passwd on all nodes in
| accordance with what is specified in this document. This user will become a highly
| available NFS user; and this node and its backup will update /etc/exports. All
| nodes will be able to mount this directory using NFS (with an entry in
| /etc/filesystems on each node) through the switch alias IP addresses.

| 8. “Tar” the home directory of the main instance user and “un-tar” the home directory
| in the new location.

| 9. Create a NFS filesystem on each of the SP nodes to mount a new main instance
| home directory.

| 10. Start HACMP on the NFS server node. Verify that it comes up successfully by
| investigating /tmp/hacmp.out. The ha_mon command can be used to monitor this file
| as it is written.

| 11. Bring up the other nodes one at a time; verifying each successful completion by
| investigating /tmp/hacmp.out. The ha_mon command can be used to monitor this file
| as it is written.

| 12. Setup the optional monitoring through Perspectives and Problem Management.

| 13. Validate failover functionality on each node by simulating a concurrent maintenance
| action on each node. The ha_cmd nodenum TAKE can be used to stop HACMP
| gracefully with takeover. Verify the takeovers and reintegrations succeed by
| interrogation of /tmp/hacmp.out and your monitoring tools.

| DB2 SP HACMP ES Worksheets
| The worksheets below are designed to be used with the HACMP worksheets that were
| filled out in preparation for your configuration.

| In each of two cases, first a worksheet is filled out to give you an idea of how to plan
| your configuration. Secondly, a blank sample worksheet is provided for your use.

| The database configuration on external disks documented in the first sample worksheet
| is shown in the following figure. The database statement used to create the database
| was:

| db2 create database pwq on /newdata

760 Administration Guide

| Both SSA external adapters and external SSA disks are mirrored and twin-tailed for
| logical volumes with no single point of failure. The diagram pictured is quite similar to
| the output of the maymap command. Maymap is a utility available through AIXTOOLS to
| show the external SSA disk configuration. Use of this utility is recommended as part of
| planning your setup.

Sample DB2 4-node Database External Disks Setup
- Showing twin-tailing for High Availability.

A1

A2

B1

B2

B2

B1

A2

A1

node 3

ssa0

ssa1

A1

A2

B1

B2

B2

B1

A2

A1

node 4

ssa0

ssa1

catalogue nfsserver

A1

A2

B1

B2

B2

B1

A2

A1

node 5

ssa0

ssa1

A1

A2

B1

B2

B2

B1

A2

A1

node 6

ssa0

ssa1

dbnode5 dbnode6

hdisk1

hdisk1

hdisk5

hdisk5

hdisk9

hdisk13

hdisk2

hdisk2

hdisk6

hdisk6

hdisk10

hdisk14

hdisk3

hdisk3

hdisk7

hdisk7

hdisk11

hdisk15

hdisk4

hdisk4

hdisk8

hdisk8

hdisk12

hdisk16

| Figure 78. Sample DB2 4-node Database External Disks Setup

 Chapter 22. HACMP ES for AIX 761

| Before you review the following table, you are expected to have thoroughly read the
| HACMP documentation regarding the quorum settings on volume groups and mirrored
| write consistency settings on logical volumes. The settings used for both will directly
| affect your availability and performance. Ensure you review these settings and
| understand their implications. The typical setting for both “quorum” and “mirrored write
| consistency” is “off.”

| Table 51 (Page 1 of 2). HACMP Volume Groups, Logical Volumes, and Filesystems

| SP
| Node

| Volume
| Group
| Name

| PP
| Size
| (MB)

| Logical
| Volume
| Name

| #
| of
| PPs

| Cop
| -ies
| hdisk
| list

| Filesystem
| Mount Point
| (MB)

| Filesystem
| Log logical
| volume

| Node
| Description
| and backup

| user
| owner
| of /dev
| logical
| device

| 3| havg3| 8| hlv300| 10| 2| hdisk1
| hdisk5
| /newdata
| /pwq
| /NODE0003

| hlog301| Catalognode
| mount point;
| node 4

| root *

| 3| havg3| 8| hlog301| 1| 2| hdisk1
| hdisk5
| N/A| N/A| Catalognode
| jfslog; node 4
| root *

| 3| havg3| 8| hlv301| 10| 2| hdisk2
| hdisk6
| N/A| N/A| Catalognode
| rawtemp
| space; node
| 4

| pwq **

| 4| havg4| 8| hlv400| 10| 2| hdisk3
| hdisk7
| /dbmnt| hlog401| nfsserver
| pwq home;
| node 3

| root *

| 4| havg4| 8| hlog401| 1| 2| hdisk3
| hdisk7
| N/A| N/A| nfsserver
| jfslog; node 3
| root *

| 5| havg5| 8| hlv500| 10| 2| hdisk1
| hdisk9
| /newdata/
| pwq/
| NODE0005

| HLOG501| Dbnode5
| mount point;
| node 6

| root *

| 5| havg5| 8| hlog501| 1| 2| hdisk1
| hdisk9
| N/A| N/A| Dbnode5
| jfslog; node 6
| root *

| 5| havg5| 8| hlv501| 10| 2| hdisk2
| hdisk10
| N/A| N/A| Dbnode5 raw
| temp space;
| node 6

| pwq **

| 5| havg5| 8| hlv502| 100| 2| hdisk2
| hdisk10
| N/A| N/A| Dbnode5 raw
| table space;
| node 6

| pwq **

| 5| havg5| 8| halv503| 100| 2| hdisk3
| hdisk11
| N/A| N/A| Dbnode5 raw
| table space;
| node 6

| pwq **

| 5| havg5| 8| halv504| 100| 2| hdisk3
| hdisk11
| N/A| N/A| Dbnode5 raw
| table space;
| node 6

| pwq **

| 5| havg5| 8| halv505| 100| 2| hdisk4
| hdisk12
| /dbdata5| hlog501| Dbnode6
| system table
| space; node
| 6

| root *

| 6| havg6| 8| hlv600| 10| 2| hdisk5
| hdisk13
| /newdata/
| pwq/
| NODE0006

| hlog601| Dbnode6
| mount point;
| node 5

| root *

| 6| havg6| 8| hlog601| 1| 2| hdisk5
| hdisk13
| N/A| N/A| Dbnode6
| jfslog; node 5
| root *

| 6| havg6| 8| hlv601| 10| 2| hdisk6
| hdisk14
| N/A| N/A| Dbnode6 raw
| temp space;
| node 5

| pwq **

| 6| havg6| 8| hlv602| 100| 2| hdisk6
| hdisk14
| N/A| N/A| Dbnode6 raw
| table space;
| node 5

| pwq **

762 Administration Guide

| Table 51 (Page 2 of 2). HACMP Volume Groups, Logical Volumes, and Filesystems

| SP
| Node

| Volume
| Group
| Name

| PP
| Size
| (MB)

| Logical
| Volume
| Name

| #
| of
| PPs

| Cop
| -ies
| hdisk
| list

| Filesystem
| Mount Point
| (MB)

| Filesystem
| Log logical
| volume

| Node
| Description
| and backup

| user
| owner
| of /dev
| logical
| device

| 6| havg6| 8| hlv603| 100| 2| hdisk7
| hdisk15
| N/A| N/A| Dbnode6 raw
| table space;
| node 5

| pwq **

| 6| havg6| 8| hlv604| 100| 2| hdisk7
| hdisk15
| N/A| N/A| Dbnode6 raw
| table space;
| node 5

| pwq **

| 6| havg6| 8| hlv605| 100| 2| hdisk8
| hdisk16
| /dbdata6| hlog601| Dbnode6
| system table
| space; node
| 5

| root *

| Notes:

| 1. * jfs filesystem logical volumes and logs keep root permissions.

| 2. ** raw database spaces get database user permissions on /dev raw file entries (/dev/rxxxx).

| Table 52 (Page 1 of 2). HACMP Volume Groups, Logical Volumes, and Filesystems (blank)

| SP
| Node

| Volume
| Group
| Name

| PP
| Size
| (MB)

| Logical
| Volume
| Name

| #
| of
| PPs

| Cop
| -ies
| hdisk
| list

| Filesystem
| Mount Point
| (MB)

| Filesystem
| Log logical
| volume

| Node
| Description
| and backup

| user
| owner
| of /dev
| logical
| device

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

 Chapter 22. HACMP ES for AIX 763

| Table 52 (Page 2 of 2). HACMP Volume Groups, Logical Volumes, and Filesystems (blank)

| SP
| Node

| Volume
| Group
| Name

| PP
| Size
| (MB)

| Logical
| Volume
| Name

| #
| of
| PPs

| Cop
| -ies
| hdisk
| list

| Filesystem
| Mount Point
| (MB)

| Filesystem
| Log logical
| volume

| Node
| Description
| and backup

| user
| owner
| of /dev
| logical
| device

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| Table 53 (Page 1 of 2). Planning HACMP NFS Server

| SP
| Node
| External
| Filesystem

| Back
| up
| node

| SP switch boot and
| service IP alias pairs

| filesystem to
| mount (/etc/
| filesystems)

| filesystem to
| specify as
| database home
| directory

| addresses to export
| filesystem to (/etc/
| exports)

| 3| /dbmnt| 4| nfs_boot_3 nfs_client_3| nfs_server:/
| dbmnt as /dbi
| /dbi/pwq| nfs_boot_3 nfs_client_3
| nfs_server_boot
| nfs_server nfs_boot_5
| nfs_client_5 nfs_boot_6
| nfs_client_6

764 Administration Guide

| Table 53 (Page 2 of 2). Planning HACMP NFS Server

| SP
| Node
| External
| Filesystem

| Back
| up
| node

| SP switch boot and
| service IP alias pairs

| filesystem to
| mount (/etc/
| filesystems)

| filesystem to
| specify as
| database home
| directory

| addresses to export
| filesystem to (/etc/
| exports)

| 4| /dbmnt| 3| nfs_server_boot
| nfs_server
| nfs_server:/
| dbmnt as /dbi
| /dbi/pwq| nfs_boot_3 nfs_client_3
| nfs_server_boot
| nfs_server nfs_boot_5
| nfs_client_5 nfs_boot_6
| nfs_client_6

| 5| N/A| N/A| nfs_boot_5 nfs_client_5| nfs_server:/
| dbmnt as /dbi
| /dbi/pwq| N/A

| 6| N/A| N/A| nfs_boot_6 nfs_client_6| nfs_server:/
| dbmnt as /dbi
| /dbi/pwq| N/A

| Notes:

| 1. /etc/passwd must be the same on all nodes. This can be synchronized from the control workstation.

| 2. Ensure the external filesystem has the permission of the database instance owner.

| 3. The /etc/filesystems must have the mount parameters: hard, bg, intr, and rw.

| 4. The /etc/exports will have

| -root=ip1:ip2:ip3

| only on the server and its backup.

| Table 54 (Page 1 of 2). Planning HACMP NFS Server (blank)

| SP
| Node
| External
| Filesystem

| Back
| up
| node

| SP switch boot and
| service IP alias pairs

| filesystem to
| mount (/etc/
| filesystems)

| filesystem to
| specify as
| database home
| directory

| addresses to export
| filesystem to (/etc/
| exports)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

 Chapter 22. HACMP ES for AIX 765

| Table 54 (Page 2 of 2). Planning HACMP NFS Server (blank)

| SP
| Node
| External
| Filesystem

| Back
| up
| node

| SP switch boot and
| service IP alias pairs

| filesystem to
| mount (/etc/
| filesystems)

| filesystem to
| specify as
| database home
| directory

| addresses to export
| filesystem to (/etc/
| exports)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

766 Administration Guide

| Chapter 23. High Availability in the Windows NT Environment

| You can set up your database system so that if a machine fails, the database server on
| the failed machine can run on another machine. On Windows NT, you implement
| failover support with Microsoft Cluster Server (MSCS). To use MSCS, you require
| Windows NT Version 4.0 Enterprise Edition with the MSCS feature installed.

| MSCS can perform both failure detection and the restarting of resources in a clustered
| environment, such as failover support for physical disks and IP addresses. (When the
| failed machine is online again, resources will not automatically fall back to it, unless you
| previously configure them to do so. For more information, see “Fallback
| Considerations” on page 777.)

| Before you enable DB2 instances for failover support, perform the following planning
| steps:

| 1 Decide which disks you want to use for data storage. Each database server
| should be assigned at least one disk for its own use. The disk that you use to
| store data must be attached to a shared disk subsystem, and must be configured
| as an MSCS disk resource.

| 2 Ensure that you have one IP address for each database server that you want to
| use to support remote requests.

| When you set up failover support, it can be for an existing instance, or you can create a
| new instance when you implement the failover support.

| To enable failover support, perform the following steps:

| 1 Create an input file for the DB2MSCS utility.

| 2 Run the DB2MSCS utility.

| 3 If you are using a partitioned database system, register database drive mapping
| to enable mutual takeover. See “Registering Database Drive Mapping for Mutual
| Takeover Configurations in a Partitioned Database Environment” on page 778.

| After you finish enabling the instance for failover support, your configuration will
| resemble Figure 79 on page 768.

 Copyright IBM Corp. 1993, 1998 767

Machine A Machine B

C: C:

E:

F:

SQLLIB SQLLIB

(Each machine has DB2 code
installed on a local disk)

Quorum disk
used by MSCS

DB2 Group 0

DB2 Group 1

Cluster disks in a disk tower

D:

| Figure 79. Example MSCS Configuration

| The following sections describe the different types of failover support, and how to
| implement them. Before performing any of the steps described below, you must already
| have the MSCS software installed on every machine that you want to use in an MSCS
| cluster. In addition, you must also have DB2 installed on every machine.

| Failover Configurations
| Two types of configuration are available:

| ¹ Hot standby

| ¹ Mutual takeover

| Currently, MSCS supports clusters of two machines.

| In a partitioned database environment, the clusters do not all have to have the same
| type of configuration. You can have some clusters that are set up to use hot standby,
| and others that are set up for mutual takeover. For example, if your DB2 instance
| consists of five workstations, you can have two machines set up to use mutual takeover
| configuration, two to use hot standby configuration, with the last machine not configured
| for failover support.

| Hot Standby Configuration
| In a hot standby configuration, one machine in the MSCS cluster provides dedicated
| failover support, and the other machine participates in the database system. If the
| machine participating in the database system fails, the database server on it will be
| started on the failover machine. If, in a partitioned database system, you are running

768 Administration Guide

| multiple logical nodes on a machine and it fails, the logical nodes will be started on the
| failover machine. Figure 80 on page 769 shows an example of a hot standby
| configuration.

Workstation BWorkstation A

Cluster

Instance A Instance A

| Figure 80. Hot Standby Configuration

| Mutual Takeover Configuration
| In a mutual takeover configuration, both workstations participate in the database system
| (that is, each machine has at least one database server running on it). If one of the
| workstations in the MSCS cluster fails, the database server on the failing machine will
| be started to run on the other machine. In a mutual takeover configuration, a database
| server on one machine can fail independently of the database server on another
| machine. Any database server can be active on any machine at any given point in time.
| Figure 81 shows an example of a mutual takeover configuration.

Workstation BWorkstation A

Cluster

Instance A

Instance B

Instance A

Instance B

| Figure 81. Mutual Takeover Configuration

 Chapter 23. High Availability in the Windows NT Environment 769

| Using the DB2MSCS Utility
| You use the DB2MSCS utility to create the infrastructure for DB2 to support failover on
| the Windows NT environment using MSCS support. You can use this utility to enable
| failover in both single-partition and partitioned database environments.

| You run the DB2MSCS utility once for each instance on its instance-owning machine. If
| there is only one DB2 instance running on one machine in the MSCS cluster, this sets
| up a hot-standby configuration. If you have an instance running on each machine in the
| MSCS cluster, you would run DB2MSCS once on each instance-owing machine to set
| up a mutual takeover configuration.

| The DB2MSCS utility performs the following steps:

| 1. Reads the required MSCS and DB2 parameters from an input file called
| DB2MSCS.CFG. See “Specifying the DB2MSCS.CFG File” for information about
| the full set of input parameters.

| 2. Validates the parameters in the input file.

| 3. Registers the DB2 resource type.

| 4. Creates the MSCS group (or groups) to contain the MSCS and DB2 resources.

| 5. Creates the IP resource.

| 6. Creates the Network Name resource.

| 7. Moves MSCS disks to the group.

| 8. Creates the DB2 resource (or resources).

| 9. Adds all required dependencies for the DB2 resource.

| 10. Converts the non-clustered DB2 instance into a clustered instance.

| 11. Brings all resources online.

| The syntax of the DB2MSCS utility is as follows:|

| 55─| ─DB2MSCS─ ──┬ ┬───────────────── ──5%
| └ ┘| ─-f:──input_file─

| Where:

| -f: input_file Specifies the DB2MSCS.CFG input file to be used by the MSCS utility. If
| this parameter is not specified, the DB2MSCS utility reads the
| DB2MSCS.CFG file that is in the current directory.

| Specifying the DB2MSCS.CFG File
| The DB2MSCS.CFG file is an ASCII text file that contains parameters that are read by
| the DB2MSCS utility. You specify each input parameter on separate line using the
| following format: PARAMETER_KEYWORD=parameter_value. For example:

770 Administration Guide

| CLUSTER_NAME=WOLFPACK

| GROUP_NAME=DB2 Group

| IP_ADDRESS=9.21.22.89

| Two example configuration files are in the /CFG subdirectory of the /SQLLIB directory.
| The first, DB2MSCS.EE, is an example for single-partition database environments. The
| second, DB2MSCS.EEE, is an example for partitioned database environments.

| The parameters for the DB2MSCS.CFG file are as follows:

| DB2_INSTANCE The name of the DB2 instance. If the instance name is not specified,
| the default instance (the value of the DB2INSTANCE environment variable)
| is used.

| This parameter has a global scope, and you specify it only once in the
| DB2MSCS.CFG file.

| This parameter is optional.

| Example:

| DB2_INSTANCE=DB2

| The instance must already exist. For information about creating instances,
| refer to the DB2 Extended Enterprise Edition for Windows NT Quick
| Beginnings.

| DB2_LOGON_USERNAME The name of the logon account for the DB2 service.

| This parameter has a global scope, and you specify it only once in the
| DB2MSCS.CFG file.

| This parameter is only required for DB2 Extended Enterprise Edition
| instances.

| Example:

| DB2_LOGON_USERNAME=db2user

| DB2_LOGON_PASSWORD The password of the logon account for the DB2 service. If
| the DB2_LOGON_USERNAME parameter is provided but the
| DB2_LOGON_PASSWORD parameter is not, the DB2MSCS utility prompts
| for the password. The password is not displayed when it is typed at the
| command line.

| This parameter has a global scope, and you specify it only once in the
| DB2MSCS.CFG file.

| This parameter is only required for DB2 Extended Enterprise Edition
| instances.

| Example:

| DB2_LOGON_PASSWORD=xxxxxx

| CLUSTER_NAME The name of the MSCS cluster. All the resources specified following
| this line are created in this cluster until another CLUSTER_NAME tag is
| specified.

 Chapter 23. High Availability in the Windows NT Environment 771

| Specify this parameter once for each cluster.

| This parameter is optional. If not specified, the name of the MSCS cluster
| on the local machine is used.

| Example:

| CLUSTER_NAME=WOLFPACK

| GROUP_NAME The name of the MSCS group. If this parameter is specified, a new
| MSCS group is created if it does not exist. If the group already exists, it is
| used as the target group. Any MSCS resource created following this line is
| created in this group until another GROUP_NAME keyword is specified.

| Specify this parameter once for each group.

| This parameter is required.

| Example:

| GROUP_NAME=DB2 Group

| DB2_NODE The node number of the database partition server (node) to be included in
| the current MSCS group. If multiple logical nodes exist on the same
| machine, each node requires a separate DB2_NODE keyword.

| You specify this parameter after the GROUP_NAME parameter so that the
| DB2 resources are created in the correct MSCS group.

| This parameter is only required for DB2 Extended Enterprise Edition
| instances.

| Example:

| DB2_NODE=0

| IP_NAME The name of the IP Address resource. The value for IP_NAME is arbitrary,
| but must be unique. When this parameter is specified, an MSCS resource
| of type IP Address is created.

| This parameter is required for remote TCP/IP connections. You must
| specify this parameter for the instance-owning machine in a partitioned
| database enviroment. This parameter is optional in single-partition
| database environments.

| Example:

| IP_NAME=IP Address for DB2

| Note: DB2 clients should use the TCP/IP address of this IP resource to
| catalog the TCP/IP node entry. By using the MSCS IP address,
| when the database server fails over to the other machine, DB2
| clients can still connect to the database server because the IP
| address is available on the fail-over machine.

| The attributes of the IP resource are as follows:

| IP_ADDRESS The TCP/IP address of the IP resource. Specify this
| keyword to set the TCP/IP address for the preceeding IP
| resource.

772 Administration Guide

| This parameter is required if the IP_NAME parameter is
| specified.

| Example:

| IP_ADDRESS=9.21.22.34

| IP_SUBNET The subnet mask for the preceeding IP resource.

| This parameter is required if the IP_NAME parameter is
| specified.

| Example:

| IP_SUBNET=255.255.255.0

| IP_NETWORK The name of the MSCS network that the preceeding IP
| resource belongs to. If this parameter is not specified, the first
| MSCS network detected by the system is used.

| This parameter is optional.

| Example:

| IP_NETWORK=Token Ring

| NETNAME_NAME The name of the Network Name resource. Specify this parameter to
| create the Network Name resource.

| This parameter is optional for single-partition database environments. It is
| required for partitioned database enviroments.

| Example:

| NETNAME_NAME=Network name for DB2

| The attributes of the Network Name resource are as follows:

| NETNAME_VALUE The value for the Network Name.

| This parameter is required if NETNAME_NAME parameter is
| specified.

| Example:

| NETNAME_VALUE=DB2SRV

| NETNAME_DEPENDENCY The dependency list for the Network Name
| resource. Each Network Name resource must have a
| dependency on an IP Address resource. If this parameter is
| not specified, the Network Name resource has a dependency
| on the first IP resource in the group.

| This parameter is optional.

| Example:

| NETNAME_DEPENDENCY=IP Address for DB2

 Chapter 23. High Availability in the Windows NT Environment 773

| DISK_NAME The name of the physical disk resources to be moved to the current
| groups. Specify as many disk resources as you need.

| Notes:

| 1. The disk resources must already exist.

| 2. When the DB2MSCS utility configures the DB2 instance for MSCS
| support, the instance directory is copied to the first MSCS disk in the
| group. To specify a different MSCS disk for the instance directory, use
| the INSTPROF_DISK parameter.

| Example:

| DISK_NAME=Disk E:

| DISK_NAME=Disk F:

| INSTPROF_DISK An optional parameter to specify an MSCS disk to contain the DB2
| instance directory. If this parameter is NOT specified, the DB2MSCS utility
| uses the first MSCS disk that belongs to the same group as the instance
| directory.

| The DB2 instance directory is created on the MSCS disk under the
| X:\DB2PROFS directory (where X is the MSCS disk drive letter).

| Example:

| INSTPROF_DISK=Disk E:

| Setting up Failover for a Single-Partition Database System
| When you run the DB2MSCS utility against a single-partition database system, one
| MSCS group contains DB2 and all the dependent MSCS resources (the IP address,
| Network Name, and disks). For example, the contents of the DB2MSCS.CFG for a
| single-partition database system will look like the following:

| #

| # DB2MSCS.CFG for a single-partition database system

| #

| DB2_INSTANCE=DB2

| CLUSTER_NAME=MSCS

| GROUP_NAME=DB2 Group

| IP_NAME=...

| IP_ADDRESS=...

| IP_SUBNET=...

| IP_NETWORK=...

| NETNAME_NAME=...

| NETNAME_VALUE=...

| DISK_NAME=Disk E:

| Setting up a Mutual Takeover Configuration for Two Single-Partition Database
| Systems
| You can set up two single-partition database systems, each on a separate machine, so
| that if the database system on any one machine fails, it is restarted on the other MSCS
| node.

774 Administration Guide

| To setup failover support for this configuration, you need to run the DB2MSCS utility
| once on each instance-owning machine. You must tailor the configuration file for each
| database system.

| Assume that the DB2 instances are called DB2A and DB2B. The DB2MSCS.CFG file
| for the DB2A instance would be as follows:

| #

| # DB2MSCS.CFG for first single-partition database system

| #

| DB2_INSTANCE=DB2A

| CLUSTER_NAME=MSCS

| GROUP_NAME=DB2A Group

| IP_NAME=...

| IP_ADDRESS=...

| IP_SUBNET=...

| IP_NETWORK=...

| NETNAME_NAME=...

| NETNAME_VALUE=...

| DISK_NAME=Disk E:

| The DB2MSCS.CFG file for the DB2A instance would be as follows:

| #

| # DB2MSCS.CFG for second single-partition database system

| #

| DB2_INSTANCE=DB2B

| CLUSTER_NAME=MSCS

| GROUP_NAME=DB2B Group

| IP_NAME=...

| IP_ADDRESS=...

| IP_SUBNET=...

| IP_NETWORK=...

| NETNAME_NAME=...

| NETNAME_VALUE=...

| DISK_NAME=Disk F:

| For a full example, see “Example - Setting up Two Single-Partition Instances for Mutual
| Takeover” on page 780.

| Setting up Multiple MSCS Clusters for a Partitioned Database System
| When you run the DB2MSCS utility against a multipartition database system, one
| MSCS group is created for each physical machine that participates in the system. The
| DB2MSCS.CFG file must contain multiple sections, and each section must have a
| different value for the GROUP_NAME parameter and for all the required dependent
| resources for that group.

| In addition, you must specify the DB2_NODE parameter for each database partition
| server in each MSCS group. If you have multiple logical nodes, each logical node
| requires a separate DB2_NODE keyword.

 Chapter 23. High Availability in the Windows NT Environment 775

| For example, assume that you have a multipartition database system that consists of
| four database partition servers on four machines, and you want to configure two MSCS
| clusters using mutual takeover configuration. You would set up the DB2MSCS.CFG
| configuration file as follows:

| #

| # DB2MSCS.CFG for one partitioned database system with

| # multiple clusters

| DB2_INSTANCE=DB2MPP

| DB2_LOGON_USERNAME=db2user

| DB2_LOGON_PASSWORD=xxxxxx

| CLUSTER_NAME=MSCS1

| # Group 1

| GROUP_NAME=DB2 Group 1

| DB2_NODE=0

| IP_NAME=...

| ...

| # Group 2

| GROUP_NAME=DB2 Group 2

| DB2_NODE=1

| IP_NAME=...

| ...

| CLUSTER_NAME=MSCS2

| # Group 3

| GROUP_NAME=DB2 Group 3

| DB2_NODE=2

| IP_NAME=...

| ...

| # Group 4

| GROUP_NAME=DB2 Group 4

| DB2_NODE=3

| IP_NAME=...

| ...

| For a full example, see “Example - Setting up a Four-Node Partitioned Database
| System for Mutual Takeover” on page 783.

| Maintaining the MSCS System
| When you run the DB2MSCS utility, it creates the infrastructure for failover support for
| all machines in the MSCS cluster. To remove support from a machine, use the
| db2iclus command with the drop option. To re-enable support for a machine, use the
| add option.

| The command syntax is as follows:|

| 55─| ─db2iclus─ ──┬ ┬─add── ──┬ ┬────────────────────| ─/u:──account_name,password────5
| └ ┘─drop─ └ ┘| ─/i:──instance_name─

| 5─ ──┬ ┬─────────────────── ──┬ ┬─────────────────── ─────────────────────────────5%
| └ ┘| ─/m:──machine_name─ └ ┘| ─/c:──cluster_name─

776 Administration Guide

| Where:

| add Enables failover support on the machine by adding it to
| an MSCS cluster. The DB2 resource (database server)
| can then fail over to this machine.

| drop Removes failover support from the machine by dropping
| it from an MSCS cluster.

| /i: instance_name Is the name of the instance. (This parameter overrides
| the setting of the DB2INSTANCE environment variable.)

| /u: account_name, password Is the domain account used as the logon account name
| of the DB2 Service. For example:

| /u:domainA\db2nt,password

| This parameter is only required with the add parameter.

| /m:machine_name Is the computer name of the machine that you want to
| add to, or drop from, an MSCS cluster. You must specify
| this option if you run the command from a machine other
| than the one for which you are modifying failover
| support.

| /c: cluster_name Is the name of the MSCS cluster as it is known on the
| LAN. This name is specified when the MSCS cluster is
| first created.

| Fallback Considerations
| By default, groups are set not to fall back to the original (failed) machine. Unless you
| manually configure a DB2 group to fall back after failing over, it continues to run on the
| alternative MSCS node after the cause of the failover has been resolved.

| If you configure a DB2 group to automatically fall back to the original machine, all the
| resources in the DB2 group including the DB2 resource will fall back as soon as the
| original machine is available. If, during the fall back, a database connection exists, the
| DB2 resource cannot be brought offline, and the fallback processing will fail.

| If you want to force all database connections off the database during the fallback
| processing, set the DB2_FALLBACK registry variable to ON. This variable must be set
| as follows:

| db2set DB2_FALLBACK=ON

| You do not have to reboot or restart the cluster service after setting this registry
| variable.

|

|

|

 Chapter 23. High Availability in the Windows NT Environment 777

| Registering Database Drive Mapping for Mutual Takeover Configurations in a
| Partitioned Database Environment
| When you create a database in the partitioned database environment, you can specify
| a drive letter for the create database command to indicate where the database is to be
| created.

| Note: You do not set database drive mapping for single-partition database
| environments.

| When the create database command runs, it expects that the drive that you specify will
| be simultaneously available to all the machines that participate in the instance. Because
| this is not possible, DB2 uses database drive mapping to assign the same drive a
| different name for each machine.

| For example, assume that a DB2 instance called DB2 contains two database partition
| servers:

| NODE0 is active on machine WOLF_NODE_0

| NODE1 is active on machine WOLF_NODE_1

| Also assume that the share disk E: belongs to the same group as NODE0, and that the
| share disk F: belongs to the same group as NODE1.

| To create a database on the share disk E:, the create database command would be as
| follows:

| db2 create database mppdb on E:

| For the create database command to be successful, drive E: must be available to both
| machines. In a mutual takeover configuration, each database partition server may be
| active on a different machine, and the cluster disk E: is only available to one machine.
| In this situation, the create database command will always fail.

| To resolve this problem, the database drive should be mapped as follows:

| For NODE0, the mapping is from drive F: to drive E:

| For NODE1, the mapping is from drive E: to drive F:

| Any database access for NODE0 to drive F: is then mapped to drive E:, and any
| database access for NODE1 to drive E: is mapped to drive F:. Using drive mapping, the
| create database command will create database files on drive E: for NODE0 and drive
| F: for NODE1.

| Use the db2drvmp command to set up the drive mapping. The command is as follows:

db2drvmp add
drop
query
reconcile

node_number from_drive to_drive

778 Administration Guide

| The parameters are as follows:

| add Assigns a new database drive map.

| drop Removes an existing database drive map.

| query Queries a database map

| reconcile Repairs a database map drive when the registry contents are
| damaged. See “Reconciling Database Drive Mapping” for more
| information.

| node_number The node number. This parameter is required for add and drop
| operations.

| from_drive The drive letter to map from. This parameter is required for add and
| drop operations.

| to_drive The drive letter to map to. This parameter is required for add
| operations. It is not applicable to other operations.

| If you wanted to set up database drive mapping from F: to E: for NODE0, you would
| use the following command:

| db2drvmp add 0 F E

| Note: Database drive mapping does not apply table spaces, containers, or any other
| database storage objects.

| Similarly, to set up database drive mapping from drive E to drive F for NODE1, you
| would issue the following command:

| db2drvmp add 1 E F

| Note: Any setup of, or changes to, database drive mapping do not take effect
| immediately. To activate the database drive mapping, use the Cluster
| Administrator tool to bring the DB2 resource offline, then online.

| Reconciling Database Drive Mapping
| When a database is created on a machine that has database drive mapping in effect,
| the map is saved on the drive in a hidden file. This is to prevent the database drive
| from being removed after the database is created. To reconcile the map, run the
| db2drvmp reconcile command for each database partition server that contains the
| database. (A situation in which you would want to reconcile the database drive mapping
| would be if you accidentally dropped the database drive map.) The command syntax is
| as follows:

db2drvmp reconcile

node_number drive

| The parameters are as follows:

 Chapter 23. High Availability in the Windows NT Environment 779

| node_number The node number of the node to be repaired. If node_number is not
| specified, the command reconciles the mapping for all nodes.

| drive The drive to reconcile. If the drive is not specified, the command
| reconciles the mapping for all drives.

| The db2drvmp command scans all drives on the machine for database partitions that
| are managed by the database partition server, and reapplies the database drive
| mapping to the registry as required.

| Example - Setting up Two Single-Partition Instances for Mutual Takeover
| The objective for this example is to set up two single-partition database instances with
| failover support in a mutual takeover configuration. In this example, four servers are
| configured into two MSCS clusters. By using the mutual takeover configuration, when
| any of the machine fails, the database server configured for that machine will fail over
| to the alternative machine, as configured using the MSCS software, and run on the
| alternative machine.

| There are two MSCS clusters in the resulting configuration. Each cluster has:

| ¹ Two servers, each with 64 MB of memory and one local SCSI disk of 2 GB

| ¹ One SCSI disk tower that has three shared SCSI disks of 2 GB each.

| In addition, each machine has one 100X Ethernet Adapter card installed.

| Each machine has the following software installed:

| ¹ Windows NT Version 4.0 Enterprise Edition with the MSCS feature installed

| ¹ DB2 Universal Database Enterprise Edition Version 5.2.

| The resulting network configuration is as follows:

| Server 1:

| ¹ Machine name:db2test1

| ¹ TCP/IP hostname:db2test1

| ¹ IP Address: 9.9.9.1

| (subnet mask: 255.255.255.0

| ¹ MSCS cluster name: ClusterA

| Server 2:

| ¹ Machine name:db2test2

| ¹ TCP/IP hostname:db2test2

| ¹ IP Address: 9.9.9.2

| (subnet mask: 255.255.255.0

| ¹ MSCS cluster name: ClusterA

| Both machines in the network are configured with TCP/IP and connected to a private
| LAN using an Ethernet 100 T-base Hub. In the absence of a Domain Name Server
| (DNS), all machines have a local TCP/IP hosts file. Each hosts file contains the
| following entries:

780 Administration Guide

| 9.9.9.1 db2test1 # for Server 1

| 9.9.9.2 db2test2 # for Server 2

| 9.9.9.3 ClusterA # for MSCS ClusterA

| 9.9.9.4 db2tcp1 # for DB2 remote client connection to Server 1

| 9.9.9.5 db2tcp2 # for DB2 remote client connection to Server 2

| Preliminary Tasks
| Before you perform the following tasks, it is assumed that both machines belong to the
| same domain, called DB2NTD:

| 1 Create a domain account for DB2 that is a member of the local Administrators
| group on those machines where DB2 is going to run. Use the account for
| performing all tasks:

| ¹ Set the user name to db2nt.

| ¹ Set the password to db2nt.

| 2 Install the MSCS feature on the machines db2test1 and db2test2:

| ¹ Name the MSCS cluster ClusterA.

| ¹ The cluster IP Address is 9.9.9.3.

| ¹ Share disk D: will be used by the MSCS software.

| ¹ Share disks E: and F: will be used by DB2.

| 3 Install DB2 Universal Database Enterprise Edition Version 5.2 on the machine
| db2test1. Install the software on C:\SQLLIB, which is a local drive.

| 4 Install DB2 Universal Database Enterprise Edition Version 5.2 on the machine
| db2test2. Install the software on C:\SQLLIB, which is a local drive.

| The next step is to set up the DB2MSCS.CFG file for each instance, then run the
| DB2MSCS utility for each instance.

| Run the DB2MSCS Utility
| To set up the db2test1 machine, perform the following tasks:

| 1 On the machine db2test1, log on as user db2nt. The password is db2nt.

| 2 Create the DB2 instance DB2A, if it does not already exist. The command to
| create the instance is:

| db2icrt DB2A

| 3 Set up the DB2MSCS.CFG file for the DB2 instance on the machine db2test1:

 Chapter 23. High Availability in the Windows NT Environment 781

| #

| # DB2MSCS.CFG for database system

| # on machine db2test1

| DB2_INSTANCE=DB2A

| CLUSTER_NAME=ClusterA

| #

| # Group 1

| GROUP_NAME=DB2A Group

| IP_NAME=IP Address for DB2A

| IP_ADDRESS=9.9.9.4

| IP_SUBNET=255.255.255.0

| IP_NETWORK=ClusterA

| NETNAME_NAME=Network name for DB2A

| NETNAME_VALUE=DB2SRV1

| NETNAME_DEPENDENCY=IP Address for DB2A

| DISK_NAME=Disk E:

| INSTPROF_DISK=Disk E:

| 4 Run the DB2MSCS utility as follows:

| db2mscs -f:DB2MSCS.CFG

| 5 Log out from the db2nt account.

| 6 On the machine db2test2, log on as user db2nt, which belongs to the local
| Administrators group. The password is db2nt.

| 7 Create the DB2 instance DB2B, if it does not already exist. The command to
| create the instance is:

| db2icrt DB2B

| 8 Set up the DB2MSCS.CFG file for the DB2 instance on the machine db2test2:

| #

| # DB2MSCS.CFG for database system

| # on machine db2test2

| DB2_INSTANCE=DB2B

| CLUSTER_NAME=ClusterA

| #

| # Group 1

| GROUP_NAME=DB2B Group

| IP_NAME=IP Address for DB2B

| IP_ADDRESS=9.9.9.5

| IP_SUBNET=255.255.255.0

| IP_NETWORK=ClusterA

| NETNAME_NAME=Network name for DB2B

| NETNAME_VALUE=DB2SRV2

| NETNAME_DEPENDENCY=IP Address for DB2B

| DISK_NAME=Disk F:

| INSTPROF_DISK=Disk F:

| 9 Run the DB2MSCS utility as follows:

| db2mscs -f:DB2MSCS.CFG

782 Administration Guide

| 10 Log out from the db2nt account.

| Example - Setting up a Four-Node Partitioned Database System for Mutual
| Takeover
| The objective for this example is to set up a four-node partitioned database system with
| failover support in a mutual takeover configuration. In this example, four servers are
| configured into two MSCS clusters. By using the mutual takeover configuration, when
| any of the machine fails, the database partition servers configured for that machine will
| fail over to the alternative machine, as configured using the MSCS software, and run as
| a logical node on the alternative machine.

| There are two MSCS clusters in the resulting configuration. Each cluster has:

| ¹ Two servers, each with 64 MB of memory and one local SCSI disk of 2 GB

| ¹ One SCSI disk tower that has three shared SCSI disks of 2 GB each.

| In addition, each machine has one 100X Ethernet Adapter card installed.

| Each machine has the following software installed:

| ¹ Windows NT Version 4.0 Enterprise Edition with the MSCS feature installed

| ¹ DB2 Universal Database Extended Enterprise Edition Version 5.2.

| The resulting network configuration is as follows:

| Server 1:

| ¹ Machine name:db2test1

| ¹ TCP/IP hostname:db2test1

| ¹ IP Address: 9.9.9.1

| (subnet mask: 255.255.255.0

| ¹ MSCS cluster name: ClusterA

| Server 2:

| ¹ Machine name:db2test2

| ¹ TCP/IP hostname:db2test2

| ¹ IP Address: 9.9.9.2

| (subnet mask: 255.255.255.0

| ¹ MSCS cluster name: ClusterA

| Server 3:

| ¹ Machine name:db2test3

| ¹ TCP/IP hostname:db2test3

| ¹ IP Address: 9.9.9.3

| (subnet mask: 255.255.255.0

| ¹ MSCS cluster name: ClusterB

| Server 4:

| ¹ Machine name:db2test4

| ¹ TCP/IP hostname:db2test4

| ¹ IP Address: 9.9.9.4

| (subnet mask: 255.255.255.0

| ¹ MSCS cluster name: ClusterB

| All machines in the network are configured with TCP/IP and connected to a private LAN
| using an Ethernet 100 T-base Hub. In the absence of a Domain Name Server (DNS),
| all machines have a local TCP/IP hosts file. Each hosts file contains the following
| entries:

 Chapter 23. High Availability in the Windows NT Environment 783

| 9.9.9.1 db2test1 # for Server 1

| 9.9.9.2 db2test2 # for Server 2

| 9.9.9.3 db2test3 # for Server 3

| 9.9.9.4 db2test4 # for Server 4

| 9.9.9.5 ClusterA # for MSCS Cluster 1

| 9.9.9.6 ClusterB # for MSCS Cluster 2

| 9.9.9.7 db2tcp # for DB2 remote client connection

| Preliminary Tasks
| Before you perform the following tasks, it is assumed that all four machines belong to
| the same domain, called DB2NTD:

| 1 Create a domain account for DB2 that is a member of the local Administrators
| group on those machines where DB2 is going to run. Use the account for
| performing all tasks:

| ¹ Set the user name to db2nt.

| ¹ Set the password to db2nt.

| 2 Create a second domain account with the "password never expires" characteristic.
| This account will be associated with DB2 services:

| ¹ Set the user name to db2mpp.

| ¹ Set the password to db2mpp.

| 3 Install the MSCS feature on the machines db2test1 and db2test2:

| ¹ Name the MSCS cluster ClusterA.

| ¹ The cluster IP Address is 9.9.9.5.

| ¹ Share disk D: will be used by the MSCS software.

| ¹ Share disks E: and F: will be used by DB2.

| 4 Install the MSCS feature on the machines db2test3 and db2test4:

| ¹ Name the MSCS cluster ClusterB.

| ¹ The cluster IP Address is 9.9.9.6.

| ¹ Select share disk D: will be used by the MSCS software

| ¹ Share disks E: and F: will be used by DB2.

| 5 Install DB2 Extended Enterprise Edition on the machine db2test1:

| ¹ Select the "This machine will be the instance-owing database partition server"
| option.

| ¹ The account for the DB2 service is db2mpp. The password is db2mpp.

| ¹ Install the software on C:\SQLLIB, which is a local drive.

| 6 Install DB2 Extended Enterprise Edition on the machines db2test2, db2test3, and
| db2test4:

784 Administration Guide

| ¹ Select the "This machine will be a new node on an existing partitioned
| database system" option.

| ¹ Select db2test1 as the instance-owning machine.

| ¹ The account for the DB2 service is db2mpp. The password is db2mpp.

| ¹ Install the software on C:\SQLLIB, which is a local drive.

| The next step is to set up the DB2MSCS.CFG file and run the DB2MSCS utility.

| Run the DB2MSCS Utility
| To set up the db2test1 machine, perform the following tasks:

| 1 Log on as user db2nt, which belongs to the local Administrators group. The
| password is db2nt.

| 2 Set up the DB2MSCS.CFG file:

| #

| # DB2MSCS.CFG for one partitioned database system with

| # multiple MSCS clusters

| DB2_INSTANCE=DB2MPP

| CLUSTER_NAME=ClusterA

| DB2_LOGON_USERNAME=db2mpp

| DB2_LOGON_PASSWORD=db2mpp

| # Group 1

| # for DB2 node 0

| GROUP_NAME=DB2NODE0

| DB2_NODE=0

| IP_NAME=IP Address for DB2

| IP_ADDRESS=9.9.9.7

| IP_SUBNET=255.255.255.0

| IP_NETWORK=Ethernet

| NETNAME_NAME=Network name for DB2

| NETNAME_VALUE=DB2WOLF

| NETNAME_DEPENDENCY=IP Address for DB2

| DISK_NAME=Disk E:

| INSTPROF_DISK=Disk E:

| #

| # Group 2

| # for DB2 node 1

| GROUP_NAME=DB2NODE1

| DB2_NODE=1

| DISK_NAME=Disk F:

| #

| CLUSTER_NAME=ClusterB

| # Group 3

| # for DB2 node 2

| GROUP_NAME=DB2NODE2

| DB2_NODE=2

| DISK_NAME=Disk E:

 Chapter 23. High Availability in the Windows NT Environment 785

| #

| # Group 4

| # for DB2 node 3

| GROUP_NAME=DB2NODE3

| DB2_NODE=3

| DISK_NAME=Disk F:

| 3 Run the DB2MSCS utility as follows:

| db2mscs -f:DB2MSCS.CFG

| 4 Log out from the db2nt account.

| The final steps are to register the database drive mapping for the two MSCS clusters.

| Register the Database Drive Mapping for ClusterA
| To register the database drive mapping for MSCS cluster ClusterA, perform the
| following tasks:

| 1 On the machine db2test1, log on as user db2mpp, which is the account associated
| with DB2 services. The password is db2mpp.

| 2 To register the database drive mapping, enter the following commands:

| db2drvmp add 0 F E

| db2drvmp add 1 E F

| 3 Bring all DB2 resources offline, then bring them online.

| Register the Database Drive Mapping for ClusterB
| To register the database drive mapping for MSCS cluster ClusterB, perform the
| following tasks:

| 1 On the machine db2test3, log on as user db2mpp, which is the account associated
| with DB2 services. The password is db2mpp.

| 2 To register the database drive mapping, enter the following commands:

| db2drvmp add 2 F E

| db2drvmp add 3 E F

| 3 Bring all DB2 resources offline, then bring them online.

| Administering DB2 in an MSCS Environment
| If you are using MSCS clusters, your DB2 instance requires additional planning with
| regards to daily operation, database deployment, and database configuration. For DB2
| to execute transparently on any MSCS node, additional administrative tasks must be
| performed. All DB2 dependent operating system resources must be available on all
| MSCS nodes. Some of these operating system resources fall outside the scope of
| MSCS. That is, they cannot be defined as an MSCS resource. You must ensure that

786 Administration Guide

| each system is configured such that the same operating system resources are available
| on all MSCS nodes. The sections that follow describe the additional work that must be
| done.

| Starting and Stopping DB2 Resources
| You must start and stop DB2 resources from the Cluster Administrator tool. Several
| mechanisms are available to start a DB2 instance such as the db2start command, and
| the Services option from the Control Panel. However, if DB2 is not started from the
| Cluster Administrator, the MSCS software will not be aware of the state of DB2
| instance. If a DB2 instance is started using the Cluster Administrator and stopped using
| the db2stop command, the MSCS software will interpret the db2stop command as a
| software failure and attempt to restart DB2. (The current MSCS interfaces do not
| support notification of a resource state.)

| Similarly, if you use db2start to start a DB2 instance, MSCS cannot detect that the
| resource is online. If a database server failed, MSCS would not bring the DB2 resource
| online on the failover machine in the cluster.

| Three operations can be applied to a DB2 instance:

| Online This operation is equivalent to using the db2start command. If DB2 is
| already active, this operation can be used simply to notify MSCS that DB2
| is active. Any errors during this operation will be written to the Windows NT
| Event Log.

| Offline This operation is equivalent to using the db2stop command. If there are
| any active connections to an instance, this operation will fail. This is
| consistent with the behavior of db2stop .

| Fail resource This operation is equivalent to using the db2stop command with the
| force option specified. DB2 will disconnect all applications off the DB2
| system and stop all database servers.

| Running Scripts
| You can execute scripts both before and after a DB2 resource is brought online. These
| scripts must reside in the instance profile directory that is specified for the
| DB2INSTPROF environment variable. This directory is the directory path that is
| specified by the -p parameter of the db2icrt command. You can obtain this value by
| issuing the following command:

| db2set -i:instance_name DB2INSTPROF

| This file path must be on a clustered disk so that the instance directory is available on
| all cluster nodes.

| These script files are not required, and are only executed if they are found in the
| instance directory. They are launched by the MSCS Cluster Service in the background.
| The script files must redirect standard output to record any output as a result of
| commands within the script file. The output is not displayed to the screen.

 Chapter 23. High Availability in the Windows NT Environment 787

| In a partitioned database environment, by default, the same script will be used by every
| database partition server in the instance. If you need to distinguish among the different
| database partition servers in the instance, use different assignments of the DB2NODE
| environment variable to target specific node numbers (for example, use the IF
| statement in the db2cpre.bat and db2cpost.bat files).

| Running Scripts Before Bringing DB2 Resources Online
| If you want to run a script before you bring a DB2 resource online, the script must be
| named db2cpre.bat. DB2 calls functions that will launch this batch file from the
| Windows NT command line processor and wait for the command line processor to
| complete execution before the DB2 resource is brought online. You can use this batch
| file for tasks such as modifying the DB2 database manager configuration. You may
| want to change some database manager parameter values if the failover system is
| constrained, and you must reduce the system resources consumed by DB2.

| The commands placed in the db2cpre.bat script should execute synchronously.
| Otherwise the DB2 resource may be brought online before all tasks in the script are
| completed, which may result in unexpected behavior. Specifically, db2cmd should not
| be executed in the db2cpre.bat script, because it, in turn, launches another command
| processor, which will execute DB2 commands asynchronously to the db2cmd program.

| If you want to use DB2 CLP commands in the db2cpre.bat script, the commands should
| be placed in a file and executed as a CLP batch file from within a program that
| initializes the DB2 environment for the DB2 command line processor, then waits for the
| completion of the DB2 command line processor. For example:

| #include <windows.h>

| int WINAPI DB2SetCLPEnv_api(DWORD pid);

| void main (int argc, char *argv [])

| {

| STARTUPINFO startInfo = {0};

| PROCESS_INFORMATION pidInfo = {0};

| char title [32] = "Run Synchronously";

| char runCmd [64] =

| "DB2 -z c:\\run.out -tvf c:\\run.clp";

788 Administration Guide

| /* Invoke API to setup a CLP Environment */

| if (DB2SetCLPEnv_api (GetCurrentProcessId ()) == 0)(1 - see notes below)

| {

| startInfo.cb = sizeof(STARTUPINFO);

| startInfo.lpReserved = NULL;

| startInfo.lpTitle = title;

| startInfo.lpDesktop = NULL;

| startInfo.dwX = 0;

| startInfo.dwY = 0;

| startInfo.dwXSize = 0;

| startInfo.dwYSize = 0;

| startInfo.dwFlags = 0L;

| startInfo.wShowWindow = SW_HIDE;

| startInfo.lpReserved2 = NULL;

| startInfo.cbReserved2 = 0;

| if (CreateProcessA(NULL,

| runCmd, (2)

| NULL,

| NULL,

| FALSE,

| NORMAL_PRIORITY_CLASS] CREATE_NEW_CONSOLE,

| NULL,

| NULL,

| &startInfo,

| &pidInfo))

| {

| WaitForSingleObject (pidInfo.hProcess, INFINITE);

| CloseHandle (pidInfo.hProcess);

| CloseHandle (pidInfo.hThread);

| }

| }

| return;

| }

| Notes:

| 1. The API DB2SetCLPEnv_api is resolved by the import library DB2API.LIB. This
| API sets an environment that allows CLP commands to be invoked. If this program
| is invoked from the db2cpre.bat script, the command processor will wait for the
| CLP commands to complete.

| 2. runCmd is the name of the script file that contains the DB2 CLP commands.

| A sample program called db2clpex.exe can be found in the MISC subdirectory of the
| DB2 install path. This executable is similar to the example provided, but accepts the
| DB2 CLP command as a command line argument. If you want to use this sample
| program, copy it to the BIN subdirectory. You can use this executable in the
| db2cpre.bat script as follows (INSTHOME is the instance directory).

| db2clpex "DB2 -Z INSTHOME\pre.log -tvf INSTHOME\pre.clp"

 Chapter 23. High Availability in the Windows NT Environment 789

| All DB2 attach commands or connect statements should explicitly specify a user,
| otherwise they will be executed under the user account associated with the cluster
| service. CLP scripts should also complete with the terminate command to end the CLP
| background process.

| The following is an example of a db2cpre.bat file:

| db2cpre.bat : (1 - see notes below)

| ------------------------

| db2clpex "db2 -z INSTHOME\pre-%DB2NODE%.log (2, 3)

| -tvf INSTHOME\pre.clp" (4, 5)

| ------------------------

| PRE.CLP (6)

| ------------------------

| update dbm cfg using MAXAGENTS 200;

| get dbm cfg;

| terminate;

| ------------------------

| Notes:

| 1. The db2cpre.bat script executes under the user account associated with the
| Cluster Service. If DB2 actions are required, the user account associated with the
| Cluster Service must be a valid SQL identifier, as defined by DB2.

| 2. INSTHOME is the instance directory.

| 3. The name of the log file must be different for each node to avoid file contention
| when both logical nodes are brought online at the same time.

| 4. db2clpex.exe is the sample program previously provided using the command line
| argument to specify the CLP command to execute. (This line of the example has
| been split at -tvf for formatting reasons.)

| 5. The db2clpex.exe sample program must be made available on all MSCS cluster
| nodes.

| 6. The CLP commands in this example set a limit on the number of agents.

| Running Scripts After Bringing DB2 Resources Online
| If you want to run a script after you bring a DB2 resource online, it must be named
| db2cpost.bat. The script will be executed asynchronously from MSCS after the DB2
| resource has been successfully brought online. The db2cmd command can be used in
| this script to execute DB2 CLP script files. Use the -c parameter of the db2cmd
| command to specify that the utility should close all windows on completion of the task.
| For example:

| db2cmd -c db2 -tvf mycmds.clp

| The -c parameter must be the first argument to the db2cmd command, as it prevents
| orphaned command processors in the background.

790 Administration Guide

| The db2cpost.bat script is useful if you want to perform database activities immediately
| after the DB2 resource fails over and becomes active. For example, you can restart or
| activate databases in the instance so that they are primed for user access.

| The following is an example of a db2cpost.bat script:

| db2cpost.bat (1 - see notes below)

| ------------------------

| db2cmd -c db2 -z INSTHOME\post-%DB2NODE%.log (2, 3)

| -tvf INSTHOME\post.clp (4)

| ------------------------

| POST.CLP (5)

| ------------------------

| restart database SAMPLE;

| connect reset;

| activate database SAMPLE;

| terminate;

| ------------------------

| Notes:

| 1. The db2cpost.bat script executes under the user account associated with the
| Cluster Service. If DB2 actions are required, the user account associated with the
| Cluster Service must be a valid SQL identifier, as defined by DB2.

| 2. INSTHOME is the instance directory.

| 3. The name of the log file must be different for each node to avoid file contention
| when both logical nodes are brought online at the same time.

| 4. The db2cmd command can be used because the db2cpost.bat script can execute
| asynchronously. The -c parameter must be used to terminate the command
| processor.

| 5. The CLP script in this example contains commands to restart and activate the
| database. This script returns the database to an active state immediately after the
| database manager is started. In a partitioned database system you should remove
| the activate database command because multiple DB2 resources are brought
| online at the same time: the restart database command may fail because another
| node is activating the database. If this occurs, rerun the script to ensure that the
| database is restarted correctly.

| Database Considerations
| When you create a database, ensure that the database path refers to a share disk. This
| allows the database to be seen on all MSCS nodes. All logs and other database files
| must also refer to clustered disks for DB2 to failover successfully. If you do not perform
| these steps, a DB2 system failure will occur as it will seem to DB2 that files have been
| deleted or are unavailable.

| Also ensure that the database manager and database configuration parameters are set
| so that amount of system resources consumed by DB2 is supported on either MSCS
| node. The autorestart database configuration parameter should be set to ON so that the

 Chapter 23. High Availability in the Windows NT Environment 791

| first database connection on failover will bring the database to a consistent state. The
| default setting for autorestart is ON. The database can also be brought to a ready state
| by using the db2cpost.bat script to restart and activate the database. This method is
| preferred, because there will be no dependency on autorestart, and the database is
| brought to a ready state independent of a user connection request.

| User and Group Support
| DB2 relies on Windows NT for user authentication and group support. For a DB2
| instance to fail over from one MSCS node to another in a seamless fashion, each
| MSCS node must have access to the same Windows NT security databases. You can
| achieve this by using Windows NT Domain Security.

| Define all DB2 users and groups in a Domain Security database. The MSCS nodes
| must be members of this Domain or the Domain must be a Trusted Domain. DB2 will
| then use the Domain Security database for authentication and group support,
| independent of which MSCS node DB2 is executing on.

| If you are using local accounts, the accounts must be replicated on each MSCS node.
| This approach is not recommended because it is error prone and requires dual
| maintenance.

| DCE Security is also a supported authentication mode, providing that all MSCS nodes
| are clients in the same DCE cell.

| You should associate the MSCS service with a user account that follows DB2 naming
| conventions. This allows the MSCS service to perform actions against DB2 that may be
| required in the db2cpre.bat and db2cpost.bat scripts.

| Communications Considerations
| DB2 supports two LAN protocols in an MSCS Environment:

| ¹ TCP/IP

| ¹ NetBIOS

| TCP/IP is supported because it is a supported cluster resource type. To enable DB2 to
| use TCP/IP as a communications protocol for a partitioned database system, create an
| IP Address resource and place it in the same group as the DB2 resource that
| represents the database partition server that you want to use as a coordinator node for
| remote applications. Then create a dependency using the Cluster Administrator tool to
| ensure that the IP resource is online before the DB2 resource is started. DB2 clients
| can then catalog TCP/IP node directory entries to use this TCP/IP address.

| The TCP/IP port associated with the svcename database manager configuration
| parameter must be reserved for use by the DB2 instance on all machines that
| participate in the instance. The service name associated with the port number must
| also be the same in the services file on all machines.

| Although NetBIOS is not a supported cluster resource, you can use NetBIOS as a LAN
| protocol because the protocol ensures that NetBIOS names are unique on the LAN.

792 Administration Guide

| When DB2 registers a NetBIOS name, NetBIOS ensures the name is not in use on the
| LAN. In a failover scenario, when DB2 is moved from one system to another, the
| nname used by DB2 will be deregistered from one partner machine in the MSCS
| cluster and registered on the other machine.

| DB2 NetBIOS support uses NetBIOS Frames (NBF). This protocol stack can be
| associated with different logical adapter numbers (LANA). To ensure consistent
| NetBIOS access to the server, the LANA associated with the NBF protocol stack should
| be the same on all clustered nodes. You can configure this by using the Networks
| option from the Control Panel. You should associate NBF with LANA 0, as this is the
| default setting expected by DB2.

| System Time Considerations
| DB2 uses the system time to timestamp certain operations. All MSCS nodes that
| participate in DB2 failover must have the system time zone and system time
| synchronized to ensure DB2 behaves consistently on all machines.

| Set the system time zone using the Date/Time option from the Control Panel dialog.
| MSCS has a time service that synchronizes the date and time when the MSCS nodes
| join to form a cluster. The time service, however, only synchronizes the time every 12
| hours, which may result in problems if the time is changed on one system and DB2
| fails over before the time is synchronized.

| If the date/time is changed on one of the MSCS cluster nodes, the time should be
| manually synchronized on the other cluster nodes using the command:

| net time /set /y \\remote node

| Where remote node is the machine name of the cluster node.

| Administration Server and Control Center Considerations in a Partitioned
| Database Environment
| The DB2 Administration Server is (optionally) created during the installation of DB2
| Universal Database. It is not a partitioned database system. The Control Center uses
| the services provided by the Administration Server to administer DB2 instances and
| databases.

| In a partitioned database system, a DB2 instance can reside on multiple MSCS nodes.
| This implies that a DB2 instance must be cataloged on multiple systems under the
| Control Center so that the instance remains accessible, regardless of which MSCS
| node the DB2 instance is active on.

| The Administration Server instance directory is not shared. You must mirror all
| user-defined files in the Administration Server directory to all MSCS nodes to provide
| the same level of administration to all MSCS nodes. Specifically, you must make user
| scripts and scheduled executables available on all nodes. You must also ensure that
| scheduled activities are scheduled on all machines in an MSCS cluster.

| Alternatively, instead of duplicating the Administration Server on all machines, you may
| want to have the Administration Server fail over. For the purposes of the following

 Chapter 23. High Availability in the Windows NT Environment 793

| example, assume that you have two MSCS nodes in the cluster, and they are called
| MACH0 and MACH1. MACH0 has access to a cluster disk that will be used by the
| Administration Server. Also assume that both MACH0 and MACH1 have an
| Administration Server. You would perform the following steps to make the
| Administration Server highly available:

| 1 Stop the Administration Server on both machines by executing the db2admin
| stop command on each machine.

| 2 On all administration client machines, uncatalog all references to the
| Administration Servers on MACH0 and MACH1 using the db2 uncatalog node
| command. (You can use the db2 list node directory command on the client
| machine to determine if any references to the Adminstration Server exist.)

| 3 Drop the Administration Server from MACH1 by executing the db2admin drop
| command from MACH1. (You would only perform this step if you had an
| Administration Server on both machines.)

| 4 Determine the name of the Administration Server by issuing the db2admin
| command from MACH0. (The default name is DB2DAS00.)

| 5 Use the DB2MSCS utility to set up fail-over support for the Administration Server.
| This entails creating a DB2 resource on MSCS named DB2DAS00 that has
| dependencies on the IP and disk resources. (If you have a mutual takeover
| configuration, you would put the resource in the group that holds the DB2
| resource for NODE0.) This resource will be used as the MSCS resource that
| supports the Administration Server. The DB2MSCS.ADMIN file would be as
| follows:

| #

| # db2mscs.admin for Administration Server

| # run db2mscs -f:db2mscs.admin

| #

| DB2_INSTANCE=DB2DAS00

| CLUSTER_NAME=CLUSTERA

| DB2_LOGON_USERNAME=db2admin

| DB2_LOGON_PASSWORD=db2admin

| # put Administration server in the same group as DB2 Node 0

| GROUP_NAME=DB2NODE0 (see note below)

| DISK_NAME=DISK E:

| INSTPROF_DISK=DISK E:

| IP_NAME= IP Address for Administration Server

| IP_ADDRESS=9.9.9.8

| IP_SUBNET=255.255.255.0

| IP_NETWORK=Ethernet

| Note: This group can be the same as the existing group. This way, you do not
| require an additional disk for the instance profile directory.

| 6 On MACH1 execute the following command to set DB2DAS00 as the
| Administration Server:

| db2set -g db2adminserver=DB2DAS00

794 Administration Guide

| 7 On MACH0, modify the start-up properties of DB2DAS00 through the Services
| program so that it is brought up manually and not automatically, because
| DB2DAS00 is now controlled by MSCS.

| When the Administration Server is enabled for failover, all remote access should use an
| MSCS IP resource for communicating with the Administration Server. The
| Administration Server will now have the following properties:

| ¹ The Administration Server instance directory will fail over with the Administration
| Server.

| ¹ Clients will only catalog a single node to communicate with the Administration
| Server, regardless of which MSCS node it is active on.

| ¹ Jobs only need to be scheduled once against the Administration Server.

| ¹ Local instances can only be controlled by the Administration Server when the
| Administration Server is active on the same MSCS node as the local instance.

| ¹ The Administration Server is not accessible if the Cluster Service is not active.

| Limitations and Restrictions
| When you run DB2 in an MSCS environment:

| ¹ You cannot use physical I/O on shared disks, unless the shared disks have the
| same physical disk number across both MSCS nodes. You can use logical I/O
| because the disk is accessed using a partition identifier.

| ¹ You must configure all DB2 resource for MSCS support. If you do not, system
| errors will occur during DB2 runtime (DB2 cannot properly operate in the absence
| of system resources). For example, if the database logs are not on a MSCS shared
| disk, DB2 cannot restart the database.

| ¹ You must manage a DB2 instance from the Cluster Administrator tool. MSCS will
| view other mechanisms that are used to start and stop the database manager as
| software inconsistencies. For example, if you use MSCS to start DB2 and the
| db2stop command to stop DB2, MSCS will detect this as a software failure and
| will restart the instance. This also means that you should not use the Control
| Center to start and stop DB2.

| ¹ To uninstall DB2, you must first stop MSCS.

 Chapter 23. High Availability in the Windows NT Environment 795

796 Administration Guide

| Chapter 24. High Availability in the Solaris Operating Environment,
| Single-Partition Database

| You can set up your database system so that if a machine fails, the database server on
| it can run on another machine. On the Solaris Operating Environment, you implement
| failover support with Sun Cluster 2.1.

| Sun Cluster 2.1 performs both failure detection and the restarting of resources in a
| clustered environment, as well as failover support for physical disks and IP addresses.

| You can implement failover support for both single-partition and partitioned database
| systems. For details on setting up failover support for a single-partition database
| system, see “Setting up Failover Support for a Database System” on page 801. For
| details about setting up failover support for a partitioned database system, see
| Chapter 25, “High Availability in the Solaris Operating Environment, Partitioned
| Database” on page 807. For information about clients and clustered environments, see
| “Client Application Considerations” on page 806.

| Note: Do not use a kill -9 against the db2start process in a high availability
| environment. This action is not recommended in any environment, but in
| particular such an action may invalidate failover recovery in your high availability
| environment.

| Cluster Components
| Each cluster consists of the following components and resources:

| Physical machine
| Each physical machine has one public network interface, one or more private network
| interfaces on the public network, a set of shared disks, and a disk for the operating
| system. Each cluster can contain up to four physical machines.

| Logical host
| The logical host essentially borrows the CPU or (CPUs) and memory from the physical
| machine, and migrates from machine to machine during a failover situation. Each
| logical host consists of the following resources:

| ¹ One logical interface on the public network with its own IP address and hostname

| Remote clients should always use this IP address when connecting to failover
| services, because the address is moved from one machine to another machine
| during a failover.

| ¹ One or more disk groups

| The disk group (or disk set) is a collection of physical disks that are associated
| with the logical host. The disk group must be on disks that are physically shared
| between the two machines in a cluster.

| ¹ One high availability service (that is, DB2).

 Copyright IBM Corp. 1993, 1998 797

| The high availability service provides a set of scripts that Sun Cluster 2.1 can use
| to start, stop, and abort the service.

| When a failover occurs, the high availability service from one machine fails over to
| another machine. You must ensure that the physical machine has enough CPU
| and memory resource to properly run the system after the failover; otherwise, the
| services may fail.

| You can have as many logical hosts as you want on a machine, but for administrative
| reasons, it is recommended that you assign no more than one to a machine. The
| following is an example of the layout for a logical host filesystem for Sun Cluster 2.1
| with DB2. The name of the logical host in this example is snap, and the DB2 instance is
| DB2INST:

| /snap/ The logical host filesystem (needed for Sun Cluster 2.1).

| /snap/home/DB2INST The place to put the high availability instance home directory.

| /snap/disks/DB2INST The place to put SMS filesystems.

| You only need to set up the directories /logical_host_name/home/DB2_instance and
| /logical_host_name/disks/DB2_instance on one logical host in the cluster.

| Private network
| Private networks are used for communicating between two nodes. Heartbeat messages
| as well as Remote Procedure Calls (RPCs) travel over these networks to keep the two
| nodes in synchronous operation so that they can back up each other in the event of a
| failover.

| Public networks
| The public network includes all the primary and logical network interfaces and IP
| addresses. The logical network interfaces or logical hosts should be referred to when
| communicating with DB2 on the cluster.

| Disk group
| Disk groups contain one or more shared disks and a list of hosts which can access
| these disks. Only one host can own the disk sets for exclusive use at a time.

| Disk mirroring
| It is highly recommended that you mirror disks to increase disk availability.

| Figure 82 on page 799 shows an example of the components in a cluster.

798 Administration Guide

Machine 1 Machine 2

Disk Group 1

Shared Disks

Disk Group 2

Priv Net 1

Public Net

Disk (OS)
Sun Cluster Software

Disk (OS)
Sun Cluster Software

indicates connection established during failover situation

Priv Net 2

| Figure 82. Components in a Cluster

| The following sections describe the different types of failover support, and how to
| implement them.

| Failover Configurations
| Two types of configuration are available in a DB2 system:

| ¹ Hot standby (asymmetric mode)
| ¹ Mutual takeover (symmetric mode)

| Hot Standby Configuration
| In a hot standby configuration, one machine in the cluster provides dedicated backup
| support, and a database server runs on the other machine. If the machine participating
| in the database system fails, the database server on it will be started on the backup
| machine.

| If, in a partitioned database system, you are running multiple logical nodes on a
| machine and it fails, they will be started on the backup machine.

 Chapter 24. High Availability in the Solaris Operating Environment, Single-Partition Database 799

| Figure 83 shows an example of a hot standby configuration.

Workstation BWorkstation A

Cluster

Instance A Instance A

| Figure 83. Hot Standby Configuration

| If you are using a hot standby configuration, you can use the failover machine to run
| applications other than DB2.

| Mutual Takeover Configuration
| In a mutual takeover configuration, both machines may be running a database system
| (that is, each machine has at least one database server running on it). You would also
| see this situation with a partitioned database system, in which a database partition
| server would be running on each machine in the cluster. If one of the machines in the
| cluster fails, the database server on the failing machine is started to run on the other
| machine. In a mutual takeover configuration, a database server on one machine can fail
| independently of the database server on another machine. Any database server can be
| active on any machine at any given point in time. Figure 84 shows an example of a
| mutual takeover configuration.

800 Administration Guide

Workstation BWorkstation A

Cluster

Instance A

Instance B

Instance A

Instance B

| Figure 84. Mutual Takeover Configuration

| Setting up Failover Support for a Database System
| To set up Sun Cluster 2.1, perform the following steps:

| 1. “Choosing a Failover Configuration.”

| 2. “Creating a DB2 Instance” on page 802.

| 3. “Registering the DB2 Resource with Sun Cluster” on page 803.

| 4. “Enable Failover for an Instance” on page 804.

| 5. “Starting and Stopping DB2” on page 804.

| If you want to remove failover support for DB2, see “Unregistering DB2 for Failover” on
| page 805.

| Choosing a Failover Configuration
| To choose a failover configuration, perform the following steps:

| 1 Set up the machines to use either a hot standby or mutual takeover configuration.
| For a hot standby configuration, use one logical host. For a mutual takeover, use
| two logical hosts.

| 2 Decide on the amount of disk space that is required for each logical host and its
| resources, such as raw devices or SMS table space containers. Whether you use
| SMS or DMS (raw devices) table spaces, any disks belonging to a logical host
| must be included in its disk sets.

| Table space considerations: You must decide on the type of table space that
| you want to use. If you want to use SMS table spaces, you must set them
| up using disks from the disk groups that belong to a logical host. In
| addition, you must include them in the vfstab for the logical host. Refer to

 Chapter 24. High Availability in the Solaris Operating Environment, Single-Partition Database 801

| the Sun Cluster 2.1 documentation for information about how to add a file
| system to a logical host.

| There are benefits and costs associated with using either SMS or DMS
| table spaces. For example, SMS table spaces reside on file systems that
| must be file-system checked before they are mounted. This can add a
| considerable amount of overhead when failover occurs, and can result in
| the Sun Cluster 2.1 software timing out. If you use SMS table spaces,
| ensure that they are journaled files systems, which require less time to
| check after a failover.

| DMS table spaces do not have to be file-system checked during failover.
| This can reduce the failover time for the high availability scripts, but you
| should remember that committed transactions that are written to the logs
| will be applied to the database during crash recovery after the database
| server fails over.

| Creating a DB2 Instance
| To create the instance, use the db2icrt command, which is located in the
| DB2DIR/instance directory, where DB2DIR is /opt/IBMdb2/V5.0. Before creating a DB2
| instance, ensure that DB2 is installed on each machine in the cluster.

| You only create a DB2 instance on the logical host in the cluster where you created the
| subdirectories /logical_host_name/home and /logical_host_name/disks. The syntax of
| the db2icrt command is:

db2icrt [-h| -?]

InstName

[-d]

[-p PortName]

[-a AuthType]

[-s InstType]

[-u FencedID]

| where:

| -h] -? Display a help menu for this command.

| -d Sets the debug mode that you can use for problem determination.

| -a AuthType Is an optional parameter that specifies the authentication type for the
| instance. Valid authentication types are SERVER, CLIENT, and
| DCS. If the -a parameter is not specified, the authentication type
| defaults to SERVER, if a DB2 server is installed. Otherwise, the
| AuthTypeis set to CLIENT.

| Notes:

| 1. All databases in the instance have the same authentication type.

| 2. DCE authentication is not valid for this command; however, you
| can enable DCE authentication for an instance. For more
| information, refer to the Administration Guide.

802 Administration Guide

| -u FencedID Is the user under which the fenced UDFs and stored procedures will
| execute. This is not required if you install the DB2 Client Application
| Enabler or the DB2 Software Developer's Kit. For other products, this
| is a required parameter.

| Note: FencedID may not be root or bin.

| InstName Is the login name of the instance owner.

| When you create an instance, ensure that its primary and secondary
| groups are different from the Administration Server's primary
| (SYSADM) group. When you create an instance on the same
| machine as the Administration Server, its SYSADM group is
| automatically added to the secondary group list of the Administration
| Server so that you can use the Control Center to perform
| administration tasks on that instance.

| To create an instance for a DB2 server, you can use the following command:

| db2icrt -u db2fenc1 db2inst1

| When an instance is created, its name is also added to the list of instances on the
| system.

| The db2icrt command creates the INSTHOME/sqllib directory, where INSTHOME is the
| home directory of the instance owner.

| Note: To avoid a potential loss of data if an instance is deleted, you should not create
| user files or directories under the INSTHOME/sqllib directory, other than those
| created by DB2. The exeption is if your system supports fenced user defined
| functions and fenced stored procedures. In this situtaion, put the fenced
| applications in the INSTHOME/sqllib/function directory.

| Registering the DB2 Resource with Sun Cluster
| Use the db2hareg script as an example of how to register DB2 with Sun Cluster. The
| script is located in the /opt/IBMdb2/V5.0/ha/UDB-EE_SC2.x/bin directory. The
| db2hareg script is as follows:

| #!/bin/ksh

| hareg -r db2hareg -b /opt/IBMdb2/V5.0/ha/UDB-EE_SC2.x/bin -m

| START_NET=hadb2ee_startnet,STOP_NET=hadb2ee_stopnet,ABORT_NET=hadb2ee_abortnet -t

| START_NET=600,STOP_NET=600

| -h log0

| hareg -y hadb2ee

| In the sample, log0 is the logical host. Replace log0 with the logical host that is to host
| the DB2 services.

| You should run the db2hareg script (or an equivalent script) once for the cluster, and
| you must ensure that the script is the same on both machines in the cluster. You run
| the script as root. The script both registers DB2 for failover support, and enables the
| following scripts for the cluster:

 Chapter 24. High Availability in the Solaris Operating Environment, Single-Partition Database 803

| ¹ /var/db2/v5/db2tabee

| As root, you must create and edit this configuration file. You must also ensure that
| the configuration file exists (and is the same) on both machines in the cluster. You
| use the configuration file to enable specific instances for failover. See “Enable
| Failover for an Instance” for details.

| ¹ The following scripts are run if they exist and are executable. Both scripts only take
| one argument, which is the number of logical hosts that are currently being hosted.
| See “Running Scripts During a Failover” on page 805 for details.

| – /var/db2/v5/failover.ee

| This script runs at the very beginning of a failover situation.

| – $INSTHOME/sqllib/ha/pre_db2startee

| This file runs immediately before the db2start command

| – $INSTHOME/sqllib/ha/pre_db2stopee

| This file runs immediately before the db2stop command

| Note: This script may not be run if the machine crashes.

| – $INSTHOME/sqllib/ha/post_failoveree

| This file runs just after a failover and is used to restart databases.

| Enable Failover for an Instance
| To enable an instance for failover, you create an entry for it in the /var/db2/v5/db2tabee
| file. The file must exist on each machine in the cluster. The file takes entries of the
| form:

| TYPE INSTANCE LOGICAL_HOST ON/OFF

| Where:

| TYPE
| Is the type of instance. The value can be one of the following:

| ¹ DATA to indicate a database instance.

| ¹ ADMIN to indicate an administration server instance.

| INSTANCE
| Is the user name of the instance owner.

| LOGICAL_HOST
| Is the logical host on which the DB2 instance runs.

| ON/OFF
| Specifies whether the instance is highly available (ON) or not (OFF).

| Starting and Stopping DB2
| To start DB2 in a failover environment, use the hareg -y hadb2ee command. This
| command both enables the failover environment, and starts DB2.

804 Administration Guide

| If you want to stop DB2, first issue the hareg -n hadb2ee command to disable the
| failover environment. Then issue the db2stop command to stop DB2.

| Note: If you do not issue hareg -n hadb2ee first, Sun Cluster 2.1 may assume that
| the DB2 instance needs to be failed over.

| Running Scripts During a Failover
| The /var/db2/v5/failover.ee script runs automatically when a failover occurs. You can
| use this script to send email (for example, to notify support staff) of the failover
| situation. You should keep the commands in this script to a minimum, because it runs
| before DB2 is started. Depending on whether DB2 is starting or stopping, the following
| scripts will also run (if they are available) for each instance:

| ¹ $INSTHOME/sqllib/ha/pre_db2startee

| This file takes as an argument the number of logical hosts that are currently
| running on the failover machine. If this script exists, it runs immediately before the
| db2start command.

| ¹ $INSTHOME/sqllib/ha/pre_db2stopee

| This file takes as an argument the number of logical hosts that are currently
| running on the failover machine. If this script exists, it runs immediately before the
| db2stop command.

| Note: This script may not be run if the machine crashes.

| ¹ $INSTHOME/sqllib/ha/post_failoveree

| This file runs just after a failover and is used to restart databases.

| You can use pre_db2startee to prevent resource contention by adjusting database
| manager and database configuration parameters that may consume substantial
| amounts of resource (for example, sheapthres). The following is an example:

| #!/bin/ksh

| #Very simple example

| LOGHOSTS=$1

| if [[$LOGHOSTS -eq 1 ──

| then

| db2 update dbm cfg using SHEAPTHRES 40000

| else

| db2 update dbm cfg using SHEAPTHRES 20000

| fi

| Unregistering DB2 for Failover
| To unregister DB2 for failover, run the hadb2ee.unreg script. This script deregisters
| DB2 with Sun Cluster 2.1.

 Chapter 24. High Availability in the Solaris Operating Environment, Single-Partition Database 805

| Client Application Considerations
| Client applications should communicate with the high availability services only through
| the logical hostname of the logical host of the high availability service. You should
| ensure that client applications are written to accept a communications error and
| possibly retry after a few minutes.

| Consider a typical client connection. The client is connected to machineA through the
| logical host called snap. If machineA fails, then snap fails over to machineB. According
| to machineB, the client connection does not exist, and will send the client a connect
| reset message, which will appear to the client as a communication error. The client
| must reconnect to the server to obtain a new connection from machineB when DB2
| starts.

806 Administration Guide

| Chapter 25. High Availability in the Solaris Operating Environment,
| Partitioned Database

| Sun Cluster 2.1 provides increased availability through clusters of servers that share
| resources such as disks and network access. If one server fails then another in the
| cluster can substitute for the failed one.

| Note: Do not use a “kill -9” against the db2start process in a high availability
| environment. This action is not recommended in any environment, but in
| particular such an action may invalidate failover recovery in your high availability
| environment.

| Cluster Components
| Each cluster consists of the following components and resources:

| Physical machine
| Each physical machine has one public network interface, one or more private network
| interfaces on the public network, a set of shared disks, and a disk for the operating
| system. Each cluster can contain up to four physical machines.

| Logical host
| The logical host essentially borrows the CPU or (CPUs) and memory from the physical
| machine, and migrates from machine to machine during a failover situation. Each
| logical host consists of the following resources:

| ¹ One logical interface on the public network with its own IP address and hostname

| Remote clients should always use this IP address when connecting to failover
| services, because the address is moved from one machine to another machine
| during a failover.

| ¹ One or more disk groups

| The disk group (or disk set) is a collection of physical disks that are associated
| with the logical host. The disk group must be on disks that are physically shared
| between the two machines in a cluster.

| ¹ One high availability service (that is, DB2)

| The high availability service provides a set of scripts that Sun Cluster 2.1 can use
| to start, stop, and abort the service.

| When a failover occurs, the high availability service from one machine fails over to
| another machine. You must ensure that the physical machine has enough CPU
| and memory resource to properly run the system after the failover; otherwise, the
| services may fail.

| You can have as many logical hosts as you want on a machine, but for administrative
| reasons, it is recommended that you assign no more than one to a machine. The
| following is an example of the layout for a logical host filesystem for Sun Cluster 2.1
| with DB2 (See the Sun Cluster 2.1 documentation for instructions on how to add logical
| host filesystems). The name of the logical host in this example is snap:

 Copyright IBM Corp. 1993, 1998 807

| /snap/ The logical host filesystem (needed for Sun Cluster 2.1).

| /snap/home/ The place to put the high availability instance home directory.

| /snap/disks/ The place where SMS filesystems should be placed to make sure
| that are available after a failover.

| Private network
| Private networks are used for communicating between two nodes. Heartbeat messages
| and Remote Procedure Calls (RPCs) travel over these networks to keep the two nodes
| in synchronous operation, so that they can back up each other in the event of a
| failover.

| Public networks
| The public network includes all the primary and logical network interfaces and IP
| addresses. The logical network interfaces or logical hosts should be referred to when
| communicating with DB2 on the cluster because these are failed over to the remaining
| machine at the time of the failover.

| Disk group
| Disk groups contain one or more shared disks and a list of hosts that can access these
| disks. Only one host can own the disk groups for exclusive use at a time.

| Disk mirroring
| It is highly recommended that you mirror disks to increase disk availability. Without
| mirroring, there is a single point of failure for each disk in the system.

| Figure 85 on page 809 shows an example of the components in a cluster.

808 Administration Guide

Machine 1 Machine 2

Disk Group 1

Shared Disks

Disk Group 2

Priv Net 1

Public Net

Disk (OS)
Sun Cluster Software

Disk (OS)
Sun Cluster Software

indicates connection established during failover situation

Priv Net 2

| Figure 85. Components in a Cluster

| The following sections describe the different types of failover support, and how to
| implement them.

| Failover Configurations
| Two types of configuration are available in a DB2 system:

| ¹ Hot standby (asymmetric mode)
| ¹ Mutual takeover (symmetric mode).

| Two modes of failover support are provided. A brief description of each mode and its
| application to DB2 follows. For each, the simple scenario of a two-server cluster is
| described.

| Hot Standby
| One server is being actively used to run DB2, and the second is in standby
| mode ready to take over if there is an operating system or hardware failure
| involving the first server.

 Chapter 25. High Availability in the Solaris Operating Environment, Partitioned Database 809

| Mutual Takeover
| Multiple servers can be used to scale to a single database instance using
| the DB2 Extended Enterprise Edition product. This is done using a
| shared-nothing model and partitioning the data such that one or more
| partitions are running on each server in the cluster. If an operating system
| or hardware failure occurs on one of the servers, then the other servers will
| take over the partition (or partitions) of the failing server.

| Each of the above configurations can be used to failover one or more partitions of a
| partitioned database.

| Hot Standby Configuration
| You can use the hot standby capability to set up failover for a partition or partitions of a
| partitioned database configuration. If one server fails, then another server in the cluster
| can substitute for the failed server by automatically transferring the database partitions.
| To achieve this, the database instance and the actual database must be accessible to
| both the primary and failover server. This requires that the following installation and
| configuration tasks be performed:

| ¹ The DB2 installation path should be local to each machine and of the same level.

| ¹ The DB2 instance path should be on a shared filesystem via HA-NFS.

| ¹ The database and the associated containers must be on file systems (or devices)
| that are accessible to both systems. The disks for the filesystems or devices of a
| database partition must be in disk groups that are associated with the logical host
| that hosts the database partition.

| ¹ For failover of a partition in a partitioned database configuration, the partition is
| restarted on the second system: the Sun Cluster 2.1 software modifies the
| db2nodes.cfg file to point to the failed partition on the new system and starts the
| partition on that system.

| ¹ When a failover occurs, the external communications addresses for supported
| communication protocols are transparently transferred as part of the failover
| procedure.

| Database Partition Server Failover
| Figure 86 on page 811 shows how partitions fail over in a hot standby configuration.
| System A is running a one or more partitions of the overall configuration and System B
| is used as the failover system. When System A fails, the partition is restarted on the
| second system. The failover updates the db2nodes.cfg file, pointing the partition to
| System B's hostname and netname, then restarting the partition at the new system.
| When the failover is complete, all other partitions forward the requests targeted for this
| partition to System B.

810 Administration Guide

Workstation BWorkstation A

Cluster

Logical Host 0 Logical Host 0

| Figure 86. Hot Standby Configuration

| The following is a portion of the db2nodes.cfg file before and after the failover. In this
| example, node numbers 20, 22 and 24 are running on the system named MachineA of
| the cluster with the netname MachineA-scid0. After the failover, node numbers 20, 22
| and 24 are running on the system named MachineB of the cluster and have a netname
| of MachineB-scid0.

| Before:

| 20 MachineA 0 MachineA-scid0 <= Sun Cluster 2.1

| 22 MachineA 1 MachineA-scid0 <= Sun Cluster 2.1

| 24 MachineA 2 MachineA-scid0 <= Sun Cluster 2.1

| db2start nodenum 20 restart hostname MachineB port 0 netname MachineB-scid0

| db2start nodenum 22 restart hostname MachineB port 1 netname MachineB-scid0

| db2start nodenum 24 restart hostname MachineB port 2 netname MachineB-scid0

| After:

| 20 MachineB 0 MachineB-scid0 <= Sun Cluster 2.1

| 22 MachineB 1 MachineB-scid0 <= Sun Cluster 2.1

| 24 MachineB 2 MachineB-scid0 <= Sun Cluster 2.1

| Mutual Takeover Configuration
| The mutual failover of partitions in a partitioned database environment requires that the
| failover of the partition occur as a logical node on the failover server. If two partitions of
| a partitioned database system run on separate servers of a cluster configured for
| mutual takeover, the partitions must fail over as logical nodes.

| Figure 87 shows an example of a mutual takeover configuration.

 Chapter 25. High Availability in the Solaris Operating Environment, Partitioned Database 811

Workstation BWorkstation A

Cluster

Logical Host 0

Logical Host 1

Logical Host 0

Logical Host 1

| Figure 87. Mutual Takeover Configuration

| Another important consideration when configuring a system for mutual partition takeover
| is the database path of the local partition. When a database is created in a partitioned
| database environment, it is created on a root path, which is not shared across the
| database partition servers. For example, consider the following statement:

| CREATE DATABASE db_a1 ON /dbpath

| This statement is executed under instance db2inst and creates the database db_a1 on
| the path /dbpath. Each partition creates its actual database partition on its local
| /dbpath file system under /dbpath/db2inst/NODExxxx, where xxxx represents the node
| number. After a failover, a database partition will start up on another system with a
| different /dbpath directory. The only filesystems that are moved along with the logical
| host during a failover are the logical host filesystems. This means that a symbolic link
| must be created from the logical host file system to the appropriate
| /dbpath/db2inst/NODExxxx path.

| For example,

| cd /dbpath/db2inst

| ln -s /log0/disks/db2inst/NODE0001 NODE0001

| The hadb2eee_addinst will set up symbolic links from INSTHOME/INSTANCE to the logical
| host filesystem that corresponds with the various database partitions (where INSTHOME is
| the instance owner's home directory, INSTANCE is the instance, and log0 is the logical
| host that is bound to database partition 1 via the hadb2-eee.cfg file). You must perform
| this manually for other database directories.

| The following example shows a portion of the db2nodes.cfg file before and after the
| failover. In this example, node numbers 20, 22 and 24 are running on System A which

812 Administration Guide

| has a hostname of MachineA with a netname of MachineA-scid0. Node numbers 30, 32,
| and 34 are running on System B which has a hostname of MachineB with a netname of
| MachineB-scid0. System A in this example is hosting a logical host which is responsible
| for database partitions 20, 22, and 24. System B is listed as a backup for this logical
| host and it will host it if System A goes down.

| Before:

| 20 MachineA 0 MachineA-scid0 <= Sun Cluster 2.1

| 22 MachineA 1 MachineA-scid0 <= Sun Cluster 2.1

| 24 MachineA 2 MachineA-scid0 <= Sun Cluster 2.1

| 30 MachineB 0 MachineB-scid0 <= Sun Cluster 2.1

| 32 MachineB 1 MachineB-scid0 <= Sun Cluster 2.1

| 34 MachineB 2 MachineB-scid0 <= Sun Cluster 2.1

| db2start nodenum 20 restart hostname MachineB port 3 netname MachineB-scid0

| db2start nodenum 22 restart hostname MachineB port 4 netname MachineB-scid0

| db2start nodenum 24 restart hostname MachineB port 5 netname MachineB-scid0

| After:

| 20 MachineB 3 MachineB-scid0 <= Sun Cluster 2.1

| 22 MachineB 4 MachineB-scid0 <= Sun Cluster 2.1

| 24 MachineB 5 MachineB-scid0 <= Sun Cluster 2.1

| 30 MachineB 0 MachineB-scid0 <= Sun Cluster 2.1

| 32 MachineB 1 MachineB-scid0 <= Sun Cluster 2.1

| 34 MachineB 2 MachineB-scid0 <= Sun Cluster 2.1

| If you do decide to use a mutual takeover environment for the coordinator node then
| you may want to adjust the following database manager configuration parameters:

| ¹ conn_elapse
| ¹ max_connretries.

| Reducing the value of these parameters will reduce the failover time for the coordinator
| node, but will increase the risk of an FCM connection timeout. These parameters
| should be tuned to meet your requirements.

| Setting Up Failover Support for a Database System
| To set up Sun Cluster 2.1, perform the following steps:

| 1. Ensure that your system meets the requirements detailed in “Preliminary
| Requirements” on page 815.

| 2. Ensure that Sun Cluster 2.1 is installed properly.

| 3. Create the logical hosts which that will host the database partitions.

| 4. Create the logical host filesystems, and filesystems for SMS table spaces.

| 5. Install DB2 on each machine in the cluster (you can use cconsole or ctelnet ,
| which come with Sun Cluster 2.1).

| 6. For mutual partition failover, set up HA-NFS either locally or remotely on a
| separate cluster to export the highly available instance's home directory.

 Chapter 25. High Availability in the Solaris Operating Environment, Partitioned Database 813

| 7. On one machine only, create an instance on the HA-NFS filesystem, while
| ensuring that the user for the instance is created with the same uid on the other
| machines in the cluster. Also ensure that the groups and services for the instance
| are also created on the other machines in the cluster.

| 8. Run the hadb2eee_addinst script as root to set up your HA instance or configure
| the instance manually. The hadb2eee_addinst script is provided as an example on
| how an instance may be set up. The hadb2eee_addinst script does the following:

| ¹ Creates the .rhost file in the specified instance owner's home directory.
| ¹ Creates the db2nodes.cfg file for the instance.
| ¹ Creates the ha-db2eee.cfg file which binds database partitions to a logical
| host.
| ¹ Sets up symbolic links from the default database path (which is specified by
| the dftdbpath configuration parameter) to the correct logical host filesystem for
| a database partition.
| ¹ Adds a line for the instance in the /var/db2/v5/db2tabeee file.
| ¹ Tries to run non-interactively on the other machines in the cluster.

| 9. Run hadb2start to start the high availability environment

| Choosing a Failover Configuration
| To choose a failover configuration, perform the following steps:

| 1 Set up the machines to use either a hot standby or mutual takeover configuration.
| For a hot standby configuration, use one logical host. For a mutual takeover, use
| two or more logical hosts.

| 2 Decide on the amount of disk space that is required for each logical host and its
| resources, such as raw devices or SMS table space containers. Whether you use
| SMS or DMS (raw devices) table spaces, any disks belonging to a logical host
| must be included in its disk groups.

| Table space considerations: You must decide on the type of table space that
| you want to use. If you want to use SMS table spaces, you must set them
| up using disks from the disk groups that belong to a logical host. In
| addition, you must include the filesystem in the vfstab for the logical host.
| Refer to the Sun Cluster 2.1 documentation for information about how to
| add a file system to a logical host.

| There are benefits and costs associated with using either SMS or DMS
| table spaces. For example, SMS table spaces reside on file systems that
| must be file-system checked before they are mounted. This can add a
| considerable amount of overhead when failover occurs, and can result in
| the Sun Cluster 2.1 software timing out. If you use SMS table spaces,
| ensure that they are journaled files systems, which require less time to
| check after a failover.

| DMS table spaces do not have to be file-system checked during failover,
| which can reduce the failover time for the high availability scripts.

814 Administration Guide

| You should remember that, for both SMS and DMS table spaces,
| committed transactions that are written to the logs will be applied to the
| database during crash recovery after the database server fails over.

| Preliminary Requirements
| Any logical host that you want in a cluster must have the following directories available:

| /LOGICAL_HOST Is the name of the logical host that runs the partition

| /LOGICAL_HOST/home Is where the home directories reside

| /LOGICAL_HOST/disks Is where the SMS table spaces reside for the database
| partitions

| For example:

| /log0

| /log0/home/db2eee

| /log0/disks/db2eee

| Where log0 is the logical host and db2eee is the highly available instance.

| Scripts and Programs
| All of the following scripts are in the directory
| /opt/IBMdb2/V5.0/ha/UDB-EEE_SC2.x/bin. Included are:

| hadb2eee_addinst The sample instance setup script

| hadb2eee_reg Registers DB2 Extended Enterprise Edition for high availability

| hadb2eee_startnet Script that starts partitions for a logical host. This script is run
| automatically by Sun Cluster 2.1. You should not run this script manually.

| hadb2eee_stopnet Script that stops partitions for a logical host. This script is run
| automatically by Sun Cluster 2.1. You should not run this script manually.

| hadb2eee_unreg Unregisters DB2 Extended Enterprise Edition for high availability

| hadb2stat Shows the current status of DB2 Extended Enterprise Edition

| hadb2start Starts DB2 in the highly available environment.

| hadb2stop Stops DB2 in the highly available environment.

| The hadb2eee_startnet and hadb2eee_stopnet scripts are used during a failover. The
| hadb2eee_startnet script starts partitions on a physical machine, while
| hadb2eee_stopnet stops partitions on a physical machine. Both the start and stop
| scripts read the /var/db2/v5/db2tabeee configuration file to find out which DB2 instances
| are highly available. See “Enabling Failover for an Instance” on page 816 for
| information about this file.

| Creating a DB2 Instance
| For information about creating an instance, refer to the DB2 Extended Enterprise
| Edition for UNIX Quick Beginnings .

 Chapter 25. High Availability in the Solaris Operating Environment, Partitioned Database 815

| Registering the DB2 Resource with Sun Cluster 2.1
| If you are using local HA-NFS for your cluster, you must register and set up HA-NFS
| before HA DB2 EEE. The hadb2eee_reg script may look something like this:

| # Make sure you register hanfs with every logical node even though only

| # one will use it. This is to fix a dependency issue with SC2.x.

| #

| TIMEOUT=600

| STARTUP=1

| #DEPONNFS=

| DEPONNFS="-d nfs"

| # Register HA-NFS

| #

| #hareg -s -r nfs

| #hareg -y nfs

| hareg -r hadb2eee -b /opt/IBMdb2/V5.0/ha/UDB-EEE_SC2.x/bin/ -m START=hadb2eee_st

| art,START_NET=hadb2eee_startnet,STOP_NET=hadb2eee_stopnet,ABORT_NET=hadb2eee_abo

| rtnet -t START_NET=$TIMEOUT,STOP_NET=$TIMEOUT $DEPONNFS

| if [[STARTUP -eq 1]]

| then

| hareg -y hadb2eee

| fi

| Where:

| TIMEOUT Is the timeout for the Sun Cluster agent to start and stop DB2.

| STARTUP Specifies whether to start the high availability environment after registering
| HA DB2 EEE.

| DEPONNFS Set this to an empty string if you are using a remote HA-NFS server. If
| you are using a local HA-NFS server, ensure that this is set to -d nfs, and
| that the lines that register HA-NFS are uncommented.

| Enabling Failover for an Instance
| To enable an instance for failover, you create an entry for it in the
| /var/db2/v5/db2tabeee file. This file must be kept consistent across all the machines in
| the cluster. Entries in this file are in the form:

| TYPE INSTANCE NFS_HOST ON HA-NFS_DIR LOCAL_MOUNT_POINT

| Where:

| TYPE Is the type of instance. The value can be one of the following:

| ¹ DATA to indicate a database instance.
| ¹ ADMIN to indicate an administration server instance.

| INSTANCE Is the user name of the instance owner.

| NFS_HOST Is the logical host which is hosting the HA-NFS filesystem.

816 Administration Guide

| ON/OFF Specifies whether the instance is highly available (ON) or not (OFF).

| HA-NFS_DIR The directory on the HA-NFS host to mount.

| LOCAL_MOUNT_POINT The local mount point for the HA-NFS.

| An example might be:

| DATA db2eee sphere ON /log0/home /export/ha_home

| In this example, the instance owner's home directory should be placed under
| /export/ha_home.

| Binding Database Partition Servers to a Logical Host
| You use the file called $INSTHOME/sqllib/hadb2-eee.cfg to bind database partitions to
| a logical host. Bind, in this context, means that the file ensures that the partitions follow
| the logical hosts around the cluster, starting on the machine in the cluster that hosts the
| logical host. Entries in this file are in the form:

| NODE: log0 0

| NODE: log0 10

| NODE: log0 12

| NODE: log1 33

| NODE: log1 45

| NODE: log1 59

| In this example, logical host log0 is responsible for partitions 0, 10, and 12, while logical
| host log1 is responsible for partitions 33, 45, and 59. These logical hosts are
| responsible for both starting and stopping the partitions during a failover situation.

| Note: There must be a one-to-one relationship between the partitions in this file and
| the db2nodes.cfg file.

| How Failover Processing Works
| When a failover occurs, the hadb2eee_startnet and hadb2eee_stopnet programs read
| the /var/db2/v5/db2tabeee file to find out which DB2 instances are highly available.
| Then for each highly available instance, they read the configuration file
| $INSTHOME/sqllib/hadb2-eee.cfg, which binds partitions to logical hosts.

| Information about the failover process is sent to the syslog using the facility set to
| LOG_USER and the priority set to LOG_ERR.

| Setting Up a Hot Standby Configuration
| To set up a hot standby configuration, bind all of the partitions to one logical host that is
| hosted by one of the servers in the cluster. When you finish, the
| $INSTHOME/sqllib/hadb2-eee.cfg file should resemble the following:

| NODE: log0 0

| NODE: log0 10

| NODE: log0 12

| NODE: log0 33

| NODE: log0 45

| NODE: log0 59

 Chapter 25. High Availability in the Solaris Operating Environment, Partitioned Database 817

| If the logical host log0 fails over, all the database partitions associated with it will fail
| over as well.

| Setting Up a Mutual Takeover Configuration
| To set up a mutual takeover configuration, bind the partitions to two or more logical
| hosts. When you finish, the $INSTHOME/sqllib/hadb2-eee.cfg file should resemble the
| following:

| NODE: log0 0

| NODE: log0 10

| NODE: log0 12

| NODE: log0 33

| NODE: log1 45

| NODE: log1 59

| You do not need to set up a completely symmetric configuration. As the example
| shows, the logical host log0 supports more partitions than the logical host log1
| (partitions 0, 10, 12 and 33 for logical host log0 versus partitions 45 and 59 for logical
| host log1). Because you do not have to implement a symmetric configuration, a mutual
| takeover configuration provides an amount of flexibility that will support any situation.

| Starting and Stopping DB2
| To start DB2 in a failover environment, use the hadb2start command. This command
| both enables the failover environment, and starts DB2.

| If you want to stop DB2, use the hadb2stop command. This command both disables
| the failover environment and stops DB2.

| Note: If you do not issue hadb2stop and you use db2stop , Sun Cluster 2.1 may
| assume that the DB2 instance needs to be failed over.

| Running Scripts During a Failover
| The /var/db2/v5/failover.eee script runs automatically when a failover occurs. You can
| use this script to send email (for example, to notify support staff) of the failover
| situation. You should keep the commands in this script to a minimum, because it runs
| before DB2 is started. Depending on whether DB2 is starting or stopping, the following
| scripts will also run (if they are available) for each instance.

| Note: You must create the $INSTHOME/sqllib/ha directory and create these scripts to
| be executables. You should ensure that you have backup copies of these
| scripts.

| ¹ $INSTHOME/sqllib/ha/pre_db2starteee

| This file takes as an argument the number of logical hosts that are currently
| running on the failover machine. If this script exists, it runs immediately before the
| db2start command.

| ¹ $INSTHOME/sqllib/ha/pre_db2stopeee

818 Administration Guide

| This file takes as an argument the number of logical hosts that are currently
| running on the failover machine. If this script exists, it runs immediately before the
| db2stop command.

| Note: This script may not be run if the machine crashes.

| ¹ $INSTHOME/sqllib/ha/post_failovereee

| This file runs just after a failover and is used to such tasks as restart databases.

| Considerations for Table Spaces
| You must decide on the type of table space that you want to use. If you want to use
| SMS table spaces, you must set them up using disks from the disk groups that belong
| to a logical host. In addition, you must include them in the vfstab for the logical host.
| Refer to the Sun Cluster 2.1 documentation for information about how to add a file
| system to a logical host.

| There are benefits and costs associated with using either SMS or DMS table spaces.
| For example, SMS table spaces reside on file systems that must be file-system
| checked before they are mounted. This can add a considerable amount of overhead
| when failover occurs, and can result in the Sun Cluster 2.1 software timing out. If you
| use SMS table spaces, ensure that they are journaled file systems, which require less
| time to check after a failover.

| DMS table spaces that use raw devices do not have to be file-system checked during
| failover. This can reduce the failover time for the high availability scripts, but you should
| remember that committed transactions that are written to the logs will be applied to the
| database during crash recovery after the database server fails over.

| If you are using raw devices for table spaces (that is, you are using DMS table spaces),
| you must ensure that the disks are part of the disk group of the logical host.

| Client Application Considerations
| Client applications should communicate with the high availability services only through
| the logical hostname of the logical host of the high availability service. You should
| ensure that client applications are written to accept a communications error and
| possibly retry after a few minutes.

| Consider a typical client connection. The client is connected to machineA through the
| logical host called snap. If machineA fails, then snap fails over to machineB. According
| to machineB, the client connection does not exist, and will send the client a connect
| reset message, which will appear to the client as a communication error. The client
| must reconnect to the server to obtain a new connection from machineB when DB2
| starts.

 Chapter 25. High Availability in the Solaris Operating Environment, Partitioned Database 819

820 Administration Guide

 Part 6. Appendixes

 Copyright IBM Corp. 1993, 1998 821

822 Administration Guide

Appendix A. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help, and books.
This section describes the information that is provided, and how to access it.

To access product information online, you can use the Information Center. You can
view task information, DB2 books, troubleshooting information, sample programs, and
DB2 information on the Web. See “Information Center” on page 832 for details.

 SmartGuides
SmartGuides help you complete some administration tasks by taking you through each
task one step at a time. SmartGuides are available through the Control Center. The
following table lists the SmartGuides.

Note: Not all SmartGuides are available for the partitioned database environment.

SmartGuide Helps you to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click on Add .

Create Database Create a database, and perform some basic
configuration tasks.

From the Control Center, click with the
right mouse button on the Databases
icon and select Create ->New.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match your
business requirements.

From the Control Center, click with the
right mouse button on the database
you want to tune and select Configure
performance .

Backup Database Determine, create, and schedule a backup plan. From the Control Center, click with the
right mouse button on the database
you want to backup and select
Backup ->Database using
SmartGuide .

Restore Database Recover a database after a failure. It helps you
understand which backup to use, and which logs
to replay.

From the Control Center, click with the
right mouse button on the database
you want to restore and select
Restore ->Database using
SmartGuide .

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with the
right mouse button on the Tables icon
and select Create ->Table using
SmartGuide .

Create Table Space Create a new table space. From the Control Center, click with the
right mouse button on the Table
spaces icon and select Create ->Table
space using SmartGuide .

 Copyright IBM Corp. 1993, 1998 823

 Online Help
Online help is available with all DB2 components. The following table describes the
various types of help. You can also access DB2 information through the Information
Center. For information see “Information Center” on page 832.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the command
line processor.

From the command line processor in interactive mode,
enter:

? command

where command is a keyword or the entire command.

For example, ? catalog displays help for all the
CATALOG commands, while ? catalog database
displays help for the CATALOG DATABASE command.

Control Center Help Explains the tasks you can
perform in a window or
notebook. The help includes
prerequisite information you
need to know, and
describes how to use the
window or notebook
controls.

From a window or notebook, click on the Help push
button or press the F1 key.

Message Help Describes the cause of a
message, and any action
you should take.

From the command line processor in interactive mode,
enter:

? XXXnnnnn

where XXXnnnnn is a valid message identifier.

For example, ? SQL30081 displays help about the
SQL30081 message.

To view message help one screen at a time, enter:

? XXXnnnnn | more

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want to save
the message help.

SQL Help Explains the syntax of SQL
statements.

From the command line processor in interactive mode,
enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help about the
SELECT statement.

824 Administration Guide

Type of Help Contents How to Access...

SQLSTATE Help Explains SQL states and
class codes.

From the command line processor in interactive mode,
enter:

? sqlstate or ? class-code

where sqlstate is a valid five-digit SQL state and the
class-code is first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL
state, while ? 08 displays help for the 08 class code.

 DB2 Books
The table in this section lists the DB2 books. They are divided into two groups:

Cross-platform books These books contain the common DB2 information for
UNIX-based and Intel-based platforms.

Platform-specific books These books are for DB2 on a specific platform. For example,
for DB2 on OS/2, on Windows NT, and on the UNIX-based platforms, there
are separate Quick Beginnings books.

Most books are available in HTML and PostScript format, and in hardcopy that you can
order from IBM. The exceptions are noted in the table.

If you want to read the English version of the books, they are always provided in the
directory that contains the English documentation.

You can obtain DB2 books and access information in a variety of different ways:

View See “Viewing Online Books” on page 829.
Search See “Searching Online Books” on page 830.
Print See “Printing the PostScript Books” on page 830.
Order See “Ordering the Printed DB2 Books” on page 831.

Book Name Book Description Form Number

File Name

Cross-Platform Books

Administration Getting Started Introduces basic DB2 database administration
concepts and tasks, and walks you through the
primary administrative tasks.

S10J-8154

db2k0x50

Administration Guide Contains information required to design, implement,
and maintain a database to be accessed either locally
or in a client/server environment.

S10J-8157

db2d0x51

API Reference Describes the DB2 application programming interfaces
(APIs) and data structures you can use to manage
your databases. Explains how to call APIs from your
applications.

S10J-8167

db2b0x51

 Appendix A. How the DB2 Library Is Structured 825

Book Name Book Description Form Number

File Name

CLI Guide and Reference Explains how to develop applications that access DB2
databases using the DB2 Call Level Interface, a
callable SQL interface that is compatible with the
Microsoft ODBC specification.

S10J-8159

db2l0x50

Command Reference Explains how to use the command line processor, and
describes the DB2 commands you can use to manage
your database.

S10J-8166

db2n0x51

DB2 Connect Enterprise Edition
Quick Beginnings

Provides planning, migrating, installing, configuring,
and using information for DB2 Connect Enterprise
Edition. Also contains installation and setup
information for all supported clients.

S10J-7888

db2cyx51

DB2 Connect Personal Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Personal Edition.

S10J-8162

db2c1x51

DB2 Connect User's Guide Provides concepts, programming and general using
information about the DB2 Connect products.

S10J-8163

db2c0x51

DB2 Connectivity Supplement Provides setup and reference information for
customers who want to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as DRDA
Application Requesters with DB2 Universal Database
servers, and customers who want to use DRDA
Application Servers with DB2 Connect (formerly
DDCS) application requesters.

Note: Available in HTML and PostScript formats
only.

No form number

db2h1x51

Embedded SQL Programming
Guide

Explains how to develop applications that access DB2
databases using embedded SQL, and includes
discussions about programming techniques and
performance considerations.

S10J-8158

db2a0x50

Glossary Provides a comprehensive list of all DB2 terms and
definitions.

Note: Available in HTML format only.

No form number

db2t0x50

Installing and Configuring DB2
Clients

Provides installation and setup information for all DB2
Client Application Enablers and DB2 Software
Developer's Kits.

Note: Available in HTML and PostScript formats
only.

No form number

db2iyx51

Master Index Contains a cross reference to the major topics
covered in the DB2 library.

Note: Available in PostScript format and hardcopy
only.

S10J-8170

db2w0x50

Messages Reference Lists messages and codes issued by DB2, and
describes the actions you should take.

S10J-8168

db2m0x51

826 Administration Guide

Book Name Book Description Form Number

File Name

DB2 Replication Guide and
Reference

Provides planning, configuring, administering, and
using information for the IBM Replication tools
supplied with DB2.

S95H-0999

db2e0x52

Road Map to DB2 Programming Introduces the different ways your applications can
access DB2, describes key DB2 features you can use
in your applications, and points to detailed sources of
information for DB2 programming.

S10J-8155

db2u0x50

SQL Getting Started Introduces SQL concepts, and provides examples for
many constructs and tasks.

S10J-8156

db2y0x50

SQL Reference Describes SQL syntax, semantics, and the rules of the
language. Also includes information about
release-to-release incompatibilities, product limits, and
catalog views.

S10J-8165

db2s0x51

System Monitor Guide and
Reference

Describes how to collect different kinds of information
about your database and the database manager.
Explains how you can use the information to
understand database activity, improve performance,
and determine the cause of problems.

S10J-8164

db2f0x50

Troubleshooting Guide Helps you determine the source of errors, recover
from problems, and use diagnostic tools in
consultation with DB2 Customer Service.

S10J-8169

db2p0x50

What's New Describes the new features, functions, and
enhancements in DB2 Universal Database, Version
5.2, including information about Java-based tools.

S04L-6230

db2q0x51

Platform-Specific Books

Building Applications for UNIX
Environments

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a UNIX system.

S10J-8161

db2axx51

Building Applications for
Windows and OS/2
Environments

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Windows or OS/2 system.

S10J-8160

db2a1x50

DB2 Personal Edition Quick
Beginnings

Provides planning, installing, migrating, configuring,
and using information for DB2 Universal Database
Personal Edition on OS/2, Windows 95, and the
Windows NT operating systems.

S10J-8150

db2i1x50

DB2 SDK for Macintosh Building
Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Macintosh system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0528

sqla7x02

DB2 SDK for SCO OpenServer
Building Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a SCO OpenServer system.

Note: Available for DB2 Version 2.1.2 only.

S89H-3242

sqla9x02

 Appendix A. How the DB2 Library Is Structured 827

Book Name Book Description Form Number

File Name

DB2 SDK for SINIX Building
Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a SINIX system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0530

sqla8x00

Quick Beginnings for OS/2 Provides planning, installing, migrating, configuring,
and using information for DB2 Universal Database on
OS/2. Also contains installing and setup information
for all supported clients.

S10J-8147

db2i2x50

Quick Beginnings for UNIX Provides planning, installing, configuring, migrating,
and using information for DB2 Universal Database on
UNIX-based platforms. Also contains installing and
setup information for all supported clients.

S10J-8148

db2ixx51

Quick Beginnings for Windows
NT

Provides planning, installing, configuring, migrating,
and using information for DB2 Universal Database on
the Windows NT operating system. Also contains
installing and setup information for all supported
clients.

S10J-8149

db2i6x50

DB2 Extended Enterprise Edition
for UNIX Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for UNIX.

This book supercedes the DB2 Extended Enterprise
Edition Quick Beginnings for AIX book, and is suitable
for use with all versions of DB2 Extended Enterprise
Edition that run on UNIX-based platforms.

S99H-8314

db2v3x51

DB2 Extended Enterprise Edition
for Windows NT Quick
Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for Windows NT.

S09L-6713

db2v6x51

Notes:

1. The character in the sixth position of the file name indicates the language of a
book. For example, the file name db2d0e50 indicates that the Administration Guide
is in English. The following letters are used in the file names to indicate the
language of a book:

Language Identifier Language Identifier
Brazilian Portuguese B Japanese J
Bulgarian U Korean K
Czech X Norwegian N
Danish D Polish P
English E Russian R
Finnish Y Simp. Chinese C
French F Slovenia L
German G Spanish Z
Greek A Swedish S
Hungarian H Trad. Chinese T

828 Administration Guide

2. For late breaking information that could not be included in the DB2 books:

¹ On UNIX-based platforms, see the Release.Notes file. This file is located in
the DB2DIR/Readme/%L directory, where %L is the locale name and DB2DIR
is:

– /usr/lpp/db2_05_00 on AIX
– /opt/IBMdb2/V5.0 on HP-UX, Solaris, SCO UnixWare 7, and SGI.

¹ On other platforms, see the RELEASE.TXT file. This file is located in the
directory where the product is installed.

Italian I Turkish M

Viewing Online Books
The manuals included with this product are in Hypertext Markup Language (HTML)
softcopy format. Softcopy format enables you to search or browse the information, and
provides hypertext links to related information. It also makes it easier to share the
library across your site.

You can use any HTML Version 3.2-compliant browser to view the online books.

To view online books:

¹ If you are running DB2 administration tools, use the Information Center. See
“Information Center” on page 832 for details.

¹ Use the open file function of your Web browser. The page you open contains
descriptions of and links to DB2 books:

– On UNIX-based platforms, open the following page:

 file:/INSTHOME/sqllib/doc/%L/html/index.htm

where %L is the locale name.

– On other platforms, open the following page:

 sqllib\doc\html\index.htm

The path is located on the drive where DB2 is installed.

You can also open the page by double-clicking on the DB2 Online Books
icon. Depending on the system you are using, the icon is in the main product
folder or the Windows Start menu.

Note: The DB2 Online Books icon is only available if you do not install the
Information Center.

Setting up a Document Server
By default the DB2 information is installed on your local system. This means that each
person who needs access to the DB2 information must install the same files. To have
the DB2 information stored in a single location, use the following instructions:

1. Copy all files and sub-directories from \sqllib\doc\html on your local system to a
web server. Each book has its own sub-directory containing all the necessary

 Appendix A. How the DB2 Library Is Structured 829

HTML and GIF files that make up the book. Ensure that the directory structure
remains the same.

2. Configure the web server to look for the files in the new location. For information,
see Setting up DB2 Online Documentation on a Web Server at:

 http://www.software.ibm.com/data/pubs/papers/db2html.html

3. If you are using the Java version of the Information Center, you can specify a base
URL for all HTML files. You should use the URL for the list of books.

4. Once you are able to view the book files, you should bookmark commonly viewed
topics such as:

¹ List of books
¹ Tables of contents of frequently used books
¹ Frequently referenced articles like the ALTER TABLE topic

 ¹ Search form.

For information about setting up a search, see the What's New book.

Searching Online Books
To search for information in the HTML books, you can do the following:

¹ Click on Search the DB2 Books at the bottom of any page in the HTML books.
Use the search form to find a specific topic.

¹ Click on Index at the bottom of any page in an HTML book. Use the Index to find a
specific topic in the book.

¹ Display the Table of Contents or Index of the HTML book, and then use the find
function of the Web browser to find a specific topic in the book.

¹ Use the bookmark function of the Web browser to quickly return to a specific topic.

¹ Use the search function of the Information Center to find specific topics. See
“Information Center” on page 832 for details.

Printing the PostScript Books
If you prefer to have printed copies of the manuals, you can decompress and print
PostScript versions. For the file name of each book in the library, see the table in “DB2
Books” on page 825.

Note: Specify the full path name for the file you intend to print.

On OS/2 and Windows platforms:

1. Copy the compressed PostScript files to a hard drive on your system. The files
have a file extension of .exe and are located in the x:\doc\language\books\ps
directory, where x: is the letter representing the CD-ROM drive and language is the
two-character country code that represents your language (for example, EN for
English).

2. Decompress the file that corresponds to the book that you want. The result from
this step is a printable PostScript file with a file extension of .psz.

830 Administration Guide

3. Ensure that your default printer is a PostScript printer capable of printing Level 1
(or equivalent) files.

4. Enter the following command from a command line:

 print filename.psz

On UNIX-based platforms:

1. Mount the CD-ROM. Refer to your Quick Beginnings manual for the procedures to
mount the CD-ROM.

2. Change to /cdrom/doc/%L/ps directory on the CD-ROM, where /cdrom is the mount
point of the CD-ROM and %L is the name of the desired locale. The manuals will
be installed in the previously-mentioned directory with file names ending with .ps.Z.

3. Decompress and print the manual you require using the following command:

 ¹ For AIX:

zcat filename] qprt -P PSPrinter_queue

¹ For HP-UX, Solaris, or SCO UnixWare 7:

zcat filename] lp -d PSPrinter_queue

¹ For Silicon Graphics IRIX and SINIX:

zcat < filename] lp -d PSPrinter_queue

where filename is the name of the full path name and extension of the compressed
PostScript file and PSprinter_queue is the name of the PostScript printer queue.

For example, to print the English version of Quick Beginnings for UNIX on AIX, you
can use the following command:

zcat /cdrom/doc/en/ps/db2ixe50.ps.Z] qprt -P ps1

Ordering the Printed DB2 Books
You can order the printed DB2 manuals either as a set, or individually. There are three
sets of books available. The form number for the entire set of DB2 books is
SBOF-8915-00. The form number for the set of books updated for Version 5.2 is
SBOF-8921-00. The form number for the books listed under the heading "Cross-Platform
Books" is SBOF-8914-00.

Note: These form numbers only apply if you are ordering books that are printed in the
English language.

You can also order books individually by the form number listed in “DB2 Books” on
page 825. To order printed versions, contact your IBM authorized dealer or marketing
representative, or phone 1-800-879-2755 in the United States or 1-800-IBM-4YOU in
Canada.

 Appendix A. How the DB2 Library Is Structured 831

 Information Center
The Information Center provides quick access to DB2 product information. You must
install the DB2 administration tools to obtain the Information Center.

Depending on your system, you can access the Information Center from the:

¹ Main product folder
¹ Toolbar in the Control Center
¹ Windows Start menu
¹ Help menu of the Control Center

 ¹ db2ic command.

The Information Center provides the following kinds of information. Click on the
appropriate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as keywords, commands,
and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their recovery actions.

Sample Programs Lists sample programs that come with the DB2 Software
Developer's Kit. If the Software Developer's Kit is not installed,
this tab is not displayed.

Web Lists DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from your
system.

When you select an item in one of the lists, the Information Center launches a viewer to
display the information. The viewer might be the system help viewer, an editor, or a
Web browser, depending on the kind of information you select.

The Information Center provides some search capabilities so you can look for specific
topics, and filter capabilities to limit the scope of your searches.

For a full text search, follow the Search DB2 Books link in each HTML file, or use the
search feature of the help viewer.

The HTML search server is usually started automatically. If a search in the HTML
information does not work, you may have to start the search server via its icon on the
Windows or OS/2 desktop.

Refer to the release notes if you experience any other problems when searching the
HTML information.

832 Administration Guide

Appendix B. Planning Database Migration

| Note: Migration is not required when upgrading to DB2 UDB Version 5.2 from DB2
| UDB Version 5 or a DB2 UDB V5 fix pack.

When you migrate your database, the following events occur:

¹ The following database entities are migrated:

– Database configuration file
– Database system catalog tables

 – Database directories
– Database log file header
– Database index files
– Database data files

¹ The database is relocated to a new database path.

¹ System catalog tables are changed as follows:

– New columns are added.
– New tables are created.
– A set of catalog views is migrated, and a set of new catalog views is created,

in the SYSCAT schema.
– A set of updatable catalog views is created in the SYSSTAT schema.
– A set of general purpose scalar functions is kept, and a set of new general

purpose scalar functions is created, in the SYSFUN schema. Only
SYSFUN.DIFFERENCE scalar function is dropped and re-created during
database migration.

¹ A new directory called db2event is created in the database directory.

¹ A buffer pool file is created in the database directory.

¹ A database history file and its shadow are created in the database directory. This
file contains a summary of backup information that can be used if a database must
be restored, and it is updated whenever a backup, restore, or table load operation
is performed on the database. A summary of backup information is also kept for
backup and restore operations on a table space.

To plan your database migration to V5, read the following sections:

 ¹ Migration Considerations
¹ Migrating a Database

The details for migrating your database are found in the Quick Beginnings manuals for
your platform. This appendix will only provide you with an overview of the migration
process for planning purposes.

 Copyright IBM Corp. 1993, 1998 833

 Migration Considerations
To successfully migrate a database created with a previous version of the database
manager, you must consider the following:

 ¹ Migration Restrictions
¹ Security and Authorization

 ¹ Storage Requirements
 ¹ Release-to-Release Incompatibilities

 Migration Restrictions
There are certain pre-conditions or restrictions that you should be aware of before
attempting to migrate your database to V5:

¹ Migration is only supported from V1.x or V2.x. Earlier versions of DB2 (Database
Manager) must be migrated to V1.x or V2.x before attempting to migrate to V5.

¹ Issuing the migration command from a V5 client to migrate a database on a V5
Server is supported. However, issuing a migration command from earlier versions
of DB2 clients to a V5 Server is not supported.

¹ Migration between platforms is not supported.

¹ User objects within your database cannot have V5 reserved schema names as
object qualifiers. These reserved schema names include: SYSCAT, SYSSTAT, and
SYSFUN.

¹ Database objects with a dependency on the SYSFUN.DIFFERENCE function must
be dropped before migrating the database. Objects that might have a dependency
on this function include: views, constraints, functions, and triggers.

| ¹ User-defined distinct types using the names DATALINK or REFERENCE must be
| renamed before migrating the database.

¹ Your database cannot be in one of the following states:

 – Backup pending

 – Roll-forward pending

– One or more table spaces not in a normal state

 – Transaction inconsistent

¹ Restore of down-level (V1.x or V2.x) database backups is supported but
rolling-forward of down-level logs is not supported.

Security and Authorization
You need SYSADM authority to migrate your database.

If migrating from DB2 Version 1, you should know that a database cannot be cataloged
with a mix of authentication types. The authentication type of the instance is, in Version
5, defined in the database manager configuration file. If mixed types are detected
during migration from Version 1, you can either stop the migration and change the
directories or continue with the migration. If migration continues all the authentication

834 Administration Guide

types are changed to blank, and the database uses the authentication type specified in
the instance.

To use two databases with different authentication types, a new instance must be
created for one of the databases. The database should be backed up and restored to a
new database under the new instance. It can then be dropped under the old instance
and migration can then be run.

Beginning with Version 2, users and groups are differentiated in SQL statements and
the system catalog. As a result, if a user and a group have the same name in the
previous version, the authority and privileges granted to the group must be explicitly
re-granted after migration.

During migration, the authorization catalog tables, SYSCAT.DBAUTH,
SYSCAT.INDEXAUTH, SYSCAT.PLANAUTH, and SYSCAT.TABAUTH, are checked to
determine if existing privileges are for users or groups, and the GRANTEETYPE is
defined as follows:

¹ If the name in the GRANTEE column is a user or is not defined; the
GRANTEETYPE is defined as U.

¹ If the name in the GRANTEE column is a group; the GRANTEETYPE is defined as
G.

¹ If the name in the GRANTEE column is both a user and a group; the
GRANTEETYPE is defined as U. Privileges must then be explicitly granted to the
group.

 Storage Requirements
Space is required for both the old and new catalogs during the migration, and the
amount of disk space required will vary depending on the complexity of the database as
well as the number and size of the database objects. These objects include all tables
and views. You should make available at least two times the amount of disk space as
the database catalog currently occupies. If there is not enough disk space, migration
fails.

You should also consider increasing the database configuration parameters associated
with the log files. You should increase logfilsiz, logprimary, and logsecond to
prevent the space for these files from running out. If log space is completely used, you
will receive a SQLCODE of SQL1704N with a reason code of 3. If this happens,
increase the log space parameters and re-issue the database migration command.

 Release-to-Release Incompatibilities
To successfully migrate a database, you should consider the impact of the
incompatibilities between the two versions of the product. The following incompatibilities
deserve special attention before you begin your migration:

 ¹ View Definitions

If a view from before Version 2 involves “SELECT *,” the view may be unusable
after migration. If the view is unusable, attempts to use it, directly or indirectly, will
result in SQLCODE -158. The view must be dropped and recreated in order to

 Appendix B. Planning Database Migration 835

avoid this error. If fewer than the current number of columns in the SELECT * table
is desired, the recreated view must specify the needed columns.

 ¹ Configuration Parameters

Configuration parameter values are preserved during the migration of the database,
with the exception of the following parameters:

– Application Heap Size (applheapsz)
– Package Cache Size (pckcachesz) (applies to all platforms except DB2 for

OS/2 V1.x.)
– Maximum Storage for Lock List (locklist)
– Recovery Range and Soft Checkpoint Interval (softmax).

For these parameters, the use of the associated heap has changed significantly in
Version 5.

– applheapsz is reset to the Version 5 default value if the current value is less
than the Version 5 default value.

– pckcachesz is always reset to the Version 5 default value.

For locklist, the DB2 Version 1 or DB2 Parallel Edition Version 1.2 value is
multiplied by a factor of 32/25. This computed value will be used as the Version 5
parameter value, if this value is greater than the Version 5 default. Otherwise, the
Version 5 default will be used.

OS/2 Users: If you are migrating from Version 1, parameters previously allocated
in units of 64 KB segments are multiplied by 16 to allow for allocation in units of 4
KB pages. In addition, the softmax configuration parameter will be set to the default
value, since this parameter is now measured as a percentage of the log records
written rather than the number of log records written.

In order to take advantage of Version 5 enhancements, you should re-tune your
database manager and database configuration after migrating your databases. To
assist in this tuning, you may wish to record and compare configuration parameter
values from before and after your migration. (See the GET DATABASE
CONFIGURATION and GET DATABASE MANAGER CONFIGURATION
commands in the Command Reference manual.)

Migrating a Database
The following are the steps you must take to migrate your database. The database
manager must be started before migration can begin.

PRE-MIGRATION:

Note: The pre-migration steps must be done on a previous release (that is, on your
current release before migrating to, or installing, the new release).

1. You cannot migrate a database that is in one of the following states:

 ¹ Backup pending
 ¹ Roll-forward pending
¹ One or more table spaces not in a normal state

 ¹ Database inconsistent

836 Administration Guide

You cannot migrate a database that contains any database objects with a
dependency on scalar function SYSFUN.DIFFERENCE.

In addition, you cannot migrate a database that contains any database objects
which have a qualifier (schema name) of SYSCAT, SYSSTAT, and SYSFUN.
These schema names are reserved for use by the database manager.

| You cannot migrate a database where there are user-defined distinct types using
| either DATALINK or REFERENCE as the name of the type.

See the Quick Beginnings for information about migrating from previous releases,
and for information about functions to help with the above step of the migration
process. This book also introduces when and how to use the DB2CKMIG
pre-migration utility.

2. All applications and end users must be disconnected from each database being
migrated. Use the LIST APPLICATIONS and the FORCE APPLICATIONS
commands as necessary.

3. Use the DB2CKMIG pre-migration utility presented in the Quick Beginnings for your
platform to check to see if the database can be migrated. Re-use the utility until
there are no more errors. Typical corrections include:

¹ Drop and re-create objects using valid schema names.

¹ Correct database connection states.

¹ Remove all dependencies from objects on scalar function
SYSFUN.DIFFERENCE.

4. Backup your database.

Migration is not a recoverable process. If you backup your database before the
Version 5 restricted schema names are changed, you will not be able to restore the
database from backup using DB2 Version 5. To restore the database, you will have
to use the version of the database manager from which you are migrating your
databases.

Attention! If you do not have a backup of your database from before you
attempted migration, and the migration failed, you will have no way of restoring
your database using DB2 V5 or your previous version of the database manager.

You should also be aware that any database transactions done during the period
between the time the backup was completed and the time the upgrade to V5 is
complete are not recoverable. That is, if sometime following the completion of the
installation and migration to V5, the database needs to be restored (to a V5 level),
the logs from before V5 installation cannot be used in roll-forward recovery.

MIGRATION:

5. Migrate the database using one of the following:

¹ The SQLEMGDB migrate database API
¹ The MIGRATE DATABASE command-line processor command
¹ The RESTORE DATABASE command, when restoring a full backup of the

database.

 Appendix B. Planning Database Migration 837

Note: To restore a Version 1 OS/2 database backup, you must use
DB2RESDB.

OS/2 Users: The DB2CIDMG migration program, which works in a
Configuration/Installation/Distribution (CID) architecture environment, is only
available on DB2 for OS/2. It allows for remote unattended installation and
configuration on LAN-based workstations. You must have NetView DM/2 on your
LAN to use CID migration.

UNIX Users: The Quick Beginnings describes what to do if you do not want to
migrate all dat abases in a given instance.

Note: During installation of V5, all of the found local database directories are migrated.
It may be that you require keeping one of your current local database directories
past the time of the installation of Version 5. (For example, your operating
system may allow a dual boot feature: where you can have the original version
of DB2 when “booting”your system one way, and the new version when
“booting” the other way.) If you keep your current directories, then you may
need a way to migrate that database directory to the Version 5 format at some
later time. The DB2MIGDR utility allows you to complete this migration.

POST-MIGRATION:

6. Optionally, use the DB2UIDDL utility to assist in searching all unique indexes from
the migrated database. This utility creates a file containing a list of CREATE
UNIQUE INDEX statements. Executing this file as a DB2 CLP command file results
in the unique index being converted to Version 5 semantics. Refer to the Quick
Beginnings manuals for more details.

7. Optionally, issue RUNSTATS on tables that are particularly critical to performance
of SQL queries. Old statistics form the previous level database are retained in the
migrated database. Therefore, any new statistics that are modified for, or are new
to, Version 5 will not be added to the migrated database unless you issue
RUNSTATS.

8. Optionally, rebind all packages. If migrating from a Version 2 database, there may
be inoperative packages. Inoperative packages remain identified as inoperative
following migration. All existing valid packages are marked as invalid during catalog
migration. You can use the DB2RBIND utility to revalidate all packages, or allow
package revalidation to occur implicitly when a package is first used. The REBIND
PACKAGE or BIND commands will selectively bind a particular package

9. Tune your database and database manager configuration parameters to tak e
advantage of Version 5 enhancements.

10. Optionally, migrate Explain tables if you have been using the Explain tables and
are planning to use them in Version 5. There are several new columns in the
tables. See Chapter 14, “SQL Explain Facility” on page 509 and Appendix M, “
Explain Tables and Definitions” on page 1067 for more information.

Complete details on the migration steps are found in the Quick Beginnings manuals for
your platform.

838 Administration Guide

Appendix C. Incompatibilities Between Releases

This appendix identifies the incompatibilities that exist between DB2 Universal
Database and previous releases of DB2.

An “incompatibility” is defined to be a part of DB2 Universal Database that works
differently than it did in a previous release of DB2 in such a way that if it used in an
existing application it will produce a different result, necessitate a change to the
application, or reduce performance. In this definition, “application” can apply to a broad
range of things, such as:

¹ Application program code
 ¹ Third-party utilities
¹ Interactive SQL queries
¹ Command and/or API invocation.

This appendix does not describe incompatibilities where certain operations in the
current release are less likely to generate an error condition than they did in the
previous release, as those changes will only have a positive impact on existing
applications.

This appendix lists incompatibilities in the following categories:

¹ “System Catalog Tables/Views” on page 840

¹ “Application Programming” on page 842

¹ “SQL” on page 855

¹ “Database Security and Tuning” on page 864

¹ “Utilities and Tools” on page 866

¹ “Connectivity and Coexistence” on page 869

¹ “Configuration Parameters” on page 873

Each incompatibility includes a description of the change in DB2 Version 5 that causes
an incompatibility with previous releases, the symptom or effect this will have on your
environment if no changes are made to it, and the possible resolutions that are
available. There is also an indicator at the beginning of each incompatibility telling you
what platforms are applicable as follows:

DB2 PE DB2 Parallel Edition, Version 1.2

OS/2 OS/2

UNIX Unix-based operating systems supported by DB2

WIN Microsoft Windows platforms supported by DB2

 Copyright IBM Corp. 1993, 1998 839

System Catalog Tables/Views

System Catalog Views
UNIX OS/2 WIN DB2 PE

 Change
A set of views have been created in DB2 Version 2 with the qualifiers (also known as
schema names) of SYSCAT and SYSSTAT. For this reason, the SYSCAT and
SYSSTAT schemas are now reserved.

 Symptom
If there are any objects belonging to these schemas in a Version 1 database, migration
will fail with SQLCODE SQL1704N (reason code 1).

 Resolution
The only way to get through the migration successfully will be to recreate the objects
currently under the SYSCAT and SYSSTAT schemas under new high level qualifiers.

System Catalog Tables
UNIX OS/2 WIN

 Change
A variety of changes have been made to the SYSIBM tables. This section will discuss
the subset which could cause incompatibilities. To see a description of all changes (for
example, new columns, new values in a column, and so on) refer to the SQL
Reference.

SYSCOLUMNS

COLTYPE: Changed values: “FLOAT” to “DOUBLE”
NULLS: Changed values: “D” to “N”. (Default flag now found in

SYSCAT.COLUMNS.DEFAULT)
HIGH2KEY: Changed type: VARCHAR(16) to VARCHAR(33).

Changed values: Values now stored in printable format
rather than binary format

LOW2KEY: Changed type: VARCHAR(16) to VARCHAR(33).
Changed values: Values are now stored in printable
format rather than binary format for all datatypes.

SYSINDEXES

CLUSTERRATIO: Changed value: Value will always be -1 if the columns
CLUSTERFACTOR and PAGE_FETCH_PAIRS are
populated.

SECT_INFO: Changed type: LONG VARCHAR to BLOB(1M).
HOST_VARS: Changed type: LONG VARCHAR to BLOB(1M).

840 Administration Guide

ISOLATION: Changed type: CHAR(1) to CHAR(2). Changed values:
“R” to “RR”, “S” to “RS”, “C” to “CS”, “U” to “UR”.

SYSRELS

RELNAME: Changed type: CHAR(8) to VARCHAR(18).

SYSSECTION

SECTION: Changed type: VARCHAR(3900) to VARCHAR(3600)

SYSSTMT

TEXT: Changed type: VARCHAR(3900) to VARCHAR(3600)

SYSTABLES

PACKED_DESC: Changed type: LONG VARCHAR to BLOB(10M)
VIEW_DESC: Changed type: LONG VARCHAR to BLOB(32K)
REL_DESC Changed type: LONG VARCHAR to BLOB(32K)
FID Will no longer uniquely identify a table on its own. Must

be used with TID to uniquely identify a table.

SYSVIEWS

CHECK: Changed values: "Y" to "L".

TEXT: Changed type: VARCHAR(3900) to VARCHAR(3600).
Contains the full text of the create view statement (including
the CREATE VIEW). In Version 1, only the select portion was
shown.

 Symptom
A variety of symptoms could occur.

If you have an application which has a qualified search on a field that has had a value
change (for example, ISOLATION in SYSIBM.SYSPLAN) this will cause your
application to react differently than you would want.

If you have an application which accesses some field where the field type or size has
changed (such as SECTION in SYSIBM.SYSSECTION), you could retrieve an
incomplete set of data, too much data, or have the wrong type defined in your
application to represent the data type of the table column.

 Resolution
If you use the SYSIBM tables for application processing or anything else, you must
review the changes listed above to decide whether or not you are affected and what the
appropriate action to correct the situation is. You may need to refer to the SQL
Reference to understand what the new columns, new values for columns and other cha
nges that were made to these tables.

If you need a rough approximation of the degree of clustering, select both
CLUSTERRATIO and CLUSTERFACTOR and choose the “greater” one.

 Appendix C. Incompatibilities Between Releases 841

Unique Table Identification
UNIX OS/2 WIN

 Change
With the introduction of table spaces, the TID column of SYSIBM.SYSTABLES is now
used to identify a table space. The FID column of SYSIBM.SYSTABLES will no longer
uniquely identify a table is a database. FID now uniquely identifies a table in a table
space. This means that to uniquely identify a table in a database you need the
combination of TID and FID.

 Symptom
Any application which assumes FID will uniquely identify a table in a database may
process incorrectly should the FID be duplicated in multiple table spaces.

 Resolution
Change the application to use TBSPACEID and TABLEID from the SYSCAT.TABLES
view as the unique identifier. You can also use the columns TID and FID from
SYSIBM.SYSTABLES.

 Application Programming

| NS, NW and NX Locks
UNIX OS/2 WIN DB2 PE

 Change
Due to the addition of NS and NX lock modes in DB2 Version 5, there is a difference in
the behaviour of index scans with isolation level Cursor Stability (CS) or Read Stability
(RS).

 Symptom
In DB2 Version 5, an index scan with isolation level, CS or RS, will not see an
uncommited delete of a row that is within the scanned range. In DB2 Version 2, the
scanner would not see an uncommitted delete of a row that was at the end of the
scanned range. However, if the deleted row was within the range, the scanner would
remain in a lock wait until the delete was committed or rolled back.

For example in DB2 Version 5, the following can occur with an index on Column A:

842 Administration Guide

Sequence Application 1 Application 2

1 delete from t1 where a=3
2 select a from t1 where a>1 and a<5

 A

 2

 4

 5

3 rollback
4 select a from t1 where a>1 and a<5

 A

 2

 3

 4

 5

The same scenario in previous versions of DB2 would result in application 2 being in
lock wait until Application 1 committed or rolled back.

 Resolution
There is no resolution as this is an enhancement to isolation level Cursor Stability or
Read Stability.

| Symptom
| The previous example showed what occurs with an uncommitted deletion. A similar
| situation could also arise when inserting new values.

| For example, you could have a scenario where you are scanning a table using an index
| on a column and looking for a value greater than or equal to two, but less than or equal
| to six, while using an isolation level of RS. The existing values that qualify in this
| example are two, four, and six. Then another user inserts five. An NS lock is obtained
| on columns returning two, four, and six; and the NW lock attempt on the column
| containing six succeeds, so the insertion of five is not blocked by the scan.

| In Version 2, an S lock would be obtained on columns with the values two, four, and
| six; and the attempt to get an X lock on the column returning six would wait. The insert
| of five would wait for the S lock on six to be released.

| Resolution
| In general, since more concurrency is supported in Version 5, applications built with a
| previous version of DB2 that were created with dependencies on some lock waiting
| may require modification.

CREATE TABLE NOT LOGGED INITIALLY
UNIX OS/2 WIN DB2 PE

 Appendix C. Incompatibilities Between Releases 843

 Change
In DB2 PE V1.2, in the unit of work in which a table is created with the NOT LOGGED
INITIALLY option, an error on this table will cause the unit of work to be rolled back. In
Version 5, the range of errors that will cause a roll back has been increased.

 Symptom
In Version 5, in the unit of work in which a table is created with the NOT LOGGED
INITIALLY option, an error in any operation involving any table will cause the unit of
work to be rolled back.

 Resolution
Correct the error and run the transaction again.

DB2 Call Level Interface (DB2 CLI) Defaults
UNIX OS/2 WIN

 Change
The default values for AUTOCOMMIT and CURSORHOLD have changed. Both
AUTOCOMMIT and CURSORHOLD will now default to ON.

 Symptom
If an application was written assuming that AUTOCOMMIT was OFF or that WITH
HOLD semantics was NOT used for cursors, then these default changes could cause
the application to fail.

 Resolution
Add one or both of the following two lines to your DB2CLI.INI file.

¹ AUTOCOMMIT = 0
¹ CURSORHOLD = 0

Obsolete DB2 CLI Keywords
UNIX OS/2 WIN

 Change
You can control DB2 configurable features by specifying a set of optional keywords in
an DB2 CLI initialization file. In DB2 Version 2, some of these keywords become
obsolete, as follows:

 1. UNDERSCORE
 2. TRANSLATEDLL
 3. TRANSLATIONOPTION

 Symptom
These keywords will be ignored if they still exist. You may notice behavioral changes
based on the removal of these settings.

844 Administration Guide

 Resolution
You will need to review the new list of valid parameters to decide what the appropriate
keywords and settings are for your environment. See the CLI Guide and Reference for
information on these keywords.

DB2 CLI SQLSTATEs
UNIX OS/2 WIN

 Change
A more explicit set of SQLSTATEs (in the S1090 to S1110 range) has replaced the
generic SQLSTATE S1009.

 Symptom
SQLSTATE values returned to the application calling DB2 CLI APIs have changed.

 Resolution
Update your application to check for the new SQLSTATEs. Refer to the Messages
Reference for a complete list of these SQLSTATEs.

DB2 CLI Mixing Embedded SQL, Without CONNECT RESET
UNIX OS/2 WIN

 Change
DB2 CLI's Version 2 support of multiple connections may affect your existing
applications. If your application connects to a database using any non-CLI interface
(including embedded SQL using the command line processor or administrative APIs)
and does NOT issue a reset before connecting to a database using DB2 CLI, your
applications will be affected by this change.

 Symptom
The second connect will fail with an SQLSTATE of 08001 since it is not same type of
connection as the first connect.

 Resolution
The application must issue a CONNECT RESET before calling a DB2 CLI connect
function.

DB2 CLI Use of VARCHAR FOR BIT DATA
UNIX OS/2 WIN

 Change
Character data defined with the FOR BIT DATA clause is now by default mapped to the
new C buffer type, SQL_C_BINARY. If data is defined as FOR BIT DATA, it is
transferred to:

 Appendix C. Incompatibilities Between Releases 845

¹ SQL_C_BINARY buffers unchanged

¹ SQL_C_CHAR buffers as a character representation of the hexadecimal value of
the data. Each byte is represented by two ASCII characters, (meaning the
SQL_C_CHAR buffer must be double the size of the FOR BIT DATA string.)

 Symptom
Existing applications that explicitly use SQL_C_CHAR with data defined as FOR BIT
DATA, will get a different result and may receive only half of the original data.

 Resolution
In order to have DB2 CLI treat FOR BIT DATA the same as it did in Version 1, add the
following line to DB2CLI.INI:

BITDATA = 0

DB2 CLI Data Conversion Values for SQLGetInfo
UNIX OS/2 WIN

 Change
The SQL_CONVERT_xxxx fInfoType is defined by ODBC to indicate supported
conversion functions. A change has been made in how we handle
SQL_CONVERT_xxxx fInfoTypes which were used with the corresponding
SQL_CVT_xxx comparison masks to correctly follow ODBC standards.

 Symptom
DB2 CLI will no longer return bit masks for the SLQ_CONVERT_xxx fInfoTypes and
corresponding SQL_CVT_xxx comparison masks. DB2 CLI Version 2 now returns zero
for all SQL_CONVERT_xxx fInfoTypes.

 Resolution
This is to correct Version 1 processing which was not ODBC compliant. There is no
resolution.

DB2 CLI/ODBC Configuration Keyword Defaults
UNIX OS/2 WIN

 Change
The default value for the CLI/ODBC configuration keyword DEFERREDPREPARE has
changed. In DB2 CLI Version 5 deferred prepare is now on by default.

 Symptom
Applications that rely on the prepare to be executed as soon as it is issued will not
function as expected. In particular, the row and cost estimates normally returned in the
SQLERRD(3) and SQLERRD(4) of the SQLCA of a prepare statement may become

846 Administration Guide

zeros. The application will not be able to use this information to decide whether or not
to continue the execution of the SQL statement.

 Resolution
Add the following line to your db2cli.ini file:

DEFERREDPREPARE = 0

Obsolete DB2 CLI/ODBC Configuration Keywords
UNIX OS/2 WIN

 Change
You can change the behavior of the DB2 CLI/ODBC driver by specifying a set of
optional keywords in the db2cli.ini file. In Version 5, the AUTOCOMMIT keyword has
become obsolete.

 Symptom
These keywords will be ignored if they still exist. You may notice behavioral changes
based on the removal of these settings.

 Resolution
You will need to review the new list of valid parameters to decide what the appropriate
keywords and settings are for your environment. See the CLI Guide and Reference for
information on these keywords.

DB2 CLI SQLSTATEs
UNIX OS/2 WIN

 Change
The category of SQLSTATEs that started with S1 in DB2 CLI Version 2 have been
renamed to begin with HY in Version 5. For example, the SQLSTATE S1010 is now
HY010.

 Symptom
SQLSTATE values returned to the application calling DB2 CLI APIs have changed.

 Resolution
Applications should be updated to expect the new HY class of SQLSTATEs.
Alternatively, the environment attribute SQL_ATTR_ODBC_VERSION can be set to
SQL_OV_ODBC2 using the DB2 CLI function SQLSetEnvAttr(). The DB2 CLI/ODBC
driver will then return the S1 class of SQLSTATEs.

 Appendix C. Incompatibilities Between Releases 847

Stored Procedure Catalog Table
UNIX OS/2 WIN

 Change
Version 5 now has 2 system catalog views used to store information about all the
stored procedures on the server (SYSCAT.PROCEDURES and
SYSCAT.PROCPARMS). These replace the Version 2 pseudo catalog table for stored
procedures

 Symptom
By default the server will look in the new system catalog views for information about
stored procedures, not the older pseudo catalog table. DB2 CLI functions such as
SQLProcedureColumns() and SQLProcedures() will therefore not return the appropriate
information.

 Resolution
Register the stored procedures using the CREATE PROCEDURE SQL command. See
the SQL Reference for more information. Alternatively, the DB2 CLI/ODBC configuration
keyword PATCH1 can be set to 262144 to force the DB2 CLI/ODBC driver to use the
pseudo catalog table as it did in Version 2.

PREP Command - LANGLEVEL
UNIX OS/2 WIN

 Change
When the LANGLEVEL MIA option of the PREP command is used, all C null-terminated
strings are padded with blanks and the null-terminating character is placed in the last
byte of the string.

 Symptom
Although this change was made for MIA compliance, it has caused a change to the way
C null-terminated strings are handled.

 Resolution
There is another LANGLEVEL setting (SAA1) which may cause the behavior to better
match your needs. You should review the options and decide what is best for your
environment.

Change to SMALLINT Constants
UNIX OS/2 WIN

 Change

848 Administration Guide

Integer constants in the range -32,768 to 32,767 are now treated as INTEGER types,
rather than SMALLINT. This resolves an incompatibility with IBM SQL, as well as
simplifying the rules for determining literal types.

| It is also worth mentioning that the smallest INTEGER constant in Version 1
| (-2147483648) is a DECIMAL constant with a precision of 10 and a scale of 0 in
| Version 5.

| Further, the smallest literal representation of a large INTEGER constant is -2147483647
| and not -2147483648 (which is the limit for large INTEGER values). The INTEGER
| constant -2147483648 is a BIGINT, not a DECIMAL (as it was before Version 5.2).

| In general, if an integer constant is outside the range of a large integer and within the
| range of a BIGINT, then it is a BIGINT. If it is too big for a BIGINT, then it is a
| DECIMAL.

 Symptom
This affects the result precision and scale of decimal operations. (Which impacts, for
example, the print width of decimal fields.)

 Resolution
There is no resolution. This change in handling integers results in an increase in
precision.

| Down-level Client and Distinct Types Sourced on BIGINT
| UNIX| OS/2| WIN| DB2 PE

| Change
| A distinct type based on BIGINT in a Version 5.2 server is reported in a DESCRIBE to
| a down-level client as a DECIMAL(19,0) instead of as a BIGINT which is not supported
| by the client. This data type cannot be implicitly cast on assignment to the distinct type
| on which it is based. This is different than other situations where the client perceives a
| distinct type as a built-in data type and is able to assign host variables of the built-in
| type to columns of the associated distinct type.

| Symptom
| An SQLCODE of -408 (SQLSTATE 42821) is returned when using a data type of
| DECIMAL(19,0) for the host variable (or parameter marker) assigned to the distinct type
| value that was described to the down-level client as DECIMAL(19,0).

| Resolution
| The database should include a function that will cast a DECIMAL(19,0) to the distinct
| type. This can be defined as a sourced function based on the function that casts a
| BIGINT to the distinct type. The application (at the client) must then explicitly apply this
| function to the DECIMAL(19,0) host variable (or parameter marker) in the INSERT or
| UPDATE statement.

 Appendix C. Incompatibilities Between Releases 849

| For example, if the distinct type sourced on BIGINT is called DT1, then updating the
| column C1 of type DT1 would require the following sourced function to be defined:

| CREATE FUNCTION DT1(DECIMAL(19,0)) RETURNS DT1 SOURCE DT1(BININT);

| And then the update statement in the application would be:

| UPDATE table SET c1=DT1(:dechv1);

 Error Handling
UNIX OS/2 WIN

 Change
Errors which were previously reported at bind time may now not occur until statement
execution. For instance, if you create a table using incorrect SQL syntax such as:

CREATE TABLE T1 (C1 CHAR(5), C1 CHAR(10))

The error that a duplicate column name was used will be flagged at run time instead of
bind time. For all DDL statements, syntax errors are reported at bind time and semantic
errors are reported at run time.

 Symptom
Some errors which were reported at bind time in Version 1 will now be reported at
execution time.

 Resolution
As long as the application has proper error handling routines, this should not cause a
problem. There will be some additional errors which can now occur during execution.

Maximum Number of Sections in a Package
UNIX OS/2 WIN

 Change
The limit for the maximum number of sections in a package has changed from 400 to
whatever the storage allows. This limit used to be hard-coded at 400, but now depends
on the type of SQL statements in the program. As a result of this change, the constant
for the maximum number of SQL statements has been removed from the common
include files sql.h, sql.cbl, and sql.f.

 Symptom
If an application program references the following constants, it will not compile
successfully in Version 5:

¹ SQL_MAXSTMTS (in sql.h)
¹ SQL-MAXSTMTS (in sql.cbl)
¹ SQL_MAXSTMTS (in sql.f)

850 Administration Guide

 Resolution
Remove references to these constants or define them directly within your application.

 Bind Warnings
UNIX OS/2 WIN

 Change
Version 1 reports a warning at bind time if the number of host variables in an INTO
clause is less than the number of select list items. Version 2 reports the same bind
time warning if there are more or less host variables than select list items.

 Symptom
You will receive bind time warning messages where one was not received in Version 1.

 Resolution
Rebind the application with the new bind option SQLWARN NO and warnings will not
be reported.

 Bind Options
UNIX OS/2 WIN

 Change
The new SQLWARN bind option has a default value of ‘YES’.

 Symptom
By default, positive SQLCODEs may now be returned on DESCRIBE, PREPARE, and
EXECUTE IMMEDIATE requests which were previously not returned. (For instance, a
SQLCODE of +236 may be returned).

 Resolution
Rebind with SQLWARN NO if your application cannot tolerate positive SQLCODEs or
treats them as errors.

PREP with BINDFILE
UNIX OS/2 WIN

 Change
In Version 2, under certain circumstances, the DB2 PREP (precompile) command
allows a bind file to be created even if certain errors occur. If the BINDFILE option, but
not the PACKAGE option, is specified on the prep command, the following object
existence and authority errors will be tolerated:

SQL0117N The number of values assigned is not the same as the number of specified
or implied columns.

 Appendix C. Incompatibilities Between Releases 851

SQL0204N "<name>" is an undefined name.

SQL0205N "<name>" is not a column of table "<table-name>".

SQL0206N "<name>" is not a column in an inserted table, updated table, or any table
identified in a FROM clause or is not a valid transition variable for the
subject table of a trigger.

SQL0440N No function by the name "<function-name>" having compatible arguments
was found in the function path.

SQL0551N "<authorization-ID>" does not have the privilege to perform operation
"<operation>" on object "<name>".

SQL0552N "<authorization-ID>" does not have the privilege to perform operation
"<operation>".

 Symptom
This may cause precompilation of some applications to succeed with errors where they
failed in previous versions. The resultant bind file will fail if it is bound to a database
with similar omissions of objects or authorities.

 Resolution
Check bind errors instead of precompiler errors for this condition.

Varchar Structures in COBOL
UNIX OS/2 WIN

 Change
The COBOL precompiler in Version 2 and Version 5 supports declaration of group data
items as host variables. (Refer to the Embedded SQL Programming Guide for more
information.) This may cause some incompatibility with existing applications which did
not adhere to the precise declaration format for VARCHAR host variables in COBOL.

The level numbers for subordinate items, as documented in DB2 manuals, must be 49.
The following declaration would be accepted by the COBOL precompiler in Version 1,
but not in Version 2 or Version 5:

 01 MY-VAR.

10 MY-LENGTH PIC S9(4) COMP-5.

 10 MY-DATA PIC X(100).

If not coded correctly, the Version 2 and Version 5 precompiler will treat declarations
like the above as structures with two members, a short integer and a fixed-length
character string. When such a variable is used in an SQL statement, the reference to
the would-be VARCHAR would be replaced with references to the two subordinates.

 Symptom
Depending on the situation, this may result in the following message:

852 Administration Guide

SQL0087N Host variable "<name>" is a structure used where
structure references are not permitted.

 Resolution
Applications being migrated to Version 5 that contain host variables which are intended
to be VARCHARs should be declared with the subordinates at level 49.

 Incompatible APIs
UNIX OS/2

 Change
Several APIs have been changed or removed since Version 1. See the charts in the
API Reference showing descriptions of the changes.

 Symptom
In most cases, the original API call will still work, however, you cannot take advantage
of any of the new Version 5 functionality while using the old API calls or parameters.

 Resolution
Applications should be upgraded to use the new Version 5 API calls as described in the
API Reference.

Supported Level of JDBC
UNIX OS/2 WIN

 Change
The supported level of the JDBC (Java Support) API has changed. DB2 Version 5
provides a driver for JDBC 1.1 instead of JDBC 1.0, which came with DB2 Version
2.1.2.

 Symptom
Compiled JDBC 1.0 clients fail when executed directly as a DB2 Version 5 client. Old
Java classes are not found.

 Resolution
To continue using JDBC 1.0 clients, run them on a DB2 Version 2.1.2 client, with a
remote DB2 Version 5 server. Modify the client source code to upgrade to the JDBC
1.1 API. Run the JDBC 1.1 clients on a Java Development Kit Version 1.1-compatible
virtual machine.

Calling Convention for Java Stored Procedures and UDFs
UNIX OS/2 WIN

 Appendix C. Incompatibilities Between Releases 853

 Change
The calling convention for Java stored procedures and user-defined functions (UDFs)
has changed in DB2 Version 5.

 Symptom
Java stored procedures and UDFs written for DB2 Version 2.1.2 will not be found when
run on DB2 Version 5.

 Resolution
Change the Java stored procedure and UDF source code to use the new calling
convention. Refer to the Embedded SQL Programming Guide for details.

Java Runtime Environment
UNIX OS/2 WIN

 Change
The level of the Java runtime environment required for Java stored procedures,
user-defined functions, and JDBC clients has changed in DB2 Version 5.

 Symptom
The JDBC DLL will not load when JDBC 1.1 clients are run. Java stored procedures
and UDFs will fail.

 Resolution
Install a compatible Java 1.1 runtime environment at the client and server. At the
server, set the jdk11_path configuration parameter.

Obsolete System Monitor Requests for DB2 PE Version 1.2
DB2 PE

 Change
Some request types that were available with the DB2 PE Version 1.2 system monitor
are no longer supported. See the tables in the System Monitor Guide and Reference
showing descriptions of the changes.

 Symptom
The old request types will not work.

 Resolution
Applications should be upgraded to use the new DB2 Version 5 requests types as
described in the System Monitor Guide and Reference.

854 Administration Guide

 SQL

Updating Partitioning Key Columns
UNIX OS/2 WIN DB2 PE

 Change
In DB2 PE Version 1.2, partitioning key columns could be updated if the table was in a
single-node nodegroup. In DB2 Version 5, partitioning key columns can be updated if
the table is in a table space in a single-node nodegroup, and there is no partitioning
key defined.

 Symptom
An update statement fails with SQL270N (SQLCODE -270, SQLSTATE 42997) with
reason code 2. The same error is returned if the table is in a table space in a single or
multiple node nodegroup.

 Resolution
If the table is in a table space in a single node nodegroup, then use the ALTER TABLE
statement to DROP the partitioning key. As with DB2 PE Version 1.2, if the table is in a
table space in a multiple node nodegroup, the nodegroup must be changed to a
single-node nodegroup and REDISTRIBUTE NODEGROUP must be issued before
attempting to update partitioning key columns.

 Column NGNAME
UNIX OS/2 WIN DB2 PE

 Change
In DB2 PE Version 1.2, a table was directly associated with a nodegroup. In DB2
Version 5, a table is in a table space, which is within a nodegroup. Since there is no
longer a direct relationship with a nodegroup, there is no need for a column, named
NGNAME in the SYSIBM.SYSTABLES catalog table.

 Symptom
An SQL statement that refers to the NGNAME column from SYSIBM.SYSTABLES
catalog table will return an SQLCODE of −206 (SQLSTATE 42703).

 Resolution
Remove the column NGNAME from the SQL statement. To determine the nodegroup
name for the table, refer to NGNAME in the row of SYSCAT.TABLESPACES catalog
view, that relates to the table space in which the table is stored.

 Appendix C. Incompatibilities Between Releases 855

Node Number Temporary Space Usage
UNIX OS/2 WIN DB2 PE

 Change
When using a temporary table that requires row identifiers, the amount of space
needed is increased to include the node number. The space limit for temporary tables
is 4005 bytes. If temporary tables are close to the 4005 byte limit, any further increase
can exceed this limit.

 Symptom
There are two possible symptoms of this change.

¹ An SQL statement may fail to compile and return an SQLCODE of SQL0670N
(SQLSTATE 54010).

¹ The temporary table is not used, which may affect the performance of the query.

 Resolution
You should review and use the directions in the Actions section of the message details
for SQL0670N to fix the error.

Authorities for Create and Drop Nodegroups
UNIX OS/2 WIN DB2 PE

 Change
The authorization required for creating or dropping a nodegroup has changed from
SYSADM or DBADM to SYSADM or SYSCTRL. This means that a user ID with
DBADM authority cannot create, alter, or drop nodegroups.

 Symptom
A user ID, with DBADM authority, issuing a CREATE NODEGROUP or DROP
NODEGROUP statement will receive an SQL00551N (SQLSTATE 42501).

 Resolution
Issue the statement using a user ID that has SYSADM or SYSCTRL authority. For
your convenience, you may wish to include the user ID in the SYSCTRL group. Refer
to the Administration Guide for further information.

Target Map in REDISTRIBUTE NODEGROUP
UNIX OS/2 WIN DB2 PE

 Change
The specification of a target map in the REDISTRIBUTE NODEGROUP command or
API no longer causes database partitions to be implicitly added or dropped from the
node group. This means that the target map cannot include nodes that are not defined
to the node group. An undefined node that is included in the target map file will cause

856 Administration Guide

an error to be returned. A database partition, which has been defined to the node
group, can be excluded from the target map file and will not appear in the partition
map.

 Symptom
If a node is included in the target map file and was not defined to the node group, the
REDISTRIBUTE NODEGROUP command will return an SQLCODE–6053 with a reason
code 6.

 Resolution
Before issuing the REDISTRIBUTE NODEGROUP command, add the database
partition to the node group, using the ALTER NODEGROUP statement. You can also
drop the node from the node group using the ALTER NODEGROUP statement, either
before or after issuing the REDISTRIBUTE NODEGROUP command. Refer to the SQL
Reference for further information on the ALTER NODEGROUP statement.

Node Group for Create Table
UNIX OS/2 WIN DB2 PE

 Change
In DB2 PE Version 1, a table was directly associated with a node group. In DB2
Version 5, a table is in a table space within a node group. When a user issues a
CREATE TABLE statement, the name following the IN keyword is a table space name,
not a node group name. The default table space selected may not be defined in the
IBMDEFAULTGROUP node group, which was the default node group in DB2 PE
Version 1.

 Symptom
If you use existing CREATE TABLE statements from DB2 PE Version 1, they may fail
with an SQLCODE of SQL0204N (SQLSTATE 42704), with the name specified
following the IN keyword in the message. This will occur if a table space with the same
name as the node group has not been automatically created during database migration.

If you are using CREATE TABLE statements that do not specify the IN keyword, the
table space selected, by default, may not be using the node group,
IBMDEFAULTGROUP, and will not include data on all the database nodes. You can
check the partition map for the table to confirm this.

 Resolution
Ensure that any name specified following the IN keyword on the CREATE TABLE
statement is the name of a defined table space. For existing statements, you could set
up a table space for each node group with the same name.

To ensure that tables default to the IBMDEFAULTGROUP for all users, define a table
space called IBMDEFAULTGROUP, defined in the node group, IBMDEFAULTGROUP.
This ensures that tables created by any users will default to use this table space.

 Appendix C. Incompatibilities Between Releases 857

Note: This is done automatically during database migration from DB2 PE Version 1 to
DB2 Version 5.

Revoking CONTROL on Tables or Views
UNIX OS/2 WIN DB2 PE

 Change
A user can grant privileges on a table or view using the CONTROL privilege. In DB2
Version 5, the WITH GRANT OPTION provides a mechanism to determine a user's
authorization to grant privileges on tables and views to other users. This mechanism is
used in place of CONTROL to determine whether a user may grant privileges to others.
When CONTROL is revoked, users will continue to be able to grant privileges to others.

 Symptom
A user can still grant privileges on tables or views, following the revocation of
CONTROL privilege.

 Resolution
If a user should no longer be authorized to grant privileges on tables or views to others,
revoke all privileges on the table or view and grant only those required.

High Level Qualifiers for Objects in DB2 Version 5
UNIX OS/2 WIN DB2 PE

 Change
In DB2 PE Version 1, users would create a table, view, index or package with any
schema name or qualifier with the exception of SYSIBM. This differs from other IBM
database products and is not compliant with SQL92. In DB2 Version 5, there are limits
of the schema names that you can use.

¹ The schema names for tables, views, indexes, and packages cannot be SYSIBM,
SYSCAT, SYSSTAT, OR SYSFUN.

Note: The schema names for all other objects must not start with SYS.

¹ Each schema is an object defined in the database catalog.

Users require IMPLICIT_SCHEMA authority to implicitly create a schema. Once a
schema is created, specific privileges allow users to create objects (CREATEIN
privilege), drop any object in the schema (DROPIN privilege), or alter (comment
on) any object in the schema (ALTERIN privilege). The change to supporting
schemas, as objects with privileges, has resulted in changes to privileges
associated with various statements.

– For creating objects in an existing schemas, you must have CREATEIN
privilege.

– For creating objects in a schema that does not exist, you must have
IMPLICIT_SCHEMA authority.

858 Administration Guide

– For dropping objects in a schema, you must be the definer of the object, have
CONTROL privilege, or have DROPIN privilege on the schema.

– For altering, including commenting on, objects in a schema you must be the
definer of the object, have CONTROL privilege, or have ALTERIN privilege on
the schema.

Note: For altering or commenting on a table, the ALTER privilege on the
table is also valid.

 Symptom
If you create an object with an invalid schema name, the CREATE statement returns an
SQLCODE of SQL0553N. This message indicates that the object cannot be created
with the schema name.

If a CREATE, ALTER, COMMENT ON or DROP statement returns an SQLCODE of
SQL0551N, you did not have the necessary privilege. This may be the result of
schema-related privileges and could indicate that:

¹ The object cannot be created because the schema does exist and you do not have
the IMPLICIT_SCHEMA authority.

¹ The object cannot be created because the schema does not exist and you do not
have the CREATEIN privilege.

¹ The object cannot be dropped because another user created the object and you do
not have the DROPIN privilege.

¹ The object cannot be altered (commented on) because another user created the
object and you do not have ALTERIN privilege.

 Resolution
Depending on the symptom:

¹ Do not create schema names with SYS.
¹ If a user can create a table, view, index or package, grant the necessary authority

or privilege using the GRANT (Database Authorities) statement for
IMPLICIT_SCHEMA authority, or the GRANT (Schema Privileges) statement for
CREATEIN, DROPIN or ALTERIN privilege on the schema. A user with DBADM
authority must first create the schema.

 Inoperative VIEWs
UNIX OS/2 WIN

 Change
In DB2 Version 2, a view is made inoperative if a SELECT privilege upon which the
view definition is dependent is revoked or if an object upon which the view definition is
dependent was dropped (or possibly made inoperative in the case of another view).
This is in contrast to the behavior in DB2 Version 1 where the view would have been
dropped under the same circumstances.

 Appendix C. Incompatibilities Between Releases 859

 Symptom
If the use of an inoperative VIEW is attempted, an SQL0575N will be returned to the
application.

 Resolution
To resolve this problem, you will need to do two things:

1. Resolve the dependency (such as CREATE the dropped table).

2. Execute a CREATE VIEW.

Since the view is only inoperative and not dropped, you can query the TEXT
column of SYSCAT.VIEWS to retrieve the current definition of the view.

 Unusable VIEWs
UNIX OS/2 WIN

 Change
If you currently have a view defined with SELECT * on a table as part of the view
definition, the view may be unusable after migration.

 Symptom
You will receive an SQL0158N error if you attempt to use a view that is unusable.

 Resolution
In order to resolve this problem you will need to:

1. Drop the existing view (DROP VIEW command).
2. Re-create the view (CREATE VIEW command), specifying column names in place

of “*”.

 SQLCODE Changes
UNIX OS/2 WIN

 Change
The SQLCODEs returned for an INSERT or UPDATE statement resulting in data being
out of range have changed. These are:

¹ SQL0406N is now SQL0413N
¹ SQL0404N is now SQL0433N

The message has changed from “A numeric value/string in the UPDATE or INSERT
statement is ...” to “Overflow occurred during numeric data type conversion”. Note that
there have been no changes to the corresponding SQLSTATEs.

 Symptom
These SQLCODEs are caused by trying to place a value in a column that is outside a
limit that exists on the data in that column. For applications, different values will now be

860 Administration Guide

returned in SQLCA.SQLCODE. In any interactive situation (such as using the command
line processor), a different error code will be reported to the user.

 Resolution
If your application specifically looks for the old SQLCODEs, you will need to change the
comparison to use the new codes.

WITH CHECK OPTION on CREATE VIEW
UNIX OS/2 WIN

 Change
The default used when WITH CHECK OPTION is specified without keywords has
changed from LOCAL in Version 1 to CASCADED in Version 2.

 Symptom
This will cause the constraints of all dependant views to be applied.

 Resolution
Explicitly specify the LOCAL keyword with the WITH CHECK OPTION to get the same
behavior as in Version 1.

 SQLSTATE Changes
UNIX OS/2 WIN

 Change
With DB2 Version 2, the SQLSTATEs have been updated to comply with the final
published SQL92 standard.

 Symptom
In some cases, the value of SQLCA.SQLSTATE will be different than it would be in
Version 1 for the same error or situation.

 Resolution
If your application is expecting a specific SQLSTATE, you may need to update the
value in the comparison.

FOR BIT DATA Comparisons
UNIX OS/2 WIN

 Change
In Version 1, all character strings, including FOR BIT DATA, were compared according
to the database collating sequence. In Version 2, character strings with the FOR BIT
DATA attribute will be compared according to their bit values, irrespective of the
database collating sequence.

 Appendix C. Incompatibilities Between Releases 861

Whenever the database manager compares two character strings, if either comparand
has the FOR BIT DATA attribute, the comparison is performed with the bit values of the
comparands, without consideration of the database collating sequence. If the
comparands are of different lengths, there is a logical blank padding (with X'20' on the
right) of the shorter string to the length of the longer string.

 Symptom
Comparison results will differ from results in Version 1 when the collating sequence and
the bit values are in different orders (only for FOR BIT DATA columns). For example,
'A' = x'41' and 'a' = x'61'. 'A' > 'a', however, x'41' < x'61'.

Keep in mind that comparisons take place in many situations including:

¹ Evaluation of basic predicates
¹ Use of the ORDER BY clause
¹ Use of the MIN and MAX column functions

 Resolution
You should replicate the data from the FOR BIT DATA column to a column with type
CHAR. This will allow the data to be sorted according to the collating sequence instead
of their bit values.

Code Page Conversion
UNIX OS/2 WIN

 Change
Code page conversion rules for operands changed in Version 2. These changes
improve DB2 compliance with SQL92 standards. It is important to understand that in
most cases this will not affect result sets, however, it is possible to find scenarios where
output would be different from DB2 Version 1 to Version 2 or to Version 5. In these
cases, the output in Version 1 would be the incorrect output from the standpoint of the
SQL92 standards compliance.

A few scenarios will be discussed where different output may be experienced:

¹ When using the LIKE predicate, it will always be the second operand which is
converted to the first operand's code page.

¹ The result type for a UNION ALL set operation is determined in a binary fashion.
For queries involving two or more UNION operations, and a mixture of fixed length
and varying length character columns, intermediate fixed length datatypes may
result in additional trailing blanks. If unequal code pages or columns defined FOR
BIT DATA are part this type of operation, the conversion rules are applied to each
intermediate result instead of using the final code page throughout the operation.

¹ The change to consistent conversion rules for result types means that the VALUE
scalar function could have a result with a different code page than in previous
versions of DB2.

862 Administration Guide

 Symptom
The result set may be different since DB2 now adheres to SQL92 standards.

 Resolution
There is no resolution as this is an improvement for compliance with SQL92 standards.

Isolation Levels and Blocking All
UNIX OS/2 WIN

 Change
When a cursor is declared without either the FOR UPDATE or FOR READ ONLY
clause, it is considered to be an ambiguous cursor. If a package containing dynamically
declared cursors is bound with the bind option BLOCKING=ALL, but without the bind
option LANGLVL=MIA, then any ambiguous cursors will be treated as if FOR READ
ONLY had been specified.

 Symptom
Your application may receive an SQLCODE of SQL0510N (SQLSTATE 42828) when
performing a DELETE WHERE CURRENT OF CURSOR.

 Resolution
Rebind with the BLOCKING=UNAMBIG or LANGLVL=MIA options or add a FOR
UPDATE clause to the cursor.

ORDER BY Temporary Space Usage
UNIX OS/2 WIN

 Change
Whenever an ORDER BY is performed on a column which does not have an index, a
temporary table is used to perform the sort. Beginning in Version 2, LONG VARCHAR
and LONG VARGRAPHIC column types will use an increased amount of space as
compared to Version 1 in these temporary tables. This may cause the query result rows
to exceed the maximum row size (4005 bytes).

 Symptom
ORDER BY queries with one or more LONG VARCHAR (or LONG VARGRAPHIC)
columns in the SELECT list and for which the select list is physically large, may fail to
execute in Version 2 with SQLCODE SQL0670N (SQLSTATE 54010).

 Resolution
The following are some ways of attempting to resolve or avoid this scenario:

¹ Reduce the size of the SELECT list by removing some SELECT items (such as the
LONG VARCHAR column(s))

 Appendix C. Incompatibilities Between Releases 863

¹ Apply the SUBSTR function to CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC
select items

¹ Create an index on the ORDER BY fields.

Using Quotes in SQL Statements
UNIX OS/2 WIN

 Change
A defect in previous versions of DB2 allowed double quotes to be used in SQL
statements as delimiters of some keywords and operators. For instance, though this is
unpredictable, a query of the form SELECT C1 “FROM” T1 was processed as if the
FROM was not delimited.

Beginning in Version 2, this behaviour has been corrected.

 Symptom
SQL statements which incorrectly use double quotes to delimit keywords or operators
will return errors during statement parsing.

 Resolution
The statement syntax should be changed to removed the unnecessary double quotes.
For static SQL, if the application source code is unavailable, bind files can be carefully
edited to remove the unnessary quotes from the statements. Note that SQL identifiers
may require the use of double quotes (these are called delimited identifiers).

Database Security and Tuning

 GROUP Authorizations
UNIX OS/2

 Change
In DB2 Version 1, there was no way to indicate whether a privilege being granted was
applicable to a user or to a group. In Version 2, a new field, called GRANTEETYPE,
has been added to SYSCAT.DBAUTH, SYSCAT.INDEXAUTH, SYSCAT.PLANAUTH
and SYSCAT.TABAUTH. GRANTEETYPE is either a 'U' to represent the GRANTEE is
a user or 'G' to represent that the GRANTEE is a group.

During database migration, an attempt is made to determine whether existing privileges
defined in the SYSIBM tables are for a user or a group. If the current privileges are for
both a user and a group, only the user portion will be represented in the Version 2
database.

 Symptom
Loss of authorization if you are a member of a group which is also defined in the
operating system as a user.

864 Administration Guide

 Resolution
If this access is meant for groups (that is, where the environment variable
DB2GROUPS=ON was used in Version 1), then execute the appropriate GRANT
command for the appropriate access to the group.

 Authentication Type
UNIX OS/2 WIN

 Change
In Version 1, you could provide an authentication type on the CREATE DATABASE
command. Beginning in Version 2, this option is ignored. All databases now have the
same authentication type as the instance.

 Symptom
If the DB2 Version 5 instance authentication type is different than the Version 1
database authentication type, then authentication will behave differently after migration.

 Resolution
Make sure that the instance authentication type is the type you want for the databases
within that instance.

 SYSADM Groups
UNIX OS/2

 Change
The SYSADM group must be explicitly set in the database manager configuration file.

 Symptom
This is automatically taken care of during migration, but a problem could arise if you
use a script or command file to change SYSADM groups.

 Resolution
Update the script or command file to include the required changes in the database
manager configuration file.

 Security Enhancements
UNIX OS/2

 Change
Several security enhancements have been made to the product to make Version 2 and
following versions more secure than Version 1. A few of the changes are listed here,
however, this is not a complete list.

¹ Authorization is no longer automatically inferred from file permissions (AIX).

 Appendix C. Incompatibilities Between Releases 865

¹ A general user can execute any DB2 executable, but will not be able to perform
the function of that executable unless they have the correct authority. Examples
include: db2start and db2trc. See the Command Reference for information on
db2start and the Troubleshooting Guide for information on db2trc.

¹ Authorization for some commands, such as MIGRATE DATABASE, have changed.
You should refer to the Command Reference and the API Reference for the
authorization r equirements for an individual command or API.

 Symptom
You may not be able to execute a DB2 command or API that you used to be able to
execute. You will receive a “not authorized” type of SQLCODE.

 Resolution
Acquire the proper authorization for the task to be performed.

| Obsolete Profile Registry and Environment Variables
| UNIX| OS/2| WIN| DB2 PE

| Change
| The following profile registry values or environment variables are obsolete:

| ¹ DB2THREADIF

| ¹ DB2_INDEX_FREE

| Resolution
| There is no longer a need for this profile registry value. There is no need to disable
| DB2 support for multi-threaded applications.

Utilities and Tools

Executable Name Changes
 OS/2

 Change
The following executables have changed names:

¹ STARTDBM.EXE is now DB2START.EXE
¹ STOPDBM.EXE is now DB2STOP.EXE
¹ SQLPREP.EXE is now the DB2 PREP command
¹ SQLBIND.EXE is now the DB2 BIND command
¹ SQLTRC.EXE is now DB2TRC.EXE
¹ EXPLAIN.EXE is now DB2EXPLN.EXE

866 Administration Guide

 Symptom
The original executable names will still be accepted; however, some Version 2 functions
are not available (such as new PREP and BIND options).

 Resolution
Use the Version 2 executables or commands.

Backup and Restore - BUFF_SIZE Parameter
UNIX OS/2

 Change
The parameter BUFF_SIZE has changed for the backup and restore APIs. The
minimum is now 16 allocation units (of 4K) instead of 8 units, and the increments must
be in steps of 16 instead of 1.

 Symptom
You may receive a SQLCODE of SQL5130N.

 Resolution
Upgrade your application to use a BUFF_SIZE value which is valid for Version 2.

Backup and Restore - Changes Only Option
 OS/2

 Change
In Version 1 there was the ability to backup and restore “Changes Only” to a database.
This ability no longer exists. However, applications making the Version 1 API calls will
not fail. DB2 simply ignores the second parameter (TYPE) in the sqluback() API call
and performs a full backup.

 Symptom
A full backup will be taken when specifying a “Changes Only” backup.

 Resolution
None exist. “Changes Only” backups are no longer supported.

Backup and Restore - User Exits
 OS/2

 Change
Due to the table space capabilities available beginning in Version 2, it is no longer
possible to determine the original location of the backup files. For this reason, user
exits which use XCOPY or relied on the database sub-directory format in Version 1 will
no longer function beginning in Version 2.

 Appendix C. Incompatibilities Between Releases 867

 Symptom
If you continue to use User Exits that move the backup files to another location, the
restore may not function correctly.

 Resolution
User Exits can still be used for log archiving and retrieving. Use the supported
parameters and options on the backup command to define the location the backup files
will reside.

Backup and Restore - Authority
UNIX OS/2

 Change
You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the BACKUP
command. DBADM authority is no longer sufficient.

 Symptom
If you attempt a backup with DBADM authority only, you will be told that you do not
have sufficient authority to perform the backup.

 Resolution
There are two choices:

1. Log on with an ID that has the proper authority.
2. Set the proper authority for the current ID.

Import - IMPORT REPLACE Option
UNIX OS/2 WIN

 Change
A downlevel client cannot issue an IMPORT REPLACE command to a Version 2
server.

 Symptom
If this is attempted, the application will receive an SQL3188N error.

 Resolution
There are three possible resolutions to this scenario:

1. Upgrade the client to DB2 Version 5.
2. Execute this command from the DB2 Version 5 server.
3. Split the IMPORT REPLACE into two commands:

¹ A DELETE from the table
¹ An IMPORT INSERT into the table

868 Administration Guide

| LOAD TERMINATE
| DB2 PE

| Change
| The LOAD TERMINATE command has a different function in DB2 UDB than it did in
| DB2 Parallel Edition Version 1.x. In DB2 Parallel Edition, you could use LOAD
| TERMINATE if an error occurred during the load operation to ensure that the table data
| was consistent. In DB2 UDB however, if you use LOAD TERMINATE, the table space
| is moved into the recovery pending state. (When the table space is in the recovery
| pending state, you must either restore the table space or drop it.)

| Symptom
| Instead of being placed in a consistent state, the table space is placed in a recovery
| pending state.

| Resolution
| Instead of using LOAD TERMINATE to clean up after a failed load operation, you
| should use LOAD RESTART or LOAD REPLACE. You also have the option of dropping
| and re-creating the table space.

REORG - Alternate Path Option
UNIX OS/2

 Change
The REORG command and API no longer support an “alternate path” as a work area,
but rather support the name of a table space to be used as a work area. APIs and
commands will not fail, however, this option will be ignored.

 Symptom
REORG invocations from downlevel clients will ignore the alternate work path and
arbitrarily choose a temporary table space to use as a work area.

Another symptom is you may run out of disk space.

 Resolution
Your applications will continue to function, but you should consider upgrading to the
DB2 Version 5 calls which contain valid options.

Connectivity and Coexistence

Distributed Transaction Processing - Connect Type
UNIX OS/2

 Appendix C. Incompatibilities Between Releases 869

 Change
In an XA Distributed Transaction Processing environment, such as CICS, applications
will always run with connect type 2 as the connection setting. In the last release,
connect type 1 was used.

 Symptom
It will not be possible to modify the authorization ID on a database connection when the
connection already exists.

 Resolution
Modification of the authorization ID on a database connection will have to be performed
when the connection does not exist.

Distributed Transaction Processing - SQLERRD Changes
UNIX OS/2

 Change
In an XA Distributed Transaction Processing environment such as CICS, information
returned in SQLERRD after a CONNECT has changed. In Version 1, SQLERRD(6) was
used to indicate one of the following:

 ¹ Non-XA
¹ DB2/6000 but not supporting XA
¹ DB2/6000 supporting XA

Beginning in Version 2, SQLERRD(6) is no longer used, but SQLERRD(3) and
SQLERRD(4) are used as follows:

SQLERRD(3) Updateablility in the unit of work

 ¹ Updateable
 ¹ Read Only

SQLERRD(4) Commit type

¹ One phase commit
¹ One phase commit, read only
¹ Two phase commit

 Symptom
The sixth SQLERRD element will no longer contain the information wanted by the
application.

 Resolution
Change the application to look at the third and fourth SQLERRD fields.

870 Administration Guide

DDCS - SQLJSETP
 OS/2

 Change
DDCS for OS/2 used to have a SQLJSETP environment variable. This item had two
uses. Each is listed with the DDCS Version 2.3 and DB2 Connect replacement. (In DB2
Version 5, DDCS changed to DB2 Connect.)

1. By placing /s=e in the environment variable, bind files containing errors could be
bound to DRDA servers. The default is to not allow errors. The /s=e function has
been replaced by the SQLERROR CONTINUE bind/prep option.

/s=c meant to prep/bind and perform syntax checking only without actually creating
a package. This has been replaced by the SQLERROR CHECK bind/prep option.

/s=n meant no errors were allowed during prep/bind. A package would only be
created if there were no errors. This has been replaced by the SQLERROR
NOPACKAGE prep/bind option.

2. This environment variable also captured prep/bind messages in a file for SQL
statements which produced errors. This was needed because when the /s=e was
specified, all errors were masked and missing from the precompiler generated
message file. There is no longer a need for this because all messages are now
revealed to the precompiler (and hence its message file) regardless of using
SQLERROR CONTINUE or not.

 Symptom
The SQLJSETP environment variable and options are ignored, causing prep/bind to
work according to their defaults.

 Resolution
Use the SQLERROR NOPACKAGE and/or SQLERROR CONTINUE options as
needed.

DDCS - DDCSSETP
UNIX

 Change
The DDCSSETP utility has been removed. There is no longer a need for this because
all messages are now revealed to the precompiler (and hence its message file)
regardless of using SQLERROR CONTINUE or not. Refer to the prep/bind options
discussed in “DDCS - SQLJSETP” for information.

DDCS - SQLJTRC.CMD
 OS/2

 Appendix C. Incompatibilities Between Releases 871

 Change
DDCS for OS/2 had a utility called sqljtrc.cmd. It has been replaced by the
ddcstrc.exe executable. The invocation syntax has changed.

 Symptom
Attempting to trace DB2 Connect will fail if the old utility and parameters are used.

 Resolution
Execute the command ddcstrc.exe with valid parameters. See the DB2 Connect User's
Guide for the new syntax.

DDCS - SQLJBIND.CMD
 OS/2

 Change
The DDCS for OS/2 utility called sqljbind.cmd has been removed.

 Symptom
Attempts to use this utility with DB2 Connect will fail.

 Resolution
This utility has been replaced by a three step set of instructions which are described in
“Chapter 4, Binding Applications and Utilities” in the DB2 Connect User's Guide.

APPC and APPN Nodes
 OS/2

 Change
When using APPC, DB2 for OS/2 Version 1 supported the following commands for
cataloging entries in the node directory:

¹ CATALOG APPN NODE
¹ CATALOG APPC NODE

 ¹ CATALOG NODE

Beginning in Version 2, support for the following has been removed:

¹ CATALOG APPN NODE
 ¹ CATALOG NODE

The CATALOG APPC NODE command has been changed to represent the APPC
communication parameters required for the Communications Manager for OS/2 CPI
Communications (CPIC) Side Information Profile.

The symbolic destination name parameter, in the CATALOG APPC NODE, contains
the CPIC Side Information profile name in Communications Manager for OS/2. Refer to
the Command Reference for details on this command.

872 Administration Guide

 Symptom
All of the current connections using APPC will continue to work correctly and DB2 will
accept the current catalog information after migration. This is true whether you migrate
your server, clients or both.

The current catalogs cannot be modified. If you need to modify the information, you will
have to UNCATALOG the node entry, and then recatalog using the new CATALOG
APPC command.

If you have existing applications that call the CATALOG NODE API to catalog APPC
and APPN node directory entries, these applications will still work. The CATALOG
NODE API still supports the Version 1 APPC and APPN API structures.

 Resolution
When you try execute the CATALOG APPC node you will need to:

¹ Create a CPIC Side Information Profile.
¹ Reference the above profile in the CATALOG APPC NODE command.

Refer to the DB2 Connect Personal Edition Quick Beginnings for details on setting
these nodes.

 Configuration Parameters

 ADSM_PASSWORD
OS/2 WIN UNIX DB2 PE

 Change
In DB2 Version 5, ADSM_PASSWORD is a database configuration parameter. In DB2
Version 2, it was a database manager configuration parameter.

Note: In DB2 PE Version 1, this parameter was spelled ADSM_PASWD.

 Symptom
Any attempt to update or retrieve the DATABASE MANAGER CONFIGURATION value
for ADSM_PASSWORD will be a no-op; that is, no error or value will be returned.

 Resolution
You will have to set the ADSM_PASSWORD for any databases for which you want to
use the parameter.

| Agent Pool Size (NUM_POOLAGENTS)
| OS/2| WIN| UNIX| DB2 PE

 Appendix C. Incompatibilities Between Releases 873

| Change
| In DB2 Version 5, NUM_POOLAGENTS is used as a guideline for how large you want
| the agent pool to grow. It replaces the MAX_IDLEAGENTS parameter used in DB2
| Version 2. The agent pool contains subagents and idle agents. Idle agents can be used
| as parallel subagents or as coordinating agents.

| Resolution
| You will need to replace the MAX_IDLEAGENTS parameter with this new parameter.

MAXDARI and MAXCAGENTS
OS/2 WIN UNIX DB2 PE

 Change
In Version 2, the value of the MAXDARI and MAXCAGENTS parameters were limited
by the value of the MAXAGENTS configuration parameter. The default value of -1
means “equal to MAXAGENTS.”

Beginning in DB2 Version 5, the value of these two parameters are limited by the value
of the MAX_COORDAGENTS configuration parameter. The default value of -1 means
“equal to MAX_COORDAGENTS.”

Note: On non-Partitioned (non-MPP) configurations, the configuration parameter
MAX_COORDAGENTS can only have a value of -1, meaning “equal to
MAXAGENTS.”

 Symptom
Updates to MAXDARI and MAXCAGENTS to values greater than −1 may fail if the
value specified is greater than MAX_COORDAGENTS.

 Resolution
Be aware of how MAX_COORDAGENTS is set. MAXDARI and MAXCAGENTS cannot
be greater than MAX_COORDAGENTS.

 LOGFILSIZ
OS/2 WIN UNIX DB2 PE

 Change
The data type of this database configuration parameter has changed from being an
unsigned 2-byte integer to an unsigned 4-byte integer. A new token has been added
for the configuration APIs indicating a 4-byte integer.

For DB2 Version 5, the token is SQLF_DBTN_LOGFIL_SIZ
For DB2 Version 2, the token is SQLF_DBTN_LOGFILSIZ

The configuration API will still recognize the Version 2 token, but the full range of
values of this parameter is greater than what is supported by a 2-byte integer.

874 Administration Guide

 Symptom
Existing applications will continue to work using the configuration API or via REXX, but
the results might be unpredictable because of the larger range in DB2 Version 5.

 Resolution
Recode the application or REXX script to use the new token. For users of the
Command Line Processor or the Control Center, this change in the token would not
affect your applications.

 PCKCACHEFILSIZ
OS/2 WIN UNIX DB2 PE

 Change
The data type of this database configuration parameter has changed from being an
unsigned 2-byte integer to an unsigned 4-byte integer. A new token has been added
for the configuration APIs indicating a 4-byte integer.

For DB2 Version 5, the token is SQLF_DBTN_PCKCACHE_SIZ
For Version 2, the token is SQLF_DBTN_PCKCACHE_SZ

In Version 2, the value of this parameter was limited by the size of the APPLHEAPSZ
configuration parameter and indicated the size of a per-agent parameter. In DB2
Version 5, this parameter limits the size of a global per-database cache. Therefore, its
value is no longer limited by the size of the APPLHEAPSZ configuration parameter.

In DB2 PE Version 1.2, the value of this parameter was limited by 7/8 of the value of
the DPHEAP configuration parameter, since the cache was allocated from DBHEAP. In
DB2 Version 5, the value of the cache is allocated out of its own heap. Therefore, the
value of the PCKCACHESZ configuration parameter is no longer limited by the size of
the DBHEAP configuration parameter.

 Symptom
The following might occur:

¹ Existing applications will continue to work using the configuration API or via REXX,
but the results might be unpredictable because of the larger range in DB2 Version
5.

¹ Applications might get error code SQL0973, indicating that the PCKCACHE heap
has been exhaused.

 Resolution
Depending on the symptoms, do one of the following:

¹ Recode the application to REXX script to use the new token.
¹ Check the settings of this parameter so that the application reflects the new value.

 Appendix C. Incompatibilities Between Releases 875

APPLHEAPSZ and APP_CTL_HEAP_SZ
OS/2 WIN UNIX DB2 PE

 Change
Beginning in DB2 Version 5, the use of these parameters has changed significantly.

 Symptom
Applications might receive an SQL0973 indicating that the APPLHEAP heap or
APP_CTL_HEAP has been exhausted.

 Resolution
You will have to reconfigure these parameters for optimum performance. Refer to the
Administration Guide and the online help for the Control Center for recommendations
on tuning these parameters.

BUFFPAGE and Multiple Buffer Pools
UNIX OS/2 WIN DB2 PE

 Change
In previous versions of DB2, each database had one buffer pool, which was created
when the database was created. You could change the size of the buffer pool using the
buffpage parameter. In DB2 Version 5, each database can have multiple buffer pools.
You can create additional buffer pools or change the size of a buffer pool through the
CREATE BUFFERPOOL or ALTER BUFFERPOOL statements or through the Control
Center using the appropriate command.

If the buffer pool size is specified to be −1, then the value of the database configuration
parameter is used as the size of the buffer pool.

Note: When the BUFFPAGE database configuration parameter is updated, you will
receive an SQLCODE SQL1482W warning.

 Symptom
In DB2 Version 5, a new or migrated database has a default buffer pool. For a new
database created in DB2 Version 5, the size of the default buffer pool is determined by
the operating system. For a migrated database, the size of the buffer pool is set to −1,
which then refers to the buffpage configuration parameter.

 Resolution
To resolve this problem, you will need to do the following:

1. For a new database created in DB2 Version 5, you may change the size of the
buffer pool using the ALTER BUFFERPOOL statement.

2. Following the creation or migration of a database, you can then create additional
buffer pools for the database using the CREATE BUFFERPOOL statement.

876 Administration Guide

 NEWLOGPATH
OS/2 WIN UNIX DB2 PE

 Change
In DB2 Version 5, in a partitioned database, the node number is appended to the path
in the form path_name \NODExxxx (path_name /NODExxxx on UNIX-based systems),
where xxxx is the 4 digit node number. This maintains the uniqueness of the path
across the database partitions.

 Symptom
When updating the NEWLOGPATH configuration parameter, the node number is
automatically appended to the path name. This may result in path names that are too
long (greater than 242 characters), and the configuration parameter update may fail.

 Resolution
Be aware that the log files will reside in the path that includes the node numbering
designation. If the configuration parameter update failed, ensure that the path length,
including the node number designation, is less than or equal to 242 characters.

 MULTIPAGE_ALLOC
DB2 PE

 Change
In DB2 PE Version 1.2, this database configuration parameter was known as
MULTIPGAL and the data type of this database configuration parameter was an
unsigned 1-byte integer. In DB2 Version 5, the data type of this parameter is an
unsigned 2-byte integer, using a new token.

For DB2 Version 5, the token is SQLF_DBTN_MULTIPAGE_ALLOC
For DB2 PE Version 1, the token is SQLF_DBTN_MULTIPGAL

 Symptom
Existing applications will continue to work using either the SQLF_DBTN_MULTIPGAL or
the SQLF_DBNR_MULTIPAGE_ALLOC tokens.

 Resolution
While the configuration APIs support both tokens, applications should be updated to
use the new tokens.

EXTENTSIZE vs SEGPAGES
UNIX

 Change
Beginning in Version 2, new dft_extent_sz configuration parameter serves as the
default EXTENTSIZE setting for table spaces where this is not specified.

 Appendix C. Incompatibilities Between Releases 877

¹ default value: 32 4K pages
¹ range: 2-256 4K pages

It is modifiable.

 Symptom
If an application attempts to specify the SEGPAGES parameter in the CREATE
DATABASE command, the command will still work; however, the parameter will be
ignored. The EXTENTSIZE will be set to the default.

 Resolution
Update the command to specify the new EXTENTSIZE parameter when creating a
table space.

 LOCKLIST
UNIX OS/2

 Change
In DB2 Version 5, the size of a lock request block has been changed to 36 bytes. As a
result, fewer lock request blocks will fit in the configured amount of space allocated for
the lock list.

 Symptom
This may result in more frequent lock escalations.

 Resolution
You should increase the setting of the LOCKLIST configuration parameter accordingly.

BUFFPAGE and SORTHEAP
UNIX OS/2

 Change
The tokens for database configuration parameters buffpage and sortheap have
changed.

 For buffpage:
from SQLF_DBTN_BUFFPAGE to SQLF_DBTN_BUFF_PAGE
For sortheap on OS/2:
from SQLF_DBTN_SORTHEAP to SQLF_DBTN_SORT_HEAP
For sortheap on AIX:
from SQLF_DBTN_SORTHEAPSZ_P to SQLF_DBTN_SORT_HEAP

The names of the parameters as identified in command line processor or in the Control
Center remain the same (buffpage and sortheap). The old tokens are maintained for
backlevel binary compatibility.

878 Administration Guide

On AIX, the configuration APIs treat the new token and the old token as indicating a 32
byte unsigned integer. On OS/2 however, the configuration APIs will treat the old token
as indicating a 16 byte unsigned integer. This is consistent with Version 1 behavior.
The new tokens will be treated as indicating an unsigned 32 byte integer.

 Symptom
Version 1 applications which specify the old token names will not work against a
Version 2 or later database.

 Resolution
In order to migrate old application code the token names need to be changed.
Additionally, on OS/2, the data type of the variable being passed to the configuration
APIs will have to be changed to an unsigned 32 byte integer.

Numeric Values for Database Manager Configuration Tokens
UNIX

 Change
In DB2 for AIX Version 1, the numerical values for the database manager configuration
parameter tokens SQLF_KTN_MAXDARI and SQLF_KTN_KEEPDARI were 22 and 23
respectively. Beginning in Version 2, they are 80 and 81 respectively. Binaries from
Version 1 will be supported despite this discrepancy.

 Symptom
Applications which perform a DATABASE MANAGER CONFIGURATION operation and
specify the changed parameters by explicitly stating their numeric values will no longer
work as desired.

 Resolution
If code is being migrated and the token name is used, nothing needs to be changed. If
however, the token values were coded explicitly in the application, the application will
have to be changed to reflect the new values.

To protect the application from future changes of this type, it is recommended that the
token is coded, rather than the actual value.

Numeric Values for Database Manager Configuration Tokens
 OS/2

 Change
In DB2 for OS/2 Version 1.2, the numerical values for the database manager
configuration parameter tokens SQLF_KTN_FILESERVER and
SQLF_KTN_OBJECTNAME were 22 and 23 respectively. Beginning in Version 2, they
are 47 and 48 respectively. Binaries from Version 1 will be supported despite this
discrepancy.

 Appendix C. Incompatibilities Between Releases 879

 Symptom
Applications which perform a DATABASE MANAGER CONFIGURATION operation and
specify the changed parameters by explicitly stating their numeric values will no longer
work as desired.

 Resolution
If code is being migrated and the token name is used, nothing need be changed. If
however, the token values were coded explicitly in the application, the application will
have to be changed to reflect the new values.

To protect the application from future changes of this type, it is recommended that the
token is coded, rather than the actual value.

New Generic Out-of-Range Return Codes
UNIX OS/2 WIN

 Change
Many return codes indicating an attempt to set a specific parameter outside of its valid
range were replaced with generic out-of-range return codes.

The following return codes have been replaced with a return code of -5130
(SQLF_RC_INV_RANGE as defined in sqlutil.h):

 ¹ SQLF_RC_INVDB
 ¹ SQLF_RC_INVRIO
 ¹ SQLF_RC_INVSHPTHR
 ¹ SQLF_RC_INVNLL
 ¹ SQLF_RC_INVNDBF
 ¹ SQLF_RC_INVSCP
 ¹ SQLF_RC_INVNAP
 ¹ SQLF_RC_INVAHP
 ¹ SQLF_RC_INVDHP
 ¹ SQLF_RC_INVDLT
 ¹ SQLF_RC_INVTAF
 ¹ SQLF_RC_INVSHP
 ¹ SQLF_RC_INVMAL
 ¹ SQLF_RC_INVSTMTHP
 ¹ SQLF_RC_INVLOGPRIM
 ¹ SQLF_RC_INVLOG2ND
 ¹ SQLF_RC_INVLOGFSZ
 ¹ SQLF_RC_INVNBP

and SQLF_RC_INV_DBMENT (-5126) is returned, beginning in Version 2, instead of
SQLF_RC_INVK3 (-5105) which is no longer returned.

 Symptom
If an application is looking for a specific error code which has been replaced by a new
one, then this will cause the application to function incorrectly.

880 Administration Guide

 Resolution
Update the application to look for valid return codes.

Segments versus 4KB Pages
 OS/2

 Change
All configuration parameters in OS/2 that were expressed in segments in Version 1 are
now expressed in 4KB pages.

 Symptom
Beginning in Version 2, when you specify a configuration parameter which used to be a
measure of segments, it is treated as a measure of 4KB pages. This will result in a
different total amount of space in most cases.

 Resolution
Migration takes care of this incompatibility by allocating the same amount of storage
that was allocated before the migration. Existing applications that specify parameter
values should be converted to specify the proper number of 4KB page units.

Obsolete Database Configuration Parameters
 OS/2

 Change
The following database configuration parameters are obsolete:

 ¹ AGENTHEAP
¹ MAXTOTFILOP (there is now a new database manager level configuration

parameter by the same name)
 ¹ SQLSTMTSZ

Version 1 binary applications attempting to update or get the value of these parameters
will result in a no-operation with a return code of 0.

 Resolution
Applications should be updated to not reference these parameters.

If you are updating or viewing the value for MAXTOTFILOP, then you can now use
Database Manager Configuration commands.

Obsolete Database Manager Configuration Parameters
UNIX OS/2

 Appendix C. Incompatibilities Between Releases 881

 Change
The following database manager configuration parameters are obsolete:

| ¹ MAX_IDLEAGENTS
 ¹ COMHEAPSZ
 ¹ RSHEAPSZ
 ¹ SVRIOBLK
 ¹ NUMRC
¹ SQLENSEG (OS/2 only)

 ¹ CUINTERVAL

 Symptom
Version 1 binary applications attempting to update or get the value of these parameters
will result in a no-operation with a return code of 0.

 Resolution
Applications should be updated to not reference these parameters.

| DB2_MMAP_READ and DB2_MMAP_WRITE
| DB2 PE

| Change
| After you migrate to DB2 UDB from DB2 Parallel Edition Version 1.x, you may, in some
| situations, notice a performance degradation compared to DB2 Parallel Edition. This is
| caused by a change in the default value of the DB2_MMAP_READ and
| DB2_MMAP_WRITE profile registry values. (These were know as environment
| variables in DB2 Parallel Edition.) The default value of these registry variables in DB2
| Parallel Edition was “OFF.” This allowed AIX to cache DB2 data that was read from
| JFS filesystems into memory (that is, the data was outside the buffer pool). In DB2
| UDB, as in the case of DB2 Version 2, the default value of these registry values is “ON”
| which prevents the AIX caching.

| Symptom
| In DB2 UDB, the problem occurs when accessing DB2 data that was previously
| referenced but is no longer in the DB2 buffer pool. Because the DB2 buffer pool is
| relatively small, in DB2 UDB such access may require disk I/O. In DB2 Parallel Edition,
| the request to access the data may have been satisfied by the AIX cache which is
| much faster.

| Resolution
| In situations like the one mentioned above, setting DB2_MMAP_READ and
| DB2_MMAP_WRITE to “OFF” in DB2 UDB may result in queries running up to three
| times faster. However, you should devote a large amount of system memory to the DB2
| buffer pool. If you do this, AIX caching provides no additional benefit.

882 Administration Guide

Appendix D. Memory Usage for DB2 Universal Database Version 5

The following chart presents in summary form the recommended minimum amounts of
memory (in megabytes) for each of the editions and features associated with DB2
Universal Database Version 5. The base values include five (5) connections, and in
each case, the value given is a liberal amount; the edition or feature will run with less
memory, but performance may suffer due to paging.

When multiple editions or features are installed on the same machine (for example,
Enterprise and Connect Enterprise), use the highest applicable “Base” as the base
amount, and add the “Each Additional” requirement for each edition or feature as
required.

Edition/Feature Platform Base Each Additional Notes

Personal OS/2, Windows
NT

32 (1)

Workgroup OS/2, Windows
NT

32 0.8 (2),
(3)

Enterprise OS/2, Windows
NT

32 0.8 (2),
(3)

Administration Client OS/2, Windows
NT

24

Workgroup UNIX 64 1.6 (2),
(3)

Enterprise UNIX 64 1.6 (2),
(3)

Extended Enterprise UNIX 256 2 (4)

Connect Personal OS/2, Windows
NT

24 (5)

Connect Enterprise OS/2, Windows
NT

64 0.2

Connect Enterprise UNIX 64 0.4

Additional Instance All 1 (6)

Additional Database All 2 (6)

 Copyright IBM Corp. 1993, 1998 883

Notes:

1. This Base value assumes a “light” application and one small database running on
the machine. More than 32MB will be required in some situations.

2. The additional memory values apply to each complex, remote dynamic SQL or CLI
application running on the system, above and beyond the base number of
connections. Simple, remote static SQL applications require as little as one-eighth
the values shown above. Local applications can vary widely in memory
requirements, but generally you should allow approximately twenty percent more
than the corresponding remote requirement.

3. When intra-partition parallelism is used on the database server, the number of
subagents created has a significant effect on memory consumption. If the majority
of the activity on the machine makes use of the intra-partition parallelism
capabilities, we recommend that the base amount be doubled. The additional
amount per connection should be 0.7MB plus 128K per subagent (for OS/2,
Windows NT); or, 1.3MB plus 256K per subagent (for UNIX). The number of
subagents would be the average of all numbers of subagents across all the
database server connections.

4. The Base value is per partition. The “Each Additional” value is also per partition,
and assumes a typical amount of parallelism activated by DB2 for each connection
within that partition.

5. 24MB is recommended for Windows NT. 16MB is normally sufficient for Windows
95 and OS/2. These figures assume a “light” application running on the machine; it
is not unusual for some applications to require 32MB.

6. The additional memory for each instance or database assumes that the default
configuration parameters are in use. Settings of parameters such as BUFFPAGE
can consume very large amounts of additional memory.

Regarding the amount of memory required for DB2 clients: The maximum size is
approximately 2MB. However, this size could be significantly less depending on your
platform; or more, depending on the application overhead.

884 Administration Guide

 Appendix E. Naming Rules

Use the naming rules shown below when you provide names for the following
databases and database objects:

 ¹ Database Names
¹ Database and Database Alias Names
¹ User IDs and Passwords

 ¹ Schema Names
¹ Group and User Names

 ¹ Object Names

Do not use IBM SQL or ISO/ANSI SQL92 reserved words to name tables, views,
columns, indexes, or authorization IDs. A list of these words is included in the SQL
Reference manual.

Refer to the Quick Beginnings manuals for naming rules about authorization IDs
(including user names and group names) and workstations, and for additional platform
restrictions.

 Database Names
Every time a new database is created, the database manager creates a separate
directory to store the control files and data files for that database.

The naming scheme for these directories is SQL00001 through SQLnnnnn, where
SQL00001 contains control files associated with the first database created, SQL00002
contains control files for the second database created, and so on.

These directories are maintained automatically. To avoid potential directory naming
problems, do not create your own directories using the same naming schema as used
by the database manager, and do not manipulate directories that have already been
created by the database manager.

Database and Database Alias Names
Database names are the identifying names you or your users provide as part of the
CREATE DATABASE command or API. These names must be unique within the
location in which they are cataloged. For example, for UNIX-based implementations of
DB2, this location is a directory path, while in OS/2 implementations it is a drive letter.

Database alias names are local synonyms given to local or remote databases. These
names must be unique within the System Database Directory, in which all aliases are
stored for the individual instance of the database manager. When a new database is
created, the alias defaults to the database name. As a result, you cannot create a
database using a name that exists as a database alias, even if there is no database
with that name.

 Copyright IBM Corp. 1993, 1998 885

When naming a database or a database alias, the name you specify:

¹ Can contain 1 to 8 characters

¹ Must begin with one of the following:

– A through Z (converts lowercase letters to uppercase)
– @, #, or $

¹ Other characters can include:

– A through Z (converts lowercase letters to uppercase)
– 0 through 9
– @, #, $, and _ (underscore)

Note: To avoid potential problems, do not use the special characters @, #, and $ in a
database name if you intend to use the database in a communications
environment. Also, because these characters are not common to all keyboards,
do not use them if you plan to use the database in another country. Finally, on
Windows NT systems, ensure that no instance name is the same as a service
name.

User IDs and Passwords
When creating a user ID or password, the name you create:

¹ Cannot be any of the following:
– USERS, ADMINS, GUESTS, PUBLIC, LOCAL, or any SQL reserved word

listed in the SQL Reference manual.
¹ Cannot begin with:

– SQL, SYS, or IBM
¹ Other characters can include:

– A through Z

Note: Some operating systems allow case-sensitive user IDs and passwords.
You should check with your operating system information to see if this
is the case.

– 0 through 9
– @, #, or $

| Note: You may be required to perform password maintenance tasks. Since such tasks
| are required at the server, and many of the users are not able or comfortable
| working with the server environment, carrying these tasks can pose a significant
| challenge. DB2 UDB provides a way to update and verify passwords without
| having to be at the server. For example, DB2 for OS/390 Version 5 supports
| this method of changing a user's password. If an error message SQL1404N
| “Password expired” is received, then to change the password use the
| CONNECT statement as follows:

| CONNECT TO <database> USER <userid> USING
| <password> NEW <new_password>

| VERIFY <new_password>

886 Administration Guide

| The “Password change” dialogue of the DB2 Client Configuration Assistant
| (CCA) may also be used to make a change to the password. See the SQL
| Reference and the CCA online help for further information on these methods to
| change the password.

 Schema Names
The following schema names are reserved words and must not be used:

 ¹ SYSCAT
 ¹ SYSFUN
 ¹ SYSIBM
 ¹ SYSSTAT

In general, you should avoid schema names that begin with SYS to avoid potential
migration problems in the future. The database manager will not allow you to create
triggers, user-defined types or user-defined functions using a schema name beginning
with SYS.

Group and User Names
On UNIX, groups and users can have the same name. For the GRANT statement you
must specify whether you are referring to a group or a user. For the REVOKE
statement specifying user or group depends on whether or not there are multiple rows
in the authorization catalog tables for the GRANTEE with different values of
GRANTEETYPE.

On OS/2, groups and users cannot have the same name.

On Windows NT, Local Group names, Global Group names and User IDs cannot have
the same name.

 Object Names
Database objects include the following:

 ¹ Schemas
 ¹ Tables
 ¹ Views
 ¹ Columns
 ¹ Indexes
¹ User-defined functions (UDFs)
¹ User-defined types (UDTs)

 ¹ Triggers
 ¹ Aliases
 ¹ Table spaces
 ¹ Stored procedures
 ¹ Nodegroups
 ¹ Buffer pools

 Appendix E. Naming Rules 887

 ¹ Event monitors

When naming database objects, the name you specify:

¹ Can contain 1 to 18 characters (bytes)

Note: Schemas are an exception: They can only allow 1 to 8 characters.

¹ Must begin with one of the following:

– A through Z (converts lowercase letters to uppercase)
– A valid accented letter (such as ö)
– A multibyte character, except multibyte spaces (for multibyte environments)

¹ Other characters can include:

– A through Z (converts lowercase letters to uppercase)
– A valid accented letter (such as ö)
– 0 through 9
– @, #, $, and _ (underscore)
– Multibyte characters, except multibyte spaces (for multibyte environments)

¹ Keywords can be used. If the keyword is used in a context where it could also be
interpreted as an SQL keyword, it must be specified as a delimited identifier. Refer
to the SQL Reference for information on delimited identifiers.

¹ For maximum portability, use the IBM SQL and ISO/ANSI SQL92 reserved words.
For a list of these words, refer to the SQL Reference manual.

Notes:

1. Using delimited identifiers, it is possible to create an object that violates these
naming rules; however, subsequent use could lead to error situations. To avoid
potential problems with the use and operation of your database, do not violate the
above rules.

For example, if you created a column with a + or − sign included in the name and
you subsequently use that column in an index, you will experience problems when
you attempt to reorganize the table.

2. For information about National Language Support (NLS) related to object names,
see Appendix O, “National Language Support (NLS)” on page 1125.

888 Administration Guide

Appendix F. DB2 Registry and Environment Variables

The following is a list of DB2 registry variables and environment variables that you may
need to know about to get up and running. Each has a brief description; some may not
apply to your environment.

| You can view a list of all supported registry variables by using:

| db2set -lr

| You can change the value for a variable for the current session by using:

| db2set registry_variable_name=new_value

| The values for the changed registry variables must be set before the DB2START
| command is issued. See “Using the db2set Command” on page 67 for more
| information on changing and using registry variables.

Parameter Operating
System

Values Description

General

DB2ACCOUNT All Default=null The accounting string that is sent to
the remote host. Refer to the DB2
Connect User's Guide for details.

| DB2BIDI| All| Default=NO

| Values: YES or
| NO

| Enables bidirectional CCSID
| processing. See “Bidirectional
| CCSID Support” on page 1143 for
| additional information. Refer to the
| DB2 Connect Release Notes for
| details on configuration.

DB2CODEPAGE All Default: derived
from the
language ID, as
specified by the
operating
system.

Specifies the code page of the data
presented to DB2 for database client
application. The user should not set
db2codepage unless explicitly stated
in DB2 documents, or asked to do
so by DB2 service. Setting
db2codepage to a value not
supported by the operating system
can produce unexpected results.
Normally, you do not need to set
db2codepage because DB2
automatically derives the code page
information from the operating
system.

DB2COUNTRY All Default: derived
from the
language ID, as
specified by the
operating
system.

Specifies the country code of the
client application, which influences
date and time formats.

 Copyright IBM Corp. 1993, 1998 889

Parameter Operating
System

Values Description

DB2DBDFT All Default=null Specifies the database alias name of
the database that will be implicitly
connected to when applications are
started and no implicit connect has
been done. This keyword is ignored
if it is set.

| DB2DBMSADDR| Windows
| 32-bit
| operating
| systems

| Default=0x20000000
| for Windows
| NT,
| 0x90000000 for
| Windows 95

| Value:
| 0x20000000 to
| 0xB0000000 in
| increments of
| 0x10000

| Specifies the default database
| manager shared memory address in
| hexadecimal format. If a shared
| memory address collision occurs,
| this value can be modified to force
| the database manager instance to
| allocate its shared memory at a
| different address.

DB2DISCOVERYTIME OS/2
and
Windows
32-bit
operating
systems

Default=40
seconds,

Minimum=20
seconds

Specifies the amount of time that
SEARCH discovery will search for
DB2 systems.

| DB2INCLUDE| All| Default=null| Specifies a path to be used during
| the processing of the SQL INCLUDE
| text-file statement during DB2 PREP
| processing. It provides a list of
| directories where the INCLUDE file
| might be found. Refer to the
| Embedded SQL Programming Guide
| for descriptions of how db2include is
| used in the different precompiled
| languages.

| DB2INSTDEF| OS/2
| and
| Windows
| 32-bit
| operating
| systems

| Default=DB2| Sets the value to be used if
| DB2INSTANCE is not defined.

890 Administration Guide

Parameter Operating
System

Values Description

| DB2NBDISCOVERRCVBUFS| All| Default=16
| buffers,

| Minimum=16
| buffers

| This variable is used for NetBIOS
| search discovery. The variable
| specifies the number of concurrent
| discovery responses that can be
| received by a client. If the client
| receives more concurrent responses
| than are specified by this variable,
| then the excess responses are
| discarded by the NetBIOS layer. The
| default is sixteen (16) NetBIOS
| receive buffers. If a number less
| than the default value is chosen,
| then the default is used.

| DB2SLOGON| Windows
| 3.x
| Default=null,

| Values: YES or
| NO

| Enables a secure logon in DB2 for
| Windows 3.x. If db2slogon=YES DB2
| does not write user IDs and
| passwords to a file, but instead uses
| a segment of memory to maintain
| them. When db2slogon is enabled,
| the user must logon each time
| Windows 3.x is started.

| DB2TIMEOUT| Windows
| 3.x and
| Macintosh

| Default=(disabled)| Used to control the timeout period
| for Windows 3.x and Macintosh
| clients during long SQL queries.
| After the timeout period has expired
| a dialog box pops up asking if the
| query should be interrupted or
| allowed to continue. The minimum
| value for this variable is 30 seconds.
| If db2timeout is set to a value
| between 1 and 30, the default
| minimum value will be used. If
| db2timeout is set to a value of 0, or
| a negative value, the timeout feature
| is disabled. This feature is disabled
| by default.

DB2TRACENAME Windows
3.x and
Macintosh

Default=DB2WIN.TRC
(on Windows
3.x),
DB2MAC.TRC
(on Macintosh)

On Windows 3.x and Macintosh,
specifies the name of the file where
trace information is stored. The
default for each system is saved in
your current instance directory (for
example, \sqllib\db2). We strongly
recommend that you specify the full
path name when naming the trace
file.

 Appendix F. DB2 Registry and Environment Variables 891

Parameter Operating
System

Values Description

DB2TRACEON Windows
3.x and
Macintosh

Default=NO

Values: YES or
NO

On Windows 3.x and Macintosh,
turns trace on to provide information
to IBM in case of a problem. (It is
not recommended that you turn trace
on unless you encounter a problem
you cannot resolve.) Refer to the
Troubleshooting Guide for
information on using the trace facility
with DB2 Client Application Enabler.

| DB2TRCFLUSH| Windows
| 3.x and
| Macintosh

| Default=NO

| Values: YES or
| NO

| On Windows 3.x and Macintosh,
| db2trcflush can be used in
| conjunction with db2traceon=YES.
| Setting db2trcflush=YES will cause
| each trace record to be written
| immediately into the trace file. This
| will slow down your DB2 system
| considerably, so the default setting is
| db2trcflush=NO. This setting is useful
| in cases where an application hangs
| the system and requires the system
| to be rebooted. Setting this keyword
| guarantees that the trace file and
| trace entries are not lost by the
| reboot.

| DB2TRCSYSERR| Windows
| 3.x and
| Macintosh

| Default=1

| Values: 1-32767

| Specifies the number of system
| errors to trace before the client turns
| off tracing. The default value traces
| one system error, after which, trace
| is turned off.

892 Administration Guide

Parameter Operating
System

Values Description

DB2YIELD Windows
3.x

Default=NO

Values: YES or
NO

Specifies the behavior of the
Windows 3.x client while
communicating with a remote server.
When set to NO, the client will not
yield the CPU to other Windows 3.x
applications, and the Windows
environment is halted while the client
application is communicating with the
remote server. You must wait for the
communications operation to
complete before you can resume any
other tasks. When set to YES, your
system functions as normal. It is
recommended that you try to run
your application with db2yield=YES. If
your system crashes, you will need
to set db2yield=NO. For application
development, ensure your
application is written to accept and
handle Windows messages while
waiting for a communications
operation to complete.

System Environment

| DB2ENVLIST| UNIX| Default: null| Lists specific variable names for
| either stored procedures or
| user-defined functions. By default,
| the db2start command filters out all
| user environment variables except
| those prefixed with DB2 or db2 . If
| specific registry variables must be
| passed to either stored procedures
| or user-defined functions, you can
| list the variable names in the
| db2envlist registry variable. Separate
| each variable name by one or more
| spaces. DB2 constructs its own
| PATH and LIBPATH, so if PATH or
| LIBPATH is specified in db2envlist,
| the actual value of the variable name
| is appended to the end of the
| DB2-constructed value.

DB2INSTANCE All Default=db2instdef
on OS/2 and
Windows 32-bit
operating
systems.

The environment variable used to
specify the instance that is active by
default. On UNIX, users must specify
a value for DB2INSTANCE.

 Appendix F. DB2 Registry and Environment Variables 893

Parameter Operating
System

Values Description

| DB2INSTPROF| OS/2,
| Windows
| 3.x, and
| Windows
| 32-bit
| operating
| systems

| Default: null| The environment variable used to
| specify the location of the instance
| directory on OS/2, Windows 3.x, and
| Windows 32-bit operating systems, if
| different than DB2PATH.

| DB2LIBPATH| UNIX| Default: null| Specifies the value or LIBPATH in
| the db2libpath registry variable. The
| value of LIBPATH cannot be
| inherited between parent and child
| processes if the user ID has
| changed. Since the db2start
| executable is owned by root, DB2
| cannot inherit the LIBPATH settings
| of end users. If you list the variable
| name, LIBPATH, in the db2envlist
| registry variable, you must also
| specify the value of LIBPATH in the
| db2libpath registry value. The
| db2start executable then reads the
| value of db2libpath and append this
| value to the end of the
| DB2-constructed LIBPATH.

| DB2PATH| OS/2,
| Windows
| 3.x, and
| Windows
| 32-bit
| operating
| systems

| Default: (varies
| by operating
| system)

| The environment variable used to
| specify the directory where the
| product is installed on OS/2,
| Windows 3.x, and Windows 32-bit
| operating systems.

Communications

894 Administration Guide

Parameter Operating
System

Values Description

| DB2CHECKCLIENTINTERVAL| AIX,
| server
| only

| Default=0

| Values: A
| numeric value
| greater than
| zero.

| Used to verify the status of APPC
| client connections. Permits early
| detection of client termination, rather
| than waiting until after the
| completion of the query. When set to
| zero, no check will be made. When
| set to a numerical value greater than
| zero, the value represents DB2
| internal work units. For guidance, the
| following check frequency values are
| given: Low frequency use 300;
| medium frequency use 100; high
| frequency use 50. Checking more
| frequently for client status while
| executing a database request
| lengthens the time taken to complete
| the queries. If the DB2 workload is
| heavy (that is, it involves many
| internal requests), then setting
| DB2CHECKCLIENTINTERVAL to a
| low value has a greater impact on
| performance than in a situation
| where the workload is light and most
| of the time DB2 is waiting.

DB2COMM All,
server
only

Default=null

Values: any
combination of
APPC,IPXSPX,
NETBIOS,NPIPE,
TCPIP

Specifies the communication
managers that are started when the
database manager is started. If this
is not set, no DB2 communications
managers are started at the server.

 Appendix F. DB2 Registry and Environment Variables 895

Parameter Operating
System

Values Description

| DB2_FORCE_NLS_CACHE| AIX,
| HP_UX,
| Solaris

| Default=FALSE

| Values: TRUE
| or FALSE

| Used to eliminate the change of lock
| contention in multi-threaded
| applications. When this registry
| variable is “TRUE,” the code page
| and country code information is
| saved the first time a thread
| accesses it. From that point, the
| cached information is used for any
| other thread that requests this
| information. This eliminates lock
| contention and results in a
| performance benefit in certain
| situations. This setting should not be
| used if the application changes
| locale settings between connections.
| It is likely not needed in such a
| situation anyway, since
| multi-threaded applications typically
| do not change their locale settings
| because it is not “thread-safe” to do
| so.

DB2NBADAPTERS OS/2
and
Windows
NT,
server
only

Default=0

Range: 0-15,

Multiple values
should be
separated by
commas

Used to specify which local adapters
to use for DB2 NetBIOS LAN
communications. Each local adapter
is specified using its logical adapter
number.

DB2NBCHECKUPTIME OS/2
and
Windows
NT,
server
only

Default=1
minute

Values: 1-720

Specifies the time interval between
each invocation of the NetBIOS
protocol checkup procedure.
Checkup time is specified in minutes.

Lower values will ensure that the
NetBIOS protocol checkup runs
more often, freeing up memory and
other system resources left when
unexpected agent/session
termination occurs.

896 Administration Guide

Parameter Operating
System

Values Description

DB2NBINTRLISTENS OS/2
and
Windows
NT,
server
only

Default=1

Values: 1-10

Multiple values
should be
separated by
commas

Specifies the number of NetBIOS
listen send commands (NCBs) that
will be asynchronously issued in
readiness for remote client interrupts.
This flexibility is provided for
"interrupt active" environments to
ensure that interrupt calls from
remote clients will be able to
establish connections when servers
are busy servicing other remote
interrupts.

Setting db2nbintrlistens to a lower
value will conserve NetBIOS
sessions and NCBs at the server.
However, in an environment where
client interrupts are common, you
may need to set db2nbintrlistens to a
higher value in order to be
responsive to interrupting clients.

Note: Values specified are position
sensitive; they relate to the
corresponding value positions
for db2nbadapters.

| DB2NBRECVBUFFSIZE OS/2
and
Windows
NT,
server
only

Default=4096
bytes

Range:
4096-65536

Specifies the size of the DB2
NetBIOS protocol receive buffers.
These buffers are assigned to the
NetBIOS receive NCBs. Lower
values conserve server memory,
while higher values may be required
when client data transfers are larger.

DB2NBBRECVNCBS OS/2
and
Windows
NT,
server
only

Default=10

Range: 1-99

Specifies the number of NetBIOS
"receive_any" commands (NCBs)
that the server will issue and
maintain during operation. This value
may be adjusted depending on the
number of remote clients to which
your server is connected. Lower
values will conserve server
resources.

Note: Each adapter in use can
have its own unique receive
NCB value specified by
db2nbbrecvncbs. The values
specified are position
sensitive; they relate to the
corresponding value positions
for db2nbadapters.

 Appendix F. DB2 Registry and Environment Variables 897

Parameter Operating
System

Values Description

DB2NBRESOURCES OS/2
and
Windows
NT
server
only

Default=null Specifies the number of NetBIOS
resources to allocate for DB2 use in
a multi-context environment. This
variable is restricted to multi-context
client operation.

DB2NBSENDNCBS OS/2
and
Windows
NT,
server
only

Default=6

Range: 1-720

Specifies the number of send
NetBIOS commands (NCBs) that the
server will reserve for use. This
value may be adjusted depending on
the number of remote clients your
server is connected to. Setting
db2nbsendncbs to a lower value will
conserve server resources. However,
you may need to set it to a higher
value to prevent the server from
waiting to send to a remote client
when all other send commands are
in use.

DB2NBSESSIONS OS/2
and
Windows
NT,
server
only

Default=null

Range: 5-254

Specifies the number of sessions
that DB2 should request to be
reserved for DB2 use. The value of
db2nbsessions can be set to request
a specific session for each adapter
specified using db2nbadapters.

Note: Values specified are position
sensitive; they relate to the
corresponding value positions
for db2nbadapters.

DB2NBXTRANCBS OS/2
and
Windows
NT,
server
only

Default=5 per
adapter

Range: 5-254

Specifies the number of "extra"
NetBIOS commands (NCBs) the
server will need to reserve when the
db2start command is issued. The
value of db2nbxtrancbs can be set to
request a specific session for each
adapter specified using
db2nbadapters.

898 Administration Guide

Parameter Operating
System

Values Description

DB2NETREQ Windows
3.x

Default=3

Range: 0-25

Specifies the number of NetBIOS
requests that can be run
concurrently on Windows 3.x clients.
The higher you set this value, the
more memory below the 1MB level
will be used. When the concurrent
number of requests to use NetBIOS
services reaches the number you
have set, subsequent incoming
requests for NetBIOS services are
held in a queue and become active
as the current requests complete. If
you enter 0 (zero) for db2netreq, the
Windows database client issues
NetBIOS calls in synchronous mode
using the NetBIOS wait option. In
this mode, the database client allows
only the current NetBIOS request to
be active and does not process
another one until the current request
has completed. This can affect other
application programs. The 0 value is
provided for backwards compatibility
only. It is strongly recommended that
0 not be used.

| DB2RETRY| OS/2
| and
| Windows
| NT

| Default=0

| Range: 0-20 000

| The number of times DB2 attempts
| to restart the APPC listener. If the
| SNA subsystem at the
| server/gateway is down, this profile
| variable, in conjunction with
| db2retrytime, can be used to
| automatically restart the APPC
| listener without disrupting client
| communications using other
| protocols. In such a scenario, it is no
| longer necessary to stop and restart
| DB2 to reinstate the APPC client
| communications.

 Appendix F. DB2 Registry and Environment Variables 899

Parameter Operating
System

Values Description

| DB2RETRYTIME| OS/2
| and
| Windows
| NT

| Default=1
| minute

| Range: 0-7 200
| minutes

| In increments of one minute, the
| number of minutes that DB2 allows
| between performing successive
| retries to start the APPC listener. If
| the SNA subsystem at the
| server/gateway is down, this profile
| variable, in conjunction with db2retry,
| can be used to automatically restart
| the APPC listener without disrupting
| client communications using other
| protocols. In such a scenario, it is no
| longer necessary to stop and restart
| DB2 to reinstate the APPC client
| communications.

DB2SERVICETPINSTANCE OS/2
and
Windows
NT

Default=null Used to support incoming APPC
connections from DB2 workstation
V.1 clients or from the DB2 MVS
database. When the db2start
command is invoked, the instance
specified will start the APPC
listeners for the following TP names:

 DB2INTERRUPT
 x'07'68
 x'07'6SN

DB2SOSNDBUF Windows
95 and
Windows
NT

Default=32767 Specifies the value of TCP/IP send
buffers on Windows 95 and Windows
NT operating systems.

| DB2SYSPLEX_SERVER| OS/2,
| Windows
| NT, and
| UNIX

| Default=null| Specifies whether SYSPLEX
| exploitation when connected to DB2
| for OS/390 is enabled. If this registry
| variable is not set (which is the
| default), or is set to a non-zero
| value, exploitation is enabled. If this
| registry variable is set to zero (0),
| exploitation is disabled. When set to
| zero, SYSPLEX exploitation is
| disabled for the gateway regardless
| of how the DCS database catalog
| entry has been specified. For more
| information see the Command
| Reference and the CATALOG DCS
| DATABASE command.

900 Administration Guide

Parameter Operating
System

Values Description

| DB2_VI_ENABLE| Windows
| NT
| Default=OFF

| Values: ON or
| OFF

| Specifies whether to use the Virtual
| Interface Architecture (VIA)
| communication protocol or not. If this
| registry variable is “ON,” then FCM
| will use VI for inter-node
| communication. If this registry
| variable is “OFF,” then FCM will use
| TCP/IP for inter-node
| communication.

| Note: The value of this registry
| variable must be the same
| across all the database
| partitions in the instance.

| DB2_VI_VIPL| Windows
| NT
| Default=vipl.dll| Specifies the name of the Virtual
| Interface Provider Library (VIPL) that
| will be used by DB2. In order to load
| the library successfully, the library
| name used in this registry variable
| must be in the %path% user
| environment variable.

| DB2_VI_DEVICE| Windows
| NT
| Default=null| Specifies the symbolic name of the
| device or Virtual Interface Provider
| Instance associated with the Network
| Interface Card (NIC). Independent
| hardware vendors (IHVs) each
| produce their own NIC. Only one (1)
| NIC is allowed per Windows NT
| machine; Multiple logical nodes on
| the same physical machine will
| share the same NIC.

DCE Directories

 Appendix F. DB2 Registry and Environment Variables 901

Parameter Operating
System

Values Description

DB2DIRPATHNAME OS/2,
UNIX,
and
Windows
32-bit
operating
systems

Default=null Specifies a temporary override of the
DIR_PATH_NAME parameter value
in the database manager
configuration file. If a directory server
is used and the target of a
CONNECT statement or ATTACH
command is not explicitly cataloged,
then the target is concatenated with
DB2DIRPATHNAME (if specified) to
form the fully qualified DCE name.

Note: The db2dirpathname variable
has no effect on the
instance's global name,
which is always identified by
the database manager
configuration parameters
DIR_PATH_NAME and
DIR_OBJ_NAME.

DB2CLIENTCOMM OS/2,
UNIX,
and
Windows
32-bit
operating
systems

Default=null Specifies a temporary override of the
DFT_CLIENT_COMM parameter
value in the database manager
configuration file. If both
DFT_CLIENT_COMM and
db2clientcomm are not specified,
then the first protocol found in the
object is used. If either one or both
of them are specified, then only the
first matching protocol will be used.
In either case, no retry is attempted
if the first connect fails.

DB2CLIENTADPT OS/2
and
Windows
32-bit
operating
systems

Default=null

Range: 0-15

Specifies the client adapter number
for NETBIOS protocol on OS/2
operating systems. The
db2clientadpt value overrides the
DFT_CLIENT_ADPT parameter
value in the database manager
configuration file.

DB2ROUTE OS/2,
UNIX,
and
Windows
32-bit
operating
systems

Default=null Specifies the name of the Routing
Information Object the client uses
when it connects to a database with
a different database protocol. The
db2route value overrides the
ROUTE_OBJ_NAME parameter
value in the database manager
configuration file.

Command Line Processor

902 Administration Guide

Parameter Operating
System

Values Description

| DB2BQTIME| All| Default=1
| second

| Maximum value:
| 1 second

| Specifies the amount of time the
| command line processor front end
| will sleep before checking if the back
| end process is active and
| establishing a connection to it.

| DB2BQTRY| All| Default=60
| retries

| Minimum value:
| 0 retries

| Specifies the number of times the
| command line processor front end
| process tries to determine whether
| the back end process is already
| active. It works in conjunction with
| db2bqtime.

| DB2IQTIME| All| Default=5
| seconds

| Minimum value:
| 1 second

| Specifies the amount of time the
| command line processor back end
| process waits on the input queue for
| the front end process to pass
| commands.

| DB2OPTIONS| All| Default=null| Sets command line processor
| options.

| DB2RQTIME| All| Default=5
| seconds

| Minimum value:
| 1 second

| Specifies the amount of time the
| command line processor back end
| process waits for a request from the
| front end process.

MPP Configuration

| DB2ATLD_PORTS| DB2
| UDB
| EEE on
| AIX,
| Solaris,
| and
| Windows
| NT

| Default=6000:6063

| Value:
| num1:num2
| where both are
| between 1 and
| 65535, and
| num1<=num2

| Specifies the range of port numbers
| used for the AutoLoader utility's
| internal TCPIP communication. If not
| set, AutoLoader uses the internal
| default port range 6000:6063. When
| you have other applications using
| the AutoLoader default port range,
| this variable can be used to select
| an alternate port range.

| DB2ATLD_PWFILE| DB2
| UDB
| EEE on
| AIX,
| Solaris,
| and
| Windows
| NT

| Default=null

| Value: a file
| path expression

| Specifies a path to a file that
| contains a password used during
| AutoLoader authentication. If not set,
| AutoLoader either extracts the
| password from its configuration file
| or prompts you interactively. Using
| this variable will address password
| security concerns and allows the
| separation of AutoLoader
| configuration information from
| authentication information.

 Appendix F. DB2 Registry and Environment Variables 903

Parameter Operating
System

Values Description

| DB2_FORCE_FCM_BP| AIX| Default=NO

| Values: YES or
| NO

| This registry variable is applicable to
| DB2 UDB EEE for AIX when using
| multiple logical partitions. When
| DB2START is issued, DB2 allocates
| the FCM buffers from the database
| global memory or, if there is not
| enough room there, from a separate
| shared memory segment which is
| used by all FCM daemons (for that
| instance) on the same physical
| machine. Which it chooses is largely
| dependent on the number of FCM
| buffers to be created (which, in turn,
| is determined by the
| FCM_NUM_BUFFERS database
| manager configuration parameter). If
| this registry variable is ON, the FCM
| buffers are always created in a
| separate memory segment. When
| the FCM buffers are created in a
| separate memory segment, the
| communication between FCM
| daemons of different logical
| partitions on the same physical node
| occurs through shared memory.
| Otherwise, FCM daemons on the
| same node communicate through
| UNIX Sockets. The advantage of
| communicating through shared
| memory in this way is that it is
| faster. The disadvantage is that
| there is one fewer shared memory
| segments available for other uses,
| most notably database buffer pools.
| This reduces the maximum size of
| database buffer pools.

| DB2INSTOWNER| Windows
| NT
| Default=null| Specifies the machine name of the
| instance owning machine.

DB2NODE All Default=null

Values: 1-999

Specifies which node of the MPP
server instance you want to connect
or attach to.

| DB2PORTRANGE| Windows
| NT
| Values:
| nnnn:nnnn
| This value is set to the TCP/IP port
| range used by FCM so that any
| additional partitions created on
| another machine will also have the
| same port range.

| SQL Complier

904 Administration Guide

Parameter Operating
System

Values Description

| DB2_CORRELATED_PREDICATES| All| Default=OFF

| Values: ON or
| OFF

| When there are unique indexes on
| correlated columns in a join, and this
| registry variable is ON, the optimizer
| attempts to detect and compensate
| for correlation of join predicates.
| When this registry variable is ON,
| the optimizer uses the KEYCARD
| information of unique index statistics
| to detect cases of correlation, and
| dynamically adjusts the combined
| selectivities of the correlated
| predicates, thus obtaining a more
| accurate estimate of the join size
| and cost.

| DB2_PRED_FACTORIZE| All| Default=NO

| Value: YES or
| NO

| Specifies whether the optimizer will
| search for opportunities to extract
| additional predicates from disjuncts.
| In some circumstances, the
| additional predicates can alter the
| estimated cardinality of the
| intermediate and final result sets.
| With the following query:

| SELECT n1.empno, n1.lastname

| FROM employee n1, employee n2

| WHERE ((n1.lastname='SMITH'

| AND n2.lastname='JONES')

| OR (n1.lastname='JONES'

| AND n2.lastname='SMITH'))

| the optimizer can generate the
| following additional predicates:

| SELECT n1.empno, n1.lastname

| FROM employee n1, employee n2

| WHERE n1.lastname IN ('SMITH',

| 'JONES')

| AND n2.lastname IN ('SMITH',

| 'JONES')

| AND ((n1.lastname='SMITH'

| AND n2.lastname='JONES')

| OR (n1.lastname='JONES'

| AND n2.lastname='SMITH'))

 Appendix F. DB2 Registry and Environment Variables 905

Parameter Operating
System

Values Description

DB2_VECTOR All Default=OFF

Values: OFF or
ON

When processing SQL statements
using a GROUP BY with column
functions where aggregation is
performed inside a sort, this registry
variable determines if a vectored
approach is used to aggregate the
row into groups. When this registry
variable is ON, input values
associated with rows are stored in a
vector area and aggregation
operations are performed on the
contents of the vector area as a
whole. When this registry variable is
OFF, each new row is aggregated
into its group immediately; a vector
area and vector aggregation
operations are not used.

| Performance

DB2_AVOID_PREFETCH All Default=OFF,

Values: ON or
OFF

Specifies whether or not prefetch
should be used during crash
recovery. If db2_avoid_prefetch=ON,
prefetch is not used.

| DB2CHKPTR| All| Default=OFF,

| Values: ON or
| OFF

| Specifies whether or not pointer
| checking for input is required.

| DB2_MMAP_READ| AIX| Default=ON ,

| Values: ON or
| OFF

| Used in conjunction with
| db2_mmap_write to allow DB2 to
| use mmap as an alternate method of
| I/O. In most environments, mmap
| should be used to avoid operating
| system locks when multiple
| processes are writing to different
| sections of the same file. However,
| perhaps you migrated from Parallel
| Edition V1.2 where the default was
| OFF allowing AIX chaching of DB2
| data read from JFS filesystems into
| memory (outside the buffer pool). If
| you want the comparable
| performance with DB2 UDB, you can
| either increase the size of the buffer
| pool, or change db2_mmap_read
| and db2_mmap_write to OFF.

906 Administration Guide

Parameter Operating
System

Values Description

| DB2_MMAP_WRITE| AIX| Default=ON

| Values: ON or
| OFF

| Used in conjunction with
| db2_mmap_read to allow DB2 to use
| mmap as an alternate method of I/O.
| In most environments, mmap should
| be used to avoid operating system
| locks when multiple processes are
| writing to different sections of the
| same file. However, perhaps you
| migrated from Parallel Edition V1.2
| where the default was OFF allowing
| AIX caching of DB2 data read from
| JFS filesystems into memory
| (outside the buffer pool). If you want
| the comparable performance with
| DB2 UDB, you can either increase
| the size of the buffer pool, or change
| db2_mmap_read and
| db2_mmap_write to OFF.

| DB2_NO_PKG_LOCK| All| Default=OFF

| Values: ON or
| OFF

| Allows the Global SQL Cache to
| operate without the use of package
| locks to protect cached package
| entries. (Package locks are internal
| system locks.) To improve
| performance (because acquiring and
| freeing locks takes time), you can
| now choose to work in a “no
| package lock” mode. In this mode,
| certain database operations are not
| allowed. These operations may
| include: operations that invalidate
| packages, operations that inoperate
| packages, and operations that
| directly change a package.

 Appendix F. DB2 Registry and Environment Variables 907

Parameter Operating
System

Values Description

| DB2NTMEMSIZE| Windows
| NT
| Default=(varies
| by memory
| segment)

| Windows NT requires that all shared
| memory segments be reserved at
| DLL initialization time in order to
| guarantee matching addresses
| across processes. DB2NTMEMSIZE
| has been introduced to permit the
| user to override the DB2 defaults on
| Windows NT if necessary. In most
| situations, the default values should
| be sufficient. The memory segments,
| default sizes, and override options
| are: 1) Database Kernel: default size
| is 16777216 (16 MB); override option
| is DBMS:<number of bytes>. 2)
| Parallel FCM Buffers: default size is
| 22020096 (21 MB); override option is
| FCM:<number of bytes>. 3)
| Database Admin GUI: default size is
| 33554432 (32 MB); override option is
| DBAT:<number of bytes>. 4) Fenced
| Stored Procedures: default size is
| 16777216 (16 MB); override option is
| APLD:<number of bytes>. More than
| one segment may be overridden by
| separating the override options with
| a semi-colon (;). For example, to
| limit the database kernel to
| approximately 256K, and the FCM
| buffers to approximately 64 MB, use:

| db2set DB2NTMEMSIZE=

| DBMS:256000;FCM:64000000

| DB2NTNOCACHE| Windows
| NT
| Default=OFF

| Value: ON or
| OFF

| Specifies whether or not DB2 will
| open database files with a
| NOCACHE option. If
| db2ntnocache=ON, file system
| caching is eliminated. If
| db2ntnocache=OFF, the operating
| system caches DB2 files. This
| applies to all data except for files
| that contain LONG FIELDS or LOBS.
| Eliminating system caching allows
| more memory to be available to the
| database so that the bufferpool or
| sortheap can be increased.

908 Administration Guide

Parameter Operating
System

Values Description

| DB2NTPRICLASS| Windows
| NT
| Default=null

| Value: R, H,
| (any other
| value)

| Sets the priority class for the DB2
| instance (program DB2SYSCS.EXE).
| There are three priority classes:

| NORMAL_PRIORITY_CLASS
| (the default priority class)
| REALTIME_PRIORITY_CLASS
| (set by using “R”)
| HIGH_PRIORITY_CLASS (set
| by using “H”)

| This variable is used in conjunction
| with individual thread priorities (set
| using DB2PRIORITIES) to determine
| the absolute priority of DB2 threads
| relative to other threads in the
| system.

| Note: Care should be taken when
| using this variable. Misuse
| could adversely affect overall
| system performance.

| For more information, please refer to
| the SetPriorityClass() API in the
| Win32 documentation.

DB2NTWORKSET Windows
NT

Default=1,1 Used to modify the minimum and
maximum working set size available
to DB2. When you are not in a
paging situation, a process's working
set can grow as large as needed.
When paging occurs, the maximum
working set that a process can have
is approximately 1 MB.

Specify db2ntworkset for DB2 using
the syntax db2ntworkset=min,max,
where min and max are expressed in
megabytes.

| DB2PRIORITIES| All| Values setting
| is platform
| dependent.

| Controls the priorities of DB2
| processes and threads.

| DB2_RR_TO_RS| All| Default=NO

| Values: YES or
| NO

| Specifies whether or not next-key
| locking occurs on access to user
| tables. When set to YES, next-key
| locking will not be activated.

Miscellaneous

 Appendix F. DB2 Registry and Environment Variables 909

Parameter Operating
System

Values Description

| DB2ADMINSERVER| OS/2,
| Windows
| 95,
| Windows
| NT, and
| UNIX

| Default=null| Specifies which DB2 instance is set
| up as the DB2 Administration Server.

| DB2CLIINIPATH| All| Default=null| Used to override the default path of
| the DB2 CLI/ODBC configuration file
| (db2cli.ini) and specify a different
| location on the client. The value
| specified must be a valid path on the
| client system.

| DB2DATALINK| All
| except
| Windows
| 3.x

| Default=NO

| Values: NO or
| YES

| Specifies that the DB2 database
| manager will have to contact a DB2
| File Manager Server if a table
| containing the DATALINK datatype
| column is accessed.

DB2DEFPREP All Default=NO

Values: ALL,
YES, or NO

Simulates the runtime behavior of
the DEFERRED_PREPARE
precompile option for applications
that were precompiled prior to this
option becoming available. For
example, if a DB2 v2.1.1 or earlier
application were run in a DB2 v2.1.2
or later environment, db2defprep
could be used to indicate the desired
'deferred prepare' behavior.

910 Administration Guide

Parameter Operating
System

Values Description

| DB2DMNBCKCTLR| Windows
| NT
| Default=null

| Values: ? or a
| domain name

| If you know the name of the domain
| for which DB2 server is the backup
| domain controller, set
| db2dmnbckctlr=DOMAIN_NAME. The
| DOMAIN_NAME must be in upper
| case. To have DB2 determine the
| domain for which the local machine
| is a backup domain controller, set
| db2dmnbckctlr=?. If the
| db2dmnbckctlr profile variable is not
| set or is set to blank, DB2 performs
| authentication at the primary domain
| controller.

| Note: DB2 does not use an existing
| backup domain controller by
| default because a backup
| domain controller can get out
| of synchronization with the
| primary domain controller,
| causing a security exposure.
| Getting out of
| synchronization can occur
| when the primary domain
| controller's security database
| is updated but the changes
| are not propagated to a
| backup domain controller.
| This could occur if there are
| network latencies or if the
| computer browser service is
| not operational.

| DB2_FALLBACK| Windows
| NT
| Default=OFF

| Values: ON or
| OFF

| This variable allows you to force all
| database connections off during the
| fallback processing. It is used in
| conjunction with the failover support
| in the Windows NT environment with
| Microsoft Cluster Server (MSCS). If
| DB2_FALLBACK is not set or is set
| to OFF, and a database connection
| exists during the fall back, the DB2
| resource cannot be brought offline.
| This will mean the fallback
| processing will fail.

 Appendix F. DB2 Registry and Environment Variables 911

Parameter Operating
System

Values Description

| DB2_FORCE_TRUNCATION| All| Default=NO

| Values: YES or
| NO

| Used during restart recovery. If set
| to “NO,” it will halt restart recovery if
| it is determined that a bad page is
| stopping the restart recovery too
| soon (that is, all active logs have not
| been read). This is usually caused
| by a bad page in one of the logs.
| The user can set this variable to
| “YES” to signal restart recovery that
| it should continue processing as if
| the end of logs was reached. After
| setting the variable to “YES,” logs
| not read during restart recovery are
| overwritten when the database
| becomes active again. The default is
| “NO,” which is not to proceed if a
| bad page is not found. Use this
| variable only under the direction from
| IBM Service personnel.

DB2_GRP_LOOKUP Windows
NT

Default=null Specifies which Windows NT
security mechanism will be used to
enumerate the groups that a user
belongs to.

| DB2_LIKE_VARCHAR| All| Default=NO

| Values: YES,
| NO, or a
| floating point
| constant

| Specifies how the optimizer works
| with a predicate of the form

| COLUMN LIKE '%XXXXXX%'

| where the xxxxxx is any string of
| characters.

| For all predicates, the optimizer has
| to estimate how many rows match
| the predicate. For LIKE predicates
| with leading and trailing % characters,
| the optimizer assumes that the
| COLUMN being matched has a
| structure of a series of elements
| concatenated together to form the
| entire column. The optimizer then
| estimates the length of each element
| based on the length of the string
| enclosed in the % characters.

| DB2LOADREC| All| Default=null| Used to override the location of the
| load copy during roll forward. If the
| user has changed the physical
| location of the load copy, db2loadrec
| must be set before issuing the roll
| forward.

912 Administration Guide

Parameter Operating
System

Values Description

| DB2_LOADSORT_STACKSZ| All| Default=262144
| (256 KB)

| Values: stack
| size in bytes

| Redefines the size of the thread
| stack size used by the sorting
| routines. For example, the LOAD
| utility uses one thread per index.

| DB2LOCK_TO_RB| All| Default=null

| Values:
| Statement

| Specifies whether lock timeouts
| cause the entire transaction to be
| rolled-back, or only the current
| statement. If db2lock_to_rb is set to
| STATEMENT before the db2start
| command is issued, locked timeouts
| cause only the current statement is
| rolled back. Any other setting results
| in transaction rollback.

| DB2NOEXITLIST| All| Default=OFF

| Values: ON or
| OFF

| If defined, this variable indicates to
| DB2 not to install an exit list handler
| in applications and not to perform a
| COMMIT. Normally, DB2 installs a
| process exit list handler in
| applications and the exit list handler
| performs a COMMIT operation if the
| application ends normally.

| For applications that dynamically
| load the DB2 library and unload it
| before the application terminates, the
| invocation of the exit list handler fails
| because the handler routine is no
| longer loaded in the application. If
| your application operates in this way,
| you should set the DB2NOEXITLIST
| variable and ensure your application
| explicitly invokes all required
| COMMITs.

DB2NTREMOTEPREG Windows
95 and
Windows
NT

Default=null

Value: Any valid
Windows 95 or
Windows NT
machine name

Specifies the remote machine name
that contains the Win32 registry list
of DB2 instance profiles and DB2
instances. The value for
db2remotepreg should only be set
once after DB2 is installed, and
should not be modified. Use this
variable with extreme caution.

DB2SORCVBUF Windows
95 and
Windows
NT

Default=32767 Specifies the value of TCP/IP
receive buffers on Windows 95 and
Windows NT operating systems.

 Appendix F. DB2 Registry and Environment Variables 913

Parameter Operating
System

Values Description

DB2SORT All,
server
only

Default=null Specifies the location of a library to
be loaded at runtime by the LOAD
utility. The library contains the entry
point for functions used in sorting
indexing data. Use db2sort to exploit
vendor-supplied sorting products for
use with the LOAD utility in
generating table indexes. The path
supplied must be relative to the
database server.

| DB2_SORT_AFTER_TQ| All| Default=NO

| Values: YES or
| NO

| Specifies how the optimizer works
| with directed table queues in a
| partitioned database when the
| receiving end requires the data to be
| sorted, and the number of receiving
| nodes is equal to the number of
| sending nodes.

| When DB2_SORT_AFTER_TQ=N,
| the optimizer tends to sort at the
| sending end, and merge the rows at
| the receiving end.

| When DB2_SORT_AFTER_TQ=Y,
| the optimizer tends to transmit the
| rows unsorted, not merge at the
| receiving end, and sort the rows at
| the receiving end after receiving all
| the rows.

914 Administration Guide

Parameter Operating
System

Values Description

DB2SYSTEM Windows
NT,
Windows
95,
OS/2,
and
UNIX

Default=null Specifies the name that is used by
your users and database
administrators to identify the DB2
server system. If possible, this name
should be unique within your
network.

This name is displayed in the system
level of the Control Center's object
tree to aid administrators in the
identification of server systems that
can be administered from the Control
Center.

When using the 'Search the Network'
function of the Client Configuration
Assistant, DB2 discovery returns this
name and it is displayed at the
system level in the resulting object
tree. This name aids users in
identifying the system that contains
the database they wish to access. A
value for db2system is set at
installation time as follows:

On Windows NT, or Windows
95, the setup program sets it
equal to the computer name
specified for the Windows
system.
On OS/2, the user is prompted
to enter the DB2SYSTEM name
during the installation process.
On UNIX systems, it is set equal
to the UNIX system's TCP/IP
hostname.

DB2UPMPR OS/2 Default=ON

Values: ON or
OFF

Specifies whether or not the UPM
logon screen will display on the
screen when the user enters the
wrong user ID or password on OS/2.

 Appendix F. DB2 Registry and Environment Variables 915

916 Administration Guide

Appendix G. Using Distributed Computing Environment (DCE)
Directory Services

DCE provides the Cell Directory Service (CDS) and Global Directory Service (GDS).
For more information about DCE concepts and these services, refer to the Introduction
to OSF DCE manual. The DB2 function for DCE Directory Services supports CDS only.
With this support, the user does not have to create each database, node, and DCS
database on every single client. All of this information is centralized in DCE CDS.

The following sections describe how to setup and access a database using DCE
Directory Services:

¹ Creating Directory Objects
¹ Attributes of Each Object Class
¹ Directory Services Security
¹ Configuration Parameters and Registry Variables
¹ CATALOG and ATTACH Commands, and the CONNECT Statement
¹ How a Client Connects to a Database
¹ How Directories are Searched
¹ Temporarily Overriding DCE Directory Information
¹ Directory Services Tasks
¹ Directory Services Restrictions

DCE directory services may not be supported by all DB2 clients. If DCE directory
services is supported for a DB2 client, your Quick Beginnings manual provides
additional information.

Creating Directory Objects
There are three types of directory objects that the database administrator needs to
create:

 ¹ “Database Objects”
¹ “Database Locator Objects” on page 919
¹ “Routing Information Objects” on page 920

Each object contains attributes. Refer to “Attributes of Each Object Class” on page 921
for a complete description of the attributes.

Before the database administrator can create the objects, the DCE administrator needs
to add database information into a CDS table and grant create privileges to the
database administrator. Refer to “DCE Administrator Tasks” on page 936 for the
details.

 Database Objects
A database object is required for each target database. The object has a name that
contains the cell name concatenated to the directory name and the name of the
database, for example:

 Copyright IBM Corp. 1993, 1998 917

 /.../cell_name/dir_name1/dir_name2/OBJ_NAME

Note: The following is recommended for the name of the database. The name should
be less than or equal to 8 characters and all the characters should be upper
case. If the name is mixed case or longer than 8 characters, you need to use
the CATALOG GLOBAL DATABASE command to assign an alias. See
“CATALOG GLOBAL DATABASE Command” on page 929 for details about the
command.

The following is an example of a database object. The object stored in the DCE
directory contains other information such as a timestamp. The letter to the left of each
attribute indicates if the attribute is required - R, optional - O, or a comment - C.
 Object name: /.../CELL_TORONTO/subsys/database/AIXDB1

R DB_Object_Type: D

C DB_Product_Name: DB2_for_AIX

C DB_Product_Release: V5R1M000

R DB_Native_Database_Name: AIXDBASE

R DB_Database_Protocol: DB2RA

R DB_Authentication: CLIENT

O DB_Communication_Protocol:

O DB_Database_Locator_Name: /.../CELL_TORONTO/subsys/database/AIX_INST

C DB_Comment: Test_database_on_AIX

If the database is one of many databases associated with a database manager
instance, the database object should contain the name of a database locator object and
the communication protocol should be blank. The name of the database locator object
is the fully-qualified name of the database manager or DB2 Connect instance.

Here is an example of the DCE commands to create the object. Before any objects can
be created, the DCE administrator needs to do the steps described in “DCE
Administrator Tasks” on page 936.

First you must type the following in a file called cdscp.inp:
create object /.:/subsys/database/AIXDB1

add object /.:/subsys/database/AIXDB1 DB_Object_Type = D

add object /.:/subsys/database/AIXDB1 DB_Product_Name = DB2_for_AIX

add object /.:/subsys/database/AIXDB1 DB_Product_Release = V5R1M000

add object /.:/subsys/database/AIXDB1 DB_Native_Database_Name = AIXDBASE

add object /.:/subsys/database/AIXDB1 DB_Database_Protocol = DB2RA

add object /.:/subsys/database/AIXDB1 DB_Authentication = CLIENT

add object /.:/subsys/database/AIXDB1 DB_Database_Locator_Name = /.../CELL_TORONTO/subsys/database/AIX_INST

add object /.:/subsys/database/AIXDB1 DB_Comment = Test_database_on_AIX

Then you must run either

¹ dcelogin principal password (on OS/2); or,

| ¹ dce_login principal password (on UNIX, Windows NT, or Windows 95).

This should be followed by

¹ cdscp < cdscp.inp

Use the following command to display the object:

cdscp show object /.:/subsys/database/AIXDB1

918 Administration Guide

If the database is the only database associated with a database manager instance, the
database object should contain values for the Communication Protocol attribute and the
name of the database locator object should be blank. For example:
 Object name: /.../CELL_TORONTO/subsys/database/MVSDB

R DB_Object type: D

C DB_Product_Name: DB2_for_MVS

C DB_Product_Release: V5R1M00

R DB_Native_Database_Name: MVSDBASE

R DB_Database_Protocol: DRDA

R DB_Authentication: SERVER

O DB_Communication_Protocol: APPC;NET1;TARGETLU1;DB2DRDA;MODE1;PROGRAM

O DB_Database_Locator_Name:

C DB_Comment: Test_database_on_MVS

Database Locator Objects
These objects contain the details about all the communication protocols used by a
DBMS instance or a DB2 Connect instance. One database locator object is required
for:

¹ Each instance with both DBMS and DB2 Connect
¹ Each DBMS instance which is associated with more than one database, but

without an associated DB2 Connect
¹ Each DB2 Connect instance without an associated DBMS.

The object has a name that contains the cell name concatenated to the directory name
and the one-part name of the database instance, for example:

 /.../cell_name/dir_name1/dir_name2/AIX_INST

Note: If the instance is used as the target of an ATTACH, the one-part name must be
less than or equal to 8 characters and all upper case.

The following is an example of a database locator object. The object stored in the DCE
directory contains other information such as a timestamp. The letter to the left of each
attribute indicates if the attribute is required - R, optional - O, or a comment - C.
 Object name: /.../CELL_TORONTO/subsys/database/AIX_INST

R DB_Object_Type: L

C DB_Product_Name: DB2_for_AIX

C DB_Product_Release: V5R1M00

R DB_Communication_Protocol: TCPIP;HOSTNAME1;1234

R DB_Communication_Protocol: APPC;NET1;TARGETLU1;TPN1;MODE;PROGRAM

C DB_Comment: Test_instance_on_AIX

When an attribute is defined in both the database object and the database locator
object, the value in the database object is used.

Here is an example of the DCE commands to create the object. Before any objects can
be created, the DCE administrator needs to do the steps described in “DCE
Administrator Tasks” on page 936.

First you must type the following in a file called cdscp.inp:

 Appendix G. DCE Directories 919

create object /.:/subsys/database/AIX_INST

add object /.:/subsys/database/AIX_INST DB_Object_Type = L

add object /.:/subsys/database/AIX_INST DB_Product_Name = DB2_for_AIX

add object /.:/subsys/database/AIX_INST DB_Product_Release = V5R1M00

add object /.:/subsys/database/AIX_INST DB_Communication_Protocol = TCPIP;HOSTNAME1;1234

add object /.:/subsys/database/AIX_INST DB_Communication_Protocol = APPC;NET1;TARGETLU;TPN1;MODE;PROGRAM

add object /.:/subsys/database/AIX_INST DB_Comment = Test_instance_on_AIX

Then you must run either

¹ dcelogin principal password (on OS/2); or,

| ¹ dce_login principal password (on UNIX, Windows NT, or Windows 95).

This should be followed by

¹ cdscp < cdscp.inp

Use the following command to display the object:

cdscp show object /.:/subsys/database/AIX_INST

Routing Information Objects
Routing information objects are required for host access. When a mismatch exists in
the database protocol used by a client and the database protocol used by the target
database, the routing object tells the client which DB2 Connect instance to use.
Attributes exist for each target database, which include the database protocols that are
available and the name of the database locator object for the DB2 Connect instance.
The object has a name that contains the cell name concatenated to the directory name
and a unique one-part name, for example:

 /.../cell_name/dir_name1/dir_name2/ROUTE1

The following is an example of a routing information object. The object stored in the
DCE directory contains other information such as a timestamp. The letter to the left of
each attribute indicates if the attribute, and each token within an attribute is required -
R, optional - O, or a comment - C.

Client group 1 is Client_1, Client_2, and Client_3 in Figure 88 on page 931.
 Object name: /.../CELL_TORONTO/subsys/database/ROUTE1

R DB_Object_Type: R

C DB_Comment: Routing_for_client_group_1

R DB_Target_Database_Info

 R Database name = /.../CELL_TORONTO/subsys/database/MVSDB

R Outbound protocol from router = DRDA

R Inbound protocol to router = DB2RA

R Authenticate at gateway = 1

 O Parameter string = NOMAP,D,INTERRUPT_ENABLED

 R DB_Database_Locator_Name = /.../CELL_TORONTO/subsys/database/GW_INST

R DB_Target_Database_Info

 R Database name = *OTHERDBS

R Outbound protocol from router = DRDA

R Inbound protocol to router = DB2RA

R Authenticate at gateway = 0

 O Parameter string =

 R DB_Database_Locator_Name = /.../CELL_TORONTO/subsys/database/OTH_INST

920 Administration Guide

The database name *OTHERDBS is a special value that identifies a common router
used to access any target database not explicitly defined in the routing information
object.

Here is an example of the DCE commands to create the object. The backslash (\)
character is a continuation character.

Before any objects can be created, the DCE administrator needs to do the steps
described in “DCE Administrator Tasks” on page 936.

First you must type the following in a file called cdscp.inp:
create object /.:/subsys/database/ROUTE1

add object /.:/subsys/database/ROUTE1 DB_Object_Type = R

add object /.:/subsys/database/ROUTE1 DB_Comment = Routing_for_client_group_1

add object /.:/subsys/database/ROUTE1 DB_Target_Database_Info = \

/.../CELL_TORONTO/subsys/database/MVSDB;\

drda;db2ra;1;NOMAP,D,INTERRUPT_ENABLE;\

/.../CELL_TORONTO/subsys/database/GW_INST

add object /.:/subsys/database/ROUTE1 DB_Target_Database_Info = \

*OTHERDBS;drda;db2ra;0;;\

/.../CELL_TORONTO/subsys/database/OTH_INST

Then you must run either

¹ dcelogin principal password (on OS/2); or,

| ¹ dce_login principal password (on UNIX, Windows NT, or Windows 95).

This should be followed by

¹ cdscp < cdscp.inp

Use the following command to display the object:

cdscp show object /.:/subsys/database/ROUTE1

For more information about the DCE commands, refer to the following DCE
publications:

¹ DCE Administration Guide
¹ DCE Administration Reference

Attributes of Each Object Class
In the DCE environment, each object and object attribute is identified by an object ID
(OID). Each OID is obtained from a hierarchy of allocation authorities, where the
highest authority is the International Organization for Standardization (ISO).

Table 55 on page 922 shows the attributes for each object class and Table 56 on
page 922 shows their attributes.

 scale=' 0.9'.

 Appendix G. DCE Directories 921

Table 55. Object Attribute Classes

Object Class Object ID (OID) Required
Attributes

Optional
Attributes

(DB) Database_Object 1.3.18.0.2.6.12 DAU,
DOT,
DDP,
DNN

DCO,
DPN,
DRL,
DLN,
DCP,
DPR

(DL) Database_Locator_Object 1.3.18.0.2.6.13 DOT,
DCP

DCO,
DPN,
DRL

(RI) Routing_Information_Object 1.3.18.0.2.6.14 DOT, DTI DCO,
DPN,
DRL

Table 56. Object Class Attributes

Attribute Name OID Minimum
Length

Maximum
Length

Syntax

(DAU) DB_Authentication 1.3.18.0.2.4.39 1 1024 Char

(DCO) DB_Comment 1.3.18.0.2.4.30 1 1024 Char

(DCP) DB_Communication_Protocol 1.3.18.0.2.4.31 1 1024 Char

(DDP) DB_Database_Protocol 1.3.18.0.2.4.32 1 1024 Char

(DLN) DB_Database_Locator_Name 1.3.18.0.2.4.33 1 1024 Char

(DNN) DB_Native_Database_Name 1.3.18.0.2.4.34 1 1024 Char

(DOT) DB_Object_Type 1.3.18.0.2.4.35 1 1 Char

(DPN) DB_Product_Name 1.3.18.0.2.4.36 1 1024 Char

(DRL) DB_Product_Release 1.3.18.0.2.4.37 1 1024 Char

(DTI) DB_Target_Database_Info 1.3.18.0.2.4.38 1 1024 Char

(DPR) DB_Principal 1.3.18.0.2.4.63 1 1024 Char

Note: Multiple values are allowed for DCP, DDP, and DTI. Only one value is allowed for the other attributes.

Details About Each Attribute
The following section describes each attribute.

Note: DCE Directory Services does not check that the entries are valid for DB2.
Ensure that you enter the attributes that are required and that you enter the
correct values.

DB_Authentication (DAU)
Authentication method required by the object. This attribute is required for
the database object of a DB2 server. The value must be CLIENT,
SERVER, or DCE.

922 Administration Guide

DB_Principal (DPR)
If authentication method is “DCE,” enter the DCE principal in this attribute.

DB_Comment (DCO)
For documentation purposes only.

DB_Communication_Protocol (DCP)
A multi-value attribute where each value consists of tokens that describe
the network protocol supported. Examples of the network protocols are
TCP/IP, APPC, IPX/SPX, and NetBIOS. (These last two are appropriate for
OS/2 only.) Each token is separated by a semicolon. Do not put spaces
between the tokens.

¹ The tokens for TCP/IP are:

 1. tcpip
2. Host name of the target node
3. Port number used by the object to listen for incoming TCP/IP

connect requests
4. (Optional) Security can be either NONE or SOCKS.

For example: tcpip;HOSTNAME;1234

¹ The tokens for APPC are:

 1. appc
2. Network ID of the target to which to object belongs.
3. LU name where the target can be found.
4. Transaction Program Name (TPN) representing the object in the

LU (For DB2 for MVS/ESA, use DB2DRDA as the TPN.)
 5. Mode name

6. Type of security used by the target. The values are:
 – NONE
 – PROGRAM
 – SAME

For example: appc;NETID;TARGETLU;TPNAME;MODE;PROGRAM

Note: For APPC, the client must use its local control point (CP) as its
LU name.

| ¹ (OS/2, Windows NT, or Windows 95 only) The tokens for IPX/SPX are:

| 1. ipxspx
| 2. Name of the file server
| 3. Name of the object

| For example: ipxspx;SVR_NAME;OBJ_NAME

| ¹ (OS/2, Windows NT, or Windows 95 only) The tokens for NetBIOS are:

| 1. netbios
| 2. Node name of the server

| For example: netbios;SVR_NNME where the client adapter number is
| found in either the registry value db2clientadpt or the database
| manager configuration parameter dft_client_adpt.

 Appendix G. DCE Directories 923

| ¹ (Windows NT or Windows 95 only) The tokens for NPIPE are:

| 1. NPIPE
| 2. Computer name of the server
| 3. Instance name of the server

| For example: npipe;computername;instance

DB_Database_Protocol (DDP)
The database protocol or protocols supported by the target database.
Examples of the values are DB2RA and DRDA. The following are the
cdscp commands to add two protocols.
add object /.:/subsys/database/AIXDB1 DB_Database_Protocol db2ra

add object /.:/subsys/database/AIXDB1 DB_Database_Protocol drda

DB_Database_Locator_Name (DLN)
The DCE name of the database locator object. In the database object, the
name is for the DBMS instance. In the routing information object, the name
is for the DB2 Connect instance.

For example, /.../CELL_TORONTO/subsys/database/AIX_INST

DB_Native_Database_Name (DNN)
The database name or alias by which the database is known within the
instance containing the database. This is the name that a local application
on the instance uses to connect to that database.

The name is up to 8 characters for a DB2 for Universal Database
database. For other databases, the length of the name may be different.
For example it can be up to 18 characters for databases on DB2 for
MVS/ESA.

DB_Object_Type (DOT)
The type of object. This attribute is required for all objects and can be one
of the following:

D Database object
L Database locator object
R Routing information object

DB_Product_Name (DPN)
The identification of the product. For documentation purposes only.

DB_Product_Release (DRL)
The product release level. For documentation purposes only.

DB_Target_Database_Info (DTI)
A multi-value attribute where each value consists of a fixed number of
tokens, separated by a semicolon. Do not put spaces between the tokens.
The tokens must be in the following order:

1. Database name. The DCE name of a target database for which the
routing service is provided. The value *OTHERDBS specifies a default
gateway for any target databases not explicitly defined in the routing
information object.

924 Administration Guide

2. Outbound protocol from router. The database protocol used by the
target database, or the database protocol the routing DB2 Connect
instance uses to communicate with that target database. For example,
DRDA.

3. Inbound protocol to router. The database protocol accepted by the
routing DB2 Connect instance object. For example, DB2RA.

4. Authenticate at gateway. The valid values are 0 or 1. See Table 57 on
page 926 for more details.

5. Parameter string which contains information specific to the DB2
Connect gateway. The string contains tokens that must be in the order
described below. The tokens are separated by commas. For tokens
that are not specified, the default is used.
¹ Map-file name. The fully-qualified name of the SQLCODE

mapping file that overrides the default SQLCODE mapping. To
turn off SQLCODE mapping, specify NOMAP.

¹ D. The application disconnects from the DRDA server database
when specific SQLCODEs are returned. Refer to the DB2 Connect
User's Guide for details about the SQLCODEs.

¹ INTERRUPT_ENABLED. DB2 Connect will drop the connection
and roll back the unit of work when a client issues an interrupt
while connected to the DRDA server.

The following are some examples:

 NOMAP

 /u/username/sqllib/map/dcs1new.map,D

 /u/username/sqllib/map/dcs1new.map,D,INTERRUPT_ENABLED

Where defaults are used, use a comma to preserve the order of the
tokens, for example:

 ,D

or

 ,,INTERRUPT_ENABLED

Refer to the DB2 Connect User's Guide for details about the
Parameter string.

6. The DCE name of the DB2 Connect instance that provides the routing
service.

The following is an example of the DB_Target_Database_Info:

 /.../CELL_TORONTO/subsys/database/MVSDB;\

 drda;db2ra;0;;\

 /.../CELL_TORONTO/subsys/database/GW_INST

Note: In the above example, the back slash (\) is a line continuation
character.

 Appendix G. DCE Directories 925

Directory Services Security
When using DCE directory services in an environment without a DB2 Connect gateway,
authentication is the same as is used for other DB2 Client Application Enabler
accessing database servers. For more information, see “Authentication” on page 141.

When using DCE directory services in an environment with a DB2 Connect gateway,
the DB2 Connect administrator determines where user names and passwords are
validated. With DCE directories, specify the following:

¹ The security type of the communication protocol in the database locator object
representing the DB2 Connect workstation. (If a remote client is connected to the
DB2 Connect Extended Edition gateway via an APPC connection, specify a
security type of NONE in the DCE Locator Object of the gateway.)

¹ The authentication type in the database object.
¹ The security type of the communication protocol in the database object (or its

associated locator object).
¹ The authenticate at gateway token in the routing information object.

Table 57 shows the possible combinations of these values and where validation is
performed for each combination using APPC connections. The combinations shown in
this table are supported by DB2 Connect with DCE Directory Services.

Table 57. Valid Security Scenarios with DCE using APPC Connections

 Database Object of the Server Routing Object Validation

Case Authentication Security Authenticate at
Gateway

1 CLIENT SAME 0 Remote client (or DB2 Connect
workstation)

2 CLIENT SAME 1 DB2 Connect workstation

3 SERVER PROGRAM 0 DRDA server

4 SERVER PROGRAM 1 DB2 Connect workstation and
DRDA server

5 DCE NONE NOT APPLICABLE DCE

Table 58 shows the possible combinations of these values and where validation is
performed for each combination using TCP/IP connections. The combinations shown in
this table are supported by DB2 Connect with DCE Directory Services.

Table 58 (Page 1 of 2). Valid Security Scenarios with DCE using TCP/IP Connections

Case Authentication Authenticate at
Gateway

Validation

1 CLIENT 0 Client

2 CLIENT 1 DB2 Connect workstation

3 SERVER 0 DRDA server

926 Administration Guide

Table 58 (Page 2 of 2). Valid Security Scenarios with DCE using TCP/IP Connections

Case Authentication Authenticate at
Gateway

Validation

4 NOT APPLICABLE NOT APPLICABLE None

5 DCE NOT APPLICABLE DCE

Each combination is applicable to both APPC and TCP/IP and is described in more
detail below:

1. The user name and password are validated only at the remote client. (For a local
client, the user name and password are validated only at the DB2 Connect
workstation.)

The user is expected to be authenticated at the location he or she first signs on to.
The user ID is sent across the network, but not the password. Use this type of
security only if all client workstations have adequate security facilities.

2. The user name and password are validated at the DB2 Connect workstation only.
The password is sent across the network from the remote client to the DB2
Connect workstation but not to the DRDA server.

3. The user name and password are validated at the DRDA server only. The
password is sent across the network from the remote client to the DB2 Connect
workstation and from the DB2 Connect workstation to the DRDA server.

4. The user name and password are validated at both the DB2 Connect workstation
and the DRDA server. The password is sent across the network from the remote
client to the DB2 Connect workstation and from the DB2 Connect workstation to
the DRDA server.

Because validation is performed in two places, the same set of user names and
passwords must be maintained at both the DB2 Connect workstation and the
DRDA server.

5. A DCE token is obtained from the DCE Security Server.

Notes:

1. For AIX-based systems, all users using security type SAME must belong to the AIX
system group.

2. For AIX-based systems with remote clients, the instance of the DB2 Connect
product running on the DB2 Connect workstation must belong to the AIX system
group.

3. Access to a DRDA server is controlled by its own security mechanisms or
subsystems; for example, the Virtual Telecommunications Access Method (VTAM)
and Resource Access Control Facility (RACF). Access to protected database
objects is controlled by the SQL GRANT and REVOKE statements.

 Appendix G. DCE Directories 927

Configuration Parameters and Registry Variables
The following configuration parameters are used with DCE directories. An example of
the values is shown. Refer to “Distributed Services” on page 690 for details.

¹ dir_obj_name is the database instance name which is concatenated with
dir_path_name. If the instance name is used as the target of the ATTACH
command, the name must be less than or equal to 8 characters and all upper
case, for example:

 AIX_INST

¹ dir_type identifies whether or not to use DCE directory services. To enable DCE
directory services, this parameter must be set to:

 DCE

Note that dir_type is set to NONE and cannot be updated on database clients that
do not support the use of DCE directory services.

¹ dir_path_name is the directory path name provided by the DCE administrator, for
example:

 /.:/subsys/database/

¹ route_obj_name is an optional parameter that provides the name of the routing
information object. The name can be fully-qualified, for example:

 /.:/subsys/database/ROUTE1

or a one-part name that will be concatenated with dir_path_name, for example:

 ROUTE1

¹ dft_client_comm is an optional parameter that specifies the communications
protocol used by the client, for example:

 TCPIP

This parameter can also specify more than one protocol, for example:

| TCPIP,APPC (on UNIX-based platforms)

| TCPIP,APPC,IPXSPX,NETBIOS (on OS/2 platforms)

| TCPIP,APPC,IPXSPX,NETBIOS,NPIPE (on Windows NT or Windows 95 platforms)

| ¹ dft_client_adpt is an optional parameter that specifies the default client adapter
| number for the NetBIOS protocol on OS/2, Windows NT, or Windows 95. The valid
| range of numbers is zero through fifteen (0 to 15). If this parameter contains a
| non-numeric value, then the value defaults to zero (0). If this parameter contains a
| value outside the range allowed, then the value defaults to zero (0).

For the following parameters, registry variables can override the parameter values.

Configuration Parameter Registry Variable
dir_path_name DB2DIRPATHNAME
route_obj_name DB2ROUTE
dft_client_comm DB2CLIENTCOMM
dft_client_adpt DB2CLIENTADPT

928 Administration Guide

The rules for setting these registry variables is the same as their corresponding
configuration parameter. For example, like the dft_client_comm parameter, the
DB2CLIENTCOMM is a character string that can have multiple values, each separated
by a comma, for example:

 db2set DB2CLIENTCOMM=TCPIP,APPC

| CATALOG and ATTACH Commands, and the CONNECT Statement
DCE information needs to be specified in the following commands:

¹ CATALOG GLOBAL DATABASE Command
 ¹ CONNECT Statement
 ¹ ATTACH Command

CATALOG GLOBAL DATABASE Command
Use the CATALOG GLOBAL DATABASE command when the client and server have a
different path name, or when the database name contains more than 8 characters or
mixed case characters. The database administrator enters the DCE name of the
database and directory type DCE.

For example:

¹ When the path names are different, for example if dir_path_name =
/.../CELL_TORONTO/subsys/database/:

CATALOG GLOBAL DATABASE

/.../CELL_VANCOUVER/subsys/database/VMDB AS VANVMDB

USING DIRECTORY DCE WITH "comment-string"

¹ When the database name contains more than 8 characters, such as the name
DB_LONGNAME:

CATALOG GLOBAL DATABASE

/.../CELL_VANCOUVER/subsys/database/DB_LONGNAME AS VANVMDB

USING DIRECTORY DCE WITH "comment-string"

 CONNECT Statement
To retrieve the appropriate DCE directory object, the client must know the fully-qualified
DCE name of the database or the DBMS instance. Some of the methods of specifying
the name in the CONNECT statement follow.

¹ Enter the alias, for example:

CONNECT TO VANVMDB

¹ Enter the one-part name, for example:

CONNECT TO VMDB

In this case, the path name specified at the client must be the same as the path name
specified at the server. (The path name is specified by the dir_path_name configuration
parameter or the corresponding registry value.)

 Appendix G. DCE Directories 929

 ATTACH Command
The effective path name of the client must be the same as the path name of the target
DBMS instance.

If the dir_path_name is the same for client and server (for example,
/.../CELL_TORONTO/subsys/database/) and the dir_obj_name at the database server is
AIX_INST, the command to attach to the instance is:

ATTACH TO AIX_INST

How a Client Connects to a Database
Figure 88 on page 931 shows a sample configuration of a database network with two
DCE cells. /.../CELL_TORONTO and /.../CELL_VANCOUVER are the names of the cells.
(Each of these cells contains a directory called /.:/subsys/database/ and while not
illustrated in diagram, is used in other examples.)

930 Administration Guide

/ . . . /CELL_TORONTO / . . . /CELL_VANCOUVER

MVSDB VMDB

AIXDB1
OS2DB

DB2 Connect DB2 Connect

DB2 for AIX DB2 for OS/2

DRDA

DRDA

LAN

Client_1

Client_2

Client_3

Client_4

AIXDB2

DBMS
Instance

MVS_INST

DBMS
Instance

VM_INST

DBMS
Instance

AIX_INST

DBMS
Instance

OS2_INST

DB2
for MVS

DB2
for VM

BOUNDARY

CELL

DB2RADB2RA

Figure 88. Configuration of A Network Database

To allow the clients in the TORONTO cell to access all the databases in both cells,
values must be specified in the database manager configuration parameters and the
following objects must be created:

¹ A database object for each database.
¹ A database locator object for the two database servers for DB2 for AIX and DB2

for OS/2.

 Appendix G. DCE Directories 931

¹ A single routing information object that is known to all clients. The attributes specify
which DB2 Connect node to use for the MVSDB and VMDB databases.

The following provide examples of how a client connects to a database:

¹ Connecting to Databases in the Same Cell
¹ Connecting to a Database in a Different Cell.

These examples include the database manager configuration parameters that must be
specified.

Connecting to Databases in the Same Cell
This section describes several examples of how clients connect to databases in the
same cell.

1. Client_1 connects to AIXDB2. The database shares the same directory path name
as the client.

The database administrator needs to:
¹ Specify the directory path name value in the configuration parameter

dir_path_name (or the DB2DIRPATHNAME registry value).
¹ Specify the directory services type value to be DCE in the configuration

parameter dir_type.
¹ Specify the communication protocol in the configuration parameter

dft_client_comm (or the DB2CLIENTCOMM registry value).

The local system database directory does not contain AIXDB2, so the DCE
directory is searched using the fully-qualified name. The name is created by
concatenating the value for the configuration parameter dir_path_name (or the
DB2DIRPATHNAME registry value) with AIXDB2.

The sequence of events is:
a. Client_1 obtains the database object for AIXDB2 using the DCE name of the

database /.../CELL_TORONTO/subsys/database/AIXDB2.
b. From this object, Client_1 knows that AIXDB2 uses the DB protocol DB2RA,

which is the same protocol that Client_1 uses.
c. The DB protocols match, so Client_1 reads the DBMS locator object for

AIX_INST, retrieves the communications protocol attribute value that matches
the one it uses, and uses the information to start a conversation with that
DBMS instance.

2. Client_3 connects to MVSDB. The database shares the same directory path name
as the client and uses a different database protocol from the client.

The database administrator needs to:
¹ Specify the directory path name value in the configuration parameter

dir_path_name (or the DB2DIRPATHNAME registry value).
¹ Specify the directory services type value to be DCE in the configuration

parameter dir_type.
¹ Specify the communication protocol in the configuration parameter

dft_client_comm (or the DB2CLIENTCOMM registry value).
¹ Specify the DCE name of the default routing information object in the

configuration parameter route_obj_name (or the DB2ROUTE registry value).

932 Administration Guide

The sequence of events is:
a. Client_3 obtains the database object for MVSDB using the DCE name of the

database /.../CELL_TORONTO/subsys/database/MVSDB.
b. From this object, Client_3 finds that MVSDB only uses the DB protocol DRDA,

which is not the protocol that Client_3 uses.
c. Client_3 then obtains the routing information object using the name defined in

the route_obj_name configuration parameter or the DB2ROUTE registry value.
The client finds the target database information for MVSDB.

d. Client_3 reads the database locator object associated with the MVSDB target
database information, retrieves the communication protocol, and sends an
SQL CONNECT request to the router.

e. The router then sets up an APPC connection with MVSDB.

Connecting to a Database in a Different Cell
This section describes an example of how a client connects to a database in a different
cell when the database protocols are different.

1. Client_3 has previously been configured to use the following:
¹ DCE directory services, by specifying DCE for the dir_type parameter.
¹ A cell other than CELL_VANCOUVER through the configuration parameter

dir_path_name, for example:

 /.../CELL_TORONTO/subsys/database/

2. In order for Client_3 to connect to VMDB, the database administrator needs to:
¹ Explicitly catalog VMDB in the local system database directory. Associate the

DCE name for VMDB with a locally unique database alias, and issue the
CONNECT statement with the alias value. For example:

CATALOG GLOBAL DATABASE

/.../CELL_VANCOUVER/subsys/database/VMDB AS VANVMDB

USING DIRECTORY DCE WITH "comment-string"

followed by:

CONNECT TO VANVMDB

¹ Specify the communication protocol in the configuration parameter
dft_client_comm (or the DB2CLIENTCOMM registry value).

¹ Specify the DCE name of the default routing information object in the
configuration parameter route_obj_name (or the DB2ROUTE registry value).

The sequence of events is:
a. Client_3 finds the fully qualified DCE name of VANVMDB in its system

database directory.
b. Client_3 obtains the database object for VMDB using the DCE name of the

database /.../CELL_VANCOUVER/subsys/database/VMDB.
c. From this object, Client_3 finds that VMDB only uses the DB protocol DRDA,

which is not the protocol that Client_3 uses.
d. Client_3 then obtains the routing information object using the name defined in

the route_obj_name configuration parameter or the DB2ROUTE registry value.
The client finds the target database information for VMDB.

 Appendix G. DCE Directories 933

e. Client_3 reads the database locator object associated with the VMDB target
database information and retrieves the communication protocol and sends an
SQL CONNECT request to the router.

f. The router then sets up an APPC connection with VMDB.

How Directories are Searched
If the DCE directory is used in an environment where all the target databases share the
same directory path name, no local directories are required on the clients.

This section describes the order in which directories are searched for the following:

 ¹ ATTACH Command
 ¹ CONNECT Statement

 ATTACH Command
Figure 89 shows how the directories are searched when a client attaches to a DBMS
instance called ABC_INST.

NO

YES

YES

Attach to local ABC_INST

Attach to ABC_INST

NO

Search DCE directory
Attach to ABC_INST

Environment variable
DB2INSTANCE
= ABC_INST?

Local node
directory entry
= ABC_INST?

Figure 89. How Directories are Used to Attach a Database

934 Administration Guide

 CONNECT Statement
Figure 90 shows how the directories are searched when a client connects to a
database called DBTEST.

YES
Connect to local DBTEST

YES

NO

YES

YES YES

Search DCE directory
Connect to DBTEST

Search DCE directory
Connect to DBTEST

Local node
directory entry
for DBTEST?

Connect to
remote DBTEST

1. Use node name and
as the name of database locator object

2. Search DCE directory
3. Connect to DBTEST

dir_path_nameError

NO

NO

NO NO

System database
directory entry
= DBTEST?

Directory type
= DCE?

Directory type
= indirect?

Directory type
= remote?

Figure 90. How Directories are Used to Connect a Database

 Appendix G. DCE Directories 935

Temporarily Overriding DCE Directory Information
You can use the local database directory to override the DCE directory information. For
example, if you CONNECT TO DBTEST where /.:/subsys/database/DBTEST is defined
in the DCE directory as residing on a host called JAGUAR, you can temporarily change
DBTEST to a different database residing on a host called STORM. Catalog DBTEST
locally as a remote database with a node directory entry pointing to STORM.

You can create an alias for a database whose DCE name does not follow the directory
path name of the client. See “CATALOG GLOBAL DATABASE Command” on
page 929 for details about the command.

Directory Services Tasks
The tasks that must be performed to setup and use DCE Directory Services are listed
below. The following sections describe the details of each task.

¹ DCE Administrator Tasks

The DCE administrator must update the DCE directory so that the new database
resource information can be added.

¹ Database Administrator Tasks

The database administrator must update the DCE directory and supply information
for DB2 installation and configuration.

¹ Database User Tasks

The database user must log in to DCE and know the target database name.

In addition, the network administrator sets up the network access for each user node.
Refer to the network documentation for the details.

DCE Administrator Tasks
The DCE administrator must do the following tasks before the directory objects can be
created or read:

¹ Assign the directory subtree for DB2, for example /.:/subsys/database
¹ Grant the privileges to the database administrator to create directory objects
¹ Grant the privileges to the database users to read the directory objects
¹ Add the information for the new DCE directory object attributes to the DCE attribute

table.

Edit the CDS attributes file (on UNIX platforms /etc/dce/cds_attributes; on OS/2
X:\opt\dcelocal\etc\cds_attr, where "X" is the appropriate drive) and append the
following:

936 Administration Guide

1.3.18.0.2.4.30 DB_Comment char

1.3.18.0.2.4.31 DB_Communication_Protocol char

1.3.18.0.2.4.32 DB_Database_Protocol char

1.3.18.0.2.4.33 DB_Database_Locator_Name char

1.3.18.0.2.4.34 DB_Native_Database_Name char

1.3.18.0.2.4.35 DB_Object_Type char

1.3.18.0.2.4.36 DB_Product_Name char

1.3.18.0.2.4.37 DB_Product_Release char

1.3.18.0.2.4.38 DB_Target_Database_Info char

1.3.18.0.2.4.39 DB_Authentication char

1.3.18.0.2.4.63 DB_Principal char

¹ Ensure DCE is running when users need access to the databases using DCE
Directory Services.

For more information, refer to the DCE documentation for the platform you are using.

Database Administrator Tasks
The database administrator must do the following tasks:

¹ Obtain the directory subtree for the database resources from the DCE
administrator. For example, /.:/subsys/database

¹ During installation of the DB2 database manager, ask the DCE administrator to add
the new DCE directory object attributes required by DB2.

¹ Assign a unique name for each DBMS instance in the DCE directory subtree. For
example, /.:/subsys/database/AIX_INST

¹ For each DBMS instance specify the database manager configuration parameters
for DCE.
 – dir_type
 – dir_obj_name
 – dir_path_name
 – route_obj_name
 – dft_client_comm
 – dft_client_adpt

Some of the configuration parameters can be temporarily overridden by registry
values set by the client. Refer to “Configuration Parameters and Registry Variables”
on page 928 for more information.

¹ Assign a unique name for each database in the DCE directory subtree. Specify
the name in the dir_obj_name parameter in the database configuration file.

¹ Create the objects for DCE Directory Services using the DCE cdscp commands to
create and display objects. The objects are created separately from the database
manager installation process and the database manager instance start process.

Three types of objects exist.
– A database object is required for each target database.
– A database locator object is required for each DB2 Connect instance and each

DBMS instance (without DB2 Connect) which is associated with more than one
database.

– Routing information objects are required to access a host database.
¹ Depending on each environment, the database administrator must determine:

 Appendix G. DCE Directories 937

– How to group the clients into logical groups considering what databases they
access, and what communications protocols they use.

– How many routing information objects are required.
– Which target databases should be recorded in each routing information object.
– Which routing information objects should be known to which group of clients.

Refer to “Creating Directory Objects” on page 917 for details about the objects.

Database User Tasks
The database user must do the following tasks:

¹ Obtain the name of the database from the database administrator. This name can
be a simple one-part name, or a fully-qualified DCE name.

¹ If needed, specify the values required for DCE Directory Services in the registry
values. Registry values set by the client can temporarily override the configuration
parameters.

– If host database access is required, obtain the fully-qualified DCE name of the
routing information object from the database administrator. If this name is not
specified in the route_obj_name, or it is a different name, specify this name in
the DB2ROUTE registry value before trying to connect to the host database.

| – If your preferred communication protocol is not specified in dft_client_comm, or
| it is a different protocol, specify the communication protocol for the client in the
| DB2CLIENTCOMM registry value. Here are some UNIX examples:

| db2set DB2CLIENTCOMM=tcpip

| db2set DB2CLIENTCOMM=appc

| db2set DB2CLIENTCOMM=tcpip,appc

| db2set DB2CLIENTCOMM=appc,tcpip

| Some OS/2 examples are:

| db2set DB2CLIENTCOMM=ipxspx

| db2set DB2CLIENTCOMM=netbios

| db2set DB2CLIENTCOMM=tcpip,ipxspx,netbios

| db2set DB2CLIENTCOMM=netbios,tcpip,ipxspx,appc

| Some Windows NT and Windows 95 examples are:

| db2set DB2CLIENTCOMM=npipe

| db2set DB2CLIENTCOMM=netbios

| db2set DB2CLIENTCOMM=tcpip,ipxspx,netbios

| db2set DB2CLIENTCOMM=netbios,tcpip,ipxspx,appc,npipe

| If more than one communication protocol exists, the first one specified is used.
¹ If any of the databases has a DCE name that is not in the directory path defined in

the dir_path_name configuration parameter or the DB2DIRPATHNAME registry
value, then explicitly catalog the database with the CATALOG GLOBAL
DATABASE command. Refer to “CATALOG GLOBAL DATABASE Command” on
page 929 for more information.

¹ Log in to DCE before connecting to the target database or attaching to the
database instance. Refer to the OSF DCE Administration Guide for more
information about the login command.

938 Administration Guide

Directory Services Restrictions
This section describes what is not supported.

| ¹ Not all database clients may be supported. See your Quick Beginnings manual to
| determine whether DCE directory services is supported from your DB2 client.
| Currently, support is only provided for DB2 Client Application Enabler for all UNIX,
| OS/2, Windows NT, and Windows 95 platforms.

¹ A client cannot use DCE Directory Services to connect to a DB2 for OS/2 Version
1 server.

| ¹ Only Windows NT or Windows 95 clients can use any or all of the TCP/IP, APPC,
| NetBIOS, IPX/SPX, or NPIPE protocols. Only OS/2 clients can use any or all of the
| TCP/IP, APPC, NetBIOS, and IPX/SPX protocols. All supported UNIX clients can
| only use the TCP/IP and APPC protocols.

¹ LIST DATABASE (or NODE) DIRECTORY COMMANDS only provide entries from
the local directories and not entries from the DCE directory. You can use the cdscp
show object command in DCE to display the objects.

¹ When all of the following conditions exist, the owner of the database manager
instance must login to DCE before starting the database manager (using the
db2start command).

– The database manager instance is configured to support DCE directory
services through the dir_type configuration parameter

– The cell directory services object can only be read by explicitly logging into
DCE

– The DCE directory must be accessed to support either of the following:
- A transaction manager database (specified by the tm_database

configuration parameter) located on another instance
- A client that cannot support DCE directory services, or is not configured to

use DCE directory services.

Note: When performing the DCE login, you should use a principal that has a long
ticket lifetime.

¹ When using a DDCS Version 2.2 (or earlier) gateway to connect a client that is
using DCE directory services to a DRDA server, you must catalog the database
alias in the gateway's local directory. This database alias must be the same as the
alias on the client and it must represent the same database.

| ¹ When using Windows NT, Windows 95, or Windows 98 clients, DB2DCE.DLL will
| be used. This file is found in the bin subdirectory of the sqllib subdirectory. If the
| DCE provider is Gradient**, by default the file DB2DCE.GRD is equivalent to
| DB2DCE.DLL. If the DCE provider is IBM, the file DB2DCE.IBM must be copied to
| DB2DCE.DLL.

 Appendix G. DCE Directories 939

940 Administration Guide

Appendix H. X/Open Distributed Transaction Processing Model

The following figure illustrates the X/Open Distributed Transaction Processing (DTP)
model and the relationship between the three components included in this model.

Application Program (AP)

Transaction
Manager

(TM)
Resource
Managers

(RMs)

(1) AP uses
resources from

a set of RMs

(3) TM and RMs exchange transaction information

(2) AP defines
transaction boundaries

through TM
interfaces

Figure 91. X/Open Distributed Transaction Processing (DTP) Model

The following sections provide an overview of each of the components included in the
Distributed Transaction Processing model:

¹ Application Program (AP)
¹ Transaction Manager (TM)
¹ Resource Managers (RM).

Application Program (AP)
The application program (AP) defines transaction boundaries, and specifies the
application-specific actions that make up the transaction.

For example, a CICS* application program might want to access resource managers
(RMs) such as a database and a CICS Transient Data Queue, and use programming
logic between these accesses to manipulate the data. Each access request is passed
to the appropriate resource managers through function calls specific to that RM. In the
case of DB2, these could be function calls generated by the DB2 precompiler for each
SQL statement, or database calls coded directly by the programmer using the APIs.

A transaction manager product usually includes a transaction processing (TP) Monitor
to run the user's application. The TP Monitor provides APIs to allow an application to
start and end a transaction, and to perform application scheduling and load balancing

 Copyright IBM Corp. 1993, 1998 941

among the many users who want to run the application. Therefore the application
program (AP) in a DTP environment is really a combination of both the user application
and the TP monitor.

To facilitate an efficient online transaction processing (OLTP) environment, the TP
Monitor pre-allocates a number of server processes at startup, and then schedules and
reuses them among the many user transactions. This saves on the amount of system
resources by allowing more concurrent users to be supported with a smaller number of
server processes and their corresponding RM processes. Reusing these processes also
avoids the overhead of starting up a process in the TM and RMs for each user
transaction or program. (A program invokes one or more transactions.) This also means
the server processes are the actual "user processes" to the TM and the RMs. This has
implications for security administration and application programming. See “Security
Considerations” on page 369 for details.

The following types of transactions are possible from a TP Monitor:

 ¹ Non-XA transactions

These transactions involve RMs that are not defined to the TM, and are therefore
not coordinated under the two-phase commit protocol of the TM. This might be
necessary if the application needs to access an RM that does not support the XA
interface. The user basically just uses the TP monitor as a mechanism that
provides efficient scheduling of applications and load balancing. Since the TM does
not explicitly "open" the RM for XA processing, the RM treats this application as
any other application that runs in a non-DTP environment.

 ¹ Global transactions

These transactions involve RMs that are defined to the TM, and are under the TM's
two-phase commit control. A global transaction is a unit of work that could involve
one or more RMs. A transaction branch is the part of work between a TM and an
RM to support the global transaction. A global transaction could have multiple
transaction branches when multiple RMs are accessed through one or more
application processes that are coordinated by the TM.

Loosely coupled, global transactions exist when each of a number of application
processes accesses the RMs as if they are in a separate global transaction, but
those applications are under the coordination of the TM. Each application process
will have its own transaction branch within an RM. When a commit or rollback is
requested by any one of the APs, TM, or RMs, the transaction branches are
completed altogether. It is the application's responsibility to ensure that resource
deadlock does not occur among the branches. (Note that the transaction
coordination performed by the DB2 transaction manager for applications prepared
with the SYNCPOINT(TWOPHASE) option is roughly equivalent to these global,
loosely-coupled transactions. See “Updating Multiple Databases” on page 348.)

Tightly coupled global transactions exist when multiple application processes take
turns to do work under the same transaction branch in an RM. To the RM, the two
application processes are treated as a single entity. The RM must ensure that
resource deadlock does not occur within the transaction branch.

942 Administration Guide

Transaction Manager (TM)
The transaction manager (TM) assigns identifiers to transactions, monitors their
progress, and takes responsibility for transaction completion and failure. The transaction
branch identifiers (known as XIDs) are assigned by the TM to identify both the global
transaction and the specific branch within an RM. This is the correlation token between
the log in a TM and the log in an RM. The XID is needed for two-phase commit, or
rollback, to perform the resynchronization operation (also known as resync) on a
system startup, or to let the administrator perform a heuristic operation (also known as
manual intervention) if necessary.

After a TP Monitor is started up, it will ask the TM to open all the RMs that a set of
application servers have defined. The TM will pass the xa_open calls to the RMs so
that they can be initialized for DTP processing. As part of this startup procedure, the
TM will perform the resync to recover all indoubt transactions . An indoubt transaction
is a global transaction that was left in an uncertain state. This occurs when either the
TM or at least one RM becomes unavailable after successfully completing the first
phase (that is, the prepare phase) of the two-phase commit protocol. The RM will not
know whether to commit or rollback its branch of the transaction until the TM can
consolidate its own log with the RMs' when they become available again. To perform
the resync operation, the TM will issue the xa_recover call one or more times to each
of the RMs to identify all the indoubt transactions. The TM will compare the replies with
the information in its own log to determine whether it should inform the RMs to
xa_commit or xa_rollback those transactions. If an RM had already committed or
rolled back its branch of an indoubt transaction through a heuristic operation by its
administrator, the TM will issue an xa_forget call to that RM to complete the resync
operation.

When a user application requests a commit or rollback, it must use the API provided by
the TP Monitor or TM so that the TM can coordinate the commit and rollback among all
the RMs involved. For example, when a CICS application issues the CICS SYNCPOINT
request to commit a transaction, the CICS/6000* TM will in turn issue the XA calls such
as xa_end, xa_prepare, xa_commit, or xa_rollback to request the RM to commit or
rollback the transaction. The TM could choose to use one-phase instead of two-phase
commit if only one RM is involved, or if an RM replies that its branch is read-only.

Resource Managers (RM)
A resource manager (RM) provides access to shared resources such as databases.

DB2 as a resource manager of a database resource can participate in a global
transaction that is being coordinated by an XA-compliant TM. As required by the XA
interface, the database manager provides a db2xa_switch external C variable of type
xa_switch_t to return the XA switch structure to the TM. This data structure contains
the addresses of the various XA routines to be invoked by the TM, and the operating
characteristics of the RM. For more information on the XA functions supported by the
database manager see “XA Function Supported” on page 371.

 Appendix H. X/Open Distributed Transaction Processing Model 943

There are two methods for the RM to register its participation in each global
transaction: static registration and dynamic registration . The database manager
implements the more advanced and efficient dynamic registration method:

¹ Static registration requires the TM to issue for every transaction the xa_start,
xa_end, xa_prepare series of calls to all the RMs defined for the server
application regardless whether this particular RM is used by the transaction or not.
This is inefficient when not every transaction involves every RM. This inefficiency
gets worse if there are many RMs defined.

¹ Dynamic registration is provided by the XA specification for flexibility and efficiency.
An RM will register to the TM using the ax_reg call only when the RM receives a
request for its resource. Note that there is no performance disadvantage with this
method even when there is only one RM defined, or when every RM is used by
every transaction because the ax_reg and xa_start calls have similar paths in the
TM.

The XA interface provides two-way communication between a TM and an RM. It is a
system-level interface between the two DTP software components, not an ordinary
application program interface to which an application developer codes. However,
application developers should be familiar with the programming function and restrictions
that the DTP software components impose. See the Embedded SQL Programming
Guide for information about the X/Open XA interface programming considerations.

Although the XA interface is invariant, each XA-compliant TM may have product
specific ways of integrating an RM. For information about integrating your DB2 product
as a resource manager with a specific transaction manager, see the appropriate TM
product documentation.

944 Administration Guide

Sample Tables

 Appendix I. Sample Tables

This appendix shows the information contained in the sample tables, and how to install
and remove them. The sample tables are used in the examples that appear in this
manual and other manuals in this library. In addition, the data contained in the sample
files with BLOB and CLOB data types is shown.

The following sections are included in this appendix:.

“The Sample Database”
“To Install the Sample Database”
“To Erase the Sample Database” on page 946
“CL_SCHED Table” on page 946
“DEPARTMENT Table” on page 946
“EMPLOYEE Table” on page 947
“EMP_ACT Table” on page 951
“EMP_PHOTO Table” on page 953
“EMP_RESUME Table” on page 953
“IN_TRAY Table” on page 954
“ORG Table” on page 954
“PROJECT Table” on page 954
“SALES Table” on page 955
“STAFF Table” on page 956
“STAFFG Table” on page 957
“Sample Files with BLOB and CLOB Data Type” on page 958
“Quintana Photo” on page 959
“Quintana Resume” on page 959
“Nicholls Photo” on page 960
“Nicholls Resume” on page 960
“Adamson Photo” on page 961
“Adamson Resume” on page 962
“Walker Photo” on page 963
“Walker Resume” on page 963.

In the sample tables, a dash (-) indicates a null value.

The Sample Database
The examples in this book use a sample database. To use these examples, you must
install the SAMPLE database. To use it, the database manager must be installed.

To Install the Sample Database
An executable file installs the sample database.2

To install a database you must have SYSADM authority.

2 For information related to this command, see the DB2SAMPL command in the Command Reference.

 Copyright IBM Corp. 1993, 1998 945

Sample Tables

¹ When Using UNIX-based Systems

If you are using the operating system command prompt, type:

 sqllib/misc/db2sampl <path>

from the home directory of the database manager instance owner, where path is
an optional parameter specifying the path where the sample database is to be
created. Press Enter.3

| The schema for DB2SAMPL is the CURRENT SCHEMA special register value.

¹ When using OS/2, Windows 95 or Windows NT

If you are using the operating system command prompt, type:

db2sampl e

where e is an optional parameter specifying the drive where the database is to be
created. Press Enter.4

If you are not logged on to your workstation through User Profile Management, you
will be prompted to do so.

To Erase the Sample Database
If you do not need to access the sample database, you can erase it by using the DROP
DATABASE command:

db2 drop database sample

 CL_SCHED Table

Name: CLASS_CODE DAY STARTING ENDING

Type: char(7) smallint time time

Desc: Class Code
(room:teacher)

Day # of 4 day
schedule

Class Start Time Class End Time

 DEPARTMENT Table

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: char(3) not
null

varchar(29) not null char(6) char(3) not
null

char(16)

3 If the path parameter is not specified, the sample tables are installed in the default path specified by the DFTDBPATH parameter in
the database manager configuration file.

4 If the drive parameter is not specified, the sample tables are installed on the same drive as DB2.

946 Administration Guide

Sample Tables

Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Desc: Department
number

Name describing general
activities of department

Employee
number
(EMPNO) of
department
manager

Department
(DEPTNO) to
which this
department
reports

Name of the
remote location

Values: A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 -

 B01 PLANNING 000020 A00 -

 C01 INFORMATION CENTER 000030 A00 -

 D01 DEVELOPMENT CENTER - A00 -

 D11 MANUFACTURING SYSTEMS 000060 D01 -

 D21 ADMINISTRATION SYSTEMS 000070 D01 -

 E01 SUPPORT SERVICES 000050 A00 -

 E11 OPERATIONS 000090 E01 -

 E21 SOFTWARE SUPPORT 000100 E01 -

 EMPLOYEE Table

Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: char(6) not
null

varchar(12)
not null

char(1) not
null

varchar(15)
not null

char(3) char(4) date

Desc: Employee
number

First name Middle
initial

Last name Department
(DEPTNO)
in which
the
employee
works

Phone
number

Date of hire

JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

char(8) smallint not null char(1) date dec(9,2) dec(9,2) dec(9,2)

Job Number of years of
formal education

Sex (M
male, F
female)

Date of birth Yearly
salary

Yearly
bonus

Yearly
commission

See the following page for the values in the EMPLOYEE table.

 Appendix I. Sample Tables 947

Sample Tables

 C
O

M
M

de
c(

9,
2)

42
20

33
00

30
60

32
14

25
80

28
93

23
80

20
92

37
20

23
40

19
04

22
74

20
22

17
80

19
74

 B
O

N
U

S

de
c(

9,
2)

10
00

80
0

80
0

80
0

50
0

70
0

60
0

50
0

90
0

60
0

50
0

60
0

50
0

40
0

50
0

 S
A

LA
R

Y

de
c(

9,
2)

52
75

0

41
25

0

38
25

0

40
17

5

32
25

0

36
17

0

29
75

0

26
15

0

46
50

0

29
25

0

23
80

0

28
42

0

25
28

0

22
25

0

24
68

0

B

IR
T

H
D

A
T

E

da
te

19
33

-0
8-

24

19
48

-0
2-

02

19
41

-0
5-

11

19
25

-0
9-

15

19
45

-0
7-

07

19
53

-0
5-

26

19
41

-0
5-

15

19
56

-1
2-

18

19
29

-1
1-

05

19
42

-1
0-

18

19
25

-0
9-

15

19
46

-0
1-

19

19
47

-0
5-

17

19
55

-0
4-

12

19
51

-0
1-

05

 S
E

X

ch
ar

(1
)

F M F M M F F M M M F F M F M

E
D

LE
V

E
L

sm
al

lin
t

no
t

nu
ll

18 18 20 16 16 16 16 14 19 14 16 18 16 17 16

JO

B

ch
ar

(8
)

P
R

E
S

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

M
A

N
A

G
E

R

S
A

LE
S

R
E

P

C
LE

R
K

A
N

A
LY

S
T

A
N

A
LY

S
T

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

H

IR
E

D
A

T
E

da
te

19
65

-0
1-

01

19
73

-1
0-

10

19
75

-0
4-

05

19
49

-0
8-

17

19
73

-0
9-

14

19
80

-0
9-

30

19
70

-0
8-

15

19
80

-0
6-

19

19
58

-0
5-

16

19
63

-1
2-

05

19
71

-0
7-

28

19
76

-1
2-

15

19
72

-0
2-

12

19
77

-1
0-

11

19
78

-0
9-

15

P
H

O
N

E
N

O

ch
ar

(4
)

39
78

34
76

47
38

67
89

64
23

78
31

54
98

09
72

34
90

21
67

45
78

17
93

45
10

37
82

28
90

W
O

R
K

D
E

P
T

ch
ar

(3
)

A
00

B
01

C
01

E
01

D
11

D
21

E
11

E
21

A
00

A
00

C
01

C
01

D
11

D
11

D
11

LA

S
T

N
A

M
E

va
rc

ha
r(

15
)

no
t

nu
ll

H
A

A
S

T
H

O
M

P
S

O
N

K
W

A
N

G
E

Y
E

R

S
T

E
R

N

P
U

LA
S

K
I

H
E

N
D

E
R

S
O

N

S
P

E
N

S
E

R

LU
C

C
H

E
S

S
I

O
'C

O
N

N
E

LL

Q
U

IN
T

A
N

A

N
IC

H
O

LL
S

A
D

A
M

S
O

N

P
IA

N
K

A

Y
O

S
H

IM
U

R
A

M
ID

IN
IT

ch
ar

(1
)

no
t

nu
ll

I L A B F D W Q G M A R J

F

IR
S

T
N

M
E

va
rc

ha
r(

12
)

no
t

nu
ll

C
H

R
IS

T
IN

E

M
IC

H
A

E
L

S
A

LL
Y

JO
H

N

IR
V

IN
G

E
V

A

E
IL

E
E

N

T
H

E
O

D
O

R
E

V
IN

C
E

N
Z

O

S
E

A
N

D
O

LO
R

E
S

H
E

A
T

H
E

R

B
R

U
C

E

E
LI

Z
A

B
E

T
H

M
A

S
A

T
O

S
H

I

 E
M

P
N

O

ch
ar

(6
)

no
t

nu
ll

00
00

10

00
00

20

00
00

30

00
00

50

00
00

60

00
00

70

00
00

90

00
01

00

00
01

10

00
01

20

00
01

30

00
01

40

00
01

50

00
01

60

00
01

70

948 Administration Guide

Sample Tables
 C

O
M

M

17
07

16
36

22
17

14
62

23
87

17
74

23
01

15
34

13
80

21
90

21
00

12
27

14
20

12
72

15
96

20
30

 B
O

N
U

S

50
0

40
0

60
0

40
0

60
0

40
0

60
0

40
0

30
0

50
0

50
0

30
0

40
0

30
0

40
0

50
0

 S
A

LA
R

Y

21
34

0

20
45

0

27
74

0

18
27

0

29
84

0

22
18

0

28
76

0

19
18

0

17
25

0

27
38

0

26
25

0

15
34

0

17
75

0

15
90

0

19
95

0

25
37

0

B

IR
T

H
D

A
T

E

19
49

-0
2-

21

19
52

-0
6-

25

19
41

-0
5-

29

19
53

-0
2-

23

19
48

-0
3-

19

19
35

-0
5-

30

19
54

-0
3-

31

19
39

-1
1-

12

19
36

-1
0-

05

19
53

-0
5-

26

19
36

-0
3-

28

19
46

-0
7-

09

19
36

-1
0-

27

19
31

-0
4-

21

19
32

-0
8-

11

19
41

-0
7-

18

 S
E

X

F M M M F M M M F F F M M F M M

E
D

LE
V

E
L

17 16 16 17 18 14 17 15 16 15 17 12 14 12 16 14

JO

B

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

D
E

S
IG

N
E

R

C
LE

R
K

C
LE

R
K

C
LE

R
K

C
LE

R
K

C
LE

R
K

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

O
P

E
R

A
T

O
R

F
IE

LD
R

E
P

F
IE

LD
R

E
P

H

IR
E

D
A

T
E

19
73

-0
7-

07

19
74

-0
7-

26

19
66

-0
3-

03

19
79

-0
4-

11

19
68

-0
8-

29

19
66

-1
1-

21

19
79

-1
2-

05

19
69

-1
0-

30

19
75

-0
9-

11

19
80

-0
9-

30

19
67

-0
3-

24

19
80

-0
5-

30

19
72

-0
6-

19

19
64

-0
9-

12

19
65

-0
7-

07

19
76

-0
2-

23

P
H

O
N

E
N

O

16
82

29
86

45
01

09
42

06
72

20
94

37
80

09
61

89
53

90
01

89
97

45
02

20
95

33
32

99
90

21
03

W
O

R
K

D
E

P
T

D
11

D
11

D
11

D
11

D
11

D
21

D
21

D
21

D
21

D
21

E
11

E
11

E
11

E
11

E
21

E
21

LA

S
T

N
A

M
E

S
C

O
U

T
T

E
N

W
A

LK
E

R

B
R

O
W

N

JO
N

E
S

LU
T

Z

JE
F

F
E

R
S

O
N

M
A

R
IN

O

S
M

IT
H

JO
H

N
S

O
N

P
E

R
E

Z

S
C

H
N

E
ID

E
R

P
A

R
K

E
R

S
M

IT
H

S
E

T
R

IG
H

T

M
E

H
T

A

LE
E

M
ID

IN
IT

S H T K J M S P L R R X F V

F

IR
S

T
N

M
E

M
A

R
IL

Y
N

JA
M

E
S

D
A

V
ID

W
IL

LI
A

M

JE
N

N
IF

E
R

JA
M

E
S

S
A

LV
A

T
O

R
E

D
A

N
IE

L

S
Y

B
IL

M
A

R
IA

E
T

H
E

L

JO
H

N

P
H

IL
IP

M
A

U
D

E

R
A

M
LA

L

W
IN

G

 E
M

P
N

O

00
01

80

00
01

90

00
02

00

00
02

10

00
02

20

00
02

30

00
02

40

00
02

50

00
02

60

00
02

70

00
02

80

00
02

90

00
03

00

00
03

10

00
03

20

00
03

30

 Appendix I. Sample Tables 949

Sample Tables

 C
O

M
M

19
07

 B
O

N
U

S

50
0

 S
A

LA
R

Y

23
84

0

B

IR
T

H
D

A
T

E

19
26

-0
5-

17

 S
E

X

M

E
D

LE
V

E
L

16

JO

B

F
IE

LD
R

E
P

H

IR
E

D
A

T
E

19
47

-0
5-

05

P
H

O
N

E
N

O

56
98

W
O

R
K

D
E

P
T

E
21

LA

S
T

N
A

M
E

G
O

U
N

O
T

M
ID

IN
IT

R

F

IR
S

T
N

M
E

JA
S

O
N

 E
M

P
N

O

00
03

40

950 Administration Guide

Sample Tables

 EMP_ACT Table

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: char(6) not
null

char(6) not
null

smallint not
null

dec(5,2) date date

Desc: Employee
number

Project
number

Activity
number

Proportion of
employee's

time spent on
project

Date activity
starts

Date activity
ends

Values: 000010 AD3100 10 .50 1982-01-01 1982-07-01

 000070 AD3110 10 1.00 1982-01-01 1983-02-01

 000230 AD3111 60 1.00 1982-01-01 1982-03-15

 000230 AD3111 60 .50 1982-03-15 1982-04-15

 000230 AD3111 70 .50 1982-03-15 1982-10-15

 000230 AD3111 80 .50 1982-04-15 1982-10-15

 000230 AD3111 180 1.00 1982-10-15 1983-01-01

 000240 AD3111 70 1.00 1982-02-15 1982-09-15

 000240 AD3111 80 1.00 1982-09-15 1983-01-01

 000250 AD3112 60 1.00 1982-01-01 1982-02-01

 000250 AD3112 60 .50 1982-02-01 1982-03-15

 000250 AD3112 60 .50 1982-12-01 1983-01-01

 000250 AD3112 60 1.00 1983-01-01 1983-02-01

 000250 AD3112 70 .50 1982-02-01 1982-03-15

 000250 AD3112 70 1.00 1982-03-15 1982-08-15

 000250 AD3112 70 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .50 1982-10-15 1982-12-01

 000250 AD3112 180 .50 1982-08-15 1983-01-01

 000260 AD3113 70 .50 1982-06-15 1982-07-01

 000260 AD3113 70 1.00 1982-07-01 1983-02-01

 000260 AD3113 80 1.00 1982-01-01 1982-03-01

 000260 AD3113 80 .50 1982-03-01 1982-04-15

 000260 AD3113 180 .50 1982-03-01 1982-04-15

 000260 AD3113 180 1.00 1982-04-15 1982-06-01

 000260 AD3113 180 .50 1982-06-01 1982-07-01

 000270 AD3113 60 .50 1982-03-01 1982-04-01

 000270 AD3113 60 1.00 1982-04-01 1982-09-01

 000270 AD3113 60 .25 1982-09-01 1982-10-15

 000270 AD3113 70 .75 1982-09-01 1982-10-15

 000270 AD3113 70 1.00 1982-10-15 1983-02-01

 000270 AD3113 80 1.00 1982-01-01 1982-03-01

 000270 AD3113 80 .50 1982-03-01 1982-04-01

 000030 IF1000 10 .50 1982-06-01 1983-01-01

 Appendix I. Sample Tables 951

Sample Tables

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

 000130 IF1000 90 1.00 1982-01-01 1982-10-01

 000130 IF1000 100 .50 1982-10-01 1983-01-01

 000140 IF1000 90 .50 1982-10-01 1983-01-01

 000030 IF2000 10 .50 1982-01-01 1983-01-01

 000140 IF2000 100 1.00 1982-01-01 1982-03-01

 000140 IF2000 100 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-10-01 1983-01-01

 000010 MA2100 10 .50 1982-01-01 1982-11-01

 000110 MA2100 20 1.00 1982-01-01 1982-03-01

 000010 MA2110 10 1.00 1982-01-01 1983-02-01

 000200 MA2111 50 1.00 1982-01-01 1982-06-15

 000200 MA2111 60 1.00 1982-06-15 1983-02-01

 000220 MA2111 40 1.00 1982-01-01 1983-02-01

 000150 MA2112 60 1.00 1982-01-01 1982-07-15

 000150 MA2112 180 1.00 1982-07-15 1983-02-01

 000170 MA2112 60 1.00 1982-01-01 1983-06-01

 000170 MA2112 70 1.00 1982-06-01 1983-02-01

 000190 MA2112 70 1.00 1982-02-01 1982-10-01

 000190 MA2112 80 1.00 1982-10-01 1983-10-01

 000160 MA2113 60 1.00 1982-07-15 1983-02-01

 000170 MA2113 80 1.00 1982-01-01 1983-02-01

 000180 MA2113 70 1.00 1982-04-01 1982-06-15

 000210 MA2113 80 .50 1982-10-01 1983-02-01

 000210 MA2113 180 .50 1982-10-01 1983-02-01

 000050 OP1000 10 .25 1982-01-01 1983-02-01

 000090 OP1010 10 1.00 1982-01-01 1983-02-01

 000280 OP1010 130 1.00 1982-01-01 1983-02-01

 000290 OP1010 130 1.00 1982-01-01 1983-02-01

 000300 OP1010 130 1.00 1982-01-01 1983-02-01

 000310 OP1010 130 1.00 1982-01-01 1983-02-01

 000050 OP2010 10 .75 1982-01-01 1983-02-01

 000100 OP2010 10 1.00 1982-01-01 1983-02-01

 000320 OP2011 140 .75 1982-01-01 1983-02-01

 000320 OP2011 150 .25 1982-01-01 1983-02-01

 000330 OP2012 140 .25 1982-01-01 1983-02-01

 000330 OP2012 160 .75 1982-01-01 1983-02-01

 000340 OP2013 140 .50 1982-01-01 1983-02-01

 000340 OP2013 170 .50 1982-01-01 1983-02-01

 000020 PL2100 30 1.00 1982-01-01 1982-09-15

952 Administration Guide

Sample Tables

 EMP_PHOTO Table

Name: EMPNO PHOTO_FORMAT PICTURE

Type: char(6) not null varchar(10) not null blob(100k)

Desc: Employee number Photo format Photo of employee

Values: 000130 bitmap db200130.bmp

000130 gif db200130.gif

000130 xwd db200130.xwd

000140 bitmap db200140.bmp

000140 gif db200140.gif

000140 xwd db200140.xwd

000150 bitmap db200150.bmp

000150 gif db200150.gif

000150 xwd db200150.xwd

000190 bitmap db200190.bmp

000190 gif db200190.gif

000190 xwd db200190.xwd

¹ “Quintana Photo” on page 959 shows the picture of the employee, Delores
Quintana.

¹ “Nicholls Photo” on page 960 shows the picture of the employee, Heather Nicholls.

¹ “Adamson Photo” on page 961 shows the picture of the employee, Bruce
Adamson.

¹ “Walker Photo” on page 963 shows the picture of the employee, James Walker.

 EMP_RESUME Table

Name: EMPNO RESUME_FORMAT RESUME

Type: char(6) not null varchar(10) not null clob(5k)

Desc: Employee number Resume Format Resume of employee

Values: 000130 ascii db200130.asc

000130 script db200130.scr

000140 ascii db200140.asc

000140 script db200140.scr

000150 ascii db200150.asc

000150 script db200150.scr

000190 ascii db200190.asc

000190 script db200190.scr

¹ “Quintana Resume” on page 959 shows the resume of the employee, Delores
Quintana.

 Appendix I. Sample Tables 953

Sample Tables

¹ “Nicholls Resume” on page 960 shows the resume of the employee, Heather
Nicholls.

¹ “Adamson Resume” on page 962 shows the resume of the employee, Bruce
Adamson.

¹ “Walker Resume” on page 963 shows the resume of the employee, James Walker.

 IN_TRAY Table

Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: timestamp char(8) char(64) varchar(3000)

Desc: Date and Time
received

User id of person
sending note

Brief description The note

 ORG Table

Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

Type: smallint not null varchar(14) smallint varchar(10) varchar(13)

Desc: Department
number

Department
name

Manager number Division of
corporation

City

Values: 10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

 PROJECT Table

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: char(6) not
null

varchar(24)
not null

char(3) not
null

char(6) not
null

dec(5,2) date date char(6)

Desc: Project
number

Project
name

Department
responsible

Employee
responsible

Estimated
mean
staffing

Estimated
start date

Estimated
end date

Major project,
for a
subproject

Values: AD3100 ADMIN
SERVICES

D01 000010 6.5 1982-01-01 1983-02-01 -

 AD3110 GENERAL
ADMIN
SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

 AD3111 PAYROLL
PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

 AD3112 PERSONNEL
PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

954 Administration Guide

Sample Tables

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

 AD3113 ACCOUNT
PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

 IF1000 QUERY
SERVICES

C01 000030 2 1982-01-01 1983-02-01 -

 IF2000 USER
EDUCATION

C01 000030 1 1982-01-01 1983-02-01 -

 MA2100 WELD
LINE
AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 -

 MA2110 W L
PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

 MA2111 W L
PROGRAM
DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

 MA2112 W L
ROBOT
DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

 MA2113 W L PROD
CONT
PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

 OP1000 OPERATION
SUPPORT

E01 000050 6 1982-01-01 1983-02-01 -

 OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

 OP2000 GEN
SYSTEMS
SERVICES

E01 000050 5 1982-01-01 1983-02-01 -

 OP2010 SYSTEMS
SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

 OP2011 SCP
SYSTEMS
SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

 OP2012 APPLICATIONS
SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

 OP2013 DB/DC
SUPPORT

E21 000340 1 1982-01-01 1983-02-01 OP2010

 PL2100 WELD
LINE
PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

 SALES Table

Name: SALES_DATE SALES_PERSON REGION SALES

Type: date varchar(15) varchar(15) int

Desc: Date of sales Employee's last name Region of sales Number of sales

Values: 12/31/1995 LUCCHESSI Ontario-South 1

 12/31/1995 LEE Ontario-South 3

 12/31/1995 LEE Quebec 1

 12/31/1995 LEE Manitoba 2

 12/31/1995 GOUNOT Quebec 1

 03/29/1996 LUCCHESSI Ontario-South 3

 03/29/1996 LUCCHESSI Quebec 1

 03/29/1996 LEE Ontario-South 2

 03/29/1996 LEE Ontario-North 2

 Appendix I. Sample Tables 955

Sample Tables

Name: SALES_DATE SALES_PERSON REGION SALES

 03/29/1996 LEE Quebec 3

 03/29/1996 LEE Manitoba 5

 03/29/1996 GOUNOT Ontario-South 3

 03/29/1996 GOUNOT Quebec 1

 03/29/1996 GOUNOT Manitoba 7

 03/30/1996 LUCCHESSI Ontario-South 1

 03/30/1996 LUCCHESSI Quebec 2

 03/30/1996 LUCCHESSI Manitoba 1

 03/30/1996 LEE Ontario-South 7

 03/30/1996 LEE Ontario-North 3

 03/30/1996 LEE Quebec 7

 03/30/1996 LEE Manitoba 4

 03/30/1996 GOUNOT Ontario-South 2

 03/30/1996 GOUNOT Quebec 18

 03/30/1996 GOUNOT Manitoba 1

 03/31/1996 LUCCHESSI Manitoba 1

 03/31/1996 LEE Ontario-South 14

 03/31/1996 LEE Ontario-North 3

 03/31/1996 LEE Quebec 7

 03/31/1996 LEE Manitoba 3

 03/31/1996 GOUNOT Ontario-South 2

 03/31/1996 GOUNOT Quebec 1

 04/01/1996 LUCCHESSI Ontario-South 3

 04/01/1996 LUCCHESSI Manitoba 1

 04/01/1996 LEE Ontario-South 8

 04/01/1996 LEE Ontario-North -

 04/01/1996 LEE Quebec 8

 04/01/1996 LEE Manitoba 9

 04/01/1996 GOUNOT Ontario-South 3

 04/01/1996 GOUNOT Ontario-North 1

 04/01/1996 GOUNOT Quebec 3

 04/01/1996 GOUNOT Manitoba 7

 STAFF Table

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

varchar(9) smallint char(5) smallint dec(7,2) dec(7,2)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O'Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

956 Administration Guide

Sample Tables

Name: ID NAME DEPT JOB YEARS SALARY COMM

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

 STAFFG Table
Note: STAFFG is only created for double-byte code pages.

Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: smallint not
null

vargraphic(9) smallint graphic(5) smallint dec(9,0) dec(9,0)

Desc: Employee
number

Employee
name

Department
number

Job type Years of
service

Current
salary

Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

 Appendix I. Sample Tables 957

Sample Tables

Name: ID NAME DEPT JOB YEARS SALARY COMM

30 Marenghi 38 Mgr 5 17506.75 -

40 O'Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

Sample Files with BLOB and CLOB Data Type
This section shows the data found in the EMP_PHOTO files (pictures of employees)
and EMP_RESUME files (resumes of employees).

958 Administration Guide

Sample Tables

 Quintana Photo

Figure 92. Delores M. Quintana

 Quintana Resume
The following text is found in the db200130.asc and db200130.scr files.

Resume: Delores M. Quintana

Personal Information

Address: 1150 Eglinton Ave Mellonville, Idaho 83725
Phone: (208) 555-9933
Birthdate: September 15, 1925
Sex: Female
Marital Status: Married
Height: 5'2"
Weight: 120 lbs.

Department Information

Employee Number: 000130
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-4578
Hire Date: 1971-07-28

Education

1965 Math and English, B.A. Adelphi University

1960 Dental Technician Florida Institute of Technology

Work History

 Appendix I. Sample Tables 959

Sample Tables

10/91 - present Advisory Systems Analyst Producing documentation tools for
engineering department.

12/85 - 9/91 Technical Writer Writer, text programmer, and planner.

1/79 - 11/85 COBOL Payroll Programmer Writing payroll programs for a
diesel fuel company.

Interests

 ¹ Cooking
 ¹ Reading
 ¹ Sewing
 ¹ Remodeling

 Nicholls Photo

Figure 93. Heather A. Nicholls

 Nicholls Resume
The following text is found in the db200140.asc and db200140.scr files.

Resume: Heather A. Nicholls

Personal Information

Address: 844 Don Mills Ave Mellonville, Idaho 83734
Phone: (208) 555-2310
Birthdate: January 19, 1946
Sex: Female
Marital Status: Single
Height: 5'8"
Weight: 130 lbs.

960 Administration Guide

Sample Tables

Department Information

Employee Number: 000140
Dept Number: C01
Manager: Sally Kwan
Position: Analyst
Phone: (208) 555-1793
Hire Date: 1976-12-15

Education

1972 Computer Engineering, Ph.D. University of Washington

1969 Music and Physics, M.A. Vassar College

Work History

2/83 - present Architect, OCR Development Designing the architecture of
OCR products.

12/76 - 1/83 Text Programmer Optical character recognition (OCR)
programming in PL/I.

9/72 - 11/76 Punch Card Quality Analyst Checking punch cards met quality
specifications.

Interests

 ¹ Model railroading
 ¹ Interior decorating
 ¹ Embroidery
 ¹ Knitting

 Adamson Photo

Figure 94. Bruce Adamson

 Appendix I. Sample Tables 961

Sample Tables

 Adamson Resume
The following text is found in the db200150.asc and db200150.scr files.

Resume: Bruce Adamson

Personal Information

Address: 3600 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-4489
Birthdate: May 17, 1947
Sex: Male
Marital Status: Married
Height: 6'0"
Weight: 175 lbs.

Department Information

Employee Number: 000150
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-4510
Hire Date: 1972-02-12

Education

1971 Environmental Engineering, M.Sc. Johns Hopkins University

1968 American History, B.A. Northwestern University

Work History

8/79 - present Neural Network Design Developing neural networks for
machine intelligence products.

2/72 - 7/79 Robot Vision Development Developing rule-based systems to
emulate sight.

9/71 - 1/72 Numerical Integration Specialist Helping bank systems
communicate with each other.

Interests

 ¹ Racing motorcycles
 ¹ Building loudspeakers
¹ Assembling personal computers

 ¹ Sketching

962 Administration Guide

Sample Tables

 Walker Photo

Figure 95. James H. Walker

 Walker Resume
The following text is found in the db200190.asc and db200190.scr files.

Resume: James H. Walker

Personal Information

Address: 3500 Steeles Ave Mellonville, Idaho 83757
Phone: (208) 555-7325
Birthdate: June 25, 1952
Sex: Male
Marital Status: Single
Height: 5'11"
Weight: 166 lbs.

Department Information

Employee Number: 000190
Dept Number: D11
Manager: Irving Stern
Position: Designer
Phone: (208) 555-2986
Hire Date: 1974-07-26

Education

1974 Computer Studies, B.Sc. University of Massachusetts

1972 Linguistic Anthropology, B.A. University of Toronto

 Appendix I. Sample Tables 963

Sample Tables

Work History

6/87 - present Microcode Design Optimizing algorithms for mathematical
functions.

4/77 - 5/87 Printer Technical Support Installing and supporting laser
printers.

9/74 - 3/77 Maintenance Programming Patching assembly language
compiler for mainframes.

Interests

 ¹ Wine tasting
 ¹ Skiing
 ¹ Swimming
 ¹ Dancing

964 Administration Guide

Catalog Views

 Appendix J. Catalog Views

The database manager creates and maintains two sets of system catalog views. This
appendix contains a description of each system catalog view, including column names
and data types. All the system catalog views are created when a database is created
with the CREATE DATABASE command. The catalog views cannot be explicitly
created or dropped. The system catalog views are updated during normal operation in
response to SQL data definition statements, environment routines, and certain utilities.
Data in the system catalog views is available through normal SQL query facilities. The
system catalog views cannot be modified using normal SQL data manipulation
commands with the exception of some specific updatable catalog views.

The catalog views are supported in addition to the catalog base tables from Version 1.
The views are within the SYSCAT schema and SELECT privilege on all views is
granted to PUBLIC by default. Application programs should be written to these views
rather than the base catalog tables.5

A second set of views formed from a subset of those within the SYSCAT schema,
contain statistical information used by the optimizer. The views within the SYSSTAT
schema contain some updatable columns.

The catalog views are designed to use more consistent conventions than the underlying
catalog base tables. Columns have consistent names based on the type of objects that
they describe:

Described Object Column Names

Table TABSCHEMA, TABNAME
Index INDSCHEMA, INDNAME
View VIEWSCHEMA, VIEWNAME
Constraint CONSTSCHEMA, CONSTNAME
Trigger TRIGSCHEMA, TRIGNAME
Package PKGSCHEMA, PKGNAME
Type TYPESCHEMA, TYPENAME, TYPEID
Function FUNCSCHEMA, FUNCNAME, FUNCID
Column COLNAME
Schema SCHEMANAME
Table Space TBSPACE
Nodegroup NGNAME
Buffer pool BPNAME
Event Monitor EVMONNAME
Creation Timestamp CREATE_TIME

5 Most existing applications using the base tables, however, will continue to run.

 Copyright IBM Corp. 1993, 1998 965

Catalog Views

| Objects associated with typed tables (columns, indexes, ...) that are part of a hierarchy
| appear in the SYSCAT and SYSSTAT views only at the level they are introduced, not
| for every subtable in the hierarchy.

Updatable Catalog Views
The updatable views contain statistical information used by the optimizer. Some
columns in these views may be changed to investigate the performance of hypothetical
databases. An object (table, column, function, or index) will appear in the updatable
catalog view for a given user only if that user created the object, holds CONTROL
privilege on the object, or holds explicit DBADM privilege. These views are found in the
SYSSTAT schema. They are defined on top of the SYSCAT views.

Before changing any statistics for the first time, it is advised to issue the RUNSTATS
command so that all statistics will reflect the current state.

See SQL Reference for more information, including rules for updating catalog statistics.

“Roadmap” to Catalog Views
Description Catalog View

authorities on database SYSCAT.DBAUTH

Buffer pool configuration on nodegroup SYSCAT.BUFFERPOOLS

Buffer pool size on node SYSCAT.BUFFERPOOLNODES

check constraints SYSCAT.CHECKS

column privileges SYSCAT.COLAUTH

columns SYSCAT.COLUMNS

columns referenced by check constraints SYSCAT.COLCHECKS

columns used in keys SYSCAT.KEYCOLUSE

constraint dependencies SYSCAT.CONSTDEP

datatypes SYSCAT.DATATYPES

event monitor definitions SYSCAT.EVENTMONITORS

events currently monitored SYSCAT.EVENTS

function parameters SYSCAT.FUNCPARMS

index privileges SYSCAT.INDEXAUTH

indexes SYSCAT.INDEXES

detailed column statistics SYSCAT.COLDIST

nodegroup definitions SYSCAT.NODEGROUPS

nodegroup nodes SYSCAT.NODEGROUPDEF

partitioning maps SYSCAT.PARTITIONMAPS

package dependencies SYSCAT.PACKAGEDEP

package privileges SYSCAT.PACKAGEAUTH

966 Administration Guide

Catalog Views

Description Catalog View

packages SYSCAT.PACKAGES

stored procedures SYSCAT.PROCEDURES

procedure parameters SYSCAT.PROCPARMS

referential constraints SYSCAT.REFERENCES

schema privileges SYSCAT.SCHEMAAUTH

schemas SYSCAT.SCHEMATA

statements in packages SYSCAT.STATEMENTS

table constraints SYSCAT.TABCONST

table privileges SYSCAT.TABAUTH

tables SYSCAT.TABLES

table spaces SYSCAT.TABLESPACES

trigger dependencies SYSCAT.TRIGDEP

triggers SYSCAT.TRIGGERS

user-defined functions SYSCAT.FUNCTIONS

view dependencies SYSCAT.VIEWDEP

views SYSCAT.TABLES SYSCAT.VIEWS

“Roadmap” to Updatable Catalog Views
Description Catalog View

columns SYSSTAT.COLUMNS

indexes SYSSTAT.INDEXES

detailed column statistics SYSSTAT.COLDIST

tables SYSSTAT.TABLES

user-defined functions SYSSTAT.FUNCTIONS

 Appendix J. Catalog Views 967

SYSCAT.BUFFERPOOLS

 SYSCAT.BUFFERPOOLS
Contains a row for every buffer pool in every nodegroup.

Table 59. SYSCAT.BUFFERPOOLS Catalog View

Column Name Data Type Nullable Description

BPNAME VARCHAR(18) Name of buffer pool

BUFFERPOOLID INTEGER Internal buffer pool identifier

NGNAME VARCHAR(18) Yes Nodegroup name (NULL if the buffer pool exists on all
nodes in the database)

NPAGES INTEGER Number of pages in the buffer pool

PAGESIZE INTEGER Pagesize for this buffer pool

ESTORE CHAR(1) N=This buffer pool does not use extended storage
Y=This buffer pool uses extended storage

968 Administration Guide

SYSCAT.BUFFERPOOLNODES

 SYSCAT.BUFFERPOOLNODES
Contains a row for each node in the buffer pool for which the size of the buffer pool on
the node is different from the default size in SYSCAT.BUFFERPOOLS column
NPAGES.

Table 60. SYSCAT.BUFFERPOOLNODES Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier

NODENUM SMALLINT Node Number

NPAGES INTEGER Number of pages in this buffer pool on this node

 Appendix J. Catalog Views 969

SYSCAT.CHECKS

 SYSCAT.CHECKS
Contains one row for each CHECK constraint.

Table 61. SYSCAT.CHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint (unique within a table.)

DEFINER CHAR(8) Authorization ID under which the check constraint was
defined.

TABSCHEMA CHAR(8) Qualified name of the table to which this constraint
applies.

TABNAME VARCHAR(18)

CREATE_TIME TIMESTAMP The time at which the constraint was defined. Used in
resolving functions that are used in this constraint. No
functions will be chosen that were created after the
definition of the constraint.

FUNC_PATH VARCHAR(254) The current SQL path that was used when the constraint
was created.

TEXT CLOB(32K) The text of the CHECK clause.

970 Administration Guide

SYSCAT.COLAUTH

 SYSCAT.COLAUTH
Contains one or more rows for each user or group who is granted a column level
privilege, indicating the type of privilege and whether or not it is grantable.

Table 62. SYSCAT.COLAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges
or SYSIBM.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the
privileges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

TABSCHEMA CHAR(8) Qualified name of the table or view.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of the column to which this privilege applies.

COLNO SMALLINT Number of this column in the table or view.

PRIVTYPE CHAR(1) Indicates the type of privilege held on the table or view:

 U=update privilege.
 R=reference privilege.

GRANTABLE CHAR(1) Indicates if the privilege is grantable.

 G=grantable.
 N=not grantable.

 Appendix J. Catalog Views 971

SYSCAT.COLCHECKS

 SYSCAT.COLCHECKS
Each row represents some column that is referenced by a CHECK constraint.

Table 63. SYSCAT.COLCHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the check constraint. (Unique within a table.
May be system generated.)

TABSCHEMA CHAR(8) Qualified name of table containing referenced column.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of column.

972 Administration Guide

SYSCAT.COLDIST

 SYSCAT.COLDIST
Contains detailed column statistics for use by the optimizer. Each row describes the
Nth-most-frequent value of some column.

Table 64. SYSCAT.COLDIST Catalog View

Column Name Data Type Nullable Description

TABSCHEMA CHAR(8) Qualified name of the table to which this entry applies.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of the column to which this entry applies.

TYPE CHAR(1) F=Frequency (most frequent value) Q=Quantile value

SEQNO SMALLINT If TYPE=F, then N in this column identifies the Nth most
frequent value. If TYPE=Q, then N in this column
identifies the Nth quantile value.

COLVALUE VARCHAR(33) Yes The data value, as a character literal or a null value.

VALCOUNT INTEGER If TYPE=F, then VALCOUNT is the number of
occurrences of COLVALUE in the column. If TYPE=Q,
then VALCOUNT is the number of rows whose value is
less than or equal to COLVALUE.

DISTCOUNT INTEGER Yes If TYPE=Q, this column records the number of distinct
values that are less than or equal to COLVALUE (null if
unavailable).

 Appendix J. Catalog Views 973

SYSCAT.COLUMNS

 SYSCAT.COLUMNS
Contains one row for each column that is defined for a table or view. All of the catalog
views have entries in the SYSCAT.COLUMNS table.

Table 65 (Page 1 of 2). SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA CHAR(8) Qualified name of the table or view that contains the
column.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Column name.

COLNO SMALLINT Numerical place of column in table or view, beginning at
zero.

TYPESCHEMA CHAR(8) Contains the qualified name of the type, if the data type
of the column is distinct. Otherwise TYPESCHEMA
contains the value SYSIBM and TYPENAME contains
the data type of the column (in long form, for example,
CHARACTER). If FLOAT or FLOAT(n) with n greater
than 24 is specified, TYPENAME is renamed to
DOUBLE. If FLOAT(n) with n less than 25 is specified,
TYPENAME is renamed to REAL. Also, NUMERIC is
renamed to DECIMAL.

TYPENAME VARCHAR(18)

LENGTH INTEGER Maximum length of data. 0 for distinct types. The
LENGTH column indicates precision for DECIMAL fields.

SCALE SMALLINT Scale for DECIMAL fields; 0 if not DECIMAL.

DEFAULT VARCHAR(254) Yes Default value for the column of a table expressed as a
constant, special register, or cast-function appropriate for
the data type of the column. May also be the keyword
NULL.

Values may be converted from what was specified as a
default value. For example, date and time constants are
presented in ISO format and cast-function names are
qualified with schema name and the identifiers are
delimited (see Note 3).

Null value if a DEFAULT clause was not specified or the
column is a view column.

NULLS CHAR(1) Y=Column is nullable.
N=Column is not nullable.

The value can be N for a view column that is derived
from an expression or function. Nevertheless, such a
column allows nulls when the statement using the view
is processed with warnings for arithmetic errors.

See Note 1.

974 Administration Guide

SYSCAT.COLUMNS

Table 65 (Page 2 of 2). SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

CODEPAGE SMALLINT Code page of the column. For character-string columns
not defined with the FOR BIT DATA attribute, the value
is the database code page. For graphic-string columns,
the value is the DBCS code page implied by the
(composite) database code page. Otherwise, the value is
0.

LOGGED CHAR(1) Applies only to columns whose type is LOB or distinct
based on LOB (blank otherwise).

Y=Column is logged.
N=Column is not logged.

COMPACT CHAR(1) Applies only to columns whose type is LOB or distinct
based on LOB (blank otherwise).

Y=Column is compacted in storage.
N=Column is not compacted.

COLCARD INTEGER Number of distinct values in the column; −1 if statistics
are not gathered.

HIGH2KEY VARCHAR(33) Second highest value of the column. This field is empty
if statistics are not gathered. See Note 2.

LOW2KEY VARCHAR(33) Second lowest value of the column. Empty if statistics
not gathered. See Note 2.

AVGCOLLEN INTEGER Average column length. -1 if a long field or LOB, or
statistics have not been collected.

KEYSEQ SMALLINT Yes The column's numerical position within the table's
primary key. This field is null or 0 if the column is not
part of the primary key.

PARTKEYSEQ SMALLINT Yes The column's numerical position within the table's
partitioning key. This field is null or 0 if the column is not
part of the partitioning key.

NQUANTILES SMALLINT Number of quantile values recorded in
SYSCAT.SYSCOLDIST for this column; -1 if no
statistics.

NMOSTFREQ SMALLINT Number of most-frequent values recorded in
SYSCAT.COLDIST for this column; -1 if statistics not
gathered.

REMARKS VARCHAR(254) Yes User-supplied comment.

Note:

1. Starting with Version 2, value D (indicating not null with a default) is no longer used. Instead, use of WITH
DEFAULT is indicated by a non-null value in the DEFAULT column.

2. Starting with Version 2, representation of numeric data has been changed to character literals. The size
has been enlarged from 16 to 33 bytes.

3. For Version 2.1.0, cast-function names were not delimited and may still appear this way in the DEFAULT
column. Also, some view columns included default values which will still appear in the DEFAULT column.

 Appendix J. Catalog Views 975

SYSCAT.CONSTDEP

 SYSCAT.CONSTDEP
Contains a row for every dependency of a constraint on some other object.

Table 66. SYSCAT.CONSTDEP Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint.

TABSCHEMA CHAR(8) Qualified name of the table to which the constraint
applies.

TABNAME VARCHAR(18)

BTYPE CHAR(1) Type of object that the constraint depends on. Possible
values:

 ¹ F=function instance

 ¹ I=index instance

| ¹ R=structured type

BSCHEMA CHAR(8) Qualified name of object that the constraint depends on.

BNAME VARCHAR(18)

976 Administration Guide

SYSCAT.DATATYPES

 SYSCAT.DATATYPES
Contains a row for every data type, including built-in and user-defined types.

Table 67. SYSCAT.DATATYPES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA CHAR(8) Qualified name of the data type (for built-in types,
TYPESCHEMA is SYSIBM).

TYPENAME VARCHAR(18)

DEFINER CHAR(8) Authorization ID under which type was created.

SOURCESCHEMA CHAR(8) Yes Qualified name of the source type for distinct types.
| Qualified name of the builtin type used as the reference
| type that is used as the representation for references to
| structured types. Null for other types.

SOURCENAME VARCHAR(18) Yes

METATYPE CHAR(1) ¹ S=System predefined type

 ¹ T=Distinct type

| ¹ R=structured type

TYPEID SMALLINT| The system generated internal identifier of the data type.

SOURCETYPEID SMALLINT Yes Internal type ID of source type (null for built-in types).
| For user-defined structured types, this is the internal type
| ID of the reference representation type.

LENGTH INTEGER Maximum length of the type. 0 for system predefined
parameterized types (for example, DECIMAL and

| VARCHAR). For user-defined structured types, this
| indicates the length of the reference representation type.

SCALE SMALLINT| Scale for distinct types or reference representation types
based on the system predefined DECIMAL type. 0 for all
other types (including DECIMAL itself).

CODEPAGE SMALLINT| Code page for character and graphic distinct types or
| reference representation types; 0 otherwise.

CREATE_TIME TIMESTAMP Creation time of the data type.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

 Appendix J. Catalog Views 977

SYSCAT.DBAUTH

 SYSCAT.DBAUTH
Records the database authorities held by users.

Table 68. SYSCAT.DBAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) SYSIBM or authorization ID of the user who granted the
privileges.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the
privileges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

DBADMAUTH CHAR(1) Whether grantee holds DBADM authority over the
database:

Y=Authority is held
N=Authority is not held

CREATETABAUTH CHAR(1) Whether grantee can create tables in the database
(CREATETAB):

Y=Privilege is held
N=Privilege is not held

BINDADDAUTH CHAR(1) Whether grantee can create new packages in the
database (BINDADD):

Y=Privilege is held
N=Privilege is not held

CONNECTAUTH CHAR(1) Whether grantee can connect to the database
(CONNECT):

Y=Privilege is held
N=Privilege is not held

NOFENCEAUTH CHAR(1) Whether grantee holds privilege to create non-fenced
functions.

Y=Privilege is held
N=Privilege is not held

IMPLSCHEMAAUTH CHAR(1) Whether grantee can implicitly create schemas in the
database (IMPLICIT_SCHEMA):

Y=Privilege is held
N=Privilege is not held

978 Administration Guide

SYSCAT.EVENTMONITORS

 SYSCAT.EVENTMONITORS
Contains a row for every event monitor that has been defined.

Table 69. SYSCAT.EVENTMONITORS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor.

DEFINER CHAR(8) Authorization ID of definer of event monitor.

TARGET_TYPE CHAR(1) The type of the target to which event data is written.
Values:

 F=File
 P=Pipe

TARGET VARCHAR(246) Name of the target to which event data is written.
Absolute pathname of file, or absolute name of pipe.

MAXFILES INTEGER Yes Maximum number of event files that this event monitor
permits in an event path. Null if there is no maximum, or
if the target-type is not FILE.

MAXFILESIZE INTEGER Yes Maximum size (in 4K pages) that each event file can
reach before the event monitor creates a new file. Null if
there is no maximum, or if the target-type is not FILE.

BUFFERSIZE INTEGER Yes Size of buffers (in 4K pages) used by event monitors
with file targets; otherwise null.

IO_MODE CHAR(1) Yes Mode of file I/O.

 B=Blocked
 N=Not blocked.

 Null if target-type is not FILE.

WRITE_MODE CHAR(1) Yes Indicates how this monitor handles existing event data
when the monitor is activated. Values:

 A=Append
 R=Replace

 Null if target-type is not FILE.

AUTOSTART CHAR(1) The event monitor will be activated automatically when
the database starts.

 Y=Yes
 N=No

NODENUM SMALLINT The number of the partition (or node) on which the event
monitor runs and logs events

MONSCOPE CHAR(1) Monitoring scope:

 L=Local
 G=Global

REMARKS VARCHAR(254) Yes Reserved for future use.

 Appendix J. Catalog Views 979

SYSCAT.EVENTS

 SYSCAT.EVENTS
Contains a row for every event that is being monitored. An event monitor, in general,
monitors multiple events.

Table 70. SYSCAT.EVENTS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR(18) Name of event monitor that is monitoring this event.

TYPE VARCHAR(18) Type of event being monitored. Possible values:

 DATABASE
 CONNECTIONS
 TABLES
 STATEMENTS
 TRANSACTIONS
 DEADLOCKS
 TABLESPACES

FILTER CLOB(32K) Yes The full text of the WHERE-clause
that applies to this event.

980 Administration Guide

SYSCAT.FUNCPARMS

 SYSCAT.FUNCPARMS
Contains a row for every parameter or result of a function defined in
SYSCAT.FUNCTIONS.

Table 71. SYSCAT.FUNCPARMS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA CHAR(8) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance (may be
system-generated).

ROWTYPE CHAR(1) P=parameter
R=result before casting
C=result after casting

ORDINAL SMALLINT If ROWTYPE=P, the parameter's numerical position
within the function signature. Otherwise 0.

PARMNAME VARCHAR(18) Name of parameter or result column, or null if no name
exists.

TYPESCHEMA CHAR(8) Qualified name of data type of parameter or result.

TYPENAME VARCHAR(18)

LENGTH INTEGER Length of parameter or result. 0 if parameter or result is
a distinct type. See Note 1.

SCALE SMALLINT Scale of parameter or result. 0 if parameter or result is a
distinct type. See Note 1.

CODEPAGE SMALLINT Code page of parameter. 0 denotes either not applicable
or a column for character data declared with the FOR
BIT DATA attribute.

CAST_FUNCID INTEGER Yes Internal function ID.

AS_LOCATOR CHAR(1) Y=Parameter or result is passed in
the form of a locator

N=Not passed in the form of a locator.

Note:

1. LENGTH and SCALE are set to 0 for sourced functions (functions defined with a reference to another
function) because they inherit the length and scale of parameters from their source.

 Appendix J. Catalog Views 981

SYSCAT.FUNCTIONS

 SYSCAT.FUNCTIONS
Contains a row for each user-defined function (scalar, table or sourced). Does not
include built-in functions.

Table 72 (Page 1 of 3). SYSCAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA CHAR(8) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the function instance (may be
system-generated).

DEFINER CHAR(8) Authorization ID of function definer.

FUNCID INTEGER Internally-assigned function ID.

RETURN_TYPE SMALLINT Internal type code of return type of function.

ORIGIN CHAR(1) B=Built-in
 E=User-defined, external

U=User-defined, based on a source
 S=System-generated

TYPE CHAR(1) S=Scalar function
 C=Column function
 T=Table function

PARM_COUNT SMALLINT Number of function parameters.

PARM_SIGNATURE VARCHAR(180)
FOR BIT
DATA

Concatenation of up to 90 parameter types, in
internal format. Zero length if function takes no
parameters.

CREATE_TIME TIMESTAMP Timestamp of function creation. Set to 0 for
Version 1 functions.

VARIANT CHAR(1) Y=Variant (results may differ)
N=Invariant (results are consistent)
Blank if ORIGIN is not E

SIDE_EFFECTS CHAR(1) E=Function has external side-effects
(number of invocations is important)

 N=No side-effects
Blank if ORIGIN is not E

FENCED CHAR(1) Y=Fenced
 N=Not fenced

Blank if ORIGIN is not E

NULLCALL CHAR(1) Y=Nullcall
N=No nullcall (function result is

implicitly null if operand(s) are null).
Blank if ORIGIN is not E.

CAST_FUNCTION CHAR(1) Y=This is a cast function
N=This is not a cast function

ASSIGN_FUNCTION CHAR(1) Y=Implicit assignment function
N=Not an assignment function

982 Administration Guide

SYSCAT.FUNCTIONS

Table 72 (Page 2 of 3). SYSCAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description

SCRATCHPAD CHAR(1) Y=This function has a scratch pad
N=This function does not have a scratch pad
Blank if ORIGIN is not E

FINAL_CALL CHAR(1) Y=Final call is made to this function at run time
 end-of-statement.

N=No final call is made.
Blank if ORIGIN is not E

PARALLELIZABLE CHAR(1) Y=Function can be executed in parallel
N=Function cannot be executed in parallel
Blank if ORIGIN is not E

CONTAINS_SQL CHAR(1) Indicates wheter an external function contains
SQL.

N=Function does not contain SQL statements.
R=Contains read-only SQL statements.
M=Contains SQL statements that modify data.
Blank if ORIGIN is not E

DBINFO CHAR(1) Indicates whether a DBINFO parameter is passed
to an external function.

Y=DBINFO is passed.
N=DBINFO is not passed.
Blank if ORIGIN is not E

RESULT_COLS SMALLINT For a table function (TYPE=T) contains the
number of columns in the result table; otherwise
contains 1.

LANGUAGE CHAR(8) Implementation language of function body.
Possible values are C, JAVA or OLE. Blank if
ORIGIN is not E.

IMPLEMENTATION VARCHAR(254) Yes If ORIGIN=E, identifies the path/module/function
that implements this function. If ORIGIN=U and
the source function is built-in, this column contains
the name and signature of the source function.
Null otherwise.

PARM_STYLE CHAR(8) Indicates the parameter style declared in the
CREATE FUNCTION statement. Values:

 DB2SQL
 DB2GENRL

SOURCE_SCHEMA CHAR(8) Yes If ORIGIN=U and the source function is a
user-defined function, contains the qualified name
of the source function. If ORIGIN=U and the
source function is built-in, SOURCE_SCHEMA is
'SYSIBM' and SOURCE_SPECIFIC is 'N/A for
built-in'. Null if ORIGIN is not U.

SOURCE_SPECIFIC VARCHAR(18) Yes

IOS_PER_INVOC DOUBLE Estimated number of I/Os per invocation; -1 if not
known (0 default).

 Appendix J. Catalog Views 983

SYSCAT.FUNCTIONS

Table 72 (Page 3 of 3). SYSCAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description

INSTS_PER_INVOC DOUBLE Estimated number of instructions per invocation;
-1 if not known (450 default).

IOS_PER_ARGBYTE DOUBLE Estimated number of I/O's per input argument
byte; -1 if not known (0 default).

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per input
argument byte; -1 if not known (0 default).

PERCENT_ARGBYTES SMALLINT Estimated average percent of input argument
bytes that the function will actually read; -1 if not
known (100 default).

INITIAL_IOS DOUBLE Estimated number of I/O's performed the first/last
time the function is invoked; -1 if not known (0
default).

INITIAL_INSTS DOUBLE Estimated number of instructions executed the
first/last time the function is invoked; -1 if not
known (0 default).

CARDINALITY INTEGER Yes The predicted cardinality of a table function. −1 if
not known or if function is not a table function.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

984 Administration Guide

SYSCAT.INDEXAUTH

 SYSCAT.INDEXAUTH
Contains a row for every privilege held on an index.

Table 73. SYSCAT.INDEXAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the
privileges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

INDSCHEMA CHAR(8) Name of the index.

INDNAME VARCHAR(18)

CONTROLAUTH CHAR(1) Whether grantee holds CONTROL privilege over the
index:

Y=Privilege is held
N=Privilege is not held

 Appendix J. Catalog Views 985

SYSCAT.INDEXES

 SYSCAT.INDEXES
Contains one row for each index that is defined for a table.

Table 74 (Page 1 of 3). SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

INDSCHEMA CHAR(8) Name of the index.

INDNAME VARCHAR(18)

DEFINER CHAR(8) User who created the index.

TABSCHEMA CHAR(8) Qualified name of the table on which the index is
defined.

TABNAME VARCHAR(18)

COLNAMES VARCHAR(320) List of column names, each preceded by + or − to
indicate ascending or descending order
respectively.

UNIQUERULE CHAR(1) Unique rule:

 ¹ D=duplicates allowed

 ¹ P=primary index.

¹ U=unique entries only allowed

MADE_UNIQUE CHAR(1) ¹ Y=Index was originally non-unique but was
converted to a unique index to support a
unique or primary key constraint. If the
constraint is dropped, the index will revert to
non-unique.

¹ N=Index remains as it was created.

| COLCOUNT| SMALLINT| Number of columns in the key plus the number of
| include columns if any.

| UNIQUE_COLCOUNT| SMALLINT| The number of columns required for a unique key.
| Always <=COLCOUNT. < COLCOUNT only if
| there a include columns. −1 if index has no
| unique key (permits duplicates)

INDEXTYPE CHAR(4) Type of index.

| ¹ CLUS =Clustering

 ¹ REG =Regular

| PCTFREE| SMALLINT| Percentage of each index leaf page to be
| reserved during initial building of the index. This
| space is available for future inserts after the index
| is built.

IID SMALLINT Internal index ID.

NLEAF INTEGER Number of leaf pages;

¹ −1 if statistics are not gathered.

NLEVELS SMALLINT Number of index levels; −1 if statistics are not
gathered.

986 Administration Guide

SYSCAT.INDEXES

Table 74 (Page 2 of 3). SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

FIRSTKEYCARD INTEGER Number of distinct first key values; −1 if statistics
are not gathered.

FIRST2KEYCARD INTEGER Number of distinct keys using the first two
columns of the index (−1 if no statistics or
inapplicable)

FIRST3KEYCARD INTEGER Number of distinct keys using the first three
columns of the index (−1 if no statistics or
inapplicable)

FIRST4KEYCARD INTEGER Number of distinct keys using the first four
columns of the index (−1 if no statistics or
inapplicable)

FULLKEYCARD INTEGER Number of distinct full key values; −1 if statistics
are not gathered.

CLUSTERRATIO SMALLINT Degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics are gathered (in which case,
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR DOUBLE Finer measurement of degree of clustering, or -1 if
detailed index statistics have not been gathered.

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in index key
order with few or no large gaps between them.
(−1 if no statistics are available.)

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer between 0
and 100, −1 if no statistics are available.)

USER_DEFINED SMALLINT 1 if this index was defined by a user and has not
been dropped; otherwise 0.

SYSTEM_REQUIRED SMALLINT| ¹ 1 if this index is required for primary key or
| unique key constraint, OR if this is the index
| on the object identifier (OID) column of a
| typed table.

| ¹ 2 if this index is required for primary key or
| unique key constraint, AND this is the index
| on the object identifier (OID) column of a
| typed table.

 ¹ 0 otherwise.

CREATE_TIME TIMESTAMP Time when the index was created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to
recorded statistics for this index. Null if no
statistics available.

 Appendix J. Catalog Views 987

SYSCAT.INDEXES

Table 74 (Page 3 of 3). SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented in character
form. Each pair represents the number of pages
in a hypothetical buffer, and the number of page
fetches required to scan the table with this index
using that hypothetical buffer. (Zero-length string if
no data available.)

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

TEXT CLOB(32K) Yes Reserved for future use.

988 Administration Guide

SYSCAT.KEYCOLUSE

 SYSCAT.KEYCOLUSE
Lists all columns that participate in a key defined by a unique, primary key, or foreign
key constraint.

Table 75. SYSCAT.KEYCOLUSE Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a table).

TABSCHEMA CHAR(8) Qualified name of the table containing the column.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the
key (initial position=1).

 Appendix J. Catalog Views 989

SYSCAT.NODEGROUPDEF

 SYSCAT.NODEGROUPDEF
Contains a row for each partition that is contained in a nodegroup.

Table 76. SYSCAT.NODEGROUPDEF Catalog View

Column Name Data Type Nullable Description

NGNAME VARCHAR(18) The name of the nodegroup that contains the partition
(or node) .

NODENUM SMALLINT The partition (or node) number of a partition contained in
the nodegroup. A valid partition number is between 0
and 999 inclusive.

IN_USE CHAR(1) Status of the partition (or node) .

A The newly added partition is not in the partitioning
map but the containers for the table spaces in the
nodegroup are created. The partition is added to
the partitioning map when a Redistribute
Nodegroup operation is successfully completed.

D The partition will be dropped when a Redistribute
Nodegroup operation is completed.

T The newly added partition is not in the partitioning
map and it was added using the WITHOUT
TABLESPACES clause. Containers must be
specifically added to the table spaces for the
nodegroup.

Y The partition is in the partitioning map.

990 Administration Guide

SYSCAT.NODEGROUPS

 SYSCAT.NODEGROUPS
Contains a row for each nodegroup.

Table 77. SYSCAT.NODEGROUPS Catalog View

Column Name Data Type Nullable Description

NGNAME VARCHAR(18) Name of the nodegroup.

DEFINER CHAR(8) Authorization ID of the nodegroup definer.

PMAP_ID SMALLINT Identifier of the partitioning map in
SYSCAT.PARTITIONMAPS.

REBALANCE_PMAP_ID SMALLINT Identifier of the partitioning map currently being
used for redistribution. Value is -1 if redistribution
is currently not in progress.

CREATE_TIME TIMESTAMP Creation time of nodegroup.

REMARKS VARCHAR(254) Yes User-provided comment.

 Appendix J. Catalog Views 991

SYSCAT.PACKAGEAUTH

 SYSCAT.PACKAGEAUTH
Contains a row for every privilege held on a package.

Table 78. SYSCAT.PACKAGEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the
privileges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

PKGSCHEMA CHAR(8) Name of the package on which the privileges are held.

PKGNAME CHAR(8)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL privilege on
the package:

Y=Privilege is held.
N=Privilege is not held.

BINDAUTH CHAR(1) Indicates whether grantee holds BIND privilege on the
package:

Y=Privilege is held.
N=Privilege is not held.

EXECUTEAUTH CHAR(1) Indicates whether grantee holds EXECUTE privilege on
the package:

Y=Privilege is held.
N=Privilege is not held.

992 Administration Guide

SYSCAT.PACKAGEDEP

 SYSCAT.PACKAGEDEP
| Contains a row for each dependency that packages have on indexes, tables, views,
| functions, aliases, types, and hierarchies.

Table 79. SYSCAT.PACKAGEDEP Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA CHAR(8) Name of the package.

PKGNAME CHAR(8)

BINDER CHAR(8) Yes Binder of the package.

BTYPE CHAR(1) Type of object BNAME:

 ¹ A=alias

 ¹ F=function-instance

| ¹ H=table or view hierarchy

 ¹ I=index

| ¹ R=structured type

| ¹ S=summary table

 ¹ T=table

 ¹ V=view

BSCHEMA CHAR(8) Qualified name of an object on which the package is
dependent.

BNAME VARCHAR(18)

TABAUTH SMALLINT Yes If BTYPE is T(table) or V(view), encodes the privileges
that are required by this package (Select, Insert, Delete,
Update).

Note:

1. When a depended-on function-instance is dropped, the package is placed into an “inoperative” state from
which it must be explicitly rebound. When any other depended-on object is dropped, the package is
placed into an “invalid” state from which the system will attempt to rebind it automatically when a package
is first referenced.

 Appendix J. Catalog Views 993

SYSCAT.PACKAGES

 SYSCAT.PACKAGES
Contains a row for each package that has been created by binding an application
program.

Table 80 (Page 1 of 3). SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA CHAR(8) Name of the package.

PKGNAME CHAR(8)

BOUNDBY CHAR(8) Authorization ID of the binder of the package.

DEFINER CHAR(8) Userid under which package was bound.

DEFAULT_SCHEMA CHAR(8) Default schema name used for unqualified names
in static SQL statements.

VALID CHAR(1) Y=Valid
 N=Not valid

X=Package is inoperative because some
function instance that it depends on
has been dropped. Explicit rebind
is needed. See Note 1 on

 “SYSCAT.PACKAGEDEP” on page 993

UNIQUE_ID CHAR(8) Internal date and time information indicating when
the package was first created.

TOTAL_SECT SMALLINT Total number of sections in the package.

FORMAT CHAR(1) Date and time format associated with the
package:

0=Format associated with country code
of the database

1=USA date and time
2=EUR date, EUR time
3=ISO date, ISO time.
4=JIS date, JIS time.
5=LOCAL date, LOCAL time.

ISOLATION CHAR(2) Yes Isolation level:

 RR=Repeatable read
 RS=Read stability
 CS=Cursor stability
 UR=Uncommitted read.

BLOCKING CHAR(1) Yes Cursor blocking option:

 N=No blocking
U=Block unambiguous cursors
B=Block all cursors

INSERT_BUF CHAR(1) Insert option used during bind:

Y=Inserts are buffered
N=Inserts are not buffered

994 Administration Guide

SYSCAT.PACKAGES

Table 80 (Page 2 of 3). SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

LANG_LEVEL CHAR(1) Yes LANGLEVEL value used during BIND:

 0=SAA1
1=SQL92E or MIA

FUNC_PATH VARCHAR(254) The SQL path used by the last BIND command
for this package. This is used as the default path
for REBIND. SYSIBM for pre-Version 2 packages.

QUERYOPT INTEGER Optimization class under which this package was
bound. Used for rebind. The classes are: 0, 1, 3,
5 and 9. .

EXPLAIN_LEVEL CHAR(1) Indicates whether Explain was requested using
the EXPLAIN or EXPLSNAP bind option.

Blank=No Explain requested
P=Plan Selection level

EXPLAIN_MODE CHAR(1) Value of EXPLAIN bind option:

 Y=Yes (static)
 N=No

A=All (static and dynamic)

EXPLAIN_SNAPSHOT CHAR(1) Value of EXPLSNAP bind option:

 Y=Yes (static)
 N=No

A=All (static and dynamic)

SQLWARN CHAR(1) Are positive SQLCODES resulting from dynamic
SQL statements returned to the application?

 Y=Yes
N=No, they are suppressed

SQLMATHWARN CHAR(1) Value of database configuration parameter
DFT_SQLMATHWARN at time of bind. Are
arithmetic errors and retrieval conversion errors in
static SQL statements handled as nulls with a
warning?

 Y=Yes
N=No, they are suppressed

EXPLICIT_BIND_TIME TIMESTAMP The time at which this package was last explicitly
bound or rebound. When the package is implicitly
rebound, no function instance will be selected that
was created later than this time.

LAST_BIND_TIME TIMESTAMP Time at which the package last explicitly or
implicitly bound or rebound.

CODEPAGE SMALLINT Application codepage at bind time (-1 if not
known).

 Appendix J. Catalog Views 995

SYSCAT.PACKAGES

Table 80 (Page 3 of 3). SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

DEGREE CHAR(5) Indicates the limit on intra-partition parallelism (as
a bind option) when package was bound.

1 = No intra-partition parallelism.
2 - 32767 = Degree of intra-partition parallelism.
ANY = Degree was determined by the

 database manager.

MULTINODE_PLANS CHAR(1) Y =Package was bound in a multiple partition
 environment.
N =Package was bound in a single partition
 environment.

INTRA_PARALLEL CHAR(1) Indicates the use of intra-partition parallelism by
static SQL statements within the package.

Y = one or more static SQL statement in
package uses intra-partition parallelism.

N = no static SQL statement in package uses
 intra-partition parallelism.
F = one or more static SQL statement in

package can use intra-partition parallelism;
this parallelism has been disabled for use
on a system that is not configured for

 intra-partition parallelism.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

996 Administration Guide

SYSCAT.PARTITIONMAPS

 SYSCAT.PARTITIONMAPS
Contains a row for each partitioning map that is used to distribute the rows of tables
among the partitions in a nodegroup, based on hashing the tables partitioning key.

Table 81. SYSCAT.PARTITIONMAPS Catalog View

Column Name Data Type Nullable Description

PMAP_ID SMALLINT Identifier of the partitioning map.

PARTITIONMAP LONG
VARCHAR
FOR BIT
DATA

The actual partitioning map, a vector of 4096 two-byte
integers for a multiple node nodegroup. For a single
node nodegroup, there is one entry denoting the partition
(or node) number of the single node.

 Appendix J. Catalog Views 997

SYSCAT.PROCEDURES

 SYSCAT.PROCEDURES
Contains a row for each stored procedure that is created.

Table 82. SYSCAT.PROCEDURES Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA CHAR(8) Qualified procedure name.

PROCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be
system generated).

PROCEDURE_ID INTEGER Internal ID of stored procedure.

DEFINER CHAR(8) Authorization of the procedure definer.

PARM_COUNT SMALLINT Number of procedure parameters.

PARM_SIGNATURE VARCHAR(180)
FOR BIT
DATA

Concatenation of up to 90 parameter types, in
internal format. Zero length if procedure takes no
parameters.

ORIGIN CHAR(1) Always 'E' = User defined, external

CREATE_TIME TIMESTAMP Timestamp of procedure registration.

DETERMINISTIC CHAR(1) Y=Results are deterministic.
N=Results are not deterministic.

FENCED CHAR(1) Y=Fenced
 N=Not Fenced

NULLCALL CHAR(1) Always Y=NULLCALL

LANGUAGE CHAR(8) Implementation language of procedure body.
Possible values are C and JAVA.

IMPLEMENTATION VARCHAR(254) Yes Identifies the path/module/function or class/method
that implements the procedure.

PARM_STYLE CHAR(8) DB2DARI=Language is C
DB2GENRL=Language is Java

RESULT_SETS SMALLINT Estimated upper limit of returned result sets.

REMARKS VARCHAR(254) Yes User supplied comment, or null.

998 Administration Guide

SYSCAT.PROCPARMS

 SYSCAT.PROCPARMS
Contains a row for each parameter of a stored procedure.

Table 83. SYSCAT.PROCPARMS Catalog View

Column Name Data Type Nullable Description

PROCSCHEMA CHAR(8) Qualified procedure name.

PROCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) The name of the procedure instance (may be system
generated).

ORDINAL SMALLINT The parameter's numerical position within the procedure
signature.

PARMNAME VARCHAR(18) Parameter name.

TYPESCHEMA CHAR(8) Qualified name of data type of the parameter.

TYPENAME VARCHAR(18)

LENGTH INTEGER Length of the parameter.

SCALE SMALLINT Scale of the parameter.

CODEPAGE SMALLINT Code page of parameter. 0 denotes either not applicable
or a parameter for character data declared with the FOR
BIT DATA attribute.

PARM_MODE VARCHAR(5) IN=Input, OUT=Output, INOUT=Input/output

AS_LOCATOR CHAR(1) Always 'N'

 Appendix J. Catalog Views 999

SYSCAT.REFERENCES

 SYSCAT.REFERENCES
Contains a row for each defined referential constraint.

Table 84. SYSCAT.REFERENCES Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of constraint.

TABSCHEMA CHAR(8) Qualified name of the constraint.

TABNAME VARCHAR(18)

DEFINER CHAR(8) User who created the constraint.

REFKEYNAME VARCHAR(18) Name of parent key.

REFTABSCHEMA CHAR(8) Name of the parent table.

REFTABNAME VARCHAR(18)

COLCOUNT SMALLINT Number of columns in the foreign key.

DELETERULE CHAR(1) Delete rule:

 A=NO ACTION
 C=CASCADE
 N=SET NULL
 R=RESTRICT

UPDATERULE CHAR(1) Update rule:

 A=NO ACTION
 R=RESTRICT

CREATE_TIME TIMESTAMP The timestamp when the referential constraint was
defined.

FK_COLNAMES VARCHAR(320) List of foreign key column names.

PK_COLNAMES VARCHAR(320) List of parent key column names.

Note:

1. The SYSCAT.REFERENCES view is based on the SYSIBM.SYSRELS table from Version 1.

1000 Administration Guide

SYSCAT.SCHEMAAUTH

 SYSCAT.SCHEMAAUTH
Contains one or more rows for each user or group who is granted a privilege on a
particular schema in the database. All schema privileges for a single schema granted
by a specific grantor to a specific grantee appear in a single row.

Table 85. SYSCAT.SCHEMAAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges
or SYSIBM.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the
privileges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

SCHEMANAME CHAR(8) Name of the schema.

ALTERINAUTH CHAR(1) Indicates whether grantee holds ALTERIN privilege on
the schema:

Y=Privilege is held
G=Privilege is held and grantable
N=Privilege is not held.

CREATEINAUTH CHAR(1) Indicates whether grantee holds CREATEIN privilege on
the schema:

Y=Privilege is held
G=Privilege is held and grantable
N=Privilege is not held.

DROPINAUTH CHAR(1) Indicates whether grantee holds DROPIN privilege on
the schema:

Y=Privilege is held
G=Privilege is held and grantable
N=Privilege is not held.

 Appendix J. Catalog Views 1001

SYSCAT.SCHEMATA

 SYSCAT.SCHEMATA
Contains a row for each schema.

Table 86. SYSCAT.SCHEMATA Catalog View

Column Name Data Type Nullable Description

SCHEMANAME CHAR(8) Name of the schema.

OWNER CHAR(8) Authorization id of the schema. The value for implicitly
created schemas is SYSIBM.

DEFINER CHAR(8) User who created the schema.

CREATE_TIME TIMESTAMP Timstamp indicating when the object was created.

REMARKS VARCHAR(254) Yes User-provided comment.

1002 Administration Guide

SYSCAT.STATEMENTS

 SYSCAT.STATEMENTS
Contains one or more rows for each SQL statement in each package in the database.

Table 87. SYSCAT.STATEMENTS Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA CHAR(8) Name of the package.

PKGNAME CHAR(8)

STMTNO SMALLINT Line number of the SQL statement in the source module
of the application program.

SECTNO SMALLINT Number of the package section containing the SQL
statement.

SEQNO SMALLINT Sequence number of this row; the first portion of the
SQL text is stored on row one, and successive rows
have increasing values for SEQNO.

TEXT VARCHAR
(3600)

Text or portion of the text of the SQL statement.

 Appendix J. Catalog Views 1003

SYSCAT.TABAUTH

 SYSCAT.TABAUTH
Contains one or more rows for each user or group who is granted a privilege on a
particular table or view in the database. All the table privileges for a single table or view
granted by a specific grantor to a specific grantee appear in a single row.

Table 88 (Page 1 of 2). SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR CHAR(8) Authorization ID of the user who granted the privileges
or SYSIBM.

GRANTEE CHAR(8) Authorization ID of the user or group who holds the
privileges.

GRANTEETYPE CHAR(1) U=Grantee is an individual user
G=Grantee is a group

TABSCHEMA CHAR(8) Qualified name of the table or view.

TABNAME VARCHAR(18)

CONTROLAUTH CHAR(1) Indicates whether grantee holds CONTROL privilege on
the table or view:

Y=Privilege is held.
N=Privilege is not held.

ALTERAUTH CHAR(1) Indicates whether grantee holds ALTER privilege on the
table:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

DELETEAUTH CHAR(1) Indicates whether grantee holds DELETE privilege on
the table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

INDEXAUTH CHAR(1) Indicates whether grantee holds INDEX privilege on the
table:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

INSERTAUTH CHAR(1) Indicates whether grantee holds INSERT privilege on the
table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

SELECTAUTH CHAR(1) Indicates whether grantee holds SELECT privilege on
the table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

1004 Administration Guide

SYSCAT.TABAUTH

Table 88 (Page 2 of 2). SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

REFAUTH CHAR(1) Indicates whether grantee holds REFERENCE privilege
on the table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

UPDATEAUTH CHAR(1) Indicates whether grantee holds UPDATE privilege on
the table or view:

Y=Privilege is held.
N=Privilege is not held.
G=Privilege is held and grantable.

 Appendix J. Catalog Views 1005

SYSCAT.TABCONST

 SYSCAT.TABCONST
Each row represents a table constraint of type CHECK, UNIQUE, PRIMARY KEY, or
FOREIGN KEY.

Table 89. SYSCAT.TABCONST Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR(18) Name of the constraint (unique within a table).

TABSCHEMA CHAR(8) Qualified name of the table to which this constraint
applies.

TABNAME VARCHAR(18)

DEFINER CHAR(8) Authorization ID under which the constraint was defined.

TYPE CHAR(1) Indicates the constraint type:

 K=CHECK
 P=PRIMARY KEY
 F=FOREIGN KEY
 U=UNIQUE

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

1006 Administration Guide

SYSCAT.TABLES

 SYSCAT.TABLES
Contains one row for each table, view, or alias that is created. All of the catalog tables
and views have entries in the SYSCAT.TABLES catalog view.

Table 90 (Page 1 of 3). SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA CHAR(8) Qualified name of the table, view, or alias.

TABNAME VARCHAR(18)

DEFINER CHAR(8) User who created the table, view, or alias.

TYPE CHAR(1) The type of object:

| A=Alias
| S=Summary table
| T=Table
| V=View

STATUS CHAR(1) The type of object:

N=Normal table, view or alias
C=Check pending on table

 X=Inoperative view

BASE_TABSCHEMA CHAR(8) Yes If TYPE=A, these columns identify the table, view, or
alias that is referenced by this alias; otherwise they are
null.

BASE_TABNAME VARCHAR(18) Yes

CREATE_TIME TIMESTAMP The timestamp indicating when the object was created.

STATS_TIME TIMESTAMP Yes Last time when any change was made to recorded
statistics for this table. Null if no statistics available.

COLCOUNT SMALLINT Number of columns in table.

TABLEID SMALLINT Internal table identifier.

TBSPACEID SMALLINT Internal identifier of primary table space for this table.

CARD INTEGER Total number of rows in the table; −1 if statistics are not
gathered or the row describes a view or alias.

NPAGES INTEGER| Total number of pages on which the rows of the table
| exist; −1 if statistics are not gathered or the row
| describes a view or alias; -2 for a subtable.

FPAGES INTEGER| Total number of pages; −1 if statistics are not gathered
| or the row describes a view or alias; -2 for a subtable.

OVERFLOW INTEGER| Total number of overflow records in the table; −1 if
| statistics are not gathered or the row describes a view or
| alias; -2 for a subtable.

TBSPACE VARCHAR(18) Yes Name of primary table space for the table. If no other
table space is specified, all parts of the table are stored
in this table space. Null for aliases and views.

 Appendix J. Catalog Views 1007

SYSCAT.TABLES

Table 90 (Page 2 of 3). SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

INDEX_TBSPACE VARCHAR(18) Yes Name of table space that holds all indexes created on
this table. Null for aliases and views, or if the INDEX IN
clause was omitted or specified with the same value as
the IN clause of the CREATE TABLE statement.

LONG_TBSPACE VARCHAR(18) Yes Name of table space that holds all long data (LONG or
LOB column types) for this table. Null for aliases and
views, or if the LONG IN clause was omitted or specified
with the same value as the IN clause of the CREATE
TABLE statement.

PARENTS SMALLINT Yes Number of parent tables of this table (the number of
referential constraints in which this table is a dependent).

CHILDREN SMALLINT Yes Number of dependent tables of this table (the number of
referential constraints in which this table is a parent).

SELFREFS SMALLINT Yes Number of self-referencing referential constraints for this
table (the number of referential constraints in which this
table is both a parent and a dependent).

KEYCOLUMNS SMALLINT Yes Number of columns in the primary key of the table.

KEYINDEXID SMALLINT Yes Index ID of the primary index. This field is null or 0 if
there is no primary key.

KEYUNIQUE SMALLINT Number of unique constraints (other than primary key)
defined on this table.

CHECKCOUNT SMALLINT Number of check constraints defined on this table.

DATACAPTURE CHAR(1) Y=Table participates in data
 replication

N=Does not participate

CONST_CHECKED CHAR(32)| Byte 1 represents foreign key constraints. Byte 2
| represents check constraints. Byte 3 represents
| constraint Datalink_Reconcile_Pending. Byte 4
| represents constraint Datalink_Reconcile_Not_Possible.
| Byte 5 represents summary table. Other bytes are
| reserved. Encodes constraint information on checking.
| Values:

| Y=Checked by system
| U=Checked by user
| N=Not checked (pending)

PMAP_ID SMALLINT Yes Identifier of the partitioning map used by this table. Null
for aliases and views.

PARTITION_MODE CHAR(1) Mode used for tables in a partitioned database.

H hash on the partitioning key

R table replicated across database partitions

Blank for aliases, views and tables in single partition
nodegroups with no partitioning key defined.

1008 Administration Guide

SYSCAT.TABLES

Table 90 (Page 3 of 3). SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

LOG_ATTRIBUTE CHAR(1)| 0=Default logging
| 1=Table created not
| logged initially

PCTFREE SMALLINT Percentage of each page to be reserved for future
inserts. Can be changed by ALTER TABLE.

REMARKS VARCHAR(254) Yes User-provided comment.

 Appendix J. Catalog Views 1009

SYSCAT.TABLESPACES

 SYSCAT.TABLESPACES
Contains a row for each table space.

Table 91. SYSCAT.TABLESPACES Catalog View

Column Name Data Type Nullable Description

TBSPACE VARCHAR(18) Name of table space.

DEFINER CHAR(8) Authorization ID of table space definer.

CREATE_TIME TIMESTAMP Creation time of table space.

TBSPACEID INTEGER Internal table space identifier.

TBSPACETYPE CHAR(1) The type of the table space:

S=System managed space
D=Database managed space

DATATYPE CHAR(1) Type of data that can be stored:

A=All types of permanent data
L=Long data only
T=Temporary tables only

EXTENTSIZE INTEGER Size of extent, in 4K pages. This many pages are written
to one container in the table space before switching to
the next container.

PREFETCHSIZE INTEGER Number of 4K pages to be read when prefetch is
performed.

OVERHEAD DOUBLE Controller overhead and disk seek and latency time in
milliseconds.

TRANSFERRATE DOUBLE Time to read one 4K page into the buffer.

PAGESIZE INTEGER Size (in bytes) of pages in the table space.

NGNAME VARCHAR(18) Name of the nodegroup for the table space.

BUFFERPOOLID INTEGER ID of buffer pool used by this tablespace (1 indicates
default buffer pool).

REMARKS VARCHAR(254) Yes User-provided comment.

1010 Administration Guide

SYSCAT.TRIGDEP

 SYSCAT.TRIGDEP
Contains a row for every dependency of a trigger on some other object.

Table 92. SYSCAT.TRIGDEP Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA CHAR(8) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

BTYPE CHAR(1) Type of object BNAME:

 ¹ A=Alias

 ¹ F=Function instance

| ¹ H=Table or view hierarchy

| ¹ R=Structured type

| ¹ S=Summary table

 ¹ T=Table

 ¹ V=View

BSCHEMA CHAR(8) Qualified name of object depended on by a trigger.

BNAME VARCHAR(18)

TABAUTH SMALLINT Yes If BTYPE=T or V, encodes the privileges on the table or
view that are required by this trigger; otherwise null.

 Appendix J. Catalog Views 1011

SYSCAT.TRIGGERS

 SYSCAT.TRIGGERS
Contains one row for each trigger.

Table 93. SYSCAT.TRIGGERS Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA CHAR(8) Qualified name of the trigger.

TRIGNAME VARCHAR(18)

DEFINER CHAR(8) Authorization ID under which the trigger was defined.

TABSCHEMA CHAR(8) Qualified name of the table to which this trigger applies.

TABNAME VARCHAR(18)

TRIGTIME CHAR(1) Time when triggered actions are applied to the base
table, relative to the event that fired the trigger:

B=Trigger applied before event
A=Trigger applied after event

TRIGEVENT CHAR(1) Event that fires the trigger.

 I=Insert
 D=Delete
 U=Update

GRANULARITY CHAR(1) Trigger is executed once per:

 S=Statement
 R=Row

VALID CHAR(1) Y=Trigger is valid
X=Trigger is inoperative;

must be re-created.

TEXT CLOB(32K) The full text of the CREATE TRIGGER statement,
exactly as typed.

CREATE_TIME TIMESTAMP Time at which the trigger was defined. Used in resolving
functions and types.

FUNC_PATH VARCHAR(254) Function path at the time the trigger was defined. Used
in resolving functions and types.

REMARKS VARCHAR(254) Yes User-supplied comment, or null.

1012 Administration Guide

SYSCAT.VIEWDEP

 SYSCAT.VIEWDEP
| Contains a row for every dependency of a view or a summary table on some other

object. Also encodes how privileges on this view depend on privileges on underlying
tables and views.

Table 94. SYSCAT.VIEWDEP Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA CHAR(8)| Name of the view or the name of a summary table
| having dependencies on a base table.

VIEWNAME VARCHAR(18)

DEFINER CHAR(8) Yes Authorization ID of the creator of the view.

BTYPE CHAR(1) Type of object BNAME:

 ¹ A=Alias

 ¹ F=Function instance

| ¹ H=Table or view hierarchy

| ¹ I=Index if recording dependency on a base table

| ¹ R=Structured type

| ¹ S=Summary table

 ¹ T=Table

 ¹ V=View

BSCHEMA CHAR(8) Qualified name of object depended on by the view.

BNAME VARCHAR(18)

TABAUTH SMALLINT Yes Encodes the privileges on the underlying table or view
that this view depends on. Otherwise null.

 Appendix J. Catalog Views 1013

SYSCAT.VIEWS

 SYSCAT.VIEWS
Contains one or more rows for each view that is created.

Table 95. SYSCAT.VIEWS Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA CHAR(8)| Name of the view or the name of a table used to define
| a summary table.

VIEWNAME VARCHAR(18)

DEFINER CHAR(8) Authorization ID of the creator of the view.

SEQNO SMALLINT Sequence number of this row; the first portion of the
view is on row one, and successive rows have
increasing values of SEQNO.

VIEWCHECK CHAR(1) States the type of view checking:

N=No check option
L=Local check option
C=Cascaded check option

READONLY CHAR(1) Y=View is read-only because of its definition.
N=View is not read-only.

VALID CHAR(1)| Y=View or summary table definition is valid.
| X=View or summary table definition is inoperative;
| must be re-created.

FUNC_PATH VARCHAR(254) The SQL path of the view creator at the time the view
was defined. When the view is used in data manipulation
statements, this path must be used to resolve function
calls in the view. SYSIBM for views created before
Version 2.

TEXT VARCHAR(3600) Text or portion of the text of the CREATE VIEW
statement.

1014 Administration Guide

SYSSTAT.COLDIST

 SYSSTAT.COLDIST
Each row describes the Nth-most-frequent value or Nth quantile value of some column.

Table 96. SYSSTAT.COLDIST Catalog View

Column
Name Data Type Nullable Description Updatable

TABSCHEMA CHAR(8) Qualified name of the table to which this entry
applies.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Name of the column to which this entry
applies.

TYPE CHAR(1) Type of statistic collected:

F=Frequency (most frequent value)
 Q=Quantile value

SEQNO SMALLINT If TYPE=F, then N in this column identifies the
Nth most frequent value. If TYPE=Q, then N
in this column identifies the Nth quantile
value.

COLVALUE VARCHAR(33) Yes The data value, as a character literal or a null
value.

This column can be updated with a valid
representation of the value appropriate to the
column that the statistic is associated with. If
null is the required frequency value, the
column should be set to NULL.

Yes

VALCOUNT INTEGER If TYPE=F, then VALCOUNT is the number of
occurrences of COLVALUE in the column. If
TYPE=Q, then VALCOUNT is the number of
rows whose value is less than or equal to
COLVALUE.

This column can be only updated with the
following values:

¹ >= 0 (zero)

Yes

DISTCOUNT INTEGER If TYPE=q, this column records the number of
distinct values that are less than or equal to
COLVALUE (null iv unavailable.) the number
of rows whose value is less than or equal to
COLVALUE.

Yes

 Appendix J. Catalog Views 1015

SYSSTAT.COLUMNS

 SYSSTAT.COLUMNS
Contains one row for each column for which statistics can be updated.

| Note: Summary tables are not included in this view for Version 5.2. If updating
| statistics for a summary table, use the OBJSTAT.COLUMNS view (see
| Appendix K, “Catalog Views For Use With Structured Types” on page 1023 for
| how to define this view).

Table 97. SYSSTAT.COLUMNS Catalog View

Column
Name Data Type Nullable Description Updatable

TABSCHEMA CHAR(8) Qualified name of the table that contains the
column.

TABNAME VARCHAR(18)

COLNAME VARCHAR(18) Column name.

COLCARD INTEGER Number of distinct values in the column; −1 if
statistics are not gathered.

For any column, COLCARD cannot have a
value higher than the cardinality of the table
containing that column.

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

HIGH2KEY VARCHAR(33) Second highest value of the column. This field
is empty if statistics are not gathered.

This column can be updated with a valid
representation of the value appropriate to the
column that the statistic is associated with.

LOWKEY2 should not be greater than
HIGH2KEY.

Yes

LOW2KEY VARCHAR(33) Second lowest value of the column. Empty if
statistics not gathered.

This column can be updated with a valid
representation of the value appropriate to the
column that the statistic is associated with.

Yes

AVGCOLLEN INTEGER Average column length. -1 if a long field or
LOB, or statistics have not been collected.

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

1016 Administration Guide

SYSSTAT.FUNCTIONS

 SYSSTAT.FUNCTIONS
Contains a row for each user-defined function (scalar or aggregate). Does not include
built-in functions.

Table 98 (Page 1 of 2). SYSSTAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description Updatable

FUNCSCHEMA CHAR(8) Qualified function name.

FUNCNAME VARCHAR(18)

SPECIFICNAME VARCHAR(18) Function specific (instance) name.

IOS_PER_INVOC DOUBLE Estimated number of I/Os per invocation; -1 if
not known (0 default).

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

INSTS_PER_INVOC DOUBLE Estimated number of instructions per
invocation; -1 if not known (450 default).

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

IOS_PER_ARGBYTE DOUBLE Estimated number of I/O's per input argument
byte; -1 if not known (0 default).

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per input
argument byte; -1 if not known (0 default).

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

PERCENT_ARGBYTES SMALLINT Estimated average percent of input argument
bytes that the function will actually read; -1 if
not known (100 default).

This column can only be updated with the
following values:

¹ -1 or between 100 and 0 (zero)

Yes

INITIAL_IOS DOUBLE Estimated number of I/O's performed the
first/last time the function is invoked; -1 if not
known (0 default).

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

 Appendix J. Catalog Views 1017

SYSSTAT.FUNCTIONS

Table 98 (Page 2 of 2). SYSSTAT.FUNCTIONS Catalog View

Column Name Data Type Nullable Description Updatable

INITIAL_INSTS DOUBLE Estimated number of instructions executed the
first/last time the function is invoked; -1 if not
known (0 default).

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

CARDINALITY INTEGER The predicted cardinality of a table function.
−1 if not known, or if function is not a table
function.

Yes

1018 Administration Guide

SYSSTAT.INDEXES

 SYSSTAT.INDEXES
Contains one row for each index that is defined for a table.

Table 99 (Page 1 of 3). SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Description Updatable

INDSCHEMA CHAR(8) Qualified name of the index.

INDNAME VARCHAR(18)

NLEAF INTEGER Number of leaf pages; −1 if statistics are not
gathered.

This column can only be updated with the
following values:

¹ -1 or > 0 (zero)

Yes

NLEVELS SMALLINT Number of index levels; −1 if statistics are not
gathered.

This column can only be updated with the
following values:

¹ -1 or > 0 (zero)

Yes

FIRSTKEYCARD INTEGER Number of distinct first key values; −1 if
statistics are not gathered.

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

FIRST2KEYCARD INTEGER Number of distinct keys using the first two
columns of the index (−1 if no statistics or
inapplicable)

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

FIRST3KEYCARD INTEGER Number of distinct keys using the first three
columns of the index (−1 if no statistics or
inapplicable)

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

FIRST4KEYCARD INTEGER Number of distinct keys using the first four
columns of the index (−1 if no statistics or
inapplicable)

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

 Appendix J. Catalog Views 1019

SYSSTAT.INDEXES

Table 99 (Page 2 of 3). SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Description Updatable

FULLKEYCARD INTEGER Number of distinct full key values; −1 if
statistics are not gathered.

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

CLUSTERRATIO SMALLINT This is used by the optimizer. It indicates the
degree of data clustering with the index; −1 if
statistics are not gathered or if detailed index
statistics have been gathered.

This column can only be updated with the
following values:

¹ −1 or between 0 and 100

Yes

CLUSTERFACTOR DOUBLE This is used by the optimizer. It is a finer
measurement of degree of clustering, or -1 if
detailed index statistics have not been
gathered.

This column can only be updated with the
following values:

¹ -1 or between 0 and 1

Yes

SEQUENTIAL_PAGES INTEGER Number of leaf pages located on disk in index
key order with few or no large gaps between
them. (−1 if no statistics are available.)

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by the
index, expressed as a percent (integer
between 0 and 100, −1 if no statistics are
available.)

This column can only be updated with the
following values:

¹ −1 or between 0 and 100

Yes

1020 Administration Guide

SYSSTAT.INDEXES

Table 99 (Page 3 of 3). SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Description Updatable

PAGE_FETCH_PAIRS VARCHAR(254) A list of pairs of integers, represented in
character form. Each pair represents the
number of pages in a hypothetical buffer, and
the number of page fetches required to scan
the index using that hypothetical buffer.
(Zero-length string if no data available.)

This column can be updated with the following
input values:

¹ The pair delimiter and pair separator
characters are the only non-numeric
characters accepted

¹ Blanks are the only characters
recognized as a pair delimiter and pair
separator

¹ Each number entry must have an
accompanying partner number entry with
the two being separated by the pair
separator character

¹ Each pair must be separated from any
other pairs by the pair delimiter character

¹ Each expected number entry must
between 0-9 (only positive values)

Yes

 Appendix J. Catalog Views 1021

SYSSTAT.TABLES

 SYSSTAT.TABLES
| Contains one row for each base table. Views or aliases are, therefore, not included. For
| typed tables, only the root table of a table hierarchy is included in this view. The CARD
| value applies to the root table only while the other statistics apply to the entire table
| hierarchy.

| Note: Summary tables are not included in this view for Version 5.2. If updating
| statistics for a summary table, use the OBJSTAT.TABLES view (see
| Appendix K, “Catalog Views For Use With Structured Types” on page 1023 for
| how to define this view).

Table 100. SYSSTAT.TABLES Catalog View

Column
Name Data Type Nullable Description Updatable

TABSCHEMA CHAR(8) Qualified name of the table.

TABNAME VARCHAR(18)

CARD INTEGER Total number of rows in the table; −1 if
statistics are not gathered.

An update to CARD for a table should not
attempt to assign it a value less than the
COLCARD value of any of the columns in that
table.

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

NPAGES INTEGER Total number of pages on which the rows of
the table exist; −1 if statistics are not
gathered.

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

FPAGES INTEGER Total number of pages in the file; −1 if
statistics are not gathered.

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

OVERFLOW INTEGER Total number of overflow records in the table;
−1 if statistics are not gathered.

This column can only be updated with the
following values:

¹ -1 or >= 0 (zero)

Yes

1022 Administration Guide

Catalog Views

| Appendix K. Catalog Views For Use With Structured Types

| When using structured types, typed tables and typed views, another set of views of the
| catalog provide more useful information than the SYSCAT and SYSSTAT catalog
| views. These views are not created automatically. The views are created in the
| OBJCAT and OBJSTAT schemas and SELECT privilege on all views is granted to
| PUBLIC by default.

| WARNING:

| This set of views is for temporary use only until the next version that supports
| catalog migration. Applications should not presume that these views exist in
| every database and should consider that these catalog views may not be
| provided in future versions. The information from these views will be supported
| through the SYSCAT and SYSSTAT views in a future version.

| The views can be created by following these steps.

| ¹ Using the Command Line Processor, connect to the database with an authorization
| ID that has SYSADM or DBADM authority.

| ¹ Ensure that you are in the home directory of the DB2 instance.

| ¹ In a UNIX-based system, issue the command:

| db2 -tvf sqllib/samples/clp/objcat.clp

| In an OS/2 or Windows based system, issue the command:

| db2 -tvf sqllib\samples\clp\objcat.clp

| Note: If the database already includes schemas called OBJCAT and/or OBJSTAT, you
| may need to make your own copy of the file objcat.clp and change the schema
| names in the second and third CREATE SCHEMA statements to suitable
| names.

| The statements in the OBJCAT.CLP file will create all OBJCAT and OBJSTAT catalog
| views. There is an OBJCAT catalog view corresponding to each SYSCAT catalog view,
| and one OBJSTAT updatable catalog view corresponding to each SYSSTAT updatable
| catalog view.

| This appendix contains a description of the OBJCAT and OBJSTAT catalog views for
| which the column definitions and/or acceptable values differ from their corresponding
| SYSCAT and SYSSTAT views. For views that have identical definitions as their
| SYSCAT and SYSSTAT counterparts, the reader is referred to those for column
| definitions.

| The catalog views are updated during normal operation in response to SQL data
| definition statements, environment routines, and certain utilities. Data in the catalog
| views is available through normal SQL query facilities. Columns have consistent names
| based on the type of objects that they describe:

 Copyright IBM Corp. 1993, 1998 1023

Catalog Views for Structured Types

| Described Object Column Names
|
| Table TABSCHEMA, TABNAME
| Index INDSCHEMA, INDNAME
| View VIEWSCHEMA, VIEWNAME
| Constraint CONSTSCHEMA, CONSTNAME
| Trigger TRIGSCHEMA, TRIGNAME
| Package PKGSCHEMA, PKGNAME
| Type TYPESCHEMA, TYPENAME, TYPEID
| Function FUNCSCHEMA, FUNCNAME, FUNCID
| Column COLNAME
| Attribute ATTR_NAME
| Schema SCHEMANAME
| Table Space TBSPACE
| Nodegroup NGNAME
| Buffer pool BPNAME
| Event Monitor EVMONNAME
| Creation Timestamp CREATE_TIME

| Updatable Catalog Views For Use With Structured Types
| The catalog views created in the OBJSTAT schema are updatable catalog views that
| correspond to the SYSTAT updatable catalog views.

| The OBJSTAT views are used in the same way as the SYSSTAT views.

| Before changing any statistics for the first time, it is advised to issue the RUNSTATS
| command so that all statistics will reflect the current state.

| See SQL Reference for more information, including rules for updating catalog statistics.

| “Roadmap” to Catalog Views for Structured Types
| Description| Catalog View

| attributes of structured data types| OBJCAT.ATTRIBUTES

| authorities on database| OBJCAT.DBAUTH 6

| Buffer pool configuration on nodegroup| OBJCAT.BUFFERPOOLS 6

| Buffer pool size on node| OBJCAT.BUFFERPOOLSNODE 6

| check constraints| OBJCAT.CHECKS

| column privileges| OBJCAT.COLAUTH 6

| columns| OBJCAT.COLUMNS

| columns referenced by check constraints| OBJCAT.COLCHECKS

| columns used in keys| OBJCAT.KEYCOLUSE

| constraint dependencies| OBJCAT.CONSTDEP

| datatypes| OBJCAT.DATATYPES

1024 Administration Guide

Catalog Views (structured types)

| Description| Catalog View

| event monitor definitions| OBJCAT.EVENTMONITORS 6

| events currently monitored| OBJCAT.EVENTS 6

| function parameters| OBJCAT.FUNCPARMS

| hierarchies (types, tables, views)| OBJCAT.HIERARCHIES

| indexes| OBJCAT.INDEXES

| detailed column statistics| OBJCAT.COLDIST 6

| nodegroup definitions| OBJCAT.NODEGROUPS 6

| nodegroup nodes| OBJCAT.NODEGROUPDEF 6

| partitioning maps| OBJCAT.PARTITIONMAPS 6

| package dependencies| OBJCAT.PACKAGEDEP

| package privileges| OBJCAT.PACKAGEAUTH 6

| packages| OBJCAT.PACKAGES 6

| stored procedures| OBJCAT.PROCEDURES 6

| procedure parameters| OBJCAT.PROCPARMS 6

| referential constraints| OBJCAT.REFERENCES

| schema privileges| OBJCAT.SCHEMAAUTH 6

| schemas| OBJCAT.SCHEMATA 6

| statements in packages| OBJCAT.STATEMENTS 6

| table constraints| OBJCAT.TABCONST

| table privileges| OBJCAT.TABAUTH 6

| tables| OBJCAT.TABLES

| table spaces| OBJCAT.TABLESPACES 6

| trigger dependencies| OBJCAT.TRIGDEP

| triggers| OBJCAT.TRIGGERS

| user-defined functions| OBJCAT.FUNCTIONS

| view dependencies| OBJCAT.VIEWDEP

| views| OBJCAT.TABLES

| OBJCAT.VIEWS 6

| “Roadmap” to Updatable Catalog Views For Structured Types
| Description| Catalog View

| columns| OBJSTAT.COLUMNS 7

| 6 The column definition of these catalog views is identical to their SYSCAT counterparts of the same name. The page reference points
| to the SYSCAT catalog views for the column definitions.

 Appendix K. Catalog Views For Use With Structured Types 1025

Catalog Views (structured types)

| Description| Catalog View

| indexes| OBJSTAT.INDEXES 7

| detailed column statistics| OBJSTAT.COLDIST 7

| tables| OBJSTAT.TABLES

| user-defined functions| OBJSTAT.FUNCTIONS 7

| 7 The column definition of these catalog views is identical to their SYSSTAT counterparts of the same name. The page reference
| points to the SYSSTAT catalog views for the column definitions.

1026 Administration Guide

OBJCAT.ATTRIBUTES

| OBJCAT.ATTRIBUTES
| Contains one row for each attribute (including inherited attributes where applicable) that
| is defined for a user-defined structured data type.

| Table 101. OBJCAT.ATTRIBUTES Catalog View

| Column Name| Data Type| Nullable| Description

| TYPESCHEMA| CHAR(8)| Qualified name of the strucutred data type that
| includes the attribute.| TYPENAME| VARCHAR(18)

| ATTR_NAME| VARCHAR(18)| Attribute name.

| ATTR_TYPESCHEMA| CHAR(8)| Contains the qualified name of the type of the attribute.

| ATTR_TYPENAME| VARCHAR(18)

| TARGET_TYPESCHEMA| CHAR(8)| Qualified name of the target type, if the type of the
| attribute is REFERENCE. Null value if the type of the
| attribute is not REFERENCE.
| TARGET_TYPENAME| VARCHAR(18)

| ORIGIN_TYPESCHEMA| CHAR(8)| Qualified name of the data type in the data type
| hierarchy where the attribute was introduced.| ORIGIN_TYPENAME| VARCHAR(18)

| POSITION| SMALLINT| Position of the attribute in the definition of the
| structured data type starting with zero.

| LENGTH| INTEGER| Maximum length of data. 0 for distinct types. The
| LENGTH column indicates precision for DECIMAL
| fields.

| SCALE| SMALLINT| Scale for DECIMAL fields; 0 if not DECIMAL.

| CODEPAGE| SMALLINT| Code page of the attribute. For character-string
| attributes not defined with FOR BIT DATA, the value is
| the database code page. For graphic-string attributes,
| the value is the DBCS code page implied by the
| (composite) database code page. Otherwise, the value
| is 0.

| LOGGED| CHAR(1)| Applies only to attributes whose type is LOB or distinct
| based on LOB (blank otherwise).

| Y=Attribute is logged.
| N=Attribute is not logged.

| COMPACT| CHAR(1)| Applies only to attributes whose type is LOB or distinct
| based on LOB (blank otherwise).

| Y=Attribute is compacted in storage.
| N=Attribute is not compacted.

| DL_FEATURES| CHAR(10)| Applies to DATALINK type attributes only. Blank for
| REFERENCE type attributes. Null otherwise. Encodes
| various DATALINK features such as linktype, control
| mode, recovery, and unlink properties.

 Appendix K. Catalog Views For Use With Structured Types 1027

OBJCAT.CHECKS

| OBJCAT.CHECKS
| Contains one row for each CHECK constraint defined for a table.

| Table 102. OBJCAT.CHECKS Catalog View

| Column Name| Data Type| Nullable| Description

| CONSTNAME| VARCHAR(18)| Name of the check constraint (unique within a table.)

| DEFINER| CHAR(8)| Authorization ID under which the check constraint was
| defined.

| TABSCHEMA| CHAR(8)| Qualified name of the table to which this constraint
| applies.| TABNAME| VARCHAR(18)

| ORIGIN_TABSCHEMA| CHAR(8)| Qualified name of the table on which the constraint
| was defined.| ORIGIN_TABNAME| VARCHAR(18)

| CREATE_TIME| TIMESTAMP| The time at which the constraint was defined. Used in
| resolving functions that are used in this constraint. No
| functions will be chosen that were created after the
| definition of the constraint.

| FUNC_PATH| VARCHAR(254)| The current SQL path that was used when the
| constraint was created.

| TEXT| CLOB(32K)| The text of the CHECK clause.

1028 Administration Guide

OBJCAT.COLCHECKS

| OBJCAT.COLCHECKS
| Each row represents some column that is referenced by a CHECK constraint defined
| for a table.

| Table 103. OBJCAT.COLCHECKS Catalog View

| Column Name| Data Type| Nullable| Description

| CONSTNAME| VARCHAR(18)| Name of the check constraint. (Unique within a table.
| May be system generated.)

| TABSCHEMA| CHAR(8)| Qualified name of table containing referenced column.

| TABNAME| VARCHAR(18)

| COLNAME| VARCHAR(18)| Name of column.

| ORIGIN_TABSCHEMA| CHAR(8)| Qualified name of the table on which the constraint
| was defined.| ORIGIN_TABNAME| VARCHAR(18)

 Appendix K. Catalog Views For Use With Structured Types 1029

OBJCAT.COLUMNS

| OBJCAT.COLUMNS
| Contains one row for each column (including inherited columns where applicable) that
| is defined for a table or view. All of the catalog views have entries in the
| OBJCAT.COLUMNS table.

| Table 104 (Page 1 of 3). OBJCAT.COLUMNS Catalog View

| Column Name| Data Type| Nullable| Description

| TABSCHEMA| CHAR(8)| Qualified name of the table or view that contains the
| column.| TABNAME| VARCHAR(18)

| COLNAME| VARCHAR(18)| Column name.

| COLNO| SMALLINT| Numerical place of column in table or view, beginning
| at zero.

| TYPESCHEMA| CHAR(8)| Contains the qualified name of the type, if the data
| type of the column is distinct. Otherwise
| TYPESCHEMA contains the value SYSIBM and
| TYPENAME contains the data type of the column (in
| long form, for example, CHARACTER). If FLOAT or
| FLOAT(n) with n greater than 24 is specified,
| TYPENAME is renamed to DOUBLE. If FLOAT(n) with
| n less than 25 is specified, TYPENAME is renamed to
| REAL. Also, NUMERIC is renamed to DECIMAL.

| TYPENAME| VARCHAR(18)

| LENGTH| INTEGER| Maximum length of data. 0 for distinct types. The
| LENGTH column indicates precision for DECIMAL
| fields.

| SCALE| SMALLINT| Scale for DECIMAL fields; 0 if not DECIMAL.

| DEFAULT| VARCHAR(254)| Yes| Default value for the column of a table expressed as a
| constant, special register, or cast-function appropriate
| for the data type of the column. May also be the
| keyword NULL.

| Values may be converted from what was specified as
| a default value. For example, date and time constants
| are presented in ISO format and cast-function names
| are qualified with schema name and the identifiers are
| delimited (see Note 3).

| Null value if a DEFAULT clause was not specified or
| the column is a view column.

| NULLS| CHAR(1)| Y=Column is nullable.
| N=Column is not nullable.

| The value can be N for a view column that is derived
| from an expression or function. Nevertheless, such a
| column allows nulls when the statement using the view
| is processed with warnings for arithmetic errors.

| See Note 1.

1030 Administration Guide

OBJCAT.COLUMNS

| Table 104 (Page 2 of 3). OBJCAT.COLUMNS Catalog View

| Column Name| Data Type| Nullable| Description

| CODEPAGE| SMALLINT| Code page of the column. For character-string
| columns not defined with the FOR BIT DATA attribute,
| the value is the database code page. For
| graphic-string columns, the value is the DBCS code
| page implied by the (composite) database code page.
| Otherwise, the value is 0.

| LOGGED| CHAR(1)| Applies only to columns whose type is LOB or distinct
| based on LOB (blank otherwise).

| Y=Column is logged.
| N=Column is not logged.

| COMPACT| CHAR(1)| Applies only to columns whose type is LOB or distinct
| based on LOB (blank otherwise).

| Y=Column is compacted in storage.
| N=Column is not compacted.

| COLCARD| INTEGER| Number of distinct values in the column; −1 if statistics
| are not gathered; -2 for an inherited column of a
| subtable.

| HIGH2KEY| VARCHAR(33)| Second highest value of the column. This field is
| empty if statistics are not gathered. See Note 2.

| LOW2KEY| VARCHAR(33)| Second lowest value of the column. Empty if statistics
| not gathered. See Note 2.

| AVGCOLLEN| INTEGER| Average column length. -1 if a long field or LOB, or
| statistics have not been collected; -2 for an inherited
| column of a subtable.

| KEYSEQ| SMALLINT| Yes| The column's numerical position within the table's
| primary key. This field is null or 0 if the column is not
| part of the primary key.

| PARTKEYSEQ| SMALLINT| Yes| The column's numerical position within the table's
| partitioning key. This field is null or 0 if the column is
| not part of the partitioning key.

| NQUANTILES| SMALLINT| Number of quantile values recorded in
| OBJCAT.SYSCOLDIST for this column; -1 if no
| statistics; -2 for an inherited column of a subtable.

| NMOSTFREQ| SMALLINT| Number of most-frequent values recorded in
| OBJCAT.COLDIST for this column; -1 if statistics not
| gathered; -2 for an inherited column in a subtable.

| TARGET_TYPESCHEMA| CHAR(8)| Yes| Qualified name of the target type, if the type of the
| column is REFERENCE. Null value if the type of the
| column is not REFERENCE.
| TARGET_TYPENAME| VARCHAR(18)| Yes

| SCOPE_TABSCHEMA| CHAR(8)| Yes| Qualified name of the scope (target table), if the type
| of the column is REFERENCE. Null value if the type of
| the column is not REFERENCE or the scope is not
| defined.

| SCOPE_TABNAME| VARCHAR(18)| Yes

 Appendix K. Catalog Views For Use With Structured Types 1031

OBJCAT.COLUMNS

| Table 104 (Page 3 of 3). OBJCAT.COLUMNS Catalog View

| Column Name| Data Type| Nullable| Description

| ORIGIN_TABSCHEMA| CHAR(8)| Qualified name of the table or view in the respective
| hierarchy where the column was introduced.| ORIGIN_TABNAME| VARCHAR(18)

| DL_FEATURES| CHAR(10)| Yes| Applies to DATALINK type columns only. Null
| otherwise. Each character position is defined as
| follows:

| 1. Link type (U for URL)

| 2. Link control (F for file, N for no)

| 3. Integrity (A for all, N for none)

| 4. Read permission (F for file system, D for
| database)

| 5. Write permission (F for file system, B for blocked)

| 6. Recovery (Y for yes, N for no)

| 7. On unlink (R for restore, D for delete, N for not
| applicable)

| Characters 8 through 10 are reserved for future use.

| SPECIAL_PROPS| CHAR(8)| Yes| Applies to REFERENCE type columns only. Null
| otherwise. 'Y' in the first byte indicates an object
| identifier (OID) column ('N' otherwise). 'U' in the
| second byte indicates user generated reference
| values.

| REMARKS| VARCHAR(254)| Yes| User-supplied comment.

| Note:

| 1. Starting with Version 2, value D (indicating not null with a default) is no longer used. Instead, use of WITH
| DEFAULT is indicated by a non-null value in the DEFAULT column.

| 2. Starting with Version 2, representation of numeric data has been changed to character literals. The size
| has been enlarged from 16 to 33 bytes.

| 3. For Version 2.1.0, cast-function names were not delimited and may still appear this way in the DEFAULT
| column. Also, some view columns included default values which will still appear in the DEFAULT column.

1032 Administration Guide

OBJCAT.CONSTDEP

| OBJCAT.CONSTDEP
| Contains a row for every dependency of a constraint on some other object.

| Table 105. OBJCAT.CONSTDEP Catalog View

| Column Name| Data Type| Nullable| Description

| CONSTNAME| VARCHAR(18)| Name of the constraint.

| TABSCHEMA| CHAR(8)| Qualified name of the table to which the constraint
| applies.| TABNAME| VARCHAR(18)

| BTYPE| CHAR(1)| Type of object that the constraint depends on. Possible
| values:

| F=function instance.
| I=index instance.
| R=structured type

| BSCHEMA| CHAR(8)| Qualified name of object that the constraint depends
| on.| BNAME| VARCHAR(18)

 Appendix K. Catalog Views For Use With Structured Types 1033

OBJCAT.DATATYPES

| OBJCAT.DATATYPES
| Contains a row for every data type, including built-in and user-defined types.

| Table 106. OBJCAT.DATATYPES Catalog View

| Column Name| Data Type| Nullable| Description

| TYPESCHEMA| CHAR(8)| Qualified name of the data type (for built-in types,
| TYPESCHEMA is SYSIBM).| TYPENAME| VARCHAR(18)

| DEFINER| CHAR(8)| Authorization ID under which type was created.

| SOURCESCHEMA| CHAR(8)| Yes| Qualified name of the source type for distinct types.
| Qualified name of the builtin type used as the
| reference type that is used as the representation for
| references to structured types. Null for other types.

| SOURCENAME| VARCHAR(18)| Yes

| METATYPE| CHAR(1)| R=user-defined structured type
| S=System predefined type
| T=user-defined distinct type

| TYPEID| SMALLINT| Internal type ID.

| SOURCETYPEID| SMALLINT| Yes| Internal type ID of source type (null for built-in types).
| For user-defined structured types, this is the internal
| type ID of the reference representation type.

| LENGTH| INTEGER| Maximum length of the type. 0 for system predefined
| parameterized types (for example, DECIMAL and
| VARCHAR). For user-defined structured types, this
| indicates the length of the reference representation
| type.

| SCALE| SMALLINT| Scale for distinct types or reference representation
| types based on the system predefined DECIMAL type.
| 0 for all other types (including DECIMAL itself).

| CODEPAGE| SMALLINT| Code page for character and graphic distinct types or
| reference representation types; 0 otherwise.

| CREATE_TIME| TIMESTAMP| Creation time of the data type.

| INSTANTIABLE| CHAR(1)| 'Y' to indicate type can be instantiated.

| INLINE_LENGTH| INTEGER| Length of structured type that can be kept with base
| table row. Always 0.

| REMARKS| VARCHAR(254)| Yes| User-supplied comment, or null.

1034 Administration Guide

OBJCAT.FUNCPARMS

| OBJCAT.FUNCPARMS
| Contains a row for every parameter or result of a function defined in
| OBJCAT.FUNCTIONS.

| Table 107. OBJCAT.FUNCPARMS Catalog View

| Column Name| Data Type| Nullable| Description

| FUNCSCHEMA| CHAR(8)| Qualified function name.

| FUNCNAME| VARCHAR(18)

| SPECIFICNAME| VARCHAR(18)| The name of the function instance (may be
| system-generated).

| ROWTYPE| CHAR(1)| P=parameter
| R=result before casting
| C=result after casting

| ORDINAL| SMALLINT| If ROWTYPE=P, the parameter's numerical position
| within the function signature. Otherwise 0.

| PARMNAME| VARCHAR(18)| Name of parameter or result column, or null if no name
| exists.

| TYPESCHEMA| CHAR(8)| Qualified name of data type of parameter or result.

| TYPENAME| VARCHAR(18)

| LENGTH| INTEGER| Length of parameter or result. 0 if parameter or result
| is a distinct type. See Note 1.

| SCALE| SMALLINT| Scale of parameter or result. 0 if parameter or result is
| a distinct type. See Note 1.

| CODEPAGE| SMALLINT| Code page of parameter. 0 denotes either not
| applicable or a column for character data declared with
| the FOR BIT DATA attribute.

| TARGET_TYPESCHEMA| CHAR(8)| Qualified name of the target type, if the type of the
| parameter or result is REFERENCE. Null value if the
| type of the parameter or result is not REFERENCE.
| TARGET_TYPENAME| VARCHAR(18)

| SCOPE_TABSCHEMA| CHAR(8)| Qualified name of the scope (target table), if the type
| of the parameter or result is REFERENCE. Null value
| if the type of the parameter or result is not
| REFERENCE or the scope is not defined.

| SCOPE_TABNAME| VARCHAR(18)

| CAST_FUNCID| INTEGER| Yes| Internal function ID.

| AS_LOCATOR| CHAR(1)| Y=Parameter or result is passed in
| the form of a locator
| N=Not passed in the form of a locator.

| Note:

| 1. LENGTH and SCALE are set to 0 for sourced functions (functions defined with a reference to another
| function) because they inherit the length and scale of parameters from their source.

 Appendix K. Catalog Views For Use With Structured Types 1035

OBJCAT.FUNCTIONS

| OBJCAT.FUNCTIONS
| Contains a row for each user-defined function (scalar, table or sourced). Does not
| include built-in functions.

| Table 108 (Page 1 of 3). OBJCAT.FUNCTIONS Catalog View

| Column Name| Data Type| Nullable| Description

| FUNCSCHEMA| CHAR(8)| Qualified function name.

| FUNCNAME| VARCHAR(18)

| SPECIFICNAME| VARCHAR(18)| The name of the function instance (may be
| system-generated).

| DEFINER| CHAR(8)| Authorization ID of function definer.

| FUNCID| INTEGER| Internally-assigned function ID.

| RETURN_TYPE| SMALLINT| Internal type code of return type of function.

| ORIGIN| CHAR(1)| B=Built-in
| E=User-defined, external
| U=User-defined, based on a source
| S=System-generated

| TYPE| CHAR(1)| S=Scalar function
| C=Column function
| T=Table function

| METHOD| CHAR(1)| N=Not a method
| Y=Method

| EFFECT| CHAR(2)| MU=mutator method
| OB=observer method
| CN=constructor method
| blanks=not a method

| PARM_COUNT| SMALLINT| Number of function parameters.

| PARM_SIGNATURE| VARCHAR(180)
| FOR BIT DATA
| Concatenation of up to 90 parameter types, in internal
| format. Zero length if function takes no parameters.

| CREATE_TIME| TIMESTAMP| Timestamp of function creation. Set to 0 for Version 1
| functions.

| FUNC_PATH| VARCHAR(254)| Yes| Function path at the time the function was defined.

| TYPE_PRESERVING| CHAR(1)| Always blank.

| VARIANT| CHAR(1)| Y=Variant (results may differ)
| N=Invariant (results are consistent)
| Blank if ORIGIN is not E

| SIDE_EFFECTS| CHAR(1)| E=Function has external side-effects
| (number of invocations is important)
| N=No side-effects
| Blank if ORIGIN is not E

| FENCED| CHAR(1)| Y=Fenced
| N=Not fenced
| Blank if ORIGIN is not E

1036 Administration Guide

OBJCAT.FUNCTIONS

| Table 108 (Page 2 of 3). OBJCAT.FUNCTIONS Catalog View

| Column Name| Data Type| Nullable| Description

| NULLCALL| CHAR(1)| Y=Nullcall
| N=No nullcall (function result is
| implicitly null if operand(s) are null).
| Blank if ORIGIN is not E.

| CAST_FUNCTION| CHAR(1)| Y=This is a cast function
| N=This is not a cast function

| ASSIGN_FUNCTION| CHAR(1)| Y=Implicit assignment function
| N=Not an assignment function

| SCRATCHPAD| CHAR(1)| Y=This function has a scratch pad
| N=This function does not have a scratch pad
| Blank if ORIGIN is not E

| FINAL_CALL| CHAR(1)| Y=Final call is made to this function at run time
| end-of-statement.
| N=No final call is made.
| Blank if ORIGIN is not E

| PARALLELIZABLE| CHAR(1)| Y=Function can be executed in parallel
| N=Function cannot be executed in parallel
| Blank if ORIGIN is not E

| CONTAINS_SQL| CHAR(1)| Indicates wheter an external function contains SQL.

| N=Function does not contain SQL statements.
| R=Contains read-only SQL statements.
| M=Contains SQL statements that modify data.
| Blank if ORIGIN is not E

| DBINFO| CHAR(1)| Indicates whether a DBINFO parameter is passed to
| an external function.

| Y=DBINFO is passed.
| N=DBINFO is not passed.
| Blank if ORIGIN is not E

| RESULT_COLS| SMALLINT| For a table function (TYPE=T) contains the number of
| columns in the result table; otherwise contains 1.

| LANGUAGE| CHAR(8)| Implementation language of function body. Possible
| values are C, JAVA or OLE. Blank if ORIGIN is not E.

| IMPLEMENTATION| VARCHAR(254)| Yes| If ORIGIN=E, identifies the path/module/function that
| implements this function. If ORIGIN=U and the source
| function is built-in, this column contains the name and
| signature of the source function. Null otherwise.

| PARM_STYLE| CHAR(8)| Indicates the parameter style declared in the CREATE
| FUNCTION statement. Values:

| DB2SQL
| DB2GENRL

 Appendix K. Catalog Views For Use With Structured Types 1037

OBJCAT.FUNCTIONS

| Table 108 (Page 3 of 3). OBJCAT.FUNCTIONS Catalog View

| Column Name| Data Type| Nullable| Description

| SOURCE_SCHEMA| CHAR(8)| Yes| If ORIGIN=U and the source function is a user-defined
| function, contains the qualified name of the source
| function. If ORIGIN=U and the source function is
| built-in, SOURCE_SCHEMA is 'SYSIBM' and
| SOURCE_SPECIFIC is 'N/A for built-in'. Null if
| ORIGIN is not U.

| SOURCE_SPECIFIC| VARCHAR(18)| Yes

| IOS_PER_INVOC| DOUBLE| Estimated number of I/Os per invocation; -1 if not
| known (0 default).

| INSTS_PER_INVOC| DOUBLE| Estimated number of instructions per invocation; -1 if
| not known (450 default).

| IOS_PER_ARGBYTE| DOUBLE| Estimated number of I/O's per input argument byte; -1
| if not known (0 default).

| INSTS_PER_ARGBYTE| DOUBLE| Estimated number of instructions per input argument
| byte; -1 if not known (0 default).

| PERCENT_ARGBYTES| SMALLINT| Estimated average percent of input argument bytes
| that the function will actually read; -1 if not known (100
| default).

| INITIAL_IOS| DOUBLE| Estimated number of I/O's performed the first/last time
| the function is invoked; -1 if not known (0 default).

| INITIAL_INSTS| DOUBLE| Estimated number of instructions executed the first/last
| time the function is invoked; -1 if not known (0 default).

| CARDINALITY| INTEGER| Yes| The predicted cardinality of a table function. −1 if not
| known or if function is not a table function.

| BODY| CLOB(1M)| Yes| Always null (future use).

| REMARKS| VARCHAR(254)| Yes| User-supplied comment, or null.

1038 Administration Guide

OBJCAT.HIERARCHIES

| OBJCAT.HIERARCHIES
| Each row represents the immediate subtype/supertype, subtable/supertable, or
| subview/superview relationship in the database.

| Table 109. OBJCAT.HIERARCHIES Catalog View

| Column Name| Data Type| Nullable| Description

| METATYPE| CHAR(1)| Indicates the type of database objects to which this
| row is applicable.

| R=relationship between structured types
| T=relationship between tables
| V=relationship between views

| SUB_SCHEMA| CHAR(8)| Qualified name of subtype, subtable, or subview.

| SUB_NAME| VARCHAR(18)

| SUPER_SCHEMA| CHAR(8)| Qualified name of supertype, supertable, or superview.

| SUPER_NAME| VARCHAR(18)

 Appendix K. Catalog Views For Use With Structured Types 1039

OBJCAT.INDEXES

| OBJCAT.INDEXES
| Contains one row for each index (including inherited indexes where applicable) that is
| defined for a table.

| Table 110 (Page 1 of 3). OBJCAT.INDEXES Catalog View

| Column Name| Data Type| Nullable| Description

| INDSCHEMA| CHAR(8)| Name of the index.

| INDNAME| VARCHAR(18)

| DEFINER| CHAR(8)| User who created the index.

| TABSCHEMA| CHAR(8)| Qualified name of the table on which the index is
| defined.| TABNAME| VARCHAR(18)

| ORIGIN_TABSCHEMA| CHAR(8)| Qualified name of the table in the table hierarchy
| where the index was introduced.| ORIGIN_TABNAME| VARCHAR(18)

| COLNAMES| VARCHAR(320)| List of column names, each preceded by + or − to
| indicate ascending or descending order respectively.

| UNIQUERULE| CHAR(1)| Unique rule:

| ¹ D=duplicates allowed

| ¹ P=primary index.

| ¹ U=unique entries only allowed

| MADE_UNIQUE| CHAR(1)| ¹ Y=Index was originally non-unique but was
| converted to a unique index to support a unique or
| primary key constraint. If the constraint is dropped,
| the index will revert to non-unique.

| ¹ N=Index remains as it was created.

| COLCOUNT| SMALLINT| Number of columns in the key plus the number of
| include columns if any.

| UNIQUE_COLCOUNT| SMALLINT| The number of columns required for a unique key.
| Always <=COLCOUNT. < COLCOUNT only if there a
| include columns. −1 if index has no unique key
| (permits duplicates).

| INDEXTYPE| CHAR(4)| Type of index.

| ¹ CLUS =Clustering

| ¹ REG =Regular

| PCTFREE| SMALLINT| Percentage of each index leaf page to be reserved
| during initial building of the index. This space is
| available for future inserts after the index is built.

| IID| SMALLINT| Internal index ID.

| NLEAF| INTEGER| Number of leaf pages. −1 if statistics are not gathered;
| −2 for an inherited index on a subtable.

| NLEVELS| SMALLINT| Number of index levels. −1 if statistics are not
| gathered; −2 for an inherited index on a subtable.

1040 Administration Guide

OBJCAT.INDEXES

| Table 110 (Page 2 of 3). OBJCAT.INDEXES Catalog View

| Column Name| Data Type| Nullable| Description

| FIRSTKEYCARD| INTEGER| Number of distinct first key values. −1 if statistics are
| not gathered; −2 for an inherited index on a subtable.

| FIRST2KEYCARD| INTEGER| Number of distinct keys using the first two columns of
| the index. −1 if no statistics or inapplicable; −2 for an
| inherited index on a subtable.

| FIRST3KEYCARD| INTEGER| Number of distinct keys using the first three columns of
| the index. −1 if no statistics or inapplicable; −2 for an
| inherited index on a subtable.

| FIRST4KEYCARD| INTEGER| Number of distinct keys using the first four columns of
| the index. −1 if no statistics or inapplicable; −2 for an
| inherited index on a subtable.

| FULLKEYCARD| INTEGER| Number of distinct full key values. −1 if statistics are
| not gathered; −2 for an inherited index on a subtable.

| CLUSTERRATIO| SMALLINT| Degree of data clustering with the index. −1 if statistics
| are not gathered or if detailed index statistics are
| gathered (in which case, CLUSTERFACTOR will be
| used instead); −2 for an inherited index on a subtable.

| CLUSTERFACTOR| DOUBLE| Finer measurement of degree of clustering. −1 if
| detailed index statistics have not been gathered; −2 for
| an inherited index on a subtable.

| SEQUENTIAL_PAGES| INTEGER| Number of leaf pages located on disk in index key
| order with few or no large gaps between them. −1 if no
| statistics are available; −2 for an inherited index on a
| subtable.

| DENSITY| INTEGER| Ratio of SEQUENTIAL_PAGES to number of pages in
| the range of pages occupied by the index, expressed
| as a percent (integer between 0 and 100). −1 if no
| statistics are available; −2 for an inherited index on a
| subtable.

| USER_DEFINED| SMALLINT| 1 if this index was defined by a user and has not been
| dropped; otherwise 0.

| SYSTEM_REQUIRED| SMALLINT| ¹ 1 if this index is required for primary key or unique
| key constraint, OR if this is the index on the object
| identifier (OID) column of a typed table.

| ¹ 2 if this index is required for primary key or unique
| key constraint, AND this is the index on the object
| identifier (OID) column of a typed table.

| ¹ 0 otherwise.

| CREATE_TIME| TIMESTAMP| Time when the index was created.

| STATS_TIME| TIMESTAMP| Yes| Last time when any change was made to recorded
| statistics for this index. Null if no statistics available,
| or for an inherited index on a subtable.

 Appendix K. Catalog Views For Use With Structured Types 1041

OBJCAT.INDEXES

| Table 110 (Page 3 of 3). OBJCAT.INDEXES Catalog View

| Column Name| Data Type| Nullable| Description

| PAGE_FETCH_PAIRS| VARCHAR(254)| A list of pairs of integers, represented in character
| form. Each pair represents the number of pages in a
| hypothetical buffer, and the number of page fetches
| required to scan the table with this index using that
| hypothetical buffer. (Zero-length string if no data
| available, or for an inherited index on a subtable.)

| REMARKS| VARCHAR(254)| Yes| User-supplied comment, or null.

| TEXT| CLOB(32K)| Yes| Reserved for future use.

1042 Administration Guide

OBJCAT.KEYCOLUSE

| OBJCAT.KEYCOLUSE
| Lists all columns that participate in a key (including inherited primary or unique keys
| where applicable) defined by a unique, primary key or foreign key constraint.

| Table 111. OBJCAT.KEYCOLUSE Catalog View

| Column Name| Data Type| Nullable| Description

| CONSTNAME| VARCHAR(18)| Name of the constraint (unique within a table).

| TABSCHEMA| CHAR(8)| Qualified name of the table containing the column.

| TABNAME| VARCHAR(18)

| COLNAME| VARCHAR(18)| Name of the column.

| COLSEQ| SMALLINT| Numeric position of the column in the
| key (initial position=1).

| ORIGIN_TABSCHEMA| CHAR(8)| Qualified name of the table in the table hierarchy
| where the key was introduced.| ORIGIN_TABNAME| VARCHAR(18)

 Appendix K. Catalog Views For Use With Structured Types 1043

OBJCAT.PACKAGEDEP

| OBJCAT.PACKAGEDEP
| Contains a row for each dependency that packages have on indexes, tables, views,
| functions, aliases, types, and hierarchies.

| Table 112. OBJCAT.PACKAGEDEP Catalog View

| Column Name| Data Type| Nullable| Description

| PKGSCHEMA| CHAR(8)| Name of the package.

| PKGNAME| CHAR(8)

| BINDER| CHAR(8)| Yes| Binder of the package.

| BTYPE| CHAR(1)| Type of object BNAME:

| ¹ A=alias

| ¹ F=function-instance

| ¹ H=table or view hierarchy

| ¹ I=index

| ¹ R=structured type

| ¹ S=summary table

| ¹ T=table

| ¹ V=view

| BSCHEMA| CHAR(8)| Qualified name of an object on which the package is
| dependent.| BNAME| VARCHAR(18)

| TABAUTH| SMALLINT| Yes| If BTYPE is T(table) or V(view),
| encodes the privileges that are
| required by this package (Select, Insert, Delete, Update).

| Note:

| 1. When a depended-on function-instance is dropped, the package is placed into an “inoperative” state from
| which it must be explicitly rebound. When any other depended-on object is dropped, the package is
| placed into an “invalid” state from which the system will attempt to rebind it automatically when a package
| is first referenced.

1044 Administration Guide

OBJCAT.REFERENCES

| OBJCAT.REFERENCES
| Contains a row for each defined referential constraint.

| Table 113. OBJCAT.REFERENCES Catalog View

| Column Name| Data Type| Nullable| Description

| CONSTNAME| VARCHAR(18)| Name of constraint.

| TABSCHEMA| CHAR(8)| Qualified name of the constraint.

| TABNAME| VARCHAR(18)

| DEFINER| CHAR(8)| User who created the constraint.

| REFKEYNAME| VARCHAR(18)| Name of parent key.

| REFTABSCHEMA| CHAR(8)| Name of the parent table.

| REFTABNAME| VARCHAR(18)

| COLCOUNT| SMALLINT| Number of columns in the foreign key.

| DELETERULE| CHAR(1)| Delete rule:

| A=NO ACTION
| C=CASCADE
| N=SET NULL
| R=RESTRICT

| UPDATERULE| CHAR(1)| Update rule:

| A=NO ACTION
| R=RESTRICT

| CREATE_TIME| TIMESTAMP| The timestamp when the referential constraint was
| defined.

| FK_COLNAMES| VARCHAR(320)| List of foreign key column names.

| PK_COLNAMES| VARCHAR(320)| List of parent key column names.

| ORIGIN_TABSCHEMA| CHAR(8)| Qualified name of the table where the referential
| constraint was introduced.| ORIGIN_TABNAME| VARCHAR(18)

| Note:

| 1. The OBJCAT.REFERENCES view is based on the SYSIBM.SYSRELS table from Version 1.

 Appendix K. Catalog Views For Use With Structured Types 1045

OBJCAT.TABCONST

| OBJCAT.TABCONST
| Each row represents a table constraint of type CHECK, UNIQUE, PRIMARY KEY, or
| FOREIGN KEY.

| Table 114. OBJCAT.TABCONST Catalog View

| Column Name| Data Type| Nullable| Description

| CONSTNAME| VARCHAR(18)| Name of the constraint (unique within a table).

| TABSCHEMA| CHAR(8)| Qualified name of the table to which this constraint
| applies.| TABNAME| VARCHAR(18)

| DEFINER| CHAR(8)| Authorization ID under which the constraint was defined.

| TYPE| CHAR(1)| Indicates the constraint type:

| K=CHECK
| P=PRIMARY KEY
| F=FOREIGN KEY
| U=UNIQUE

| ORIGIN_TABSCHEMA| CHAR(8)| Qualified name of the table where the constraint was
| introduced.| ORIGIN_TABNAME| VARCHAR(18)

| REMARKS| VARCHAR(254)| Yes| User-supplied comment, or null.

1046 Administration Guide

OBJCAT.TABLES

| OBJCAT.TABLES
| Contains one row for each table, view, or alias that is created. All of the catalog tables
| and views have entries in the OBJCAT.TABLES catalog view.

| Table 115 (Page 1 of 3). OBJCAT.TABLES Catalog View

| Column Name| Data Type| Nullable| Description

| TABSCHEMA| CHAR(8)| Qualified name of the table, view, or alias.

| TABNAME| VARCHAR(18)

| DEFINER| CHAR(8)| User who created the table, view, or alias.

| TYPE| CHAR(1)| The type of object:

| A=Alias
| S=Summary table
| T=Table
| V=View

| STATUS| CHAR(1)| The type of object:

| N=Normal table, view or alias
| C=Check pending on table
| X=Inoperative view

| BASE_TABSCHEMA| CHAR(8)| Yes| If TYPE=A, these columns identify the table, view, or
| alias that is referenced by this alias; otherwise they are
| null.
| BASE_TABNAME| VARCHAR(18)| Yes

| ROWTYPESCHEMA| CHAR(8)| Yes| These columns identify the structured type used to
| define the table. Values are null if the table is not
| defined using a structured type.
| ROWTYPENAME| VARCHAR(18)| Yes

| CREATE_TIME| TIMESTAMP| The timestamp indicating when the object was created.

| STATS_TIME| TIMESTAMP| Yes| Last time when any change was made to recorded
| statistics for this table. Null if no statistics available.

| COLCOUNT| SMALLINT| Number of columns in table.

| TABLEID| SMALLINT| Internal table identifier.

| TBSPACEID| SMALLINT| Internal identifier of primary table space for this table.

| CARD| INTEGER| Total number of rows in the table; -1 if statistics are
| not gathered or the row describes a view or alias.

| NPAGES| INTEGER| Total number of pages on which the rows of the table
| exist; -1 if statistics are not gathered or the row
| describes a view or alias; -2 for a subtable.

| FPAGES| INTEGER| Total number of pages; -1 if statistics are not gathered
| or the row describes a view or alias; -2 for a subtable.

| OVERFLOW| INTEGER| Total number of overflow records in the table; -1 if
| statistics are not gathered or the row describes a view
| or alias; -2 for a subtable.

| TBSPACE| VARCHAR(18)| Yes| Name of primary table space for the table. If no other
| table space is specified, all parts of the table are
| stored in this table space. Null for aliases and views.

 Appendix K. Catalog Views For Use With Structured Types 1047

OBJCAT.TABLES

| Table 115 (Page 2 of 3). OBJCAT.TABLES Catalog View

| Column Name| Data Type| Nullable| Description

| INDEX_TBSPACE| VARCHAR(18)| Yes| Name of table space that holds all indexes created on
| this table. Null for aliases and views, or if the INDEX
| IN clause was omitted or specified with the same value
| as the IN clause of the CREATE TABLE statement.

| LONG_TBSPACE| VARCHAR(18)| Yes| Name of table space that holds all long data (LONG or
| LOB column types) for this table. Null for aliases and
| views, or if the LONG IN clause was omitted or
| specified with the same value as the IN clause of the
| CREATE TABLE statement.

| PARENTS| SMALLINT| Yes| Number of parent tables of this table (the number of
| referential constraints in which this table is a
| dependent).

| CHILDREN| SMALLINT| Yes| Number of dependent tables of this table (the number
| of referential constraints in which this table is a
| parent).

| SELFREFS| SMALLINT| Yes| Number of self-referencing referential constraints for
| this table (the number of referential constraints in
| which this table is both a parent and a dependent).

| KEYCOLUMNS| SMALLINT| Yes| Number of columns in the primary key of the table.

| KEYINDEXID| SMALLINT| Yes| Index ID of the primary index. This field is null or 0 if
| there is no primary key.

| KEYUNIQUE| SMALLINT| Number of unique constraints (other than primary key)
| defined on this table.

| CHECKCOUNT| SMALLINT| Number of check constraints defined on this table.

| DATACAPTURE| CHAR(1)| Y=Table participates in data
| replication
| N=Does not participate

| CONST_CHECKED| CHAR(32)| Byte 1 represents foreign key constraints. Byte 2
| represents check constraints. Byte 3 represents
| constraint Datalink_Reconcile_Pending. Byte 4
| represents constraint
| Datalink_Reconcile_Not_Possible. Byte 5 represents
| summary table. Other bytes are reserved. Encodes
| constraint information on checking. Values:

| Y=Checked by system
| U=Checked by user
| N=Not checked (pending)

| PMAP_ID| SMALLINT| Yes| Identifier of the partitioning map used by this table.
| Null for aliases and views.

| PARTITION_MODE| CHAR(1)| Mode used for tables in a partitioned database.

| H hash on the partitioning key

| R table replicated across database partitions

| Blank for aliases, views and tables in single partition
| nodegroups with no partitioning key defined.

1048 Administration Guide

OBJCAT.TABLES

| Table 115 (Page 3 of 3). OBJCAT.TABLES Catalog View

| Column Name| Data Type| Nullable| Description

| LOG_ATTRIBUTE| CHAR(1)| 0=Default logging
| 1=Table created not
| logged initially

| PCTFREE| SMALLINT| Percentage of each page to be reserved for future
| inserts. Can be changed by ALTER TABLE.

| REMARKS| VARCHAR(254)| Yes| User-provided comment.

 Appendix K. Catalog Views For Use With Structured Types 1049

OBJCAT.TRIGDEP

| OBJCAT.TRIGDEP
| Contains a row for every dependency of a trigger on some other object.

| Table 116. OBJCAT.TRIGDEP Catalog View

| Column Name| Data Type| Nullable| Description

| TRIGSCHEMA| CHAR(8)| Qualified name of the trigger.

| TRIGNAME| VARCHAR(18)

| BTYPE| CHAR(1)| Type of object BNAME:

| ¹ A=Alias

| ¹ F=Function instance

| ¹ H=Table or view hierarchy

| ¹ R=Structured type

| ¹ S=Summary table

| ¹ T=Table

| ¹ V=View

| BSCHEMA| CHAR(8)| Qualified name of object depended on by a trigger.

| BNAME| VARCHAR(18)

| TABAUTH| SMALLINT| Yes| If BTYPE=T or V, encodes the privileges on the table
| or view that are required by this trigger; otherwise null.

1050 Administration Guide

OBJCAT.TRIGGERS

| OBJCAT.TRIGGERS
| Contains one row for each trigger.

| Table 117. OBJCAT.TRIGGERS Catalog View

| Column Name| Data Type| Nullable| Description

| TRIGSCHEMA| CHAR(8)| Qualified name of the trigger.

| TRIGNAME| VARCHAR(18)

| DEFINER| CHAR(8)| Authorization ID under which the trigger was defined.

| TABSCHEMA| CHAR(8)| Qualified name of the table to which this trigger
| applies.| TABNAME| VARCHAR(18)

| TRIGTIME| CHAR(1)| Time when triggered actions are applied to the base
| table, relative to the event that fired the trigger:

| B=Trigger applied before event
| A=Trigger applied after event

| TRIGEVENT| CHAR(1)| Event that fires the trigger.

| I=Insert
| D=Delete
| U=Update

| GRANULARITY| CHAR(1)| Trigger is executed once per:

| S=Statement
| R=Row

| VALID| CHAR(1)| Y=Trigger is valid
| X=Trigger is inoperative;
| must be re-created.

| TEXT| CLOB(32K)| The full text of the CREATE TRIGGER statement,
| exactly as typed.

| CREATE_TIME| TIMESTAMP| Time at which the trigger was defined. Used in
| resolving functions and types.

| FUNC_PATH| VARCHAR(254)| Function path at the time the trigger was defined. Used
| in resolving functions and types.

| ORIGIN_TABSCHEMA| CHAR(8)| Qualified name of the table where the trigger was
| introduced.| ORIGIN_TABNAME| VARCHAR(18)

| REMARKS| VARCHAR(254)| Yes| User-supplied comment, or null.

 Appendix K. Catalog Views For Use With Structured Types 1051

OBJCAT.VIEWDEP

| OBJCAT.VIEWDEP
| Contains a row for every dependency of a view or a summary table on some other
| object. Also encodes how privileges on this view depend on privileges on underlying
| tables and views.

| Table 118. OBJCAT.VIEWDEP Catalog View

| Column Name| Data Type| Nullable| Description

| VIEWSCHEMA| CHAR(8)| Name of the view or the name of a summary table
| having dependancies on a base table.| VIEWNAME| VARCHAR(18)

| DEFINER| CHAR(8)| Yes| Authorization ID of the creator of the view.

| BTYPE| CHAR(1)| Type of object BNAME:

| ¹ A=Alias

| ¹ F=Function instance

| ¹ H=Table or view hierarchy

| ¹ I=Index if recording dependency on a base table

| ¹ R=Structured type

| ¹ S=Summary table

| ¹ T=Table

| ¹ V=View

| BSCHEMA| CHAR(8)| Qualified name of object depended on by the view.

| BNAME| VARCHAR(18)

| TABAUTH| SMALLINT| Yes| Encodes the privileges on the underlying table or view
| that this view depends on. Otherwise null.

1052 Administration Guide

OBJSTAT.TABLES

| OBJSTAT.TABLES
| Contains one row for each table. Views or aliases are, therefore, not included.

| Table 119. SYSSTAT.TABLES Catalog View

| Column
| Name| Data Type| Nullable| Description| Updatable

| TABSCHEMA| CHAR(8)| Qualified name of the table.

| TABNAME| VARCHAR(18)

| CARD| INTEGER| Total number of rows in the table; −1 if
| statistics are not gathered.

| An update to CARD for a table should not
| attempt to assign it a value less than the
| COLCARD value of any of the columns in that
| table.

| This column can only be updated with the
| following values:

| ¹ -1 or >= 0 (zero)

| Yes

| NPAGES| INTEGER| Total number of pages on which the rows of
| the table exist; −1 if statistics are not
| gathered; -2 for a subtable. 8

| This column can only be updated with the
| following values:

| ¹ -1 or >= 0 (zero)

| Yes

| FPAGES| INTEGER| Total number of pages in the file; −1 if
| statistics are not gathered; -2 for a subtable. 8

| This column can only be updated with the
| following values:

| ¹ -1 or >= 0 (zero)

| Yes

| OVERFLOW| INTEGER| Total number of overflow records in the table;
| −1 if statistics are not gathered; -2 for a
| subtable. 8

| This column can only be updated with the
| following values:

| ¹ -1 or >= 0 (zero)

| Yes

| 8 A value of -2 indicates a subtable. A value of -2 is set by the database manager, and cannot be updated with another value. The
| value of this column cannot be updated with the value -2.

 Appendix K. Catalog Views For Use With Structured Types 1053

OBJSTAT.TABLES

1054 Administration Guide

Appendix L. User Exit for Database Recovery

User exits allow you to develop your own user exit program to interact with storage
devices that are not directly supported by the operating system.

The following topics describe the purpose of and considerations for a user exit program,
and discuss the sample exit programs and error handling:

¹ Overview for OS/2
¹ Overview for UNIX-Based Operating Systems
¹ Invoking a User Exit Program
¹ Sample User Exit Programs

 ¹ Calling Format
¹ Archive and Retrieve Considerations
¹ Backup and Restore Considerations (DB2 for OS/2 only)

 ¹ Error Handling

As noted in the sections, some of the information may only be applicable to certain
operating platforms. For example, backup and restore user exits are not applicable to
UNIX-based platforms.

Overview for OS/2
The database manager can optionally call a user exit program to backup and restore a
database, to archive and retrieve log files, or both. Calling a user exit program for one
pair of tasks (backup and restore or archive and retrieve) does not require that a user
exit program be used for the other pair of tasks. For example, if you archive and
retrieve logs with a user exit program, you are not required to back up and restore
databases with a user exit program.

The database manager can call a user exit program with one of the following actions:

Backup
The BACKUP DATABASE utility calls a user exit program when you
specify 0: as the target drive parameter from the command line processor,
or U as the media type on the API call. Refer to “Backing Up a Database”
on page 293 for additional information about backing up a database.

Restore
The RESTORE DATABASE utility calls a user exit program to retrieve
database files that were previously stored by BACKUP DATABASE calling
a user exit program. The RESTORE DATABASE utility calls a user exit
program by specifying 0: as the source drive parameter from the command
line processor, or U as the media type on the API call. Refer to “Restoring
a Database” on page 298 for additional information about restoring a
database.

Archive and Retrieve
The database manager archive and retrieve functions call a user exit
program to store and retrieve log files and to manage the location of

 Copyright IBM Corp. 1993, 1998 1055

archived log files if the database configuration parameter, userexit, is on.
Using a user exit program to archive and retrieve files enables a database
for roll-forward recovery (refer to “Rolling Forward Changes in a Database”
on page 308).

Note: The userexit configuration parameter applies to the archiving and retrieving of
log files only.

Overview for UNIX-Based Operating Systems
 The database manager can call a user exit program to store and retrieve log files and
to manage the location of archived log files if the database configuration parameter,
userexit, is on. Using a user exit program to archive and retrieve files enables a
database for roll-forward recovery (refer to “Rolling Forward Changes in a Database” on
page 308).

Invoking a User Exit Program
When the user exit program is invoked, the database manager passes control to the
executable file, [db2uext2].

Note: Backup and restore operations call [db2usrxt.cmd] first which in turn calls
[db2uext2].

The database manager passes parameters to this program, and on completion the
program passes a return code back to the database manager. Because the database
manager can only handle a limited set of return conditions, the user exit program
should handle error conditions.

Only one user exit program can be invoked within a database manager instance.
Therefore, each program must have sections for all of the actions it may need to
perform, including: archive, retrieve, backup (OS/2 only) and restore (OS/2 only). One
of the parameters passed to the user exit program indicates which of these actions is
requested.

Sample User Exit Programs
A number of sample programs are provided to demonstrate the usage of the user exit
function for a different device or software interface. The program listings identify the
version of the device support software used.

You may modify or otherwise use these programs in any way you wish. Comments
within these sample programs provide technical information for writing your own user
exit programs.

The following topics provide information about the sample programs related to your
operating system:

¹ Sample User Exit Programs for OS/2
¹ Sample User Exit Programs for UNIX-Based Operating Systems.

1056 Administration Guide

Sample User Exit Programs for OS/2
 The user exit sample programs for DB2 for OS/2 are found in the instance subdirectory
of the \sqllib\samples\rexx directory. The last user exit sample program (dbuexit.CAD) is
an exception: it is found in the instance subdirectory of the \sqllib\samples\c directory.
The sample you choose to implement should be renamed with the executable file name
of db2uexit with an extension of either .cmd or .exe. This renamed file should be
placed in the \sqllib\bin directory for use as a user exit program.

While the samples provided are mostly REXX command files, your user exit program
can be written in a different programming language. The executable file name must be
db2uexit with an extension of either .cmd or .exe.

There are five OS/2 sample programs provided:

 ¹ db2uexit.ex1

| This program uses the Sytos Premium** Version 2.2 program, available from
| Seagate** Software Inc., to store and retrieve data on an IBM external tape device.

Note: Only Version 2.2 of the Sytos Premium product is currently supported. You
require the OS/2 FixPack 26 to use this product.

Review the sample program listing to determine requirements such as predefining
procedures.

 ¹ db2uexit.ex2

 This program uses the Filesafe** program, available from the Mountain**
Corporation, to store and retrieve data on a Mountain tape device.

A unique volume label is assigned to each backup copy of a database so that
multiple backups of the same database or different databases can be stored on the
same tape. When a database is being restored, this program selects the most
recent backup copy. This feature can be bypassed by modifying the backup log
file.

 ¹ db2uexit.ex3

 This program uses the MaynStream** program, available from the Maynard**
Corporation, to store and retrieve data on a Maynard tape device.

MaynStream does not support redirecting the restored database to a drive other
than the one on which the database was backed up.

 ¹ db2uexit.ex4

 This program uses the OS/2 XCOPY command. The storage device can be any
device supported by OS/2, such as a fixed disk, diskette, or optical cartridge.
These devices can be LAN redirected drives if the workstation is set up to support
redirected drives.

XCOPY cannot be used for backing up and restoring databases.
 ¹ db2uexit.CAD

 This C program is equivalent to the ADSTAR Distributed Storage Manager
(ADSM) sample program to archive and retrieve database logfiles as presented in
the sample programs for UNIX-based operating systems.

 Appendix L. User Exit for Database Recovery 1057

Sample User Exit Programs for UNIX-Based Operating Systems
The userexit configuration parameter causes the database manager to call a user exit
program for archiving and retrieving logs. There are three IBM-supplied sample user
exit programs on UNIX platforms: one for disk, one for tape, and one for ADSM. It is
not mandatory that you use these programs. You may choose to create your own user
exit programs. The sample programs may provide you with a model or suggestions that
you can use when creating your user exit programs. Useful information is found in the
header information in each sample program.

While the samples provided are coded in the C language, your user exit program can
be written in a different programming language. The user exit program must be an
executable file whose name is db2uext2.

There are three UNIX-based operating system sample programs provided:

 ¹ db2uext2.cadsm

 This program uses the ADSTAR Distributed Storage Manager utility to archive and
retrieve database log files.

 ¹ db2uext2.ctape

 This program archives and retrieves the database log files using tape media.

 ¹ db2uext2.cdisk

 This program uses the operating system copy command to archive and retrieve
database log files using disk media.

 Calling Format
The database manager will call the user exit program as required and will pass a set of
parameters to it. These parameters have a data type of character string or character.

The calling format is dependent on your operating environment as is described in the
following topics:

¹ Calling Format for OS/2
¹ Calling Format for UNIX-Based or Windows NT Operating Systems.

Calling Format for OS/2
 The following is the database manager format for calling an OS/2 user exit program:

action drive db_alias log_path log_file indicator

action Contains the value BACKUP, RESTORE, ARCHIVE, or RETRIEVE.

drive For BACKUP, this parameter contains the drive where the database
to be backed up resides.

For RESTORE, this parameter contains the drive where the
database is to be restored.

1058 Administration Guide

For ARCHIVE and RETRIEVE, this parameter contains the drive
where the database is located.

The format of this parameter is the drive letter followed by a colon
(for example, C:).

db_alias Contains the database alias, or, if no alias exists for the database,
the database name.

log_path For BACKUP, this parameter contains a fully qualified name of a
response file, which contains a list of files to be backed up. Each file
name in the list is a fully qualified name and may contain wild cards.

For RESTORE, this parameter contains the fully qualified name of a
response file, which is the list of files to be restored. Each file name
in the list is a fully qualified name and may contain wild cards. The
drive letter and path are the source drive and path at the time the
database file was backed up. For example, if C:\SQLUTIL\dbname.MH1
is contained in the response file, it means that the dbname.MH1 file
was backed up from C:\SQLUTIL.

For ARCHIVE and RETRIEVE, this parameter contains the log path
directory (for example, C:\SQL00001\SQLOGDIR\).

log_file For BACKUP, this parameter contains a media label generated by
the BACKUP DATABASE utility. This label is composed of the
database alias name and timestamp.

For RESTORE, this parameter contains the path name of the
database subdirectory where the files are to be restored. The drive
letter is not included, because it is indicated in the drive parameter.
The format is \SQLnnnnn\.

For ARCHIVE and RETRIEVE, this parameter contains the log file
name (for example, S0000001.LOG).

indicator An indicator used to support multiple calls during a backup or restore
operation. The first call has a value of the character '1', and
subsequent calls have a value of the character '2'.

The user exit program is called multiple times during a backup or
restore operation. The first call backs up or restores media header
files (the .MHn files), and the second call backs up or restores the
entire set of database files.

For ARCHIVE and RETRIEVE, this parameter is not used.

Calling Format for UNIX-Based or Windows NT Operating Systems
The following is the database manager format for calling a UNIX-based or Windows NT
operating system user exit program to archive or retrieve data:

| db2uext2 -OS<os> -RL<db2rel> -RQ<request>
| -DB<dbname> -NN<nodenum> -LP<logpath>

| -LN<logname> -AP<adsmpasswd> -SP<startpage>

| -LS<logsize>

 Appendix L. User Exit for Database Recovery 1059

| os Platform on which the instance is running: AIX, NT, SUN, HP, SNI, SCO,
| 95, 98, and SGI.

db2rel DB2 release level. For example, DB2_V5.1.0 or DB2_V5.1.1.

request Request type. This can be ARCHIVE or RETRIEVE.

dbname Database name.

nodenum Local node number, such as 5.

logpath Fully qualified path to the log files. The path must contain the trailing
path separator. For example, /u/database/log/path/ or
d:\logpath\.

logname Name of log file to be archived or retrieved, such as S0000123.LOG.

adsmpasswd ADSM password. It will be passed to the user exit if it is provided in
the database configuration.

startpage Log extent starts at this number of offset 4 KB pages of the device.

logsize The size of this log extent in 4 KB pages.

Notes:

1. Windows NT only supports user exits for archiving logs.

2. The -LS and -SP parameters are only used if a raw device is used for logging. If
you are using an existing user exit program that uses files for logging, you do not
have to change it.

Archive and Retrieve Considerations
The following considerations apply to calling a user exit program for archiving and
retrieving log files:

¹ The database configuration file parameter userexit specifies whether the database
manager invokes a user exit program to archive files or to retrieve log files during
roll-forward recovery of databases. A request to retrieve a log file is made when
the roll-forward database recovery utility needs a log file that is not found in the log
path directory.

Notes:

1. Table space roll-forward recovery does not support the retrieval of log files
using user exits.

| 2. On Windows NT, you cannot use a REXX user exit to archive logs.

¹ When archiving, a log file is passed to the user exit when it is full, even if the log
file is still active and is needed for normal processing. This allows copies of the
data to be moved away from volatile media as quickly as possible. The log file
passed to the user exit is retained in the log path directory until it is no longer
needed for normal processing. At this point, the disk space is reused.

1060 Administration Guide

| ¹ DB2 opens a file in read mode when it starts a user exit to archive a log file.
| Therefore, the user exit should not be able to delete the file while the file is still
| active. DB2 closes the file when it becomes inactive. If the user exit finishes when
| the file is inactive, the log file can be deleted but there is a performance cost for
| doing so.

| ¹ When a log file has been archived, and it is inactive, DB2 does not delete the file
| but renames it as the next log file when such a file is needed. This results in a
| performance gain since when creating a new log file (instead of renaming the file),
| all pages must be written out to guarantee the disk space. It is better to re-use
| than to free up and then re-acquire the necessary pages on disk.

| ¹ DB2 will NOT invoke the user exit to retrieve the log file in either crash recovery
| nor rollback.

¹ A user exit program does not guarantee roll-forward recovery to the point of failure,
but only attempts to make the failure window smaller. As log files fill, they are
queued for the user exit routine. Should the disk containing the log fail before a log
file is filled, the data in that log file is lost. Also, since the files are queued for
archiving, the disk can fail before all the files are copied. Any log files in the queue
are lost.

¹ The configured size of each individual log file has a direct bearing on the user exit.
If each log file is very large, a large amount of data can be lost if a disk fails. A log
file configured with small log files causes the data to be passed to the user exit
routine more often.

However, if you are moving the data to a slower device such as tape, you might
want to have larger log files to prevent the queue from building up. If the queue
becomes full, archive and retrieve requests will not be processed. Processing will
resume when there is room on the queue. Any requests not processed will not be
automatically re-queued.

¹ An archive request to the user exit program occurs only when userexit is
configured and each time an active log file is filled. It is possible that an active log
file is not full when the last disconnection from the database occurs and the user
exit program is also called for a partially filled active log file.

Note: To free unused log space, the log file is truncated before it is archived.

¹ A copy of the log should be made to another physical device so that the off-line log
file can be used by roll-forward recovery if the device containing the log file has a
media failure. This should not be the same device containing the database data
files.

¹ In some cases, if a database is closed before a positive response has been
received from a user exit program for an archive request, the database manager
will send another request when the database is opened. Thus, a log file may be
archived more than once. If you do not want this multiple archiving to occur, the
user exit program must not allow the subsequent requests for archiving the same
file.

¹ If a user exit program receives a request to archive a file that does not exist
(because there were multiple requests to archive and the file was deleted after the

 Appendix L. User Exit for Database Recovery 1061

first successful archiving), or to retrieve a file that does not exist (because it is
located in another directory or the end of the logs has been reached), it should
ignore this request and return a successful return code.

¹ A user exit may be interrupted if a remote client loses its connection to the DB2
server. That is, while handling the archiving of logs through a user exit, one of the
other SNA-connected clients dies or powers off resulting in a signal (SIGUSR1)
being sent to the server. The server passes the signal to the user exit causing an
interrupt. The user exit program can be modified to check for an interrupt and then
continue.

¹ The user exit program should allow for the existence of different log files with the
same name after a point-in-time recovery; it should be written to preserve both log
files and to associate those log files with the correct recovery path. (See
“Considerations for Managing Log Files” on page 321.)

¹ If two or more databases are using a device at the same time, and one of the
operations involves a roll-forward operation, a log file needed for roll-forward
recovery may not exist on the medium currently in the drive. Two conditions can
occur:

– If the user exit program passes a zero (successful) return code back to the
database manager and the requested log file has not been retrieved, the
database manager assumes the roll-forward operation is complete to the end
of the logs, and the roll-forward operation stops. However, roll-forward
processing may not have gone to the end of the logs.

– If a non-zero return code is returned, the database will be in a roll-forward
pending state, and you must either resume or stop roll-forward processing.

To prevent either situation from occurring, you can ensure that no other databases
on the node that calls the user exit program are open during the roll-forward
operation, or write a user exit program to handle this situation.

Backup and Restore Considerations (DB2 for OS/2 only)
The following considerations apply if you are writing a user exit program which is called
from the BACKUP DATABASE and RESTORE DATABASE utilities:

¹ A non-zero return code returned by a user exit program causes the utility to fail,
and no retry is attempted.

¹ A wild card must be supported in the file name of a fully qualified file name. For
example, C:\SQL00001*.* and C:*.MH* are both acceptable search criteria.

¹ The user exit program must handle the response file format of one fully qualified
file name per line with each line terminated by a carriage return and line feed.
There is no end-of-file character in the file.

¹ If multiple backups of the same database are placed on one media, the user exit
program should be designed so that the correct version of the backup will be
selected during the restore operation. (See the db2uexit.ex2 sample, as described
in “Sample User Exit Programs for OS/2” on page 1057.)

¹ Two concurrently running backup processes that are sharing one backup device
must be serialized.

1062 Administration Guide

¹ If a backup image is spanned over more than one media, the prompting for the
media must be handled by the user exit program or an application it may call. To
support this feature, BACKUP DATABASE and RESTORE DATABASE open an
operating system foreground session to call the user exit program.

¹ The user exit program must not back up any subdirectory within the database
directory.

¹ When restoring a database using a user exit program, RESTORE DATABASE
requires complete control over that database. However, the workstation can have
active connections to databases other than the one being restored.

¹ If a database is being backed up or restored with a user exit program and another
operation is using the same tape device, the backup or restore operation could fail.
The backup or restore operation will have to be restarted. To avoid this situation,
you can ensure that no other databases on the workstation that call the user exit
program for logging are in use while a backup or restore operation is in progress,
or you can ensure that the user exit program retries the backup or restore
operation at a later time if a device is not ready.

¹ During the restore operation, the drive letter and the path can be different from
those specified during the backup operation. For example, if file dbname.MH1 is
backed up from C:\SQLUTIL, you can restore it into d:\xxx.

 Error Handling
 In order for the database manager to properly handle the return codes from the user
exit program, the program must be coded to provide specific return codes to show
specific results.

Table 120 on page 1064 shows the return codes that can be returned by a user exit
program. and how the database manager interprets that return code. If a return code is
not listed in the table, it is treated as if its value were 32.

 Appendix L. User Exit for Database Recovery 1063

Table 120. User Exit Return Codes and Results

Return Code Result (Note 1) Explanation

0 — Successful.

4 Note 2 Temporary resource error encountered.

8 Note 2 Operator intervention is required.

12 Note 3 Hardware error.

16 Note 3 Error with the user exit program or a software function used by the
program.

20 Note 3 Error with one or more of the parameters passed to the user exit
program. Verify that the user exit program is correctly processing
the parameters provided.

24 Note 3 The user exit program was not found. For OS/2 this error
message also means that a file needed to complete a RESTORE
DATABASE operation could not be found in the current backup
media.

28 Note 3 Error caused by an I/O failure or the operating system.

32 (and all other
values)

Note 3 The user exit program was terminated by the user.

Notes:

1. Applies to archive and retrieve actions only.

2. For archive and retrieve, a return code of 4 or 8 causes a retry in five minutes.

3. No further user exit program requests will be sent for this database while the
database is open for processing. If all applications disconnect from the database
and then the database is reopened, the request will be repeated.

If the user exit program was called to archive log files, your disk can be filled with
log files and performance may be degraded because of extra work to format these
log files. Once the disk becomes full, database manager will not accept further
application requests for database changes.

If the user exit program was called to retrieve log files, roll-forward recovery is
suspended but not stopped unless a stop was specified in the ROLLFORWARD
DATABASE utility. If a stop was not specified, you can correct the problem and
resume recovery.

4. For archive and retrieve actions, an alert message is issued for all return codes
except 0, 4, and 24. The alert message contains the return code from the user exit
program and a copy of the input parameters that were provided to the user exit
program.

Because the user exit program is called by the underlying operating system command
processor, there is a possibility that non-zero return codes are returned from the
operating system. These error codes are not remapped. Consult the operating system
message help information for a description of those error codes.

1064 Administration Guide

Error Handling for OS/2:

For the BACKUP DATABASE and RESTORE DATABASE utilities, any non-zero return
code returned by a user exit program causes the utility to fail and no retry is attempted.
The utilities report a general SQLCODE -2029. The message text for this SQLCODE
displays the return code returned from the user exit program or from the operating
system.

 Appendix L. User Exit for Database Recovery 1065

1066 Administration Guide

Explain Tables

Appendix M. Explain Tables and Definitions

The Explain tables capture access plans when the Explain facility is activated. The
following Explain tables and definitions are described in this section:

 ¹ “EXPLAIN_ARGUMENT Table”

¹ “EXPLAIN_INSTANCE Table” on page 1071

¹ “EXPLAIN_OBJECT Table” on page 1072

¹ “EXPLAIN_OPERATOR Table” on page 1074

¹ “EXPLAIN_PREDICATE Table” on page 1076

¹ “EXPLAIN_STATEMENT Table” on page 1077

¹ “EXPLAIN_STREAM Table” on page 1079

The Explain tables must be created before Explain can be invoked. To create them,
use the sample command line processor input script provided in the EXPLAIN.DDL file
located in the 'misc' subdirectory of the 'sqllib' directory. Connect to the database
where the Explain tables are required. Then issue the command: db2 -tf EXPLAIN.DDL

and the tables will be created. See “Table Definitions for Explain Tables” on page 1081
for more information.

The population of the Explain tables by the Explain facility will neither activate any
triggers nor activate any referential or check constraints. For example, if an insert
trigger were defined on the EXPLAIN_INSTANCE table and an eligible statement were
explained, the trigger would not be activated.

See Chapter 14, “SQL Explain Facility” on page 509 for more details on the Explain
facility.

Legend for the Explain Tables:

Heading Explanation
Column name Name of the column
Data Type Data type of the column
Nullable? Yes: Nulls are permitted

No: Nulls are not permitted
Key? PK: Column is part of a primary key

FK: Column is part of a foreign key
Description Description of the column

 EXPLAIN_ARGUMENT Table
The EXPLAIN_ARGUMENT table represents the unique characteristics for each
individual operator, if there are any.

 Copyright IBM Corp. 1993, 1998 1067

Explain Tables

Table 121. EXPLAIN_ARGUMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic
statement was explained or name of the source file when
static SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain
information is related.

OPERATOR_ID SMALLINT No No Unique ID for this operator within this query.

ARGUMENT_TYPE CHAR(8) No No The type of argument for this operator.

ARGUMENT_VALUE VARCHAR(30) No No The value of the argument for this operator.

Table 122 (Page 1 of 3). ARGUMENT_TYPE and ARGUMENT_VALUE Column Values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

AGGMODE COMPLETE
PARTIAL
INTERMEDIATE
FINAL

Partial aggregation indicators.

| BUFFERS| INTEGER| Buffers consumed.

| BITFLTR| TRUE
| FALSE
| Hash Join will use a bit filter to enhance
| performance.

CSETEMP TRUE
FALSE

Temporary Table over Common Subexpression
Flag.

DIRECT TRUE Direct fetch indicator.

DUPLWARN TRUE
FALSE

Duplicates Warning flag.

EARLYOUT TRUE
FALSE

Early out indicator.

FETCHMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
FETCH operator.

GROUPBYC TRUE
FALSE

Whether Group By columns were provided.

GROUPBYN Integer Number of comparison columns.

GROUPBYR Each row of this type will contain:

¹ Ordinal value of column in group by clause
(followed by a colon and a space)

¹ Name of Column

Group By requirement.

1068 Administration Guide

Explain Tables

Table 122 (Page 2 of 3). ARGUMENT_TYPE and ARGUMENT_VALUE Column Values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

INNERCOL Each row of this type will contain:

¹ Ordinal value of column in order (followed
by a colon and a space)

¹ Name of Column

 ¹ Order Value

(A) Ascending

(D) Descending

Inner order columns.

ISCANMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
ISCAN operator.

JN_INPUT INNER
OUTER

Indicates if operator is the operator feeding the
inner or outer of a join.

LISTENER TRUE
FALSE

Listener Table Queue indicator.

MAXPAGES ALL
NONE
INTEGER

Maximum pages expected for Prefetch.

| MAXRIDS| NONE
| INTEGER
| Maximum Row Identifiers to be included in each list
| prefetch request.

NUMROWS INTEGER Number of rows expected to be sorted.

ONEFETCH TRUE
FALSE

One Fetch indicator.

OUTERCOL Each row of this type will contain:

¹ Ordinal value of column in order (followed
by a colon and a space)

¹ Name of Column

 ¹ Order Value

(A) Ascending

(D) Descending

Outer order columns.

OUTERJN LEFT
RIGHT

Outer join indicator.

PARTCOLS Name of Column Partitioning columns for operator.

PREFETCH LIST
NONE
SEQUENTIAL

Type of Prefetch Eligible.

ROWLOCK EXCLUSIVE
NONE
REUSE
SHARE
SHORT (INSTANT) SHARE
UPDATE

Row Lock Intent.

ROWWIDTH INTEGER Width of row to be sorted. ***

SCANDIR FORWARD
REVERSE

Scan Direction.

SCANGRAN INTEGER Intra-partition parallelism, granularity of the
intra-partition parallel scan, expressed in
SCANUNITs.

 Appendix M. Explain Tables and Definitions 1069

Explain Tables

Table 122 (Page 3 of 3). ARGUMENT_TYPE and ARGUMENT_VALUE Column Values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

SCANTYPE LOCAL PARALLEL intra-partition parallelism, Index or Table scan.

SCANUNIT ROW
PAGE

Intra-partition parallelism, scan granularity unit.

SHARED TRUE Intra-partition parallelism, shared TEMP indicator.

SLOWMAT TRUE
FALSE

Slow Materialization flag.

| SNGLPROD| TRUE
| FALSE
| Intra-partition parallelism sort or temp produced by
| a single agent.

SORTKEY Each row of this type will contain:

¹ Ordinal value of column in key (followed by
a colon and a space)

¹ Name of Column

 ¹ Order Value

(A) Ascending

(D) Descending

Sort key columns.

| SORTTYPE PARTITIONED
SHARED
ROUND ROBIN
REPLICATED

Intra-partition parallelism, sort type.

TABLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Table Lock Intent.

TQDEGREE INTEGER intra-partition parallelism, number of subagents
accessing Table Queue.

TQMERGE TRUE
FALSE

Merging (sorted) Table Queue indicator.

TQREAD READ AHEAD
STEPPING
SUBQUERY STEPPING

Table Queue reading property.

TQSEND BROADCAST
DIRECTED
SCATTER
SUBQUERY DIRECTED

Table Queue send property.

TQTYPE LOCAL Intra-partition parallelism, Table Queue.

| TRUNCSRT| TRUE| Truncated sort (limits number of rows produced).

UNIQUE TRUE
FALSE

Uniqueness indicator.

UNIQKEY Each row of this type will contain:

¹ Ordinal value of column in key (followed by
a colon and a space)

¹ Name of Column

Unique key columns.

1070 Administration Guide

Explain Tables

 EXPLAIN_INSTANCE Table
The EXPLAIN_INSTANCE table is the main control table for all Explain information.
Each row of data in the Explain tables is explicitly linked to one unique row in this table.
The EXPLAIN_INSTANCE table gives basic information about the source of the SQL
statements being explained as well as information about the environment in which the
explanation took place.

For the definition of this table, see “EXPLAIN_INSTANCE Table Definition” on
page 1083.

Table 123 (Page 1 of 2). EXPLAIN_INSTANCE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No PK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No PK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No PK Name of the package running when the dynamic
statement was explained or name of the source file when
the static SQL was explained.

SOURCE_SCHEMA CHAR(8) No PK Schema, or qualifier, of source of Explain request.

EXPLAIN_OPTION CHAR(1) No No Indicates what Explain Information was requested for this
request.

Possible values are:

P PLAN SELECTION

SNAPSHOT_TAKEN CHAR(1) No No Indicates whether an Explain Snapshot was taken for this
request.

Possible values are:

Y Yes, an Explain Snapshot(s) was taken and
stored in the EXPLAIN_STATEMENT table.
Regular Explain information was also
captured.

N No Explain Snapshot was taken. Regular
Explain information was captured.

O Only an Explain Snapshot was taken. Regular
Explain information was not captured.

DB2_VERSION CHAR(7) No No Product release number for DB2 Universal Database
which processed this explain request. Format is vv.rr.m,
where:

vv Version Number
rr Release Number
m Maintenance Release Number

SQL_TYPE CHAR(1) No No Indicates whether the Explain Instance was for static or
dynamic SQL.

Possible values are:

S Static SQL
D Dynamic SQL

QUERYOPT INTEGER No No Indicates the query optimization class used by the SQL
Compiler at the time of the Explain invocation. The value
indicates what level of query optimization was performed
by the SQL Compiler for the SQL statements being
explained.

 Appendix M. Explain Tables and Definitions 1071

Explain Tables

Table 123 (Page 2 of 2). EXPLAIN_INSTANCE Table

Column Name Data Type Nullable? Key? Description

BLOCK CHAR(1) No No Indicates what type of cursor blocking was used when
compiling the SQL statements. For more information, see
the BLOCK column in SYSCAT.PACKAGES.

Possible values are:

N No Blocking
U Block Unambiguous Cursors
B Block All Cursors

ISOLATION CHAR(2) No No Indicates what type of isolation was used when compiling
the SQL statements. For more information, see the
ISOLATION column in SYSCAT.PACKAGES.

Possible values are:

RR Repeatable Read
RS Read Stability
CS Cursor Stability
UR Uncommitted Read

BUFFPAGE INTEGER No No Contains the value of the BUFFPAGE database
configuration setting at the time of the Explain invocation.

AVG_APPLS INTEGER No No Contains the value of the AVG_APPLS configuration
parameter at the time of the Explain invocation.

SORTHEAP INTEGER No No Contains the value of the SORTHEAP database
configuration setting at the time of the Explain invocation.

LOCKLIST INTEGER No No Contains the value of the LOCKLIST database
configuration setting at the time of the Explain invocation.

MAXLOCKS SMALLINT No No Contains the value of the MAXLOCKS database
configuration setting at the time of the Explain invocation.

LOCKS_AVAIL INTEGER No No Contains the number of locks assumed to be available by
the optimizer for each user. (Derived from LOCKLIST and
MAXLOCKS.)

CPU_SPEED DOUBLE No No Contains the value of the CPUSPEED database manager
configuration setting at the time of the Explain invocation.

REMARKS VARCHAR(254) Yes No User-provided comment.

DBHEAP INTEGER No No Contains the value of the DBHEAP database configuration
setting at the time of Explain invocation.

COMM_SPEED DOUBLE No No Contains the value of the COMM_BANDWIDTH database
configuration setting at the time of Explain invocation.

PARALLELISM CHAR(2) No No Possible values are:

N No parallelism
P Intra-partition parallelism
IP Inter-partition parallelism
BP Intra-partition parallelism and inter-partition

parallelism

 EXPLAIN_OBJECT Table
The EXPLAIN_OBJECT table identifies those data objects required by the access plan
generated to satisfy the SQL statement.

1072 Administration Guide

Explain Tables

Table 124 (Page 1 of 2). EXPLAIN_OBJECT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic
statement was explained or name of the source file when
the static SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain
information is related.

OBJECT_SCHEMA CHAR(8) No No Schema to which this object belongs.

OBJECT_NAME VARCHAR(18) No No Name of the object.

OBJECT_TYPE CHAR(2) No No Descriptive label for the type of object.

CREATE_TIME TIMESTAMP Yes No Time of Object's creation; null if a table function.

STATISTICS_TIME TIMESTAMP Yes No Last time of update to statistics for this object; null if
statistics do not exist for this object.

COLUMN_COUNT SMALLINT No No Number of columns in this object.

ROW_COUNT INTEGER No No Estimated number of rows in this object.

WIDTH INTEGER No No The average width of the object in bytes. Set to -1 for an
index.

PAGES INTEGER No No Estimated number of pages that the object occupies in the
buffer pool. Set to -1 for a table function.

DISTINCT CHAR(1) No No Indicates if the rows in the object are distinct (i.e. no
duplicates)

Possible values are:

Y Yes

N No

TABLESPACE_NAME VARCHAR(18) Yes No Name of the table space in which this object is stored; set
to null if no table space is involved.

OVERHEAD DOUBLE No No Total estimated overhead, in milliseconds, for a single
random I/O to the specified table space. Includes
controller overhead, disk seek, and latency times. Set to -1
if no table space is involved.

TRANSFER_RATE DOUBLE No No Estimated time to read a data page, in milliseconds, from
the specified table space. Set to -1 if no table space is
involved.

PREFETCHSIZE INTEGER No No Number of data pages to be read when prefetch is
performed. Set to -1 for a table function.

EXTENTSIZE INTEGER No No Size of extent, in data pages. This many pages are written
to one container in the table space before switching to the
next container. Set to -1 for a table function.

CLUSTER DOUBLE No No Degree of data clustering with the index. If >= 1, this is the
CLUSTERRATIO. If >= 0 and < 1, this is the
CLUSTERFACTOR. Set to -1 for a table, table function, or
if this statistic is not available.

 Appendix M. Explain Tables and Definitions 1073

Explain Tables

Table 124 (Page 2 of 2). EXPLAIN_OBJECT Table

Column Name Data Type Nullable? Key? Description

NLEAF INTEGER No No Number of leaf pages this index object's values occupy.
Set to -1 for a table, table function, or if this statistic is not
available.

NLEVELS INTEGER No No Number of index levels in this index object's tree. Set to -1
for a table, table function, or if this statistic is not available.

FULLKEYCARD INTEGER No No Number of distinct full key values contained in this index
object. Set to -1 for a table, table function, or if this
statistic is not available.

OVERFLOW INTEGER No No Total number of overflow records in the table. Set to -1 for
an index, table function, or if this statistic is not available.

Table 125. Possible OBJECT_TYPE Values

Value Description

IX Index

TA Table

TF Table Function

 EXPLAIN_OPERATOR Table
The EXPLAIN_OPERATOR table contains all the operators needed to satisfy the SQL
statement by the SQL compiler.

Table 126 (Page 1 of 2). EXPLAIN_OPERATOR Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic
statement was explained or name of the source file when
the static SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain
information is related.

OPERATOR_ID SMALLINT No No Unique ID for this operator within this query.

OPERATOR_TYPE CHAR(6) No No Descriptive label for the type of operator.

TOTAL_COST DOUBLE No No Estimated cumulative total cost (in instructions) of
executing the chosen access plan up to and including this
operator.

IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page I/Os) of
executing the chosen access plan up to and including this
operator.

1074 Administration Guide

Explain Tables

Table 126 (Page 2 of 2). EXPLAIN_OPERATOR Table

Column Name Data Type Nullable? Key? Description

CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions) of
executing the chosen access plan up to and including this
operator.

FIRST_ROW_COST DOUBLE No No Estimated cumulative cost (in timerons) of fetching the first
row for the access plan up to and including this operator.
This value includes any initial overhead required.

RE_TOTAL_COST DOUBLE No No Estimated cumulative cost (in timerons) of fetching the
next row for the chosen access plan up to and including
this operator.

RE_IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page I/Os) of
fetching the next row for the chosen access plan up to and
including this operator.

RE_CPU_COST DOUBLE No No Estimated cumulative CPU cost (in timerons) of fetching
the next row for the chosen access plan up to and
including this operator.

COMM_COST DOUBLE No No Estimated cumulative communication cost (in TCP/IP
frames) of executing the chosen access plan up to and
including this operator.

FIRST_COMM_COST DOUBLE No No Estimated cumulative communications cost (in TCP/IP
frames) of fetching the first row for the chosen access plan
up to and including this operator. This value includes any
initial overhead required.

NODES_USED CLOB(64K) Yes No Cumulative list of nodes involved in executing the chosen
access plan up to and including this operator.

Table 127 (Page 1 of 2). OPERATOR_TYPE Values

Value Description

DELETE Delete

FETCH Fetch

FILTER Filter rows

GENROW Generate Row

GRPBY Group By

| HSJOIN| Hash Join

INSERT Insert

IXAND Dynamic Bitmap Index ANDing

IXSCAN Index Scan

MSJOIN Merge Scan Join

NLJOIN Nested loop Join

RETURN Result

RIDSCN Row Identifier (RID) Scan

SORT Sort

TBSCAN Table Scan

TEMP Temporary Table Construction

TQ Table Queue

 Appendix M. Explain Tables and Definitions 1075

Explain Tables

Table 127 (Page 2 of 2). OPERATOR_TYPE Values

Value Description

UNION Union

UNIQUE Duplicate Elimination

UPDATE Update

 EXPLAIN_PREDICATE Table
The EXPLAIN_PREDICATE table identifies which predicates are applied by a specific
operator.

Table 128 (Page 1 of 2). EXPLAIN_PREDICATE Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic
statement was explained or name of the source file when
the static SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain
information is related.

OPERATOR_ID SMALLINT No No Unique ID for this operator within this query.

PREDICATE_ID SMALLINT No No Unique ID for this predicate for the specified operator.

HOW_APPLIED CHAR(5) No No How predicate is being used by the specified operator.

WHEN_EVALUATED CHAR(3) No No Indicates when the subquery used in this predicate is
evaluated.

Possible values are:

blank This predicate does not contain a subquery.

EAA The subquery used in this predicate is
evaluated at application (EAA). That is, it is
re-evaluated for every row processed by the
specified operator, as the predicate is being
applied.

EAO The subquery used in this predicate is
evaluated at open (EAO). That is, it is
re-evaluated only once for the specified
operator, and its results are re-used in the
application of the predicate for each row.

MUL There is more than one type of subquery in
this predicate.

RELOP_TYPE CHAR(2) No No The type of relational operator used in this predicate.

1076 Administration Guide

Explain Tables

Table 128 (Page 2 of 2). EXPLAIN_PREDICATE Table

Column Name Data Type Nullable? Key? Description

SUBQUERY CHAR(1) No No Whether or not a data stream from a subquery is required
for this predicate. There may be multiple subquery
streams required.

Possible values are:

N No subquery stream is required

Y One or more subquery streams is required

FILTER_FACTOR DOUBLE No No The estimated fraction of rows that will be qualified by this
predicate.

PREDICATE_TEXT CLOB(64K) Yes No The text of the predicate as recreated from the internal
representation of the SQL statement.

Null if not available.

Table 129. Possible HOW_APPLIED Values

Value Description

JOIN Used to join tables

RESID Evaluated as a residual predicate

SARG Evaluated as a sargable predicate for index or data page

START Used as a start condition

STOP Used as a stop condition

Table 130. Possible RELOP_TYPE Values

Value Description

blanks Not Applicable

EQ Equals

GE Greater Than or Equal

GT Greater Than

IN In list

LE Less Than or Equal

LK Like

LT Less Than

NE Not Equal

NL Is Null

NN Is Not Null

 EXPLAIN_STATEMENT Table
The EXPLAIN_STATEMENT table contains the text of the SQL statement as it exists
for the different levels of Explain information. The original SQL statement as entered by
the user is stored in this table along with the version used (by the optimizer) to choose
an access plan to satisfy the SQL statement. The latter version may bear little

 Appendix M. Explain Tables and Definitions 1077

Explain Tables

resemblance to the original as it may have been rewritten and/or enhanced with
additional predicates as determined by the SQL Compiler.

For the definition of this table, see “EXPLAIN_STATEMENT Table Definition” on
page 1087.

Table 131 (Page 1 of 2). EXPLAIN_STATEMENT Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No PK,
FK

Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No PK,
FK

Time of initiation for Explain request.

SOURCE_NAME CHAR(8) No PK,
FK

Name of the package running when the dynamic
statement was explained or name of the source file when
the static SQL was explained.

SOURCE_SCHEMA CHAR(8) No PK,
FK

Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No PK Level of Explain information for which this row is relevant.

Valid values are:

O Original Text (as entered by user)
P PLAN SELECTION

STMTNO SMALLINT No PK Statement number within package to which this explain
information is related. Set to 1 for dynamic Explain SQL
statements. For static SQL statements, this value is the
same as the value used for the SYSCAT.STATEMENTS
catalog view.

SECTNO SMALLINT No PK Section number within package that contains this SQL
statement. For dynamic Explain SQL statements, this is
the section number used to hold the section for this
statement at runtime. For static SQL statements, this
value is the same as the value used for the
SYSCAT.STATEMENTS catalog view.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement. For
dynamic SQL statements (excluding the EXPLAIN SQL
statement) issued through CLP or CLI, the default value is
a sequentially incremented value. Otherwise, the default
value is the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement. For
dynamic SQL statements issued through CLP (excluding
the EXPLAIN SQL statement), the default value is 'CLP'.
For dynamic SQL statements issued through CLI
(excluding the EXPLAIN SQL statement), the default value
is 'CLI'. Otherwise, the default value used is blanks.

STATEMENT_TYPE CHAR(2) No No Descriptive label for type of query being explained.

Possible values are:

S Select
D Delete
DC Delete where current of cursor
I Insert
U Update
UC Update where current of cursor

1078 Administration Guide

Explain Tables

Table 131 (Page 2 of 2). EXPLAIN_STATEMENT Table

Column Name Data Type Nullable? Key? Description

UPDATABLE CHAR(1) No No Indicates if this statement is considered updatable. This is
particularly relevant to SELECT statements which may be
determined to be potentially updatable.

Possible values are:

' ' Not applicable (blank)
N No
Y Yes

DELETABLE CHAR(1) No No Indicates if this statement is considered deletable. This is
particularly relevant to SELECT statements which may be
determined to be potentially deletable.

Possible values are:

' ' Not applicable (blank)
N No
Y Yes

TOTAL_COST DOUBLE No No Estimated total cost (in timerons) of executing the chosen
access plan for this statement; set to 0 (zero) if
EXPLAIN_LEVEL is O (original text) since no access plan
has been chosen at this time.

STATEMENT_TEXT CLOB(64K) No No Text or portion of the text of the SQL statement being
explained. The text shown for the Plan Selection level of
Explain has been reconstructed from the internal
representation and is SQL-like in nature; that is, the
reconstructed statement is not guaranteed to follow
correct SQL syntax.

SNAPSHOT BLOB(10M) Yes No Snapshot of internal representation for this SQL statement
at the Explain_Level shown.

This column is intended for use with DB2 Visual Explain.
Column is set to null if EXPLAIN_LEVEL is 0 (original
statement) since no access plan has been chosen at the
time that this specific version of the statement is captured.

QUERY_DEGREE INTEGER No No Indicates the degree of intra-partition parallelism at the
time of Explain invocation. For the original statement, this
contains the directed degree of intra-partition parallelism.
For the PLAN SELECTION, this contains the degree of
intra-partition parallelism generated for the plan to use.

 EXPLAIN_STREAM Table
The EXPLAIN_STREAM table represents the input and output data streams between
individual operators and data objects. The data objects themselves are represented in
the EXPLAIN_OBJECT table. The operators involved in a data stream are to be found
in the EXPLAIN_OPERATOR table.

Table 132 (Page 1 of 3). EXPLAIN_STREAM Table

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER CHAR(8) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

 Appendix M. Explain Tables and Definitions 1079

Explain Tables

Table 132 (Page 2 of 3). EXPLAIN_STREAM Table

Column Name Data Type Nullable? Key? Description

SOURCE_NAME CHAR(8) No FK Name of the package running when the dynamic
statement was explained or name of the source file when
the static SQL was explained.

SOURCE_SCHEMA CHAR(8) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO SMALLINT No FK Statement number within package to which this explain
information is related.

SECTNO SMALLINT No FK Section number within package to which this explain
information is related.

STREAM_ID SMALLINT No No Unique ID for this data stream within the specified
operator.

SOURCE_TYPE CHAR(1) No No Indicates the source of this data stream:

O Operator

D Data Object

SOURCE_ID SMALLINT No No Unique ID for the operator within this query that is the
source of this data stream. Set to -1 if SOURCE_TYPE is
'D'.

TARGET_TYPE CHAR(1) No No Indicates the target of this data stream:

O Operator

D Data Object

TARGET_ID SMALLINT No No Unique ID for the operator within this query that is the
target of this data stream. Set to -1 if TARGET_TYPE is
'D'.

OBJECT_SCHEMA CHAR(8) Yes No Schema to which the affected data object belongs. Set to
null if both SOURCE_TYPE and TARGET_TYPE are 'O'.

OBJECT_NAME VARCHAR(18) Yes No Name of the object that is the subject of data stream. Set
to null if both SOURCE_TYPE and TARGET_TYPE are
'O'.

STREAM_COUNT DOUBLE No No Estimated cardinality of data stream.

COLUMN_COUNT SMALLINT No No Number of columns in data stream.

PREDICATE_ID SMALLINT No No If this stream is part of a subquery for a predicate, the
predicate ID will be reflected here, otherwise the column is
set to -1.

COLUMN_NAMES CLOB(64K) Yes No This column contains the names and ordering information
of the columns involved in this stream.

These names will be in the format of:

 NAME1(A)+NAME2(D)+NAME3+NAME4

Where (A) indicates a column in ascending order, (D)
indicates a column in descending order, and no ordering
information indicates that either the column is not ordered
or ordering is not relevant.

PMID SMALLINT No No Partitioning map ID.

1080 Administration Guide

Explain Tables

Table 132 (Page 3 of 3). EXPLAIN_STREAM Table

Column Name Data Type Nullable? Key? Description

SINGLE_NODE CHAR(5) Yes No Indicates if this data stream is on a single or multiple
partitions:

MULT On multiple partitions

COOR On coordinator node

HASH Directed using hashing

RID Directed using the row ID

FUNC Directed using a function (PARTITION() or
NODENUMBER())

CORR Directed using a correlation value

PARTITION_COLUMNS CLOB(64K) Yes No List of columns this data stream is partitioned on.

Table Definitions for Explain Tables
The Explain tables must be created before Explain can be invoked. The following
definitions specify how to create the necessary Explain tables:

¹ “EXPLAIN_ARGUMENT Table Definition” on page 1082
¹ “EXPLAIN_INSTANCE Table Definition” on page 1083
¹ “EXPLAIN_OBJECT Table Definition” on page 1084
¹ “EXPLAIN_OPERATOR Table Definition” on page 1085
¹ “EXPLAIN_PREDICATE Table Definition” on page 1086
¹ “EXPLAIN_STATEMENT Table Definition” on page 1087
¹ “EXPLAIN_STREAM Table Definition” on page 1088

Alternately, create them by using the sample command line processor input script
provided in the EXPLAIN.DDL file located in the 'misc' subdirectory of the 'sqllib'
directory. Connect to the database where the Explain tables are required. Then issue
the command: db2 -tf EXPLAIN.DDL and the tables will be created.

 Appendix M. Explain Tables and Definitions 1081

Explain Tables

EXPLAIN_ARGUMENT Table Definition
CREATE TABLE EXPLAIN_ARGUMENT (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

 SOURCE_SCHEMA CHAR(8) NOT NULL,

 EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 OPERATOR_ID SMALLINT NOT NULL,

 ARGUMENT_TYPE CHAR(8) NOT NULL,

 ARGUMENT_VALUE VARCHAR(30) NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

1082 Administration Guide

Explain Tables

EXPLAIN_INSTANCE Table Definition
CREATE TABLE EXPLAIN_INSTANCE (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

 SOURCE_SCHEMA CHAR(8) NOT NULL,

 EXPLAIN_OPTION CHAR(1) NOT NULL,

 SNAPSHOT_TAKEN CHAR(1) NOT NULL,

 DB2_VERSION CHAR(7) NOT NULL,

 SQL_TYPE CHAR(1) NOT NULL,

 QUERYOPT INTEGER NOT NULL,

 BLOCK CHAR(1) NOT NULL,

 ISOLATION CHAR(2) NOT NULL,

 BUFFPAGE INTEGER NOT NULL,

 AVG_APPLS INTEGER NOT NULL,

 SORTHEAP INTEGER NOT NULL,

 LOCKLIST INTEGER NOT NULL,

 MAXLOCKS SMALLINT NOT NULL,

 LOCKS_AVAIL INTEGER NOT NULL,

 CPU_SPEED DOUBLE NOT NULL,

 REMARKS VARCHAR(254),

 DBHEAP INTEGER NOT NULL,

 COMM_SPEED DOUBLE NOT NULL,

 PARALLELISM CHAR(2) NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA))

 Appendix M. Explain Tables and Definitions 1083

Explain Tables

EXPLAIN_OBJECT Table Definition
CREATE TABLE EXPLAIN_OBJECT (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

OBJECT_SCHEMA CHAR(8) NOT NULL,

OBJECT_NAME VARCHAR(18) NOT NULL,

 OBJECT_TYPE CHAR(2) NOT NULL,

 CREATE_TIME TIMESTAMP,

 STATISTICS_TIME TIMESTAMP,

 COLUMN_COUNT SMALLINT NOT NULL,

 ROW_COUNT INTEGER NOT NULL,

 WIDTH INTEGER NOT NULL,

 PAGES INTEGER NOT NULL,

 DISTINCT CHAR(1) NOT NULL,

 TABLESPACE_NAME VARCHAR(18),

 OVERHEAD DOUBLE NOT NULL,

 TRANSFER_RATE DOUBLE NOT NULL,

 PREFETCHSIZE INTEGER NOT NULL,

 EXTENTSIZE INTEGER NOT NULL,

 CLUSTER DOUBLE NOT NULL,

 NLEAF INTEGER NOT NULL,

 NLEVELS INTEGER NOT NULL,

 FULLKEYCARD INTEGER NOT NULL,

 OVERFLOW INTEGER NOT NULL,

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

1084 Administration Guide

Explain Tables

EXPLAIN_OPERATOR Table Definition
CREATE TABLE EXPLAIN_OPERATOR (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 OPERATOR_ID SMALLINT NOT NULL,

OPERATOR_TYPE CHAR(6) NOT NULL,

 TOTAL_COST DOUBLE NOT NULL,

 IO_COST DOUBLE NOT NULL,

 CPU_COST DOUBLE NOT NULL,

 FIRST_ROW_COST DOUBLE NOT NULL,

 RE_TOTAL_COST DOUBLE NOT NULL,

 RE_IO_COST DOUBLE NOT NULL,

 RE_CPU_COST DOUBLE NOT NULL,

 COMM_COST DOUBLE NOT NULL,

 FIRST_COMM_COST DOUBLE NOT NULL,

 NODES_USED CLOB(64K) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

 Appendix M. Explain Tables and Definitions 1085

Explain Tables

EXPLAIN_PREDICATE Table Definition
CREATE TABLE EXPLAIN_PREDICATE (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 OPERATOR_ID SMALLINT NOT NULL,

 PREDICATE_ID SMALLINT NOT NULL,

 HOW_APPLIED CHAR(5) NOT NULL,

 WHEN_EVALUATED CHAR(3) NOT NULL,

 RELOP_TYPE CHAR(2) NOT NULL,

 SUBQUERY CHAR(1) NOT NULL,

 FILTER_FACTOR DOUBLE NOT NULL,

 PREDICATE_TEXT CLOB(64K) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

1086 Administration Guide

Explain Tables

EXPLAIN_STATEMENT Table Definition
CREATE TABLE EXPLAIN_STATEMENT (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 QUERYNO INTEGER NOT NULL,

 QUERYTAG CHAR(20) NOT NULL,

 STATEMENT_TYPE CHAR(2) NOT NULL,

 UPDATABLE CHAR(1) NOT NULL,

 DELETABLE CHAR(1) NOT NULL

 TOTAL_COST DOUBLE NOT NULL,

STATEMENT_TEXT CLOB(64K) NOT NULL NOT LOGGED,

 SNAPSHOT BLOB(10M) NOT LOGGED,

 QUERY_DEGREE INTEGER NOT NULL,

PRIMARY KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO),

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA)

 REFERENCES EXPLAIN_INSTANCE

ON DELETE CASCADE)

 Appendix M. Explain Tables and Definitions 1087

Explain Tables

EXPLAIN_STREAM Table Definition
CREATE TABLE EXPLAIN_STREAM (EXPLAIN_REQUESTER CHAR(8) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME CHAR(8) NOT NULL,

SOURCE_SCHEMA CHAR(8) NOT NULL,

EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO SMALLINT NOT NULL,

 SECTNO SMALLINT NOT NULL,

 STREAM_ID SMALLINT NOT NULL,

 SOURCE_TYPE CHAR(1) NOT NULL,

 SOURCE_ID SMALLINT NOT NULL,

 TARGET_TYPE CHAR(1) NOT NULL,

 TARGET_ID SMALLINT NOT NULL,

 OBJECT_SCHEMA CHAR(8),

 OBJECT_NAME VARCHAR(18),

STREAM_COUNT DOUBLE NOT NULL,

 COLUMN_COUNT SMALLINT NOT NULL,

 PREDICATE_ID SMALLINT NOT NULL,

 COLUMN_NAMES CLOB(64K) NOT LOGGED,

 PMID SMALLINT NOT NULL,

 SINGLE_NODE CHAR(5),

 PARTITION_COLUMNS CLOB(64K) NOT LOGGED,

FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT

ON DELETE CASCADE)

1088 Administration Guide

Appendix N. SQL Explain Tools

The db2expln tool describes the access plan selected for static SQL statements in the
packages stored in the system catalog tables. It can be used to obtain a quick
explanation of the chosen access plan for packages for which explain data was not
captured at bind time.

The dynexpln tool describes the access plan selected for dynamic statements. It
creates a static package for the statements and then uses the db2expln tool to
describe them.

Note: Using this method of analysis is not as accurate as using the Explain Facility.

You can use these Explain tools to understand the access plan chosen for a particular
SQL statement. Or, you could use the integrated Explain Facility (Chapter 14, “SQL
Explain Facility” on page 509) in conjunction with Visual Explain to understand the
access plan chosen for a particular SQL statement. Both dynamic and static SQL
statements can be explained using the Explain Facility. One difference from the Explain
tools is that with Visual Explain the Explain information is presented in a graphical
format. Otherwise the level of detail provided in the two methods is equivalent.

To fully use the output of db2expln, and dynexpln you must understand:

¹ The different SQL statements supported and the terminology related to those
statements (such as predicates in a SELECT statement).

¹ The purpose of a package (access plan). (See “Data Access Concepts and
Optimization” on page 476 for this information.)

¹ The purpose and contents of the system catalog tables. (See Appendix J, “Catalog
Views” on page 965 for this information.)

¹ Other concepts described in Part 3, “Tuning Application Performance” on
page 385.

The following topics provide information about db2expln and dynexpln:

¹ Running db2expln and dynexpln
¹ db2expln Syntax and Parameters
¹ Usage Notes for db2expln
¹ dynexpln Syntax and Parameters
¹ Usage Notes for dynexpln
¹ Description of db2expln and dynexpln Output
¹ Examples of db2expln and dynexpln Output
¹ db2exfmt - Explain Table Format Tool

You can use the db2exfmt tool to format the contents of the explain tables. For more
information, see “db2exfmt - Explain Table Format Tool” on page 1122.

 Copyright IBM Corp. 1993, 1998 1089

Running db2expln and dynexpln
The explain tools (db2expln and dynexpln) are located in the misc subdirectory of your
instance sqllib directory. If db2expln and dynexpln are not in your current directory,
they must be in a directory that appears in your PATH environment variable.

The db2expln program connects and binds itself to a database using the db2expln.bnd
file the first time the database is accessed. The db2expln.bnd file is in the bnd
subdirectory of your sqllib directory.

To run db2expln, you must have SELECT privilege to the system catalog views as well
as EXECUTE authority for the db2expln package. To run dynexpln, you must have
BINDADD authority for the database as well as any privileges needed for the SQL
statements being explained. (Note that if you have SYSADM or DBADM authority, you
will automatically have all these authorization levels.)

db2expln Syntax and Parameters

55─ ─db2expln─ ──┬ ┬───────────── ──┬ ┬─────────────────── ─────────────────────5
 └ ┘ ─-c──creator─ └ ┘ ─-d──database name─

5─ ──┬ ┬────────────────────── ──┬ ┬──── ──┬ ┬──── ──┬ ┬──── ──┬ ┬──── ──────────────5
 └ ┘ ─-e──escape character─ └ ┘ ─-g─ ├ ┤─-h─ └ ┘ ─-i─ └ ┘ ─-l─
 └ ┘─-?─

5─ ──┬ ┬──────────────────────── ──┬ ┬─────────────────────── ────────────────5%
 ├ ┤ ─-o──output file──────── └ ┘ ─-u──user ID──password─
 ├ ┤──┬ ┬────────────────── ──
 │ │└ ┘ ─-p──package name─
 ├ ┤──┬ ┬────────────────────
 │ │└ ┘ ─-s──section number─
 │ │┌ ┐─-t─
 └ ┘ ──┴ ┴──── ────────────────

Where:

-c creator
The user ID of the package creator.

If you do not specify this option, you will be prompted for it.

You may specify the creator name using the pattern matching characters,
percent sign (%) and underscore (_) that may be used in a LIKE predicate.

-d database name
The name of the database that contains the packages to be explained.

If you do not specify this option, you will be prompted for it.
-e escape character

Used to specify the character that is to be interpreted as an escape
character, rather than a pattern-matching character.

1090 Administration Guide

For example, the db2expln command to explain the package
TESTID.CALC% is db2expln -c TESTID -p CALC%. However, this command
would also explain any other plans that start with CALC. To explain just the
TESTID.CALC% package, you must use an escape character. By changing
the command to read: db2expln -c TESTID -e ! -p CALC!% you specify
that the ! character will be used as an escape character and !% is
interpreted as the % character.

-g
Show optimizer plan graphs. Each section is examined, and the original
optimizer plan graph (as presented by Visual Explain) is constructed. Note
that the generated graph may not match the original plan.

-h or -?
Obtain help information about the input parameters. Specifying this option
overrides all other options.

-i
Display operator IDs in the explained plan. The operator IDs allow the
output from db2expln to be matched to the output from the Explain facility.

-l
The package name can be either lower or mixed-case if this option is
specified. If this -l option is not specified, the package name is converted to
uppercase

-o output file
The name of the file to which db2expln will write the results.

If you specify -o without a file name, you will be prompted for a file name.
The default file name is db2expln.out.

-p package name
The name of the package to be explained.

If you do not specify this option you will be prompted to provide it.

You may specify the package name using the pattern matching characters,
percent sign (%) and underscore (_) that can be used in a LIKE predicate.

-s section number
The section number to explain within the package. The number zero (0)
may be specified if you wish to have all sections in the package explained.
If the package creator (-c) or package name (-p) arguments imply that
multiple packages will be explained, and thus multiple sections, the section
value, if provided, is overridden with a zero (0).

If you do not specify this option you will be prompted to provide it.

Section numbers can be found by querying the system catalog
SYSCAT.STATEMENTS (See Appendix J, “Catalog Views” on page 965
for a description of the system catalog tables.)

-t
The output is directed to the terminal.

If you do not specify -o or -t, you will be prompted for a file name, with the
default displaying the output at the terminal.

 Appendix N. Explain Tool 1091

-u user ID password
When connecting to a database, use the provided user ID and password.

Both the user id and password must be valid according to naming
conventions and be recognized by the database.

Some of the option flags above may have special meaning to your operating system
and, as a result, may not be interpreted correctly in the db2expln command line.
However, it may be possible to enter these characters by preceding them with an
escape character. For more information, see your operating system user's manual.

Help and initial status messages, produced by db2expln, are written to standard output.
All prompts and other status messages produced by the explain tool are written to
standard error. Explain text is written to standard output or to a file depending on the
output option chosen.

With the -p and -c options, multiple plans can be explained with one invocation of
explain by specifying string constants for packages and creators with LIKE patterns.
That is, the underscore (_) may be used to represent a single character, and the
percent sign (%) may be used to represent the occurrence of zero or more characters.

For example, to explain all sections for all packages in a database named SAMPLE,
with the results being written to the file my.exp , enter

db2expln -d SAMPLE -p % -c % -s 0 -o my.exp

Usage Notes for db2expln
The following are common messages displayed by db2expln:

¹ No packages found for database <database>, package pattern:
<creator>.<package>.

This message will appear in the output if no packages were found in the database
that matched the specified pattern.

¹ Bind messages can be found in db2expln.msg

This message will appear in the output if the bind of db2expln.bnd was not
successful. Further information on the problems encountered will be found in the
file db2expln.msg in the current directory.

¹ Section number overridden to 0 for potential multiple packages.

This message will appear in the output if multiple packages may be encountered
by db2expln. This action will be taken if one of the pattern matching characters is
used in the package or creator input arguments.

¹ No static sections qualify for database <database>, package
<creator>.<package>, section <section>.

This message will appear in the output if the specified package only contains
dynamic SQL statements which means that there are no static sections.

¹ Database <database>, package <creator>.<package> is not valid. Rebind and
then rerun db2expln.

1092 Administration Guide

This message will appear in the output if the package specified is currently not
valid. As directed, reissue the BIND or REBIND command for the plan to re-create
a valid package in the database, and then rerun db2expln.

¹ Section not processed: Produced by unsupported release.

This message will also appear in the output if the section currently being processed
was produced by a release of DB2 other than the one for which this db2expln

executable was provided. In this case, use the copy of db2expln from the release
of DB2 that produced the section.

SQL Statements Excluded: The following statements will not be explained:

¹ BEGIN/END DECLARE SECTION
 ¹ BEGIN/END COMPOUND
 ¹ INCLUDE
 ¹ WHENEVER
¹ COMMIT and ROLLBACK

 ¹ CONNECT
 ¹ OPEN cursor
 ¹ FETCH
 ¹ CLOSE cursor
 ¹ PREPARE
 ¹ EXECUTE
 ¹ EXECUTE IMMEDIATE
 ¹ DESCRIBE
¹ Dynamic DECLARE CURSOR

Each sub-statement within a compound SQL statement may have its own section,
which can be explained by db2expln .

dynexpln Syntax and Parameters

55─ ─dynexpln─ ──┬ ┬─────────────────── ──┬ ┬────────────────────────── ────────5
 └ ┘ ─-d──database name─ └ ┘ ─-e──statement terminator─

5─ ──┬ ┬──────────────── ──┬ ┬──── ──┬ ┬──── ──┬ ┬─────────────────── ─────────────5
 └ ┘ ─-f──input file─ └ ┘ ─-g─ ├ ┤─-h─ ├ ┤ ─-i────────────────
 └ ┘─-?─ ├ ┤ ─-o──output file───
 ├ ┤ ─-s──SQL statement─
 │ │┌ ┐─-t─
 └ ┘ ──┴ ┴──── ───────────

5─ ──┬ ┬────────────────────── ───5%
 └ ┘─-u──user ID password─

Where:

 Appendix N. Explain Tool 1093

-d database name
The name of the database that contains the packages to be explained.

If you do not specify this option, you will be prompted for it.
-e statement terminator

The character used to indicate that the end of an SQL statement has been
reached.

The default is that there is no statement terminator. If you use this option,
dynexpln will use the specified termination character to separate the
statements. If you do not use this option, each line of the file will be
assumed to be a separate SQL statement.

-f input file
The name of the file which contains the SQL statements to be explained.

Unless you use the statement terminator (-e) option, only one SQL
statement should appear on each line of the file. SQL comments may be
entered into the file. An SQL comment starts with -- and goes to the end
of the line.

-g
Show optimizer plan graphs. Each section is examined, and the original
optimizer plan graph (as presented by Visual Explain) is constructed. Note
that the generated graph may not match the original plan.

-h or -?
Obtain help information about the input parameters. Specifying this option
overrides all other options.

-i
Display operator IDs in the explained plan. The operator IDs allow the
output from db2expln to be matched to the output from the Explain facility.

-o output file
The name of the file to which db2expln will write the results.

-s SQL statement
The SQL statement to be explained.

If you do not specify this option and you do not specify the input file (-f)
optional parameter, you will be prompted to provide the SQL statement to
be explained.

If you specify both this option and the input file (-f) optional parameter,
dynexpln will first describe the statements provided by the SQL statement
(-s) option and then describe the statements in the input file (-f).

-t
The output is directed to the terminal.

If both the output (-o) and -t options are specified, then the output is
directed to the terminal.

If you do not specify the output file (-o) or -t options, you will be prompted
for a file name, with the default displaying the output at the terminal.

1094 Administration Guide

-u user ID password
When connecting to a database, use the provided user ID and password.

Both the user id and password must be valid according to naming
conventions and be recognized by the database.

Some of the option flags above may have special meaning to your operating system
and, as a result, may not be interpreted correctly in the dynexpln command line.
However, it may be possible to enter these characters by preceding them with an
escape character. For more information, see your operating system user's manual.

If you use the statement terminator (-e) option, you may enter multiple statements using
the SQL statement (-s) option. If you do this, you should separate the statements with
the termination character.

Help and initial status messages, produced by dynexpln, are written to standard output.
All prompts and other status messages produced by the explain tool are written to
standard error. Explain text is written to standard output or to a file depending on the
output option chosen.

For example, to connect to a database named SAMPLE and explain all the statements
in the file TRYIT, with the results being written to the file my.exp, enter

dynexpln -d SAMPLE -f TRYIT -o my.exp

Usage Notes for dynexpln
To explain dynamic statements, dynexpln creates a static application for the statements
and then invokes db2expln. To create the static statements, dynexpln generates a
trivial C program with the statements and then calls the DB2 precompiler to create the
package. (The generated C program is not complete and cannot be compiled; it only
contains enough information that the precompiler can build the package.)

The following are common messages displayed by dynexpln:

¹ All error messages from db2expln.

Since dynexpln invokes db2expln, it is possible to see most of db2expln's error
messages.

¹ Error connecting to the database.

This message will appear in the output if an error occurred connecting to the
database. A CLI error message will also be displayed indicating why the
connection could not be completed. Correct the cause of the error and run
dynexpln again.

¹ The file "<filename>" must be removed before dynexpln will run.

This message will appear if the given file exists at the time dynexpln is run.
Remove the file or change the value of the DYNEXPLN_PACKAGE environment variable
to change the name of the file which will be created and run dynexpln again.

¹ The package "<creator>.<package>" must be dropped before dynexpln will
run.

 Appendix N. Explain Tool 1095

This message will appear if the given package exists at the time dynexpln is run.
Drop the package and run or change the value of the DYNEXPLN_PACKAGE
environment variable to change the name of the package which will be created and
run dynexpln again.

¹ Error writing file "<filename>".

This message will appear if the given file cannot be written to. Ensure that
dynexpln can write files in the current directory and run it again.

¹ Error reading input file "<filename>".

This message will appear if the file given with the -f option cannot be read from.
Ensure that the file exists and that dynexpln can read it. Then run dynexpln again.

Environment Variables: There are two different environment variables that can be
used in conjunction with dynexpln:

¹ DYNEXPLN_OPTIONS are the SQL precompiler options you use when building
the package for your statements. Use the same syntax variable as you would when
issuing a PREP command through CLP.

For example: DYNEXPLN_OPTIONS="OPTLEVEL 5 BLOCKING ALL"

¹ DYNEXPLN_PACKAGE is the name of the package which is created in the
database. The statements to be described are placed in this package. If this
variable is not defined, the package is given a default value of DYNEXPLN. (Only
the first eight characters of the name in this environment variable are used.)

The name is also used to create the names for the intermediate files that dynexpln

uses.

Description of db2expln and dynexpln Output
In the output, the explain information for each package is broken into two parts:

¹ Package information such as date of bind and relevant bind options
¹ Section information such as the section number followed by the SQL statement

being explained. Beneath the section information will be the explain output of the
access plan chosen for the SQL statement shown.

The steps of an access plan, or section, will be presented in the order that the
database manager executes them. Each major step will be shown as a left-justified
heading with information about that step indented beneath it. The explain output for the
access plan has indentation bars provided in the left margin of the output. These bars
also provide the "scope" for the operation; operations at a lower (that is, further to the
right) level of indentation within the same operation are processed before returning to
the previous level of indentation.

It is important to remember that the access plan chosen was based on an augmented
version of the original SQL statement (the one shown in the output). For example, the
original statement may cause any number of triggers and constraints to be activated.
As well, the SQL statement may be rewritten to an equivalent but more efficient format
by the Query Rewrite component of the SQL Compiler. All of these factors are included
in the information presented to the Optimizer when it determines the most efficient plan

1096 Administration Guide

to satisfy the statement. Thus, the access plan shown in the explain output may differ
substantially from the access plan that one might expect for the original SQL statement.
The integrated Explain facility (see Chapter 14, “SQL Explain Facility” on page 509)
shows the actual SQL statement used for optimization in the form of an SQL-like
statement which is created by reverse-translating the internal representation of the
query.

When comparing output from db2expln or dynexpln to the output of the Explain facility,
the operator ID option (-i) can be very useful. Each time db2expln or dynexpln starts
processing a new operator from the Explain facility, the operator ID number will be
printed to the left of the explained plan. The operator IDs can be used to match up the
steps in the different representations of the access plan. Note that there is not always a
one-to-one correspondence between the operators in the Explain facility output and the
operations shown by db2expln and dynexpln.

The following topics describe the explain text that may be produced by db2expln and
dynexpln:

 ¹ Table Access
 ¹ Temporary Tables
 ¹ Joins
 ¹ Data Streams
¹ Insert, Update, and Delete
¹ Row Identifier (RID) Preparation

 ¹ Aggregation
 ¹ Parallel Processing.
 ¹ Miscellaneous Statements.

 Table Access
This statement tells the name and type of table being accessed. It has two formats that
are used:

 1. Regular tables:

Access Table Name = schema.name ID = n

where:

¹ schema.name is the fully-qualified name of the table being accessed
¹ ID is the corresponding TABLEID column in the SYSCAT.TABLES catalog for

a table

 2. Temporary tables:

Access Temp ID = tn

where:

¹ ID is the corresponding identifier assigned by db2expln

Following the table access statement, additional statements will be provided to further
describe the access. These statements will be indented under the table access
statement. The possible statements are:

 Appendix N. Explain Tool 1097

¹ Number of Columns
 ¹ Parallel Scan
 ¹ Scan Direction
¹ Row Access Method

 ¹ Lock Intents
 ¹ Predicates
¹ Miscellaneous Table Statements.

Number of Columns
The following statement indicates the number of columns being used from each row of
the table:

#Columns = n

 Parallel Scan
The following statement indicates that the database manager will use several
subagents to read from the table in parallel:

 Parallel Scan

If this text is not shown, the table will only be read from by one agent (or subagent).

 Scan Direction
The following statement indicates that the database manager will read rows in a
reverse order:

Scan Direction = Reverse

If this text is not shown, the scan direction is forward, which is the default. Note that an
index scan can only read data in a forward order.

Row Access Method
One of the following statements will be displayed, indicating how the qualifying rows in
the table are being accessed:

¹ The Relation Scan statement indicates that the table is being sequentially scanned
to find the qualifying rows.

– The following statement indicates that no prefetching of data will be done:

 Relation Scan

 | Prefetch: None

– The following statement indicates that the optimizer has predetermined the
number of pages that will be prefetched:

 Relation Scan

| Prefetch: n Pages

– The following statement indicates that data should be prefetched:

 Relation Scan

 | Prefetch: Eligible

1098 Administration Guide

– The following statement indicates that the qualifying rows are being identified
and accessed through an index:

Index Scan: Name = schema.name ID = xx

where:
- schema.name is the fully-qualified name of the index being scanned
- ID is the corresponding IID column in the SYSCAT.INDEXES catalog

view.

The following statements are provided to clarify the type of index scan:
- #Key Columns = n

This statement shows the number of range-delimiting predicates, that is,
the number of columns in the index key (from left to right) being used to
delimit the index scan range. If #Key Columns equals zero, a full scan of
the index is being performed. This might be done if the database manager
decides that an index scan is cheaper than a relation scan for evaluating
some of the predicates, or if the index is just being used to order the
output.

- If there are more predicates specifying where to start scanning the index
than there are predicates specifying where to stop scanning the index,
then the following statement will appear:

#Start Keys = n1

#Stop Keys = n2

 - Index-Only Access

If all the needed columns can be obtained from the index key, this
statement will appear and no table data will be accessed.

- The following statement indicates that no prefetching of index pages will
be done:

Index Prefetch: None

- The following statement indicates that index pages should be prefetched:

Index Prefetch: Eligible

- The following statement indicates that no prefetching of data pages will be
done:

Data Prefetch: None

- The following statement indicates that data pages should be prefetched:

Data Prefetch: Eligible

- If there are predicates that can be passed to the Index Manager to help
qualify index entries, the following statement is used to show the number
of predicates:

Sargable Index Predicate(s)

| #Predicates = n

– The Fetch Direct statement indicates that the qualifying rows are being
accessed by using row IDs (RIDs) that were prepared earlier in the access
plan.

 Appendix N. Explain Tool 1099

 Lock Intents
For each table access, the type of lock that will be acquired at the table and row levels
is shown with the following statement:

 Lock Intents

 | Table: xxxx

| Row : xxxx

Possible values for a table lock are:

 ¹ Exclusive
 ¹ Intent Exclusive
 ¹ Intent None
 ¹ Intent Share
 ¹ Share
¹ Share Intent Exclusive

 ¹ Super Exclusive
 ¹ Update

Possible values for a row lock are:

 ¹ Exclusive
¹ Next Key Exclusive (does not appear in db2expln output)

 ¹ None
 ¹ Share
¹ Next Key Share

 ¹ Update
| ¹ Next Key Weak Exclusive
| ¹ Weak Exclusive

The explanation of these lock types is found in “Attributes of Locks” on page 393.

 Predicates
There are two statements that provide information about the predicates used in an
access plan:

1. The following statement indicates the number of predicates that will be evaluated
once the data has been returned:

 Residual Predicate(s)

| #Predicates = n

2. The following statement indicates the number of predicates that will be evaluated
while the data is being accessed. The count of predicates does not include
push-down operations such as aggregation or sort.

 Sargable Predicate(s)

| #Predicates = n

The number of predicates shown in the above statements may not reflect the number of
predicates provided in the SQL statement because predicates can be:

¹ Applied more than once within the same query

1100 Administration Guide

¹ Transformed and extended with the addition of implicit predicates during the query
optimization process

¹ Transformed and condensed into fewer predicates during the query optimization
process.

Miscellaneous Table Statements
¹ The following statement indicates that only one row will be accessed:

 Single Record

¹ The following statement appears when the isolation level used for this table access
uses a different isolation level than the package:

Isolation Level: xxxx

 A different isolation level may be used for a number of reasons, including:
– A package was bound with Repeatable Read and affects referential integrity

constraints; the access of the parent table to check referential integrity
constraints is downgraded to an isolation level of Cursor Stability to avoid
holding unnecessary locks on this table.

– A package bound with Uncommitted Read issues a DELETE or UPDATE
statement; the table access for the actual delete is upgraded to Cursor
Stability.

| ¹ The following statement indicates that some or all of the rows read from the
| temporary table will be cached outside the buffer pool if sufficient sortheap memory
| is available:

| Keep Rows In Private Memory

 Temporary Tables
A temporary table is used by an access plan to store data during its execution in a
transient or temporary work table. This table only exists while the access plan is being
executed. Generally, temporary tables are used when subqueries need to be evaluated
early in the access plan, or when intermediate results will not fit in the available
memory.

If a temporary table needs to be created, then one of two possible statements may
appear. These statements indicate that a temporary table is to be created and rows
inserted into it. The ID is an identifier assigned by db2expln for convenience when
referring to the temporary table. This ID is prefixed with the letter 't' to indicate that the
table is a temporary table.

1. The following statement indicates an ordinary temporary table will be created:

Insert Into Temp Table ID = tn

2. The following statement indicates an ordinary temporary table will be created by
multiple subagents in parallel:

Insert Into Shared Temp Table ID = tn

3. The following statement indicates a sorted temporary table will be created:

Insert Into Sorted Temp Table ID = tn

 Appendix N. Explain Tool 1101

4. The following statement indicates a sorted temporary table will be created by
multiple subagents in parallel:

Insert Into Sorted Shared Temp Table ID = tn

Each of the above statements will be followed by:

#Columns = n

which indicates how many columns are in each row being inserted into the temporary
table.

Sorted Temporary Tables
Sorted temporary tables can result from such operations as:

 ¹ ORDER BY
 ¹ DISTINCT
 ¹ GROUP BY
 ¹ Merge Join
¹ '= ANY' subquery
¹ '<> ALL' subquery
¹ INTERSECT or EXCEPT
¹ UNION (without the ALL keyword)

A number of additional statements may follow the original creation statement for a
sorted temporary table:

¹ The following statement indicates the number of key columns used in the sort:

#Sort Key Columns = n

For each column in the sort key, one of the following lines will be displayed:

Key n: column_name (Ascending)

Key n: column_name (Descending)

Key n: (Ascending)

Key n: (Descending)

¹ The following statements provide estimates of the number of rows and the row size
so that the optimal sort heap can be allocated at run time.

Sortheap Allocation Parameters:

 | #Rows = n

| Row Width = n

¹ If only the first rows of the sorted result are needed, the following is displayed:

Sort Limited To Estimated Row Count

¹ For sorts in a symmetric multiprocessor (SMP) environment, the type of sort to be
performed is indicated by one of the following statements:

Use Partitioned Sort

Use Shared Sort

Use Replicated Sort

Use Round-Robin Sort

1102 Administration Guide

For a description of the different sorting techniques, see “Parallel Sort Strategies”
on page 506.

¹ The following statements indicate whether or not the result from the sort will be left
in the sort heap:

 Piped

and

 Not Piped

If a piped sort is indicated, the database manager will keep the sorted output in
memory, rather than placing the sorted result in another temporary table. (For a
description of piped versus non-piped sorts, see “Influence of Sorting on the
Optimizer” on page 503.)

¹ The following statement indicates that duplicate values will be removed during the
sort:

 Duplicate Elimination

¹ If aggregation is being performed in the sort, it will be indicated by one of the
following statements:

 Partial Aggregation

 Intermediate Aggregation

Buffered Partial Aggregation

Buffered Intermediate Aggregation

Temporary Table Completion
After a table access that contains a push-down operation to create a temporary table
(that is, a create temporary table that occurs within the scope of a table access), there
will be a "completion" statement, which handles end-of-file by getting the temporary
table ready to provide rows to subsequent temporary table access. One of the following
lines will be displayed:

Temp Table Completion ID = tn

Shared Temp Table Completion ID = tn

Sorted Temp Table Completion ID = tn

Sorted Shared Temp Table Completion ID = tn

 Table Functions
Table functions are user defined functions (UDFs) that return data to the statement in
the form of a table. Refer to the SQL Reference for more information about table
functions. Table functions are indicated by the statement:

Access User Defined Table Function

 | Name = schema.funcname

 | Language = xxxx

 | Fenced Deterministic NULL Call Disallow Parallel

The language (C, OLE, or Java) that the table function is written in is given along with
the attributes of the table function.

 Appendix N. Explain Tool 1103

 Joins
There are three types of joins (see “Join Concepts” on page 489 for a description of
these joins):

 ¹ Hash join
 ¹ Merge join
¹ Nested loop join.

When the time comes in the execution of a section for a join to be performed, one of
the following statements is displayed:

 Hash Join

or

 Merge Join

or

Nested Loop Join

It is possible for a left outer join to be performed. A left outer join is indicated by one of
the following statements:

Left Outer Hash Join

or

Left Outer Merge Join

or

Left Outer Nested Loop Join

For merge and nested loop joins, the outer table of the join will be the table referenced
in the previous access statement shown in the output. The inner table of the join will be
the table referenced in the access statement that is contained within the scope of the
join statement. For hash joins, the access statements are reversed with the outer table
contained within the scope of the join and the inner table appearing before the join.

For a hash or merge join, the following additional statements may appear:

¹ In some circumstances, a join simply needs to determine if any row in the inner
table matches the current row in the outer. This is indicated with the statement:

Early Out: Single Match Per Outer Row

¹ It is possible to apply predicates after the join has completed. The number of
predicates being applied will be indicated as follows:

Residual Predicate(s)

| #Predicates = n

For a hash join, the following additional statements may appear:

¹ The hash table is built from the inner table. If the hash table build was pushed
down into a predicate on the inner table access, it is indicated by the following
statement in the access of the inner table:

1104 Administration Guide

Process Hash Table For Join

¹ While accessing the outer table, a probe table can be built to improve the
perfromance of the join. The probe table build is indicated by the following
statement in the access of the outer table:

Process Probe Table For Hash Join

¹ The estimated number of bytes needed to build the hash table is represented by:

Estimated Build Size: n

¹ The estimated number of bytes needed for the probe table is represented by:

Estimated Probe Size: n

For a nested loop join, the following additional statement may appear immediately after
the join statement:

 Piped Inner

This statement indicates that the inner table of the join is the result of another series of
operations. This is also referred to as a composite inner.

If a join involves more than two tables, the explain steps should be read from top to
bottom. For example, suppose the explain output has the following flow:

Access W

 Join

| Access X

 Join

| Access Y

 Join

| Access Z

The steps of execution would be:

1. Take a row that qualifies from W.
2. Join row from W with (next) row from X and call the result P1 (for partial join result

number 1).
3. Join P1 with (next) row from Y to create P2.
4. Join P2 with (next) row from Z to obtain one complete result row.
5. If there are more rows in Z, go to step 4.
6. If there are more rows in Y, go to step 3.
7. If there are more rows in X, go to step 2.
8. If there are more rows in W, go to step 1.

 Data Streams
Within an access plan, there is often a need to control the creation and flow of data
from one series of operations to another. The data stream concept allows a group of
operations within an access plan to be controlled as a unit. The start of a data stream
is indicated by the following statement:

Data Stream n

 Appendix N. Explain Tool 1105

where n is a unique identifier assigned by db2expln for ease of reference. The end of a
data stream is indicated by:

End of Data Stream n

All operations between these statements are considered part of the same data stream.

A data stream has a number of characteristics and one or more statements can follow
the initial data stream statement to describe these characteristics:

¹ The following statements indicate when and how the data stream is created:

Evaluate at Open

Evaluate at Application

Forced Evaluate at Application

 The data stream is either fully created once when it is first opened (Evaluate at

Open) or each time it is accessed (Evaluate at Application). If the data stream is
evaluated at application, it can be forced to be fully evaluated with each access or
it can be allowed to be evaluated as required by the particular access.

¹ Similar to a sorted temporary table, the following statements indicate whether or
not the results of the data stream will be kept in memory:

 Piped

 and

 Not Piped

As was the case with temporary tables, a piped data stream may be written to disk,
if insufficient memory exists at execution time. The access plan will provide for both
possibilities.

¹ The following statement indicates that only a single record is required from this
data stream:

 Single Record

When a data stream is accessed, the following statement will appear in the output:

Access Data Stream n

Insert, Update, and Delete
The explain text for these SQL statements is self-explanatory. Possible statement text
for these SQL operations can be:

¹ Insert: Table Name = schema.name

¹ Update: Table Name = schema.name

¹ Delete: Table Name = schema.name

Row Identifier (RID) Preparation
For some access plans, it is more efficient if the qualifying row identifiers (RIDs) are
sorted and duplicates removed (in the case of index ORing) or that a technique is used
to identify RIDs appearing in all indexes being accessed (in the case of index ANDing)

1106 Administration Guide

before the actual table access is performed. There are three main uses of RID
preparation as indicated by the explain statements:

¹ The following statement indicates that “Index ORing” is used to prepare the list of
qualifying RIDs:

Index ORing RID Preparation

Index ORing refers to the technique of making more than one index access and
combining the results to include the distinct RIDs that appear in any of the indexes
accessed. The optimizer will consider index ORing when predicates are connected
by OR keywords or there is an IN predicate. The index accesses can be on the
same index or different indexes.

¹ Another use of RID preparation is to prepare the input data to be used during list
prefetch, as indicated by the following:

List Prefetch RID Preparation

¹ Index ANDing refers to the technique of making more than one index access and
combining the results to include RIDs that appear in all of the indexes accessed.
Index ANDing processing is started with the statement:

 Index ANDing

If the optimizer has estimated the size of the result set, the estimate is shown with
the following statement:

Optimizer Estimate of Set Size: n

Index ANDing filter operations process RIDs and use bit filter techniques to
determine the RIDs which appear in every index accessed. The following
statements indicate that RIDs are being processed for index ANDing:

Index ANDing Bitmap Build

Index ANDing Bitmap Probe

Index ANDing Bitmap Build and Probe

If the optimizer has estimated the size of the result set for a bitmap, the estimate is
shown with the following statement:

Optimizer Estimate of Set Size: n

For any type of RID preparation, if list prefect can be performed it will be indicated with
the statement:

 Prefetch: Enabled

 Aggregation
Aggregation is performed on those rows meeting the specified criteria, if any, provided
by the SQL statement predicates. If some sort of aggregate function is to be done, one
of the following statements appears:

 Appendix N. Explain Tool 1107

 Aggregation

 Predicate Aggregation

 Partial Aggregation

Partial Predicate Aggregation

 Intermediate Aggregation

Intermediate Predicate Aggregation

 Final Aggregation

Final Predicate Aggregation

Predicate aggregation states that the aggregation operation has been pushed-down to
be processed as a predicate when the data is actually accessed.

Beneath either of the above aggregation statements will be a indication of the type of
aggregate function being performed:

 ¹ Group By

 ¹ Column Function(s)

 ¹ Single Record.

The specific column function can be derived from the original SQL statement. A single
record is fetched from an index to satisfy a MIN or MAX operation.

If predicate aggregation is used, then subsequent to the table access statement in
which the aggregation appeared, there will be an aggregation "completion", which
carries out any needed processing on completion of each group or on end-of-file. One
of the following lines is displayed:

 Aggregation Completion

Partial Aggregation Completion

Intermediate Aggregation Completion

Final Aggregation Completion

 Parallel Processing
Executing an SQL statement in parallel (using either intra-partition or inter-partition
parallelism) requires some special operations. The operations for parallel plans are
described below.

¹ When running an intra-partition parallel plan, portions of the plan will be executed
simultaneously using several subagents. The creation of the subagents is indicated
by the statement:

Process Using n Subagents

¹ When running an inter-partition parallel plan, the section is broken into several
subsections. Each subsection is sent to one or more nodes to be run. An
important subsection is the coordinator subsection. The coordinator subsection is
the first subsection in every plan. It gets control first and is responsible for
distributing the other subsections and returning results to the calling application.

The distribution of subsections is indicated by the statement:

Distribute Subsection #n

The details of how a subsection is distributed:

1108 Administration Guide

– Under certain circumstances, it is possible for a subsection that would normally
be sent to the coordinator node to be executed directly by the coordinator
subsection. If this is potentially possible, it will be indicated by:

Locally Bypassable

– The nodes that receive a subsection can be determined in one of seven ways:

Directed by Hash

| #Columns = n

| Partition Map ID = n, Nodegroup = ngname, #Nodes = n

This indicates that the subsection will be sent to a node within the nodegroup
based on the value of the columns.

Directed by Node Number

This indicates that the subsection will be sent to a predetermined node. (This
is frequently seen when the statement uses the NODENUMBER() function.)

Directed by Partition Number

| Partition Map ID = n, Nodegroup = ngname, #Nodes = n

This indicates that the subsection will be sent to the node corresponding to a
predetermined partition number in the given nodegroup. (This is frequently
seen when the statement uses the PARTITION() function.)

Directed by Position

This indicates that the subsection will be sent to the node that provided the
current row for the application's cursor.

Directed to Single Node

| Node Number = n

This indicates that only one node, determined when the statement was
compiled, will receive the subsection.

Directed to Coordinator Node

The subsection will be executed on the coordinator node.

Broadcast to Node List

| Nodes = n1, n2, n3, ...

This indicates that the subsection will be sent to all the nodes listed.
¹ Table queues are used to move data between subsections in a partitioned

database environment or between subagents in a symmetric multiprocessor (SMP)
environment. Table queues are described as follows:

– The following statements indicate that data is being inserted into a table
queue:

Insert Into Synchronous Table Queue ID = qn

Insert Into Asynchronous Table Queue ID = qn

Insert Into Synchronous Local Table Queue ID = qn

Insert Into Asynchronous Local Table Queue ID = qn

– For database partition table queues, the destination for rows inserted into the
table queue is described by one of the following:

 Appendix N. Explain Tool 1109

Broadcast to Coordinator Node

All rows are sent to the coordinator node.

Broadcast to All Nodes of Subsection n

All rows are sent to every database partition that the given subsection is
running on.

Hash to Specific Node

Each row is sent to a database partition based on the values in the row.

Send to Specific Node

Each row is sent to a database partition determined while the statement is
executing.

Send to Random Node

Each row is sent to a random database partition.
– In some situations, a database partition table queue will have to temporarily

overflow some rows to a temporary table. This possibility is identified by the
statement:

Rows Can Overflow to Temporary Table

– After a table access that contains a push-down operation to insert rows into a
table queue, there will be a "completion" statement which handles rows that
could not be immediately sent. One of the following lines is displayed:

Insert Into Synchronous Table Queue Completion ID = qn

Insert Into Asynchronous Table Queue Completion ID = qn

Insert Into Synchronous Local Table Queue Completion ID = qn

Insert Into Asynchronous Local Table Queue Completion ID = qn

– The following statements indicate that data is being retrieved from a table
queue:

Access Table Queue ID = qn

Access Local Table Queue ID = qn

These messages are always followed by an indication of the number of
columns being retrieved.

#Columns = n

– If the table queue sorts the rows at the receiving end, the table queue access
will also have one of the following messages:

 Output Sorted

Output Sorted and Unique

These messages are followed by an indication of the number of keys used for
the sort operation.

#Key Columns = n

For each column in the sort key, one of the following is displayed:

1110 Administration Guide

Key n: (Ascending)

Key n: (Descending)

– If predicates will be applied to rows by the receiving end of the table queue,
the following message is shown:

 Residual Predicate(s)

| #Predicates = n

¹ Some subsections in a partitioned database environment explicitly loop back to the
start of the subsection with the statement:

Jump Back to Start of Subsection

 Miscellaneous Statements
¹ Sections for data definition language statements will be indicated in the output with

the following:

 DDL Statement

No additional explain output is provided for DDL statements.
¹ Sections for SET statements for the updatable special registers such as CURRENT

EXPLAIN SNAPSHOT will be indicated in the output with the following:

 SET Statement

No additional explain output is provided for SET statements.
¹ If the SQL statement contains the DISTINCT clause, the following text may appear

in the output:

Distinct Filter #Columns = n

where n is the number of columns involved in obtaining distinct rows. To retrieve
distinct row values, the rows must be ordered so that duplicates can be skipped.
This statement will not appear if the database manager does not have to explicitly
eliminate duplicates, as in the following cases:

– A unique index exists and all the columns in the index key are part of the
DISTINCT operation

– Duplicates that can be eliminated during sorting.
¹ The following statement will appear if the next operation is dependent on a specific

record identifier:

 Positioned Operation

This statement would appear for any SQL statement that uses the WHERE
CURRENT OF syntax.

¹ The following statement will appear if there are predicates that must be applied to
the result but that could not be applied as part of another operation:

Residual Predicate Application

| #Predicates = n

¹ The following statement will appear if there is a UNION operator in the SQL
statement:

 UNION

 Appendix N. Explain Tool 1111

¹ The following statement will appear if there is an operation in the access plan,
whose sole purpose is to produce row values for use by subsequent operations:

 Table Constructor

 | n-Row(s)

Table constructors can be used for transforming values in a set into a series of
rows that are then passed to subsequent operations. When a table constructor is
prompted for the next row, the following statement will appear:

Access Table Constructor

¹ The following statement will appear if there is an operation which is only processed
under certain conditions:

 Conditional Evaluation

 | Condition #n:

| | #Predicates = n

 | Action #n:

Conditional evaluation is used to implement such activities as the SQL CASE
statement or internal mechanisms such as referential integrity constraints or
triggers. If no action is shown, then only data manipulation operations are
processed when the condition is true.

¹ One of the following statements will appear if an ALL, ANY, or EXISTS subquery is
being processed in the access plan:
 – ANY/ALL Subquery

 – EXISTS Subquery

– EXISTS SINGLE Subquery

¹ Prior to certain UPDATE and DELETE operations, it is necessary to establish the
position of a specific row within the table. This is indicated by the following
statement:

Establish Row Position

¹ The following statement will appear if there are rows being returned to the
application:

Return Data to Application

| #Columns = n

Examples of db2expln and dynexpln Output
Four examples are shown here to help understand the layout and format of the output
from db2expln and dynexpln. These examples were run against the SAMPLE database
as provided with DB2. A brief discussion is provided for each example. Significant
differences from one example to the next have been shown in bold .

Example One: "No Parallelism" Plan
This example is simply requesting a list of all employee names, their jobs, department
name and location, and the project name(s) on which they are working. The essence of
this access plan is that hash joins are used to join the relevant data from each of the
specified tables. Since no indexes are available, the access plan does a relation scan
of each table.

1112 Administration Guide

| ******************** PACKAGE ***************************************

| Package Name = QUERY.DYNEXPLN

| Prep Date = 1998/06/09

| Prep Time = 11:14:16:037

| Bind Timestamp = 1998-06-09-11.14.16.371570

| Isolation Level = Cursor Stability

| Blocking = Block Unambiguous Cursors

| Query Optimization Class = 5

| Partition Parallel = No

| Intra-Partition Parallel = No

| Function Path = "SYSIBM", "SYSFUN", "QUERY"

| -------------------- SECTION ---------------------------------------

| Section = 1

| SQL Statement:

| SELECT X.LASTNAME, X.JOB, Y.DEPTNAME, Y.LOCATION, Z.PROJNAME

| FROM EMPLOYEE X, DEPARTMENT Y, PROJECT Z

| WHERE X.WORKDEPT = Y.DEPTNO AND X.WORKDEPT = Z.DEPTNO AND Y.DEPTNO

| = Z.DEPTNO

| Estimated Cost = 119

| Estimated Cardinality = 109

| Access Table Name = QUERY.EMPLOYEE ID = 5

| | #Columns = 3

| | Relation Scan

| | | Prefetch: Eligible

| | Lock Intents

| | | Table: Intent Share

| | | Row : Next Key Share

| | Process Build Table for Hash Join

| Hash Join

| | Estimated Build Size: 7167

| | Estimated Probe Size: 9011

| | Access Table Name = QUERY.PROJECT ID = 7

| | | #Columns = 2

| | | Relation Scan

| | | | Prefetch: Eligible

| | | Lock Intents

| | | | Table: Intent Share

| | | | Row : Next Key Share

| | | Process Build Table for Hash Join

| | Hash Join

 Appendix N. Explain Tool 1113

| | | Estimated Build Size: 5789

| | | Estimated Probe Size: 6414

| | | Access Table Name = QUERY.DEPARTMENT ID = 4

| | | | #Columns = 3

| | | | Relation Scan

| | | | | Prefetch: Eligible

| | | | Lock Intents

| | | | | Table: Intent Share

| | | | | Row : Next Key Share

| | | | Process Probe Table For Hash Join

| Return Data to Application

| | #Columns = 5

| End of section

| Optimizer Plan:

| RETURN

| (1)

| |

| HSJOIN

| (2)

| / \

| HSJOIN TBSCAN

| (3) (6)

| / \ |

| TBSCAN TBSCAN Table:

| (4) (5) QUERY

| | | EMPLOYEE

| Table: Table:

| QUERY QUERY

| DEPARTMENT PROJECT

| The first part of the plan accesses the EMPLOYEE table to build a hash join Build
| table. Then the PROJECT table is accessed, and hash join builds another Build table.
| Finally, the DEPARTMENT table is scanned, and lookups are performed on the Build
| tables, first on the one created from PROJECT, then on the one created from
| EMPLOYEE. When the application completes, the qualifying rows are returned.

| Example Two: Single-Partition Database Plan with Intra-Partition Parallelism
| This example shows the same SQL statement as “Example One: "No Parallelism" Plan”
| on page 1112, but this query has been compiled for a 4-way SMP machine.

1114 Administration Guide

| ******************** PACKAGE ***************************************

| Package Name = QUERY.DYNEXPLN

| Prep Date = 1998/06/09

| Prep Time = 11:21:20:032

| Bind Timestamp = 1998-06-09-11.21.20.322036

| Isolation Level = Cursor Stability

| Blocking = Block Unambiguous Cursors

| Query Optimization Class = 5

| Partition Parallel = No

| Intra-Partition Parallel = Yes (Bind Degree = 4)

| Function Path = "SYSIBM", "SYSFUN", "QUERY"

| -------------------- SECTION ---------------------------------------

| Section = 1

| SQL Statement:

| SELECT X.LASTNAME, X.JOB, Y.DEPTNAME, Y.LOCATION, Z.PROJNAME

| FROM EMPLOYEE X, DEPARTMENT Y, PROJECT Z

| WHERE X.WORKDEPT = Y.DEPTNO AND X.WORKDEPT = Z.DEPTNO AND Y.DEPTNO

| = Z.DEPTNO

| Intra-Partition Parallelism Degree = 4

| Estimated Cost = 129

| Estimated Cardinality = 109

| Process Using 4 Subagents

| | Access Table Name = QUERY.EMPLOYEE ID = 5

| | | #Columns = 3

| | | Parallel Scan

| | | Relation Scan

| | | | Prefetch: Eligible

| | | Lock Intents

| | | | Table: Intent Share

| | | | Row : Next Key Share

| | | Process Build Table for Hash Join

| | Hash Join

| | | Estimated Build Size: 7167

| | | Estimated Probe Size: 9011

| | | Access Table Name = QUERY.PROJECT ID = 7

| | | | #Columns = 2

| | | | Parallel Scan

| | | | Relation Scan

| | | | | Prefetch: Eligible

| | | | Lock Intents

 Appendix N. Explain Tool 1115

| | | | | Table: Intent Share

| | | | | Row : Next Key Share

| | | | Process Build Table for Hash Join

| | | Hash Join

| | | | Estimated Build Size: 5789

| | | | Estimated Probe Size: 6414

| | | | Access Table Name = QUERY.DEPARTMENT ID = 4

| | | | | #Columns = 3

| | | | | Parallel Scan

| | | | | Relation Scan

| | | | | | Prefetch: Eligible

| | | | | Lock Intents

| | | | | | Table: Intent Share

| | | | | | Row : Next Key Share

| | | | | Process Probe Table For Hash Join

| | Insert Into Asynchronous Local Table Queue ID = q1

| Access Local Table Queue ID = q1 #Columns = 5

| Return Data to Application

| | #Columns = 5

| End of section

| Optimizer Plan:

| RETURN

| (1)

| |

| TQ

| (2)

| |

| HSJOIN

| (3)

| / \

| HSJOIN TBSCAN

| (4) (7)

| / \ |

| TBSCAN TBSCAN Table:

| (5) (6) QUERY

| | | EMPLOYEE

| Table: Table:

| QUERY QUERY

| DEPARTMENT PROJECT

| This plan is almost identical to the plan in the first example. The main differences are
| the creation of four subagents when the plan first starts and the table queue at the end
| of the plan to gather the results of each of subagent's work before returning them to the
| application.

1116 Administration Guide

Example Three: Multipartition Database Plan with Inter-Partition Parallelism
This example shows the same SQL statement as “Example One: "No Parallelism" Plan”
on page 1112, but this query has been compiled on a partitioned database made up of
four database partitions.

| ******************** PACKAGE ***************************************

| Package Name = QUERY.DYNEXPLN

| Prep Date = 1998/06/09

| Prep Time = 11:27:30:058

| Bind Timestamp = 1998-06-09-11.27.30.583713

| Isolation Level = Cursor Stability

| Blocking = Block Unambiguous Cursors

| Query Optimization Class = 5

| Partition Parallel = Yes

| Intra-Partition Parallel = No

| Function Path = "SYSIBM", "SYSFUN", "QUERY"

| -------------------- SECTION ---------------------------------------

| Section = 1

| SQL Statement:

| SELECT X.LASTNAME, X.JOB, Y.DEPTNAME, Y.LOCATION, Z.PROJNAME

| FROM EMPLOYEE X, DEPARTMENT Y, PROJECT Z

| WHERE X.WORKDEPT = Y.DEPTNO AND X.WORKDEPT = Z.DEPTNO AND Y.DEPTNO

| = Z.DEPTNO

| Buffered Insert = No

| Estimated Cost = 111

| Estimated Cardinality = 190

| Coordinator Subsection:

| Distribute Subsection #2

| | Broadcast to Node List

| | | Nodes = 10, 20, 30, 40

| Distribute Subsection #3

| | Broadcast to Node List

| | | Nodes = 10, 20, 30, 40

| Distribute Subsection #1

| | Broadcast to Node List

| | | Nodes = 10, 20, 30, 40

| Access Table Queue ID = q1 #Columns = 5

| Return Data to Application

| | #Columns = 5

 Appendix N. Explain Tool 1117

| Subsection #1:

| Access Table Queue ID = q2 #Columns = 2

| Hash Join

| | Estimated Build Size: 5789

| | Estimated Probe Size: 7632

| | Access Table Queue ID = q3 #Columns = 3

| | Hash Join

| | | Estimated Build Size: 5333

| | | Estimated Probe Size: 6414

| | | Access Table Name = QUERY.DEPARTMENT ID = 4

| | | | #Columns = 3

| | | | Relation Scan

| | | | | Prefetch: Eligible

| | | | Lock Intents

| | | | | Table: Intent Share

| | | | | Row : Next Key Share

| | | | Process Probe Table For Hash Join

| Insert Into Asynchronous Table Queue ID = q1

| | Broadcast to Coordinator Node

| | Rows Can Overflow to Temporary Table

| Subsection #2:

| Access Table Name = QUERY.PROJECT ID = 7

| | #Columns = 2

| | Relation Scan

| | | Prefetch: Eligible

| | Lock Intents

| | | Table: Intent Share

| | | Row : Next Key Share

| | Insert Into Asynchronous Table Queue ID = q2

| | | Hash to Specific Node

| | | Rows Can Overflow to Temporary Tables

| Insert Into Asynchronous Table Queue Completion ID = q2

| Subsection #3:

| Access Table Name = QUERY.EMPLOYEE ID = 5

| | #Columns = 3

| | Relation Scan

| | | Prefetch: Eligible

| | Lock Intents

| | | Table: Intent Share

| | | Row : Next Key Share

| | Insert Into Asynchronous Table Queue ID = q3

| | | Hash to Specific Node

| | | Rows Can Overflow to Temporary Tables

| Insert Into Asynchronous Table Queue Completion ID = q3

| End of section

| Optimizer Plan:

1118 Administration Guide

| RETURN

| (1)

| |

| TQ

| (2)

| |

| HSJOIN

| (3)

| / \

| HSJOIN TQ

| (4) (8)

| / \ |

| TBSCAN TQ TBSCAN

| (5) (6) (9)

| | | |

| Table: TBSCAN Table:

| QUERY (7) QUERY

| DEPARTMENT | PROJECT

| Table:

| QUERY

| EMPLOYEE

This plan has all the same pieces as the plan in the first example, but the section has
been broken into four subsections. The subsections have the following tasks:

¹ Coordinator Subsection . This subsection coordinates the other subsections. In
this plan, it causes the other subsections to be distributed and then uses a table
queue to gather the results to be returned to the application.

| ¹ Subsection #1 . This subsection scans table queue q2 and builds a hash join Build
| table. Then table queue q3 is accessed, and hash join builds another Build table.
| Finally, the DEPARTMENT table is scanned, and lookups are performed on the
| Build tables, first on the one created from q3, then on the one created from q2.
| After joining all the rows, the results are sent to the coordinator via a table queue.
| ¹ Subsection #2 . This subsection scans the PROJECT table and hashes to a
| specific node with the results. These results are read by Subsection #1.
| ¹ Subsection #3 . This subsection scans the EMPLOYEE table and hashes to a
| specific node with the results. These results are read by Subsection #1.

| Example Four: Multipartition Database Plan with Inter-Partition and
| Intra-Partition Parallelism
| This example shows the same SQL statement as “Example One: "No Parallelism" Plan”
| on page 1112, but this query has been compiled on a partitioned database made up of
| four database partitions.

 Appendix N. Explain Tool 1119

| ******************** PACKAGE ***************************************

| Package Name = QUERY.DYNEXPLN

| Prep Date = 1998/06/09

| Prep Time = 11:30:33:077

| Bind Timestamp = 1998-06-09-11.30.33.770876

| Isolation Level = Cursor Stability

| Blocking = Block Unambiguous Cursors

| Query Optimization Class = 5

| Partition Parallel = Yes

| Intra-Partition Parallel = Yes (Bind Degree = 4)

| Function Path = "SYSIBM", "SYSFUN", "QUERY"

| -------------------- SECTION ---------------------------------------

| Section = 1

| SQL Statement:

| SELECT X.LASTNAME, X.JOB, Y.DEPTNAME, Y.LOCATION, Z.PROJNAME

| FROM EMPLOYEE X, DEPARTMENT Y, PROJECT Z

| WHERE X.WORKDEPT = Y.DEPTNO AND X.WORKDEPT = Z.DEPTNO AND Y.DEPTNO

| = Z.DEPTNO

| Buffered Insert = No

| Estimated Cost = 111

| Estimated Cardinality = 190

| Coordinator Subsection:

| Distribute Subsection #2

| | Broadcast to Node List

| | | Nodes = 10, 20, 30, 40

| Distribute Subsection #3

| | Broadcast to Node List

| | | Nodes = 10, 20, 30, 40

| Distribute Subsection #1

| | Broadcast to Node List

| | | Nodes = 10, 20, 30, 40

| Access Table Queue ID = q1 #Columns = 5

| Return Data to Application

| | #Columns = 5

| Subsection #1:

| Process Using 3 Subagents

| | Access Table Queue ID = q3 #Columns = 2

| | Hash Join

| | | Estimated Build Size: 5789

1120 Administration Guide

| | | Estimated Probe Size: 7632

| | | Access Table Queue ID = q5 #Columns = 3

| | | Hash Join

| | | | Estimated Build Size: 5333

| | | | Estimated Probe Size: 6414

| | | | Access Table Name = QUERY.DEPARTMENT ID = 4

| | | | | #Columns = 3

| | | | | Parallel Scan

| | | | | Relation Scan

| | | | | | Prefetch: Eligible

| | | | | Lock Intents

| | | | | | Table: Intent Share

| | | | | | Row : Next Key Share

| | | | | Process Probe Table For Hash Join

| | Insert Into Asynchronous Local Table Queue ID = q2

| Access Local Table Queue ID = q2 #Columns = 5

| Insert Into Asynchronous Table Queue ID = q1

| | Broadcast to Coordinator Node

| | Rows Can Overflow to Temporary Table

| Subsection #2:

| Process Using 3 Subagents

| | Access Table Name = QUERY.PROJECT ID = 7

| | | #Columns = 2

| | | Parallel Scan

| | | Relation Scan

| | | | Prefetch: Eligible

| | | Lock Intents

| | | | Table: Intent Share

| | | | Row : Next Key Share

| | Insert Into Asynchronous Local Table Queue ID = q4

| Access Local Table Queue ID = q4 #Columns = 2

| Insert Into Asynchronous Table Queue ID = q3

| | Hash to Specific Node

| | Rows Can Overflow to Temporary Tables

| Subsection #3:

| Process Using 3 Subagents

| | Access Table Name = QUERY.EMPLOYEE ID = 5

| | | #Columns = 3

| | | Parallel Scan

| | | Relation Scan

| | | | Prefetch: Eligible

| | | Lock Intents

| | | | Table: Intent Share

| | | | Row : Next Key Share

| | Insert Into Asynchronous Local Table Queue ID = q6

| Access Local Table Queue ID = q6 #Columns = 3

| Insert Into Asynchronous Table Queue ID = q5

| | Hash to Specific Node

| | Rows Can Overflow to Temporary Tables

 Appendix N. Explain Tool 1121

| End of section

| Optimizer Plan:

| RETURN

| (1)

| |

| TQ

| (2)

| |

| TQ

| (3)

| |

| HSJOIN

| (4)

| / \

| HSJOIN TQ

| (5) (10)

| / \ |

| TBSCAN TQ TQ

| (6) (7) (11)

| | | |

| Table: TQ TBSCAN

| QUERY (8) (12)

| DEPARTMENT | |

| TBSCAN Table:

| (9) QUERY

| | PROJECT

| Table:

| QUERY

| EMPLOYEE

| This plan is similar to that in “Example Three: Multipartition Database Plan with
| Inter-Partition Parallelism” on page 1117, except that multiple subagents execute each
| subsection. Also, at the end of each subsection, a local table queue gathers the results
| from all of the subagents before the qualifying rows are inserted into the second table
| queue to be hashed to a specific node.

db2exfmt - Explain Table Format Tool
You use the db2exfmt tool to format the contents of the explain tables. This tool is
located in the misc subdirectory of the instance sqllib directory.

To use the tool, you requre read access to the explain tables being formatted.

1122 Administration Guide

55─ ─db2exfmt─ ──┬ ┬──────────── ──┬ ┬──────────── ──┬ ┬─────── ──────────────────5
 └ ┘ ─-d──dbname─ └ ┘ ─-e──schema─ └ ┘ ─-f──O─

5─ ──┬ ┬───────────── ──┬ ┬──── ──┬ ┬────────── ──┬ ┬──────────── ─────────────────5
 │ │┌ ┐─────── └ ┘ ─-l─ └ ┘ ─-n──name─ └ ┘ ─-s──schema─
 └ ┘ ─-g─ ───6 ┴┬ ┬───
 ├ ┤─O─
 ├ ┤─T─
 ├ ┤─I─
 └ ┘─C─

5─ ──┬ ┬───────────── ──┬ ┬─────────────── ──┬ ┬───────────── ──┬ ┬──── ──────────5%
 ├ ┤ ─-o──outfile─ └ ┘ ─-w──timestamp─ └ ┘ ─-#──sectnbr─ └ ┘ ─-h─
 │ │┌ ┐─-t─
 └ ┘ ──┴ ┴──── ─────

-d dbname
Name of the database containing packages.

-e schema
Explain table schema.

-f
Formatting flags. In this release, the only supported value is O (operator
summary).

-g
Graph plan. If only -g is specified, a graph, followed by formatted
information for all of the tables, is generated. Otherwise, any combination
of the following valid values can be specified:
O Generate a graph only. Do not format the table contents.
T Include total cost under each operator in the graph.
I Include I/O cost under each operator in the graph.
C Include the expected output cardinality (number of tuples) of each

operator in the graph.
-l

Respect case when processing package names.
-n name

Name of the source of the explain request (SOURCE_NAME).
-s schema

Schema or qualifier of the source of the explain request
(SOURCE_SCHEMA).

-o outfile
Output file name.

-t
Direct the output to the terminal.

-w timestamp
Explain time stamp. Specify -1 to obtain the latest explain request.

-# sectnbr
Section number in the source. To request all sections, specify zero.

 Appendix N. Explain Tool 1123

-h
Display help information. When this option is specified, all other options are
ignored, and only the help information is displayed.

You will be prompted for any parameter values that are not supplied, or that are
incompletely specified, except in the case of the -h and the -l options.

If an explain table schema is not provided, the value of the environment variable USER
is used as the default. If this variable is not found, the user is prompted for an explain
table schema.

Source name, source schema, and explain time stamp can be supplied in LIKE
predicate form, which allows the percent sign (%) and the underscore (_) to be used as
pattern matching characters to select multiple sources with one invocation. For the
latest explained statement, the explain time can be specified as -1.

If -o is specified without a file name, and -t is not specified, the user is prompted for a
file name (the default name is db2exfmt.out). If neither -o nor -t is specified, the user
is prompted for a file name (the default option is terminal output). If -o and -t are both
specified, the output is directed to the terminal.

1124 Administration Guide

Appendix O. National Language Support (NLS)

This appendix contains information about the National Language Support (NLS)
provided by DB2, including information about countries, languages, and code pages
(code sets) supported and how to configure and use DB2 NLS features in both your
applications and databases.

Deriving Code Page Values
| The application code page is derived from the active environment when the database
| connection is made. If the DB2CODEPAGE registry variable is set, its value is taken as
| the application code page. However, it is not necessary to set the DB2CODEPAGE
| registry variable because DB2 will determine the appropriate code page value from the
| operating system. Setting the DB2CODEPAGE registry variable to incorrect values may
| cause unpredictable results.

The database code page is derived from the value specified (explicitly or by default) at
the time the database is created. The following defines how the active environment is
determined in different operating environments, for example:

UNIX In UNIX-based environments, the active environment is
determined from the locale environment variables, which
include information about language, territory and code set.

OS/2 In OS/2, primary and secondary code pages are specified in
the CONFIG.SYS file. You can use the chcp command to
display and dynamically change code pages within a given
session.

DOS In DOS, the active code page is determined by the value
specified in the COUNTRY command in the CONFIG.SYS file.
You can use the chcp command to display and dynamically
change code pages within a given session.

Macintosh For the Macintosh operating system, if the DB2CODEPAGE
environment variable is not set, the Macintosh code page is
derived from the Regional version code from the installed
script.

Windows For Windows, if the DB2CODEPAGE environment variable
is not set, the Windows code page is derived from the
country ID, as specified in the iCountry value in the [intl]
section of the Windows WIN.INI file.

Windows 95 For Windows 95, if the DB2CODEPAGE environment
variable is not set, the Windows 95 code page is derived
from the ANSI code page setting in the Registry.

Windows NT For Windows NT, if the DB2CODEPAGE environment
variable is not set, the Windows NT code page is derived
from the ANSI code page setting in the Registry.

 Copyright IBM Corp. 1993, 1998 1125

For a complete list of environment mappings for code page values, see the Table 133
on page 1127.

Deriving Locales in Application Programs
Locales are specific to UNIX-based operating systems. There are two locales:

¹ The environment locale allows you to specify the language, currency symbol, and
so on, that you want to use.

¹ The program locale contains the current language, currency symbol, and so on, of
a program that is executing.

When your program is started, it gets a default C locale. It does not get a copy of the
environment locale. Your program has a few choices:

¹ Ignore the environment locale. Your program could hard code some options. For
example, your program could set the language to spanish with the setlocale()
function.

¹ Copy the environment locale to the program locale.

¹ Ignore the environment locale. Use whatever defaults you get from the operating
system.

How DB2 Derives Locales
With UNIX, the active locale used by DB2 is determined from the LC_CTYPE portion of
the locale. For details, see the NLS documentation for your operating system.

¹ If LC_CTYPE of the program locale has a value other than that of 'C', DB2 will use
this value to determine the application code page by mapping it to its
corresponding code page.

¹ If LC_CTYPE has the value of 'C' (the 'C' locale), DB2 will set the program locale
according to the environment locale using the setlocale() function.

| ¹ If LC_CTYPE still has a value of 'C', DB2 will use its default locale for that
| platform. For information on the default locale for a particular platform, see
| Table 133 on page 1127. Additional information may be found in:

| – Building Applications for Windows and OS/2 Environments

| – Building Applications for UNIX Environments

¹ If LC_CTYPE’s value is no longer 'C', its new value will be used to map to a
corresponding code page.

| Country Code and Code Page Support
| Table 133 on page 1127 shows the languages and code sets supported by the
| Database Servers and how these values are mapped to country code and code page
| values that are used by the database manager.

| The following is an explanation of each column of the table:

1126 Administration Guide

| 1. Code Page shows the IBM-defined code page as mapped from the operating
| system code set.

| 2. Group shows whether a code page is single-byte (“S”) or multi-byte (“D”). The “-n”
| is a number used to create a letter-number combination. Matching combinations
| show where connection and conversion is allowed by DB2. For example, all “S-1”
| groups can work together.

| 3. Code Set shows the code set associated with the supported language. The code
| set is mapped to the DB2 Code Page.

| 4. Tr. shows the two letter territory identifier.

| 5. Country Code shows the country code that is used by the database manager
| internally for providing country-specific support.

| 6. Locale shows the locale values supported by the database manager.

| 7. OS shows the operating system that supports the languages and code sets.

| 8. Country Name shows the name of the country or countries.

| Table 133 (Page 1 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 437 S-1 IBM-437 AL 355 - OS2 Albania

| 850 S-1 IBM-850 AL 355 - OS2 Albania

| 819 S-1 ISO8859-1 AL 355 sq_AL AIX Albania

| 850 S-1 IBM-850 AL 355 Sq_AL AIX Albania

| 819 S-1 iso88591 AL 355 - HP Albania

| 1051 S-1 roman8 AL 355 - HP Albania

| 819 S-1 ISO8859-1 AL 355 - Sun Albania

| 1252 S-1 1252 AL 355 - WIN Albania

| 1275 S-1 1275 AL 355 - Mac Albania

| 37 S-1 IBM-037 AL 355 - HOST Albania

| 1140 S-1 IBM-1140 AL 355 - HOST Albania

| 864 S-6 IBM-864 AA 785 - OS2 Arabic Countries

| 1046 S-6 IBM-1046 AA 785 Ar_AA AIX Arabic Countries

| 1089 S-6 ISO8859-6 AA 785 ar_AA AIX Arabic Countries

| 1089 S-6 iso88596 AA 785 ar_SA.iso88596 HP Arabic Countries

| 1256 S-6 1256 AA 785 - WIN Arabic Countries

| 420 S-6 IBM-420 AA 785 - HOST Arabic Countries

| 437 S-1 IBM-437 AU 61 - OS2 Australia

| 850 S-1 IBM-850 AU 61 - OS2 Australia

| 819 S-1 ISO8859-1 AU 61 en_AU AIX Australia

| 850 S-1 IBM-850 AU 61 En_AU AIX Australia

| 819 S-1 iso88591 AU 61 - HP Australia

| 1051 S-1 roman8 AU 61 - HP Australia

| 819 S-1 ISO8859-1 AU 61 en_AU Sun Australia

| 819 S-1 ISO8859-1 AU 61 en_AU SCO Australia

| 1252 S-1 1252 AU 61 - WIN Australia

| 1275 S-1 1275 AU 61 - Mac Australia

| 37 S-1 IBM-037 AU 61 - HOST Australia

| 1140 S-1 IBM-1140 AU 61 - HOST Australia

 Appendix O. National Language Support (NLS) 1127

| Table 133 (Page 2 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 437 S-1 IBM-437 AT 43 - OS2 Austria

| 850 S-1 IBM-850 AT 43 - OS2 Austria

| 819 S-1 ISO8859-1 AT 43 ge_AT AIX Austria

| 850 S-1 IBM-850 AT 43 Ge_AT AIX Austria

| 819 S-1 iso88591 AT 43 - HP Austria

| 1051 S-1 roman8 AT 43 - HP Austria

| 819 S-1 ISO8859-1 AT 43 de_AT SCO Austria

| 819 S-1 ISO8859-1 AT 43 de_AT Sun Austria

| 1252 S-1 1252 AT 43 - WIN Austria

| 1275 S-1 1275 AT 43 - Mac Austria

| 37 S-1 IBM-037 AT 43 - HOST Austria

| 1140 S-1 IBM-1140 AT 43 - HOST Austria

| 915 S-11 IS08859-5 BY 375 - OS2 Belarus

| 915 S-11 ISO8859-5 BY 375 be_BY AIX Belarus

| 1131 S-11 IBM-1131 BY 375 - OS2 Belarus

| 1251 S-11 1251 BY 375 - WIN Belarus

| 1283 S-11 1283 BY 375 - Mac Belarus

| 1025 S-11 IBM-1025 BY 375 - HOST Belarus

| 437 S-1 IBM-437 BE 32 - OS2 Belgium

| 850 S-1 IBM-850 BE 32 - OS2 Belgium

| 819 S-1 ISO8859-1 BE 32 nl_BE AIX Belgium

| fr_BE

| 850 S-1 IBM-850 BE 32 Nl_BE AIX Belgium

| Fr_BE

| 819 S-1 iso88591 BE 32 - HP Belgium

| 819 S-1 ISO8859-1 BE 32 fr_BE SCO Belgium

| 819 S-1 ISO8859-1 BE 32 nl_BE SCO Belgium

| 819 S-1 ISO8859-1 BE 32 nl_BE Sun Belgium

| fr_BE

| 1252 S-1 1252 BE 32 - WIN Belgium

| 1275 S-1 1275 BE 32 - Mac Belgium

| 500 S-1 IBM-500 BE 32 - HOST Belgium

| 1148 S-1 IBM-1148 BE 32 - HOST Belgium

| 855 S-5 IBM-855 BG 359 - OS2 Bulgaria

| 915 S-5 ISO8859-5 BG 359 - OS2 Bulgaria

| 915 S-5 ISO8859-5 BG 359 bg_BG AIX Bulgaria

| 915 S-5 iso88595 BG 359 bg_BG.iso88595 HP Bulgaria

| 1251 S-5 1251 BG 359 - WIN Bulgaria

| 1283 S-5 1283 BG 359 - Mac Bulgaria

| 1025 S-5 IBM-1025 BG 359 - HOST Bulgaria

| 850 S-1 IBM-850 BR 55 - OS2 Brazil

| 850 S-1 IBM-850 BR 55 - AIX Brazil

| 819 S-1 ISO8859-1 BR 55 pt_BR AIX Brazil

| 819 S-1 ISO8859-1 BR 55 - HP Brazil

| 819 S-1 ISO8859-1 BR 55 pt_BR SCO Brazil

| 819 S-1 ISO8859-1 BR 55 pt_BR Sun Brazil

| 1252 S-1 1252 BR 55 - WIN Brazil

| 37 S-1 IBM-037 BR 55 - HOST Brazil

| 1140 S-1 IBM-1140 BR 55 - HOST Brazil

1128 Administration Guide

| Table 133 (Page 3 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 850 S-1 IBM-850 CA 1 - OS2 Canada

| 850 S-1 IBM-850 CA 1 En_CA AIX Canada

| 819 S-1 ISO8859-1 CA 1 en_CA AIX Canada

| 819 S-1 iso88591 CA 1 fr_CA.iso88591 HP Canada

| 1051 S-1 roman8 CA 1 fr_CA.roman8 HP Canada

| 819 S-1 ISO8859-1 CA 1 en_CA SCO Canada

| 819 S-1 ISO8859-1 CA 1 fr_CA SCO Canada

| 819 S-1 ISO8859-1 CA 1 en_CA Sun Canada

| 819 S-1 ISO8859-1 CA 1 en_CA Sun Canada

| 1252 S-1 1252 CA 1 - WIN Canada

| 1275 S-1 1275 CA 1 - Mac Canada

| 37 S-1 IBM-037 CA 1 - HOST Canada

| 1140 S-1 IBM-1140 CA 1 - HOST Canada

| 863 S-1 IBM-863 CA 2 - OS2 Canada (French)

| 1381 D-4 IBM-1381 CN 86 - OS2 China (PRC)

| 1386 D-4 GBK CN 86 - OS2 China (PRC)

| 1383 D-4 IBM-eucCN CN 86 zh_CN AIX China (PRC)

| 1386 D-4 GBK CN 86 Zh_CN.GBK AIX China (PRC)

| 1383 D-4 hp15CN CN 86 zh_CN.hp15CN HP China (PRC)

| 1383 D-4 eucCN CN 86 zh_CN SCO China (PRC)

| 1383 D-4 eucCN CN 86 zh_CN.eucCN SCO China (PRC)

| 1383 D-4 gb2312 CN 86 zh Sun China (PRC)

| chinese

| 1381 D-4 IBM-1381 CN 86 - WIN China (PRC)

| 1386 D-4 GBK CN 86 - WIN China (PRC)

| 935 D-4 IBM-935 CN 86 - HOST China (PRC)

| 1388 D-4 IBM-1388 CN 86 - HOST China (PRC)

| 852 S-2 IBM-852 HR 385 - OS2 Croatia

| 912 S-2 ISO8859-2 HR 385 hr_HR AIX Croatia

| 912 S-2 iso88592 HR 385 hr_HR.iso88592 HP Croatia

| 912 S-2 ISO8859-2 HR 385 hr_HR.ISO8859-2 SCO Croatia

| 1250 S-2 1250 HR 385 - WIN Croatia

| 1282 S-2 1282 HR 385 - Mac Croatia

| 870 S-2 IBM-870 HR 385 - HOST Croatia

| 852 S-2 IBM-852 CZ 42 - OS2 Czech Republic

| 912 S-2 ISO8859-2 CZ 42 cs_CZ AIX Czech Republic

| 912 S-2 iso88592 CZ 42 cs_CZ.iso88592 HP Czech Republic

| 912 S-2 ISO8859-2 CZ 42 cs_CZ.ISO8859-2 SCO Czech Republic

| 1250 S-2 1250 CZ 42 - WIN Czech Republic

| 1282 S-2 1282 CZ 42 - Mac Czech Republic

| 870 S-2 IBM-870 CZ 42 - HOST Czech Republic

 Appendix O. National Language Support (NLS) 1129

| Table 133 (Page 4 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 850 S-1 IBM-850 DK 45 - OS2 Denmark

| 819 S-1 ISO8859-1 DK 45 da_DK AIX Denmark

| 850 S-1 IBM-850 DK 45 Da_DK AIX Denmark

| 819 S-1 iso88591 DK 45 da_DK.iso88591 HP Denmark

| 1051 S-1 roman8 DK 45 da_DK.roman8 HP Denmark

| 819 S-1 ISO8859-1 DK 45 da SCO Denmark

| 819 S-1 ISO8859-1 DK 45 da_DA SCO Denmark

| 819 S-1 ISO8859-1 DK 45 da_DK SCO Denmark

| 819 S-1 ISO8859-1 DK 45 da Sun Denmark

| 819 S-1 ISO8859-1 DK 45 da Sun Denmark

| 1252 S-1 1252 DK 45 - WIN Denmark

| 1275 S-1 1275 DK 45 - Mac Denmark

| 277 S-1 IBM-277 DK 45 - HOST Denmark

| 1142 S-1 IBM-1142 DK 45 - HOST Denmark

| 922 S-10 IBM-922 EE 372 - OS2 Estonia

| 922 S-10 IBM-922 EE 372 Et_EE AIX Estonia

| 922 S-10 IBM-922 EE 372 - WIN Estonia

| 1122 S-10 IBM-1122 EE 372 - HOST Estonia

| 437 S-1 IBM-437 FI 358 - OS2 Finland

| 850 S-1 IBM-850 FI 358 - OS2 Finland

| 819 S-1 ISO8859-1 FI 358 fi_FI AIX Finland

| 850 S-1 IBM-850 FI 358 Fi_FI AIX Finland

| 819 S-1 iso88591 FI 358 fi_FI.iso88591 HP Finland

| 819 S-1 ISO8859-1 FI 358 fi SCO Finland

| 819 S-1 ISO8859-1 FI 358 fi_FI SCO Finland

| 819 S-1 ISO8859-1 FI 358 sv_FI SCO Finland

| 819 S-1 ISO8859-1 FI 358 - Sun Finland

| 1051 S-1 roman8 FI 358 - HP Finland

| 1252 S-1 1252 FI 358 - WIN Finland

| 1275 S-1 1275 FI 358 - Mac Finland

| 278 S-1 IBM-278 FI 358 - HOST Finland

| 1143 S-1 IBM-1143 FI 358 - HOST Finland

| 855 S-5 IBM-855 MK 389 - OS2 FYR Macedonia

| 915 S-5 ISO8859-5 MK 389 - OS2 FYR Macedonia

| 915 S-5 ISO8859-5 MK 389 mk_MK AIX FYR Macedonia

| 915 S-5 iso88595 MK 389 - HP FYR Macedonia

| 1251 S-5 1251 MK 389 - WIN FYR Macedonia

| 1283 S-5 1283 MK 389 - Mac FYR Macedonia

| 1025 S-5 IBM-1025 MK 389 - HOST FYR Macedonia

1130 Administration Guide

| Table 133 (Page 5 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 437 S-1 IBM-437 FR 33 - OS2 France

| 850 S-1 IBM-850 FR 33 - OS2 France

| 819 S-1 ISO8859-1 FR 33 fr_FR AIX France

| 850 S-1 IBM-850 FR 33 Fr_FR AIX France

| 819 S-1 iso88591 FR 33 fr_FR.iso88591 HP France

| 1051 S-1 roman8 FR 33 fr_FR.roman8 HP France

| 819 S-1 ISO8859-1 FR 33 fr Sun France

| 819 S-1 ISO8859-1 FR 33 fr SCO France

| 819 S-1 ISO8859-1 FR 33 fr_FR SCO France

| 1252 S-1 1252 FR 33 - WIN France

| 1275 S-1 1275 FR 33 - Mac France

| 297 S-1 IBM-297 FR 33 - HOST France

| 1147 S-1 IBM-1147 FR 33 - HOST France

| 437 S-1 IBM-437 DE 49 - OS2 Germany

| 850 S-1 IBM-850 DE 49 - OS2 Germany

| 819 S-1 ISO8859-1 DE 49 de_DE AIX Germany

| 850 S-1 IBM-850 DE 49 De_DE AIX Germany

| 819 S-1 iso88591 DE 49 de_DE.iso88591 HP Germany

| 1051 S-1 roman8 DE 49 de_DE.roman8 HP Germany

| 819 S-1 ISO8859-1 DE 49 de SCO Germany

| 819 S-1 ISO8859-1 DE 49 de_DE SCO Germany

| 819 S-1 ISO8859-1 DE 49 de Sun Germany

| 1252 S-1 1252 DE 49 - WIN Germany

| 1275 S-1 1275 DE 49 - Mac Germany

| 273 S-1 IBM-273 DE 49 - HOST Germany

| 1141 S-1 IBM-1141 DE 49 - HOST Germany

| 819 S-1 ISO8859-1 DE 49 De_DE.88591 SINIX Germany

| 819 S-1 ISO8859-1 DE 49 De_DE.6937 SINIX Germany

| NOTE: DB2 supports as ISO 8859-1; it should be ISO 6937

| 813 S-7 ISO8859-7 GR 30 - OS2 Greece

| 869 S-7 IBM-869 GR 30 - OS2 Greece

| 813 S-7 ISO8859-7 GR 30 el_GR AIX Greece

| 813 S-7 iso88597 GR 30 el_GR.iso88597 HP Greece

| 813 S-7 ISO8859-7 GR 30 el_GR.ISO8859-7 SCO Greece

| 737 S-7 737 GR 30 - WIN Greece

| 1253 S-7 1253 GR 30 - WIN Greece

| 1280 S-7 1280 GR 30 - Mac Greece

| 423 S-7 IBM-423 GR 30 - HOST Greece

| 875 S-7 IBM-875 GR 30 - HOST Greece

| 852 S-2 IBM-852 HU 36 - OS2 Hungary

| 912 S-2 ISO8859-2 HU 36 hu_HU AIX Hungary

| 912 S-2 iso88592 HU 36 hu_HU.iso88592 HP Hungary

| 912 S-2 ISO8859-2 HU 36 hu_HU.ISO8859-2 SCO Hungary

| 1250 S-2 1250 HU 36 - WIN Hungary

| 1282 S-2 1282 HU 36 - Mac Hungary

| 870 S-2 IBM-870 HU 36 - HOST Hungary

 Appendix O. National Language Support (NLS) 1131

| Table 133 (Page 6 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 850 S-1 IBM-850 IS 354 - OS2 Iceland

| 819 S-1 ISO8859-1 IS 354 is_IS AIX Iceland

| 850 S-1 IBM-850 IS 354 Is_IS AIX Iceland

| 819 S-1 iso88591 IS 354 is_IS.iso88591 HP Iceland

| 1051 S-1 roman8 IS 354 is_IS.roman8 HP Iceland

| 819 S-1 ISO8859-1 IS 354 is SCO Iceland

| 819 S-1 ISO8859-1 IS 354 is_IS SCO Iceland

| 819 S-1 ISO8859-1 IS 354 - Sun Iceland

| 1252 S-1 1252 IS 354 - WIN Iceland

| 1275 S-1 1275 IS 354 - Mac Iceland

| 871 S-1 IBM-871 IS 354 - HOST Iceland

| 1149 S-1 IBM-1149 IS 354 - HOST Iceland

| 437 S-1 IBM-437 IE 353 - OS2 Ireland

| 850 S-1 IBM-850 IE 353 - OS2 Ireland

| 819 S-1 ISO8859-1 IE 353 en_IE AIX Ireland

| 850 S-1 IBM-850 IE 353 En_IE AIX Ireland

| 819 S-1 iso88591 IE 353 - HP Ireland

| 1051 S-1 roman8 IE 353 - HP Ireland

| 819 S-1 ISO8859-1 IE 353 en_IE Sun Ireland

| 819 S-1 ISO8859-1 IE 353 en_IE.ISO8859-1 SCO Ireland

| 1252 S-1 1252 IE 353 - WIN Ireland

| 1275 S-1 1275 IE 353 - Mac Ireland

| 285 S-1 IBM-285 IE 353 - HOST Ireland

| 1146 S-1 IBM-1146 IE 353 - HOST Ireland

| 862 S-8 IBM-862 IL 972 - OS2 Israel

| 916 S-8 ISO8859-8 IL 972 iw_IL AIX Israel

| 1255 S-8 1255 IL 972 - WIN Israel

| 424 S-8 IBM-424 IL 972 - HOST Israel

| 437 S-1 IBM-437 IT 39 - OS2 Italy

| 850 S-1 IBM-850 IT 39 - OS2 Italy

| 819 S-1 ISO8859-1 IT 39 it_IT AIX Italy

| 850 S-1 IBM-850 IT 39 It_IT AIX Italy

| 819 S-1 iso88591 IT 39 it_IT.iso88591 HP Italy

| 1051 S-1 roman8 IT 39 it_IT.roman8 HP Italy

| 819 S-1 ISO8859-1 IT 39 it SCO Italy

| 819 S-1 ISO8859-1 IT 39 it_IT SCO Italy

| 819 S-1 ISO8859-1 IT 39 it Sun Italy

| 1252 S-1 1252 IT 39 - WIN Italy

| 1275 S-1 1275 IT 39 - Mac Italy

| 280 S-1 IBM-280 IT 39 - HOST Italy

| 1144 S-1 IBM-1144 IT 39 - HOST Italy

1132 Administration Guide

| Table 133 (Page 7 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 932 D-1 IBM-932 JP 81 - OS2 Japan

| 942 D-1 IBM-942 JP 81 - OS2 Japan

| 943 D-1 IBM-943 JP 81 - OS2 Japan

| 954 D-1 IBM-eucJP JP 81 ja_JP AIX Japan

| 932 D-1 IBM-932 JP 81 Ja_JP AIX Japan

| 954 D-1 eucJP JP 81 ja_JP.eucJP HP Japan

| 5039 D-1 SJIS JP 81 ja_JP.SJIS HP Japan

| 954 D-1 eucJP JP 81 ja SCO Japan

| 954 D-1 eucJP JP 81 ja_JP SCO Japan

| 954 D-1 eucJP JP 81 ja_JP.EUC SCO Japan

| 954 D-1 eucJP JP 81 ja_JP.eucJP SCO Japan

| 954 D-1 eucJP JP 81 ja Sun Japan

| japanese

| 943 D-1 IBM-943 JP 81 - WIN Japan

| 930 D-1 IBM-930 JP 81 - HOST Japan

| 939 D-1 IBM-939 JP 81 - HOST Japan

| 5026 D-1 IBM-5026 JP 81 - HOST Japan

| 5035 D-1 IBM-5035 JP 81 - HOST Japan

| 949 D-3 IBM-949 KR 82 - OS2 Korea, South

| 970 D-3 IBM-eucKR KR 82 ko_KR AIX Korea, South

| 970 D-3 eucKR KR 82 ko_KR.eucKR HP Korea, South

| 970 D-3 eucKR KR 82 ko_KR.eucKR SGI Korea, South

| 970 D-3 5601 KR 82 ko Sun Korea, South

| korean

| 1363 D-3 1363 KR 82 - WIN Korea, South

| 933 D-3 IBM-933 KR 82 - HOST Korea, South

| 1364 D-3 IBM-1364 KR 82 - HOST Korea, South

| 437 S-1 IBM-437 Lat 3 - OS2 Latin America

| 850 S-1 IBM-850 Lat 3 - OS2 Latin America

| 819 S-1 ISO8859-1 Lat 3 - AIX Latin America

| 850 S-1 IBM-850 Lat 3 - AIX Latin America

| 819 S-1 iso88591 Lat 3 - HP Latin America

| 819 S-1 ISO8859-1 Lat 3 - Sun Latin America

| 1051 S-1 roman8 Lat 3 - HP Latin America

| 1252 S-1 1252 Lat 3 - WIN Latin America

| 1275 S-1 1275 Lat 3 - Mac Latin America

| 284 S-1 IBM-284 Lat 3 - HOST Latin America

| 1145 S-1 IBM-1145 Lat 3 - HOST Latin America

| 921 S-10 IBM-921 LV 371 - OS2 Latvia

| 921 S-10 IBM-921 LV 371 Lv_LV AIX Latvia

| 921 S-10 IBM-921 LV 371 - WIN Latvia

| 1112 S-10 IBM-1112 LV 371 - HOST Latvia

| 921 S-10 IBM-921 LT 370 - OS2 Lithuania

| 921 S-10 IBM-921 LT 370 Lt_LT AIX Lithuania

| 921 S-10 IBM-921 LV 370 - WIN Lithuania

| 1112 S-10 IBM-1112 LV 370 - HOST Lithuania

 Appendix O. National Language Support (NLS) 1133

| Table 133 (Page 8 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 437 S-1 IBM-437 NL 31 - OS2 Netherlands

| 850 S-1 IBM-850 NL 31 - OS2 Netherlands

| 819 S-1 ISO8859-1 NL 31 nl_NL AIX Netherlands

| 850 S-1 IBM-850 NL 31 Nl_NL AIX Netherlands

| 819 S-1 iso88591 NL 31 nl_NL.iso88591 HP Netherlands

| 1051 S-1 roman8 NL 31 nl_NL.roman8 HP Netherlands

| 819 S-1 ISO8859-1 NL 31 nl SCO Netherlands

| 819 S-1 ISO8859-1 NL 31 nl_NL SCO Netherlands

| 819 S-1 ISO8859-1 NL 31 nl Sun Netherlands

| 1252 S-1 1252 NL 31 - WIN Netherlands

| 1275 S-1 1275 NL 31 - Mac Netherlands

| 37 S-1 IBM-037 NL 31 - HOST Netherlands

| 1140 S-1 IBM-1140 NL 31 - HOST Netherlands

| 850 S-1 IBM-850 NZ 64 - OS2 New Zealand

| 850 S-1 IBM-850 NZ 64 En_NZ AIX New Zealand

| 819 S-1 ISO8859-1 NZ 64 en_NZ AIX New Zealand

| 819 S-1 ISO8859-1 NZ 64 - HP New Zealand

| 819 S-1 ISO8859-1 NZ 64 en_NZ SCO New Zealand

| 819 S-1 ISO8859-1 NZ 64 en_NZ Sun New Zealand

| 1252 S-1 1252 NZ 64 - WIN New Zealand

| 37 S-1 IBM-037 NZ 64 - HOST New Zealand

| 1140 S-1 IBM-1140 NZ 64 - HOST New Zealand

| 850 S-1 IBM-850 NO 47 - OS2 Norway

| 819 S-1 ISO8859-1 NO 47 no_NO AIX Norway

| 850 S-1 IBM-850 NO 47 No_NO AIX Norway

| 819 S-1 iso88591 NO 47 no_NO.iso88591 HP Norway

| 1051 S-1 roman8 NO 47 no_NO.roman8 HP Norway

| 819 S-1 ISO8859-1 NO 47 no SCO Norway

| 819 S-1 ISO8859-1 NO 47 no_NO SCO Norway

| 819 S-1 ISO8859-1 NO 47 no Sun Norway

| 1252 S-1 1252 NO 47 - WIN Norway

| 1275 S-1 1275 NO 47 - Mac Norway

| 277 S-1 IBM-277 NO 47 - HOST Norway

| 1142 S-1 IBM-1142 NO 47 - HOST Norway

| 852 S-2 IBM-852 PL 48 - OS2 Poland

| 912 S-2 ISO8859-2 PL 48 pl_PL AIX Poland

| 912 S-2 iso88592 PL 48 pl_PL.iso88592 HP Poland

| 912 S-2 ISO8859-2 PL 48 pl_PL.ISO8859-2 SCO Poland

| 1250 S-2 1250 PL 48 - WIN Poland

| 1282 S-2 1282 PL 48 - Mac Poland

| 870 S-2 IBM-870 PL 48 - HOST Poland

1134 Administration Guide

| Table 133 (Page 9 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 860 S-1 IBM-860 PT 351 - OS2 Portugal

| 850 S-1 IBM-850 PT 351 - OS2 Portugal

| 819 S-1 ISO8859-1 PT 351 pt_PT AIX Portugal

| 850 S-1 IBM-850 PT 351 Pt_PT AIX Portugal

| 819 S-1 iso88591 PT 351 pt_PT.iso88591 HP Portugal

| 1051 S-1 roman8 PT 351 pt_PT.roman8 HP Portugal

| 819 S-1 ISO8859-1 PT 351 pt SCO Portugal

| 819 S-1 ISO8859-1 PT 351 pt_PT SCO Portugal

| 819 S-1 ISO8859-1 PT 351 pt Sun Portugal

| 1252 S-1 1252 PT 351 - WIN Portugal

| 1275 S-1 1275 PT 351 - Mac Portugal

| 37 S-1 IBM-037 PT 351 - HOST Portugal

| 1140 S-1 IBM-1140 PT 351 - HOST Portugal

| 852 S-2 IBM-852 RO 40 - OS2 Romania

| 912 S-2 ISO8859-2 RO 40 ro_RO AIX Romania

| 912 S-2 iso88592 RO 40 ro_RO.iso88592 HP Romania

| 912 S-2 ISO8859-2 RO 40 ro_RO.ISO8859-2 SCO Romania

| 1250 S-2 1250 RO 40 - WIN Romania

| 1282 S-2 1282 RO 40 - Mac Romania

| 870 S-2 IBM-870 RO 40 - HOST Romania

| 866 S-5 IBM-866 RU 7 - OS2 Russia

| 915 S-5 ISO8859-5 RU 7 - OS2 Russia

| 915 S-5 ISO8859-5 RU 7 ru_RU AIX Russia

| 915 S-5 iso88595 RU 7 ru_RU.iso88595 HP Russia

| 915 S-5 ISO8859-5 RU 7 ru_RU.ISO8859-5 SCO Russia

| 1251 S-5 1251 RU 7 - WIN Russia

| 1283 S-5 1283 RU 7 - Mac Russia

| 1025 S-5 IBM-1025 RU 7 - HOST Russia

| 855 S-5 IBM-855 SP 381 - OS2 Serbia/Montenegro

| 915 S-5 ISO8859-5 SP 381 - OS2 Serbia/Montenegro

| 915 S-5 ISO8859-5 SP 381 sr_SP AIX Serbia/Montenegro

| 915 S-5 iso88595 SP 381 - HP Serbia/Montenegro

| 1251 S-5 1251 SP 381 - WIN Serbia/Montenegro

| 1283 S-5 1283 SP 381 - Mac Serbia/Montenegro

| 1025 S-5 IBM-1025 SP 381 - HOST Serbia/Montenegro

| 852 S-2 IBM-852 SK 938 - OS2 Slovakia

| 912 S-2 ISO8859-2 SK 938 sk_SK AIX Slovakia

| 912 S-2 iso88592 SK 938 sk_SK.iso88592 HP Slovakia

| 912 S-2 ISO8859-2 SK 938 sk_SK.ISO8859-2 SCO Slovakia

| 1250 S-2 1250 SK 938 - WIN Slovakia

| 1282 S-2 1282 SK 938 - Mac Slovakia

| 870 S-2 IBM-870 SK 938 - HOST Slovakia

| 852 S-2 IBM-852 SI 386 - OS2 Slovenia

| 912 S-2 ISO8859-2 SI 386 sl_SI AIX Slovenia

| 912 S-2 iso88592 SI 386 sl_SI.iso88592 HP Slovenia

| 912 S-2 ISO8859-2 SI 386 sl_SI.ISO8859-2 SCO Slovenia

| 1250 S-2 1250 SI 386 - WIN Slovenia

| 1282 S-2 1282 SI 386 - Mac Slovenia

| 870 S-2 IBM-870 SI 386 - HOST Slovenia

 Appendix O. National Language Support (NLS) 1135

| Table 133 (Page 10 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 437 S-1 IBM-437 ZA 27 - OS2 South Africa

| 850 S-1 IBM-850 ZA 27 - OS2 South Africa

| 819 S-1 ISO8859-1 ZA 27 en_ZA AIX South Africa

| 850 S-1 IBM-850 ZA 27 En_ZA AIX South Africa

| 819 S-1 iso88591 ZA 27 - HP South Africa

| 1051 S-1 roman8 ZA 27 - HP South Africa

| 819 S-1 ISO8859-1 ZA 27 - Sun South Africa

| 819 S-1 ISO8859-1 ZA 27 en_ZA.ISO8859-1 SCO South Africa

| 1252 S-1 1252 ZA 27 - WIN South Africa

| 1275 S-1 1275 ZA 27 - Mac South Africa

| 285 S-1 IBM-285 ZA 27 - HOST South Africa

| 1146 S-1 IBM-1146 ZA 27 - HOST South Africa

| 437 S-1 IBM-437 ES 34 - OS2 Spain

| 850 S-1 IBM-850 ES 34 - OS2 Spain

| 819 S-1 ISO8859-1 ES 34 es_ES AIX Spain

| ca_ES Spain (Catalan)

| 850 S-1 IBM-850 ES 34 Es_ES AIX Spain

| Ca_ES Spain (Calalan)

| 819 S-1 iso88591 ES 34 es_ES.iso88591 HP Spain

| 1051 S-1 roman8 ES 34 es_ES.roman8 HP Spain

| 819 S-1 ISO8859-1 ES 34 es Sun Spain

| 819 S-1 ISO8859-1 ES 34 es SCO Spain

| 819 S-1 ISO8859-1 ES 34 es_ES SCO Spain

| 1252 S-1 1252 ES 34 - WIN Spain

| 1275 S-1 1275 ES 34 - Mac Spain

| 284 S-1 IBM-284 ES 34 - HOST Spain

| 1145 S-1 IBM-1145 ES 34 - HOST Spain

| 437 S-1 IBM-437 SE 46 - OS2 Sweden

| 850 S-1 IBM-850 SE 46 - OS2 Sweden

| 819 S-1 ISO8859-1 SE 46 sv_SE AIX Sweden

| 850 S-1 IBM-850 SE 46 Sv_SE AIX Sweden

| 819 S-1 iso88591 SE 46 sv_SE.iso88591 HP Sweden

| 1051 S-1 roman8 SE 46 sv_SE.roman8 HP Sweden

| 819 S-1 ISO8859-1 SE 46 sv SCO Sweden

| 819 S-1 ISO8859-1 SE 46 sv_SE SCO Sweden

| 819 S-1 ISO8859-1 SE 46 sv Sun Sweden

| 1252 S-1 1252 SE 46 - WIN Sweden

| 1275 S-1 1275 SE 46 - Mac Sweden

| 278 S-1 IBM-278 SE 46 - HOST Sweden

| 1143 S-1 IBM-1143 SE 46 - HOST Sweden

1136 Administration Guide

| Table 133 (Page 11 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 437 S-1 IBM-437 CH 41 - OS2 Switzerland

| 850 S-1 IBM-850 CH 41 - OS2 Switzerland

| 819 S-1 ISO8859-1 CH 41 de_CH AIX Switzerland

| 850 S-1 IBM-850 CH 41 De_CH AIX Switzerland

| 819 S-1 iso88591 CH 41 - HP Switzerland

| 1051 S-1 roman8 CH 41 - HP Switzerland

| 819 S-1 ISO8859-1 CH 41 de_CH SCO Switzerland

| 819 S-1 ISO8859-1 CH 41 fr_CH SCO Switzerland

| 819 S-1 ISO8859-1 CH 41 it_CH SCO Switzerland

| 819 S-1 ISO8859-1 CH 41 de_CH Sun Switzerland

| 1252 S-1 1252 CH 41 - WIN Switzerland

| 1275 S-1 1275 CH 41 - Mac Switzerland

| 500 S-1 IBM-500 CH 41 - HOST Switzerland

| 1148 S-1 IBM-1148 CH 41 - HOST Switzerland

| 938 D-2 IBM-938 TW 88 - OS2 Taiwan

| 948 D-2 IBM-948 TW 88 - OS2 Taiwan

| 950 D-2 big5 TW 88 - OS2 Taiwan

| 950 D-2 big5 TW 88 Zh_TW AIX Taiwan

| 964 D-2 IBM-eucTW TW 88 zh_TW AIX Taiwan

| 950 D-2 big5 TW 88 zh_TW.big5 HP Taiwan

| 964 D-2 eucTW TW 88 zh_TW.eucTW HP Taiwan

| 950 D-2 big5 TW 88 big5 Sun Taiwan

| zh_TW.big5

| 964 D-2 cns11643 TW 88 zh_TW Sun Taiwan

| tchinese

| 950 D-2 big5 TW 88 - WIN Taiwan

| 937 D-2 IBM-937 TW 88 - HOST Taiwan

| 874 S-20 TIS620-1 TH 66 - OS2 Thailand

| 874 S-20 TIS620-1 TH 66 Th_TH AIX Thailand

| 874 S-20 tis620 TH 66 th_TH.tis620 HP Thailand

| 874 S-20 TIS620-1 TH 66 - WIN Thailand

| 838 S-20 IBM-838 TH 66 - HOST Thailand

| 857 S-9 IBM-857 TR 90 - OS2 Turkey

| 920 S-9 ISO8859-9 TR 90 tr_TR AIX Turkey

| 920 S-9 iso88599 TR 90 tr_TR.iso88599 HP Turkey

| 920 S-9 ISO8859-9 TR 90 tr_TR.ISO8859-9 SCO Turkey

| 1254 S-9 1254 TR 90 - WIN Turkey

| 1281 S-9 1281 TR 90 - Mac Turkey

| 1026 S-9 IBM-1026 TR 90 - HOST Turkey

 Appendix O. National Language Support (NLS) 1137

| Table 133 (Page 12 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| 437 S-1 IBM-437 GB 44 - OS2 U.K.

| 850 S-1 IBM-850 GB 44 - OS2 U.K.

| 819 S-1 ISO8859-1 GB 44 en_GB AIX U.K.

| 850 S-1 IBM-850 GB 44 En_GB AIX U.K.

| 819 S-1 iso88591 GB 44 en_GB.iso88591 HP U.K.

| 1051 S-1 roman8 GB 44 en_GB.roman8 HP U.K.

| 819 S-1 ISO8859-1 GB 44 en_UK Sun U.K.

| 819 S-1 ISO8859-1 GB 44 en_GB SCO U.K.

| 819 S-1 ISO8859-1 GB 44 en SCO U.K.

| 1252 S-1 1252 GB 44 - WIN U.K.

| 1275 S-1 1275 GB 44 - Mac U.K.

| 285 S-1 IBM-285 GB 44 - HOST U.K.

| 1146 S-1 IBM-1146 GB 44 - HOST U.K.

| 819 S-1 88591 GB 44 En_GB.88591 SINIX U.K.

| 819 S-1 ISO8859-1 GB 44 En_GB.6937 SINIX U.K.

| NOTE: DB2 supports as ISO 8859-1; it should be ISO 6937

| 1125 S-12 IBM-1125 UA 380 - OS2 Ukraine

| 1124 S-12 IBM-1124 UA 380 uk_UA AIX Ukraine

| 1251 S-12 1251 UA 380 - WIN Ukraine

| 1123 S-12 IBM-1123 UA 380 - HOST Ukraine

| 437 S-1 IBM-437 US 1 - OS2 USA

| 850 S-1 IBM-850 US 1 - OS2 USA

| 819 S-1 ISO8859-1 US 1 en_US AIX USA

| 850 S-1 IBM-850 US 1 En_US AIX USA

| 819 S-1 iso88591 US 1 en_US.iso88591 HP USA

| 1051 S-1 roman8 US 1 en_US.roman8 HP USA

| 819 S-1 ISO8859-1 US 1 en_US Sun USA

| 819 S-1 ISO8859-1 US 1 en_US SGI USA

| 819 S-1 ISO8859-1 US 1 en_US SCO USA

| 1252 S-1 1252 US 1 - WIN USA

| 1275 S-1 1275 US 1 - Mac USA

| 37 S-1 IBM-037 US 1 - HOST USA

| 1140 S-1 IBM-1140 US 1 - HOST USA

1138 Administration Guide

| Note: The Solaris code page 950 does not support the following characters in IBM
| 950:

| Table 133 (Page 13 of 13). Supported Languages and Code Sets

| Code Country

| Page Group Code-Set Tr. Code Locale OS Country Name

| ---- ----- -------- -- --- ----- ---- --------------

| Note:

| The following map to Arabic Countries (AA):

| --

| /* Arabic (Saudi Arabia) */

| /* Arabic (Iraq) */

| /* Arabic (Egypt) */

| /* Arabic (Libya) */

| /* Arabic (Algeria) */

| /* Arabic (Morocco) */

| /* Arabic (Tunisia) */

| /* Arabic (Oman) */

| /* Arabic (Yemen) */

| /* Arabic (Syria) */

| /* Arabic (Jordan) */

| /* Arabic (Lebanon) */

| /* Arabic (Kuwait) */

| /* Arabic (United Arab Emirates) */

| /* Arabic (Bahrain) */

| /* Arabic (Qatar) */

| The following map to English (US):

| ---

| /* English (Jamaica) */

| /* English (Carribean) */

| The following map to Latin America (Lat):

| --

| /* Spanish (Mexican) */

| /* Spanish (Guatemala) */

| /* Spanish (Costa Rica) */

| /* Spanish (Panama) */

| /* Spanish (Dominican Republic) */

| /* Spanish (Venezuela) */

| /* Spanish (Colombia) */

| /* Spanish (Peru) */

| /* Spanish (Argentina) */

| /* Spanish (Ecuador) */

| /* Spanish (Chile) */

| /* Spanish (Uruguay) */

| /* Spanish (Paraguay) */

| /* Spanish (Bolivia) */

| Code Range| Description| Sun Big-5| IBM Big-5

| C6A1-C8FE| Symbols| Reserved area| Symbols

| F9D6-F9FE| ETen extension| Reserved area| ETen extension

| F286-F9A0| IBM selected chars| Reserved area| IBM selected

 Appendix O. National Language Support (NLS) 1139

| Note: Euro-symbol support is provided with this version of DB2 UDB. Microsoft
| Windows ANSI code pages are modified according to the latest definition from
| Microsoft to include the Euro-symbol in position 0x80. This position was
| previously undefined. In addition, the definition of code page 850 has changed
| to replace the character Dotless i (found at position 0xD5) with the Euro-symbol.
| DB2 UDB uses the new definitions of these code pages as the default to
| provide Euro-symbol support. This implementation is the appropriate default for
| current DB2 UDB customers who require Euro-symbol support, and should not
| impact other customers. However, if you would like to continue to use the
| previous definition of these code pages, you may copy the following files:

| ¹ 12520850.cnv

| ¹ 08501252.cnv

| ¹ IBM00850.ucs

| ¹ IBM01252.ucs

| from this directory

| sqllib/conv/alt/

| to this directory

| sqllib/conv/

| after installation is complete. You may want to backup the existing
| IBM01252.usc and IBM00850.ucs before copying the non-euro versions over
| them. After copying the files you will not have the euro currency symbol support
| from DB2 UDB.

 Character Sets
The database manager does not, in general, restrict the character set available to an
application except as noted below.

DBCS Character Sets
| Each combined Single-Byte Character Set (SBCS) or Double-Byte Character Set
| (DBCS) code page allows for both single- and double-byte character code points. This
| is usually accomplished by reserving a subset of the 256 available code points of a
| mixed code table for single-byte characters, with the remainder of the code points either
| undefined or allocated to the first byte of double-byte code points. These code points
| are shown in the following table.

1140 Administration Guide

| Table 134. Mixed Character Set Code Points

| Country| Supported Mixed
| Code Page
| Code Points for
| Single-byte
| Characters

| Code Points for
| First Byte of
| Double-Byte
| Characters

| Japan| 932, 943| x00-7F, xA1-DF| x81-9F, xE0-FC

| Japan| 942| x00-80, xA0-DF,
| xFD-FF
| x81-9F, xE0-FC

| Taiwan| 938 (*)| x00-7E| x81-FC

| Taiwan| 948 (*)| x00-80, FD, FE| x81-FC

| Korea| 949| x00-7F| x8F-FE

| Taiwan| 950| x00-7E| x81-FE

| China| 1381| x00-7F| x8C-FE

| Korea| 1363| x00-7F| x81-FE

| China| 1386| x00| x81-FE

| Notes:

| 1. (*) means that this is an old code page and is not recommended anymore.

Code points not assigned to either category above are not defined, and are processed
as single-byte undefined code points.

| Within each implied DBCS code table, there are 256 code points available as the
| second byte for each valid first byte. Second byte values can have any value from 0x40
| to 0x7E and from 0x80 to 0xFE. Note that in DBCS environments, DB2 does not
| perform validity checking on individual double-byte characters.

| Extended UNIX Code (EUC) Character Sets
| Each EUC code page allows for both single-byte character code points, and up to three
| different sets of multi-byte character code points. This is accomplished by reserving a
| subset of the 256 available code points of each implied SBCS code page identifier for
| single-byte characters. The remainder of the code points is undefined, allocated as an
| element of a multi-byte character, or allocated as a single-shift introducer of a multi-byte
| character. These code points are shown in the following tables.

| Table 135. Japanese EUC Code Points

| Group| 1st Byte| 2nd Byte| 3rd Byte| 4th Byte

| G0| x20-7E| n/a| n/a| n/a

| G1| xA1-FE| xA1-FE| n/a| n/a

| G2| x8E| xA1-FE| n/a| n/a

| G3| x8E| xA1-FE| xA1-FE| n/a

 Appendix O. National Language Support (NLS) 1141

| Table 136. Traditional Chinese EUC Code Points

| Group| 1st Byte| 2nd Byte| 3rd Byte| 4th Byte

| G0| x20-7E| n/a| n/a| n/a

| G1| xA1-FE| xA1-FE| n/a| n/a

| G2| x8E| xA1-FE| xA1-FE| xA1-FE

| G3| n/a| n/a| n/a| n/a

| Table 137. Korean EUC Code Points

| Group| 1st Byte| 2nd Byte| 3rd Byte| 4th Byte

| G0| x20-7E| n/a| n/a| n/a

| G1| xA1-FE| xA1-FE| n/a| n/a

| G2| n/a| n/a| n/a| n/a

| G3| n/a| n/a| n/a| n/a

| Table 138. Simplified Chinese EUC Code Points

| Group| 1st Byte| 2nd Byte| 3rd Byte| 4th Byte

| G0| x20-7E| n/a| n/a| n/a

| G1| xA1-FE| xA1-FE| n/a| n/a

| G2| n/a| n/a| n/a| n/a

| G3| n/a| n/a| n/a| n/a

| Code points not assigned to the categories shown above are not defined, and are
| treated as single-byte undefined code points.

Character Set for Identifiers
The basic character set that may be used in database names consists of the
single-byte uppercase and lowercase Latin letters (A...Z, a...z), the Arabic numerals
(0...9) and the underscore character (_). This list of letters is augmented with the three
special characters #, @ and $ to provide compatibility with host database products.
However, these special characters should be used with care in an NLS environment
because they are not included in the NLS host (EBCDIC) invariant character set.

When naming database objects (such as tables and views), program labels, host
variables, cursors and statements alphabetics from the extended character set may
also be used. For example, those letters with diacritical marks. The available characters
depend on the code page in use and if you are using the database in a multiple code
page environment, you must ensure that all code pages support any alphabetics you
plan on using from the extended character set. See the SQL Reference for a discussion
of delimited identifiers which can be used i n SQL statements and can also contain
characters outside the extended character set.

1142 Administration Guide

Extended Character Set Definition for DBCS Identifiers
In DBCS environments, the extended character set consists of all the characters in the
basic character set, plus those identified as a letter or digit as follows:

¹ All double-byte characters in each DBCS code page, except the double-byte
space, are valid letters.

¹ The double-byte space is a special character.

¹ The single-byte characters available in each mixed code page are assigned to
various categories as follows:

Category Valid Code Points within each Mixed Code Page

Digits x30-39

Letters x23-24, x40-5A, x61-7A, xA6-DF (A6-DF for code pages 932 and 942
only)

Special Characters All other valid single-byte character code points

Coding of SQL Statements
The coding of SQL statements is not language dependent. SQL is a programming
language and, like other programming languages such as C, it is language invariant.
The SQL keywords must be typed as shown, although they may be typed in uppercase,
lowercase, or mixed case. The names of database objects, host variables and program
labels that occur in an SQL statement cannot contain characters outside the database
manager extended character set as described above.

| Bidirectional CCSID Support
| The following BiDi attributes are required for correct handling of Bidirectional data on
| different platforms:

| - Text type (LOGICAL vs VISUAL)

| - Shaping (SHAPED vs UNSHAPED)

| - Orientation (RIGHT-TO-LEFT vs LEFT-TO-RIGHT)

| - Numeral shape (ARABIC vs HINDI)

| - Symmetric swapping (YES or NO)

| Defaults on different platforms are not the same, problems appear when DB2 data is
| sent from one platform to another. For example, Windows platforms use LOGICAL
| UNSHAPED data, while data on OS/390 is usually in SHAPED VISUAL format.
| Therefore, without any support for bidirectional attributes, data sent from DB2 for
| OS/390 to DB2 UDB on a Windows 32-bit operating systems may display incorrectly.

| Bidirectional-specific CCSIDs
| DB2 supports bidirectional data attributes through special bidirectional Coded Character
| Set Identifiers (CCSIDs). The following bidirectional CCSIDs have been defined and are
| implemented with DB2 UDB:

 Appendix O. National Language Support (NLS) 1143

| CCSID ‘ Code ‘ String

| ‘ Page ‘ Type

| -------+--------+----------

| 00420 420 4

| 00424 424 4

| 08612 420 5

| 08616 424 6

| 62208 856 4

| 62209 862 4

| 62210 916 4

| 62211 424 5

| 00856 856 5

| 62213 862 5

| 00916 916 5

| 01255 1255 5

| 01046 1046 5

| 00864 864 5

| 01089 1089 5

| 01256 1256 5

| 62220 856 6

| 62221 862 6

| 62222 916 6

| 62223 1255 6

| 62224 420 6

| 62225 864 6

| 62226 1046 6

| 62227 1089 6

| 62228 1256 6

| 62235 424 10

| 62236 856 10

| 00862 862 10

| 62238 916 10

| 62239 1255 10

| 62240 424 11

| 62241 856 11

| 62242 862 11

| 62243 916 11

| 62244 1255 11

| Where CDRA String Types are defined:

| String ‘ Text ‘ Numerical ‘ Orientation ‘ Shaping ‘ Symmetrical

| Type ‘ Type ‘ Shape ‘ ‘ ‘ Swapping

| ---------+-------+------------+-------------+-----------+-------------

| 4 Visual Arabic LTR Shaped OFF

| 5 Implicit Arabic LTR Unshaped ON

| 6 Implicit Arabic RTL Unshaped ON

| 7(*) Visual Arabic Contextual(*) Unshaped-Lig OFF

| 8 Visual Arabic RTL Shaped OFF

| 9 Visual Passthru RTL Shaped ON

| 10 Implicit Contextual-L ON

| 11 Implicit Contextual-R ON

1144 Administration Guide

| Note: (*) Field orientation is left-to-right (LTR) when the first alphabetic character is a
| Latin one, and right-to-left (RTL) when it is a bidirectional (RTL) character.
| Characters are unshaped, but LamAlef ligatures are kept, and not broken into
| constituents.

| DB2 Universal Database Implementation of Bidirectional Support
| Bidirectional layout transformations are implemented in DB2 Universal Database
| Version 5.2 using the new CCSID definitions. For the new BiDi-specific CCSIDs, layout
| transformations are performed instead of or in addition to code page conversions. To
| use this support, the DB2BIDI registry variable must be set to YES. By default, this
| variable is not set. This variable is used by the server for all conversions, and can only
| be set when the server is started. Setting DB2BIDI to YES may have some
| performance impact because of additional checking and layout transformations.

| To specify a specific bidirectional CCSID in non-DRDA environment, select the
| appropriate CCSID from the above table that matches the characteristics of your client,
| and set DB2CODEPAGE to that value. If you already have a connection to the
| database, you must issue a TERMINATE command and connect again to make the
| new setting of DB2CODEPAGE take effect. If you select a CCSID which is not correct
| for code page or string type of your client platform, results would be unexpected. If you
| select an incompatible CCSID (ie, Hebrew CCSID for connection to an Arabic database
| or vice-versa), or if DB2BIDI has not been set for the server, you will receive an error
| message when you try to connect.

| For DRDA environments, if the HOST EBCDIC platform also supports these
| bidirectional CCSIDs, you need to only set DB2CODEPAGE as mentioned above.
| However, if HOST platform does not support these CCSIDs, you must specify a CCSID
| override for the HOST database server that you are connecting to. This is necessary
| because, in DRDA environment, code page conversions and layout transformations are
| performed by the receiver of data. However, if HOST server does not support these
| bidirectional CCSIDs, it does not perform layout transformation on the data that it
| receives from DB2 UDB. If you use a CCSID override, the DB2 UDB client performs
| layout transformation on the outbound data as well. For details of how to set a CCSID
| override, please refer to DB2 Connect Release Notes.

| CCSID override is not supported for cases where the HOST EBCDIC platform is the
| client and DB2 UDB is the server.

 Collating Sequences
The database manager compares character data using a collating sequence. This is an
ordering for a set of characters that determines whether a particular character sorts
higher, lower, or the same as another.

Note: Character string data defined with the FOR BIT DATA attribute, or BLOB data,
is sorted using the binary sort sequence.

For example, a collating sequence can be used to indicate that lowercase and
uppercase versions of a particular character are to be sorted equally.

 Appendix O. National Language Support (NLS) 1145

The database manager allows databases to be created with custom collating
sequences. The following sections help you determine and implement a particular
collating sequence for a database.

 Overview
In a database, each single-byte character is represented internally as a unique number
between 0 and 255, (in hexadecimal notation, between X'00' and X'FF'). This number
is referred to as the code point of the character. A collating sequence is a mapping
between the code point and the desired position of each character in a sorted
sequence. The numeric value of the position is called the weight of the character in the
collating sequence. The simplest collating sequence is one where the weights are
identical to the code points. This is called the identity sequence.

For example, consider the characters B (X'42'), and b (X'62'). If, according to the
collating sequence table, they both have a sort weight of X'42' (B), then they collate
the same. If the sort weight for B is X'9E' and the sort weight for b is X'9D', then b
will be sorted before B. Actual weights depend on the collating sequence table used
which depends on the code set and locale. Note that a collating sequence table is not
the same as a code page table which defines code points.

Consider the following example. In ASCII, the characters A through Z are represented
by X'41' through X'5A'. To describe a collating sequence where these are sorted in
order, and consecutively (no intervening characters), you can write X'41', X'42',
...X'59', X'5A'.

For multi-byte characters, the hexadecimal value of the multi-byte character is also
used as the weight. For example, X'8260', X'8261' are the code points for double
byte character A and B. In this case, you can write X'8260', X'8261' as the collating
sequence for double byte characters A and B. These are also the code points for A and
B.

The values of the weights in a collating sequence need not be unique. For example,
you could give uppercase letters and their lowercase equivalents the same weight.

Specifying the collating sequence can be simplified if a collating sequence provides
weights for all 256 code points. The weight of each character can be determined using
the code point of the character. This is the method used to specify a collating sequence
for the database manager: a string of 256 bytes, where the nth byte (starting with 0)
contains the weight of code point n.

| In the case of multi-byte character sets, DB2 uses the collation table which was
| specified at database creation time. If you require the multi-byte characters to sort the
| way they appear in their code point table, you must specify IDENTITY as your collation
| sequence when you create the database.

| Note: For DBCS characters in GRAPHIC fields, the sort sequence is always
| IDENTITY without regard to the collation sequence specified at database
| creation time.

1146 Administration Guide

 Character Comparisons
Once a collating sequence is established, character comparison is performed by
comparing the weights of two characters, instead of directly comparing their code point
values.

If weights that are not unique are used, characters that are not identical may compare
equally. Because of this, string comparison must be a two-phase process:

1. Compare the characters of each string based on their weights.

2. If step 1 yielded equality, compare the characters of each string based on their
code point values.

If the collating sequence contains 256 unique weights, only the first step is performed. If
the collating sequence is the identity sequence only the second step is performed. In
either case, there is a performance benefit.

For more information on character comparisons, see the SQL Reference.

Case Independent Comparisons
To perform character comparisons that are independent of whether they are upper or
lower case, you can use the TRANSLATE function to select and compare mixed case
column data by translating it to upper case, but only for the purposes of comparison.
Consider the following data:

 Abel

 abels

 ABEL

 abel

 ab

 Ab

For the following select statement:

SELECT c1 FROM T1 WHERE TRANSLATE(c1) LIKE 'AB%'

you would receive the following results:

 ab

 Ab

 abel

 Abel

 ABEL

 abels

Note: You could also set the select as in the following view v1, and then make all your
comparisons against the view (in upper case) and your inserts into the table in
mixed case:

CREATE VIEW v1 AS SELECT TRANSLATE(c1) FROM t1

At the database level, you can set the collating sequence as part of the CREATE
DATABASE API. This allows you to decide if 'a' is processed before 'A', or if 'A' is
processed after 'a', or if they are processed with equal weighting. This will make them
equal when collating or sorting using the ORDER BY clause. If you have two values of

 Appendix O. National Language Support (NLS) 1147

'a' and 'A', 'A' will always come before 'a', because in all senses they are equal, so the
only difference upon which to sort is the hexadecimal value.

Thus if you issue SELECT c1 FROM t1 WHERE c1 LIKE 'ab%', you receive the
following output:

 ab

 abel

 abels

If you issue SELECT c1 FROM t1 WHERE c1 LIKE 'A%', you receive the following
output:

 Abel

 Ab

 ABEL

If you issue SELECT c1 FROM t1 ORDER BY c1, you receive the following:

 ab

 Ab

 abel

 Abel

 ABEL

 abels

Thus, you may want to consider using the scalar function TRANSLATE(), as well as the
CREATE DATABASE API. Note that you can only specify a collating sequence using
the CREATE DATABASE API. You cannot specify a collating sequence from the
Command Line Processor. For information on the TRANSLATE() function, see the SQL
Reference. For information on the CREATE DATABASE API see the API Reference.

You can also use the UCASE function as follows, but note that DB2 performs a table
scan instead of using an index for the select:

SELECT * FROM EMP WHERE UCASE(JOB) = 'NURSE'

Specifying a Collating Sequence
The collating sequence for a database is specified at database creation time. Once the
database has been created, the collating sequence cannot be changed.

The CREATE DATABASE API accepts a data structure called the Database Descriptor
Block (SQLEDBDESC). You can define your own collating sequence within this
structure.

To specify a collating sequence for a database:

¹ Pass the desired SQLEDBDESC structure, or
¹ Pass a NULL pointer. The collating sequence of the operating system (based on

current country code and code page) is used. This is the same as specifying
SQLDBCSS equal to SQL_CS_SYSTEM (0).

The SQLEDBDESC structure contains:

1148 Administration Guide

SQLDBCSS A 4-byte integer indicating the source of the database collating sequence.
Valid values are:

SQL_CS_SYSTEM The collating sequence of the operating system (based
on current country code and code page) is used.

SQL_CS_USER The collating sequence is specified by the value in the
SQLDBUDC field.

SQL_CS_NONE The collating sequence is the identity sequence. Strings
are compared byte for byte, starting with the first byte, using a
simple binary comparison.

Note: These constants are defined in the SQLENV include file.

SQLDBUDC A 256-byte field. The nth byte contains the sort weight of the nth character
in the code page of the database. If SQLDBCSS is not equal to
SQL_CS_USER, this field is ignored.

Sample Collating Sequences
Several sample collating sequences are provided (as include files) to facilitate database
creation using the EBCDIC collating sequences instead of the default workstation
collating sequence.

The collating sequences in these include files can be specified in the SQLDBUDC field
of the SQLEDBDESC structure. They can also be used as models for the construction
of other collating sequences.

 Other Concerns
Once a collating sequence is defined, all future character comparisons for that
database will be performed with that collating sequence. Except for character data
defined as FOR BIT DATA or BLOB data, the collating sequence will be used for all
SQL comparisons and ORDER BY clauses, and also in setting up indexes and
statistics. For more information on how the database collating sequence is used, see
the section on String Comparisons in the SQL Reference, S10J-8165-01.

Potential problems may occur in the following cases:

¹ An application merges sorted data from a database with application data that was
sorted using a different collating sequence.

¹ An application merges sorted data from one database with sorted data from
another, but the databases have different collating sequences.

¹ An application makes assumptions about sorted data that are not true for the
relevant collating sequence. For example, numbers collating lower than alphabetics
might or might not be true for a particular collating sequence.

A final point to remember is that the results of any sort based on a direct comparison of
characters will only match the results of a query ordered using an identity collating
sequence.

 Appendix O. National Language Support (NLS) 1149

 Datetime Values
The datetime data types are described below. Although datetime values can be used in
certain arithmetic and string operations and are compatible with certain strings, they are
neither strings nor numbers.

 Date
A date is a three-part value (year, month, and day). The range of the year part is 0001
to 9999. The range of the month part is 1 to 12. The range of the day part is 1 to x,
where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists of 2
packed decimal digits. The first 2 bytes represent the year, the third byte the month,
and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which is the
appropriate length for a character string representation of the value.

 Time
A time is a three-part value (hour, minute, and second) designating a time of day under
a 24-hour clock. The range of the hour part is 0 to 24; while the range of the other
parts is 0 to 59. If the hour is 24, the minute and second specifications will be zero.

The internal representation of a time is a string of 3 bytes. Each byte is 2 packed
decimal digits. The first byte represents the hour, the second byte the minute, and the
last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is the
appropriate length for a character string representation of the value.

 Timestamp
A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) that designates a datetime as defined above, except that the time
includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes, each of which
consists of 2 packed decimal digits. The first 4 bytes represent the date, the next 3
bytes the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column, as described in the SQLDA, is 26 bytes, which is
the appropriate length for the character string representation of the value.

String Representations of Datetime Values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in an
internal form that is transparent to the SQL user. Dates, times, and timestamps can,
however, also be represented by character strings, and these representations directly
concern the SQL user since there are no constants or variables whose data types are
DATE, TIME, or TIMESTAMP. Thus, to be retrieved, a datetime value must be

1150 Administration Guide

assigned to a character string variable. The character string representation is normally
the default format of datetime values associated with the country code of the database,
unless overridden by specification of the F format option when the program is
precompiled or bound to the database. See Table 141 on page 1153 for a listing of the
string formats for the various country codes.

When a valid string representation of a datetime value is used in an operation with an
internal datetime value, the string representation is converted to the internal form of the
date, time, or timestamp before the operation is performed. The following sections
define the valid string representations of datetime values.

 Date Strings
A string representation of a date is a character string that starts with a digit and has a
length of at least 8 characters. Trailing blanks may be included; leading zeros may be
omitted from the month and day portions.

Valid string formats for dates are listed in Table 1. Each format is identified by name
and includes an associated abbreviation and an example of its use.

Table 139. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards
Organization

ISO yyyy-mm-dd 1991-10-27

IBM USA standard USA mm/dd/yyyy 10/27/1991

IBM European standard EUR dd.mm.yyyy 27.10.1991

Japanese Industrial
Standard Christian era

JIS yyyy-mm-dd 1991-10-27

Site-defined (Local) LOC Depends on
database country
code

—

 Time Strings
A string representation of a time is a character string that starts with a digit and has a
length of at least 4 characters. Trailing blanks may be included; a leading zero may be
omitted from the hour part of the time and seconds may be omitted entirely. If you
choose to omit seconds, an implicit specification of 0 seconds is assumed. Thus, 13.30
is equivalent to 13.30.00.

Valid string formats for times are listed in Table 140. Each format is identified by name
and includes an associated abbreviation and an example of its use.

Table 140 (Page 1 of 2). Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards
Organization

ISO hh.mm.ss 13.30.05

 Appendix O. National Language Support (NLS) 1151

Notes:

1. In ISO, EUR and JIS format, .ss (or :ss) is optional.

2. In the case of the USA time string format, the minutes specification may be
omitted, indicating an implicit specification of 00 minutes. Thus 1 PM is equivalent
to 1:00 PM.

3. In the USA time format, the hour must not be greater than 12 and cannot be 0
except for the special case of 00:00 AM. Using the ISO format of the 24-hour
clock, the correspondence between the USA format and the 24-hour clock is as
follows:

12:01 AM through 12:59 AM corresponds to 00.01.00 through 00.59.00.

01:00 AM through 11:59 AM corresponds to 01.00.00 through 11.59.00.

12:00 PM (noon) through 11:59 PM corresponds to 12.00.00 through 23.59.00.

12:00 AM (midnight) corresponds to 24.00.00 and 00:00 AM (midnight)
corresponds to 00.00.00.

Table 140 (Page 2 of 2). Formats for String Representations of Times

Format Name Abbreviation Time Format Example

IBM USA standard USA hh:mm AM or PM 1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese Industrial
Standard Christian Era

JIS hh:mm:ss 13:30:05

Site-defined (Local) LOC Depends on
application country
code

—

 Timestamp Strings
A string representation of a timestamp is a character string that starts with a digit and
has a length of at least 16 characters. The complete string representation of a
timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn. Trailing blanks may be
included. Leading zeros may be omitted from the month, day, and hour part of the
timestamp, and microseconds may be truncated or entirely omitted. If you choose to
omit any digit of the microseconds portion, an implicit specification of 0 is assumed.
Thus, 1991-3-2-8.30.00 is equivalent to 1991-03-02-08.30.00.000000.

 MBCS Considerations
Date and timestamp strings must contain only single-byte characters and digits.

Date and Time Formats
The character string representation of date and time formats is the default format of
datetime values associated with the country code of the application. This default format
may be overridden by specification of the F format option when the program is
precompiled or bound to the database.

1152 Administration Guide

The following is a description of the input and output formats for date and time:

¹ Input Time Format

– There is no default input time format

– All time formats are allowed as input for all country codes.

¹ Output Time Format

– The default output time format is equal to the local time format.

¹ Input Date Format

– There is no default input date format

– Where the local format for date conflicts with an ISO, JIS, EUR, or USA date
format, the local format is recognized for date input. For example, see the UK
entry in Table 141.

¹ Output Date Format

– The default output date format is shown in Table 141.

Note: Table 141 also shows a listing of the string formats for the various
country codes.

Table 141 (Page 1 of 3). Date and Time Formats by Country Code

Country Code Local Date
Format

Local
Time
Format

Default
Output
Date
Format

Input Date
Formats

785 Arabic dd/mm/yyyy JIS LOC LOC, EUR, ISO

001 Australia (1) mm-dd-yyyy JIS LOC LOC, USA, EUR,
ISO

061 Australia dd-mm-yyyy JIS LOC LOC, USA, EUR,
ISO

032 Belgium dd/mm/yyyy JIS LOC LOC, EUR, ISO

055 Brazil dd.mm.yy JIS LOC LOC, USA, EUR,
ISO

359 Bulgaria dd.mm.yyyy JIS EUR LOC, USA, EUR,
ISO

001 Canada mm-dd-yyyy JIS USA LOC, USA, EUR,
ISO

002 Canada (French) dd-mm-yyyy ISO ISO LOC, USA, EUR,
ISO

385 Croatia yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

042 Czech Republic yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

 Appendix O. National Language Support (NLS) 1153

Table 141 (Page 2 of 3). Date and Time Formats by Country Code

Country Code Local Date
Format

Local
Time
Format

Default
Output
Date
Format

Input Date
Formats

045 Denmark dd-mm-yyyy ISO ISO LOC, USA, EUR,
ISO

358 Finland dd/mm/yyyy ISO EUR LOC, EUR, ISO

389 FYR Macedonia dd.mm.yyyy JIS EUR LOC, USA, EUR,
ISO

033 France dd/mm/yyyy JIS EUR LOC, EUR, ISO

049 Germany dd/mm/yyyy ISO ISO LOC, EUR, ISO

030 Greece dd/mm/yyyy JIS LOC LOC, EUR, ISO

036 Hungary yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

354 Iceland dd-mm-yyyy JIS LOC LOC, USA, EUR,
ISO

972 Israel dd/mm/yyyy JIS LOC LOC, EUR, ISO

039 Italy dd/mm/yyyy JIS LOC LOC, EUR, ISO

081 Japan mm/dd/yyyy JIS ISO LOC, USA, EUR,
ISO

082 Korea mm/dd/yyyy JIS ISO LOC, USA, EUR,
ISO

001 Latin America (1) mm-dd-yyyy JIS LOC LOC, USA, EUR,
ISO

003 Latin America dd-mm-yyyy JIS LOC LOC, EUR, ISO

031 Netherlands dd-mm-yyyy JIS LOC LOC, USA, EUR,
ISO

047 Norway dd/mm/yyyy ISO EUR LOC, EUR, ISO

048 Poland yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

351 Portugal dd/mm/yyyy JIS LOC LOC, EUR, ISO

086 PRC mm/dd/yyyy JIS ISO LOC, USA, EUR,
ISO

040 Romania yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

007 Russia dd/mm/yyyy ISO LOC LOC, EUR, ISO

381
Serbia/Montenegro

yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

042 Slovakia yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

1154 Administration Guide

Table 141 (Page 3 of 3). Date and Time Formats by Country Code

Country Code Local Date
Format

Local
Time
Format

Default
Output
Date
Format

Input Date
Formats

386 Slovenia yyyy-mm-dd JIS ISO LOC, USA, EUR,
ISO

034 Spain dd/mm/yyyy JIS LOC LOC, EUR, ISO

046 Sweden dd/mm/yyyy ISO ISO LOC, EUR, ISO

041 Switzerland dd/mm/yyyy ISO EUR LOC, EUR, ISO

088 Taiwan mm-dd-yyyy JIS ISO LOC, USA, EUR,
ISO

066 Thailand (2) dd/mm/yyyy JIS LOC LOC, EUR, ISO

090 Turkey dd/mm/yyyy JIS LOC LOC, EUR, ISO

044 UK dd/mm/yyyy JIS LOC LOC, EUR, ISO

001 USA mm-dd-yyyy JIS USA LOC, USA, EUR,
ISO

Notes:

1. Countries using the default C locale are assigned country code 001.

2. yyyy is in Buddhist era: Gregorian + 543 years.

 Appendix O. National Language Support (NLS) 1155

1156 Administration Guide

Appendix P. Splitting Data with db2split

You use the db2split program to split data across database partitions in a partitioned
database. The program can be used in two ways:

¹ db2split can produce a new partitioning map, called an output partitioning map,
that balances the data across the database partitions. An unbalanced or
customized partitioning map can be created apart from db2split.

¹ You can have db2split with a partitioning map (balanced or unbalanced) to divide
the data into separate files, one for each database partition. The input partitioning
map is optional if created by db2split or required if customized by you.

To process data with db2split, the data must be a form eligible for use by the LOAD
utility (except for IXF) data). Date, Time, and Timestamp data must be in the format:

 DATE YYYY-MM-DD

 TIME HH.MM.SS

 TIMESTAMP YYYY-MM-DD-HH.MM.SS.XXXXXX

For more information on the LOAD utility, see “Using the LOAD Utility” on page 203.

The db2split program requires the data file, a configuration file and, optionally, an
input partitioning map. (If a customized partitioning map was created, it must be used.)
The configuration file contains such information as the name of the input file, the
position and length of the partitioning key, and the name of the log file.

The partitioning map file must be generated for the set of nodes for your database (or
particular nodegroup, if you created one). A partitioning map file is created when you
create a nodegroup, or you can use db2split to create one, or you can use the
db2gpmap program to obtain one from the system catalogs and specify that the
db2split use it. The db2split program appends each row (or record) to the output file
destined for the database partition at which this row should reside, as indicated by the
partitioning map.

The db2split program supports codepage conversion. There are two parameters used
with the program to specify the source codepage and the target codepage.

 Using db2split
The db2split program is used in the following way:

db2split [option filename]

The options can be one of the following:

-c configuration file name

-d distribution file name

-i date input file name

-o output file prefix

 Copyright IBM Corp. 1993, 1998 1157

-h help message

| Note: If you should mis-type the letters with this command, you might cause
| unexpected behavior and results. Be very careful when entering the command.

By default, db2split reads the db2split.cfg configuration file. When using the -c
option with a file name, the file name is assumed to contain all of the input information
for db2split. The input information is discussed in the section, “db2split Parameters”
on page 1159. The other options can be used to override the file names specified in
the configuration file.

Note: You should always review and edit the db2split.cfg file before running
db2split.

Populating a Table in a New Table Space
If you are populating a table in a new table space that does not yet contain data, do the
following:

1. Execute db2split in analyze mode (to create a partitioning map), specifying a
representative-sized data file for the largest table that will be in the table space.
Analyze mode is established by setting the RunType parameter to ANALYZE in the
configuration file.

2. Issue the REDISTRIBUTE NODEGROUP command, specifying the partitioning
map created by db2split as the target partitioning map. This will put the
partitioning map in the SYSPARTITIONMAPS catalog table.

3. Run db2split again, and have it partition the data according to the partitioning map
that was just created. Partitioning is controlled by setting the RunType parameter to
PARTITION in the configuration file.

4. Create the table in the table space with the CREATE TABLE statement.

5. Load the table on each database partition using the corresponding data files
created during step 2. (The Load utility will check the partitioning map in the
catalog table against the information in the data files that were split.)

6. Repeat steps three to five to split and load any other tables in the table space.
When you do this, re-use the partitioning map that you created when you split the
data of the first table.

Populating a Table in an Existing Table Space
If you are populating a table in an existing table space, it is usually better to have
db2split use the existing partitioning map for the nodegroup, rather than create a new
one. The reason is that db2split will create the best distribution for the table, but not
necessarily for the table space. In this situation, you should use the db2gpmap program
to obtain a copy of the partitioning map from the catalog partitioned database server
and have db2split use this file to partition the data.

1158 Administration Guide

 db2split Parameters
Following are the parameters that you set in the db2split configuration file:

Parameter Description

Release The release level of this program. When this program is used as part
of DB2 Universal Database, it should be set to “V5.0.” In all other
cases, the release will be assumed to be DB2 Parallel Edition V1.

InFile The input file name of the data you want partitioned. db2split
recognizes stdin as a correct input file name and will receive input
from it. If this field is not specified, stdin is used.

RecLen The record length of the input data file. There are different meanings
depending on the type of data file.

For delimited data (file type DEL), this parameter is ignored. The
record can be any length.

For binary numeric data or packed decimal data (file type BIN or
PACK), the exact record length deducted by 1 is used (for backward
compatibility), and it has to be less than 32K in length.

For positional ASCII data (file type ASC), and where each record has
the same fixed length, specify the actual record length deducted by
one. Again, it has to be less than 32K in length.

For positional ASCII data (file type ASC), and where each record has
a variable length, and each record is delimited with a line-feed
character, it can be set to zero, and the db2split program will
distinguish records by the new-line character.

Note: The line-feed character in EBCDIC data is X'25'.

FileType The data type of the input data file. Valid values are:

ASC Positional ASCII file

DEL Delimited ASCII file

Each record must be delimited by a line-feed character.

BIN Binary numeric data file.

All numeric columns in the data file must be in binary
format. Supported binary numeric data types include:
Integer (4 bytes), Small Integer (2 bytes), Float (4 bytes),
Double (8 bytes).

Each record must be the same fixed length and may not
be delimited by a new-line character.

PACK Packed decimal data file.

All decimal columns in the data file must be in the packed
decimal format.

Each record must be the same fixed length.

 Appendix P. Splitting Data with db2split 1159

| IMPLIEDDECIMAL Delimited data file with all decimal columns in
| implied decimal format.

Note: A data file can be any combination of ASC, BIN, or PACK
types. The db2split configuration file can contain two
declarations of the FileType parameter: one for BIN and one
for PACK. If both BIN and PACK are specified in two
declarations of the FileType parameter, then all numeric
columns must be in binary form, and all decimal columns must
be in packed decimal form.

Nodes The database partitions on which the table is to be created. (If no
partitioning map is provided, the program uses this parameter to
generate one.) You can specify node numbers separately and as a
range. Each separate number or range (except for the last) must be
followed by a comma (,). For example, Nodes=(0,1-3,7-9,11,13-15).

Note: Always use the Mapfili parameter when the partitioning map is
customized instead and not the default partitioning map. In the
case where the partitioning map is the default, use this
parameter or the Mapfili parameter, but not both.

OutputNodes The database partitions for which output files are to be created. The
valid range is from 0 to 999.

OutputNodes must be a subset of Nodes.

If this parameter is not specified, output files are created for all
database partitions.

OutputType If OutputNodes has only one member, use OutputType to specify
whether the output should be written to a file (w) or piped to stdout

(s).

The default is stdout.

If OutPutNodes has more than one member, OutPutType is ignored.

MapFili The filename of the input partitioning map.

Always use this parameter if the partitioning map is customized
otherwise only use this parameter if you do not specify Nodes. In an
analysis run, you can obtain the set of database partitions that is used
to construct the output map from the input partitioning map. An
analysis run is established by the RunType parameter described later in
this list. Use this parameter or the Nodes parameter but not both to
provide a partitioning map to the db2split program.

MapFilo The filename of the output partitioning map file.

This parameter is only meaningful during an analysis run.

DistFile The filename of the output distribution file.

This file is always written, and can be used as input by the data
redistribution utility. The default name is DISTFILE.

1160 Administration Guide

LogFile The filename of the log file.

If this parameter is defined, all data is written to the specified file. If
this parameter is not specified, output from the program is printed to
the standard error device. After the filename, specify the mode:

w Open for write, truncate file to 0. This is the default.

a Open for write, append to the end.

OutFile The prefix of the output file.

db2split appends a 3-digit suffix (000..999) to the end of the prefix to
generate the output file name if the Release parameter is “V5.0.”
Otherwise, db2split appends a 5-digit suffix (00000...00999) to the
end of the prefix to generate the output file name.

The output files are named “prefix suffix.” If the OutFile parameter
is not specified, the default output filename prefix is NOD.

CDelimiter The column delimiter, which is used for DEL input files.

If FileType was not specified, this parameter can be used to
determine if the datafile is ASC or DEL. If this parameter is not
specified then the data file is an ASC file; otherwise, the data file is a
DEL file. If specified, this parameter can be any character except
line-feed, space, binary zero, or carriage-return.

SDelimiter The string delimiter.

This parameter is only meaningful with DEL files.

By default, the string delimiter is a double quotation mark (") and can
be any character except line-feed, space, binary zero, carriage-return,
or a period sign (.).

DecPt The decimal point.

This parameter is only meaningful with DEL files.

By default, the decimal point is a period (.) and can be any character
except line-feed, space, carriage-return, or binary zero.

Note: CDelimiter, SDelimiter, and DecPt are all mutually exclusive.

Also, they have to be less than X'40' if the codepage of the
data file is a double-byte character set (DBCS), Mixed, or EUC
codepage. They cannot be shift-in (SI) or shift-out (SO)
characters if the codepage of the data file is EBCDIC Mixed
codepage.

Finally, you can specify delimiters in hexidecimal format. For
example, you can use X'4F' or 0X'3A'.

RunType The type of run you want. Valid values are:

ANALYZE Produce the customized partitioning map

PARTITION Split the data

 Appendix P. Splitting Data with db2split 1161

Check_Level The possible values are:

CHECK The program checks for the truncation of records at
output. It also checks if the record is empty or not at input
if the record length is less than 32K.

NOCHECK The program does not check for those things mentioned
in CHECK.

Partition The partitioning key. The argument for this parameter has six fields,
each field separated by commas:

¹ The column name that is used in the log file. This should be the
same as the column name in the table.

¹ The cardinal value (starting with 1) of the partitioning field in each
record. This is only valid for DEL data.

¹ The data offset for the start of the partitioning key (it starts at
column 1). This is only valid for ASC data.

¹ The length of the partitioning key. This is only valid for ASC data.

Note: With CHARACTER, FOR_BIT_DATA,
FOR_BIT_VARCHAR, and VARCHAR delimited data, you
must specify this field. The length should be equal to the
corresponding column length in the database table.

¹ The null indicator. One of the following:

N Null data is allowed.

NN Not Null. The data must not be null.

NNWD Not Null with Default. This is processed the same as
NN.

¹ The type of data conversion for hashing into the partition index.
One of the following:

SMALLINT
The same as integer conversion

INTEGER
The data is converted to a 4-byte integer

FLOAT
The data is a 4 byte float and is only valid with a BIN
data file.

DOUBLE
The data is a 8 byte float and is only valid with a BIN
data file.

CHARACTER or CHAR
Fixed-length character data

1162 Administration Guide

VARCHAR
Variable-length character data

FOR_BIT_CHAR
Fixed-length FOR_BIT character data

FOR_BIT_VARCHAR
Variable-length FOR_BIT character data

DECIMAL(x,y)
This converts to a packed decimal number, where x
is the scale, and y is the fractional

DATE
The data is converted to an internal format

TIME
The data is converted to an internal format

TIMESTAMP
The data is converted to an internal format

One Partition statement is used for each column of the partitioning key
(from high order to low order). An ASC example is as follows:

 Partition=cntl_no,,1,8,N,DECIMAL(8,0)

Trace Put trace information for a specified number of records into the log
file.

header This parameter guides db2split to generate the header information or
not.

If the parameter is YES, header information is generated for all
splitting tables. Otherwise, no header information is generated for the
splitting files.

The default for this parameter is YES.

DATA_CODEPAGE The codepage of the input data file.

The codepage must be a database manager convertible codepage. If
it is not provided, it is assigned the codepage number for the
database if it is specified; otherwise, it is assigned the codepage
number of the application.

DB_CODEPAGE The codepage of the database, where the table is defined.

The codepage must be a database manager supported codepage. If it
is not provided, it is assigned the codepage number of the input data
file; otherwise, it is assigned the codepage number of the application.

NewLine This parameter allows for checking of expected and actual record
lengths in the data file by db2split.

This parameter is only meaningful for an ASC file.

 Appendix P. Splitting Data with db2split 1163

The parameter values can be YES or NO. The default for this
parameter is NO.

If the parameter is YES, and the RecLen parameter is not zero,
db2split recognizes records by the new-line delimiter. Then it
compares the actual record lengths with the expected record length. If
there is no match, an error is returned for that record.

If the parameter is NO, no checking is done.

Example Data File for db2split
This section provides an example of a data file and the table into which data is to be
loaded. The following sections provide an example of the configuration file that you
would use, and an explanation of how the file is set up.

Assume that you have a delimited data file called MYDATA, which is as follows:

 25,125,dog,123.45,1984-12-15,12.00.23,1984-12-14-11.11.59.000000

 ,,cat,12.34,,,1982-12-15-11.11.25.001200

 213,424,bird,56.345,,,

Also assume that you want your table to be distributed on 3 nodes (4,7,8), and that you
create it with the following definition:

db2 CREATE NODEGROUP MyNodeGroup ON NODES (4,7,8)

db2 CREATE TABLESPACE MyTableSpace IN NODEGROUP MyNodeGroup

db2 CREATE TABLE MyTable (col1 INTEGER,

 col2 SMALLINT,

 col3 VARCHAR(5),

 col4 DECIMAL,

 col5 DATE,

 col6 TIME,

 col7 TIMESTAMP)

 IN MyTableSpace

PARTITIONING KEY (col7,col1,col3,col4,

 col2,col5)

AIX Configuration File

 Infile=MYDATA

 ;

 Nodes=(4,7,8)

 OutputNodes=(4,7,8)

 ; MapFili=MyInputMap

 MapFilo=MyOutputMap

 OutFile=MyOutput

 RunType= partition

 DistFile=DISTRIBUTION

 LogFile=MyLog

 CDelimiter=,

1164 Administration Guide

 SDelimiter="

 Partition=col7,7,,,N,timestamp

 Partition=col1,1,,,N,integer

 Partition=col3,3,,5,N,character

 Partition=col4,4,,,N,decimal(6,3)

 Partition=col2,2,,,N,smallint

 Partition=col5,5,,,N,date

 Trace=20

 FileType=DEL

Notes:

1. The Nodes field should be consistent with the table nodegroup.

If the MyNodeGroup definition was:

db2 CREATE NODEGROUP MyNodeGroup ON NODES (0,1,2)

Then the Nodes parameter could be specified as Nodes=(0-2) in the configuration
file. db2split generates a partitioning map with repetitive sequences of the
elements specified in this parameter.

You would not specify this field if you were specifying MapFili.

2. In this situation, the OutputNodes field is also optional. By default, the output nodes
have the same members as the Nodes field.

If you specify OutputNodes=(4,8), the program writes the results of database
partitions 4 and 8 to the output data file as defined in OutFile. Consequently, you
will have two output files: MyOutput.004 and MyOutput.008.

If you want only the output data for database partition 7, then specify
OutputNodes=(7) (the parentheses are required). In this situation, OutputNodes has
only one member. The result will be written to stdout. If you want to direct the
output to the file MyOutput.007 rather than stdout, set OutputType to w:

 OutFile=MyOutput

 OutputType=w

3. For partitioning keys, the column name field of character data can be anything you
want. Normally, this field is used to identify the corresponding column name from
the table.

The length field of character data type must be consistent with that of the database
table. In this situation, the table is created with a column length of 5. As a result,
the length field of the partitioning key col3 is set to 5 as well.

The first decimal record (123.45) suggests that
Partition=col4,4,,,N,decimal(5,2) should be specified. The third record,
however, is 56.345, which means that the precision has to be increased to 3 and
the total length to 6, as follows:

 Partition=col4,4,,,N,decimal(6,3)

 Appendix P. Splitting Data with db2split 1165

Getting a Partitioning Map with db2gpmap
If you have already set up a database and defined the nodegroups for it, the db2gpmap
tool gets the partitioning map for the database table or the nodegroup from the catalog
partitioned database server.

When running db2gpmap, you must set the $DB2DBDFT environment variable to
correspond to the database that you want to access, or use the command line options
to override $DB2DBDFT.

For additional information, issue the following command:

 db2gpmap -h

The db2gpmap program is used in the following way:

db2gpmap [option (parameter)]

The options can be one or more of the following:

-d database name (default is sample)

-m map filename (default is db2split.map)

-g nodegroup name (default is IBMDEFAULTGROUP)

-t table name

-h help message

Before using db2gpmap the database manager must be started and the db2gpmap.bnd
must be bound to the database. If not already bound to the database before you use
this program, the program will attempt to bind the file on its own.

 Running db2split
After creating your configuration and partitioning map files, you must decide where you
want to run db2split. Apart from processor power, the other main consideration is the
amount of disk space you have available to hold the partitioned files. You need at least
the same amount as that taken up by the source data.

The following are the steps to run db2split:

1. Create the configuration file (using db2split.cfg as a sample) and the partitioning
map file, if you have not done so already.

2. Execute db2split as follows:

db2split -c <configfile>

When you split the files, db2split writes header information to each data file that it
creates. For details, see “db2split Header Information” on page 1167.

1166 Administration Guide

db2split Header Information
When you use db2split to split data, the program writes header information to each
data file that it creates. The Load utility uses this information to ensure that the data
goes to the correct location. The information is as follows:

¹ The first line is the node number, which is a digit.

¹ The next block of entries is the 4 096 entries of the partitioning map, which is
separated by a blank record both above and below the block.

¹ The next line is the separator SQL_HEADER_DATA_SEPARATOR.

¹ The next line is the number of partitioning keys, which is a digit.

¹ The next block of entries is made of as many lines as there are partitioning
columns. Each record in this block is as follows:

Key: Name, Type, TypeLength, Start, Length

¹ The next line is the separator SQL_HEADER_DATA_SEPARATOR.

 Appendix P. Splitting Data with db2split 1167

1168 Administration Guide

Appendix Q. Issuing Commands to Multiple Database Partition
Servers

In a partitioned database system, you may want to issue commands to be run on
machines in the instance, or on database partition servers (nodes). You can do so
using the rah command or the db2_all command. The rah command allows you to
issue commands that you want to run at machines in the instance. If you want the
commands to run at database partition servers in the instance, you run the db2_all
command. This section provides an overview of these commands. The information that
follows applies to partitioned database systems only.

Notes:

1. On UNIX-based platforms, your login shell can be a Korn shell or any other shell;
however, there are differences in the way the different shells handle commands
containing special characters.

2. On Windows NT, to run the rah command or the db2_all command, you must be
logged on with a user account that is a member of the Administrators group.

To determine the scope of a command, refer to the Command Reference. This book
indicates whether a command runs on a single database partition server, or on all of
them. If the command runs on one database partition server and you want it to run on
all of them, use db2_all . The exception is the db2trc command, which runs on all the
logical nodes (database partition servers) on a machine. If you want to run db2trc on
all logical nodes on all machines, use rah .

 Commands
You can run the commands sequentially at one database partition server after another,
or you can run the commands in parallel. On UNIX-based platforms, if you run the
commands in parallel, you can either choose to have the output sent to a buffer and
collected for display (the default behavior) or the output can be displayed at the
machine where the command is issued. On Windows NT, if you run the commands in
parallel, the output is displayed at the machine where the command is issued.

To use the rah command, type:

 rah command

To use the db2_all command, type:

 db2_all command

To obtain help about rah syntax, type

 rah "?"

The command can be almost anything which you could type at an interactive prompt,
including, for example, multiple commands to be run in sequence. On UNIX-based

 Copyright IBM Corp. 1993, 1998 1169

platforms, you separate multiple commands using a semicolon (;). On Windows NT, you
separate multiple commands using an ampersand (&). Do not use the separator
character following the last command.

The following example shows how to use the db2_all command to change the
database configuration on all database partition servers that are specified in the node
configuration file. Because the ; character is placed inside double quotation marks, the
request will run concurrently:

db2_all ";UPDATE DB CFG FOR sample USING LOGFILSIZ=100"

 Command Descriptions
You can use the following commands:

Command Description
rah Runs the command on all machines.
db2_all Runs the command on all database partition servers that you specify.
db2_kill Abruptly stops all processes being run on multiple database partition

servers and cleans up all resources on all database partition servers.
This command renders your databases inconsistent. Do not issue
this command except under direction from IBM service.

db2_call_stack On UNIX-based platforms, causes all processes running on all
database partition servers to write call traceback to the syslog.

On Windows NT, causes all processes running on all database
partition servers to write call traceback to the Pxxxx.nnn file in the
instance directory, where Pxxxx is the process ID and nnn is the
node number.

On UNIX-based platforms, these commands execute rah with certain implicit settings
such as:

¹ Run in parallel at all machines
¹ Buffer command output in /tmp/$USER/db2_kill, /tmp/$USER/db2_call_stack

respectively.

On Windows NT, these commands execute rah to run in parallel at all machines.

Specifying the Command to Run
You can specify the command:

¹ From the command line as the parameter
¹ In response to the prompt if you don't specify any parameter.

You should use the prompt method if the command contains the following special
characters:

| & ; < > () ` { } [] unsubstituted $

1170 Administration Guide

If you specify the command as the parameter on the command line, you must enclose it
in double quotation marks if it contains any of the special characters just listed.

Note: On UNIX-based platforms, the command will be added to your command history
just as if you typed it at the prompt.

All special characters in the command can be entered normally (without being enclosed
in quotation marks, except for \). If you need to include a \ in your command, you must
type two backslashes (\\).

Note: On UNIX-based platforms, if you are not using a Korn shell, all special
characters in the command can be entered normally (without being enclosed in
quotation marks, except for ` " \ unsubstituted $, and the single quotation mark
(')). If you need to include one of these characters in your command, you must
precede them by three backslashes (\\\). For example, if you need to include a \
in your command, you must type four backslashes (\\\\).

If you need to include a double quotation mark (") in your command, you must precede
it by three backslashes, for example, \\\".

Notes:

1. On UNIX-based platforms, You cannot include a single quotation mark (') in your
command unless your command shell provides some way of entering a single
quotation mark inside a singly quoted string.

2. On Windows NT, you cannot include a single quotation mark (') in your command
unless your command window provides some way of entering a single quotation
mark inside a singly quoted string.

Running Commands in Parallel on UNIX-Based Platforms
Note: The information in this section applies to UNIX-based platforms only.

By default, the command is run sequentially at each machine, but you can specify to
run the commands in parallel using background rshells by prefixing the command with
certain prefix sequences. If the rshell is run in the background, then each command
puts the output in a buffer file at its remote machine, This process retrieves the output
in two pieces:

1. After the remote command completes.
2. After the rshell terminates, which may be later if some processes are still running.

The name of the buffer file is /tmp/$USER/rahout by default, but it can be specified by
the environment variables $RAHBUFDIR/$RAHBUFNAME.

When you specify that you want the commands to be run concurrently, by default, this
script prefixes an additional command to the command sent to all hosts to check that
$RAHBUFDIR and $RAHBUFNAME are usable for the buffer file. It creates
$RAHBUFDIR. To suppress this, export an environment variable RAHCHECKBUF=no. You
can do this to save time if you know the directory exists and is usable.

Before using rah to run a command concurrently at multiple machines, ensure that:

 Appendix Q. Issuing Commands to Multiple Database Partition Servers 1171

¹ A directory /tmp/$USER exists for your user ID at each machine. To create a
directory if one does not already exist, run:

rah ")mkdir /tmp/$USER"

¹ Add the following line to your .kshrc (for Korn shell syntax) or .profile, and also type
it into your current session:

 export RAHCHECKBUF=no

¹ Ensure that each machine ID at which you run the remote command has an entry
in its .rhosts file for the ID which runs rah ; and the ID which runs rah has an entry
in its .rhosts file for each machine ID at which you run the remote command.

Monitoring rah Processes on UNIX-Based Platforms
Note: The information in this section applies to UNIX-based platforms only.

While any remote commands are still running or buffered output is still being
accumulated, processes started by rah monitor activity to:

¹ Write messages to the terminal indicating which commands have not been run
¹ Retrieve buffered output.

The informative messages are written at an interval controlled by the environment
variable RAHWAITTIME. See the help information for details on how specify this. All
informative messages can be completely suppressed by exporting RAHWAITTIME=0.

The primary monitoring process is a command whose command name (as shown by
the ps command) is rahwait >or . The first informative message tells you the pid
(process id) of this process. All other monitoring processes will appear as ksh
commands running the rah script (or the name of the symbolic link). If you want, you
can stop all monitoring processes by the command:

 kill <pid>

where <pid> is the process ID of the primary monitoring process. Do not specify a
signal number. Leave the default of 15. This will not affect the remote commands at all,
but will prevent the automatic display of buffered output. Note that there may be two or
more different sets of monitoring processes executing at different times during the life of
a single execution of rah . However, if at any time you stop the current set, then no
more will be started.

If your regular login shell is not a Korn shell (for example /bin/ksh), you can use rah ,
but there are some slightly different rules on how to enter commands containing the
following special characters:

" ` unsubstituted $ '

For more information, type rah "?". Also, in a UNIX-based environment, if the login
shell at the ID which executes the remote commands is not a Korn shell, then the login
shell at the ID which executes rah must also not be a Korn shell. (rah makes the
decision as to whether the remote ID's shell is a Korn shell based on the local ID). The
shell must not perform any substitution or special processing on a string enclosed in
single quotation marks. It must leave it exactly as is.

1172 Administration Guide

 Prefix Sequences
A prefix sequence is one or more special characters. Type one or more prefix
sequences immediately preceding the characters of the command without any
intervening blanks. If you want to specify more than one sequence, you can type them
in any order, but characters within any multicharacter sequence must be typed in order.
If you type any prefix sequences, you must enclose the entire command, including the
prefix sequences in double quotation marks, as in the following examples:

¹ On UNIX-based platforms:

rah "};ps -F pid,ppid,etime,args -u $USER"

¹ On Windows NT:

rah "]]db2 get db cfg for sample"

The prefix sequences are:

Sequence Purpose

| Runs the commands in sequence in the background.

|& Runs the commands in sequence in the background and terminates the
command after all remote commands have completed, even if some are
still running. This may be later if, for example, child processes (on
UNIX-based platforms) or background processes (on Windows NT) are still
running. In this case, the command starts a separate background process
to retrieve any remote output generated after command termination and
writes it back to the originating machine.

Note: On UNIX-based platforms, specifying & degrades performance,
because more rsh commands are required.

|| Runs the commands in parallel in the background.

||& Runs the commands in parallel in the background and terminates the
command after all remote commands have completed as described for the
|& case above.

Note: On UNIX-based platforms, specifying & degrades performance,
because more rsh commands are required.

; Same as ||& above. This is an alternative shorter form.

Note: On UNIX-based platforms, specifying ; degrades performance
relative to ||, because more rsh commands are required.

] Prepends dot-execution of user's profile before executing command.

Note: Available on UNIX-based platforms only.

} Prepends dot-execution of file named in $RAHENV (probably .kshrc) before
executing command.

Note: Available on UNIX-based platforms only.

 Appendix Q. Issuing Commands to Multiple Database Partition Servers 1173

]} Prepends dot-execution of user's profile followed by execution of file named
in $RAHENV (probably .kshrc) before executing command.

Note: Available on UNIX-based platforms only.

) Suppresses execution of user's profile and of file named in $RAHENV.

Note: Available on UNIX-based platforms only.

' Echoes the command invocation to the machine.

< Sends to all the machines except this one.

<<−nnn < Sends to all-but-database partition server nnn (all database partition
servers in db2nodes.cfg except for node number nnn, see the note below).

<<+nnn < Sends to only database partition server nnn (the database partition server
in db2nodes.cfg whose node number is nnn, see the note below).

` Runs the remote command in the background with stdin, stdout and
stderr all closed. This option is valid only when running the command in
the background, that is, only in a prefix sequence which also includes | or ;.
It allows the command to complete much sooner (as soon as the remote
command has been initiated). If you specify this prefix character on the rah
command line, then either enclose the command in single quotation marks,
or enclose the command in double quotation marks, and precede the ` by
\. For example,

 rah ';`mydaemon'

or

 rah ";\`mydaemon"

When run as a background process, the rah command will never wait for
any output to be returned.

> Substitutes occurrences of <> with the machine name.

| " Substitutes occurrences of () by the machine index, and substitutes
| occurrences of ## by the node number.

| Notes:

| 1. The machine index is a number that associated with a machine in the
| database system. If you are not running multiple logical nodes, the
| machine index for a machine corresponds to the node number for that
| machine in the node configuration file. To obtain the machine index for
| a machine in a multiple logical node environment, do not count
| duplicate entries for those machines that run multiple logical nodes.
| For example, if MACH1 is running two logical nodes and MACH2 is
| also running two logical nodes, the node number for MAC3 is 5 in the
| node configuration file. The machine index for MACH3, however,
| would be 3.

| On Windows NT, do not edit the node configuration file. To obtain the
| machine index, use the db2nlist command. See the DB2 Extended

1174 Administration Guide

| Enterprise Edition for Windows NT Quick Beginnings manual for
| details.

| 2. When " is specified, duplicates are not eliminated from the list of
| machines. See “Eliminating Duplicate Entries from the List of
| Machines” if you want to eliminate duplicates.

When using the <<−nnn< and <<+nnn< prefix sequences, nnn is any 1-, 2- or 3-digit
partition number which must match the nodenum value in the db2nodes.cfg file.

Note: Prefix sequences are considered to be part of the command. If you specify a
prefix sequence as part of a command, you must enclose the entire command,
including the prefix sequences, in double quotation marks.

Specifying the List of Machines
By default, the list of machines is taken from the node configuration file, db2nodes.cfg.
You can override this by:

¹ Specifying a pathname to the file that contains the list of machines by exporting (on
UNIX-based platforms) or setting (on Windows NT) the environment variable
RAHOSTFILE.

¹ Specifying the list explicitly, as a string of names separated by spaces, by
exporting (on UNIX-based platforms) or setting (on Windows NT) the environment
variable RAHOSTLIST.

Note: If both of these environment variables are specified, RAHOSTLIST takes
precedence.

Note: On Windows NT, to avoid introducing inconsistencies into the node
configuration file, do not edit it manually. To obtain the list of machines in the
instance, use the db2nlist command. See the DB2 Extended Enterprise Edition
for Windows NT Quick Beginnings manual for details.

Eliminating Duplicate Entries from the List of Machines
If you are running DB2 Extended Enterprise Edition with multiple logical nodes
(database partition servers) on one machine, your db2nodes.cfg file will contain multiple
entries for that machine. In this situation, the rah command needs to know whether you
want the command to be executed once only on each machine or once for each logical
node listed in the db2nodes.cfg file. Use the rah command to specify machines. Use
the db2_all command to specify logical nodes.

Note: On UNIX-based platforms, if you specify machines, rah will normally eliminate
duplicates from the machine list, with the following exception: if you specify
logical nodes, db2_all prepends the following assignment to your command:

export DB2NODE=nnn (for Korn shell syntax)

where nnn is the node number taken from the corresponding line in the
db2nodes.cfg file, so that the command will be routed to the desired database
partition server.

 Appendix Q. Issuing Commands to Multiple Database Partition Servers 1175

When specifying logical nodes, you can restrict the list to include all logical nodes
except one, or only specify one database partition server using the <<−nnn< and
<<+nnn< prefix sequences. You may want to do this if you want to run a command at
the catalog node first, and when that has completed, run the same command at all
other database partition servers, possibly in parallel. This is usually required when
running the db2 restart database command. You will need to know the node number
of the catalog node to do this. See “Prefix Sequences” on page 1173 for information
about the prefix sequences.

If you execute db2 restart database using the rah command, duplicate entries are
eliminated from the list of machines. However if you specify the ” prefix, then duplicates
are not eliminated, because it is assumed that use of the ” prefix implies sending to
each database partition server, rather than to each machine.

Controlling the rah Command
 You can use the following environment variables to control the rah command.

Table 142 (Page 1 of 2).

Name Meaning Default

$RAHBUFDIR

Note: Available on
UNIX-based
platforms
only.

directory for buffer /tmp/$USER

$RAHBUFNAME

Note: Available on
UNIX-based
platforms
only.

filename for buffer rahout

$RAHOSTFILE (on
UNIX-based
platforms);
RAHOSTFILE (on
Windows NT)

file containing list of hosts db2nodes.cfg

$RAHOSTLIST (on
UNIX-based
platforms);
RAHOSTLIST (on
Windows NT)

list of hosts as a string extracted from $RAHOSTFILE

$RAHCHECKBUF

Note: Available on
UNIX-based
platforms
only.

if set to "no", bypass checks not set

1176 Administration Guide

Table 142 (Page 2 of 2).

Name Meaning Default

$RAHSLEEPTIME
(on UNIX-based
platforms);
RAHSLEEPTIME (on
Windows NT)

time in seconds this script will wait for
initial output from commands run in
parallel

86400 seconds for db2_kill , 200 seconds for
all other

$RAHWAITTIME (on
UNIX-based
platforms);
RAHWAITTIME (on
Windows NT)

on Windows NT, interval in seconds
between successive checks that remote
jobs are still running.

On UNIX-based platforms, interval in
seconds between successive checks that
remote jobs are still running and rah:
waiting for <pid> ... messages.

On all platforms, specify any positive
integer. Prefix value with a leading zero to
suppress messages, for example, export
RAHWAITTIME=045.

It is not necessary to specify a low value
as rah does not rely on these checks to
detect job completion.

45 seconds

$RAHENV

Note: Available on
UNIX-based
platforms
only.

specifies filename to be executed if
$RAHDOTFILES=E or K or PE or B

$ENV

$RAHUSER (on
UNIX-based
platforms);
RAHUSER (on
Windows NT)

on UNIX-based platforms, user ID under
which the remote command is to be run.

On Windows NT, the logon account
associated with the DB2 Remote
Command Service

$USER

Note: On UNIX-based platforms, the value of $RAHENV where rah is run is used, not
the value (if any) set by the remote shell.

$RAHDOTFILES on UNIX-Based Platforms
Note: The information in this section applies to UNIX-based platforms only.

Following are the .files that are run if no prefix sequence is specified:

P .profile
E File named in $RAHENV (probably .kshrc)
K Same as E
PE .profile followed by file named in $RAHENV (probably .kshrc)
B Same as PE
N None (or Neither)

Note: If your login shell is not a Korn shell, any dot files you specify to be executed
will be executed in a Korn shell process, and so must conform to Korn shell

 Appendix Q. Issuing Commands to Multiple Database Partition Servers 1177

syntax. So, for example, if your login shell is a C shell, to have your .cshrc
environment set up for commands executed by rah , you should either create a
Korn shell INSTHOME/.profile equivalent to your .cshrc and specify in your
INSTHOME/.cshrc:

setenv RAHDOTFILES P

or you should create a Korn shell INSTHOME/.kshrc equivalent to your .cshrc
and specify in your INSTHOME/.cshrc:

setenv RAHDOTFILES E

setenv RAHENV INSTHOME/.kshrc

Also, it is essential that your .cshrc does not write to stdout if there is no tty (as
when invoked by rsh). You can ensure this by enclosing any lines which write
to stdout by, for example,

if { tty -s } then echo "executed .cshrc";

 endif

Setting the Default Environment Profile on Windows NT
Note: The information in this section applies to Windows NT only.

To set the default environment profile for the rah command, use a file called
db2rah.env, which should be created in the instance directory. The file should have the
following format:

; This is a comment line

 DB2INSTANCE=instancename

 DB2DBDFT=database

; End of file

You can specify all the environment variables that you need to initialize the environment
for rah .

Determining Problems with rah on UNIX-Based Platforms
Note: The information in this section applies to UNIX-based platforms only.

Here are suggestions on how to handle some problems that you may encounter when
you are running rah :

1. rah hangs (or takes a very long time)

This problem may be caused because:

¹ rah has determined that it needs to buffer output, and you did not export
RAHCHECKBUF=no. Therefore, before running your command, rah sends a
command to all machines to check the existence of the buffer directory, and to
create it if it does not exist.

¹ One or more of the machines where you are sending your command is not
responding. The rsh command will eventually time out but the time-out interval
is quite long, usually about 60 seconds.

2. You have received messages such as:

1178 Administration Guide

 ¹ Login incorrect
 ¹ Permission denied

Either one of the machines does not have the ID running rah correctly defined in
its .hosts file, or the ID running rah does not have one of the machines correctly
defined in its .rhosts file.

3. When running commands in parallel using background rshells, although the
commands run and complete within the expected elapsed time at the machines,
rah takes a long time to detect this and put up the shell prompt.

The ID running rah does not have one of the machines correctly defined in its
.rhosts file.

4. Although rah runs fine when run from the shell command line, if you run rah
remotely using rsh, for example,

rsh somewher -l $USER db2_kill

rah never completes.

This is normal. rah starts background monitoring processes, which continue to run
after it has exited. Those processes will normally persist until all processes
associated with the command you ran have themselves terminated. In the case of
db2_kill , this means termination of all database managers. You can terminate the
monitoring processes by finding the process whose command is rahwait >or and
kill <process_id>. Do not specify a signal number. Instead, use the default (15).

5. The output from rah is not displayed correctly, or rah incorrectly reports that
$RAHBUFNAME does not exist, when multiple commands of rah were issued
under the same $RAHUSER.

This is because multiple concurrent executions of rah are trying to use the same
buffer file (for example, $RAHBUFDIR/$RAHBUFNAME) for buffering the outputs.
To prevent this problem, use a different $RAHBUFNAME for each concurrent rah
command, for example in the following ksh:

 export RAHBUFNAME=rahout

rah ";$command_1" &

 export RAHBUFNAME=rah2out

rah ";$command_2" &

or use a method that makes the shell choose a unique name automatically such
as:

RAHBUFNAME=rahout.$$ db2_all "....."

Whatever method you use, you must ensure you clean up the buffer files at some
point if disk space is limited. rah does not erase a buffer file at the end of
execution, although it will erase and then re-use an existing file the next time you
specify the same buffer file.

 6. You entered

rah '"print from ()'

and received the message:

 Appendix Q. Issuing Commands to Multiple Database Partition Servers 1179

ksh: syntax error at line 1 : `(' unexpected

Prerequisites for the substitution of () and ## are:

¹ Use db2_all , not rah .
¹ Ensure a RAHOSTFILE is used either by exporting RAHOSTFILE or by

defaulting to your ˜/sqllib/db2nodes.cfg file. Without these prerequisites, rah
will leave the () and ## as is. You receive an error because the command
print from () is not valid.

For a performance tip when running commands in parallel, use | rather than |&,
and use || rather than ||& or ; unless you truly need the function provided by &.
Specifying & requires more rsh commands and therefore degrades performance.

1180 Administration Guide

| Appendix R. How DB2 for Windows NT Works with Windows NT
| Security

| When you install Windows NT, it allows you to create two administrator usernames:

| ¹ One is called “Administrator”

| ¹ The other is a name of your choice. It must have administrator authority and must
| comply with DB2's naming rules. For more information on DB2's naming rules, see
| Appendix E, “Naming Rules” on page 885.

| The user may logon to the local machine, or when the machine is installed in a
| Windows NT Advanced Server Domain, the user may logon to the Domain. DB2 for
| Windows NT supports both of these options. To authenticate the user, DB2 checks the
| local machine first, then the Domain Controller for the current Domain, and finally any
| Trusted Domains known to the Domain Controller.

| To illustrate how this works, suppose that the DB2 instance requires Server
| authentication. The configuration is as follows:

Domain 1

Client Machine
"Ivan"

Domain 2

Logon to Domain 1

Windows NT Server
"Servr"

Trusting
Domain Controller

"DC1"

Database Request

Authentication

Database Request

Trust Relationship

Trusted
Domain Controller

"TDC2"

Logon to Domain 2

Client Machine
"Abdul"

| Each machine has a security database, Security Access Management (SAM), unless a
| client machine is running Windows 95. Windows 95 machines do not have a SAM
| database. DC1 is the domain controller, in which the client machine, Ivan, and the DB2
| for Windows NT server, Servr, are enrolled. TDC2 is a trusted domain for DC1 and the
| client machine, Abdul, is a member of TDC2's domain.

| A Sample Scenario with Server Authentication:

| 1 Abdul logs on to the TDC2 domain (that is, he is known in the TDC2 SAM
| database).

 Copyright IBM Corp. 1993, 1998 1181

| 2 Abdul then connects to a DB2 database that is cataloged to reside on SRV3:

| db2 connect to remotedb user Abdul using fredpw

| 3 SRV3 determines where Abdul is known. The API that is used to find this
| information first searches the local machine (SRV3) and then the domain
| controller (DC1) before trying any trusted domains. Username Abdul is found on
| TDC2. This search order requires a single namespace for users and groups.

| 4 SRV3 then:

| a Validates the username and password with TDC2.

| b Finds out whether Abdul is an administrator by asking TDC2.

| c Enumerates all Abdul's groups by asking TDC2.

| A Sample Scenario with Client Authentication and a Windows NT Client
| Machine:

| 1 Dale, the administrator, logs on to SRV3 and changes the authentication for the
| database instance to Client:

| db2stop myinst

| db2 update dbm cfg using authentication client

| db2start myinst

| 2 Ivan, at a Windows NT client machine, logs on to the DC1 domain (that is, he is
| known in the DC1 SAM database).

| 3 Ivan then connects to a DB2 database that is cataloged to reside on SRV3:

| DB2 CONNECT to remotedb user Ivan using johnpw

| 4 Ivan's machine validates the username and password. The API used to find this
| information first searches the local machine (Ivan) and then the domain controller
| (DC1) before trying any trusted domains. Username Ivan is found on DC1.

| 5 Ivan's machine then validates the username and password with DC1.

| 6 SRV3 then:

| a Determines where Ivan is known.

| b Finds out whether Ivan is an administrator by asking DC1.

| c Enumerates all Ivan's groups by asking DC1.

| A Sample Scenario with Client Authentication and a Windows 95 Client Machine:

| 1 Dale, the administrator, logs on to SRV3 and changes the authentication for the
| database instance to Client:

1182 Administration Guide

| db2stop myinst

| db2 update dbm cfg using authentication client

| db2start myinst

| 2 Ivan, at a Windows 95 client machine, logs on to the DC1 domain (that is, he is
| known in the DC1 SAM database).

| 3 Ivan then connects to a DB2 database that is cataloged to reside on SRV3:

| db2 connect to remotedb user Ivan using johnpw

| 4 Ivan's Windows 95 machine cannot validate the username and password. The
| username and password are therefore assumed to be valid.

| 5 SRV3 then:

| a Determines where Ivan is known.

| b Finds out whether Ivan is an administrator by asking DC1.

| c Enumerates all Ivan's groups by asking DC1.

| Note: Because a Windows 95 client cannot validate a given username and password,
| client authentication under Windows 95 is inherently insecure. If the Windows
| 95 machine has access to a Windows NT security provider, however, some
| measure of security can be imposed by configuring the Windows 95 system for
| validated pass-through logon. For details on how to configure your Windows 95
| system in this way, refer to the Microsoft documentation for Windows 95.

| DB2 also supports global groups. In order to use global groups, you must include global
| groups inside a local group that is on the security server. When DB2 enumerates all
| the groups that a person is a member of, it also lists the local groups the user is a
| member of indirectly (by the virtue of being in a global group that is itself a member of
| one or more local groups).

| Using a Backup Domain Controller with DB2
| If the server you use for DB2 also acts as a backup domain controller, you can improve
| DB2 performance and reduce network traffic if you configure DB2 to use the backup
| domain controller.

| You specify the backup domain controller to DB2 by setting the db2dmnbckctlr registry
| value.

| If you know the name of the domain for which DB2 server is the backup domain
| controller, use:

| db2dmnbckctlr=DOMAIN_NAME

| where DOMAIN_NAME must be in upper case.

| To have DB2 determine the domain for which the local machine is a backup domain
| controller, use:

 Appendix R. How DB2 for Windows NT Works with Windows NT Security 1183

| db2dmnbckctlr=?

| Note: DB2 does not use an existing backup domain controller by default because a
| backup domain controller can get out-of-sync with the primary domain controller,
| causing a security exposure. Domain controllers get out-of-sync when the
| primary domain controller's security database is updated but the changes are
| not propagated to a backup domain controller. This can happen if there are
| network latencies or if the computer browser service is not operational.

1184 Administration Guide

| Appendix S. Configuring Multiple Logical Nodes

| You can configure multiple logical nodes in one of two ways:

| ¹ Configure the logical nodes (database partitions) in the db2nodes.cfg file. You can
| then start all the logical and remote nodes with the DB2START command or its
| associated API.

| ¹ Restart a logical node on another processor on which other logical database
| partitions (nodes) are already running. This allows you to override the hostname
| and port number specified for the logical database partition in db2nodes.cfg.

| To configure a logical database partition (node) in db2nodes.cfg, you must make an
| entry in the file to allocate a logical port number for the node. Following is the syntax
| you should use:

| nodenumber hostname logical-port netname

| Note: You must ensure that you define enough ports in etc/services for FCM
| communications.

 Copyright IBM Corp. 1993, 1998 1185

1186 Administration Guide

| Appendix T. Using Virtual Interface Architecture (VIA)

| Virtual Interface Architecture (VIA) is the inter-node communication protocol alternative
| to TCP/IP in a Windows NT MPP configuration. VIA is a new communication
| architecture that was developed jointly by Intel, Microsoft, and Compaq to improve
| performance over a System Area Network (SAN).

| VIA has low latency and high bandwidth. In a communication-intensive environment,
| using VIA may improve the overall system throughput.

| Products exist which may be acquired separately from DB2 UDB that have a
| VIA-enabled network interface card (NIC) and software driver implementation. Several
| Independent Hardware Vendors (IHVs) have released, or plan to release, such
| products. DB2 UDB supports VIA implementations that comply with the Virtual Interface
| Architecture Specification, Version 1.0, the Intel Virtual Interface (VI) Architecture
| Implementation Guide, Version 1.0, and pass the “Virtual Interface Architecture
| Conformance Suite.” For an implementation that does not satisfy the above
| requirements, please contact both the IHV service organization and the DB2 UDB
| service organization to find out if it is supported.

| To enable DB2 UDB's support of VIA, see of each of the following registry variables:
| DB2_VI_ENABLE, DB2_VI_VIPL, and DB2_VI_DEVICE in Appendix F, “DB2 Registry
| and Environment Variables” on page 889 for explanations regarding when and where
| to use these variables.

 Copyright IBM Corp. 1993, 1998 1187

1188 Administration Guide

 Appendix U. Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
 IBM Corporation,

500 Columbus Avenue,
Thornwood, NY, 10594

 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Limited
 Department 071

1150 Eglinton Ave. East
North York, Ontario

 M3C 1H7
 CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

 Trademarks
The following terms are trademarks or registered trademarks of the IBM Corporation in
the United States and/or other countries:

 Copyright IBM Corp. 1993, 1998 1189

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DatagLANce
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
Lan Distance

MVS/ESA
MVS/XA
NetView
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SAA
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies
The following terms are trademarks or registered trademarks of the companies listed:

C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java, HotJava, Solaris, Solstice, and Sun are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT, Visual Basic, and the Windows logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

SCO is a trademark of The Santa Cruz Operation.

SINIX is a trademark of Siemens Nixdorf.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

1190 Administration Guide

 Index

Special Characters
$DB2DBDFT environment variable, running

db2gpmap 1166
$RAHBUFDIR 1171
$RAHBUFNAME 1171
$RAHCHECKBUF 1171
$RAHENV 1177

Numerics
8 KB page size 31

A
access control 145

authentication 145
concurrency, overview 387
database manager 163
database objects 163
using locks 392
view to table 166
XA interface considerations 369

access path
lock attributes, factors affecting 401

access path selection 412
access plan

cost estimate 517
created by compiler 465
db2expln 510
graphical representation 513
objects 514
operators 515
using explain facility 511
Visual Explain 524

ACTIVATE DATABASE command 551
activating a database 421
active logs

definition 277
definition of 277
versus archive logs 277

adding a scope 129
adding constraint 130
adding node to system

restrictions on database operations 571
when redistributing nodegroup 580

adding table check constraint 131
adding unique constraint 130
Administration Engine Log xxv
adsm_mgmtclass configuration parameter 671
adsm_nodename configuration parameter 672
adsm_owner configuration parameter 673
adsm_password configuration parameter 672
ADSTAR Distributed Storage Manager (ADSM)

backup restrictions 337
client set up (on Intel) 336
client set up (UNIX-based platforms) 335
configuration parameters 669
environment variables (on Intel) 336
environment variables (UNIX-based platforms) 335
managing backups and log archives 338
setting password (on Intel) 336
setting password (UNIX-based platforms) 335
system options file (on Intel) 336
timeout problem resolution 337
use with BACKUP command 334
use with RESTORE command 334
user options file (on Intel) 336
using 337

agent 551
agent pool 552
agent pool size (num_poolagents) database manager

parameter 655
agent process

application heap size (applheapsz) parameter 623
application support layer heap size (aslheapsz)

parameter 631
maximum number of agents (maxagents)

parameter 653
maximum number of concurrent agents (maxcagents)

parameter 652
priority of agents (agentpri) parameter 651

agent_stack_sz configuration parameter 627
impact on memory 531

agentpri configuration parameter 651
agents

See also coordinator agent
application control heap size, maximum 619
connection entries, number 698
governor changes priority of 559
initial number of agents in pool (num_initagents)

database manager parameter 656

 Copyright IBM Corp. 1993, 1998 1191

agents (continued)
max_coordagents database manager

parameter 654
maximum number of coordinating 654
pool size, controlling 655

aggregating function 111
alias

authority 120
naming rules 888
using 119

alias (DB2 for MVS/ESA) 120
alias, creating 119
ALTER COLUMN 129
ALTER privilege, definition 160
ALTER TABLE statement

adding check constraint example 131
adding columns example 129
adding keys example 130
adding unique constraint example 130
dropping check constraint example 132
dropping keys example 131
dropping unique constraint example 131
tips for adding constraints 130

ALTER TABLESPACE statement
example of 127, 427

altering a column 129
altering a structured type 133
altering a table 128
altering constraint 129
altering nodegroup 126
altering structured type 133
altering table space 127
altering temporary table space 128
altering view 137
app_ctl_heap_sz configuration parameter

impact on memory 531
app_ctl_heap_sz database parameter 619
applheapsz configuration parameter 623

impact on memory 531
application control heap

application control heap size (app_ctl_heap_sz)
database parameter 619

application control heap size (app_ctl_heap_sz)
database parameter 619

application design
acquiring locks 392
collating sequences, guidelines 1149
deadlock, avoiding 399
lock compatibility, ensuring 396
lock escalation 398

application design (continued)
locking considerations 406
locks, converting of 398
locks, factors affecting 401
overriding locks 404

application program 289
control heap, setting 619
database partition server failure detection 292
governor forces 559
maximum number of coordinating agents at

node 654
transaction recovery on the failed database partition

server 290
transaction recovery when the database partition

server is active 290
transaction recovery, overview 289

archive log files
for OS/2 1055
for UNIX-based systems 1056

archive logs
definition 277
ROLLFORWARD command support 277
versus active logs 277
where stored 278

ASCII file formats
code page considerations 252, 253
delimited (DEL) format 251
nondelimited (ASC) format 252
operating system differences 256

aslheapsz configuration parameter 631
impact on memory 532

ATTACH command
overview of 63
specifying Distributed Computing Environment (DCE)

information 929
attribute

definition of 3
attributes 8
audit activities 175
audit facility

actions 175
asynchronous record writing 177
audit events table 183
authorities/privileges 175
behavior 177
checking events table 183
CONTEXT events table 194
controlling activities 197
error handling 177
ERRORTYPE parameter 177

1192 Administration Guide

audit facility (continued)
events 176
examples 197
messages 182
OBJMAINT events table 187
parameter descriptions 179
record layouts 183
SECMAINT events table 188
synchronous record writing 177
syntax 178
SYSADMIN events table 191
tips and techniques 196
usage scenarios 178
VALIDATE events table 193

AUDIT_BUF_SZ 177
audit_buf_sz configuration parameter 619
authentication 145

DCE security services 149
definition of 145
Distributed Computing Environment (DCE) directory

services 926
distributed transaction processing

considerations 365
partitioned database considerations 148
remote client 148

authentication configuration parameter 713
authentication type 145

CLIENT 145
DCE 147
DCS 147
SERVER 145

authority 156
configuration parameters 710
database administration (DBADM) 158, 159
levels of 154
removing DBADM from SYSADM 157
removing DBADM from SYSCTRL 157
required for BACKUP command 294
required for EXPORT utility 249
required for IMPORT utility 245
required for REORG utility 548
required for RESTORE command 298
required for ROLLFORWARD command 316
system control (SYSCTRL) 157
system maintenance (SYSMAINT) 157
tasks and required authorities 169

authorization 154
See also authority
choosing for database access 25
definition 154

authorization (continued)
system administration (SYSADM) 156
trusted client 146

authorization names
create view for privileges information 173
retrieving for privileges information 170
retrieving names with DBADM authority 171
retrieving names with table access authority 171
retrieving privileges granted to 172

AutoLoader utility
troubleshooting 238

automatic restart 289
AUTORESTART 271
autorestart database configuration parameter 361, 669

DB2 transaction manager considerations 354
XA interface considerations 370

avg_appls configuration parameter 649
affect on query optimization 424

B
backbufsz configuration parameter 614
backing up database

fixed-disk media 298
backup 293

See also BACKUP command
buffer for 295
container names 297
frequency 280
images 296
invoking 295
offline 280
online 280
planning 294
planning your strategy 294
quiesce 294
storage considerations 281
user exit program 282

BACKUP command
access errors, error handling 296
authority required 294
buffer 295
concurrency control 296
considerations for 293
database alias restriction 295
DB2 File Manager considerations 325
disk output created 297
overview of 293
system crash 296, 304
tape output created 297

 Index 1193

BACKUP command (continued)
use with ADSTAR Distributed Storage Manager 334

BACKUP DATABASE utility
considerations for user exit program 1062
default backup buffer size (backbufsz)

parameter 614
error handling for user exits 1065
user exit program for OS/2 1055

backup domain controller
configuring DB2 to use 1184

backup_pending configuration parameter 680
benchmark program

creating 588
sample report 595
SQL statements 587
step summary 595

benchmarking
db2batch tool 588
overview of 585
preparations for 586
testing methods 585
testing process 593

bidirectional CCSID support 1143
CCSID table 1143
implementation 1145

BIND privilege
definition of 162

BINDADD privilege, definition 159
binding

changing configuration parameters 604
command line processor 86
database utilities 86
default for DEGREE option 421
isolation level, specifying 391
rebinding invalid packages 165

BLOB 32
See also large objects

block fetch 414
See also row blocking

block-structured devices 90
broadcast inner-table joins 500
broadcast outer table joins 497
buffer pool

8 KB page size and storage requirements 54
binding database applications 610
choosing number of 538
consideration for outer versus inner table

determination 493
database managed storage (DMS) 550
mapping table space to 54

buffer pool (continued)
memory required 537
multiple 537
overview of 533
performance considerations 610
sizing using buffpage configuration parameter 608
storage considerations 610

buffered inserts
IMPORT utility 246

buffpage configuration parameter 608
affect on query optimization 423
impact on memory 529
managing multiple buffer pools 537

C
caching of database 421
call level interface

binding to a database 86
calling format for user exits

for OS/2 1058
for UNIX-based systems 1059

candidate keys
identifying 11

capacity management configuration parameters 608
Cartesian products 494

star schema 494
CASCADE delete rule

overview of 21
cascading assignment 730
CATALOG DATABASE

example of 87
CATALOG GLOBAL DATABASE command

specifying Distributed Computing Environment (DCE)
information 929

catalog node 284
connection for data redistribution 581
description 65
importance for recovery 284

catalog views 45, 965, 1023
See also system catalog
BUFFERPOOLNODES 969
BUFFERPOOLS 968
CHECKS 970
COLAUTH 971
COLCHECKS 972
COLDIST 441, 973
COLUMNS 439, 974
CONSTDEP 976
DATATYPES 977

1194 Administration Guide

catalog views (continued)
DBAUTH 978
EVENTMONITORS 979
EVENTS 980
FUNCPARMS 981
functions 459, 982
INDEXAUTH 985
INDEXES 440, 986
KEYCOLUSE 989
NODEGROUPDEF 990
NODEGROUPS 991
overview 965
PACKAGEAUTH 992
PACKAGEDEP 993
PACKAGES 994
PARTITIONMAPS 997
PROCEDURE PARAMETERS 999
PROCEDURES 998
read-only 966, 1024
REFERENCES 1000
SCHEMAAUTH 1001
SCHEMATA 1002
STATEMENTS 1003
SYSSTAT.COLUMNS 1016
SYSSTAT.FUNCTIONS 1017
SYSSTAT.INDEXES 1019
SYSSTAT.TABLES 1022
SYSSTAT.COLDIST 441
SYSSTAT.COLUMNS 439
SYSSTAT.FUNCTIONS 459
SYSSTAT.INDEXES 440
SYSSTAT.TABLES 439
TABAUTH 1004
TABCONST 1006
TABLES 439, 1007
TABLESPACES 1010
TRIGDEP 1011
TRIGGERS 1012
updatable 966
update-capable 454
VIEWDEP 1013
VIEWS 1014

catalog views (structured types)
ATTRIBUTES 1027
CHECKS 1028
COLCHECKS 1029
COLUMNS 1030
CONSTDEP 1033
DATATYPES 1034
FUNCPARMS 1035

catalog views (structured types) (continued)
FUNCTIONS 1036
HIERARCHIES 1039
INDEXES 1040
KEYCOLUSE 1043
OBJSTAT.TABLES 1053
overview 1023
PACKAGEDEP 1044
REFERENCES 1045
TABCONST 1046
TABLES 1047
TRIGDEP 1050
TRIGGERS 1051
updatable 1024
VIEWDEP 1052

catalog_noauth configuration parameter 714
catalogcache_sz configuration parameter 611
cataloging database 87
CDS 917
cell directory service (CDS) 917
changing database configuration 125
changing environment variables 124
changing node configuration file 124
changing partitioning key 134
changing passwords 886
changing registry variables 124
changing table attributes 135
character comparison, overview 1147
character conversion

performance considerations 418
character serial devices 90
character sets

extended UNIX code (EUC) 1141
chngpgs_thresh configuration parameter 641

managing the buffer pool 534
CL_SCHED sample table 946
client

backing up database, restriction 305
CLIENT level security 146
client support

client I/O block size (rqrioblk) parameter 632
TCP/IP service name (svcename) parameter 687
transaction program name (tpname) parameter 688

CLIENT, authentication type 145
clients

trusted 146
untrusted 146

CLOB 32
See also large objects

 Index 1195

cluster configuration 730
cluster management 730
Cluster Manager 751
cluster monitoring for HACMP ES 757
clustered index

cluster ratio statistic 483
code page

DB2CODEPAGE environment variable 1125
guidelines for selecting 418
how determined 1125
import/export considerations 252, 253, 254
locales

deriving in applications 1126
how DB2 derives locales 1126

RESTORE command 300
supported Windows 95 code pages 1125
supported Windows NT code pages 1125

code page support
character conversion 418

code point, definition of 1146
codepage configuration parameter 678
codeset configuration parameter 678
collate_info configuration parameter 678
collating sequence

overview of 1145
samples of 1149
specifying 1148
use in character comparisons 1147

collating sequences 1145
collocated join 497
collocation

data redistribution preservation of 579
replicated summary tables 42, 495

column
adding 129
altering 129
attribute 3
defining 7, 95
estimating row size 30
naming rules 888

column UDF 111
comm_bandwidth configuration parameter 705
command line processor

binding to a database 86
commands

db2evmon 555
commit

errors during two-phase 358
number of commits to group (mincommit) 664
two-phase 355

communication
connection retries, number 699
FCM daemon to agent, request blocks 699
node, connection elapse time 696
node, message buffers 697

communication protocol
VIA 1187

communications bandwidth configuration
parameter 425

compiler
overview of 463
overview of query rewrite 466

composite key
definition of 10, 19

composite tables
composite inner 495
composite outer 495

compound SQL
overview of 418
performance considerations 418

concurrency
controlling using locks 392
overview of 387

concurrency and granularity
effect of locks on 395

concurrency control
BACKUP command 296
maximum number of active applications (maxappls)

parameter 648
maximum number of concurrently active databases

(numdb) parameter 707
concurrent access mode 721
configuration 597

See also benchmarking
changing database manager parameters 598
changing database parameters 603
database manager parameters 598
database parameters 602
parameter details, overview of 607
parameter summary, database 604
parameter summary, database manager 599
parameters, overview of 597
tuning parameters 597

configuration file
governor example 566

configuration file, governor 560
configuration parameter

ADSTAR Distributed Storage Manager 669
affecting optimizer 423
agent communication memory 631

1196 Administration Guide

configuration parameter (continued)
agent private memory 620
application communication memory 631
application shared memory 619
applications and agents 647
AUTORESTART 271, 289
capacity management 608
communication protocol setup 686
communications 686
compiler settings 681
Database Application Remote Interface (DARI) 656
database attributes 677
database management 677
database manager instance memory 634
database shared memory 608
database status 679
database system monitor 704
DB2 Discovery 694
DB2 File Manager 717
diagnostic information 702
Distributed Computing Environment (DCE) 928
distributed services 690
distributed unit of work 673
I/O and storage 641
instance administration 710
instance management 702
locks 638
log activity 664
log files 659
logging 659
migration of 835
parallel operations 696
partitioned database 65, 696
recovery 659, 668
stored procedure 656
system management 705

configuration parameters
database logging 309

configuration, adding servers when system is
running 573

configuration, adding servers when system is
stopped 575

configuration, changing the size of a 571
configuration, dropping server with DB2STOP

CMD/API 577
conn_elapse configuration parameter 696
CONNECT privilege, definition 159
CONNECT statement

specifying Distributed Computing Environment (DCE)
information 929

connection
elapse time 696
number of retries 699

connection elapse time (conn_elapse) database
manager configuration parameter 696

connection entry 698
connection pooling, MTS 381
constraint

adding 130
changing 129
dropping 131
Explain tables 1067

constraint name
defining foreign keys 101
defining table check constraints 102

constraint violations
checking 224

constraints
types of 17

container names 297
containers

adding (to DMS table space) 127
DMS table space design 50
logical file system 48
logical volume device 51
overview of 43
SMS table space 46
SMS table space design 47
suggestions for parallel I/O 544

Control Center
Event Analyzer 554
Performance Monitor 554
Snapshot Monitor 554

CONTROL privilege
definition of 160
implicit issuance 165
package privileges 162

controlling the rah command 1176
conversion

of locks, rules for 398
cooked devices 90
Coordinated Universal Time 701
coordinator agent 551

maximum number at node 654
coordinator database partition, considerations for

dropping 577
coordinator node xxxi
copyprotect configuration parameter 679
country configuration parameter 678

 Index 1197

CPU speed configuration parameter
affect on query optimization 424

cpuspeed configuration parameter 706
crash recovery 288

overview of 270
RESTART DATABASE 271
triggering 290

CREATE ALIAS statement
example of 120
using 119

CREATE DATABASE API
SQLEDBDESC structure 1148

CREATE DATABASE command
example of 82

create HACMP ES container examples 731
CREATE INDEX statement

example of 122
unique index 123

CREATE TABLE statement
defining check constraints 102
defining referential constraints 100
example of 96
using multiple table spaces 107

CREATE TABLESPACE statement
example of 89

CREATE TRIGGER statement
example of 110

CREATE VIEW statement
changing column names 115
example of 114

CREATE_NOT_FENCED privilege, definition 159
CREATETAB privilege, definition of 159
creating 5

See also defining
creating alias 119
creating index 120
creating schema 94
creating table 95
creating table in multiple table spaces 107
creating table space 89
creating trigger 109
creating typed table 103
creating typed view 116
creating user-defined distinct type 112
creating user-defined function 110
creating user-defined structured type 113
creating user-defined type 112
creating view 114
CURRENT DEGREE special register 421

CURRENT SCHEMA 94
CURRENT SCHEMA special register 64
cursor

close using WITH RELEASE clause 405
read only, uncommitted read 390
updatable, uncommitted read 390

cursor stability
overview of 390

D
DARI 420

See also stored procedures
data

caching when database is started 421
changing distribution 126
connection entries for agents to pass, number 698

data integrity
concurrency, overview 387
protecting using locks 392
unique index 120

data security
controlling database access 141
importance of 141
securing system catalog 172

data structure
SQLEDBDESC 1148

data transfer
between DB2 for Universal Database

databases 255
between host and workstation 260
EXPORT utility 248
file formats supported 250
IMPORT utility 243
overview of 203

data type
column definition 7, 95
multi-byte character set 96

database 284
activate 551
agents 551
altering nodegroup 126
auto restart enable (autorestart) parameter 669
backup 293
backup pending indicator (backup_pending)

parameter 680
catalog node, media failure considerations 284
cataloging 87
changing 126
changing distribution of data 126

1198 Administration Guide

database (continued)
code page for database (codepage) parameter 678
codeset for database (codeset) parameter 678
collating information (collate_info) parameter 678
configuration parameter summary 604
configuration parameters 602
connection considerations 366
considerations before changing 124
considerations for creating 66
country code for database (country) parameter 678
crash recovery 290
creating 82
creating across all nodes 65
data caching when database is started 421
database is consistent (database_consistent)

parameter 680
database partition synchronization, recovery

considerations 287
deactivate 551
deciding what data to record 3, 5
defining tables 5
designing 3
determining list of data nodes 294
dropping 126
enabling data partitioning 64
estimating size 29
implementing design 61
inconsistent after restart 290
maximum file open per application (maxfilop)

parameter 650
maximum number of concurrently active databases

(numdb) parameter 707
migration 833
naming rules 885
normalizing tables 12
number of containers (numsegs) parameter 646
object naming rules 885
other design considerations 24
package dependencies 139
parameter file SQLDBCON 602
physical design 27
recovering failed database partition server 292
recovery log 86
release level (release) parameter 677
resource manager in TP Monitor environment 365
restore 298
roll-forward changes 308
storage for an application 528
subdirectory created 27
territory for database (territory) parameter 678

database (continued)
transaction recovery on the failed database partition

server 290
transaction recovery when the database partition

server is active 290
transaction recovery, overview 289
uniquely identifying entities 11
updating multiple databases 348
user exit enable (userexit) parameter 668
user exit status indicator (user_exit_status)

parameter 681
using multiple databases in a single transaction 347

database access
affect of optimization class 406
choosing authorizations 25
controlling 141
overview of 476, 477
privileges through package with SQL 166

database administrator (DBADM) authority
privileges 158
retrieving names with 171

database alias 885
for BACKUP command 295
naming rules 885
RESTORE command 299

Database Application Remote Interface (DARI) 420
See also stored procedures
keep DARI process indicator (keepdari)

parameter 657
maximum number of DARI processes (maxdari)

parameter 658
database configuration

app_ctl_heap_sz parameter 619
changing 125
created file 80

database creation, specifying collating sequence 1148
Database Descriptor Block (SQLEDBDESC), specifying

collating sequences 1148
database files

index data 49
log files 28
notes of caution 28
SMS table space 48
SQLINSLK 28
table data 49

database locator objects
creating 919
example 919

database logs 277
configuration parameters 309

 Index 1199

database managed storage 50
See also DMS table space

database manager 289
access control 163
binding utilities 86
configuration parameter summary 599
configuration parameters 598
default database path (dftdbpath) parameter 714
governor affect on performance 570
index 122
machine node type (nodetype) parameter 708
naming rules 885
parameter file db2systm 598
recovering failed database partition server 292
start timeout 702
starting and stopping 62
stop timeout 702
transaction failure, reducing impact 286
transaction recovery on the failed database partition

server 290
transaction recovery when the database partition

server is active 290
transaction recovery, overview 289
using memory 527

database manager configuration
conn_elapse parameter 696
fcm_num_anchors parameter 697
fcm_num_buffers parameter 697
fcm_num_connect parameter 698
fcm_num_rqb parameter 699
java_heap_sz parameter 637
max_connretries parameter 699
max_coordagents parameter 654
max_time_diff parameter 701
num_initagents parameter 656
num_poolagents parameter 655
start_stop_time parameter 702

database managment, configuration parameters 677
database monitor

using 554
database objects

access control 163
creating 918
example 918
naming rules 888, 1142

database partition xxxi
database partition, adding to a system with no

databases 573
database partition, adding when system is running 573

database partition, considerations for dropping a
server 577

database partition, dropping with DB2STOP
CMD/API 577

database partitions, adding to a system 572
database partitions, adding when system is

stopped 575
database restore

overview of 271
database roll-forward recovery

overview 273
database seed 302
database startup cost 551
database system monitor

configuration parameters 704
fcm_num_rqb database manager parameter,

tuning 699
database_consistent configuration parameter 680
database_level configuration parameter 677
databases

non-recoverable 276
recoverable 276

DataLink access token expiry interval configuration
parameter 717

DataLink number of backups configuration
parameter 717

DataLink number of copies configuration
parameter 718

DataLink time after drop configuration parameter 718
DataPropagator Relational (DPROPR)

overview 203
date

definition of 1150
formats 1152

date strings
definition of 1151

datetime values
overview of 1150
string representations 1150

DAU (DB_Authentication) 922
DB_Authentication (DAU) 922
DB_Comment (DCO) 923
DB_Communication_Protocol (DCP) 923
DB_Database_Locator_Name (DLN) 924
DB_Database_Protocol (DDP) 924
DB_Native_Database_Name (DNN) 924
DB_Object_Type (DOT) 924
DB_Principal (DPR) 922
DB_Product_Name (DPN) 924

1200 Administration Guide

DB_Product_Release (DRL) 924
DB_Target_Database_Info (DTI) 924
DB2

starting on Windows NT 62
DB2 Administration Server (DAS) 74

communications 76
configuration 75
configuring 73
Control Center communications 76
creating 72
discovery of other servers 78
enabling discovery of 78
environment 78
internode administrative communications 76
internode administrative communications in

partitioned database system (UNIX) 76
internode administrative communications in

partitioned database system (Windows NT) 77
overview 72
ownership rules 71
registry variable considerations 78
registry variables 78
removing 74
security 77
security considerations 74
service ports 76
setting up with partitioned database system 74

example 74
starting and stopping 73
UNIX EEE servers 76
Windows NT EEE servers 77

DB2 concepts
overview xxix

DB2 Connect 203
See also data transfer

DB2 failover examples 725
DB2 File Manager 717

backup utility considerations 325
detection of situations requiring reconciliations 333
export utility considerations 241
exporting between instances 242
import utility considerations 243
interactions with recovery 329
load utility considerations 240
point-in-time roll-forward example 328
reconcile_not_possible state 327
reconcile_pending state 327
reconciliation procedure 334
reconciling 333
removing table from reconcile_not_possible

state 332

DB2 File Manager (continued)
restore utility considerations 326
restoring databases and table spaces and rolling

forward to end of logs 328
restoring databases and table spaces and rolling

forward to point in time 328
restoring databases from an offline backup without

rolling forward 327
rollforward utility considerations 326
running export utility 241
troubleshooting load utility 240

DB2 library
books 825
Information Center 832
language identifier for books 828
late breaking information 829
online help 824
ordering printed books 831
printing PostScript books 830
searching online books 830
setting up document server 829
SmartGuides 823
structure of 823
viewing online books 829

DB2 parallelism concepts
both intra-partition and inter-partition

parallelism xxxvi
coordinator node xxxi
database partition xxxi
enabling parallelism xlvi
I/O parallelism xxxiv
inter-partition parallelism xxxv
intra-partition parallelism xxxiv
multi-partition nodegroup xxxii
nodegroup xxxii
overview xxxi
partitioned database xxxi
query parallelism xxxiv
single-partition database xxxi
types of parallelism xxxiii
utility parallelism xxxvii

DB2 shared nothing model 721
DB2 Syncpoint Manager

recovery of indoubt transactions 361
when required 350

DB2 Syncpoint Manager (SPM) 361
DB2 transaction manager

database configuration considerations 353
db2_all 1169, 1170

 Index 1201

DB2_AVOID_PREFETCH 906
db2_call_stack 1170
DB2_CORRELATED_PREDICATES 905
DB2_FALLBACK 911
DB2_FORCE_FCM_BP 904
DB2_FORCE_NLS_CACHE 896
DB2_FORCE_TRUNCATION 912
DB2_GRP_LOOKUP 912
db2_kill 1170
DB2_LIKE_VARCHAR 912
DB2_LOADSORT_STACKSZ 913
DB2_MMAP_READ 906
DB2_MMAP_WRITE 907
DB2_NO_PKG_LOCK 907
DB2_PRED_FACTORIZE 905
DB2_RR_TO_RS 909
DB2_SORT_AFTER_TQ 914
DB2_VECTOR 906
DB2_VI_DEVICE 901
DB2_VI_ENABLE 901
DB2_VI_VIPL 901
DB2ACCOUNT 889
DB2ADMINSERVER 910
db2adutl utility 338

DELETE command 340
EXTRACT command 340
QUERY command 339

db2adutl utility examples 340
DB2ATLD_PORTS 903
db2audit 178
db2audit.log 175
db2batch benchmarking tool 588
DB2BIDI 889
DB2BQTIME 903
DB2BQTRY 903
DB2CHECKCLIENTINTERVAL 895
DB2CHKPTR 906
DB2CLIENTADPT 902
DB2CLIENTCOMM 902
DB2CLIINIPATH 910
DB2CODEPAGE 889
DB2COMM 895
DB2COUNTRY 889
DB2DATALINK 910
DB2DBDFT 890
DB2DBMSADDR 890
DB2DEFPREP 910
DB2DIRPATHNAME 902
DB2DISCOVERYTIME 890

DB2DMNBCKCTLR 911
using 1184

db2empfa 545
DB2ENVLIST 893
db2event directory 833
db2exfmt tool 520, 1122
db2expln 1089

See also explain tool
db2gov command 557
db2govlg command 569
db2gpmap (get partitioning map) tool 1166
db2icrt command 66
DB2INCLUDE 890
DB2INSTANCE 893
DB2INSTANCE environment variable

defining default instance 63
DB2INSTDEF 890
DB2INSTOWNER 904
DB2INSTPROF 894
DB2IQTIME 903
DB2LIBPATH 894
DB2LOADREC 319, 912
DB2LOCK_TO_RB 913
db2look tool

overview of 461
DB2MSCS utility

DB2MSCS.CFG parameters 770
overview 770
setting up a single-partition database system 774
setting up partitioned database system 775
setting up two single-partition database systems for

mutual takeover 774
DB2NBADAPTERS 896
DB2NBBRECVNCBS 897
DB2NBCHECKUPTIME 896
DB2NBDISCOVERRCVBUFS 891
DB2NBINTRLISTENS 897
DB2NBRECVBUFFSIZE 897
DB2NBRESOURCES 898
DB2NBSENDNCBS 898
DB2NBSESSIONS 898
DB2NBXTRANCBS 898
DB2NETREQ 899
DB2NODE 904
DB2NODE environment variable

exported when adding server 574
db2nodes.cfg file 79

adding database partitions when redistributing
data 580

dropping database partitions when redistributing
data 580

1202 Administration Guide

db2nodes.cfg, having the database manager
update 575

db2nodes.cfg, updating manually 576
DB2NOEXITLIST 913
DB2NTMEMSIZE 908
DB2NTNOCACHE 908
DB2NTPRICLASS 909
DB2NTREMOTEPREG 913
DB2NTWORKSET 909
DB2OPTIONS 903
DB2PATH 894
DB2PORTRANGE 904
DB2PRIORITIES 909
DB2RETRY 899
DB2RETRYTIME 900
DB2ROUTE 902
DB2RQTIME 903
DB2SERVICETPINSTANCE 900
db2set command 66, 67
DB2SLOGON 891
DB2SORCVBUF 913
DB2SORT 914
DB2SOSNDBUF 900
db2split program

configuration file, example 1164
data file, example 1164
header information in output files 1167
parameters 1159
purpose 1157
running 1166
using 1157

db2start command 62
db2stop command 62
DB2SYSPLEX_SERVER 900
DB2SYSTEM 915
DB2TIMEOUT 891
DB2TRACEFLUSH 892
DB2TRACENAME 891
DB2TRACEON 892
DB2TRCSYSERR 892
db2uexit

See also user exit program
See also user exits for OS/2
See also user exits for UNIX-based systems
user exit programs for OS/2 1057
user exit programs for UNIX-based systems 1058

DB2UPMPR 915
DB2YIELD 893
DBCLOB 32

See also large objects

dbexpln tool
data from compiler 466

dbheap configuration parameter 610
impact on memory 531

DCE network database
connecting 932, 933
creating 931

DCE, authentication type 147
DCO (DB_Comment) 923
DCP (DB_Communication_Protocol) 923
DCS, authentication type 147
DDP (DB_Database_Protocol) 924
DEACTIVATE DATABASE command 551
deadlocks

checking for 638
configuration parameter 638
detecting 399
overview of 399

decorrelation of a query 472
default attribute specification 96
default value

alternative to null value 9
column definition 9

defining referential constraint 99
defining table check constraint 102
defining unique constraint 98
DEGREE bind option 421
DEL file format 251

See also ASCII file formats
DELETE privilege, definition 160
DELETE rules

types of 21
DELETE statement

referential integrity implications for 21
deleting rows from typed tables 133
DEPARTMENT sample table 946
dependent row

definition of 20
dependent table

definition of 20
dereference operator 107
design of database

altering 124
design, implementing 61
DETACH command

overview of 63
determining problems with rah 1178
dft_account_str configuration parameter 709
dft_client_adpt configuration parameter 693

 Index 1203

dft_client_comm configuration parameter 693
dft_degree configuration parameter 421, 424, 683
dft_extent_sz configuration parameter 646
dft_loadrec_ses configuration parameter 671
dft_mon_bufpool configuration parameter 704
dft_mon_lock configuration parameter 704
dft_mon_sort configuration parameter 705
dft_mon_stmt configuration parameter 704
dft_mon_table configuration parameter 704
dft_mon_uow configuration parameter 704
dft_monswitches configuration parameter 704
dft_prefetch_sz configuration parameter 645
dft_queryopt configuration parameter 424, 683
dft_sqlmathwarn configuration parameter 681
dftdbpath configuration parameter 714
diaglevel configuration parameter 702
diagpath configuration parameter 703
dir_cache configuration parameter 636
dir_obj_name configuration parameter 691
dir_path_name configuration parameter 691
dir_type configuration parameter 690
directed inner-table and outer-table joins 499
directed inner-table join 501
directed outer-table joins 498
directories

local database directory 85
node directory 86
system database directory 85

directory cache
effect of cataloging databases 87

directory objects
creating 917
object classes attributes 921

directory under which Java Development Kit 1.1 is
installed (jkd11_path) database manager
parameter 710

disaster recovery
considerations 284

discover configuration parameter 694
discover_comm configuration parameter 695
discover_db configuration parameter 694
discover_inst configuration parameter 695
Distributed Computing Environment (DCE)

ATTACH command 929, 934
authentication 149
CATALOG GLOBAL DATABASE command 929
CDS 917
configuration parameters 690
configuration parameters and registry variables 928
CONNECT statement 929, 935

Distributed Computing Environment (DCE) (continued)
directory services restrictions 939
directory services tasks 936
GDS 917
how directories are searched 934
overview of directory services 88
restrictions 153
security services 149
setup DB2 client instance 153
setup DB2 server 151
setup DB2 user 149
temporarily overriding DCE directory

information 936
using directory services 937

distributed transaction processing 941
See also X/Open transactional manager interface

(XA)
dl_expint configuration parameter 717
dl_num_backup configuration parameter 717
dl_num_copies configuration parameter 718
dl_time_drop configuration parameter 718
dlchktime configuration parameter 638
DLN (DB_Database_Locator_Name) 924
DMS table space

adding containers 51
advantages 59
allocating space 50
caching of 550
choosing extent size 56
creating 89
increasing storage 51
overview of 50
performance considerations 550
size 50
types of 50

DNN (DB_Native_Database_Name) 924
dos_rqrioblk configuration parameter 633
DOT (DB_Object_Type) 924
double byte character set user

data type 96
DPN (DB_Product_Name) 924
DPR (DB_Principal) 922
DPROPR 203

See also DataPropagator Relational (DPROPR)
drda_heap_sz configuration parameter 626

impact on memory 531
DRL (DB_Product_Release) 924
DROP DATABASE command

example of 126

1204 Administration Guide

DROP INDEX statement
 example of 138

DROP TABLE statement
example of 134

DROP TABLESPACE statement
 example of 127

DROP VIEW statement
 example of 137

dropping a summary table 138
dropping constraint 131
dropping database 126
dropping index 138
dropping node from system

when redistributing nodegroup 580
dropping schema 128
dropping table 134
dropping table check constraint 132
dropping trigger 136
dropping unique constraint 131
dropping user table space 127
dropping user-defined function 136
dropping user-defined type 136
dropping view 137
DTI (DB_Target_Database_Info) 924
dynamic SQL

distribution statistics 445
evaluating optimization class 412
EXECUTE privilege for database access 166
explain facility 520, 521
setting optimization class 410

dynexpln 1089
See also explain tool

E
eliminating duplicate entries from machine list 1175
EMP_ACT sample table 951
EMP_PHOTO sample table 953
EMP_RESUME sample table 953
EMPLOYEE sample table 947
enhanced scalability 729

See also HACMP ES
entity

definition of 3
values 11

environment variables 66, 889
$DB2DBDFT, running db2gpmap 1166
changing 124
DB2LOADREC 319
DB2NODE, exported when adding server 574

environment variables (continued)
setting on OS/2 68
setting on UNIX 70
setting on Windows 95 69
setting on Windows NT 69

Eprimary node 739
erasing the sample database 946
error handling

access errors, BACKUP command 296
access errors, RESTORE command 300
configuration parameters 702
indoubt transaction in TP Monitor environment 367
indoubt transactions 359
log full 309
system crash during BACKUP 296, 304
two-phase commit 359
user exit program 1063
user exit program for OS/2 1065
XA interface 374

estore_seg_sz configuration parameter 646
impact on memory 531

event definition example for HACMP ES 750
Event Management 751
event monitoring 749
event snapshots 555
exclusive mode

reasons for using 405
EXECUTE privilege

database access with dynamic SQL 166
database access with static SQL 166
definition of 162

explain 521
FOR SNAPSHOT 521
Visual 510, 524
WITH SNAPSHOT 521

explain facility 466
See also dbexpln tool
analysis 512
capturing information 511, 520
choosing a tool 509
concepts 513
data from compiler 465
data organization 515
decision-making 522
explain instance 515
graphical representation 513
instance information 516
keywords 518
objects 514
obtaining data 520

 Index 1205

explain facility (continued)
operators 515
overview of 509
snapshot information 518
statement information 517
table information 518
using 511

explain instance 515
explain snapshot 521
explain table format tool 1122
explain tables

accessing 509
explain tool 1089

aggregation 1107
command options 1090, 1093
data streams 1105
description of output 1096
examples of db2expln and dynexpln output 1112
insert, update, and delete 1106
joins 1104
miscellaneous statements 1111
overview of 1089
parallel processing 1108
row identifier (RID) preparation 1106
running 1090
syntax 1090, 1093
table access 1097
temporary tables 1101

EXPLAIN_ARGUMENT table 1067
EXPLAIN_ARGUMENT table definition 1082
EXPLAIN_INSTANCE table 1071
EXPLAIN_INSTANCE table definition 1083
EXPLAIN_OBJECT table 1072
EXPLAIN_OBJECT table definition 1084
EXPLAIN_OPERATOR table 1074
EXPLAIN_OPERATOR table definition 1085
EXPLAIN_PREDICATE table 1076
EXPLAIN_PREDICATE table definition 1086
EXPLAIN_STATEMENT table 1077
EXPLAIN_STATEMENT table definition 1087
EXPLAIN_STREAM table 1079
EXPLAIN_STREAM table definition 1088
explicit schema use 63
EXPORT utility

authority 249
authorization and privileges required 249
delimited ASCII (DEL) files 251
general description 260
information required 248
integrated exchange format (IXF) files 254

EXPORT utility (continued)
Lotus worksheet (WSF) files 253
overview of 248
recreating exported data 249

extended storage cache 556
Extended UNIX Code (EUC)

character sets 1141
code page support 419

extent size
choosing 540
choosing the value 56
definition of 44
SMS table space design 47

F
failover examples 722
failover support 721, 729

See also High Availability Cluster Multi-Processing
configurations

fast communication manager (FCM)
FCM Connection Entries (fcm_num_connect)

parameter 698
fcm_num_buffers database manager parameter 697
message anchors, number, specifying 697
message buffers, number, specifying 697
number of FCM message anchors fcm_num_anchors

database manager parameter 697
Number of FCM Request Blocks (fcm_num_rqb)

parameter 699
FCM buffers (fcm_num_buffers) database manager

configuration parameter 697
FCM communications 81
FCM connection entries (fcm_num_connect) database

manager parameter 698
FCM tuning 533
fcm_num_anchors configuration parameter 697
fcm_num_buffers configuration parameter 697
fcm_num_connect configuration parameter 698
fcm_num_rqb database manager configuration

parameter 699
FETCH FIRST clause 414
file format

delimited ASCII (DEL) 251
for transferring data 250
nondelimited ASCII (ASC) 252
overview for EXPORT utility 250
overview for IMPORT utility 250
overview for LOAD utility 250
PC/IXF 254

1206 Administration Guide

file format (continued)
worksheet (WSF) 253

files 28
fileserver configuration parameter 688
finding errors

data redistribution log file 583
FOR FETCH ONLY clause 416
FOR READ ONLY clause 416
FOR UPDATE clause 417
foreign key

adding 130
composite 101
constraint name 101
DROP FOREIGN KEY clause, ALTER TABLE

statement 131
IMPORT utility, referential integrity implications

for 102
LOAD utility, referential integrity implications for 102
privileges required for dropping 131
rules for foreign key definitions 101
update, referential integrity implications for 23

FOREIGN KEY clause
referential constraints 101
rules for foreign key definitions 101

frequent value statistics
equality predicates 448
number to collect 446
overview of 443
rules for updating 457

G
GDS 917
global directory service (GDS) 917
global level profile registry 67
governor

configuration file 560
configuration file example 566
daemon 559
database manager performance 570
db2gov 557
db2govlg 569
error handling 560
log file 568
obtains statistics 559
purpose 557
querying log file 569
rules 560
starting 557
stopping 557

GRANT statement
implicit issuance 165
security 927
use of 163

GRANT statement
 example of 163

H
HACMP 721, 729

See also High Availability Cluster Multi-Processing
configurations

HACMP ES 729
blank NFS server worksheet 765
blank volume and filesystems worksheet 763
cascading assignment 730
cluster configuration 730
cluster management 730
Cluster Manager 751
cluster monitoring 757
configuration examples 739
configuring 735
create container examples 731
enhanced scalability 729
Eprimary 739
event definition example 750
Event Management 751
event monitoring 749
failover 729
heartbeats 729
hot standby takeover 736
installation 758
keepalive packets 729
messages 729
migration 759
mutual takeover 736
new install 758
NFS server node 737, 739
NFS server takeover example 738
NFS server worksheet 764
node availability 729
node_down event 729
non-disruptive maintenance 748
other scripts 756
process summary 752
rc.db2pe 735
rc.db2pe script 737
recovery program file 751
recovery scripts 754
rotating assignment 730

 Index 1207

HACMP ES (continued)
rules file 749
rules file restriction 750
rules.hacmprd file 749
script file installation 753
script files 752
shutdown 754
SP frame 730
SP switch alias address 739
SP switch considerations 738
START_STOP_TIME 735
startup recommendations 748
switch alias address 736
unique names 731
user-defined event 749
user-defined events 729
volume and filesystems worksheet 762
worksheets 760

HACMP ES configuration examples 739
HACMP ES rules file 729
hardware environments

logical database partitions xliii
overview xxxviii
partitions with multiple processors xlii
partitions with one processor xli
single partition, multiple processors xxxix
single partition, single processor xxxviii

hash join
overview of 491

hashing algorithm 225
header information in data files, db2split 1167
heartbeats 729
heuristic operations

guidelines 360, 368
recovering indoubt transactions 359

High Availability Cluster Multi-Processing
configurations 721

hot standby mode 722
modes of failover support 721
mutual takeover mode 725
overview 721

hot standby mode 721
hot standby takeover HACMP ES example 736

I
I/O

configuration parameters 641
enabling parallel I/O 543
parallelism xxxiv

I/O (continued)
prefetch parallel 541

IBM Relational Data Replication Tools
details 267
using 266

IBMCATGROUP nodegroup 83
IBMDEFAULTGROUP nodegroup 83
IBMTEMPGROUP nodegroup 83
idle agent 552
images

backup 296
implicit schema use 64
IMPLICIT_SCHEMA authority 94
IMPLICIT_SCHEMA privilege, definition of 159
IMPORT

unequal code page 245
IMPORT utility

authority 245
authorization and privileges required 245
binding to a database 86
buffered inserts 246
client/server 246
delimited ASCII (DEL) files 251
differences to LOAD 247
general description 260
information required 244
integrated exchange format (IXF) files 254
large objects 244
LOAD 102
LOBs 244
Lotus worksheet (WSF) files 253
nondelimited ASCII (ASC) files 252
overview of 243
recreating exported data 245
referential integrity implications for 102
remote database 246

IN_TRAY sample table 954
incompatibilities

description 839
index

administering 431
changing 138
clustering 431
consideration for outer versus inner table

determination 493
CREATE INDEX statement 122
CREATE UNIQUE INDEX statement 123
creating 120
definition of 120
definition of index ANDing 482

1208 Administration Guide

index (continued)
definition of index ORing 482
disadvantages of indexing 428
DROP INDEX statement 138
estimating size 32
guidelines for indexing 429
how used 122
index re-creation time (indexrec) parameter 669
index-only access 481, 1099
indexing versus no indexing 428
lock mode 402
look-up, affect on locks 401
management, overview of 427
multiple 482
naming rules 888
non-unique 122
nonprimary 138
optimizing number 121
prefetch 539
primary 99
primary versus user-defined 121
privileges 162
reorganizing 548
scan 477

See also index scan
structure 477
temporary space 33
unique 123
unique on primary key 9
unique on unique key 9

index clustering
cluster factor statistic 437
cluster ratio statistic 437

index creation 431
index key, definition 121
index page prefetch 539
INDEX privilege, definition 160
index scan

clustered index 483
ordering data 480
overview of 477
predicate 479
predicate terminology 487
search process 478
to delimit a range 478
use of 478
WHERE clause, use of 479

indexes
temporary files 209

indexrec configuration parameter 669
indexsort configuration parameter 644
indoubt transactions

definition of 358
recovering 358, 361, 943
recovery when not using DB2 Syncpoint

Manager 362
recovery when using DB2 Syncpoint Manager 361
resynchronizing 361

initial number of agents in pool (num_initagents)
database manager parameter 656

inner-table and outer-table joins, method 499
inner-table join, method 500, 501
INSERT privilege, definition 160
INSERT statement

referential integrity implications for 21
installation tasks for HACMP ES 758
installing the sample database 945
instance level profile registry 67
instance parallelism support 421
instance profile registry 67
instances

creating 66
overview of 62
time difference among nodes, maximum 701

Integrated Exchange Format 254
See also PC/IXF file format

inter-partition parallelism xxxv
intra-partition and inter-partition parallelism xxxvi
intra-partition parallelism xxxiv

enabling 64
intra-partition parellelism 543
intra_parallel configuration parameter 421, 701
introduction

DB2 concepts xxix
DB2 parallelism concepts xxxi

ipx_socket configuration parameter 689
isolation level

choosing 390
cursor stability 390
description of 388
read stability 389
repeatable read 388
specifying, overview 391
uncommitted read 390

issuing commands to multiple database partition
servers 1169

IXF file format 254
See also PC/IXF file format

 Index 1209

J
java_heap_sz database manager configuration

parameter 637
jdk11_path database manager configuration

parameter 710
join

Cartesian products 494
composite tables 495
definition of 489
eliminating redundancy 468
enumeration algorithm 494
hash join 491
merge join 491
nested loop join 490
optimizer search strategies 493
outer versus inner table determination 492
overview of 490
shared aggregation 468
subquery transformation by optimizer 468
tables 489

join path
definition of 11

join strategies 496
broadcast inner-table 500
broadcast outer table 497
collocated 497
directed inner-table 501
directed inner-table and outer-table 499
directed outer-table 498
in a partitioned database 496

K
keepalive packets 729
keepdari configuration parameter 657
keeping related data together 282
key 9

See also primary key
composite 19
definition of 10, 19
foreign 19
primary 9
unique 9

L
Large Object (LOB)

column considerations 97

large objects
allocation objects 32
column definition 8
data objects 32
DMS storage 550
estimating size 32

LIST INDOUBT TRANSACTIONS command
use in performing heuristic actions 360, 368

LIST NODES CMD
backing up database, determining list of data

nodes 294
LIST NODES command, using when backing up

database 294
LOAD CMD/API

See loading data
LOAD utility

APIs 207
authority required 210
Build phase 205
details 206
differences to IMPORT 247
exception table 223
failure 206
limitations 210
Load phase 205
LOAD QUERY command 207
overview 203
performance considerations 212
phantom quiesce 222
process overview 204
recovery 222
recovery from failures 220
REMOTE FILE considerations 220
restarting using RESTART 221
restarting using RESTARTCOUNT 221
restrictions 210
running concurrent jobs 220
tasks 207
temporary files 219
temporary space limitations 212
unequal code page 211
using 203
using LOAD QUERY 219

loading data
db2split program, splitting data 1157
db2split, example file 1164
populating table in existing table space 1158
populating table in new table space 1158

LOB 32
See also large objects

1210 Administration Guide

local database directory
overview of 85

locales
deriving in application programs 1126
how DB2 derives 1126

LOCK TABLE statement
in minimizing escalations 399
use to override locks 404

locking
maximum percent of lock list before escalation

(maxlocks) parameter 639
maximum storage for lock lists (locklist)

parameter 615
time interval for checking deadlock (dlchktime)

parameter 638
locklist configuration parameter 615

affect on query optimization 424
impact on memory 531

locks
acquiring 392
attributes of 393
attributes, types of processing 401
avoiding global deadlocks 399
compatibility of, ensuring 396
configuration parameter 638
conversion of 398
creating, using cursor stability 390
creating, using repeatable read 388
deadlock, using FOR UPDATE OF 400
duration attribute 393
escalation and actions to take 399
escalation of 398
exclusive (X) mode 393
exclusive mode, reasons for using 405
factors affecting 401
improving concurrency 399
intent exclusive (IX) mode 393
intent none (IN) mode 393
intent share (IS) mode 393
locktimeout configuration parameter 399
mode attribute 393
modes for index scan 402
modes for table scan 402
object attribute 393
overview of 392
read stability 389
reducing waits for 399
share (S) mode 393
share mode, reasons for using 405
share with intent exclusive (SIX) mode 393

locks (continued)
state (mode), types of 393
superxclusive (Z) mode 393
update (U) mode 393

locktimeout configuration parameter 640
log

audit 175
log files

governor log file 568
written for data redistribution 583

log_retain_status configuration parameter 680
logbufsz configuration parameter 311, 613
logfilsiz configuration parameter 310, 659
logging

raw devices 91
logging facility 277

See also logs
loghead configuration parameter 664
logical database partitions xliii
logical file system

limits 48
logpath configuration parameter 664
logprimary configuration parameter 309, 660
logretain configuration parameter 312, 667
logs

active 277
archived 277
change database log path (newlogpath)

parameter 663
configuration parameters affecting log activity 664
configuration parameters affecting log files 659
estimating size 35
identifying 321
location 322
location of log files (logpath) parameter 664
log buffer size (logbufsz) parameter 613
log head identification (loghead) parameter 664
log retain enable (logretain) parameter 667
log retain status indicator (log_retain_status)

parameter 680
losing 323
managing 321
next active log (nextactive) parameter 664
number of primary log files (logprimary)

parameter 660
number of secondary log files (logsecond)

parameter 662
offline archived logs 277
online archived logs 277
recovery range and soft checkpoint interval (softmax)

parameter 666

 Index 1211

logs (continued)
size of log files (logfilsiz) parameter 659
storage required 282
use of timestamp 323
userexit program 282

logsecond configuration parameter 310, 662
long field data

alternatives to 31
DMS storage 550
estimating size 31

losing logs 323
Lotus worksheet files 253

See also WSF file format

M
many-to-many relationships 6
many-to-one relationships 5
max_connretries database manager configuration

parameter 699
max_coordagents database manager configuration

parameter 654
max_querydegree configuration parameter 421, 700
max_time_diff database manager configuration

parameter 701
maxagents 552
maxagents configuration parameter 653

effect on memory 529
maxappls configuration parameter 648

DB2 transaction manager considerations 354
effect on memory 529
XA interface considerations 370

maxcagents configuration parameter 652
maxdari configuration parameter 658
maxfilop configuration parameter 650
maximum Java interpreter heap size (java_heap_sz)

database manager parameter 637
maximum number of coordinating agents

(max_coordagents) database manager
parameter 654

maximum query degree of parallelism configuration
parameter 425

maximum time difference among nodes (max_time_diff)
database manager parameter 701

maxlocks configuration parameter 639
affect on query optimization 424

maxtotfilop configuration parameter 650
media failure

logs 282

memory
agent communication memory 631
agent private memory 620
application communication memory 631
application heap size (applheapsz) parameter 623
application shared memory 619
application support layer heap size (aslheapsz)

parameter 631
configuration parameters 529
considerations for system administrator

(SYSADM) 527
database heap (dbheap) parameter 610
database manager instance 634
database shared memory 608
extending 556
for processing a database 528
package cache size (pckcachesz) parameter 617
setting parameter values 532
sort heap size (sortheap) parameter 621
sort heap threshold (sheapthres) parameter 622
statement heap size (stmtheap) parameter 623
use by the database manager 527
use of 527
when committed 532

memory usage 883
application control heap 619

merge join
outer versus inner table determination 493
overview of 491

message anchor 697
messages

audit facility 182
Microsoft Transaction Server

connection pooling 381
enabling support in DB2 379
installation and configuration 380
reusing ODBC connections 382
software prerequisites 379
supported DB2 database servers 380
testing DB2 with sample application 383
transaction time-out and DB2 connection

behavior 381
tuning TCP/IP communications 382
verifying the installation 380

migration 833
authority required 834
overview of 833
release-to-release incompatibilities 835
restrictions 834
steps required 836

1212 Administration Guide

migration (continued)
storage requirements 835

migration tasks for HACMP ES 759
min_priv_mem configuration parameter 629
mincommit configuration parameter 311, 664
minimum recovery time 318
mixed-byte data 261

importing and exporting 261
mon_heap_sz configuration parameter 635
monitor switches 554
monitoring 554

See also ?
monitoring rah processes 1172
moving data 203

See also data transfer
MPP environment xli
multi-partition nodegroup xxxii
multimedia objects 4
multipage_alloc configuration parameter 681

effect on memory 545
multiple buffer pages, allocating 545
multiple instances 62

use with ADSTAR Distributed Storage Manager 337
multiple logical node failover 724
multiple logical nodes 1185
multisite update 345

configuration parameters 673
 overview of 347
recovering indoubt transactions 358
updating multiple databases 348

mutual takeover HACMP ES example 736
mutual takeover mode 721

N
naming scheme, database directories 27
national language support

mixed-byte data 261
national language support (NLS)

bidirectional CCSID support 1143
character sets 1140
datetime values 1150

nested loop join
outer versus inner table determination 492
overview of 490

newlogpath configuration parameter 311, 663
Next Key Exclusive Lock (NX) mode 394
Next Key Share Lock (NS) mode 393
Next Key Weak Exclusive Lock (NW) mode 394

nextactive configuration parameter 664
NFS server node 737, 739
NFS server takeover example 738
nname configuration parameter 686
NO ACTION delete rule

overview of 21
NOCHECKLENGTHS option 211, 245
node 284

catalog, recovery considerations 284
cataloging 65
changing in nodegroup 126
connection elapse time 696
coordinating agent, maximum 654
creating database across all 65
data location, determining 38
data redistribution, process 581
determining list of data nodes 294
determining where RUNSTATS execution

occurs 437
failed database partition server, recovering 292
maximum number of connection retries 699
maximum time difference among 701
message buffers, number, specifying 697
other operations during redistribution 583
redistributing data across database partitions 579
synchronization, recovery considerations 287
transaction recovery on a failed database partition

server 290
transaction recovery on an active database partition

server 290
node configuration file 36

changing 124
creating 79

node configuration file, having the database manager
update 575

node connection retries (max_connretries) 699
node level profile registry 67
node number 79
node_down event 729
nodegroup xxxii

altering 126
creating 88
designing 36
IBMDEFAULTGROUP, table created in by

default 108
initial definition 83
mapping table spaces 54
other operations during redistribution 583
partitioning key, changing 134
partitioning map entries 38

 Index 1213

nodegroup (continued)
recovering failed database partition server 292
redistributing data 579
table considerations 108
transaction recovery on a failed database partition

server 290
transaction recovery when a database partition server

is active 290
nodetype configuration parameter 708
non-disruptive maintenance for HACMP ES 748
non-recoverable databases 276
non-uniform distribution

See frequent value statistics
See quantile value statistics

non-unique index
dropping 138

nonprimary index
dropping 138
dropping implications for applications 138

normal form
first 13
fourth 16
overview of 12
second 13
third 15

normalizing
definition of 12
tables 12

NS (Next Key Share Lock) mode 393
null value

alternative to default value 9
column definition 95

num_estore_segs configuration parameter 647
impact on memory 531

num_freqval configuration parameter 684
num_initagents database manager configuration

parameter 656
num_iocleaners configuration parameter 642

managing the buffer pool 534
num_ioservers configuration parameter 643

impact on data prefetch 543
num_poolagents 552
num_poolagents configuration parameter

impact on parallel systems 553
num_poolagents database manager configuration

parameter 655
num_quantiles configuration parameter 685
number of FCM message anchors (fcm_num_anchors)

database manager parameter 697

number of FCM request blocks (fcm_num_rqb) database
manager parameter 699

numdb configuration parameter 707
effect on memory 529

numsegs configuration parameter 646
See also table space

NW (Next Key Weak Exclusive Lock) mode 394
NX (Next Key Exclusive Lock) mode 394

O
object class attributes

DB_Authentication (DAU) 922
DB_Comment (DCO) 923
DB_Communication_Protocol 923
DB_Database_Locator_Name 924
DB_Database_Protocol 924
DB_Native_Database_Name 924
DB_Object_Type 924
DB_Principal (DPR) 922
DB_Product_Name 924
DB_Product_Release 924
DB_Target_Database_Info 924

objectname configuration parameter 689
occurrence

definition of 3
offline archived logs

ROLLFORWARD command support 277
one-to-many relationships 5
one-to-one relationships 7
online archived logs

ROLLFORWARD command support 277
optimization class

guidelines 410
levels of 407
setting 409

OPTIMIZE FOR clause 412, 416
optimizer 476, 477

See also database access
adjusting amount of optimization 406
affect of statistics 435
creating access plan 465
distribution statistics impact 447
selecting optimal join 493
sorting 503
use of replicated summaryt tables 495

ORG sample table 954
outer versus inner table determination

merge join 493
nested loop join 492

1214 Administration Guide

outer versus inner table determination (continued)
overview of 492

outer-table join, method 498

P
package

access privileges with SQL 166
dependencies 139
dropping 138
inoperative 139
invalid after adding foreign key 130
isolation levels, specifying 388
privileges 162
revoking privileges 165

page cleaners 534
page cleaners configuration parameter

managing the buffer pool 534
page size

8 KB considerations 31
parallel operations

configuration parameters 696
parallelism in DB2, overview xxix
parallelism, intra-partition

enabling 64
parent row

definition 20
parent table

definition 19
partition compatibility

See partitioning data
partitioned database xxxi

configuration parameters 696
partitioned database environment

decorrelation of a query 472
replicated summary tables 42

partitioned failover 723
partitioning data 64

data distribution, specifying 580
data redistribution across database partitions 581
data redistribution in tables 582
data redistribution, error recovery 582
designing your physical database 37
partition compatibility 42
partitioning key and partitioning map interaction 38
partitioning keys, designing your physical

database 39
partitioning map, definition 39
partitioning map, target, specifying during data

redistribution 580

partitioning key
changing 134
data hashing 38
index partitioned on partitioning key 121
table considerations 108

partitioning keys 225
partitioning map

definition 38
example 39
getting with db2gpmap tool 1166
purpose 38
redistributing data 580
target, specifying during data redistribution 580

partitions with multiple processors xlii
partitions with one processor xli
passwords

changing 886
naming 886

PC/IXF file format 261
code page considerations 254
overview of 254
rules for 254
use with DB2 for Universal Database products 256

pckcachesz configuration parameter 617
impact on memory 531

pending states 206
performance

application considerations 387
catalog information, reducing contention for 65
configuration parameters 597
considerations for ROLLFORWARD command 282
data distribution, determining using SQL 580
database caching 421
database managed storage (DMS) 550
db2batch benchmarking tool 588
environmental consideration 423
governor affect on database manager 570
locks, effect of 395
num_ioservers configuration parameter 543
operational considerations 527
optimization class, adjusting 406
programming considerations 387
query rewrite by compiler 466
redistributing data 579
replicated summary tables 42
row blocking, guidelines 415
RUNSTATS utility 438
statistics 435
summary table 118
table collocation, data redistribution 579

 Index 1215

performance (continued)
tuning using explain 522
using explain facility 512

Performance Configuration SmartGuide 125
performance monitor

using 554
phantom quiesce 222
piped versus non-piped sorts

overview of 503
point of recovery 279
point-in-time monitoring 554
pool size for agents, controlling 655
populating typed table 104
precompiling

isolation level, specifying 391
predicate 487

See also predicate category
See also predicate terminology
adding by optimizer 474
definition of 479
distribution statistics 448
inclusive inequality 480
strict inequality 480
translation by optimizer 473
when applied 472

predicate category
index SARGable predicate 487
overview of 487
range delimiting predicate 487
residual predicate 488
SARGable predicate 488
usage 488

predicate terminology
overview of 487

prefetch 527, 540
See also sequential detection
buffer pool 539
clustering page reads 484
data page 539
I/O servers 541
index page 539
intra-partition parallelism 541
list prefetch 541
PREFETCHSIZE clause 539
sequential 539
sequential detection 540
tuning using database system monitor 540

prefix sequences 1175
primary index

definition of 10

primary index (continued)
dropping 138
uniqueness for primary key 99

primary key
adding 130
composite key 10
criteria for choosing 11
definition of 10, 19
DROP PRIMARY KEY clause, ALTER TABLE

statement 131
primary index 99
primary index, creating 121
privileges required for dropping 131
UPDATE, referential integrity implications for 23
when to create 99

PRIMARY KEY clause
adding primary key 130
restrictions 99

priv_mem_thresh configuration parameter 629
privileges

ALTER 160
BINDADD 159
CONNECT 159
CONTROL 160
create view for information 173
CREATE_NOT_FENCED 159
CREATETAB 159
database manager 159
definition of 154
DELETE 160
GRANT statement 163
granting and revoking authority 159
hierarchy 154
implicit for packages 155
IMPLICIT_SCHEMA 159
INDEX 162
individual 155
INSERT 160
ownership (CONTROL) 155
package 162
PUBLIC 159
REFERENCES 161
required for EXPORT utility 249
required for IMPORT utility 245
required for REORG utility 548
retrieving authorization names with 170
retrieving for names 172
REVOKE statement 164
schema 160
SELECT 161

1216 Administration Guide

privileges (continued)
summary of 154
system catalog listing 170
table 160
tasks and required authorities 169
view 160

problem determination
XA interface 374

process summary for HACMP ES 752
process, DB2 551
processors, adding to a machine 572
profile registry 66
PROJECT sample table 954
PUBLIC

privileges 159

Q
qualified object names 63
quantile value statistics

number to collect 446
overview of 443
range statistics 449
rules for updating 457

query optimizer 465
See also optimizer

query parallelism xxxiv
query rewrite

See also compiler
overview of 466
summary table 118

query_heap_sz configuration parameter 625
impact on memory 531

quickly retrieve first few rows 412
quiesce

phantom 222

R
RACF 927
rah 1169, 1170
RAHDOTFILES 1177
RAHOSTFILE 1175
RAHOSTLIST 1175
RAHWAITTIME 1172
range delimiting predicate

index SARGable predicate 487
overview of 487

raw devices 90

raw I/O 91
raw logs 91
rc.db2pe 735
rc.db2pe script 737
read locks 405
read only cursors

uncommitted read 390
read stability, overview 389
reading

read stability, overview of 389
repeatable read, overview of 388
uncommitted read, overview of 390

rec_his_retentn configuration parameter 671
reconcile pending state 327
reconcile_not_possible state 327
records

audit 175
recoverable databases 276
recovering inoperative summary table 138
recovering inoperative view 137
recovery

allocating log during database creation 86
configuration parameters 668
consistent database 288
crash 288
definition of 269
factors affecting 275
history file 324
interaction with DB2 File Manager 329
overview of 269
performance 282
point of 279
point-in-time 323
reducing logging on work tables 278
roll-forward 303
storage required 281
time required 281
two-phase commit protocol 289
version 293

recovery history file 324
recovery log 86
recovery program file for HACMP ES 751
recovery scripts for HACMP ES 754
redistributing data

across nodes 126
connection to catalog database partition 581
data distribution, determining using SQL 580
database partition, process overview 581
database partitions, adding 580
database partitions, dropping 580

 Index 1217

redistributing data (continued)
distribution file 580
distribution, specifying 580
error recovery 582
log file 583
operation successful 582
operation unsuccessful 582
other operations during redistribution 583
partitioning map, target, specifying 580
purpose 579
replicated summary table restriction 579
table collocation 579
table, process overview 582

reducing logging on work tables 278
reference type 8

design 24
REFERENCES clause

adding foreign key 130
delete rules 101
referential constraints 101
use of 101

REFERENCES privilege, definition 161
referential constraints 20

See also referential integrity
add to table 130
defining 99
definition of 20
FOREIGN KEY clause, CREATE/ALTER TABLE

statements 99
overview of 18
PRIMARY KEY clause, CREATE/ALTER TABLE

statements 99
REFERENCES clause, CREATE/ALTER TABLE

statements 99
referential integrity 20

See also referential constraints
definition of 18
DELETE rules 21
INSERT rules 21
overview of 19

refreshing data in summary table 136
registry variables 889

changing 124
DB2_AVOID_PREFETCH 906
DB2_CORRELATED_PREDICATES 905
DB2_FALLBACK 911
DB2_FORCE_FCM_BP 904
DB2_FORCE_NLS_CACHE 896
DB2_FORCE_TRUNCATION 912
DB2_GRP_LOOKUP 912

registry variables (continued)
DB2_LIKE_VARCHAR 912
DB2_LOADSORT_STACKSZ 913
DB2_MMAP_READ 906
DB2_MMAP_WRITE 907
DB2_NO_PKG_LOCK 907
DB2_PRED_FACTORIZE 905
DB2_RR_TO_RS 909
DB2_SORT_AFTER_TQ 914
DB2_VECTOR 906
DB2_VI_DEVICE 901
DB2_VI_ENABLE 901
DB2_VI_VIPL 901
DB2ACCOUNT 889
DB2ADMINSERVER 910
DB2ATLD_PORTS 903
DB2BIDI 889
DB2BQTIME 903
DB2BQTRY 903
DB2CHECKCLIENTINTERVAL 895
DB2CHKPTR 906
DB2CLIENTADPT 902
DB2CLIENTCOMM 902
DB2CLIINIPATH 910
DB2CODEPAGE 889
DB2COMM 895
DB2COUNTRY 889
DB2DATALINK 910
DB2DBDFT 890
DB2DBMSADDR 890
DB2DEFPREP 910
DB2DIRPATHNAME 902
DB2DISCOVERYTIME 890
DB2DMNBCKCTLR 911
DB2ENVLIST 893
DB2INCLUDE 890
DB2INSTANCE 893
DB2INSTDEF 890
DB2INSTOWNER 904
DB2INSTPROF 894
DB2IQTIME 903
DB2LIBPATH 894
DB2LOADREC 912
DB2LOCK_TO_RB 913
DB2NBADAPTERS 896
DB2NBBRECVNCBS 897
DB2NBCHECKUPTIME 896
DB2NBDISCOVERRCVBUFS 891
DB2NBINTRLISTENS 897
DB2NBRECVBUFFSIZE 897

1218 Administration Guide

registry variables (continued)
DB2NBRESOURCES 898
DB2NBSENDNCBS 898
DB2NBSESSIONS 898
DB2NBXTRANCBS 898
DB2NETREQ 899
DB2NODE 904
DB2NOEXITLIST 913
DB2NTMEMSIZE 908
DB2NTNOCACHE 908
DB2NTPRICLASS 909
DB2NTREMOTEPREG 913
DB2NTWORKSET 909
DB2OPTIONS 903
DB2PATH 894
DB2PORTRANCE 904
DB2PRIORITIES 909
DB2RETRY 899
DB2RETRYTIME 900
DB2ROUTE 902
DB2RQTIME 903
DB2SERVICETPINSTANCE 900
DB2SLOGON 891
DB2SORCVBUF 913
DB2SORT 914
DB2SOSNDBUF 900
DB2SYSPLEX_SERVER 900
DB2SYSTEM 915
DB2TIMEOUT 891
DB2TRACEFLUSH 892
DB2TRACENAME 891
DB2TRACEON 892
DB2TRCSYSERR 892
DB2UPMPR 915
DB2YIELD 893
Distributed Computing Environment (DCE) 928

relation scan
definition of 476
when used 485

relationship
many-to-many 6
many-to-one 5
one-to-many 5
one-to-one 7
types of 5

release configuration parameter 677
release to release incompatibilities

description 839
remote administration 74

remote data services
node name (nname) parameter 686

remote filename
qualifying 210

REMOTE FILEs 220
remote procedure calls 420

See also stored procedures
remote unit of work

overview of 346
renaming table 132
REORG utility

authority and privileges required 548
binding to a database 86
overview of 548

REORGCHK command 548
replicated summary table

redistributed nodegroup restriction 579
replicated summary tables 42
request blocks, FCM daemon to agent communication,

number 699
residual predicate

overview of 488
resource access control facility (RACF) 927
RESTART DATABASE command 289
restbufsz configuration parameter 614
restore

buffer(s) 299
database 271
existing database 302
invoking 299
new database 302
planning 298
redirected 301
table space 273

RESTORE command
access errors, error handling 300
authority required 298
buffer 299
code page restriction 300
considerations for 298
database alias restriction 299
DB2 File Manager considerations 326
DB2 File Manager, restoring database without roll

forward 327
overview of 298
use in roll-forward recovery 307
use with ADSTAR Distributed Storage Manager 334

RESTORE DATABASE utility
considerations for user exit program 1062
default restore buffer size (restbufsz) parameter 614

 Index 1219

RESTORE DATABASE utility (continued)
error handling for user exits 1065
user exit program for OS/2 1055

restore_pending configuration parameter 681
restoring a database

overview of 298
RESTORE command 298

restoring database
catalog node considerations 284
database partition synchronization 287
log disk, considerations for media recovery 284
node synchronization 287
recovering failed database partition server 292
reducing impact of media failure 284
timestamp considerations 287
transaction recovery on the failed database partition

server 290
transaction recovery when the database partition

server is active 290
transaction recovery, overview 289

RESTRICT
delete rule, overview of 21

restrictions on import and export 261
resync_interval configuration parameter 674

DB2 transaction manager considerations 353
retrieve first few rows quickly 412
retrieve log files

for OS/2 1055
for UNIX-based systems 1056

retrieving data
index 122

REVOKE statement
example of 164
implicit issuance 165
security 927
use of 164

REXX
isolation level, specifying 391

roll-forward recovery 303
authority required 316
invoking 318
long space requirements 35
overview of 272
planning 316
rolling forward table space 312
table space 274

ROLLFORWARD command
backup considerations 303
configuration file parameters support 309
DB2 File Manager considerations 326

ROLLFORWARD command (continued)
DB2 File Manager, point-in-time roll forward

example 328
DB2 File Manager, rolling forward to end of

logs 328
DB2 File Manager, rolling forward to point in

time 328
log management considerations 321
performance considerations 282
restore considerations 306
timestamps 318

ROLLFORWARD DATABASE utility
roll forward pending (rollfwd_pending)

parameter 680
rollfwd_pending configuration parameter 680
root type 8
rotating assignment 730
route_obj_name configuration parameter 692
routing information objects

creating 920
example 920

row 414
See also row blocking
blocking 414
delete from parent table 20
deleting related rows 21
dependent 20
lock compatibility, ensuring 396
locking 388, 389, 390
occurrence 3
parent 20
partitioning key and partitioning map determine

location 39
read stability 389
types of locks on 393

row blocking
overview of 414
 types of 415

row identifier (RID) 1107
rqrioblk configuration parameter 632

impact on memory 532
rules file for HACMP 749
rules file restriction 750
rules.hacmprd file 749
rules.hadmprd file 729
running commands in parallel 1171
RUNSTATS CMD/API

node where execution occurs 437
RUNSTATS utility

for reorganization 437

1220 Administration Guide

RUNSTATS utility (continued)
use of 436
use of in a partitioned database environment 436
with distribution clause 442

S
SALES sample table 955
sample database

erasing 946
installing 945

sample tables 945, 964
sample user exit programs

for OS/2 1057
for UNIX-based systems 1058
overview 1056

SARGable predicate
overview of 488

scalability to 16 nodes 729
scalar UDF 110
scaling a configuration 571
schema

creating 94
dropping 128
naming rules 887
overview of 63

scope 9
adding 129

script file installation for HACMP ES 753
script files for HACMP ES 752
security

authentication 141
authorization 142
CLIENT level 146
Distributed Computing Environment (DCE) directory

services 926
overview of 141
planning for 141

SELECT privilege, definition 161
SELECT statement

referential integrity implications for 21
select a view 115

select-statement
eliminating DISTINCT clause 471
for two or more tables 417
guidelines for using 416
query rewrite by compiler 466
use of 416

seqdetect configuration parameter 644
understanding sequential detection 540

sequential detection 527
overview of 540

SERVER, authentication type 145
SET CURRENT EXPLAIN MODE statement

use of 521
SET CURRENT EXPLAIN SNAPSHOT statement

use of 522
SET CURRENT QUERY OPTIMIZATION statement

use of 410
SET NULL delete rule

overview of 22
setting schema 94
setting the default environment profile for rah 1178
setting up document server 829
setting VARCHAR 129
share mode

reasons for using 405
shared nothing model 721
sheapthres configuration parameter 622

avoiding post-threshold sorts 546
shift-out and shift-in characters 261
shutdown HACMP ES 754
single partition, multiple processors environment xxxix
single partition, single processor environment xxxviii
single-partition database xxxi
SmartGuide

Performance Configuration 125
SMP cluster environment xlii
SMP environment xxxix
SMS table space

advantages 59
caching of 550
containers 46
creating 89
design factors 47
multiple containers 48
overview 46
physical files 48
SYSCATSPACE 45
TEMPSPACE1 table space 46
USERSPACE1 45

snapshot, point-in-time monitoring 554
softmax configuration parameter 666

managing the buffer pool 534
Solaris Operating Environment failover

partitioned database system 807
binding partitions to a logical host 817
choosing a failover configuration 814
client application considerations 819
components 807
creating DB2 instance 815

 Index 1221

Solaris Operating Environment failover (continued)
partitioned database system (continued)

DMS table spaces 819
enabling the instance for failover 816
hot standby configuration 810
hot standby partition failover 810
how failover processing works 817
mutual takeover configuration 811
preliminary requirements 815
registering DB2 resource with Sun Cluster

2.1 816
running scripts during failover 818
scripts and programs 815
setting up failover support 813
setting up hot standby configuration 817
setting up mutual takeover configuration 818
starting and stopping DB2 818
table space considerations 814, 819
types 809

single-partition database system
choosing a failover configuration 801
client application considerations 806
components 797
creating a DB2 instance 802
enabling the instance for failover 804
hot standby 799
mutual takeover 800
overview 797
registering the DB2 resource 803
running scripts during failover 805
setting up 801
starting and stopping DB2 804
table space considerations 801
types 799
unregistering DB2 for failover 805

sortheap configuration parameter 621
affect on query optimization 424
avoiding post-threshold sorts 546
impact on memory 531

sorting
configuration parameters 545
managing performance 547
non-overflowed 545
non-piped 546
overflowed 545
parameters affecting 546
performance problems 546
piped 546
piped versus non-piped sorts 503
sort heap size (sortheap) parameter 621

sorting (continued)
sort heap threshold (sheapthres) parameter 622
specifying collating sequence 1148
specifying collating sequences 1149
steps 545

SP frame 730
SP switch alias address 739
SP switch considerations 738
sparse file allocation 98
specifying list of machines for rah 1175
splitting phase 225
spm_log_file_sz configuration parameter 675

DB2 transaction manager considerations 354
spm_log_path configuration parameter 674

DB2 transaction manager considerations 354
spm_max_resync configuration parameter 676

DB2 transaction manager considerations 354
spm_name configuration parameter 675

DB2 transaction manager considerations 353
SQL 415

See also SQL statements
SQL functions

NODENUMBER, data distribution, determining 580
PARTITION, data distribution, determining 580

SQL statements
benchmarking 587
inoperative 139
select-statement 416
statement heap size (stmtheap) parameter 623
tuning queries 415
valid during data redistribution 583

SQL00001
example of database subdirectory 27

SQLBP.1 database file 28
SQLBP.2 database file 28
SQLDBCON database file 28
SQLINSLKdatabase file 28
SQLOGCTL.LFH database file 28
SQLQMF utility, replaced 262
SQLSPCS.1 database file 28
SQLSPCS.2 database file 28
SQLTAG.NAM 49
SQLTMPLK database file 28
sqluback

support 294, 300
ss_logon configuration parameter 715
STAFF sample table 956
STAFFG sample table 957
standards

X/Open XA interface 371

1222 Administration Guide

star schema 494
start

timeout for command, setting 702
start and stop timeout (start_stop_time) database

manager parameter 702
start_stop_time database manager configuration

parameter 702
START_STOP_TIME parameter 735
starting DB2 62
startup recommendations for HACMP ES 748
stat_heap_sz configuration parameter 624

impact on memory 531
states

backup pending 206
check pending 206
delete pending 206
load pending 206

static SQL
distribution statistics 445
evaluating optimization class 412
EXECUTE privilege for database access 166
explain facility 520, 521
setting optimization class 409

statistics
copying from production 461
distribution 442
distribution, how computed 443
frequent value 442
index clustering 483
modelling data 461
overview of 435
quantiles 442
rules for updating 455, 456, 457
RUNSTATS utility 436
RUNSTATS utility in a partitioned database

environment 436
updating 454, 1015, 1022
user-defined functions (UDF) 459
when to collect 438

stmtheap configuration parameter 623
affect on query optimization 425
impact on memory 531

stop
timeout for command, setting 702

stopping DB2 62
storage 527

See also memory
effect of locks on 395
for backup 281
for recovery 281

storage (continued)
media failure considerations 282

stored procedures
configuration parameters 656
performance impact 420

Structured Query Language (SQL)
referential integrity implications for 20

structured type 8
altering 133
attributes 8
definition 8
hierarchy 8
subtype 8
supertype 8

subagent 551
subtype 8
summary table

check pending state 225
creating 118
dropping 138
import restriction 244
refreshing data 136

summary table scan
when used 485

summary tables 42
alternative to partial clustering 38
example 469
recovering inoperative 138
why replicate 38

supertype 8
supported DB2 database servers for MTS-coordinated

transactions 380
svcename configuration parameter 687
switch alias address 736
synonym (DB2 for MVS/ESA) 120
sysadm_group configuration parameter 710
SYSCAT views 170
SYSCATSPACE table space 45, 83
sysctrl_group configuration parameter 712
sysmaint_group configuration parameter 712
system administration (SYSADM) authority 156

overview 156
privileges 156

system catalog 965, 1023
See also catalog views
adding new column 129
dropping a table 134
dropping view implications 137
estimating initial size 29
privileges listing 170

 Index 1223

system catalog (continued)
retrieving authorization names with privileges 170
retrieving names with DBADM authority 171
retrieving names with table access authority 171
retrieving privileges granted to names 172
RUNSTATS utility 439
security 172
setting up 84
statistics 435
table space used 45

system catalog table
stored on database catalog node 65

system database directory
overview of 85, 86

system log facility
XA interface example 374
XA interface use of 374

system managed storage 46
See also SMS table space

system management
configuration parameters 705
memory considerations 527

T
table 945

add referential constraints 130
ALTER TABLE statement 129
altering 128
assigning to nodegroup 88
catalog views for use with structured types 1023
catalog views on system tables 965
changing attributes 135
changing partitioning key 134
check pending after load 206
CREATE TABLE statement 95
creating in partitioned database 108
data redistribution, process 582
default table space 45
defining check constraint 102
defining referential constraints 100
defining unique constraint 98
defining, for a relationship 5, 7
delete connected 22
dependent 20
descendent 20
determining where RUNSTATS execution

occurs 437
dropping 134
estimating size 30

table (continued)
joining 489
lock compatibility, ensuring 396
lock mode 402
locking 404
naming 95
naming rules 888
normalizing 12
parent 19
partitioning map 39
populating in existing table space 1158
populating in new table space 1158
redistribution, error recovery 582
referential cycle 20
renaming 132
REORG utility 548
reorganizing 548
REORGCHK command 548
retrieving names with access to 171
revoking privileges 164
sample 945
scan, affect on locks 401
self-referencing 20
table space considerations 55
temporary 83
temporary table space 46
two or more, select-statement 417
types of locks on 393
understanding page use 30

table check constraint
adding 131
defining 102
dropping 132

table check constraints
overview of 23

table collocation 41
table queues 502
table scan 476

See also relation scan
table space 46, 50

See also DMS table space
See also SMS table space
adding container 127
administration considerations 55
changing 127
changing temporary 128
creating 89
database managed space (DMS) 50
default at database creation 83
definition of 43

1224 Administration Guide

table space (continued)
designing 52
device container example 89
dropping 127
extents 44
file container example 89
file system container example 89
in nodegroups 91
index 431
load pending state 206
mapping to buffer pools 53
mapping to nodegroups 54
minimum space required 57
naming rules 888
overhead, setting 426
overview of 43
page size and performance 59
recommendations for temporary table spaces 57
restoring to an existing database 302
separating types of data, example 107
system managed space (SMS) 46
TRANSFERRATE, setting 426
types of locks on 393
workload considerations 58

table space configuration parameter
affect on query optimization 426

table space containers
redefining 301

table space restore
overview of 273

table space roll-forward recovery
overview of 274

table UDF 111
TAKEN AT parameter 300
tape system

backup considerations 294
target row 9
target table 9
target type 8
target view 9
temporary table space

guidelines for 46
queries and 8 KB page size 46

TEMPSPACE1 46
TEMPSPACE1 table space 83
territory configuration parameter 678
thread, DB2 551
time

definition of 1150
formats 1152

time difference among nodes, maximum 701
time required for database recovery 281
time strings

definition of 1151
timeout, starting and stopping database manager 702
timestamp

definition of 1150
for logs 323

timestamp strings
definition of 1152

tm_database configuration parameter 673
DB2 transaction manager considerations 353
XA interface considerations 370

tokens 553
tp_mon_name configuration parameter 708

XA interface considerations 370
tpname configuration parameter 688

XA interface considerations 370
trail

audit 175
transaction 289, 345

See also unit of work
accessing partitioned databases 366
database connection considerations 366
failure 288
failure recovery on a failed database partition

server 290
failure recovery on an active database partition

server is active 290
failure recovery, overview 289
global 942
loosely coupled 942
non-XA 942
recovering failed database partition server 292
RELEASE statement 366
tightly coupled 942
two-phase commit 942

transaction failure
on the failed database partition server 290
recovering failed database partition server 292

transaction manager 943
See also X/Open transactional manager interface

(XA)
implementing using IBM TXSeries CICS 375
implementing using IBM TXSeries Encina 375

configuring DB2 375
configuring Encina for each resource

manager 376
referencing a DB2 database from and Encina

application 376

 Index 1225

transaction manager (continued)
implementing using Microsoft Transaction

Server 379
implementing using Tuxedo 377
not using TCP/IP connectivity 351
part of database manager 350
specify database when not using TCP/IP

connectivity 352
specify database when using TCP/IP

connectivity 351
using TCP/IP connectivity 350

transaction processing
configuring XA transaction managers 375

transaction recovery on coordinator node 290
transferring data 250

See also data transfer
traverse order 244, 263

default 263
user-specified 263

trigger
benefits of 109
creating 109
dependencies 110
dropping 136
Explain tables 1067
naming rules 888
overview of 23

triggering crash recovery with DB2START 290
trust_allclnts configuration parameter 715
trust_clntauth configuration parameter 716
trusted clients

authentication 146
CLIENT level security 146

tuning queries
SQL statements 415

two-phase commit
error handling 358
overview of 355
setting up your environment 348
when DB2 Syncpoint Manager is required 350

two-phase commit protocol 289
type hierarchy 8
typed table 8

creating 103
design 24
overview 24
populating 104
updating rows 134

typed tables
data movement considerations 264

typed tables (continued)
data movement examples 264
data selection 263
deleting rows 133
EXPORT 262
IMPORT 262
moving data between 262
moving data concepts 262
traverse order 244, 263

typed tables examples 264
typed view 8
typed view, creating 116

U
UDF 110

See also user-defined functions (UDF)
udf_mem_sz configuration parameter 626

impact on memory 531
UDT 112

See also user-defined distinct type (UDT)
uniprocessor environment xxxviii
unique constraint

adding 130
defining 98
dropping 131

unique constraints 18
unique HACMP container names 731
unique key 19
unit of work 345

COMMIT statement 345
definition of 345
ROLLBACK statement 345
using multiple databases 347
using one database 346

untrusted clients 146
updatable cursor

uncommitted read 390
UPDATE privilege, definition 161
UPDATE rules

referential integrity implications 22
UPDATE statement

rules for referential integrity implications 22
updating statistics 1015, 1022
updating typed table 134
user exit program

archive and retrieve considerations 1060
BACKUP DATABASE utility 1062
backup storage 282
error handling 1063

1226 Administration Guide

user exit program (continued)
logs storage 282
overview 1055
RESTORE DATABASE utility 1062

user exits for OS/2
archive considerations 1060
archiving log files 1055
BACKUP DATABASE considerations 1062
BACKUP DATABASE utility 1055
calling format 1058
db2uexit 1056
db2uexit.CAD 1057
db2uexit.ex1 1057
db2uexit.ex2 1057
db2uexit.ex3 1057
db2uexit.ex4 1057
error handling 1065
invoking 1056
overview 1055
RESTORE DATABASE considerations 1062
RESTORE DATABASE utility 1055
retrieve considerations 1060
retrieving log files 1055
sample user exit programs 1057

user exits for UNIX-based systems
archive considerations 1060
archiving log files 1056
calling format 1059
db2uexit 1056
db2uexit.cadsm 1058
db2uexit.cdisk 1058
db2uexit.ctape 1058
error handling 1063
invoking 1056
overview 1056
retrieve considerations 1060
retrieving log files 1056
sample user exit programs 1058

user IDs
naming 886

user-defined distinct type
column definition 8

user-defined distinct type (UDT)
creating 112
dropping 136
naming rules 888

user-defined distinct type, creating 112
user-defined events 729
user-defined functions (UDF)

creating 110

user-defined functions (UDF) (continued)
dropping 136
naming rules 888
privilege to create non-fenced 159
types 110
updating statistics 459

user-defined HACMP ES event 749
user-defined structured type, creating 113
user_exit_status configuration parameter 681
userexit configuration parameter 312, 668
USERSPACE1 table space 45, 83
util_heap_sz configuration parameter 613

impact on memory 531
utilities

export 260
import 260
reorganization 548
reorganization check 548

utility parallelism xxxvii

V
variable-length character columns 262
version recovery 293

overview of 271
VI Architecture (VIA) 1187
view

access control to table 166
access privileges, examples of 166
altering 137
CHECK OPTION clause, CREATE VIEW

statement 115
column access 166
creating 114
data integrity 115
data security 114
dropping 137
dropping implications for system catalogs 137
for privileges information 173
inoperative 137
merging by optimizer 467
migration of 835
naming rules 888
predicate pushdown by optimizer 472
recovering inoperative 137
restrictions 137
row access 166

Virtual Interface Architecture (VIA) 1187
virtual telecommunications access method (VTAM) 927

 Index 1227

Visual Explain 510, 524
VTAM 927

W
weight, definition of 1146
Windows 95 code pages 1125

DB2CODEPAGE environment variable 1125
supported code pages 1125

Windows 95 failover
Administration Server considerations 793
Control Center considerations 793

Windows NT code pages 1125
DB2CODEPAGE environment variable 1125
supported code pages 1125

Windows NT failover
communications considerations 792
considerations for administering DB2 786
database considerations 791
DB2MSCS utility

DB2MSCS.CFG parameters 770
overview 770
setting up a single-partition database

system 774
setting up partitioned database system 775
setting up two single-partition database systems

for mutual takeover 774
fallback considerations 777
hot standby 768
limitations 795
maintaining the MSCS system 776
mutual takeover 769
overview 767
planning 767
reconciling database drive mapping 779
restrictions 795
running scripts after DB2 resource brought

online 790
running scripts before DB2 resource brought

online 788
running scripts, overview 787
setting database drive mapping for mutual takeover

in a partitioned database environment 778
setting up partitioned database system for mutual

takeover example
objectives 783
preliminary tasks 784
registering database drive mapping for

ClusterB 786
run DB2MSCS utility 785

Windows NT failover (continued)
setting up partitioned database sytstem for mutual

takeover example
registering database drive mapping for

ClusterA 786
setting up two instances for mutual takeover example

objectives 780
preliminary tasks 781
run DB2MSCS utility 781

starting and stopping DB2 resources 787
system time considerations 793
types 768
user and group support 792

work space, estimating size 36
worksheets for HACMP ES 760
WSF file format

code page considerations 254
conventions for 253
exporting, loss of data 253
operating system differences 257
overview of 253

X
X/Open transactional manager interface (XA) 941

application program (AP) overview 941
database configuration considerations 370
database connection considerations 366
DB2 UDB XA switch 372
DB2 UDB XA switch on OS/2 372
DB2 UDB XA switch on UNIX platforms 372
DB2 UDB XA switch on Windows NT 373
DB2 UDB XA switch, example C code 373
making the transaction manager known to the

resource manager 373
problem determination 374
registration of resource manager 944
resource managers (RM) 943
security considerations 369
support for host databases 366
supported function limitations 371
transaction manager (TM) overview 943
XA close string 371
XA open string 365, 371
XA switch usage 371

XA transaction managers
configuring 375

1228 Administration Guide

 Contacting IBM

This section lists ways you can get more information
from IBM.

If you have a technical problem, please take the time to
review and carry out the actions suggested by the
Troubleshooting Guide before contacting DB2 Customer
Support. Depending on the nature of your problem or
concern, this guide will suggest information you can
gather to help us to serve you better.

For information or to order any of the DB2 Universal
Database products contact an IBM representative at a
local branch office or contact any authorized IBM
software remarketer.

Telephone

If you live in the U.S.A., call one of the following
numbers:

¹ 1-800-237-5511 to learn about available service
options.

¹ 1-800-IBM-CALL (1-800-426-2255) or
1-800-3IBM-OS2 (1-800-342-6672) to order
products or get general information.

¹ 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the
United States, see Appendix A of the IBM Software
Support Handbook. You can access this document by
accessing the following page:

http://www.ibm.com/support/

then performing a search using the keyword “handbook.”

Note that in some countries, IBM-authorized dealers
should contact their dealer support structure instead of
the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2
information about news, product descriptions, education
schedules, and more. The DB2 Product and Service
Technical Library provides access to frequently asked
questions, fixes, books, and up-to-date DB2 technical
information. (Note that this information may be in English
only.)

Anonymous FTP Sites
ftp.software.ibm.com

Log on as anonymous. In the directory /ps/products/db2,
you can find demos, fixes, information, and tools
concerning DB2 and many related products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss
their experiences with DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification
Program for DB2 Universal Database, go to
http://www.software.ibm.com/data/db2/db2tech/db2cert.html

 Copyright IBM Corp. 1993, 1998 1229

ÉÂÔÙ

Part Number: 04L9262

Printed in U.S.A.

S10J-8157-01

0
4
L
9
2
6
2

