
IBM Db2 V11.5

SQL Reference
2023-02-07

IBM

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2016, 2023 i

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

ii Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices iii

iv IBM Db2 V11.5: SQL Reference

Contents

Notices...i
Trademarks... ii
Terms and conditions for product documentation.. ii

Tables..xv

Chapter 1. SQL ...1
How to read the syntax diagrams.. 1
Conventions used for the SQL topics...3

Error conditions.. 3
Highlighting conventions.. 3
Conventions describing Unicode data... 3

Language elements.. 3
Characters...3
Tokens...4
Identifiers... 5
Data types...28
Constants..83
Special registers... 88
Global variables..108
Functions.. 112
Methods..125
Conservative binding semantics..131
Expressions.. 132
Row expression.. 189
Predicates...190

Built-in global variables...218
CLIENT_HOST global variable..219
CLIENT_IPADDR global variable..219
CLIENT_ORIGUSERID global variable... 219
CLIENT_USRSECTOKEN global variable..220
MON_INTERVAL_ID global variable..220
NLS_STRING_UNITS global variable... 221
PACKAGE_NAME global variable... 221
PACKAGE_SCHEMA global variable...221
PACKAGE_VERSION global variable..222
ROUTINE_MODULE global variable...222
ROUTINE_SCHEMA global variable... 222
ROUTINE_SPECIFIC_NAME global variable... 223
ROUTINE_TYPE global variable... 223
SQL_COMPAT global variable...224
TRUSTED_CONTEXT global variable..224

Built-in functions... 224
Aggregate functions... 240
Scalar functions..275
Table functions...617
User-defined functions.. 630

Built-in procedures.. 631
XSR_ADDSCHEMADOC.. 631
XSR_COMPLETE... 632

 v

XSR_DTD.. 633
XSR_EXTENTITY.. 634
XSR_REGISTER.. 635
XSR_UPDATE.. 637

Queries...638
Queries and table expressions.. 638
subselect.. 639
fullselect...710
select-statement..715

Statements...727
How SQL statements are invoked..737
Detecting and processing error and warning conditions in host language applications..................739
SQL comments... 740
Conditional compilation in SQL..741
About SQL control statements...743
Function, method, and procedure designators... 745
ALLOCATE CURSOR..749
ALTER AUDIT POLICY.. 750
ALTER BUFFERPOOL..752
ALTER DATABASE PARTITION GROUP.. 754
ALTER DATABASE...757
ALTER EVENT MONITOR.. 761
ALTER FUNCTION...766
ALTER HISTOGRAM TEMPLATE... 769
ALTER INDEX..770
ALTER MASK...771
ALTER METHOD..772
ALTER MODULE.. 773
ALTER NICKNAME.. 779
ALTER PACKAGE...788
ALTER PERMISSION...790
ALTER PROCEDURE (external)...791
ALTER PROCEDURE (sourced)... 794
ALTER PROCEDURE (SQL)..795
ALTER SCHEMA.. 796
ALTER SECURITY LABEL COMPONENT... 797
ALTER SECURITY POLICY.. 800
ALTER SEQUENCE.. 803
ALTER SERVER... 806
ALTER SERVICE CLASS.. 809
ALTER STOGROUP..818
ALTER TABLE.. 822
ALTER TABLESPACE... 880
ALTER THRESHOLD..893
ALTER TRIGGER... 905
ALTER TRUSTED CONTEXT.. 906
ALTER TYPE (structured)..913
ALTER USAGE LIST...919
ALTER USER MAPPING.. 920
ALTER VIEW..922
ALTER WORK ACTION SET...923
ALTER WORK CLASS SET... 936
ALTER WORKLOAD... 941
ALTER WRAPPER..954
ALTER XSROBJECT...955
ASSOCIATE LOCATORS.. 956
AUDIT... 958
BEGIN DECLARE SECTION.. 961

vi

CALL..962
CASE... 969
CLOSE... 971
COMMENT.. 973
COMMIT..982
Compound SQL...984
Compound SQL (inlined).. 984
Compound SQL (embedded)... 988
Compound SQL (compiled).. 991
CONNECT (type 1)..1006
CONNECT (type 2)..1012
CREATE ALIAS..1019
CREATE AUDIT POLICY..1022
CREATE BUFFERPOOL... 1024
CREATE DATABASE PARTITION GROUP... 1027
CREATE EVENT MONITOR... 1029
CREATE EVENT MONITOR (activities)... 1046
CREATE EVENT MONITOR (change history) ...1055
CREATE EVENT MONITOR (locking).. 1061
CREATE EVENT MONITOR (package cache)... 1065
CREATE EVENT MONITOR (statistics)... 1071
CREATE EVENT MONITOR (threshold violations)... 1081
CREATE EVENT MONITOR (unit of work).. 1091
CREATE EXTERNAL TABLE...1095
CREATE FUNCTION..1123
CREATE FUNCTION (aggregate interface).. 1124
CREATE FUNCTION (external scalar).. 1140
CREATE FUNCTION (external table)..1166
CREATE FUNCTION (OLE DB external table).. 1187
CREATE FUNCTION (sourced or template)... 1196
CREATE FUNCTION (SQL scalar, table, or row)...1208
CREATE FUNCTION MAPPING.. 1224
CREATE GLOBAL TEMPORARY TABLE...1228
CREATE HISTOGRAM TEMPLATE.. 1239
CREATE INDEX... 1240
CREATE INDEX EXTENSION.. 1261
CREATE MASK.. 1266
CREATE METHOD... 1271
CREATE MODULE... 1276
CREATE NICKNAME... 1277
CREATE PERMISSION..1288
CREATE PROCEDURE...1291
CREATE PROCEDURE (external).. 1292
CREATE PROCEDURE (sourced).. 1307
CREATE PROCEDURE (SQL)... 1312
CREATE ROLE... 1320
CREATE SCHEMA... 1321
CREATE SECURITY LABEL COMPONENT.. 1324
CREATE SECURITY LABEL... 1326
CREATE SECURITY POLICY... 1327
CREATE SEQUENCE... 1328
CREATE SERVICE CLASS..1333
CREATE SERVER...1343
CREATE STOGROUP... 1349
CREATE SYNONYM...1351
CREATE TABLE... 1351
CREATE TABLESPACE.. 1428
CREATE THRESHOLD... 1443

 vii

CREATE TRANSFORM.. 1457
CREATE TRIGGER.. 1460
CREATE TRUSTED CONTEXT... 1474
CREATE TYPE... 1479
CREATE TYPE (array)... 1480
CREATE TYPE (cursor)... 1485
CREATE TYPE (distinct)..1487
CREATE TYPE (row)..1495
CREATE TYPE (structured)...1500
CREATE TYPE MAPPING.. 1521
CREATE USAGE LIST..1527
CREATE USER MAPPING... 1529
CREATE VARIABLE...1531
CREATE VIEW...1539
CREATE WORK ACTION SET..1552
CREATE WORK CLASS SET.. 1560
CREATE WORKLOAD.. 1564
CREATE WRAPPER... 1579
DECLARE CURSOR... 1581
DECLARE GLOBAL TEMPORARY TABLE.. 1586
DELETE... 1599
DESCRIBE...1608
DESCRIBE INPUT...1608
DESCRIBE OUTPUT..1611
DISCONNECT... 1614
DROP.. 1616
END DECLARE SECTION.. 1645
EXECUTE.. 1645
EXECUTE IMMEDIATE..1653
EXPLAIN... 1655
FETCH...1659
FLUSH BUFFERPOOLS... 1663
FLUSH EVENT MONITOR... 1663
FLUSH FEDERATED CACHE..1664
FLUSH OPTIMIZATION PROFILE CACHE.. 1665
FLUSH PACKAGE CACHE..1667
FLUSH AUTHENTICATION CACHE...1668
FOR... 1668
FREE LOCATOR...1671
GET DIAGNOSTICS.. 1671
GOTO.. 1674
GRANT (database authorities)...1675
GRANT (exemption)... 1680
GRANT (global variable privileges)..1682
GRANT (index privileges)...1684
GRANT (module privileges)... 1686
GRANT (package privileges).. 1687
GRANT (role).. 1690
GRANT (routine privileges).. 1692
GRANT (schema privileges and authorities)... 1696
GRANT (security label).. 1701
GRANT (sequence privileges)..1703
GRANT (server privileges)..1705
GRANT (SETSESSIONUSER privilege)... 1707
GRANT (table space privileges)...1708
GRANT (table, view, or nickname privileges).. 1710
GRANT (workload privileges)...1716
GRANT (XSR object privileges).. 1717

viii

IF.. 1718
INCLUDE...1719
INSERT... 1721
ITERATE..1730
LEAVE... 1731
LOCK TABLE... 1732
LOOP...1733
MERGE..1735
OPEN.. 1746
PIPE..1750
PREPARE.. 1752
REFRESH TABLE...1757
RELEASE (connection)... 1760
RELEASE SAVEPOINT.. 1761
RENAME... 1762
RENAME STOGROUP..1764
RENAME TABLESPACE...1765
REPEAT...1766
RESIGNAL.. 1767
RETURN..1769
REVOKE (database authorities)... 1771
REVOKE (exemption)... 1775
REVOKE (global variable privileges).. 1777
REVOKE (index privileges)... 1778
REVOKE (module privileges)..1780
REVOKE (package privileges).. 1781
REVOKE (role).. 1783
REVOKE (routine privileges).. 1785
REVOKE (schema privileges and authorities)... 1789
REVOKE (security label)...1792
REVOKE (sequence privileges).. 1793
REVOKE (server privileges)..1795
REVOKE (SETSESSIONUSER privilege)... 1797
REVOKE (table space privileges)... 1798
REVOKE (table, view, or nickname privileges).. 1799
REVOKE (workload privileges)...1804
REVOKE (XSR object privileges).. 1805
ROLLBACK.. 1806
SAVEPOINT.. 1808
SELECT... 1810
SELECT INTO..1810
SET COMPILATION ENVIRONMENT..1813
SET CONNECTION... 1814
SET CURRENT DECFLOAT ROUNDING MODE... 1816
SET CURRENT DEFAULT TRANSFORM GROUP... 1817
SET CURRENT DEGREE..1818
SET CURRENT EXPLAIN MODE... 1820
SET CURRENT EXPLAIN SNAPSHOT... 1822
SET CURRENT FEDERATED ASYNCHRONY...1824
SET CURRENT IMPLICIT XMLPARSE OPTION.. 1825
SET CURRENT ISOLATION.. 1826
SET CURRENT LOCALE LC_MESSAGES... 1827
SET CURRENT LOCALE LC_TIME... 1828
SET CURRENT LOCK TIMEOUT..1829
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION... 1830
SET CURRENT MDC ROLLOUT MODE.. 1832
SET CURRENT OPTIMIZATION PROFILE.. 1834
SET CURRENT PACKAGE PATH..1836

 ix

SET CURRENT PACKAGESET... 1839
SET CURRENT QUERY OPTIMIZATION... 1841
SET CURRENT REFRESH AGE..1843
SET CURRENT SQL_CCFLAGS..1845
SET CURRENT TEMPORAL BUSINESS_TIME.. 1846
SET CURRENT TEMPORAL SYSTEM_TIME.. 1847
SET ENCRYPTION PASSWORD.. 1848
SET EVENT MONITOR STATE...1850
SET INTEGRITY..1851
SET PASSTHRU...1867
SET PATH..1868
SET ROLE..1870
SET SCHEMA.. 1871
SET SERVER OPTION... 1873
SET SESSION AUTHORIZATION..1874
SET USAGE LIST STATE... 1876
SET variable..1878
SIGNAL... 1889
TRANSFER OWNERSHIP..1892
TRUNCATE..1902
UPDATE.. 1905
VALUES... 1921
VALUES INTO... 1921
WHENEVER.. 1924
WHILE...1926

Catalog views...1927
Road map to the catalog views..1929
SYSCAT.ATTRIBUTES...1934
SYSCAT.AUDITPOLICIES... 1936
SYSCAT.AUDITUSE...1938
SYSCAT.BUFFERPOOLDBPARTITIONS..1938
SYSCAT.BUFFERPOOLEXCEPTIONS..1939
SYSCAT.BUFFERPOOLS... 1939
SYSCAT.CASTFUNCTIONS... 1940
SYSCAT.CHECKS...1941
SYSCAT.COLAUTH.. 1942
SYSCAT.COLCHECKS.. 1943
SYSCAT.COLDIST..1943
SYSCAT.COLGROUPCOLS...1944
SYSCAT.COLGROUPDIST..1945
SYSCAT.COLGROUPDISTCOUNTS..1945
SYSCAT.COLGROUPS..1946
SYSCAT.COLIDENTATTRIBUTES..1946
SYSCAT.COLOPTIONS.. 1947
SYSCAT.COLUMNS..1947
SYSCAT.COLUSE... 1953
SYSCAT.CONDITIONS.. 1954
SYSCAT.CONSTDEP.. 1954
SYSCAT.CONTEXTATTRIBUTES... 1955
SYSCAT.CONTEXTS.. 1955
SYSCAT.CONTROLDEP... 1956
SYSCAT.CONTROLS.. 1957
SYSCAT.DATAPARTITIONEXPRESSION...1959
SYSCAT.DATAPARTITIONS...1959
SYSCAT.DATATYPEDEP.. 1962
SYSCAT.DATATYPES... 1963
SYSCAT.DBAUTH.. 1967
SYSCAT.DBPARTITIONGROUPDEF..1969

x

SYSCAT.DBPARTITIONGROUPS.. 1970
SYSCAT.EVENTMONITORS.. 1971
SYSCAT.EVENTS... 1973
SYSCAT.EVENTTABLES.. 1973
SYSCAT.EXTERNALTABLEOPTIONS...1975
SYSCAT.FULLHIERARCHIES.. 1977
SYSCAT.FUNCMAPOPTIONS..1978
SYSCAT.FUNCMAPPARMOPTIONS..1978
SYSCAT.FUNCMAPPINGS.. 1978
SYSCAT.HIERARCHIES.. 1979
SYSCAT.HISTOGRAMTEMPLATEBINS... 1980
SYSCAT.HISTOGRAMTEMPLATES... 1980
SYSCAT.HISTOGRAMTEMPLATEUSE...1981
SYSCAT.INDEXAUTH..1981
SYSCAT.INDEXCOLUSE.. 1982
SYSCAT.INDEXDEP...1983
SYSCAT.INDEXES... 1985
SYSCAT.INDEXEXPLOITRULES.. 1992
SYSCAT.INDEXEXTENSIONDEP...1993
SYSCAT.INDEXEXTENSIONMETHODS.. 1994
SYSCAT.INDEXEXTENSIONPARMS... 1994
SYSCAT.INDEXEXTENSIONS... 1995
SYSCAT.INDEXOPTIONS..1996
SYSCAT.INDEXPARTITIONS.. 1996
SYSCAT.INDEXXMLPATTERNS...1999
SYSCAT.INVALIDOBJECTS...2000
SYSCAT.KEYCOLUSE...2001
SYSCAT.MEMBERSUBSETATTRS... 2001
SYSCAT.MEMBERSUBSETMEMBERS...2002
SYSCAT.MEMBERSUBSETS..2002
SYSCAT.MODULEAUTH.. 2003
SYSCAT.MODULEOBJECTS.. 2003
SYSCAT.MODULES..2004
SYSCAT.NAMEMAPPINGS..2005
SYSCAT.NICKNAMES... 2005
SYSCAT.PACKAGEAUTH...2008
SYSCAT.PACKAGEDEP..2009
SYSCAT.PACKAGES.. 2011
SYSCAT.PARTITIONMAPS..2020
SYSCAT.PASSTHRUAUTH...2021
SYSCAT.PERIODS... 2021
SYSCAT.PREDICATESPECS.. 2021
SYSCAT.REFERENCES.. 2022
SYSCAT.ROLEAUTH.. 2023
SYSCAT.ROLES... 2023
SYSCAT.ROUTINEAUTH... 2024
SYSCAT.ROUTINEDEP..2025
SYSCAT.ROUTINEOPTIONS... 2027
SYSCAT.ROUTINEPARMOPTIONS... 2027
SYSCAT.ROUTINEPARMS...2028
SYSCAT.ROUTINES...2030
SYSCAT.ROUTINESFEDERATED...2041
SYSCAT.ROWFIELDS.. 2043
SYSCAT.SCHEMAAUTH.. 2044
SYSCAT.SCHEMATA..2046
SYSCAT.SCPREFTBSPACES..2047
SYSCAT.SECURITYLABELACCESS... 2048
SYSCAT.SECURITYLABELCOMPONENTELEMENTS...2049

 xi

SYSCAT.SECURITYLABELCOMPONENTS.. 2049
SYSCAT.SECURITYLABELS.. 2049
SYSCAT.SECURITYPOLICIES... 2050
SYSCAT.SECURITYPOLICYCOMPONENTRULES..2051
SYSCAT.SECURITYPOLICYEXEMPTIONS.. 2051
SYSCAT.SEQUENCEAUTH.. 2052
SYSCAT.SEQUENCES..2052
SYSCAT.SERVEROPTIONS... 2055
SYSCAT.SERVERS... 2055
SYSCAT.SERVICECLASSES...2055
SYSCAT.STATEMENTS.. 2059
SYSCAT.STOGROUPS... 2060
SYSCAT.STATEMENTTEXTS... 2060
SYSCAT.SURROGATEAUTHIDS.. 2061
SYSCAT.TABAUTH...2061
SYSCAT.TABCONST.. 2063
SYSCAT.TABDEP... 2064
SYSCAT.TABDETACHEDDEP...2066
SYSCAT.TABLES..2066
SYSCAT.TABLESPACES... 2076
SYSCAT.TABOPTIONS.. 2078
SYSCAT.TBSPACEAUTH..2079
SYSCAT.THRESHOLDS..2079
SYSCAT.TRANSFORMS... 2082
SYSCAT.TRIGDEP... 2083
SYSCAT.TRIGGERS... 2085
SYSCAT.TYPEMAPPINGS... 2087
SYSCAT.USAGELISTS... 2091
SYSCAT.USEROPTIONS..2091
SYSCAT.VARIABLEAUTH.. 2092
SYSCAT.VARIABLEDEP...2093
SYSCAT.VARIABLES... 2094
SYSCAT.VIEWS... 2096
SYSCAT.WORKACTIONS.. 2097
SYSCAT.WORKACTIONSETS.. 2100
SYSCAT.WORKCLASSATTRIBUTES..2101
SYSCAT.WORKCLASSES... 2103
SYSCAT.WORKCLASSSETS...2103
SYSCAT.WORKLOADAUTH... 2103
SYSCAT.WORKLOADCONNATTR.. 2104
SYSCAT.WORKLOADS...2104
SYSCAT.WRAPOPTIONS...2108
SYSCAT.WRAPPERS... 2108
SYSCAT.XDBMAPGRAPHS... 2109
SYSCAT.XDBMAPSHREDTREES... 2109
SYSCAT.XMLSTRINGS.. 2109
SYSCAT.XSROBJECTAUTH... 2110
SYSCAT.XSROBJECTCOMPONENTS.. 2110
SYSCAT.XSROBJECTDEP... 2111
SYSCAT.XSROBJECTDETAILS.. 2112
SYSCAT.XSROBJECTHIERARCHIES.. 2112
SYSCAT.XSROBJECTS.. 2113
SYSIBM.SYSDUMMY1.. 2114
SYSSTAT.COLDIST.. 2114
SYSSTAT.COLGROUPDIST.. 2115
SYSSTAT.COLGROUPDISTCOUNTS..2115
SYSSTAT.COLGROUPS.. 2116
SYSSTAT.COLUMNS.. 2116

xii

SYSSTAT.INDEXES..2118
SYSSTAT.ROUTINES...2122
SYSSTAT.TABLES.. 2123

SQL and XML limits..2125
Reserved schema names and reserved words...2138
Communications areas, descriptor areas, and exception tables... 2141

SQLCA (SQL communications area)...2141
SQLDA (SQL descriptor area)...2146
Exception tables...2155

Regular expression control characters... 2159
Explain tables.. 2162

ADVISE_INDEX.. 2163
ADVISE_INSTANCE..2168
ADVISE_MQT... 2168
ADVISE_PARTITION.. 2170
ADVISE_TABLE...2171
ADVISE_WORKLOAD..2172
EXPLAIN_ACTUALS... 2173
EXPLAIN_ARGUMENT... 2174
EXPLAIN_DIAGNOSTIC... 2189
EXPLAIN_DIAGNOSTIC_DATA.. 2190
EXPLAIN_INSTANCE... 2191
EXPLAIN_OBJECT..2194
EXPLAIN_OPERATOR...2199
EXPLAIN_PREDICATE..2201
EXPLAIN_STATEMENT...2204
EXPLAIN_STREAM... 2208
OBJECT_METRICS... 2210

Explain register values.. 2216

Index.. 2223

 xiii

xiv

Tables

1. Special characters... 3

2. How DYNAMICRULES and the runtime environment determine dynamic SQL statement behavior........12

3. Formats for String Representations of Dates... 39

4. Formats for String Representations of Times...40

5. Formats for String Representations of Timestamps.. 40

6. Data Type Precedence Table...46

7. Supported Casts between Built-in Data Types...49

8. Rules for Casting to a Data Type... 51

9. Supported Casts from Non-XML Values to XML Values... 52

10. Supported Casts from XML Values to Non-XML Values... 53

11. Data type compatibility for assignments and comparisons...56

12. Assessment of various assignments.. 63

13. Operands and the resulting data type.. 74

14. Operands and the resulting data type.. 74

15. Result data types with datetime operands.. 75

16. Database Partition Compatibilities...83

17. Updatable and nullable special registers... 90

18. When the value of a global variable is read, based on the reference context.......................................112

19. Data type ordering for implicit casting for function resolution..120

20. Derived length of an argument when invoking a built-in scalar function from the SYSIBM schema
in cases where implicit casting is needed...121

21. Data Type and Length of Concatenated Operands without CODEUNITS32... 135

22. Data Type and Length of Concatenated Operands with CODEUNITS32...136

 xv

23. Binary Arithmetic Operators...138

24. Precision and scale of the result of a decimal division.. 141

25. Binary Bitwise Operators..144

26. Equivalent CASE Expressions...152

27. Example output...173

28. Untyped Expression Usage in Expressions (Including Select List, CASE, and VALUES).......................183

29. Untyped Expression Usage in Predicates...186

30. Untyped Expression Usage in Built-in Functions... 187

31. Untyped Expression Usage in User-defined Routines... 189

32. Truth Tables for AND and OR..191

33. Predicates and alternative predicates..193

34. Predicate evaluation with scalar operands.. 194

35. Predicate evaluation with row operands..194

36. IN Predicate example... 204

37. Supported flag values... 212

38. Aggregate functions..225

39. Array functions..227

40. Cast scalar functions...227

41. Datetime scalar functions...228

42. JSON scalar functions...231

43. Miscellaneous scalar functions.. 232

44. Numeric scalar functions..233

45. Partitioning scalar functions...235

46. Regular expression scalar functions.. 235

47. Security scalar functions.. 235

xvi

48. String scalar functions.. 236

49. Table functions..238

50. XML functions..239

51. Result precision and scale of the AVG aggregate function with DECIMAL input.................................. 244

52. Determining the result data type and length... 256

53. Result precision of the SUM aggregate function with DECIMAL input.. 268

54. The bit manipulation functions...293

55. Determining the result length...310

56. Determining the result length...311

57. Allowable values for format-string... 317

58. Allowed values for a format string..318

59. Format elements for the DECFLOAT_FORMAT function.. 329

60. Resulting size from each algorithm.. 359

61. Data type of the result as a function of the data types of the argument data type and the length
attribute ...363

62. Word delimiter characters.. 369

63. Data type of string-expression compared to the data type of the result.. 370

64. Data type of the result as a function of the data types of source-string and insert-string...................372

65. Data type of the result as a function of the data types of source-string and insert-string (Unicode
databases only)..372

66. Data type of the result as a function of the data types of source-string and insert-string (special
cases)... 372

67. Keywords for representing time units.. 377

68. The bit manipulation functions...382

69. Meaning of placeholder N...382

70. Maximum value of length when length is not a constant and a string unit is specified........................399

71. Length attribute of result when length is a constant and a string unit is specified.............................. 400

 xvii

72. Length attribute of the result of LOWER as a function of string unit and result type............................413

73. Determining the result length when integer is available only when the function is executed............. 415

74. Additional examples using MONTHS_BETWEEN...427

75. NCHAR scalar function synonyms.. 430

76. NCLOB scalar function synonyms...431

77. NVARCHAR scalar function synonyms... 433

78. Valid day names and abbreviations for the 'en_US' locale.. 433

79. Data type of the result as a function of the data types of source-string and insert-string...................441

80. Data type of the result as a function of the data types of source-string and insert-string (Unicode
databases only)..441

81. Data type of the result as a function of the data types of source-string and insert-string (special
cases, Unicode databases only).. 442

82. Data type of the result as a function of the data types of the argument data type and the length
attribute ...454

83. Column Values String Result.. 458

84. Character Replacements for XML Attribute Values and Element Values..458

85. Supported flag values... 460

86. Supported flag values... 463

87. Supported flag values... 466

88. Supported flag values... 469

89. Supported flag values... 471

90. Length values of L1, L2, and L3.. 477

91. Maximum value of length when a string unit is specified.. 481

92. Length attribute of result when length is a constant and a string unit is specified.............................. 483

93. Format elements for ROUND, ROUND_TIMESTAMP, TRUNCATE, and TRUNC_TIMESTAMP................486

94. Determining the result length when integer is available only when the function is executed............. 492

95. Data Type and Length of SUBSTR Result... 507

xviii

96. Length Attribute of SUBSTR2 Result when Arguments Include Constants.. 510

97. Length attribute of SUBSTR4 result when arguments include constants... 513

98. Data type of the result of SUBSTRING... 519

99. Format elements for the TIMESTAMP_FORMAT function..528

100. Valid interval values..533

101. TIMESTAMPDIFF string elements..534

102. TIMESTAMPDIFF computations...534

103. Length attribute of the result of UPPER as a function of string unit and result type.......................... 555

104. Format elements for DATE or TIMESTAMP to VARCHAR...566

105. Format elements for decimal floating-point to varchar.. 569

106. Data type of the result.. 583

107. Information returned by the BASE_TABLE function.. 618

108. XML schema repository procedures...631

109. Possible values for the DateStyle option... 662

110. Layout example...667

111. Options..676

112. Data types supported in generic table functions...683

113. Syntax alternatives... 706

114. SQL schema statements...727

115. SQL data change statements... 733

116. SQL data statements.. 733

117. SQL transaction statements... 734

118. SQL connection statements... 734

119. SQL dynamic statements..734

120. SQL session statements... 735

 xix

121. SQL embedded host language statements.. 736

122. SQL control statements.. 737

123. Values for evm-group based on the type of event monitor... 762

124. Security labels considered as a function of security policy settings...802

125. Combined security labels as a function of security policy settings.. 803

126. Default Values (when no value specified)..835

127. Cascaded effects of altering a column...846

128. Cascaded Effects of Dropping a Column..857

129. Changes to keys, and their effects on packages, indexes, and other foreign keys.............................869

130. Values for evm-group based on the type of event monitor...1034

131. Possible values for the DateStyle option... 1105

132. Layout example.. 1111

133. Options..1120

134. Corresponding index data types.. 1251

135. Maximum length of document nodes by page size... 1252

136. Server types and default wrappers..1344

137. Sizes of the LOB descriptor for various LOB lengths... 1379

138. Extra Columns Appended in Staging Tables.. 1394

139. Limits for Number of Columns and Row Size in Each Table Space Page Size (row-organized
tables).. 1411

140. Byte Counts of Columns by Data Type...1411

141. Definitions of the criteria referenced in the related table... 1414

142. Storage Byte Counts Based on Row Format, Data Type, and Data Value... 1414

143. Media attributes across different versions of Db2.. 1440

144. Default TRANSFERRATE ..1440

145. Encryption and trusted contexts..1476

xx

146. CAST functions on distinct types... 1492

147. Byte Counts for Attribute Data Types.. 1506

148. LOB Descriptor Size as a Function of the Maximum LOB Length.. 1507

149. Dependencies...1632

150. Dependent Objects Impacted by auto_reval...1638

151. Data types for GET DIAGNOSTICS items...1673

152. Required values for the INSERT_DA structure.. 1756

153. Examples of string literals and identifiers... 1835

154. Catalog Views that Describe Objects on which Other Objects Depend..1900

155. Samples of consistent column names for objects they describe..1928

156. Road map to the read-only catalog views... 1929

157. Road map to the updatable catalog views...1934

158. SYSCAT.ATTRIBUTES Catalog View... 1934

159. SYSCAT.AUDITPOLICIES Catalog View..1936

160. SYSCAT.AUDITUSE Catalog View... 1938

161. SYSCAT.BUFFERPOOLDBPARTITIONS Catalog View.. 1938

162. SYSCAT.BUFFERPOOLEXCEPTIONS Catalog View.. 1939

163. SYSCAT.BUFFERPOOLS Catalog View..1939

164. SYSCAT.CASTFUNCTIONS Catalog View..1940

165. SYSCAT.CHECKS Catalog View... 1941

166. SYSCAT.COLAUTH Catalog View...1942

167. SYSCAT.COLCHECKS Catalog View.. 1943

168. SYSCAT.COLDIST Catalog View.. 1943

169. SYSCAT.COLGROUPCOLS Catalog View... 1944

170. SYSCAT.COLGROUPDIST Catalog View..1945

 xxi

171. SYSCAT.COLGROUPDISTCOUNTS Catalog View..1945

172. SYSCAT.COLGROUPS Catalog View..1946

173. SYSCAT.COLIDENTATTRIBUTES Catalog View.. 1946

174. SYSCAT.COLOPTIONS Catalog View...1947

175. SYSCAT.COLUMNS Catalog View.. 1947

176. SYSCAT.COLUSE Catalog View... 1953

177. SYSCAT.CONDITIONS Catalog View...1954

178. SYSCAT.CONSTDEP Catalog View.. 1954

179. SYSCAT.CONTEXTATTRIBUTES Catalog View... 1955

180. SYSCAT.CONTEXTS Catalog View...1955

181. SYSCAT.CONTROLDEP Catalog View..1956

182. SYSCAT.CONTROLS Catalog View.. 1957

183. SYSCAT.DATAPARTITIONEXPRESSION Catalog View... 1959

184. SYSCAT.DATAPARTITIONS Catalog View...1959

185. SYSCAT.DATATYPEDEP Catalog View...1962

186. SYSCAT.DATATYPES Catalog View... 1963

187. SYSCAT.DBAUTH Catalog View.. 1967

188. SYSCAT.DBPARTITIONGROUPDEF Catalog View.. 1969

189. SYSCAT.DBPARTITIONGROUPS Catalog View...1970

190. SYSCAT.EVENTMONITORS Catalog View...1971

191. SYSCAT.EVENTS Catalog View... 1973

192. SYSCAT.EVENTTABLES Catalog View...1973

193. SYSCAT.EXTERNALTABLEOPTIONS Catalog View...1975

194. SYSCAT.FULLHIERARCHIES Catalog View...1977

195. SYSCAT.FUNCMAPOPTIONS Catalog View.. 1978

xxii

196. SYSCAT.FUNCMAPPARMOPTIONS Catalog View.. 1978

197. SYSCAT.FUNCMAPPINGS Catalog View...1978

198. SYSCAT.HIERARCHIES Catalog View...1979

199. SYSCAT.HISTOGRAMTEMPLATEBINS Catalog View... 1980

200. SYSCAT.HISTOGRAMTEMPLATES Catalog View..1980

201. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View... 1981

202. SYSCAT.INDEXAUTH Catalog View.. 1981

203. SYSCAT.INDEXCOLUSE Catalog View.. 1982

204. SYSCAT.INDEXDEP Catalog View...1983

205. SYSCAT.INDEXES Catalog View... 1985

206. SYSCAT.INDEXEXPLOITRULES Catalog View.. 1992

207. SYSCAT.INDEXEXTENSIONDEP Catalog View...1993

208. SYSCAT.INDEXEXTENSIONMETHODS Catalog View...1994

209. SYSCAT.INDEXEXTENSIONPARMS Catalog View..1994

210. SYSCAT.INDEXEXTENSIONS Catalog View..1995

211. SYSCAT.INDEXOPTIONS Catalog View.. 1996

212. SYSCAT.INDEXPARTITIONS Catalog View...1996

213. SYSCAT.INDEXXMLPATTERNS Catalog View... 1999

214. SYSCAT.INVALIDOBJECTS Catalog View...2000

215. SYSCAT.KEYCOLUSE Catalog View...2001

216. SYSCAT.MEMBERSUBSETATTRS Catalog View..2001

217. SYSCAT.MEMBERSUBSETMEMBERS Catalog View... 2002

218. SYSCAT.MEMBERSUBSETS Catalog View.. 2002

219. SYSCAT.MODULEAUTH Catalog View...2003

220. SYSCAT.MODULEOBJECTS Catalog View...2003

 xxiii

221. SYSCAT.MODULES Catalog View.. 2004

222. SYSCAT.NAMEMAPPINGS Catalog View.. 2005

223. SYSCAT.NICKNAMES Catalog View..2005

224. SYSCAT.PACKAGEAUTH Catalog View... 2008

225. SYSCAT.PACKAGEDEP Catalog View..2009

226. SYSCAT.PACKAGES Catalog View...2011

227. SYSCAT.PARTITIONMAPS Catalog View.. 2020

228. SYSCAT.PASSTHRUAUTH Catalog View... 2021

229. SYSCAT.PERIODS Catalog View... 2021

230. SYSCAT.PREDICATESPECS Catalog View.. 2021

231. SYSCAT.REFERENCES Catalog View.. 2022

232. SYSCAT.ROLEAUTH Catalog View.. 2023

233. SYSCAT.ROLES Catalog View..2023

234. SYSCAT.ROUTINEAUTH Catalog View... 2024

235. SYSCAT.ROUTINEDEP Catalog View.. 2025

236. SYSCAT.ROUTINEOPTIONS Catalog View... 2027

237. SYSCAT.ROUTINEPARMOPTIONS Catalog View..2027

238. SYSCAT.ROUTINEPARMS Catalog View... 2028

239. SYSCAT.ROUTINES Catalog View...2030

240. SYSCAT.ROUTINESFEDERATED Catalog View...2041

241. SYSCAT.ROWFIELDS Catalog View.. 2043

242. SYSCAT.SCHEMAAUTH Catalog View...2044

243. SYSCAT.SCHEMATA Catalog View.. 2046

244. SYSCAT.SCPREFTBSPACES Catalog View..2047

245. SYSCAT.SECURITYLABELACCESS Catalog View..2048

xxiv

246. SYSCAT.SECURITYLABELCOMPONENTELEMENTS Catalog View...2049

247. SYSCAT.SECURITYLABELCOMPONENTS Catalog View...2049

248. SYSCAT.SECURITYLABELS Catalog View...2049

249. SYSCAT.SECURITYPOLICIES Catalog View... 2050

250. SYSCAT.SECURITYPOLICYCOMPONENTRULES Catalog View.. 2051

251. SYSCAT.SECURITYPOLICYEXEMPTIONS Catalog View.. 2051

252. SYSCAT.SEQUENCEAUTH Catalog View...2052

253. SYSCAT.SEQUENCES Catalog View.. 2052

254. SYSCAT.SERVEROPTIONS Catalog View..2055

255. SYSCAT.SERVERS Catalog View... 2055

256. SYSCAT.SERVICECLASSES Catalog View... 2055

257. SYSCAT.STATEMENTS Catalog View.. 2059

258. SYSCAT.STOGROUPS Catalog View..2060

259. SYSCAT.STATEMENTTEXTS Catalog View..2060

260. SYSCAT.SURROGATEAUTHIDS Catalog View.. 2061

261. SYSCAT.TABAUTH Catalog View...2061

262. SYSCAT.TABCONST Catalog View...2063

263. SYSCAT.TABDEP Catalog View..2064

264. SYSCAT.TABDETACHEDDEP Catalog View... 2066

265. SYSCAT.TABLES Catalog View.. 2066

266. SYSCAT.TABLESPACES Catalog View... 2076

267. SYSCAT.TABOPTIONS Catalog View...2078

268. SYSCAT.TBSPACEAUTH Catalog View.. 2079

269. SYSCAT.THRESHOLDS Catalog View.. 2079

270. SYSCAT.TRANSFORMS Catalog View... 2082

 xxv

271. SYSCAT.TRIGDEP Catalog View..2083

272. SYSCAT.TRIGGERS Catalog View... 2085

273. SYSCAT.TYPEMAPPINGS Catalog View..2087

274. SYSCAT.USAGELISTS Catalog View..2091

275. SYSCAT.USEROPTIONS Catalog View.. 2091

276. SYSCAT.VARIABLEAUTH Catalog View.. 2092

277. SYSCAT.VARIABLEDEP Catalog View... 2093

278. SYSCAT.VARIABLES Catalog View..2094

279. SYSCAT.VIEWS Catalog View..2096

280. SYSCAT.WORKACTIONS Catalog View...2097

281. SYSCAT.WORKACTIONSETS Catalog View.. 2100

282. SYSCAT.WORKCLASSATTRIBUTES Catalog View.. 2101

283. SYSCAT.WORKCLASSES Catalog View... 2103

284. SYSCAT.WORKCLASSSETS Catalog View... 2103

285. SYSCAT.WORKLOADAUTH Catalog View..2103

286. SYSCAT.WORKLOADCONNATTR Catalog View.. 2104

287. SYSCAT.WORKLOADS Catalog View... 2104

288. SYSCAT.WRAPOPTIONS Catalog View...2108

289. SYSCAT.WRAPPERS Catalog View..2108

290. SYSCAT.XDBMAPGRAPHS Catalog View..2109

291. SYSCAT.XDBMAPSHREDTREES Catalog View... 2109

292. SYSCAT.XMLSTRINGS Catalog View.. 2109

293. SYSCAT.XSROBJECTAUTH Catalog View... 2110

294. SYSCAT.XSROBJECTCOMPONENTS Catalog View.. 2110

295. SYSCAT.XSROBJECTDEP Catalog View..2111

xxvi

296. SYSCAT.XSROBJECTDETAILS Catalog View.. 2112

297. SYSCAT.XSROBJECTHIERARCHIES Catalog View...2112

298. SYSCAT.XSROBJECTS Catalog View.. 2113

299. SYSIBM.SYSDUMMY1 Catalog View.. 2114

300. SYSSTAT.COLDIST Catalog View.. 2114

301. SYSSTAT.COLGROUPDIST Catalog View.. 2115

302. SYSSTAT.COLGROUPDISTCOUNTS Catalog View.. 2115

303. SYSSTAT.COLGROUPS Catalog View.. 2116

304. SYSSTAT.COLUMNS Catalog View.. 2116

305. SYSSTAT.INDEXES Catalog View..2118

306. SYSSTAT.ROUTINES Catalog View... 2122

307. SYSSTAT.TABLES Catalog View...2123

308. Identifier Length Limits.. 2125

309. Numeric Limits..2127

310. String Limits..2129

311. Page Size-specific String Limits for Column-organized Tables... 2130

312. Page Size-specific String Limits for Column-organized Tables. These limits are only applicable
when you increase the column length by using ALTER TABLE... 2130

313. XML Limits...2131

314. Datetime Limits.. 2131

315. Database Manager Limits...2131

316. Database Manager Page Size-specific Limits.. 2136

317. Fields of the SQLCA.. 2141

318. Fields in the SQLDA Header... 2147

319. Fields in a Base SQLVAR...2148

320. Fields in a Secondary SQLVAR..2149

 xxvii

321. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE.................................... 2152

322. Values for Sign Indicator of a Packed Decimal Number..2155

323. Exception Table Message Column Structure... 2156

324. Regular expression metacharacters.. 2159

325. Regular expression operators.. 2160

326. Set expressions (character classes).. 2162

327. ADVISE_INDEX Table...2163

328. ADVISE_INSTANCE Table.. 2168

329. ADVISE_MQT Table.. 2168

330. ADVISE_PARTITION Table...2170

331. ADVISE_TABLE Table... 2171

332. ADVISE_WORKLOAD Table.. 2172

333. EXPLAIN_ACTUALS Table.. 2173

334. EXPLAIN_ARGUMENT Table.. 2174

335. ARGUMENT_TYPE and ARGUMENT_VALUE column values.. 2174

336. EXPLAIN_DIAGNOSTIC Table..2189

337. EXPLAIN_DIAGNOSTIC_DATA Table...2190

338. EXPLAIN_INSTANCE Table.. 2191

339. EXPLAIN_OBJECT Table.. 2194

340. Possible OBJECT_TYPE Values.. 2198

341. EXPLAIN_OPERATOR Table... 2199

342. OPERATOR_TYPE values.. 2200

343. EXPLAIN_PREDICATE Table.. 2201

344. Possible HOW_APPLIED Values...2203

345. Possible RELOP_TYPE Values...2204

xxviii

346. EXPLAIN_STATEMENT Table..2205

347. EXPLAIN_STREAM Table..2208

348. OBJECT_METRICS table...2210

349. Interaction of Explain Special Register Values (Dynamic SQL)...2216

350. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE...2217

351. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT....................................2220

 xxix

xxx

Chapter 1. Structured Query Language (SQL)
SQL is a standardized language for defining and manipulating data in a relational database.

In accordance with the relational model of data, the database is treated as a set of tables, relationships
are represented by values in tables, and data is retrieved by specifying a result table that can be derived
from one or more base tables.

SQL statements are executed by a database manager. One of the functions of the database manager is
to transform the specification of a result table into a sequence of internal operations that optimize data
retrieval. The transformation occurs in two phases: preparation and binding.

All executable SQL statements must be prepared before they can be executed. The result of preparation is
the executable or operational form of the statement. The method of preparing an SQL statement and the
persistence of its operational form distinguish static SQL from dynamic SQL.

How to read the syntax diagrams
This topic describes the structure of SQL syntax diagrams.

Read the syntax diagrams from left to right and top to bottom, following the path of the line.

The double right arrowhead and line symbol ►►── indicates the beginning of a syntax diagram.

The line and single right arrowhead symbol ──► indicates that the syntax is continued on the next line.

The right arrowhead and line symbol ►── indicates that the syntax is continued from the previous line.

The line, right arrowhead, and left arrowhead symbol ──►◄ symbol indicates the end of a syntax diagram.

Syntax fragments start with the pipe and line symbol |── and end with the ──| line and pipe symbol.

Required items appear on the horizontal line (the main path).

required_item

Optional items appear below the main path.

required_item

optional_item

If an optional item appears above the main path, that item has no effect on execution, and is used only for
readability.

required_item

optional_item

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.

© Copyright IBM Corp. 2016, 2023 1

required_item

optional_choice1

optional_choice2

If one of the items is the default, it will appear above the main path, and the remaining choices will be
shown below.

required_item

default_choice

optional_choice

optional_choice

An arrow returning to the left, above the main line, indicates an item that can be repeated. In this case,
repeated items must be separated by one or more blanks.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can make more than one choice from the stacked items or
repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly as shown. Variables
appear in lowercase (for example, column-name). They represent user-supplied names or values in the
syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For example, in the following
diagram, the variable parameter-block represents the whole syntax fragment that is labeled
parameter-block:

required_item parameter-block

parameter-block
parameter1

parameter2 parameter3

parameter4

Adjacent segments occurring between "large bullets" (●) may be specified in any sequence.

required_item item1 ● item2 ● item3 ● item4

The above diagram shows that item2 and item3 may be specified in either order. Both of the following are
valid:

 required_item item1 item2 item3 item4
 required_item item1 item3 item2 item4

2 IBM Db2 V11.5: SQL Reference

Conventions used for the SQL topics

Error conditions
An error condition is indicated within the text of the manual by listing the SQLSTATE associated with the
error in parentheses.

For example:

 A duplicate signature returns an SQL error (SQLSTATE 42723).

Highlighting conventions
This topic covers the conventions used in the SQL Reference.

• Bold indicates commands, keywords, and other items whose names are predefined by the system.
• Italics indicates one of the following items:

– Names or values (variables) that must be supplied by the user
– General emphasis
– The introduction of a new term
– A reference to another source of information

Conventions describing Unicode data
When a specific Unicode code point is referenced, it is expressed as U+n where n is four to six
hexadecimal digits, using the digits 0-9 and uppercase letters A-F.

Leading zeros are omitted unless the code point would have fewer than four hexadecimal digits. The
space character, for example, is expressed as U+0020. In most cases, the n value is the same as the
UTF-16BE encoding.

Language elements

Characters
The basic symbols of keywords and operators in the SQL language are single-byte characters that are part
of all IBM® character sets. Characters of the language are classified as letters, digits, or special characters.

A letter is any of the 26 uppercase (A through Z) or 26 lowercase (a through z) letters. Letters also include
three code points reserved as alphabetic extenders for national languages (#, @, and $ in the United
States). However these three code points should be avoided, especially for portable applications, because
they represent different characters depending on the CCSID. Letters also include the alphabetics from the
extended character sets. Extended character sets contain additional alphabetic characters; for example,
those with diacritical marks (´ is an example of a diacritical mark). The available characters depend on
the code page in use.

A digit is any of the characters 0 through 9.

A special character is any of the characters listed in the following table:

Table 1. Special characters

Character Description Character Description

 space or blank - minus sign

" quotation mark or
double quote or double
quotation mark

. period

Chapter 1. Structured Query Language (SQL) 3

Table 1. Special characters (continued)

Character Description Character Description

% percent / slash

& ampersand : colon

' apostrophe or single
quote or single quotation
mark

; semicolon

(left parenthesis < less than

) right parenthesis = equals

* asterisk > greater than

+ plus sign ? question mark

, comma _ underline or underscore

| vertical bar1 ^ caret

! exclamation mark [left bracket

{ left brace] right bracket

} right brace \ reverse solidus or back
slash2

1 Using the vertical bar (|) character might inhibit code portability between IBM relational products. Use
the CONCAT operator in place of the || operator.
2 Some code pages do not have a code point for the reverse solidus (\) character. When entering Unicode
string constants, the UESCAPE clause can be used to specify a Unicode escape character other than
reverse solidus.

All multi-byte characters are treated as letters, except for the double-byte blank, which is a special
character.

Tokens
Tokens are the basic syntactical units of SQL. A token is a sequence of one or more characters.

A token cannot contain blank characters, unless it is a string constant or a delimited identifier, which may
contain blanks.

Tokens are classified as ordinary or delimiter:

• An ordinary token is a numeric constant, an ordinary identifier, a host identifier, or a keyword.

Examples

 1 .1 +2 SELECT E 3

• A delimiter token is a string constant, a delimited identifier, an operator symbol, or any of the special
characters shown in the syntax diagrams. A question mark is also a delimiter token when it serves as a
parameter marker.

Examples

 , 'string' "fld1" = .

Spaces: A space is a sequence of one or more blank characters. Tokens other than string constants and
delimited identifiers must not include a space. Any token may be followed by a space. Every ordinary
token must be followed by a space or a delimiter token if allowed by the syntax.

4 IBM Db2 V11.5: SQL Reference

Comments: SQL comments are either bracketed (introduced by /* and end with */) or simple (introduced
by two consecutive hyphens and end with the end of line). Static SQL statements can include host
language comments or SQL comments. Comments can be specified wherever a space can be specified,
except within a delimiter token or between the keywords EXEC and SQL.

Case sensitivity: Any token may include lowercase letters, but a lowercase letter in an ordinary token
is folded to uppercase, except for host variables in the C language, which has case-sensitive identifiers.
Delimiter tokens are never folded to uppercase. Thus, the statement:

 select * from EMPLOYEE where lastname = 'Smith';

is equivalent, after folding, to:

 SELECT * FROM EMPLOYEE WHERE LASTNAME = 'Smith';

Multi-byte alphabetic letters are not folded to uppercase. Single-byte characters (a to z) are folded to
uppercase.

For characters in Unicode:

• A character is folded to uppercase, if applicable, if the uppercase character in UTF-8 has the same
length as the lowercase character in UTF-8. For example, the Turkish lowercase dotless 'i' is not folded,
because in UTF-8, that character has the value X'C4B1', but the uppercase dotless 'I' has the value
X'49'.

• The folding is done in a locale-insensitive manner. For example, the Turkish lowercase dotted 'i' is
folded to the English uppercase (dotless) 'I'.

• Both halfwidth and fullwidth alphabetic letters are folded to uppercase. For example, the fullwidth
lowercase 'a' (U+FF41) is folded to the fullwidth uppercase 'A' (U+FF21).

Identifiers
An identifier is a token that is used to form a name. An identifier in an SQL statement is either an SQL
identifier or a host identifier.

• SQL identifiers

There are two types of SQL identifiers: ordinary and delimited.

– An ordinary identifier is an uppercase letter followed by zero or more characters, each of which is an
uppercase letter, a digit, or the underscore character. Note that lowercase letters can be used when
specifying an ordinary identifier, but they are converted to uppercase when processed. An ordinary
identifier should not be a reserved word.

The following example shows ordinary identifiers:

 WKLYSAL WKLY_SAL

– A delimited identifier is a sequence of one or more characters enclosed by double quotation marks.
Leading blanks in the sequence are significant. Trailing blanks in the sequence are not significant,
although they are stored with the identifier. Two consecutive quotation marks are used to represent
one quotation mark within the delimited identifier. A delimited identifier can be used when the
sequence of characters does not qualify as an ordinary identifier. In this way an identifier can include
lowercase letters.

The following example shows a series of delimited identifiers:

 "WKLY_SAL" "WKLY SAL" "UNION" "wkly_sal"

Character conversion of identifiers created on a double-byte code page, but used by an application
or database on a multi-byte code page, may require special consideration: After conversion, such
identifiers may exceed the length limit for an identifier.

• Host identifiers

Chapter 1. Structured Query Language (SQL) 5

A host identifier is a name declared in the host program. The rules for forming a host identifier are the
rules of the host language. A host identifier should not be greater than 255 bytes in length and should
not begin with SQL or DB2 (in uppercase or lowercase characters).

Naming conventions and implicit object name qualifications
The rules for forming a database object name depend on the type of the object designated by the name.
A name may consist of a single SQL identifier or it may be qualified with one or more identifiers that more
specifically identify the object. A period must separate each identifier.

The syntax diagrams use different terms for different types of names. The following list defines these
terms.

alias-name
A schema-qualified name that designates an alias.

attribute-name
An identifier that designates an attribute of a structured data type.

array-type-name
A qualified or unqualified name that designates a user-defined array type. The unqualified form of
array-type-name is an SQL identifier. An unqualified array type name in an SQL statement is implicitly
qualified. The implicit qualifier is a schema name or a module name, which is determined by the
context in which array-type-name appears. The qualified form is a schema-name followed by a period
and an SQL identifier or a module-name (which can also be qualified by a schema-name) followed by
a period and an SQL identifier. If the array type is defined in a module and used outside of the same
module, it must be qualified by the module-name.

authorization-name
An identifier that designates a user, group, or role. For a user or a group:

• Valid characters are: 'A' through 'Z'; 'a' through 'z'; '0' through '9'; '#'; '@'; '$'; '_'; '!'; ' '('; ')'; '{'; '}'; '-';
'.'; and '^'.

• The following characters must be delimited with quotation marks when entered through the
command line processor: '!'; ' '('; ')'; '{'; '}'; '-'; '.'; and '^'.

• The name must not begin with the characters 'SYS', 'IBM', or 'SQL'.
• The name must not be: 'ADMINS', 'GUESTS', 'LOCAL', 'PUBLIC', or 'USERS'.
• A delimited authorization ID must not contain lowercase letters.

bufferpool-name
An identifier that designates a buffer pool.

column-name
A qualified or unqualified name that designates a column of a table or view. The qualifier is a table
name, a view name, a nickname, or a correlation name.

component-name
An identifier that designates a security label component.

condition-name
A qualified or unqualified name that designates a condition. An unqualified condition name in an SQL
statement is implicitly qualified, depending on its context. If the condition is defined in a module and
used outside of the same module, it must be qualified by the module-name.

constraint-name
An identifier that designates a referential constraint, primary key constraint, unique constraint, or a
table check constraint.

correlation-name
An identifier that designates a result table.

cursor-name
An identifier that designates an SQL cursor. For host compatibility, a hyphen character may be used in
the name.

6 IBM Db2 V11.5: SQL Reference

cursor-type-name
A qualified or unqualified name that designates a user-defined cursor type. The unqualified form
of cursor-type-name is an SQL identifier. An unqualified cursor-type-name in an SQL statement is
implicitly qualified, depending on context. The implicit qualifier is a schema name or a module name,
which is determined by the context in which cursor-type-name appears. The qualified form is a
schema-name followed by a period and an SQL identifier or a module-name (which can also be
qualified by a schema-name) followed by a period and an SQL identifier. If the cursor type is defined in
a module and used outside of the same module, it must be qualified by the module-name.

cursor-variable-name
A qualified or unqualified name that designates a global variable, local variable or an SQL parameter
of a cursor type. An unqualified cursor variable name in an SQL statement is implicitly qualified,
depending on context.

data-source-name
An identifier that designates a data source. This identifier is the first part of a three-part remote object
name.

db-partition-group-name
An identifier that designates a database partition group.

descriptor-name
A colon followed by a host identifier that designates an SQL descriptor area (SQLDA). For the
description of a host identifier, see “References to host variables” on page 20. Note that a descriptor
name never includes an indicator variable.

distinct-type-name
A qualified or unqualified name that designates a distinct type. The unqualified form of distinct-type-
name is an SQL identifier. An unqualified distinct type name in an SQL statement is implicitly qualified.
The implicit qualifier is a schema name or a module name, which is determined by the context in
which distinct-type-name appears. The qualified form is a schema-name followed by a period and an
SQL identifier or a module-name (which can also be qualified by a schema-name) followed by a period
and an SQL identifier. If the distinct type is defined in a module and used outside of the same module,
it must be qualified by the module-name.

event-monitor-name
An identifier that designates an event monitor.

function-mapping-name
An identifier that designates a function mapping.

function-name
A qualified or unqualified name that designates a function. The unqualified form of function-name
is an SQL identifier. An unqualified function name in an SQL statement is implicitly qualified. The
implicit qualifier is a schema name, which is determined by the context in which the function appears.
The qualified form could be is a schema-name followed by a period and an SQL identifier or a
module-name followed by a period and an SQL identifier. If the function is published in a module and
used outside of the same module, it must be qualified by the module-name.

global-variable-name
A qualified or unqualified name that designates a global variable. The unqualified form of global-
variable-name is an SQL identifier. An unqualified global variable name in an SQL statement is
implicitly qualified. The implicit qualifier is a schema name or a module name, which is determined
by the context in which global-variable-name appears. The qualified form is a schema-name followed
by a period and an SQL identifier or a module-name (which can also be qualified by a schema-name)
followed by a period and an SQL identifier. If the global variable is defined in a module and used
outside of the same module, it must be qualified by the module-name.

group-name
An unqualified identifier that designates a transform group defined for a structured type.

host-variable
A sequence of tokens that designates a host variable. A host variable includes at least one host
identifier, explained in “References to host variables” on page 20.

Chapter 1. Structured Query Language (SQL) 7

index-name
A schema-qualified name that designates an index or an index specification.

label
An identifier that designates a label in an SQL procedure.

method-name
An identifier that designates a method. The schema context for a method is determined by the
schema of the subject type (or a supertype of the subject type) of the method.

module-name
A qualified or unqualified name that designates a module. An unqualified module-name in an SQL
statement is implicitly qualified. The implicit qualifier is a schema name, which is determined by
the context in which the module-name appears. The qualified form is a schema-name followed by a
period and an SQL identifier.

nickname
A schema-qualified name that designates a federated server reference to a table or a view.

package-name
A qualified or unqualified name that designates a package.

parameter-name
An identifier that designates a parameter that can be referenced in a procedure, user-defined
function, method, or index extension.

partition-name
An identifier that designates a data partition in a partitioned table.

period-name
An identifier that designates a period. SYSTEM_TIME and BUSINESS_TIME are the only supported
period names.

procedure-name
A qualified or unqualified name that designates a procedure. The unqualified form of procedure-name
is an SQL identifier. An unqualified procedure name in an SQL statement is implicitly qualified. The
implicit qualifier is a schema name, which is determined by the context in which the procedure
appears. The qualified form is a schema-name followed by a period and an SQL identifier or a
module-name followed by a period and an SQL identifier. If the procedure is defined in a module and
used outside of the same module, it must be qualified by the module-name.

remote-authorization-name
An identifier that designates a data source user. The rules for authorization names vary from data
source to data source.

remote-function-name
A name that designates a function registered to a data source database.

remote-object-name
A three-part name that designates a data source table or view, and that identifies the data source in
which the table or view resides. The parts of this name are data-source-name, remote-schema-name,
and remote-table-name.

remote-schema-name
A name that designates the schema to which a data source table or view belongs. This name is the
second part of a three-part remote object name.

remote-table-name
A name that designates a table or view at a data source. This name is the third part of a three-part
remote object name.

remote-type-name
A data type supported by a data source database. Do not use the long form for built-in types (use
CHAR instead of CHARACTER, for example).

role-name
An identifier that designates a role.

8 IBM Db2 V11.5: SQL Reference

row-type-name
A qualified or unqualified name that designates a user-defined row type. The unqualified form of
row-type-name is an SQL identifier. An unqualified row-type-name in an SQL statement is implicitly
qualified. The implicit qualifier is a schema name or a module name, which is determined by the
context in which the row-type-name appears. The qualified form is a schema-name followed by a
period and an SQL identifier or a module-name (which can also be qualified by a schema-name)
followed by a period and an SQL identifier. If the row type is defined in a module and used outside of
the same module, it must be qualified by the module-name.

savepoint-name
An identifier that designates a savepoint.

schema-name
An identifier that provides a logical grouping for SQL objects. A schema name used as a qualifier for
the name of an object may be implicitly determined:

• from the value of the CURRENT SCHEMA special register
• from the value of the QUALIFIER precompile/bind option
• on the basis of a resolution algorithm that uses the CURRENT PATH special register
• on the basis of the schema name for another object in the same SQL statement.

To avoid complications, it is recommended that the name SESSION not be used as a schema, except
as the schema for declared global temporary tables (which must use the schema name SESSION).

security-label-name
A qualified or unqualified name that designates a security label. An unqualified security label name in
an SQL statement is implicitly qualified by the applicable security-policy-name, when one applies. If
no security-policy-name is implicitly applicable, the name must be qualified.

security-policy-name
An identifier that designates a security policy.

sequence-name
An identifier that designates a sequence.

server-name
An identifier that designates an application server. In a federated system, the server name also
designates the local name of a data source.

specific-name
A qualified or unqualified name that designates a specific name. An unqualified specific name in an
SQL statement is implicitly qualified, depending on context.

SQL-variable-name
The name of a local variable in an SQL procedure statement. SQL variable names can be used in other
SQL statements where a host variable name is allowed. The name can be qualified by the label of the
compound statement that declared the SQL variable.

statement-name
An identifier that designates a prepared SQL statement.

storagegroup-name
An identifier that designates a storage group.

supertype-name
A qualified or unqualified name that designates the supertype of a type. An unqualified supertype
name in an SQL statement is implicitly qualified, depending on context.

table-name
A schema-qualified name that designates a table.

table-reference
A qualified or unqualified name that designates a table. An unqualified table reference in a common
table expression is implicitly qualified by the default schema.

tablespace-name
An identifier that designates a table space.

Chapter 1. Structured Query Language (SQL) 9

trigger-name
A schema-qualified name that designates a trigger.

type-mapping-name
An identifier that designates a data type mapping.

type-name
A qualified or unqualified name that designates a type. An unqualified type name in an SQL statement
is implicitly qualified, depending on context.

typed-table-name
A schema-qualified name that designates a typed table.

typed-view-name
A schema-qualified name that designates a typed view.

usage-list-name
A schema-qualified name that designates a usage list.

user-defined-type-name
A qualified or unqualified name that designates a user-defined data type. The unqualified form
of user-defined-type-name is an SQL identifier. An unqualified user-defined-type-name in an SQL
statement is implicitly qualified. The implicit qualifier is a schema name or a module name, which is
determined by the context in which user-defined-type-name appears. The qualified form is a schema-
name followed by a period and an SQL identifier or a module-name (which can also be qualified by a
schema-name) followed by a period and an SQL identifier. If the user-defined data type is defined in a
module and used outside of the same module, it must be qualified by the module-name.

view-name
A schema-qualified name that designates a view.

wrapper-name
An identifier that designates a wrapper.

XML-schema-name
A qualified or unqualified name that designates an XML schema.

xsrobject-name
A qualified or unqualified name that designates an object in the XML schema repository.

Aliases for database objects
An alias can be thought of as an alternative name for an SQL object. An SQL object, therefore, can be
referred to in an SQL statement by its name or by an alias.

A public alias is an alias which can always be referenced without qualifying its name with a schema name.
The implicit qualifier of a public alias is SYSPUBLIC, which can also be specified explicitly.

Aliases are also known as synonyms.

An alias can be used wherever the object it is based on can be used. An alias can be created even if
the object does not exist (although it must exist by the time a statement referring to it is compiled).
It can refer to another alias if no circular or repetitive references are made along the chain of aliases.
An alias can only refer to a module, nickname, sequence, table, view, or another alias within the same
database. An alias name cannot be used where a new object name is expected, such as in the CREATE
TABLE or CREATE VIEW statements; for example, if the table alias name PERSONNEL has been created,
subsequent statements such as CREATE TABLE PERSONNEL... will return an error.

The option of referring to an object by an alias is not explicitly shown in the syntax diagrams, or
mentioned in the descriptions of SQL statements.

A new unqualified alias of a given object type, say for a sequence, cannot have the same fully-qualified
name as an existing object of that object type. For example, a sequence alias named ORDERID cannot be
defined in the KANDIL schema for the sequence named KANDIL.ORDERID.

The effect of using an alias in an SQL statement is similar to that of text substitution. The
alias, which must be defined by the time that the SQL statement is compiled, is replaced at

10 IBM Db2 V11.5: SQL Reference

statement compilation time by the qualified object name. For example, if PBIRD.SALES is an alias for
DSPN014.DIST4_SALES_148, then at compilation time:

 SELECT * FROM PBIRD.SALES

effectively becomes

 SELECT * FROM DSPN014.DIST4_SALES_148

Authorization IDs and authorization names
An authorization ID is a character string that is obtained by the database manager when a connection is
established between the database manager and either an application process or a program preparation
process. It designates a set of privileges. It may also designate a user or a group of users, but this
property is not controlled by the database manager.

Authorization IDs are used by the database manager to provide:

• Authorization checking of SQL statements
• A default value for the QUALIFIER precompile/bind option and the CURRENT SCHEMA special register.

The authorization ID is also included in the default CURRENT PATH special register and the FUNCPATH
precompile/bind option.

An authorization ID applies to every SQL statement. The authorization ID that applies to a static SQL
statement is the authorization ID that is used during program binding. The authorization ID that applies
to a dynamic SQL statement is based on the DYNAMICRULES option supplied at bind time, and on the
current runtime environment for the package issuing the dynamic SQL statement:

• In a package that has bind behavior, the authorization ID used is the authorization ID of the package
owner.

• In a package that has define behavior, the authorization ID used is the authorization ID of the
corresponding routine's definer.

• In a package that has run behavior, the authorization ID used is the current authorization ID of the user
executing the package.

• In a package that has invoke behavior, the authorization ID used is the authorization ID currently in
effect when the routine is invoked. This is called the runtime authorization ID.

For more information, see “Dynamic SQL characteristics at run time” on page 12.

An authorization name specified in an SQL statement should not be confused with the authorization ID
of the statement. An authorization name is an identifier that is used within various SQL statements. An
authorization name is used in the CREATE SCHEMA statement to designate the owner of the schema.
An authorization name is used in the GRANT and REVOKE statements to designate a target of the grant
or revoke operation. Granting privileges to X means that X (or a member of the group or role X) will
subsequently be the authorization ID of statements that require those privileges.

Examples
• Assume that SMITH is the user ID and the authorization ID that the database manager obtained

when a connection was established with the application process. The following statement is executed
interactively:

 GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Therefore, in a dynamic SQL statement, the default
value of the CURRENT SCHEMA special register is SMITH, and in static SQL, the default value of
the QUALIFIER precompile/bind option is SMITH. The authority to execute the statement is checked
against SMITH, and SMITH is the table-name implicit qualifier based on qualification rules described in
“Naming conventions and implicit object name qualifications” on page 6.

Chapter 1. Structured Query Language (SQL) 11

KEENE is an authorization name specified in the statement. KEENE is given the SELECT privilege on
SMITH.TDEPT.

• Assume that SMITH has administrative authority and is the authorization ID of the following dynamic
SQL statements, with no SET SCHEMA statement issued during the session:

 DROP TABLE TDEPT

Removes the SMITH.TDEPT table.

 DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.

 DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table. Note that KEENE.TDEPT and SMITH.TDEPT are different tables.

 CREATE SCHEMA PAYROLL AUTHORIZATION KEENE

KEENE is the authorization name specified in the statement that creates a schema called PAYROLL.
KEENE is the owner of the schema PAYROLL and is given CREATEIN, ALTERIN, and DROPIN privileges,
with the ability to grant them to others.

Dynamic SQL characteristics at run time
The BIND option DYNAMICRULES determines the authorization ID that is used for checking authorization
when dynamic SQL statements are processed. In addition, the option also controls other dynamic SQL
attributes, such as the implicit qualifier that is used for unqualified object references, and whether certain
SQL statements can be invoked dynamically.

The set of values for the authorization ID and other dynamic SQL attributes is called the dynamic SQL
statement behavior. The four possible behaviors are run, bind, define, and invoke. As the following table
shows, the combination of the value of the DYNAMICRULES BIND option and the runtime environment
determines which of the behaviors is used. DYNAMICRULES RUN, which implies run behavior, is the
default.

Table 2. How DYNAMICRULES and the runtime environment determine dynamic SQL statement behavior

DYNAMICRULES value Behavior of dynamic SQL
statements in a stand-alone
program environment

Behavior of dynamic SQL
statements in a routine
environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

Run behavior
The authorization ID of the user (the ID that initially connected to the database) that executes the
package is used as the value for authorization checking of dynamic SQL statements. This authorization
ID is also used as the initial value for implicit qualification of unqualified object references within
dynamic SQL statements.

Bind behavior
At run time, all the rules that apply to static SQL for authorization and qualification are used. The
authorization ID of the package owner is used as the value for authorization checking of dynamic

12 IBM Db2 V11.5: SQL Reference

SQL statements. The package default qualifier is used for implicit qualification of unqualified object
references within dynamic SQL statements.

Define behavior
Define behavior applies only if the dynamic SQL statement is in a package that is run within a
routine context, and the package was bound with DYNAMICRULES DEFINEBIND or DYNAMICRULES
DEFINERUN. The authorization ID of the routine definer (not the routine's package binder) is used as
the value for authorization checking of dynamic SQL statements. This authorization ID is also used
for implicit qualification of unqualified object references within dynamic SQL statements within that
routine.

Invoke behavior
Invoke behavior applies only if the dynamic SQL statement is in a package that is run within a
routine context, and the package was bound with DYNAMICRULES INVOKEBIND or DYNAMICRULES
INVOKERUN. The statement authorization ID in effect when the routine is invoked is used as the
value for authorization checking of dynamic SQL. This authorization ID is also used for implicit
qualification of unqualified object references within dynamic SQL statements within that routine. This
is summarized by the following table.

Invoking Environment ID Used

any static SQL implicit or explicit value of the OWNER of the
package the SQL invoking the routine came from

used in definition of view or trigger definer of the view or trigger

dynamic SQL from a bind behavior package implicit or explicit value of the OWNER of the
package the SQL invoking the routine came from

dynamic SQL from a run behavior package ID used to make the initial connection to the
database

dynamic SQL from a define behavior package definer of the routine that uses the package that
the SQL invoking the routine came from

dynamic SQL from an invoke behavior package the current authorization ID invoking the routine

Restricted statements when run behavior does not apply
When bind, define, or invoke behavior is in effect, you cannot use the following dynamic SQL
statements: GRANT, REVOKE, ALTER, CREATE, DROP, COMMENT, RENAME, SET INTEGRITY, SET
EVENT MONITOR STATE; or queries that reference a nickname.

Considerations regarding the DYNAMICRULES option
The CURRENT SCHEMA special register cannot be used to qualify unqualified object references within
dynamic SQL statements executed from bind, define or invoke behavior packages. This is true even
after you issue the SET CURRENT SCHEMA statement to change the CURRENT SCHEMA special
register; the register value is changed but not used.

In the event that multiple packages are referenced during a single connection, all dynamic SQL
statements prepared by those packages will exhibit the behavior specified by the DYNAMICRULES
option for that specific package and the environment in which they are used.

It is important to keep in mind that when a package exhibits bind behavior, the binder of the package
should not have any authorities granted that the user of the package should not receive, because a
dynamic statement will be using the authorization ID of the package owner. Similarly, when a package
exhibits define behavior, the definer of the routine should not have any authorities granted that the
user of the package should not receive.

Authorization IDs and statement preparation
If the VALIDATE BIND option is specified at bind time, the privileges required to manipulate tables and
views must also exist at bind time. If these privileges or the referenced objects do not exist, and the
SQLERROR NOPACKAGE option is in effect, the bind operation will be unsuccessful. If the SQLERROR

Chapter 1. Structured Query Language (SQL) 13

CONTINUE option is specified, the bind operation will be successful, and any statements in error will be
flagged. Any attempt to execute such a statement will result in an error.

If a package is bound with the VALIDATE RUN option, all normal bind processing is completed, but the
privileges required to use the tables and views that are referenced in the application need not exist yet. If
a required privilege does not exist at bind time, an incremental bind operation is performed whenever the
statement is first executed in an application, and all privileges required for the statement must exist. If a
required privilege does not exist, execution of the statement is unsuccessful.

Authorization checking at run time is performed using the authorization ID of the package owner.

Column names
The meaning of a column name depends on its context. A column name can be used to:

• Declare the name of a column, as in a CREATE TABLE statement.
• Identify a column, as in a CREATE INDEX statement.
• Specify values of the column, as in the following contexts:

– In an aggregate function, a column name specifies all values of the column in the group or
intermediate result table to which the function is applied. For example, MAX(SALARY) applies the
function MAX to all values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in the intermediate result
table to which the clause is applied. For example, ORDER BY DEPT orders an intermediate result
table by the values of the column DEPT.

– In an expression, a search condition, or a scalar function, a column name specifies a value for each
row or group to which the construct is applied. For example, when the search condition CODE = 20 is
applied to some row, the value specified by the column name CODE is the value of the column CODE
in that row.

• Temporarily rename a column, as in the correlation-clause of a table-reference in a FROM clause.

Qualified column names
A qualifier for a column name may be a table, view, nickname, alias, or correlation name.

Whether a column name may be qualified depends on its context:

• Depending on the form of the COMMENT ON statement, a single column name may need to be qualified.
Multiple column names must be unqualified.

• Where the column name specifies values of the column, it may be qualified at the user's option.
• In the assignment-clause of an UPDATE statement, it may be qualified at the user's option.
• In all other contexts, a column name must not be qualified.

Where a qualifier is optional, it can serve two purposes. They are described under “Column name
qualifiers to avoid ambiguity” on page 16 and “Column name qualifiers in correlated references” on
page 18.

Correlation names
A correlation name can be defined in the FROM clause of a query and in the first clause of an UPDATE or
DELETE statement. For example, the clause FROM X.MYTABLE Z establishes Z as a correlation name for
X.MYTABLE.

 FROM X.MYTABLE Z

With Z defined as a correlation name for X.MYTABLE, only Z can be used to qualify a reference to a column
of that instance of X.MYTABLE in that SELECT statement.

14 IBM Db2 V11.5: SQL Reference

A correlation name is associated with a table, view, nickname, alias, nested table expression, table
function, or data change table reference only within the context in which it is defined. Hence, the same
correlation name can be defined for different purposes in different statements, or in different clauses of
the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a correlated reference. It
can also be used merely as a shorter name for a table reference. In the example, Z might have been used
merely to avoid having to enter X.MYTABLE more than once.

If a correlation name is specified for a table, view, nickname, or alias name, any qualified reference to
a column of that instance of the table, view, nickname, or alias must use the correlation name, rather
than the table, view, nickname, or alias name. For example, the reference to EMPLOYEE.PROJECT in the
following example is incorrect, because a correlation name has been specified for EMPLOYEE:

Example

 FROM EMPLOYEE E
 WHERE EMPLOYEE.PROJECT='ABC' * incorrect*

The qualified reference to PROJECT should instead use the correlation name, "E", as shown in the
following example:

 FROM EMPLOYEE E
 WHERE E.PROJECT='ABC'

Names specified in a FROM clause are either exposed or non-exposed. A table, view, nickname, or alias
name is said to be exposed in the FROM clause if a correlation name is not specified. A correlation name
is always an exposed name. For example, in the following FROM clause, a correlation name is specified for
EMPLOYEE but not for DEPARTMENT, so DEPARTMENT is an exposed name, and EMPLOYEE is not:

 FROM EMPLOYEE E, DEPARTMENT

A table, view, nickname, or alias name that is exposed in a FROM clause may be the same as any other
table name, view name or nickname exposed in that FROM clause or any correlation name in the FROM
clause. This may result in ambiguous column name references which returns an error (SQLSTATE 42702).

The first two FROM clauses shown in the following list are correct, because each one contains no more
than one reference to EMPLOYEE that is exposed:

1. Given the FROM clause:

 FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the second instance of
EMPLOYEE in the FROM clause. A qualified reference to the first instance of EMPLOYEE must use
the correlation name "E1" (E1.PROJECT).

2. Given the FROM clause:

 FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the first instance of EMPLOYEE
in the FROM clause. A qualified reference to the second instance of EMPLOYEE must use the
correlation name "E2" (E2.PROJECT).

3. Given the FROM clause:

 FROM EMPLOYEE, EMPLOYEE

the two exposed table names included in this clause (EMPLOYEE and EMPLOYEE) are the same. This is
allowed, but references to specific column names would be ambiguous (SQLSTATE 42702).

4. Given the following statement:

Chapter 1. Structured Query Language (SQL) 15

 SELECT *
 FROM EMPLOYEE E1, EMPLOYEE E2 * incorrect *
 WHERE EMPLOYEE.PROJECT = 'ABC'

the qualified reference EMPLOYEE.PROJECT is incorrect, because both instances of EMPLOYEE in the
FROM clause have correlation names. Instead, references to PROJECT must be qualified with either
correlation name (E1.PROJECT or E2.PROJECT).

5. Given the FROM clause:

 FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use X.EMPLOYEE
(X.EMPLOYEE.PROJECT). If X is the CURRENT SCHEMA special register value in dynamic SQL or the
QUALIFIER precompile/bind option in static SQL, then the columns cannot be referenced since any
such reference would be ambiguous.

The use of a correlation name in the FROM clause also allows the option of specifying a list of column
names to be associated with the columns of the result table. As with a correlation name, these listed
column names become the exposed names of the columns that must be used for references to the
columns throughout the query. If a column name list is specified, then the column names of the
underlying table become non-exposed.

Given the FROM clause:

 FROM DEPARTMENT D (NUM,NAME,MGR,ANUM,LOC)

a qualified reference such as D.NUM denotes the first column of the DEPARTMENT table that is defined
in the table as DEPTNO. A reference to D.DEPTNO using this FROM clause is incorrect since the column
name DEPTNO is a non-exposed column name.

Column name qualifiers to avoid ambiguity
In the context of a function, a GROUP BY clause, ORDER BY clause, an expression, or a search condition,
a column name refers to values of a column in some table, view, nickname, nested table expression or
table function. The tables, views, nicknames, nested table expressions and table functions that might
contain the column are called the object tables of the context. Two or more object tables might contain
columns with the same name; one reason for qualifying a column name is to designate the table from
which the column comes. Qualifiers for column names are also useful in SQL procedures to distinguish
column names from SQL variable names used in SQL statements.

A nested table expression or table function will consider table-references that precede it in the FROM
clause as object tables. The table-references that follow are not considered as object tables.

Table designators
A qualifier that designates a specific object table is called a table designator. The clause that identifies
the object tables also establishes the table designators for them. For example, the object tables of an
expression in a SELECT clause are named in the FROM clause that follows it:

 SELECT CORZ.COLA, OWNY.MYTABLE.COLA
 FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:

• A name that follows a table, view, nickname, alias, nested table expression or table function is both a
correlation name and a table designator. Thus, CORZ is a table designator. CORZ is used to qualify the
first column name in the select list.

• An exposed table, view name, nickname or alias is a table designator. Thus, OWNY.MYTABLE is a table
designator. OWNY.MYTABLE is used to qualify the second column name in the select list.

16 IBM Db2 V11.5: SQL Reference

When qualifying a column with the exposed table name form of a table designator, either the qualified or
unqualified form of the exposed table name can be used. If the qualified form is used, the qualifier must
be the same as the default qualifier for the exposed table name.

For example, assume that the current schema is CORPDATA.

SELECT CORPDATA.EMPLOYEE.WORKDEPT FROM EMPLOYEE

is valid because the EMPLOYEE table referenced in the FROM clause fully qualifies to
CORPDATA.EMPLOYEE, which matches the qualifier for the WORKDEPT column.

SELECT EMPLOYEE.WORKDEPT, REGEMP.WORKDEPT
 FROM CORPDATA.EMPLOYEE, REGION.EMPLOYEE REGEMP

is also valid, because the first select list column references the unqualified exposed table designator
CORPDATA.EMPLOYEE, which is in the FROM clause, and the second select list column references the
correlation name REGEMP of the table object REGION.EMPLOYEE, which is also in the FROM clause.

Now assume that the current schema is REGION.

SELECT CORPDATA.EMPLOYEE.WORKDEPT FROM EMPLOYEE

is not valid because the EMPLOYEE table referenced in the FROM clause fully qualifies to
REGION.EMPLOYEE, and the qualifier for the WORKDEPT column represents the CORPDATA.EMPLOYEE
table.

Each table designator should be unique within a particular FROM clause to avoid the possibility of
ambiguous references to columns.

Avoiding undefined or ambiguous references
When a column name refers to values of a column, exactly one object table must include a column with
that name. The following situations are considered errors:

• No object table contains a column with the specified name. The reference is undefined.
• The column name is qualified by a table designator, but the table designated does not include a column

with the specified name. Again the reference is undefined.
• The name is unqualified, and more than one object table includes a column with that name. The

reference is ambiguous.
• The column name is qualified by a table designator, but the table designated is not unique in the FROM

clause and both occurrences of the designated table include the column. The reference is ambiguous.
• The column name is in a nested table expression which is not preceded by the TABLE keyword or

in a table function or nested table expression that is the right operand of a right outer join or a full
outer join and the column name does not refer to a column of a table-reference within the nested table
expression's fullselect. The reference is undefined.

Avoid ambiguous references by qualifying a column name with a uniquely defined table designator. If
the column is contained in several object tables with different names, the table names can be used
as designators. Ambiguous references can also be avoided without the use of the table designator by
giving unique names to the columns of one of the object tables using the column name list following the
correlation name.

When qualifying a column with the exposed table name form of a table designator, either the qualified or
unqualified form of the exposed table name may be used. However, the qualifier used and the table used
must be the same after fully qualifying the table name, view name or nickname and the table designator.

1. If the authorization ID of the statement is CORPDATA:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT
 FROM EMPLOYEE

is a valid statement.

Chapter 1. Structured Query Language (SQL) 17

2. If the authorization ID of the statement is REGION:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT
 FROM EMPLOYEE * incorrect *

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE, but the qualifier for
WORKDEPT represents a different table, CORPDATA.EMPLOYEE.

Column name qualifiers in correlated references
A fullselect is a form of a query that may be used as a component of various SQL statements. A fullselect
used within a search condition of any statement is called a subquery. A fullselect used to retrieve a single
value as an expression within a statement is called a scalar fullselect or scalar subquery. A fullselect
used in the FROM clause of a query is called a nested table expression. Subqueries in search conditions,
scalar subqueries and nested table expressions are referred to as subqueries through the remainder of
this topic.

A subquery may include subqueries of its own, and these may, in turn, include subqueries. Thus an
SQL statement may contain a hierarchy of subqueries. Those elements of the hierarchy that contain
subqueries are said to be at a higher level than the subqueries they contain.

Every element of the hierarchy contains one or more table designators. A subquery can reference not only
the columns of the tables identified at its own level in the hierarchy, but also the columns of the tables
identified previously in the hierarchy, back to the highest level of the hierarchy. A reference to a column of
a table identified at a higher level is called a correlated reference.

For compatibility with existing standards for SQL, both qualified and unqualified column names are
allowed as correlated references. However, it is good practice to qualify all column references used in
subqueries; otherwise, identical column names may lead to unintended results. For example, if a table in
a hierarchy is altered to contain the same column name as the correlated reference and the statement is
prepared again, the reference will apply to the altered table.

When a column name in a subquery is qualified, each level of the hierarchy is searched, starting at
the same subquery as the qualified column name appears and continuing to the higher levels of the
hierarchy until a table designator that matches the qualifier is found. Once found, it is verified that the
table contains the given column. If the table is found at a higher level than the level containing column
name, then it is a correlated reference to the level where the table designator was found. A nested table
expression must be preceded with the optional TABLE keyword in order to search the hierarchy above the
fullselect of the nested table expression.

When the column name in a subquery is not qualified, the tables referenced at each level of the hierarchy
are searched, starting at the same subquery where the column name appears and continuing to higher
levels of the hierarchy, until a match for the column name is found. If the column is found in a table at a
higher level than the level containing column name, then it is a correlated reference to the level where the
table containing the column was found. If the column name is found in more than one table at a particular
level, the reference is ambiguous and considered an error.

In either case, T, used in the following example, refers to the table designator that contains column C. A
column name, T.C (where T represents either an implicit or an explicit qualifier), is a correlated reference
if, and only if, these conditions are met:

• T.C is used in an expression of a subquery.
• T does not designate a table used in the from clause of the subquery.
• T designates a table used at a higher level of the hierarchy that contains the subquery.

Since the same table, view or nickname can be identified at many levels, unique correlation names are
recommended as table designators. If T is used to designate a table at more than one level (T is the table
name itself or is a duplicate correlation name), T.C refers to the level where T is used that most directly
contains the subquery that includes T.C. If a correlation to a higher level is needed, a unique correlation
name must be used.

18 IBM Db2 V11.5: SQL Reference

The correlated reference T.C identifies a value of C in a row or group of T to which two search conditions
are being applied: condition 1 in the subquery, and condition 2 at some higher level. If condition 2 is used
in a WHERE clause, the subquery is evaluated for each row to which condition 2 is applied. If condition 2
is used in a HAVING clause, the subquery is evaluated for each group to which condition 2 is applied.

For example, in the following statement, the correlated reference X.WORKDEPT (in the last line) refers to
the value of WORKDEPT in table EMPLOYEE at the level of the first FROM clause. (That clause establishes
X as a correlation name for EMPLOYEE.) The statement lists employees who make less than the average
salary for their department.

 SELECT EMPNO, LASTNAME, WORKDEPT
 FROM EMPLOYEE X
 WHERE SALARY < (SELECT AVG(SALARY)
 FROM EMPLOYEE
 WHERE WORKDEPT = X.WORKDEPT)

The next example uses THIS as a correlation name. The statement deletes rows for departments that
have no employees.

 DELETE FROM DEPARTMENT THIS
 WHERE NOT EXISTS(SELECT *
 FROM EMPLOYEE
 WHERE WORKDEPT = THIS.DEPTNO)

References to variables
A variable in an SQL statement specifies a value that can be changed when the SQL statement is
executed. There are several types of variables used in SQL statements:

host variable
Host variables are defined by statements of a host language. For more information about how to refer
to host variables, see “References to host variables” on page 20.

transition variable
Transition variables are defined in a trigger and refer to either the old or new values of columns. For
more information about how to refer to transition variables, see "CREATE TRIGGER statement" in the
SQL Reference Volume 2 .

SQL variable
SQL variables are defined by an SQL compound statement in an SQL function, SQL method, SQL
procedure, trigger, or dynamic SQL statement. For more information about SQL variables, see
"References to SQL parameters, SQL variables, and global variables" in the SQL Reference Volume
2 .

global variable
Global variables are defined by the CREATE VARIABLE statement. For more information about global
variables, see "CREATE VARIABLE" and "References to SQL parameters, SQL variables, and global
variables" in the SQL Reference Volume 2 .

module variable
Module variables are defined by the ALTER MODULE statement using the ADD VARIABLE or PUBLISH
VARIABLE operation. For more information about module variables, see "ALTER MODULE" in the SQL
Reference Volume 2 .

SQL parameter
SQL parameters are defined by a CREATE FUNCTION, CREATE METHOD, or CREATE PROCEDURE
statement. For more information about SQL parameters, see "References to SQL parameters, SQL
variables, and global variables" in the SQL Reference Volume 2 .

parameter marker
Parameter markers are specified in a dynamic SQL statement where host variables would be specified
if the statement were a static SQL statement. An SQL descriptor or parameter binding is used to
associate a value with a parameter marker during dynamic SQL statement processing. For more
information about parameter markers, see "Parameter markers" in the SQL Reference Volume 2 .

Chapter 1. Structured Query Language (SQL) 19

References to host variables
A host variable is either:

• A variable in a host language such as a C variable, a C++ variable, a COBOL data item, a FORTRAN
variable, or a Java™ variable

or:

• A host language construct that was generated by an SQL precompiler from a variable declared using
SQL extensions

that is referenced in an SQL statement. Host variables are either directly defined by statements in the
host language or are indirectly defined using SQL extensions.

A host variable in an SQL statement must identify a host variable described in the program according to
the rules for declaring host variables.

All host variables used in an SQL statement must be declared in an SQL DECLARE section in all host
languages except REXX. No variables may be declared outside an SQL DECLARE section with names
identical to variables declared inside an SQL DECLARE section. An SQL DECLARE section begins with
BEGIN DECLARE SECTION and ends with END DECLARE SECTION.

The meta-variable host-variable, as used in the syntax diagrams, shows a reference to a host variable. A
host-variable as the target variable in a SET variable statement or in the INTO clause of a FETCH, SELECT
INTO, or VALUES INTO statement, identifies a host variable to which a value from a column of a row or an
expression is assigned. In all other contexts a host-variable specifies a value to be passed to the database
manager from the application program.

The meta-variable host-variable in syntax diagrams can generally be expanded to:

:host-identifier

INDICATOR
:host-identifier

Each host-identifier must be declared in the source program. The variable designated by the second
host-identifier must have a data type of small integer.

The first host-identifier designates the main variable. Depending on the operation, it either provides a
value to the database manager or is provided a value from the database manager. An input host variable
provides a value in the runtime application code page. An output host variable is provided a value that,
if necessary, is converted to the runtime application code page when the data is copied to the output
application variable. A given host variable can serve as both an input and an output variable in the same
program.

The second host-identifier designates its indicator variable. Indicator variables appear in two forms;
normal indictor variables, and extended indicator variables.

The normal indicator variable has the following purposes:

• Specify a non-null value. A 0 (zero), or positive value of the indicator variable specifies that the
associated, first, host-identifier provides the value of this host variable reference.

• Specify the null value. A negative value of the indicator variable specifies the null value.
• On output, indicate that a numeric conversion error (such as division by 0 or overflow) has occurred,

if the dft_sqlmathwarn database configuration parameter is set to "yes" (or was set to "yes" during
binding of a static SQL statement). A -2 value of the indicator variable indicates a null result because of
either numeric truncation or friendly arithmetic warnings.

• On output, report the original length of a truncated string (if the source of the value is not a large object
type).

• On output, report the seconds portion of a time if the time is truncated on assignment to a host variable.

Extended indicator variables are limited to the input of host variables. The extended indicator variable has
the following purposes:

20 IBM Db2 V11.5: SQL Reference

• Specify a non-null value. A 0 (zero), or positive value specifies that the associated, first, host-identifier
provides the value of this host variable reference.

• Specify the null value. A -1, -2, -3, -4, or -6 value specifies the null value.
• Specify the default value. A -5 value specifies the target column for this host variable is to be set to its

default value.
• Specify an unassigned value. A -7 value specifies the target column for this host variable is to be treated

as if it had not been specified in the statement.

Extended indicator variables are only enabled if requested, and all indicator variables are otherwise
normal indicator variables. In comparison to normal indicator variables, extended indicator variables have
no additional restrictions for where the values for null and non-null can be used. There are no restrictions
against using extended indicator variable values in indicator structures with host structures. Restrictions
on where extended indicator variable values default and unassigned are allowed apply uniformly, no
matter how they are represented in the host application. The default and unassigned extended indicator
variable values may only appear in limited, specified uses. They may appear in expressions containing
only a single host variable, or a host variable being explicitly cast (assigned to a column). Output indicator
variable values are never extended indicator variables.

When extended indicator variables are enabled, there are no restrictions against use of 0 (zero), or
positive indicator variable values. However, negative indicator variable values outside the range -1
through -7 must not be input (SQLSTATE 22010). When enabled, the default and unassigned extended
indicator variable values must not appear in contexts in which they are not supported (SQLSTATE 22539).

When extended indicator variables are enabled, rules for data type validation in assignment and
comparison are loosened for host variables whose extended indicator values are negative. Data type
assignment and comparison validation rules will not be enforced for host variables having the values null,
default, or unassigned.

For example, if :HV1:HV2 is used to specify an insert or update value, and if HV2 is negative, the value
specified is the null value. If HV2 is not negative the value specified is the value of HV1.

Similarly, if :HV1:HV2 is specified in an INTO clause of a FETCH, SELECT INTO, or VALUES INTO
statement, and if the value returned is null, HV1 is not changed, and HV2 is set to a negative value. If
the database is configured with dft_sqlmathwarn yes (or was during binding of a static SQL statement),
HV2 could be -2. If HV2 is -2, a value for HV1 could not be returned because of an error converting to the
numeric type of HV1, or an error evaluating an arithmetic expression that is used to determine the value
for HV1. If the value returned is not null, that value is assigned to HV1 and HV2 is set to zero (unless the
assignment to HV1 requires string truncation of a non-LOB string; in which case HV2 is set to the original
length of the string). If an assignment requires truncation of the seconds part of a time, HV2 is set to the
number of seconds.

If the second host identifier is omitted, the host-variable does not have an indicator variable. The value
specified by the host-variable reference :HV1 is always the value of HV1, and null values cannot be
assigned to the variable. Thus, this form should not be used in an INTO clause unless the corresponding
column cannot contain null values. If this form is used and the column contains nulls, the database
manager will generate an error at run time.

An SQL statement that references host variables must be within the scope of the declaration of those host
variables. For host variables referenced in the SELECT statement of a cursor, that rule applies to the OPEN
statement rather than to the DECLARE CURSOR statement.

Example
Using the PROJECT table, set the host variable PNAME (VARCHAR(26)) to the project name (PROJNAME),
the host variable STAFF (DECIMAL(5,2)) to the mean staffing level (PRSTAFF), and the host variable
MAJPROJ (CHAR(6)) to the major project (MAJPROJ) for project (PROJNO) 'IF1000'. Columns PRSTAFF
and MAJPROJ may contain null values, so provide indicator variables STAFF_IND (SMALLINT) and
MAJPROJ_IND (SMALLINT).

 SELECT PROJNAME, PRSTAFF, MAJPROJ
 INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND

Chapter 1. Structured Query Language (SQL) 21

 FROM PROJECT
 WHERE PROJNO = 'IF1000'

MBCS Considerations: Whether multi-byte characters can be used in a host variable name depends on
the host language.

Variables in dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host variables. A parameter marker
represents a position in a dynamic SQL statement where the application will provide a value; that is,
where a host variable would be found if the statement string were a static SQL statement. The following
example shows a static SQL statement using host variables:

 INSERT INTO DEPARTMENT
 VALUES (:HV_DEPTNO, :HV_DEPTNAME, :HV_MGRNO, :HV_ADMRDEPT)

This example shows a dynamic SQL statement using unnamed parameter markers:

 INSERT INTO DEPARTMENT VALUES (?, ?, ?, ?)

This example shows a dynamic SQL statement using named parameter markers:

 INSERT INTO DEPARTMENT
 VALUES (:DEPTNO, :DEPTNAME, :MGRNO, :ADMRDEPT)

Named parameter markers can be used to improve the readability of dynamic statement. Although named
parameter markers look like host variables, named parameter markers have no associated value and
therefore a value must be provided for the parameter marker when the statement is executed. If the
INSERT statement using named parameter markers has been prepared and given the prepared statement
name of DYNSTMT, then values can be provided for the parameter markers using the following statement:

 EXECUTE DYNSTMT
 USING :HV_DEPTNO, :HV_DEPTNAME :HV_MGRNO, :HV_ADMRDEPT

This same EXECUTE statement could be used if the INSERT statement using unnamed parameter markers
had been prepared and given the prepared statement name of DYNSTMT.

References to LOB variables
Regular BLOB, CLOB, and DBCLOB variables, LOB locator variables (see “References to LOB locator
variables” on page 22), and LOB file reference variables (see “References to LOB file reference
variables” on page 23) can be defined in all host languages. Where LOBs are allowed, the term host-
variable in a syntax diagram can refer to a regular host variable, a locator variable, or a file reference
variable. Since these are not native data types, SQL extensions are used and the precompilers generate
the host language constructs necessary to represent each variable. In the case of REXX, LOBs are mapped
to strings.

It is sometimes possible to define a large enough variable to hold an entire large object value. If this is
true and if there is no performance benefit to be gained by deferred transfer of data from the server, a
locator is not needed. However, since host language or space restrictions will often dictate against storing
an entire large object in temporary storage at one time or because of performance benefit, a large object
may be referenced via a locator and portions of that object may be selected into or updated from host
variables that contain only a portion of the large object at one time.

References to LOB locator variables
A locator variable is a host variable that contains the locator representing a LOB value on the application
server.

A locator variable in an SQL statement must identify a locator variable described in the program according
to the rules for declaring locator variables. This is always indirectly through an SQL statement.

22 IBM Db2 V11.5: SQL Reference

The term locator variable, as used in the syntax diagrams, shows a reference to a locator variable.
The meta-variable locator-variable can be expanded to include a host-identifier the same as that for
host-variable.

As with all other host variables, a large object locator variable may have an associated indicator variable.
Indicator variables for large object locator host variables behave in the same way as indicator variables
for other data types. When a null value is returned from the database, the indicator variable is set and the
locator host variable is unchanged. This means a locator can never point to a null value.

If a locator-variable that does not currently represent any value is referenced, an error is raised
(SQLSTATE 0F001).

At transaction commit, or any transaction termination, all locators acquired by that transaction are
released.

References to LOB file reference variables
BLOB, CLOB, and DBCLOB file reference variables are used for direct file input and output for LOBs, and
can be defined in all host languages. Since these are not native data types, SQL extensions are used and
the precompilers generate the host language constructs necessary to represent each variable. In the case
of REXX, LOBs are mapped to strings.

A file reference variable represents (rather than contains) the file, just as a LOB locator represents, rather
than contains, the LOB bytes. Database queries, updates and inserts may use file reference variables to
store or to retrieve single column values.

A file reference variable has the following properties:
Data Type

BLOB, CLOB, or DBCLOB. This property is specified when the variable is declared.
Direction

This must be specified by the application program at run time (as part of the File Options value). The
direction is one of:

• Input (used as a source of data on an EXECUTE statement, an OPEN statement, an UPDATE
statement, an INSERT statement, or a DELETE statement).

• Output (used as the target of data on a FETCH statement or a SELECT INTO statement).

File name
This must be specified by the application program at run time. It is one of:

• The complete path name of the file (which is advised).
• A relative file name. If a relative file name is provided, it is appended to the current path of the client

process.

Within an application, a file should only be referenced in one file reference variable.

File Name Length
This must be specified by the application program at run time. It is the length of the file name (in
bytes).

File Options
An application must assign one of a number of options to a file reference variable before it makes use
of that variable. Options are set by an INTEGER value in a field in the file reference variable structure.
One of the following values must be specified for each file reference variable:

• Input (from client to server)
SQL_FILE_READ

This is a regular file that can be opened, read and closed. (The option is SQL-FILE-READ in
COBOL, sql_file_read in FORTRAN, and READ in REXX.)

• Output (from server to client)

Chapter 1. Structured Query Language (SQL) 23

SQL_FILE_CREATE
Create a new file. If the file already exists, an error is returned. (The option is SQL-FILE-CREATE
in COBOL, sql_file_create in FORTRAN, and CREATE in REXX.)

SQL_FILE_OVERWRITE (Overwrite)
If an existing file with the specified name exists, it is overwritten; otherwise a new file is
created. (The option is SQL-FILE-OVERWRITE in COBOL, sql_file_overwrite in FORTRAN, and
OVERWRITE in REXX.)

SQL_FILE_APPEND
If an existing file with the specified name exists, the output is appended to it; otherwise a new
file is created. (The option is SQL-FILE-APPEND in COBOL, sql_file_append in FORTRAN, and
APPEND in REXX.)

Data Length
This is unused on input. On output, the implementation sets the data length to the length of the
new data written to the file. The length is in bytes.

As with all other host variables, a file reference variable may have an associated indicator variable.

Example of an output file reference variable (in C)
Given a declare section coded as:

 EXEC SQL BEGIN DECLARE SECTION
 SQL TYPE IS CLOB_FILE hv_text_file;
 char hv_patent_title[64];
 EXEC SQL END DECLARE SECTION

Following preprocessing this would be:

 EXEC SQL BEGIN DECLARE SECTION
 /* SQL TYPE IS CLOB_FILE hv_text_file; */
 struct {
 unsigned long name_length; // File Name Length
 unsigned long data_length; // Data Length
 unsigned long file_options; // File Options
 char name[255]; // File Name
 } hv_text_file;
 char hv_patent_title[64];
 EXEC SQL END DECLARE SECTION

Then, the following code can be used to select from a CLOB column in the database into a new file
referenced by :hv_text_file.

 strcpy(hv_text_file.name, "/u/gainer/papers/sigmod.94");
 hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");
 hv_text_file.file_options = SQL_FILE_CREATE;

 EXEC SQL SELECT content INTO :hv_text_file from papers
 WHERE TITLE = 'The Relational Theory behind Juggling';

Example of an input file reference variable (in C)
Given the same declare section as the previous one, the following code can be used to insert the data
from a regular file referenced by :hv_text_file into a CLOB column.

 strcpy(hv_text_file.name, "/u/gainer/patents/chips.13");
 hv_text_file.name_length = strlen("/u/gainer/patents/chips.13");
 hv_text_file.file_options = SQL_FILE_READ:
 strcpy(:hv_patent_title, "A Method for Pipelining Chip Consumption");

 EXEC SQL INSERT INTO patents(title, text)
 VALUES(:hv_patent_title, :hv_text_file);

24 IBM Db2 V11.5: SQL Reference

References to structured type host variables
Structured type variables can be defined in all host languages except FORTRAN, REXX, and Java. Since
these are not native data types, SQL extensions are used and the precompilers generate the host
language constructs necessary to represent each variable.

As with all other host variables, a structured type variable may have an associated indicator variable.
Indicator variables for structured type host variables behave in the same way as indicator variables for
other data types. When a null value is returned from the database, the indicator variable is set and the
structured type host variable is unchanged.

The actual host variable for a structured type is defined as a built-in data type. The built-in data type
associated with the structured type must be assignable:

• from the result of the FROM SQL transform function for the structured type as defined by the specified
TRANSFORM GROUP option of the precompile command; and

• to the parameter of the TO SQL transform function for the structured type as defined by the specified
TRANSFORM GROUP option of the precompile command.

If using a parameter marker instead of a host variable, the appropriate parameter type characteristics
must be specified in the SQLDA. This requires a "doubled" set of SQLVAR structures in the SQLDA, and the
SQLDATATYPE_NAME field of the secondary SQLVAR must be filled with the schema and type name of the
structured type. If the schema is omitted in the SQLDA structure, an error results (SQLSTATE 07002).

Example
Define the host variables hv_poly and hv_point (of type POLYGON, using built-in type BLOB(1048576)) in a
C program.

 EXEC SQL BEGIN DECLARE SECTION;
 static SQL
 TYPE IS POLYGON AS BLOB(1M)
 hv_poly, hv_point;
 EXEC SQL END DECLARE SECTION;

SQL path
The SQL path is an ordered list of schema names. The database manager uses the SQL path to resolve
the schema name for unqualified data type names (both built-in types and distinct types), global variable
names, module names, function names, and procedure names that appear in any context other than
as the main object of a CREATE, DROP, COMMENT, GRANT or REVOKE statement. For details, see
"Qualification of unqualified object names".

For example, if the SQL path is SYSIBM. SYSFUN, SYSPROC, SYSIBMADM, SMITH, XGRAPHICS2 and an
unqualified distinct type name MYTYPE was specified, the database manager looks for MYTYPE first in
schema SYSIBM, then SYSFUN, then SYSPROC, then SYSIBMADM, then SMITH, and then XGRAPHICS2.

The SQL path used depends on the SQL statement:

• For static SQL statements (except for a CALL variable statement), the SQL path used is the SQL path
specified when the containing package, procedure, function, trigger, or view was created.

• For dynamic SQL statements (and for a CALL variable statement), the SQL path is the value of the
CURRENT PATH special register. CURRENT PATH can be set by the SET PATH statement.

If the SQL path is not explicitly specified, the SQL path is the system path followed by the authorization ID
of the statement. .

Qualification of unqualified object names
Unqualified object names are implicitly qualified. The rules for qualifying a name differ depending on the
type of object that the name identifies.

Chapter 1. Structured Query Language (SQL) 25

Unqualified alias, index, package, sequence, table, trigger, and view names
Unqualified alias, index, package, sequence, table, trigger, and view names are implicitly qualified by the
default schema.

For static SQL statements, the default schema is the default schema specified when the containing
function, package, procedure, or trigger was created.

For dynamic SQL statements, the default schema is the default schema specified for the application
process. The default schema can be specified for the application process by using the SET SCHEMA
statement. If the default schema is not explicitly specified, the default schema is the authorization ID of
the statement.

Unqualified user-defined type, function, procedure, specific, global variable and
module names
The qualification of data type (both built-in types and distinct types), global variable, module, function,
procedure, and specific names depends on the SQL statement in which the unqualified name appears:

• If an unqualified name is the main object of a CREATE, ALTER, COMMENT, DROP, GRANT, or REVOKE
statement, the name is implicitly qualified using the same rules as for qualifying unqualified table
names (See “Unqualified alias, index, package, sequence, table, trigger, and view names” on page 26).
The main object of an ADD, COMMENT, DROP, or PUBLISH operation of the ALTER MODULE statement
must be specified without any qualifier.

• If the context of the reference is within a module, the database manager searches the module for the
object, applying the appropriate resolution for the type of object to find a match. If no match is found,
the search continues as specified in the next bullet.

• Otherwise, the implicit schema name is determined as follows:

– For distinct type names, the database manager searches the SQL path and selects the first schema in
the SQL path such that the data type exists in the schema.

– For global variables, the database manager searches the SQL path and selects the first schema in the
SQL path such that the global variable exists in the schema.

– For procedure names, the database manager uses the SQL path in conjunction with procedure
resolution.

– For function names, the database manager uses the SQL path in conjunction with function resolution .
– For specific names specified for sourced functions, see "CREATE FUNCTION (Sourced)".

New SYSIBM functions override unqualified user-defined functions with the same
name
An existing user-defined function or a user-defined procedure might have the same name and signature
as a new built-in function or SQL administrative routine. In such cases, an unqualified reference to those
functions or routines in a dynamic SQL statement runs the built-in function or SQL administrative routine
instead of the user-defined one.

The default SQL path contains the schemas SYSIBM, SYSFUN, SYSPROC, and SYSIBMADM before the
schema name that is the value of the USER special register. These system schemas are also included in
the SQL path when it is explicitly set with the SET PATH statement or the FUNCPATH bind option. During
function resolution and procedure resolution, the built-in functions and SQL administrative routines in the
SYSIBM, SYSFUN, SYSPROC, and SYSIBMADM schemas are encountered before user-defined functions
and user-defined procedures.

This change does not affect static SQL in packages or SQL objects such as views, triggers, or SQL
functions. In these cases, the user-defined function or procedure continues to run until an explicit bind of
the package, or drop and create of the SQL object.

To run an unqualified user-defined routine instead of a new SYSIBM function with the same name, rename
the user-defined routine or fully qualify the name before you run it. Alternatively, place in the SQL path

26 IBM Db2 V11.5: SQL Reference

the schema in which the user-defined routine exists before the schema in which the built-in functions
and SQL administrative routines exist. However, promoting the schema in the SQL path increases the
resolution time for all built-in functions and SQL administrative routines because the system schemas are
considered first.

Resolving qualified object names
Objects that are defined in a module that are available for use outside the module must be qualified by
the module name. Since a module is a schema object that can also be implicitly qualified, the published
module objects can be qualified using an unqualified module name or a schema-qualified module name.
When an unqualified module name is used, the reference to the module object appears the same as a
schema-qualified object that is not part of a module. Within a specific scope, such as a compound SQL
statement, a two-part identifier could also be:

• a column name qualified by a table name
• a row field name qualified by a variable name
• a variable name qualified by a label
• a routine parameter name qualified by a routine name

These objects are resolved within their scope, before considering either schema objects or module object.
The following process is used to resolve objects with two-part identifiers that could be a schema object or
a module object.

• If the context of the reference is within a module and the qualifier matches the module name, the
database manager searches the module for the object, applying the appropriate resolution for the type
of object to find a match among published and unpublished module objects. If no match is found, the
search continues as specified in the next bullets.

• Assume that the qualifier is a schema name and, if the schema exists, resolve the object in the schema.
• If the qualifier is not an existing schema or the object is not found in the schema that matches the
qualifier and the qualifier did not match the context module name, search for the first module that
matches the qualifier in the schemas on the SQL path. If authorized to the matching module, resolve to
the object in that module, considering only published module objects.

• If the qualifier is not found as a module on the SQL path and the qualifier did not match the context
module name, check for a module public synonym that matches the qualifier. If found, resolve the
object in the module identified by the module public synonym, considering only published module
objects.

Reserved package names
A specific set of package names have been explicitly reserved for system use. To avoid collision with
system use of these names it is recommended that these package names not be used by any application.

The set of package names that are reserved meet one of the following criteria:

• The package schema is a reserved schema
• The package schema is NULLID and the package name matches a reserved package name or contains a
prefix that matches a reserved package name prefix.

The following package names are reserved within the NULLID schema:

• AGGDISC
• PRINTSG
• TUPLEWRT

The following package name prefixes are reserved within the NULLID schema:

• AOT
• ATS

Chapter 1. Structured Query Language (SQL) 27

• CADM
• CLI
• DB2
• POLY
• REVA
• SPIM
• SPUT
• SQL
• SYS
• TOOL

Data types
The smallest unit of data that can be manipulated in SQL is called a value. Values are interpreted
according to the data type of their source.

Sources include:

• Constants
• Columns
• Functions
• Expressions
• Special registers
• Variables (such as host variables, SQL variables, global variables, parameter markers, module variable,

and parameters of routines)
• Boolean values

All data types include the null value as a possible value. The null value is a special value that is distinct
from all non-null values and thereby denotes the absence of a (non-null) value. Although all data types
include the null value, a column defined as NOT NULL cannot contain null values.

A Unicode database also supports national character strings that are synonyms for graphic strings.

Built-in and user-defined data types
Data types that are pre-defined for use within the database management system are called built-in data
types. Figure 1 on page 29 shows the supported built-in data types.

28 IBM Db2 V11.5: SQL Reference

Figure 1. Built-in Data Types

Support for the following user-defined data types is also provided:

• Array
• Cursor
• Distinct
• Row
• Structured

Data type list

Numbers
The numeric data types are integer, decimal, floating-point, and decimal floating-point.

The numeric data types are categorized as follows:

• Exact numerics: integer and decimal

Chapter 1. Structured Query Language (SQL) 29

• Decimal floating-point
• Approximate numerics: floating-point

Integer includes small integer, large integer, and big integer. Integer numbers are exact representations of
integers. Decimal numbers are exact representations of numbers with a fixed precision and scale. Integer
and decimal numbers are considered exact numeric types.

Decimal floating-point numbers can have a precision of 16 or 34. Decimal floating-point supports both
exact representations of real numbers and approximation of real numbers and so is not considered either
an exact numeric type or an approximate numeric type.

Floating-point includes single precision and double precision. Floating-point numbers are approximations
of real numbers and are considered approximate numeric types.

All numbers have a sign, a precision, and a scale. For all numbers except decimal floating-point, if a
column value is zero, the sign is positive. Decimal floating-point numbers include negative and positive
zeros. Decimal floating-point has distinct values for a number and the same number with various
exponents (for example: 0.0, 0.00, 0.0E5, 1.0, 1.00, 1.0000). The precision is the total number of decimal
digits, excluding the sign. The scale is the total number of decimal digits to the right of the decimal point.
If there is no decimal point, the scale is zero.

See also the data type section in the description of "CREATE TABLE statement" in the SQL Reference
Volume 2.

.

Small integer (SMALLINT)
A small integer is a two-byte integer with a precision of 5 digits. The range of small integers is -32 768 to
32 767.

Large integer (INTEGER)
A large integer is a four-byte integer with a precision of 10 digits. The range of large integers is
-2 147 483 648 to +2 147 483 647.

Big integer (BIGINT)
A big integer is an eight-byte integer with a precision of 19 digits. The range of big integers is
-9 223 372 036 854 775 808 to +9 223 372 036 854 775 807.

Decimal (DECIMAL or NUMERIC)
A decimal value is a packed decimal number with an implicit decimal point. The position of the decimal
point is determined by the precision and the scale of the number. The scale, which is the number of
digits in the fractional part of the number, cannot be negative or greater than the precision. The maximum
precision is 31 digits.

All values in a decimal column have the same precision and scale. The range of a decimal variable or the
numbers in a decimal column is -n to +n, where the absolute value of n is the largest number that can be
represented with the applicable precision and scale. The maximum range is -1031+1 to 1031-1.

Single-precision floating-point (REAL)
A single-precision floating-point number is a 32-bit approximation of a real number. The number
can be zero or can range from -3.4028234663852886e+38 to -1.1754943508222875e-38, or from
1.1754943508222875e-38 to 3.4028234663852886e+38.

30 IBM Db2 V11.5: SQL Reference

Double-precision floating-point (DOUBLE or FLOAT)
A double-precision floating-point number is a 64-bit approximation of a real number. The number can
be zero or can range from -1.7976931348623158e+308 to -2.2250738585072014e-308, or from
2.2250738585072014e-308 to 1.7976931348623158e+308.

Decimal floating-point (DECFLOAT)
A decimal floating-point value is an IEEE 754r number with a decimal point. The position of the decimal
point is stored in each decimal floating-point value. The maximum precision is 34 digits. The range of a
decimal floating-point number is either 16 or 34 digits of precision, and an exponent range of 10-383 to
10+384 or 10-6143 to 10+6144, respectively. The minimum exponent, Emin, for DECFLOAT values is -383 for
DECFLOAT(16) and -6143 for DECFLOAT(34). The maximum exponent, Emax, for DECFLOAT values is 384
for DECFLOAT(16) and 6144 for DECFLOAT(34).

In addition to finite numbers, decimal floating-point numbers are able to represent one of the following
named decimal floating-point special values:

• Infinity - a value that represents a number whose magnitude is infinitely large
• Quiet NaN - a value that represents undefined results and that does not cause an invalid number

warning
• Signalling NaN - a value that represents undefined results and that causes an invalid number warning if

used in any numeric operation

When a number has one of these special values, its coefficient and exponent are undefined. The sign of
an infinity value is significant, because it is possible to have positive or negative infinity. The sign of a NaN
value has no meaning for arithmetic operations.

Subnormal numbers and underflow
Nonzero numbers whose adjusted exponents are less than Emin are called subnormal numbers. These
subnormal numbers are accepted as operands for all operations and can result from any operation.

For a subnormal result, the minimum values of the exponent become Emin - (precision-1), called Etiny,
where precision is the working precision. If necessary, the result is rounded to ensure that the exponent is
no smaller than Etiny. If the result becomes inexact during rounding, an underflow warning is returned. A
subnormal result does not always return the underflow warning.

When a number underflows to zero during a calculation, its exponent will be Etiny. The maximum value of
the exponent is unaffected.

The maximum value of the exponent for subnormal numbers is the same as the minimum value of the
exponent that can arise during operations that do not result in subnormal numbers. This occurs when the
length of the coefficient in decimal digits is equal to the precision.

Character strings
A character string is a sequence of code units. The length of the string is the number of code units in the
sequence. If the length is zero, the value is called the empty string, which should not be confused with the
null value.

Fixed-length character string (CHAR)
All values in a fixed-length string column have the same length, which is determined by the length
attribute of the column. The length attribute must be in the range 1 - 255, inclusive, unless the string unit
is CODEUNITS32, which has a range of 1 - 63, inclusive.

Varying-length character strings
There are two types of varying-length character strings:

Chapter 1. Structured Query Language (SQL) 31

VARCHAR
A VARCHAR value can be up to 32,672 bytes long. If the string unit is CODEUNITS32, the length can
be up to 8,168 string units.

CLOB
A character large object (CLOB) value can be up to 2 gigabytes minus 1 byte (2,147,483,647 bytes)
long or, if the string unit is CODEUNITS32, up to 536,870,911 string units. A CLOB is used to store
large SBCS or mixed (SBCS and MBCS) character-based data (such as documents written with a single
character set) and, therefore, has an SBCS or mixed code page that is associated with it.

Special restrictions apply to expressions that result in a CLOB data type, and to structured type columns;
such expressions and columns are not permitted in:

• A SELECT list that is preceded by the DISTINCT clause
• A GROUP BY clause
• An ORDER BY clause
• A subselect of a set operator other than UNION ALL
• A basic, quantified, BETWEEN, or IN predicate
• An aggregate function
• VARGRAPHIC, TRANSLATE, and datetime scalar functions
• The pattern operand in a LIKE predicate, or the search string operand in a POSSTR function
• The string representation of a datetime value.

The functions in the SYSFUN schema taking a VARCHAR as an argument will not accept VARCHARs
greater than 4,000 bytes long as an argument. However, many of these functions also have an alternative
signature accepting a CLOB(1M). For these functions, the user can explicitly cast the greater than 4,000
VARCHAR strings into CLOBs and then recast the result back into VARCHARs of the required length.

NUL-terminated character strings that are found in C are handled differently, depending on the standards
level of the precompile option.

Each character string is further defined as one of:
Bit data

Data that is not associated with a code page.
Single-byte character set (SBCS) data

Data in which every character is represented by a single byte.
Mixed data

Data that might contain a mixture of characters from a single-byte character set and a multi-byte
character set (MBCS).

Unicode data
Data that contains characters that are represented by one or more bytes. Each Unicode character
string is encoded by using UTF-8. The CCSID for UTF-8 is 1208.

Note: The LONG VARCHAR data type continues to be supported but is deprecated, not recommended,
and might be removed in a future release.

String units specification for character strings
The unit of length for the character string data type is OCTETS or CODEUNITS32. The unit of length
defines the counting method that is used to determine the length of the data.
OCTETS

Indicates that the units for the length attribute are bytes. This unit of length applies to all non-Unicode
character string data types. For a Unicode character string data type, OCTETS can be explicitly
specified or determined based on an environment setting.

32 IBM Db2 V11.5: SQL Reference

CODEUNITS32
Indicates that the units for the length attribute are Unicode UTF-32 code units which approximate
counting in characters. This unit of length does not affect the underlying code page of the data type.
The actual length of a data value is determined by counting the UTF-32 code units as if the data was
converted to UTF-32. A string unit of CODEUNITS32 can be used only for a Unicode character string
data type. CODEUNITS32 can be explicitly specified or determined based on an environment setting.

For a non-Unicode character string data type, the string unit is always OCTETS and cannot be changed.
For a Unicode character string data type, the string units can be explicitly specified with the length
attribute of a character string data type, or it can default based on an environment setting. If FOR BIT
DATA is also specified for the character string data type, CODEUNITS32 cannot be specified and an
environment setting of CODEUNITS32 does not apply.

The environment setting for string units is based on the value for the NLS_STRING_UNITS global variable,
or the string_units database configuration parameter. The database configuration parameter can
be set to either SYSTEM or CODEUNITS32. The global variable can also be set to either SYSTEM or
CODEUNITS32, but also can be set to NULL. The NULL value indicates that the SQL session should use
the string_units database configuration parameter setting. If the value for the environment setting is
SYSTEM, then OCTETS is used as the default string units setting.

String units in built-in functions
The ability to specify string units for certain built-in string functions allows you to process string data
in a more "character-based manner" than a "byte-based manner". The string unit determines the unit
that is used for length or position when you execute the function. You can specify CODEUNITS16,
CODEUNITS32, or OCTETS as the string unit for some string functions. When no string unit is specified,
the default string unit is usually determined by the string units of the source string argument (refer to the
description of the function that you are using for details). The string units argument can be specified for
string functions that support the parameter in Unicode or non-Unicode databases.

CODEUNITS16
Specifies that Unicode UTF-16 is the unit for the operation. CODEUNITS16 is useful when an
application is processing data in code units that are 2 bytes in width. Note some characters, which are
known as supplementary characters, require two UTF-16 code units to be encoded. For example, the
musical symbol G clef requires two UTF-16 code units (X'D834' and X'DD1E' in UTF-16BE).

CODEUNITS32
Specifies that Unicode UTF-32 is the unit for the operation. CODEUNITS32 is useful for applications
that process data in a simple, fixed-length format, and that must return the same answer regardless of
the storage format of the data (ASCII, UTF-8, or UTF-16).

Note: The storage on disk uses UTF-8 encoding.

OCTETS
Specifies that bytes are the units for the operation. OCTETS is often used when an application is
interested in allocating buffer space or when operations need to use simple byte processing.

The calculated length of a string computed using OCTETS (bytes) might differ from that computed using
CODEUNITS16 or CODEUNITS32. When you are using OCTETS, the length of the string is determined by
simply counting the number of bytes in the string. When you are using CODEUNITS16 or CODEUNITS32,
the length of the string is determined by counting the number of 16-bit or 32-bit code units necessary
to represent the string in UTF-16 or UTF-32. A length that is determined using CODEUNITS16 and
CODEUNITS32 is identical unless the data contains supplementary characters (see “Difference between
CODEUNITS16 and CODEUNITS32” on page 34).

For example, assume that NAME, a VARCHAR(128) column that is encoded in Unicode UTF-8, contains
the value 'Jürgen'. The following two queries, which count the length of the string in CODEUNITS16 or
CODEUNITS32, return the same value (6).

 SELECT CHARACTER_LENGTH(NAME,CODEUNITS16) FROM T1
 WHERE NAME = 'Jürgen'

Chapter 1. Structured Query Language (SQL) 33

 SELECT CHARACTER_LENGTH(NAME,CODEUNITS32) FROM T1
 WHERE NAME = 'Jürgen'

The next query, which counts the length of the string in OCTETS, returns the value 7.

 SELECT CHARACTER_LENGTH(NAME,OCTETS) FROM T1
 WHERE NAME = 'Jürgen'

These values represent the length of the string that is expressed in the specified string unit.

The following table shows the UTF-8, UTF-16BE (big-endian), and UTF-32BE (big-endian) representations
of the name 'Jürgen':

Format Representation of the name 'Jürgen'
-------- --------------------------------------
UTF-8 X'4AC3BC7267656E'
UTF-16BE X'004A00FC007200670065006E'
UTF-32BE X'0000004A000000FC0000007200000067000000650000006E'

The representation of the character 'ü' differs among the three string units:

• The UTF-8 representation of the character 'ü' is X'C3BC'.
• The UTF-16BE representation of the character 'ü' is X'00FC'.
• The UTF-32BE representation of the character 'ü' is X'000000FC'.

Specifying string units for a built-in function does not affect the data type, the string units, or the code
page of the result of the function. If necessary, the data is converted to Unicode for evaluation when
CODEUNITS16 or CODEUNITS32 is specified.

When OCTETS is specified for the LOCATE or POSITION function, and the code pages of the string
arguments differ, the data is converted to the code page of the source-string argument. In this case, the
result of the function is in the code page of the source-string argument. When OCTETS is specified for
functions that take a single string argument, the data is evaluated in the code page of the string argument,
and the result of the function is in the code page of the string argument.

Difference between CODEUNITS16 and CODEUNITS32
When CODEUNITS16 or CODEUNITS32 is specified, the result is the same except when the data contains
Unicode supplementary characters. This is because a supplementary character is represented by two
UTF-16 code units or one UTF-32 code unit. In UTF-8, a non-supplementary character is represented by
1 to 3 bytes, and a supplementary character is represented by 4 bytes. In UTF-16, a non-supplementary
character is represented by one CODEUNITS16 code unit or 2 bytes, and a supplementary character is
represented by two CODEUNITS16 code units or 4 bytes. In UTF-32, a character is represented by one
CODEUNITS32 code unit or 4 bytes.

For example, the following table shows the hexadecimal values for the mathematical bold capital A
and the Latin capital letter A. The mathematical bold capital A is a supplementary character that is
represented by 4 bytes in UTF-8, UTF-16, and UTF-32.

Character UTF-8 representation UTF-16BE
representation

UTF-32BE
representation

Unicode value X'1D400'
- 'A'; mathematical bold
capital A

X'F09D9080' X'D835DC00' X'0001D400'

Unicode value X'0041' -
'A'; latin capital letter A

X'41' X'0041' X'00000041'

34 IBM Db2 V11.5: SQL Reference

Assume that C1 is a VARCHAR(128) column, encoded in Unicode UTF-8, and that table T1 contains
one row with the value of the mathematical bold capital A (X'F09D9080'). The following queries return
different results:

Query Returns
----- -------
SELECT CHARACTER_LENGTH(C1,CODEUNITS16) FROM T1 2

SELECT CHARACTER_LENGTH(C1,CODEUNITS32) FROM T1 1

SELECT CHARACTER_LENGTH(C1,OCTETS) FROM T1 4

Graphic strings
A graphic string is a sequence of code units that represents double-byte character data.

The length of the string is the number of code units in the sequence. If the length is zero, the value is
called the empty string. This value should not be confused with the null value.

Graphic strings are not supported in a database that is defined with a single-byte code page.

Graphic strings are not checked to ensure that their values contain only double-byte character code
points. (The exception to this rule is an application that is precompiled with the WCHARTYPE CONVERT
option. In this case, validation does occur.) Rather, the database manager assumes that double-byte
character data is contained in graphic data fields. The database manager does check that a graphic string
value is an even number of bytes long.

NUL-terminated graphic strings that are found in C are handled differently, depending on the standards
level of the precompile option. This data type cannot be created in a table. It can be used only to insert
data into and retrieve data from the database.

Fixed-length graphic strings (GRAPHIC)
All values in a fixed-length graphic string column have the same length, which is determined by the
length attribute of the column. The length attribute must be 1 - 127, inclusive, unless the string unit is
CODEUNITS32 which has a range of 1 - 63, inclusive.

Varying-length graphic strings
There are two types of varying-length graphic string:

• A VARGRAPHIC value can be up to 16 336 double-byte code units long. If the string unit is
CODEUNITS32, the length can be up to 8 168 string units.

• A DBCLOB (double-byte character large object) value can be up to 1 073 741 823 double-byte code
units long. If the string unit is CODEUNITS32, the length can be up to 536 870 911 string units. A
DBCLOB is used to store large DBCS character-based data (such as documents written with a single
character set) and, therefore, has a DBCS code page that is associated with it.

Special restrictions apply to an expression that results in a DBCLOB data type. These restrictions are the
same as the restrictions specified in “Varying-length character strings” on page 31.

Note: The LONG VARGRAPHIC data type continues to be supported but is deprecated, not recommended,
and might be removed in a future release.

String units specification for graphic strings
The unit of length for a graphic string data type is double bytes, CODEUNITS16, or CODEUNITS32. The
unit of length defines the counting method that is used to determine the length of the data.
Double bytes

Indicates that the units for the length attribute are double bytes. This unit of length applies to all
graphic string data types in a non-Unicode database. In a Unicode database, CODEUNITS16 is used.

Chapter 1. Structured Query Language (SQL) 35

CODEUNITS16
Indicates that the units for the length attribute are Unicode UTF-16 code units which are the same as
counting in double bytes. This unit of length does not affect the underlying code page of the data type.
A string unit of CODEUNITS16 can be used only with graphic string data types in a Unicode database.
CODEUNITS16 can be explicitly specified or determined based on an environment setting.

CODEUNITS32
Indicates that the units for the length attribute are Unicode UTF-32 code units which approximate
counting in characters. This unit of length does not affect the underlying code page of the data type.
The actual length of a data value is determined by counting the UTF-32 code units as if the data
was converted to UTF-32. A string unit of CODEUNITS32 can be used only in a Unicode database.
CODEUNITS32 can be explicitly specified or determined based on an environment setting.

In a non-Unicode database, the string unit is always double bytes and cannot be changed. In a Unicode
database, the string units can be explicitly specified with the length attribute of a graphic string data type,
or it can default based on an environment setting.

The environment setting for string units is based on the value for the NLS_STRING_UNITS global variable,
or the string_units database configuration parameter. The database configuration parameter can
be set to either SYSTEM or CODEUNITS32. The global variable can also be set to either SYSTEM or
CODEUNITS32, but also can be set to NULL. The NULL value indicates that the SQL session should use
the string_units database configuration parameter setting. If the value for the environment setting is
SYSTEM, then CODEUNITS16 is used as the default string units setting in a Unicode database and double
bytes is used in a non-Unicode database.

National character strings
A national character string is a sequence of bytes that represents character data in UTF-8 or UTF-16 BE
encoding.

National character strings are only allowed in a Unicode database.

The length of the string is the number of code units in the sequence. If the length is zero, the value is
called the empty string. This value should not be confused with the null value.

National character strings are synonyms for Unicode character strings or graphic strings. Based on the
value that is set for nchar_mapping database configuration parameter, national character strings are
mapped as follows:
nchar_mapping is CHAR_CU32:

• NCHAR is a synonym for CHARACTER with string units CODEUNITS32
• NVARCHAR is a synonym for VARCHAR with string units CODEUNITS32
• NCLOB is a synonym for CLOB with string units CODEUNITS32

nchar_mapping is GRAPHIC_CU32:

• NCHAR is a synonym for GRAPHIC with string units CODEUNITS32
• NVARCHAR is a synonym for VARGRAPHIC with string units CODEUNITS32
• NCLOB is a synonym for DBCLOB with string units CODEUNITS32

nchar_mapping is GRAPHIC_CU16:

• NCHAR is a synonym for GRAPHIC with string units CODEUNITS16
• NVARCHAR is a synonym for VARGRAPHIC with string units CODEUNITS16
• NCLOB is a synonym for DBCLOB with string units CODEUNITS16

For details, refer to the topics "Character strings" and "Graphic strings".

36 IBM Db2 V11.5: SQL Reference

Binary strings
A binary string is a sequence of bytes. Unlike character strings, which usually contain text data, binary
strings are used to hold data such as pictures, voice, or mixed media.

Binary strings are not associated with a code page; their code page value is 0. The length of a binary string
is the number of bytes it contains. Only character strings of the FOR BIT DATA subtype are compatible
with binary strings.

The unit of length for the binary string data type is OCTETS and cannot be explicitly specified.

Fixed-length binary string
A fixed-length binary string has the data type BINARY. All values in a fixed-length string column have the
same length, which is determined by the length attribute of the data type. The length attribute must be in
the range 1 - 255, inclusive.

Varying-length binary strings
There are two types of varying-length binary string:
VARBINARY

A VARBINARY value can be up to 32,672 bytes long.
BLOB

A binary large object (BLOB) value can be up to 2 gigabytes minus 1 byte (2,147,483,647 bytes) long.
A BLOB can hold structured data for exploitation by user-defined types and user-defined functions.

Special restrictions apply to an expression that results in a BLOB data type. These restrictions are the
same as the restrictions described in “Varying-length character strings” on page 31.

Large objects (LOBs)
The term large object and the generic acronym LOB refer to the BLOB, CLOB, or DBCLOB data type. In a
Unicode database, NCLOB can be used as a synonym for DBCLOB.

LOB values are subject to restrictions, as described in “Varying-length character strings” on page 31.
These restrictions apply even if the length attribute of the LOB string is 254 bytes or less.

LOB values can be very large, and the transfer of these values from the database server to client
application program host variables can be time consuming. Because application programs typically
process LOB values one piece at a time, rather than as a whole, applications can reference a LOB value by
using a large object locator.

A large object locator, or LOB locator, is a host variable whose value represents a single LOB value on the
database server.

An application program can select a LOB value into a LOB locator. Then, using the LOB locator, the
application program can request database operations on the LOB value (such as applying the scalar
functions SUBSTR, CONCAT, VALUE, or LENGTH; performing an assignment; searching the LOB with LIKE
or POSSTR; or applying user-defined functions against the LOB) by supplying the locator value as input.
The resulting output (data assigned to a client host variable) would typically be a small subset of the input
LOB value.

LOB locators can represent more than just base values; they can also represent the value associated with
a LOB expression. For example, a LOB locator might represent the value associated with:

 SUBSTR(<lob 1> CONCAT <lob 2> CONCAT <lob 3>, <start>, <length>)

When a null value is selected into a normal host variable, the indicator variable is set to -1, signifying
that the value is null. In the case of LOB locators, however, the meaning of indicator variables is slightly
different. Because a locator host variable can itself never be null, a negative indicator variable value
indicates that the LOB value represented by the LOB locator is null. The null information is kept local
to the client by virtue of the indicator variable value - the server does not track null values with valid
locators.

Chapter 1. Structured Query Language (SQL) 37

It is important to understand that a LOB locator represents a value, not a row or a location in the
database. Once a value is selected into a locator, there is no operation that one can perform on the
original row or table that will affect the value which is referenced by the locator. The value associated with
a locator is valid until the transaction ends, or until the locator is explicitly freed, whichever comes first.
Locators do not force extra copies of the data to provide this function. Instead, the locator mechanism
stores a description of the base LOB value. The materialization of the LOB value (or expression, as shown
previously) is deferred until it is actually assigned to some location - either a user buffer in the form of a
host variable, or another record in the database.

A LOB locator is only a mechanism used to refer to a LOB value during a transaction; it does not persist
beyond the transaction in which it was created. It is not a database type; it is never stored in the database
and, as a result, cannot participate in views or check constraints. However, because a LOB locator is a
client representation of a LOB type, there are SQLTYPEs for LOB locators so that they can be described
within an SQLDA structure used by FETCH, OPEN, or EXECUTE statements.

Datetime values
The datetime data types are DATE, TIME, and TIMESTAMP. Although datetime values can be used in
certain arithmetic and string operations and are compatible with certain strings, they are not strings or
numbers.

Date
A date is a three-part value (year, month, and day):

• The range of the month part is 1 - 12.
• The range of the day part is 1 - x, where x is 28, 29, 30, or 31, and depends on the month.
• The range of the year part is 0001 - 9999 for local tables.

The internal representation of a date is a string of 4 bytes. Each byte consists of 2 packed decimal digits.
The first 2 bytes represent the year, the third byte the month, and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which is the appropriate length for a
character string representation of the value.

Time
A time is a three-part value (hour, minute, and second) designating a time of day under a 24-hour clock:

• The range of the hour part is 0 - 24.
• The range of the minute and second parts is 0 - 59.

If the hour is 24, the minute and second specifications are 0.

Important: Using the value 24 when representing hours in a time value might result in errors or
unexpected data. To avoid this issue, use 00 instead of 24.

The internal representation of a time is a string of 3 bytes. Each byte consists of 2 packed decimal digits.
The first byte represents the hour, the second byte the minute, and the last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is the appropriate length for a
character string representation of the value.

Timestamp
A timestamp is a six or seven-part value (year, month, day, hour, minute, second, and optional fractions
of a second) designating a date and time as defined in the previous sections, except that the time can
also include an additional part designating a fraction of a second. The number of digits in the fractional
seconds is specified using an attribute in the range from 0 to 12; the default is 6.

Important: Using the value 24 when representing hours in a timestamp value might result in errors or
unexpected data. To avoid this issue, use 00 instead of 24.

38 IBM Db2 V11.5: SQL Reference

The internal representation of a timestamp is a string of 7 - 13 bytes. Each byte consists of 2 packed
decimal digits. The first 4 bytes represent the date, the next 3 bytes the time, and the last 0 - 6 bytes the
fractions of a second.

The length of a TIMESTAMP column, as described in the SQLDA, is 19 - 32 bytes, which is the appropriate
length for the character string representation of the value.

String representations of datetime values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in an internal form that
is transparent to the user. Date, time, and timestamp values can, however, also be represented by
strings. This is useful because there are no constants or variables whose data types are DATE, TIME, or
TIMESTAMP. Before it can be retrieved, a datetime value must be assigned to a string variable. The CHAR
function or the GRAPHIC function (for Unicode databases only) can be used to change a datetime value
to a string representation. The string representation is normally the default format of datetime values
associated with the territory code of the application, unless overridden by specification of the DATETIME
option when the program is precompiled or bound to the database.

No matter what its length, a large object string cannot be used as a string representation of a datetime
value (SQLSTATE 42884).

When a valid string representation of a datetime value is used in an operation with an internal datetime
value, the string representation is converted to the internal form of the date, time, or timestamp value
before the operation is performed.

Date, time and timestamp strings must contain only characters and digits.

Date strings
Table 3. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards Organization
(with separators)

ISO yyyy-mm-dd '2018-10-27'

International Standards Organization
(without separators)1

- yyyymmdd '20181027'

IBM USA standard USA mm/dd/yyyy '10/27/2018'

IBM European standard EUR dd.mm.yyyy '27.10.2018'

Japanese Industrial Standard Christian
Era

JIS yyyy-mm-dd '2018-10-27'

Netezza®1 - dd-mon-yy '12-FEB-16'

Site-defined LOC Depends on the
territory code of
the application

-

1 This format can be used for input values only, not for output values or constants.

Note:

• Trailing blanks can be included.
• Leading zeros can be omitted from the month and day portions.

Chapter 1. Structured Query Language (SQL) 39

Time strings
Table 4. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards Organization ISO hh.mm or
hh.mm.ss

'13.30.05'

IBM USA standard USA hh or hh:mm AM or
PM

'1:30 PM'

IBM European standard EUR hh.mm or
hh.mm.ss

'13.30.05'

Japanese Industrial Standard Christian
Era

JIS hh:mm or
hh:mm:ss

'13:30:05'

Site-defined LOC Depends on the
territory code of
the application

-

Note:

• Trailing blanks can be included.
• A leading zero can be omitted from the hour.
• Seconds can be omitted, in which case an implicit specification of 0 seconds is assumed (for example,

13:30 is equivalent to 13:30:00).
• The International Standards Organization changed the time format so that it is identical to the Japanese

Industrial Standard Christian Era format. Therefore, use the JIS format if an application requires the
current International Standards Organization format.

• In the USA format:

– Minutes can be omitted, in which case an implicit specification of 00 minutes is assumed (for
example, 1 PM is equivalent to 1:00 PM).

– The hour must not be greater than 12 and cannot be 0, except in the special case of 00:00 AM.
– There is a single space before 'AM' or 'PM'.
– 'AM' or 'PM' can be represented in lowercase or uppercase characters.

• The following table shows how the USA format corresponds to the JIS format:

USA format JIS format

12:01 AM through 12:59 AM 00:01:00 through 00:59:00

01:00 AM through 11:59 AM 01:00:00 through 11:59:00

12:00 PM (noon) through 11:59 PM 12:00:00 through 23:59:00

12:00 AM (midnight) 24:00:00

00:00 AM (midnight) 00:00:00

Timestamp strings
Table 5. Formats for String Representations of Timestamps

Format Name Timestamp Format Example

IBM SQL yyyy-mm-dd-hh.mm.ss.nnnnnnnnnnnn '2018-03-22-12.00.00.0
00000000005'

40 IBM Db2 V11.5: SQL Reference

Table 5. Formats for String Representations of Timestamps (continued)

Format Name Timestamp Format Example

ODBC1 yyyy-mm-dd hh:mm:ss.nnnnnnnnnnnn '2018-03-22
08:30:58.000000000005
'

Netezza yyyymmdd hh:mm:ss AM or PM '20180101 12:00:59 PM'

Netezza1 mm-dd-yyyy hh:mm:ss.nnnnnnnnnnnn '05-18-2020
18:10:16.123456123456
'

No delimiters yyyymmddhhmmss '20180322120000'
1 The date and time portions of the timestamp are shown here as being separated by a blank.
They can also be separated by a hyphen or the letter T. For example, '2018-03-22 08:30:58.7',
'2018-03-22-08:30:58.7', and '2018-03-22T08:30:58.7' are all equivalent.

Note:

• IBM SQL is the only supported output format
• Seconds can be specified to up to 12 decimal places.
• Trailing zeros can be truncated or entirely omitted from the fractional seconds.
• Leading zeros can be omitted from the month, day, and hour part of the timestamp.
• A character string can contain any number of trailing blanks.
• The separator character that follows the seconds element can be omitted if fractional seconds are not

included.
• If a string representation of a timestamp is implicitly cast to a value with a TIMESTAMP data type,

the precision of the result of the cast is determined by the precision of the TIMESTAMP operand in an
expression or the precision of the TIMESTAMP target in an assignment:

– Digits for fractional seconds that exceed the precision of the cast are truncated from the
string. For example, if the string '2018-3-2-8.30.00297' is cast to TIMESTAMP(3), the result is
2018-03-02-08.30.00.002.

– If the precision of the cast exceeds the precision of the string, the result is padded with
zeros. For example, if the string '2018-3-2-8.30.07' is cast to TIMESTAMP(12), the result is
2018-03-02-08.30.00.070000000000.

• A string representation of a timestamp can be given a different timestamp precision by explicitly casting
the value to a timestamp with a specified precision. If the string is a constant, an alternative is to
precede the string constant with the TIMESTAMP keyword. For example, TIMESTAMP '2018-03-28
14:50:35.123' has the TIMESTAMP(3) data type.

Boolean values
A Boolean value represents a truth value; that is, TRUE or FALSE. A Boolean expression or predicate can
result in a value of unknown, which is represented by the null value.

The following data types can be cast to the BOOLEAN data type:

• CHAR or VARCHAR can be cast to a BOOLEAN value:

– Cast to TRUE: 't' , 'true' , 'y', 'yes' , 'on' ,'1'
– Cast to FALSE: 'f', 'false', 'n', 'no', 'off', '0'

A string can use any combination of uppercase and lowercase characters ('yes', 'YES', 'Yes', 'yES', and so
on).

• decimal floating point or binary integer

Chapter 1. Structured Query Language (SQL) 41

– When a value of data type DECFLOAT, SMALLINT, INTEGER, or BIGINT is cast to a BOOLEAN value,
the result is TRUE if the value is not zero, and FALSE if the value is zero.

Cursor values
A cursor value is used to represent a reference to an underlying cursor.

The CURSOR type is a built-in data type that can only be used as the data type of:

• A local variable in a compound SQL (compiled) statement
• A parameter of an SQL routine
• The returns type of an SQL function
• A global variable

A variable or parameter defined with the CURSOR type can only be used in compound SQL (compiled)
statements.

A cursor variable is an SQL variable, SQL parameter, or global variable of a cursor type. A cursor variable
is said to have an underlying cursor that corresponds to the cursor created for a SELECT statement and
assigned to that variable. More than one cursor variable may share the same underlying cursor.

Cursor variables can be used the same way as conventional SQL cursors to iterate through a result set of a
SELECT statement with OPEN, FETCH, and CLOSE statements.

XML values
An XML value represents well-formed XML in the form of an XML document, XML content, or a sequence
of XML nodes.

An XML value that is stored in a table as a value of a column defined with the XML data type
must be a well-formed XML document. XML values are processed in an internal representation that
is not comparable to any string value. An XML value can be transformed into a serialized string
value representing the XML document using the XMLSERIALIZE function. Similarly, a string value that
represents an XML document can be transformed into an XML value using the XMLPARSE function. An
XML value can be implicitly parsed or serialized when exchanged with application string and binary data
types.

Special restrictions apply to expressions that result in an XML data type value; such expressions and
columns are not permitted in (SQLSTATE 42818):

• A SELECT list preceded by the DISTINCT clause
• A GROUP BY clause
• An ORDER BY clause
• A subselect of a set operator other than UNION ALL
• A basic, quantified, BETWEEN, IN, or LIKE predicate
• An aggregate function with DISTINCT

Array values
An array is a structure that contains an ordered collection of data elements in which each element can be
referenced by its index value in the collection.The cardinality of an array is the number of elements in the
array. All elements in an array have the same data type.

An ordinary array has a defined upper bound on the number of elements, known as the maximum
cardinality. Each element in the array is referenced by its ordinal position as the index value. If N is the
number of elements in an ordinary array, the ordinal position associated with each element is an integer
value greater than or equal to 1 and less than or equal to N.

An associative array has no specific upper bound on the number of elements. Each element is referenced
by its associated index value. The data type of the index value can be an integer or a character string but is
the same data type for the entire array.

42 IBM Db2 V11.5: SQL Reference

The maximum cardinality of an ordinary array is not related to its physical representation, unlike the
maximum cardinality of arrays in programming languages such as C. Instead, the maximum cardinality
is used by the system at run time to ensure that subscripts are within bounds. The amount of memory
required to represent an ordinary array value is not proportional to the maximum cardinality of its type.

The amount of memory required to represent an array value is usually proportional to its cardinality. When
an array is being referenced, all of the values in the array are stored in main memory. Therefore, arrays
that contain a large amount of data will consume large amounts of main memory.

The Array type is not supported for multi-row insert, update, or delete.

Anchored types
An anchored type defines a data type based on another SQL object such as a column, global variable, SQL
variable, SQL parameter, or the row of a table or view.

A data type defined using an anchored type definition maintains a dependency on the object to which
it is anchored. Any change in the data type of the anchor object will impact the anchored data type. If
anchored to the row of a table or view, the anchored data type is ROW with the fields defined by the
columns of the anchor table or anchor view.

User-defined types
A user-defined data type (UDT) is a data type that derived from an existing data type. You can use UDTs to
extend the built-in types already available and create your own customized data types.

There are six user-defined types:

• Distinct type
• Structured type
• Reference type
• Array type
• Row type
• Cursor type

Each of these types is described in the following sections.

Distinct type
A distinct type is a user-defined data type that shares its internal representation with an existing built-in
data type (its "source" type).

Distinct types include qualified identifiers. If the schema name is not used to qualify the distinct type
name when used in other than the CREATE TYPE (Distinct), DROP, or COMMENT statements, the SQL path
is searched in sequence for the first schema with a distinct type that matches.

Distinct types that are sourced on LOB types are subject to the same restrictions as their source type.

A distinct type is defined to use either strong typing or weak typing rules. Strong typing rules are the
default.
Strongly typed distinct type

A strongly typed distinct type is considered to be a separate and incompatible type for most
operations. For example, you want to define a picture type, a text type, and an audio type. Each
of these types has different semantics, but each uses the built-in data type BLOB for their internal
representation.

The following example illustrates the creation of a distinct type named AUDIO:

 CREATE TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB, it is considered to be
a separate type; this consideration allows the creation of functions that are written specifically for

Chapter 1. Structured Query Language (SQL) 43

AUDIO, and assures that these functions are not applied to values of any other data type (for example
pictures or text).

Strongly typed distinct types support strong typing by ensuring that only those functions and
operators that are explicitly defined on the distinct type can be applied to its instances. For this
reason, a strongly typed distinct type does not automatically acquire the functions and operators of its
source type, because these functions and operators might not be meaningful. For example, a LENGTH
function could be defined to support a parameter with the data type AUDIO that returns length of the
object in seconds instead of bytes.

Weakly typed distinct type
A weakly typed distinct type is considered to be the same as its source type for all operations, except
when the weakly typed distinct type applies constraints on values during assignments or casts. This
consideration also applies to function resolution.

The following example illustrates the creation of a distinct type named POSITIVEINTEGER:

 CREATE TYPE POSITIVEINTEGER AS INTEGER
 WITH WEAK TYPE RULES CHECK (VALUE>=0)

Weak typing means that except for accepting only positive integer values, POSITIVEINTEGER
operates in the same way as its underlying data type of INTEGER.

A weakly typed distinct type can be used as an alternative method of referring to a built-in data type
within application code. The ability to define constraints on the values that are associated with the
distinct type provides a method for checking values during assignments and casts.

Using distinct types can provide benefits in the following categories:
Extensibility

By defining new data types, you increase the set of data types available to you to support your
applications.

Flexibility
You can specify any semantics and behavior for your new data type by using user-defined functions
(UDFs) to augment the diversity of the data types available in the system.

Consistent and inherited behavior
Strong typing guarantees that only functions defined on your distinct type can be applied to instances
of the distinct type. Weak typing ensures that the distinct type behaves the same way as its underlying
data type and so can use all the same functions and methods available to that underlying type.

Encapsulation
Using a weakly typed distinct type makes it possible to define data type constraints in one location for
all usages within application code for that distinct type.

Performance
Distinct types are highly integrated into the database manager. Because distinct types are internally
represented the same way as built-in data types, they share the same efficient code that is used to
implement components such as built-in functions, comparison operators, and indexes for built-in data
types.

Not all built-in data types can be used to define distinct types. The source data type cannot be XML, array,
row, or cursor. For more information, see "CREATE TYPE (distinct) statement" in SQL Reference Volume 1.

Structured type
A structured type is a user-defined data type that has a structure that is defined in the database. It
contains a sequence of named attributes, each of which has a data type. A structured type also includes a
set of method specifications.

A structured type can be used as the type of a table, view, or column. When used as a type for a table
or view, that table or view is known as a typed table or typed view. For typed tables and typed views, the
names and data types of the attributes of the structured type become the names and data types of the
columns of this typed table or typed view. Rows of the typed table or typed view can be thought of as a

44 IBM Db2 V11.5: SQL Reference

representation of instances of the structured type. When used as a data type for a column, the column
contains values of that structured type (or values of any of the subtypes for that type, as defined later in
this section). Methods are used to retrieve or manipulate attributes of a structured column object.

A supertype is a structured type for which other structured types, called subtypes, are defined. A subtype
inherits all the attributes and methods of its supertype and can have additional attributes and methods
defined. The set of structured types that is related to a common supertype is called a type hierarchy and
the type that does not have any supertype is called the root type of the type hierarchy.

The term subtype applies to a user-defined structured type and all user-defined structured types that are
below it in the type hierarchy. Therefore, a subtype of a structured type T is T and all structured types
below T in the hierarchy. A proper subtype of a structured type T is a structured type below T in the type
hierarchy.

There are restrictions on having recursive type definitions in a type hierarchy. For this reason, it is
necessary to develop a shorthand way of referring to the specific type of recursive definitions that are
allowed. The following definitions are used:

• Directly uses: A type A is said to directly use another type B, if and only if one of the following
statements is true:

1. Type A has an attribute of type B.
2. Type B is a subtype of Aor a supertype of A.

• Indirectly uses: A type A is said to indirectly use a type B, if one of the following statements is true:

1. Type A directly uses type B.
2. Type A directly uses some type Cand type C indirectly uses type B.

A type cannot be defined so that one of its attribute types directly or indirectly uses itself. If it is
necessary to have such a configuration, consider using a reference as the attribute. For example, with
structured type attributes, there cannot be an instance of "employee" with an attribute of "manager"
when "manager" is of type "employee". There can, however, be an attribute of "manager" with a type of
REF(employee).

A type cannot be dropped if certain other objects use the type, either directly or indirectly. For example, a
type cannot be dropped if a table or view column makes direct or indirect use of the type.

Reference type
A reference type is a companion type to a structured type. Similar to a distinct type, a reference type
is a scalar type that shares a common representation with one of the built-in data types. This same
representation is shared for all types in the type hierarchy. The reference type representation is defined
when the root type of a type hierarchy is created. When using a reference type, a structured type is
specified as a parameter of the type. This parameter is called the target type of the reference.

The target of a reference is always a row in a typed table or a typed view. When a reference type is used,
it can have a scope defined. The scope identifies a table (called the target table) or view (called the target
view) that contains the target row of a reference value. The target table or view must have the same type
as the target type of the reference type. An instance of a scoped reference type uniquely identifies a row
in a typed table or typed view, called the target row.

Array type
A user-defined array type is a data type that is defined as an array with elements of another data type.
Every ordinary array type has an index with the data type of INTEGER and has a defined maximum
cardinality. Every associative array has an index with the data type of INTEGER or VARCHAR and does not
have a defined maximum cardinality.

Chapter 1. Structured Query Language (SQL) 45

Row type
A row type is a data type that is defined as an ordered sequence of named fields, each with an associated
data type, which effectively represents a row. A row type can be used as the data type for variables and
parameters in SQL PL to provide simple manipulation of a row of data.

Cursor type
A user-defined cursor type is a user-defined data type defined with the keyword CURSOR and optionally
with an associated row type. A user-defined cursor type with an associated row type is a strongly typed
cursor type; otherwise, it is a weakly typed cursor type. A value of a user-defined cursor type represents a
reference to an underlying cursor.

Promotion of data types
Data types can be classified into groups of related data types. Within such groups, a precedence order
exists where one data type is considered to precede another data type. This precedence is used to allow
the promotion of one data type to a data type later in the precedence ordering.

For example, the data type CHAR can be promoted to VARCHAR; INTEGER can be promoted to DOUBLE-
PRECISION; but CLOB is NOT promotable to VARCHAR.

Promotion of data types is used when:

• Performing function resolution
• Casting user-defined types
• Assigning user-defined types to built-in data types

Table 6 on page 46 shows the precedence list (in order) for each data type and can be used to determine
the data types to which a given data type can be promoted. The table shows that the best choice is always
the same data type instead of choosing to promote to another data type.

Table 6. Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)

SMALLINT SMALLINT, INTEGER, BIGINT, decimal, real, double, DECFLOAT

INTEGER INTEGER, BIGINT, decimal, real, double, DECFLOAT

BIGINT BIGINT, decimal, real, double, DECFLOAT

decimal decimal, real, double, DECFLOAT

real real, double, DECFLOAT

double double, DECFLOAT

DECFLOAT DECFLOAT

CHAR CHAR, VARCHAR, CLOB

VARCHAR VARCHAR, CLOB

CLOB CLOB

GRAPHIC GRAPHIC, VARGRAPHIC, DBCLOB

VARGRAPHIC VARGRAPHIC, DBCLOB

DBCLOB DBCLOB

BINARY BINARY, VARBINARY, BLOB

VARBINARY VARBINARY, BLOB

46 IBM Db2 V11.5: SQL Reference

Table 6. Data Type Precedence Table (continued)

Data Type Data Type Precedence List (in best-to-worst order)

BLOB BLOB

DATE DATE, TIMESTAMP

TIME TIME

TIMESTAMP TIMESTAMP

BOOLEAN BOOLEAN

CURSOR CURSOR

ARRAY ARRAY

udt udt (same name) or a supertype of udt

REF(T) REF(S) (provided that S is a supertype of T)

ROW ROW

Note:

1. The lowercase types in the preceding table are defined as follows:

• decimal = DECIMAL(p,s) or NUMERIC(p,s)
• real = REAL or FLOAT(n), where n is not greater than 24
• double = DOUBLE, DOUBLE-PRECISION, FLOAT or FLOAT(n), where n is greater than 24
• udt = a user-defined type (except for a weakly typed distinct type which uses the source type to

determine data type precedence)

Shorter and longer form synonyms of the listed data types are considered to be the same as the listed
form.

2. For a Unicode database, the following data types are considered to be equivalent:

• CHAR and GRAPHIC
• VARCHAR and VARGRAPHIC
• CLOB and DBCLOB

When resolving a function within a Unicode database, if a user-defined function and a built-in
function are both applicable for a given function invocation, then generally the built-in function will
be invoked. The UDF will be invoked only if its schema precedes SYSIBM in the CURRENT PATH
special register and if its argument data types match all the function invocation argument data types,
regardless of Unicode data type equivalence.

Casting between data types
There are many occasions where a value with a given data type needs to be cast to a different data type or
to the same data type with a different length, precision, or scale.

Data type promotion is one example where the promotion of one data type to another data type requires
that the value be cast to the new data type. A data type that can be cast to another data type is castable
from the source data type to the target data type.

The casting of one data type to another can occur implicitly or explicitly. The cast functions, CAST
specification, or XMLCAST specification can be used to explicitly change a data type, depending on the
data types involved. In addition, when a sourced user-defined function is created, the data types of the
parameters of the source function must be castable to the data types of the function that is being created.

The supported casts between built-in data types are shown in Table 7 on page 49. The first column
represents the data type of the cast operand (source data type), and the data types across the header

Chapter 1. Structured Query Language (SQL) 47

row represent the target data type of the cast operation. A 'Y' indicates that the CAST specification can be
used for the combination of source and target data types. Cases in which only the XMLCAST specification
can be used are noted.

If truncation occurs when any data type is cast to a character or graphic data type, a warning is returned
if any non-blank characters are truncated. This truncation behavior is unlike the assignment to a character
or graphic data type, when an error occurs if any non-blank characters are truncated.

In a Unicode database, character and graphic string source values can be cast to between different string
units. Any truncation is applied according to the string units of the target data type.

The following casts involving strongly typed distinct types are supported (using the CAST specification
unless noted otherwise):

• Cast from distinct type DT to its source data type S
• Cast from the source data type S of distinct type DT to distinct type DT
• Cast from distinct type DT to the same distinct type DT
• Cast from a data type A to distinct type DT where A is promotable to the source data type S of distinct

type DT
• Cast from an INTEGER to distinct type DT with a source data type SMALLINT
• Cast from a DOUBLE to distinct type DT with a source data type REAL
• Cast from a DECFLOAT to distinct type DT with a source data type of DECFLOAT
• Cast from a VARBINARY to distinct type DT with a source data type BINARY
• Cast from a VARCHAR to distinct type DT with a source data type CHAR
• Cast from a VARGRAPHIC to distinct type DT with a source data type GRAPHIC
• For a Unicode database, cast from a VARCHAR or a VARGRAPHIC to distinct type DT with a source data

type CHAR or GRAPHIC
• Cast from a distinct type DT with a source data type S to XML using the XMLCAST specification
• Cast from an XML to a distinct type DT with a source data type of any built-in data type, using the

XMLCAST specification depending on the XML schema data type of the XML value

For casts involving a weakly typed distinct type as a target, the cast from data type must be castable to
the source type of the weakly typed distinct type and the data type constraints must evaluate to true or
unknown for the value. The only context in which an operand is implicitly cast to a weakly typed distinct
type is when a source operand is assigned to a target with a data type that is a weakly typed distinct type.

FOR BIT DATA character types cannot be cast to CLOB.

For casts that involve an array type as a target, the data type of the elements of the source array value
must be castable to the data type of the elements of the target array data (SQLSTATE 42846). If the target
array type is an ordinary array, the source array value must be an ordinary array (SQLSTATE 42821) and
the cardinality of the source array value must be less than or equal to the maximum cardinality of the
target array data type (SQLSTATE 2202F). If the target array type is an associative array, the data type of
the index for the source array value must be castable to data type of the index for the target array type. A
user-defined array type value can be cast only to the same user-defined array type (SQLSTATE 42846).

A cursor type cannot be either the source data type or the target data type of a CAST specification, except
to cast a parameter marker to a cursor type.

For casts that involve a row type as a target, the degree of the source row value expression and degree
of the target row type must match and each field in the source row value expression must be castable
to the corresponding target field. A user-defined row type value can only be cast to another user-defined
row-type with the same name (SQLSTATE 42846).

It is not possible to cast a structured type value to something else. A structured type ST should not need
to be cast to one of its supertypes, because all methods on the supertypes of ST are applicable to ST.
If the required operation is only applicable to a subtype of ST, use the subtype-treatment expression to
treat ST as one of its subtypes.

48 IBM Db2 V11.5: SQL Reference

When a user-defined data type involved in a cast is not qualified by a schema name, the SQL path is used
to find the first schema that includes the user-defined data type by that name.

The following casts involving reference types are supported:

• cast from reference type RT to its representation data type S
• cast from the representation data type S of reference type RT to reference type RT
• cast from reference type RT with target type T to a reference type RS with target type S where S is a

supertype of T.
• cast from a data type A to reference type RT, where A is promotable to the representation data type S of

reference type RT.

When the target type of a reference data type involved in a cast is not qualified by a schema name, the
SQL path is used to find the first schema that includes the user-defined data type by that name.

Table 7. Supported Casts between Built-in Data Types

Source Data Type Target Data Type

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

D
E
C
F
L
O
A
T

C
H
A
R

C
H
A
R

F
B
D
2

V
A
R
C
H
A
R

V
A
R
C
H
A
R

F
B
D
2

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

B
O
O
L
E
A
N

SMALLINT Y Y Y Y Y Y Y Y Y Y Y - Y
1

Y1 - - - - - - - Y3 Y

INTEGER Y Y Y Y Y Y Y Y Y Y Y - Y
1

Y1 - - - - - - - Y3 Y

BIGINT Y Y Y Y Y Y Y Y Y Y Y - Y
1

Y1 - - - - - - - Y3 Y

DECIMAL Y Y Y Y Y Y Y Y Y Y Y - Y
1

Y1 - - - - - - - Y3 -

REAL Y Y Y Y Y Y Y Y Y Y Y - Y
1

Y1 - - - - - - - Y3 -

DOUBLE Y Y Y Y Y Y Y Y Y Y Y - Y
1

Y1 - - - - - - - Y3 -

DECFLOAT Y Y Y Y Y Y Y Y Y Y Y - Y
1

Y1 - - - - - - - - -

CHAR Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y1 Y Y Y Y Y Y Y4 Y

CHAR FOR BIT DATA Y Y Y Y Y Y Y Y Y Y Y - - - - Y Y Y Y Y Y Y3 -

VARCHAR Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y1 Y Y Y Y Y Y Y4 Y

VARCHAR FOR BIT DATA Y Y Y Y Y Y Y Y Y Y Y - - - - Y Y Y Y Y Y Y3 -

CLOB - - - - - - - Y - Y - Y Y
1

Y1 Y1 Y Y Y - - - Y4 -

Chapter 1. Structured Query Language (SQL) 49

Table 7. Supported Casts between Built-in Data Types (continued)

Source Data Type Target Data Type

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

D
E
C
F
L
O
A
T

C
H
A
R

C
H
A
R

F
B
D
2

V
A
R
C
H
A
R

V
A
R
C
H
A
R

F
B
D
2

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

B
O
O
L
E
A
N

GRAPHIC Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 - Y1 - Y1 Y Y Y Y Y Y Y1 Y1 Y1 Y3 Y1

VARGRAPHIC Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 - Y1 - Y1 Y Y Y Y Y Y Y1 Y1 Y1 Y3 Y1

DBCLOB - - - - - - - Y1 - Y1 - Y1 Y Y Y Y Y Y - - - Y3 -

BINARY - - - - - - - - Y - Y - - - - Y Y Y - - - - -

VARBINARY - - - - - - - - Y - Y - - - - Y Y Y - - - - -

BLOB - - - - - - - - Y - Y - - - - Y Y Y - - - Y4 -

DATE - Y Y Y - - - Y Y Y Y - Y
1

Y1 - - - - Y - Y Y3 -

TIME - Y Y Y - - - Y Y Y Y - Y
1

Y1 - - - - - Y - Y3 -

TIMESTAMP - - Y Y - - - Y Y Y Y - Y
1

Y1 - - - - Y Y Y Y3 -

XML Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y
5

Y5 Y5 - - Y5 Y5 Y5 Y5 Y -

BOOLEAN Y Y Y - - - - Y - Y - - Y
1

Y1 - - - - - - - - Y

50 IBM Db2 V11.5: SQL Reference

Table 7. Supported Casts between Built-in Data Types (continued)

Source Data Type Target Data Type

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I
M
A
L

R
E
A
L

D
O
U
B
L
E

D
E
C
F
L
O
A
T

C
H
A
R

C
H
A
R

F
B
D
2

V
A
R
C
H
A
R

V
A
R
C
H
A
R

F
B
D
2

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

X
M
L

B
O
O
L
E
A
N

Notes

• See the description preceding the table for information about supported casts involving user-defined types
and reference types.

• It is not possible to cast a structured type value to anything else.
• The LONG VARCHAR and LONG VARGRAPHIC data types continue to be supported but are deprecated, not

recommended, and might be removed in a future release.
1 Cast is only supported for Unicode databases.
2 FOR BIT DATA
3 Cast can only be performed using XMLCAST.
4 An XMLPARSE function is implicitly processed to convert a string to XML on assignment (INSERT or UPDATE)
of a string to an XML column. The string must be a well-formed XML document for the assignment to succeed.
5 Cast can only be performed using XMLCAST and depends on the underlying XML schema data type of the XML
value. For details, see "XMLCAST".
6 A cursor type cannot be either the source data type or the target data type of a CAST specification, except to
cast a parameter marker to a cursor type.

Table 8 on page 51 shows where to find information about the rules that apply when casting to the
identified target data types.

Table 8. Rules for Casting to a Data Type

Target Data Type Rules

SMALLINT “SMALLINT ” on page 502.

INTEGER “INTEGER ” on page 379.

BIGINT “BIGINT ” on page 290.

DECIMAL “DECIMAL or DEC ” on page 331

NUMERIC “DECIMAL or DEC ” on page 331

REAL “REAL ” on page 455

DOUBLE “DOUBLE_PRECISION or DOUBLE” on page 339

DECFLOAT “DECFLOAT ” on page 327

CHAR “CHAR ” on page 300

Chapter 1. Structured Query Language (SQL) 51

Table 8. Rules for Casting to a Data Type (continued)

Target Data Type Rules

VARCHAR “VARCHAR ” on page 557

CLOB “CLOB ” on page 308

GRAPHIC “GRAPHIC ” on page 353

VARGRAPHIC “VARGRAPHIC ” on page 573

DBCLOB “DBCLOB ” on page 325

BINARY “BINARY ” on page 292

VARBINARY “VARBINARY ” on page 556

BLOB “BLOB ” on page 295

DATE “DATE ” on page 315

TIME “TIME ” on page 525

TIMESTAMP If the source type is a character string, see
“TIMESTAMP ” on page 525, where one operand
is specified. If the source data type is a DATE, the
timestamp is composed of the specified date and a
time of 00:00:00.

BOOLEAN “BOOLEAN ” on page 295

Casting non-XML values to XML values
Table 9. Supported Casts from Non-XML Values to XML Values

Source Data Type Target Data Type

XML Resulting XML Schema Type

SMALLINT Y xs:short

INTEGER Y xs:int

BIGINT Y xs:long

DECIMAL or NUMERIC Y xs:decimal

REAL Y xs:float

DOUBLE Y xs:double

DECFLOAT N -

CHAR Y xs:string

VARCHAR Y xs:string

CLOB Y xs:string

GRAPHIC Y xs:string

VARGRAPHIC Y xs:string

DBCLOB Y xs:string

DATE Y xs:date

TIME Y xs:time

52 IBM Db2 V11.5: SQL Reference

Table 9. Supported Casts from Non-XML Values to XML Values (continued)

Source Data Type Target Data Type

XML Resulting XML Schema Type

TIMESTAMP Y xs:dateTime1

BLOB Y xs:base64Binary

BOOLEAN Y xs:boolean

character type FOR BIT DATA Y xs:base64Binary

distinct type use this chart with the source type of the
distinct type

Notes
1 The source data type TIMESTAMP supports timestamp precision of 0 to 12. The maximum fractional
seconds precision of xs:dateTime is 6. If the timestamp precision of a TIMESTAMP source data type
exceeds 6, the value is truncated when cast to xs:dateTime.

The LONG VARCHAR and LONG VARGRAPHIC data types continue to be supported but are deprecated,
not recommended, and might be removed in a future release.

When character string values are cast to XML values, the resulting xs:string atomic value cannot contain
illegal XML characters (SQLSTATE 0N002). If the input character string is not in Unicode, the input
characters are converted to Unicode.

Casting to SQL binary types results in XQuery atomic values with the type xs:base64Binary.

Casting XML values to non-XML values
An XMLCAST from an XML value to a non-XML value can be described as two casts: an XQuery cast that
converts the source XML value to an XQuery type corresponding to the SQL target type, followed by a cast
from the corresponding XQuery type to the actual SQL type.

An XMLCAST is supported if the target type has a corresponding XQuery target type that is supported,
and if there is a supported XQuery cast from the source value's type to the corresponding XQuery target
type. The target type that is used in the XQuery cast is based on the corresponding XQuery target type and
might contain some additional restrictions.

The following table lists the XQuery types that result from such conversion.

Table 10. Supported Casts from XML Values to Non-XML Values

Target Data Type Source Data Type

XML Corresponding XQuery Target Type

SMALLINT Y xs:short

INTEGER Y xs:int

BIGINT Y xs:long

DECIMAL or NUMERIC Y xs:decimal

REAL Y xs:float

DOUBLE Y xs:double

DECFLOAT Y no matching type1

CHAR Y xs:string

Chapter 1. Structured Query Language (SQL) 53

Table 10. Supported Casts from XML Values to Non-XML Values (continued)

Target Data Type Source Data Type

XML Corresponding XQuery Target Type

VARCHAR Y xs:string

CLOB Y xs:string

GRAPHIC Y xs:string

VARGRAPHIC Y xs:string

DBCLOB Y xs:string

DATE Y xs:date

TIME (without time zone) Y xs:time

TIMESTAMP (without time zone) Y xs:dateTime2

BLOB Y xs:base64Binary

BOOLEAN Y xs:boolean

CHAR FOR BIT DATA N not castable

VARCHAR FOR BIT DATA Y xs:base64Binary

distinct type use this chart with the source type of the
distinct type

row, reference, structured or abstract data
type (ADT), other

N not castable

Notes
1 XML Schema 1.0 is supported, which does not provide a matching XML schema type for a DECFLOAT.
Processing of the XQuery cast step of XMLCAST is handled as follows:

• If the source value is typed with an XML schema numeric type, use that numeric type.
• If the source value is typed with the XML schema type xs:boolean, use xs:double.
• Otherwise, use xs:string with additional checking for a valid numeric format.
2 The maximum fractional seconds precision of xs:dateTime is 6. The source data type TIMESTAMP
supports timestamp precision of 0 to 12. If the timestamp precision of a TIMESTAMP target data type
is less than 6, the value is truncated when cast from xs:dateTime. If the timestamp precision of a
TIMESTAMP target data type exceeds 6, the value is padded with zeros when cast from xs:dateTime.

In the following restriction cases, a derived by restriction XML schema data type is effectively used as the
target data type for the XQuery cast.

• XML values that are to be converted to string types other than CHAR and VARCHAR must fit within
the length limits of those data types without truncation of any characters or bytes. The name used for
the derived XML schema type is the uppercase SQL type name followed by an underscore character
and the maximum length of the string; for example, CLOB_1048576 if the XMLCAST target data type is
CLOB(1M) .

If an XML value is converted to a CHAR or VARCHAR type that is too small to contain all of the data, the
data is truncated to fit the specified data type and no error is returned. If any non-blank characters are
truncated, a warning (SQLSTATE 01004) is returned. If truncation of the value leads to the truncation of
a multibyte character, the whole multibyte character is removed. Therefore, in some cases, truncation
can produce a shorter string than expected. For example, the character, ñ, is represented in UTF-8 by
2 bytes, 'C3 B1'. When this character is cast as VARCHAR(1), the truncation of 'C3 B1' to 1 byte would

54 IBM Db2 V11.5: SQL Reference

leave a partial character of 'C3'. This partial character, 'C3', is also removed, therefore the final result is
an empty string.

• XML values that are to be converted to DECIMAL values must have no more than (precision - scale)
digits before the decimal point; excess digits after the decimal point beyond the scale are truncated.
The name used for the derived XML schema type is DECIMAL_precision_scale, where precision is the
precision of the target SQL data type, and scale is the scale of the target SQL data type; for example,
DECIMAL_9_2 if the XMLCAST target data type is DECIMAL(9,2).

• XML values that are to be converted to TIME values cannot contain a seconds component with nonzero
digits after the decimal point. The name used for the derived XML schema type is TIME.

The derived XML schema type name only appears in a message if an XML value does not conform to
one of these restrictions. This type name helps one to understand the error message, and does not
correspond to any defined XQuery type. If the input value does not conform to the base type of the
derived XML schema type (the corresponding XQuery target type), the error message might indicate that
type instead. Because this derived XML schema type name format might change in the future, it should
not be used as a programming interface.

Before an XML value is processed by the XQuery cast, any document node in the sequence is removed
and each direct child of the removed document node becomes an item in the sequence. If the document
node has multiple direct children nodes, the revised sequence will have more items than the original
sequence. The XML value without any document nodes is then atomized using the XQuery fn:data
function, with the resulting atomized sequence value used in the XQuery cast. If the atomized sequence
value is an empty sequence, a null value is returned from the cast without any further processing. If there
are multiple items in the atomized sequence value, an error is returned (SQLSTATE 10507).

If the target type of XMLCAST is the SQL data type DATE, TIME, or TIMESTAMP, the resulting XML value
from the XQuery cast is also adjusted to UTC, and the time zone component of the value is removed.

When the corresponding XQuery target type value is converted to the SQL target type, binary XML data
types, such as xs:base64Binary or xs:hexBinary, are converted from character form to actual binary data.

If an xs:double or xs:float value of INF, -INF, or NaN is cast (using XMLCAST) to an SQL data type DOUBLE
or REAL value, an error is returned (SQLSTATE 22003). An xs:double or xs:float value of -0 is converted to
+0.

The target type can be a user-defined distinct type if the source operand is not a user-defined distinct
type. In this case, the source value is cast to the source type of the user-defined distinct type (that is, the
target type) using the XMLCAST specification, and then this value is cast to the user-defined distinct type
using the CAST specification.

In a non-Unicode database, casting from an XML value to a non-XML target type involves code page
conversion from an internal UTF-8 format to the database code page. This conversion will result in the
introduction of substitution characters if any code point in the XML value is not present in the database
code page.

Assignments and comparisons
The basic operations of SQL are assignment and comparison.

Assignment operations are performed during the execution of INSERT, UPDATE, FETCH, SELECT INTO,
VALUES INTO and SET transition-variable statements. Arguments of functions are also assigned when
invoking a function. Comparison operations are performed during the execution of statements that
include predicates and other language elements such as MAX, MIN, DISTINCT, GROUP BY, and ORDER
BY.

One basic rule for both operations is that the data type of the operands involved must be compatible. The
compatibility rule also applies to set operations.

Another basic rule for assignment operations is that a null value cannot be assigned to a column that
cannot contain null values, nor to a host variable that does not have an associated indicator variable.

Following is a compatibility matrix showing the built-in data type compatibilities for assignment and
comparison operations.

Chapter 1. Structured Query Language (SQL) 55

Table 11. Data type compatibility for assignments and comparisons

Operands Binary
Integer

Decimal
Number

Floating-
point

Decimal
Floating-
point

Character
String

Graphic
String

Binary
String

Date Time Time-
stamp

Boolea
n

UDT

Binary
Integer

Yes Yes Yes Yes Yes Yes 5 No No No No Yes 2

Decimal
Number

Yes Yes Yes Yes Yes Yes 5 No No No No No 2

Floating
point

Yes Yes Yes Yes Yes Yes 5 No No No No No 2

Decimal
Floating-
point

Yes Yes Yes Yes Yes Yes 5 No No No No No 2

Character
String

Yes Yes Yes Yes Yes Yes 5,6 Yes 3 Yes Yes Yes Yes 2

Graphic
String

Yes 5 Yes 5 Yes 5 Yes 5 Yes 5,6 Yes No Yes 5 Yes 5 Yes 5 Yes 2

Binary
String

No No No No Yes3 No Yes No No No No 2

Date No No No No Yes Yes 5 No Yes No Yes No 2

Time No No No No Yes Yes 5 No No Yes 1 No 2

Time-
stamp

No No No No Yes Yes 5 No Yes 1 Yes No 2

Boolean Yes No No No Yes Yes No No No No Yes 2

UDT 2 2 2 2 2 2 2 2 2 2 2 Yes

1 A TIMESTAMP value can be assigned to a TIME value; however, a TIME value cannot be assigned to a TIMESTAMP value and a TIMESTAMP value cannot be
compared with a TIME value.
2 For detailed user-defined type information see “User-defined type assignments” on page 62 and “User-defined type comparisons” on page 69.
3 Character strings, except those with FOR BIT DATA, are not compatible with binary strings. FOR BIT DATA character strings and binary strings are considered
compatible and any padding is performed based on the data type of the target. For example, when assigning a FOR BIT DATA column value to a fixed-length
binary host variable, any necessary padding uses a pad byte of X'00'.
4 For information about assignment and comparison of reference types, see “Reference type assignments” on page 65 and “Reference type comparisons” on
page 71.
5 Only supported for Unicode databases.
6 Bit data and graphic strings are not compatible.

Numeric assignments
For numeric assignments, overflow is not allowed.

• When assigning to an exact numeric data type, overflow occurs if any digit of the whole part of the
number would be eliminated. If necessary, the fractional part of a number is truncated.

• When assigning to an approximate numeric data type or decimal floating-point, overflow occurs if the
most significant digit of the whole part of the number is eliminated. For floating-point and decimal
floating-point numbers, the whole part of the number is the number that would result if the floating-
point or decimal floating-point number were converted to a decimal number with unlimited precision. If
necessary, rounding might cause the least significant digits of the number to be eliminated.

For decimal floating-point numbers, truncation of the whole part of the number is allowed and results in
infinity with a warning.

For floating-point numbers, underflow is also not allowed. Underflow occurs for numbers between 1
and -1 if the most significant digit other than zero would be eliminated. For decimal floating-point,
underflow is allowed and depending on the rounding mode, results in zero or the smallest positive
number or the largest negative number that can be represented along with a warning.

An overflow or underflow warning is returned instead of an error if an overflow or underflow occurs on
assignment to a host variable with an indicator variable. In this case, the number is not assigned to the
host variable and the indicator variable is set to negative 2.

56 IBM Db2 V11.5: SQL Reference

For decimal floating-point numbers, the CURRENT DECFLOAT ROUNDING MODE special register indicates
the rounding mode in effect.

Assignments to integer
When a decimal, floating-point, or decimal floating-point number is assigned to an integer column or
variable, the fractional part of the number is eliminated. As a result, a number between 1 and -1 is
reduced to 0.

Assignments to decimal
When an integer is assigned to a decimal column or variable, the number is first converted to a temporary
decimal number and then, if necessary, to the precision and scale of the target. The precision and scale of
the temporary decimal number is 5,0 for a small integer, 11,0 for a large integer, or 19,0 for a big integer.

When a decimal number is assigned to a decimal column or variable, the number is converted, if
necessary, to the precision and the scale of the target. The necessary number of leading zeros is added,
and in the fractional part of the decimal number the necessary number of trailing zeros is added, or the
necessary number of trailing digits is eliminated.

When a floating-point number is assigned to a decimal column or variable, the number is first converted to
a temporary decimal number of precision 31, and then, if necessary, truncated to the precision and scale
of the target. In this conversion, the number is rounded (using floating-point arithmetic) to a precision of
31 decimal digits. As a result, a number between 1 and -1 that is less than the smallest positive number
or greater than the largest negative number that can be represented in the decimal column or variable is
reduced to 0. The scale is given the largest possible value that allows the whole part of the number to be
represented without loss of significance.

When a decimal floating-point number is assigned to a decimal column or variable, the number is rounded
to the precision and scale of the decimal column or variable. As a result, a number between 1 and
-1 that is less than the smallest positive number or greater than the largest negative number that can
be represented in the decimal column or variable is reduced to 0 or rounded to the smallest positive
or largest negative value that can be represented in the decimal column or variable, depending on the
rounding mode.

Assignments to floating-point
Floating-point numbers are approximations of real numbers. Hence, when an integer, decimal, floating-
point, or decimal floating-point number is assigned to a floating-point column or variable, the result might
not be identical to the original number. The number is rounded to the precision of the floating-point
column or variable using floating-point arithmetic. A decimal floating-point value is first converted to a
string representation, and is then converted to a floating-point number.

Assignments to decimal floating-point
When an integer number is assigned to a decimal floating-point column or variable, the number is first
converted to a temporary decimal number and then to a decimal floating-point number. The precision and
scale of the temporary decimal number is 5,0 for a small integer, 11,0 for a large integer, or 19,0 for a big
integer. Rounding can occur when assigning a BIGINT to a DECFLOAT(16) column or variable.

When a decimal number is assigned to a decimal floating-point column or variable, the number is
converted to the precision (16 or 34) of the target. Leading zeros are eliminated. Depending on the
precision and scale of the decimal number and the precision of the target, the value might be rounded.

When a floating-point number is assigned to a decimal floating-point column or variable, the number
is first converted to a temporary string representation of the floating-point number. The string
representation of the number is then converted to decimal floating-point.

When a DECFLOAT(16) number is assigned to a DECFLOAT(34) column or variable, the resulting value is
identical to the DECFLOAT(16) number.

Chapter 1. Structured Query Language (SQL) 57

When a DECFLOAT(34) number is assigned to a DECFLOAT(16) column or variable, the exponent of
the source is converted to the corresponding exponent in the result format. The mantissa of the
DECFLOAT(34) number is rounded to the precision of the target.

Assignments from strings to numeric
When a string is assigned to a numeric data type, it is converted to the target numeric data type using the
rules for a CAST specification. For more information, see "CAST specification" in the SQL Reference Volume
1.

String assignments
There are two types of assignments:

• In storage assignment, a value is assigned and truncation of significant data is not desirable; for
example, when assigning a value to a column

• In retrieval assignment, a value is assigned and truncation is allowed; for example, when retrieving data
from the database

The rules for string assignment differ based on the assignment type and the type of string.

Binary string assignments
Storage assignment

The length of a string that is assigned to a binary string target must not be greater than the length
attribute of the target. If the length of the string is greater than the length attribute of the target, the
following actions might occur:

• The string is assigned with trailing hexadecimal zeros (X'00') truncated (except BLOB strings) to fit
the length attribute of the target

• An error is returned (SQLSTATE 22001) in the following truncation scenarios:

– Characters other than a hexadecimal zero (X'00) would be truncated from a binary string other
than a BLOB string.

– Any character (or byte) would be truncated from a BLOB string

When the string is assigned to a fixed-length binary target, and the length of the string is less than
the length attribute of the target, the string is padded to the right with the necessary number of
hexadecimal zeros.

Retrieval Assignment
The length of a string that is assigned to a target can be longer than the length attribute of the target.
When a string is assigned to a target, and the length of the string is longer than the length attribute of
the target, the string is truncated on the right by the necessary number of bytes. When this truncation
occurs, a warning is returned (SQLSTATE 01004).

Furthermore, if the data is truncated when it is being assigned to a host variable, the value 'W' is
assigned to the SQLWARN1 field of the SQLCA. Also, if an indicator variable is provided, and the
source of the value is not a LOB, the indicator variable is set to the original length of the string.

If a string is assigned to a fixed-length target, and the length of the string is less than the length
attribute of the target, the string is padded to the right with the necessary number of hexadecimal
zeroes.

Character and graphic string assignments
Storage assignment

The basic rule is that the length of the string assigned to the target must not be greater than the length
attribute of the target. If the length of the string is greater than the length attribute of the target, the
following actions might occur:

58 IBM Db2 V11.5: SQL Reference

• The string is assigned with trailing blanks truncated (from all string types except LOB strings) to fit
the length attribute of the target

• An error is returned (SQLSTATE 22001) in the following truncation scenarios:

– Non-blank characters would be truncated from strings other than a LOB string
– Any character (or byte) would be truncated from a LOB string

In a Unicode database, length is defined as the number of code units in the string units of the target.

• If the target string units are OCTETS, the string assigned to the target must not have a greater byte
length than the target.

• If the target string units are CODEUNITS16, the string assigned to the target must not have a greater
number of Unicode UTF-16 code units than the length attribute of the target.

• If the target string units are CODEUNITS32, the string assigned to the target must not have a greater
number of Unicode UTF-32 code units than the length attribute of the target.

If a string is assigned to a fixed-length target, and the length of the string is less than the length
attribute of the target, the string is padded to the right with the necessary number of single-byte,
double-byte, or UCS-2 blanks. The pad character is always a blank, even for columns defined with
the FOR BIT DATA attribute. (UCS-2 defines several SPACE characters with different properties. For
a Unicode database, the database manager always uses the ASCII SPACE at position x'0020' as
UCS-2 blank. For an EUC database, the IDEOGRAPHIC SPACE at position x'3000' is used for padding
GRAPHIC strings.)

Retrieval Assignment
The length of a string that is assigned to a target can be longer than the length attribute of the target.
When a string is assigned to a target, and the length of the string is longer than the length attribute of
the target, the string is truncated on the right by the necessary number of characters (or bytes). When
this truncation occurs, a warning is returned (SQLSTATE 01004).

Furthermore, if the data is truncated when it is being assigned to a host variable, the value 'W' is
assigned to the SQLWARN1 field of the SQLCA. Also, if an indicator variable is provided, and the
source of the value is not a LOB, the indicator variable is set to the original length of the string.

Length is defined as the number of code units in the string units of the target.

• If the target string units are OCTETS and the source string has a greater byte length than the target,
the string is truncated on the right by the necessary number of bytes.

• If the target string units are CODEUNITS16 and the source string has a greater number of Unicode
UTF-16 code units than the length attribute of the target, the string is truncated on the right by the
necessary number of Unicode UTF-16 code units.

• If the target string units are CODEUNITS32 and the source string has a greater number of Unicode
UTF-32 code units than the length attribute of the target, the string is truncated on the right by the
necessary number of Unicode UTF-32 code units.

If a character string is assigned to a fixed-length target, and the length of the string is less than
the length attribute of the target, the string is padded to the right with the necessary number of
single-byte, double-byte, or UCS-2 blanks. The pad character is always a blank, even for strings
defined with the FOR BIT DATA attribute. (UCS-2 defines several SPACE characters with different
properties. For a Unicode database, the database manager always uses the ASCII SPACE at position
x'0020' as UCS-2 blank. For an EUC database, the IDEOGRAPHIC SPACE at position x'3000' is used
for padding GRAPHIC strings.)

Retrieval assignment of C NUL-terminated host variables is handled based on options that are
specified with the PREP or BIND command.

Conversion rules for string assignments
A character string or graphic string assigned to a column, variable, or parameter is first converted, if
necessary, to the code page of the target. Character conversion is necessary only if all of the following are
true:

Chapter 1. Structured Query Language (SQL) 59

• The code pages are different.
• The string is neither null nor empty.
• Neither string has a code page value of 0 (FOR BIT DATA).

For Unicode databases, character strings can be assigned to a graphic column, and graphic strings can be
assigned to a character column.

MBCS considerations for character string assignments
There are several considerations when assigning character strings that could contain both single and
multi-byte characters. These considerations apply to all character strings, including those defined as FOR
BIT DATA.

• Blank padding is always done using the single-byte blank character (X'20').
• Blank truncation is always done based on the single-byte blank character (X'20'). The double-byte

blank character is treated like any other character with respect to truncation.
• Assignment of a character string to a host variable might result in fragmentation of MBCS characters

if the target host variable is not large enough to contain the entire source string. If an MBCS character
is fragmented, each byte of the MBCS character fragment in the target is set to a single-byte blank
character (X'20'), no further bytes are moved from the source, and SQLWARN1 is set to 'W' to indicate
truncation. Note that the same MBCS character fragment handling applies even when the character
string is defined as FOR BIT DATA.

DBCS considerations for graphic string assignments
Graphic string assignments are processed in a manner analogous to that for character strings. For non-
Unicode databases, graphic string data types are compatible only with other graphic string data types,
and never with numeric, character string, or datetime data types. For Unicode databases, graphic string
data types are compatible with character string data types. However, graphic and character string data
types cannot be used interchangeably in the SELECT INTO or the VALUES INTO statement.

If a graphic string value is assigned to a graphic string column, the length of the value must not be greater
than the length of the column.

If a graphic string value (the 'source' string) is assigned to a fixed-length graphic string data type (the
'target', which can be a column, variable, or parameter), and the length of the source string is less than
that of the target, the target will contain a copy of the source string which has been padded on the right
with the necessary number of double-byte blank characters to create a value whose length equals that of
the target.

If a graphic string value is assigned to a graphic string host variable and the length of the source string
is greater than the length of the host variable, the host variable will contain a copy of the source string
which has been truncated on the right by the necessary number of double-byte characters to create a
value whose length equals that of the host variable. (Note that for this scenario, truncation need not be
concerned with bisection of a double-byte character; if bisection were to occur, either the source value or
target host variable would be an ill-defined graphic string data type.) The warning flag SQLWARN1 in the
SQLCA will be set to 'W'. The indicator variable, if specified, will contain the original length (in double-byte
characters) of the source string. In the case of DBCLOB, however, the indicator variable does not contain
the original length.

Retrieval assignment of C NUL-terminated host variables (declared using wchar_t) is handled based on
options specified with the PREP or BIND command.

Assignments from numeric to strings
When a number is assigned to a string data type, it is converted to the target string data type using the
rules for a CAST specification. For more information, see "CAST specification" in the SQL Reference Volume
1.

60 IBM Db2 V11.5: SQL Reference

If a nonblank character is truncated during the cast of a numeric value to a character or graphic data type,
a warning is returned. This truncation behavior is unlike the assignment to a character or graphic data
type that follows storage assignment rules, where if a nonblank character is truncated during assignment,
an error is returned.

Datetime assignments
A TIME value can be assigned only to a TIME column or to a string variable or string column.

A DATE can be assigned to a DATE, TIMESTAMP or string data type. When a DATE value is assigned to a
TIMESTAMP data type, the missing time information is assumed to be all zeros.

A TIMESTAMP value can be assigned to a DATE, TIME, TIMESTAMP or string data type. When a
TIMESTAMP value is assigned to a DATE data type, the date portion is extracted and the time portion
is truncated. When a TIMESTAMP value is assigned to a TIME data type, the date portion is ignored
and the time portion is extracted, but with the fractional seconds truncated. When a TIMESTAMP value
is assigned to a TIMESTAMP with lower precision, the excess fractional seconds are truncated. When a
TIMESTAMP value is assigned to a TIMESTAMP with higher precision, missing digits are assumed to be
zeros.

The assignment must not be to a CLOB, DBCLOB, or BLOB variable or column.

When a datetime value is assigned to a string variable or string column, conversion to a string
representation is automatic. Leading zeros are not omitted from any part of the date, time, or timestamp.
The required length of the target will vary, depending on the format of the string representation. If the
length of the target is greater than required, and the target is a fixed-length string, it is padded on the right
with blanks. If the length of the target is less than required, the result depends on the type of datetime
value involved, and on the type of target.

When the target is not a host variable and has a character data type, truncation is not allowed. The length
attribute of the column must be at least 10 for a date, 8 for a time, 19 for a TIMESTAMP(0), and 20+p for
TIMESTAMP(p).

When the target is a string host variable, the following rules apply:

• For a DATE: If the length of the host variable is less than 10 characters, an error is returned.
• For a TIME: If the USA format is used, the length of the host variable must not be less than 8

characters; in other formats the length must not be less than 5 characters.

If ISO or JIS formats are used, and if the length of the host variable is less than 8 characters, the
seconds part of the time is omitted from the result and assigned to the indicator variable, if provided.
The SQLWARN1 field of the SQLCA is set to indicate the omission.

• For a TIMESTAMP: If the length of the host variable is less than 19 characters, an error is returned. If
the length is less than 32 characters, but greater than or equal to 19 characters, trailing digits of the
fractional seconds part of the value are omitted. The SQLWARN1 field of the SQLCA is set to indicate the
omission.

When a DATE is assigned to a TIMESTAMP, the time and fractional components of the timestamp are set
to midnight and 0, respectively. When a TIMESTAMP is assigned to a DATE, the date portion is extracted
and the time and fractional components are truncated.

When a TIMESTAMP is assigned to a TIME, the DATE portion is ignored and the fractional components are
truncated.

XML assignments
The general rule for XML assignments is that only an XML value can be assigned to XML columns or to XML
variables. There are exceptions to this rule, as follows.

• Processing of input XML host variables: This is a special case of the XML assignment rule, because the
host variable is based on a string value. To make the assignment to XML within SQL, the string value
is implicitly parsed into an XML value using the setting of the CURRENT IMPLICIT XMLPARSE OPTION

Chapter 1. Structured Query Language (SQL) 61

special register. This determines whether to preserve or to strip whitespace, unless the host variable is
an argument of the XMLVALIDATE function, which always strips unnecessary whitespace.

• Assigning strings to input parameter markers of data type XML: If an input parameter marker has an
implicit or explicit data type of XML, the value bound (assigned) to that parameter marker could be a
character string variable, graphic string variable, or binary string variable. In this case, the string value
is implicitly parsed into an XML value using the setting of the CURRENT IMPLICIT XMLPARSE OPTION
special register to determine whether to preserve or to strip whitespace, unless the parameter marker is
an argument of the XMLVALIDATE function, which always strips unnecessary whitespace.

• Assigning strings directly to XML columns in data change statements: If assigning directly to a
column of type XML in a data change statement, the assigned expression can also be a character
string or a binary string. In this case, the result of XMLPARSE (DOCUMENT expression STRIP
WHITESPACE) is assigned to the target column. The supported string data types are defined by the
supported arguments for the XMLPARSE function. Note that this XML assignment exception does not
allow character or binary string values to be assigned to SQL variables or to SQL parameters of data type
XML.

• Assigning XML to strings on retrieval: If retrieving XML values into host variables using a FETCH INTO
statement or an EXECUTE INTO statement in embedded SQL, the data type of the host variable can
be CLOB, DBCLOB, or BLOB. If using other application programming interfaces (such as CLI, JDBC,
or .NET), XML values can be retrieved into the character, graphic, or binary string types that are
supported by the application programming interface. In all of these cases, the XML value is implicitly
serialized to a string encoded in UTF-8 and, for character or graphic string variables, converted into the
client code page.

Character string or binary string values cannot be retrieved into XML host variables. Values in XML host
variables cannot be assigned to columns, SQL variables, or SQL parameters of a character string data type
or a binary string data type.

Assignment to XML parameters and variables in inlined SQL bodied UDFs and SQL procedures is done by
reference. Passing parameters of data type XML to invoke an inlined SQL UDF or SQL procedure is also
done by reference. When XML values are passed by reference, any input node trees are used directly.
This direct usage preserves all properties, including document order, the original node identities, and all
parent properties.

User-defined type assignments
Assignments involving user-defined type values generally allow assignment to the same user-defined
type name with some additional rules for the different kinds of user-defined types. Additional information
about specific user-defined types is in the sections that follow.

Strongly typed distinct type assignments
The rules that apply to the assignments of strongly typed distinct type values to host variables are
different than the rules for all other assignments that involve strongly typed distinct type values
Assignments to host variables

The assignment of a strongly typed distinct type value to a host variable (or parameter marker) is
based on the source data type of the distinct type. Therefore, the value of a strongly typed distinct
type is assignable to a host variable (or parameter marker) only if the source data type of the distinct
type is assignable to the variable

For example, the distinct type AGE is created by the following SQL statement:

CREATE TYPE AGE AS SMALLINT

When the statement is executed, the following cast functions are also generated:

AGE (SMALLINT) RETURNS AGE
AGE (INTEGER) RETURNS AGE
SMALLINT (AGE) RETURNS SMALLINT

62 IBM Db2 V11.5: SQL Reference

Next, assume that column STU_AGE was defined in table STUDENTS with distinct type AGE. Now,
consider this valid assignment of a student's age to host variable HV_AGE, which has an INTEGER
data type:

SELECT STU_AGE INTO :HV_AGE FROM STUDENTS WHERE STU_NUMBER = 200

The strongly typed distinct type value is assignable to host variable HV_AGE because the source data
type of the distinct type (SMALLINT) is assignable to the host variable (INTEGER). If strongly typed
distinct type AGE had been sourced on a datetime data type such as DATE, the preceding assignment
would be invalid because a datetime data type cannot be assigned to an integer type.

Assignments other than to host variables
A strongly typed distinct type can be either the source or target of an assignment. Assignment is
based on whether the data type of the value to be assigned is castable to the data type of the
target (see “Casting between data types” on page 47 for the casts supported when a distinct type is
involved). A strongly typed distinct type value can be assigned to any target other than host a variable
in the following cases:

• The target of the assignment has the same distinct type.
• The distinct type is castable to the data type of the target.

Any value can be assigned to a strongly typed distinct type when:

• The value to be assigned has the same distinct type as the target.
• The data type of the assigned value is castable to the target distinct type.

For example, the source data type for strongly typed distinct type AGE is SMALLINT:

CREATE TYPE AGE AS SMALLINT

Next, assume that the tables TABLE1 and TABLE2 are created with four identical column descriptions:

AGECOL AGE
SMINTCOL SMALLINT
INTCOL INTEGER
DECCOL DECIMAL(6,2)

Using the following SQL statement and substituting various values for X and Y to insert values into
various columns of TABLE1 from TABLE2. The database manager uses assignment rules in this
INSERT statement to determine if X can be assigned to Y. Table 12 on page 63 shows whether
the assignments are valid.

INSERT INTO TABLE1(Y)
 SELECT X FROM TABLE2;

Table 12. Assessment of various assignments

TABLE2.X TABLE1.Y Valid Reason

AGECOL AGECOL Yes Source and target are the same distinct type

SMINTCOL AGECOL Yes SMALLINT can be cast to AGE

INTCOL AGECOL Yes INTEGER can be cast to AGE because the AGE
source type is SMALLINT

DECCOL AGECOL No DECIMAL cannot be cast to AGE

AGECOL SMINTCOL Yes AGECOL can be cast to its source type of
SMALLINT

AGECOL INTCOL No AGE cannot be cast to INTEGER

AGECOL DECCOL No AGE cannot be cast to DECIMAL

Chapter 1. Structured Query Language (SQL) 63

Weakly typed distinct type assignments
The value of a weakly typed distinct type can be assigned according to the assignment rules for the source
type of the weakly typed distinct type. When the assignment target has a distinct type defined with data
type constraints, the data type constraints are applied to the source value and must evaluate to true or
unknown.

Structured type assignments
The value of a structured type can be assigned when the target of the assignment has the same
structured type or one of its supertypes except in cases that involve host variables.

Assignment to and from host variables is based on the declared type of the host variable; that is, it follows
the rule:

• A source value of a structured type is assignable to a target host variable if and only if the declared type
of the host variable is the structured type or a supertype of the structured type.

If the target of the assignment is a column of a structured type, the source data type must be the target
data type or a subtype of the target data type.

Array type assignments
The value for an element of an array must be assignable to the data type of the array elements. The
assignment rules for that data type apply to the value assignment. The value specified for an index in
the array must be assignable to the data type of the index for the array. The assignment rules for that
data type apply to the value assignment. For an ordinary array, the index data type is INTEGER and for an
associative array the data type is either INTEGER or VARCHAR(n), where n is any valid length attribute for
the VARCHAR data type. If the index value for an assignment to an ordinary array is larger than the current
cardinality of the array, then the cardinality of the array is increased to the new index value, provided the
value does not exceed the maximum value for an INTEGER data type. An assignment of one new element
to an associative array increases the cardinality by exactly 1 since the index values can be sparse.

The validity of an assignment to an SQL variable or parameter is determined according to the following
rules:

• If the right side of the assignment is an SQL variable or parameter, an invocation of the TRIM_ARRAY
function, an invocation of the ARRAY_DELETE function, or a CAST expression, then its type must be the
same as the type of the SQL variable or parameter on the left side of the assignment.

• If the right side of the assignment is an array constructor or an invocation of the ARRAY_AGG function,
then it is implicitly cast to the type of the SQL variable or parameter on the left side.

For example, assuming that the type of variable V is MYARRAY, the statement:

 SET V = ARRAY[1,2,3];

is equivalent to:

SET V = CAST(ARRAY[1,2,3] AS MYARRAY);

And the statement:

SELECT ARRAY_AGG(C1) INTO V FROM T

is equivalent to:

SELECT CAST(ARRAY_AGG(C1) AS MYARRAY) INTO V FROM T

The following are valid assignments that involve array type values:

• Array variable to another array variable with the same array type as the source variable.
• An expression of type array to an array variable, where the array element type in the source expression

is assignable to the array element type in the target array variable.

64 IBM Db2 V11.5: SQL Reference

Row type assignments
Assignments to fields within a row variable must conform to the same rules as if the field itself was a
variable of the same data type as the field. A row variable can be assigned only to a row variable with
the same user-defined row type. When using FETCH, SELECT, or VALUES INTO to assign values to a row
variable, the source value types must be assignable to the target row fields. If the source or the target
variable (or both) of an assignment is anchored to the row of a table or view, the number of fields must be
the same and the field types of the source value must be assignable to the field types of the target value.

Cursor type assignments
Assignments to cursors depend on the type of cursor. The following values are assignable to a variable or
parameter of built-in type CURSOR:

• A cursor value constructor
• A value of built-in type CURSOR
• A value of any user-defined cursor type

The following values are assignable to a variable or parameter of a weakly typed user-defined cursor type:

• A cursor value constructor
• A value of built-in type CURSOR
• A value of a user-defined cursor type with the same type name

The following values are assignable to a variable or parameter of strongly typed user-defined cursor type:

• A cursor value constructor
• A value of a user-defined cursor type with the same type name

Boolean type assignments
The following keywords represent values that are assignable to a variable, parameter, or return type of
built-in type BOOLEAN:

• TRUE
• FALSE
• NULL

The result of the evaluation of a search condition can also be assigned. If the search condition evaluates
to unknown, the value of NULL is assigned.

Reference type assignments
A reference type with a target type of T can be assigned to a reference type column that is also a
reference type with target type of S where S is a supertype of T. If an assignment is made to a scoped
reference column or variable, no check is performed to ensure that the actual value being assigned exists
in the target table or view defined by the scope.

Assignment to host variables is done based on the representation type of the reference type. That is, it
follows the rule:

• A value of a reference type on the right hand side of an assignment is assignable to a host variable
on the left side if and only if the representation type of this reference type is assignable to this host
variable.

If the target of the assignment is a column, and the right side of the assignment is a host variable, the host
variable must be explicitly cast to the reference type of the target column.

Numeric comparisons
Numbers are compared algebraically; that is, with regard to sign. For example, -2 is less than +1.

Chapter 1. Structured Query Language (SQL) 65

If one number is an integer and the other is decimal, the comparison is made with a temporary copy of the
integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is made with a temporary
copy of one of the numbers that has been extended with trailing zeros so that its fractional part has the
same number of digits as the other number.

If one number is floating-point and the other is integer or decimal, the comparison is made with a
temporary copy of the other number, which has been converted to double-precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their normalized forms are identical.

If one number is decimal floating-point and the other number is integer, decimal, single precision floating-
point, or double precision floating-point, the comparison is made with a temporary copy of the other
number, which has been converted to decimal floating-point.

If one number is DECFLOAT(16) and the other number is DECFLOAT(34), the DECFLOAT(16) value is
converted to DECFLOAT(34) before the comparison is made.

The decimal floating-point data type supports both positive and negative zero. Positive and negative zero
have different binary representations, but the = (equal) predicate will return true for comparisons of
negative and positive zero.

The COMPARE_DECFLOAT and TOTALORDER scalar functions can be used to perform comparisons at a
binary level if, for example, a comparison of 2.0 <> 2.00 is required.

The decimal floating-point data type supports the specification of negative and positive NaN (quiet and
signalling), and negative and positive infinity. From an SQL perspective, INFINITY = INFINITY, NAN =
NAN, SNAN = SNAN, and -0 = 0.

The comparison and ordering rules for special values are as follows:

• (+/-) INFINITY compares equal only to (+/-) INFINITY of the same sign.
• (+/-) NAN compares equal only to (+/-) NAN of the same sign.
• (+/-) SNAN compares equal only to (+/-) SNAN of the same sign.

The ordering among different special values is as follows:

• -NAN < -SNAN < -INFINITY < 0 < INFINITY < SNAN < NAN

When string and numeric data types are compared, the string is cast to DECFLOAT(34) using the rules for
a CAST specification. For more information, see "CAST specification" in the SQL Reference Volume 1. The
string must contain a valid string representation of a number.

String comparisons
Binary string comparisons

Binary string comparisons are always performed by comparing the binary values for the corresponding
bytes of each string. Additionally, two binary strings are equal only if the actual length of the two
strings is identical. The shorter string is considered less than the longer string when otherwise equal
to the length of the shorter string. Binary strings cannot be compared with character strings unless the
character string is cast to a binary string or the character string has a subtype of FOR BIT DATA. In this
case, the FOR BIT DATA character string is treated as if it were a binary string.

BLOB strings that have an actual length less than 32673 bytes are supported as operands in
basic predicates, IN, BETWEEN and the simple CASE expression. In comparisons that use the LIKE
predicate, NULL predicate, and the POSSTR function, BLOB strings of any length continue to be
supported.

Character and graphic string comparisons

Character strings are compared according to the collating sequence specified when the database was
created with the following exceptions:

• Character strings with a FOR BIT DATA attribute are always compared according to their bit values.

66 IBM Db2 V11.5: SQL Reference

• In a non-Unicode database, string comparisons that involve a Unicode string data type use the
alternate collating sequence.

When comparing character strings of unequal lengths, the comparison is made using a logical copy of
the shorter string, which is padded on the right with blanks sufficient to extend its length to that of the
longer string. This logical extension is done for all character strings, including those tagged as FOR BIT
DATA.

Character strings (except character strings tagged as FOR BIT DATA) are compared either according
to the collating sequence specified when the database was created, or according to the alternate
collating sequence. For example, the default collating sequence supplied by the database manager
may give lowercase and uppercase versions of the same character the same weight. The database
manager performs a two-pass comparison to ensure that only identical strings are considered equal
to each other. In the first pass, strings are compared according to the database collating sequence.
If the weights of the characters in the strings are equal, a second "tie-breaker" pass is performed to
compare the strings on the basis of their actual code point values.

Two strings are equal if they are both empty or if all corresponding bytes are equal. If either operand
is null, the result is unknown.

LOB strings that have an actual length less than 32673 bytes are now supported as operands in basic
predicates, IN, BETWEEN and the simple CASE expression. In comparisons using the LIKE predicate,
NULL predicate, and the POSSTR function, LOB strings of any length continue to be supported.

LOB strings are not supported in any other comparison operations such as MAX, MIN, DISTINCT,
GROUP BY, and ORDER BY.

Portions of strings can be compared using the SUBSTR and VARCHAR scalar functions. For example,
given the columns:

 MY_SHORT_CLOB CLOB(300)
 MY_LONG_VAR VARCHAR(8000)

then the following is valid:

 WHERE VARCHAR(MY_SHORT_CLOB) > VARCHAR(SUBSTR(MY_LONG_VAR,1,300))

Examples:

For these examples, 'A', 'Á', 'a', and 'á', have the code point values X'41', X'C1', X'61', and X'E1'
respectively.

Consider a collating sequence where the characters 'A', 'Á', 'a', 'á' have weights 136, 139, 135, and
138. Then the characters sort in the order of their weights as follows:

'a' < 'A' < 'á' < 'Á'

Now consider four DBCS characters D1, D2, D3, and D4 with code points 0xC141, 0xC161, 0xE141,
and 0xE161, respectively. If these DBCS characters are in CHAR columns, they sort as a sequence
of bytes according to the collation weights of those bytes. First bytes have weights of 138 and 139,
therefore D3 and D4 come before D2 and D1; second bytes have weights of 135 and 136. Hence, the
order is as follows:

D4 < D3 < D2 < D1

However, if the values being compared have the FOR BIT DATA attribute, or if these DBCS characters
were stored in a GRAPHIC column, the collation weights are ignored, and characters are compared
according to their code points as follows:

 'A' < 'a' < 'Á' < 'á'

The DBCS characters sort as sequence of bytes, in the order of code points as follows:

D1 < D2 < D3 < D4

Chapter 1. Structured Query Language (SQL) 67

Now consider a collating sequence where the characters 'A', 'Á', 'a', 'á' have (non-unique) weights 74,
75, 74, and 75. Considering collation weights alone (first pass), 'a' is equal to 'A', and 'á' is equal to 'Á'.
The code points of the characters are used to break the tie (second pass) as follows:

'A' < 'a' < 'Á' < 'á'

DBCS characters in CHAR columns sort a sequence of bytes, according to their weights (first pass) and
then according to their code points to break the tie (second pass). First bytes have equal weights, so
the code points (0xC1 and 0xE1) break the tie. Therefore, characters D1 and D2 sort before characters
D3 and D4. Then the second bytes are compared in similar way, and the final result is as follows:

D1 < D2 < D3 < D4

Once again, if the data in CHAR columns have the FOR BIT DATA attribute, or if the DBCS characters
are stored in a GRAPHIC column, the collation weights are ignored, and characters are compared
according to their code points:

D1 < D2 < D3 < D4

For this particular example, the result happens to be the same as when collation weights were used,
but obviously this is not always the case.

Conversion rules for comparison
When two strings are compared, one of the strings is first converted, if necessary, to the encoding
scheme, code page, and collating sequence of the other string.

Ordering of results
Results that require sorting are ordered based on the string comparison rules discussed in “String
comparisons” on page 66. The comparison is performed at the database server. On returning results
to the client application, code page conversion may be performed. This subsequent code page conversion
does not affect the order of the server-determined result set.

MBCS considerations for string comparisons
Mixed SBCS/MBCS character strings are compared according to the collating sequence specified when
the database was created. For databases created with default (SYSTEM) collation sequence, all single-
byte ASCII characters are sorted in correct order, but double-byte characters are not necessarily in code
point sequence. For databases created with IDENTITY sequence, all double-byte characters are correctly
sorted in their code point order, but single-byte ASCII characters are sorted in their code point order
as well. For databases created with COMPATIBILITY sequence, a compromise order is used that sorts
properly for most double-byte characters, and is almost correct for ASCII.

Mixed character strings are compared byte-by-byte. This may result in unusual results for multi-byte
characters that occur in mixed strings, because each byte is considered independently.

Example:

For this example, 'A', 'B', 'a', and 'b' double-byte characters have the code point values X'8260', X'8261',
X'8281', and X'8282', respectively.

Consider a collating sequence where the code points X'8260', X'8261', X'8281', and X'8282' have weights
96, 65, 193, and 194. Then:

 'B' < 'A' < 'a' < 'b'

and

 'AB' < 'AA' < 'Aa' < 'Ab' < 'aB' < 'aA' < 'aa' < 'ab'

Graphic string comparisons are processed in a manner analogous to that for character strings.

68 IBM Db2 V11.5: SQL Reference

Graphic string comparisons are valid between all graphic string data types except DBCLOB.

For graphic strings, the collating sequence of the database is not used. Instead, graphic strings are always
compared based on the numeric (binary) values of their corresponding bytes.

Using the previous example, if the literals were graphic strings, then:

 'A' < 'B' < 'a' < 'b'

and

 'AA' < 'AB' < 'Aa' < 'Ab' < 'aA' < 'aB' < 'aa' < 'ab'

When comparing graphic strings of unequal lengths, the comparison is made using a logical copy of the
shorter string which is padded on the right with double-byte blank characters sufficient to extend its
length to that of the longer string.

Two graphic values are equal if they are both empty or if all corresponding graphics are equal. If either
operand is null, the result is unknown. If two values are not equal, their relation is determined by a simple
binary string comparison.

As indicated in this section, comparing strings on a byte by byte basis can produce unusual results; that is,
a result that differs from what would be expected in a character by character comparison. The examples
shown here assume the same MBCS code page, however, the situation can be further complicated when
using different multi-byte code pages with the same national language. For example, consider the case of
comparing a string from a Japanese DBCS code page and a Japanese EUC code page.

Datetime comparisons
A date, time, or timestamp value can be compared with another value of the same data type, a datetime
constant of the same data type, or with a string representation of a value of that data type. A date value
or a string representation of a date can also be compared with a TIMESTAMP, where the missing time
information for the date value is assumed to be all zeros. All comparisons are chronological, which means
the further a point in time is from January 1, 0001, the greater the value of that point in time. The time
24:00:00 is greater than the time 00:00:00.

Comparisons that involve time values and string representations of time values always include seconds. If
the string representation omits seconds, zero seconds are implied.

Comparisons that involve timestamp values are evaluated according to the following rules:

• When comparing timestamp values with different precisions, the higher precision is used for the
comparison and any missing digits for fractional seconds are assumed to be zero.

• When comparing a timestamp value with a string representation of a timestamp, the string
representation is first converted to TIMESTAMP(12).

• Timestamp comparisons are chronological without regard to representations that might be considered
equivalent. Thus, the following predicate is true:

TIMESTAMP('1990-02-23-00.00.00') > '1990-02-22-24.00.00'

User-defined type comparisons
Information about comparisons involving user-defined types is in the sections that follow.

Strongly typed distinct type comparisons
Values with a strongly typed distinct type only can be compared with values of exactly the same strongly
typed distinct type.

For example, given the following YOUTH distinct type and CAMP_DB_ROSTER table:

Chapter 1. Structured Query Language (SQL) 69

 CREATE TYPE YOUTH AS INTEGER

 CREATE TABLE CAMP_DB_ROSTER
 (NAME VARCHAR(20),
 ATTENDEE_NUMBER INTEGER NOT NULL,
 AGE YOUTH,
 HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid:

 SELECT * FROM CAMP_DB_ROSTER
 WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:

 SELECT * FROM CAMP_DB_ROSTER
 WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a function or CAST specification to cast
between the distinct type and the source type. The following comparisons are all valid:

 SELECT * FROM CAMP_DB_ROSTER
 WHERE INTEGER(AGE) > ATTENDEE_NUMBER

 SELECT * FROM CAMP_DB_ROSTER
 WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

 SELECT * FROM CAMP_DB_ROSTER
 WHERE AGE > YOUTH(ATTENDEE_NUMBER)

 SELECT * FROM CAMP_DB_ROSTER
 WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

Weakly typed distinct type comparisons
Values with a weakly typed distinct type are compared according to the comparison rules for the source
type of the distinct type. Data type constraints have no impact on the comparison. It is valid to compare
different weakly typed distinct types if the underlying source types are comparable.

Structured type comparisons
Values with a user-defined structured type cannot be compared with any other value (the NULL predicate
and the TYPE predicate can be used).

Array type comparisons
Comparisons of array type values are not supported. Elements of arrays can be compared based on the
comparison rules for the data type of the elements.

Row type comparisons
A row variable cannot be compared to another row variable even if the row type name is the same.
Individual fields within a row type can be compared to other values and the comparison rules for the data
type of the field apply.

Cursor type comparisons
A cursor variable cannot be compared to another cursor variable even if the cursor type name is the same.

Boolean type comparisons
A Boolean value can be compared to another Boolean value or to a value that can be cast to a Boolean
value. A value of TRUE is greater than a value of FALSE.

70 IBM Db2 V11.5: SQL Reference

Reference type comparisons
Reference type values can be compared only if their target types have a common supertype. The
appropriate comparison function will only be found if the schema name of the common supertype is
included in the SQL path. The comparison is performed using the representation type of the reference
types. The scope of the reference is not considered in the comparison.

XML comparisons in a non-Unicode database
When performed in a non-Unicode database, comparisons between XML data and character or graphic
string values require a code page conversion of one of the two sets of data being compared. Character
or graphic values used in an SQL or XQuery statement, either as a query predicate or as a host variable
with a character or graphic string data type, are converted to the database code page before comparison.
If any characters included in this data have code points that are not part of the database code page,
substitution characters are added in their place, potentially causing unexpected results for the query.

For example, a client with a UTF-8 code page is used to connect to a database server created with
the Greek encoding ISO8859-7. The expression ΣGΣM is sent as the predicate of an XQuery statement,
where ΣG represents the Greek sigma character in Unicode (U+03A3) and ΣM represents the mathematical
symbol sigma in Unicode (U+2211). This expression is first converted to the database code page, so that
both "Σ" characters are converted to the equivalent code point for sigma in the Greek database code
page, 0xD3. We may denote this code point as ΣA. The newly converted expression ΣAΣA is then converted
again to UTF-8 for comparison with the target XML data. Since the distinction between these two code
points was lost as a result of the code page conversion required to pass the predicate expression into the
database, the two initially distinct values ΣG and ΣM are passed to the XML parser as the expression ΣGΣG.
This expression then fails to match when compared to the value ΣGΣM in an XML document.

One way to avoid the unexpected query results that may be caused by code page conversion issues is
to ensure that all characters used in a query expression have matching code points in the database code
page. Characters that do not have matching code points can be included through the use of a Unicode
character entity reference. A character entity reference will always bypass code page conversion. For
example, using the character entity reference ࢣ in place of the ΣM character ensures that the
correct Unicode code point is used for the comparison, regardless of the database code page.

Rules for result data types
The data types of a result are determined by rules which are applied to the operands in an operation. This
topic explains those rules.

These rules apply to:

• Corresponding columns in fullselects of set operations (UNION, INTERSECT and EXCEPT)
• Result expressions of a CASE expression and the DECODE and NVL2 scalar functions
• Arguments of the scalar function COALESCE (also NVL and VALUE)
• Arguments of the scalar functions GREATEST, LEAST, MAX, and MIN
• Expression values of the in list of an IN predicate
• Corresponding expressions of a multiple row VALUES clause
• Expression values for the elements in an array constructor
• Arguments of a BETWEEN predicate (except if the data types of all operands are numeric)
• Arguments for the aggregation group ranges in OLAP specifications

These rules are applied subject to other restrictions on long strings for the various operations.

The rules involving various data types follow. In some cases, a table is used to show the possible result
data types. The LONG VARCHAR and LONG VARGRAPHIC data types continue to be supported but are
deprecated and not recommended.

These tables identify the data type of the result, including the applicable length or precision and scale.
The result type is determined by considering the operands. If there is more than one pair of operands,

Chapter 1. Structured Query Language (SQL) 71

start by considering the first pair. This gives a result type which is considered with the next operand
to determine the next result type, and so on. The last intermediate result type and the last operand
determine the result type for the operation. Processing of operations is done from left to right so that the
intermediate result types are important when operations are repeated. For example, consider a situation
involving:

 CHAR(2) UNION CHAR(4) UNION VARCHAR(3)

The first pair results in a type of CHAR(4). The result values always have 4 bytes. The final result type is
VARCHAR(4). Values in the result from the first UNION operation will always have a length of 4.

Character strings
A character string value is compatible with another character string value. Character strings include data
types CHAR, VARCHAR, and CLOB.

If one operand is... And the other operand is... The data type of the result is...

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

CHAR(x) VARCHAR(y) VARCHAR(z) where z = max(x,y)

VARCHAR(x) CHAR(y) or VARCHAR(y) VARCHAR(z) where z = max(x,y)

CLOB(x) CHAR(y), VARCHAR(y), or
CLOB(y)

CLOB(z) where z = max(x,y)

The code page of the result character string will be derived based on the rules for string conversions.

In a Unicode database, if either operand has string units CODEUNITS32 and the derived code page is
not 0, the string units of the result character string is CODEUNITS32. If an operand is defined with
CODEUNITS32, the other operand cannot be defined as FOR BIT DATA.Otherwise, the string units of
the result character string is OCTETS. Special cases apply when the string units of one operand is
CODEUNITS32 and the string units of the other operand is OCTETS with a length attribute that exceeds
the data type maximum in CODEUNITS32.

If one operand is... And the other operand is... The data type of the result is...

CHAR(x OCTETS) with x>63 CHAR(y CODEUNITS32) VARCHAR(z CODEUNITS32) where z =
max(x,y)

VARCHAR(x OCTETS) with
x>8168

CHAR(y CODEUNITS32) or
VARCHAR(y CODEUNITS32)

Error

CLOB(x OCTETS) with
x>536870911

CHAR(y CODEUNITS32),
VARCHAR(y CODEUNITS32),
or CLOB(y CODEUNITS32)

CLOB(536870911 CODEUNITS32)

Graphic strings
A graphic string value is compatible with another graphic string value. Graphic strings include data types
GRAPHIC, VARGRAPHIC, and DBCLOB.

If one operand is... And the other operand is... The data type of the result is...

GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) GRAPHIC(y) OR
VARGRAPHIC(y)

VARGRAPHIC(z) where z = max(x,y)

DBCLOB(x) GRAPHIC(y),
VARGRAPHIC(y), or
DBCLOB(y)

DBCLOB(z) where z = max (x,y)

72 IBM Db2 V11.5: SQL Reference

The code page of the result graphic string will be derived based on the rules for string conversions.

In a Unicode database, if either operand has string units CODEUNITS32 and the derived code page is
not 0, the string units of the result character string is CODEUNITS32. If an operand is defined with
CODEUNITS32, the other operand cannot be defined as FOR BIT DATA.Otherwise, the string units of
the result character string is OCTETS. Special cases apply when the string units of one operand is
CODEUNITS32 and the string units of the other operand is OCTETS with a length attribute that exceeds
the data type maximum in CODEUNITS32. In a Unicode database, if either operand has string units
CODEUNITS32, or CODEUNITS16, the string units of the result graphic string is CODEUNITS32. Special
cases apply when the string units of one operand is CODEUNITS32 and the string units of the other
operand is CODEUNITS16 with a length attribute that exceeds the data type maximum in CODEUNITS32.

If one operand is... And the other operand is... The data type of the result is...

GRAPHIC(x CODEUNITS16)
with x>63

GRAPHIC(y CODEUNITS32) VARGRAPHIC(z CODEUNITS32) where z =
max(x,y)

VARGRAPHIC(x
CODEUNITS16) with
x>8168

GRAPHIC(y CODEUNITS32)
or VARGRAPHIC(y
CODEUNITS32)

Error

DBCLOB(x CODEUNITS16)
with x>536870911

GRAPHIC(y CODEUNITS32),
VARGRAPHIC(y
CODEUNITS32) or
DBCLOB(y CODEUNITS32)

DBCLOB(536870911 CODEUNITS32)

Character and graphic strings in a Unicode database
In a Unicode database, a character string value is compatible with a graphic string value.

If one operand is... And the other operand is... The data type of the result is...

GRAPHIC(x) CHAR(y) or GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) CHAR(y) or VARCHAR(y) VARGRAPHIC(z) where z = max(x,y)

VARCHAR(x) GRAPHIC(y) or
VARGRAPHIC

VARGRAPHIC(z) where z = max(x,y)

DBCLOB(x) CHAR(y) or VARCHAR(y) or
CLOB(y)

DBCLOB(z) where z = max(x,y)

CLOB(x) GRAPHIC(y) or
VARGRAPHIC(y)

DBCLOB(z) where z = max(x,y)

The string units of the result graphic string will be CODEUNITS32 if either operand has string
units CODEUNITS32, or CODEUNITS16. Special cases apply when the string units of one operand is
CODEUNITS32 and the string units of the other operand is OCTETS or CODEUNITS16 with a length
attribute that exceeds the data type maximum in CODEUNITS32.

If one operand is... And the other operand is... The data type of the result is...

CHAR(x OCTETS) with x>63 GRAPHIC(y CODEUNITS32) VARGRAPHIC(z CODEUNITS32) where z =
max(x,y)

GRAPHIC(x CODEUNITS16)
with x>63

CHAR(y CODEUNITS32) VARGRAPHIC(z CODEUNITS32) where z =
max(x,y)

VARCHAR(x OCTETS) with
x>8168

GRAPHIC(y CODEUNITS32)
or VARGRAPHIC(y
CODEUNITS32)

Error

Chapter 1. Structured Query Language (SQL) 73

If one operand is... And the other operand is... The data type of the result is...

VARGRAPHIC(x
CODEUNITS16) with
x>8168

CHAR(y CODEUNITS32) or
VARCHAR(y CODEUNITS32)

Error

CLOB(x OCTETS) with
x>536870911

GRAPHIC(y CODEUNITS32),
VARGRAPHIC(y
CODEUNITS32), or
DBCLOB(y CODEUNITS32)

DBCLOB(536870911 CODEUNITS32)

DBCLOB(x CODEUNITS16)
with x>536870911

CHAR(y CODEUNITS32),
VARCHAR(y CODEUNITS32),
or CLOB(y CODEUNITS32)

DBCLOB(536 870 911 CODEUNITS32)

Binary strings
Binary strings are compatible with other binary strings and FOR BIT DATA character strings. Binary strings
include BINARY, VARBINARY and BLOB.

Table 13. Operands and the resulting data type

If one operand is... And the other operand is... The data type of the result is...

BINARY(x) BINARY(y) or CHAR(y) FOR
BIT DATA

BINARY(z) where z=max(x,y)

VARBINARY(x) BINARY(y), VARBINARY(y),
CHAR(y) FOR BIT DATA, or
VARCHAR(y) FOR BIT DATA

VARBINARY(z) where z=max(x,y)

VARCHAR(x) FOR BIT DATA BINARY(y) or VARBINARY(y) VARBINARY(z) where z=max(x,y)

BLOB(x) BINARY(y), VARBINARY(y),
BLOB(y), CHAR(y) FOR BIT
DATA, or VARCHAR(y) FOR
BIT DATA

BLOB(z) where z=max(x,y)

Numeric
Numeric types are compatible with other numeric data types, character-string data types (except CLOB),
and in a Unicode database, graphic-string data types (except DBCLOB). Numeric types include SMALLINT,
INTEGER, BIGINT, DECIMAL, REAL, DOUBLE, and DECFLOAT.

Table 14. Operands and the resulting data type

If one operand is... And the other operand is... The data type of the result is...

SMALLINT SMALLINT SMALLINT

SMALLINT String DECFLOAT(34)

INTEGER SMALLINT or INTEGER INTEGER

INTEGER String DECFLOAT(34)

BIGINT SMALLINT, INTEGER, or
BIGINT

BIGINT

BIGINT String DECFLOAT(34)

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where
p = x+max(w-x,5)1

74 IBM Db2 V11.5: SQL Reference

Table 14. Operands and the resulting data type (continued)

If one operand is... And the other operand is... The data type of the result is...

DECIMAL(w,x) INTEGER DECIMAL(p,x) where
p = x+max(w-x,11)1

DECIMAL(w,x) BIGINT DECIMAL(p,x) where
p = x+max(w-x,19)1

DECIMAL(w,x) DECIMAL(y,z) DECIMAL(p,s) where
p = max(x,z)+max(w-x,y-z)1

s = max(x,z)

DECIMAL(w,x) String DECFLOAT(34)

REAL REAL REAL

REAL SMALLINT, INTEGER,
BIGINT, or DECIMAL

DOUBLE

REAL String DECFLOAT(34)

DOUBLE SMALLINT, INTEGER,
BIGINT, DECIMAL, REAL, or
DOUBLE

DOUBLE

DOUBLE String DECFLOAT(34)

DECFLOAT(n) SMALLINT, INTEGER,
DECIMAL (<=16,s), REAL, or
DOUBLE

DECFLOAT(n)

DECFLOAT(n) BIGINT or DECIMAL (>16,s) DECFLOAT(34)

DECFLOAT(n) DECFLOAT(m) DECFLOAT(MAX(n,m))

DECFLOAT(n) String DECFLOAT(34)
1 Precision cannot exceed 31.

Datetime
Datetime data types are compatible with other operands of the same data type or any CHAR or VARCHAR
expression that contains a valid string representation of the same data type. In addition, DATE is
compatible with TIMESTAMP and the other operand of a TIMESTAMP can be the string representation
of a timestamp or a date. In a Unicode database, character and graphic strings are compatible which
implies that GRAPHIC or VARGRAPHIC string representations of datetime values are compatible with
other datetime operands.

Table 15. Result data types with datetime operands

If one operand is... And the other operand is... The data type of the result is...

DATE DATE, CHAR(y), or VARCHAR(y) DATE

TIME TIME, CHAR(y), or VARCHAR(y) TIME

TIMESTAMP(x) TIMESTAMP(y) TIMESTAMP(max(x,y))

TIMESTAMP(x) DATE, CHAR(y), or VARCHAR(y) TIMESTAMP(x)

XML
An XML value is compatible with another XML value. The data type of the result is XML.

Chapter 1. Structured Query Language (SQL) 75

Boolean
A Boolean value is compatible with the following values or types:

• Another Boolean value.
• Binary integer data types, such as SMALLINT, INTEGER, and BIGINT.
• Character-string data types, except for CLOB.
• Graphic-string data types, except for DBCLOB, in a Unicode database.

The data type of the result is BOOLEAN.

A Boolean value is compatible with another Boolean value. The data type of the result is BOOLEAN.

User-defined types
Distinct types

A strongly typed distinct type value is compatible only with another value of the same distinct type.
The data type of the result is the distinct type.

If both operands have the same weakly typed distinct type, the result is the distinct type. Otherwise, if
any operand is a weakly typed distinct type then the data type of the operand is considered to be the
source data type and the result data type is determined based on the combination of built-in data type
operands.

Array data types
A user-defined array data type value is compatible only with another value of the same user-defined
array data type. The data type of the result is the user-defined array data type.

Cursor data types
A CURSOR value is compatible with another CURSOR value. The result data type is CURSOR. A
user-defined cursor data type value is compatible only with another value of the same user-defined
cursor data type. The data type of the result is the user-defined cursor data type.

Row data types
A user-defined row data type value is compatible only with another value of the same user-defined
row data type. The data type of the result is the user-defined row data type.

Reference types
A reference type value is compatible with another value of the same reference type provided that their
target types have a common supertype. The data type of the result is a reference type having the common
supertype as the target type. If all operands have the identical scope table, the result has that scope
table. Otherwise the result is unscoped.

Structured types
A structured type value is compatible with another value of the same structured type provided that they
have a common supertype. The static data type of the resulting structured type column is the structured
type that is the least common supertype of either column.

For example, consider the following structured type hierarchy,

 A
 / \
 B C
 / \
 D E
 / \
F G

Structured types of the static type E and F are compatible with the resulting static type of B, which is the
least common super type of E and F.

76 IBM Db2 V11.5: SQL Reference

Nullable attribute of result
With the exception of INTERSECT and EXCEPT, the result allows nulls unless both operands do not allow
nulls.

• For INTERSECT, if either operand does not allow nulls the result does not allow nulls (the intersection
would never be null).

• For EXCEPT, if the first operand does not allow nulls the result does not allow nulls (the result can only
be values from the first operand).

Rules for string conversions
The code page used to perform an operation is determined by rules which are applied to the operands in
that operation. This topic explains those rules.

These rules apply to:

• Corresponding string columns in fullselects with set operations (UNION, INTERSECT and EXCEPT)
• Operands of concatenation
• Operands of predicates (with the exception of LIKE)
• Result expressions of a CASE expression and the DECODE scalar function
• Arguments of the scalar function COALESCE (also NVL and VALUE)
• Arguments of the scalar functions GREATEST, LEAST, MAX, and MIN
• The source-string and insert-string arguments of the scalar function OVERLAY (and INSERT)
• Expression values of the in list of an IN predicate
• Corresponding expressions of a multiple row VALUES clause.

In each case, the code page of the result is determined at bind time, and the execution of the operation
may involve conversion of strings to the code page identified by that code page. A character that has no
valid conversion is mapped to the substitution character for the character set and SQLWARN10 is set to
'W' in the SQLCA.

The code page of the result is determined by the code pages of the operands. The code pages of the first
two operands determine an intermediate result code page, this code page and the code page of the next
operand determine a new intermediate result code page (if applicable), and so on. The last intermediate
result code page and the code page of the last operand determine the code page of the result string
or column. For each pair of code pages, the result is determined by the sequential application of the
following rules:

• If the code pages are equal, the result is that code page.
• If either code page is BIT DATA (code page 0), the result code page is BIT DATA.
• If both code pages are Unicode, and if one code page denotes data in an encoding scheme that is

different from the other code page, the result is UTF-16 BE over UTF-8 (that is, the graphic data type
over the character data type).

• If one code page is Unicode and the other is neither Unicode nor BIT DATA, the result is Unicode with
the same encoding as the Unicode operand (either UTF-16 BE or UTF-8).

• For operands that are host variables (whose code page is not BIT DATA), the result code page is the
database code page. Input data from such host variables is converted from the application code page to
the database code page before being used.

In a non-Unicode database, if the result code page is Unicode, then the result collation is the alternate
collating sequence as defined by the ALT_COLLATE database configuration parameter.

Conversions to the code page of the result are performed, if necessary, for:

• An operand of the concatenation operator
• The selected argument of the COALESCE (also NVL and VALUE) scalar function
• The selected argument of the scalar functions GREATEST, LEAST, MAX, and MIN

Chapter 1. Structured Query Language (SQL) 77

• The source-string and insert-string arguments of the scalar function OVERLAY (and INSERT)
• The selected result expression of the CASE expression and the DECODE scalar function
• The expressions of the in list of the IN predicate
• The corresponding expressions of a multiple row VALUES clause
• The corresponding columns involved in set operations.

Character conversion is necessary if all of the following are true:

• The code pages are different
• Neither string is BIT DATA
• The string is neither null nor empty

Examples
Example 1: Given the following in a database created with code page 850:

Expression Type Code Page

COL_1 column 850

HV_2 host variable 437

When evaluating the predicate:

 COL_1 CONCAT :HV_2

the result code page of the two operands is 850, because the host variable data will be converted to the
database code page before being used.

Example 2: Using information from the previous example when evaluating the predicate:

 COALESCE(COL_1, :HV_2:NULLIND,)

the result code page is 850; therefore, the result code page for the COALESCE scalar function will be code
page 850.

String comparisons in a Unicode database
Pattern matching is one area where the behavior of existing MBCS databases is slightly different from the
behavior of a Unicode database.

For MBCS databases in Db2®, the current behavior is as follows: If the match-expression contains MBCS
data, the pattern can include both SBCS and non-SBCS characters. The special characters in the pattern
are interpreted as follows:

• An SBCS halfwidth underscore refers to one SBCS character.
• A non-SBCS fullwidth underscore refers to one non-SBCS character.
• A percent (either SBCS halfwidth or non-SBCS fullwidth) refers to zero or more SBCS or non-SBCS

characters.

In a Unicode database, there is really no distinction between "single-byte" and "non-single-byte"
characters. Although the UTF-8 format is a "mixed-byte" encoding of Unicode characters, there is no
real distinction between SBCS and non-SBCS characters in UTF-8. Every character is a Unicode character,
regardless of the number of bytes in UTF-8 format. In a Unicode graphic string, every non-supplementary
character, including the halfwidth underscore (U+005F) and halfwidth percent (U+0025), is two bytes in
width. For Unicode databases, the special characters in the pattern are interpreted as follows:

• For character strings, a halfwidth underscore (X'5F') or a fullwidth underscore (X'EFBCBF') refers to one
Unicode character. A halfwidth percent (X'25') or a fullwidth percent (X'EFBC85') refers to zero or more
Unicode characters.

78 IBM Db2 V11.5: SQL Reference

• For graphic strings, a halfwidth underscore (U+005F) or a fullwidth underscore (U+FF3F) refers to one
Unicode character. A halfwidth percent (U+0025) or a fullwidth percent (U+FF05) refers to zero or more
Unicode characters.

Note: Two underscores are needed to match a Unicode supplementary graphic character because such a
character is represented by two UCS-2 characters in a graphic string. Only one underscore is needed to
match a Unicode supplementary character in a character string.

For the optional "escape expression", which specifies a character to be used to modify the special
meaning of the underscore and percent sign characters, the expression can be specified by any one of:

• A constant
• A special register
• A host variable
• A scalar function whose operands are any of the previously mentioned operands
• An expression concatenating any of the previously mentioned operands or functions

with the restrictions that:

• No element in the expression can be of type CLOB or DBCLOB. In addition, it cannot be a BLOB file
reference variable.

• For character strings, the result of the expression must be one character or a FOR BIT DATA string
containing exactly one (1) byte (SQLSTATE 22019). For graphic strings, the result of the expression must
be one character (SQLSTATE 22019).

Resolving the anchor object for an anchored type
The anchor object of an anchored type that does not specify ROW is specified with a name that could
represent an SQL variable, an SQL parameter, a global variable, a module variable, a column of a table, or
a column of a view.

The way the anchor object is resolved depends on the number of identifiers in the anchor object name
and the context of the statement using the ANCHOR clause.

• If the anchor object name is specified with 1 identifier, the name could represent an SQL variable, an
SQL parameter, a module variable, or a global variable.

• If the anchor object name is specified with 2 identifiers, the name could represent a label-qualified SQL
variable, a routine-qualified SQL parameter, a schema-qualified global variable, a module variable, the
column of a table, or the column of a view.

• If the anchor object name is specified with 3 identifiers, the name represents a column of a schema-
qualified table, a column of a schema-qualified view, a global variable qualified by the current server
name and a schema, or a schema-qualified module variable.

An SQL variable is a candidate for an anchor object name only if the ANCHOR clause is used in an SQL
variable declaration within a compound statement. An SQL parameter is a candidate for an anchor object
name only if the ANCHOR clause is used in an SQL variable declaration within a compound statement
used in an SQL routine body.

Resolving the anchor object name that has 1 identifier is done using the following steps:

1. If the ANCHOR clause is in an SQL variable declaration of a compound statement, search for
a matching SQL variable name starting from the innermost nested compound to the outermost
compound.

2. If the ANCHOR clause is in an SQL variable declaration of a compound statement within a routine body,
search for a matching SQL parameter name for the routine.

3. If the ANCHOR clause is used in defining a module object, then search for a matching module variable
name within the module.

4. If not yet found, then search for a table or view using the first identifier as the schema name and the
second identifier as the table or view name.

Chapter 1. Structured Query Language (SQL) 79

5. If not yet found, then search for a global variable with a matching global variable name on the SQL
path.

Resolving the anchor object name that has 2 identifiers is done using the following steps:

1. If the ANCHOR clause is in an SQL variable declaration of a compound statement, search for a
matching qualified SQL variable name starting from the innermost nested compound to the outermost
compound.

2. If the ANCHOR clause is in an SQL variable declaration of a compound statement within a routine body,
search for a matching SQL parameter name for the routine if the first identifier of the anchor object
name matches the name of the routine.

3. If the ANCHOR clause is used in defining a module object and if the first identifier matches the module
name of that module, then search for a module variable name within the module that matches the
second identifier.

4. If not yet found, then search for a table or view column in the current schema using the first identifier
as a table or view name and the second identifier as a column name.

5. If not yet found, then search for a global variable using the first identifier as a schema name and the
second identifier as a global variable name.

6. If not found and a module was not searched in step 3, then search for a module on the SQL path with a
name that matches the first identifier. If found, then use the second identifier to search for a matching
published module variable name in the module.

7. If a module is not found using the SQL path in step 6, check for a module public alias that matches the
name of the first identifier. If found, then use the second identifier to search for a matching published
module variable name in the module identified by the module public alias.

Resolving the anchor object name that has 3 identifiers is done using the following steps:

1. If the ANCHOR clause is used in defining a module object and if the first 2 identifiers match the
schema name and the module name of that module, then search for a module variable with a name
that matches the last identifier.

2. If not found in the previous step or the step is not applicable, then search for a table or view column
using the first identifier as a schema name, the second identifier as a table or view name and the third
identifier as a column name.

3. If not found in the previous step and the first identifier is the same as the current server name, then
search for a global variable using the second identifier as a schema name, and the third identifier as a
global variable name.

4. If not found and a module was not searched in step 1, then search for a published module variable
using the first identifier as a schema name, the second identifier as a module name and, if such a
module exists, use the third identifier to search for a matching published module variable name in the
module.

Resolving the anchor object for an anchored row type
The anchor object of an anchored type that includes the ROW keyword is specified with a name that could
represent a variety of objects, depending on the context and the number of identifiers in the name and the
context of the ANCHOR clause.

The objects include the following:

• An SQL variable
• An SQL parameter
• A global variable
• A module variable
• A table
• A view

80 IBM Db2 V11.5: SQL Reference

The way the anchor object is resolved depends on the number of identifiers in the anchor object name
and the context of the statement using the ANCHOR clause.

• If the anchor object name is specified with 1 identifier, the name could represent an SQL variable, an
SQL parameter, a module variable, a global variable, a table, or a view.

• If the anchor object name is specified with 2 identifiers, the name could represent a label-qualified SQL
variable, a routine-qualified SQL parameter, a schema-qualified global variable, a module variable, a
schema-qualified table, or a schema-qualified view.

• If the anchor object name is specified with 3 identifiers, the name could represent a global variable
qualified by the current server name and a schema, a table qualified by the current server name and
a schema, a view qualified by the current server name and a schema, or a schema-qualified module
variable.

An SQL variable is a candidate for an anchor object name only if the ANCHOR clause is used in an SQL
variable declaration within a compound statement. An SQL parameter is a candidate for an anchor object
name only if the ANCHOR clause is used in an SQL variable declaration within a compound statement
used in an SQL routine body. Resolving the anchor object name that has 1 identifier is done using the
following steps:

1. If the ANCHOR clause is in an SQL variable declaration of a compound statement, search for
a matching SQL variable name starting from the innermost nested compound to the outermost
compound.

2. If the ANCHOR clause is in an SQL variable declaration of a compound statement within a routine body,
search for a matching SQL parameter name for the routine.

3. If the ANCHOR clause is used in defining a module object, then search for a matching module variable
name within the module.

4. If not yet found, then search for a table or view with a matching name in the current schema.
5. If not yet found, then search for a schema global variable with a matching global variable name on the

SQL path.

Resolving the anchor object name that has 2 identifiers is done using the following steps:

1. If the ANCHOR clause is in an SQL variable declaration of a compound statement, search for a
matching qualified SQL variable name starting from the innermost nested compound to the outermost
compound.

2. If the ANCHOR clause is in an SQL variable declaration of a compound statement within a routine body,
search for a matching SQL parameter name for the routine if the first identifier of the anchor object
name matches the name of the routine.

3. If the ANCHOR clause is used in defining a module object and if the first identifier matches the module
name of that module, then search for a module variable name within the module that matches the
second identifier.

4. If not yet found, then search for a table or view using the first identifier as the schema name and the
second identifier as the table or view name.

5. If not yet found, then search for a global variable using the first identifier as a schema name and the
second identifier as a global variable name.

6. If not found and a module was not searched in step 3, then search for a module on the SQL path with a
name that matches the first identifier. If found, then use the second identifier to search for a matching
published module variable name in the module.

7. If a module is not found using the SQL path in step 6, check for a module public alias that matches the
name of the first identifier. If found, then use the second identifier to search for a matching published
module variable name in the module identified by the module public alias.

Resolving the anchor object name that has 3 identifiers is done using the following steps:

1. If the ANCHOR clause is used in defining a module object and if the first 2 identifiers match the
schema name and the module name of that module, then search for a module variable with a name
that matches the last identifier.

Chapter 1. Structured Query Language (SQL) 81

2. If not found and the first identifier is the same as the current server name, then search for a table or
view using the second identifier as the schema name and the third identifier as the table or view name.

3. If not found and the first identifier is the same as the current server name, then search for a global
variable using the second identifier as the schema name and the third identifier as the global variable
name.

4. If not found and a module was not searched in step 1, then search for a published module variable
using the first identifier as a schema name, the second identifier as a module name and, if such a
module exists, use the third identifier to search for a matching published variable name in the module.

Database partition-compatible data types
Database partition compatibility is defined between the base data types of corresponding columns of
distribution keys. Database partition-compatible data types have the property that two variables, one of
each type, with the same value, are mapped to the same distribution map index by the same database
partitioning function.

Table 16 on page 83 shows the compatibility of data types in database partitions.

Database partition compatibility has the following characteristics:

• Internal formats are used for DATE, TIME, and TIMESTAMP. They are not compatible with each other,
and none are compatible with character or graphic data types.

• Partition compatibility is not affected by the nullability of a column.
• Partition compatibility is affected by collation. Locale-sensitive UCA-based collations require an exact

match in collation, except that the strength (S) attribute of the collation is ignored. All other collations
are considered equivalent for the purposes of determining partition compatibility.

• Character columns defined with FOR BIT DATA are only compatible with character columns without FOR
BIT DATA when a collation other than a locale-sensitive UCA-based collation is used.

• Null values of compatible data types are treated identically. Different results might be produced for null
values of non-compatible data types.

• Base data type of the UDT is used to analyze database partition compatibility.
• Timestamps of the same value in the distribution key are treated identically, even if their timestamp

precisions differ.
• Decimals of the same value in the distribution key are treated identically, even if their scale and

precision differ.
• Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC or VARGRAPHIC) are ignored by the

system-provided hashing function.
• When a locale-sensitive UCA-based collation is used, CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC

are compatible data types. When other collations are used, CHAR and VARCHAR are compatible types
and GRAPHIC and VARGRAPHIC are compatible types, but CHAR and VARCHAR are not compatible
types with GRAPHIC and VARGRAPHIC. CHAR or VARCHAR of different lengths are compatible data
types.

• DECFLOAT values that are equal are treated identically even if their precision differs. DECFLOAT values
that are numerically equal are treated identically even if they have a different number of significant
digits.

• Data types that are not supported as part of a distribution key are not applicable for database partition
compatibility. Examples of such data types are:

– BLOB
– CLOB
– DBCLOB
– XML
– A distinct type based on BLOB, CLOB, DBCLOB, or XML
– A structured type

82 IBM Db2 V11.5: SQL Reference

Table 16. Database Partition Compatibilities

Operands Binary
Intege
r

Decimal
Number

Floating-
point

Decimal
Floating-
point

Character
String

Graphi
c
String

Binary
String

Date Time Time-
stamp

Distinct
Type

Bo
ol
ea
n

Binary
Integer

Yes No No No No No No No No No 1 No

Decimal
Number

No Yes No No No No No No No No 1 No

Floating-
point

No No Yes No No No No No No No 1 No

Decimal
Floating-
point

No No No Yes No No No No No No 1 No

Character
String

No No No No Yes2 2, 3 No No No No 1 No

Graphic
String

No No No No 2, 3 Yes2 No No No No 1 No

Binary
String

Yes No

Date No No No No No No No Yes No No 1 No

Time No No No No No No No No Yes No 1 No

Timestamp No No No No No No No No No Yes 1 No

Distinct
Type

1 1 1 1 1 1 1 1 1 1 1 1

Boolean No No No No No No No No No No 1 Ye
s

Note:

1
A distinct type value is database partition compatible with the source data type of the distinct type or with any other distinct type with
the same source data type. The source data type of the distinct type must be a data type that is supported as part of a distribution
key. A user-defined distinct type (UDT) value is database partition compatible with the source type of the UDT or any other UDT with a
database partition compatible source type. A distinct type cannot be based on BLOB, CLOB, DBCLOB, or XML.

2
Character and graphic string types are compatible when they have compatible collations.

3
Character and graphic string types are compatible when a locale-sensitive UCA-based collation is in effect. Otherwise, they are not
compatible types.

Constants
A constant (sometimes called a literal) specifies a value. Constants are classified as string constants or
numeric constants. Numeric constants are further classified as integer, floating-point, or decimal.

All constants have the NOT NULL attribute.

A negative zero value in a numeric constant (-0) is the same value as a zero without the sign (0).

User-defined types have strong typing, except for weakly typed distinct types.. This means that a strongly
typed user-defined type is only compatible with its own type. A constant, however, has a built-in type.
Therefore, an operation involving a strongly typed user-defined type and a constant is only possible if the
user-defined type has been cast to the constant's built-in type, or if the constant has been cast to the
user-defined type. For example, using the table and distinct type in “User-defined type comparisons” on
page 69, the following comparisons with the constant 14 are valid:

 SELECT * FROM CAMP_DB_ROSTER
 WHERE AGE > CAST(14 AS YOUTH)

Chapter 1. Structured Query Language (SQL) 83

 SELECT * FROM CAMP_DB_ROSTER
 WHERE CAST(AGE AS INTEGER) > 14

The following comparison is not valid:

 SELECT * FROM CAMP_DB_ROSTER
 WHERE AGE > 14

Integer constants
An integer constant specifies an integer as a signed or unsigned number with a maximum of 19 digits that
does not include a decimal point. The data type of an integer constant is large integer if its value is within
the range of a large integer. The data type of an integer constant is big integer if its value is outside the
range of large integer but within the range of a big integer. A constant that is defined outside the range of
big integer values is considered a decimal constant.

Note that the smallest literal representation of a large integer constant is -2,147,483,647 and not
-2,147,483,648, which is the limit for integer values. Similarly, the smallest literal representation of a
big integer constant is -9,223,372,036,854,775,807 and not -9,223,372,036,854,775,808, which is the
limit for big integer values.

Examples:

 64 -15 +100 32767 720176 12345678901

In syntax diagrams, the term "integer" is used for a large integer constant that must not include a sign.

Floating-point constants
A floating-point constant specifies a floating-point number as two numbers separated by an E. The first
number may include a sign and a decimal point; the second number may include a sign but not a decimal
point. The data type of a floating-point constant is double-precision. The value of the constant is the
product of the first number and the power of 10 specified by the second number; it must be within the
range of floating-point numbers. The number of bytes in the constant must not exceed 30.

Examples:

 15E1 2.E5 2.2E-1 +5.E+2

Decimal constants
A decimal constant is a signed or unsigned number that consists of no more than 31 digits and either
includes a decimal point or is not within the range of binary integers. It must be within the range of
decimal numbers. The precision is the total number of digits (including leading and trailing zeros); the
scale is the number of digits to the right of the decimal point (including trailing zeros).

Examples:

 25.5 1000. -15. +37589.3333333333

Decimal floating-point constants
There are no decimal floating-point constants except for the decimal floating-point special values, which
are interpreted as DECFLOAT(34).

These special values are: INFINITY, NAN, and SNAN. INFINITY represents infinity, a number whose
magnitude is infinitely large. INFINITY can be preceded by an optional sign. INF can be specified in place
of INFINITY. NAN represents Not a Number (NaN) and is sometimes called quiet NaN. It is a value that
represents undefined results which does not cause a warning or exception. SNAN represents signaling
NaN (sNaN). It is a value that represents undefined results which will cause a warning or exception if used
in any operation that is defined in any numeric operation. Both NAN and SNAN can be preceded by an

84 IBM Db2 V11.5: SQL Reference

optional sign, but the sign is not significant for arithmetic operations.. SNAN can be used in non-numeric
operations without causing a warning or exception, for example in the VALUES list of an INSERT or as a
constant compared in a predicate.

 SNAN -INFINITY

When one of the special values (INFINITY, INF, NAN, or SNAN) is used in a context where it could be
interpreted as an identifier, such as a column name, cast a string representation of the special value to
decimal floating-point. Examples:

 CAST ('snan' AS DECFLOAT)
 CAST ('INF' AS DECFLOAT)
 CAST ('Nan' AS DECFLOAT)

All non-special values are interpreted as integer, floating-point or decimal constants, in accordance
with the rules specified previously. To obtain a numeric decimal floating-point value, use the DECFLOAT
cast function with a character string constant. It is not recommended to use floating-point constants
as arguments to the DECFLOAT function, because floating-point is not exact and the resulting decimal
floating-point value might be different than the decimal digit characters that make up the argument.
Instead, use character constants as arguments to the DECFLOAT function.

For example, DECFLOAT('6.0221415E23', 34) returns the decimal floating-point value 6.0221415E+23,
but DECFLOAT(6.0221415E23, 34) returns the decimal floating-point value 6.0221415000000003E+23.

Character string constants
A character string constant specifies a varying-length character string of type VARCHAR. The constant
value string units are determined by the environment default string units. There are three forms of a
character string constant:

• A sequence of characters that starts and ends with a string delimiter, which is an apostrophe ('). The
number of bytes between the string delimiters cannot be greater than 32672. When the environment
string unit is CODEUNITS32, the number of code units cannot be greater than 8168. Two consecutive
string delimiters are used to represent one string delimiter within the character string. Two consecutive
string delimiters that are not contained within a string represent the empty string.

• X followed by a sequence of characters that starts and ends with a string delimiter. This form of a
character string constant is also called a hexadecimal constant. The characters between the string
delimiters must be an even number of hexadecimal digits. Blanks between the string delimiters are
ignored. The number of hexadecimal digits must not exceed 32672. When the environment string unit
is CODEUNITS32, the number of code units that the hexadecimal constant represents cannot be greater
than 8168. Two consecutive string delimiters are used to represent one string delimiter within the
character string. A hexadecimal digit is a digit 0 through 9 or any of the letters A through F (uppercase or
lowercase). Under the conventions of hexadecimal notation, each pair of hexadecimal digits represents
a byte. The constant is interpreted in the section code page. This form of a character string constant
allows you to specify characters that do not have a keyboard representation.

• U& followed by a sequence of characters that starts and ends with a string delimiter and that is
optionally followed by the UESCAPE clause. This form of a character string constant is also called a
Unicode string constant. The number of bytes between the string delimiters cannot be greater than
32672. When the environment string unit is CODEUNITS32, the number of code units that the Unicode
string constant represents cannot be greater than 8168. The Unicode string constant is converted from
UTF-8 to the section code page during statement compilation. Two consecutive string delimiters are
used to represent one string delimiter within the character string. Two consecutive Unicode escape
characters are used to represent one Unicode escape character within the character string, but these
characters count as one character when calculating the lengths of character constants. Two consecutive
string delimiters that are not contained within a string represent the empty string. Because a character
in UTF-8 can range from 1 to 4 bytes, a Unicode string constant of the maximum length might actually
represent fewer than 32672 characters.

A character can be expressed by either its typographical character (glyph) or its Unicode code point.
The code point of a Unicode character ranges from X'000000' to X'10FFFF'. To express a Unicode

Chapter 1. Structured Query Language (SQL) 85

character through its code point, use the Unicode escape character followed by 4 hexadecimal digits,
or the Unicode escape character followed by a plus sign (+) and 6 hexadecimal digits. The default
Unicode escape character is the reverse solidus (\), but a different character can be specified with
the UESCAPE clause. The UESCAPE clause is specified as the UESCAPE keyword followed by a single
character between string delimiters. The Unicode escape character cannot be a plus sign (+), a double
quotation mark ("), a single quotation mark ('), a blank, or any of the characters 0 through 9 or A through
F, in either uppercase or lowercase (SQLSTATE 42604). An example of the two ways in which the Latin
capital letter A can be specified as a Unicode code point is \0041 and \+000041.

The constant value is always converted to the database code page when it is bound to the database. It is
considered to be in the database code page. Therefore, if used in an expression that combines a constant
with a FOR BIT DATA column, and whose result is FOR BIT DATA, the constant value will not be converted
from its database code page representation when used.

Examples:

'12/14/1985' '32' 'DON''T CHANGE' ''
X'FFFF' X'46 72 61 6E 6B'
U&'\0141ód\017A is a city in Poland' U&'c:\\temp' U&'@+01D11E' UESCAPE '@'

The rightmost string on the second line in the example represents the VARCHAR pattern of the ASCII
string "Frank". The last line corresponds to: "Łódź is a city in Poland", c:\temp, and a single character
representing the musical symbol G clef.

Graphic string constants
A graphic string constant specifies a varying-length graphic string of type VARGRAPHIC.
Non-Unicode databases

In a non-Unicode database, a graphic string constant consists of a sequence of double-byte
characters that starts and ends with a single-byte apostrophe ('), and that is preceded by a single-byte
G or N. The characters between the apostrophes must represent an even number of bytes, and the
length of the graphic string must not exceed 16336 double bytes. The apostrophe must not appear as
part of an MBCS character to be considered a delimiter. For example:

 G'double-byte character string'
 N'double-byte character string'

Unicode databases
In a Unicode database, a graphic string constant consists of a sequence of characters that starts and
ends with an apostrophe ('), and that is preceded by a G or N character. The constant value string units
are determined by the environment default string units. The characters between the apostrophes are
converted to code page 1200 and the length of the graphic string must not exceed 16336 double
bytes. When the environment string unit is CODEUNITS32, the number of code units must not exceed
8168.

In a Unicode or DBCS database, a hexadecimal graphic string constant that specifies a varying-length
graphic string is also supported. The format of a hexadecimal graphic string constant is: GX followed
by a sequence of characters that starts and ends with an apostrophe. The characters between the
apostrophes must be an even multiple of four hexadecimal digits. The number of hexadecimal digits must
not exceed 32 672. When the environment string unit is CODEUNITS32, the number of code units that the
hexadecimal graphic string constant represents must not exceed 8 168; otherwise, an error is returned
(SQLSTATE 54002). If a hexadecimal graphic string constant is improperly formed, an error is returned
(SQLSTATE 42606). Each group of four digits represents a single graphic character in the section DBCS
code page. In a Unicode database, this would be a single UTF-16 BE graphic character.

Examples:

 GX'FFFF'

represents the bit pattern '1111111111111111' in a Unicode database.

86 IBM Db2 V11.5: SQL Reference

 GX'005200690063006B'

represents the VARGRAPHIC pattern of the ASCII string "Rick" in a Unicode database.

Binary string constants
A binary string constant specifies a varying-length binary string of type VARBINARY.

A binary string constant is formed by specifying a BX followed by a sequence of characters that starts
and ends with a string delimiter. The characters between the string delimiters must be an even number of
hexadecimal digits. The number of hexadecimal digits must not exceed 32672.

A hexadecimal digit is a digit 0 - 9 or any of the letters A through F (uppercase or lowercase).
Under the conventions of hexadecimal notation, each pair of hexadecimal digits represents 1 byte. This
representation is similar to the representation of the character-constant that uses the X'' form. However,
binary string constant and character-string constant are not compatible and the X'' form cannot be used
to specify a binary string constant, just as the BX'' form cannot be used to specify a character-string
constant.

Examples of binary string constants:

BX'0000'
BX'C141C242'
BX'FF00FF01FF'

Datetime constants
A datetime constant specifies a date, time, or timestamp.

Typically, character-string constants are used to represent constant datetime values in assignments
and comparisons. However, the associated data type name can be used preceding specific formats of
the character-string constant to specifically denote the constant as a datetime constant instead of a
character-string constant. The format for the three datetime constants are:
DATE 'yyyy-mm-dd'

The data type of the value is DATE.
TIME 'hh:mm:ss'
or
TIME 'hh:mm'

The data type of the value is TIME.
TIMESTAMP 'yyyy-mm-dd hh:mm:ss.nnnnnnnnnnnn'
or
TIMESTAMP 'yyyy-mm-dd-hh.mm.ss.nnnnnnnnnnnn'

where the number of digits of fractional seconds can vary from 0 to 12 and the period character can
be omitted if there are no fractional seconds. The data type of the value is TIMESTAMP(p), where p is
the number of digits of fractional seconds.

Leading zeros can be omitted from the month, day, and hour part of the character-string constant portion,
where applicable, in each of these datetime constants. Leading zero characters must be included for
minutes and seconds elements of TIME or TIMESTAMP constants. Trailing blanks can be included and are
ignored.

UTF-16 BE graphic string constants
A hexadecimal UTF-16 BE graphic string that specifies a varying-length UTF-16 BE graphic string constant
is supported. The format of a hexadecimal UTF-16 BE graphic string constant is: UX followed by a
sequence of characters that starts and ends with an apostrophe. The characters between the apostrophes
must be an even multiple of four hexadecimal digits. The number of hexadecimal digits must not
exceed 16336; otherwise, an error is returned (SQLSTATE 54002). If a hexadecimal UTF-16 BE graphic
string constant is improperly formed, an error is returned (SQLSTATE 42606). Each group of four digits
represents a single UTF-16 BE graphic character.

Chapter 1. Structured Query Language (SQL) 87

Example:

 UX'0042006F006200620079'

represents the VARGRAPHIC pattern of the ASCII string "Bobby".

Boolean constants
A Boolean constant specifies the keyword TRUE or FALSE, which represents the corresponding truth
value. An unknown truth value can be specified using CAST(NULL AS BOOLEAN).

Special registers
A special register is a storage area that is defined for an application process by the database manager. It is
used to store information that can be referenced in SQL statements.

A reference to a special register is a reference to a value provided by the current server. If the value is a
string, its CCSID is a default CCSID of the current server.

The special registers can be referenced as follows:

88 IBM Db2 V11.5: SQL Reference

CURRENT CLIENT_ACCTNG

CLIENT ACCTNG

CURRENT CLIENT_APPLNAME

CLIENT APPLNAME

CURRENT CLIENT_USERID

CLIENT USERID

CURRENT CLIENT_WRKSTNNAME

CLIENT WRKSTNNAME

CURRENT DATE

CURRENT_DATE
1

CURRENT DBPARTITIONNUM

CURRENT DECFLOAT ROUNDING MODE

CURRENT DEFAULT TRANSFORM GROUP

CURRENT DEGREE

CURRENT EXPLAIN MODE

CURRENT EXPLAIN SNAPSHOT

CURRENT FEDERATED ASYNCHRONY

CURRENT IMPLICIT XMLPARSE OPTION

CURRENT ISOLATION

CURRENT LOCALE LC_MESSAGES

CURRENT LOCALE LC_TIME

CURRENT LOCK TIMEOUT

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

CURRENT MDC ROLLOUT MODE

CURRENT MEMBER

CURRENT OPTIMIZATION PROFILE

CURRENT PACKAGE PATH

CURRENT PATH

CURRENT_PATH
1

CURRENT QUERY OPTIMIZATION

CURRENT REFRESH AGE

CURRENT SCHEMA

CURRENT_SCHEMA
1

CURRENT SERVER

CURRENT_SERVER
1

CURRENT SQL_CCFLAGS

CURRENT TEMPORAL BUSINESS_TIME

CURRENT TEMPORAL SYSTEM_TIME

CURRENT TIME

CURRENT_TIME
1

CURRENT TIMESTAMP

CURRENT_TIMESTAMP
1 (integer)

CURRENT TIMEZONE

CURRENT_TIMEZONE
1

CURRENT USER

CURRENT_USER
1

SESSION_USER

USER

SYSTEM_USER

Notes:
1 The SQL2008 Core standard uses the form with the underscore.

Some special registers can be updated using the SET statement. The following table shows which of the
special registers can be updated as well as indicating which special register can be the null value.

Chapter 1. Structured Query Language (SQL) 89

Table 17. Updatable and nullable special registers

Special Register Updatable Nullable

CURRENT CLIENT_ACCTNG No No

CURRENT CLIENT_APPLNAME No No

CURRENT CLIENT_USERID No No

CURRENT CLIENT_WRKSTNNAME No No

CURRENT DATE No No

CURRENT DBPARTITIONNUM No No

CURRENT DECFLOAT ROUNDING MODE No No

CURRENT DEFAULT TRANSFORM GROUP Yes No

CURRENT DEGREE Yes No

CURRENT EXPLAIN MODE Yes No

CURRENT EXPLAIN SNAPSHOT Yes No

CURRENT FEDERATED ASYNCHRONY Yes No

CURRENT IMPLICIT XMLPARSE OPTION Yes No

CURRENT ISOLATION Yes No

“CURRENT LOCALE LC_MESSAGES ” on page 98 Yes No

CURRENT LOCALE LC_TIME Yes No

CURRENT LOCK TIMEOUT Yes Yes

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION Yes No

CURRENT MDC ROLLOUT MODE Yes No

CURRENT MEMBER No No

CURRENT OPTIMIZATION PROFILE Yes Yes

CURRENT PACKAGE PATH Yes No

CURRENT PATH Yes No

CURRENT QUERY OPTIMIZATION Yes No

CURRENT REFRESH AGE Yes No

CURRENT SCHEMA Yes No

CURRENT SERVER No No

CURRENT SQL_CCFLAGS Yes No

CURRENT TEMPORAL BUSINESS_TIME Yes Yes

CURRENT TEMPORAL SYSTEM_TIME Yes Yes

CURRENT TIME No No

CURRENT TIMESTAMP No No

CURRENT TIMEZONE No No

CURRENT USER No No

90 IBM Db2 V11.5: SQL Reference

Table 17. Updatable and nullable special registers (continued)

Special Register Updatable Nullable

SESSION_USER Yes No

SYSTEM_USER No No

USER Yes No

When a special register is referenced in a routine, the value of the special register in the routine depends
on whether the special register is updatable or not. For non-updatable special registers, the value is set to
the default value for the special register. For updatable special registers, the initial value is inherited from
the invoker of the routine and can be changed with a subsequent SET statement inside the routine.

CURRENT CLIENT_ACCTNG
The CURRENT CLIENT_ACCTNG (or CLIENT ACCTNG) special register contains the value of the accounting
string from the client information specified for this connection.

The data type of the register is VARCHAR(255). The default value of this register is an empty string.

The value of the accounting string can be changed by using the Set Client Information (sqleseti) API or the
wlm_set_client_info procedure.

Note that the value provided via the sqleseti API is in the application code page, and the special register
value is stored in the database code page. Depending on the data values used when setting the client
information, truncation of the data value stored in the special register may occur during code page
conversion.

Example: Get the current value of the accounting string for this connection.

 VALUES (CURRENT CLIENT_ACCTNG)
 INTO :ACCT_STRING

CURRENT CLIENT_APPLNAME
The CURRENT CLIENT_APPLNAME (or CLIENT APPLNAME) special register contains the value of the
application name from the client information specified for this connection.

The data type of the register is VARCHAR(255). The default value of this register is an empty string.

The value of the application name can be changed by using the sqleseti API or the
wlm_set_client_info procedure.

Note that the value provided via the sqleseti API is in the application code page, and the special
register value is stored in the database code page. Depending on the data values used when setting the
client information, truncation of the data value stored in the special register may occur during code page
conversion.

A client sends the default client information register values to the Db2 for z/OS® server when
they are not explicitly set by the user. The default CURRENT CLIENT_APPLNAME special register
value is the current process name. The sqleqryi API can return the default value only when the
enableDefaultClientInfo keyword is set to True in the IBM data server driver configuration file.

Example: Select which departments are allowed to use the application being used in this connection.

 SELECT DEPT
 FROM DEPT_APPL_MAP
 WHERE APPL_NAME = CURRENT CLIENT_APPLNAME

Chapter 1. Structured Query Language (SQL) 91

CURRENT CLIENT_USERID
The CURRENT CLIENT_USERID (or CLIENT USERID) special register contains the value of the client user
ID from the client information specified for this connection.

The data type of the register is VARCHAR(255). The default value of this register is an empty string.

The value of the client user ID can be changed by using the sqleseti API or the
wlm_set_client_info procedure.

Note that the value provided via the sqleseti API is in the application code page, and the special
register value is stored in the database code page. Depending on the data values used when setting the
client information, truncation of the data value stored in the special register may occur during code page
conversion.

A client sends the default client information register values to the Db2 for z/OS server when they are
not explicitly set by the user. The default CURRENT CLIENT_USERID special register value is the user
ID that is specified for a connection. The sqleqryi API can return the default value only when the
enableDefaultClientInfo keyword is set to True in the IBM data server driver configuration file.

Example: Find out in which department the current client user ID works.

 SELECT DEPT
 FROM DEPT_USERID_MAP
 WHERE USER_ID = CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME
The CURRENT CLIENT_WRKSTNNAME (or CLIENT WRKSTNNAME) special register contains the value of
the workstation name from the client information specified for this connection.

The data type of the register is VARCHAR(255). The default value of this register is an empty string.

The value of the workstation name can be changed by using the sqleseti API or the
wlm_set_client_info procedure.

Note that the value provided via the sqleseti API is in the application code page, and the special
register value is stored in the database code page. Depending on the data values used when setting the
client information, truncation of the data value stored in the special register may occur during code page
conversion.

A client sends the default client information register values to the Db2 for z/OS server when they
are not explicitly set by the user. The default CURRENT CLIENT_WRKSTNNAME special register value
is the host name of the client. The sqleqryi API can return the default value only when the
enableDefaultClientInfo keyword is set to True in the IBM data server driver configuration file.

Example: Get the workstation name being used for this connection.

 VALUES (CURRENT CLIENT_WRKSTNNAME)
 INTO :WS_NAME

CURRENT DATE
The CURRENT DATE (or CURRENT_DATE) special register specifies a date that is based on a reading of the
time-of-day clock when the SQL statement is executed at the application server.

If this special register is used more than once within a single SQL statement, or used with CURRENT TIME
or CURRENT TIMESTAMP within a single statement, all values are based on a single clock reading.

When used in an SQL statement inside a routine, CURRENT DATE is not inherited from the invoking
statement.

In a federated system, CURRENT DATE can be used in a query intended for data sources. When the query
is processed, the date returned will be obtained from the CURRENT DATE register at the federated server,
not from the data sources.

92 IBM Db2 V11.5: SQL Reference

Examples
1. Run the following command from the Db2 CLP to obtain the current date.

 db2 values CURRENT DATE

2. Using the PROJECT table, set the project end date (PRENDATE) of the MA2111 project (PROJNO) to
the current date.

 UPDATE PROJECT
 SET PRENDATE = CURRENT DATE
 WHERE PROJNO = 'MA2111'

CURRENT DBPARTITIONNUM
The CURRENT DBPARTITIONNUM special register specifies an INTEGER value that identifies the
coordinator database partition number for the statement.

For statements issued from an application, the coordinator is the database partition number to which the
application connects.

For statements issued from a routine, the coordinator is the database partition number from which the
routine is invoked.

When used in an SQL statement inside a routine, CURRENT DBPARTITIONNUM is never inherited from the
invoking statement.

CURRENT DBPARTITIONNUM returns 0 if the database instance is not defined to support database
partitioning. For a partitioned database, the db2nodes.cfg file exists and contains database partition and
database partition number definitions.

In a database partitioning environment, the CURRENT DBPARTITIONNUM special register can be changed
through the CONNECT statement, but only under certain conditions.

Examples
Example 1: Set the host variable APPL_DBPNUM (integer) to the number of the database partition to
which the application is connected.

 VALUES CURRENT DBPARTITIONNUM
 INTO :APPL_DBPNUM

Example 2: The following command is issued on member 0 and on a 4 member system in a partitioned
database environment. This query will retrieve the currently connected database partition number.

 VALUES CURRENT DBPARTITIONNUM

 1

 0

CURRENT DECFLOAT ROUNDING MODE
The CURRENT DECFLOAT ROUNDING MODE special register specifies the rounding mode that is used for
DECFLOAT values.

The data type is VARCHAR(128). The following rounding modes are supported:

• ROUND_CEILING rounds the value toward positive infinity. If all of the discarded digits are zero or if the
sign is negative, the result is unchanged (except for the removal of the discarded digits). Otherwise, the
result coefficient is incremented by 1.

• ROUND_DOWN rounds the value toward 0 (truncation). The discarded digits are ignored.

Chapter 1. Structured Query Language (SQL) 93

• ROUND_FLOOR rounds the value toward negative infinity. If all of the discarded digits are zero or if the
sign is positive, the result is unchanged (except for the removal of the discarded digits). Otherwise, the
sign is negative and the result coefficient is incremented by 1.

• ROUND_HALF_EVEN rounds the value to the nearest value. If the values are equidistant, rounds the
value so that the final digit is even. If the discarded digits represent more than half of the value of a
number in the next left position, the result coefficient is incremented by 1. If they represent less than
half, the result coefficient is not adjusted (that is, the discarded digits are ignored). Otherwise, the result
coefficient is unaltered if its rightmost digit is even, or incremented by 1 if its rightmost digit is odd (to
make an even digit).

• ROUND_HALF_UP rounds the value to the nearest value. If the values are equidistant, rounds the value
up. If the discarded digits represent half or more than half of the value of a number in the next left
position, the result coefficient is incremented by 1. Otherwise, the discarded digits are ignored.

The value of the DECFLOAT rounding mode on a client can be confirmed to match that of the server by
invoking the SET CURRENT DECFLOAT ROUNDING MODE statement. However, this statement cannot be
used to change the rounding mode of the server. The initial value of CURRENT DECFLOAT ROUNDING
MODE is determined by the decflt_rounding database configuration parameter and can only be
changed by changing the value of this database configuration parameter.

CURRENT DEFAULT TRANSFORM GROUP
The CURRENT DEFAULT TRANSFORM GROUP special register specifies a VARCHAR(18) value that
identifies the name of the transform group used by dynamic SQL statements for exchanging user-defined
structured type values with host programs.

This special register does not specify the transform groups used in static SQL statements, or in the
exchange of parameters and results with external functions or methods.

Its value can be set by the SET CURRENT DEFAULT TRANSFORM GROUP statement. If no value is set, the
initial value of the special register is the empty string (a VARCHAR with a length of zero).

In a dynamic SQL statement (that is, one which interacts with host variables), the name of the transform
group used for exchanging values is the same as the value of this special register, unless this register
contains the empty string. If the register contains the empty string (no value was set by using the SET
CURRENT DEFAULT TRANSFORM GROUP statement), the DB2_PROGRAM transform group is used for the
transform. If the DB2_PROGRAM transform group is not defined for the structured type subject, an error
is raised at run time (SQLSTATE 42741).

Examples
• Set the default transform group to MYSTRUCT1. The TO SQL and FROM SQL functions defined in the

MYSTRUCT1 transform are used to exchange user-defined structured type variables with the host
program.

 SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

• Retrieve the name of the default transform group assigned to this special register.

 VALUES (CURRENT DEFAULT TRANSFORM GROUP)

CURRENT DEGREE
The CURRENT DEGREE special register specifies the degree of intrapartition parallelism for the execution
of dynamic SQL statements. (For static SQL, the DEGREE bind option provides the same control.)

The data type of the register is CHAR(5). Valid values are ANY or the string representation of an integer
between 1 and 32 767, inclusive.

If the value of CURRENT DEGREE represented as an integer is 1 when an SQL statement is dynamically
prepared, the execution of that statement will not use intrapartition parallelism.

94 IBM Db2 V11.5: SQL Reference

If the value of CURRENT DEGREE represented as an integer is greater than 1 and less than or equal to
32 767 when an SQL statement is dynamically prepared, the execution of that statement can involve
intrapartition parallelism with the specified degree.

If the value of CURRENT DEGREE is ANY when an SQL statement is dynamically prepared, the execution
of that statement can involve intrapartition parallelism using a degree determined by the database
manager.

The actual runtime degree of parallelism will be the lower of:

• The value of the maximum query degree (max_querydegree) configuration parameter
• The application runtime degree
• The SQL statement compilation degree
• MAXIMUM DEGREE service class option
• MAXIMUM DEGREE workload option

If the intra_parallel database manager configuration parameter is set to NO, the value of the
CURRENT DEGREE special register will be ignored for the purpose of optimization, and the statement
will not use intrapartition parallelism.

If DB2_WORKLOAD=ANALYTICS and MAXIMUM DEGREE for the workload is DEFAULT, the value of the
intra_parallel setting for the workload is overridden to ON.

The value can be changed by invoking the SET CURRENT DEGREE statement.

The initial value of CURRENT DEGREE is determined by the dft_degree database configuration
parameter.

The value in the CURRENT DEGREE special register and the intra_parallel setting can be overridden
in a workload by setting the MAXIMUM DEGREE workload attribute.

CURRENT EXPLAIN MODE
The CURRENT EXPLAIN MODE special register holds a VARCHAR(254) value which controls the behavior
of the Explain facility with respect to eligible dynamic SQL statements.

The CURRENT EXPLAIN MODE special register holds a VARCHAR(254) value which controls the behavior
of the Explain facility with respect to eligible dynamic SQL statements. This facility generates and inserts
Explain information into the Explain tables. This information does not include the Explain snapshot.
Possible values are YES, EXPLAIN, NO, REOPT, RECOMMEND INDEXES, and EVALUATE INDEXES. (For
static SQL, the EXPLAIN bind option provides the same control. In the case of the PREP and BIND
commands, the EXPLAIN option values are: YES, NO, and ALL).

YES
Enables the Explain facility and causes Explain information for a dynamic SQL statement to be
captured when the statement is compiled.

EXPLAIN
Enables the facility, but dynamic statements are not executed.

NO
Disables the Explain facility.

REOPT
Enables the Explain facility and causes Explain information for a dynamic (or incremental-bind) SQL
statement to be captured only when the statement is reoptimized using real values for the input
variables (host variables, special registers, global variables, or parameter markers).

RECOMMEND INDEXES
Recommends a set of indexes for each dynamic query. Populates the ADVISE_INDEX table with the
set of indexes.

EVALUATE INDEXES
Enables the SQL compiler to evaluate virtual recommended indexes for dynamic queries. Queries
executed in this explain mode will be compiled and optimized using fabricated statistics based on

Chapter 1. Structured Query Language (SQL) 95

the virtual indexes. The statements are not executed. The indexes to be evaluated are read from the
ADVISE_INDEX table if the USE_INDEX column contains "Y". Existing non-unique indexes can also be
ignored by setting the USE_INDEX column to "I" and the EXISTS column to "Y". If a combination of
USE_INDEX="I" and EXISTS="N" is given then index evaluation for the query will continue normally
but the index in question will not be ignored.

The initial value is NO. The value can be changed by invoking the SET CURRENT EXPLAIN MODE
statement.

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special register values interact when
the Explain facility is invoked. The CURRENT EXPLAIN MODE special register also interacts with the
EXPLAIN bind option. RECOMMEND INDEXES and EVALUATE INDEXES can only be set for the CURRENT
EXPLAIN MODE register, and must be set using the SET CURRENT EXPLAIN MODE statement.

Example: Set the host variable EXPL_MODE (VARCHAR(254)) to the value currently in the CURRENT
EXPLAIN MODE special register.

 VALUES CURRENT EXPLAIN MODE
 INTO :EXPL_MODE

CURRENT EXPLAIN SNAPSHOT
The CURRENT EXPLAIN SNAPSHOT special register holds a CHAR(8) value that controls the behavior
of the Explain snapshot facility. This facility generates compressed information, including access plan
information, operator costs, and bind-time statistics.

Only the following statements consider the value of this register: CALL, Compound SQL (Dynamic),
DELETE, INSERT, MERGE, REFRESH, SELECT, SELECT INTO, SET INTEGRITY, UPDATE, VALUES, or VALUES
INTO. Possible values are YES, EXPLAIN, NO, and REOPT. (For static SQL, the EXPLSNAP bind option
provides the same control. In the case of the PREP and BIND commands, the EXPLSNAP option values
are: YES, NO, and ALL.)

YES
Enables the Explain snapshot facility and takes a snapshot of the internal representation of a dynamic
SQL statement as the statement is compiled.

EXPLAIN
Enables the Explain snapshot facility, but dynamic statements are not executed.

NO
Disables the Explain snapshot facility.

REOPT
Enables the Explain facility and causes Explain information for a dynamic (or incremental-bind) SQL
statement to be captured only when the statement is reoptimized using real values for the input
variables (host variables, special registers, global variables, or parameter markers).

The initial value is NO. The value can be changed by invoking the SET CURRENT EXPLAIN SNAPSHOT
statement.

The CURRENT EXPLAIN SNAPSHOT and CURRENT EXPLAIN MODE special register values interact when
the Explain facility is invoked. The CURRENT EXPLAIN SNAPSHOT special register also interacts with the
EXPLSNAP bind option.

Example: Set the host variable EXPL_SNAP (char(8)) to the value currently in the CURRENT EXPLAIN
SNAPSHOT special register.

 VALUES CURRENT EXPLAIN SNAPSHOT
 INTO :EXPL_SNAP

96 IBM Db2 V11.5: SQL Reference

CURRENT FEDERATED ASYNCHRONY
The CURRENT FEDERATED ASYNCHRONY special register specifies the degree of asynchrony for the
execution of dynamic SQL statements. The FEDERATED_ASYNCHRONY bind option provides the same
control for static SQL.

The data type of the register is INTEGER. Valid values are ANY (representing -1) or an integer between
0 and 32 767, inclusive. If, when an SQL statement is dynamically prepared, the value of CURRENT
FEDERATED ASYNCHRONY is:

• 0, the execution of that statement will not use asynchrony
• Greater than 0 and less than or equal to 32 767, the execution of that statement can involve asynchrony

using the specified degree
• ANY (representing -1), the execution of that statement can involve asynchrony using a degree that is

determined by the database manager

The value of the CURRENT FEDERATED ASYNCHRONY special register can be changed by invoking the
SET CURRENT FEDERATED ASYNCHRONY statement.

The initial value of the CURRENT FEDERATED ASYNCHRONY special register is determined by
the federated_async database manager configuration parameter if the dynamic statement
is issued through the command line processor (CLP). The initial value is determined by the
FEDERATED_ASYNCHRONY bind option if the dynamic statement is part of an application that is being
bound.

Example: Set the host variable FEDASYNC (INTEGER) to the value of the CURRENT FEDERATED
ASYNCHRONY special register.

 VALUES CURRENT FEDERATED ASYNCHRONY INTO :FEDASYNC

CURRENT IMPLICIT XMLPARSE OPTION
The CURRENT IMPLICIT XMLPARSE OPTION special register specifies the whitespace handling options
that are to be used when serialized XML data is implicitly parsed by the database server, without
validation.

An implicit non-validating parse operation occurs when an SQL statement is processing an XML host
variable or an implicitly or explicitly typed XML parameter marker that is not an argument of the
XMLVALIDATE function. The data type of the register is VARCHAR(19).

The value of the CURRENT IMPLICIT XMLPARSE OPTION special register can be changed by invoking the
SET CURRENT IMPLICIT XMLPARSE OPTION statement. Its initial value is 'STRIP WHITESPACE'.

Examples
• Retrieve the value of the CURRENT IMPLICIT XMLPARSE OPTION special register into a host variable

named CURXMLPARSEOPT:

 EXEC SQL VALUES (CURRENT IMPLICIT XMLPARSE OPTION) INTO :CURXMLPARSEOPT;

• Set the CURRENT IMPLICIT XMLPARSE OPTION special register to 'PRESERVE WHITESPACE'.

 SET CURRENT IMPLICIT XMLPARSE OPTION = 'PRESERVE WHITESPACE'

Whitespace is then preserved when the following SQL statement executes:

 INSERT INTO T1 (XMLCOL1) VALUES (?)

Chapter 1. Structured Query Language (SQL) 97

CURRENT ISOLATION
The CURRENT ISOLATION special register holds a CHAR(2) value that identifies the isolation level (in
relation to other concurrent sessions) for any dynamic SQL statements issued within the current session.

The possible values are:
(blanks)

Not set; use the isolation attribute of the package.
UR

Uncommitted Read
CS

Cursor Stability
RR

Repeatable Read
RS

Read Stability

The value of the CURRENT ISOLATION special register can be changed by the SET CURRENT ISOLATION
statement.

Until a SET CURRENT ISOLATION statement is issued within a session, or after RESET has been specified
for SET CURRENT ISOLATION, the CURRENT ISOLATION special register is set to blanks and is not
applied to dynamic SQL statements; the isolation level used is taken from the isolation attribute of the
package which issued the dynamic SQL statement. Once a SET CURRENT ISOLATION statement has
been issued, the CURRENT ISOLATION special register provides the isolation level for any subsequent
dynamic SQL statement compiled within the session, regardless of the settings for the package issuing
the statement. This will remain in effect until the session ends or until a SET CURRENT ISOLATION
statement is issued with the RESET option.

Example: Set the host variable ISOLATION_MODE (CHAR(2)) to the value currently stored in the CURRENT
ISOLATION special register.

 VALUES CURRENT ISOLATION
 INTO :ISOLATION_MODE

CURRENT LOCALE LC_MESSAGES
The CURRENT LOCALE LC_MESSAGES special register identifies the locale that is used by
EVMON_UPGRADE_TABLES as well as monitoring routines in the monreport module.

EVMON_UPGRADE_TABLES and the monitoring routines use the value of CURRENT LOCALE
LC_MESSAGES to determine in which language the result set text output should be returned. User-
defined routines that are coded to return messages could also use the value of CURRENT LOCALE
LC_MESSAGES to determine what language to use for message text.

The data type is VARCHAR(128).

The initial value of CURRENT LOCALE LC_MESSAGES is "en_US" for English (United States). The value can
be changed by invoking the SET CURRENT LOCALE LC_MESSAGES statement.

CURRENT LOCALE LC_TIME
The CURRENT LOCALE LC_TIME special register identifies the locale that is used for SQL statements that
involve the datetime related built-in functions.

These functions include DAYNAME, MONTHNAME, NEXT_DAY, ROUND, ROUND_TIMESTAMP,
TIMESTAMP_FORMAT, TRUNCATE, TRUNC_TIMESTAMP and VARCHAR_FORMAT. These functions use the
value of CURRENT LOCALE LC_TIME if the locale-name argument is not explicitly specified.

The data type is VARCHAR(128).

98 IBM Db2 V11.5: SQL Reference

The initial value of CURRENT LOCALE LC_TIME is "en_US" for English (United States). The value can be
changed by invoking the SET CURRENT LOCALE LC_TIME statement.

CURRENT LOCK TIMEOUT
The CURRENT LOCK TIMEOUT special register specifies the number of seconds to wait for a lock before
returning an error indicating that a lock cannot be obtained. This special register impacts row, table, alter
table, online backup, keyvalue, MDC block, reorg, XML path, extent movement, plan, variation, catalog,
insert range, dictionary and table serialize locks.

The data type of the register is INTEGER.

Valid values for the CURRENT LOCK TIMEOUT special register are integers between -1 and 32767,
inclusive. This special register can also be set to the null value. A value of -1 specifies that timeouts are
not to take place, and that the application is to wait until the lock is released or a deadlock is detected. A
value of 0 specifies that the application is not to wait for a lock; if a lock cannot be obtained, an error is to
be returned immediately.

The value of the CURRENT LOCK TIMEOUT special register can be changed by invoking the SET CURRENT
LOCK TIMEOUT statement. The initial value is null; in this case, the current value of the locktimeout
database configuration parameter is used when waiting for a lock, and this value is returned for the
special register.

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register specifies a
VARCHAR(254) value that identifies the types of tables that can be considered when optimizing the
processing of dynamic SQL queries. Materialized query tables are never considered by static embedded
SQL queries.

The initial value of CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION is set to the value of the
dft_mttb_types database configuration parameter. The default value of dft_mttb_types parameter
is SYSTEM.

CURRENT MDC ROLLOUT MODE
The CURRENT MDC ROLLOUT MODE special register specifies the behavior on multidimensional
clustering (MDC) tables of DELETE statements that qualify for rollout processing.

The default value of this register is determined by the DB2_MDC_ROLLOUT registry variable. The value
can be changed by invoking the SET CURRENT MDC ROLLOUT MODE statement. When the CURRENT MDC
ROLLOUT MODE special register is set to a particular value, the execution behavior of subsequent DELETE
statements that qualify for rollout is impacted. The DELETE statement does not need to be recompiled for
the behavior to change.

CURRENT MEMBER
The CURRENT MEMBER special register specifies an INTEGER value that identifies the coordinator
member for the statement.

For statements issued from an application, the coordinator is the member to which the application
connects. For statements issued from a routine, the coordinator is the member from which the routine is
invoked.

When used in an SQL statement inside a routine, CURRENT MEMBER is never inherited from the invoking
statement.

CURRENT MEMBER returns 0 if the database instance is not defined to support database partitioning
or the IBM Db2 pureScale® Feature. The database instance is not defined for such support if there is
no db2nodes.cfg file. For a partitioned database or a Db2 pureScale environment, the db2nodes.cfg file
exists and contains database partition and member definitions.

CURRENT MEMBER can be changed through the CONNECT statement, but only under certain conditions.

Chapter 1. Structured Query Language (SQL) 99

For compatibility with previous versions of Db2 and with other database products, NODE can be specified
in place of MEMBER.

Examples
Example 1: Set the host variable APPL_NODE (integer) to the number of the member to which the
application is connected.

 VALUES CURRENT MEMBER
 INTO :APPL_NODE

Example 2: The following command is issued on member 0 and on a 4 member system in a partitioned
database environment. This query will retrieve the currently connected database member number.

 VALUES CURRENT MEMBER

 1

 0

CURRENT OPTIMIZATION PROFILE
The CURRENT OPTIMIZATION PROFILE special register specifies the qualified name of the optimization
profile to be used by DML statements that are dynamically prepared for optimization.

The initial value is the null value. The value can be changed by invoking the SET CURRENT OPTIMIZATION
PROFILE statement. An optimization profile that is not qualified with a schema name will be implicitly
qualified with the value of the CURRENT DEFAULT SCHEMA special register.

Example 1: Set the optimization profile to 'JON.SALES'.

 SET CURRENT OPTIMIZATION PROFILE = JON.SALES

Example 2: Get the current value of the optimization profile name for this connection.

 VALUES (CURRENT OPTIMIZATION PROFILE) INTO :PROFILE

CURRENT PACKAGE PATH
The CURRENT PACKAGE PATH special register specifies a VARCHAR(4096) value that identifies the path
to be used when resolving references to packages that are needed when executing SQL statements.

The value can be an empty or a blank string, or a list of one or more schema names that are delimited with
double quotation marks and separated by commas. Any double quotation marks appearing as part of the
string will need to be represented as two double quotation marks, as is common practice with delimited
identifiers. The delimiters and commas contribute to the length of the special register.

This special register applies to both static and dynamic statements.

The initial value of CURRENT PACKAGE PATH in a user-defined function, method, or procedure is inherited
from the invoking application. In other contexts, the initial value of CURRENT PACKAGE PATH is an empty
string. The value is a list of schemas only if the application process has explicitly specified a list of
schemas by means of the SET CURRENT PACKAGE PATH statement.

Examples
• An application will be using multiple SQLJ packages (in schemas SQLJ1 and SQLJ2) and a JDBC

package (in schema DB2JAVA). Set the CURRENT PACKAGE PATH special register to check SQLJ1,
SQLJ2, and DB2JAVA, in that order.

 SET CURRENT PACKAGE PATH = "SQLJ1", "SQLJ2", "DB2JAVA"

100 IBM Db2 V11.5: SQL Reference

• Set the host variable HVPKLIST to the value currently stored in the CURRENT PACKAGE PATH special
register.

 VALUES CURRENT PACKAGE PATH INTO :HVPKLIST

CURRENT PATH
The CURRENT PATH (or CURRENT_PATH) special register specifies a VARCHAR(2048) value that identifies
the SQL path used when resolving unqualified function names, procedure names, data type names, global
variable names, and module object names in dynamically prepared SQL statements. CURRENT FUNCTION
PATH is a synonym for CURRENT PATH.

The initial value is the default value specified in a following paragraph. For static SQL, the FUNCPATH bind
option provides an SQL path that is used for function and data type resolution.

The CURRENT PATH special register contains a list of one or more schema names that are enclosed
by double quotation marks and separated by commas. For example, an SQL path specifying that the
database manager is to look first in the FERMAT schema, then in the XGRAPHIC schema, and finally in the
SYSIBM schema, is returned in the CURRENT PATH special register as:

"FERMAT","XGRAPHIC","SYSIBM"

The default value is "SYSIBM","SYSFUN","SYSPROC","SYSIBMADM",X, where X is the value of the USER
special register, delimited by double quotation marks. The value can be changed by invoking the SET
CURRENT PATH statement. The schema SYSIBM does not need to be specified. If it is not included in the
SQL path, it is implicitly assumed to be the first schema. SYSIBM does not take up any of the 2048 bytes if
it is implicitly assumed.

A data type that is not qualified with a schema name will be implicitly qualified with the first schema in
the SQL path that contains a data type with the same unqualified name. There are exceptions to this rule,
as outlined in the descriptions of the following statements: CREATE TYPE (Distinct), CREATE FUNCTION,
COMMENT, and DROP.

Example: Using the SYSCAT.ROUTINES catalog view, find all user-defined routines that can be invoked
without qualifying the routine name, because the CURRENT PATH special register contains the schema
name.

 SELECT ROUTINENAME, ROUTINESCHEMA FROM SYSCAT.ROUTINES
 WHERE POSITION (ROUTINESCHEMA, CURRENT PATH, CODEUNITS16) <> 0

CURRENT QUERY OPTIMIZATION
The CURRENT QUERY OPTIMIZATION special register specifies an INTEGER value that controls the class
of query optimization performed by the database manager when binding dynamic SQL statements.

The QUERYOPT bind option controls the class of query optimization for static SQL statements. The
possible values range from 0 to 9. For example, if the query optimization class is set to 0 (minimal
optimization), then the value in the special register is 0. The default value is determined by the
dft_queryopt database configuration parameter. The value can be changed by invoking the SET
CURRENT QUERY OPTIMIZATION statement.

Example: Using the SYSCAT.PACKAGES catalog view, find all plans that were bound with the same setting
as the current value of the CURRENT QUERY OPTIMIZATION special register.

 SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES
 WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

Chapter 1. Structured Query Language (SQL) 101

CURRENT REFRESH AGE
The CURRENT REFRESH AGE special register specifies a time stamp duration value with a data type of
DECIMAL(20,6).

The value of the CURRENT REFRESH AGE special register must be 0 - 99999999999999. The default
value is determined by the dft_refresh_age database configuration parameter. You can change the
value by issuing the SET CURRENT REFRESH AGE statement.

The value represents the maximum duration since a particular time-stamped event occurred to a cached
data object. The cached data object can be used during this period to help optimize the processing of
a query. An example of a time-stamped event is processing a REFRESH TABLE statement on a system-
maintained REFRESH DEFERRED materialized query table.

For example, if the CURRENT REFRESH AGE special register has a value of 99999999999999 and the
query optimization class is 2 or is greater than or equal to 5, the types of refresh deferred materialized
query tables that you specify for the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special
register are considered during optimization of the processing of a dynamic SQL query.

CURRENT SCHEMA
The CURRENT SCHEMA (or CURRENT_SCHEMA) special register specifies a VARCHAR(128) value that
identifies the schema name used to qualify database object references, where applicable, in dynamically
prepared SQL statements.

For compatibility with Db2 for z/OS, CURRENT SQLID (or CURRENT_SQLID) can be specified in place of
CURRENT SCHEMA.

The initial value of CURRENT SCHEMA is the authorization ID of the current session user. The value can be
changed by invoking the SET SCHEMA statement.

The setting of CURRENT SCHEMA does not affect the Explain facility's selection of explain tables.

The QUALIFIER bind option controls the schema name used to qualify database object references, where
applicable, for static SQL statements.

Example: Set the schema for object qualification to 'D123'.

 SET CURRENT SCHEMA = 'D123'

CURRENT SERVER
The CURRENT SERVER (or CURRENT_SERVER) special register specifies a VARCHAR(18) value that
identifies the current database server (sometimes referred to as the application server). The register
contains the actual name of the database, not an alias.

CURRENT SERVER can be changed through the CONNECT statement, but only under certain conditions.

When used in an SQL statement inside a routine, CURRENT SERVER is not inherited from the invoking
statement.

Example: Set the host variable APPL_SERVE (VARCHAR(18)) to the name of the database server to which
the application is connected.

 VALUES CURRENT SERVER INTO :APPL_SERVE

CURRENT SQL_CCFLAGS
The CURRENT SQL_CCFLAGS special register specifies the conditional compilation named constants that
are defined for use during compilation of SQL statements.

The data type of the special register is VARCHAR(1024).

102 IBM Db2 V11.5: SQL Reference

The CURRENT SQL_CCFLAGS special register contains a list of name and value pairs separated by a
comma and a blank. The name is separated from the value in a pair using the colon character. The values
in the list are a BOOLEAN constant, an INTEGER constant, or the keyword NULL. The names can be
specified using any combination of uppercase or lowercase characters which are folded to all uppercase
characters. For example, conditional compilation values defined for debug and tracing could appear in the
special register as the string value:

 CC_DEBUG:TRUE, CC_TRACE_LEVEL:2

The initial value of the special register is the value of the sql_ccflags database configuration parameter
when the special register is first used. The first use can occur as a result of processing a statement
with an inquiry directive or as a direct reference to the special register. If the value assigned to the
sql_ccflags database configuration parameter is not valid, an error is returned on the first use
(SQLSTATE 42815 or 428HV).

The value of the special register can be changed by executing the SET CURRENT SQL_CCFLAGS
statement.

CURRENT TEMPORAL BUSINESS_TIME
The CURRENT TEMPORAL BUSINESS_TIME special register specifies a TIMESTAMP(12) value that is used
in the default BUSINESS_TIME period specification for references to application-period temporal tables.

When an application-period temporal table is referenced and the value in effect for the CURRENT
TEMPORAL BUSINESS_TIME special register is represented by CTBT, which is the non-null value, the
following period specification is implicit:

FOR BUSINESS_TIME AS OF CTBT

When an application-period temporal table is the target of an UPDATE or DELETE statement and the value
in effect for the CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, the following
additional predicate is implicit:

bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
 AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

where bt_begin and bt_end are the begin and end columns of the BUSINESS_TIME period of the target
table of the UPDATE statement.

The initial value of the special register in a user-defined function or procedure is inherited from the
invoking application. In other contexts the initial value of the special register is the null value.

The value of this special register can be changed by executing the SET CURRENT TEMPORAL
BUSINESS_TIME statement.

The setting of the CURRENT TEMPORAL BUSINESS_TIME special register impacts the following compiled
SQL objects when the associated package is bound with the BUSTIMESENSITIVE bind option set to YES:

• SQL procedures
• Compiled functions
• Compiled triggers
• Compound SQL (compiled) statements
• External UDFs

The setting for the BUSTIMESENSITIVE bind option determines whether references to application-period
temporal tables and bitemporal tables in both static SQL statements and dynamic SQL statements in a
package are affected by the value of the CURRENT TEMPORAL BUSINESS_TIME special register. The bind
option can be set to YES or NO.

For the following examples, assume the table IN_TRAY is an application-period temporal table.

Chapter 1. Structured Query Language (SQL) 103

Example 1: Based on the state of the messages in IN_TRAY as of the date specified by the CURRENT
TEMPORAL BUSINESS_TIME special register, list the user IDs and subject lines.

SELECT SOURCE, SUBJECT FROM IN_TRAY

Assuming that the CURRENT TEMPORAL BUSINESS_TIME special register was previously set to the value
CURRENT TIMESTAMP-4 DAYS and is currently set to the null value, the following statement returns the
same result.

SELECT SOURCE, SUBJECT
 FROM IN_TRAY
 FOR BUSINESS_TIME AS OF CURRENT TIMESTAMP-4 DAYS

Example 2: List the user ID and subject line for the messages in IN_TRAY sent before the date specified by
the CURRENT TEMPORAL BUSINESS_TIME special register.

SELECT SOURCE, SUBJECT
 FROM IN_TRAY
 WHERE DATE(RECEIVED) < DATE(CURRENT TEMPORAL BUSINESS_TIME)

Assuming that the CURRENT TEMPORAL BUSINESS_TIME special register was previously set to
'2011-01-01-00.00.00' and is currently set to the null value, the following statement returns the same
result.

SELECT SOURCE, SUBJECT
 FROM IN_TRAY
 FOR BUSINESS_TIME AS OF '2011-01-01-00.00.00'
 WHERE DATE(RECEIVED) < DATE('2011-01-01-00.00.00')

CURRENT TEMPORAL SYSTEM_TIME
The CURRENT TEMPORAL SYSTEM_TIME special register specifies a TIMESTAMP(12) value that is used in
the default SYSTEM_TIME period specification for references to system-period temporal tables.

When a system-period temporal table is referenced and the value in effect for the CURRENT TEMPORAL
SYSTEM_TIME special register is represented by CTST, which is the non-null value, , the following period
specification is implicit:

FOR SYSTEM_TIME AS OF CTST

The initial value of the special register in a user-defined function or procedure is inherited from the
invoking application. In other contexts the initial value of the special register is the null value.

The value of this special register can be changed by executing the SET CURRENT TEMPORAL
SYSTEM_TIME statement.

The setting of the CURRENT TEMPORAL SYSTEM_TIME special register impacts the following compiled
SQL objects when they have been bound with the SYSTIMESENSITIVE bind option set to YES:

• SQL procedures
• Compiled functions
• Compiled triggers
• Compound SQL (compiled) statements
• External UDFs)

The setting for the SYSTIMESENSITIVE bind option determines whether references to system-period
temporal tables in both static SQL statements and dynamic SQL statements in a package are affected by
the value of the CURRENT TEMPORAL SYSTEM_TIME special register. The bind option can be set to YES or
NO.

For the following examples, assume the table IN_TRAY is a system-period temporal table.

104 IBM Db2 V11.5: SQL Reference

Example 1: Based on the state of the messages in IN_TRAY as of the date specified by the CURRENT
TEMPORAL SYSTEM_TIME special register, list the user IDs and subject lines.

SELECT SOURCE, SUBJECT
 FROM IN_TRAY

Assuming that the CURRENT TEMPORAL SYSTEM_TIME special register was previously set to the value
CURRENT TIMESTAMP-7 DAYS and is currently set to the null value, the following statement returns the
same result.

SELECT SOURCE, SUBJECT
 FROM IN_TRAY
 FOR SYSTEM_TIME AS OF CURRENT TEMPORAL SYSTEM_TIME

Example 2: List the user ID and subject line for the messages in IN_TRAY sent before the value specified
by the CURRENT TEMPORAL SYSTEM_TIME special register.

SELECT SOURCE, SUBJECT
 FROM IN_TRAY
 WHERE RECEIVED < CURRENT TEMPORAL SYSTEM_TIME

Assuming that the CURRENT TEMPORAL SYSTEM_TIME special register was previously set to
'2011-01-01-00.00.00' and is currently set to the null value, the following statement returns the same
result.

SELECT SOURCE, SUBJECT
 FROM IN_TRAY
 FOR SYSTEM_TIME AS OF '2011-01-01-00.00.00'
 WHERE DATE(RECEIVED) < DATE('2011-01-01-00.00.00')

CURRENT TIME
The CURRENT TIME (or CURRENT_TIME) special register specifies a time that is based on a reading of the
time-of-day clock when the SQL statement is executed at the application server.

If this special register is used more than once within a single SQL statement, or used with CURRENT DATE
or CURRENT TIMESTAMP within a single statement, all values are based on a single clock reading.

When used in an SQL statement inside a routine, CURRENT TIME is not inherited from the invoking
statement.

In a federated system, CURRENT TIME can be used in a query intended for data sources. When the query
is processed, the time returned will be obtained from the CURRENT TIME register at the federated server,
not from the data sources.

Examples
1. Run the following command from the Db2 CLP to obtain the current time.

 db2 values CURRENT TIME

2. Using the CL_SCHED table, select all the classes (CLASS_CODE) that start (STARTING) later today.
Today's classes have a value of 3 in the DAY column.

 SELECT CLASS_CODE FROM CL_SCHED
 WHERE STARTING > CURRENT TIME AND DAY = 3

CURRENT TIMESTAMP
The CURRENT TIMESTAMP (or CURRENT_TIMESTAMP) special register specifies a timestamp that is
based on a reading of the time-of-day clock when the SQL statement is executed at the application server.

If this special register is used more than once within a single SQL statement, or used with CURRENT DATE
or CURRENT TIME within a single statement, all values are based on a single clock reading. It is possible

Chapter 1. Structured Query Language (SQL) 105

for separate CURRENT TIMESTAMP special register requests to return the same value; if unique values
are required, consider using the GENERATE_UNIQUE function, a sequence, or an identity column.

If a timestamp with a specific precision is desired, the special register can be referenced as CURRENT
TIMESTAMP(integer), where integer can range from 0 to 12. The default precision is 6. The precision of the
clock reading varies by platform and the resulting value is padded with zeros where the precision of the
retrieved clock reading is less than the precision of the request.

For example:

• CURRENT TIMESTAMP()

– Output in Windows: 2015-03-23-09.41.24.684000
– Output in Linux: 2015-03-23-09.41.24.684842
– Output in UNIX: 2015-03-23-09.41.24.684842

• CURRENT TIMESTAMP(12)

– Output in Windows: 2015-03-23-09.41.24.684000000000
– Output in Linux: 2015-03-23-09.41.24.684842000000
– Output in UNIX: 2015-03-23-09.41.24.684842000000

• CURRENT TIMESTAMP(6)

– Output in Windows: 2015-03-23-09.41.24.684000
– Output in Linux: 2015-03-23-09.41.24.684842
– Output in UNIX: 2015-03-23-09.41.24.684842

• CURRENT TIMESTAMP(3)

– Output in Windows: 2015-03-23-09.41.24.684
– Output in Linux: 2015-03-23-09.41.24.684
– Output in UNIX: 2015-03-23-09.41.24.684

When used in an SQL statement inside a routine, CURRENT TIMESTAMP is not inherited from the invoking
statement.

In a federated system, CURRENT TIMESTAMP can be used in a query intended for data sources. When the
query is processed, the timestamp returned will be obtained from the CURRENT TIMESTAMP register at
the federated server, not from the data sources.

On a Db2 pureScale instance, with transaction workload balancing enabled, the CURRENT TIMESTAMP
special register does not necessarily return increasing values across transactions if those transactions are
executed on different members.

SYSDATE can also be specified as a synonym for CURRENT TIMESTAMP(0).

LOCALTIMESTAMP can also be specified as a synonym for CURRENT TIMESTAMP.

LOCALTIMESTAMP(integer) can also be specified as a synonym for CURRENT TIMESTAMP(integer).

Example: Insert a row into the IN_TRAY table. The value of the RECEIVED column should be a timestamp
that indicates when the row was inserted. The values for the other three columns come from the host
variables SRC (char(8)), SUB (char(64)), and TXT (VARCHAR(200)).

 INSERT INTO IN_TRAY
 VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

106 IBM Db2 V11.5: SQL Reference

CURRENT TIMEZONE
The CURRENT TIMEZONE (or CURRENT_TIMEZONE) special register specifies the difference between UTC
(Coordinated Universal Time, formerly known as GMT) and local time at the application server.

The difference is represented by a time duration (a decimal number in which the first two digits are the
number of hours, the next two digits are the number of minutes, and the last two digits are the number of
seconds). The number of hours is between -24 and 24 exclusive. Subtracting CURRENT TIMEZONE from
a local time converts that local time to UTC. The time is calculated from the operating system time at the
moment the SQL statement is executed. (The CURRENT TIMEZONE value is determined from C runtime
functions.)

The CURRENT TIMEZONE special register can be used wherever an expression of the DECIMAL(6,0) data
type is used; for example, in time and timestamp arithmetic.

When used in an SQL statement inside a routine, CURRENT TIMEZONE is not inherited from the invoking
statement.

Example: Insert a record into the IN_TRAY table, using a UTC timestamp for the RECEIVED column.

 INSERT INTO IN_TRAY VALUES (
 CURRENT TIMESTAMP - CURRENT TIMEZONE,
 :source,
 :subject,
 :notetext)

CURRENT USER
The CURRENT USER (or CURRENT_USER) special register specifies the authorization ID that is used for
statement authorization for the statement in which it was referenced.

For dynamic SQL statements, the value depends on the dynamic SQL statement behavior in effect for the
package issuing the dynamic SQL statement in which this special register is referenced. See "Effect of
DYNAMICRULES bind option on dynamic SQL" for details. The data type of the register is VARCHAR(128).
If the length of the authorization ID is less than 8 bytes, the special register value is padded with trailing
blanks such that the length is 8 bytes.

Example: Select table names whose schema matches the value of the CURRENT USER special register.

 SELECT TABNAME FROM SYSCAT.TABLES
 WHERE TABSCHEMA = CURRENT USER AND TYPE = 'T'

If this statement is executed as a static SQL statement, it returns the tables whose schema name
matches the binder of the package that includes the statement. If this statement is executed as a
dynamic SQL statement using dynamic SQL statement run behavior, it returns the tables whose schema
name matches the current value of the SESSION_USER special register.

SESSION_USER
The SESSION_USER special register specifies the current runtime authorization ID that is being used for
the current session.

The data type of the register is VARCHAR(128). If the length of the authorization ID is less than 8 bytes,
the special register value is padded with trailing blanks such that the length is 8 bytes.

The initial value of SESSION_USER for a new connection is the same as the value of the SYSTEM_USER
special register. Its value can be changed by invoking the SET SESSION AUTHORIZATION statement.

SESSION_USER is a synonym for the USER special register.

Example: Determine what routines can be executed by current runtime authorization ID if it were to issue
invocations through dynamic SQL.

 SELECT SCHEMA, SPECIFICNAME FROM SYSCAT.ROUTINEAUTH
 WHERE GRANTEE = SESSION_USER
 AND EXECUTEAUTH IN ('Y', 'G')

Chapter 1. Structured Query Language (SQL) 107

SYSTEM_USER
The SYSTEM_USER special register specifies the authorization ID of the user that connected to the
database.

The value of this register can only be changed by connecting as a user with a different authorization ID.
The data type of the register is VARCHAR(128). If the length of the authorization ID is less than 8 bytes,
the special register value is padded with trailing blanks such that the length is 8 bytes.

See "Example" in the description of the SET SESSION AUTHORIZATION statement.

USER
The USER special register specifies the runtime authorization ID that is used for the current session.

The data type of the register is VARCHAR(128). If the length of the authorization ID is less than 8 bytes,
the special register value is padded with trailing blanks such that the length is 8 bytes.

USER is a synonym for the SESSION_USER special register. SESSION_USER is the preferred spelling.

Example: Select all notes from the IN_TRAY table that were placed there by the user.

 SELECT * FROM IN_TRAY
 WHERE SOURCE = USER

Global variables
A global variable is a named memory variable that is retrieved or modified through SQL statements.

Global variables enable applications to share relational data among SQL statements, without the need for
additional application logic to support this data transfer.

A global variable is defined within a schema. A global variable defined in a module within a schema
is referred to as a module global variable. All other global variables are referred to as schema global
variables.

The definitions for global variables are recorded in the system catalogs.

Types of global variables
There are three different ways to classify global variables: by the ownership of the variable, by the scope
of the value, and by the method used to maintain the value.

Ownership of the variable
A global variable can be classified based on whether the variable is owned by the database manager, or if
the variable is user-defined:

• The database manager creates built-in global variables. Built-in global variables are registered to the
database manager in the system catalog. Built-in global variables belong to the following schema:

– SYSIBM
– SYSIBMADM

Some built-in module global variables are located inside modules within the SYSIBMADM schema.
• A user creates a user-defined global variable by using an SQL DDL statement. User-defined global

variables are registered to the database manager in the system catalog. A user-defined schema global
variable is created by using the CREATE VARIABLE SQL statement. A user-defined module global
variable is created using the ADD VARIABLE or PUBLISH VARIABLE option of the ALTER MODULE SQL
statement.

Scope of the value
A global variable can be classified as either session or database based on the scope of the value:

108 IBM Db2 V11.5: SQL Reference

• The value of a session global variable is uniquely associated with each session that uses this particular
global variable. Session global variables are either built-in global variables or user-defined global
variables.

• The value of a database global variable is a single value that remains the same for all sessions that use
this particular global variable. Database global variables are always built-in global variables.

Method by which the value is maintained
A global variable can be classified based on how the variable is maintained:

• A constant global variable has a fixed value that is instantiated based on evaluation of the CONSTANT
clause when the global variable is first referenced in the session or the database, depending on the
scope of the global variable. This type of global variable is created by using the CONSTANT clause
in the CREATE VARIABLE statement. A value cannot be assigned to the global variable using an SQL
statement. Constant global variables are read-only global variables.

• A maintained-by-system global variable has a value that is set by the database manager. A value cannot
be assigned using an SQL statement. Only built-in global variables can be defined as maintained-by-
system global variables, and most built-in global variables are defined as maintained-by-system global
variables. Maintained-by-system global variables are read-only global variables.

• A maintained-by-user global variable can be assigned a value using an SQL statement; however, this
assignment requires WRITE privilege on the global variable. This type of global variable is the default
for user-defined global variables that are defined without using a CONSTANT clause. Built-in global
variables can also be defined so values can be assigned using an SQL statement.

Authorization required for global variables
To access a global variable, the authorization ID requires certain privileges or DATAACCESS authority.

Schema global variables
To retrieve the value of a schema global variable, the authorization ID of the statement must have one of
these authorizations:

• READ privilege on the schema global variable
• DATAACCESS authority

To specify a schema global variable as the target of a value assignment, the authorization ID of the
statement must have one of these authorizations:

• WRITE privilege on the schema global variable
• DATAACCESS authority

Module global variables
If a module global variable is published and is then referenced from outside the module that defined it,
the authorization ID of the statement must have one of these authorizations:

• EXECUTE privilege on the module in which the global variable is defined
• DATAACCESS authority

References to module global variables from objects that are defined within the same module as the global
variable do not require any authorizations to be held by the authorization ID of the statement.

Chapter 1. Structured Query Language (SQL) 109

Resolution of global variable references
Global variable reference resolution depends on whether a global variable name is qualified and where
the global variable is referenced.

The order of resolving a global variable reference in relation to the names for a column, SQL variable, SQL
parameter, or row variable field is described in "References to SQL parameters, SQL variables, and global
variables" in SQL Reference Volume 2.

The implicit qualification of an unqualified global variable name that is used as the main object of
a CREATE, ALTER, COMMENT, DROP, GRANT, or REVOKE statement is described in “Unqualified user-
defined type, function, procedure, specific, global variable and module names” on page 26.

A best practice is to fully qualify the name of the global variable when referencing the global variable
in an SQL statement. This prevents a subsequent change in the SQL path from having an impact on the
resolution of the global variable.

The resolution of a global variable reference by the database manager in all other contexts depends on
whether the global variable name is qualified.

Qualified names
To resolve the name of a qualified global variable, the reference is evaluated according to the following
process:

1. If the global variable reference is made from within a module and the qualifier matches the name of
the module, the module is searched for a matching module global variable. The following rules are
applied:

• If the qualifier is a single identifier, the schema name of the module is ignored when the qualifier is
compared to the module name.

• If the qualifier is a two-part identifier, it is compared to the schema-qualified module name.

If the name of a module global variable matches the unqualified global variable name in the reference,
resolution is complete. If the qualifier does not match the name of the module or there is no matching
module global variable, resolution continues with the next step.

2. The qualifier is now considered to be a schema name. That specified schema is searched for a
matching schema global variable.

• If a schema global variable name matches the unqualified global variable name in the reference,
resolution is complete.

• If the schema does not exist, then an error is returned.
• If there are no matching schema global variables in the schema, and the qualifier matched the name

of the module in the first step, then an error is returned.
• Otherwise, resolution continues with the next step.

3. The qualifier is now considered to be a module name. The following rules are applied:

• If the module name is qualified with a schema name, the module is searched for a matching
published module global variable.

• If the module name is not qualified with a schema name, the schema for the module is the first
schema in the SQL path that has a matching module name. If the name of a module matches the
schema name that is found in the SQL path, that module is searched for a matching published
module global variable.

• If the module is not found through the SQL path, the existence of a module public alias that matches
the name of the global variable qualifier is considered. If a module public alias is found, the module
that is associated with the module public alias is searched for a matching published module global
variable.

110 IBM Db2 V11.5: SQL Reference

If the name of a published module global variable matches the unqualified global variable name in
the global variable reference, resolution is complete. If a matching module is not found or there is no
matching module global variable in the matching module, an error is returned.

Unqualified names
To resolve the name of an unqualified global variable, the reference is evaluated according to the
following process:

1. If an unqualified global variable reference is made from within a module, the module is searched for a
matching module global variable. If a module global variable name matches the global variable name
in the reference, resolution is complete. If there is no matching module global variable, resolution
continues with the next step.

2. The schemas in the SQL path are searched in order from left to right for a matching schema global
variable. If a schema global variable name matches the global variable name in the reference,
resolution is complete. If no matching global variable is found after completing this step, an error
is returned.

Using global variables
Using global variables requires an understanding of the usage restrictions, the rules for assignment to
global variables, and the rules for retrieving global variable values.

Usage restrictions
Global variables can be referenced from within any SQL expression, unless the context of the expression
requires that the expression be deterministic. The following situations are examples of contexts that
require deterministic expressions and therefore preclude the use of global variables:

• In a table check constraint or data type check constraint
• In the definition of a generated expression column
• In a refresh-immediate materialized query table (MQT)

If the data type of the global variable is a cursor type, then the underlying cursor of the global cursor
variable can be referenced anywhere that a cursor-variable-name can be specified.

If the data type of the global variable is a row type, a field of the global row variable can be referenced
anywhere that a global variable with the same type as the field can be referenced. The global variable
name that qualifies the field name is resolved in the same way as any other global variable name.

Assignment
The value of a global variable can be changed if both of the following conditions are true:

• The global variable is not a read-only variable.
• The authorization ID of the statement is authorized to write to the global variable.

A value can be assigned to a global variable using any of the following SQL statements:

• A SET variable statement with a global variable as the target variable
• An EXECUTE, FETCH, SELECT INTO, or VALUE INTO statement with a global variable as an assignment

target in the INTO clause
• A CALL statement with a global variable as an argument for an OUT or INOUT parameter of the

procedure
• A function invocation with a global variable as an argument for an OUT or INOUT parameter of the

function (this is supported only for the source expression of a SET variable statement).

Chapter 1. Structured Query Language (SQL) 111

Retrieval
The value of a global variable is obtained by referencing the variable from within the SQL context where
the value is needed.

The following table shows when the value of a global variable is read, for the indicated reference of that
global variable.

Table 18. When the value of a global variable is read, based on the reference context

Context of the global variable reference
The reference uses the value of the global
variable at the beginning of:

An SQL statement in a compound SQL (inlined)
statement

The compound SQL (inlined) statement

An SQL statement in a compound SQL (compiled)
statement

The SQL statement within the compound SQL
(compiled) statement

An SQL statement, possibly with a function
invocation or a trigger activation1

The SQL statement

An SQL statement in an invoked inlined SQL
function

The SQL statement invoking the inlined SQL
function

An SQL statement in an activated inlined trigger The SQL statement activating the inlined trigger

An SQL statement in an invoked inlined SQL
method

The SQL statement invoking the inlined SQL
method

An SQL statement in an invoked compiled SQL
function

The SQL statement in the compiled SQL function

An SQL statement in an activated compiled trigger The SQL statement in the compiled trigger

An SQL statement in an invoked external routine The SQL statement in the external routine

Note: 1 In this table, the SQL statement that might call a function or activate a trigger does not include
the compound SQL (inlined) statement or the compound SQL (compiled) statement.

Functions
A function is an operation denoted by a function name followed by one or more operands that are
enclosed in parentheses.

A function represents a relationship between a set of input values and a set of result values. The
input values to a function are called arguments. For example, the TIMESTAMP function can be passed
arguments of type DATE and TIME, and the result is a TIMESTAMP.

There are several ways to classify functions.

One way is to classify functions as ether built-in or user-defined.

• Built-in functions are functions provided with the database manager. Built-in functions include
aggregate functions (for example, AVG), operator functions (for example, +), casting functions (for
example, DECIMAL), scalar functions (for example, CEILING), and table functions (for example,
BASE_TABLE). Built-in functions are generally defined in schemas that begin with 'SYS' (for example,
SYSIBM, SYSFUN, and SYSIBMADM) although some are also defined in schemas that begin with 'DB2'
(for example DB2MQ).

• User-defined functions are functions that are created using an SQL data definition statement and
registered to the database manager in the catalog. User-defined schema functions are created using
the CREATE FUNCTION statement.User-defined module functions are created using the ALTER MODULE
ADD FUNCTION or ALTER MODULE PUBLISH FUNCTION statements. A set of user-defined module
functions is provided with the database manager in a set of modules in a schema called SYSIBMADM. A

112 IBM Db2 V11.5: SQL Reference

user-defined function resides in the schema in which it was created or in the module where it was added
or published.

User-defined functions extend the capabilities of the database system by adding function definitions
(provided by users or third party vendors) that can be applied in the database engine itself. Extending
database functions lets the database exploit the same functions in the engine that an application uses,
providing more synergy between application and database.

Another way to classify a user-defined function is as an external function, an SQL function, a sourced
function, or an interface function:

• An external function is defined to the database with a reference to an object code library, and a function
within that library that will be executed when the function is invoked. External functions cannot be
aggregate functions.

• An SQL function is defined to the database using only SQL statements, including at least one RETURN
statement. It can return a scalar value, a row, or a table. SQL functions cannot be aggregate functions.

• A sourced function is defined to the database with a reference to another built-in or user-defined
function that is already known to the database. Sourced functions can be scalar functions or aggregate
functions. They are useful for supporting existing functions with user-defined types.

• An interface function is defined to the database with reference to several user-defined routines that are
already known to the database. Interface functions can be aggregate functions only.

Another way to classify functions is as scalar, aggregate, row, or table function, depending on the input
data values and result values. A scalar function is a function that returns a single-valued answer each time
it is called. For example, the built-in function SUBSTR() is a scalar function. Scalar UDFs can be either
external or sourced.

An aggregate function is one which conceptually is passed a set of like values (a column) and returns
a single-valued answer. An example of an aggregate function is the built-in function AVG(). A column
UDF, which is sourced upon one of the built-in aggregate functions, can be defined. This is useful for
distinct types. For example, if there is a distinct type SHOESIZE defined with base type INTEGER, a UDF
AVG(SHOESIZE), which is sourced on the built-in function AVG(INTEGER), could be defined, and it would
be an aggregate function. An aggregate interface function, which is sourced on multiple user-defined
routines, can be defined.

A row function is a function that returns one row of values. It can be used in a context where a row
expression is supported. It can also be used as a transform function, mapping attribute values of a
structured type into values in a row. A row function must be defined as an SQL function.

A table function is a function that returns a table to the SQL statement which references it. It may only be
referenced in the FROM clause of a SELECT statement. Such a function can be used to apply SQL language
processing power to data that does not reside in the database, or to convert such data into a table in the
database. A table function can read a file, get data from the Web, or access a Lotus Notes® database and
return a result table. This information can be joined with other tables in the database. A table function can
be defined as an external function or as an SQL function. (A table function cannot be a sourced function.)

Function signatures
A schema function is identified by its schema name, a function name, the number of parameters, and
the data types of its parameters. A module function is identified by its schema name, module name, a
function name, the number of parameters, and the data types of its parameters. This identification of a
schema function or a module function is called a function signature, which must be unique within the
database; for example, TEST.RISK(INTEGER). There can be more than one function with the same name
in a schema or a module, provided that the number of parameters or the data types of the parameters
are different. A function name for which there are multiple function instances with the same number
of parameters is called an overloaded function. A function name can be overloaded within a schema, in
which case there is more than one function by that name with the same number of parameters in the
schema. Similarly, a function name can be overloaded within a module, in which case there is more than
one function by that name with the same number of parameters in the module. These functions must
have different parameter data types. Functions can also be overloaded across the schemas of an SQL

Chapter 1. Structured Query Language (SQL) 113

path, in which case there is more than one function by that name with the same number of parameters
in different schemas of the SQL path. These functions do not necessarily have different parameter data
types.

Function invocation
Each reference to a function conforms to the following syntax:

function-name (
1

ALL

DISTINCT

,

argument

)

argument

parameter-name =>

expression

row-expression

DEFAULT

Notes:
1 The ALL or DISTINCT keyword can be specified for certain built-in aggregate functions or a user-
defined function that is sourced on certain built-in aggregate functions. The ALL keyword can be
specified for an aggregate interface function.

In the syntax shown previously, expression and row-expression cannot include an aggregate function. See
"Expressions" for other rules for expression.

A function is invoked by referring (in an allowable context) to its qualified or unqualified function name
followed by the list of arguments enclosed in parentheses. The possible qualifiers for a function name are:

• A schema name
• An unqualified module name
• A schema-qualified module name

The qualifier used when invoking a function determines the scope used to search for a matching function.

• If a schema-qualified module name is used as the qualifier, the scope is the specified module.
• If a single identifier is used as the qualifier, the scope includes:

– The schema that matches the qualifier
– One of the following modules:

- The invoking module, if the invoking module name matches the qualifier
- The first module in a schema in the SQL path that matches the qualifier

• If no qualifier is used, the scope includes the schemas in the SQL path and, if the function is invoked
from within a module object, the same module from which the function is invoked.

For static SQL statements, the SQL path is specified using the FUNCPATH bind option. For dynamic SQL
statements, the SQL path is the value of the CURRENT PATH special register.

When any function is invoked, the database manager must determine which function to execute. This
process is called function resolution and applies to both built-in and user-defined functions. It is
recommended that function invocations intending to invoke a user-defined function be fully qualified.
This improves performance of function resolution and prevents unexpected function resolution results as
new functions are added or privileges granted.

An argument is a value passed to a function upon invocation or the specification of DEFAULT. When a
function is invoked in SQL, it is passed a list of zero or more arguments. They are positional in that
the semantics of an argument are determined by its position in the argument list. A parameter is a
formal definition of an input to a function or an output from a function. When a function is defined to

114 IBM Db2 V11.5: SQL Reference

the database, either internally (a built-in function) or by a user (a user-defined function), its parameters
(zero or more) are specified, and the order of their definitions defines their positions and their semantics.
Therefore, every parameter is a particular positional input to a function or an output from a function.
On invocation, an argument is assigned to a parameter using either the positional syntax or the named
syntax. If using the positional syntax, an argument corresponds to a particular parameter according to
its position in the list of arguments. If using the named syntax, an argument corresponds to a particular
parameter by the name of the parameter. When an argument is assigned to a parameter using the named
syntax, then all the arguments that follow it must also be assigned using the named syntax (SQLSTATE
4274K). The name of a named argument can appear only once in a function invocation (SQLSTATE
4274K). In cases where the data types of the arguments of the function invocation are not a match to
the data types of the parameters of the selected function, the arguments are converted to the data type
of the parameter at execution time using the same rules as assignment to columns. This includes the
case where precision, scale, or length differs between the argument and the parameter. In cases where
the arguments of the function invocation are the specification of DEFAULT, the actual value used for the
argument is the value specified as the default for the corresponding parameter in the function definition.
If no default value was defined for the parameter, the null value is used. If an untyped expression (a
parameter marker, a NULL keyword, or a DEFAULT keyword) is used as the argument, the data type
associated with the argument is determined by the parameter data type of the parameter of the selected
function.

Access to schema functions is controlled through the EXECUTE privilege on the schema functions. If the
authorization ID of the statement invoking the function does not have EXECUTE privilege, the schema
function will not be considered by the function resolution algorithm, even if it is a better match. Built-in
functions in the SYSIBM and SYSFUN schemas have the EXECUTE privilege implicitly granted to PUBLIC.

Access to module functions is controlled through EXECUTE privilege on the module for all functions
within the module. The authorization ID of the statement invoking the function might not have EXECUTE
privilege on a module. In such cases, module functions within that module, unlike schema functions, are
still considered by the function resolution algorithm even though they cannot be executed.

When the user-defined function is invoked, the value of each of its arguments is assigned, using storage
assignment, to the corresponding parameter of the function. Control is passed to external functions
according to the calling conventions of the host language. When execution of a user-defined scalar
function or a user-defined aggregate function is complete, the result of the function is assigned, using
storage assignment, to the result data type. For details on the assignment rules, see "Assignments and
comparisons".

Table functions can be referenced only in the FROM clause of a subselect. For more information on
referencing a table function, see “table-reference” on page 644.

Function resolution
After a function is invoked, the database manager must determine which function to execute. This
process is called function resolution and applies for both built-in and user-defined functions.

The database manager first determines the set of candidate functions based on the following information:

• The qualification of the name of the invoked function
• The context that invokes the function
• The unqualified name of the invoked function
• The number of arguments specified
• Any argument names that are specified
• The authorization of schema functions.

See “Determining the set of candidate functions” on page 116 for details.

The database manager then determines the best fit from the set of candidate functions based on the data
types of the arguments of the invoked function as compared with the data types of the parameters of the
functions in the set of candidate functions. The SQL path and number of parameters is also considered.
See “Determining the best fit” on page 117 for details.

Chapter 1. Structured Query Language (SQL) 115

Once a function is selected, it is still possible for an error to be returned for one of the following reasons:

• If a module function is selected and either the function is invoked from outside a module or the function
is invoked from within a module object and the qualifier does not match the context module name, the
authorization ID of the statement that invoked the function must have EXECUTE privilege on the module
that contains the selected function (SQLSTATE 42501).

• If a function is selected, its successful use depends on it being invoked in a context in which the
returned result is allowed. For example, if the function returns a table where a table is not allowed, an
error is returned (SQLSTATE 42887).

• If a cast function is selected, either built-in or user-defined, and any argument would need to be
implicitly cast (not promoted) to the data type of the parameter, an error is returned (SQLSTATE 42884).

• If a function invocation involves an argument with an unnamed row type, an error is returned (SQLSTATE
42884) if either of the following conditions occur:

– The number of fields of the argument does not match the number of fields of the parameter.
– The data types of the fields of the argument are not assignable to the corresponding data type of the

fields of the parameter.

Determining the set of candidate functions
• Let A be the number of arguments in a function invocation.
• Let P be the number of parameters in a function signature.
• Let N be the number of parameters in a function signature without a defined default.

Candidate functions for resolution of a function invocation are selected based on the following criteria:

• Each candidate function has a matching name and applicable number of parameters. An applicable
number of parameters satisfies the condition N ≤ A ≤ P.

• Each candidate function has parameters such that for each named argument in the function invocation
there exists a parameter with a matching name that does not already correspond to a positional
(unnamed) argument.

• Each parameter of a candidate function that does not have a corresponding argument in the function
invocation, specified by either position or name, is defined with a default.

• Each candidate function from a set of one or more schemas has the EXECUTE privilege associated with
the authorization ID of the statement invoking the function.

• Each candidate function from a module other than the context module is a published module function.

The functions selected for the set of candidate functions are from one or more of the following search
spaces.

1. The context module, that is, the module which contains the module object that invoked the function
2. A set of one or more schemas
3. A module other than the context module

The specific search spaces considered are affected by the qualification of the name of the invoked
function.

• Qualified function invocation: When a function is invoked with a function name and a qualifier, the
database manager uses the qualifier and, in some cases, the context of the invoked function to
determine the set of candidate functions.

1. If a function is invoked from within a module object using a function name with a qualifier, the
database manager considers if the qualifier matches the context module name. If the qualifier is a
single identifier, then the schema name of the module is ignored when determining a match. If the
qualifier is a two-part identifier, then it is compared to the schema-qualified module name when
determining a match. If the qualifier matches the context module name, the database manager
searches the context module for candidate functions.

116 IBM Db2 V11.5: SQL Reference

If one or more candidate functions are found in the context module, then this set of candidate
functions is processed for best fit without consideration of possible candidate functions in any other
search space (see "Determining the best fit"). Otherwise, continue to the next search space.

2. If the qualifier is a single identifier, the database manager considers the qualifier as a schema name
and searches that schema for candidate functions.

If one or more candidate functions are found in the schema, then this set of candidate functions
is processed for best fit without consideration of possible candidate functions in any other search
space (see "Determining the best fit"). Otherwise, continue to the next search space, if applicable.

3. If the function is invoked from outside a module or the qualifier does not match the context module
name when it is invoked from within a module object, the database manager considers the qualifier
as a module name. Without considering EXECUTE privilege on modules, the database manager then
selects the first module that matches based on the following criteria:

– If the module name is qualified with a schema name, select the module with that schema name
and module name.

– If the module name is not qualified with a schema name, select the module with that module
name that is found in the schema earliest in the SQL path.

– If the module is not found using the SQL path, select the module public alias with that module
name.

If a matching module is not found, then there are no candidate functions. If a matching module is
found, the database manager searches the selected module for candidate functions.

If one or more candidate functions are found in the selected modules, then this set of candidate
functions is processed for best fit (see "Determining the best fit").

• Unqualified function invocation: When a function is invoked without a qualifier, the database manager
considers the context of the invoked function to determine the sets of candidate functions.

1. If a function is invoked with an unqualified function name from within a module object, the database
manager searches the context module for candidate functions.

If one or more candidate functions are found in the context module, then these candidate functions
are included with any candidate functions from the schemas in the SQL path (see next item).

2. If a function is invoked with an unqualified function name, either from within a module object or from
outside a module, the database manager searches the list of schemas in the SQL path to resolve
the function instance to execute. For each schema in the SQL path (see "SQL path"), the database
manager searches the schema for candidate functions.

If one or more candidate functions are found in the schemas in the SQL path, then these candidate
functions are included with any candidate functions from the context module (see previous item).
This set of candidate functions is processed for best fit (see "Determining the best fit").

If the database manager does not find any candidate functions, an error is returned (SQLSTATE 42884).

Determining the best fit
The set of candidate functions may contain one function or more than one function with the same name.
In either case, the data types of the parameters, the position of the schema in the SQL path, and the
total number of parameters of each function in the set of candidate functions are used to determine if the
function meets the best fit requirements.

If the set of candidate functions contains more than one function and named arguments are used in the
function invocation, the ordinal position of the parameter corresponding to a named argument must be
the same for all candidate functions (SQLSTATE 4274K).

The term set of parameters is used to refer to all of the parameters at the same position in the parameter
lists (where such a parameter exists) for the set of candidate functions. The corresponding argument
of a parameter is determined based on how the arguments are specified in the function invocation. For
positional arguments, the corresponding argument to a parameter is the argument in the same position
in the function invocation as the position of the parameter in the parameter list of the candidate function.

Chapter 1. Structured Query Language (SQL) 117

For named arguments, the corresponding argument to a parameter is the argument with the same name
as the parameter. In this case, the order of the arguments in the function invocation is not considered
while determining the best fit. If the number of parameters in a candidate function is greater than the
number of arguments in the function invocation, each parameter that does not have a corresponding
argument is processed as if it does have a corresponding argument that has the DEFAULT keyword as the
value.

The following steps are used to determine the function that is the best fit:
Step 1: Considering arguments that are typed expressions

The database manager determines the function, or set of functions, that meet the best fit
requirements for the invocation by comparing the data type of each parameter with the data type
of the corresponding argument.

When determining whether the data type of a parameter is the same as the data type of its
corresponding argument:

• Synonyms of data types match. For example, FLOAT and DOUBLE are considered to be the same.
• Attributes of a data type such as length, precision, scale, and code page are ignored. Therefore,

CHAR(8) and CHAR(35) are considered to be the same, as are DECIMAL(11,2), and DECIMAL(4,3).

A subset of the candidate functions is obtained by considering only those functions for which the data
type of each argument of the function invocation that is not an untyped expression matches or is
promotable to the data type of the corresponding parameter of the function instance. If the argument
of the function invocation is an untyped expression, the data type of the corresponding parameter can
be any data type. The precedence list for the promotion of data types in “Promotion of data types”
on page 46 shows the data types that fit (considering promotion) for each data type in best-to-worst
order. If this subset is not empty, then the best fit is determined using the Promotable process on
this subset of candidate functions. If this subset is empty, then the best fit is determined using the
Castable process on the original set of candidate functions.
Promotable process

This process determines the best fit only considering whether arguments in the function
invocation match or can be promoted to the data type of the corresponding parameter of the
function definition. For the subset of candidate functions, the parameter lists are processed from
left to right, processing the set of parameters in the first position from the subset of candidate
functions before moving on to the set of parameters in the second position, and so on. The
following steps are used to eliminate candidate functions from the subset of candidate functions
(only considering promotion):

1. If one candidate function has a parameter where the data type of the corresponding argument
fits (only considering promotion) the data type of the parameter better than other candidate
functions, those candidate functions that do not fit the function invocation equally well are
eliminated. The precedence list for the promotion of data types in “Promotion of data types”
on page 46 shows the data types that fit (considering promotion) for each data type in best-to-
worst order.

2. If the data type of the corresponding argument is an untyped expression, no candidate
functions are eliminated.

3. These steps are repeated for the next set of parameters from the remaining candidate
functions until there are no more sets of parameters.

Castable process
This process determines the best fit first considering, for each parameter, if the data type of
the corresponding argument in the function invocation matches or can be promoted to the data
type of the parameter of the function definition. Then, for each set of parameters where no
corresponding argument has a data type that was promotable, the database manager considers,
for each parameter, if the data type of the corresponding argument can be implicitly cast for
function resolution to the data type of the parameter.

For the set of candidate functions, the parameters in the parameter lists are processed from left to
right, processing the set of parameters in the first position from all the candidate functions before

118 IBM Db2 V11.5: SQL Reference

moving on to the set of parameters in the second position, and so on. The following steps are used
to eliminate candidate functions from the set of candidate functions (only considering promotion):

1. If one candidate function has a parameter where the data type of the corresponding argument
fits (only considering promotion) the data type of the parameter better than other candidate
functions, those candidate functions that do not fit the function invocation equally well are
eliminated. The precedence list for the promotion of data types in “Promotion of data types”
on page 46 shows the data types that fit (considering promotion) for each data type in best-to-
worst order.

2. If the data type for the corresponding argument is not promotable (which includes the case
when the corresponding argument is an untyped expression) to the data type of the parameter
of any candidate function, no candidate functions are eliminated.

3. These steps are repeated for the next set of parameters from the remaining candidate
functions until there are no more sets of parameters.

If at least one set of parameters has no corresponding argument that fit (only considering
promotion) and the corresponding argument for the set of parameters has a data type, the
database manager compares each such set of parameters from left to right. The following steps
are used to eliminate candidate functions from the set of candidate functions (considering implicit
casting).

1. If all the data types of the set of parameters for all remaining candidate functions do not
belong to the same data type precedence list, as specified in “Promotion of data types” on
page 46, an error is returned (SQLSTATE 428F5).

2. If the data type of the corresponding arguments cannot be implicitly cast to the data type of
the parameters, as specified in Implicit casting for function resolution, an error is returned
(SQLSTATE 42884).

3. If one candidate function has a parameter where the data type of the corresponding argument
fits (considering implicit casting) the data type of the parameter better than other candidate
functions, those candidate functions that do not fit the function invocation equally well are
eliminated. The data type list in Implicit casting for function resolution shows the data type
that fits (considering implicit casting) better.

4. These steps are repeated for the next set of parameters which has no corresponding argument
that fit (only considering promotion) and the corresponding argument for the set of parameters
has a data type until there are no more such sets of parameters or an error occurs.

Step 2: Considering SQL path
If more than one candidate function remains and a context module exists that still includes candidate
functions, the database manager selects those functions. If there is no context module or no
candidate functions remain in the context module, the database manager selects those candidate
functions whose schema is earliest in the SQL path.

Step 3: Considering number of arguments in the function invocation
If more than one candidate function remains and if one candidate function has a number of
parameters that is less than or equal to the number of parameters of the other candidate functions,
those candidate functions that have a greater number of parameters are eliminated.

Step 4: Considering arguments that are untyped expressions
If more than one candidate function remains and at least one set of parameters has a corresponding
argument that is an untyped expression, the database manager compares each such set of
parameters from left to right. The following steps are used to eliminate candidate functions from
the set of candidate functions:

1. If all the data types of the set of parameters for all remaining candidate functions do not belong
to the same data type precedence list, as specified in “Promotion of data types” on page 46, an
error is returned (SQLSTATE 428F5).

2. If the data type of the parameter of one candidate function is further left in the data type ordering
for implicit casting than other candidate functions, those candidate functions where the data type

Chapter 1. Structured Query Language (SQL) 119

of the parameter is further right in the data type ordering are eliminated. The data type list in
"Implicit casting for function resolution" shows the data type ordering for implicit casting.

If there are still multiple candidate functions, an error is returned (SQLSTATE 428F5).

Implicit casting for function resolution
Implicit casting for function resolution is not supported for arguments with a user-defined type,
reference type, or XML data type. It is also not supported for built-in or user-defined cast functions. It
is supported for the following cases:

• A value of one data type can be cast to any other data type that is in the same data type precedence
list, as specified in “Promotion of data types” on page 46.

• A numeric or datetime data type can be cast to:

– In a Unicode database, a character data type other than CLOB or a graphic data type other than
DBCLOB.

– In a non-Unicode database, a character data type other than CLOB.
• A character data type other than CLOB can be cast to a numeric or datetime data type.
• In a Unicode database, a graphic data type other than DBCLOB can be cast to a numeric or datetime

data type.
• A character FOR BIT DATA can be cast to a binary string data type.
• A binary string data type can be cast to a character FOR BIT DATA.
• A TIMESTAMP data type can be cast to a TIME data type.
• A BOOLEAN data type can be cast to a binary integer data type, a character data type other than

CLOB, or a graphic data type other than DBCLOB.
• A binary integer data type, a character data type other than CLOB, or a graphic data type other than

DBCLOB can be cast to BOOLEAN.
• An untyped argument can be cast to any data type.

Similar to the data type precedence list for promotion, for implicit casting there is an order to the
data types that are in the group of related data types. This order is used when performing function
resolution that considers implicit casting. Table 19 on page 120 shows the data type ordering for
implicit casting for function resolution. The data types are listed in best-to-worst order (note that this
is different than the ordering in the data type precedence list for promotion). In a Unicode database,
when function resolution selects a built-in function from the SYSIBM schema and implicit casting is
necessary for some argument, if the built-in function supports both character input and graphic input
for the parameter, the argument is implicitly cast to character.

Table 19. Data type ordering for implicit casting for function resolution

Data type group
Data type list for implicit casting for function
resolution (in best-to-worst order)

Numeric data types DECFLOAT, double, real, decimal, BIGINT,
INTEGER, SMALLINT

Character and graphic string data types VARCHAR or VARGRAPHIC, CHAR or GRAPHIC,
CLOB or DBCLOB

Binary string data types VARBINARY, BINARY, BLOB

Datetime data types TIMESTAMP, DATE

Notes:

1. The lowercase types in the previous table are defined as follows:

• decimal = DECIMAL (p,s) or NUMERIC(p,s)
• real = REAL or FLOAT(n) where n is not greater than 24

120 IBM Db2 V11.5: SQL Reference

• double = DOUBLE, DOUBLE-PRECISION, FLOAT or FLOAT(n), where n is greater than 24

Shorter and longer form synonyms of the listed data types are considered to be the same as the
listed form.

2. For a Unicode database only, the following are considered to be equivalent data types:

• CHAR or GRAPHIC
• VARCHAR and VARGRAPHIC
• CLOB and DBCLOB

Table 20. Derived length of an argument when invoking a built-in scalar function from the SYSIBM schema in cases where implicit casting is needed

Source Data Type Target Type and Length

Char Graphic Varchar Vargraphi
c

Clob DBclob Binary Varbinary Blob Timestamp Decfloat Boolean

UNTYPED 127 127 254 254 32767 32767 - - 32767 12 34 5

SMALLINT 6 6 6 6 - - - - - - - 5

INTEGER 11 11 11 11 - - - - - - - 5

BIGINT 20 20 20 20 - - - - - - - 5

DECIMAL(p,s) 2+p 2+p 2+p 2+p - - - - - - - -

REAL 24 24 24 24 - - - - - - - -

DOUBLE 24 24 24 24 - - - - - - - -

DECFLOAT 42 42 42 42 - - - - - - - -

CHAR(n) - - - - - - n n n 12 34 -

VAR CHAR(n) min(n,
254)

min(n,
127)

- - - - min(n,
254)

n n 12 34 -

CLOB(n) min(n,
254)

min(n,
127)

min(n,
32672)

min(n,
16336)

- - - - - - - -

GRAPHIC(n) - - - - - - - - - 12 34 -

VARGRAPHIC(n) min(n,
254)

min(n,
127)

- - - - - - - 12 34 -

DBCLOB(n) min(n,
254)

min(n,
127)

min(n,
32672)

min(n,
16336)

- - - - - - - -

BINARY(n) n - n - - - - - - - - -

VARBINARY(n) min(n,
254)

- n - - - min(n,
254)

- - - - -

BLOB(n) min(n,
254)

- min(n,
32672)

- - - min(n,
254)

min(n,
32672)

- - - -

TIME 8 8 8 8 - - - - - - - -

DATE 10 10 10 10 - - - - - - - -

TIMESTAMP(p) if p=0 then
19 else
p+20

if p=0 then
19 else
p+20

if p=0 then
19 else
p+20

if p=0 then
19 else
p+20

- - - - - - - -

BOOLEAN 5 5 5 5 - - - - - - - -

Note
This table shows character string and graphic string data types in string units associated with a Unicode database environment where the string units default is SYSTEM. If the Unicode
database environment has the string units set to CODEUNITS32, then any character string or graphic string length attributes that represent the data type maximum length should be
considered to represent the data type maximum in CODEUNITS32. All character string or graphic string data types have the default string units of the database environment.

SQL path considerations for built-in functions
Function resolution applies to all functions, including schema functions and modules functions that are
built-in or user-defined. If a function is invoked without its schema name, the SQL path is used to resolve
the function invocation to a specific function.

The built-in functions in the SYSIBM schema are always considered during function resolution, even
when SYSIBM is not explicitly included in the SQL path. Omission of SYSIBM from the path results in the
assumption (for function and data type resolution) that SYSIBM is the first schema on the path.

For example, if a user's SQL path is defined as:

Chapter 1. Structured Query Language (SQL) 121

"SHAREFUN","SYSIBM","SYSFUN"

and there is a LENGTH function defined in schema SHAREFUN with the same number and types of
arguments as SYSIBM.LENGTH, then an unqualified reference to LENGTH in this user's SQL statement will
result in selecting SHAREFUN.LENGTH. However, if the user's SQL path is defined as:

"SHAREFUN","SYSFUN"

and the same SHAREFUN.LENGTH function exists, then an unqualified reference to LENGTH in this user's
SQL statement will result in selecting SYSIBM.LENGTH, because SYSIBM implicitly appears first in the
path.

To minimize potential problems in this area:

• Never use the names of built-in functions for user-defined functions.
• If, for some reason, it is necessary to create a user-defined function with the same name as a built-in

function, be sure to qualify any references to it.

Note: Some invocations of built-in functions do not support SYSIBM as an explicit qualifier and resolve
directly to the built-in function without considering the SQL path. Specific cases are covered in the
description of the built-in function.

Examples of function resolution
The following are examples of function resolution. (Note that not all required keywords are shown.)

• This is an example illustrating the SQL path considerations in function resolution. For this example,
there are eight ACT functions, in three different schemas, registered as:

CREATE FUNCTION AUGUSTUS.ACT (CHAR(5), INT, DOUBLE) SPECIFIC ACT_1 ...
CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT_2 ...
CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE, INT) SPECIFIC ACT_3 ...
CREATE FUNCTION JULIUS.ACT (INT, DOUBLE, DOUBLE) SPECIFIC ACT_4 ...
CREATE FUNCTION JULIUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT_5 ...
CREATE FUNCTION JULIUS.ACT (SMALLINT, INT, DOUBLE) SPECIFIC ACT_6 ...
CREATE FUNCTION JULIUS.ACT (INT, INT, DECFLOAT) SPECIFIC ACT_7 ...
CREATE FUNCTION NERO.ACT (INT, INT, DEC(7,2)) SPECIFIC ACT_8 ...

The function reference is as follows (where I1 and I2 are INTEGER columns, and D is a DECIMAL
column):

SELECT ... ACT(I1, I2, D) ...

Assume that the application making this reference has an SQL path established as:

"JULIUS","AUGUSTUS","CAESAR"

Following through the algorithm...

– The function with specific name ACT_8 is eliminated as a candidate, because the schema NERO is not
included in the SQL path.

– The function with specific name ACT_3 is eliminated as a candidate, because it has the wrong
number of parameters. ACT_1 and ACT_6 are eliminated because, in both cases, the first argument
cannot be promoted to the data type of the first parameter.

– Because there is more than one candidate remaining, the arguments are considered in order.
– For the first argument, the remaining functions, ACT_2, ACT_4, ACT_5, and ACT_7 are an exact

match with the argument type. No functions can be eliminated from consideration; therefore the next
argument must be examined.

– For this second argument, ACT_2, ACT_5, and ACT_7 are exact matches, but ACT_4 is not, so it is
eliminated from consideration. The next argument is examined to determine some differentiation
among ACT_2, ACT_5, and ACT_7.

122 IBM Db2 V11.5: SQL Reference

– For the third and last argument, neither ACT_2, ACT_5, nor ACT_7 match the argument type exactly.
Although ACT_2 and ACT_5 are equally good, ACT_7 is not as good as the other two because the type
DOUBLE is closer to DECIMAL than is DECFLOAT. ACT_7 is eliminated..

– There are two functions remaining, ACT_2 and ACT_5, with identical parameter signatures. The final
tie-breaker is to see which function's schema comes first in the SQL path, and on this basis, ACT_5 is
the function chosen.

• This is an example of a situation where function resolution will result in an error (SQLSTATE 428F5)
since more than one candidate function fits the invocation equally well, but the corresponding
parameters for one of the arguments do not belong to the same type precedence list.

For this example, there are only three function in a single schema defined as follows:

CREATE FUNCTION CAESAR.ACT (INT, VARCHAR(5), VARCHAR(5))SPECIFIC ACT_1 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DATE) SPECIFIC ACT_2 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DOUBLE) SPECIFIC ACT_3 ...

The function reference is as follows (where I1 and I2 are INTEGER columns, and VC is a VARCHAR
column):

SELECT ... ACT(I1, I2, VC) ...

Assume that the application making this reference has an SQL path established as:

"CAESAR"

Following through the algorithm ...

– Each of the candidate functions is evaluated to determine if the data type of each input argument of
the function invocation matches or is promotable to the data type of the corresponding parameter of
the function instance:

- For the first argument, all the candidate functions have an exact match with the parameter type.
- For the second argument, ACT_1 is eliminated because INTEGER is not promotable to VARCHAR.
- For the third argument, both ACT_2 and ACT_3 are eliminated since VARCHAR is not promotable to

DATE or DOUBLE, so no candidate functions remain.
– Since the subset of candidate functions is empty, the candidate functions are considered using the

castable process:

- For the first argument, all the candidate functions have an exact match with the parameter type.
- For the second argument, ACT_1 is eliminated since INTEGER is not promotable to VARCHAR.

ACT_2 and ACT_3 are better candidates.
- For the third argument, the data type of the corresponding parameters of ACT_2 and ACT_3 do not

belong to the same data type precedence list, so an error is returned (SQLSTATE 428F5).
• This example illustrates a situation where function resolution will succeed using the castable process.

For this example, there are only three function in a single schema defined as follows:

CREATE FUNCTION CAESAR.ACT (INT, VARCHAR(5), VARCHAR(5))SPECIFIC ACT_1 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DECFLOAT) SPECIFIC ACT_2 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DOUBLE) SPECIFIC ACT_3 ...

The function reference is as follows (where I1 and I2 are INTEGER columns, and VC is a VARCHAR
column):

SELECT ... ACT(I1, I2, VC) ...

Assume that the application making this reference has an SQL path established as:

"CAESAR"

Following through the algorithm ...

Chapter 1. Structured Query Language (SQL) 123

– Each of the candidate functions is evaluated to determine if the data type of each input argument of
the function invocation matches or is promotable to the data type of the corresponding parameter of
the function instance:

- For the first argument, all the candidate functions have an exact match with the parameter type.
- For the second argument, ACT_1 is eliminated because INTEGER is not promotable to VARCHAR.
- For the third argument, both ACT_2 and ACT_3 are eliminated since VARCHAR is not promotable to

DECFLOAT or DOUBLE, so no candidate functions remain.
– Since the subset of candidate functions is empty, the candidate functions are considered using the

castable process:

- For the first argument, all the candidate functions have an exact match with the parameter type.
- For the second argument, ACT_1 is eliminated since INTEGER is not promotable to VARCHAR.

ACT_2 and ACT_3 are better candidates.
- For the third argument, both DECFLOAT and DOUBLE are in the same data type precedence list and

VARCHAR can be implicitly cast to both DECFLOAT and DOUBLE. Since DECFLOAT is a better fit for
the purpose of implicit casting, ACT_2 is the best fit

• This example illustrates that during function resolution using the castable process that promotion of
later arguments takes precedence over implicit casting. For this example, there are only three function
in a single schema defined as follows:

CREATE FUNCTION CAESAR.ACT (INT, INT, VARCHAR(5))SPECIFIC ACT_1 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DECFLOAT) SPECIFIC ACT_2 ...
CREATE FUNCTION CAESAR.ACT (INT, INT, DOUBLE) SPECIFIC ACT_3 ...

The function reference is as follows (where I1 is an INTEGER column, and VC1 is a VARCHAR column
and C1 is a CHAR column):

SELECT ... ACT(I1, VC1, C1) ...

Assume that the application making this reference has an SQL path established as:

"CAESAR"

Following through the algorithm:

– Each of the candidate functions is evaluated to determine if the data type of each input argument of
the function invocation matches or is promotable to the data type of the corresponding parameter of
the function instance:

- For the first argument, all the candidate functions have an exact match with the parameter type.
- For the second argument, all candidate functions are eliminated since VARCHAR is not promotable

to INTEGER, so no candidate functions remain.
– Since the subset of candidate functions is empty, the candidate functions are considered using the

castable process

- For the first argument, all the candidate functions have an exact match with the parameter type.
- For the second argument, none of the candidate functions have a parameter to which the

corresponding argument can be promoted, so no candidate functions are eliminated.
- Since the third argument can be promoted to the parameter of ACT_1, but not to the parameters of

ACT_2 or ACT_3, ACT_1 is the best fit.

124 IBM Db2 V11.5: SQL Reference

Methods
A database method of a structured type is a relationship between a set of input data values and a set of
result values, where the first input value (or subject argument) has the same type, or is a subtype of the
subject type (also called subject parameter), of the method.

For example, a method called CITY, of type ADDRESS, can be passed input data values of type VARCHAR,
and the result is an ADDRESS (or a subtype of ADDRESS).

Methods are defined implicitly or explicitly, as part of the definition of a user-defined structured type.

Implicitly defined methods are created for every structured type. Observer methods are defined for each
attribute of the structured type. Observer methods allow applications to get the value of an attribute
for an instance of the type. Mutator methods are also defined for each attribute, allowing applications
to mutate the type instance by changing the value for an attribute of a type instance. The CITY method
described previously is an example of a mutator method for the type ADDRESS.

Explicitly defined methods, or user-defined methods, are methods that are registered to a database in
SYSCAT.ROUTINES, by using a combination of CREATE TYPE (or ALTER TYPE ADD METHOD) and CREATE
METHOD statements. All methods defined for a structured type are defined in the same schema as the
type.

User-defined methods for structured types extend the function of the database system by adding method
definitions (provided by users or third party vendors) that can be applied to structured type instances
in the database engine. Defining database methods lets the database exploit the same methods in the
engine that an application uses, providing more synergy between application and database.

External and SQL user-defined methods
A user-defined method can be either external or based on an SQL expression. An external method is
defined to the database with a reference to an object code library and a function within that library that
will be executed when the method is invoked. A method based on an SQL expression returns the result
of the SQL expression when the method is invoked. Such methods do not require any object code library,
because they are written completely in SQL.

A user-defined method can return a single-valued answer each time it is called. This value can be a
structured type. A method can be defined as type preserving (using SELF AS RESULT), to allow the
dynamic type of the subject argument to be returned as the returned type of the method. All implicitly
defined mutator methods are type preserving.

Method signatures
A method is identified by its subject type, a method name, the number of parameters, and the data types
of its parameters. This is called a method signature, and it must be unique within the database.

There can be more than one method with the same name for a structured type, provided that:

• The number of parameters or the data types of the parameters are different, or
• The methods are part of the same method hierarchy (that is, the methods are in an overriding

relationship or override the same original method), or
• The same function signature (using the subject type or any of its subtypes or supertypes as the first

parameter) does not exist.

A method name that has multiple method instances is called an overloaded method. A method name
can be overloaded within a type, in which case there is more than one method by that name for the
type (all of which have different parameter types). A method name can also be overloaded in the subject
type hierarchy, in which case there is more than one method by that name in the type hierarchy. These
methods must have different parameter types.

A method can be invoked by referring (in an allowable context) to the method name, preceded by both
a reference to a structured type instance (the subject argument), and the double dot operator. A list of
arguments enclosed in parentheses must follow. Which method is actually invoked depends on the static

Chapter 1. Structured Query Language (SQL) 125

type of the subject type, using the method resolution process described in the following section. Methods
defined WITH FUNCTION ACCESS can also be invoked using function invocation, in which case the regular
rules for function resolution apply.

If function resolution results in a method defined WITH FUNCTION ACCESS, all subsequent steps of
method invocation are processed.

Access to methods is controlled through the EXECUTE privilege. GRANT and REVOKE statements are used
to specify who can or cannot execute a specific method or a set of methods. The EXECUTE privilege (or
DATAACCESS authority) is needed to invoke a method. The definer of the method automatically receives
the EXECUTE privilege. The definer of an external method or an SQL method having the WITH GRANT
option on all underlying objects also receives the WITH GRANT option with the EXECUTE privilege on the
method. The definer (or authorization ID with the ACCESSCTRL or SECADM authority) must then grant it
to the user who wants to invoke the method from any SQL statement, or reference the method in any
DDL statement (such as CREATE VIEW, CREATE TRIGGER, or when defining a constraint). If the EXECUTE
privilege is not granted to a user, the method will not be considered by the method resolution algorithm,
even if it is a better match.

Method resolution
After method invocation, the database manager must decide which of the possible methods with the
same name is the "best fit". Functions (built-in or user-defined) are not considered during method
resolution.

An argument is a value passed to a method upon invocation. When a method is invoked in SQL, it is
passed the subject argument (of some structured type) and a list of zero or more arguments. They are
positional in that the semantics of an argument are determined by its position in the argument list. A
parameter is a formal definition of an input to a method. When a method is defined to the database, either
implicitly (system-generated for a type) or by a user (a user-defined method), its parameters are specified
(with the subject parameter as the first parameter), and the order of their definitions defines their
positions and their semantics. Therefore, every parameter is a particular positional input to a method.
On invocation, an argument corresponds to a particular parameter by virtue of its position in the list of
arguments.

The database manager uses the name of the method given in the invocation, EXECUTE privilege on the
method, the number and data types of the arguments, all the methods with the same name for the
subject argument's static type (and it's supertypes), and the data types of their corresponding parameters
as the basis for deciding whether or not to select a method. The following are the possible outcomes of
the decision process:

• A particular method is deemed to be the best fit. For example, given the methods named RISK for the
type SITE with signatures defined as:

 PROXIMITY(INTEGER) FOR SITE
 PROXIMITY(DOUBLE) FOR SITE

the following method invocation (where ST is a SITE column, DB is a DOUBLE column):

 SELECT ST..PROXIMITY(DB) ...

then, the second PROXIMITY will be chosen.

The following method invocation (where SI is a SMALLINT column):

 SELECT ST..PROXIMITY(SI) ...

would choose the first PROXIMITY, because SMALLINT can be promoted to INTEGER and is a better
match than DOUBLE, which is further down the precedence list.

When considering arguments that are structured types, the precedence list includes the supertypes of
the static type of the argument. The best fit is the function defined with the supertype parameter that is
closest in the structured type hierarchy to the static type of the function argument.

126 IBM Db2 V11.5: SQL Reference

• No method is deemed to be an acceptable fit. For example, given the same two functions in the previous
case and the following function reference (where C is a CHAR(5) column):

 SELECT ST..PROXIMITY(C) ...

the argument is inconsistent with the parameter of both PROXIMITY functions.
• A particular method is selected based on the methods in the type hierarchy and the number and data

types of the arguments passed on invocation. For example, given methods named RISK for the types
SITE and DRILLSITE (a subtype of SITE) with signatures defined as:

 RISK(INTEGER) FOR DRILLSITE
 RISK(DOUBLE) FOR SITE

and the following method invocation (where DRST is a DRILLSITE column, DB is a DOUBLE column):

 SELECT DRST..RISK(DB) ...

the second RISK will be chosen, because DRILLSITE can be promoted to SITE.

The following method reference (where SI is a SMALLINT column):

 SELECT DRST..RISK(SI) ...

would choose the first RISK, because SMALLINT can be promoted to INTEGER, which is closer on the
precedence list than DOUBLE, and DRILLSITE is a better match than SITE, which is a supertype.

Methods within the same type hierarchy cannot have the same signatures, considering parameters
other than the subject parameter.

Determining the best fit
A comparison of the data types of the arguments with the defined data types of the parameters of the
methods under consideration forms the basis for the decision of which method in a group of like-named
methods is the "best fit". Note that the data types of the results of the methods under consideration do
not enter into this determination.

For method resolution, whether the data type of the input arguments can be promoted to the data type
of the corresponding parameter is considered when determining the best fit. Unlike function resolution,
whether the input arguments can be implicitly cast to the data type of the corresponding parameter is not
considered when determining the best fit. Modules are not considered during method resolution because
methods cannot be defined in modules.

Method resolution is performed using the following steps:

1. First, find all methods from the catalog (SYSCAT.ROUTINES) such that all of the following are true:

• The method name matches the invocation name, and the subject parameter is the same type or is a
supertype of the static type of the subject argument.

• The invoker has the EXECUTE privilege on the method.
• The number of defined parameters matches the invocation.
• Each invocation argument matches the method's corresponding defined parameter in data type, or is

"promotable" to it.
2. Next, consider each argument of the method invocation, from left to right. The leftmost argument

(and thus the first argument) is the implicit SELF parameter. For example, a method defined for
type ADDRESS_T has an implicit first parameter of type ADDRESS_T. For each argument, eliminate
all functions that are not the best match for that argument. The best match for a given argument
is the first data type appearing in the precedence list corresponding to the argument data type for
which there exists a function with a parameter of that data type. Length, precision, scale, and the FOR
BIT DATA attribute are not considered in this comparison. For example, a DECIMAL(9,1) argument is
considered an exact match for a DECIMAL(6,5) parameter, a DECFLOAT(34) argument is considered

Chapter 1. Structured Query Language (SQL) 127

an exact match for a DECFLOAT(16) parameter, and a VARCHAR(19) argument is an exact match for a
VARCHAR(6) parameter.

The best match for a user-defined structured-type argument is itself; the next best match is its
immediate supertype, and so on for each supertype of the argument. Note that only the static type
(declared type) of the structured-type argument is considered, not the dynamic type (most specific
type).

3. At most, one candidate method remains after Step 2. This is the method that is chosen.
4. If there are no candidate methods remaining after step 2, an error is returned (SQLSTATE 42884).

Example of method resolution
Following is an example of successful method resolution.

There are seven FOO methods for three structured types defined in a hierarchy of GOVERNOR as a
subtype of EMPEROR as a subtype of HEADOFSTATE, registered with the following signatures:

 CREATE METHOD FOO (CHAR(5), INT, DOUBLE) FOR HEADOFSTATE SPECIFIC FOO_1 ...
 CREATE METHOD FOO (INT, INT, DOUBLE) FOR HEADOFSTATE SPECIFIC FOO_2 ...
 CREATE METHOD FOO (INT, INT, DOUBLE, INT) FOR HEADOFSTATE SPECIFIC FOO_3 ...
 CREATE METHOD FOO (INT, DOUBLE, DOUBLE) FOR EMPEROR SPECIFIC FOO_4 ...
 CREATE METHOD FOO (INT, INT, DOUBLE) FOR EMPEROR SPECIFIC FOO_5 ...
 CREATE METHOD FOO (SMALLINT, INT, DOUBLE) FOR EMPEROR SPECIFIC FOO_6 ...
 CREATE METHOD FOO (INT, INT, DEC(7,2)) FOR GOVERNOR SPECIFIC FOO_7 ...

The method reference is as follows (where I1 and I2 are INTEGER columns, D is a DECIMAL column and E
is an EMPEROR column):

 SELECT E..FOO(I1, I2, D) ...

Following through the algorithm...

• FOO_7 is eliminated as a candidate, because the type GOVERNOR is a subtype (not a supertype) of
EMPEROR.

• FOO_3 is eliminated as a candidate, because it has the wrong number of parameters.
• FOO_1 and FOO_6 are eliminated because, in both cases, the first argument (not the subject argument)

cannot be promoted to the data type of the first parameter. Because there is more than one candidate
remaining, the arguments are considered in order.

• For the subject argument, FOO_2 is a supertype, while FOO_4 and FOO_5 match the subject argument.
• For the first argument, the remaining methods, FOO_4 and FOO_5, are an exact match with the

argument type. No methods can be eliminated from consideration; therefore the next argument must be
examined.

• For this second argument, FOO_5 is an exact match, but FOO_4 is not, so it is eliminated from
consideration. This leaves FOO_5 as the method chosen.

Method invocation
Once the method is selected, there are still possible reasons why the use of the method may not be
permitted.

Each method is defined to return a result with a specific data type. If this result data type is not
compatible with the context in which the method is invoked, an error will occur. For example, assume
that the following methods named STEP are defined, each with a different data type as the result:

 STEP(SMALLINT) FOR TYPEA RETURNS CHAR(5)
 STEP(DOUBLE) FOR TYPEA RETURNS INTEGER

and the following method reference (where S is a SMALLINT column and TA is a column of TYPEA):

 SELECT 3 + TA..STEP(S) ...

128 IBM Db2 V11.5: SQL Reference

then, because there is an exact match on argument type, the first STEP is chosen. An error occurs on the
statement, because the result type is CHAR(5) instead of a numeric type, as required for an argument of
the addition operator.

Starting from the method that has been chosen, the algorithm described in "Dynamic dispatch of
methods" is used to build the set of dispatchable methods at compile time. Exactly which method is
invoked is described in "Dynamic dispatch of methods".

Note that when the selected method is a type preserving method:

• the static result type following function resolution is the same as the static type of the subject argument
of the method invocation

• the dynamic result type when the method is invoked is the same as the dynamic type of the subject
argument of the method invocation.

This may be a subtype of the result type specified in the type preserving method definition, which in turn
may be a supertype of the dynamic type that is actually returned when the method is processed.

In cases where the arguments of the method invocation were not an exact match to the data types of the
parameters of the selected method, the arguments are converted to the data type of the parameter at
execution using the same rules as assignment to columns. This includes the case where precision, scale,
or length differs between the argument and the parameter, but excludes the case where the dynamic type
of the argument is a subtype of the parameter's static type.

Dynamic dispatch of methods
Methods provide the functionality and encapsulate the data of a type. A method is defined for a type and
can always be associated with this type. One of the method's parameters is the implicit SELF parameter.
The SELF parameter is of the type for which the method has been declared. The argument that is passed
as the SELF argument when the method is invoked in a DML statement is called subject.

When a method is chosen using method resolution (see “Method resolution” on page 126), or a method
has been specified in a DDL statement, this method is known as the "most specific applicable authorized
method". If the subject is of a structured type, that method could have one or more overriding methods. A
determination is then made to select which method to invoke, based on the dynamic type (most specific
type) of the subject at run time. This determination is called "determining the most specific dispatchable
method". That process is described here.

1. Find the original method in the method hierarchy that the most specific applicable authorized method
is part of. This is called the root method.

2. Create the set of dispatchable methods, which includes the following:

• The most specific applicable authorized method.
• Any method that overrides the most specific applicable authorized method, and which is defined for

a type that is a subtype of the subject of this invocation.
3. Determine the most specific dispatchable method, as follows:

a. Start with an arbitrary method that is an element of the set of dispatchable methods and that is
a method of the dynamic type of the subject, or of one of its supertypes. This is the initial most
specific dispatchable method.

b. Iterate through the elements of the set of dispatchable methods. For each method: If the method is
defined for one of the proper subtypes of the type for which the most specific dispatchable method
is defined, and if it is defined for one of the supertypes of the most specific type of the subject,
then repeat step 2 with this method as the most specific dispatchable method; otherwise, continue
iterating.

4. Invoke the most specific dispatchable method.

Example:

Given are three types, "Person", "Employee", and "Manager". There is an original method "income",
defined for "Person", which computes a person's income. A person is by default unemployed (a child, a

Chapter 1. Structured Query Language (SQL) 129

retiree, and so on). Therefore, "income" for type "Person" always returns zero. For type "Employee" and
for type "Manager", different algorithms have to be applied to calculate the income. Hence, the method
"income" for type "Person" is overridden in "Employee" and "Manager".

Create and populate a table as follows:

 CREATE TABLE aTable (id integer, personColumn Person);
 INSERT INTO aTable VALUES (0, Person()), (1, Employee()), (2, Manager());

List all persons who have a minimum income of $40000:

 SELECT id, person, name
 FROM aTable
 WHERE person..income() >= 40000;

The method "income" for type "Person" is chosen, using method resolution, to be the most specific
applicable authorized method.

1. The root method is "income" for "Person" itself.
2. The second step of the previous algorithm is carried out to construct the set of dispatchable methods:

• The method "income" for type "Person" is included, because it is the most specific applicable
authorized method.

• The method "income" for type "Employee", and "income" for "Manager" is included, because both
methods override the root method, and both "Employee" and "Manager" are subtypes of "Person".

Therefore, the set of dispatchable methods is: {"income" for "Person", "income" for "Employee",
"income" for "Manager"}.

3. Determine the most specific dispatchable method:

• For a subject whose most specific type is "Person":

a. Let the initial most specific dispatchable method be "income" for type "Person".
b. Because there is no other method in the set of dispatchable methods that is defined for a proper

subtype of "Person" and for a supertype of the most specific type of the subject, "income" for type
"Person" is the most specific dispatchable method.

• For a subject whose most specific type is "Employee":

a. Let the initial most specific dispatchable method be "income" for type "Person".
b. Iterate through the set of dispatchable methods. Because method "income" for type "Employee"

is defined for a proper subtype of "Person" and for a supertype of the most specific type of the
subject (Note: A type is its own super- and subtype.), method "income" for type "Employee" is a
better match for the most specific dispatchable method. Repeat this step with method "income"
for type "Employee" as the most specific dispatchable method.

c. Because there is no other method in the set of dispatchable methods that is defined for a proper
subtype of "Employee" and for a supertype of the most specific type of the subject, method
"income" for type "Employee" is the most specific dispatchable method.

• For a subject whose most specific type is "Manager":

a. Let the initial most specific dispatchable method be "income" for type "Person".
b. Iterate through the set of dispatchable methods. Because method "income" for type "Manager"

is defined for a proper subtype of "Person" and for a supertype of the most specific type of the
subject (Note: A type is its own super- and subtype.), method "income" for type "Manager" is a
better match for the most specific dispatchable method. Repeat this step with method "income"
for type "Manager" as the most specific dispatchable method.

c. Because there is no other method in the set of dispatchable methods that is defined for a proper
subtype of "Manager" and for a supertype of the most specific type of the subject, method
"income" for type "Manager" is the most specific dispatchable method.

4. Invoke the most specific dispatchable method.

130 IBM Db2 V11.5: SQL Reference

Conservative binding semantics
Object resolution takes place when defining an SQL object or processing a package bind operation.

The database manager chooses which particular defined SQL object to use for an SQL object referenced in
a DDL statement or coded in an application.

At a later time, the database manager might resolve to a different SQL object, even though the original
SQL object did not change in any way. This resolution to a different SQL object happens as a result
of defining another SQL object (or adding a privilege to an existing function) that the object resolution
algorithm defines as resolved ahead of the SQL object originally chosen. Examples of SQL objects and
situations to which this resolution to a different SQL object applies include the following situations:

• Routines - a new routine could be defined that is a better fit or that is an equally good fit but earlier in
the SQL path; or a privilege could be granted to an existing routine that is a better fit or that is an equally
good fit but earlier in the SQL path

• User-defined data types - a new user-defined data type could be defined with the same name and in a
schema that is earlier in the SQL path

• Global variables - a new global variable could be defined with the same name and in a schema that is
earlier in the SQL path

• Tables or views that resolve using a public alias - an actual table, view, or private alias could be defined
with the same name in the current schema

• Sequences that resolve using a public sequence alias - an actual sequence or private sequence alias
could be defined with the same name in the current schema

• Modules that resolve to a public module alias - an actual module or private module alias could be
defined with the same name in a schema that is in the SQL path

There are instances where the database manager must be able to repeat the resolution of SQL objects as
originally resolved when the statement was processed. This is true when the following static objects are
used:

• Static DML statements in packages
• Views
• Triggers
• Check constraints
• SQL routines
• Global variables with a user-defined type or default expression
• Routines with a user-defined parameter type or default expression

For static DML statements in packages, SQL object references are resolved during a bind operation. SQL
object references in views, triggers, SQL routines, and check constraints are resolved when the SQL
object is defined or revalidated. When an existing static object is used, conservative binding semantics are
applied unless the object has been marked invalid or inoperative by a change in the database schema.

Conservative binding semantics ensure that SQL object references will be resolved using the same SQL
path, default schema, and set of routines that were used when it was previously resolved. It also ensures
that the timestamp of the definition of the SQL objects considered during conservative binding resolution
is not later than the timestamp when the statement was last bound or validated using non-conservative
binding semantics. Non-conservative binding semantics use the same SQL path and default schema as
the original generation of the package or statement, but does not consider the timestamp of the definition
of the SQL objects and does not consider any previously resolved set of routines.

Some changes to the database schema, such as dropping objects, altering objects, or revoking privileges,
can impact an SQL object so that the database manager can no longer resolve all dependent SQL objects
of an existing SQL object using conservative binding semantics.

• When this happens for a static statement in an SQL package, the package is marked inoperative.
The next use of a statement in this package will cause an implicit rebind of the package using non-

Chapter 1. Structured Query Language (SQL) 131

conservative binding semantics in order to be able to resolve to SQL objects considering the latest
changes in the database schema that caused that package to become inoperative.

• When this happens for a view, trigger, check constraint, or SQL routine, the SQL object is marked invalid.
The next use of the object causes an implicit revalidation of the SQL object using non-conservative
binding semantics.

Consider a database with two functions that have the signatures SCHEMA1.BAR(INTEGER) and
SCHEMA2.BAR(DOUBLE). Assume the SQL path contains both schemas SCHEMA1 and SCHEMA2
(although their order within the SQL path does not matter). USER1 has been granted the EXECUTE
privilege on the function SCHEMA2.BAR(DOUBLE). Suppose USER1 creates a view that invokes
BAR(INT_VAL), where INT_VAL is a column or global variable defined with the INTEGER data type.
This function reference in the view resolves to the function SCHEMA2.BAR(DOUBLE) because USER1
does not have the EXECUTE privilege on SCHEMA1.BAR(INTEGER). If USER1 is granted the EXECUTE
privilege on SCHEMA1.BAR(INTEGER) after the view has been created, the view will continue to use
SCHEMA2.BAR(DOUBLE) unless a database schema change causes the view to be marked invalid. The
view is marked invalid if a required privilege is revoked or an object it depends on gets dropped or altered.

For static DML in packages, packages can rebind implicitly, or by explicitly issuing the REBIND command
(or corresponding API), or the BIND command (or corresponding API). The implicit rebind is performed
with conservative binding semantics if the package is marked invalid, but uses non-conservative binding
semantics when the package is marked inoperative. A package is marked invalid only if an index on which
it depends is dropped or altered. The REBIND command provides the option to resolve with conservative
binding semantics (RESOLVE CONSERVATIVE) or to resolve by considering new routines, data types, or
global variables (RESOLVE ANY, which is the default option). The RESOLVE CONSERVATIVE option can be
used only if the package has not been marked inoperative by the database manager (SQLSTATE 51028).

The description of conservative binding semantics in this topic has assumed that the database
configuration parameter auto_reval has a setting other than DISABLED. The default setting for
auto_reval for new databases is DEFERRED. The default setting for auto_reval for databases
upgraded to Version 9.7 is DISABLED. If auto_reval is set to DISABLED, then conservative binding
semantics, invalidation, and revalidation behavior are the same as in releases previous to Version 9.7.
Under a auto_reval setting of DISABLED, conservative binding semantics only considers the timestamp
of the definition of the SQL objects for functions, methods, user-defined types, and global variables.
For invalidation and revalidation behavior, this means, in the case of the DROP, REVOKE, and ALTER
statements, that either the semantics are more restrictive or the impact on dependent objects is to
cascade and drop the object. In the case of packages, most database schema changes result in marking
the package invalid and using conservative binding semantics during implicit rebind. However, when
the schema is changed by dropping a dependent function and auto_reval is set to DISABLED, the
package dependent on the function is marked inoperative and there is no implicit rebind of the inoperative
package.

Expressions
An expression specifies a value. It can be a simple value, consisting of only a constant or a column name,
or it can be more complex. If you repeatedly use similar complex expressions, consider using an SQL
function to encapsulate a common expression.

Authorization
The use of some of the expressions, such as a scalar-subselect, sequence-reference, or function-
invocation, might require special authorization. For these expressions, the privileges held by the
authorization ID of the statement must include the following authorizations:
scalar-subselect

For information about authorization considerations, see "SQL Queries".
sequence-reference

The authorization to reference the sequence. For information about authorization considerations, see
"Sequence authorization".

132 IBM Db2 V11.5: SQL Reference

function-invocation
The authorization to execute a user-defined function. For information about authorization
considerations, see the "Function invocation" section in "Functions".

variable
If the variable is a global variable, the authorization to reference the global variable is required. For
information, see "Global variables".

In a Unicode database, an expression that accepts a character or graphic string will accept any string
types for which conversion is supported.

expression
operator

 ~ +
 -

function-invocation
1

(expression)

constant
2

column-name

variable
3

special-register
4

scalar-fullselect
5

labeled-duration
6

case-expression
7

cast-specification
8

field-reference
9

xmlcast-specification
10

array-element-specification
11

array-constructor
12

dereference-operation
13

method-invocation
14

OLAP-specification
15

row-change-expression
16

sequence-reference
17

subtype-treatment
18

search-condition
19

operator

Chapter 1. Structured Query Language (SQL) 133

 **

 *

 /

 %

 CONCAT

 ||
20

 +
 -

 &

 |

 ^

Notes:
1 See “Function invocation” on page 114 for more information.
2 See “Constants” on page 83 for more information.
3 See “References to variables” on page 19 for more information.
4 See “Special registers” on page 88 for more information.
5 See “Scalar fullselect” on page 145 for more information.
6 See “Durations” on page 145 for more information.
7 See “CASE expression” on page 150 for more information.
8 See “CAST specification” on page 152 for more information.
9 See “Field reference” on page 157 for more information.
10 See “XMLCAST specification” on page 158 for more information.
11 See “ARRAY element specification” on page 159 for more information.
12 See “Array constructor” on page 160 for more information.
13 See “Dereference operation” on page 161 for more information.
14 See “Method invocation” on page 162 for more information.
15 See “OLAP specification” on page 163 for more information.
16 See “ROW CHANGE expression” on page 175 for more information.
17 See “Sequence reference” on page 176 for more information.
18 See “Subtype treatment” on page 182 for more information.
19 See “Search conditions” on page 191 for more information.
20 The || operator can be used as a synonym for CONCAT.

Expressions without operators
If no operators are used, the result of the expression is the specified value. For example:

 SALARY:SALARY'SALARY'MAX(SALARY)

Expressions with the concatenation operator
The concatenation operator (CONCAT or ||) combines two operands to form a string expression.

The first operand is an expression that returns a value of any string data type, any numeric data type, or
any datetime data type. The second operand is also an expression that returns a value of any string data
type, any numeric data type, or any datetime data type. However, some data types are not supported in
combination with the data type of the first operand, as described in the remainder of this section.

Each operand can be of any of the following types:

• String (except binary string)

134 IBM Db2 V11.5: SQL Reference

• Numeric (this is implicitly cast to VARCHAR)
• Datetime (this is implicitly cast to VARCHAR)
• Boolean (this is implicitly cast to VARCHAR)

However, a binary string can be concatenated only with another binary string or with a character string
that is defined as FOR BIT DATA.

Concatenation involving both character string operands and graphic string operands is supported only
in a Unicode database. Character operands are first converted to the graphic data type before the
concatenation. Character strings defined as FOR BIT DATA cannot be cast to the graphic data type.

If either operand can be null, the result can be null, and if either is null, the result is the null value.
Otherwise, the result consists of the first operand string followed by the second. Note that no check is
made for improperly formed mixed data when doing concatenation.

The length of the result is the sum of the lengths of the operands. In a Unicode database, the string unit of
the result is the maximum string unit of the operands, as described in "Rules for result data types".

The data type and length attribute of the result is determined from that of the operands as shown in the
following table unless an operand is defined with CODEUNITS32:

Table 21. Data Type and Length of Concatenated Operands without CODEUNITS32

Operands Combined
Length
Attributes1

Result

CHAR(A) CHAR(B) <256 CHAR(A+B)

CHAR(A) CHAR(B) >255 VARCHAR(A+B)

CHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

CHAR(A) VARCHAR(B) >4000 LONG VARCHAR

CHAR(A) LONG VARCHAR - LONG VARCHAR

VARCHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

VARCHAR(A) VARCHAR(B) >4000 LONG VARCHAR

VARCHAR(A) LONG VARCHAR - LONG VARCHAR

LONG VARCHAR LONG VARCHAR - LONG VARCHAR

CLOB(A) CHAR(B) - CLOB(MIN(A+B, 2147483647))

CLOB(A) VARCHAR(B) - CLOB(MIN(A+B, 2147483647))

CLOB(A) LONG VARCHAR - CLOB(MIN(A+32700,
2147483647))

CLOB(A) CLOB(B) - CLOB(MIN(A+B, 2147483647))

GRAPHIC(A) GRAPHIC(B) <128 GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B) >127 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

GRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

VARGRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

VARGRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

Chapter 1. Structured Query Language (SQL) 135

Table 21. Data Type and Length of Concatenated Operands without CODEUNITS32 (continued)

Operands Combined
Length
Attributes1

Result

VARGRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

LONG VARGRAPHIC LONG VARGRAPHIC - LONG VARGRAPHIC

DBCLOB(A) GRAPHIC(B) - DBCLOB(MIN(A+B, 1073741823))

DBCLOB(A) VARGRAPHIC(B) - DBCLOB(MIN(A+B, 1073741823))

DBCLOB(A) LONG VARGRAPHIC - DBCLOB(MIN(A+16350,
1073741823))

DBCLOB(A) DBCLOB(B) - DBCLOB(MIN(A+B, 1073741823))

BINARY(A) BINARY(B) <256 BINARY(A+B)

BINARY(A) CHAR(B) FOR BIT DATA <256 BINARY(A+B)

BINARY(A) BINARY(B) >255 VARBINARY(A+B)

BINARY(A) CHAR(B) FOR BIT DATA >255 VARBINARY(A+B)

BINARY(A) VARBINARY(B) - VARBINARY(MIN(A+B, 32672))

BINARY(A) VARCHAR(B) FOR BIT DATA - VARBINARY(MIN(A+B, 32672))

VARBINARY(A) VARBINARY(B) - VARBINARY(MIN(A+B, 32672))

VARBINARY(A) CHAR(B) FOR BIT DATA - VARBINARY(MIN(A+B, 32672))

VARBINARY(A) VARCHAR(B) FOR BIT DATA - VARBINARY(MIN(A+B, 32672))

BLOB(A) BINARY(B) - BLOB(MIN(A+B, 2147483647))

BLOB(A) CHAR(B) FOR BIT DATA - BLOB(MIN(A+B, 2147483647))

BLOB(A) VARBINARY(B) - BLOB(MIN(A+B, 2147483647))

BLOB(A) VARCHAR(B) FOR BIT DATA - BLOB(MIN(A+B, 2147483647))

BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2147483647))

Notes
1 The numbers specified for the Combined Length Attributes are listed in OCTETS for character
strings and CODEUNITS16 for graphic strings. Refer to the next table if an operand is defined with
CODEUNITS32.

If an operand is defined with CODEUNITS32, the other operand cannot be defined as FOR BIT DATA.
Otherwise, when an operand is defined with CODEUNITS32, the data type and length attribute of the
result is determined from that of the operands as shown in the following table:

Table 22. Data Type and Length of Concatenated Operands with CODEUNITS32

Operands Combined
Length
Attributes

Result

CHAR(A) CHAR(B) <64 CHAR(A+B)

CHAR(A) CHAR(B) >63 VARCHAR(A+B)

CHAR(A) VARCHAR(B) - VARCHAR(MIN(A+B, 8168))

136 IBM Db2 V11.5: SQL Reference

Table 22. Data Type and Length of Concatenated Operands with CODEUNITS32 (continued)

Operands Combined
Length
Attributes

Result

VARCHAR(A) VARCHAR(B) - VARCHAR(MIN(A+B, 8168))

CLOB(A) CHAR(B) - CLOB(MIN(A+B, 536870911))

CLOB(A) VARCHAR(B - CLOB(MIN(A+B, 536870911))

CLOB(A) CLOB(B) - CLOB(MIN(A+B, 536870911))

GRAPHIC(A) GRAPHIC(B) <64 GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B) >63 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) - VARGRAPHIC(MIN(A+B, 8168))

VARGRAPHIC(A) VARGRAPHIC(B) - VARGRAPHIC(MIN(A+B, 8168))

DBCLOB(A) CHAR(B) - DBCLOB(MIN(A+B, 536870911))

DBCLOB(A) VARCHAR(B) - DBCLOB(MIN(A+B, 536870911))

DBCLOB(A) DBCLOB(B) - DBCLOB(MIN(A+B, 536870911))

For compatibility with previous versions or other database products, there is no automatic escalation
of results involving LONG VARCHAR or LONG VARGRAPHIC data types to LOB data types. For example,
concatenation of a CHAR(200) value and a completely full LONG VARCHAR value would result in an error
rather than in a promotion to a CLOB data type.

The code page of the result is considered a derived code page and is determined by the code page of its
operands.

One operand may be a parameter marker. If a parameter marker is used, then the data type and
length attributes of that operand are considered to be the same as those for the non-parameter marker
operand. The order of operations must be considered to determine these attributes in cases with nested
concatenation.

Example 1: If FIRSTNME is Pierre and LASTNAME is Fermat, then the following:

 FIRSTNME CONCAT ' ' CONCAT LASTNAME

returns the value Pierre Fermat.

Example 2: Given:

• The column COLA is defined as VARCHAR(5) and the value 'AA' was inserted into it.
• The character host variable :host_var is defined with length 5 and value 'BB '.
• The column COLC defined as CHAR(5) and the value 'CC' was inserted into it.
• The column COLD defined as CHAR(5) and the value 'DDDDD' was inserted into it.

The value of COLA CONCAT :host_var CONCAT COLC CONCAT COLD is 'AABB CC DDDDD'

The data type of the result is VARCHAR and its length attribute is 2+5+5+5=17. The result code page
is the section code page. For more information about section code pages, see "Derivation of code page
values".

Example 3: Given:

• COLA defined as CHAR(10)
• COLB defined as VARCHAR(5)

The parameter marker in the expression:

Chapter 1. Structured Query Language (SQL) 137

 COLA CONCAT COLB CONCAT ?

is considered VARCHAR(15), because COLA CONCAT COLB is evaluated first, giving a result that is the
first operand of the second CONCAT operation.

User-defined types and the concatenation operator
A weakly typed distinct type is the only user-defined type that can be used with the concatenation
operator. The source type of the weakly typed distinct type is used as the data type of the operand when
processing the concatenation operator.

A strongly typed user-defined type cannot be used with the concatenation operator, even if it is a strongly
typed distinct type with a source data type that is a string type. To concatenate, create a function with the
CONCAT operator as its source. For example, if there were distinct types TITLE and TITLE_DESCRIPTION,
both of which had VARCHAR(25) data types, the following user-defined function, ATTACH, can be used to
concatenate them.

 CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)
 RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternately, the concatenation operator can be overloaded using a user-defined function to add the new
data types.

 CREATE FUNCTION CONCAT (TITLE, TITLE_DESCRIPTION)
 RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Expressions with arithmetic operators
If an expression uses arithmetic operators, the result of the expression is a value derived from the
application of the operators to the values of the operands. These operators can be specified using either
infix or prefix notation. For example, the statements a+b and "+"(a,b) are equivalent.

If any operand in an arithmetic expression can be null, or if the database is configured with
dft_sqlmathwarn set to yes, the result can be null. If any operand in an arithmetic expression has
the null value, the result of the expression is the null value.

Arithmetic operators can be applied to signed numeric types and datetime types (see “Datetime
arithmetic in SQL” on page 147). For example, USER+2 is invalid. When any operand of an arithmetic
operation is a weakly typed distinct type, the operation is performed assuming that the data type of
the operand is the source type of the weakly typed distinct type. Sourced functions can be defined for
arithmetic operations on strongly typed distinct types with a source type that is a signed numeric type.

The unary plus (+) prefix operator does not change its operand. The unary minus (-) prefix operator
reverses the sign of:

• A nonzero non-decimal floating-point operand
• A decimal floating-point operand, including 0, -0, quiet NaNs, signalling NaNs, +infinity, and -infinity

If the data type of a value x is small integer, the data type of -x is large integer. The first character of the
token following a prefix operator cannot be a plus (+) or minus (-) symbol.

Table 23. Binary Arithmetic Operators

Arithmetic
Operator

Name Description

+ Addition The result is the sum of the first and second arguments.

- Subtraction The result is the first argument minus the second argument.

* Multiplication The result is the first argument multiplied by the second
argument.

138 IBM Db2 V11.5: SQL Reference

Table 23. Binary Arithmetic Operators (continued)

Arithmetic
Operator

Name Description

/ Division The result is the first argument divided by the second
argument. The value of the second operand may not be
zero, unless the calculation is performed using decimal
floating-point arithmetic.

% Modulo The result is the remainder of the first argument divided by
the second argument.

** Exponential The result is the first argument raised to the power of the
second argument. The data type of the result is:

• INTEGER if both arguments are of type INTEGER or
SMALLINT

• BIGINT if one argument is of type BIGINT and the other
argument is of type BIGINT, INTEGER, or SMALLINT

• DECFLOAT(34) if either or both arguments are of type
DECFLOAT, unless one of the following statements is true,
in which case the result is of type NAN and an invalid
operation condition is issued:

– Both arguments are zero.
– The second argument has a nonzero fractional part.
– The second argument has more than 9 digits.
– The second argument is INFINITY.

• DOUBLE otherwise

Before an arithmetic operation is performed, an operand that is a non-LOB string is converted to
DECFLOAT(34) using the rules for CAST specification. For more information, see “Casting between data
types” on page 47. Arithmetic operations involving graphic string operands can be performed only for
Unicode databases.

Arithmetic errors
If an arithmetic error such as divide-by-zero or a numeric overflow occurs during the processing
of an non-decimal floating-point expression, an error is returned (SQLSTATE 22003 or 22012). For
decimal floating-point expressions, a warning is returned (SQLSTATEs 0168C, 0168D, 0168E, or 0168F,
depending on the nature of the arithmetic condition).

A database can be configured (using dft_sqlmathwarn set to YES) so that arithmetic errors return a
null value for the non-decimal floating-point expression, the query returns a warning (SQLSTATE 01519 or
01564), and proceeds with processing the SQL statement.

For decimal floating-point expressions, the setting of dft_sqlmathwarn has no effect; arithmetic
conditions return an appropriate value (possibly a decimal floating-point special value), the query
returns a warning (SQLSTATEs 0168C, 0168D, 0168E, or 0168F), and proceeds with processing of the
SQL statement. Special values returned include plus and minus infinity and not a number. Arithmetic
expressions involving one or more decimal floating-point numbers never evaluate to a null value unless
one or more of the arguments to the expression are null.

When arithmetic errors are treated as nulls, there are implications on the results of SQL statements. The
following are some examples of these implications.

• An arithmetic error that occurs in the expression that is the argument of an aggregate function causes
the row to be ignored in the determining the result of the aggregate function. If the arithmetic error was
an overflow, this may significantly impact the result values.

Chapter 1. Structured Query Language (SQL) 139

• An arithmetic error that occurs in the expression of a predicate in a WHERE clause can cause rows to
not be included in the result.

• An arithmetic error that occurs in the expression of a predicate in a check constraint results in the
update or insert proceeding since the constraint is not false.

If these types of impacts are not acceptable, additional steps should be taken to handle the arithmetic
error to produce acceptable results. Examples:

• Add a case expression to check for divide-by-zero and set the required value for such a situation
• Add additional predicates to handle nulls (like a check constraint on not nullable columns could

become:

 check (c1*c2 is not null and c1*c2>5000)

to cause the constraint to be violated on an overflow).

Two integer operands
If both operands of an arithmetic operator are integers, the operation is performed in binary and the
result is a large integer unless either (or both) operand is a big integer, in which case the result is a big
integer. Any remainder of division is lost. The result of an integer arithmetic operation (including negation
by means of a unary minus operator) must be within the range of the result type.

Integer and decimal operands
If one operand is an integer and the other is a decimal, the operation is performed in decimal using a
temporary copy of the integer that has been converted to a decimal number with precision p and scale 0;
p is 19 for a big integer, 11 for a large integer, and 5 for a small integer.

Two decimal operands
If both operands are decimal, the operation is performed in decimal. The result of any decimal arithmetic
operation is a decimal number with a precision and scale that are dependent on the operation and the
precision and scale of the operands. If the operation is addition or subtraction and the operands do not
have the same scale, the operation is performed with a temporary copy of one of the operands. The copy
of the shorter operand is extended with trailing zeros so that its fractional part has the same number of
digits as the longer operand.

The result of a decimal operation cannot have a precision greater than 31. The result of decimal addition,
subtraction, and multiplication is derived from a temporary result which can have a precision greater than
31. If the precision of the temporary result is not greater than 31, the final result is the same as the
temporary result.

Decimal arithmetic in SQL
Use the formulas shown here to calculate the precision and scale of the result of decimal operations in
SQL. The formulas use the following symbols:
p

Precision of the first operand.
s

Scale of the first operand.
p'

Precision of the second operand.
s'

Scale of the second operand.

140 IBM Db2 V11.5: SQL Reference

Addition and subtraction
The scale of the result is MAX(s,s'). If DEC15 mode is in effect and p<15 and p'<15, the precision
is MIN(15,MAX(p-s,p'-s')+MAX(s,s')+1). Otherwise, the precision is MIN(31,MAX(p-s,p'-
s')+MAX(s,s')+1).

Multiplication
If DEC15 mode is in effect and p<15 and p'<15, the precision is MIN(15,p+p') and the scale is
MIN(15,s+s'). Otherwise the precision is MIN(31,p+p') and the scale is MIN(31,s+s').

Division
The following table shows the result precision and scale based on various factors.

Table 24. Precision and scale of the result of a decimal division

DECIMAL
arithmetic
mode1

p p' Result
precision

Result scale

default n/a n/a 31 31-p+s-s'

DEC15 <=15 <=15 15 15-(p-s+s')

DEC15 >15 <=15 31 N-(p-s+s'), where:

• N is 30-p' if p' is odd
• N is 29-p' if p' is even

DEC31 n/a <=15 31 N-(p-s+s'), where:

• N is 30-p' if p' is odd
• N is 29-p' if p' is even

DEC15 or DEC31 n/a >15 31 15-(p-s+MAX(0,s'-(p'-15)))

Note:

1. These modes are determined by the dec_arithmetic configuration parameter.

If a minimum DECIMAL division scale S is in effect, then the scale is the minimum of S and the scale
derived from Table 24 on page 141. Otherwise, a negative scale results in an error (SQLSTATE 42911).

Exponential
The result type is DOUBLE.

Floating-point operands
If either operand of an arithmetic operator is floating-point, but not decimal floating-point, the operation
is performed in floating-point. The operands are first converted to double-precision floating-point
numbers, if necessary. Thus, if any element of an expression is a floating-point number, the result of
the expression is a double-precision floating-point number.

An operation involving a floating-point number and an integer is performed with a temporary copy of
the integer which has been converted to double-precision floating-point. An operation involving a floating-
point number and a decimal number is performed with a temporary copy of the decimal number which
has been converted to double-precision floating-point. The result of a floating-point operation must be
within the range of floating-point numbers.

The order in which floating-point operands (or arguments to functions) are processed can slightly affect
results because floating-point operands are approximate representations of real numbers. Since the order
in which operands are processed may be implicitly modified by the optimizer (for example, the optimizer
may decide what degree of parallelism to use and what access plan to use), an application that uses
floating-point operands should not depend on the results being precisely the same each time an SQL
statement is executed.

Chapter 1. Structured Query Language (SQL) 141

Decimal floating-point operands
If either operand of an arithmetic operator is decimal floating-point, the operation is performed in decimal
floating-point.
Integer and decimal floating-point operands

If one operand is a small integer or large integer and the other is a DECFLOAT(n) number, the
operation is performed in DECFLOAT(n) using a temporary copy of the integer that has been converted
to a DECFLOAT(n) number. If one operand is a big integer, and the other is a decimal floating-point
number, a temporary copy of the big integer is converted to a DECFLOAT(34) number. The rules for
two-decimal floating-point operands then apply.

Decimal and decimal floating-point operands
If one operand is a decimal and the other is a decimal floating-point number, the operation is
performed in decimal floating-point using a temporary copy of the decimal number that has been
converted to a decimal floating-point number based on the precision of the decimal number. If the
decimal number has a precision less than 17, the decimal number is converted to a DECFLOAT(16)
number; otherwise, the decimal number is converted to a DECFLOAT(34) number. The rules for
two-decimal floating-point operands then apply.

Floating-point and decimal floating-point operands
If one operand is a floating-point number (REAL or DOUBLE) and the other is a DECFLOAT(n) number,
the operation is performed in decimal floating-point using a temporary copy of the floating-point
number that has been converted to a DECFLOAT(n) number.

Two decimal floating-point operands
If both operands are DECFLOAT(n), the operation is performed in DECFLOAT(n). If one operand is
DECFLOAT(16) and the other is DECFLOAT(34), the operation is performed in DECFLOAT(34).

General arithmetic operation rules for decimal floating-point
The following general rules apply to all arithmetic operations on the decimal floating-point data type:

• Every operation on finite numbers is carried out as though an exact mathematical result is computed,
using integer arithmetic on the coefficient, where possible.

If the coefficient of the theoretical exact result has no more than the number of digits that reflect its
precision (16 or 34), it is used for the result without change (unless there is an underflow or overflow
condition). If the coefficient has more than the number of digits that reflect its precision, it is rounded
to exactly the number of digits that reflect its precision (16 or 34), and the exponent is increased by the
number of digits that are removed.

The CURRENT DECFLOAT ROUNDING MODE special register determines the rounding mode.

If the value of the adjusted exponent of the result is less than Emin, the calculated coefficient and
exponent form the result, unless the value of the exponent is less than Etiny, in which case the exponent
is set to Etiny, the coefficient is rounded (possibly to zero) to match the adjustment of the exponent, and
the sign remains unchanged. If this rounding gives an inexact result, an underflow exception condition is
returned.

If the value of the adjusted exponent of the result is larger than Emax, an overflow exception condition is
returned. In this case, the result is defined as an overflow exception condition and might be infinite. It
has the same sign as the theoretical result.

• Arithmetic that uses the special value infinity follows the usual rules, where negative infinity is less
than every finite number and positive infinity is greater than every finite number. Under these rules, an
infinite result is always exact. Certain uses of infinity return an invalid operation condition. The following
list shows the operations that can cause an invalid operation condition. The result of such an operation
is a NaN when one of the operands is infinity but the other operand is not a NaN (quiet or signalling).

– Add +infinity to -infinity during an addition or subtraction operation
– Multiply 0 by +infinity or -infinity
– Divide either +infinity or -infinity by either +infinity or -infinity

142 IBM Db2 V11.5: SQL Reference

– Either argument of the QUANTIZE function is +infinity or -infinity
– The second argument of the POWER function is +infinity or -infinity
– A signaling NaN is an operand of an arithmetic operation

The following rules apply to arithmetic operations and the NaN value:

– The result of any arithmetic operation that has a NaN (quiet or signalling) operand is NaN. The sign of
the result is copied from the first operand that is a signalling NaN; if neither operand is signalling, the
sign is copied from the first operand that is a NaN. Whenever a result is a NaN, the sign of the result
depends only on the copied operand.

– The sign of the result of a multiplication or division operation is negative only if the operands have
different signs and neither is a NaN.

– The sign of the result of an addition or subtraction operation is negative only if the result is less than
zero and neither operand is a NaN, except for the following cases, in which the result is -0:

- A result is rounded to 0, and the value, before rounding, had a negative sign
- 0 is subtracted from -0
- Operands with opposite signs are added, or operands with the same sign are subtracted; the result

has a coefficient of 0, and the rounding mode is ROUND_FLOOR
- Operands are multiplied or divided, the result has a coefficient of 0, and the signs of the operands

are different
- The first argument of the POWER function is -0, and the second argument is a positive odd number
- The argument of the CEIL, FLOOR, or SQRT function is -0
- The first argument of the ROUND or TRUNCATE function is -0

The following examples show special decimal floating-point values as operands:

 INFINITY + 1 = INFINITY
 INFINITY + INFINITY = INFINITY
 INFINITY + -INFINITY = NAN -- warning
 NAN + 1 = NAN
 NAN + INFINITY = NAN
 1 - INFINITY = -INFINITY
 INFINITY - INFINITY = NAN -- warning
 -INFINITY - -INFINITY = NAN -- warning
 -0.0 - 0.0E1 = -0.0
 -1.0 * 0.0E1 = -0.0
 1.0E1 / 0 = INFINITY -- warning
 -1.0E5 / 0.0 = -INFINITY -- warning
 1.0E5 / -0 = -INFINITY -- warning
 INFINITY / -INFINITY = NAN -- warning
 INFINITY / 0 = INFINITY
 -INFINITY / 0 = -INFINITY
 -INFINITY / -0 = INFINITY

User-defined types as operands of arithmetic operators
Weakly typed distinct type operands can be used with arithmetic operators, provided that source
type of the weakly typed distinct type is supported by the arithmetic operator. There is no need to
create additional user-defined functions to support arithmetic operations for weakly typed distinct type
operands.

A strongly typed user-defined type cannot be used with arithmetic operators, even if its source data
type is numeric. To perform an arithmetic operation, create a function with the arithmetic operator as
its source. For example, if there were strongly typed distinct types INCOME and EXPENSES, both of
which had DECIMAL(8,2) data types, then the following user-defined function, REVENUE, could be used to
subtract one from the other.

 CREATE FUNCTION REVENUE (INCOME, EXPENSES)
 RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Chapter 1. Structured Query Language (SQL) 143

Alternately, the minus (-) operator could be overloaded using a user-defined function to subtract the new
data types.

 CREATE FUNCTION "-" (INCOME, EXPENSES)
 RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Expressions with bitwise operators
The bitwise operators BITAND (&), BITOR (|), BITXOR (ˆ), and BITNOT (~) correspond to the similarly
named scalar functions described in “BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT ” on page 293.

If any operand in a bitwise expression can be null, the result can be null. If any operand in a bitwise
expression has the null value, the result of the expression is the null value.

The unary bitwise BITNOT (~) prefix operator reverses each bit of the operand to which it applies.
If the data type of a value x is DECIMAL, REAL, DOUBLE, or DECFLOAT(16), the data type of ~x is
DECFLOAT(34); otherwise, the data type is the same as that of x.

Table 25. Binary Bitwise Operators

Bitwise Operator Name Description

& BITAND The result is a bit pattern in which each bit is the result of a
logical AND operation performed on the corresponding bits
of the input arguments.

| BITOR The result is a bit pattern in which each bit is the result of
a logical OR operation performed on the corresponding bits
of the input arguments.

^ BITXOR The result is a bit pattern in which each bit is the result
of a logical XOR (exclusive OR) operation performed on the
corresponding bits of the input arguments.

If the data type of either operand in a bitwise BITAND (&), BITOR (|), or BITXOR (ˆ) expression is
DECFLOAT, the data type of the result is DECFLOAT(34). Otherwise, the data type of the result is that of
the operand whose data type is ranked highest in the order of data type precedence (see Table 6 on page
46).

Before a bitwise operation is performed, an operand that is a non-LOB string is converted to
DECFLOAT(34) using the rules for CAST specification. For more information, see “Casting between data
types” on page 47. Bitwise operations involving graphic string operands can be performed only for
Unicode databases.

Precedence of operations
Expressions within parentheses and dereference operations are evaluated first and from left to right.
(Parentheses are also used in fullselects, search conditions, and functions. However, they should not be
used to arbitrarily group sections within SQL statements.) When the order of evaluation is not specified by
parentheses, operators are evaluated in the following order:

1. Unary BITNOT (~)
2. Unary positive (+) or unary negative (-) prefix
3. Exponential (**)
4. Multiplication (*), division (/), modulo (%), or concatenation (CONCAT or ||)
5. Addition (+) or subtraction (-)
6. BITAND (&), BITOR (|), or BITXOR (^).
7. Predicates.
8. Logical NOT.

144 IBM Db2 V11.5: SQL Reference

9. Logical AND.
10. Logical OR.

Operators at the same precedence level are evaluated from left to right.

Figure 2. Example illustrating the precedence of operations

Scalar fullselect
Scalar fullselect

(fullselect)

A scalar fullselect is a fullselect, enclosed in parentheses, that returns a single row consisting of a single
column value. If the fullselect does not return a row, the result of the expression is the null value. If the
select list element is an expression that is simply a column name or a dereference operation, the result
column name is based on the name of the column. The authorization required for a scalar fullselect is the
same as that required for an SQL query.

Compatability features
When the SQL_COMPAT global variable is set to 'NPS':

• The symbol ^ is interpreted as the exponential operator (equivalent to **) and not as the BITXOR
operator. The symbol ** is also interpreted as the exponential operator.

• The symbol # is interpreted as the BITXOR operator.

Datetime operations and durations
Datetime values can be incremented, decremented, and subtracted. These operations can involve
decimal numbers called durations.

Durations
A duration is a number representing an interval of time.

labeled-duration

Chapter 1. Structured Query Language (SQL) 145

 function

(expression)

constant

column-name

global-variable

host-variable

 YEAR

YEARS

MONTH

MONTHS

DAY

 DAYS
1

HOUR

HOURS

MINUTE

MINUTES

SECOND

 SECONDS
2

MICROSECOND

MICROSECONDS

Notes:
1 DAYS is the default for non-decimal numeric arithmetic involving dates and timestamps.
2 SECONDS is the default for non-decimal numeric arithmetic involving time.

A duration can be of one of the following types:
labeled duration

A specific unit of time as expressed by a number (which can be the result of an expression) followed
by one of the seven duration keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS, or
MICROSECONDS. (The singular form of these keywords is also acceptable: YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, and MICROSECOND.) The number specified is converted as if it were
assigned to a DECIMAL(15,0) number, except for SECONDS which uses DECIMAL(27,12) to allow 0 to
12 digits of fractional seconds to be included. A labeled duration can only be used as an operand of
an arithmetic operator in which the other operand is a value of data type DATE, TIME, or TIMESTAMP.
Thus, the expression HIREDATE + 2 MONTHS + 14 DAYS is valid, whereas the expression HIREDATE +
(2 MONTHS + 14 DAYS) is not. In both of these expressions, the labeled durations are 2 MONTHS and
14 DAYS.

date duration
A number of years, months, and days, expressed as a DECIMAL(8,0) number. To be properly
interpreted, the number must have the format yyyymmdd., where yyyy represents the number of
years, mm the number of months, and dd the number of days. (The period in the format indicates
a DECIMAL data type.) The result of subtracting one date value from another, as in the expression
HIREDATE - BRTHDATE, is a date duration.

time duration
A number of hours, minutes, and seconds, expressed as a DECIMAL(6,0) number. To be properly
interpreted, the number must have the format hhmmss., where hh represents the number of hours,
mm the number of minutes, and ss the number of seconds. (The period in the format indicates a
DECIMAL data type.) The result of subtracting one time value from another is a time duration.

timestamp duration
A number of years, months, days, hours, minutes, seconds, and fractional seconds, expressed as a
DECIMAL(14+s,s) number, where s is the number of digits of fractional seconds ranging from 0 to
12. To be properly interpreted, the number must have the format yyyymmddhhmmss.nnnnnnnnnnnn,
where yyyy, mm, dd, hh, mm, ss, and nnnnnnnnnnnn represent, respectively, the number of years,
months, days, hours, minutes, seconds, and fractional seconds. The result of subtracting one
timestamp value from another is a timestamp duration, with scale that matches the maximum
timestamp precision of the timestamp operands.

146 IBM Db2 V11.5: SQL Reference

Datetime arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are addition and subtraction.
If a datetime value is the operand of addition, the other operand must be a duration. The specific rules
governing the use of the addition operator with datetime values follow.

• If one operand is a date, the other operand must be a date duration or labeled duration of YEARS,
MONTHS, or DAYS.

• If one operand is a time, the other operand must be a time duration or a labeled duration of HOURS,
MINUTES, or SECONDS.

• If one operand is a timestamp, the other operand must be a duration. Any type of duration is valid.
• Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not the same as those for addition
because a datetime value cannot be subtracted from a duration, and because the operation of subtracting
two datetime values is not the same as the operation of subtracting a duration from a datetime value. The
specific rules governing the use of the subtraction operator with datetime values follow.

• If the first operand is a timestamp, the second operand must be a date, a timestamp, a string
representation of a date, a string representation of a timestamp, or a duration. If the second operand is
a string representation of a timestamp, it is implicitly converted to a timestamp with the same precision
of the first operand.

• If the second operand is a timestamp, the first operand must be a date, a timestamp, a string
representation of a date, or a string representation of a timestamp. If the first operand is a string
representation of a timestamp, it is implicitly converted to a timestamp with the same precision of the
second operand.

• If the first operand is a date, the second operand must be a date, a date duration, a string
representation of a date, or a labeled duration of YEARS, MONTHS, or DAYS.

• If the second operand is a date, the first operand must be a date, or a string representation of a date.
• If the first operand is a time, the second operand must be a time, a time duration, a string

representation of a time, or a labeled duration of HOURS, MINUTES, or SECONDS.
• If the second operand is a time, the first operand must be a time, or string representation of a time.
• Neither operand of the subtraction operator can be a parameter marker.

Date arithmetic
Dates can be subtracted, incremented, or decremented.

• The result of subtracting one date (DATE2) from another (DATE1) is a date duration that specifies the
number of years, months, and days between the two dates. The data type of the result is DECIMAL(8,0).
If DATE1 is greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is less than
DATE2, however, DATE1 is subtracted from DATE2, and the sign of the result is made negative. The
following procedural description clarifies the steps involved in the operation result = DATE1 - DATE2.

 If DAY(DATE2) <= DAY(DATE1)
 then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

 If DAY(DATE2) > DAY(DATE1)
 then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)
 where N = the last day of MONTH(DATE2).
 MONTH(DATE2) is then incremented by 1.

 If MONTH(DATE2) <= MONTH(DATE1)
 then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

 If MONTH(DATE2) > MONTH(DATE1)
 then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2).
 YEAR(DATE2) is then incremented by 1.

Chapter 1. Structured Query Language (SQL) 147

 YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

For example, the result of DATE('3/15/2000') - '12/31/1999' is 00000215. (or, a duration of 0 years, 2
months, and 15 days).

• The result of adding a duration to a date, or of subtracting a duration from a date, is itself a date. (For
the purposes of this operation, a month denotes the equivalent of a calendar page. Adding months to a
date, then, is like turning the pages of a calendar, starting with the page on which the date appears.) The
result must fall between the dates January 1, 0001 and December 31, 9999 inclusive.

If a duration of years is added or subtracted, only the year portion of the date is affected. The month is
unchanged, as is the day unless the result would be February 29 of a non-leap-year. In this case, the
day is changed to 28, and a warning indicator in the SQLCA is set to indicate the adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if necessary, years are
affected. The day portion of the date is unchanged unless the result would be invalid (September 31, for
example). In this case, the day is set to the last day of the month, and a warning indicator in the SQLCA
is set to indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of the date, and
potentially the month and year.

Date durations, whether positive or negative, may also be added to and subtracted from dates. As with
labeled durations, the result is a valid date, and a warning indicator is set in the SQLCA whenever an
end-of-month adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration is subtracted from a date,
the date is incremented by the specified number of years, months, and days, in that order. Thus, DATE1
+ X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression:

 DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS.

When a positive date duration is subtracted from a date, or a negative date duration is added to a date,
the date is decremented by the specified number of days, months, and years, in that order. Thus, DATE1
- X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression:

 DATE1 - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS.

When adding durations to dates, adding one month to a given date gives the same date one month later
unless that date does not exist in the later month. In that case, the date is set to that of the last day of
the later month. For example, January 28 plus one month gives February 28; and one month added to
January 29, 30, or 31 results in either February 28 or, for a leap year, February 29.

Note: If one or more months is added to a given date and then the same number of months is
subtracted from the result, the final date is not necessarily the same as the original date.

Time arithmetic
Times can be subtracted, incremented, or decremented.

• The result of subtracting one time (TIME2) from another (TIME1) is a time duration that specifies
the number of hours, minutes, and seconds between the two times. The data type of the result is
DECIMAL(6,0).

If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1.

If TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign of the result is
made negative. The following procedural description clarifies the steps involved in the operation result =
TIME1 - TIME2.

 If SECOND(TIME2) <= SECOND(TIME1)
 then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

148 IBM Db2 V11.5: SQL Reference

 If SECOND(TIME2) > SECOND(TIME1)
 then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).
 MINUTE(TIME2) is then incremented by 1.

 If MINUTE(TIME2) <= MINUTE(TIME1)
 then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

 If MINUTE(TIME1) > MINUTE(TIME1)
 then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).
 HOUR(TIME2) is then incremented by 1.

 HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26') - '00:32:56' is 102930. (a duration of 10 hours, 29 minutes,
and 30 seconds).

• The result of adding a duration to a time, or of subtracting a duration from a time, is itself a time.
Any overflow or underflow of hours is discarded, thereby ensuring that the result is always a time. If a
duration of hours is added or subtracted, only the hours portion of the time is affected. The minutes and
seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if necessary, hours are
affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds portion of the time, and
potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted from times. The
result is a time that has been incremented or decremented by the specified number of hours, minutes,
and seconds, in that order. TIME1 + X, where "X" is a DECIMAL(6,0) number, is equivalent to the
expression:

 TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

When subtracting a labeled duration of SECOND or SECONDS with a value that includes fractions of a
second, the subtraction is performed as if the time value has up to 12 fractional second digits but the
result is returned with the fractional seconds truncated.

Note: Although the time '24:00:00' is accepted as a valid time, it is never returned as the result of time
addition or subtraction, even if the duration operand is zero (for example, time('24:00:00')±0 seconds =
'00:00:00').

Timestamp arithmetic
Timestamps can be subtracted, incremented, or decremented.

• The result of subtracting one timestamp (TS2) from another (TS1) is a timestamp duration that specifies
the number of years, months, days, hours, minutes, seconds, and fractional seconds between the two
timestamps. The data type of the result is DECIMAL(14+s,s), where s is the maximum timestamp
precision of TS1 and TS2.

If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TS1 is less than TS2, however, TS1
is subtracted from TS2 and the sign of the result is made negative. The following procedural description
clarifies the steps involved in the operation result = TS1 - TS2:

 If SECOND(TS2,s) <= SECOND(TS1,s)
 then SECOND(RESULT,s) = SECOND(TS1,s) -
 SECOND(TS2,s).

 If SECOND(TS2,s) > SECOND(TS1,s)
 then SECOND(RESULT,s) = 60 +
 SECOND(TS1,s) - SECOND(TS2,s).
 MINUTE(TS2) is then incremented by 1.

Chapter 1. Structured Query Language (SQL) 149

The minutes part of the timestamps are subtracted as specified in the rules for subtracting times.

 If HOUR(TS2) <= HOUR(TS1)
 then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

 If HOUR(TS2) > HOUR(TS1)
 then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)
 and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified in the rules for subtracting dates.
• The result of subtracting a date (D1) from a timestamp (TS1) is the same as subtracting

TIMESTAMP(D1) from TS1. Similarly, the result of subtracting one timestamp (TS1) from a date (D2)
is the same as subtracting TS1 from TIMESTAMP(D2).

• The result of adding a duration to a timestamp, or of subtracting a duration from a timestamp is itself
a timestamp.The precision of the result timestamp matches the precision of the timestamp operand.
The date arithmetic portion is performed as previously defined, except that an overflow or underflow
of hours is carried into the date part of the result, which must be within the range of valid dates. The
time arithmetic portion is similar to time arithmetic except that it also considers the fractional seconds
included in the duration. Thus, subtracting a duration, X, from a timestamp, TIMESTAMP1, where X is a
DECIMAL(14+s,s) number, is equivalent to the expression:

 TIMESTAMP1 - YEAR(X) YEARS - MONTH(X) MONTHS - DAY(X) DAYS
 - HOUR(X) HOURS - MINUTE(X) MINUTES - SECOND(X, s) SECONDS

When subtracting a duration with non-zero scale or a labeled duration of SECOND or SECONDS with a
value that includes fractions of a second, the subtraction is performed as if the timestamp value has up
to 12 fractional second digits. The resulting value is assigned to a timestamp value with the timestamp
precision of the timestamp operand which could result in truncation of fractional second digits.

CASE expression
CASE expressions allow an expression to be selected based on the evaluation of one or more conditions.

case-expression

CASE searched-when-clause

simple-when-clause

ELSE NULL

ELSE result-expression

END
1

searched-when-clause

WHEN search-condition THEN result-expression

NULL

simple-when-clause

expression WHEN expression THEN result-expression

NULL

Notes:
1 If the result type of result-expression is a row type, then the syntax represents a row-case-expression
and can only be used where a row-expression is allowed.

In general, the value of the case-expression is the value of the result-expression following the first
(leftmost) case that evaluates to true. If no case evaluates to true and the ELSE keyword is present then
the result is the value of the result-expression or NULL. If no case evaluates to true and the ELSE keyword

150 IBM Db2 V11.5: SQL Reference

is not present then the result is NULL. Note that when a case evaluates to unknown (because of NULLs),
the case is not true and hence is treated the same way as a case that evaluates to false.

If the CASE expression is in a VALUES clause, an IN predicate, a GROUP BY clause, or an ORDER BY
clause, the search-condition in a searched-when-clause cannot be a quantified predicate, IN predicate
using a fullselect, or an EXISTS predicate (SQLSTATE 42625).

When using the simple-when-clause, the value of the expression before the first WHEN keyword is tested
for equality with the value of the expression following the WHEN keyword. The data type of the expression
before the first WHEN keyword must therefore be comparable to the data types of each expression
following the WHEN keyword(s). The expression before the first WHEN keyword in a simple-when-clause
cannot include a function that is not deterministic or has an external action (SQLSTATE 42845).

A result-expression is an expression following the THEN or ELSE keywords. There must be at least one
result-expression in the CASE expression (NULL cannot be specified for every case) (SQLSTATE 42625). All
result expressions must have compatible data types (SQLSTATE 42804).

Examples
• If the first character of a department number is a division in the organization, then a CASE expression

can be used to list the full name of the division to which each employee belongs:

 SELECT EMPNO, LASTNAME,
 CASE SUBSTR(WORKDEPT,1,1)
 WHEN 'A' THEN 'Administration'
 WHEN 'B' THEN 'Human Resources'
 WHEN 'C' THEN 'Accounting'
 WHEN 'D' THEN 'Design'
 WHEN 'E' THEN 'Operations'
 END
 FROM EMPLOYEE;

• The number of years of education are used in the EMPLOYEE table to give the education level. A CASE
expression can be used to group these and to show the level of education.

 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 CASE
 WHEN EDLEVEL < 15 THEN 'SECONDARY'
 WHEN EDLEVEL < 19 THEN 'COLLEGE'
 ELSE 'POST GRADUATE'
 END
 FROM EMPLOYEE

• Another interesting example of CASE statement usage is in protecting from division by 0 errors. For
example, the following code finds the employees who earn more than 25% of their income from
commission, but who are not fully paid on commission:

 SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE
 WHERE (CASE WHEN SALARY=0 THEN NULL
 ELSE COMM/SALARY
 END) > 0.25;

• The following CASE expressions are the same:

 SELECT LASTNAME,
 CASE
 WHEN LASTNAME = 'Haas' THEN 'President'
 ...

 SELECT LASTNAME,
 CASE LASTNAME
 WHEN 'Haas' THEN 'President'
 ...

There are two scalar functions, NULLIF and COALESCE, that are specialized to handle a subset of the
functionality provided by CASE. Table 26 on page 152 shows the equivalent expressions using CASE or
these functions.

Chapter 1. Structured Query Language (SQL) 151

Table 26. Equivalent CASE Expressions

Expression Equivalent Expression

CASE
 WHEN e1=e2 THEN NULL
 ELSE e1
END

NULLIF(e1,e2)

CASE
 WHEN e1 IS NOT NULL THEN e1
 ELSE e2
END

COALESCE(e1,e2)

CASE
 WHEN e1 IS NOT NULL THEN e1
 ELSE COALESCE(e2,...,eN)
END

COALESCE(e1,e2,...,eN)

CASE
 WHEN c1=var1 OR (c1 IS NULL AND var1 IS NULL)
 THEN 'a'
 WHEN c1=var2 OR (c1 IS NULL AND var2 IS NULL)
 THEN 'b'
 ELSE NULL
END

DECODE(c1,var1, 'a', var2, 'b')

CAST specification
The CAST specification returns the cast operand (the first operand) cast to the type specified by the
data-type. If the cast is not supported, an error is returned (SQLSTATE 42846).

cast-specification

CAST
1

(

expression

NULL

parameter-marker

AS data-type

SCOPE
2

typed-table-name

typed-view-name

cursor-cast-specification

row-cast-specification

interval-cast-specification

)

cursor-cast-specification
parameter-marker AS CURSOR

cursor-type-name

row-cast-specification
row-expression

NULL

parameter-marker

AS row-type-name

interval-cast-specification
string-constant AS INTERVAL

152 IBM Db2 V11.5: SQL Reference

data-type
built-in-type

array-type-name

distinct-type-name

structured-type-name

REF ( type-name2)

built-in-type

Chapter 1. Structured Query Language (SQL) 153

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING ( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
3

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC

( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING ( integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

( integer)

BOOLEAN

XML

SYSPROC.
DB2SECURITYLABEL

Notes:
1 For compatibility purposes, you can use :: as the type cast operator. For example, the statements
C1::INTEGER and cast(C1 as INTEGER) are equivalent.
2 The SCOPE clause only applies to the REF data type.

154 IBM Db2 V11.5: SQL Reference

3 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).

expression
If the cast operand is an expression (other than parameter marker or NULL), the result is the argument
value converted to the specified target data-type.

When casting character strings (other than CLOBs) to a character string with a different length, a
warning (SQLSTATE 01004) is returned if truncation of other than trailing blanks occurs. When casting
graphic character strings (other than DBCLOBs) to a graphic character string with a different length,
a warning (SQLSTATE 01004) is returned if truncation of other than trailing blanks occurs. For BLOB,
CLOB and DBCLOB cast operands, the warning is issued if any characters are truncated.

When casting an array, the target data type must be a user-defined array data type (SQLSTATE
42821). The data type of the elements of the array must be the same as the data type of the elements
of the target array data type (SQLSTATE 42846). The cardinality of the array must be less than or
equal to the maximum cardinality of the target array data type (SQLSTATE 2202F).

NULL
If the cast operand is the keyword NULL, the result is a null value that has the specified data-type.

parameter-marker
A parameter marker is normally considered an expression, but is documented separately in this case
because it has a special meaning. If the cast operand is a parameter-marker, the specified data-type
is considered a promise that the replacement will be assignable to the specified data type (using store
assignment for strings). Such a parameter marker is considered a typed parameter marker. Typed
parameter markers will be treated like any other typed value for the purpose of function resolution,
DESCRIBE of a select list or for column assignment.

cursor-cast-specification
A cast specification used to indicate that a parameter marker is expected to be a cursor type. It can be
used wherever an expression is supported in contexts that allow cursor types.
parameter-marker

The cast operand is a parameter marker and is considered a promise that the replacement will be
assignable to the specified cursor type.

CURSOR
Specifies the built-in data type CURSOR.

cursor-type-name
Specifies the name of a user-defined cursor type.

row-cast-specification
A cast specification where the input is a row value and the result is a user-defined row type. A
row-cast-specification is valid only where a row-expression is allowed.
row-expression

The data type of row-expression must be a variable of row type that is anchored to the definition of
a table or view. The data type of row-expression must not be a user-defined row type (SQLSTATE
42846).

NULL
Specifies that the cast operand is the null value. The result is a row with the null value for every
field of the specified data type.

parameter-marker
The cast operand is a parameter marker and is considered a promise that the replacement will be
assignable to the specified row-type-name.

row-type-name
Specifies the name of a user-defined row type. The row-expression must be castable to row-type-
name (SQLSTATE 42846).

interval-cast-specification
A cast specification where the input is a character string representation of an interval and the result is
a decimal duration. The following statements are equivalent:

Chapter 1. Structured Query Language (SQL) 155

CAST (string-constant as INTERVAL)
INTERVAL string-constant

For more information about possible string-constant values, see “INTERVAL ” on page 376.
data-type

The name of an existing data type. If the type name is not qualified, the SQL path is used to perform
data type resolution. A data type that has associated attributes, such as length or precision and scale,
should include these attributes when specifying data-type.

• CHAR defaults to a length of 1
• BINARY defaults to a length of 1
• DECIMAL defaults to a precision of 5 and a scale of 0
• DECFLOAT defaults to a precision of 34 if not specified

The FOR SBCS DATA clause or the FOR MIXED DATA clause (only one is supported depending on
whether or not the database supports the graphic data type) can be used to cast a FOR BIT DATA
string to the database code page. Restrictions on the supported data types are based on the specified
cast operand.

• For a cast operand that is an expression, the supported target data types depend on the data type
of the cast operand (source data type). If the length attribute is not specified for a VARCHAR,
VARGRAPHIC, NVARCHAR, or VARBINARY data type, the length attribute is determined based on
the data type of the first argument using the rules of the corresponding built-in cast function when
specified with no length argument.

• For a cast operand that is the keyword NULL, any existing data type can be used. If the length
attribute is not specified for a VARCHAR, VARGRAPHIC, NVARCHAR, or VARBINARY data type, a
length attribute of 1 is used.

• For a cast operand that is a parameter marker, the target data type can be any existing data type.
If the data type is a user-defined distinct type, the application using the parameter marker will use
the source data type of the user-defined distinct type. If the data type is a user-defined structured
type, the application using the parameter marker will use the input parameter type of the TO SQL
transform function for the user-defined structured type. If the length attribute is not specified for a
VARCHAR, VARGRAPHIC, NVARCHAR, or VARBINARY data type, a length attribute of 254 is used.

If the data type is a distinct type defined with data type constraints, the data type constraints
are applied and the constraints must evaluate to true or unknown otherwise an error is returned
(SQLSTATE 23528).

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SCOPE
When the data type is a reference type, a scope may be defined that identifies the target table or
target view of the reference.
typed-table-name

The name of a typed table. The table must already exist (SQLSTATE 42704). The cast must be to
data-type REF(S), where S is the type of typed-table-name (SQLSTATE 428DM).

typed-view-name
The name of a typed view. The view must exist or have the same name as the view being created
that includes the cast as part of the view definition (SQLSTATE 42704). The cast must be to
data-type REF(S), where S is the type of typed-view-name (SQLSTATE 428DM).

When numeric data is cast to character data, the result data type is a fixed-length character string. When
character data is cast to numeric data, the result data type depends on the type of number specified. For
example, if cast to integer, it becomes a large integer.

156 IBM Db2 V11.5: SQL Reference

Examples
• An application is only interested in the integer portion of the SALARY (defined as decimal(9,2)) from the

EMPLOYEE table. The following query, including the employee number and the integer value of SALARY,
could be prepared.

 SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE

• Assume the existence of a distinct type called T_AGE that is defined on SMALLINT and used to create
column AGE in PERSONNEL table. Also assume the existence of a distinct type called R_YEAR that
is defined on INTEGER and used to create column RETIRE_YEAR in PERSONNEL table. The following
update statement could be prepared.

 UPDATE PERSONNEL SET RETIRE_YEAR =?
 WHERE AGE = CAST(? AS T_AGE)

The first parameter is an untyped parameter marker that would have a data type of R_YEAR, although
the application will use an integer for this parameter marker. This does not require the explicit CAST
specification because it is an assignment.

The second parameter marker is a typed parameter marker that is cast as a distinct type T_AGE. This
satisfies the requirement that the comparison must be performed with compatible data types. The
application will use the source data type (which is SMALLINT) for processing this parameter marker.

Successful processing of this statement assumes that the SQL path includes the schema name of the
schema (or schemas) where the two distinct types are defined.

• An application supplies a value that is a series of bits, for example an audio stream, and it should not
undergo code page conversion before being used in an SQL statement. The application could use the
following CAST:

 CAST(? AS VARCHAR(10000) FOR BIT DATA)

• Assume that an array type and a table have been created as follows:

 CREATE TYPE PHONELIST AS DECIMAL(10, 0) ARRAY[5]

 CREATE TABLE EMP_PHONES
 (ID INTEGER,
 PHONENUMBER DECIMAL(10,0))

The following procedure returns an array with the phone numbers for the employee with ID 1775. If
there are more than five phone numbers for this employee, an error is returned (SQLSTATE 2202F).

 CREATE PROCEDURE GET_PHONES(OUT EPHONES PHONELIST)
 BEGIN
 SELECT CAST(ARRAY_AGG(PHONENUMBER) AS PHONELIST)
 INTO EPHONES
 FROM EMP_PHONES
 WHERE ID = 1775;
 END

Field reference
A field of a row type is referenced by using the field name qualified by a variable that returns a row type
which includes a field with that field name, or an array element specification that returns a row type which
includes a field with that field name.

field-reference
row-variable-name

row-array-element-specification

.field-name

row-variable-name
The name of a variable with a data type that is a row type.

Chapter 1. Structured Query Language (SQL) 157

row-array-element-specification
An array-element-specification where the data type of the array element is a row type.

field-name
The name of a field within the row type.

Examples
1. To reference a field of a simple row type:

CREATE OR REPLACE TYPE REC_TYPE AS ROW
(
 ID INTEGER,
 NAME VARCHAR(10)
)@

BEGIN
 DECLARE NAME VARCHAR(10);
 DECLARE TMPREC REC_TYPE;
 SET NAME = TMPREC.NAME;
END @

2. To reference a field of a nested row type, you must assign the inner row to a temporary variable before
a field of this inner row can be referenced:

CREATE OR REPLACE TYPE INNER_REC_TYPE AS ROW
(
 ID INTEGER,
 NAME VARCHAR(10)
)@
CREATE OR REPLACE TYPE REC_TYPE AS ROW
(
 INNER_REC INNER_REC_TYPE
)@
CREATE OR REPLACE TYPE ARRAY_TYPE AS REC_TYPE ARRAY[INTEGER]@

BEGIN
 DECLARE TMPRECORD INNER_REC_TYPE;
 DECLARE TMPARRAY ARRAY_TYPE;
 DECLARE NAME VARCHAR(10);

 SET TMPRECORD = TMPARRAY[1].INNER_REC;
 SET NAME = TMPRECORD.NAME;
 END @

XMLCAST specification
The XMLCAST specification returns the cast operand (the first operand) cast to the type specified by the
data type. XMLCAST supports casts involving XML values, including conversions between non-XML data
types and the XML data type. If the cast is not supported, an error is returned (SQLSTATE 22003).

xmlcast-specification
XMLCAST (expression

NULL

parameter-marker

AS data-type)

expression
If the cast operand is an expression (other than a parameter marker or NULL), the result is the
argument value converted to the specified target data type. The expression or the target data type
must be the XML data type (SQLSTATE 42846).

NULL
If the cast operand is the keyword NULL, the target data type must be the XML data type (SQLSTATE
42846). The result is a null XML value.

parameter-marker
If the cast operand is a parameter marker, the target data type must be XML (SQLSTATE 42846). A
parameter marker is normally considered to be an expression, but is documented separately in this

158 IBM Db2 V11.5: SQL Reference

case because it has special meaning. If the cast operand is a parameter marker, the specified data
type is considered to be a promise that the replacement will be assignable to the specified (XML)
data type (using store assignment). Such a parameter marker is considered to be a typed parameter
marker, which is treated like any other typed value for the purpose of function resolution, a describe
operation on a select list, or column assignment.

data-type
The name of an existing SQL data type. If the name is not qualified, the SQL path is used to perform
data type resolution. If a data type has associated attributes, such as length or precision and scale,
these attributes should be included when specifying a value for data-type. CHAR defaults to a length
of 1, and DECIMAL defaults to a precision of 5 and a scale of 0 if not specified. Restrictions on the
supported data types are based on the specified cast operand.

• For a cast operand that is an expression, the supported target data types depend on the data type of
the cast operand (source data type).

• For a cast operand that is the keyword NULL, the target data type must be XML.
• For a cast operand that is a parameter marker, the target data type must be XML.

Note: Support in non-Unicode databases: When XMLCAST is used to convert an XML value to an SQL
data type, code page conversion is performed. The encoding of the cast expression is converted from
UTF-8 to the database code page. Characters in the original expression that are not present in the
database code page are replaced by substitution characters as a result of this conversion.

Examples
• Create a null XML value.

 XMLCAST(NULL AS XML)

• Convert a value extracted from an XMLQUERY expression into an INTEGER:

 XMLCAST(XMLQUERY('$m/PRODUCT/QUANTITY'
 PASSING xmlcol AS "m") AS INTEGER)

• Convert a value extracted from an XMLQUERY expression into a varying-length character string:

 XMLCAST(XMLQUERY('$m/PRODUCT/ADD-TIMESTAMP'
 PASSING xmlcol AS "m") AS VARCHAR(30))

• Convert a value extracted from an SQL scalar subquery into an XML value.

 XMLCAST((SELECT quantity FROM product AS p
 WHERE p.id = 1077) AS XML)

ARRAY element specification
The ARRAY element specification returns the element from an array specified by expression. If any
argument to expression is null, the null value is returned.

array-element-specification

array-variable
1

CAST (parameter-marker AS array-type-name)

[expression]

Notes:
1 If the data type of the elements in the array is a row type, then the syntax represents an array-
element-specification with a row data type and can only be used where a row-expression is allowed.

array-variable
An SQL variable, SQL parameter, or global variable of an array type.

Chapter 1. Structured Query Language (SQL) 159

CAST (parameter-marker AS array-type-name)
A parameter marker is normally considered to be an expression, but in this case it must explicitly be
cast to a user-defined array data type.

[expression]
Specifies the array index of the element that is to be extracted from the array. The array index of
an ordinary array must be assignable to INTEGER (SQLSTATE 428H1). The value must be between 1
and the cardinality of the array (SQLSTATE 2202E). The array index of an associative array must be
assignable to the index data type (SQLSTATE 428H1).

Array constructor
An array constructor is a language element that can be used to define and construct an array data type
value within a valid context.

Syntax
ARRAY [

WITH

,

common-table-expression

fullselect

,

element-expression

NULL

]

Authorization
No specific authorizations are required to reference an array constructor within an SQL statement,
however for the statement execution to be successful all other authorization requirements for the
statement must be satisfied.

Description
WITH common-table-expression

Defines a common table expression for use with the following fullselect.
fullselect

A fullselect that returns a single column. The values that are returned by the fullselect for each row
are the elements of the array. The cardinality of the array is equal to the number of rows that are
returned by the fullselect. If the fullselect includes an order-by-clause, the order determines the order
in which row values are assigned to elements of the array. If no order-by-clause is specified, the order
in which row values are assigned to elements of the array is not deterministic.

element-expression
An expression that defines the value of an element in the array. The cardinality of the array is
equal to the number of element expressions. The first element-expression is assigned to the array
element with array index 1. The second element-expression is assigned to the array element with
array index 2 and so on. Every element-expression must have a compatible data type with every other
element-expression and the base type of the array is determined using the "Rules for result data
types" topic.

NULL
Specifies the null value.

If no value is specified within the brackets, the result is an empty array.

160 IBM Db2 V11.5: SQL Reference

Rules
• The base type of the array-constructor, as derived from the element-expressions or the fullselect, must

be assignable to the base type of the target array (SQLSTATE 42821).
• The number of elements in the array-constructor must not exceed the maximum cardinality of the target

array variable (SQLSTATE 2202F).

Notes
• An array constructor can be used to define only an ordinary array with elements that are not a row type.

An array constructor cannot be used to define an associative array or an ordinary array with elements
that are a row type. Such arrays can only be constructed by assigning the individual elements.

Examples
Example 1: Set the array variable RECENT_CALLS of array type PHONENUMBERS to an array of fixed
numbers.

 SET RECENT_CALLS = ARRAY[9055553907, 4165554213, 4085553678]

Example 2: Set the array variable DEPT_PHONES of array type PHONENUMBERS to an array of phone
numbers retrieved from the DEPARTMENT_INFO table.

 SET DEPT_PHONES = ARRAY[SELECT DECIMAL(AREA_CODE CONCAT '555' CONCAT EXTENSION,16)
 FROM DEPARTMENT_INFO
 WHERE DEPTID = 624]

Dereference operation
The scope of the scoped reference expression is a table or view called the target table or view.

The scoped reference expression identifies a target row. The target row is the row in the target table or
view (or in one of its subtables or subviews) whose object identifier (OID) column value matches the
reference expression. The dereference operation can be used to access a column of the target row, or to
invoke a method, using the target row as the subject of the method. The result of a dereference operation
can always be null. The dereference operation takes precedence over all other operators.

dereference-operation
scoped-ref-expression -> name1

(
,

expression

)

scoped-ref-expression
An expression that is a reference type that has a scope (SQLSTATE 428DT). If the expression is a
host variable, parameter marker or other unscoped reference type value, a CAST specification with a
SCOPE clause is required to give the reference a scope.

name1
Specifies an unqualified identifier.

If no parentheses follow name1, and name1 matches the name of an attribute of the target type, then
the value of the dereference operation is the value of the named column in the target row. In this case,
the data type of the column (made nullable) determines the result type of the dereference operation.
If no target row exists whose object identifier matches the reference expression, then the result of the
dereference operation is null. If the dereference operation is used in a select list and is not included
as part of an expression, name1 becomes the result column name.

Chapter 1. Structured Query Language (SQL) 161

If parentheses follow name1, or if name1 does not match the name of an attribute of the target type,
then the dereference operation is treated as a method invocation. The name of the invoked method
is name1. The subject of the method is the target row, considered as an instance of its structured
type. If no target row exists whose object identifier matches the reference expression, the subject
of the method is a null value of the target type. The expressions inside parentheses, if any, provide
the remaining parameters of the method invocation. The normal process is used for resolution of the
method invocation. The result type of the selected method (made nullable) determines the result type
of the dereference operation.

The authorization ID of the statement that uses a dereference operation must have SELECT privilege on
the target table of the scoped-ref-expression (SQLSTATE 42501).

A dereference operation can never modify values in the database. If a dereference operation is used to
invoke a mutator method, the mutator method modifies a copy of the target row and returns the copy,
leaving the database unchanged.

Examples
• Assume the existence of an EMPLOYEE table that contains a column called DEPTREF which is a

reference type scoped to a typed table based on a type that includes the attribute DEPTNAME. The
values of DEPTREF in the table EMPLOYEE should correspond to the OID column values in the target
table of DEPTREF column.

 SELECT EMPNO, DEPTREF->DEPTNAME
 FROM EMPLOYEE

• Using the same tables as in the previous example, use a dereference operation to invoke a method
named BUDGET, with the target row as subject parameter, and '1997' as an additional parameter.

 SELECT EMPNO, DEPTREF->BUDGET('1997') AS DEPTBUDGET97
 FROM EMPLOYEE

Method invocation
Both system-generated observer and mutator methods, as well as user-defined methods are invoked
using the double-dot operator.

method-invocation
subject-expression..method-name

(
,

expression

)

subject-expression
An expression with a static result type that is a user-defined structured type.

method-name
The unqualified name of a method. The static type of subject-expression or one of its supertypes must
include a method with the specified name.

(expression,...)
The arguments of method-name are specified within parentheses. Empty parentheses can be used to
indicate that there are no arguments. The method-name and the data types of the specified argument
expressions are used to resolve to the specific method, based on the static type of subject-expression.

The double-dot operator used for method invocation is a high precedence left to right infix operator. For
example, the following two expressions are equivalent:

 a..b..c + x..y..z

and

162 IBM Db2 V11.5: SQL Reference

 ((a..b)..c) + ((x..y)..z)

If a method has no parameters other than its subject, it can be invoked with or without parentheses. For
example, the following two expressions are equivalent:

 point1..x
 point1..x()

Null subjects in method calls are handled as follows:

• If a system-generated mutator method is invoked with a null subject, an error results (SQLSTATE
2202D)

• If any method other than a system-generated mutator is invoked with a null subject, the method is not
executed, and its result is null. This rule includes user-defined methods with SELF AS RESULT.

When a database object (a package, view, or trigger, for example) is created, the best fit method that
exists for each of its method invocations is found.

Note: Methods of types defined WITH FUNCTION ACCESS can also be invoked using the regular
function notation. Function resolution considers all functions, as well as methods with function access as
candidate functions. However, functions cannot be invoked using method invocation. Method resolution
considers all methods and does not consider functions as candidate methods. Failure to resolve to an
appropriate function or method results in an error (SQLSTATE 42884).

Example
• Use the double-dot operator to invoke a method called AREA. Assume the existence of a table called

RINGS, with a column CIRCLE_COL of structured type CIRCLE. Also, assume that the method AREA has
been defined previously for the CIRCLE type as AREA() RETURNS DOUBLE.

 SELECT CIRCLE_COL..AREA() FROM RINGS

OLAP specification
On-Line Analytical Processing (OLAP) functions provide the ability to return ranking, row numbering and
existing aggregate function information as a scalar value in a query result.

OLAP-specification
ordered-OLAP-specification

numbering-specification

aggregation-specification

ordered-OLAP-specification
CUME_DIST ()

PERCENT_RANK ()

RANK ()

DENSE_RANK ()

NTILE( num-tiles)

lag-function

lead-function

OVER (

window-partition-clause

window-order-clause)

lag-function

Chapter 1. Structured Query Language (SQL) 163

LAG (expression

, offset

, default-value

, 'RESPECT NULLS'

, 'IGNORE NULLS'

)

lead-function
LEAD (expression

, offset

, default-value

, 'RESPECT NULLS'

, 'IGNORE NULLS'

)

window-partition-clause

PARTITION BY

,

partitioning-expression

window-order-clause

ORDER BY

,

sort-key-expression asc-option

desc-option

ORDER OF table-designator

asc-option
ASC NULLS LAST

NULLS FIRST

desc-option

DESC
NULLS FIRST

NULLS LAST

numbering-specification
ROW_NUMBER () OVER (

window-partition-clause window-order-clause

)

aggregation-specification

164 IBM Db2 V11.5: SQL Reference

aggregate-function
1

OLAP-aggregate-function

OVER (

window-partition-clause

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

window-order-clause
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

window-aggregation-group-clause

)

OLAP-aggregate-function
first-value-function

last-value-function

nth-value-function

ratio-to-report-function

first-value-function

FIRST_VALUE (expression

, 'RESPECT NULLS'

, 'IGNORE NULLS'

)

last-value-function

LAST_VALUE (expression

, 'RESPECT NULLS'

, 'IGNORE NULLS'

)

nth-value-function

NTH_VALUE (expression , nth-row)
RESPECT NULLS

IGNORE NULLS

FROM FIRST

FROM LAST

ratio-to-report-function
RATIO_TO_REPORT (expression)

window-aggregation-group-clause
ROWS

RANGE

group-start

group-between

group-end

group-start
UNBOUNDED PRECEDING

unsigned-constant PRECEDING

CURRENT ROW

group-between

Chapter 1. Structured Query Language (SQL) 165

BETWEEN group-bound1 AND group-bound2

group-bound1
UNBOUNDED PRECEDING

unsigned-constant PRECEDING

unsigned-constant FOLLOWING

CURRENT ROW

group-bound2
UNBOUNDED FOLLOWING

unsigned-constant PRECEDING

unsigned-constant FOLLOWING

CURRENT ROW

group-end
UNBOUNDED FOLLOWING

unsigned-constant FOLLOWING

Notes:
1 ARRAY_AGG, CUME_DIST, and PERCENT_RANK are not supported as an aggregate function in
aggregation-specification (SQLSTATE 42887).

An OLAP function can be included in expressions in a select-list or the ORDER BY clause of a select-
statement (SQLSTATE 42903). An OLAP function cannot be used within an argument to an XMLQUERY
or XMLEXISTS expression (SQLSTATE 42903). An OLAP function cannot be used as an argument of an
aggregate function (SQLSTATE 42607). The query result to which the OLAP function is applied is the result
table of the innermost subselect that includes the OLAP function.

When specifying an OLAP function, a window is specified that defines the rows over which the function
is applied, and in what order. When used with an aggregate function, the applicable rows can be further
refined, relative to the current row, as either a range or a number of rows preceding and following the
current row. For example, within a partition by month, an average can be calculated over the previous
three month period.

The CUME_DIST function is a distribution function that returns a cumulative distribution of a row within
an OLAP window, expressed as a value between 0.0 - 1.0. The result is computed as follows:

The number of rows preceding or peer with the current row in the OLAP window, divided by the
number of rows in the OLAP window.

The data type of the result is DECFLOAT(34). The result cannot be NULL.

The PERCENT_RANK function is a distribution function that returns a relative percentile rank of a row
within an OLAP window, expressed as a value between 0.0 - 1.0. When the number of rows in the OLAP
window is greater than 1, the result is computed as follows:

The RANK of the current row in the OLAP window minus 1 divided by the number of rows in the OLAP
window minus 1.

Otherwise, the result is 0.0.

The data type of the result is DECFLOAT(34). The result cannot be NULL.

The ranking function computes the ordinal rank of a row within the window. Rows that are not distinct
with respect to the ordering within their window are assigned the same rank. The results of ranking may
be defined with or without gaps in the numbers resulting from duplicate values.

166 IBM Db2 V11.5: SQL Reference

If RANK is specified, the rank of a row is defined as 1 plus the number of rows that strictly precede the
row. Thus, if two or more rows are not distinct with respect to the ordering, then there will be one or more
gaps in the sequential rank numbering.

If DENSE_RANK (or DENSERANK) is specified, the rank of a row is defined as 1 plus the number of
preceding rows that are distinct with respect to the ordering. Therefore, there will be no gaps in the
sequential rank numbering.

The ROW_NUMBER (or ROWNUMBER) function computes the sequential row number of the row within
the window defined by the ordering, starting with 1 for the first row. If the ORDER BY clause is not
specified in the window, the row numbers are assigned to the rows in arbitrary order, as returned by the
subselect (not according to any ORDER BY clause in the select-statement).

If the fetch-clause is used along with the ROW_NUMBER function, the row numbers might not be
displayed in order. The fetch-clause is applied after the result set (including any ROW_NUMBER
assignments) is generated; therefore, if the row number order is not the same as the order of the result
set, some assigned numbers might be missing from the sequence.

The data type of the result of RANK, DENSE_RANK or ROW_NUMBER is BIGINT. The result cannot be null.

The NTILE function returns the quantile rank of a row.
num-tiles

An expression that specifies the number of quantiles. The expression must return a value that is a
built-in numeric data type, CHAR, or VARCHAR data type. In a Unicode database, the expression can
also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are
supported by using implicit casting. If the expression is not a SMALLINT, INTEGER, or BIGINT, it is
cast to BIGINT before the function is evaluated. The value must be greater than 0 (SQLSTATE 22014).
The expression must be a constant, a variable, or a cast of a constant or variable (SQLSTATE 42601).

The data type of the result of NTILE is the same data type as the data type of num-tiles after any implicit
casting. If the argument can be null, the result can be null. If the argument is null, the result is the null
value.

The NTILE function computes the quantile rank of a row by dividing the ordered rows within the OLAP
window into num-tiles quantiles and returns a value between 1 and MIN(n, num-tiles), where n is the
number of rows within the OLAP window. If n is evenly divisible by num-tiles, the rows in the OLAP
window are grouped into num-tiles quantiles, each containing (n / num-tiles) rows. Otherwise, each of the
quantiles 1 through MOD(n, num-tiles) is assigned (n / num-tiles + 1) rows while each of the quantiles
(MOD(n, num-tiles) + 1) through num-tiles is assigned (n / num-tiles) rows. The result is the quantile rank
which is associated with the current row.

Equivalent sort keys are not considered when rows are divided into quantiles. Rows with equivalent sort
keys can be assigned to different quantiles based on the non-deterministic order of these sort keys.
Therefore, NTILE is a non-deterministic function.

The LAG function returns the expression value for the row at offset rows before the current row. The
offset must be a positive integer constant (SQLSTATE 42815). An offset value of 0 means the current
row. If a window-partition-clause is specified, offset means offset rows before the current row and within
the current partition. If offset is not specified, the value 1 is used. If default-value (which can be an
expression) is specified, it will be returned if the offset goes beyond the scope of the current partition.
Otherwise, the null value is returned. If 'IGNORE NULLS' is specified, all rows where the expression value
for the row is the null value are not considered in the calculation. If 'IGNORE NULLS' is specified and all
rows are null, default-value (or the null value if default-value was not specified) is returned.

The LEAD function returns the expression value for the row at offset rows after the current row. The offset
must be a positive integer constant (SQLSTATE 42815). An offset value of 0 means the current row. If a
window-partition-clause is specified, offset means offset rows after the current row and within the current
partition. If offset is not specified, the value 1 is used. If default-value (which can be an expression) is
specified, it will be returned if the offset goes beyond the scope of the current partition. Otherwise, the
null value is returned. If 'IGNORE NULLS' is specified, all rows where the expression value for the row is
the null value are not considered in the calculation. If 'IGNORE NULLS' is specified and all rows are null,
default-value (or the null value if default-value was not specified) is returned.

Chapter 1. Structured Query Language (SQL) 167

The FIRST_VALUE function returns the expression value for the first row in an OLAP window. If 'IGNORE
NULLS' is specified, all rows where the expression value for the row is the null value are not considered in
the calculation. If 'IGNORE NULLS' is specified and all values in the OLAP window are null, FIRST_VALUE
returns the null value.

The LAST_VALUE function returns the expression value for the last row in an OLAP window. If 'IGNORE
NULLS' is specified, all rows where the expression value for the row is the null value are not considered in
the calculation. If 'IGNORE NULLS' is specified and all values in the OLAP window are null, LAST_VALUE
returns the null value.

The data type of the result of FIRST_VALUE, LAG, LAST_VALUE, and LEAD is the data type of the
expression. The result can be null.

The NTH_VALUE function returns the expression value for the nth-row row in an OLAP window.
expression

An expression that specifies the current row in an OLAP window. The expression must return a value
that is a built-in data type.(SQLSTATE 42884).

nth-row
An expression that specifies which row of the OLAP window to return. The expression must return a
value that is a built-in numeric data type, a CHAR, or a VARCHAR data type. In a Unicode database,
the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC are supported using implicit casting. If the expression is not a SMALLINT, INTEGER,
or BIGINT, it is cast to BIGINT before the function is evaluated. The value must be greater than 0
(SQLSTATE 22016). The expression must be a constant, a variable, or a cast of a constant or variable
(SQLSTATE 428I9).

FROM FIRST or FROM LAST
Specifies how nth-row is applied. If FROM FIRST is specified, nth-row is treated as counting forward
from the first row in the OLAP window. If FROM LAST is specified, nth-row is treated as counting
backward from the last row in the OLAP window.

RESPECT NULLS or IGNORE NULLS
Specifies how NULL values in the OLAP window are handled. If RESPECT NULLS is specified, all rows
where the expression value for the row is the null value are considered in the calculation. If IGNORE
NULLS is specified, all rows where the expression value for the row is the null value are not considered
in the calculation.

The data type of the result of NTH_VALUE is the same as the data type of expression.

The result can be null. If nth-row is null, the result is the null value. If the number of rows in the OLAP
window (including null values if RESPECT NULLS is specified or excluding null values if IGNORE NULLS
is specified) is less than the value of nth-row, the result is the null value.

The NTH_VALUE function is a non-deterministic function because the window-order-clause is not
required and when window-order-clause is specified, rows with equivalent sort keys have a non-
deterministic order.

The RATIO_TO_REPORT function returns the ratio of an argument to the sum of the arguments in an OLAP
partition. For example, the following functions are equivalent:

 RATIO_TO_REPORT(expression) OVER (...)
 CAST(expression AS DECFLOAT(34)) / SUM(expression) OVER(...)

The division is always performed using DECFLOAT(34). The result data type is DECFLOAT(34). If the
argument can be null, the result can be null; if the argument is null, the result is the null value.

PARTITION BY (partitioning-expression,...)
Defines the partition within which the function is applied. A partitioning-expression is an expression
that is used in defining the partitioning of the result set. Each column-name that is referenced in a
partitioning-expression must unambiguously reference a column of the result table of the subselect
that contains the OLAP specification (SQLSTATE 42702 or 42703). A partitioning-expression cannot
include a scalar fullselect or an XMLQUERY or XMLEXISTS expression (SQLSTATE 42822), or any
function or query that is not deterministic or that has an external action (SQLSTATE 42845).

168 IBM Db2 V11.5: SQL Reference

window-order-clause
ORDER BY (sort-key-expression,...)

Defines the ordering of rows within a partition that determines the value of the OLAP function or
the meaning of the ROW values in the window-aggregation-group-clause (it does not define the
ordering of the query result set).

sort-key-expression
An expression used in defining the ordering of the rows within a window partition. Each
column name referenced in a sort-key-expression must unambiguously reference a column of
the result set of the subselect, including the OLAP function (SQLSTATE 42702 or 42703). A
sort-key-expression cannot include a scalar fullselect or an XMLQUERY or XMLEXISTS expression
(SQLSTATE 42822), or any function or query that is not deterministic or that has an external action
(SQLSTATE 42845). This clause is required for the RANK and DENSE_RANK functions (SQLSTATE
42601).

ASC
Uses the values of the sort-key-expression in ascending order.

DESC
Uses the values of the sort-key-expression in descending order.

NULLS FIRST
The window ordering considers null values before all non-null values in the sort order.

NULLS LAST
The window ordering considers null values after all non-null values in the sort order.

ORDER OF table-designator
Specifies that the same ordering used in table-designator should be applied to the result table
of the subselect. There must be a table reference matching table-designator in the FROM clause
of the subselect that specifies this clause (SQLSTATE 42703). The ordering that is applied is
the same as if the columns of the ORDER BY clause in the nested subselect (or fullselect) were
included in the outer subselect (or fullselect), and these columns were specified in place of the
ORDER OF clause.

window-aggregation-group-clause
The aggregation group of a row R is a set of rows defined in relation to R (in the ordering of the
rows of R's partition). This clause specifies the aggregation group. If this clause is not specified and
a window-order-clause is also not specified, the aggregation group consists of all the rows of the
window partition. This default can be specified explicitly using RANGE (as shown) or ROWS.

If window-order-clause is specified, the default behavior is different when window-aggregation-
group-clause is not specified. The window aggregation group consists of all rows of the partition
of R that precede R and that are peers of R in the window ordering of the window partition defined by
the window-order-clause.

ROWS
Indicates the aggregation group is defined by counting rows.

RANGE
Indicates the aggregation group is defined by an offset from a sort key.

group-start
Specifies the starting point for the aggregation group. The aggregation group end is the current
row. Specification of the group-start clause is equivalent to a group-between clause of the form
"BETWEEN group-start AND CURRENT ROW".

group-between
Specifies the aggregation group start and end based on either ROWS or RANGE.

group-end
Specifies the ending point for the aggregation group. The aggregation group start is the current
row. Specification of the group-end clause is equivalent to a group-between clause of the form
"BETWEEN CURRENT ROW AND group-end".

Chapter 1. Structured Query Language (SQL) 169

UNBOUNDED PRECEDING
Includes the entire partition preceding the current row. This can be specified with either ROWS
or RANGE. Also, this can be specified with multiple sort-key-expressions in the window-order-
clause.

UNBOUNDED FOLLOWING
Includes the entire partition following the current row. This can be specified with either ROWS
or RANGE. Also, this can be specified with multiple sort-key-expressions in the window-order-
clause.

CURRENT ROW
Specifies the start or end of the aggregation group based on the current row. If ROWS is specified,
the current row is the aggregation group boundary. If RANGE is specified, the aggregation group
boundary includes the set of rows with the same values for the sort-key-expressions as the
current row. This clause cannot be specified in group-bound2 if group-bound1 specifies value
FOLLOWING.

unsigned-constant PRECEDING
Specifies either the range or number of rows preceding the current row. If ROWS is specified,
then unsigned-constant must be zero or a positive integer indicating a number of rows. If RANGE
is specified, then the data type of unsigned-constant must be comparable to the type of the
sort-key-expression of the window-order-clause. There can only be one sort-key-expression, and
the data type of the sort-key-expression must allow subtraction. This clause cannot be specified in
group-bound2 if group-bound1 is CURRENT ROW or unsigned-constant FOLLOWING.

unsigned-constant FOLLOWING
Specifies either the range or number of rows following the current row. If ROWS is specified,
then unsigned-constant must be zero or a positive integer indicating a number of rows. If RANGE
is specified, then the data type of unsigned-constant must be comparable to the type of the
sort-key-expression of the window-order-clause. There can only be one sort-key-expression, and
the data type of the sort-key-expression must allow addition.

Examples
1. Display the ranking of employees, in order by surname, according to their total salary (based on

salary plus bonus) that have a total salary more than $30,000.

 SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
 RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
 FROM EMPLOYEE WHERE SALARY+BONUS > 30000
 ORDER BY LASTNAME

Note that if the result is to be ordered by the ranking, then replace ORDER BY LASTNAME with:

 ORDER BY RANK_SALARY

or

 ORDER BY RANK() OVER (ORDER BY SALARY+BONUS DESC)

2. Rank the departments according to their average total salary.

 SELECT WORKDEPT, AVG(SALARY+BONUS) AS AVG_TOTAL_SALARY,
 RANK() OVER (ORDER BY AVG(SALARY+BONUS) DESC) AS RANK_AVG_SAL
 FROM EMPLOYEE
 GROUP BY WORKDEPT
 ORDER BY RANK_AVG_SAL

3. Rank the employees within a department according to their education level. Having multiple
employees with the same rank in the department should not increase the next ranking value.

 SELECT WORKDEPT, EMPNO, LASTNAME, FIRSTNME, EDLEVEL,
 DENSE_RANK() OVER
 (PARTITION BY WORKDEPT ORDER BY EDLEVEL DESC) AS RANK_EDLEVEL

170 IBM Db2 V11.5: SQL Reference

 FROM EMPLOYEE
 ORDER BY WORKDEPT, LASTNAME

4. Provide row numbers in the result of a query.

 SELECT ROW_NUMBER() OVER (ORDER BY WORKDEPT, LASTNAME) AS NUMBER,
 LASTNAME, SALARY
 FROM EMPLOYEE
 ORDER BY WORKDEPT, LASTNAME

5. List the top five wage earners.

 SELECT EMPNO, LASTNAME, FIRSTNME, TOTAL_SALARY, RANK_SALARY
 FROM (SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
 RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
 FROM EMPLOYEE) AS RANKED_EMPLOYEE
 WHERE RANK_SALARY < 6
 ORDER BY RANK_SALARY

Note that a nested table expression was used to first compute the result, including the rankings,
before the rank could be used in the WHERE clause. A common table expression could also have
been used.

6. For each department, list employee salaries and show how much less each person makes compared
to the employee in that department with the next highest salary.

 SELECT EMPNO, WORKDEPT, LASTNAME, FIRSTNME, JOB, SALARY,
 LEAD(SALARY, 1) OVER (PARTITION BY WORKDEPT
 ORDER BY SALARY) - SALARY AS DELTA_SALARY
 FROM EMPLOYEE
 ORDER BY WORKDEPT, SALARY

7. Calculate an employee's salary relative to the salary of the employee who was first hired for the same
type of job.

 SELECT JOB, HIREDATE, EMPNO, LASTNAME, FIRSTNME, SALARY,
 FIRST_VALUE(SALARY) OVER (PARTITION BY JOB
 ORDER BY HIREDATE) AS FIRST_SALARY,
 SALARY - FIRST_VALUE(SALARY) OVER (PARTITION BY JOB
 ORDER BY HIREDATE) AS DELTA_SALARY
 FROM EMPLOYEE
 ORDER BY JOB, HIREDATE

8. Calculate the average close price for stock XYZ during the month of January, 2006. If a stock doesn't
trade on a given day, its close price in the DAILYSTOCKDATA table is the null value. Instead of
returning the null value for days that a stock doesn't trade, use the COALESCE function and LAG
function to return the close price for the most recent day the stock was traded. Limit the search for a
previous not-null close value to one month before January 1st, 2006.

 WITH V1(SYMBOL, TRADINGDATE, CLOSEPRICE) AS
 (
 SELECT SYMBOL, TRADINGDATE,
 COALESCE(CLOSEPRICE,
 LAG(CLOSEPRICE,
 1,
 CAST(NULL AS DECIMAL(8,2)),
 'IGNORE NULLS')
 OVER (PARTITION BY SYMBOL
 ORDER BY TRADINGDATE)
)
 FROM DAILYSTOCKDATA
 WHERE SYMBOL = 'XYZ' AND
 TRADINGDATE BETWEEN '2005-12-01' AND '2006-01-31'
)
 SELECT SYMBOL, AVG(CLOSEPRICE) AS AVG
 FROM V1
 WHERE TRADINGDATE BETWEEN '2006-01-01' AND '2006-01-31'
 GROUP BY SYMBOL

9. Calculate the 30-day moving average for stocks ABC and XYZ during the year 2005.

 WITH V1(SYMBOL, TRADINGDATE, MOVINGAVG30DAY) AS
 (

Chapter 1. Structured Query Language (SQL) 171

 SELECT SYMBOL, TRADINGDATE,
 AVG(CLOSEPRICE) OVER (PARTITION BY SYMBOL
 ORDER BY TRADINGDATE
 ROWS BETWEEN 29 PRECEDING AND CURRENT ROW)
 FROM DAILYSTOCKDATA
 WHERE SYMBOL IN ('ABC', 'XYZ')
 AND TRADINGDATE BETWEEN DATE('2005-01-01') - 2 MONTHS
 AND '2005-12-31'
)
 SELECT SYMBOL, TRADINGDATE, MOVINGAVG30DAY
 FROM V1
 WHERE TRADINGDATE BETWEEN '2005-01-01' AND '2005-12-31'
 ORDER BY SYMBOL, TRADINGDATE

10. Use an expression to define the cursor position and query a sliding window of 50 rows before that
position.

 SELECT DATE, FIRST_VALUE(CLOSEPRICE + 100) OVER
 (PARTITION BY SYMBOL
 ORDER BY DATE
 ROWS BETWEEN 50 PRECEDING AND 1 PRECEDING) AS FV
 FROM DAILYSTOCKDATA
 ORDER BY DATE

11. For each employee, calculate the average salary for the set of employees that includes those
employees in the same department who have an education level 1 lower and 1 higher than the
employee.

 SELECT WORKDEPT, EDLEVEL, SALARY, AVG(SALARY)
 OVER (PARTITION BY WORKDEPT
 ORDER BY EDLEVEL
 RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING)
 FROM EMPLOYEE
 ORDER BY WORKDEPT, EDLEVEL

12. Calculate which quartile (4-quantiles) each employee's salary is in.

 SELECT EMPNO, SALARY, NTILE(4) OVER
 (ORDER BY SALARY) AS QUARTILE
 FROM EMPLOYEE
 ORDER BY SALARY

The result set is:

EMPNO SALARY QUARTILE
------ ----------- -----------
200340 31840.00 1
000290 35340.00 1
200330 35370.00 1
000310 35900.00 1
200310 35900.00 1
000280 36250.00 1
000270 37380.00 1
000300 37750.00 1
200240 37760.00 1
200120 39250.00 1
000320 39950.00 1
000230 42180.00 2
000340 43840.00 2
000170 44680.00 2
000330 45370.00 2
200280 46250.00 2
200010 46500.00 2
000260 47250.00 2
000240 48760.00 2
000250 49180.00 2
000120 49250.00 2
000220 49840.00 2
000190 50450.00 3
000180 51340.00 3
000150 55280.00 3
000200 57740.00 3
000160 62250.00 3
200170 64680.00 3
000110 66500.00 3
000210 68270.00 3
000140 68420.00 3

172 IBM Db2 V11.5: SQL Reference

200140 68420.00 3
200220 69840.00 4
000060 72250.00 4
000130 73800.00 4
000050 80175.00 4
000100 86150.00 4
000090 89750.00 4
000020 94250.00 4
000070 96170.00 4
000030 98250.00 4
000010 152750.00 4

 42 record(s) selected.

13. The query in the following example divides the rows into 3 buckets, grouping them by maximum
salary. The maximum salary is included to show what values go into each bucket:

 SELECT NTILE(3) OVER (ORDER BY MAX_SALARY) AS Bucket,
MAX_SALARY FROM GOSALESDW.EMP_POSITION_DIM;

A portion of the output from the query is in the following table:

Table 27. Example output

BUCKET MAX_SALARY

1 0.00

... ...

1 35000.00

2 5000.00

... ...

2 12000.00

3 13000.00

... ...

3 301500.00

14. Find the cumulative distribution and the relative percentile rank of each employee's salary within
their department.

 SELECT EMPNO, WORKDEPT, SALARY,
 CAST(CUME_DIST() OVER (PARTITION BY WORKDEPT ORDER BY SALARY) AS DECIMAL(4,3))
 AS CUME_DIST,
 CAST(PERCENT_RANK() OVER (PARTITION BY WORKDEPT ORDER BY SALARY)
 AS DECIMAL(4,3))
 AS PERCENT_RANK FROM EMP
 ORDER BY WORKDEPT, SALARY

The result set is:

EMPNO WORKDEPT SALARY CUME_DIST PERCENT_RANK
------ -------- ----------- --------- ------------
200120 A00 39250.00 0.200 0.000
200010 A00 46500.00 0.400 0.250
000120 A00 49250.00 0.600 0.500
000110 A00 66500.00 0.800 0.750
000010 A00 152750.00 1.000 1.000
000020 B01 94250.00 1.000 0.000
000140 C01 68420.00 0.500 0.000
200140 C01 68420.00 0.500 0.000
000130 C01 73800.00 0.750 0.666
000030 C01 98250.00 1.000 1.000
000170 D11 44680.00 0.090 0.000
000220 D11 49840.00 0.181 0.100
000190 D11 50450.00 0.272 0.200
000180 D11 51340.00 0.363 0.300
000150 D11 55280.00 0.454 0.400
000200 D11 57740.00 0.545 0.500

Chapter 1. Structured Query Language (SQL) 173

000160 D11 62250.00 0.636 0.600
200170 D11 64680.00 0.727 0.700
000210 D11 68270.00 0.818 0.800
200220 D11 69840.00 0.909 0.900
000060 D11 72250.00 1.000 1.000
000270 D21 37380.00 0.142 0.000
200240 D21 37760.00 0.285 0.166
000230 D21 42180.00 0.428 0.333
000260 D21 47250.00 0.571 0.500
000240 D21 48760.00 0.714 0.666
000250 D21 49180.00 0.857 0.833
000070 D21 96170.00 1.000 1.000
000050 E01 80175.00 1.000 0.000
000290 E11 35340.00 0.142 0.000
000310 E11 35900.00 0.428 0.166
200310 E11 35900.00 0.428 0.166
000280 E11 36250.00 0.571 0.500
000300 E11 37750.00 0.714 0.666
200280 E11 46250.00 0.857 0.833
000090 E11 89750.00 1.000 1.000
200340 E21 31840.00 0.166 0.000
200330 E21 35370.00 0.333 0.200
000320 E21 39950.00 0.500 0.400
000340 E21 43840.00 0.666 0.600
000330 E21 45370.00 0.833 0.800
000100 E21 86150.00 1.000 1.000

 42 record(s) selected.

15. Compare each employee's salary to the highest salary and second highest salary in the department.

 SELECT WORKDEPT, SALARY, FIRST_VALUE(SALARY)
 OVER (PARTITION BY WORKDEPT ORDER BY SALARY DESC) AS FIRST,
 NTH_VALUE(SALARY, 2) OVER (PARTITION BY WORKDEPT ORDER BY SALARY DESC) AS SECOND
 FROM EMP
 ORDER BY WORKDEPT, SALARY

The result set is:

WORKDEPT SALARY FIRST SECOND
-------- ----------- ----------- --------
A00 39250.00 152750.00 66500.00
A00 46500.00 152750.00 66500.00
A00 49250.00 152750.00 66500.00
A00 66500.00 152750.00 66500.00
A00 152750.00 152750.00 66500.00
B01 94250.00 94250.00 -
C01 68420.00 98250.00 73800.00
C01 68420.00 98250.00 73800.00
C01 73800.00 98250.00 73800.00
C01 98250.00 98250.00 73800.00
D11 44680.00 72250.00 69840.00
D11 49840.00 72250.00 69840.00
D11 50450.00 72250.00 69840.00
D11 51340.00 72250.00 69840.00
D11 55280.00 72250.00 69840.00
D11 57740.00 72250.00 69840.00
D11 62250.00 72250.00 69840.00
D11 64680.00 72250.00 69840.00
D11 68270.00 72250.00 69840.00
D11 69840.00 72250.00 69840.00
D11 72250.00 72250.00 69840.00
D21 37380.00 96170.00 49180.00
D21 37760.00 96170.00 49180.00
D21 42180.00 96170.00 49180.00
D21 47250.00 96170.00 49180.00
D21 48760.00 96170.00 49180.00
D21 49180.00 96170.00 49180.00
D21 96170.00 96170.00 49180.00
E01 80175.00 80175.00 -
E11 35340.00 89750.00 46250.00
E11 35900.00 89750.00 46250.00
E11 35900.00 89750.00 46250.00
E11 36250.00 89750.00 46250.00
E11 37750.00 89750.00 46250.00
E11 46250.00 89750.00 46250.00
E11 89750.00 89750.00 46250.00
E21 31840.00 86150.00 45370.00
E21 35370.00 86150.00 45370.00
E21 39950.00 86150.00 45370.00

174 IBM Db2 V11.5: SQL Reference

E21 43840.00 86150.00 45370.00
E21 45370.00 86150.00 45370.00
E21 86150.00 86150.00 45370.00

 42 record(s) selected.

ROW CHANGE expression
A ROW CHANGE expression returns a token or a timestamp that represents the last change to a row.

row-change-expression
ROW CHANGE TOKEN

TIMESTAMP

FOR table-designator

TOKEN
Specifies that a BIGINT value representing a relative point in the modification sequence of a row is
to be returned. If the row has not been changed, the result is a token that represents when the initial
value was inserted. The result can be null. ROW CHANGE TOKEN is not deterministic.

TIMESTAMP
Specifies that a TIMESTAMP value representing the last time that a row was changed is to be
returned. If the row has not been changed, the result is the time that the initial value was inserted.
The result can be null. ROW CHANGE TIMESTAMP is not deterministic.

FOR table-designator
Identifies the table in which the expression is referenced. The table-designator must uniquely identify
a base table, view, or nested table expression (SQLSTATE 42867). If table-designator identifies a
view or a nested table expression, the ROW CHANGE expression returns the TOKEN or TIMESTAMP
of the base table of the view or nested table expression. The view or nested table expression must
contain only one base table in its outer subselect (SQLSTATE 42867). If the table-designator is a
view or nested table expression, it must be deletable (SQLSTATE 42703). For information about
deletable views, see the "Notes" section of "CREATE VIEW". The table designator of a ROW CHANGE
TIMESTAMP expression must resolve to a base table that contains a row change timestamp column
(SQLSTATE 55068).

Notes
• ROW CHANGE TOKEN and ROW CHANGE TIMESTAMP are not valid expressions for a column-organized

table (SQLSTATE 42703).

Examples
• Return a timestamp value that corresponds to the most recent change to each row from the EMPLOYEE

table for employees in department 20. Assume that the EMPLOYEE table has been altered to contain a
column defined with the ROW CHANGE TIMESTAMP clause.

 SELECT ROW CHANGE TIMESTAMP FOR EMPLOYEE
 FROM EMPLOYEE WHERE DEPTNO = 20

• Return a BIGINT value that represents a relative point in the modification sequence of the row
corresponding to employee number 3500. Also return the RID_BIT scalar function value that is to
be used in an optimistic locking DELETE scenario. Specify the WITH UR option to get the latest ROW
CHANGE TOKEN value.

 SELECT ROW CHANGE TOKEN FOR EMPLOYEE, RID_BIT (EMPLOYEE)
 FROM EMPLOYEE WHERE EMPNO = '3500' WITH UR

The preceding statement succeeds whether or not there is a row change timestamp column in
the EMPLOYEE table. The following searched DELETE statement deletes the row specified by the

Chapter 1. Structured Query Language (SQL) 175

ROW CHANGE TOKEN and RID_BIT values from the preceding SELECT statement, assuming the two
parameter marker values are set to the values obtained from the preceding statement.

 DELETE FROM EMPLOYEE E
 WHERE RID_BIT (E) = ? AND ROW CHANGE TOKEN FOR E = ?

Sequence reference
A sequence reference is an expression which references a sequence defined at the application server.

sequence-reference
nextval-expression

prevval-expression

nextval-expression
NEXT VALUE FOR sequence-name

prevval-expression
PREVIOUS VALUE FOR sequence-name

NEXT VALUE FOR sequence-name
A NEXT VALUE expression generates and returns the next value for the sequence specified by
sequence-name.

PREVIOUS VALUE FOR sequence-name
A PREVIOUS VALUE expression returns the most recently generated value for the specified sequence
for a previous statement within the current application process. This value can be referenced
repeatedly by using PREVIOUS VALUE expressions that specify the name of the sequence. There may
be multiple instances of PREVIOUS VALUE expressions specifying the same sequence name within a
single statement; they all return the same value. In a partitioned database environment, a PREVIOUS
VALUE expression may not return the most recently generated value.

A PREVIOUS VALUE expression can only be used if a NEXT VALUE expression specifying the same
sequence name has already been referenced in the current application process, in either the current
or a previous transaction (SQLSTATE 51035).

Notes
• Authorization: If a sequence-reference is used in a statement, the privileges held by the authorization

ID of the statement must include at least one of the following privileges:

– The USAGE privilege on the sequence
– DATAACCESS authority

• A new value is generated for a sequence when a NEXT VALUE expression specifies the name of that
sequence. However, if there are multiple instances of a NEXT VALUE expression specifying the same
sequence name within a query, the counter for the sequence is incremented only once for each row of
the result, and all instances of NEXT VALUE return the same value for a row of the result.

• The same sequence number can be used as a unique key value in two separate tables by referencing
the sequence number with a NEXT VALUE expression for the first row (this generates the sequence
value), and a PREVIOUS VALUE expression for the other rows (the instance of PREVIOUS VALUE refers
to the sequence value most recently generated in the current session), as shown in the following
example:

 INSERT INTO order(orderno, cutno)
 VALUES (NEXT VALUE FOR order_seq, 123456);

 INSERT INTO line_item (orderno, partno, quantity)
 VALUES (PREVIOUS VALUE FOR order_seq, 987654, 1);

• NEXT VALUE and PREVIOUS VALUE expressions can be specified in the following places:

176 IBM Db2 V11.5: SQL Reference

– select-statement or SELECT INTO statement (within the select-clause, provided that the statement
does not contain a DISTINCT keyword, a GROUP BY clause, an ORDER BY clause, a UNION keyword,
an INTERSECT keyword, or EXCEPT keyword)

– INSERT statement (within a VALUES clause)
– INSERT statement (within the select-clause of the fullselect)
– UPDATE statement (within the SET clause (either a searched or a positioned UPDATE statement),

except that NEXT VALUE cannot be specified in the select-clause of the fullselect of an expression in
the SET clause)

– SET Variable statement (except within the select-clause of the fullselect of an expression; a NEXT
VALUE expression can be specified in a trigger, but a PREVIOUS VALUE expression cannot)

– VALUES INTO statement (within the select-clause of the fullselect of an expression)
– CREATE PROCEDURE statement (within the routine-body of an SQL procedure)
– CREATE TRIGGER statement within the triggered-action (a NEXT VALUE expression may be specified,

but a PREVIOUS VALUE expression cannot)
• NEXT VALUE and PREVIOUS VALUE expressions cannot be specified (SQLSTATE 428F9) in the following

places:

– Join condition of a full outer join
– DEFAULT value for a column in a CREATE TABLE or ALTER TABLE statement
– Generated column definition in a CREATE TABLE or ALTER TABLE statement
– Summary table definition in a CREATE TABLE or ALTER TABLE statement
– Condition of a CHECK constraint
– CREATE TRIGGER statement (a NEXT VALUE expression may be specified, but a PREVIOUS VALUE

expression cannot)
– CREATE VIEW statement
– CREATE METHOD statement
– CREATE FUNCTION statement
– An argument list of an XMLQUERY, XMLEXISTS, or XMLTABLE expression

• In addition, a NEXT VALUE expression cannot be specified (SQLSTATE 428F9) in the following places:

– CASE expression
– Parameter list of an aggregate function
– Subquery in a context other than those explicitly allowed, as described previously
– SELECT statement for which the outer SELECT contains a DISTINCT operator
– Join condition of a join
– SELECT statement for which the outer SELECT contains a GROUP BY clause
– SELECT statement for which the outer SELECT is combined with another SELECT statement using the

UNION, INTERSECT, or EXCEPT set operator
– Nested table expression
– Parameter list of a table function
– WHERE clause of the outer-most SELECT statement, or a DELETE or UPDATE statement
– ORDER BY clause of the outer-most SELECT statement
– select-clause of the fullselect of an expression, in the SET clause of an UPDATE statement
– IF, WHILE, DO ... UNTIL, or CASE statement in an SQL routine

• When a value is generated for a sequence, that value is consumed, and the next time that a value is
requested, a new value will be generated. This is true even when the statement containing the NEXT
VALUE expression fails or is rolled back.

Chapter 1. Structured Query Language (SQL) 177

If an INSERT statement includes a NEXT VALUE expression in the VALUES list for the column, and if an
error occurs at some point during the execution of the INSERT (it could be a problem in generating the
next sequence value, or a problem with the value for another column), then an insertion failure occurs
(SQLSTATE 23505), and the value generated for the sequence is considered to be consumed. In some
cases, reissuing the same INSERT statement might lead to success.

For example, consider an error that is the result of the existence of a unique index for the column
for which NEXT VALUE was used and the sequence value generated already exists in the index. It is
possible that the next value generated for the sequence is a value that does not exist in the index and so
the subsequent INSERT would succeed.

• Scope of PREVIOUS VALUE: The value of PREVIOUS VALUE persists until the next value is generated
for the sequence in the current session, the sequence is dropped or altered, or the application session
ends. The value is unaffected by COMMIT or ROLLBACK statements. The value of PREVIOUS VALUE
cannot be directly set and is a result of executing the NEXT VALUE expression for the sequence.

A technique commonly used, especially for performance, is for an application or product to manage a
set of connections and route transactions to an arbitrary connection. In these situations, the availability
of the PREVIOUS VALUE for a sequence should be relied on only until the end of the transaction.
Examples of where this type of situation can occur include applications that use XA protocols, use
connection pooling, use the connection concentrator, and use HADR to achieve failover.

• If in generating a value for a sequence, the maximum value for the sequence is exceeded (or the
minimum value for a descending sequence) and cycles are not permitted, then an error occurs
(SQLSTATE 23522). In this case, the user could ALTER the sequence to extend the range of acceptable
values, or enable cycles for the sequence, or DROP and CREATE a new sequence with a different data
type that has a larger range of values.

For example, a sequence may have been defined with a data type of SMALLINT, and eventually the
sequence runs out of assignable values. DROP and re-create the sequence with the new definition to
redefine the sequence as INTEGER.

• A reference to a NEXT VALUE expression in the select statement of a cursor refers to a value that is
generated for a row of the result table. A sequence value is generated for a NEXT VALUE expression for
each row that is fetched from the database. If blocking is done at the client, the values may have been
generated at the server before the processing of the FETCH statement. This can occur when there is
blocking of the rows of the result table. If the client application does not explicitly FETCH all the rows
that the database has materialized, then the application will not see the results of all the generated
sequence values (for the materialized rows that were not returned).

• A reference to a PREVIOUS VALUE expression in the select statement of a cursor refers to a value
that was generated for the specified sequence before the opening of the cursor. However, closing the
cursor can affect the values returned by PREVIOUS VALUE for the specified sequence in subsequent
statements, or even for the same statement in the event that the cursor is reopened. This would be
the case when the select statement of the cursor included a reference to NEXT VALUE for the same
sequence name.

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– NEXTVAL and PREVVAL can be specified in place of NEXT VALUE and PREVIOUS VALUE
– sequence-name.NEXTVAL can be specified in place of NEXT VALUE FOR sequence-name
– sequence-name.CURRVAL can be specified in place of PREVIOUS VALUE FOR sequence-name

Examples
Assume that there is a table called "order", and that a sequence called "order_seq" is created as follows:

 CREATE SEQUENCE order_seq
 START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 CACHE 24

178 IBM Db2 V11.5: SQL Reference

Following are some examples of how to generate an "order_seq" sequence number with a NEXT VALUE
expression:

 INSERT INTO order(orderno, custno)
 VALUES (NEXT VALUE FOR order_seq, 123456);

or

 UPDATE order
 SET orderno = NEXT VALUE FOR order_seq
 WHERE custno = 123456;

or

 VALUES NEXT VALUE FOR order_seq INTO :hv_seq;

sql-json-path-expression
An SQL/JSON path expression defines access to the elements of a JSON document.

sql-json-path-expression
lax

strict

sql-json-accessor-expression

sql-json-accessor-expression

$

. json-path-key-name

. *

array-specifier

array-specifier
[number

*

]

lax or strict
Specifies the JSON path mode.
lax

Specifies that certain structural errors are tolerated when the current JSON document is
navigated, including the following structural errors:

• Automatic unnesting of arrays.
• Automatic wrapping of scalar values to be a single element array, if referenced as an array.
• Specifying nonexistent items, including array index values that are out of range.

If an item does not exist, the SQL/JSON path expression returns an empty string, which is handled
according to the options specified in a function's ON EMPTY clause.

strict
Specifies that an error is reported when the specified path expression cannot be used to navigate
the current JSON document. The error is handled according to the current ON ERROR clause.

sql-json-accessor-expression
$

Specifies the start of the context item to which the rest of the SQL/JSON path expression is
applied.

Chapter 1. Structured Query Language (SQL) 179

json-path-key-name
Specifies the key name of a key:value pair in the JSON document.

*
Specifies that the values for all the keys are returned as an SQL/JSON sequence.

array-specifier
Specifies the index values to apply to an array. The first element of the array has an index of 0. If
specified index is out of range, then it is considered an error.
number

An unsigned integer constant that represents an array element. The first element of the array
has an index of 0.

*
Indicates that all array elements are selected.

Special semantics are associated with some characters, when used as part of a SQL/JSON path
expression:
.

Used for going to the next level within JSON document.
*

Used for matching all the keys at the current level.
[and]

Used for specifying an index of an array.

To allow these characters to be used within json-path-key-name, use an escape backslash character (\)
before these characters to indicate that these characters are part of the key name.

Examples
1. This example is based on the following JSON document:

{ "isbn": "123-456-222", "author": [{ "name":"Jones"},{"name":"Smith"}]}

The following table shows the results of using various SQL/JSON path expressions to access items in
the JSON document:

Path Number of matches Matches

$.isbn 1 "123-456-222"

$.author[0].name 1 "Jones"

$.author[1].name 1 "Smith"

2. This example is based on the following JSON document:

{
 "person" : {"firstname":"Fred", "lastname":"Gauss"},
 "where" : "General Products",
 "friends" : [{ "name": "Lili","rank": 5 }, {"name": "Hank", "rank": 7}],
 "work.area": "Finance"
}

The following table shows the results of using various SQL/JSON path expressions to access items in
the JSON document:

Path Number of
matches

Matches

$.person.lastname 1 "Gauss"

$.friends 1 [{ "name": "Lili", "rank": 5 }, { "name": "Hank", "rank": 7}]

180 IBM Db2 V11.5: SQL Reference

Path Number of
matches

Matches

$.*.firstname 1 "Fred"

$.person.* 2 "Fred" and "Gauss"

$.friends[*] 2 { "name": "Lili", "rank": 5 } and { "name": "Hank", "rank": 7}

$.friends[*].rank 2 5 and 7

$.work.area 0

$.work\.area 1 "Finance"

3. This example is based on the following JSON document:

{ "a":[{"b1":10}, {"b2":11}], "c":"hi" }

The following table shows the results of using various SQL/JSON path expressions to access items in
the JSON document:

Path Matches Remark

lax $.a.b1 10 Automatic unnesting of array element at 'a'. Treated as
'a[*]'.

strict $.a.b1 Error No automatic unnesting of array.

lax $.c[0] "hi" Automatic wrapping of scalar value into single element
array.

strict $.c[0] Error No automatic wrapping of scalar value into single element
array.

4. This example illustrates the difference between JSON_VALUE and JSON_QUERY behavior. This
example is based on the following JSON document:

{ "a": [1,2], "b": { "c1":1, "c2":2 } }

This example is based on the following path results:

Path expression Number of values returned Values returned

$.a Single [1,2]

$.b.* Multiple 1

2

The following table shows the results of using various SQL/JSON path expressions to access items in
the JSON document:

Operator $.a $.b.* Remark

JSON_VALUE Error Error Error for accessing array type
and multiple matches.

JSON_QUERY WITHOUT ARRAY WRAPPER [1,2] Error Error for multiple values with no
array wrapper.

JSON_QUERY WITH UNCONDITIONAL ARRAY
WRAPPER

[[1,2]
]

[1,2] You must use an array wrapper,
even if the type is array.

Chapter 1. Structured Query Language (SQL) 181

Operator $.a $.b.* Remark

JSON_QUERY WITH CONDITIONAL ARRAY
WRAPPER

[1,2] [1,2] An array wrapper is not
necessary, if the type is array.

Subtype treatment
The subtype-treatment is used to cast a structured type expression into one of its subtypes.

subtype-treatment
TREAT (expression AS data-type)

The static type of expression must be a user-defined structured type, and that type must be the same
type as, or a supertype of, data-type. If the type name in data-type is unqualified, the SQL path is used to
resolve the type reference. The static type of the result of subtype-treatment is data-type, and the value
of the subtype-treatment is the value of the expression. At run time, if the dynamic type of the expression
is not data-type or a subtype of data-type, an error is returned (SQLSTATE 0D000).

Example
• If an application knows that all column object instances in a column CIRCLE_COL have the dynamic

type COLOREDCIRCLE, use the following query to invoke the method RGB on such objects. Assume the
existence of a table called RINGS, with a column CIRCLE_COL of structured type CIRCLE. Also, assume
that COLOREDCIRCLE is a subtype of CIRCLE and that the method RGB has been defined previously for
COLOREDCIRCLE as RGB() RETURNS DOUBLE.

 SELECT TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()
 FROM RINGS

At run time, if there are instances of dynamic type CIRCLE, an error is raised (SQLSTATE 0D000). This
error can be avoided by using the TYPE predicate in a CASE expression, as follows:

 SELECT (CASE
 WHEN CIRCLE_COL IS OF (COLOREDCIRCLE)
 THEN TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()
 ELSE NULL
 END)
 FROM RINGS

Determining data types of untyped expressions
An untyped expression refers to the usage of a parameter marker which is specified without a target data
type associated with it, a null value which is specified without a target data type associated with it, or a
DEFAULT keyword.

Untyped expressions can be used in SQL statements as long as one of the following conditions is true:

• A PREPARE statement is being executed by a CLI or JDBC application to compile the
SQL statement; the client interface is using deferred prepare; and the registry variable,
DB2_DEFERRED_PREPARE_SEMANTICS is set to YES. In this case, any untyped parameter marker
derives its data type based on the input descriptor associated with the subsequent OPEN or EXECUTE
statement. The length attribute is set to the maximum of the length according to the UNTYPED row, as
described in the Table 20 on page 121 in "Functions" and the length as determined from the following
tables. For data types not listed as a target type in Table 20 on page 121 in "Functions", the length from
the input descriptor associated with the subsequent OPEN or EXECUTE statement will be used. The
data types and lengths may be modified depending on the usage of the untyped parameter marker in
the SQL statement.

• The data type can be determined based on the context in the SQL statement. These locations and
the resulting data types are shown in the following table. The locations are grouped into expressions,
predicates, built-in functions, and user-defined routines to assist in determining the applicability of an
untyped expression. If the data type cannot be determined based on the context, an error is issued.

182 IBM Db2 V11.5: SQL Reference

For some cases not listed, untyped expressions in a select list will be resolved to a data type determined
based on the usage in the SQL statement.

The code page of the untyped expression is determined by the context. Where there is no context, the
code page is the same as if the untyped expression was cast to a VARCHAR data type.

The tables that follow show character string and graphic string data types in string units associated with
a database environment where the string units default is SYSTEM. If the Unicode database environment
has the string units set to CODEUNITS32, then any character string or graphic string length attributes
that represent the data type maximum length should be considered to represent the data type maximum
in CODEUNITS32. All character string or graphic string data types have the default string units of the
database environment.

Table 28. Untyped Expression Usage in Expressions (Including Select List, CASE, and VALUES)

Untyped Expression Location Data Type

Alone in a select list If the untyped expression is unnamed or is
named but not subsequently referenced in the SQL
statement, then an error is returned, unless the
untyped expression is the null value. In such cases,
the data type is VARCHAR(1).

If the untyped expression is named and
subsequently referenced in the SQL statement,
then the data type may be determined from the
subsequent usage. For more information, refer to
the "Determining data type from usage" note that
follows this table.

Both operands of a single arithmetic operator,
after considering operator precedence and order of
operation rules

Includes cases such as:

 (? + ?) + 10

DECFLOAT(34)

One operand of a single operator in an arithmetic
expression (not a datetime expression)

Includes cases such as:

 ? + (? * 10)

The data type of the other operand

Labelled duration within a datetime expression
(note that the portion of a labelled duration that
indicates the type of units cannot be a parameter
marker)

DECIMAL(15,0)

Any other operand of a datetime expression (for
example, 'timecol + ?' or '? - datecol')

Error

Both operands of a CONCAT operator VARCHAR(254)

One operand of a CONCAT operator when the other
operand is a non-CLOB character data type

If one operand is either CHAR(n) or VARCHAR(n),
where n is less than 128, the other is
VARCHAR(254 - n); in all other cases, the data type
is VARCHAR(254)

Chapter 1. Structured Query Language (SQL) 183

Table 28. Untyped Expression Usage in Expressions (Including Select List, CASE, and VALUES) (continued)

Untyped Expression Location Data Type

One operand of a CONCAT operator when the other
operand is a non-BLOB binary data type

If one operand is either BINARY(n) or
VARBINARY(n), where n is less than 128, the other
is VARBINARY(254 - n); in all other cases, the data
type is VARBINARY(254)

One operand of a CONCAT operator, when the other
operand is a non-DBCLOB graphic data type

If one operand is either GRAPHIC(n) or
VARGRAPHIC(n), where n is less than 64, the other
is VARGRAPHIC(127 - n); in all other cases, the
data type is VARGRAPHIC(127)

One operand of a CONCAT operator, when the other
operand is a large object string

Same as that of the other operand

The expression following the CASE keyword in a
simple CASE expression

Result of applying the "Rules for the result data
types" to the expressions following the WHEN
keyword that are other than untyped expressions

At least one of the result-expressions in a CASE
expression (both simple and searched), with
the rest of the result-expressions being untyped
expressions

Error

Any or all expressions following the WHEN keyword
in a simple CASE expression

Result of applying the "Rules for result data
types" to the expression following CASE and the
expressions following WHEN keyword that are
other than an untyped expression

A result-expression in a CASE expression (both
simple and searched), when at least one result-
expression is not an untyped expression

Result of applying the "Rules for result data types"
to all result-expressions that are other than an
untyped expression

Alone as a column-expression in a single-row
VALUES clause that is not within an INSERT
statement and not within the VALUES clause of in
insert operation of a MERGE statement

Error if the untyped expression is unnamed or is
named but not subsequently referenced in the SQL
statement. If the untyped expression is named
and subsequently referenced in the SQL statement,
then the data type may be determined from the
subsequent usage. For more information, refer to
the "Determining data type from usage" note that
follows this table.

Alone as a column-expression in a multi-row
VALUES clause that is not within an INSERT
statement, and for which the column-expressions
in the same position in all other row-expressions
are untyped expressions

Error if the untyped expression is unnamed or is
named but not subsequently referenced in the SQL
statement. If the untyped expression is named
and subsequently referenced in the SQL statement,
then the data type may be determined from the
subsequent usage. For more information, refer to
the "Determining data type from usage" note that
follows this table.

Alone as a column-expression in a multi-row
VALUES clause that is not within an INSERT
statement, and for which the expression in the
same position of at least one other row-expression
is not an untyped expression

Result of applying the "Rules for result data types"
on all operands that are other than untyped
expressions

184 IBM Db2 V11.5: SQL Reference

Table 28. Untyped Expression Usage in Expressions (Including Select List, CASE, and VALUES) (continued)

Untyped Expression Location Data Type

Alone as a column-expression in a single-row
VALUES clause within an INSERT statement

The data type of the column. If the column
is defined as a user-defined distinct type, it is
the source data type of the user-defined distinct
type. If the column is defined as a user-defined
structured type, it is the structured type, also
indicating the return type of the transform function.

Alone as a column-expression in a multi-row
VALUES clause within an INSERT statement

The data type of the column. If the column
is defined as a user-defined distinct type, it is
the source data type of the user-defined distinct
type. If the column is defined as a user-defined
structured type, it is the structured type, also
indicating the return type of the transform function.

Alone as a column-expression in a values-clause of
the source table for a MERGE statement

Error if the untyped expression is unnamed or is
named but not subsequently referenced in the SQL
statement. If the untyped expression is named
and subsequently referenced in the SQL statement,
then the data type may be determined from the
subsequent usage. For more information, refer to
the "Determining data type from usage" note that
follows this table.

Alone as a column-expression in the VALUES
clause of an insert operation of a MERGE statement

The data type of the column. If the column
is defined as a user-defined distinct type, it is
the source data type of the user-defined distinct
type. If the column is defined as a user-defined
structured type, it is the structured type, also
indicating the return type of the transform function.

Alone as a column-expression on the right side
of assignment-clause for an update operation of a
MERGE statement

The data type of the column. If the column
is defined as a user-defined distinct type, it is
the source data type of the user-defined distinct
type. If the column is defined as a user-defined
structured type, it is the structured type, also
indicating the return type of the transform function.

Alone as a column-expression on the right side of a
SET clause in an UPDATE statement

The data type of the column. If the column
is defined as a user-defined distinct type, it is
the source data type of the user-defined distinct
type. If the column is defined as a user-defined
structured type, it is the structured type, also
indicating the return type of the transform function.

As a value on the right side of a SET special register
statement

The data type of the special register

Argument of the TABLESAMPLE clause of the
tablesample-clause of a table-reference

DOUBLE

Argument of the REPEATABLE subclause of the
tablesample-clause of a table-reference

INTEGER

Alone as fetch-row-count in a fetch-clause BIGINT

Alone as offset-row-count in an OFFSET clause BIGINT

As a value in a FREE LOCATOR statement Locator

Chapter 1. Structured Query Language (SQL) 185

Table 28. Untyped Expression Usage in Expressions (Including Select List, CASE, and VALUES) (continued)

Untyped Expression Location Data Type

As a value for the password in a SET ENCRYPTION
PASSWORD statement

VARCHAR(128)

Note:
Determining data type from usage

The following is an example of how the data type for an untyped expression can be determined from
subsequent usage:

If the named untyped expression is subsequently referenced in a comparison operator, it will then
have the data type of the other operand. If there are multiple references of the named untyped
expression in the SQL statement, the data type, length, precision, scale, and code page that is
independently determined for each of those references must be identical or an error is returned.

Table 29. Untyped Expression Usage in Predicates

Untyped Expression Location Data Type

Both operands of a comparison operator VARCHAR(254)

One operand of a comparison operator, when the
other operand is other than an untyped expression

The data type of the other operand

All operands of a BETWEEN predicate VARCHAR(254)

Two operands of a BETWEEEN predicate Same as that of the only typed expression

Only one operand of a BETWEEN predicate Result of applying the "Rules for result data types"
on all operands that are other than untyped
expressions

All operands of an IN predicate, for example, ? IN
(?,?,?)

VARCHAR(254)

The first operand of an IN predicate, when the right
side is a fullselect, for example, IN (fullselect)

Data type of the selected column

The first operand of an IN predicate, when the right
side is not a subselect;, for example, ? IN (?,A,B),
or ? IN (A,?,B,?)

Result of applying the "Rules for result data types"
on all operands of the IN list (operands to the right
of the IN keyword) that are other than untyped
expressions

Any or all operands of the IN list of the IN
predicate, for example, A IN (?,B, ?)

Result of applying the "Rules for result data types"
on all operands of the IN predicate (operands to
the left and right of the IN keyword) that are other
than untyped expressions

Both the operand in a row-value-expression of an
IN predicate, and the corresponding result column
of the fullselect, for example, (c1, ?) IN (SELECT
c1, ? FROM ...)

VARCHAR(254)

Any operands in a row-value-expression of an IN
predicate, for example, (c1,?) IN fullselect

Data type of the corresponding result column of the
fullselect

Any select list items in a subquery if a row-value-
expression is specified in an IN predicate, for
example, (c1,c2) IN (SELECT?, c1, FROM ...)

Data type of the corresponding operand in the row-
value-expression

186 IBM Db2 V11.5: SQL Reference

Table 29. Untyped Expression Usage in Predicates (continued)

Untyped Expression Location Data Type

All three operands of the LIKE predicate Match expression (operand 1) and pattern
expression (operand 2) are VARCHAR(32672);
escape expression (operand 3) is VARCHAR(2)

The match expression of the LIKE predicate
when either the pattern expression or the escape
expression is other than an untyped expression

VARCHAR(32672), VARBINARY(32672), or
VARGRAPHIC(16336), depending on the data type
of the first operand that is not an untyped
expression

The pattern expression of the LIKE predicate
when either the match expression or the escape
expression is other than an untyped expression

VARCHAR(32672), VARBINARY(32672), or
VARGRAPHIC(16336), depending on the data type
of the first operand that is not an untyped
expression.

The escape expression of the LIKE predicate
when either the match expression or the pattern
expression is other than an untyped expression

VARCHAR(2), VARBINARY(1), or VARGRAPHIC(1),
depending on the data type of the first operand that
is not an untyped expression.

Operand of the NULL predicate VARCHAR(254)

Table 30. Untyped Expression Usage in Built-in Functions

Untyped Parameter Marker Location Data Type

Array index of an ARRAY BIGINT

All arguments of COALESCE, when all arguments
are untyped parameter markers

Error

Any argument of COALESCE, when at least one
argument is not an untyped parameter marker

Result of applying the "Rules for result data types"
on all arguments that are other than untyped
parameter markers

First argument of DAYNAME TIMESTAMP(12)

The argument of DIGITS DECIMAL(31,6)

First argument of FROM_UTC_TIMESTAMP TIMESTAMP(6)

All arguments of MAX, MIN, or NULLIF, when all
arguments are untyped parameter markers

Error

Any argument of MAX, MIN, or NULLIF, when at
least one argument is not an untyped parameter
marker

Result of applying the "Rules for result data types"
on all arguments that are other than untyped
parameter markers

First argument of MONTHNAME TIMESTAMP(12)

POSSTR (both arguments) Both arguments are VARCHAR(32672)

POSSTR (one argument, when the other argument
is a character data type)

VARCHAR(32672)

POSSTR (one argument, when the other argument
is a graphic data type)

VARGRAPHIC(16336)

POSSTR (the search-string argument, when the
other argument is a binary data type)

VARBINARY(32672)

Chapter 1. Structured Query Language (SQL) 187

Table 30. Untyped Expression Usage in Built-in Functions (continued)

Untyped Parameter Marker Location Data Type

First and second arguments of
REGEXP_LIKE, REGEXP_INSTR, REGEXP_SUBSTR,
REGEXP_COUNT

VARCHAR(32672)

First argument of REGEXP_LIKE, REGEXP_INSTR,
REGEXP_SUBSTR, or REGEXP_COUNT when second
argument is not an untyped expression

VARGRAPHIC(16336) if second argument is a
graphic data type; VARCHAR(32672) otherwise

Second argument of REGEXP_LIKE,
REGEXP_INSTR, REGEXP_SUBSTR, or
REGEXP_COUNT when first argument is not an
untyped expression

VARGRAPHIC(16336) if first argument is a graphic
data type in a Unicode database; VARCHAR(32672)
otherwise

First three arguments of REGEXP_REPLACE VARCHAR(32672)

First argument of REGEXP_REPLACE when second
or third argument is not an untyped expression

VARGRAPHIC(16336) if third argument is a graphic
data type or third argument is an untyped
expression and second argument is a graphic data
type; VARCHAR(32672) otherwise

Second argument of REGEXP_REPLACE when first
or third argument is not an untyped expression

VARGRAPHIC(16336) if first argument is a graphic
data type in a Unicode database; VARCHAR(32672)
otherwise

Third argument of REGEXP_REPLACE when first or
second argument is not an untyped expression

VARGRAPHIC(16336) if first argument is a graphic
data type or first argument is an untyped
expression and second argument is a graphic data
type; VARCHAR(32672) otherwise

First argument of SUBSTR VARCHAR(32672)

Second and third argument of SUBSTR INTEGER

First argument of SUBSTRB VARCHAR(32672)

First argument of SUBSTR2 VARGRAPHIC(16336) if database supports graphic
types; otherwise VARCHAR(32672)

First argument of SUBSTR4 VARCHAR(32672)

Second argument of TIMESTAMP TIME

First argument of TIMESTAMP_FORMAT VARCHAR(254)

First argument of TIMEZONE TIMESTAMP(6)

First argument of TO_UTC_TIMESTAMP TIMESTAMP(6)

Second and third arguments of TRANSLATE VARCHAR(32672) if the first argument is a
character type; VARGRAPHIC(16336) if the first
argument is a graphic type

Fourth argument of TRANSLATE VARCHAR(1) if the first argument is a character
type; VARGRAPHIC(1) if the first argument is a
graphic type

Second argument of TRIM_ARRAY BIGINT

Unary minus DECFLOAT(34)

Unary plus DECFLOAT(34)

188 IBM Db2 V11.5: SQL Reference

Table 30. Untyped Expression Usage in Built-in Functions (continued)

Untyped Parameter Marker Location Data Type

All arguments of VALUE, when all arguments are
untyped parameter markers

Error

Any argument of VALUE, when at least one
argument is not an untyped parameter marker

Result of applying the "Rules for result data types"
on all arguments that are other than untyped
parameter markers

First argument of VARCHAR_FORMAT TIMESTAMP(12)

First argument of XMLCOMMENT VARCHAR(32672)

All arguments of XMLCONCAT XML

First argument of XMLDOCUMENT XML

Arguments of XMLELEMENT or XMLEXISTS Error

Second argument of XMLPI VARCHAR(32672)

Arguments of XMLQUERY Error

First argument of XMLSERIALIZE XML

Arguments of XMLTABLE Error

First argument of XMLTEXT VARCHAR(32672)

First argument of XMLVALIDATE XML

First argument of XMLXSROBJECTID XML

Arguments of an aggregate function Error

All other arguments of all other scalar functions The data type of the parameter of the function
definition as determined by function resolution.
The length of the argument is derived based on
Table 20 on page 121 in Function Resolution
section.

Table 31. Untyped Expression Usage in User-defined Routines

Untyped Parameter Marker Location Data Type

Argument of a function The data type and length of the parameter, as
defined when the function was created.

Argument of a method Error

Argument of a procedure The data type of the parameter, as defined when
the procedure was created

Row expression
A row expression specifies a row of data that could have a specific user-defined row type or the built-in
data type ROW.

Authorization
The use of some of the row expressions may require having the appropriate authorization. For these
row expressions, the privileges held by the authorization ID of the statement must include the following
authorization:

Chapter 1. Structured Query Language (SQL) 189

• row-variable. For information about authorization considerations when row-variable is a global variable,
see "Global variables".

• row-function-invocation. The authorization to execute the function. For information about authorization
considerations, see "Function invocation" in the "Functions" topic

• expression. Authorizations might be required for the use of certain expressions referenced in a row-
expression. For information about authorization considerations, see "Expressions".

Syntax
row-expression

row-variable

row-case-expression

row-cast-specification

row-array-element-specification

row-field-reference

row-function-invocation

Description
row-variable

A variable that is defined with row type.
row-case-expression

A case-expression that returns a row type.
row-cast-specification

A CAST that returns a row type.
row-array-element-specification

An array-element-specification of an array with row type elements.
row-field-reference

A field-reference of a row where the field is also a row type
row-function-invocation

A function-invocation of a user-defined function that has a return type that is a row type. The function
could return a user-defined row type or the data type ROW with defined field names and field types.

Notes
• Row expressions can be used to generate a row within SQL PL contexts.

Predicates
A predicate specifies a condition that is true, false, or unknown about a given value, row, or group.

The following rules apply to all types of predicates:

• All values specified in a predicate must be compatible.
• An expression used in a basic, quantified, IN, or BETWEEN predicate must not result in a character

string with a length attribute greater than 4000, a graphic string with a length attribute greater than
2000, or a LOB string of any size.

• The value of a host variable can be null (that is, the variable may have a negative indicator variable).
• The code page conversion of operands of predicates involving two or more operands, with the exception

of LIKE, is done according to the rules for string conversions.
• Use of a structured type value is limited to the NULL predicate and the TYPE predicate.

190 IBM Db2 V11.5: SQL Reference

• In a Unicode database, all predicates that accept a character or graphic string will accept any string type
for which conversion is supported.

A fullselect is a form of the SELECT statement that, when used in a predicate, is also called a subquery.

Row-value-expression
The operand of several predicates (basic, quantified, and IN) can be expressed as a row value expression:

row-value-expression

(

,

expression)

A row value expression returns a single row that consists of one or more fields. The field values can be
specified as a list of expressions. The number of fields that are returned by the row value expression is
equal to the number of expressions that are specified in the list.

Search conditions
A search condition specifies a condition that is "true," "false," or "unknown" about a given value, row, or
group. A search condition can also be a Boolean column, value, or literal.

search-condition

NOT

predicate

SELECTIVITY numeric-constant

AND

OR NOT

predicate

SELECTIVITY numeric-constant

The result of a search condition is derived by application of the specified logical operators (AND, OR, NOT)
to the result of each specified predicate. If logical operators are not specified, the result of the search
condition is the result of the specified predicate.

AND and OR are defined in Table 32 on page 191, in which P and Q are any predicates:

Table 32. Truth Tables for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Chapter 1. Structured Query Language (SQL) 191

Search conditions within parentheses are evaluated first. If the order of evaluation is not specified by
parentheses, NOT is applied before AND, and AND is applied before OR. The order in which operators at
the same precedence level are evaluated is undefined to allow for optimization of search conditions.

Figure 3. Search Conditions Evaluation Order

SELECTIVITY numeric-constant
The SELECTIVITY clause is used to indicate what the expected selectivity percentage is for the
predicate. SELECTIVITY can be specified for the following predicates:

• A user-defined predicate, regardless of the DB2_SELECTIVITY query compiler registry variable
setting

• A basic predicate in which at least one expression contains host variables or parameter markers.
Specifying SELECTIVITY for this type of predicate applies only when the DB2_SELECTIVITY query
compiler registry variable is set to YES.

• Any predicate when the DB2_SELECTIVITY query compiler registry variable is set to ALL.

A user-defined predicate is a predicate that consists of a user-defined function invocation, in the
context of a predicate specification that matches the predicate specification on the PREDICATES
clause of CREATE FUNCTION. For example, if the function myfunction is defined with PREDICATES
WHEN=1..., then the following use of SELECTIVITY is valid:

 SELECT *
 FROM STORES
 WHERE myfunction(parm,parm) = 1 SELECTIVITY 0.004

The selectivity value must be a numeric literal value in the inclusive range from 0 to 1 (SQLSTATE
42615). If SELECTIVITY is not specified, the default value is 0.01 (that is, the user-defined predicate
is expected to filter out all but one percent of all the rows in the table). The SELECTIVITY default
can be changed for any given function by updating its SELECTIVITY column in the SYSSTAT.ROUTINES
view. An error will be returned if the SELECTIVITY clause is specified for a non user-defined predicate
(SQLSTATE 428E5).

A user-defined function (UDF) can be applied as a user-defined predicate and, hence, is potentially
applicable for index exploitation if:

• The predicate specification is present in the CREATE FUNCTION statement
• The UDF is invoked in a WHERE clause being compared (syntactically) in the same way as specified

in the predicate specification
• There is no negation (NOT operator)

192 IBM Db2 V11.5: SQL Reference

Examples
In the following query, the within UDF specification in the WHERE clause satisfies all three conditions
and is considered a user-defined predicate.

 SELECT *
 FROM customers
 WHERE within(location, :sanJose) = 1 SELECTIVITY 0.2

However, the presence of within in the following query is not index-exploitable due to negation and is
not considered a user-defined predicate.

 SELECT *
 FROM customers
 WHERE NOT(within(location, :sanJose) = 1) SELECTIVITY 0.3

In the next example, consider identifying customers and stores that are within a certain distance of each
other. The distance from one store to another is computed by the radius of the city in which the customers
live.

 SELECT *
 FROM customers, stores
 WHERE distance(customers.loc, stores.loc) <
 CityRadius(stores.loc) SELECTIVITY 0.02

In the preceding query, the predicate in the WHERE clause is considered a user-defined predicate. The
result produced by CityRadius is used as a search argument to the range producer function.

However, since the result produced by CityRadius is used as a range producer function, the user-defined
predicate shown previously will not be able to make use of the index extension defined on the stores.loc
column. Therefore, the UDF will make use of only the index defined on the customers.loc column.

Basic predicate
A basic predicate compares two values or compares a set of values with another set of values.

expression comparison-operator expression

row-value-expression comparison-operator row-value-expression

boolean-expression

comparison-operator
 =

 <>
1

 <

 >

 <=
1

 >=
1

Notes:
1 See “Alternative forms” on page 195.

The six comparison operators can effectively be expressed based on just two of the comparison
operators. If the predicate operands are x and y, then the other four comparison operators can be
expressed using the following alternative predicates.

Table 33. Predicates and alternative predicates

Predicate Alternative predicate

x <> y NOT (x = y)

Chapter 1. Structured Query Language (SQL) 193

Table 33. Predicates and alternative predicates (continued)

Predicate Alternative predicate

x > y y < x

x <= y x < y OR x = y

x >= y y < x OR x = y

When the predicate operands are specified as an expression, the data types of the expressions must be
comparable. If the value of either operand is null, the result of the predicate is unknown. Otherwise the
result is either true or false.

Table 34. Predicate evaluation with scalar operands

Predicate (with operand values
x and y) Boolean value If and Only If...

x = y is True x is equal to y

x < y is True x is less than y

x = y is False x is not equal to y

x < y is False x = y is True or y < x is True

When the predicate operands are specified as a row-value-expression, they must have the same number
of fields and the data types of the corresponding fields of the operands must be comparable. The result
of the comparison is based on comparisons of the corresponding fields in the row-value-expression
operands.

Table 35. Predicate evaluation with row operands

Predicate (with operand values
Rx and Ry that have fields Rxi
and Ryi where 0 < i < number of
fields) Boolean value If and Only If...

Rx = Ry is True All pairs of corresponding value
expressions are equal (Rxi = Ryi
is True for all values of i).

Rx < Ry is True The first N pairs of corresponding
value expressions are equal and
the next pair has the left value
expression less than the right
value expression for some value
of N (Rxi = Ryi is True for all
values of i < n and Rxn < Ryn is
True for some value of n).

Rx = Ry is False At least one pair of corresponding
value expressions are not equal
(NOT (Rxi = Ryi) is True for some
value of i).

194 IBM Db2 V11.5: SQL Reference

Table 35. Predicate evaluation with row operands (continued)

Predicate (with operand values
Rx and Ry that have fields Rxi
and Ryi where 0 < i < number of
fields) Boolean value If and Only If...

Rx < Ry is False All pairs of corresponding value
expressions are equal (Rx = Ry
is True) or the first N pairs of
corresponding value expressions
are equal and the next pair has
the right value expression less
than the left value expression for
some value of N (Rxi = Ryi is True
for all values of i < n and Ryn <
Rxn is True for some value of n).

Rx comparison operator Ry is Unknown The comparison is neither True
nor False.

Boolean values
You can use a basic predicate to compare a Boolean value with another Boolean value or with a value of
a data type that can be cast to a Boolean value. A value of TRUE is greater than a value of FALSE. For
example:

• TRUE = 'on' is TRUE
• DECFLOAT(4.3) = TRUE is TRUE
• '0' <= FALSE is TRUE
• 'yes' <= FALSE is FALSE

Alternative forms
For the comparison operators <>, <=, and >=, alternative forms are also supported. (The forms ¬=, ¬<,
and ¬> are supported only in code pages 437, 819, and 850.) Support for these alternative forms is
intended only to accommodate existing SQL statements; these forms are not recommended for new SQL
statements.

Comparison Operator Alternative Forms

<> ^= != ¬=

<= ^> !> ¬>

>= ^< !< ¬<

Examples:

 EMPNO='528671'
 SALARY < 20000
 PRSTAFF <> :VAR1
 SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)
 (YEARVAL, MONTHVAL) >= (2009, 10)

Chapter 1. Structured Query Language (SQL) 195

Boolean predicate
A Boolean predicate returns the truth value of a Boolean expression.

boolean-expression IS

NOT

TRUE

FALSE

boolean-expression
An expression that returns the Boolean value (or representation of a Boolean value) that is to be
evaluated by the function. The data type of the returned value must be of one of the following data
types (SQLSTATE 42884):

• BOOLEAN
• SMALLINT, INTEGER, BIGINT (binary integer)
• DECFLOAT (floating decimal)
• CHAR or VARCHAR (string)
• GRAPHIC or VARGRAPHIC (graphic; applies only to a Unicode database)

Non-Boolean values are implicitly cast to Boolean values as described in “Boolean values” on page 41.

If the returned value is a string, it must be a valid representation of a Boolean value as described in
“Boolean values” on page 41 (SQLSTATE 22018).

Null values are treated differently by different predicates:

• The IS TRUE predicate returns:

– TRUE when the truth value of the value returned by input expression is TRUE
– FALSE when the truth value is FALSE or NULL

• The IS FALSE predicate returns:

– TRUE when the truth value of the value returned by input expression is FALSE
– FALSE when the truth value is TRUE or NULL

• The IS NOT TRUE predicate returns:

– TRUE when the truth value of the value returned by input expression is FALSE or NULL
– FALSE when the truth value is TRUE

• The IS NOT FALSE predicate returns

– TRUE when the truth value of the value returned by input expression is TRUE or NULL
– FALSE when the truth value is FALSE

Alternative syntax: The keyword ON can be used instead of TRUE; OFF can be used instead of FALSE.

Example
The following statement returns those values from COLA that are not equal to the corresponding value in
COLX.

 SELECT COLA FROM TBLAB WHERE COLA = COLX IS NOT TRUE

196 IBM Db2 V11.5: SQL Reference

Quantified predicate
A quantified predicate compares a value or values with a collection of values.

expression =

 <>
1

 <

 >

 <=

 >=

SOME

ANY

ALL

(fullselect1)

row-value-expression = SOME

ANY

ALL

(fullselect2)

Notes:
1 The following forms of the comparison operators are also supported in basic and quantified
predicates: ^=, ^<, ^>, !=, !<, and !>. In code pages 437, 819, and 850, the forms ¬=, ¬<, and ¬>
are supported. All of these product-specific forms of the comparison operators are intended only to
support existing SQL statements that use these operators, and are not recommended for use when
writing new SQL statements.

The fullselect must identify a number of columns that is the same as the number of expressions specified
to the left of the predicate operator (SQLSTATE 428C4). The fullselect may return any number of rows.

When ALL is specified:

• The result of the predicate is true if the fullselect returns no values or if the specified relationship is true
for every value returned by the fullselect.

• The result is false if the specified relationship is false for at least one value returned by the fullselect.
• The result is unknown if the specified relationship is not false for any values returned by the fullselect

and at least one comparison is unknown because of the null value.

When SOME or ANY is specified:

• The result of the predicate is true if the specified relationship is true for each value of at least one row
returned by the fullselect.

• The result is false if the fullselect returns no rows or if the specified relationship is false for at least one
value of every row returned by the fullselect.

• The result is unknown if the specified relationship is not true for any of the rows and at least one
comparison is unknown because of a null value.

Examples: Use the following tables when referring to the following examples.

Figure 4. Tables for quantified predicate examples

Chapter 1. Structured Query Language (SQL) 197

Example 1

 SELECT COLA FROM TBLAB
 WHERE COLA = ANY(SELECT COLX FROM TBLXY)

Results in 2,3. The subselect returns (2,3). COLA in rows 2 and 3 equals at least one of these values.

Example 2

 SELECT COLA FROM TBLAB
 WHERE COLA > ANY(SELECT COLX FROM TBLXY)

Results in 3,4. The subselect returns (2,3). COLA in rows 3 and 4 is greater than at least one of these
values.

Example 3

 SELECT COLA FROM TBLAB
 WHERE COLA > ALL(SELECT COLX FROM TBLXY)

Results in 4. The subselect returns (2,3). COLA in row 4 is the only one that is greater than both these
values.

Example 4

 SELECT COLA FROM TBLAB
 WHERE COLA > ALL(SELECT COLX FROM TBLXY
 WHERE COLX<0)

Results in 1,2,3,4, null. The subselect returns no values. Thus, the predicate is true for all rows in TBLAB.

Example 5

SELECT * FROM TBLAB
 WHERE (COLA,COLB+10) = SOME (SELECT COLX, COLY FROM TBLXY)

The subselect returns all entries from TBLXY. The predicate is true for the subselect, hence the result is as
follows:

COLA COLB
----------- -----------
 2 12
 3 13

Example 6

SELECT * FROM TBLAB
 WHERE (COLA,COLB) = ANY (SELECT COLX,COLY-10 FROM TBLXY)

The subselect returns COLX and COLY-10 from TBLXY. The predicate is true for the subselect, hence the
result is as follows:

COLA COLB
----------- -----------
 2 12
 3 13

198 IBM Db2 V11.5: SQL Reference

ARRAY_EXISTS
The ARRAY_EXISTS predicate tests for the existence of an array index in an array.

ARRAY_EXISTS (array-expression , array-index)

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification of a
parameter marker to an array type.

array-index
The data type of array-index must be assignable to the data type of the array index of the array. If
array-expression is an ordinary array, then array-index must be assignable to INTEGER (SQLSTATE
428H1).

The result is true if array-expression includes an array index that is equal to array-indexcast to the data
type of the array index of array-expression; otherwise the result is false.

The result cannot be unknown; if either argument is null, the result is false.

Example
1. Assume that array variableRECENT_CALLS is defined as an ordinary array of array type
PHONENUMBERS. The following IF statement tests if the recent calls list has reached the 40th saved
call yet. If it has, the local Boolean variable EIGHTY_PERCENT is set to true:

 IF (ARRAY_EXISTS(RECENT_CALLS, 40)) THEN
 SET EIGHTY_PERCENT = TRUE;
 END IF

BETWEEN predicate
The BETWEEN predicate compares a value with a range of values.

expression

NOT

BETWEEN expression AND expression

If the data types of the operands are not the same, all values are converted to the data type that would
result by applying the "Rules for result data types", except if the data types of all the operands are
numeric, in which case no values are converted.

The BETWEEN predicate:

 value1 BETWEEN value2 AND value3

is equivalent to the search condition:

value1 >= value2 AND value1 <= value3

The BETWEEN predicate:

 value1 NOT BETWEEN value2 AND value3

is equivalent to the search condition:

 NOT(value1 BETWEEN value2 AND value3); that is,
 value1 < value2 OR value1 > value3.

The first operand (expression) cannot include a function that is not deterministic or has an external action
(SQLSTATE 42845).

Chapter 1. Structured Query Language (SQL) 199

Examples
Example 1

 EMPLOYEE.SALARY BETWEEN 20000 AND 40000

Results in all salaries between $20,000.00 and $40,000.00.

Example 2

 SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Assuming :HV1 is 5000, results in all salaries below $25,000.00 and above $40,000.00.

Cursor predicates
Cursor predicates are SQL keywords that can be used to determine the state of a cursor defined within the
current scope. They provide a means for easily referencing whether a cursor is open, closed or if there are
rows associated with the cursor.

cursor-variable-name IS

NOT

FOUND

OPEN

cursor-variable-name
The name of a SQL variable or SQL parameter of a cursor type.

IS
Specifies that a cursor predicate property is to be tested.

NOT
Specifies that the opposite value of testing the cursor predicate property is to be returned.

FOUND
Specifies to check if the cursor contains rows after the execution of a FETCH statement. If the
last FETCH statement executed was successful, and if the IS FOUND predicate syntax is used, the
returned value is TRUE. If the last FETCH statement executed resulted in a condition where rows were
not found, the result is false. The result is unknown when:

• the value of cursor-variable-name is null
• the underlying cursor of cursor-variable-name is not open
• the predicate is evaluated before the first FETCH action was performed on the underlying cursor
• the last FETCH action returned an error

The IS FOUND predicate can be useful within a portion of SQL PL logic that loops and performs a fetch
with each iteration. The predicate can be used to determine if rows remain to be fetched. It provides
an efficient alternative to using a condition handler that checks for the error condition that is raised
when no more rows remain to be fetched.

When the NOT keyword is specified, so that the syntax is IS NOT FOUND, the result value is the
opposite.

OPEN
Specifies to check if the cursor is in an open state. If the cursor is in open and if the IS OPEN predicate
syntax is used, the returned value is TRUE. This can be a useful predicate in cases where cursors
are passed as parameters to functions and procedures. Before attempting to open the cursor, this
predicate can be used to determine if the cursor is already open.

When the NOT keyword is specified, so that the syntax is IS NOT OPEN, the result value is the
opposite.

200 IBM Db2 V11.5: SQL Reference

Notes
• A cursor predicate can only be used in statements within a compound SQL (compiled) statement

(SQLSTATE 42818).

Example
The following script defines an SQL procedure that contains references to these predicates as well as the
prerequisite objects required to successfully compile and call the procedure:

CREATE TABLE T1 (c1 INT, c2 INT, c3 INT)@

INSERT INTO T1 VALUES (1,1,1),(2,2,2),(3,3,3) @

CREATE TYPE myRowType AS ROW(c1 INT, c2 INT, c3 INT)@

CREATE TYPE myCursorType AS myRowType CURSOR@

CREATE PROCEDURE p(OUT count INT)
LANGUAGE SQL
BEGIN
 DECLARE C1 CURSOR;
 DECLARE lvarInt INT;

 SET count = -1;
 SET c1 = CURSOR FOR SELECT c1 FROM t1;

 IF (c1 IS NOT OPEN) THEN
 OPEN c1;
 ELSE
 set count = -2;
 END IF;

 SET count = 0;
 IF (c1 IS OPEN) THEN

 FETCH c1 INTO lvarInt;

 WHILE (c1 IS FOUND) DO
 SET count = count + 1;
 FETCH c1 INTO lvarInt;
 END WHILE;
 ELSE
 SET COUNT = 0;
 END IF;

END@

CALL p()@

DISTINCT predicate
The DISTINCT predicate compares two expressions and evaluates to TRUE if their values are not
identical.

The result of a DISTINCT predicate depends on whether either or both of its input expressions are null:

Input expressions IS DISTINCT FROM IS NOT DISTINCT FROM

Both inputs are non-null. Evaluates to TRUE if the inputs
are not identical and FALSE if
they are. Equivalent to the <>
operator.

Evaluates to FALSE if the inputs
are not identical and TRUE if they
are. Equivalent to the = operator.

One input is null. Evaluates to TRUE. Evaluates to FALSE.

Both inputs are null. Evaluates to FALSE. Evaluates to TRUE.

The result of a DISTINCT predicate cannot be null.

Chapter 1. Structured Query Language (SQL) 201

expression1 IS

NOT

DISTINCT FROM expression2

expression1 and expression2
The expressions that are to be compared.

Examples
Assume that HV is a host variable and T1 is a table with one column (C1) and three rows:

C1

1
2
NULL

• If HV=2, the statement

SELECT * FROM T1 WHERE C1 IS DISTINCT FROM :HV;

returns rows 1 and 3.

If HV=2, the statement

SELECT * FROM T1 WHERE C1 IS NOT DISTINCT FROM :HV;

returns row 2.
• If HV=NULL, the statement

SELECT * FROM T1 WHERE C1 IS DISTINCT FROM :HV;

returns rows 1 and 2.

If HV=NULL, the statement

SELECT * FROM T1 WHERE C1 IS NOT DISTINCT FROM :HV;

returns row 3.

EXISTS predicate
The EXISTS predicate tests for the existence of certain rows.

EXISTS (fullselect)

The fullselect may specify any number of columns, and

• The result is true only if the number of rows specified by the fullselect is not zero.
• The result is false only if the number of rows specified is zero
• The result cannot be unknown.

Example
 EXISTS (SELECT * FROM TEMPL WHERE SALARY < 10000)

202 IBM Db2 V11.5: SQL Reference

IN predicate
The IN predicate compares a value or values with a collection of values.

expression1

NOT

IN (fullselect1)

(

,

expression2)

expression2

row-value-expression

NOT

IN (fullselect2)

The fullselect must identify a number of columns that is the same as the number of expressions specified
to the left of the IN keyword (SQLSTATE 428C4). The fullselect may return any number of rows.

• An IN predicate of the form:

 expression IN expression

is equivalent to a basic predicate of the form:

 expression = expression

• An IN predicate of the form:

 expression IN (fullselect)

is equivalent to a quantified predicate of the form:

 expression = ANY (fullselect)

• An IN predicate of the form:

 expression NOT IN (fullselect)

is equivalent to a quantified predicate of the form:

 expression <> ALL (fullselect)

• An IN predicate of the form:

 expression IN (expressiona, expressionb, ..., expressionk)

is equivalent to:

 expression = ANY (fullselect)

where fullselect in the values-clause form is:

 VALUES (expressiona), (expressionb), ..., (expressionk)

• An IN predicate of the form:

 (expressiona, expressionb,..., expressionk) IN (fullselect)

is equivalent to a quantified predicate of the form:

 (expressiona, expressionb,..., expressionk) = ANY (fullselect)

Note that the operand on the left side of this form of these predicates is referred to as a row-value-
expression.

Chapter 1. Structured Query Language (SQL) 203

The values for expression1 and expression2 or the column of fullselect1 in the IN predicate must be
compatible. Each field of the row-value-expression and its corresponding column of fullselect2 in the IN
predicate must be compatible. The rules for result data types can be used to determine the attributes of
the result used in the comparison.

The values for the expressions in the IN predicate (including corresponding columns of a fullselect) can
have different code pages. If a conversion is necessary, the code page is determined by applying rules for
string conversions to the IN list first, and then to the predicate, using the derived code page for the IN list
as the second operand.

Examples
Example 1: The following condition evaluates to true if the value in the row under evaluation in the
DEPTNO column contains D01, B01, or C01:

 DEPTNO IN ('D01', 'B01', 'C01')

Example 2: The following condition evaluates to true only if the EMPNO (employee number) on the left
side matches the EMPNO of an employee in department E11:

 EMPNO IN (SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = 'E11')

Example 3: Given the following information, this example evaluates to true if the specific value in the row
of the COL_1 column matches any of the values in the list:

Table 36. IN Predicate example

Expressions Type Code Page

COL_1 column 850

HV_2 host variable 437

HV_3 host variable 437

CON_1 constant 850

When evaluating the predicate:

 COL_1 IN (:HV_2, :HV_3, CON_4)

the two host variables will be converted to code page 850, based on the rules for string conversions.

Example 4: The following condition evaluates to true if the specified year in EMENDATE (the date an
employee activity on a project ended) matches any of the values specified in the list (the current year or
the two previous years):

 YEAR(EMENDATE) IN (YEAR(CURRENT DATE),
 YEAR(CURRENT DATE - 1 YEAR),
 YEAR(CURRENT DATE - 2 YEARS))

Example 5: The following condition evaluates to true if both ID and DEPT on the left side match MANAGER
and DEPTNUMB respectively for any row of the ORG table.

 (ID, DEPT) IN (SELECT MANAGER, DEPTNUMB FROM ORG)

204 IBM Db2 V11.5: SQL Reference

JSON_EXISTS predicate
The JSON_EXISTS predicate determines whether JSON data contains a JSON value that can be located
by using the specified sql-json-path-expression.

JSON_EXISTS (JSON-expression

FORMAT JSON

FORMAT BSON

, sql-json-path-expression

AS path-name

FALSE ON ERROR

TRUE

UNKNOWN

ERROR

ON ERROR

)

The result of the JSON_EXISTS predicate is true if at least one value can be located in JSON-expression by
using sql-json-path-expression.

If sql-json-path-expression uses strict mode and an error occurs, the result of the predicate is determined
by the ON ERROR clause.

The result of the JSON_EXISTS predicate is UNKNOWN if JSON-expression is the null value.

JSON-expression
An expression that returns a value that is a built-in string data type, except the following data types
(SQLSTATE 42815):

• GRAPHIC
• VARGRAPHIC
• DBCLOB
• BINARY
• CHAR FOR BIT DATA
• VARCHAR FOR BIT DATA
• A user-defined type that is sourced on any of the previously listed data types

If a character value is returned, it must contain correctly formatted JSON data (SQLSTATE 22032). If a
binary data type is returned, it is interpreted according to the explicit or implicit FORMAT clause.

FORMAT JSON
JSON-expression is formatted as JSON data.

If JSON-expression is a character string data type, it is treated as JSON data.

If JSON-expression is a binary string data type, it is interpreted as UTF-8 data.

FORMAT BSON
Specifies that JSON-expression is formatted as the BSON representation of JSON data (SQLSTATE
22032). JSON-expression must be a binary string data type (SQLSTATE 42815).

sql-json-path-expression
An expression that returns a value that is a built-in character string data type. The string is interpreted
as an SQL/JSON path expression and is used to locate a JSON value within the JSON data that
is specified by JSON-expression. For more information about the SQL/JSON path expression, see
“sql-json-path-expression” on page 179.

AS path-name
Specifies a name to be used to identify sql-json-path-expression.

ON ERROR
Specifies the behavior when an error is encountered by JSON_EXISTS.

Chapter 1. Structured Query Language (SQL) 205

FALSE ON ERROR
The result is false if an error is encountered. This clause is the default.

TRUE ON ERROR
The result is true if an error is encountered.

UNKNOWN ON ERROR
The result is unknown if an error is encountered.

ERROR ON ERROR
An error is returned if an error is encountered.

Notes
• If parameter markers are not explicitly cast to a supported data type, an error is returned (SQLSTATE

42815)

Example
1. Return rows for employees who do not have an emergency contact in their JSON_DATA column.

COALESCE causes null values to be treated as an empty string. The FALSE ON ERROR clause is used so
all rows that do not contain an emergency value are returned.

SELECT empno, lastname FROM employee
 WHERE NOT JSON_EXISTS(COALESCE(JSON_DATA, ''), 'strict $.emergency' FALSE ON ERROR);

LIKE predicate
The LIKE predicate searches for strings that have a certain pattern. The pattern is specified by a string in
which the underscore and the percent sign may have special meanings. Trailing blanks in a pattern are
part of the pattern.

match-expression

NOT

LIKE pattern-expression

ESCAPE escape-expression

If the value of any of the arguments is null, the result of the LIKE predicate is unknown.

The values for match-expression, pattern-expression, and escape-expression are compatible string
expressions. There are slight differences in the types of string expressions supported for each of the
arguments. The valid types of expressions are listed under the description of each argument.

None of the expressions can yield a distinct type. However, it can be a function that casts a distinct type to
its source type.

match-expression
An expression that specifies the string that is to be examined to see if it conforms to a certain pattern
of characters.

LIKE pattern-expression
An expression that specifies the string that is to be matched.

The expression can be specified in the same way as match-expression with the following restrictions:

• No element in the expression can be of type CLOB or DBCLOB. In addition it cannot be a BLOB file
reference variable.

• The actual length of pattern-expression cannot be more than 32 672 bytes.

A simple description of the use of the LIKE predicate is that the pattern is used to specify the
conformance criteria for values in the match-expression, where:

• The underscore character (_) represents any single character.

206 IBM Db2 V11.5: SQL Reference

• The percent sign (%) represents a string of zero or more characters.
• Any other character represents itself.

If the pattern-expression needs to include either the underscore or the percent character, the escape-
expression is used to specify a character to precede either the underscore or the percent character in
the pattern.

A rigorous description of the use of the LIKE predicate follows. Note that this description ignores the
use of the escape-expression; its use is covered later.

• Let m denote the value of match-expression and let p denote the value of pattern-expression.
The string p is interpreted as a sequence of the minimum number of substring specifiers so each
character of p is part of exactly one substring specifier. A substring specifier is an underscore, a
percent sign, or any non-empty sequence of characters other than an underscore or a percent sign.

The result of the predicate is unknown if m or p is the null value. Otherwise, the result is either true
or false. The result is true if m and p are both empty strings or there exists a partitioning of m into
substrings such that:

– A substring of m is a sequence of zero or more contiguous characters and each character of m is
part of exactly one substring.

– If the nth substring specifier is an underscore, the nth substring of m is any single character.
– If the nth substring specifier is a percent sign, the nth substring of m is any sequence of zero or

more characters.
– If the nth substring specifier is neither an underscore nor a percent sign, the nth substring of m is

equal to that substring specifier and has the same length as that substring specifier.
– The number of substrings of m is the same as the number of substring specifiers.

Thus, if p is an empty string and m is not an empty string, the result is false. Similarly, it follows
that if m is an empty string and p is not an empty string (except for a string containing only percent
signs), the result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT (m LIKE p).

When the escape-expression is specified, the pattern-expression must not contain the escape
character identified by the escape-expression, except when immediately followed by the escape
character, the underscore character, or the percent sign character (SQLSTATE 22025).

If the match-expression is a character string in an MBCS database, it can contain mixed data. In this
case, the pattern can include both SBCS and non-SBCS characters. For non-Unicode databases, the
special characters in the pattern are interpreted as follows:

• An SBCS halfwidth underscore refers to one SBCS character.
• A non-SBCS fullwidth underscore refers to one non-SBCS character.
• An SBCS halfwidth or non-SBCS fullwidth percent sign refers to zero or more SBCS or non-SBCS

characters.

In a Unicode database, there is really no distinction between "single-byte" and "non-single-byte"
characters. Although the UTF-8 format is a "mixed-byte" encoding of Unicode characters, there is
no real distinction between SBCS and non-SBCS characters in UTF-8. Every character is a Unicode
character, regardless of the number of bytes in UTF-8 format.

In a Unicode graphic column, every non-supplementary character, including the halfwidth underscore
character (U&'\005F') and the halfwidth percent sign character (U&'\0025'), is two bytes in width. In a
Unicode database, special characters in a pattern are interpreted as follows:

• For character strings, a halfwidth underscore character (X'5F') or a fullwidth underscore character
(X'EFBCBF') refers to one Unicode character, and a halfwidth percent sign character (X'25') or a
fullwidth percent sign character (X'EFBC85') refers to zero or more Unicode characters.

• For graphic strings, a halfwidth underscore character (U&'\005F') or a fullwidth underscore
character (U&'\FF3F') refers to one Unicode character, and a halfwidth percent sign character

Chapter 1. Structured Query Language (SQL) 207

(U&'\0025') or a fullwidth percent sign character (U&'\FF05') refers to zero or more Unicode
characters.

• To be recognized as special characters when a locale-sensitive UCA-based collation is in effect,
the underscore character and the percent sign character must not be followed by non-spacing
combining marks (diacritics). For example, the pattern U&'%\0300' (percent sign character followed
by non-spacing combining grave accent) will be interpreted as a search for and not as a search for
zero or more Unicode characters followed by a letter with a grave accent.

A Unicode supplementary character is stored as two graphic code points in a Unicode graphic column.
To match a Unicode supplementary character in a Unicode graphic column, use one underscore if
the database uses locale-sensitive UCA-based collation, and two underscores otherwise. To match
a Unicode supplementary character in a Unicode character column, use one underscore for all
collations. To match a base character with one or more trailing non-spacing combining characters, use
one underscore if the database uses locale-sensitive UCA-based collation. Otherwise, use as many
underscore characters as the number of non-spacing combining characters plus the base character.

escape-expression
This optional argument is an expression that specifies a character to be used to modify the special
meaning of the underscore (_) and percent (%) characters in the pattern-expression. This allows the
LIKE predicate to be used to match values that contain the actual percent and underscore characters.

The expression can be specified by any one of:

• A constant
• A special register
• A global variable
• A host variable
• A scalar function with any of the previously mentioned operands
• An expression concatenating any of the previously listed items

with the restrictions that:

• No element in the expression can be of type CLOB or DBCLOB. In addition, it cannot be a BLOB file
reference variable.

• For character columns, the result of the expression must be one character, or a binary string
containing exactly one byte (SQLSTATE 22019).

• For graphic columns, the result of the expression must be one character (SQLSTATE 22019).
• The result of the expression must not be a non-spacing combining character sequence (for example,

U&'\0301', Combining Acute Accent).

When escape characters are present in the pattern string, an underscore, percent sign, or escape
character can represent a literal occurrence of itself. This is true if the character in question is
preceded by an odd number of successive escape characters. It is not true otherwise.

In a pattern, a sequence of successive escape characters is treated as follows:

• Let S be such a sequence, and suppose that S is not part of a larger sequence of successive escape
characters. Suppose also that S contains a total of n characters. Then the rules governing S depend
on the value of n:

– If n is odd, S must be followed by an underscore or percent sign (SQLSTATE 22025). S and the
character that follows it represent (n-1)/2 literal occurrences of the escape character followed by
a literal occurrence of the underscore or percent sign.

– If n is even, S represents n/2 literal occurrences of the escape character. Unlike the case where n
is odd, S could end the pattern. If it does not end the pattern, it can be followed by any character
(except, of course, an escape character, which would violate the assumption that S is not part of
a larger sequence of successive escape characters). If S is followed by an underscore or percent
sign, that character has its special meaning.

208 IBM Db2 V11.5: SQL Reference

Following is an illustration of the effect of successive occurrences of the escape character which, in
this case, is the back slash (\).
Pattern string

Actual Pattern
\%

A percent sign
\\%

A back slash followed by zero or more arbitrary characters
\\\%

A back slash followed by a percent sign

The code page used in the comparison is based on the code page of the match-expression value.

• The match-expression value is never converted.
• If the code page of pattern-expression is different from the code page of match-expression, the value of

pattern-expression is converted to the code page of match-expression, unless either operand is defined
as FOR BIT DATA or is a binary type (in which case there is no conversion).

• If the code page of escape-expression is different from the code page of match-expression, the value of
escape-expression is converted to the code page of match-expression, unless either operand is defined
as FOR BIT DATA or is a binary type (in which case there is no conversion).

Notes
• The number of trailing blanks is significant in both the match-expression and the pattern-expression. If

the strings are not the same length, the shorter string is not padded with blank spaces. For example, the
expression 'PADDED ' LIKE 'PADDED' would not result in a match.

• If the pattern specified in a LIKE predicate is a parameter marker, and a fixed-length character host
variable is used to replace the parameter marker, the value specified for the host variable must have
the correct length. If the correct length is not specified, the select operation will not return the intended
results.

For example, if the host variable is defined as CHAR(10), and the value WYSE% is assigned to that host
variable, the host variable is padded with blanks on assignment. The pattern used is:

'WYSE% '

The database manager searches for all values that start with WYSE and that end with five blank spaces.
If you want to search only for values that start with "WYSE", assign a value of WSYE%%%%%% to the host
variable.

• The pattern is matched using the collation of the database, unless either operand is defined as FOR BIT
DATA, in which case the pattern is matched using a binary comparison.

Examples
• Search for the string "SYSTEMS" appearing anywhere within the PROJNAME column in the PROJECT

table.

 SELECT PROJNAME FROM PROJECT
 WHERE PROJECT.PROJNAME LIKE '%SYSTEMS%'

• Search for a string with a first character of "J" that is exactly two characters long in the FIRSTNME
column of the EMPLOYEE table.

 SELECT FIRSTNME FROM EMPLOYEE
 WHERE EMPLOYEE.FIRSTNME LIKE 'J_'

Chapter 1. Structured Query Language (SQL) 209

• Search for a string of any length, with a first character of "J", in the FIRSTNME column of the EMPLOYEE
table.

 SELECT FIRSTNME FROM EMPLOYEE
 WHERE EMPLOYEE.FIRSTNME LIKE 'J%'

• In the CORP_SERVERS table, search for a string in the LA_SERVERS column that matches the value in
the CURRENT SERVER special register.

 SELECT LA_SERVERS FROM CORP_SERVERS
 WHERE CORP_SERVERS.LA_SERVERS LIKE CURRENT SERVER

• Retrieve all strings that begin with the character sequence "_\" in column A of table T.

 SELECT A FROM T
 WHERE T.A LIKE '_\\%' ESCAPE '\'

• Use a binary string constant to specify a one-byte escape character that is compatible with the match
and pattern data types (both BLOBs).

 SELECT COLBLOB FROM TABLET
 WHERE COLBLOB LIKE :pattern_var ESCAPE BX'0E'

• In a Unicode database defined with the case insensitive collation CLDR181_LEN_S1, find all names that
start with "Bill".

SELECT NAME FROM CUSTDATA WHERE NAME LIKE 'Bill%'

This query returns the names "Bill Smith", "billy simon", and "BILL JONES".

NULL predicate
The NULL predicate tests for null values.

expression IS

NOT

NULL

The result of a NULL predicate cannot be unknown. If the value of the expression is null, the result is true.
If the value is not null, the result is false. If NOT is specified, the result is reversed.

A row type value cannot be used as the operand in a NULL predicate, except as the qualifier of a field
name. If expression is a row type, an error is returned (SQLSTATE 428H2).

For compatibility with other SQL dialects, you can use ISNULL as a synonym for IS NULL and NOTNULL as
a synonym for IS NOT NULL.

Examples
 PHONENO IS NULL

 SALARY IS NOT NULL

OVERLAPS predicate
The OVERLAPS predicate determines whether two chronological periods overlap. A chronological period
is specified by a pair of date-time expressions (the first expression specifies the start of a period; the
second specifies its end).

(start1 , end1) OVERLAPS (start2 , end2)

Each of the date-time expressions (start1, end1, start2, and end2) must return a value that is a DATE,
TIME, or TIMESTAMP:

210 IBM Db2 V11.5: SQL Reference

• If start1 returns a DATE or TIMESTAMP value, the other expressions must all return either a DATE or
TIMESTAMP value; otherwise, error SQL0401N is returned. The default time associated with a returned
DATE value is 00:00.

• If start1 returns a TIME value, the other expressions must all return a TIME value; otherwise, error
SQL0401N is returned.

The begin and end values are not included in the periods. For example, the periods 2016-10-19 to
2016-10-20 and 2016-10-20 to 2016-10-21 do not overlap.

If none of the expressions return a null value, the OVERLAPS predicate returns true if the time periods
overlap and false if they do not. If one or more of the date-time expressions returns a null value, that
influences the result:

• If one of the expressions returns a null value, the result is true if the other value for that period falls
within the other period; otherwise, the result is NULL.

• If two or more of the expressions return a null value, the result is NULL.

Examples
The following statement returns rows because the OVERLAPS predicate is true (the period 17-21 March
2016 overlaps the period 20-22 March 2016):

 SELECT * from T1 where (cast('2016-03-17' as DATE),
 cast('2016-03-21' as DATE)) OVERLAPS
 (cast('2016-03-20' as DATE), cast('2016-03-22' as DATE));

The following statement does not return rows because the OVERLAPS predicate is false (the begin and
end values are not included in the periods, so the period 19-20 October 2016 does not overlap the period
20-21 October 2016):

 SELECT * from T1 where (cast('2016-10-19' as DATE),
 cast('2016-10-20' as DATE)) OVERLAPS
 (cast('2016-10-20' as DATE), cast('2016-10-21' as DATE));

The following statement returns rows because the OVERLAPS predicate is true (the date 22 March 2016
is within the period 20-23 March 2016):

 SELECT * from T1 where (cast('2016-10-22' as DATE),NULL) OVERLAPS
 (cast('2016-10-20' as DATE), cast('2016-10-23' as DATE));

REGEXP_LIKE predicate
The REGEXP_LIKE predicate searches for a regular expression pattern in a string.

REGEXP_LIKE (source-string , pattern-expression

, start

, flags

, CODEUNITS32

, CODEUNITS16

OCTETS

)

If the pattern-expression is found, the result is true. If the pattern-expression is not found, the result is
false. If the value of any of the arguments is null, the result of the REGEXP_LIKE predicate is unknown.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute (SQLSTATE 42815).

Chapter 1. Structured Query Language (SQL) 211

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. The length of a CLOB or DBCLOB expression must not be greater than the
maximum length of a VARCHAR or VARGRAPHIC data type. A character string cannot specify the FOR
BIT DATA attribute (SQLSTATE 42815).

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string is
graphic data, the value of the integer must be odd (SQLSTATE 428GC). The default start value is 1. See
parameter description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to
the start position.

flags
An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute (SQLSTATE 42815).
The string can include one or more valid flag values and the combination of flag values must be valid
(SQLSTATE 2201T). An empty string is the same as the value 'c'. The default flag value is 'c'.

Table 37. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator, and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the start value:

• CODEUNITS16 specifies that the start value is expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value is expressed in 32-bit UTF-32 code units. This is the

default.
• OCTETS specifies that the start value is expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and if the string unit of the source string is
CODEUNITS32, an error is returned (SQLSTATE 428GC).

For more information, see "String units in built-in functions" in “Character strings” on page 31.

212 IBM Db2 V11.5: SQL Reference

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only half-width control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

Examples
1. Select the employee number where the last name is spelled LUCCHESSI, LUCHESSI, or LUCHESI from

the EMPLOYEE table without considering upper or lower case letters.

 SELECT EMPNO FROM EMPLOYEE
 WHERE REGEXP_LIKE(LASTNAME,'luc+?hes+?i','i')

The result is 1 row with EMPNO value '000110'.
2. Select any invalid product identifier values from the PRODUCT table. The expected format is 'nnn-nnn-

nn' where 'n' is a digit 0 - 9.

SELECT PID FROM PRODUCT
 WHERE NOT REGEXP_LIKE(pid,'[0-9]{3}-[0-9]{3}-[0-9]{2}')

The result is 0 rows because all the product identifiers match the pattern.

Trigger event predicates
A trigger event predicate is used in a triggered action to test the event that activated the trigger. It is only
valid in the triggered action of a compiled trigger definition (SQLSTATE 42601).

DELETING

INSERTING

UPDATING

DELETING
True if the trigger was activated by a delete operation. False otherwise.

INSERTING
True if the trigger was activated by an insert operation. False otherwise.

UPDATING
True if the trigger was activated by an update operation. False otherwise.

Notes
• Trigger event predicates can be used anywhere in the triggered action of a CREATE TRIGGER statement

that uses a compound SQL (compiled) statement as the SQL-procedure-statement. In other contexts the
keywords will not be recognized and will attempt to resolve as column or variable names.

Example
The following trigger increments the number of employees each time a new person is hired (that is, each
time a new row is inserted into the EMPLOYEE table); decrements the number of employees each time an
employee leaves the company; and raises an error when an update occurs that would result in a salary
increase greater than ten percent of the current salary, by using trigger event predicates in its conditions:

Chapter 1. Structured Query Language (SQL) 213

 CREATE TRIGGER HIRED
 AFTER INSERT OR DELETE OR UPDATE OF SALARY ON EMPLOYEE
 REFERENCING NEW AS N OLD AS O FOR EACH ROW
 BEGIN
 IF INSERTING
 THEN UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
 END IF;

 IF DELETING
 THEN UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;
 END IF;

 IF (UPDATING AND (N.SALARY > 1.1 * O.SALARY))
 THEN SIGNAL SQLSTATE '75000' SET MESSAGE_TEXT = 'Salary increase>10%'
 END IF;
 END;

TYPE predicate
A TYPE predicate compares the type of an expression with one or more user-defined structured types.

expression IS

NOT

OF

IS

NOT

OF DYNAMIC TYPE

(

,

ONLY

typename)

The dynamic type of an expression involving the dereferencing of a reference type is the actual type of the
referenced row from the target typed table or view. This might differ from the target type of an expression
involving the reference, which is called the static type of the expression.

If the value of expression is null, the result of the predicate is unknown. The result of the predicate is true
if the dynamic type of the expression is a subtype of one of the structured types specified by typename,
otherwise the result is false. If ONLY precedes any typename the proper subtypes of that type are not
considered.

If typename is not qualified, it is resolved using the SQL path. Each typename must identify a user-defined
type that is in the type hierarchy of the static type of expression (SQLSTATE 428DU).

The DEREF function should be used whenever the TYPE predicate has an expression involving a reference
type value. The static type for this form of expression is the target type of the reference.

The syntax IS OF and OF DYNAMIC TYPE are equivalent alternatives for the TYPE predicate. Similarly, IS
NOT OF and NOT OF DYNAMIC TYPE are equivalent alternatives.

Examples
A table hierarchy exists with root table EMPLOYEE of type EMP and subtable MANAGER of type MGR.
Another table, ACTIVITIES, includes a column called WHO_RESPONSIBLE that is defined as REF(EMP)
SCOPE EMPLOYEE. The following example shows a type predicate that evaluates to true when a row
corresponding to WHO_RESPONSIBLE is a manager:

 DEREF (WHO_RESPONSIBLE) IS OF (MGR)

If a table contains a column EMPLOYEE of type EMP, EMPLOYEE may contain values of type EMP as well
as values of its subtypes like MGR. The following predicate

 EMPL IS OF (MGR)

214 IBM Db2 V11.5: SQL Reference

returns true when EMPL is not null and is actually a manager.

VALIDATED predicate
The VALIDATED predicate tests whether or not the value specified by XML-expression has been validated
using the XMLVALIDATE function.

If the value specified is null, the result of the validation constraint is unknown; otherwise, the result of the
validation constraint is either true or false. The value you specify must be of type XML.

If the ACCORDING TO XMLSCHEMA clause is not specified, then XML schemas used for validation do not
impact the result of the validation constraint.

XML-expression IS

NOT

VALIDATED

according-to-clause

according-to-clause
ACCORDING TO XMLSCHEMA XML-schema-identification

IN (

,

XML-schema-identification)

XML-schema-identification
ID XML-schema-name

URI XML-uri1

NO NAMESPACE LOCATION XML-uri2

Description
XML-expression

Specifies the XML value tested, where XML-expression can consist of an XML document, XML content,
a sequence of XML nodes, an XML column-name, or an XML correlation-name.

If an XML column-name is specified, the predicate evaluates whether or not XML documents
associated with the specified column name have been validated.

See "CREATE TRIGGER" for information about specifying correlation names of type XML as part of
triggers.

IS VALIDATED or IS NOT VALIDATED
Specifies the required validation state for the XML-expression operand.

For a constraint that specifies IS VALIDATED to evaluate as true, the operand must have been
validated. If an optional ACCORDING TO XMLSCHEMA clause includes one or several XML schemas,
the operand must have been validated using one of the identified XML schemas.

For a constraint that specifies IS NOT VALIDATED to evaluate as false, the operand must be in
an validated state. If an optional ACCORDING TO XMLSCHEMA clause includes one or several XML
schemas, the operand must have been validated using one of the identified XML schemas.

according-to-clause
Specifies one or several XML schemas against which the operand must or must not have been
validated. Only XML schemas previously registered with the XML schema repository may be specified.
ACCORDING TO XMLSCHEMA

ID XML-schema-name
Specifies an SQL identifier for the XML schema. The name, including the implicit or explicit SQL
schema qualifier, must uniquely identify an existing XML schema in the XML schema repository
at the current server. If no XML schema by this name exists in the implicitly or explicitly
specified SQL schema, an error is returned (SQLSTATE 42704).

Chapter 1. Structured Query Language (SQL) 215

URI XML-uri1
Specifies the target namespace URI of the XML schema. The value of XML-uri1 specifies a URI
as a character string constant that is not empty. The URI must be the target namespace of a
registered XML schema (SQLSTATE 4274A) and, if no LOCATION clause is specified, it must
uniquely identify the registered XML schema (SQLSTATE 4274B).

NO NAMESPACE
Specifies that the XML schema has no target namespace. The target namespace URI is
equivalent to an empty character string that cannot be specified as an explicit target
namespace URI.

LOCATION XML-uri2
Specifies the XML schema location URI of the XML schema. The value of XML-uri2 specifies a
URI as a character string constant that is not empty. The XML schema location URI, combined
with the target namespace URI, must identify a registered XML schema (SQLSTATE 4274A),
and there must be only one such XML schema registered (SQLSTATE 4274B).

Examples
Example 1: Assume that column XMLCOL is defined in table T1. Retrieve only the XML values that have
been validated by any XML schema.

 SELECT XMLCOL FROM T1
 WHERE XMLCOL IS VALIDATED

Example 2: Assume that column XMLCOL is defined in table T1. Enforce the rule that values cannot be
inserted or updated unless they have been validated.

 ALTER TABLE T1 ADD CONSTRAINT CK_VALIDATED
 CHECK (XMLCOL IS VALIDATED)

Example 3: Assume that you want to select only those rows from table T1 with XML column XMLCOL that
have been validated with the XML schema URI http://www.posample.org.

 SELECT XMLCOL FROM T1
 WHERE XMLCOL IS VALIDATED
 ACCORDING TO XMLSCHEMA URI
 'http://www.posample.org'

XMLEXISTS predicate
The XMLEXISTS predicate tests whether an XQuery expression returns a sequence of one or more items.

XMLEXISTS (xquery-expression-constant

PASSING
1

BY REF
,

xquery-argument

)

xquery-argument
xquery-context-item-expression

xquery-variable-expression
2

AS identifier

BY REF

Notes:
1 The data type cannot be DECFLOAT.
2 The data type of the expression cannot be DECFLOAT.

216 IBM Db2 V11.5: SQL Reference

xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an XQuery expression. The constant
string is converted directly to UTF-8 without conversion to the database or section code page.
The XQuery expression executes using an optional set of input XML values, and returns an output
sequence that is tested to determine the result of the XMLEXISTS predicate. The value for xquery-
expression-constant must not be an empty string or a string of blank characters (SQLSTATE 10505).

PASSING
Specifies input values and the manner in which these values are passed to the XQuery expression
specified by xquery-expression-constant. By default, every unique column name that is in the scope
where the function is invoked is implicitly passed to the XQuery expression using the name of the
column as the variable name. If an identifier in a specified xquery-argument matches an in-scope
column name, then the explicit xquery-argument is passed to the XQuery expression overriding that
implicit column.
BY REF

Specifies that the default passing mechanism is by reference for any xquery-variable-expression
of data type XML. When XML values are passed by reference, the XQuery evaluation uses the
input node trees, if any, directly from the specified input expressions, preserving all properties,
including the original node identities and document order. If two arguments pass the same XML
value, node identity comparisons and document ordering comparisons involving some nodes
contained between the two input arguments might refer to nodes within the same XML node tree.

This clause has no impact on how non-XML values are passed. The non-XML values create a new
copy of the value during the cast to XML.

xquery-argument
Specifies an argument that is to be passed to the XQuery expression specified by row-xquery-
expression-constant. The method through which row-xquery-argument is used in the XQuery
expression depends on whether the argument is specified as an xquery-context-item-expression or
an xquery-variable-expression.

• If the resulting value is of type XML, it becomes an input-xml-value. A null XML value is
converted to an XML empty sequence.

• If the resulting value is not of type XML, it must be castable to the XML data type. A null value is
converted to an XML empty sequence. The converted value becomes an input-xml-value.

When the xquery-expression-constant is evaluated, an XQuery variable is presented with a value
equal to input-xml-value and a name specified by the AS clause.
xquery-context-item-expression

xquery-context-item-expression specifies the initial context item in the XQuery expression
specified by xquery-expression-constant. The value of the initial context item is the result
of xquery-context-item-expression cast to XML. xquery-context-item-expression must not be
specified more than one time.
xquery-context-item-expression must not be a sequence of more than one item. If the result
of xquery-context-item-expression is an empty string, the XQuery expression is evaluated with
the initial context item set to an XML empty string.
If the xquery-context-item-expression is not specified or is an empty string, the initial context
item in the XQuery expression is undefined, and the XQuery expression must not reference the
initial context item. An XQuery variable is not created for the context item expression.
If the xquery-context-expression is not specified or the input-xml-value that results from the
xquery-context-expression is an XML empty sequence, the initial context item is undefined. If
the XQuery expression refers to the initial context item, it must be specified with a value that is
not an XML empty sequence.

xquery-variable-expression
Specifies an SQL expression whose value is available to the XQuery expression specified
by xquery-expression-constant during execution. The expression cannot contain a sequence
reference (SQLSTATE 428F9) or an OLAP function (SQLSTATE 42903). The data type of the
expression cannot be DECFLOAT.

Chapter 1. Structured Query Language (SQL) 217

AS identifier
Specifies that the value generated by xquery-variable-expression will be passed to xquery-
expression-constant as an XQuery variable. The variable name will be identifier. The leading
dollar sign ($) that precedes variable names in the XQuery language is not included in
identifier. The identifier must be a valid XQuery variable name and is restricted to an XML
NCName. The identifier must not be greater than 128 bytes in length. Two arguments within
the same PASSING clause cannot use the same identifier (SQLSTATE 42711).

BY REF
Indicates that an XML input value is to be passed by reference. When XML values are passed
by reference, the XQuery evaluation uses the input node trees, if any, directly from the
specified input expressions, preserving all properties, including the original node identities
and document order. If two arguments pass the same XML value, node identity comparisons
and document ordering comparisons involving some nodes contained between the two input
arguments might refer to nodes within the same XML node tree. If BY REF is not specified
following an xquery-variable-expression, XML arguments are passed by way of the default
passing mechanism that is provided through the syntax that follows the PASSING keyword.
This option cannot be specified for non-XML values. When a non-XML value is passed, the
value is converted to XML; this process creates a copy.

Notes
The XMLEXISTS predicate cannot be:

• Part of the ON clause that is associated with a JOIN operator or a MERGE statement (SQLSTATE 42972)
• Part of the GENERATE KEY USING or RANGE THROUGH clause in the CREATE INDEX EXTENSION

statement (SQLSTATE 428E3)
• Part of the FILTER USING clause in the CREATE FUNCTION (External Scalar) statement, or the FILTER

USING clause in the CREATE INDEX EXTENSION statement (SQLSTATE 428E4)
• Part of a check constraint or a column generation expression (SQLSTATE 42621)
• Part of a group-by-clause (SQLSTATE 42822)
• Part of an argument for an aggregate function (SQLSTATE 42607)

An XMLEXISTS predicate that involves a subquery might be restricted by statements that restrict
subqueries.

Example
 SELECT c.cid FROM customer c
 WHERE XMLEXISTS('$d/*:customerinfo/*:addr[*:city = "Aurora"]'
 PASSING info AS "d")

Built-in global variables
Built-in global variables are provided with the database manager and are used in SQL statements to
retrieve scalar values associated with the variables.

As an example, the ROUTINE_TYPE global variable is referenced in an SQL statement to retrieve the
current routine type.

For most built-in global variables, the authorization ID of any statement that retrieves the value of the
global variable is required to have the READ privilege on the global variable or DATAACCESS authority.
However, there are exceptions where an authorization ID with other database authorities also has access
to the global variable. Exceptions to the authorization required to retrieve the value of a global variable are
specified within the descriptions of the built-in global variables.

In a non-restrictive database, the READ privilege is granted to PUBLIC for most built-in global variables
at creation time. Exceptions to granting this privilege are specified within the descriptions of the built-in
global variables.

218 IBM Db2 V11.5: SQL Reference

Examples
• To access the global variable CLIENT_HOST, run the following query:

VALUES SYSIBM.CLIENT_HOST

This query returns the host name of the current client:

1

hotellnx93

An alternative way to call the global variable is to use it in a SELECT statement:

SELECT C1, C2
 FROM T1
 WHERE C3 = CLIENT_HOST

• For read/write global variables, set the value with the "SET variable" statement:

SET NLS_STRING_UNITS = 'CODEUNITS32'

CLIENT_HOST global variable
This built-in global variable contains the host name of the current client, as returned by the operating
system.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(255).
• The schema is SYSIBM.
• The scope of this global variable is session.

If the client connection originated from an application running on the local system, the value of the
variable is NULL. The database manager obtains the client IP address from the network when the
connection is accepted. The client host name is obtained from the client IP address by invoking the
TCP/IP GetAddrInfo function. If the processes did not originate from a remote system using TCP/IP, the
value of the variable is NULL.

CLIENT_IPADDR global variable
This built-in global variable contains the IP address of the current client, as returned by the operating
system.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

The value of the CLIENT_IPADDR global variable is NULL if the client did not connect by using the TCP/IP
or SSL protocol.

CLIENT_ORIGUSERID global variable
This built-in global variable contains the original user identifier, as supplied by an application, usually from
a multiple-tier server environment.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.

Chapter 1. Structured Query Language (SQL) 219

• The type is VARCHAR(1024).
• The schema is SYSIBM.
• The scope of this global variable is session.

If an application does not supply a value, the value of the CLIENT_ORIGUSERID global variable is NULL.

The value that is used for CLIENT_ORIGUSERID can be set with the following APIs:

• the originalUser variable of the getDB2Connection (trusted reuse) and reuseDB2Connection (trusted
connection reuse) APIs of the IBM® Data Server Driver for JDBC and SQLJ.

Notes
No privileges are granted to PUBLIC when the CLIENT_ORIGUSERID global variable is created.

CLIENT_USRSECTOKEN global variable
This built-in global variable contains a security token, as supplied by an application, usually from a
multiple-tier server environment.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is BLOB(4K).
• The schema is SYSIBM.
• The scope of this global variable is session.

If an application does not supply a value, the value of the CLIENT_USRSECTOKEN global variable is NULL.

The value that is used for CLIENT_USERSECTOKEN can be set with the following APIs:

• the userSecToken variable of the getDB2Connection (trusted reuse) and reuseDB2Connection (trusted
connection reuse) APIs of the IBM® Data Server Driver for JDBC and SQLJ.

Notes
No privileges are granted to PUBLIC when the CLIENT_USRSECTOKEN global variable is created.

MON_INTERVAL_ID global variable
This built-in global variable contains the identifier for the current monitoring interval.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is BIGINT.
• The schema is SYSIBM.
• The scope of this global variable is database.

The MON_INTERVAL_ID global variable facilitates the collection and aggregation of monitoring data by
external monitoring applications. The value of this global variable is intended to be set by monitoring
tools. However, you can increment the value by using the MON_INCREMENT_INTERVAL_ID procedure.

The value of the MON_INTERVAL_ID global variable is 0 if there is no current monitoring interval.

The mon_interval_id monitor element contains the value of the monitor interval ID at the time that
the monitoring data was captured. You can use the value of the mon_interval_id monitor element to
correlate data that you gather over a specific monitoring interval.

220 IBM Db2 V11.5: SQL Reference

Notes
In addition to the typical authorization groups or IDs that can read built-in global variables, an
authorization ID with either DBADM or SQLADM authority has read access to the MON_INTERVAL_ID
global variable.

NLS_STRING_UNITS global variable
This built-in global variable specifies the default string units that are used when defining character and
graphic data types in a Unicode database.

This global variable has the following characteristics:

• It is a read/write variable, with values maintained by the user.
• The type is VARCHAR(11 OCTETS).
• The schema is SYSIBM.
• The scope of this global variable is session.
• It has a default value of NULL.

This global variable is only applicable to a Unicode database and must have a value of NULL, 'SYSTEM', or
'CODEUNITS32' (SQLSTATE 42815).
NULL

The STRING_UNITS database configuration parameter is used to determine the default string units
SYSTEM

CHAR, VARCHAR, and CLOB data types defined without specifying the CODEUNITS32 keyword will
default to OCTETS.

GRAPHIC, VARGRAPHIC, and DBCLOB data types defined without specifying the CODEUNITS32
keyword will default to CODEUNITS16.

CODEUNITS32
CHAR, VARCHAR, and CLOB data types defined without specifying the OCTETS keyword will default to
CODEUNITS32.

GRAPHIC, VARGRAPHIC, and DBCLOB data types defined without specifying the CODEUNITS16
keyword will default to CODEUNITS32.

PACKAGE_NAME global variable
This built-in global variable contains the name of the currently executing package.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

In a nested execution scenario, where one package invokes another, the PACKAGE_NAME global variable
contains the name of the immediate package context. For example, if package A checks the value of the
PACKAGE_NAME variable, the value is A. If package A invokes package B and package B checks the value
of the PACKAGE_NAME variable, the value is B.

PACKAGE_SCHEMA global variable
This built-in global variable contains the schema name of the currently executing package.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.

Chapter 1. Structured Query Language (SQL) 221

• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

In a nested execution scenario, where one package invokes another, the PACKAGE_SCHEMA global
variable contains the schema name of the immediate package context. For example, if package X.A
checks the value of the PACKAGE_SCHEMA variable, the schema value is X. If package X.A invokes
package Y.B and package B checks the value of the PACKAGE_SCHEMA variable, the schema value is Y.

PACKAGE_VERSION global variable
This built-in global variable contains the version identifier of the currently executing package.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(64).
• The schema is SYSIBM.
• The scope is session.

If the current executing package does not have a version identifier, the value is NULL.

In a nested execution scenario, where one package invokes another, the PACKAGE_VERSION global
variable contains the version identifier of the immediate package context. For example, if package A
checks the value of the PACKAGE_VERSION variable, then the value is 1.0. If package A invokes package
B and package B checks the value of the PACKAGE_VERSION variable, then the value is 1.8.

ROUTINE_MODULE global variable
This built-in global variable contains the module name of the currently executing routine.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

If the currently executing routine does not belong to a module or if the variable is referenced outside a
routine execution context, the value of the ROUTINE_MODULE global variable is NULL.

Notes
The value of the ROUTINE_MODULE global variable is set only for procedures and compiled functions: the
value always reflects the name of the currently executing routine.

The value does not change for inline functions or methods: the value remains the same as it was when the
inline function or method was invoked.

ROUTINE_SCHEMA global variable
This built-in global variable contains the schema name of the currently executing routine.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

222 IBM Db2 V11.5: SQL Reference

If the ROUTINE_SCHEMA global variable is referenced outside a routine execution context, the value of
the variable is NULL.

Notes
The value of the ROUTINE_SCHEMA global variable is set only for procedures and compiled functions: the
value always reflects the schema name of the currently executing routine.

The value does not change for inline functions or methods: the value remains the same as it was when the
inline function or method was invoked.

ROUTINE_SPECIFIC_NAME global variable
This built-in global variable contains the specific name of the currently executing routine.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope of this global variable is session.

If the ROUTINE_SPECIFIC_NAME global variable is referenced outside a routine execution context, the
value of the variable is NULL.

Notes
The value of the ROUTINE_SPECIFIC_NAME global variable is set only for procedures and compiled
functions: the value always reflects the specific name of the currently executing routine.

The value is not changed for inline functions or methods: the value remains the same as it was when the
inline function or method was invoked.

ROUTINE_TYPE global variable
This built-in global variable contains the type of the currently executing routine.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is CHAR(1).
• The schema is SYSIBM.
• The scope of this global variable is session.

If the ROUTINE_TYPE global variable is referenced outside a routine execution context, the value of the
variable is NULL.

The value of the ROUTINE_TYPE global variable is P for a stored procedure and F for a function.

Notes
The value of the ROUTINE_TYPE global variable is set only for procedures and compiled functions: the
value always reflects the type of the currently executing routine.

The value does not change for inline functions or methods: the value remains the same as it was when the
inline function or method was invoked.

Chapter 1. Structured Query Language (SQL) 223

SQL_COMPAT global variable
This built-in global variable specifies the SQL compatibility mode. Its value determines which set of
syntax rules are applied to SQL queries.

This global variable has the following characteristics:

• It is a read/write variable, with values maintained by the user.
• The type is VARCHAR(3).
• The schema is SYSIBM.
• The scope of this global variable is session.
• It has a default value of NULL.

This global variable must have a value of NULL, 'DB2', or 'NPS' (SQLSTATE 42815).
NULL

The default setting ('DB2') is used.
'DB2'

Db2 syntax rules are applied to SQL queries.
'NPS'

Netezza syntax rules are applied to SQL queries. If you use this setting, some SQL behavior will differ
from what is documented in the SQL reference information. To determine the potential effects of a
compatibility feature on your SQL applications, see Compatibility features for Netezza .

TRUSTED_CONTEXT global variable
This built-in global variable contains the name of the trusted context that was matched to establish the
current trusted connection.

This global variable has the following characteristics:

• It is read-only, with values maintained by system.
• The type is VARCHAR(128).
• The schema is SYSIBM.
• The scope is session.

If no trusted connection is established, the value of the TRUSTED_CONTEXT global variable is NULL.

Built-in functions
Built-in functions are functions provided with the database manager and are classified as aggregate
functions, scalar functions, or table functions.

This topic lists the supported built-in functions classified by type:

• Aggregate functions (Table 38 on page 225)
• Array functions (Table 39 on page 227)
• Cast scalar functions (Table 40 on page 227)
• Datetime scalar functions (Table 41 on page 228)
• JSON scalar functions (Table 42 on page 231)
• Miscellaneous scalar functions (Table 43 on page 232)
• Numeric scalar functions (Table 44 on page 233)
• Partitioning scalar functions (Table 45 on page 235)
• Regular expression functions (Table 46 on page 235)
• Security scalar functions (Table 47 on page 235)
• String scalar functions (Table 48 on page 236)

224 IBM Db2 V11.5: SQL Reference

• Table functions (Table 49 on page 238)
• XML functions (Table 50 on page 239)

The “OLAP specification” on page 163 topic documents the following OLAP functions which are
sometimes referred to as built-in functions:

• FIRST_VALUE and LAST_VALUE
• LAG and LEAD
• NTILE
• RANK and DENSE_RANK
• RATIO_TO_REPORT
• ROW_NUMBER

There are additional built-in functions documented under the following headings:

• ADMIN_CMD procedure and associated SQL routines
• Audit routines and procedures
• Configuration SQL routines and views
• Db2 pureScale instance views
• Environment views
• Explain routines
• Monitor routines
• MQSeries® SQL routines
• Security SQL routines and views
• Snapshot SQL routines and views
• SQL procedures SQL routines
• Workload management routines
• Miscellaneous SQL routines and views

For details about these additional built-in functions, see "Supported built-in SQL routines and views" in
Administrative Routines and Views.

Table 38. Aggregate functions

Function Description

“ARRAY_AGG ” on page 240 Aggregates a set of elements into an array.

“AVG ” on page 244 Returns the average of a set of numbers.

“CORRELATION ” on page 245 Returns the coefficient of correlation of a set of number pairs.

“COUNT ” on page 246 Returns the number of rows or values in a set of rows or values.

“COUNT_BIG ” on page 247 Returns the number of rows or values in a set of rows or values. The
result can be greater than the maximum value of INTEGER.

“COVARIANCE ” on page 248 Returns the covariance of a set of number pairs.

“COVARIANCE_SAMP ” on page
249

Returns the sample covariance of a set of number pairs.

“CUME_DIST ” on page 250 Returns the cumulative distribution of a row that is hypothetically
inserted into a group of rows.

Chapter 1. Structured Query Language (SQL) 225

Table 38. Aggregate functions (continued)

Function Description

“GROUPING ” on page 251 Used with grouping-sets and super-groups to indicate sub-total rows
generated by a grouping set. The value returned is 0 or 1. A value of
1 means that the value of the argument in the returned row is a null
value, and the row was generated for a grouping set. This generated row
provides a sub-total for a grouping set.

“LISTAGG ” on page 255 Aggregates a set string elements into one string by concatenating the
strings.

“MAX ” on page 257 Returns the maximum value in a set of values.

“MEDIAN ” on page 258 Returns the median value in a set of values.

“MIN ” on page 259 Returns the minimum value in a set of values.

“PERCENTILE_CONT ” on page 260 Returns the value that corresponds to the specified percentile, given a
sort specification by using a continuous distribution model.

“PERCENTILE_DISC ” on page 261 Returns the value that corresponds to the specified percentile given a
sort specification by using a discrete distribution model.

“PERCENT_RANK ” on page 262 Returns the relative percentile rank of a row that is hypothetically
inserted into a group of rows.

“Regression functions
(REGR_AVGX, REGR_AVGY,
REGR_COUNT, ...)” on page 264

The regression functions fit an ordinary-least-squares regression line of
the form y = a * x + b to a set of number pairs:

• REGR_AVGX returns quantities used to compute diagnostic statistics.
• REGR_AVGY returns quantities used to compute diagnostic statistics.
• REGR_COUNT returns the number of non-null number pairs used to fit

the regression line.
• REGR_INTERCEPT or REGR_ICPT returns the y-intercept of the

regression line.
• REGR_R2 returns the coefficient of determination for the regression.
• REGR_SLOPE returns the slope of the line.
• REGR_SXX returns quantities used to compute diagnostic statistics.
• REGR_SXY returns quantities used to compute diagnostic statistics.
• REGR_SYY returns quantities used to compute diagnostic statistics.

“STDDEV ” on page 266 Returns the biased standard deviation (division by n) of a set of numbers.

“STDDEV_SAMP ” on page 267 Returns the sample standard deviation (division by [n-1]) of a set of
numbers.

“SUM ” on page 268 Returns the sum of a set of numbers.

“VARIANCE ” on page 269 Returns the biased variance (division by n) of a set of numbers.

“VARIANCE_SAMP ” on page 270 Returns the sample variance (division by [n-1]) of a set of numbers.

“XMLAGG ” on page 271 Returns an XML sequence containing an item for each non-null value in a
set of XML values.

“XMLGROUP ” on page 273 Returns an XML value with a single XQuery document node containing
one top-level element node.

226 IBM Db2 V11.5: SQL Reference

Table 39. Array functions

Function Description

“ARRAY_AGG ” on page 240 Aggregates a set of elements into an array.

“ARRAY_DELETE ” on page 284 Deletes an element or range of elements from an associative array.

“ARRAY_FIRST ” on page 285 Returns the smallest array index value of the array.

“ARRAY_LAST ” on page 286 Returns the largest array index value of the array.

“ARRAY_NEXT ” on page 286 Returns the next larger array index value for an array relative to the
specified array index argument.

“ARRAY_PRIOR ” on page 287 Returns the next smaller array index value for an array relative to the
specified array index argument.

“CARDINALITY ” on page 298 Returns a value of type BIGINT representing the number of elements of
an array

“MAX_CARDINALITY ” on page 419 Returns a value of type BIGINT representing the maximum number of
elements that an array can contain.

“TRIM_ARRAY ” on page 546 Returns a value with the same array type as array-variable but with the
cardinality reduced by the value of numeric-expression.

“UNNEST ” on page 624 Returns a result table that includes a row for each element of the
specified array.

Table 40. Cast scalar functions

Function Description

“BIGINT ” on page 290 Returns a 64-bit integer representation of a value in the form of an
integer constant.

“BINARY ” on page 292 Returns a fixed-length binary string representation of a string of any data
type.

“BLOB ” on page 295 Returns a BLOB representation of a string of any type.

“BPCHAR ” on page 296 Returns a VARCHAR representation of a value.

“CHAR ” on page 300 Returns a CHARACTER representation of a value.

“CLOB ” on page 308 Returns a CLOB representation of a value.

“DATE ” on page 315 Returns a DATE from a value.

“DATETIME ” on page 316 Returns a TIMESTAMP from a value or a pair of values.

“DBCLOB ” on page 325 Returns a DBCLOB representation of a string.

“DECFLOAT ” on page 327 Returns the decimal floating-point representation of a value.

“DECIMAL or DEC ” on page 331 Returns a DECIMAL representation of a value.

“DOUBLE_PRECISION or DOUBLE”
on page 339

Returns the floating-point representation of a value.

EMPTY_BLOB, EMPTY_CLOB, and
EMPTY_DBCLOB scalar functions

Return a zero-length value of the associated data type.

“FLOAT ” on page 348 Returns a DOUBLE representation of a value.

“FLOAT4 ” on page 349 Returns a REAL representation of a value.

Chapter 1. Structured Query Language (SQL) 227

Table 40. Cast scalar functions (continued)

Function Description

“FLOAT8 ” on page 349 Returns a DOUBLE representation of a value.

“GRAPHIC ” on page 353 Returns a GRAPHIC representation of a string.

“INT ” on page 376 Returns an INTEGER representation of a value.

“INTEGER ” on page 379 Returns an INTEGER representation of a value.

“INTERVAL ” on page 376 Returns a DECIMAL duration that corresponds to a duration specified as a
string.

“INT2 ” on page 381 Returns a SMALLINT representation of a value.

“INT4 ” on page 381 Returns a INTEGER representation of a value.

“INT8 ” on page 381 Returns a BIGINT representation of a value.

“NCHAR ” on page 429 Returns a fixed-length national character string representation of a value.

“NCLOB ” on page 431 Returns an NCLOB representation of a national character string.

“NUMERIC ” on page 438 Returns a DECIMAL representation of a value.

“NVARCHAR ” on page 431 Returns a varying-length national character string representation of a
value.

“REAL ” on page 455 Returns the single-precision floating-point representation of a value.

“SMALLINT ” on page 502 Returns a SMALLINT representation of a value.

“TIME ” on page 525 Returns a TIME from a value.

“TIMESTAMP ” on page 525 Returns a TIMESTAMP from a value or a pair of values.

“TO_CLOB” on page 537 Returns a CLOB representation of a character string type.

“TO_NCLOB ” on page 539 Returns an NCLOB representation of a character string.

“VARBINARY ” on page 556 Returns a VARBINARY (varying-length binary string) representation of a
string of any data type.

“VARCHAR ” on page 557 Returns a VARCHAR representation of a value.

“VARGRAPHIC ” on page 573 Returns a VARGRAPHIC representation of a value.

Table 41. Datetime scalar functions

Function Description

“ADD_DAYS ” on page 277 Returns a datetime value that represents the first argument plus a
specified number of days.

“ADD_HOURS ” on page 278 Returns a timestamp value that represents the first argument plus a
specified number of hours.

“ADD_MINUTES ” on page 279 Returns a timestamp value that represents the first argument plus a
specified number of minutes.

“ADD_MONTHS ” on page 280 Returns a datetime value that represents expression plus a specified
number of months.

“ADD_SECONDS ” on page 281 Returns a timestamp value that represents the first argument plus a
specified number of seconds and fractional seconds.

228 IBM Db2 V11.5: SQL Reference

Table 41. Datetime scalar functions (continued)

Function Description

“ADD_YEARS ” on page 282 Returns a datetime value that represents the first argument plus a
specified number of years.

“AGE ” on page 283 Returns a numeric value that specifies the number of full years, full
months, and full days between the current timestamp and the argument.

“DATE_PART ” on page 316 Returns portion of a datetime based on its argument.

“DATE_TRUNC ” on page 318 Returns a timestamp expression rounded to the specified unit.

“DAY ” on page 320 Returns the day part of a value.

“DAYNAME ” on page 321 Returns a character string containing the name of the day (for example,
Friday) for the day portion of expression, based on locale-name or the
value of the special register CURRENT LOCALE LC_TIME.

“DAYOFMONTH ” on page 322 Returns an integer between 1 and 31 that represents the day of the
month.

“DAYOFWEEK ” on page 322 Returns the day of the week in the first argument as an integer value. The
integer value is in the range 1-7, where 1 represents the first day of the
week, as specified in the second argument.

“DAYOFWEEK_ISO ” on page 323 Returns the day of the week from a value, where 1 is Monday and 7 is
Sunday.

“DAYOFYEAR ” on page 323 Returns the day of the year from a value.

“DAYS ” on page 323 Returns an integer representation of a date.

“DAYS_BETWEEN ” on page 324 Returns the number of full days between the specified arguments.

“DAYS_TO_END_OF_MONTH ” on
page 325

Returns the number of days to the end of the month.

“EXTRACT ” on page 344 Returns a portion of a date or timestamp based on the arguments.

“FIRST_DAY ” on page 348 Returns a date or timestamp that represents the first day of the month of
the argument.

“FROM_UTC_TIMESTAMP ” on page
350

Returns a TIMESTAMP that is converted from Coordinated Universal Time
to the timezone that is specified by the timezone string.

“HOUR ” on page 364 Returns the hour part of a value.

“HOURS_BETWEEN ” on page 365 Returns the number of full hours between the specified arguments.

“JULIAN_DAY ” on page 396 Returns an integer value representing the number of days from January
1, 4712 B.C. to the date specified in the argument.

“LAST_DAY ” on page 396 Returns a datetime value that represents the last day of the month of the
argument.

“MICROSECOND ” on page 419 Returns the microsecond part of a value.

“MIDNIGHT_SECONDS ” on page
420

Returns an integer value representing the number of seconds between
midnight and a specified time value.

“MINUTE ” on page 421 Returns the minute part of a value.

“MINUTES_BETWEEN ” on page
422

Returns the number of full minutes between the specified arguments.

“MONTH ” on page 425 Returns the month part of a value.

Chapter 1. Structured Query Language (SQL) 229

Table 41. Datetime scalar functions (continued)

Function Description

“MONTHNAME ” on page 425 Returns a character string containing the name of the month (for
example, January) for the month portion of expression, based on locale-
name or the value of the special register CURRENT LOCALE LC_TIME.

“MONTHS_BETWEEN ” on page
426

Returns an estimate of the number of months between expression1 and
expression2.

“NEXT_DAY ” on page 433 Returns a datetime value that represents the first weekday, named by
string-expression, that is later than the date in expression.

“NEXT_MONTH ” on page 434 Returns the first day of the next month after the specified date.

“NEXT_QUARTER ” on page 435 Returns the first day of the next quarter after the specified date.

“NEXT_WEEK ” on page 435 Returns the first day of the next week after the specified date.

“NEXT_YEAR ” on page 436 Returns the first day of the next year after the specified date.

“NOW ” on page 437 Returns a timestamp based on when the SQL statement is executed at
the current server.

“QUARTER ” on page 450 Returns an integer that represents the quarter of the year in which a date
resides.

“ROUND ” on page 485 Returns a datetime value, rounded to the unit specified by format-string.

“ROUND_TIMESTAMP ” on page
490

Returns a timestamp that is the expression rounded to the unit specified
by the format-string.

“SECOND ” on page 499 Returns the seconds part of a value.

“SECONDS_BETWEEN ” on page
500

Returns the number of full seconds between the specified arguments.

“THIS_MONTH ” on page 523 Returns the first day of the month in the specified date.

“THIS_QUARTER ” on page 523 Returns the first day of the quarter in the specified date.

“THIS_WEEK ” on page 524 Returns the first day of the week in the specified date.

“THIS_YEAR ” on page 524 Returns the first day of the year in the specified date.

“TIMESTAMP_FORMAT ” on page
527

Returns a timestamp from a character string (argument1) that has been
interpreted using a format template (argument2).

“TIMESTAMP_ISO ” on page 532 Returns a timestamp value based on a date, time, or timestamp
argument. If the argument is a date, it inserts zero for all the time
elements. If the argument is a time, it inserts the value of CURRENT DATE
for the date elements, and zero for the fractional time element.

“TIMESTAMPDIFF ” on page 533 Returns an estimated number of intervals of type argument1, based on
the difference between two timestamps. The second argument is the
result of subtracting two timestamp types and converting the result to
CHAR.

“TIMEZONE ” on page 535 Converts a date and time in one timezone into a timestamp in another
timezone.

“TO_CHAR ” on page 536 Returns a CHARACTER representation of a timestamp.

“TO_DATE ” on page 537 Returns a timestamp from a character string.

230 IBM Db2 V11.5: SQL Reference

Table 41. Datetime scalar functions (continued)

Function Description

“TO_NCHAR ” on page 539 Returns a national character representation of an input expression that
has been formatted using a character template.

“TO_TIMESTAMP ” on page 540 Returns a timestamp that is based on the interpretation of the input
string using the specified format.

“TO_UTC_TIMESTAMP ” on page
541

Returns a TIMESTAMP that is converted from Coordinated Universal Time
to the timezone specified by the timezone string.

“TRUNCATE or TRUNC ” on page
548

Returns a datetime value, truncated to the unit specified by format-string.

“TRUNC_TIMESTAMP ” on page
547

Returns a timestamp that is the expression truncated to the unit specified
by the format-string.

“VARCHAR_FORMAT ” on page 564 Returns a CHARACTER representation of a timestamp (argument1),
formatted according to a template (argument2).

“WEEK ” on page 580 Returns the week of the year from a value, where the week starts with
Sunday.

“WEEK_ISO ” on page 581 Returns the week of the year from a value, where the week starts with
Monday.

“WEEKS_BETWEEN ” on page 581 Returns the number of full weeks between the specified arguments.

“YEAR ” on page 615 Returns the year part of a value.

“YEARS_BETWEEN ” on page 615 Returns the number of full years between the specified arguments.

“YMD_BETWEEN ” on page 616 Returns a numeric value that specifies the number of full years, full
months, and full days between two datetime values.

Table 42. JSON scalar functions

Function Description

“BSON_TO_JSON ” on page 296 Converts a string that contains data that is formatted as BSON to a
character string that contains data that is formatted as JSON.

“JSON_ARRAY ” on page 383 Generates a JSON array by explicitly listing the array elements by using
an expression or by using a query.

“JSON_OBJECT ” on page 386 Generates a JSON object by using the specified key:value pairs. If no
key:value pairs are provided, an empty object is returned.

“JSON_QUERY ” on page 389 Returns an SQL/JSON value from the specified JSON text by using an
SQL/JSON path expression.

“JSON_TO_BSON ” on page 392 Converts a string that contains data that is formatted for JSON to a binary
string that contains data that is formatted as BSON.

“JSON_VALUE ” on page 393 Returns an SQL scalar value from JSON text, by using an SQL/JSON path
expression.

Chapter 1. Structured Query Language (SQL) 231

Table 43. Miscellaneous scalar functions

Function Description

“BITAND, BITANDNOT, BITOR,
BITXOR, and BITNOT ” on page
293

These bitwise functions operate on the "two's complement"
representation of the integer value of the input arguments and return
the result as a corresponding base 10 integer value in a data type based
on the data type of the input arguments.

“COALESCE ” on page 308 Returns the first argument that is not null.

“CURSOR_ROWCOUNT ” on page
314

Returns the cumulative count of all rows fetched by the specified cursor
since the cursor was opened.

“DECODE ” on page 334 Compares each specified expression2 to expression1. If expression1 is
equal to expression2, or both expression1 and expression2 are null, the
value of the following result-expresssion is returned. If no expression2
matches expression1, the value of else-expression is returned; otherwise
a null value is returned.

“DEREF ” on page 337 Returns an instance of the target type of the reference type argument.

“EVENT_MON_STATE ” on page 343 Returns the operational state of particular event monitor.

“GREATEST ” on page 358 Returns the maximum value in a set of values.

“HEX ” on page 362 Returns a hexadecimal representation of a value.

“IDENTITY_VAL_LOCAL ” on page
366

Returns the most recently assigned value for an identity column.

“ INTNAND, INTNOR, INTNXOR,
and INTNNOT ” on page 381

These bitwise functions operate on the "two's complement"
representation of the integer value of the input arguments and return
the result as a corresponding base 10 integer value.

“LEAST ” on page 398 Returns the minimum value in a set of values.

“LENGTH ” on page 402 Returns the length of a value.

“MAX ” on page 418 Returns the maximum value in a set of values.

“MIN ” on page 421 Returns the minimum value in a set of values.

“NULLIF ” on page 437 Returns a null value if the arguments are equal; otherwise, it returns the
value of the first argument.

“NVL ” on page 438 Returns the first argument that is not null.

“RAISE_ERROR ” on page 452 Raises an error in the SQLCA. The sqlstate that is to be returned is
indicated by argument1. The second argument contains any text that is to
be returned.

“RAWTOHEX ” on page 454 Returns a hexadecimal representation of a value as a character string.

“REC2XML ” on page 456 Returns a string formatted with XML tags, containing column names and
column data.

“RID and RID_BIT ” on page 479 The RID_BIT scalar function returns the row identifier (RID) of a row in a
character string format. The RID scalar function returns the RID of a row
in large integer format. The RID function is not supported in partitioned
database environments. The RID_BIT function is preferred over the RID
function.

“TABLE_NAME ” on page 520 Returns an unqualified name of a table or view based on the object
name specified in argument1, and the optional schema name specified in
argument2. The returned value is used to resolve aliases.

232 IBM Db2 V11.5: SQL Reference

Table 43. Miscellaneous scalar functions (continued)

Function Description

“TABLE_SCHEMA ” on page 521 Returns the schema name portion of a two-part table or view name
(given by the object name in argument1 and the optional schema name in
argument2). The returned value is used to resolve aliases.

“TO_HEX ” on page 537 Converts a numeric expression into the hexadecimal representation.

“TYPE_ID ” on page 550 Returns the internal data type identifier of the dynamic data type of the
argument. The result of this function is not portable across databases.

“TYPE_NAME ” on page 551 Returns the unqualified name of the dynamic data type of the argument.

“TYPE_SCHEMA ” on page 552 Returns the schema name of the dynamic data type of the argument.

“VALUE ” on page 556 Returns the first argument that is not null.

Table 44. Numeric scalar functions

Function Description

“ABS or ABSVAL ” on page 276 Returns the absolute value of a number.

“ACOS ” on page 276 Returns the arc cosine of a number, in radians.

“ASIN ” on page 289 Returns the arc sine of a number, in radians.

“ATAN ” on page 289 Returns the arc tangent of a number, in radians.

“ATANH ” on page 290 Returns the hyperbolic arc tangent of a number, in radians.

“ATAN2 ” on page 289 Returns the arc tangent of x and y coordinates as an angle expressed in
radians.

“CEILING or CEIL ” on page 299 Returns the smallest integer value that is greater than or equal to a
number.

“COMPARE_DECFLOAT ” on page
311

Returns a SMALLINT value that indicates whether the two arguments are
equal or unordered, or whether one argument is greater than the other.

“COS ” on page 313 Returns the cosine of a number.

“COSH ” on page 313 Returns the hyperbolic cosine of a number.

“COT ” on page 314 Returns the cotangent of the argument, where the argument is an angle
expressed in radians.

“DECFLOAT_FORMAT ” on page 329 Returns a DECFLOAT(34) from a character string.

“DEGREES ” on page 337 Returns the number of degrees of an angle.

“DIGITS ” on page 338 Returns a character-string representation of the absolute value of a
number.

“EXP ” on page 343 Returns a value that is the base of the natural logarithm (e) raised to a
power specified by the argument.

“FLOOR ” on page 349 Returns the largest integer value that is less than or equal to a number.

“LN ” on page 404 Returns the natural logarithm of a number.

“LOG10 ” on page 410 Returns the common logarithm (base 10) of a number.

“MOD ” on page 423 Returns the remainder of the first argument divided by the second
argument.

Chapter 1. Structured Query Language (SQL) 233

Table 44. Numeric scalar functions (continued)

Function Description

“MOD (SYSFUN schema) ” on page
424

Returns the remainder of the first argument divided by the second
argument.

“MULTIPLY_ALT ” on page 427 Returns the product of two arguments as a decimal value. This function is
useful when the sum of the argument precisions is greater than 31.

“NORMALIZE_ DECFLOAT ” on page
436

Returns a decimal floating-point value that is the result of the argument
set to its simplest form.

“POW ” on page 448 Returns the result of raising the first argument to the power of the second
argument.

“POWER ” on page 448 Returns the result of raising the first argument to the power of the second
argument.

“QUANTIZE ” on page 448 Returns a decimal floating-point number that is equal in value and sign to
the first argument, and whose exponent is equal to the exponent of the
second argument.

“RADIANS ” on page 451 Returns the number of radians for an argument that is expressed in
degrees.

“RANDOM ” on page 454 Returns a floating point value between 0 and 1.

“RAND (SYSFUN schema) ” on page
453

Returns a random number.

“RAND (SYSIBM schema) ” on page
453

Returns a floating point value between 0 and 1.

“ROUND ” on page 485 Returns a numeric value that has been rounded to the specified number
of decimal places.

“SIGN ” on page 501 Returns the sign of a number.

“SIN ” on page 501 Returns the sine of a number.

“SINH ” on page 502 Returns the hyperbolic sine of a number.

“SQRT ” on page 504 Returns the square root of a number.

“TAN ” on page 522 Returns the tangent of a number.

“TANH ” on page 523 Returns the hyperbolic tangent of a number.

“TO_NUMBER ” on page 539 Returns a DECFLOAT(34) from a character string.

“TOTALORDER ” on page 542 Returns a SMALLINT value of -1, 0, or 1 that indicates the comparison
order of two arguments.

“TRUNCATE or TRUNC ” on page
548

Returns a number value that has been truncated at a specified number of
decimal places.

“VARCHAR_FORMAT ” on page 564 Returns a CHARACTER representation of a timestamp (argument1),
formatted according to a template (argument2).

“WIDTH_BUCKET ” on page 582 Creates equal-width histograms.

234 IBM Db2 V11.5: SQL Reference

Table 45. Partitioning scalar functions

Function Description

“DATAPARTITIONNUM ” on page
314

Returns the sequence number (SYSDATAPARTITIONS.SEQNO) of the
data partition in which the row resides. The argument is any column
name within the table.

“DBPARTITIONNUM ” on page 326 Returns the database partition number of the row. The argument is any
column name within the table.

“HASH ” on page 359 Returns the 128-bit, 160-bit, 256-bit or 512-bit hash of the input data.

“HASH4 ” on page 360 Returns the 32-bit hash of the input data.

“HASH8 ” on page 361 Returns the 64-bit hash of the input data.

“HASHEDVALUE ” on page 361 Returns the distribution map index (0 to 32767) of the row. The argument
is a column name within a table.

Table 46. Regular expression scalar functions

Function Description

“REGEXP_COUNT ” on page 460 Returns a count of the number of times that a regular expression pattern
is matched in a string.

“REGEXP_EXTRACT ” on page 462 Returns one occurrence of a substring of a string that matches the regular
expression pattern.

“REGEXP_INSTR ” on page 462 Returns the starting or ending position of the matched substring,
depending on the value of the return_option argument.

“REGEXP_LIKE ” on page 465 Returns a boolean value indicating if the regular expression pattern is
found in a string. The function can be used only where a predicate is
supported.

“REGEXP_MATCH_COUNT ” on
page 467

Returns a count of the number of times that a regular expression pattern
is matched in a string.

“REGEXP_REPLACE ” on page 468 Returns a modified version of the source string where occurrences of the
regular expression pattern found in the source string are replaced with
the specified replacement string.

“REGEXP_SUBSTR ” on page 470 Returns one occurrence of a substring of a string that matches the regular
expression pattern.

Table 47. Security scalar functions

Function Description

“SECLABEL ” on page 496 Returns an unnamed security label.

“SECLABEL_BY_NAME ” on page 497 Returns a specific security label.

“SECLABEL_TO_CHAR ” on page 497 Accepts a security label and returns a string that
contains all elements in the security label.

VERIFY_GROUP_FOR_USER Returns a value that indicates whether any of
the groups associated with authorization-id-
expression are in the group names specified by the
list of group-name-expression arguments.

Chapter 1. Structured Query Language (SQL) 235

Table 47. Security scalar functions (continued)

Function Description

“VERIFY_ROLE_FOR_USER ” on page 579 Returns a value that indicates whether any of the roles
associated with authorization-id-expression
are in, or contain any of, the role names specified by
the list of role-name-expression arguments.

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER Returns a value that indicates whether
authorization-id-expression has acquired a
role under a trusted connection associated with some
trusted context and that role is in, or contained in any
of, the role names specified by the list of role-name-
expression arguments.

Table 48. String scalar functions

Function Description

“ASCII ” on page 288 Returns the ASCII code value of the leftmost character of the argument
as an integer.

“BTRIM ” on page 297 Removes characters from the beginning and end of a string expression.

“CHARACTER_LENGTH ” on page
306

Returns the length of an expression in the specified string-unit.

“CHR ” on page 307 Returns the character that has the ASCII code value specified by the
argument.

“COLLATION_KEY” on page 309 Returns a VARBINARY string representing the collation key of the
specified string-expression in the specified collation-name.

“COLLATION_KEY_BIT ” on page
310

Returns a VARCHAR FOR BIT DATA string representing the collation key
of the specified string-expression in the specified collation-name.

“CONCAT ” on page 312 Returns a string that is the concatenation of two strings.

“DECRYPT_BIN and
DECRYPT_CHAR ” on page 335

Returns a value that is the result of decrypting encrypted data using a
password string.

“DIFFERENCE ” on page 338 Returns the difference between the sounds of the words in two argument
strings, as determined by the SOUNDEX function. A value of 4 means the
strings sound the same.

“ENCRYPT ” on page 341 Returns a value that is the result of encrypting a data string expression.

“GENERATE_UNIQUE ” on page
351

Returns a bit data character string that is unique compared to any other
execution of the same function.

“GETHINT ” on page 352 Returns the password hint if one is found.

“INITCAP” on page 369 Returns a string with the first character of each word converted to
uppercase and the rest to lowercase.

“INSERT ” on page 371 Returns a string, where argument3 bytes have been deleted from
argument1 (beginning at argument2), and argument4 has been inserted
into argument1 (beginning at argument2).

“INSTR ” on page 374 Returns the starting position of a string within another string.

“INSTRB ” on page 376 Returns the starting position, in bytes, of a string within another string.

236 IBM Db2 V11.5: SQL Reference

Table 48. String scalar functions (continued)

Function Description

“LCASE ” on page 397 Returns a string in which all the SBCS characters have been converted to
lowercase characters.

“LCASE (locale sensitive) ” on page
397

Returns a string in which all characters have been converted to lowercase
characters using the rules from the Unicode standard associated with the
specified locale.

“LCASE (SYSFUN schema) ” on
page 397

Returns a string in which all the SBCS characters have been converted to
lowercase characters.

“LOWER (locale sensitive) ” on page
412

Returns a string in which all characters have been converted to lowercase
characters using the rules from the Unicode standard associated with the
specified locale.

“LEFT ” on page 398 Returns the leftmost characters from a string.

“LOCATE ” on page 405 Returns the starting position of one string within another string.

“LOCATE_IN_STRING ” on page
408

Returns the starting position of the first occurrence of one string within
another string.

“LOWER ” on page 411 Returns a string in which all the characters have been converted to
lowercase characters.

“LPAD” on page 414 Returns a string that is padded on the left with the specified character, or
with blanks.

“LTRIM ” on page 416 Removes blanks from the beginning of a string expression.

“LTRIM (SYSFUN schema) ” on
page 418

Removes blanks from the beginning of a string expression.

“OCTET_LENGTH ” on page 439 Returns the length of an expression in octets (bytes).

“OVERLAY ” on page 440 Returns a string in which, beginning at start in the specified source-string,
length of the specified code units have been deleted and insert-string has
been inserted.

“POSITION ” on page 444 Returns the starting position of argument2 within argument1.

“POSSTR ” on page 446 Returns the starting position of one string within another string.

“QUOTE_IDENT ” on page 450 Returns a string that can be used as an identifier in an SQL statement.

“QUOTE_LITERAL ” on page 451 Returns a string that can be used as a string constant in an SQL
statement.

“REPEAT ” on page 473 Returns a character string composed of the first argument repeated the
number of times specified by the second argument.

“REPEAT (SYSFUN schema) ” on
page 474

Returns a character string composed of the first argument repeated the
number of times specified by the second argument.

“REPLACE ” on page 475 Replaces all occurrences of argument2 in argument1 with argument3.

“REPLACE (SYSFUN schema) ” on
page 478

Replaces all occurrences of expres sion2 in expression1 with e
xpression3.

“RIGHT ” on page 481 Returns the rightmost characters from a string.

“RPAD” on page 491 Returns a string that is padded on the right with the specified character,
string, or with blanks.

Chapter 1. Structured Query Language (SQL) 237

Table 48. String scalar functions (continued)

Function Description

“RTRIM ” on page 494 Removes blanks from the end of a string expression.

“RTRIM (SYSFUN schema) ” on
page 496

Removes blanks from the end of a string expression.

“SOUNDEX ” on page 503 Returns a 4-character code representing the sound of the words in the
argument. This result can be compared with the sound of other strings.

“SPACE ” on page 504 Returns a character string that consists of a specified number of blanks.

“STRIP ” on page 505 Removes blanks or another specified character from the end, the
beginning, or both ends of a string expression.

“STRLEFT ” on page 506 Returns the leftmost string of string-expression of length length,
expressed in the specified string unit.

“STRPOS ” on page 506 Returns the starting position of one string within another string.

“STRRIGHT ” on page 506 Returns the rightmost string of string-expression of length length,
expressed in the specified string unit.

“SUBSTR ” on page 506 Returns a substring of a string.

“SUBSTRB ” on page 515 Returns a substring of a string.

“SUBSTRING ” on page 518 Returns a substring of a string.

“TO_SINGLE_BYTE ” on page 540 Returns a string in which multi-byte characters are converted to the
equivalent single-byte character where an equivalent character exists.

“TRANSLATE ” on page 543 Returns a string in which one or more characters in a string are converted
to other characters.

“TRIM ” on page 545 Removes blanks or another specified character from the end, the
beginning, or both ends of a string expression.

“UCASE ” on page 552 The UCASE function is identical to the TRANSLATE function except that
only the first argument (char-string-exp) is specified.

“UCASE (locale sensitive) ” on page
552

Returns a string in which all characters have been converted to
uppercase characters using the rules from the Unicode standard
associated with the specified locale.

“UPPER ” on page 554 Returns a string in which all the characters have been converted to
uppercase characters.

“UPPER (locale sensitive) ” on page
554

Returns a string in which all characters have been converted to
uppercase characters using the rules from the Unicode standard
associated with the specified locale.

Table 49. Table functions

Function Description

“BASE_TABLE ” on page 618 Returns both the object name and schema name of the object found after
any alias chains have been resolved.

“JSON_TABLE ” on page 619 Returns a result table from the evaluation of SQL/JSON path expressions.
Each item in the result sequence of the row SQL/JSON path expression
represents one or more rows in the result table.

238 IBM Db2 V11.5: SQL Reference

Table 49. Table functions (continued)

Function Description

“UNNEST ” on page 624 Returns a result table that includes a row for each element of the
specified array.

“XMLTABLE ” on page 626 Returns a table from the evaluation of XQuery expressions, possibly using
specified input arguments as XQuery variables. Each sequence item in
the result sequence of the row XQuery expression represents a row of the
result table.

Table 50. XML functions

Function Description

“PARAMETER ” on page 443 Represents a position in an SQL statement where the value is provided
dynamically by XQuery as part of the invocation of the db2-fn:sqlquery
function.

“XMLAGG ” on page 271 Returns an XML sequence containing an item for each non-null value in a
set of XML values.

“XMLATTRIBUTES ” on page 585 Constructs XML attributes from the arguments.

“XMLCOMMENT ” on page 586 Returns an XML value with a single XQuery comment node with the input
argument as the content.

“XMLCONCAT ” on page 586 Returns a sequence containing the concatenation of a variable number of
XML input arguments.

“XMLDOCUMENT ” on page 587 Returns an XML value with a single XQuery document node with zero or
more children nodes.

“XMLELEMENT ” on page 588 Returns an XML value that is an XML element node.

“XMLFOREST ” on page 594 Returns an XML value that is a sequence of XML element nodes.

“XMLGROUP ” on page 273 Returns an XML value with a single XQuery document node containing
one top-level element node.

“XMLNAMESPACES ” on page 596 Constructs namespace declarations from the arguments.

“XMLPARSE ” on page 597 Parses the argument as an XML document and returns an XML value.

“XMLPI ” on page 599 Returns an XML value with a single XQuery processing instruction node.

“XMLQUERY ” on page 600 Returns an XML value from the evaluation of an XQuery expression
possibly using specified input arguments as XQuery variables.

“XMLROW ” on page 603 Returns an XML value with a single XQuery document node containing
one top-level element node.

“XMLSERIALIZE ” on page 605 Returns a serialized XML value of the specified data type generated from
the argument.

“XMLTABLE ” on page 626 Returns a table from the evaluation of XQuery expressions, possibly using
specified input arguments as XQuery variables. Each sequence item in
the result sequence of the row XQuery expression represents a row of the
result table.

“XMLTEXT ” on page 606 Returns an XML value with a single XQuery text node having the input
argument as the content.

“XMLVALIDATE ” on page 607 Returns a copy of the input XML value augmented with information
obtained from XML schema validation, including default values.

Chapter 1. Structured Query Language (SQL) 239

Table 50. XML functions (continued)

Function Description

“XMLXSROBJECTID ” on page 611 Returns the XSR object identifier of the XML schema used to validate the
XML document that is specified in the argument

“XSLTRANSFORM ” on page 612 Converts XML data into other formats, including the conversion of XML
documents that conform to one XML schema into documents that
conform to another schema.

Aggregate functions
An aggregate function (formerly known as a column function) accepts arguments and returns a single
scalar value that is the result of an evaluation of a set of like values, such as those in a column within a set
of one or more rows.

The argument of an aggregate function is a set of values derived from an expression. The expression can
include columns, but cannot include a scalar-fullselect, another aggregate function, or an XMLQUERY or
XMLEXISTS expression (SQLSTATE 42607). The scope of the set is a group or an intermediate result table.

If a GROUP BY clause is specified in a query, and the intermediate result of the FROM, WHERE, GROUP
BY, and HAVING clauses is the empty set, the aggregate functions are not applied; the result of the query
is the empty set; the SQLCODE is set to +100; and the SQLSTATE is set to '02000'.

If a GROUP BY clause is not specified in a query, and the intermediate result of the FROM, WHERE, and
HAVING clauses is the empty set, the aggregate functions are applied to the empty set.

For example, the result of the following SELECT statement is the number of distinct values of JOBCODE
for employees in department D01:

 SELECT COUNT(DISTINCT JOBCODE)
 FROM CORPDATA.EMPLOYEE
 WHERE WORKDEPT = 'D01'

The keyword DISTINCT is not considered to be an argument of the function, but rather a specification
of an operation that is performed before the function is applied. If DISTINCT is specified, duplicate
values are eliminated. When interpreting the DISTINCT clause for decimal floating-point values that
are numerically equal, the number of significant digits in the value is not considered. For example, the
decimal floating-point number 123.00 is not distinct from the decimal floating-point number 123. The
representation of the number returned from the query will be any one of the representations encountered
(for example, either 123.00 or 123).

If ALL is implicitly or explicitly specified, duplicate values are not eliminated.

For compatibility with other SQL implementations, UNIQUE can be specified as a synonym for DISTINCT
in aggregate functions.

Expressions can be used in aggregate functions. For example:

 SELECT MAX(BONUS + 1000)
 INTO :TOP_SALESREP_BONUS
 FROM EMPLOYEE
 WHERE COMM > 5000

Aggregate functions can be qualified with a schema name (for example, SYSIBM.COUNT(*)).

ARRAY_AGG
The ARRAY_AGG function aggregates a set of elements into an array.

Invocation of the ARRAY_AGG aggregate function is based on the result array type.

240 IBM Db2 V11.5: SQL Reference

Ordinary array aggregation
ARRAY_AGG (element-expression

ORDER BY

,

sort-key
ASC

DESC

)

element-expression
expression

row-expression

(expression ,

,

expression)

Associative array aggregation
ARRAY_AGG (index-expression , element-expression)

element-expression
expression

row-expression

(expression ,

,

expression)

The schema is SYSIBM.

Ordinary array aggregation
element-expression

Specifies the source for the elements of the array.
expression

An expression that specifies the element value for the array. The data type of the expression
must be a data type that can be specified in a CREATE TYPE (array) statement (SQLSTATE
429C2).

row-expression
A row expression that specifies the value that has a row data type as the element of the array.

(expression,expression...)
A list of two or more expressions that specify the fields for a value that has a row data type as
the element of the array. The data type of each expression must be a valid data type for a row
field as described in CREATE TYPE (row) statement (SQLSTATE 429C5).

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation
of an ordinary array. If the ORDER BY clause cannot distinguish the order of the column data, the
rows in the same grouping set are arbitrarily ordered.

If ORDER BY is specified, it determines the order of the aggregated elements in the ordinary
array. If ORDER BY is not specified and no other ARRAY_AGG, LISTAGG or XMLAGG is included
in the same SELECT clause with ordering specified, the ordering of elements within the ordinary
array is not deterministic. If ORDER BY is not specified and the same SELECT clause has multiple

Chapter 1. Structured Query Language (SQL) 241

occurrences of ARRAY_AGG, LISTAGG, or XMLAGG that specify ordering the same ordering of
elements within the ordinary array is used for each result of ARRAY_AGG.

sort-key
The sort key can be a column name or a sort-key-expression. If the sort key is a constant, it
does not refer to the position of the output column (as in the ORDER BY clause of a query), but
it is simply a constant that implies no sort key.

ASC
Processes the sort-key in ascending order. This is the default option.

DESC
Processes the sort-key in descending order.

The result data type is an ordinary array. If the element values are specified using a single expression
or row-expression, then the data type of the array element is the same as the type of the expression or
row-expression. If the element values are specified with a list of expressions, then the array element
is a row type with field types that correspond to the expressions.

If a SELECT clause includes an ARRAY_AGG function, then all invocations of ARRAY_AGG, LISTAGG,
XMLAGG, and XMLGROUP functions in the same SELECT clause must specify the same order or not
specify an order (SQLSTATE 428GZ).

Associative array aggregation
index-expression

Specifies the index of an associative array. When used in a context where there is a target
user-defined array data type in the same statement or the result of the ARRAY_AGG is explicitly
cast to a user-defined array data type, the data type of index-expression must be castable to
the index data type of the target associative array data type. Otherwise, the data type of the
index-expression must be a data type that can be specified for the index of an associative array in
a CREATE TYPE (array) statement (SQLSTATE 429C2).

There cannot be any duplicate index-expression values in the grouping set that is processed to
aggregate the associative array (SQLSTATE 22545).

element-expression
Specifies the source for the elements of the array.
expression

An expression that specifies the element value for the array. The data type of the
expression must be a data type that can be specified in a CREATE TYPE (array) statement
(SQLSTATE 429C2).

row-expression
A row expression that specifies the value that has a row data type as the element of the
array.

(expression,expression...)
A list of two or more expressions that specify the fields for a value that has a row data type
as the element of the array. The data type of each expression must be a valid data type for
a row field as described in CREATE TYPE (row) statement (SQLSTATE 429C5).

The result data type is an associative array. If the ARRAY_AGG is used in a context where there is a
target user-defined array data type in the same statement or the result of the ARRAY_AGG is explicitly
cast to a user-defined array data type, the data type of the index matches the data type of the target
associative array. If the element values are specified using a single expression or row-expression, then
the data type of the array element is the same as the type of the expression or row-expression. If the
element values are specified with a list of expressions, then the array element is a row type with field
types that correspond to the expressions.

Notes
• The ARRAY_AGG function can only be specified within an SQL procedure, compiled SQL function, or

compound SQL (compiled) statement the following specific contexts (SQLSTATE 42887):

242 IBM Db2 V11.5: SQL Reference

– The select-list of a SELECT INTO statement
– The select-list of a fullselect in the definition of a cursor that is not scrollable
– The select-list of a scalar subquery on the right side of a SET statement

• ARRAY_AGG cannot be used as part of an OLAP function (SQLSTATE 42887).
• The SELECT statement that uses ARRAY_AGG cannot contain an ORDER BY clause or a DISTINCT

clause, and the SELECT clause or HAVING clause cannot contain a subquery or invoke an inlined SQL
function that returns a subquery (SQLSTATE 42887).

Examples
• Example 1: Given the following DDL:

 CREATE TYPE PHONELIST AS DECIMAL(10, 0)ARRAY[10]

 CREATE TABLE EMPLOYEE (
 ID INTEGER NOT NULL,
 PRIORITY INTEGER NOT NULL,
 PHONENUMBER DECIMAL(10, 0),
 PRIMARY KEY(ID, PRIORITY))

Create a procedure that uses a SELECT INTO statement to return the prioritized list of contact numbers
under which an employee can be reached.

 CREATE PROCEDURE GETPHONENUMBERS
 (IN EMPID INTEGER,
 OUT NUMBERS PHONELIST)
 BEGIN
 SELECT ARRAY_AGG(PHONENUMBER ORDER BY PRIORITY)
 INTO NUMBERS
 FROM EMPLOYEE
 WHERE ID = EMPID;
 END

Create a procedure that uses a SET statement to return the list of contact numbers for an employee, in
an arbitrary order.

CREATE PROCEDURE GETPHONENUMBERS
 (IN EMPID INTEGER,
 OUT NUMBERS PHONELIST)
 BEGIN
 SET NUMBERS =
 (SELECT ARRAY_AGG(PHONENUMBER)
 FROM EMPLOYEE
 WHERE ID = EMPID);
 END

• Example 2: Create a procedure that uses a SELECT INTO statement to aggregate priority 1 phone
numbers into an associative array indexed by IDs from the EMPLOYEE table.

CREATE TYPE EMPPHONES AS DECIMAL(10,0) ARRAY[INTEGER]

CREATE PROCEDURE GETPHONES
(OUT EMPLOYEES EMPPHONES)
 BEGIN
 SELECT ARRAY_AGG(ID, PHONENUMBER)
 INTO EMPLOYEES
 FROM EMPLOYEE WHERE PRIORITY=1;
 END

• Example 3: Create a procedure that uses a SELECT INTO statement to aggregate the EMPLOYEE table
into an array of row variable.

CREATE TYPE EMPROW AS ROW ANCHOR ROW EMPLOYEE

CREATE TYPE EMPARRAY AS EMPROW ARRAY[]

CREATE PROCEDURE GETEMPLOYEES
 (OUT EMPLOYEES EMPARRAY)
BEGIN
 SELECT ARRAY_AGG((ID, PRIORITY, PHONENUMBER) ORDER BY ID)

Chapter 1. Structured Query Language (SQL) 243

 INTO EMPLOYEES
 FROM EMPLOYEE;
END

AVG
The AVG function returns the average of a set of numbers.

Note: The result of the function can be affected by the enablement of the large_aggregation configuration
parameter.

AVG (
ALL

DISTINCT

expression)

The schema is SYSIBM.

expression
An expression that returns a set of built-in numeric or Boolean values. The AVG function ignores any
null values the input expression might contain.

ALL or DISTINCT
If ALL is specified, all values returned by the expression, including duplicate values, are used to
calculate the average (this is the default). If DISTINCT is specified, duplicate values are ignored.
Decimal floating-point values that are numerically equal are treated as duplicates even if they have
different numbers of significant digits. For example, if the set of values returned by an expression
includes the decimal floating-point numbers 123, 123.0, and 123.00, only one of these values is used
to calculate the average.

Result
The data type of the result is the same as the data type of the input expression, with the following
exceptions:

• If the data type of the input expression is SMALLINT, the data type of the result is INTEGER.
• If the data type of the input expression is BOOLEAN, the data type of the result is BIGINT. The result is 1

only if all values returned by the input expression are also 1; otherwise, the result is 0.
• If the data type of the input expression is single-precision floating point (REAL), the data type of the

result is double-precision floating point (DOUBLE).
• If the data type of the input expression is DECFLOAT(n), the data type of the result is DECFLOAT(34).
• If the input expression is a DECIMAL value with precision p and scale s, the result is a DECIMAL with

precision and scale as follows:

Table 51. Result precision and scale of the AVG aggregate function with DECIMAL input

DECIMAL arithmetic
mode 1

p Result precision Result scale

default n/a 31 31-p+s

DEC15 <=15 15 15-p+s

DEC15 >15 31 MAX(0,28-p+s)

DEC31 n/a 31 MAX(0,28-p+s)

Note:

1. These modes are determined by the dec_arithmetic configuration parameter.

If the data type of the result is SMALLINT, INTEGER, or BIGINT, the fractional part of the average is
truncated. It is not rounded up.

244 IBM Db2 V11.5: SQL Reference

During evaluation, the order in which the input values are added together is undefined, but every
intermediate result must be within the range of the data type of the result.

The result can be null. If the function is applied to an empty set, the result is a null value; otherwise, the
result is the average value of the set.

Examples
• Example 1: Using the PROJECT table, set the host variable AVERAGE (decimal(5,2)) to the average
staffing level (PRSTAFF) of projects in department (DEPTNO) 'D11'.

 SELECT AVG(PRSTAFF)
 INTO :AVERAGE
 FROM PROJECT
 WHERE DEPTNO = 'D11'

Results in AVERAGE being set to 4.25 (that is 17/4) when using the sample table.
• Example 2: Using the PROJECT table, set the host variable ANY_CALC (decimal(5,2)) to the average of

each unique staffing level value (PRSTAFF) of projects in department (DEPTNO) 'D11'.

 SELECT AVG(DISTINCT PRSTAFF)
 INTO :ANY_CALC
 FROM PROJECT
 WHERE DEPTNO = 'D11'

Results in ANY_CALC being set to 4.66 (that is 14/3) when using the sample table.

CORRELATION
The CORRELATION function returns the coefficient of correlation of a set of number pairs.

CORRELATION (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a value of any built-in numeric data type.

If either argument is decimal floating-point, the result is DECFLOAT(34); otherwise, the result is a double-
precision floating-point number. The result can be null. When not null, the result is between -1 and 1.

The function is applied to the set of (expression1, expression2) pairs derived from the argument values by
the elimination of all pairs for which either expression1 or expression2 is null.

If the function is applied to an empty set, or if either STDDEV(expression1) or STDDEV(expression2) is
equal to zero, the result is a null value. Otherwise, the result is the correlation coefficient for the value
pairs in the set. The result is equivalent to the following expression:

 COVARIANCE(expression1,expression2)/
 (STDDEV(expression1)*
 STDDEV(expression2))

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

CORR can be specified in place of CORRELATION.

Example
Using the EMPLOYEE table, set the host variable CORRLN (double-precision floating point) to the
correlation between salary and bonus for those employees in department (WORKDEPT) 'A00'.

Chapter 1. Structured Query Language (SQL) 245

 SELECT CORRELATION(SALARY, BONUS)
 INTO :CORRLN
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00'

CORRLN is set to approximately 9.99853953399538E-001 when using the sample table.

COUNT
The COUNT function returns the number of rows or values in a set of rows or values.

Note: The result of the function can be affected by the enablement of the large_aggregation configuration
parameter.

COUNT (
ALL

DISTINCT

expression

*

)

The schema is SYSIBM.

expression

If ALL is implied or specified, an expression that returns a value of any built-in data type. If DISTINCT
is specified, an expression that returns a value of any built-in data type except BLOB, CLOB, DBCLOB,
or XML.

The result of the function is a large integer. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows in the set. A row that includes
only null values is included in the count.

The argument of COUNT(DISTINCT expression) is a set of values. The function is applied to the set of
values derived from the argument values by the elimination of null and duplicate values. The result is the
number of different non-null values in the set.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of values. The function is applied
to the set of values derived from the argument values by the elimination of null values. The result is the
number of non-null values in the set, including duplicates.

Examples
• Example 1: Using the EMPLOYEE table, set the host variable FEMALE (int) to the number of rows where

the value of the SEX column is 'F'.

 SELECT COUNT(*)
 INTO :FEMALE
 FROM EMPLOYEE
 WHERE SEX = 'F'

Results in FEMALE being set to 13 when using the sample table.
• Example 2: Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT (int) to the number of

departments (WORKDEPT) that have at least one female as a member.

 SELECT COUNT(DISTINCT WORKDEPT)
 INTO :FEMALE_IN_DEPT
 FROM EMPLOYEE
 WHERE SEX = 'F'

Results in FEMALE_IN_DEPT being set to 5 when using the sample table. (There is at least one female
in departments A00, C01, D11, D21, and E11.)

246 IBM Db2 V11.5: SQL Reference

COUNT_BIG
The COUNT_BIG function returns the number of rows or values in a set of rows or values. It is similar to
COUNT except that the result can be greater than the maximum value of integer.

COUNT_BIG (
ALL

DISTINCT

expression

*

)

The schema is SYSIBM.

expression

If ALL is implied or specified, an expression that returns a value of any built-in data type. If DISTINCT
is specified, an expression that returns a value of any built-in data type except BLOB, CLOB, DBCLOB,
or XML.

The result of the function is a decimal with precision 31 and scale 0. The result cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows in the set. A row that
includes only null values is included in the count.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The function is applied to the set of
values derived from the argument values by the elimination of null and duplicate values. The result is the
number of different non-null values in the set.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression) is a set of values. The function
is applied to the set of values derived from the argument values by the elimination of null values. The
result is the number of non-null values in the set, including duplicates.

Examples
• Example 1: Refer to COUNT examples and substitute COUNT_BIG for occurrences of COUNT. The results

are the same except for the data type of the result.
• Example 2: Some applications may require the use of COUNT but need to support values larger than the

largest integer. This can be achieved by use of sourced user-defined functions and setting the SQL path.
The following series of statements shows how to create a sourced function to support COUNT(*) based
on COUNT_BIG and returning a decimal value with a precision of 15. The SQL path is set such that the
sourced function based on COUNT_BIG is used in subsequent statements such as the query shown.

 CREATE FUNCTION RICK.COUNT() RETURNS DECIMAL(15,0)
 SOURCE SYSIBM.COUNT_BIG();
 SET CURRENT PATH RICK, SYSTEM PATH;
 SELECT COUNT(*) FROM EMPLOYEE;

Note how the sourced function is defined with no parameters to support COUNT(*). This only works
if you name the function COUNT and do not qualify the function with the schema name when it is
used. To get the same effect as COUNT(*) with a name other than COUNT, invoke the function with no
parameters. Thus, if RICK.COUNT had been defined as RICK.MYCOUNT instead, the query would have
to be written as follows:

 SELECT MYCOUNT() FROM EMPLOYEE;

If the count is taken on a specific column, the sourced function must specify the type of the column. The
following statements created a sourced function that will take any CHAR column as a argument and use
COUNT_BIG to perform the counting.

 CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE
 SOURCE SYSIBM.COUNT_BIG(CHAR());
 SELECT COUNT(DISTINCT WORKDEPT) FROM EMPLOYEE;

Chapter 1. Structured Query Language (SQL) 247

COVARIANCE
The COVARIANCE function returns the (population) covariance of a set of number pairs.

COVARIANCE (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a value of any built-in numeric data type.

If either argument is decimal floating-point, the result is DECFLOAT(34); otherwise, the result is a double-
precision floating-point number. The result can be null.

The function is applied to the set of (expression1,expression2) pairs derived from the argument values by
the elimination of all pairs for which either expression1 or expression2 is null.

If the function is applied to an empty set, the result is a null value. Otherwise, the result is the covariance
of the value pairs in the set.

The calculation that is used to determine the biased covariance is logically equivalent to the following
formula:

COVARIANCE = SUM(
 (expression1 - AVG(expression1)) *
 (expression2 - AVG(expression2))) / COUNT(expression1)

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

COVAR or COVAR_POP can be specified in place of COVARIANCE.

Example
Set the host variable COVARNCE to the covariance between salary and bonus for those employees
in department 'A00' in the EMPLOYEE table. The data type of the host variable COVARNCE is double-
precision floating point.

 SELECT COVARIANCE(SALARY, BONUS)
 INTO :COVARNCE
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00'

COVARNCE is set to approximately 1.68888888888889E+006 when using the sample table.

The following result set is shown for reference.

SELECT SALARY, BONUS FROM EMPLOYEE WHERE WORKDEPT = 'A00'

SALARY BONUS
----------- -----------
 152750.00 1000.00
 66500.00 900.00
 49250.00 600.00
 46500.00 1000.00
 39250.00 600.00

5 record(s) selected.

248 IBM Db2 V11.5: SQL Reference

COVARIANCE_SAMP
The COVARIANCE_SAMP function returns the sample covariance of a set of number pairs.

COVARIANCE_SAMP (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a value of any built-in numeric data type.

If either argument is decimal floating-point, the result is DECFLOAT(34); otherwise, the result is a double-
precision floating-point number. The result can be null.

The function is applied to the set of (expression1, expression2) pairs that are derived from the argument
values by the elimination of all pairs for which either expression1 or expression2 is null.

If the function is applied to an empty set or a set with only one row, the result is a null value. Otherwise,
the result is the sample covariance of the value pairs in the set.

The calculation that is used to determine the sample covariance is logically equivalent to the following
formula:

COVARIANCE_SAMP = SUM(
 (expression1 - AVG(expression1)) *
 (expression2 - AVG(expression2))) / (COUNT(expression1) – 1)

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

COVAR_SAMP can be specified in place of COVARIANCE_SAMP.

Example
Set the host variable COVARNCE to the sample covariance between the salary and bonus for those
employees in department 'A00' of the EMPLOYEE table. The data type of the host variable COVARNCE is
double-precision floating point.

 SELECT COVARIANCE_SAMP(SALARY, BONUS)
 INTO :COVARNCE
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00'

COVARNCE is set to approximately +5.42875000000000E+006 when the sample table is used.

The following result set is shown for reference.

SELECT SALARY, BONUS FROM EMPLOYEE WHERE WORKDEPT = 'A00'

SALARY BONUS
----------- -----------
 152750.00 1000.00
 66500.00 900.00
 49250.00 600.00
 46500.00 1000.00
 39250.00 600.00

5 record(s) selected.

Chapter 1. Structured Query Language (SQL) 249

CUME_DIST
The CUME_DIST function returns the cumulative distribution of a row that is hypothetically inserted into a
group of rows.

CUME_DIST (

,

expression) WITHIN GROUP (order-by-clause)

order-by-clause

ORDER BY

,

sort-key asc-option

desc-option

asc-option
ASC NULLS LAST

NULLS FIRST

desc-option

DESC
NULLS FIRST

NULLS LAST

The schema is SYSIBM.

expression
An expression that specifies a row that is hypothetically inserted into a group of rows. The expression
must return a value that is a built-in data type. The expression must be a constant, a variable, or a cast
of a constant or variable (SQLSTATE 428I9).

WITHIN GROUP
Indicates that the aggregation follows the specified ordering within the grouping set.

order-by-clause
ORDER BY

Specifies the order of the rows from the same grouping set that are processed in the aggregation.
sort-key

The sort key can be a column name or a sort-key-expression. If the sort key is a constant, it does
not refer to the position of the output column (as in the ordinary ORDER BY clause), but it is a
constant, which implies no sort key.

ASC
Uses the values of the sort-key in ascending order.

DESC
Uses the values of the sort-key in descending order.

NULLS FIRST
The ordering considers null values before all non-null values in the sort order.

NULLS LAST
The ordering considers null values after all non-null values in the sort order.

The number of expressions must be the same as the number of sort-key expressions (SQLSTATE 42822).
The data type of each expression and the data type of the corresponding sort-key expression must be
compatible (SQLSTATE 42822).

The data type of the result is DECFLOAT(34). The actual result is greater than 0.0 and less than or equal to
1.0.

250 IBM Db2 V11.5: SQL Reference

Example
Set the host variable CD to the cumulative distribution of a hypothetical new employee's salary of 47000
within the salaries of the employees in department 'A00'.

 SELECT CUME_DIST(47000) WITHIN GROUP (ORDER BY SALARY)
 INTO :CD FROM EMPLOYEE WHERE WORKDEPT = 'A00'

GROUPING
Used in conjunction with grouping-sets and super-groups, the GROUPING function returns a value that
indicates whether or not a row returned in a GROUP BY answer set is a row generated by a grouping set
that excludes the column represented by expression.

GROUPING (expression)

The schema is SYSIBM.

expression

An expression that matches a grouping-expression from the GROUP BY clause of the same subselect.

The result of the function is a small integer. It is set to one of the following values:
1

The value of expression in the returned row is a null value, and the row was generated by the super-
group. This generated row can be used to provide sub-total values for the GROUP BY expression.

0
The value is other than the previously listed value.

Example
The following query:

 SELECT SALES_DATE, SALES_PERSON,
 SUM(SALES) AS UNITS_SOLD,
 GROUPING(SALES_DATE) AS DATE_GROUP,
 GROUPING(SALES_PERSON) AS SALES_GROUP
 FROM SALES
 GROUP BY CUBE (SALES_DATE, SALES_PERSON)
 ORDER BY SALES_DATE, SALES_PERSON

results in:

SALES_DATE SALES_PERSON UNITS_SOLD DATE_GROUP SALES_GROUP
---------- --------------- ----------- ----------- -----------
12/31/1995 GOUNOT 1 0 0
12/31/1995 LEE 6 0 0
12/31/1995 LUCCHESSI 1 0 0
12/31/1995 - 8 0 1
03/29/1996 GOUNOT 11 0 0
03/29/1996 LEE 12 0 0
03/29/1996 LUCCHESSI 4 0 0
03/29/1996 - 27 0 1
03/30/1996 GOUNOT 21 0 0
03/30/1996 LEE 21 0 0
03/30/1996 LUCCHESSI 4 0 0
03/30/1996 - 46 0 1
03/31/1996 GOUNOT 3 0 0
03/31/1996 LEE 27 0 0
03/31/1996 LUCCHESSI 1 0 0
03/31/1996 - 31 0 1
04/01/1996 GOUNOT 14 0 0
04/01/1996 LEE 25 0 0
04/01/1996 LUCCHESSI 4 0 0
04/01/1996 - 43 0 1
- GOUNOT 50 1 0
- LEE 91 1 0

Chapter 1. Structured Query Language (SQL) 251

- LUCCHESSI 14 1 0
- - 155 1 1

An application can recognize a SALES_DATE sub-total row by the fact that the value of DATE_GROUP is 0
and the value of SALES_GROUP is 1. A SALES_PERSON sub-total row can be recognized by the fact that
the value of DATE_GROUP is 1 and the value of SALES_GROUP is 0. A grand total row can be recognized by
the value 1 for both DATE_GROUP and SALES_GROUP.

JSON_ARRAYAGG
The JSON_ARRAYAGG function returns a JSON array that contains an array element for each value in a set
of JSON or SQL values.

JSON_ARRAYAGG (JSON-expression

FORMAT JSON

FORMAT BSON

ORDER BY

,

sort-key-expression
ASC

DESC

ABSENT ON NULL

NULL ON NULL

RETURNING CLOB (2G) CCSID 1208 FORMAT JSON

RETURNING data-type

FORMAT JSON

ENCODING UTF8

)

data-type

252 IBM Db2 V11.5: SQL Reference

CHARACTER

CHAR

(1)

(integer)

CHARACTER

CHAR

VARYING

VARCHAR

(integer)

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

(integer

K

M

G

)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

(integer

K

M

G

)

Note: The schema is SYSIBM. The function name cannot be specified as a qualified name.

JSON-expression
The expression to use to generate a value in the JSON array. The result type of this expression can be
any built-in data type. It cannot be CHAR or VARCHAR bit data. It cannot be a user-defined type that is
sourced on any of these data types.
FORMAT JSON or FORMAT BSON

Specifies whether the JSON expression is already formatted data.
FORMAT JSON

The JSON expression is formatted as JSON data. If the JSON expression is a character or
graphic string data type, it is treated as JSON data. If the JSON expression is a binary string
data type, it is interpreted as UTF-8 data.

FORMAT BSON
The JSON expression is formatted as the BSON representation of JSON data and must be a
binary string data type.

If either the FORMAT JSON or FORMAT BSON properties are omitted from the statement, the format
of the JSON expression is determined in the following ways:

• By the explicit or implicit FORMAT value of the JSON expression. This method applies when the
JSON expression is one of the following built-in functions:

– JSON_ARRAY
– JSON_OBJECT
– JSON_QUERY
– JSON_ARRAYAGG
– JSON_OBJECTAGG

• As FORMAT BSON when the JSON expression is a binary string type.

Chapter 1. Structured Query Language (SQL) 253

• As unformatted data in all other situations. If the generated value is not numeric, the result string
is constructed with strings that are enclosed in quotation marks, and escape sequences for any
special characters. A numeric value that is not a valid JSON number, such as INFINITY or NAN,
results in an error.

ORDER BY
Specifies the order of the rows from the same grouping set that is processed in the aggregation. Rows
in the same grouping are arbitrarily ordered when the ORDER BY clause is not specified, or if the
ORDER BY clause cannot differentiate the order of the sort key value.
sort-key-expression

Specifies a sort key value that is either a column name or an expression. The data type of the
column or expression must not be a DATALINK or XML value.
ASC

Processes the sort key expression in ascending order. This setting is the default.
DESC

Processes the sort key expression in descending order.

The ordering is based on the values of the sort keys, which might or might not be used in the JSON
expression.

When you are running a statement that contains the JSON_ARRAYAGG function, weighted
values are sometimes used to return the result. These values are used under the following
circumstances:

• When a collating sequence other than *HEX is in effect.
• When the sort-key-expressions contain SBCS data, mixed data, or Unicode data.

The weighted values are derived by applying the collating sequence to the sort key expressions.

ABSENT ON NULL or NULL ON NULL
Specifies what to return when an array element that is produced by the JSON expression is the null
value.
ABSENT ON NULL

A null array element is not included in the JSON array. This setting is the default.
NULL ON NULL

A null array element is included in the JSON array.
RETURNING data-type

Specifies the format of the result.
data-type

The data type of the result. The default data type is Character Large Object [CLOB (2G)]
FORMAT JSON

JSON data is returned as a JSON string.
ENCODING UTF8

The encoding to use when data-type is a binary string type. This clause is only allowed for
binary string types. The result can be null. If the set of values is empty, the result is the null
value.

The result can be null. If the set of values is empty, the result is the null value.

Notes
The JSON_ARRAYAGG aggregate function cannot be used as part of an OLAP specification.

Example
• The following example shows the command syntax for returning a JSON array containing all the

department numbers.

254 IBM Db2 V11.5: SQL Reference

SELECT JSON_ARRAYAGG(deptno) AS deptlist FROM dept;

The result is the following JSON array.

DEPT_NAME

["sales","Procurment","finance","Eng","Design","Labour"]

1 record(s) selected.

• The following example shows the command syntax for returning a JSON array for each department that
contains a list of employees that are assigned to that department.

SELECT deptno, JSON_ARRAYAGG(id) AS employe_id from employe group by deptno

The result is the following two rows.

DEPTN EMPLOYE_ID
---------- --------------------------------------
 102 [102001,102002,102003,102004]
 103 [103001,103002,103003,103004]
 2 record(s) selected.

• The following example shows the command syntax for returning a JSON array for each department
number and its corresponding department name.

SELECT num as dept_num, JSON_ARRAYAGG (deptname) as dept_name FROM dept group by num

The result is the following JSON array.

DEPT_NUM DEPT_NAME
----------- --------------------------------------
 101 ["sales"]
 102 ["Procurment"]
 103 ["finance"]
 104 ["Eng"]
 105 ["Design"]
 106 ["Labour"]
6 record(s) selected.

LISTAGG
The LISTAGG function aggregates a set of string elements into one string by concatenating the strings.
Optionally, a separator string can be provided which is inserted between contiguous input strings.

LISTAGG (
ALL

DISTINCT

string-expression

, separator

)

WITHIN GROUP (ORDER BY

,

sort-key
ASC

DESC

)

The schema is SYSIBM.

The LISTAGG function aggregates a set of string values for the group into one string by appending the
string-expression values based on the order specified in the WITHIN GROUP clause.

The function is applied to the set of values that are derived from the first argument by the elimination
of null values. If DISTINCT is specified, duplicate string-expression values are eliminated. If a separator
argument is specified that is not the null value, the value is inserted between each pair of non-null
string-expression values.

Chapter 1. Structured Query Language (SQL) 255

string-expression
An expression that specifies the string values to be aggregated. The expression must return a built-in
character string, graphic string, binary string, numeric value, Boolean value, or datetime value:

• If the value is not a character, graphic, or, binary string, or if it is a CLOB, it is implicitly cast to
VARCHAR before the function is evaluated.

• If the value is a DBCLOB, it is implicitly cast to VARGRAPHIC before the function is evaluated.
• The value cannot be a BLOB (SQLSTATE 42815).

separator
A constant expression that defines the separation string that is used between non-null string-
expression values. The expression must return a value that is a built-in string, numeric, or datetime
data type. If the value is not a string data type, it is implicitly cast to VARCHAR before the function
is evaluated. CLOB and DBCLOB are supported through implicit casting. If the value is a CLOB, it is
implicitly cast to VARCHAR before the function is evaluated. If the value is a DBCLOB, it is implicitly
cast to VARGRAPHIC before the function is evaluated. The data type of separator cannot be a BLOB
(SQLSTATE 42815).

The separator can be a constant, special register, variable, or an expression based on constants,
special registers, or variables, provided that the expression does not include a non-deterministic
function or a function that takes external action.

WITHIN GROUP
Indicates that the aggregation will follow the specified ordering within the grouping set.

If WITHIN GROUP is not specified and no other LISTAGG, ARRAY_AGG, or XMLAGG is included
in the same SELECT clause with ordering specified, the ordering of strings within the result is
not deterministic. If WITHIN GROUP is not specified, and the same SELECT clause has multiple
occurrences of XMLAGG, ARRAY_AGG, or LISTAGG that specify ordering, the same ordering is used for
the result of the LISTAGG function invocation.

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation.
If the ORDER BY clause cannot distinguish the order of the column data, the rows in the same
grouping set are arbitrarily ordered.

sort-key
The sort key can be a column name or a sort-key-expression. If the sort key is a constant, it does
not refer to the position of the output column (as in the ORDER BY clause of a query); it is a
constant, which implies no sort key.

ASC
Processes the sort-key in ascending order. This is the default option.

DESC
Processes the sort-key in descending order.

Result
The result data type of LISTAGG is based on the data type of string-expression:

Table 52. Determining the result data type and length

Data type of string-expression Result data type and length

CHAR(n) or VARCHAR(n) VARCHAR(MAX(4000, n))

GRAPHIC(n) or VARGRAPHIC(n) VARGRAPHIC(MAX(2000, n))

BINARY(n) or VARBINARY(n) VARBINARY(MAX(4000, n))

The string unit of the result data type is the same as the string units of the data type of string-expression.

256 IBM Db2 V11.5: SQL Reference

The result data type can exceed VARCHAR(4000), VARBINARY(4000), or VARGRAPHIC(2000) if a derived
size is used to determine the size of the result, to a maximum for the result data type. The following
example successfully yields a return data type of VARCHAR(10000):

 LISTAGG(CAST(NAME AS VARCHAR(10000)), ',')

If the actual length of the aggregated result string exceeds the maximum for the result data type, an error
is returned (SQLSTATE 22001).

The result can be null. If the function is applied to an empty set or all of the string-expression values in the
set are null values, the result is a null value.

Rules
• If DISTINCT is specified for LISTAGG, the sort-key of the ORDER BY specification must match string-

expression (SQLSTATE 42822). If string-expression is implicitly cast, the sort-key must explicitly include
a corresponding matching cast specification.

• If a SELECT clause includes an ARRAY_AGG function, then all invocations of ARRAY_AGG, LISTAGG,
XMLAGG, and XMLGROUP functions in the same SELECT clause must meet one of the following criteria
(SQLSTATE 428GZ):

– Specify the same order
– Not specify an order
– Have the string-expression argument of a LISTAGG with DISTINCT match the sort-key expression of

the ORDER BY clause in ARRAY_AGG
• LISTAGG cannot be used as part of an OLAP specification (SQLSTATE 42887).

Example
Produce an alphabetical list of comma-separated names, grouped by department.

 SELECT workdept,
 LISTAGG(lastname, ', ') WITHIN GROUP(ORDER BY lastname)
 AS employees
 FROM emp
 GROUP BY workdept

MAX
The MAX function returns the maximum value in a set of values.

MAX (
ALL

DISTINCT

expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in data type other than BLOB, CLOB, DBCLOB, ROWID,
or XML.

The data type, length and code page of the result are the same as the data type, length and code page of
the argument values. The result is considered to be a derived value and can be null.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

If the function is applied to an empty set, the result is a null value. Otherwise, the result is the maximum
value in the set.

Chapter 1. Structured Query Language (SQL) 257

The specification of DISTINCT has no effect on the result and therefore is not recommended. It is
included for compatibility with other relational systems.

Notes
• Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point

and positive or negative infinity, sNaN, or NaN is found, the maximum value is determined using decimal
floating-point ordering rules. If multiple representations of the same decimal floating-point value are
found (for example, 2.00 and 2.0), it is unpredictable which representation will be returned.

Examples
• Example 1: Using the EMPLOYEE table, set the host variable MAX_SALARY (decimal(7,2)) to the

maximum monthly salary (SALARY/12) value.

 SELECT MAX(SALARY) / 12
 INTO :MAX_SALARY
 FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83 when using the sample table.
• Example 2: Using the PROJECT table, set the host variable LAST_PROJ(char(24)) to the project name

(PROJNAME) that comes last in the collating sequence.

 SELECT MAX(PROJNAME)
 INTO :LAST_PROJ
 FROM PROJECT

Results in LAST_PROJ being set to "WELD LINE PLANNING" when using the sample table.
• Example 3: Similar to the previous example, set the host variable LAST_PROJ (char(40)) to the project

name that comes last in the collating sequence when a project name is concatenated with the host
variable PROJSUPP. PROJSUPP is "_Support"; it has a char(8) data type.

 SELECT MAX(PROJNAME CONCAT PROJSUPP)
 INTO :LAST_PROJ
 FROM PROJECT

Results in LAST_PROJ being set to "WELD LINE PLANNING_SUPPORT" when using the sample table.

MEDIAN
The MEDIAN function returns the median value in a set of values.

MEDIAN (expression)

The schema is SYSIBM.

expression
An expression that specifies the set of values from which the median is determined. The expression
must return a value that is a built-in numeric data type, CHAR, or VARCHAR data type. In a Unicode
database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR,
GRAPHIC, and VARGRAPHIC are supported through implicit casting. If the expression is not a numeric
data type, it is cast to DECFLOAT(34) before the function is evaluated.

If the data type of expression is DECFLOAT(n), the data type of the result is DECFLOAT(34). Otherwise, the
data type of the result is DOUBLE.

The function is applied to the set of values that are derived from the argument values by the elimination of
null values.

The result can be null. If expression is null or if the function is applied to an empty set, the result is a null
value.

The MEDIAN function is a synonym for the following expression:

258 IBM Db2 V11.5: SQL Reference

PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY expression)

Example
Set the host variable MED to the value that corresponds to the median of the salaries of the employees in
department 'E21'.

 SELECT MEDIAN(SALARY) INTO :MED FROM EMPLOYEE WHERE WORKDEPT = 'E21'

MED is set to a value of 41895.00.

The following result set is shown for reference.

 SELECT SALARY FROM EMPLOYEE WHERE WORKDEPT = 'E21' ORDER BY SALARY

SALARY

 31840.00
 35370.00
 39950.00
 43840.00
 45370.00
 86150.00

 6 record(s) selected.

MIN
The MIN function returns the minimum value in a set of values.

MIN (
ALL

DISTINCT

expression)

expression
An expression that returns a value of any built-in data type other than a BLOB, CLOB, DBCLOB, or XML.

The data type, length, and code page of the result are the same as the data type, length, and code page of
the argument values. The result is considered to be a derived value and can be null.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

If this function is applied to an empty set, the result of the function is a null value. Otherwise, the result is
the minimum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not recommended. It is
included for compatibility with other relational systems.

Notes
• Results involving DECFLOAT special values: If the data type of the argument is decimal floating-point

and positive or negative infinity, sNaN, or NaN is found, the minimum value is determined using decimal
floating-point ordering rules. If multiple representations of the same decimal floating-point value are
found (for example, 2.00 and 2.0), it is unpredictable which representation will be returned.

Chapter 1. Structured Query Language (SQL) 259

Examples
• Example 1: Using the EMPLOYEE table, set the host variable COMM_SPREAD (decimal(7,2)) to the

difference between the maximum and minimum commission (COMM) for the members of department
(WORKDEPT) 'D11'.

 SELECT MAX(COMM) - MIN(COMM)
 INTO :COMM_SPREAD
 FROM EMPLOYEE
 WHERE WORKDEPT = 'D11'

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462) when using the sample table.
• Example 2: Using the PROJECT table, set the host variable (FIRST_FINISHED (char(10)) to the

estimated ending date (PRENDATE) of the first project scheduled to be completed.

 SELECT MIN(PRENDATE)
 INTO :FIRST_FINISHED
 FROM PROJECT

Results in FIRST_FINISHED being set to '1982-09-15' when using the sample table.

PERCENTILE_CONT
The PERCENTILE_CONT function returns the value that corresponds to the specified percentile given a
sort specification by using a continuous distribution model.

PERCENTILE_CONT (percentile) WITHIN GROUP (ORDER BY sort-key

ASC

DESC

)

The schema is SYSIBM.

percentile
An expression that specifies the percentile. The expression must return a value that is a built-in
numeric data type, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be
a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported
through implicit casting. If the expression is not a numeric data type, it is cast to DECFLOAT(34)
before the function is evaluated. The expression must be a constant, a variable, or a cast of a constant
or variable (SQLSTATE 428I9). The value must be 0 - 1 (SQLSTATE 22003).

WITHIN GROUP
Indicates that the aggregation follows the specified ordering within the grouping set.
ORDER BY

Specifies the order of the rows from the same grouping set that are processed in the aggregation.
sort-key

The sort key must be a column name or an expression that contains a column reference. sort-key
must be a built-in numeric data type (SQLSTATE 42822). If the single column result set specified
by sort-key contains one or more NULL values, they are not considered and a warning is returned
(SQLSTATE 01003).

ASC
Processes the sort-key in ascending order.

DESC
Processes the sort-key in descending order.

If the data type of sort-key is DECFLOAT(n), the data type of the result is DECFLOAT(34). Otherwise, the
data type of the result is DOUBLE.

The result can be null. If percentile is null or the single column result set specified by sort-key is empty,
the result is NULL.

260 IBM Db2 V11.5: SQL Reference

When used in an OLAP specification, only the window-partition-clause can be specified.

Example
Set the host variable PC to the value that corresponds to the 75th percentile of the salaries of the
employees in department 'E21' using a continuous distribution model.

SELECT PERCENTILE_CONT(0.75) WITHIN GROUP (ORDER BY SALARY)
 INTO :PC FROM EMPLOYEE
 WHERE WORKDEPT = 'E21'

PC is set to a value of 44987.50.

The following result set is shown for reference:

SELECT SALARY FROM EMPLOYEE WHERE WORKDEPT = 'E21'
 ORDER BY SALARY

SALARY

 31840.00
 35370.00
 39950.00
 43840.00
 45370.00
 86150.00

 6 record(s) selected.

PERCENTILE_DISC
The PERCENTILE_DISC function returns the value that corresponds to the specified percentile given a
sort specification by using a discrete distribution model.

PERCENTILE_DISC (percentile) WITHIN GROUP (ORDER BY sort-key

ASC

DESC

)

The schema is SYSIBM.

percentile
An expression that specifies the percentile. The expression must return a value that is a built-in
numeric data type, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a
GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by
using implicit casting. If the expression is not a numeric data type, it is cast to DECFLOAT(34) before
the function is evaluated. The expression must be a constant, a variable, or a cast of a constant or
variable (SQLSTATE 428I9). The value must be 0 - 1 (SQLSTATE 22003).

WITHIN GROUP
Indicates that the aggregation follows the specified ordering within the grouping set.
ORDER BY

Specifies the order of the rows from the same grouping set that are processed in the aggregation.
sort-key

The sort key must be a column name or an expression that contains a column reference. sort-key
must be a built-in numeric data type (SQLSTATE 42822). If the single column result set specified
by sort-key contains one or more NULL values, they are not considered and a warning is returned
(SQLSTATE 01003).

ASC
Processes the sort-key in ascending order.

Chapter 1. Structured Query Language (SQL) 261

DESC
Processes the sort-key in descending order.

The data type of the result is the same as the data type of sort-key.

The result can be null. If percentile is null or the single column result set specified by sort-key is empty,
the result is NULL.

When used in an OLAP specification, only the window-partition-clause can be specified.

Example
Set the host variable PD to the value that corresponds to the 75th percentile of the salaries of the
employees in department 'E21' using a discrete distribution model.

 SELECT PERCENTILE_DISC(0.75) WITHIN GROUP (ORDER BY SALARY)
 INTO :PD FROM EMPLOYEE WHERE WORKDEPT = 'E21'

PD is set to a value of 45370.00.

The following result set is shown for reference.

 SELECT SALARY FROM EMPLOYEE WHERE WORKDEPT = 'E21' ORDER BY SALARY

SALARY

 31840.00
 35370.00
 39950.00
 43840.00
 45370.00
 86150.00

 6 record(s) selected.

PERCENT_RANK
The PERCENT_RANK function returns the relative percentile rank of a row that is hypothetically inserted
into a group of rows.

PERCENT_RANK (

,

expression) WITHIN GROUP (order-by-clause)

order-by-clause

ORDER BY

,

sort-key asc-option

desc-option

asc-option
ASC NULLS LAST

NULLS FIRST

desc-option

DESC
NULLS FIRST

NULLS LAST

The schema is SYSIBM.

262 IBM Db2 V11.5: SQL Reference

expression
An expression that specifies a row that is hypothetically inserted into a group of rows. The expression
must return a value that is a built-in data type. The expression must be a constant, a variable, or a cast
of a constant or variable (SQLSTATE 428I9).

order-by-clause
ORDER BY

Specifies the order of the rows from the same grouping set that are processed in the aggregation.
sort-key

The sort key can be a column name or a sort-key-expression. If the sort key is a constant, it does
not refer to the position of the output column. A constant implies no sort key, unlike a constant in
the ordinary ORDER BY clause.

ASC
Uses the values of the sort-key in ascending order.

DESC
Uses the values of the sort-key in descending order.

NULLS FIRST
The ordering considers null values before all non-null values in the sort order.

NULLS LAST
The ordering considers null values after all non-null values in the sort order.

The number of expressions must be the same as the number of sort-key expressions (SQLSTATE 42822).
The data type of each expression and the data type of the corresponding sort-key expression must be
compatible (SQLSTATE 42822).

The data type of the result is DECFLOAT(34). The actual result is greater than 0.0 and less than or equal to
1.0.

Example
Set the host variable PR to the relative percentile rank of a hypothetical new employee's salary of 47000
within the salaries of the employees in department 'A00'.

 SELECT PERCENT_RANK(47000) WITHIN GROUP (ORDER BY SALARY)
 INTO :PR FROM EMPLOYEE WHERE WORKDEPT = 'A00'

PR is set to a value of 0.4.

The following result set is shown for reference.

 SELECT SALARY FROM EMPLOYEE WHERE WORKDEPT = 'A00' ORDER BY SALARY

SALARY

 39250.00
 46500.00
 49250.00
 66500.00
 152750.00

 5 record(s) selected.

Chapter 1. Structured Query Language (SQL) 263

Regression functions (REGR_AVGX, REGR_AVGY, REGR_COUNT, ...)
The regression functions support the fitting of an ordinary-least-squares regression line of the form y = a *
x + b to a set of number pairs.

REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_ICPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

(expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that returns a value of any built-in numeric data type. It is interpreted as a value of the
dependent variable (that is, a "y value").

expression2
An expression that returns a value of any built-in numeric data type. It is interpreted as a value of the
independent variable (that is, an "x value").

The REGR_COUNT function returns the number of non-null number pairs used to fit the regression line.

The REGR_INTERCEPT (or REGR_ICPT) function returns the y-intercept of the regression line ("b" in the
equation mentioned previously).

The REGR_R2 function returns the coefficient of determination ("R-squared" or "goodness-of-fit") for the
regression.

The REGR_SLOPE function returns the slope of the line ("a" in the equation mentioned previously).

The REGR_AVGX, REGR_AVGY, REGR_SXX, REGR_SXY, and REGR_SYY functions return quantities that
can be used to compute various diagnostic statistics needed for the evaluation of the quality and
statistical validity of the regression model.

The data type of the result of REGR_COUNT is integer. For the remaining functions, if either argument
is DECFLOAT(n), the data type of the result is DECFLOAT(34); otherwise, the data type of the result is
double-precision floating-point. If either argument is a special decimal floating-point value, the rules for
general arithmetic operations for decimal floating-point apply. See "General arithmetic operation rules for
decimal floating-point" in “General arithmetic operation rules for decimal floating-point” on page 142.

The result can be null. When not null, the result of REGR_R2 is between 0 and 1, and the result of both
REGR_SXX and REGR_SYY is non-negative.

Each function is applied to the set of (expression1, expression2) pairs derived from the argument values
by the elimination of all pairs for which either expression1 or expression2 is null.

If the set is not empty and VARIANCE(expression2) is positive, REGR_COUNT returns the number of
non-null pairs in the set, and the remaining functions return results that are defined as follows:

REGR_SLOPE(expression1,expression2) =
COVARIANCE(expression1,expression2)/VARIANCE(expression2)

REGR_INTERCEPT(expression1, expression2) =
AVG(expression1) - REGR_SLOPE(expression1, expression2) * AVG(expression2)

264 IBM Db2 V11.5: SQL Reference

REGR_R2(expression1, expression2) =
POWER(CORRELATION(expression1, expression2), 2) if VARIANCE(expression1)>0
REGR_R2(expression1, expression2) = 1 if VARIANCE(expression1)=0

REGR_AVGX(expression1, expression2) = AVG(expression2)

REGR_AVGY(expression1, expression2) = AVG(expression1)

REGR_SXX(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression2)

REGR_SYY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * VARIANCE(expression1)

REGR_SXY(expression1, expression2) =
REGR_COUNT(expression1, expression2) * COVARIANCE(expression1, expression2)

If the set is not empty and VARIANCE(expression2) is equal to zero, then the regression line either has
infinite slope or is undefined. In this case, the functions REGR_SLOPE, REGR_INTERCEPT, and REGR_R2
each return a null value, and the remaining functions return values as defined previously. If the set is
empty, REGR_COUNT returns zero and the remaining functions return a null value.

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

The regression functions are all computed simultaneously during a single pass through the data. In
general, it is more efficient to use the regression functions to compute the statistics needed for a
regression analysis than to perform the equivalent computations using ordinary column functions such as
AVERAGE, VARIANCE, COVARIANCE, and so forth.

The usual diagnostic statistics that accompany a linear-regression analysis can be computed in terms of
the functions listed previously. For example:
Adjusted R2

1 - ((1 - REGR_R2) * ((REGR_COUNT - 1) / (REGR_COUNT - 2)))
Standard error

SQRT((REGR_SYY-(POWER(REGR_SXY,2)/REGR_SXX))/(REGR_COUNT-2))
Total sum of squares

REGR_SYY
Regression sum of squares

POWER(REGR_SXY,2) / REGR_SXX
Residual sum of squares

(Total sum of squares)-(Regression sum of squares)
t statistic for slope

REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)
t statistic for y-intercept

REGR_INTERCEPT/((Standard error) * SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2)/REGR_SXX))

Example
Using the EMPLOYEE table, compute an ordinary-least-squares regression line that expresses the bonus
of an employee in department (WORKDEPT) 'A00' as a linear function of the employee's salary. Set the
host variables SLOPE, ICPT, RSQR (double-precision floating point) to the slope, intercept, and coefficient
of determination of the regression line, respectively. Also set the host variables AVGSAL and AVGBONUS
to the average salary and average bonus, respectively, of the employees in department 'A00', and set
the host variable CNT (integer) to the number of employees in department 'A00' for whom both salary

Chapter 1. Structured Query Language (SQL) 265

and bonus data are available. Store the remaining regression statistics in host variables SXX, SYY, and
SXY.

SELECT REGR_SLOPE(BONUS,SALARY), REGR_INTERCEPT(BONUS,SALARY),
REGR_R2(BONUS,SALARY), REGR_COUNT(BONUS,SALARY),
REGR_AVGX(BONUS,SALARY), REGR_AVGY(BONUS,SALARY),
REGR_SXX(BONUS,SALARY), REGR_SYY(BONUS,SALARY),
REGR_SXY(BONUS,SALARY)
INTO :SLOPE, :ICPT,
:RSQR, :CNT,
:AVGSAL, :AVGBONUS,
:SXX, :SYY,
:SXY
FROM EMPLOYEE
WHERE WORKDEPT = 'A00'

When using the sample table, the host variables are set to the following approximate values:

SLOPE: +1.71002671916749E-002
ICPT: +1.00871888623260E+002
RSQR: +9.99707928128685E-001
CNT: 3
AVGSAL: +4.28333333333333E+004
AVGBONUS: +8.33333333333333E+002
SXX: +2.96291666666667E+008
SYY: +8.66666666666667E+004
SXY: +5.06666666666667E+006

STDDEV
The STDDEV function returns the biased standard deviation (division by n) of a set of numbers.

STDDEV (
ALL

DISTINCT

expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in numeric data type.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result is double-precision
floating-point. The result can be null.

The function is applied to the set of values derived from the argument values by the elimination of
null values. If DISTINCT is specified, redundant duplicate values are eliminated. When interpreting the
DISTINCT clause for decimal floating-point values that are numerically equal, the number of significant
digits in the value is not considered. For example, the decimal floating-point number 123.00 is not distinct
from the decimal floating-point number 123. The representation of the number returned from the query
will be any one of the representations encountered (for example, either 123.00 or 123).

If the function is applied to an empty set, the result is a null value. Otherwise, the result is the standard
deviation of the values in the set.

The calculation that is used to determine the biased standard deviation is logically equivalent to the
following formula:

 STDDEV = SQRT(VARIANCE(expression))

where SQRT(VARIANCE(expression)) is the square root of the biased variance.

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

STDDEV_POP can be specified in place of STDDEV.

266 IBM Db2 V11.5: SQL Reference

Example
Set the host variable DEV to the standard deviation of the salaries of employees in department 'A00' in the
EMPLOYEE table. The data type for the host variable DEV is double-precision floating point.

 SELECT STDDEV(SALARY)
 INTO :DEV
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00'

DEV is set to a number with an approximate value of 9938.00.

The following result set is shown for reference.

 SELECT SALARY FROM EMPLOYEE WHERE WORKDEPT = 'A00'

SALARY

 152750.00
 66500.00
 49250.00
 46500.00
 39250.00

 5 record(s) selected.

STDDEV_SAMP
The STDDEV_SAMP function returns the sample standard deviation (division by [n-1]) of a set of numbers.

STDDEV_SAMP (
ALL

DISTINCT

expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in numeric data type.

If the argument is DECFLOAT(n), the result is DECFLOAT(34); otherwise, the result is double-precision
floating-point. The result can be null.

The function is applied to the set of values that are derived from the argument values by the elimination of
null values. If DISTINCT is specified, redundant duplicate values are eliminated. When the DISTINCT
clause is interpreted for decimal floating-point values that are numerically equal, the number of
significant digits in the value is not considered. For example, the decimal floating-point number 123.00
is not distinct from the decimal floating-point number 123. The representation of the number that is
returned from the query is any one of the representations encountered (for example, either 123.00 or
123).

If the function is applied to an empty set or a set with only one row, the result is a null value. Otherwise,
the result is the sample standard deviation of the values in the set.

The calculation that is used to determine the sample standard deviation is logically equivalent to the
following formula:

 STDDEV_SAMP = SQRT(VARIANCE_SAMP(expression))

where SQRT(VARIANCE_SAMP(expression)) is the square root of the sample variance.

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

Chapter 1. Structured Query Language (SQL) 267

Example
Set the host variable DEV to the sample standard deviation of the salaries for those employees in
department 'A00' of the EMPLOYEE table. The data type for the host variable DEV is double-precision
floating point.

 SELECT STDDEV_SAMP(SALARY)
 INTO :DEV
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00'

DEV is set to a number with an approximate value of +4.68630318054647E+004.

The following result set is shown for reference.

 SELECT SALARY FROM EMPLOYEE WHERE WORKDEPT = 'A00'

SALARY

 152750.00
 66500.00
 49250.00
 46500.00
 39250.00

 5 record(s) selected.

SUM
The SUM function returns the sum of a set of numbers.

Note: The result of the function can be affected by the enablement of the large_aggregation configuration
parameter.

SUM (
ALL

DISTINCT

expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in numeric data type.

The data type of the result is the same as the data type of the input expression, with the following
exceptions:

• If the data type of the input expression is SMALLINT, the data type of the result is INTEGER.
• If the data type of the input expression is single-precision floating point (REAL), the data type of the

result is double-precision floating point (DOUBLE).
• If the data type of the input expression is DECFLOAT(n), the data type of the result is DECFLOAT(34).
• If the input expression is a DECIMAL value with precision p and scale s, the result is a DECIMAL with

scale s and precision as follows:

Table 53. Result precision of the SUM aggregate function with DECIMAL input

DECIMAL arithmetic mode 1 p Result precision

default n/a 31

DEC15 <=15 15

DEC15 >15 MIN(31,p+10)

DEC31 n/a MIN(31,p+10)

268 IBM Db2 V11.5: SQL Reference

Note:

1. These modes are determined by the dec_arithmetic configuration parameter.

The function is applied to the set of values derived from the argument values by the elimination of null
values. If DISTINCT is specified, redundant duplicate values are also eliminated. When interpreting the
DISTINCT clause for decimal floating-point values that are numerically equal, the number of significant
digits in the value is not considered. For example, the decimal floating-point number 123.00 is not distinct
from the decimal floating-point number 123. The representation of the number returned from the query
will be any one of the representations encountered (for example, either 123.00 or 123).

The result can be null. If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the sum of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate result must be within
the range of the result data type.

Example
Using the EMPLOYEE table, set the host variable JOB_BONUS (decimal(9,2)) to the total bonus (BONUS)
paid to clerks (JOB='CLERK').

 SELECT SUM(BONUS)
 INTO :JOB_BONUS
 FROM EMPLOYEE
 WHERE JOB = 'CLERK'

Results in JOB_BONUS being set to 2800 when using the sample table.

VARIANCE
The VARIANCE function returns the biased variance (division by n) of a set of numbers.

VARIANCE (
ALL

DISTINCT

expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in numeric data type.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result is double-precision
floating-point. The result can be null.

The function is applied to the set of values derived from the argument values by the elimination of
null values. If DISTINCT is specified, redundant duplicate values are eliminated. When interpreting the
DISTINCT clause for decimal floating-point values that are numerically equal, the number of significant
digits in the value is not considered. For example, the decimal floating-point number 123.00 is not distinct
from the decimal floating-point number 123. The representation of the number returned from the query
will be any one of the representations encountered (for example, either 123.00 or 123).

If the function is applied to an empty set, the result is a null value. Otherwise, the result is the variance of
the values in the set.

The calculation that is used to determine the biased variance is logically equivalent to the following
formula:

VARIANCE = SUM(expression**2)/COUNT(expression) - (SUM(expression)/
COUNT(expression))**2

The order in which the values are added is undefined, but every intermediate result must be within the
range of the result data type.

Chapter 1. Structured Query Language (SQL) 269

VAR or VAR_POP can be specified in place of VARIANCE.

Example
Set the host variable VARNCE, whose data type is double-precision floating point, to the variance of the
salaries for those employees in department 'A00' of the EMPLOYEE table.

 SELECT VARIANCE(SALARY)
 INTO :VARNCE
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00'

Results in VARNCE being set to approximately 98763888.88 when using the sample table.

The following result set is shown for reference.

 SELECT SALARY FROM EMPLOYEE WHERE WORKDEPT = 'A00'

SALARY

 152750.00
 66500.00
 49250.00
 46500.00
 39250.00

 5 record(s) selected.

VARIANCE_SAMP
The VARIANCE_SAMP function returns the sample variance (division by [n-1]) of a set of numbers.

VARIANCE_SAMP (
ALL

DISTINCT

expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in numeric data type.

If the argument is DECFLOAT(n), the result is DECFLOAT(34); otherwise, the result is double-precision
floating-point. The result can be null.

The function is applied to the set of values that are derived from the argument values by the elimination of
null values. If DISTINCT is specified, redundant duplicate values are eliminated. When the DISTINCT
clause is interpreted for decimal floating-point values that are numerically equal, the number of
significant digits in the value is not considered. For example, the decimal floating-point number 123.00
is not distinct from the decimal floating-point number 123. The representation of the number that is
returned from the query is any one of the representations encountered (for example, 123.00 or 123).

If the function is applied to an empty set or a set with only one row, the result is a null value. Otherwise,
the result is the sample variance of the values in the set.

The calculation that is used to determine the sample variance is logically equivalent to the following
formula:

VARIANCE_SAMP = (SUM(expression**2) - ((SUM(expression)**2) /
(COUNT(expression)))) /
 (COUNT(expression) - 1)

The order in which the values are added is undefined, but every intermediate result must be within the
range of the result data type.

VAR_SAMP can be specified in place of VARIANCE_SAMP.

270 IBM Db2 V11.5: SQL Reference

Example
Set the host variable VARNCE to the sample variance of the salaries for those employees in department
'A00' of the EMPLOYEE table. The data type for the host variable VARNCE is double-precision floating
point.

 SELECT VARIANCE_SAMP(SALARY)
 INTO :VARNCE
 FROM EMPLOYEE
 WHERE WORKDEPT = 'A00'

This statement results in VARNCE being set to approximately +2.19614375000000E+009 when the
sample table is used.

The following result set is shown for reference.

 SELECT SALARY FROM EMPLOYEE WHERE WORKDEPT = 'A00'

SALARY

 152750.00
 66500.00
 49250.00
 46500.00
 39250.00

 5 record(s) selected.

XMLAGG
The XMLAGG function returns an XML sequence containing an item for each non-null value in a set of XML
values.

XMLAGG (XML-expression

ORDER BY

,

sort-key
ASC

DESC

)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

XML-expression
Specifies an expression of data type XML. The data type of XML-expression cannot be a BINARY or
VARBINARY type (SQLSTATE 42884).

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation. If
the ORDER BY clause is omitted, or if the ORDER BY clause cannot distinguish the order of the column
data, the rows in the same grouping set are arbitrarily ordered.

sort-key
The sort key can be a column name or a sort-key-expression. Note that if the sort key is a constant,
it does not refer to the position of the output column (as in the ordinary ORDER BY clause), but it is
simply a constant, which implies no sort key.

The data type of the result is XML.

The function is applied to the set of values derived from the argument values by the elimination of null
values.

If the XML-expression argument can be null, the result can be null. If the set of values is empty, the result
is the null value. Otherwise, the result is an XML sequence containing an item for each value in the set.

Chapter 1. Structured Query Language (SQL) 271

If a SELECT clause includes an ARRAY_AGG function, then all invocations of ARRAY_AGG, LISTAGG,
XMLAGG, and XMLGROUP functions in the same SELECT clause must specify the same order or not
specify an order (SQLSTATE 428GZ).

Notes
• Support in OLAP expressions: XMLAGG cannot be used as a column function of an OLAP aggregation

function (SQLSTATE 42601).

Example
Construct a department element for each department, containing a list of employees sorted by last name.

 SELECT XMLSERIALIZE(
 CONTENT XMLELEMENT(
 NAME "Department", XMLATTRIBUTES(
 E.WORKDEPT AS "name"
),
 XMLAGG(
 XMLELEMENT(
 NAME "emp", E.LASTNAME
)
 ORDER BY E.LASTNAME
)
)
 AS CLOB(110)
)
 AS "dept_list"
 FROM EMPLOYEE E
 WHERE E.WORKDEPT IN ('C01','E21')
 GROUP BY WORKDEPT

This query produces the following result:

dept_list
-----------------------...
<Department name="C01">
 <emp>KWAN</emp>
 <emp>NICHOLLS</emp>
 <emp>QUINTANA</emp>
</Department>
<Department name="E21">
 <emp>GOUNOT</emp>
 <emp>LEE</emp>
 <emp>MEHTA</emp>
 <emp>SPENSER</emp>
</Department>

Note: XMLAGG does not insert blank spaces or new line characters in the output. All example output has
been formatted to enhance readability.

272 IBM Db2 V11.5: SQL Reference

XMLGROUP
The XMLGROUP function returns an XML value with a single XQuery document node containing one
top-level element node. This is an aggregate expression that will return a single-rooted XML document
from a group of rows where each row is mapped to a row subelement.

XMLGROUP (

,

expression

AS qname-identifier

ORDER BY

,

sort-key
ASC

DESC

OPTION
1

ROW "row"

ROW row-name

ROOT "rowset"

ROOT root-name

AS ATTRIBUTES

)

Notes:
1 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

expression
The content of each generated XML element node (or the value of each generated attribute) is
specified by an expression. The data type of expression cannot be a BINARY type, a VARBINARY type,
or a structured type (SQLSTATE 42884). The expression can be any SQL expression. If the expression
is not a simple column reference, a qname-identifier must be specified.

AS qname-identifier
Specifies the XML element name or attribute name as an SQL identifier. The qname-identifier must be
of the form of an XML qualified name, or QName (SQLSTATE 42634). See the W3C XML namespace
specifications for more details on valid names. If the name is qualified, the namespace prefix must be
declared within the scope (SQLSTATE 42635). If qname-identifier is not specified, expression must be
a column name (SQLSTATE 42703). The element name or attribute name is created from the column
name using the fully escaped mapping from a column name to an QName.

OPTION
Specifies additional options for constructing the XML value. If no OPTION clause is specified, the
default behavior applies.

ROW row-name
Specifies the name of the element to which each row is mapped. If this option is not specified, the
default element name is "row".

ROOT root-name
Specifies the name of the root element node. If this option is not specified, the default root element
name is "rowset"

AS ATTRIBUTES
Specifies that each expression is mapped to an attribute value with column name or qname-identifier
serving as the attribute name.

Chapter 1. Structured Query Language (SQL) 273

ORDER BY
Specifies the order of the rows from the same grouping set that are processed in the aggregation. If
the ORDER BY clause is omitted, or if the ORDER BY clause cannot distinguish the order of the column
data, the rows in the same grouping set are arbitrarily ordered.

sort-key
The sort key can be a column name or a sort-key-expression. Note that if the sort key is a constant,
it does not refer to the position of the output column (as in the ordinary ORDER BY clause), but it is
simply a constant, which implies no sort key.

Rules
• If a SELECT clause includes an ARRAY_AGG function, then all invocations of ARRAY_AGG, LISTAGG,

XMLAGG, and XMLGROUP functions in the same SELECT clause must specify the same order or not
specify an order (SQLSTATE 428GZ).

Notes
The default behavior defines a simple mapping between a result set and an XML value. Some additional
notes about function behavior apply:

• By default, each row is transformed into an XML element named "row" and each column is transformed
into a nested element with the column name serving as the element name.

• The null handling behavior is NULL ON NULL. A null value in a column maps to the absence of the
subelement. If all column values are null, no row element will be generated.

• The binary encoding scheme for BLOB and FOR BIT DATA data types is base64Binary encoding.
• By default, the elements corresponding to the rows in a group are children of a root element named

"rowset".
• The order of the row subelements in the root element will be the same as the order in which the rows

are returned in the query result set.
• A document node will be added implicitly to the root element to make the XML result a well-formed

single-rooted XML document

Examples
The provided examples are based on the following table, T1, with integer columns C1 and C2 that contain
numeric data stored in a relational format.

C1 C2
----------- -----------
 1 2
 - 2
 1 -
 - -

 4 record(s) selected.

• Example 1: The following example shows an XMLGroup query and output fragment with default
behavior, using a single top-level element to represent the table:

SELECT XMLGROUP(C1, C2)FROM T1

<rowset>
 <row>
 <C1>1</C1>
 <C2>2</C2>
 </row>
 <row>
 <C2>2</C2>
 </row>
 <row>
 <C1>1</C1>
 </row>

274 IBM Db2 V11.5: SQL Reference

</rowset>

 1 record(s) selected.

• Example 2: The following example shows an XMLGroup query and output fragment with attribute
centric mapping. Instead of appearing as nested elements as in the previous example, relational data is
mapped to element attributes:

SELECT XMLGROUP(C1, C2 OPTION AS ATTRIBUTES) FROM T1

<rowset>
 <row C1="1" C2="2"/>
 <row C2="2"/>
 <row C1="1"/>
</rowset>

 1 record(s) selected.

• Example 3: The following example shows an XMLGroup query and output fragment with the default
<rowset> root element replaced by <document> and the default <row> element replaced by <entry>.
Columns C1 and C2 are returned as <column1> and <column2> elements, and the return set is ordered
by column C1:

SELECT XMLGROUP(
 C1 AS "column1", C2 AS "column2"
 ORDER BY C1 OPTION ROW "entry" ROOT "document")
FROM T1

<document>
 <entry>
 <column1>1</column1>
 <column2>2</column2>
 </entry>
 <entry>
 <column1>1</column1>
 </entry>
 <entry>
 <column2>2</column2>
 </entry>
</document>

Scalar functions
A scalar function optionally accepts arguments and returns a single scalar value each time the function is
called.

A scalar function can be used wherever an expression can be used. However, the restrictions that apply
to the use of expressions and aggregate functions also apply when an expression or aggregate function is
used within a scalar function. For example, the argument of a scalar function can be an aggregate function
only if an aggregate function is allowed in the context in which the scalar function is used.

The restrictions on the use of aggregate functions do not apply to scalar functions, because a scalar
function is applied to a single value rather than to a set of values.

The result of the following SELECT statement has as many rows as there are employees in department
D01:

 SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BRTHDATE)
 FROM EMPLOYEE
 WHERE WORKDEPT = 'D01'

Scalar functions can be qualified with a schema name (for example, SYSIBM.CHAR(123)).

In a Unicode database, all scalar functions that accept a character or graphic string will accept any string
types for which conversion is supported.

Chapter 1. Structured Query Language (SQL) 275

ABS or ABSVAL
Returns the absolute value of the argument.

ABS

ABSVAL

(expression)

The schema is SYSIBM.

The SYSFUN version of the ABS (or ABSVAL) function continues to be available.

expression
An expression that returns a value of any built-in numeric data type.

The result has the same data type and length attribute as the argument. The result can be null; if the
argument is null, the result is the null value. If the argument is the maximum negative value for SMALLINT,
INTEGER or BIGINT, the result is an overflow error.

Notes
Results involving DECFLOAT special values: For decimal floating-point values, the special values are
treated as follows:

• ABS(NaN) and ABS(-NaN) return NaN.
• ABS(Infinity) and ABS(-Infinity) return Infinity.
• ABS(sNaN) and ABS(-sNaN) return sNaN.

Example

 ABS(-51234)

returns an INTEGER with a value of 51234.

ACOS
Returns the arccosine of the argument as an angle expressed in radians.

ACOS (expression)

The schema is SYSIBM. (The SYSFUN version of the ACOS function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

Example
Assume that the host variable ACOSINE is a DECIMAL(10,9) host variable with a value of 0.070737202.

 SELECT ACOS(:ACOSINE)
 FROM SYSIBM.SYSDUMMY1

This statement returns the approximate value 1.49.

276 IBM Db2 V11.5: SQL Reference

ADD_DAYS
The ADD_DAYS function returns a datetime value that represents the first argument plus a specified
number of days.

ADD_DAYS (expression , numeric-expression)

The schema is SYSIBM.

expression
An expression that specifies the starting date. The expression must return a value that is a DATE,
TIMESTAMP, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a
GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported
by using implicit casting. If expression is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it
must be a valid string that is accepted by the TIMESTAMP scalar function.

numeric-expression
An expression that specifies the number of days to add to the starting date specified by expression.
The expression must return a value that is a built-in numeric, CHAR, or VARCHAR data type. In
a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If the expression
is not an INTEGER, it is cast to INTEGER before the function is evaluated. A negative numeric value
can be used to subtract days.

The result of the function is a timestamp with the same precision as expression , if expression is a
timestamp. Otherwise, the result of the function is a date. If any argument can be null, the result can be
null; if any argument is null, the result is the null value.

Examples
1. Assume that today is January 31, 2007. Set the host variable ADD_DAY with the current day plus 1

day.

 SET :ADD_DAY = ADD_DAYS(CURRENT_DATE, 1)

The host variable ADD_DAY is set with the value representing 2007-02-01.
2. Assume that DATE is a host variable with the value July 27, 1965. Set the host variable ADD_DAY with

the value of that day plus 3 days.

 SET :ADD_DAY = ADD_DAYS(:DATE,3)

The host variable ADD_DAY is set with the value representing the day plus 3 days, 1965-07-30.
3. The ADD_DAYS function and datetime arithmetic can be used to achieve the same results. The

following examples demonstrate this.

 SET :DATEHV = DATE('2008-2-28') + 4 DAYS
 SET :DATEHV = ADD_DAYS('2008-2-28', 4)

In both cases, the host variable DATEHV is set with the value '2008-03-03'.

Now consider the same examples but with the date '2008-2-29' as the argument.

 SET :DATEHV = DATE('2008-2-29') + 4 DAYS
 SET :DATEHV = ADD_DAYS('2008-2-29', 4)

In both cases, the host variable DATEHV is set with the value '2008-03-04'.
4. Assume that DATE is a host variable with the value July 27, 1965. Set the host variable ADD_DAY with

the value of that day minus 3 days.

 SET :ADD_DAY = ADD_DAYS(:DATE,-3)

The host variable ADD_DAY is set to 1965-07-24; the value representing July 27, 1965 minus 3 days.

Chapter 1. Structured Query Language (SQL) 277

ADD_HOURS
The ADD_HOURS function returns a timestamp value that represents the first argument plus a specified
number of hours.

ADD_HOURS (expression , numeric-expression)

The schema is SYSIBM.

expression
An expression that specifies the starting timestamp. The expression must return a value that is a
TIMESTAMP, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a
GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by
using implicit casting. The expression must not return a value that is a DATE (SQLSTATE 42815). If
expression is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is
accepted by the TIMESTAMP scalar function.

numeric-expression
An expression that specifies the number of hours to add to the starting timestamp specified by
expression. The expression must return a value that is a built-in numeric, CHAR, or VARCHAR data
type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If the expression is
not an INTEGER, it is cast to INTEGER before the function is evaluated. A negative numeric value can
be used to subtract hours.

The result of the function is a timestamp with the same precision as expression, if expression is a
timestamp. Otherwise, the result is a TIMESTAMP(12). If any argument can be null, the result can be null;
if any argument is null, the result is the null value.

Examples
1. Assume that the current timestamp is January 31, 2007, 01:02:03.123456. Set the host variable

ADD_HOUR with the current timestamp plus 1 hour.

 SET :ADD_HOUR = ADD_HOURS(CURRENT TIMESTAMP, 1)

The host variable ADD_HOUR is set with the value representing 2007-01-31-02.02.03.123456.
2. Assume that TIMESTAMP is a host variable with the value July 27, 1965 23:58:59. Set the host

variable ADD_HOUR with the value of that timestamp plus 3 hours.

 SET :ADD_HOUR = ADD_HOURS(:TIMESTAMP,3)

The host variable ADD_HOUR is set with the value representing the timestamp plus 3 hours,
1965-07-28-02.58.59.

3. The ADD_HOURS function and datetime arithmetic can be used to achieve the same results. The
following examples demonstrate this.

 SET :TIMESTAMPHV = TIMESTAMP '2008-2-28-22.58.59' + 4 HOURS
 SET :TIMESTAMPHV = ADD_HOURS(TIMESTAMP '2008-2-28-22.58.59', 4)

In both cases, the host variable TIMESTAMPHV is set with the value '2008-02-29-02.58.59'.

Now consider the same examples but with 28 hours added.

 SET :TIMESTAMPHV = TIMESTAMP '2008-2-28-22.58.59' + 28 HOURS
 SET :TIMESTAMPHV = ADD_HOURS(TIMESTAMP '2008-2-28-22.58.59', 28)

In both cases, the host variable TIMESTAMPHV is set with the value '2008-03-01-02.58.59'.
4. Assume that TIMESTAMP is a host variable with the value July 27, 1965 23:58:59. Set the host

variable ADD_HOUR with the value of that timestamp minus 3 hours.

278 IBM Db2 V11.5: SQL Reference

 SET :ADD_HOUR = ADD_HOURS(:TIMESTAMP,-3)

The host variable ADD_HOUR is set to 1965-07-27-20.58.59; the value representing July 27, 1965
23:58:59 minus 3 hours.

ADD_MINUTES
The ADD_MINUTES function returns a timestamp value that represents the first argument plus a specified
number of minutes.

ADD_MINUTES (expression , numeric-expression)

The schema is SYSIBM.

expression
An expression that specifies the starting timestamp. The expression must return a value that is a
TIMESTAMP, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a
GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by
using implicit casting. The expression must not return a value that is a DATE (SQLSTATE 42815). If
expression is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is
accepted by the TIMESTAMP scalar function.

numeric-expression
An expression that specifies the number of minutes to add to the starting timestamp specified by
expression. The expression must return a value that is a built-in numeric, CHAR, or a VARCHAR data
type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If the expression is
not a BIGINT, it is cast to BIGINT before the function is evaluated. A negative numeric value can be
used to subtract minutes.

The result of the function is a timestamp with the same precision as expression, if expression is a
timestamp. Otherwise, the result is a TIMESTAMP(12). If any argument can be null, the result can be null;
if any argument is null, the result is the null value.

Examples
1. Assume that the current timestamp is January 31, 2007, 01:02:03.123456. Set the host variable

ADD_MINUTE with the current timestamp plus 1 minute.

 SET :ADD_MINUTE = ADD_MINUTES(CURRENT TIMESTAMP, 1)

The host variable ADD_MINUTE is set with the value representing 2007-01-31-01.03.03.123456.
2. Assume that TIMESTAMP is a host variable with the value July 27, 1965 23:58:59. Set the host

variable ADD_MINUTE with the value of that timestamp plus 3 minutes.

 SET :ADD_MINUTE = ADD_MINUTES(:TIMESTAMP,3)

The host variable ADD_MINUTE is set with the value representing the timestamp plus 3 minutes,
1965-07-28-00.01.59.

3. The ADD_MINUTES function and datetime arithmetic can be used to achieve the same results. The
following examples demonstrate this.

 SET :TIMESTAMPHV = TIMESTAMP '2008-2-28-23.58.59' + 4 MINUTES
 SET :TIMESTAMPHV = ADD_MINUTES(TIMESTAMP '2008-2-28-23.58.59', 4)

In both cases, the host variable TIMESTAMPHV is set with the value '2008-02-29-00.02.59'.

Now consider the same examples but with 1442 minutes added.

 SET :TIMESTAMPHV = TIMESTAMP '2008-2-28-23.58.59' + 1442 MINUTES
 SET :TIMESTAMPHV = ADD_MINUTES(TIMESTAMP '2008-2-28-23.58.59', 1442)

Chapter 1. Structured Query Language (SQL) 279

In both cases, the host variable TIMESTAMPHV is set with the value '2008-03-01-00.00.59'.
4. Assume that TIMESTAMP is a host variable with the value July 27, 1965 23:58:59. Set the host

variable ADD_MINUTE with the value of that timestamp minus 3 minutes.

 SET :ADD_MINUTE = ADD_MINUTES(:TIMESTAMP,-3)

The host variable ADD_MINUTE is set to 1965-07-27-23.55.59; the value representing July 27, 1965
23:58:59 minus 3 minutes.

ADD_MONTHS
The ADD_MONTHS function returns a datetime value that represents expression plus a specified number
of months.

ADD_MONTHS (expression , numeric-expression)

The schema is SYSIBM.

expression
An expression that specifies the starting date. The expression must return a value of one of the
following built-in data types: a DATE or a TIMESTAMP.

numeric-expression
An expression that returns a value of any built-in numeric data type. If the value is not of type
INTEGER, it is implicitly cast to INTEGER before evaluating the function. The numeric-expression
specifies the number of months to add to the starting date specified by expression. A negative
numeric value is allowed.

The result of the function has the same data type as expression, unless expression is a string, in which
case the result data type is DATE. The result can be null; if any argument is null, the result is the null
value.

If expression is the last day of the month or if the resulting month has fewer days than the day component
of expression, the result is the last day of the resulting month. Otherwise, the result has the same day
component as expression. Any hours, minutes, seconds or fractional seconds information included in
expression is not changed by the function.

Examples
• Example 1: Assume today is January 31, 2007. Set the host variable ADD_MONTH with the last day of

January plus 1 month.

 SET :ADD_MONTH = ADD_MONTHS(LAST_DAY(CURRENT_DATE), 1);

The host variable ADD_MONTH is set with the value representing the end of February, 2007-02-28.
• Example 2: Assume DATE is a host variable with the value July 27, 1965. Set the host variable

ADD_MONTH with the value of that day plus 3 months.

 SET :ADD_MONTH = ADD_MONTHS(:DATE,3);

The host variable ADD_MONTH is set with the value representing the day plus 3 months, 1965-10-27.
• Example 3: The ADD_MONTHS function can be used to achieve similar results as datetime arithmetic.

The following examples demonstrate the similarities and contrasts.

 SET :DATEHV = DATE('2008-2-28') + 4 MONTHS;
 SET :DATEHV = ADD_MONTHS('2008-2-28', 4);

In both cases, the host variable DATEHV is set with the value '2008-06-28'.

280 IBM Db2 V11.5: SQL Reference

Now consider the same examples but with the date '2008-2-29' as the argument.

 SET :DATEHV = DATE('2008-2-29') + 4 MONTHS;

The host variable DATEHV is set with the value '2008-06-29'.

 SET :DATEHV = ADD_MONTHS('2008-2-29', 4);

The host variable DATEHV is set with the value '2008-06-30'.

In this case, the ADD_MONTHS function returns the last day of the month, which is June 30, 2008,
instead of June 29, 2008. The reason is that February 29 is the last day of the month. So, the
ADD_MONTHS function returns the last day of June.

ADD_SECONDS
The ADD_SECONDS function returns a timestamp value that represents the first argument plus a specified
number of seconds and fractional seconds.

ADD_SECONDS (expression , numeric-expression)

The schema is SYSIBM.

expression
An expression that specifies the starting timestamp. The expression must return a value that is a
TIMESTAMP, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a
GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported
by using implicit casting. The expression must not return a value that is a DATE (SQLSTATE 42815). If
expression is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is
accepted by the TIMESTAMP scalar function

numeric-expression
An expression that specifies the number of seconds and fractional seconds to add to the starting
timestamp specified by expression. The expression must return a value that is a built-in numeric,
CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC or
VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using
implicit casting. If the expression is not a DECIMAL(27,12), it is cast to DECIMAL(27,12) before
the function is evaluated. A negative numeric value can be used to subtract seconds and fractional
seconds.

The result of the function is a timestamp with the same precision as expression, if expression is a
timestamp. Otherwise, the result is a TIMESTAMP(12). If any argument can be null, the result can be null;
if any argument is null, the result is the null value.

Examples
1. Assume that the current timestamp is January 31, 2007, 01:02:03.123456. Set the host variable

ADD_SECOND with the current timestamp plus 1 second.

 SET :ADD_SECOND = ADD_SECONDS(CURRENT TIMESTAMP, 1)

The host variable ADD_SECOND is set with the value representing 2007-01-31-01.02.04.123456.
2. Assume that TIMESTAMP is a host variable with the value July 27, 1965 23:59:59.123456. Set the

host variable ADD_SECOND with the value of that timestamp plus 3.123 seconds.

 SET :ADD_SECOND = ADD_SECONDS(:TIMESTAMP,3.123)

The host variable ADD_SECOND is set with the value representing the timestamp plus 3.123 seconds,
1965-07-28-00.00.02.246456.

Chapter 1. Structured Query Language (SQL) 281

3. The ADD_SECONDS function and datetime arithmetic can be used to achieve the same results. The
following examples demonstrate this.

 SET :TIMESTAMPHV = TIMESTAMP '2008-2-28-23.58.59.123456' + 61.654321 SECONDS

 SET :TIMESTAMPHV = ADD_SECONDS(
 TIMESTAMP '2008-2-28-23.58.59.123456', 61.654321)

In both cases, the host variable TIMESTAMPHV is set with the value '2008-02-29-00.00.00.777777'.

Now consider the same examples but with the timestamp '2008-2-29-23.59.59.123456' as the
argument.

 SET :TIMESTAMPHV = TIMESTAMP '2008-2-29-23.59.59.123456' + 61.654321 SECONDS

 SET :TIMESTAMPHV = ADD_SECONDS(
 TIMESTAMP '2008-2-29-23.59.59.123456', 61.654321)

In both cases, the host variable TIMESTAMPHV is set with the value '2008-03-01-00.01.00.777777'.
4. Assume that TIMESTAMP is a host variable with the value July 27, 1965 23:59:59.123456. Set the

host variable ADD_SECOND with the value of that timestamp minus 3.123 seconds.

 SET :ADD_SECOND = ADD_SECONDS(:TIMESTAMP,-3.123)

The host variable ADD_SECOND is set to 1965-07-27-23.59.56.000456; the value representing July
27, 1965 23:59:59.123456 minus 3.123 seconds.

ADD_YEARS
The ADD_YEARS function returns a datetime value that represents the first argument plus a specified
number of years.

ADD_YEARS (expression , numeric-expression)

The schema is SYSIBM.

expression
An expression that specifies the starting date. The expression must return a value that is a DATE,
TIMESTAMP, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a
GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported
by using implicit casting. If expression is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it
must be a valid string that is accepted by the TIMESTAMP scalar function.

numeric-expression
An expression that specifies the number of years to add to the starting date specified by expression.
The expression must return a value that is a built-in numeric, CHAR, or VARCHAR data type. In
a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If the expression
is not an INTEGER, it is cast to INTEGER before the function is evaluated. A negative numeric value
can be used to subtract years.

The result of the function is a timestamp with the same precision as expression, if expression is a
timestamp. Otherwise, the result of the function is a date. If any argument can be null, the result can be
null; if any argument is null, the result is the null value.

If the result would be February 29 of a non-leap-year, the day is changed to 28, and a warning indicator in
the SQLCA is set to indicate the adjustment.

Examples
1. Assume that today is January 31, 2007. Set the host variable ADD_YEAR with the current day plus 1

year.

282 IBM Db2 V11.5: SQL Reference

 SET :ADD_YEAR = ADD_YEARS(CURRENT_DATE, 1)

The host variable ADD_YEAR is set with the value representing 2008-01-31.
2. Assume that DATE is a host variable with the value July 27, 1965. Set the host variable ADD_YEAR with

the value of that day plus 3 years.

 SET :ADD_YEAR = ADD_YEARS(:DATE,3)

The host variable ADD_YEAR is set with the value representing the day plus 3 years, 1968-07-27.
3. The ADD_YEARS function and datetime arithmetic can be used to achieve the same results. The

following examples demonstrate this.

 SET :DATEHV = DATE('2008-2-29') + 4 YEARS
 SET :DATEHV = ADD_YEARS('2008-2-29', 4)

In both cases, the host variable DATEHV is set with the value '2012-02-29'.

Now consider the same examples but with 3 years added.

 SET :DATEHV = DATE('2008-2-29') + 3 YEARS
 SET :DATEHV = ADD_YEARS('2008-2-29', 3)

In both cases, the host variable DATEHV is set with the value '2011-02-28'.
4. Assume that DATE is a host variable with the value July 27, 1965. Set the host variable ADD_YEAR with

the value of that day minus 3 years.

 SET :ADD_YEAR = ADD_YEARS(:DATE,-3)

The host variable ADD_YEAR is set to 1962-07-27; the value representing July 27, 1965 minus 3
years.

AGE
The AGE function returns a numeric value that represents the number of full years, full months, and full
days between the current timestamp and the argument.

AGE (expression)

The schema is SYSIBM.

expression
An expression that specifies the datetime value for which the age is computed. The expression must
return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR data type. In a Unicode database,
the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC are supported by using implicit casting. If expression is a CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC data type, it must be a valid string that is accepted by the TIMESTAMP scalar function

If there is less than a full day between the current timestamp and expression, the result is zero. If
expression is earlier than the current timestamp, the result is positive. If expression is later than the
current timestamp, the result is negative.

The result of the function is an INTEGER. If the argument can be null, the result can be null. If the
argument is null, the result is the null value.

The AGE function is a synonym of the following expression:

INTEGER((CURRENT TIMESTAMP(12) – TIMESTAMP(expression, 12)) / 1000000)

The result is the integer representation of the extraction of the year, month, and day components of a
timestamp duration.

Chapter 1. Structured Query Language (SQL) 283

Notes
• Determinism: AGE is a deterministic function. However, the invocation of the function depends on the

value of the special register CURRENT TIMESTAMP. The AGE function can be used wherever special
registers are supported (SQLSTATE 42621, 428EC, or 429BX).

Examples
1. Assume the CURRENT TIMESTAMP(12) is 2013-09-24-11.28.00.123456789012. Set the host

variable AGE1 to the number of full years, full months, and full days between the current timestamp
and 2012-02-28-12.00.00.

 SET :AGE1 = AGE(TIMESTAMP '2012-02-28-12.00.00')

The host variable AGE1 is set to 10624.
2. Assume the CURRENT TIMESTAMP(12) is 2013-09-24-11.28.00.123456789012. Set the host

variable AGE1 to the number of full years, full months, and full days between the current timestamp
and 2013-09-23-12.00.00.

 SET :AGE1 = AGE(TIMESTAMP '2013-09-23-12.00.00')

The host variable AGE1 is set to 0.
3. Assume the CURRENT TIMESTAMP(12) is 2013-09-24-11.28.00.123456789012. Set the host

variable AGE1 to the number of full years, full months, and full days between the current timestamp
and 2020-01-01.

 SET :AGE1 = AGE(DATE '2020-01-01')

The host variable AGE1 is set to -60306.

ARRAY_DELETE
The ARRAY_DELETE function deletes elements from an array.

ARRAY_DELETE (array-expression

, array-index1

, array-index2

)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification of a
parameter marker to an array type.

array-index1
An expression that results in a value that can be assigned to the data type of the array index. If
array-expression is an ordinary array, array-index1 must be the null value (SQLTATE 42815).

array-index2
An expression that results in a value that can be assigned to the data type of the array index. If
array-expression is an ordinary array, array-index2 must be the null value. If array-index2 is specified
and is a non-null value, then array-index1 must be a non-null value that is less than the value of
array-index2 (SQLSTATE 42815).

The result of the function has the same data type as array-expression. The result array is a copy of
array-expression, with the following modifications:

• If the optional arguments are not specified or they are the null value, all of the elements of array-
expression are deleted and the cardinality of the result array value is 0.

284 IBM Db2 V11.5: SQL Reference

• If only array-index1 is specified with a non-null value, the array element at index value array-index1 is
deleted.

• If array-index2 is also specified with a non-null value, then the elements ranging from index value
array-index1 to array-index2 (inclusive) are deleted.

The result can be null; if array-expression is null, the result is the null value.

Examples
1. Delete all the elements from the ordinary array variable RECENT_CALLS of array type
PHONENUMBERS .

SETRECENT_CALLS = ARRAY_DELETE(RECENT_CALLS)

2. A supplier has discontinued some of their products. Delete the elements from the associative array
variable FLOOR_TILES of array type PRODUCTS from index value 'PK5100' to index value 'PS2500'.

SETFLOOR_TILES = ARRAY_DELETE(FLOOR_TILES,'PK5100','PS2500')

ARRAY_FIRST
The ARRAY_FIRST function returns the minimum array index value of the array.

ARRAY_FIRST (array-expression)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification of a
parameter marker to an array type.

The data type of the result is the data type of the array index, which is INTEGER for an ordinary array. If
array-expression is not null and the cardinality of the array is greater than zero, the value of the result is
the minimum array index value, which is 1 for an ordinary array.

The result can be null; if array-variable is null or the cardinality of the array is zero, the result is the null
value.

Examples
1. Return the first index value in the ordinary array variable SPECIALNUMBERS to the SQL variable
E_CONSTIDX.

SET E_CONSTIDX = ARRAY_FIRST(SPECIALNUMBERS)

The result is 1.
2. Given the associative array variable PHONELIST with index values and phone numbers: 'Home' is

'4163053745', 'Work' is '4163053746', and 'Mom' is '416-4789683', assign the value of the minimum
index in the array to the character string variable named X.

SET X = ARRAY_FIRST(PHONELIST)

The value of 'Home' is assigned to X. Access the element value associated with index value 'Home' and
assign it to the SQL variable NUMBER_TO_CALL:

SET NUMBER_TO_CALL = PHONELIST[X]

Chapter 1. Structured Query Language (SQL) 285

ARRAY_LAST
The ARRAY_LAST function returns the maximum array index value of the array.

ARRAY_LAST (array-expression)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification of a
parameter marker to an array type.

The data type of the result is the data type of the array index, which is INTEGER for an ordinary array. If
array-expression is not null and the cardinality of the array is greater than zero, the value of the result is
the maximum array index value, which is the cardinality of the array for an ordinary array.

The result can be null; if array-variable is null or the cardinality of the array is zero, the result is the null
value.

Examples
1. Return the last index value in the ordinary array variable SPECIALNUMBERS to the SQL variable
PI_CONSTIDX.

SET PI_CONSTIDX = ARRAY_LAST(SPECIALNUMBERS)

The result is 10.
2. Given the associative array variable PHONELIST with index values and phone numbers: 'Home' is

'4163053745', 'Work' is '4163053746', and 'Mom' is '4164789683', assign the value of the maximum
index in the array to the character string variable named X.

SET X = ARRAY_LAST(PHONELIST)

The value of 'Work' is assigned to X. Access the element value associated with index value 'Work' and
assign it to the SQL variable NUMBER_TO_CALL:

SET NUMBER_TO_CALL = PHONELIST[X]

ARRAY_NEXT
The ARRAY_NEXT function returns the next larger array index value for an array relative to the specified
array index argument.

ARRAY_NEXT (array-expression , array-index)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification of a
parameter marker to an array type.

array-index
Specifies a value that is assignable to the data type of the index of the array. Valid values include any
valid value for the data type.

The result is the next larger array index value defined in the array relative to the specified array-index
value. If array-index is less than the minimum index array value in the array, the result is the first array
index value defined in the array.

The data type of the result of the function is the data type of the array index. The result can be null; if
either argument is null, the cardinality of the first argument is zero, or the value of array-index is greater
than or equal to the value of the last index in the array, the result is the null value.

286 IBM Db2 V11.5: SQL Reference

Examples
1. Return the next index value after the 9th index position in the ordinary array variable
SPECIALNUMBERS to the SQL variable NEXT_CONSTIDX.

SET NEXT_CONSTIDX = ARRAY_NEXT(SPECIALNUMBERS,9)

The result is 10.
2. Given the associative array variable PHONELIST with index values and phone numbers: 'Home' is

'4163053745', 'Work' is '4163053746', and 'Mom' is '416-4789683', assign the value of the index in
the array that is the next index after index value 'Dad', which does not exist for the array value, to the
character string variable named X:

SET X = ARRAY_NEXT(PHONELIST, 'Dad')

The value of 'Home' is assigned to X, since the value 'Dad' is a value smaller than any index value
for the array variable. Assign the value of the index in the array that is the next index after index
value'Work':

SET X = ARRAY_NEXT(PHONELIST, 'Work')

The null value is assigned to X.

ARRAY_PRIOR
The ARRAY_PRIOR function returns the next smaller array index value for an array relative to the specified
array index argument.

ARRAY_PRIOR (array-expression , array-index)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification of a
parameter marker to an array type.

array-index
Specifies a value that is assignable to the data type of the index of the array. Valid values include any
valid value for the data type.

The result is the next smaller array index value defined in the array relative to the specified array-index
value. If array-index is greater than the maximum index array value in the array, the result is the last array
index value defined in the array.

The data type of the result of the function is the data type the array index. The result can be null; if either
argument is null, the cardinality of the first argument is zero, or the value of array-index is less than or
equal to the value of the first index in the array, the result is the null value.

Examples
1. Return the previous index value before the 2nd index position in the ordinary array variable
SPECIALNUMBERS to the SQL variable PREV_CONSTIDX.

SET PREV_CONSTIDX = ARRAY_PRIOR(SPECIALNUMBERS,2)

The result is 1.
2. Given the associative array variable PHONELIST with index values and phone numbers: 'Home' is

'4163053745', 'Work' is '4163053746', and 'Mom' is '416-4789683', assign the value of the index in
the array that is the previous index before index value 'Work' to the character string variable named X:

SET X = ARRAY_PRIOR(PHONELIST, 'Work')

Chapter 1. Structured Query Language (SQL) 287

The value of 'Mom' is assigned to X. Assign the value of the index in the array that is the previous index
before index value'Home':

SET X = ARRAY_PRIOR(PHONELIST, 'Home')

The null value is assigned to X.

ASCII
The ASCII function returns the ASCII code value of the leftmost character of the argument as an integer.

ASCII (expression)

The schema is SYSFUN.

expression
An expression that returns a built-in character string or Boolean value. In a Unicode database, the
expression can also return a graphic string, in which case it is first converted to a character string
before the function is evaluated. The maximum length is:

• 4000 bytes for a VARCHAR
• 1,048,576 bytes for a CLOB

Result
The result of the function is always INTEGER.

The result can be null; if the argument is null, the result is the null value.

ASCII_STR
The ASCII_STR function returns an ASCII version of the string.

ASCII_STR (string-expression)

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string.
A character string must not be bit data (SQLSTATE 42815).
The argument can also be a numeric data type. The numeric argument is implicitly cast to a VARCHAR
data type.

ASCII_STR returns an ASCII version of the string. Non-ASCII characters are converted to UTF-16
characters and appear in the result in the form of \xxxx (or \xxxx\yyyy for surrogate characters), where
xxxx and yyyy represent a UTF-16 code unit. A backslash in a string-expression is converted to a double
backslash.

The string unit of the result is OCTETS.

The length attribute of the result is MIN((5*n),32672), where n is determined as follows:

• If a string-expression has the string units OCTETS or CODEUNITS16, n is the length attribute of the
input string.

• If a string-expression has the string units CODEUNITS32, n is twice the length attribute of the input
string.

Result
The result of the function is a varying-length character string.

288 IBM Db2 V11.5: SQL Reference

If the actual length of the result string exceeds the maximum for the return type, an error
occurs(SQLSTATE 54006).

If the argument can be null, the result can be null. If the argument is null, the result is the null value.

Notes
As a syntax alternative, you can specify ASCIISTR as a synonym for ASCII_STR.

The following example returns the ASCII string equivalent of the Unicode (UTF-8) string,
'4869206D616D6520697320D090D0BDD0B4D180D0B5D0B9202020F0908080':

SET :HV1 = ASCII_STR(X'4869206D616D6520697320D090D0BDD0B4D180D0B5D0B9202020F0908080');

:HV1 is assigned the value 'Hi, my name is \0410\043D\0434\0440\0435\0439 \D800\DC00'.

In this example, the UTF-8 characters D090, D0BD, D0B4, D180, D0B5, and D0B9 are converted
to \0410\043D\0434\0440\0435\0439, and the non-ASCII character F0908080 is converted to
\D800\DC00.

SET :HV1 = ASCII_STR('Hi, my name is Андрей(Andrei)');

:HV1 is assigned the value "Hi, my name is \0410\043D\0434\0440\0435\0439 (Andrei)"

ASIN
Returns the arcsine on the argument as an angle expressed in radians.

ASIN (expression)

The schema is SYSIBM. (The SYSFUN version of the ASIN function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

ATAN
Returns the arctangent of the argument as an angle expressed in radians.

ATAN (expression)

The schema is SYSIBM. (The SYSFUN version of the ATAN function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

ATAN2
Returns the arctangent of x and y coordinates as an angle expressed in radians. The x and y coordinates
are specified by the first and second arguments, respectively.

ATAN2 (expression1 , expression2)

Chapter 1. Structured Query Language (SQL) 289

The schema is SYSIBM. (The SYSFUN version of the ATAN2 function continues to be available.)

expression1
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

expression2
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

ATANH
Returns the hyperbolic arctangent of the argument, where the argument is an angle expressed in radians.

ATANH (expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

BIGINT
The BIGINT function returns a big integer (a binary integer with a precision of 63 bits) representation of a
value of a different data type.

Numeric to BIGINT
BIGINT (numeric-expression)

String to BIGINT
BIGINT (string-expression)

Datetime to BIGINT
BIGINT (datetime-expression)

Boolean to BIGINT
BIGINT (boolean-expression)

The schema is SYSIBM.

Numeric to BIGINT
numeric-expression

An expression that returns a value of any built-in numeric data type.

290 IBM Db2 V11.5: SQL Reference

The result is the same number that would occur if the argument were assigned to a big integer
column or variable. The fractional part of the argument is truncated. If the whole part of the
argument is not within the range of big integers, an error is returned (SQLSTATE 22003).

String to BIGINT
string-expression

An expression that returns a value that is a character-string or Unicode graphic-string
representation of a number with a length not greater than the maximum length of a character
constant.

The result is the same number that would result from CAST(string-expresssion AS BIGINT).
Leading and trailing blanks are eliminated and the resulting string must conform to the rules for
forming an integer, decimal, floating-point, or decimal floating-point constant (SQLSTATE 22018).
If the whole part of the argument is not within the range of big integers, an error is returned
(SQLSTATE 22003). The data type of string-expresssion must not be CLOB or DBCLOB (SQLSTATE
42884).

Datetime to BIGINT
datetime-expression

An expression that is of one of the following data types:

• DATE. The result is a BIGINT value representing the date as yyyymmdd.
• TIME. The result is a BIGINT value representing the time as hhmmss.
• TIMESTAMP. The result is a BIGINT value representing the timestamp as yyyymmddhhmmss.

The fractional seconds portion of the timestamp value is not included in the result.

Boolean to BIGINT
boolean-expression

An expression that returns a Boolean value (TRUE or FALSE). The result is either 1 (for TRUE) or 0
(for FALSE).

Result
The result of the function is a big integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Notes
• Increasing portability of applications: If the first argument is numeric, or if the first argument is a

string and the length argument is specified, use the “CAST specification” on page 152 instead of this
function to increase the portability of your applications.

Examples
• Example 1: From ORDERS_HISTORY table, count the number of orders and return the result as a big

integer value.

 SELECT BIGINT (COUNT_BIG(*))
 FROM ORDERS_HISTORY

• Example 2: Using the EMPLOYEE table, select the EMPNO column in big integer form for further
processing in the application.

 SELECT BIGINT (EMPNO) FROM EMPLOYEE

• Example 3: Assume that the column RECEIVED (whose data type is TIMESTAMP) has an internal value
equivalent to '1988-12-22-14.07.21.136421'.

 BIGINT(RECEIVED)

Chapter 1. Structured Query Language (SQL) 291

results in the value 19 881 222 140 721.
• Example 4: Assume that the column STARTTIME (whose data type is TIME) has an internal value

equivalent to '12:03:04'.

 BIGINT(STARTTIME)

results in the value 120 304.
• Example 5: The following statement returns the value 1 of data type BIGINT.

 values BIGINT(TRUE)

• Example 6: The following statement returns the value 0 of data type BIGINT.

 values BIGINT(3>3)

BINARY
The BINARY function returns a fixed-length binary string representation of a string of any data type.

BINARY (string-expression

, integer

)

The schema is SYSIBM.

string-expression
An expression that returns a value of a character string, graphic string, or binary string data type.

integer
An integer constant value, which specifies the length attribute of the resulting BINARY data type. The
value must be 1 - 255. If integer is not specified, the length attribute of the result is the lower of the
following values:

• The maximum length for the BINARY data type
• The length attribute for the data type of string-expression expressed in bytes:

– The length attribute, if string-expression is a binary string, a character string that is FOR BIT DATA,
or a character string with string units of OCTETS

– The length attribute multiplied by 2, if string-expression is a graphic string with string units of
CODEUNITS16 or double bytes

– The length attribute multiplied by 4, if string-expression is a character or graphic string with string
units of CODEUNITS32

If string-expression is an empty string and the integer argument is not specified, an error is returned
(SQLSTATE 42815).

The result of the function is a BINARY. If the first argument can be null, the result can be null; if the first
argument is null, the result is the null value.

The actual length is the same as the length attribute of the result. If the length of string-expression that
is converted to a binary string is less than the length attribute of the result, the result is padded with
hexadecimal zeros up to the length of the result. If the length of string-expression that is converted to a
binary string is greater than the length attribute of the result, truncation occurs.

A warning (SQLSTATE 01004) is returned in the following situations:

• The first argument is a character or graphic string (other than a CLOB or DBCLOB) and non-blank
characters are truncated.

• The first argument is a binary string (other than BLOB) and non-hexadecimal zeros are truncated.

292 IBM Db2 V11.5: SQL Reference

Examples
1. The following function returns a fixed-length binary string with a length attribute 1 and a value BX'00'.

 SELECT BINARY('',1)
 FROM SYSIBM.SYSDUMMY1

2. The following function returns a fixed-length binary string with a length attribute 5 and a value
BX'4B42480000'.

 SELECT BINARY('KBH',5)
 FROM SYSIBM.SYSDUMMY1

3. The following function returns a fixed-length binary string with a length attribute 3 and a value
BX'4B4248'.

 SELECT BINARY('KBH')
 FROM SYSIBM.SYSDUMMY1

4. The following function returns a fixed-length binary string with a length attribute 3 and a value
BX'4B4248'.

 SELECT BINARY('KBH ',3)
 FROM SYSIBM.SYSDUMMY1

5. The following function returns a fixed-length binary string with a length attribute 3, a value
BX'4B4248', and a warning (SQLSTATE 01004).

 SELECT BINARY('KBH 93',3)
 FROM SYSIBM.SYSDUMMY1

BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT
These bitwise functions operate on the "two's complement" representation of the integer value of the
input arguments and return the result as a corresponding base 10 integer value in a data type based on
the data type of the input arguments.

BITAND

BITANDNOT

BITOR

BITXOR

(expression1 , expression2)

BITNOT (expression)

The schema is SYSIBM.

Table 54. The bit manipulation functions

Function Description
A bit in the two's complement
representation of the result is:

BITAND Performs a bitwise AND
operation.

1 only if the corresponding bits in
both arguments are 1.

BITANDNOT Clears any bit in the first
argument that is in the second
argument.

Zero if the corresponding bit
in the second argument is 1;
otherwise, the result is copied
from the corresponding bit in the
first argument.

BITOR Performs a bitwise OR operation. 1 unless the corresponding bits
in both arguments are zero.

Chapter 1. Structured Query Language (SQL) 293

Table 54. The bit manipulation functions (continued)

Function Description
A bit in the two's complement
representation of the result is:

BITXOR Performs a bitwise exclusive OR
operation.

1 unless the corresponding bits
in both arguments are the same.

BITNOT Performs a bitwise NOT
operation.

Opposite of the corresponding bit
in the argument.

expression or expression1 or expression2
The arguments must be integer values represented by the data types SMALLINT, INTEGER, BIGINT,
or DECFLOAT. Arguments of type DECIMAL, REAL, or DOUBLE are cast to DECFLOAT. The value is
truncated to a whole number.

The bit manipulation functions can operate on up to 16 bits for SMALLINT, 32 bits for INTEGER,
64 bits for BIGINT, and 113 bits for DECFLOAT. The range of supported DECFLOAT values includes
integers from -2112 to 2112 -1, and special values such as NaN or INFINITY are not supported
(SQLSTATE 42815). If the two arguments have different data types, the argument supporting fewer
bits is cast to a value with the data type of the argument supporting more bits. This cast impacts the
bits that are set for negative values. For example, -1 as a SMALLINT value has 16 bits set to 1, which
when cast to an INTEGER value has 32 bits set to 1.

The result of the functions with two arguments has the data type of the argument that is highest in the
data type precedence list for promotion. If either argument is DECFLOAT, the data type of the result is
DECFLOAT(34). If either argument can be null, the result can be null; if either argument is null, the result
is the null value.

The result of the BITNOT function has the same data type as the input argument, except that DECIMAL,
REAL, DOUBLE, or DECFLOAT(16) returns DECFLOAT(34). If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Due to differences in internal representation between data types and on different hardware platforms,
using functions (such as HEX) or host language constructs to view or compare internal representations
of BIT function results and arguments is data type-dependent and not portable. The data type- and
platform-independent way to view or compare BIT function results and arguments is to use the actual
integer values.

Use of the BITXOR function is recommended to toggle bits in a value. Use the BITANDNOT function to
clear bits. BITANDNOT(val, pattern) operates more efficiently than BITAND(val, BITNOT(pattern)).

Examples
The following examples are based on an ITEM table with a PROPERTIES column of type INTEGER.

• Example 1: Return all items for which the third property bit is set.

 SELECT ITEMID FROM ITEM
 WHERE BITAND(PROPERTIES, 4) = 4

• Example 2: Return all items for which the fourth or the sixth property bit is set.

 SELECT ITEMID FROM ITEM
 WHERE BITAND(PROPERTIES, 40) <> 0

• Example 3: Clear the twelfth property of the item whose ID is 3412.

 UPDATE ITEM
 SET PROPERTIES = BITANDNOT(PROPERTIES, 2048)
 WHERE ITEMID = 3412

294 IBM Db2 V11.5: SQL Reference

• Example 4: Set the fifth property of the item whose ID is 3412.

 UPDATE ITEM
 SET PROPERTIES = BITOR(PROPERTIES, 16)
 WHERE ITEMID = 3412

• Example 5: Toggle the eleventh property of the item whose ID is 3412.

 UPDATE ITEM
 SET PROPERTIES = BITXOR(PROPERTIES, 1024)
 WHERE ITEMID = 3412

• Example 6: Switch all the bits in a 16-bit value that has only the second bit on.

 VALUES BITNOT(CAST(2 AS SMALLINT))

returns -3 (with a data type of SMALLINT).

BLOB
The BLOB function returns a BLOB representation of a string of any type.

BLOB (string-expression

, integer

)

The schema is SYSIBM.

string-expression
An expression that returns a value of a character string, graphic string, or binary string data type.

integer
An integer value specifying the length attribute of the resulting BLOB data type. If integer is not
specified, the length attribute of the result is the same as the length of the input, except where the
input is graphic. In this case, the length attribute of the result is twice the length of the input.

The result of the function is a BLOB. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

Example
Given a table with a BLOB column named TOPOGRAPHIC_MAP and a VARCHAR column named
MAP_NAME, locate any maps that contain the string 'Pellow Island' and return a single binary string
with the map name concatenated in front of the actual map.

 SELECT BLOB(MAP_NAME CONCAT ': ') CONCAT TOPOGRAPHIC_MAP
 FROM ONTARIO_SERIES_4
 WHERE TOPOGRAPHIC_MAP LIKE BLOB('%Pellow Island%')

BOOLEAN
The BOOLEAN function returns the actual Boolean value that corresponds to a non-Boolean
representation of a Boolean value.

BOOLEAN (numeric-expression

string-expression

)

The schema is SYSIBM.

numeric-expression
An expression that returns a binary integer or floating decimal value. The result is TRUE if the returned
value is non-zero and FALSE if it is zero.

Chapter 1. Structured Query Language (SQL) 295

string-expression
An expression that returns a character-string or Unicode graphic-string representation of a Boolean
value. Leading and trailing blanks are eliminated from the string before it is evaluated.

The returned string must be a valid representation of a Boolean value as described in “Boolean
values” on page 41 (SQLSTATE 22018).

The result of the function is the same BOOLEAN value that would result from the expression:

CAST(string-expression AS BOOLEAN)

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Examples
• Example 1: The following statement returns a value of data type BOOLEAN with the value TRUE.

 values BOOLEAN(1)

• Example 2: The following statement returns a value of data type BOOLEAN with the value FALSE.

 values BOOLEAN('NO')

• Example 3: The following statement returns a value of data type BOOLEAN with the value TRUE.

 values BOOLEAN('Yes')

BPCHAR
The BPCHAR function returns a varying-length character string representation of a value of a different
data type.

BPCHAR (expression)

The schema is SYSIBM.

The BPCHAR scalar function is a synonym for the VARCHAR scalar function.

BSON_TO_JSON
The BSON_TO_JSON function converts a string that contains data that is formatted as BSON to a
character string that contains data that is formatted as JSON.

BSON_TO_JSON (JSON-expression)

Although the schema for this function is SYSIBM, the function cannot be specified as a qualified name.

JSON-expression
Specifies an expression that returns a binary string value. It must contain formatted BSON data
(SQLSTATE 22032).

If JSON-expression can be null, the result can be null; if JSON-expression is null, the result is the null
value.

Notes
• If parameter markers are not explicitly cast to a supported data type, an error is returned (SQLSTATE

42815)

296 IBM Db2 V11.5: SQL Reference

Example
1. Retrieve a JSON document in string format, from a table where the data is stored in binary

representation.

SELECT JSON_FIELD FROM TESTJSON;

JSON_FIELD

x'16000000024E616D65000700000047656F7267650000'

To extract the contents of a JSON field, use the BSON_TO_JSON function.

SELECT BSON_TO_JSON(JSON_FIELD) FROM TESTJSON;

1

{ "Name" : "George" }

BTRIM
The BTRIM function removes the characters that are specified in a trim string from the beginning and end
of a source string.

BTRIM (source-string

, trim-string

)

The schema is SYSIBM.

This function compares the binary representation of each character (consisting of one or more bytes)
in the trim-string to the binary representation of each character (consisting of one or more bytes) at
the beginning and end of the source string. The database collation does not affect the search. If the
string-expression is defined as FOR BIT DATA, the search compares each byte in the trim-expression to
the byte at the beginning and end of the string-expression.

source-string
An expression that specifies the string from which characters are to be removed. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. If
the source string is:

• A numeric, Boolean, or datetime value, it is implicitly cast to VARCHAR before the function is
evaluated

• A CLOB value, the length of the value is limited to the maximum size of a VARCHAR (SQLSTATE
22001)

• A DBCLOB value, the actual length of the value is limited to the maximum size of a VARGRAPHIC
(SQLSTATE 22001)

trim-string
An expression that specifies the characters that are to be removed from the beginning and end of the
source string. The expression must return a built-in character string, graphic string, numeric value, or
datetime value. If the trim string is:

• Not a character string or graphic string, it is implicitly cast to VARCHAR before the function is
evaluated

• A CLOB, the actual length of the value is limited to the maximum size of a VARCHAR (SQLSTATE
22001)

• A DBCLOB, the actual length of the value is limited to the maximum size of a VARGRAPHIC
(SQLSTATE 22001)

The type of the source string determines the default trim string:

Chapter 1. Structured Query Language (SQL) 297

Type of source string Default trim string

A graphic string in a DBCS or EUC database double-byte blank

A graphic string in a Unicode database UCS-2 blank

A FOR BIT DATA string X'20'

All other cases single-byte blank

Restrictions:

• If the source string is not defined as FOR BIT DATA, then the trim string cannot be defined as FOR BIT
DATA (SQLSTATE 42815).

• If one parameter (source string or trim string) is character FOR BIT DATA, then the other parameter
cannot be a graphic (SQLSTATE 42846).

• A combination of character string and graphic string arguments can be used only in a Unicode database
(SQLSTATE 42815).

Result
The data type of the source string determines the data type of the result:

Data type of source string Data type of result

VARCHAR or CHAR VARCHAR

CLOB CLOB

VARGRAPHIC or GRAPHIC VARGRAPHIC

DBCLOB DBCLOB

The length attribute of the data type of the result is the same as the length attribute of the data type of the
source string. The length of the result is the length of the source string minus the number of string units
that were removed. If all of the characters are removed, the result is an empty string with a length of zero.

If any argument can be null, the result can be null. If any argument is null, the result is the null value.

Example
The host variable BALANCE1 is of type CHAR(9) and has the value '000345.50'. The following
statement returns the value '345.5':

 SELECT BTRIM(:BALANCE1, '0')
 FROM SYSIBM.SYSDUMMY1

The host variable BALANCE2 is of type CHAR(9) and has the value ' 345.50'. The following statement
returns the value '345.50'.

 SELECT BTRIM(:BALANCE2)
 FROM SYSIBM.SYSDUMMY1

CARDINALITY
The CARDINALITY function returns a value of type BIGINT representing the number of elements of an
array.

CARDINALITY (array-expression)

The schema is SYSIBM.

298 IBM Db2 V11.5: SQL Reference

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification of a
parameter marker to an array type.

Result
For an:

• Ordinary array, the returned value is the highest array index for which the array has an assigned
element. This includes elements that have been assigned the null value.

• Associative array, the returned value is the actual number of unique array index values defined in the
array expression.

The function returns 0 if the array is empty. The result can be null; if the argument is null, the result is the
null value.

Examples
1. Return the number of calls that have been stored in the recent calls list so far:

 SET HOWMANYCALLS = CARDINALITY(RECENT_CALLS)

The SQL variable HOWMANYCALLS contains the value 3.
2. Assume that the associative array variable CAPITALS of array type CAPITALSARRAY contains all of the

capitals for the 10 provinces and 3 territories in Canada as well as the capital of the country, Ottawa.
Return the cardinality of the array variable:

 SET NUMCAPITALS = CARDINALITY(CAPITALS)

The SQL variable NUMCAPITALS contains the value 14.

CEILING or CEIL
Returns the smallest integer value greater than or equal to the argument.

CEILING

CEIL

(expression)

The schema is SYSIBM. (The SYSFUN version of the CEILING function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type.

The result of the function has the same data type and length attribute as the argument except that the
scale is 0 if the argument is DECIMAL. For example, an argument with a data type of DECIMAL(5,5)
returns DECIMAL(5,0).

The result can be null if the argument can be null or if the argument is not a decimal floating-point number
and the database is configured with dft_sqlmathwarn set to YES; the result is the null value if the
argument is null.

Notes
• Results involving DECFLOAT special values: For decimal floating-point values, the special values are

treated as follows:

– CEILING(NaN) returns NaN.
– CEILING(-NaN) returns -NaN.
– CEILING(Infinity) returns Infinity.
– CEILING(-Infinity) returns -Infinity.

Chapter 1. Structured Query Language (SQL) 299

– CEILING(sNaN) returns NaN and a warning.
– CEILING(-sNaN) returns -NaN and a warning.

CHAR
The CHAR function returns a fixed-length character string representation of a value of a different data
type.

Integer to CHAR
CHAR (integer-expression)

Decimal to CHAR
CHAR (decimal-expression

, decimal-character

)

Floating-point to CHAR
CHAR (floating-point-expression

, decimal-character

)

Decimal floating-point to CHAR
CHAR (decimal-floating-point-expression

, decimal-character

)

Character string to CHAR
CHAR (character-expression

, integer

)

Graphic string to CHAR
CHAR (graphic-expression

, integer

)

Binary string to CHAR
CHAR (binary-expression

, integer

)

Datetime to CHAR
CHAR (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

300 IBM Db2 V11.5: SQL Reference

Boolean to CHAR
CHAR (boolean-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name when keywords are
used in the function signature. The SYSFUN.CHAR(floating-point-expression) signature continues to be
available. In this case, the decimal character is locale sensitive, and therefore returns either a period or a
comma, depending on the locale of the database server.

Integer to CHAR
integer-expression

An expression that returns a value that is of an integer data type (SMALLINT, INTEGER, or
BIGINT).

The result is a fixed-length character string representation of integer-expression in the form of an
SQL integer constant. The result consists of n characters, which represent the significant digits in the
argument, and is preceded by a minus sign if the argument is negative. The result is left-aligned. If the
data type of the first argument is:

• SMALLINT, the length of the result is 6
• INTEGER, the length of the result is 11
• BIGINT, the length of the result is 20

If the number of bytes in the result is less than the defined length of the result, the result is padded on
the right with single-byte blanks.

The code page of the result is the code page of the section.

Decimal to CHAR
decimal-expression

An expression that returns a value that is a decimal data type. If a different precision and scale are
required, the DECIMAL scalar function can be used first to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character constant cannot be a digit, the plus sign (+), the minus sign (-), or a
blank (SQLSTATE 42815). The default is the period (.) character.

The result is a fixed-length character string representation of decimal-expression in the form of an
SQL decimal constant. The length of the result is 2+p, where p is the precision of decimal-expression.
Leading zeros are not included. Trailing zeros are included. If decimal-expression is negative, the first
character of the result is a minus sign; otherwise, the first character is a digit or the decimal character.
If the scale of decimal-expression is zero, the decimal character is not returned. If the number of
bytes in the result is less than the defined length of the result, the result is padded on the right with
single-byte blanks.

The code page of the result is the code page of the section.

Floating-point to CHAR
floating-point-expression

An expression that returns a value that is a floating-point data type (DOUBLE or REAL).
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character constant cannot be a digit, the plus sign (+), the minus sign (-), or a
blank (SQLSTATE 42815). The default is the period (.) character.

The result is a fixed-length character string representation of floating-point-expression in the form of
an SQL floating-point constant. The length of the result is 24. The result is the smallest number of
characters that can represent the value of floating-point-expression such that the mantissa consists of
a single digit other than zero followed by a period and a sequence of digits. If floating-point-expression
is negative, the first character of the result is a minus sign; otherwise, the first character is a digit. If

Chapter 1. Structured Query Language (SQL) 301

floating-point-expression is zero, the result is 0E0. If the number of bytes in the result is less than 24,
the result is padded on the right with single-byte blanks.

The code page of the result is the code page of the section.

Decimal floating-point to CHAR
decimal-floating-point-expression

An expression that returns a value that is a decimal floating-point data type (DECFLOAT).
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character constant cannot be a digit, the plus sign (+), the minus sign (-), or a
blank (SQLSTATE 42815). The default is the period (.) character.

The result is a fixed-length character string representation of decimal-floating-point-expression in the
form of an SQL decimal floating-point constant. The length attribute of the result is 42. The result is
the smallest number of characters that can represent the value of decimal-floating-point-expression.
If decimal-floating-point-expression is negative, the first character of the result is a minus sign;
otherwise, the first character is a digit. If decimal-floating-point-expression is zero, the result is 0.

If the value of decimal-floating-point-expression is the special value Infinity, sNaN, or NaN, the strings
'INFINITY', 'SNAN', and 'NAN', respectively, are returned. If the special value is negative, the first
character of the result is a minus sign. The decimal floating-point special value sNaN does not result
in warning when converted to a string. If the number of characters in the result is less than 42, the
result is padded on the right with single-byte blanks.

The code page of the result is the code page of the section.

Character string to CHAR
character-expression

An expression that returns a value that is a built-in character string data type.
integer

An integer constant that specifies the length attribute for the resulting fixed-length character
string. The value must be between 0 and the maximum length for the CHAR data type in the string
units of the result.

If the second argument is not specified:

• If the character-expression is the empty string constant, the length attribute of the result is 0.
• Otherwise, the length attribute of the result is the lower of the following values:

– The maximum length for the CHAR data type in the string units of the result
– The length attribute of the first argument.

The result is a fixed-length character string. If character-expression is FOR BIT DATA, the result is FOR
BIT DATA.

The length of the result is the same as the length attribute of the result. If the length of character-
expression is:

• Less than the length attribute of the result, the result is padded with blanks up to the length
attribute of the result

• Greater than the length attribute of the result:

– If the string unit of the result is CODEUNITS32, truncation is performed. If only blank characters
are truncated and character-expression is CHAR or VARCHAR, no warning is returned. Otherwise,
a warning is returned (SQLSTATE 01004).

– If integer is specified, truncation is performed. If only blank characters are truncated and
character-expression is CHAR or VARCHAR, no warning is returned. Otherwise, a warning is
returned (SQLSTATE 01004). When part of a multi-byte character is truncated, that partial
character is replaced with the blank character. Do not rely on this behavior because it might
change in a future release.

302 IBM Db2 V11.5: SQL Reference

– If integer is not specified and character-expression is VARCHAR, truncation behavior is:

- If only blank characters must be truncated, truncation is performed with no warning returned.
- If non-blank characters must be truncated, an error is returned (SQLSTATE 22001).

– If integer is not specified and character-expression is CLOB, an error is returned (SQLSTATE
22001).

Graphic string to CHAR
graphic-expression

An expression that returns a value that is a built-in graphic string data type.
integer

An integer constant that specifies the length attribute for the resulting fixed-length character
string. The value must be between 0 and the maximum length for the CHAR data type in the string
units of the result.

If the second argument is not specified:

• If the graphic-expression is the empty string constant, the length attribute of the result is 0.
• If the string units of graphic-expression is CODEUNITS32, the length attribute of the result is the

lower of the following values:

– The maximum length for the CHAR data type in the string units of the result.
– The length attribute of the first argument.

• Otherwise, the length attribute of the result is the lower of the following values:

– The maximum length for the CHAR data type in the string units of the result.
– 3 * length attribute of the first argument.

The result is a fixed-length character string that is converted from graphic-expression. The length of
the result is the same as the length attribute of the result.

If the length of graphic-expression that is converted to a character string is:

• Less than the length attribute of the result, the result is padded with blanks up to the length
attribute of the result.

• Greater than the length attribute of the result:

– If the string unit of the result is CODEUNITS32, truncation is performed. If only blank characters
are truncated and graphic-expression is GRAPHIC or VARGRAPHIC, no warning is returned.
Otherwise, a warning is returned (SQLSTATE 01004).

– If integer is specified and graphic-expression is a GRAPHIC or VARGRAPHIC, truncation is
performed with no warning returned.

– If integer is specified and graphic-expression is a DBCLOB, truncation is performed with a warning
returned (SQLSTATE 01004).

– If integer is not specified, an error is returned (SQLSTATE 22001).

Binary string to CHAR
binary-expression

An expression that returns a value that is a built-in binary string data type.
integer

An integer constant that specifies the length attribute for the resulting fixed-length character
string.

The result is a fixed-length FOR BIT DATA character string, padded with blanks if necessary.

Datetime to CHAR
datetime-expression

An expression that is of one of the following data types:

Chapter 1. Structured Query Language (SQL) 303

DATE
The result is the character string representation of the date in the format specified by the
second argument. The length of the result is 10. An error is returned if the second argument is
specified and is not a valid value (SQLSTATE 42703).

TIME
The result is the character string representation of the time in the format specified by the
second argument. The length of the result is 8. An error is returned if the second argument is
specified and is not a valid value (SQLSTATE 42703).

TIMESTAMP
The result is the character string representation of the timestamp. If the data type of datetime-
expression is TIMESTAMP(0), the length of the result is 19. If the data type of datetime-
expression is TIMESTAMP(n), where n is between 1 and 12, the length of the result is 20+n.
Otherwise, the length of the result is 26. The second argument is not applicable and must not
be specified (SQLSTATE 42815).

The code page of the result is the code page of the section.

Boolean to CHAR
boolean-expression

An expression that returns a Boolean value (TRUE or FALSE). The result is either 'TRUE ' (note the
blank after the E) or 'FALSE'.

Result
The CHAR function returns a fixed-length character string representation of:

• An integer number, if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number, if the first argument is a decimal number
• A double-precision floating-point number, if the first argument is a DOUBLE or REAL
• A decimal floating-point number, if the first argument is a DECFLOAT
• A character string, if the first argument is any type of character string
• A graphic string (Unicode databases only), if the first argument is any type of graphic string
• A datetime value, if the first argument is a DATE, TIME, or TIMESTAMP
• A Boolean value (TRUE or FALSE)

In a non-Unicode database, the string units of the result is OCTETS. Otherwise, the string units of the
result are determined by the data type of the first argument.

• OCTETS, if the first argument is character string or a graphic string with string units of OCTETS,
CODEUNITS16, or double bytes.

• CODEUNITS32, if the first argument is character string or a graphic string with string units of
CODEUNITS32.

• Determined by the default string unit of the environment, if the first argument is not a character string or
a graphic string.

In a Unicode database, when the output string is truncated part-way through a multiple-byte character:

• If the input was a character string, the partial character is replaced with one or more blanks
• If the input was a graphic string, the partial character is replaced by the empty string

Do not rely on either of these behaviors because they might change in a future release.

If the first argument can be null, the result can be null. If the first argument is null, the result is the null
value.

304 IBM Db2 V11.5: SQL Reference

Notes
• Increasing portability of applications: If the first argument is numeric, or if the first argument is a

string and the length argument is specified, use the “CAST specification” on page 152 instead of this
function to increase the portability of your applications.

• Decimal to character and leading zeros: In versions previous to version 9.7, the result for decimal
input to this function includes leading zeros and a trailing decimal character. The database configuration
parameter dec_to_char_fmt can be set to "V95" to have this function return the version 9.5 result
for decimal input. The default value of the dec_to_char_fmt database configuration parameter for new
databases is "NEW", which has this function return results which match the SQL standard casting rules
and is consistent with results from the VARCHAR function.

Examples
• Example 1: Assume that the PRSTDATE column has an internal value equivalent to 1988-12-25. The

following function returns the value '12/25/1988'.

 CHAR(PRSTDATE, USA)

• Example 2: Assume that the STARTING column has an internal value equivalent to 17:12:30, and that
the host variable HOUR_DUR (decimal(6,0)) is a time duration with a value of 050000 (that is, 5 hours).
The following function returns the value '5:12 PM'.

 CHAR(STARTING, USA)

The following function returns the value '10:12 PM'.

 CHAR(STARTING + :HOUR_DUR, USA)

• Example 3: Assume that the RECEIVED column (TIMESTAMP) has an internal value equivalent to
the combination of the PRSTDATE and STARTING columns. The following function returns the value
'1988-12-25-17.12.30.000000'.

 CHAR(RECEIVED)

• Example 4: The LASTNAME column is defined as VARCHAR(15). The following function returns the
values in this column as fixed-length character strings that are 10 bytes long. LASTNAME values that are
more than 10 bytes long (excluding trailing blanks) are truncated and a warning is returned.

 SELECT CHAR(LASTNAME,10) FROM EMPLOYEE

• Example 5: The EDLEVEL column is defined as SMALLINT. The following function returns the values in
this column as fixed-length character strings. An EDLEVEL value of 18 is returned as the CHAR(6) value
'18' followed by four blanks.

 SELECT CHAR(EDLEVEL) FROM EMPLOYEE

• Example 6: The SALARY column is defined as DECIMAL with a precision of 9 and a scale of 2. The
current value (18357.50) is to be displayed with a comma as the decimal character (18357,50). The
following function returns the value '18357,50' followed by three blanks.

 CHAR(SALARY, ',')

• Example 7: Values in the SALARY column are to be subtracted from 20000.25 and displayed with the
default decimal character. The following function returns the value '-0001642.75' followed by three
blanks.

 CHAR(20000.25 - SALARY)

Chapter 1. Structured Query Language (SQL) 305

• Example 8: Assume that the host variable SEASONS_TICKETS is defined as INTEGER and has a value of
10000. The following function returns the value '10000.00'.

 CHAR(DECIMAL(:SEASONS_TICKETS,7,2))

• Example 9: Assume that the host variable DOUBLE_NUM is defined as DOUBLE and has a value of
-987.654321E-35. The following function returns the value '-9.87654321E-33' followed by nine trailing
blanks because the result data type is CHAR(24).

 CHAR(:DOUBLE_NUM)

• Example 10: The following statement returns a string of data type CHAR with the value 'TRUE '.

 values CHAR(3=3)

• Example 11: The following statement returns a string of data type CHAR with the value 'FALSE'.

 values CHAR(3>3)

CHARACTER_LENGTH
The CHARACTER_LENGTH function returns the length, in the specified string unit, of an expression.

CHARACTER_LENGTH

CHAR_LENGTH

(expression

USING CODEUNITS16

CODEUNITS32

OCTETS

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

expression
An expression that returns a built-in character, binary, or graphic string, or a Boolean value.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the result:

• CODEUNITS16 specifies that the result is to be expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the result is to be expressed in 32-bit UTF-32 code units.
• OCTETS specifies that the result is to be expressed in bytes.

If a string unit is specified as CODEUNITS16 or CODEUNITS32, and expression is a binary string or a
FOR BIT DATA string, an error is returned (SQLSTATE 428GC).

If a string unit argument is not specified and expression is a character string that is not FOR BIT DATA
or is a graphic string, the default is CODEUNITS32. Otherwise, the default is OCTETS.

For more information, see "String units in built-in functions" in "Character strings".

Result
The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The length of character and graphic strings includes trailing blanks. The length of varying-length strings is
the actual length and not the maximum length.

306 IBM Db2 V11.5: SQL Reference

Examples
• Assume that NAME is a VARCHAR(128) column, encoded in Unicode UTF-8, that contains the value

'Jürgen'. The following two queries return the value 6:

 SELECT CHARACTER_LENGTH(NAME, CODEUNITS32)
 FROM T1 WHERE NAME = 'Jürgen'

 SELECT CHARACTER_LENGTH(NAME, CODEUNITS16)
 FROM T1 WHERE NAME = 'Jürgen'

The following two queries return the value 7:

 SELECT CHARACTER_LENGTH(NAME, OCTETS)
 FROM T1 WHERE NAME = 'Jürgen'

 SELECT LENGTH(NAME)
 FROM T1 WHERE NAME = 'Jürgen'

• The following examples work with the Unicode string '&N~AB', where '&' is the musical symbol G clef
character, and '~' is the combining tilde character. This string is shown in different Unicode encoding
forms in the following example:

'&' 'N' '~' 'A' 'B'

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16BE X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

UTF-32BE X'0001D11E' X'0000004E' X'00000303' X'00000041' X'00000042'

Assume that the variable UTF8_VAR contains the UTF-8 representation of the string.

 SELECT CHARACTER_LENGTH(UTF8_VAR, CODEUNITS16),
 CHARACTER_LENGTH(UTF8_VAR, CODEUNITS32),
 CHARACTER_LENGTH(UTF8_VAR, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 9, respectively.

Assume that the variable UTF16_VAR contains the UTF-16BE representation of the string.

 SELECT CHARACTER_LENGTH(UTF16_VAR, CODEUNITS16),
 CHARACTER_LENGTH(UTF16_VAR, CODEUNITS32),
 CHARACTER_LENGTH(UTF16_VAR, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 12, respectively.

CHR
Returns the character that has the ASCII code value specified by the argument.

CHR (expression)

The schema is SYSFUN.

expression
An expression that returns a value of INTEGER or SMALLINT data type.

The result of the function is CHAR(1). The result can be null; if the argument is null, the result is the null
value. If the argument value is between 1 and 255, the result is the character that has the ASCII code
value corresponding to the argument. If the argument value is 0, the result is the blank character (X'20').
Otherwise the result is the same as CHR(255).

Chapter 1. Structured Query Language (SQL) 307

CLOB
The CLOB function returns a CLOB representation of a character string type.

CLOB (character-string-expression

, integer

)

The schema is SYSIBM.

In a Unicode database, if a supplied argument is a graphic string, it is first converted to a character string
data type before the function is executed.

character-string-expression
An expression that returns a value that is a character string. The expression cannot be a character
string defined as FOR BIT DATA (SQLSTATE 42846).

integer
An integer value specifying the length attribute of the resulting CLOB data type. If the character-string-
expression string unit is OCTETS, the value must be between 0 and 2 147 483 647. If the character-
string-expression string unit is CODEUNITS32, the value must be between 0 and 536 870 911. If
a value for integer is not specified, the length of the result is the same as the length of the first
argument.

The result of the function is a CLOB in the string units of character-string-expression. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

COALESCE
The COALESCE function returns the first non-null expression in a list of expressions.

COALESCE (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that returns a value of any built-in or user-defined data type.

expression2
An expression that returns a value of any built-in or user-defined data type and that is compatible with
the data type of expression1. Which data types are compatible with each other is described in “Rules
for result data types” on page 71.

The arguments are evaluated in the order in which they are specified, and the result of the function is the
first argument that is not null. If all the arguments are null, the result is null.

Notes
• The COALESCE function cannot be used as a source function when creating a user-defined function.

Because this function accepts any compatible data types as arguments, it is not necessary to create
additional signatures to support user-defined data types.

Examples
• Example 1: When selecting all the values from all the rows in the DEPARTMENT table, if the department

manager (MGRNO) is missing (that is, null), then return a value of 'ABSENT'.

 SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, 'ABSENT'), ADMRDEPT
 FROM DEPARTMENT

308 IBM Db2 V11.5: SQL Reference

• Example 2: When selecting the employee number (EMPNO) and salary (SALARY) from all the rows in the
EMPLOYEE table, if the salary is missing (that is, null), then return a value of zero.

 SELECT EMPNO, COALESCE(SALARY, 0)
 FROM EMPLOYEE

• Example 3: In the following COALESCE statement, if the value of c1 is:

– 5, the statement returns a value of 5
– NULL, the statement returns a value of 10
– 'AB', the statement returns an error, because the data types of the two expressions are incompatible

COALESCE(c1,10)

COLLATION_KEY
The COLLATION_KEY function returns a VARBINARY string that represents the collation key of the
expression argument, in the specified collation.

COLLATION_KEY (string-expression , collation-name

, length

)

The schema is SYSIBM.

The results of COLLATION_KEY for two strings can be binary compared to determine their order within the
specified collation-name. For the comparison to be meaningful, the results that are used must be from the
same collation-name.

string-expression
An expression for which the collation key is determined. The expression must return a value that is
a built-in character string, graphic string, numeric, or datetime data type. Numeric and datetime data
types are supported through implicit casting. The expression must not be a FOR BIT DATA subtype
(SQLSTATE 429BM). If the expression is a CLOB, numeric, or datetime data type, the expression
is cast to VARCHAR before the function is evaluated. If the expression is a DBCLOB, it is cast to
VARGRAPHIC before the function is evaluated. If string-expression is not in UTF-16, this function
converts the code page of string-expression to UTF-16. If the result of the code page conversion
contains at least one substitution character, this function returns a collation key of the UTF-16 string
with the substitution character or characters. In such cases, the warning flag SQLWARN8 in the SQLCA
is set to 'W'.

collation-name
An expression that specifies the collation to use when the collation key is determined. The expression
must return a value that is a CHAR or VARCHAR. In a Unicode database, the expression can also
be a GRAPHIC or VARGRAPHIC. The expression must be a constant (SQLSTATE 428I9). The value
of collation-name is not case-sensitive and must be one of the Unicode Collation Algorithm-based
collations or language-aware collations for Unicode data (SQLSTATE 42704).

length
An expression that specifies the length attribute of the result in bytes. The expression must return
a value that is a built-in numeric data type, CHAR, or VARCHAR data type. In a Unicode database,
the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC are supported through implicit casting. If the expression is not an INTEGER, it is cast
to INTEGER before the function is evaluated. The value must be 1 - 32 672 (SQLSTATE 42815). The
expression must be a constant (SQLSTATE 428I9).

If a value for length is not specified, the length of the result is determined as described in the following
table:

Chapter 1. Structured Query Language (SQL) 309

Table 55. Determining the result length

Data type of string-expression Result data type length

CHAR(n) or VARCHAR(n) Minimum of 12n bytes and 32 672 bytes

GRAPHIC(n) or VARGRAPHIC(n) Minimum of 12n bytes and 32 672 bytes

Regardless of whether length is specified, if the length of the collation key is longer than the length of the
result data type, an error is returned (SQLSTATE 42815). The actual result length of the collation key is
approximately six times the length of string-expression after it is converted to UTF-16.

If string-expression is an empty string, the result is a valid collation key that can have a nonzero length.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Examples
1. The following query orders employees by their surnames by using the language-aware collation for

German in code page 923:

 SELECT FIRSTNME, LASTNAME
 FROM EMPLOYEE
 ORDER BY COLLATION_KEY (LASTNAME, 'SYSTEM_923_DE')

2. The following query uses a culturally correct comparison to find the departments of employees in the
province of Québec:

 SELECT E.WORKDEPT
 FROM EMPLOYEE AS E INNER JOIN SALES AS S
 ON COLLATION_KEY(E.LASTNAME, 'CLDR181_LFR') =
 COLLATION_KEY(S.SALES_PERSON, 'CLDR181_LFR')
 WHERE S.REGION = 'Quebec'

COLLATION_KEY_BIT
The COLLATION_KEY_BIT function returns a VARCHAR FOR BIT DATA string that represents the collation
key of the string-expression in the specified collation-name.

COLLATION_KEY_BIT (string-expression , collation-name

, length

)

The schema is SYSIBM.

The results of COLLATION_KEY_BIT for two strings can be binary compared to determine their order
within the specified collation-name. For the comparison to be meaningful, the results used must be from
the same collation-name.

string-expression
An expression that returns a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC string for which the
collation key should be determined. If string-expression is a CHAR or VARCHAR, the expression must
not be FOR BIT DATA (SQLSTATE 429BM).
If string-expression is not in UTF-16, this function performs code page conversion of string-expression
to UTF-16. If the result of the code page conversion contains at least one substitution character, this
function returns a collation key of the UTF-16 string with the substitution character or characters and
the warning flag SQLWARN8 in the SQLCA is set to 'W'.

collation-name
A character constant that specifies the collation to use when determining the collation key.

The value of collation-name is not case sensitive and must be one of the "Unicode Collation
Algorithm-based collations" in Globalization Guide or "language-aware collations for Unicode data"
in Globalization Guide (SQLSTATE 42616).

310 IBM Db2 V11.5: SQL Reference

length
An expression that specifies the length attribute of the result in bytes. If specified, length must be an
integer between 1 and 32 672 (SQLSTATE 42815).

If a value for length is not specified, the length of the result is determined as follows:

Table 56. Determining the result length

Data type of string-expression Result data type length

CHAR(n) or VARCHAR(n) Minimum of 12n bytes and 32 672 bytes

GRAPHIC(n) or VARGRAPHIC(n) Minimum of 12n bytes and 32 672 bytes

Regardless of whether length is specified or not, if the length of the collation key is longer than the length
of the result data type, an error is returned (SQLSTATE 42815). The actual result length of the collation
key is approximately six times the length of string-expression after it is converted to UTF-16.

If string-expression is an empty string, the result is a valid collation key that can have a nonzero length.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Examples
• Example 1: The following query orders employees by their family names by using the language-aware

collation for German in code page 923:

 SELECT FIRSTNME, LASTNAME
 FROM EMPLOYEE
 ORDER BY COLLATION_KEY_BIT (LASTNAME, 'SYSTEM_923_DE')

• Example 2: The following query uses a culturally correct comparison to find the departments of
employees in the province of Québec:

 SELECT E.WORKDEPT
 FROM EMPLOYEE AS E INNER JOIN SALES AS S
 ON COLLATION_KEY_BIT(E.LASTNAME, 'CLDR181_LFR') =
 COLLATION_KEY_BIT(S.SALES_PERSON, 'CLDR181_LFR')
 WHERE S.REGION = 'Quebec'

COMPARE_DECFLOAT
The COMPARE_DECFLOAT function returns a SMALLINT value that indicates whether the two arguments
are equal or unordered, or whether one argument is greater than the other.

COMPARE_DECFLOAT (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that returns a value of any built-in numeric data type. If the argument is not
DECFLOAT(34), it is logically converted to DECFLOAT(34) for processing.

expression2
An expression that returns a value of any built-in numeric data type. If the argument is not
DECFLOAT(34), it is logically converted to DECFLOAT(34) for processing.

The value of expression1 is compared with the value of expression2, and the result is returned according
to the following rules:

• If both arguments are finite, the comparison is algebraic and follows the procedure for decimal floating-
point subtraction. If the difference is exactly zero with either sign, the arguments are equal. If a nonzero
difference is positive, the first argument is greater than the second argument. If a nonzero difference is
negative, the first argument is less than the second.

• Positive zero and negative zero compare as equal.

Chapter 1. Structured Query Language (SQL) 311

• Positive infinity compares equal to positive infinity.
• Positive infinity compares greater than any finite number.
• Negative infinity compares equal to negative infinity.
• Negative infinity compares less than any finite number.
• Numeric comparison is exact. The result is determined for finite operands as if range and precision were

unlimited. No overflow or underflow condition can occur.
• If either argument is NaN or sNaN (positive or negative), the result is unordered.

The result value is as follows:

• 0 if the arguments are exactly equal
• 1 if expression1 is less than expression2
• 2 if expression1 is greater than expression2
• 3 if the arguments are unordered

The result of the function is a SMALLINT value. If either argument can be null, the result can be null; if
either argument is null, the result is the null value.

Examples
The following examples show the values that are returned by the COMPARE_DECFLOAT function, given a
variety of input decimal floating-point values:

COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(2.17)) = 0
COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(2.170)) = 2
COMPARE_DECFLOAT(DECFLOAT(2.170), DECFLOAT(2.17)) = 1
COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(0.0)) = 2
COMPARE_DECFLOAT(INFINITY,INFINITY) = 0
COMPARE_DECFLOAT(INFINITY,-INFINITY) = 2
COMPARE_DECFLOAT(DECFLOAT(-2),INFINITY) = 1
COMPARE_DECFLOAT(NAN,NAN) = 3
COMPARE_DECFLOAT(DECFLOAT(-0.1),SNAN) = 3

CONCAT
The CONCAT function combines two arguments to form a string expression.

CONCAT (expression1 , expression2)

The schema is SYSIBM.

expression1 or expression2
An expression that returns a value of one of the following data types:

• Character, binary, or graphic string
• Numeric value (this is implicitly cast to VARCHAR)
• Datetime value (this is implicitly cast to VARCHAR)
• Boolean value (this is implicitly cast to VARCHAR)

The following restrictions apply:

• A binary string can be concatenated only with another binary string or with a character string that is
defined as FOR BIT DATA.

• A character string and a graphic string can be concatenated only in a Unicode database. The
character string is converted to a graphic string before concatenation. The character string cannot
be defined as FOR BIT DATA, because such a character string cannot be cast to a graphic data
string.

• If an argument is defined with CODEUNITS32, the other argument cannot be defined as FOR BIT
DATA.

312 IBM Db2 V11.5: SQL Reference

Result
The result of the function is a string that consists of the first argument followed by the second argument.
The data type and the length of the result is determined by the data types and lengths of the arguments,
after any applicable casting is done. For more information, refer to the "Data Type and Length of
Concatenated Operands" table in “Expressions” on page 132.

If either argument can be null, the result can be null; if either argument is null, the result is the null value.

Notes
• No check is made for improperly formed mixed data when doing concatenation.
• The CONCAT function is identical to the CONCAT operator. For more information, see “Expressions” on

page 132.

Example
Concatenate the column FIRSTNME with the column LASTNAME.

SELECT CONCAT(FIRSTNME, LASTNAME)
FROM EMPLOYEE
WHERE EMPNO = '000010'

Returns the value "CHRISTINEHAAS".

COS
Returns the cosine of the argument, where the argument is an angle expressed in radians.

COS (expression)

The schema is SYSIBM. (The SYSFUN version of the COS function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

COSH
Returns the hyperbolic cosine of the argument, where the argument is an angle expressed in radians.

COSH (expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

Chapter 1. Structured Query Language (SQL) 313

COT
Returns the cotangent of the argument, where the argument is an angle expressed in radians.

COT (expression)

The schema is SYSIBM. (The SYSFUN version of the COT function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

CURSOR_ROWCOUNT
The CURSOR_ROWCOUNT function returns the cumulative count of all rows fetched by the specified
cursor since the cursor was opened.

CURSOR_ROWCOUNT (cursor-variable-name)

The schema is SYSIBM.

cursor-variable-name
The name of a SQL variable or SQL parameter of a cursor type. The underlying cursor of the cursor-
variable-name must be open (SQLSTATE 24501).

The result is 0 if no FETCH action on the underlying cursor of the cursor-variable-name was performed
before the evaluation of the function.

This function can only be used within a compound SQL (compiled) statement.

The data type of the result is BIGINT. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

Example
The following example shows how to use the function to retrieve the count of rows associated with the
cursor curEmp and assign it to a variable named rows_fetched:

SET rows_fetched = CURSOR_ROWCOUNT(curEmp);

DATAPARTITIONNUM
The DATAPARTITIONNUM function returns the sequence number (SYSDATAPARTITIONS.SEQNO) of the
data partition in which the row resides.

DATAPARTITIONNUM (column-name)

The schema is SYSIBM.

column-name
The qualified or unqualified name of any column in the table. Because row-level information is
returned, the result is the same regardless of which column is specified. The column can have any
data type.

If the column is a column of a view, the expression for the column in the view must reference a
column of the underlying base table, and the view must be deletable. A nested or common table
expression follows the same rules as a view.

314 IBM Db2 V11.5: SQL Reference

Result
The data type of the result is INTEGER and is never null.

Data partitions are sorted by range, and sequence numbers start at 0. For example, the
DATAPARTITIONNUM function returns 0 for a row that resides in the data partition with the lowest range.

Notes
• This function cannot be used as a source function when creating a user-defined function. Because the

function accepts any data type as an argument, it is not necessary to create additional signatures to
support user-defined distinct types.

• The DATAPARTITIONNUM function cannot be used within check constraints or in the definition
of generated columns (SQLSTATE 42881). The DATAPARTITIONNUM function cannot be used in a
materialized query table (MQT) definition (SQLSTATE 428EC).

• The DATAPARTITIONNUM function cannot be used as part of an expression-based key in a CREATE
INDEX statement.

Examples
• Example 1: Retrieve the sequence number of the data partition in which the row for EMPLOYEE.EMPNO

resides.

 SELECT DATAPARTITIONNUM (EMPNO)
 FROM EMPLOYEE

• Example 2: To convert a sequence number that is returned by DATAPARTITIONNUM (for example, 0)
to a data partition name that can be used in other SQL statements (such as ALTER TABLE...DETACH
PARTITION), you can query the SYSCAT.DATAPARTITIONS catalog view. Include the SEQNO obtained
from DATAPARTITIONNUM in the WHERE clause, as shown in the following example.

 SELECT DATAPARTITIONNAME
 FROM SYSCAT.DATAPARTITIONS
 WHERE TABNAME = 'EMPLOYEE' AND SEQNO = 0

results in the value 'PART0'.

DATE
The DATE function returns a date from a value.

DATE (expression)

The schema is SYSIBM.

The special behavior of DATE with the Db2 compatibility features for Oracle applications is described in
DATE data type based on TIMESTAMP(0).

expression
An expression that returns a value of one of the following built-in data types: DATE, TIMESTAMP,
numeric, or character string that is not a CLOB.

A value with a numeric data type must be a positive number with an integral value less than or equal
to 3 652 059.

A character string must be a valid string representation of a date or timestamp or a string of length 7.
If the value is a string of length 7, it must represent a valid date in the form yyyynnn , where yyyy are
digits denoting a year, and nnn are digits between 001 and 366, denoting a day of that year.

In a Unicode database, if an expression returns a value of a graphic string data type, the value is first
converted to a character string before the function is executed.

Chapter 1. Structured Query Language (SQL) 315

The result of the function is a DATE. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a DATE, TIMESTAMP, or valid string representation of a date or timestamp:

– The result is the date part of the value.
• If the argument is a number:

– The result is the date that is n-1 days after January 1, 0001, where n is the integral part of the
number.

• If the argument is a string with a length of 7:

– The result is the date represented by the string.

Examples
Assume that the column RECEIVED (whose data type is TIMESTAMP) has an internal value equivalent to
'1988-12-25-17.12.30.000000'.

• Example 1: This example results in an internal representation of '1988-12-25'.

 DATE(RECEIVED)

• Example 2: This example results in an internal representation of '1988-12-25'.

 DATE('1988-12-25')

• Example 3: This example results in an internal representation of '1988-12-25'.

 DATE('25.12.1988')

• Example 4: This example results in an internal representation of '0001-02-04'.

 DATE(35)

DATETIME
The DATETIME function returns a timestamp from a value or a pair of values.

DATETIME (expression)

The schema is SYSIBM.

The DATETIME scalar function is a synonym for the TIMESTAMP scalar function.

DATE_PART
The DATE_PART function returns a portion of a datetime based on its arguments. It extracts the subfield
that is specified from the date, time, timestamp, and duration values.

DATE_PART (format-string , datetime-expression)

The schema is SYSIBM.

format-string

An expression that represents which unit of datetime is to be extracted from the date-expression. The
expression that returns a built-in character string data type with an actual length that is not greater
than 255 bytes. The format element in format-string specifies how the datetime-expression should be
truncated. Leading and trailing blanks are removed from the string, and the resulting substring must

316 IBM Db2 V11.5: SQL Reference

be a valid format element for the type of datetime-expression (SQLSTATE 22007). Table 57 on page
317 lists the allowable values for format-string.

datetime-expression
An expression that specifies the datetime value from which the unit specified by format-string is
extracted. The expression must return a value that is a DATE, TIME, TIMESTAMP, date duration, time
duration, or timestamp duration.

Table 57. Allowable values for format-string

format-string Description

EPOCH

MILLENNIUM/
MILLENNIUMS

CENTURY/CENTURIES

DECADE/DECADES

YEAR/YEARS

QUARTER

MONTH/MONTHS

WEEK

DAY/DAYS

DOW

DOY

HOUR/HOURS

MINUTE/MINUTES

SECOND/SECONDS

MILLISECOND/
MILLISECONDS

MICROSECOND/
MICROSECONDS

The format-string values are case insensitive.

The data type of the result of this function is BIGINT. If the argument can be null, the result can be null; if
the argument is null, the result is the null value.

Examples
• Example 1: Extracting the day part from a date value.

values DATE_PART('DAY', DATE('2007-02-18'));
 Result: 18

• Example 2: Extracting the year part from a date duration.

values DATE_PART('YEAR', cast(20130710 as decimal(8,0)));
 Result: 2013

• Example 3: Extracting the hour part from a time duration.

values DATE_PART('HOUR', cast(075559 as decimal(6,0)));
 Result: 7

Chapter 1. Structured Query Language (SQL) 317

DATE_TRUNC
THE DATE_TRUNC function truncates a date, time, or timestamp value to the specified time unit.

DATE_TRUNC (format-string , datetime-expression)

The schema is SYSIBM.

format-string

An expression that returns a character string that does not exceed 255 bytes and that, after all leading
and trailing blanks are removed, is one of the character strings listed in Table 58 on page 318. The
resulting substring must be a valid format element for the type of the specified datetime expression
(SQLSTATE 22007). For example, a DATE value cannot be truncated to its first hour, minute, or second,
and a TIME value cannot be truncated to the first day of its year.

datetime-expression
An expression that returns a DATE, TIME, or TIMESTAMP value, or a DECIMAL value representing a
date, time, or timestamp duration. String representations of these data types must be explicitly cast to
a DATE, TIME, TIMESTAMP, or DECIMAL value. For more information about durations, see “Datetime
operations and durations” on page 145.

Table 58. Allowed values for a format string

If the format string is...

the datetime
expression is truncated
to the... For example... is truncated to...

'MILLENNIU
M' or
'MILLENNIU
MS'

First day of
its

millennium

. 1999-02-14 1000-01-01

'CENTURY'
or
'CENTURIES'

First day of
its century

. 1999-02-14 1900-01-01

'DECADE' or
'DECADES'

First day of
its decade

. 1999-02-14 1990-01-01

'YEAR' or
'YEARS'

First day of
its year

. 1999-02-14 1999-01-01

'QUARTER' First day of
its quarter

. 2017-05-14
20:38:40.24

2017-04-01
00:00:00

'MONTH' or
'MONTHS'

First day of
its month

2017-05-14
20:38:40.24

2017-05-01
00:00:00

'WEEK' First day of
its week

. 2017-05-14
20:38:40.24

2017-05-08
00:00:00

'DAY' or
'DAYS'

Beginning
of its day

. 2017-05-14
20:38:40.24

2017-05-14
00:00:00

'HOUR' or
'HOURS'

Beginning
of its hour

. 2017-05-14
20:38:40.24

2017-05-14
20:00:00

'MINUTE' or
'MINUTES'

Beginning
of its

minute

. 20:38:40.24576985 20:38:00

318 IBM Db2 V11.5: SQL Reference

Table 58. Allowed values for a format string (continued)

If the format string is...

the datetime
expression is truncated
to the... For example... is truncated to...

'SECOND' or
'SECONDS'

Beginning
of its

second

. 20:38:40.24576985 20:38:40

'MILLISECO
ND' or
'MILLISECO
NDS'

Beginning
of its

millisecond

. 20:38:40.24576985 20:38:40.245

'MICROSEC
OND' or
'MICROSEC
OND'

Beginning
of its

microsecon
d

. 20:38:40.24576985 20:38:40.245769

The format-string values are case insensitive.

Result
If the specified datetime expression is:

• A DATE or TIMESTAMP value, the result is a TIMESTAMP value
• A TIME value, the result is a TIME value
• A DECIMAL value representing a date, time, or timestamp duration, the result is a DECIMAL value of the

same type

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Examples
• Example 1: Truncate a DATE value to the beginning of the month.

values date_trunc('MONTH', DATE('2007-02-18'))
 Result: 2007-02-01 00:00:00

• Example 2: Truncate a TIMESTAMP value to the beginning of the hour.

values date_trunc('HOUR', TIMESTAMP('2017-02-14 20:38:40.24'));
 Result: 2017-02-14 20:00:00

• Example 3: Truncate a TIME value to the beginning of the minute.

 values date_trunc('MINUTE', TIME('20:38:40'));
 Result: 20:38:00

• Example 4: A date duration has the data type DECIMAL(8,0). For example, the value 00200203
represents a duration of 20 years, 2 months, and 3 days. Truncate a date duration to the beginning
of the month.

db2 "values date_trunc('MONTH', cast ('00200203' AS DECIMAL(8,0)))"

1

 200200.

 1 record(s) selected.

Chapter 1. Structured Query Language (SQL) 319

• Example 5: A time duration has the data type DECIMAL(6,0). For example, the value 102930 represents
a duration of 10 hours, 29 minutes, and 30 seconds. Truncate a time duration to the beginning of the
minute.

db2 "values date_trunc('MINUTE', cast ('102930' AS DECIMAL(6,0)))"

1

 102900.

 1 record(s) selected.

• Example 6: A timestamp duration has the data type DECIMAL(14+s,s), where s is the timestamp
precision. For example, the DECIMAL(20,6) value 00070005032040.000301 represents a duration of 7
years, 0 months, 5 days, 3 hours, 20 minutes, and 40.000301 seconds. Truncate a timestamp duration
to the beginning of the hour.

db2 "values date_trunc('HOUR', cast ('00070005032040.000301' AS DECIMAL(15,1)))"

1

 70005030000.0

 1 record(s) selected.

DAY
The DAY function returns the day part of a value.

DAY (expression)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIMESTAMP,
numeric, or character string that is not a CLOB.

If the value is a number, it must be a date duration or timestamp duration (SQLSTATE 42815).

If the value is a character string, it must be a valid string representation of a date or timestamp. In a
Unicode database, if the value is a graphic string (except DBCLOB), it is first converted to a character
string before the function is executed.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a DATE, TIMESTAMP, or valid string representation of a date or timestamp:

– The result is the day part of the value, which is an integer between 1 and 31.
• If the argument is a date duration or timestamp duration:

– The result is the day part of the value, which is an integer between -99 and 99. A nonzero result has
the same sign as the argument.

Examples
• Example 1: Using the PROJECT table, set the host variable END_DAY (smallint) to the day that the WELD

LINE PLANNING project (PROJNAME) is scheduled to stop (PRENDATE).

 SELECT DAY(PRENDATE)
 INTO :END_DAY
 FROM PROJECT
 WHERE PROJNAME = 'WELD LINE PLANNING'

Results in END_DAY being set to 15 when using the sample table.

320 IBM Db2 V11.5: SQL Reference

• Example 2: Assume that the column DATE1 (whose data type is DATE) has an internal value equivalent
to 2000-03-15 and the column DATE2 (whose data type is DATE) has an internal value equivalent to
1999-12-31.

 DAY(DATE1 - DATE2)

Results in the value 15.

DAYNAME
The DAYNAME function returns a character string containing the name of the day (for example, Friday) for
the day portion of the input value.

DAYNAME (expression

, locale-name

)

The schema is SYSIBM. The SYSFUN version of the DAYNAME function continues to be available

The character string returned is based on locale-name or the value of the special register CURRENT
LOCALE LC_TIME.

expression
An expression that returns a value of one of the following built-in data types: a DATE, TIMESTAMP, or a
valid character string representation of a date or timestamp that is not a CLOB. In a Unicode database,
if a supplied argument is a graphic string, it is first converted to a character string before the function
is executed.

locale-name
A character constant that specifies the locale used to determine the language of the result. The value
of locale-name is not case-sensitive and must be a valid locale (SQLSTATE 42815). For information
about valid locales and their naming, see "Locale names for SQL and XQuery". If locale-name is not
specified, the value of the special register CURRENT LOCALE LC_TIME is used.

The result is a varying-length character string. The length attribute is 100. If the resulting string exceeds
the length attribute of the result, the result will be truncated. If the expression argument can be null, the
result can be null; if the expression argument is null, the result is the null value. The code page of the
result is the code page of the section. The string units of the result is determined by the string units of the
environment

Notes
• Julian and Gregorian calendar: The transition from the Julian calendar to the Gregorian calendar on

15 October 1582 is taken into account by this function. However, the SYSFUN version of the DAYNAME
function assumes the Gregorian calendar for all calculations.

• Determinism: DAYNAME is a deterministic function. However, when locale-name is not explicitly
specified, the invocation of the function depends on the value of the special register CURRENT LOCALE
LC_TIME. This invocation that depends on the value of a special register cannot be used wherever
special registers cannot be used (SQLSTATE 42621, 428EC, or 429BX).

Example
Assume that the variable TMSTAMP is defined as TIMESTAMP and has the following value:
2007-03-09-14.07.38.123456. The following examples show several invocations of the function and
the resulting string values. The result type in each case is VARCHAR(100).

Function invocation Result
-------------------------- ----------
DAYNAME (TMSTAMP, 'CLDR181_en_US') Friday
DAYNAME (TSMTAMP, 'CLDR181_de_DE') Freitag
DAYNAME (TMSTAMP, 'CLDR181_fr_FR') vendredi

Chapter 1. Structured Query Language (SQL) 321

DAYOFMONTH
The DAYOFMONTH function returns an integer between 1 and 31 that represents the day of the month.

DAYOFMONTH (expression)

The schema is SYSIBM.

expression
An expression that specifies the datetime value from which the day of the month is determined.
The expression must return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR data type.
In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If expression is a
CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is accepted by
the TIMESTAMP scalar function.

The result of the function is an INTEGER. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Example
Set the host variable END_DAY to the day that the WELD LINE PLANNING project is scheduled to stop, by
querying the PRENDATE column of the PROJECT table.

 SELECT DAYOFMONTH(PRENDATE) INTO :END_DAY
 FROM PROJECT WHERE PROJNAME = 'WELD LINE PLANNING'

The host variable END_DAY is set to 15.

DAYOFWEEK
The DAYOFWEEK function returns the day of the week in the first argument as an integer value. The
integer value is in the range 1-7, where 1 represents the first day of the week, as specified in the second
argument.

DAYOFWEEK (expression

, start-of-week

)

The schema is SYSIBM. The SYSFUN version of the DAYOFWEEK function continues to be available.

expression
An expression that specifies the datetime value from which the day of the week is determined. The
expression must return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR data type. In a
Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. If expression is
a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string representation of a
date or timestamp.

start-of-week
An expression that specifies the starting day of the week. The expression must return a value that is
a built-in numeric, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be
a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported
by using implicit casting. The value must be in the range 1 - 7 (SQLSTATE 42815), where 1 represents
Sunday. If not specified, the default value is 1.

The result of the function is INTEGER. If any argument can be null, the result can be null; if any argument
is null, the result is the null value.

322 IBM Db2 V11.5: SQL Reference

DAYOFWEEK_ISO
Returns the day of the week in the argument as an integer value in the range 1-7, where 1 represents
Monday.

DAYOFWEEK_ISO (expression)

The schema is SYSFUN.

expression
An expression that returns a value of one of the following built-in data types: a DATE, TIMESTAMP, or a
valid character string representation of a date or timestamp that is not a CLOB. In a Unicode database,
if a supplied argument is a graphic string (except DBCLOB), it is first converted to a character string
before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is null, the result is the null
value.

DAYOFYEAR
Returns the day of the year in the argument as an integer value in the range 1-366.

DAYOFYEAR (expression)

The schema is SYSFUN.

expression
An expression that returns a value of one of the following built-in data types: a DATE, TIMESTAMP, or a
valid character string representation of a date or timestamp that is not a CLOB. In a Unicode database,
if a supplied argument is a graphic string (except DBCLOB), it is first converted to a character string
before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is null, the result is the null
value.

DAYS
The DAYS function returns an integer representation of a date.

DAYS (expression)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: a DATE, TIMESTAMP, or a
valid character string representation of a date or timestamp that is not a CLOB. In a Unicode database,
if a supplied argument is a graphic string (except DBCLOB), it is first converted to a character string
before the function is executed.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D is the date that would
occur if the DATE function were applied to the argument.

Examples
• Example 1: Using the PROJECT table, set the host variable EDUCATION_DAYS (int) to the number of

elapsed days (PRENDATE - PRSTDATE) estimated for the project (PROJNO) 'IF2000'.

 SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)
 INTO :EDUCATION_DAYS

Chapter 1. Structured Query Language (SQL) 323

 FROM PROJECT
 WHERE PROJNO = 'IF2000'

Results in EDUCATION_DAYS being set to 396.
• Example 2: Using the PROJECT table, set the host variable TOTAL_DAYS (int) to the sum of elapsed days

(PRENDATE - PRSTDATE) estimated for all projects in department (DEPTNO) 'E21'.

 SELECT SUM(DAYS(PRENDATE) - DAYS(PRSTDATE))
 INTO :TOTAL_DAYS
 FROM PROJECT
 WHERE DEPTNO = 'E21'

Results in TOTAL_DAYS being set to 1584 when using the sample table.

DAYS_BETWEEN
The DAYS_BETWEEN function returns the number of full days between the specified arguments.

DAYS_BETWEEN (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that specifies the first datetime value to compute the number of full days between two
datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR
data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type.
CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If expression1
is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is accepted
by the TIMESTAMP scalar function.

expression2
An expression that specifies the second datetime value to compute the number of full days between
two datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or a
VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC
data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If
expression2 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that
is accepted by the TIMESTAMP scalar function.

If there is less than a full day between expression1 and expression2, the result is zero. If expression1
is later than expression2, the result is positive. If expression1 is earlier than expression2, the result is
negative. In NPS compatibility mode, this function always returns a positive number. If expression1 or
expression2 contains time information, this information is also used to determine the number of full days.
If expression1 or expression2 does not contain time information, a time of midnight (00.00.00) is used for
the argument that is missing time information.

The result of the function is an INTEGER. If either argument can be null, the result can be null. If either
argument is null, the result is the null value.

Examples
1. Set the host variable NUM_DAYS with the number of full days between 2012-03-03 and 2012-02-28.

 SET :NUM_DAYS = DAYS_BETWEEN(DATE '2012-03-03',
 DATE '2012-02-28')

The host variable NUM_DAYS is set to 4 because an additional day is incurred for February 29, 2012.
2. Set the host variable NUM_DAYS with the number of full days between 2013-09-11-23.59.59 and

2013-09-01-00.00.00.

 SET :NUM_DAYS = DAYS_BETWEEN(TIMESTAMP '2013-09-11-23.59.59',
 TIMESTAMP '2013-09-01-00.00.00')

324 IBM Db2 V11.5: SQL Reference

The host variable NUM_DAYS is set to 10 because there is 1 second less than a full 11 days between
the arguments. It is positive because the first argument is later than the second argument.

3. Set the host variable NUM_DAYS with the number of full days between 2013-09-01-00.00.00 and
2013-09-11-23.59.59.

 SET :NUM_DAYS = DAYS_BETWEEN(TIMESTAMP '2013-09-01-00.00.00',
 TIMESTAMP '2013-09-11-23.59.59')

The host variable NUM_DAYS is set to -10 because there is 1 second less than a full 11 days between
the arguments. It is negative because the first argument is earlier than the second argument.

DAYS_TO_END_OF_MONTH
The DAYS_TO_END_OF_MONTH function returns the number of days to the end of the month.

DAYS_TO_END_OF_MONTH (expression)

The schema is SYSIBM.

expression
An expression that specifies the datetime value for which the number of days to the end of the month
is computed. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR
data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type.
CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If expression is
a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is accepted by
the TIMESTAMP scalar function.

The result of the function is INTEGER. If the argument can be null, the result can be null; if the argument
is null, the result is the null value.

Examples
1. Set the host variable NUMDAYS as the number of days to the end of the month for the date February

20, 2012.

 SET :NUMDAYS = DAYS_TO_END_OF_MONTH(DATE '2012-02-20')

The host variable NUMDAYS is set with the value 9.
2. The DAYS_TO_END_OF_MONTH function and datetime arithmetic with DAYS and LAST_DAY functions

can be used to achieve the same results. The following examples demonstrate this.

 SET :NUMDAYS = DAYS(LAST_DAY(date '2013-02-20')) - DAYS(date '2013-02-20')
 SET :NUMDAYS = DAYS_TO_END_OF_MONTH(DATE '2013-02-20')

In both cases, the host variable NUMDAYS is set with the value 8.

DBCLOB
The DBCLOB function returns a DBCLOB representation of a graphic string type.

DBCLOB (graphic-expression

, integer

)

The schema is SYSIBM.

graphic-expression
An expression that returns a value that is a graphic string.

integer
An integer value specifying the length attribute of the resulting DBCLOB data type. The value must be
between 0 and 1 073 741 823 if the graphic-expression string unit is double bytes or CODEUNITS16,

Chapter 1. Structured Query Language (SQL) 325

or between 0 and 536 870 911 if graphic-expression string unit is CODEUNITS32. If integer is not
specified, the length of the result is the same as the length of the first argument.

In a Unicode database, if a supplied argument is a character string, it is first converted to a graphic string
before the function is executed. When the output string is truncated, such that the last character is a high
surrogate, that surrogate is either:

• Left as is, if the supplied argument is a character string
• Converted to the blank character (X'0020'), if the supplied argument is a graphic string

Do not rely on these behaviors, because they might change in a future release.

The result of the function is a DBCLOB in the string units of graphic-expression. If the argument can be
null, the result can be null; if the argument is null, the result is the null value.

DBPARTITIONNUM
The DBPARTITIONNUM function returns the database partition number for a row. For example, if used in
a SELECT clause, it returns the database partition number for each row in the result set.

DBPARTITIONNUM (column-name)

The schema is SYSIBM.

column-name
The qualified or unqualified name of any column in the table. Because row-level information is
returned, the result is the same regardless of which column is specified. The column can have any
data type.

If the column is a column of a view, the expression for the column in the view must reference a
column of the underlying base table, and the view must be deletable. A nested or common table
expression follows the same rules as a view.

The specific row (and table) for which the database partition number is returned by the
DBPARTITIONNUM function is determined from the context of the SQL statement that uses the function.

The database partition number returned on transition variables and tables is derived from the current
transition values of the distribution key columns. For example, in a before insert trigger, the function
returns the projected database partition number, given the current values of the new transition variables.
However, the values of the distribution key columns might be modified by a subsequent before insert
trigger. Thus, the final database partition number of the row when it is inserted into the database might
differ from the projected value.

Result
The data type of the result is INTEGER and is never null. If there is no db2nodes.cfg file, the result is 0.

Notes
• The DBPARTITIONNUM function cannot be used on replicated tables, within check constraints, or in the
definition of generated columns (SQLSTATE 42881).

• The DBPARTITIONNUM function cannot be used as a source function when creating a user-defined
function. Because it accepts any data type as an argument, it is not necessary to create additional
signatures to support user-defined distinct types.

• The DBPARTITIONNUM function cannot be used as part of an expression-based key in a CREATE INDEX
statement.

• Syntax alternatives: For compatibility with previous versions of Db2 products, the function name
NODENUMBER is a synonym for DBPARTITIONNUM.

326 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: Count the number of instances in which the row for a given employee in the EMPLOYEE

table is on a different database partition than the description of the employee's department in the
DEPARTMENT table.

 SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E
 WHERE D.DEPTNO=E.WORKDEPT
 AND DBPARTITIONNUM(E.LASTNAME) <> DBPARTITIONNUM(D.DEPTNO)

• Example 2: Join the EMPLOYEE and DEPARTMENT tables so that the rows of the two tables are on the
same database partition.

 SELECT * FROM DEPARTMENT D, EMPLOYEE E
 WHERE DBPARTITIONNUM(E.LASTNAME) = DBPARTITIONNUM(D.DEPTNO)

• Example 3: Using a before trigger on the EMPLOYEE table, log the employee number and the projected
database partition number of any new row in the EMPLOYEE table in a table named EMPINSERTLOG1.

 CREATE TRIGGER EMPINSLOGTRIG1
 BEFORE INSERT ON EMPLOYEE
 REFERENCING NEW AW NEWTABLE
 FOR EACH ROW
 INSERT INTO EMPINSERTLOG1
 VALUES(NEWTABLE.EMPNO, DBPARTITIONNUM
 (NEWTABLE.EMPNO))

DECFLOAT
The DECFLOAT function returns a decimal floating-point representation of a value of a different data type.

Numeric to decimal floating-point

DECFLOAT (numeric-expression

, 34

, 16

)

Character to decimal floating-point

DECFLOAT (string-expression

, 34

, decimal-character

, 16

, decimal-character

)

Boolean to decimal floating-point

DECFLOAT (boolean-expression

, 34

, 16

)

The schema is SYSIBM.

numeric-expression
An expression that returns a value of any built-in numeric data type.

string-expression
An expression that returns a value that is a character-string or Unicode graphic-string representation
of a number with a length not greater than the maximum length of a character constant. The data type
of string-expression must not be CLOB or DBCLOB (SQLSTATE 42884). Leading and trailing blanks are

Chapter 1. Structured Query Language (SQL) 327

removed from the string. The resulting substring is folded to uppercase and must conform to the rules
for forming an integer, decimal, floating-point, or decimal floating-point constant (SQLSTATE 22018)
and not be greater than 42 bytes (SQLSTATE 42820).

boolean-expression
An expression that returns a Boolean value (TRUE or FALSE). The result is either 1 (for TRUE) or 0 (for
FALSE).

34 or 16
Specifies the number of digits of precision for the result. The default is 34.

decimal-character
Specifies the single-byte character constant used to delimit the decimal digits in character-expression
from the whole part of the number. The character cannot be a digit, plus (+), minus (-), or blank, and it
can appear at most once in character-expression.

Result
The result is the same number that would result from CAST(string-expression AS DECFLOAT(n))
or CAST(numeric-expression AS DECFLOAT(n)). Leading and trailing blanks are removed from the
string.

The result of the function is a decimal floating-point number with the implicitly or explicitly specified
number of digits of precision. If the first argument can be null, the result can be null; if the first argument
is null, the result is the null value.

If necessary, the source is rounded to the precision of the target. The CURRENT DECFLOAT ROUNDING
MODE special register determines the rounding mode.

Notes
• Increasing portability of applications: If the first argument is numeric, or if the first argument is a

string and the length argument is specified, use the “CAST specification” on page 152 instead of this
function to increase the portability of your applications.

• All numeric values are interpreted as integer, decimal, or floating-point constants and then cast to
decimal floating-point. The use of a floating-point constant can result in round-off errors and is
therefore strongly discouraged. Use the string to decimal floating-point version of the DECFLOAT
function instead.

Examples
• Example 1: Use the DECFLOAT function in order to force a DECFLOAT data type to be returned in a

select-list for the EDLEVEL column (data type = SMALLINT) in the EMPLOYEE table. The EMPNO column
should also appear in the select list.

SELECT EMPNO, DECFLOAT(EDLEVEL,16)
FROM EMPLOYEE

• Example 2: The following statement returns the value 1 of data type DECFLOAT.

 values DECFLOAT(TRUE)

• Example 3: The following statement returns the value 0 of data type DECFLOAT.

 values DECFLOAT(3>3)

328 IBM Db2 V11.5: SQL Reference

DECFLOAT_FORMAT
The DECFLOAT_FORMAT function returns a DECFLOAT(34) value that is based on the interpretation of the
input string using the specified format.

DECFLOAT_FORMAT (string-expression

, format-string

)

The schema is SYSIBM.

string-expression
An expression that returns a value that is a CHAR and VARCHAR data type. In a Unicode database, if
a supplied argument is a GRAPHIC or VARGRAPHIC data type, it is first converted to VARCHAR before
evaluating the function.Leading and trailing blanks are removed from the string. If format-string is
not specified, the resulting substring must conform to the rules for forming an SQL integer, decimal,
floating-point, or decimal floating-point constant (SQLSTATE 22018) and not be greater than 42 bytes
(SQLSTATE 42820); otherwise, the resulting substring must contain the components of a number that
correspond to the format specified by format-string (SQLSTATE 22018).

format-string
An expression that returns a value that is a built-in character string data type (except CLOB). In a
Unicode database, if a supplied argument is a graphic string (except DBCLOB), it is first converted
to a character string before evaluating the function. The actual length must not be greater than 255
bytes (SQLSTATE 22018). The value is a template for how string-expression is to be interpreted for
conversion to a DECFLOAT value. Format elements specified as a prefix can be used only at the
beginning of the template. Format elements specified as a suffix can be used only at the end of the
template. The format elements are case sensitive. The template must not contain more than one of
the MI, S, or PR format elements (SQLSTATE 22018).

Table 59. Format elements for the DECFLOAT_FORMAT function

Format
element Description

0 or 9 Each 0 or 9 represents a digit.

MI Suffix: If string-expression is to represent a negative number, a trailing minus sign
(-) is expected. If string-expression is to represent a positive number, a trailing
blank can be specified.

S Prefix: If string-expression is to represent a negative number, a leading minus sign
(-) is expected. If string-expression is to represent a positive number, a leading plus
sign (+) or leading blank can be specified.

PR Suffix: If string-expression is to represent a negative number, a leading less than
character (<) and a trailing greater than character (>) are expected. If string-
expression is to represent a positive number, a leading space and a trailing space
can be specified.

$ Prefix: A leading dollar sign ($) must be specified.

, Specifies the expected location of a comma. This comma is used as a group
separator.

. Specifies the expected location of the period. This period is used as a decimal
point.

If format-string is not specified, string-expression must conform to the rules for forming an SQL
integer, decimal, floating-point, or decimal floating-point constant (SQLSTATE 22018) and have a
length not greater than 42 bytes (SQLSTATE 42820).

The result is a DECFLOAT(34). If the first or second argument can be null, the result can be null; if the first
or second argument is null, the result is the null value.

Chapter 1. Structured Query Language (SQL) 329

Notes
• Syntax alternatives: TO_NUMBER is a synonym for DECFLOAT_FORMAT.

Examples
• Example 1: The following example returns 123.45

DECFLOAT_FORMAT('123.45')

• Example 2: The following example returns -123456.78

DECFLOAT_FORMAT('-123456.78')

• Example 3: The following example returns 123456.78

DECFLOAT_FORMAT('+123456.78')

• Example 4: The following example returns 12300

DECFLOAT_FORMAT('1.23E4')

• Example 5: The following example returns 123.40

DECFLOAT_FORMAT('123.4', '9999.99')

• Example 6: The following example returns 1234

DECFLOAT_FORMAT('001,234', '000,000')

• Example 7: The following example returns 1234

DECFLOAT_FORMAT('1234 ', '9999MI')

• Example 8: The following example returns -1234

DECFLOAT_FORMAT('1234-', '9999MI')

• Example 9: The following example returns 1234

DECFLOAT_FORMAT('+1234', 'S9999')

• Example 10: The following example returns -1234

DECFLOAT_FORMAT('-1234', 'S9999')

• Example 11: The following example returns 1234

DECFLOAT_FORMAT(' 1234 ', '9999PR')

• Example 12: The following example returns -1234

DECFLOAT_FORMAT('<1234>', '9999PR')

• Example 13: The following example returns 123456.78

DECFLOAT_FORMAT('$123,456.78', '$999,999.99')

330 IBM Db2 V11.5: SQL Reference

DECIMAL or DEC
The DECIMAL function returns a decimal representation of a number, a string representation of a number,
or a datetime value.

Numeric to DECIMAL
DECIMAL

DEC

(numeric-expression

, precision

, scale

)

String to DECIMAL
DECIMAL

DEC

(string-expression

, precision

, scale

, decimal-character

)

Datetime to DECIMAL
DECIMAL

DEC

(datetime-expression

, precision

, scale

)

The schema is SYSIBM.

Numeric to DECIMAL
numeric-expression

An expression that returns a value of any built-in numeric data type.
precision

An integer constant with a value in the range 1 - 31. The default precision depends on the data
type of the input expression:

• 31 for decimal floating point (DECFLOAT)
• 15 for floating point (REAL or DOUBLE) or decimal (DECIMAL)
• 19 for big integer (BIGINT)
• 11 for large integer (INTEGER)
• 5 for small integer (SMALLINT)

scale
An integer constant in the range of 0 to the precision value. The default scale is zero.

The result is the same number that would occur if the first argument were assigned to a decimal
column or variable with a precision of precision and a scale of scale. Digits are truncated from the
end of the decimal number if the number of digits to the right of the decimal separator character is
greater than the scale scale. An error is returned if the number of significant decimal digits required to
represent the whole part of the number is greater than precision - scale (SQLSTATE 22003).

String to DECIMAL
string-expression

An expression that returns a value that is a character string or a Unicode graphic-string
representation of a number with a length not greater than the maximum length of a character

Chapter 1. Structured Query Language (SQL) 331

constant. The data type of string-expression must not be CLOB or DBCLOB (SQLSTATE 42884).
Leading and trailing blanks are eliminated from the string and the resulting string must conform
to the rules for forming an integer, decimal, floating-point, or decimal floating-point constant
(SQLSTATE 22018).

The string-expression is converted to the section code page if required to match the code page of
the constant decimal-character.

precision
An integer constant with a value in the range 1 to 31 that specifies the precision of the result. If
not specified, the default is 15.

scale
An integer constant with a value in the range 0 to precision that specifies the scale of the result. If
not specified, the default is 0.

decimal-character
Specifies the single-byte character constant used to delimit the decimal digits in string-expression
from the whole part of the number. The character cannot be a digit, plus (+), minus (-), or blank,
and it can appear at most once in string-expression (SQLSTATE 42815).

The result is the same number that would result from CAST(string-expression AS DECIMAL(precision,
scale)). Digits are truncated from the end of the decimal number if the number of digits to the
right of the decimal separator character is greater than the scale scale. An error is returned if the
number of significant digits to the left of the decimal character (the whole part of the number) in
string-expression is greater than precision - scale (SQLSTATE 22003). The default decimal character
is not valid in the substring if a different value for the decimal-character argument is specified
(SQLSTATE 22018).

In NPS mode, casting an empty string to DECIMAL returns 0.
Datetime to DECIMAL

datetime-expression
An expression that returns a value of type DATE, TIME or TIMESTAMP.

precision
An integer constant with a value in the range 1 to 31 that specifies the precision of the result.
If not specified, the default for the precision and scale depends on the data type of datetime-
expression as follows:

• Precision is 8 and scale is 0 for a DATE. The result is a DECIMAL(8,0) value representing the date
as yyyymmdd.

• Precision is 6 and scale is 0 for a TIME. The result is a DECIMAL(6,0) value representing the time
as hhmmss.

• Precision is 14+tp and scale is tp for a TIMESTAMP(tp). The result is a DECIMAL(14+tp,tp) value
representing the timestamp as yyyymmddhhmmss.nnnnnnnnnnnn.

scale
An integer constant with a value in the range 0 to precision that specifies the scale of the result. If
not specified and a precision is specified, the default is 0.

The result is the same number that would result from CAST(datetime - expression AS
DECIMAL(precision, scale)). Digits are truncated from the end of the decimal number if the number
of digits to the right of the decimal separator character is greater than the scale scale. An error is
returned if the number of significant digits to the left of the decimal character (the whole part of the
number) in string-expression is greater than precision - scale (SQLSTATE 22003).

If the first argument can be null, the result can be null; if the first argument is null, the result is the null
value.

Note: The CAST specification should be used to increase the portability of applications. For more
information, see "CAST specification".

332 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: Use the DECIMAL function in order to force a DECIMAL data type (with a precision of 5

and a scale of 2) to be returned in a select-list for the EDLEVEL column (data type = SMALLINT) in the
EMPLOYEE table. The EMPNO column should also appear in the select list.

 SELECT EMPNO, DECIMAL(EDLEVEL,5,2)
 FROM EMPLOYEE

• Example 2: Assume the host variable PERIOD is of type INTEGER. Then, in order to use its value as a
date duration it must be "cast" as decimal(8,0).

 SELECT PRSTDATE + DECIMAL(:PERIOD,8)
 FROM PROJECT

• Example 3: Assume that updates to the SALARY column are input through a window as a character
string using comma as a decimal character (for example, the user inputs 21400,50). Once validated by
the application, it is assigned to the host variable newsalary which is defined as CHAR(10).

 UPDATE STAFF
 SET SALARY = DECIMAL(:newsalary, 9, 2, ',')
 WHERE ID = :empid;

The value of newsalary becomes 21400.50.
• Example 4: Add the default decimal character (.) to a value.

 DECIMAL('21400,50', 9, 2, '.')

This fails because a period (.) is specified as the decimal character, but a comma (,) appears in the first
argument as a delimiter.

• Example 5: Assume that the column STARTING (whose data type is TIME) has an internal value
equivalent to '12:10:00'.

 DECIMAL(STARTING)

results in the value 121 000.
• Example 6: Assume that the column RECEIVED (whose data type is TIMESTAMP) has an internal value

equivalent to '1988-12-22-14.07.21.136421'.

 DECIMAL(RECEIVED)

results in the value 19 881 222 140 721.136421.
• Example 7: This example shows the decimal result and resulting precision and scale for various

datetime input values. Assume the existence of the following columns with associated values:

Column name Data type Value

ENDDT DATE 2000-03-21

ENDTM TIME 12:02:21

ENDTS TIMESTAMP 2000-03-21-12.02.21.123456

ENDTS0 TIMESTAMP(0) 2000-03-21-12.02.21

ENDTS9 TIMESTAMP(9) 2000-03-21-12.02.21.123456789

The following table shows the decimal result and resulting precision and scale for various datetime
input values.

DECIMAL(arguments) Precision and
Scale

Result

DECIMAL(ENDDT) (8,0) 20000321.

Chapter 1. Structured Query Language (SQL) 333

DECIMAL(arguments) Precision and
Scale

Result

DECIMAL(ENDDT, 10) (10,0) 20000321.

DECIMAL(ENDDT, 12, 2) (12,2) 20000321.00

DECIMAL(ENDTM) (6,0) 120221.

DECIMAL(ENDTM, 10) (10,0) 120221.

DECIMAL(ENDTM, 10, 2) (10,2) 120221.00

DECIMAL(ENDTS) (20, 6) 20000321120221.123456

DECIMAL(ENDTS, 23) (23, 0) 20000321120221.

DECIMAL(ENDTS, 23, 4) (23, 4) 20000321120221.1234

DECIMAL(ENDTS0) (14,0) 20000321120221.

DECIMAL(ENDTS9) (23,9) 20000321120221.123456789

DECODE
The DECODE function does equality comparisons between arguments, also treating null values as equal,
to determine which argument to return as the result.

DECODE (expression1 , expression2 , result-expression

, else-expression

)

The schema is SYSIBM.

The DECODE function compares each expression2 to expression1. If expression1 is equal to expression2,
or both expression1 and expression2 are null, the value of the following result-expresssion is returned. If
no expression2 matches expression1, the value of else-expression is returned; otherwise a null value is
returned.

The DECODE function is similar to the CASE expression except for the handling of null values:

• A null value of expression1 will match a corresponding null value of expression2.
• If the NULL keyword is used as an argument in the DECODE function, it must be cast to an appropriate

data type.

The rules for determining the result type of a DECODE expression are based on the corresponding CASE
expression.

Examples
• Example 1: The DECODE expression:

 DECODE (c1, 7, 'a', 6, 'b', 'c')

achieves the same result as the following CASE expression:

 CASE c1
 WHEN 7 THEN 'a'
 WHEN 6 THEN 'b'
 ELSE 'c'
 END

334 IBM Db2 V11.5: SQL Reference

• Example 2: The DECODE expression:

 DECODE (c1, var1, 'a', var2, 'b')

where the values of c1, var1, and var2 could be null values, achieves the same result as the following
CASE expression:

 CASE
 WHEN c1 = var1 OR (c1 IS NULL AND var1 IS NULL) THEN 'a'
 WHEN c1 = var2 OR (c1 IS NULL AND var2 IS NULL) THEN 'b'
 ELSE NULL
 END

• Example 3: Consider also the following query:

 SELECT ID, DECODE(STATUS, 'A', 'Accepted',
 'D', 'Denied',
 CAST(NULL AS VARCHAR(1)), 'Unknown',
 'Other')
 FROM CONTRACTS

Here is the same statement using a CASE expression:

 SELECT ID,
 CASE
 WHEN STATUS = 'A' THEN 'Accepted'
 WHEN STATUS = 'D' THEN 'Denied'
 WHEN STATUS IS NULL THEN 'Unknown'
 ELSE 'Other'
 END
 FROM CONTRACTS

DECRYPT_BIN and DECRYPT_CHAR
The DECRYPT_BIN and DECRYPT_CHAR functions both return a value that is the result of decrypting
encrypted-data.

Important: The DECRYPT_BIN and DECRYPT_CHAR functions are deprecated and might not appear in
future releases.

Note: If using this feature on AIX, review the following for performance considerations.

DECRYPT_BIN

DECRYPT_CHAR

(encrypted-data

, password-string-expression

)

The schema is SYSIBM.

The password used for decryption is either the password-string-expression value or the encryption
password value that was assigned by the SET ENCRYPTION PASSWORD statement. To maintain the
best level of security on your system, it is recommended that you do not pass the encryption password
explicitly with the DECRYPT_BIN and DECRYPT_CHAR functions in your query; instead, use the SET
ENCRYPTION PASSWORD statement to set the password, and use a host variable or dynamic parameter
markers when you use the SET ENCRYPTION PASSWORD statement, rather than a literal string.

The DECRYPT_BIN and DECRYPT_CHAR functions can only decrypt values that are encrypted using the
ENCRYPT function (SQLSTATE 428FE).

encrypted-data
An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA value as a complete,
encrypted data string. The data string must have been encrypted using the ENCRYPT function.

password-string-expression
An expression that returns a CHAR or VARCHAR value with at least 6 bytes and no more than 127
bytes (SQLSTATE 428FC). This expression must be the same password used to encrypt the data
(SQLSTATE 428FD). If the value of the password argument is null or not provided, the data will

Chapter 1. Structured Query Language (SQL) 335

https://www.ibm.com/docs/en/db2/11.5?topic=servers-aix

be decrypted using the encryption password value that was assigned for the session by the SET
ENCRYPTION PASSWORD statement (SQLSTATE 51039).

The result of the DECRYPT_BIN function is VARCHAR FOR BIT DATA. The result of the DECRYPT_CHAR
function is VARCHAR. If encrypted-data included a hint, the hint is not returned by the function. The
length attribute of the result is the length of the data type of encrypted-data minus 8 bytes. The actual
length of the value returned by the function will match the length of the original string that was encrypted.
If encrypted-data includes bytes beyond the encrypted string, these bytes are not returned by the
function.

If the first argument can be null, the result can be null. If the first argument is null, the result is the null
value.

If the data is decrypted on a different system, which uses a code page that is different from the code
page in which the data was encrypted, expansion might occur when converting the decrypted value to
the database code page. In such situations, the encrypted-data value should be cast to a VARCHAR string
with a larger number of bytes.

Examples
• Example 1: The following example demonstrates the use of the DECRYPT_CHAR function by showing

code fragments from an embedded SQL application.

EXEC SQL BEGIN DECLARE SECTION;
 char hostVarCreateTableStmt[100];
 char hostVarSetEncPassStmt[200];
 char hostVarPassword[128];
 char hostVarInsertStmt1[200];
 char hostVarInsertStmt2[200];
 char hostVarSelectStmt1[200];
 char hostVarSelectStmt2[200];
EXEC SQL END DECLARE SECTION;

/* prepare the statement */
strcpy(hostVarCreateTableStmt, "CREATE TABLE EMP (SSN VARCHAR(24) FOR BIT DATA)");
EXEC SQL PREPARE hostVarCreateTableStmt FROM :hostVarCreateTableStmt;

/* execute the statement */
EXEC SQL EXECUTE hostVarCreateTableStmt;

• Example 2: Use the SET ENCRYPTION PASSWORD statement to set an encryption password for the
session:

/* prepare the statement with a parameter marker */
strcpy(hostVarSetEncPassStmt, "SET ENCRYPTION PASSWORD = ?");
EXEC SQL PREPARE hostVarSetEncPassStmt FROM :hostVarSetEncPassStmt;

/* execute the statement for hostVarPassword = 'Pac1f1c' */
strcpy(hostVarPassword, "Pac1f1c");
EXEC SQL EXECUTE hostVarSetEncPassStmt USING :hostVarPassword;

/* prepare the statement */
strcpy(hostVarInsertStmt1, "INSERT INTO EMP(SSN) VALUES ENCRYPT('289-46-8832')");
EXEC SQL PREPARE hostVarInsertStmt1 FROM :hostVarInsertStmt1;

/* execute the statement */
EXEC SQL EXECUTE hostVarInsertStmt1;

/* prepare the statement */
strcpy(hostVarSelectStmt1, "SELECT DECRYPT_CHAR(SSN) FROM EMP");
EXEC SQL PREPARE hostVarSelectStmt1 FROM :hostVarSelectStmt1;

/* execute the statement */
EXEC SQL EXECUTE hostVarSelectStmt1;

This query returns the value '289-46-8832'.

336 IBM Db2 V11.5: SQL Reference

• Example 3: Pass the encryption password explicitly:

/* prepare the statement */
strcpy(hostVarInsertStmt2, "INSERT INTO EMP (SSN) VALUES
ENCRYPT('289-46-8832',?)");
EXEC SQL PREPARE hostVarInsertStmt2 FROM :hostVarInsertStmt2;

/* execute the statement for hostVarPassword = 'Pac1f1c' */
strcpy(hostVarPassword, "Pac1f1c");
EXEC SQL EXECUTE hostVarInsertStmt2 USING :hostVarPassword;

/* prepare the statement */
strcpy(hostVarSelectStmt2, "SELECT DECRYPT_CHAR(SSN,?) FROM EMP");
EXEC SQL PREPARE hostVarSelectStmt2 FROM :hostVarSelectStmt2;

/* execute the statement for hostVarPassword = 'Pac1f1c' */
strcpy(hostVarPassword, "Pac1f1c");
EXEC SQL EXECUTE hostVarSelectStmt2 USING :hostVarPassword;

This query returns the value '289-46-8832'.

DEGREES
The DEGREES function returns the number of degrees of the argument, which is an angle expressed in
radians.

DEGREES (expression)

The schema is SYSIBM. (The SYSFUN version of the DEGREES function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type. If the value is of decimal
floating-point data type, the operation is performed in decimal floating-point; otherwise, the value is
converted to double-precision floating-point for processing by the function.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result is a double-precision
floating-point number. The result can be null; if the argument is null, the result is the null value.

Example
Assume that RAD is a DECIMAL(4,3) host variable with a value of 3.142.

 VALUES DEGREES(:RAD)

Returns the approximate value 180.0.

DEREF
The DEREF function returns an instance of the target type of the argument.

DEREF (expression)

expression
An expression that returns a value with a reference data type that has a defined scope (SQLSTATE
428DT).

The static data type of the result is the target type of the argument. The dynamic data type of the result
is a subtype of the target type of the argument. The result can be null. The result is the null value if
expression is a null value or if expression is a reference that has no matching OID in the target table.

The result is an instance of the subtype of the target type of the reference. The result is determined by
finding the row of the target table or target view of the reference that has an object identifier that matches
the reference value. The type of this row determines the dynamic type of the result. Since the type of the
result can be based on a row of a subtable or subview of the target table or target view, the authorization

Chapter 1. Structured Query Language (SQL) 337

ID of the statement must have SELECT privilege on the target table and all of its subtables or the target
view and all of its subviews (SQLSTATE 42501).

Example
Assume that EMPLOYEE is a table of type EMP, and that its object identifier column is named EMPID. Then
the following query returns an object of type EMP (or one of its subtypes), for each row of the EMPLOYEE
table (and its subtables). This query requires SELECT privilege on EMPLOYEE and all its subtables.

 SELECT DEREF(EMPID) FROM EMPLOYEE

DIFFERENCE
Returns a value from 0 to 4 representing the difference between the sounds of two strings based on
applying the SOUNDEX function to the strings. A value of 4 is the best possible sound match.

DIFFERENCE (expression , expression)

The schema is SYSFUN.

expression
An expression that returns a character string or a Boolean value. In a Unicode database, the
expression can also return a graphic string. If the returned value is not a character string, it is cast to
a character string before the function is evaluated. The character string to be evaluated cannot exceed
4000 bytes. This function interprets data that is passed to it as if the data were made up of ASCII
characters, even if it is encoded in UTF-8.

Result
The result of the function is INTEGER. The result can be null; if the argument is null, the result is the null
value.

Example
The following code:

VALUES (DIFFERENCE('CONSTRAINT','CONSTANT'),SOUNDEX('CONSTRAINT'),
SOUNDEX('CONSTANT')),
(DIFFERENCE('CONSTRAINT','CONTRITE'),SOUNDEX('CONSTRAINT'),
SOUNDEX('CONTRITE'))

returns the following output:

1 2 3
----------- ---- ----
 4 C523 C523
 2 C523 C536

In the first row, the words have the same result from SOUNDEX while in the second row the words have
only some similarity.

DIGITS
The DIGITS function returns a character-string representation of a number.

DIGITS (expression)

The schema is SYSIBM.

338 IBM Db2 V11.5: SQL Reference

expression

An expression that returns a value of one of the following built-in data types: SMALLINT, INTEGER,
BIGINT, DECIMAL, CHAR, or VARCHAR. In a Unicode database, if a supplied argument is a GRAPHIC
or VARGRAPHIC data type, it is first converted to a character string before the function is executed. A
CHAR or VARCHAR value is implicitly cast to DECIMAL(31,6) before evaluating the function.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

The result of the function is a fixed-length character string representing the absolute value of the
argument without regard to its scale. The result does not include a sign or a decimal character. Instead, it
consists exclusively of digits, including, if necessary, leading zeros to fill out the string. The length of the
string is:

• 5 if the argument is a small integer
• 10 if the argument is a large integer
• 19 if the argument is a big integer
• p if the argument is a decimal number with a precision of p.

Examples
• Example 1: Assume that a table called TABLEX contains an INTEGER column called INTCOL containing

10-digit numbers. List all distinct four digit combinations of the first four digits contained in column
INTCOL.

 SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
 FROM TABLEX

• Example 2: Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of its values is -6.28.
Then, for this value:

 DIGITS(COLUMNX)

returns the value '000628'.

The result is a string of length six (the precision of the column) with leading zeros padding the string out
to this length. Neither sign nor decimal point appear in the result.

DOUBLE_PRECISION or DOUBLE
The DOUBLE_PRECISION and DOUBLE functions return a double-precision floating-point representation
of either a number or a string representation of a number.

Numeric to DOUBLE

DOUBLE_PRECISION

DOUBLE

(numeric-expression)

String to DOUBLE

DOUBLE_PRECISION

DOUBLE

(string-expression)

The schema is SYSIBM.

Numeric to DOUBLE
numeric-expression

An expression that returns a value of any built-in numeric data type.

Chapter 1. Structured Query Language (SQL) 339

The result is the same number that would occur if the argument were assigned to a double-
precision floating-point column or variable. If the numeric value of the argument is not within the
range of double-precision floating-point, an error is returned (SQLSTATE 22003).

String to DOUBLE
string-expression

An expression that returns a string, including FOR BIT DATA, that represents a number. The data
type of this expression cannot be CLOB, BLOB, or DBCLOB (SQLSTATE 42884).

The result is the same number that would result from the statement CAST(string-expression
AS DOUBLE PRECISION). Leading and trailing blanks are eliminated and the resulting string
must conform to the rules for forming a valid numeric constant (SQLSTATE 22018). If the numeric
value of the argument is not within the range of double-precision floating-point, an error is
returned (SQLSTATE 22003).

The result of the function is a double-precision floating-point number. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Notes
• The CAST specification should be used to increase the portability of applications.
• FLOAT is a synonym for DOUBLE_PRECISION and DOUBLE.
• The SYSFUN version of DOUBLE (string_expression) continues to be available.

Example
Using the EMPLOYEE table, find the ratio of salary to commission for employees whose commission is not
zero. The columns involved (SALARY and COMM) have DECIMAL data types. To eliminate the possibility of
out-of-range results, DOUBLE is applied to SALARY so that the division is carried out in floating point:

 SELECT EMPNO, DOUBLE(SALARY)/COMM
 FROM EMPLOYEE
 WHERE COMM > 0

EMPTY_BLOB, EMPTY_CLOB, EMPTY_DBCLOB, and EMPTY_NCLOB
These functions return a zero-length value with a data type of BLOB, CLOB, or DBCLOB.

EMPTY_BLOB

EMPTY_CLOB

EMPTY_DBCLOB

EMPTY_NCLOB

()

The schema is SYSIBM.

The empty value functions return a zero-length value of the associated data type. There are no arguments
to these functions (the empty parentheses must be specified).

• The EMPTY_BLOB function returns a zero-length value with a data type of BLOB(1).
• The EMPTY_CLOB function returns a zero-length value with a data type of CLOB(1).
• The EMPTY_DBCLOB and EMPTY_NCLOB functions return a zero-length value with a data type of

DBCLOB(1).

The result of these functions can be used in assignments to provide zero-length values where needed.

The EMPTY_NCLOB function can be specified only in a Unicode database (SQLSTATE 560AA).

340 IBM Db2 V11.5: SQL Reference

ENCRYPT
The ENCRYPT function returns a value that is the result of encrypting data-string-expression.

Important: The ENCRYPT function is deprecated and might not appear in future releases.

The algorithms used are not compliant with NIST SP 800-131A.

Note: If using this feature on AIX, review the following for performance considerations.

ENCRYPT (data-string-expression

, password-string-expression

, hint-string-expression

)

The schema is SYSIBM.

The password used for encryption is either the password-string-expression value or the encryption
password value that was assigned by the SET ENCRYPTION PASSWORD statement. To maintain the
best level of security on your system, it is recommended that you do not pass the encryption password
explicitly with the ENCRYPT function in your query; instead, use the SET ENCRYPTION PASSWORD
statement to set the password, and use a host variable or dynamic parameter markers when you use
the SET ENCRYPTION PASSWORD statement, rather than a literal string.

In a Unicode database, if a supplied argument is a graphic string, it is first converted to a character string
before the function is executed.

data-string-expression
An expression that returns a CHAR or a VARCHAR value that is to be encrypted. The length attribute
for the data type of data-string-expression is limited to 32663 without a hint-string-expression
argument, and 32631 when the hint-string-expression argument is specified (SQLSTATE 42815).

password-string-expression
An expression that returns a CHAR or a VARCHAR value with at least 6 bytes and no more than 127
bytes (SQLSTATE 428FC). The value represents the password used to encrypt data-string-expression.
If the value of the password argument is null or not provided, the data is encrypted using the
encryption password value that was assigned for the session by the SET ENCRYPTION PASSWORD
statement (SQLSTATE 51039).

hint-string-expression
An expression that returns a CHAR or a VARCHAR value with at most 32 bytes that will help data
owners remember passwords (for example, 'Ocean' as a hint to remember 'Pacific'). If a hint value is
given, the hint is embedded into the result and can be retrieved using the GETHINT function. If this
argument is null or not provided, no hint will be embedded in the result.

The result data type of the function is VARCHAR FOR BIT DATA.

• When the optional hint parameter is specified, the length attribute of the result is equal to the length
attribute of the unencrypted data + 8 bytes + the number of bytes until the next 8-byte boundary + 32
bytes for the length of the hint.

• When the optional hint parameter is not specified, the length attribute of the result is equal to the length
attribute of the unencrypted data + 8 bytes + the number of bytes until the next 8-byte boundary.

If the first argument can be null, the result can be null. If the first argument is null, the result is the null
value.

Note that the encrypted result is longer than the data-string-expression value. Therefore, when assigning
encrypted values, ensure that the target is declared with sufficient size to contain the entire encrypted
value.

Chapter 1. Structured Query Language (SQL) 341

https://www.ibm.com/docs/en/db2/11.5?topic=servers-aix

Notes
• Encryption algorithm: The internal encryption algorithm is RC2 block cipher with padding; the 128-bit

secret key is derived from the password using an MD5 message digest.
• Encryption passwords and data: Password management is the user's responsibility. Once the data is

encrypted, only the password that was used when encrypting it can be used to decrypt it (SQLSTATE
428FD).

The encrypted result might contain null terminator and other unprintable characters. Any assignment or
cast to a length that is shorter than the suggested data length might result in failed decryption in the
future, and lost data. Blanks are valid encrypted data values that might be truncated when stored in a
column that is too short.

• Administration of encrypted data: Encrypted data can only be decrypted on servers that support the
decryption functions corresponding to the ENCRYPT function. Therefore, replication of columns with
encrypted data should only be done to servers that support the DECRYPT_BIN or the DECRYPT_CHAR
function.

• Avoid encrypted data in predicates: The ENCRYPT function does not always produce the same
encrypted data when given the same input. Do not use encrypted data in search conditions or
comparison operations. For example, do not use encrypted data in a predicate.

Examples
• Example 1: The following example demonstrates the use of the ENCRYPT function by showing code

fragments from an embedded SQL application.

EXEC SQL BEGIN DECLARE SECTION;
 char hostVarCreateTableStmt[100];
 char hostVarSetEncPassStmt[200];
 char hostVarPassword[128];
 char hostVarInsertStmt1[200];
 char hostVarInsertStmt2[200];
 char hostVarInsertStmt3[200];
EXEC SQL END DECLARE SECTION;

/* prepare the statement */
strcpy(hostVarCreateTableStmt, "CREATE TABLE EMP (SSN VARCHAR(24) FOR BIT DATA)");
EXEC SQL PREPARE hostVarCreateTableStmt FROM :hostVarCreateTableStmt;

/* execute the statement */
EXEC SQL EXECUTE hostVarCreateTableStmt;

• Example 2: Use the SET ENCRYPTION PASSWORD statement to set an encryption password for the
session:

/* prepare the statement with a parameter marker */
strcpy(hostVarSetEncPassStmt, "SET ENCRYPTION PASSWORD = ?");
EXEC SQL PREPARE hostVarSetEncPassStmt FROM :hostVarSetEncPassStmt;

/* execute the statement for hostVarPassword = 'Pac1f1c' */
strcpy(hostVarPassword, "Pac1f1c");
EXEC SQL EXECUTE hostVarSetEncPassStmt USING :hostVarPassword;

/* prepare the statement */
strcpy(hostVarInsertStmt1, "INSERT INTO EMP(SSN) VALUES ENCRYPT('289-46-8832')");
EXEC SQL PREPARE hostVarInsertStmt1 FROM :hostVarInsertStmt1;

/* execute the statement */
EXEC SQL EXECUTE hostVarInsertStmt1;

• Example 3: Pass the encryption password explicitly:

/* prepare the statement */
strcpy(hostVarInsertStmt2, "INSERT INTO EMP(SSN) VALUES
ENCRYPT('289-46-8832',?)");

342 IBM Db2 V11.5: SQL Reference

EXEC SQL PREPARE hostVarInsertStmt2 FROM :hostVarInsertStmt2;

/* execute the statement for hostVarPassword = 'Pac1f1c' */
strcpy(hostVarPassword, "Pac1f1c");
EXEC SQL EXECUTE hostVarInsertStmt2 USING :hostVarPassword;

• Example 4: Define a password hint:

/* prepare the statement */
strcpy(hostVarInsertStmt3, "INSERT INTO EMP(SSN) VALUES ENCRYPT('289-46-8832',?,'Ocean')");
EXEC SQL PREPARE hostVarInsertStmt3 FROM :hostVarInsertStmt3;

/* execute the statement for hostVarPassword = 'Pac1f1c' */
strcpy(hostVarPassword, "Pac1f1c");
EXEC SQL EXECUTE hostVarInsertStmt3 USING :hostVarPassword;

EVENT_MON_STATE
The EVENT_MON_STATE function returns the current state of an event monitor.

EVENT_MON_STATE (string-expression)

The schema is SYSIBM.

string-expression
An expression that returns a value of CHAR or VARCHAR data type. In a Unicode database, if the
value is a graphic string, it is first converted to a character string before the function is executed.
The value must be the name of an event monitor that is equal to an event monitor name in the
SYSCAT.EVENMONITORS catalog view (SQLSTATE 42704).

The result is an integer with one of the following values:
0

The event monitor is inactive.
1

The event monitor is active.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Example
The following example selects all of the defined event monitors, and indicates whether each is active or
inactive:

 SELECT EVMONNAME,
 CASE
 WHEN EVENT_MON_STATE(EVMONNAME) = 0 THEN 'Inactive'
 WHEN EVENT_MON_STATE(EVMONNAME) = 1 THEN 'Active'
 END
 FROM SYSCAT.EVENTMONITORS

EXP
The EXP function returns a value that is the base of the natural logarithm (e) raised to a power specified
by the argument. The EXP and LN functions are inverse operations.

EXP (expression)

The schema is SYSIBM. (The SYSFUN version of the EXP function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type. If the value is of decimal
floating-point data type, the operation is performed in decimal floating-point; otherwise, the value is
converted to double-precision floating-point for processing by the function.

Chapter 1. Structured Query Language (SQL) 343

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result is a double-precision
floating-point number. If the argument can be null, the result can be null; if the argument is null, the result
is the null value.

Notes
• Results involving DECFLOAT special values: For decimal floating-point values, the special values are

treated as follows:

– EXP(NaN) returns NaN.
– EXP(-NaN) returns -NaN.
– EXP(Infinity) returns Infinity.
– EXP(-Infinity) returns 0.
– EXP(sNaN) returns NaN and a warning.
– EXP(-sNaN) returns -NaN and a warning.

Example
Assume that E is a DECIMAL(10,9) host variable with a value of 3.453789832.

 VALUES EXP(:E)

Returns the DOUBLE value +3.16200000069145E+001.

EXTRACT
The EXTRACT function returns a portion of a datetime based on its arguments.

Extract date values
EXTRACT (EPOCH

MILLENNIUM

MILLENNIUMS

CENTURY

CENTURIES

DECADE

DECADES

YEAR

YEARS

QUARTER

MONTH

WEEK

DAY

DAYS

DOW

DOY

FROM date-expression

timestamp-expression

date-duration

timestamp-duration

)

344 IBM Db2 V11.5: SQL Reference

Extract time values
EXTRACT (HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MILLISECOND

MILLISECONDS

MICROSECOND

MICROSECONDS

FROM time-expression

timestamp-expression

time-duration

timestamp-duration

)

The schema is SYSIBM.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Extract date values
EPOCH

The number of seconds since 1970-01-01 00:00:00.00 for the specified date or timestamp
expression is returned. A duration cannot be specified (SQLCODE SQL0171, SQLSTATE 22546).
The value is positive if the expression represents a date or timestamp that is after 1970-01-01
00:00:00.00; the value is negative for a date or timestamp that is before 1970-01-01 00:00:00.00.

MILLENNIUM or MILLENNIUMS
The ordinal number of the full 1000-year period of the specified date or timestamp expression or
duration is returned; for example, 2 for a date between 01 Jan 2000 and 31 Dec 2999

CENTURY or CENTURIES
The ordinal number of the full 100-year period of the specified date or timestamp expression or
duration is returned; for example, 20 for a date between 01 Jan 2000 and 31 Dec 2099. Not to be
confused with the ordinal system that counts dates up to the year 100 as being in the "first century",
dates between 01 Jan 2000 and 31 Dec 2099 as being in the "21st century", etc.

DECADE or DECADES
The ordinal number of the full 10-year period of the specified date or timestamp expression or
duration is returned; for example, 201 for a date between 01 Jan 2010 and 31 Dec 2019.

YEAR or YEARS
The years portion of the specified date or timestamp expression or duration is returned. The result is
identical to that returned by the YEAR scalar function.

QUARTER
The quarter (1, 2, 3, or 4) of the year of the specified date or timestamp expression or duration is
returned.

MONTH
The number (1 - 12) of the month of the specified date or timestamp expression or duration is
returned. The result is identical to that returned by the MONTH scalar function.

WEEK
The number (1 - 53) of the week of the year of the specified date or timestamp expression or duration
is returned. The value uses the ISO-8601 definition of a week, which begins on Monday; as a result,
some years might have 53 weeks, and sometimes the first few days of January can be included as
part of the 52nd or 53rd week of the previous year.

DAY or DAYS
The number (1 - 31) of the day of the specified date or timestamp expression or duration is returned.
The result is identical to that returned by the DAY scalar function.

Chapter 1. Structured Query Language (SQL) 345

DOW
A number (1 for Sunday, 2 for Monday, …, 7 for Saturday) indicating the day of the week of
the specified date or timestamp expression is returned. A duration cannot be specified (SQLCODE
SQL0171, SQLSTATE 22546).

DOY
A number (1 - 366) indicating the day of the year of the specified date or timestamp expression is
returned. A duration cannot be specified (SQLCODE SQL0171, SQLSTATE 22546).

date-expression
An expression that returns the value of either a built-in DATE or built-in character string data type.

If a date expression is a character string, it must be a valid string representation of a date that is not a
CLOB. In a Unicode database, if a date expression is a graphic string, it is first converted to a character
string before the function is executed.

timestamp-expression
An expression that returns the value of either a built-in TIMESTAMP or built-in character string data
type.

If a timestamp expression is a character string, it must be a valid string representation of a timestamp
that is not a CLOB. In a Unicode database, if a timestamp expression is a graphic string, it is first
converted to a character string before the function is executed.

date-duration
A DECIMAL(8,0) number that specifies a date duration (see “Datetime operations and durations” on
page 145).

timestamp-duration
A DECIMAL(14+s,s) number that specifies a timestamp duration, where s represents the number of
digits of fractional seconds ranging from 0 to 12 (see “Datetime operations and durations” on page
145).

Extract time values
HOUR or HOURS

The hours portion of the specified time or timestamp expression or duration is returned. The result is
identical to that returned by the HOUR scalar function.

MINUTE or MINUTES
The minutes portion of the specified time or timestamp expression or duration is returned. The result
is identical to that returned by the MINUTE scalar function.

SECOND or SECONDS
The seconds portion of the specified time or timestamp expression or duration is returned. The result
is identical to that returned by:

• SECOND(expression, 6) when the data type of the expression or duration is a TIME value or a string
representation of a TIME or TIMESTAMP

• SECOND(expression, s) when the data type of the expression or duration is a TIMESTAMP(s) value

MILLISECOND or MILLISECONDS
The seconds portion of the specified timestamp expression or duration, including fractional parts to
one thousandth of a second, multiplied by 1000 (0 - 59999) is returned. A time expression or duration
cannot be specified (SQLCODE SQL0180, SQLSTATE 22007).

MICROSECOND or MICROSECONDS
The seconds portion of the specified timestamp expression or duration, including fractional parts to
one millionth of a second, multiplied by 1000000 (0 - 59999999) is returned. A time expression or
duration cannot be specified (SQLCODE SQL0180, SQLSTATE 22007).

time-expression
An expression that returns the value of either a built-in TIME or built-in character string data type.

346 IBM Db2 V11.5: SQL Reference

If a time expression is a character string, it must be a valid string representation of a time that is not a
CLOB. In a Unicode database, if a time expression is a graphic string, it is first converted to a character
string before the function is executed.

timestamp-expression
An expression that returns the value of a built-in DATE, TIMESTAMP or character string data type.

If timestamp-expression is a DATE, it is converted to a TIMESTAMP(0) value, assuming a time of
exactly midnight (00.00.00).

If a timestamp expression is a character string, it must be a valid string representation of a timestamp
or date that is not a CLOB. In a Unicode database, if a timestamp expression is a graphic string, it
is first converted to a character string before the function is executed. The string is converted to a
TIMESTAMP(6) value.

time-duration
A DECIMAL(6,0) number that specifies a time duration (see “Datetime operations and durations” on
page 145).

timestamp-duration
A DECIMAL(14+s,s) number that specifies a timestamp duration, where s represents the number of
digits of fractional seconds ranging from 0 to 12 (see “Datetime operations and durations” on page
145).

The data type of the result of the function depends on the part of the datetime value that is specified:

• If MILLENNIUM, CENTURY, DECADE, YEAR, QUARTER, MONTH, WEEK, DAY, DOW, DOY, HOUR, or
MINUTE is specified, the data type of the result is INTEGER.

• If SECOND is specified with a TIMESTAMP(p) value, the data type of the result is DECIMAL(2+p, p)
where p is the fractional seconds precision.

• If SECOND is specified with a TIME value or a string representation of a TIME or TIMESTAMP, the data
type of the result is DECIMAL(8,6).

• If MILLISECOND, MILLISECONDS, MICROSECOND, or MICROSECONDS is specified with a
TIMESTAMP(p) value, the data type of the result is INTEGER.

• If EPOCH is specified, the data type of result is BIGINT.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Examples
In a table with the name PROJECT:

• Column col1 contains the date value '1988-12-25'. The following statement returns the integer value
12:

 SELECT EXTRACT(MONTH FROM col1) FROM PROJECT;

• Column col2 contains the timestamp value '2007-02-14 12:15:06.123456'. The following statement
returns the integer value 6123:

 SELECT EXTRACT(MILLISECONDS FROM col2) FROM PROJECT;

The following statement returns the integer value 6123456:

 SELECT EXTRACT(MICROSECONDS FROM col2) FROM PROJECT;

• Column col3 contains the date value '2013-02-14'. The following statement returns the integer value
201:

 SELECT EXTRACT(DECADE FROM col3) FROM PROJECT;

• Column col4 has a data type of DECIMAL(8,0) and contains the value 12301000. Because the data type
is DECIMAL(8,0), this value will be interpreted as a date duration (1230 years, 10 months, 00 days). The
following statement returns the integer value 10:

Chapter 1. Structured Query Language (SQL) 347

 SELECT EXTRACT(MONTH FROM col4) FROM PROJECT;

• Column col5 has a data type of DECIMAL(6,0) and contains the value 123010. Because the data type is
DECIMAL(6,0), this value will be interpreted as a time duration (12 hours, 30 minutes, 10 seconds). The
following statement returns the integer value 10:

 SELECT EXTRACT(SECONDS FROM col5) FROM PROJECT;

• Column col6 has a data type of DECIMAL(16,2) and contains the value 12301000123010.45. Because
the data type is DECIMAL(16,2), this value will be interpreted as a timestamp duration (1230 years, 10
months, 00 days, 12 hours, 30 minutes, 10.45 seconds). The following statement returns the integer
value 10450:

 SELECT EXTRACT(MILLISECOND FROM col6) FROM PROJECT;

FIRST_DAY
The FIRST_DAY function returns a date or timestamp that represents the first day of the month of the
argument.

FIRST_DAY (expression)

The schema is SYSIBM.

expression
An expression that specifies the datetime value to compute the first day of the month. The expression
must return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR data type. In a Unicode database,
the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and
VARGRAPHIC are supported by using implicit casting. If expression is a CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC data type, it must be a valid string that is accepted by the TIMESTAMP scalar function.

The result of the function is a timestamp with the same precision as expression, if expression is a
timestamp. Otherwise, the result of the function is a date. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

Examples
1. Set the host variable FIRST_OF_MONTH with the first day of the current month.

 SET :FIRST_OF_MONTH = FIRST_DAY(CURRENT_DATE)

The host variable FIRST_OF_MONTH is set with the value representing the beginning of the current
month. If the current day is 2000-02-10, then FIRST_OF_MONTH is set to 2000-02-01.

2. Set the host variable FIRST_OF_MONTH with the first day of the month in IBM European standard
format for the given date.

 SET :FIRST_OF_MONTH = CHAR(FIRST_DAY(DATE '1965-07-07'), EUR)

The host variable FIRST_OF_MONTH is set with the value '01.07.1965'.

FLOAT
The FLOAT function returns a floating-point representation of a number. FLOAT is a synonym for DOUBLE.

FLOAT (numeric-expression)

The schema is SYSIBM.

348 IBM Db2 V11.5: SQL Reference

FLOAT4
The FLOAT4 function returns a single-precision floating-point representation of either a number or a string
representation of a number.

FLOAT4 (expression)

The schema is SYSIBM.

The FLOAT4 scalar function is a synonym for the REAL scalar function.

FLOAT8
The FLOAT8 function returns a double-precision floating-point representation of either a number or a
string representation of a number.

FLOAT8 (expression)

The schema is SYSIBM.

The FLOAT8 scalar function is a synonym for the DOUBLE scalar function.

FLOOR
Returns the largest integer value less than or equal to the argument.

FLOOR (expression)

The schema is SYSIBM. (The SYSFUN version of the FLOOR function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type.

The result of the function has the same data type and length attribute as the argument except that the
scale is 0 if the argument is DECIMAL. For example, an argument with a data type of DECIMAL(5,5)
returns DECIMAL(5,0).

The result can be null if the argument can be null or if the argument is not a decimal floating-point number
and the database is configured with dft_sqlmathwarn set to YES; the result is the null value if the
argument is null.

Notes
• Results involving DECFLOAT special values: For decimal floating-point values, the special values are

treated as follows:

– FLOOR(NaN) returns NaN.
– FLOOR(-NaN) returns -NaN.
– FLOOR(Infinity) returns Infinity.
– FLOOR(-Infinity) returns -Infinity.
– FLOOR(sNaN) returns NaN and a warning.
– FLOOR(-sNaN) returns -NaN and a warning.

Examples
• Example 1: Use the FLOOR function to truncate any digits to the right of the decimal point.

 SELECT FLOOR(SALARY)
 FROM EMPLOYEE

Chapter 1. Structured Query Language (SQL) 349

• Example 2: Use the FLOOR function on both positive and negative numbers.

 VALUES FLOOR(3.5), FLOOR(3.1),
 FLOOR(-3.1), FLOOR(-3.5)

This example returns 3., 3., -4., and -4., respectively.

FROM_UTC_TIMESTAMP
The FROM_UTC_TIMESTAMP scalar function returns a TIMESTAMP that is converted from Coordinated
Universal Time to the time zone specified by the time zone string. FROM_UTC_TIMESTAMP is a statement
deterministic function.

FROM_UTC_TIMESTAMP (expression , timezone-expression)

The schema is SYSIBM.

expression
An expression that specifies the timestamp that is in the Coordinated Universal Time time zone.
The expression must return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR data type. If
expression does not contain time information, a time of midnight (00.00.00) is used for the argument.
In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported through implicit casting. If expression is a
CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is accepted by
the TIMESTAMP scalar function.

timezone-expression
An expression that specifies the time zone that the expression is to be adjusted to. The expression
must return a value that is a built-in character string, numeric, or datetime data type. In a Unicode
database, the expression can also be a graphic string data type. Numeric and datetime data types are
supported through implicit casting. If the expression is not a VARCHAR, it is cast to VARCHAR before
the function is evaluated. The expression must not be a FOR BIT DATA subtype (SQLSTATE 42815).
timezone-expression must not be null if expression is not null (SQLSTATE 42815).

The value of the timezone-expression must be a time zone name from the Internet Assigned Numbers
Authority (IANA) time zone database. The standard format for a time zone name in the IANA database
is Area/Location, where:

• Area is the English name of a continent, ocean, or the special area 'Etc'.
• Location is the English name of a location within the area; usually a city, or small island.

Examples:

• "America/Toronto"
• "Asia/Sakhalin"
• "Etc/UTC" (which represents Coordinated Universal Time)

For complete details on the valid set of time zone names and the rules that are associated with those
time zones, refer to the IANA time zone database. The database server uses version 2010c of the
IANA time zone database. Contact IBM support if a newer version of the IANA time zone database is
required.

The result of the function is a timestamp with the same precision as expression, if expression is a
timestamp. If expression is a DATE, the result of the function is a TIMESTAMP(0). Otherwise, the result of
the function is a TIMESTAMP(6).

The result can be null; if the expression is null, the result is the null value. The timezone-expression cannot
be null if a not-null value was supplied for the expression (SQLSTATE 42815).

The result is the expression, adjusted from the Coordinated Universal Time time zone to the time zone
specified by the timezone-expression. If the timezone-expression returns a value that is not a time zone in
the IANA time zone database, then the value of expression is returned without being adjusted.

350 IBM Db2 V11.5: SQL Reference

http://www.iana.org/time-zones

The timestamp adjustment is done by first applying the raw offset from Coordinated Universal Time of
the timezone-expression. If Daylight Saving Time is in effect at the adjusted timestamp for the time zone
that is specified by the timezone-expression, then the Daylight Saving Time offset is also applied to the
timestamp.

Time zones that use Daylight Saving Time have ambiguities at the transition dates. When a time zone
changes from standard time to Daylight Saving Time, a range of time does not occur as it is skipped during
the transition. When a time zone changes from Daylight Saving Time to standard time, a range of time
occurs twice. Ambiguous timestamps are treated as if they occurred when standard time was in effect for
the time zone.

Examples
1. Convert the Coordinated Universal Time timestamp '2011-12-25 09:00:00.123456' to the 'Asia/Tokyo'

time zone. The following returns a TIMESTAMP with the value '2011-12-25 18:00:00.123456'.

 FROM_UTC_TIMESTAMP(TIMESTAMP '2011-12-25 09:00:00.123456', 'Asia/Tokyo')

2. Convert the Coordinated Universal Time timestamp '2014-11-02 06:55:00' to the 'America/Toronto'
time zone. The following returns a TIMESTAMP with the value '2014-11-02 01:55:00'.

 FROM_UTC_TIMESTAMP(TIMESTAMP'2014-11-02 06:55:00', 'America/Toronto')

3. Convert the Coordinated Universal Time timestamp '2015-03-02 06:05:00' to the 'America/Toronto'
time zone. The following returns a TIMESTAMP with the value '2015-03-02 01:05:00'.

 FROM_UTC_TIMESTAMP(TIMESTAMP'2015-03-02 06:05:00', 'America/Toronto')

GENERATE_UNIQUE
The GENERATE_UNIQUE function returns a bit data character string 13 bytes long (CHAR(13) FOR BIT
DATA) that is unique compared to any other execution of the same function.

GENERATE_UNIQUE ()

The schema is SYSIBM.

The system clock is used to generate the internal Universal Time, Coordinated (UTC) timestamp along
with the database partition number on which the function executes. Adjustments that move the actual
system clock backward could result in duplicate values.

The function is defined as non-deterministic.

There are no arguments to this function (the empty parentheses must be specified).

The result of the function is a unique value that includes the internal form of the Universal Time,
Coordinated (UTC) and the database partition number where the function was processed. The result
cannot be null.

The result of this function can be used to provide unique values in a table. Each successive value will be
greater than the previous value, providing a sequence that can be used within a table. The value includes
the database partition number where the function executed so that a table partitioned across multiple
database partitions also has unique values in some sequence. The sequence is based on the time the
function was executed.

This function differs from using the special register CURRENT TIMESTAMP in that a unique value is
generated for each row of a multiple row insert statement, an insert statement with a fullselect, or an
INSERT operation in a MERGE statement.

The timestamp value that is part of the result of this function can be determined using the TIMESTAMP
scalar function with the result of GENERATE_UNIQUE as an argument.

Chapter 1. Structured Query Language (SQL) 351

Example
Create a table that includes a column that is unique for each row. Populate this column using the
GENERATE_UNIQUE function. Notice that the UNIQUE_ID column has "FOR BIT DATA "specified to
identify the column as a bit data character string.

 CREATE TABLE EMP_UPDATE
 (UNIQUE_ID CHAR(13) FOR BIT DATA,
 EMPNO CHAR(6),
 TEXT VARCHAR(1000))
 INSERT INTO EMP_UPDATE
 VALUES (GENERATE_UNIQUE(), '000020', 'Update entry...'),
 (GENERATE_UNIQUE(), '000050', 'Update entry...')

This table will have a unique identifier for each row provided that the UNIQUE_ID column is always set
using GENERATE_UNIQUE. This can be done by introducing a trigger on the table.

 CREATE TRIGGER EMP_UPDATE_UNIQUE
 NO CASCADE BEFORE INSERT ON EMP_UPDATE
 REFERENCING NEW AS NEW_UPD
 FOR EACH ROW
 SNEW_UPD.UNIQUE_ID = GENERATE_UNIQUE()

With this trigger defined, the previous INSERT statement could be issued without the first column as
follows.

 INSERT INTO EMP_UPDATE (EMPNO, TEXT)
 VALUES ('000020', 'Update entry 1...'),
 ('000050', 'Update entry 2...')

The timestamp (in UTC) for when a row was added to EMP_UPDATE can be returned using:

 SELECT TIMESTAMP (UNIQUE_ID), EMPNO, TEXT
 FROM EMP_UPDATE

Therefore, there is no need to have a timestamp column in the table to record when a row is inserted.

GETHINT
The GETHINT function will return the password hint if one is found in the encrypted-data.

Important: The GETHINT function is deprecated and might not appear in future releases.

GETHINT (encrypted-data)

The schema is SYSIBM.

A password hint is a phrase that will help data owners remember passwords; for example, 'Ocean' as
a hint to remember 'Pacific'. In a Unicode database, if a supplied argument is a graphic string, it is first
converted to a character string before the function is executed.

encrypted-data
An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA value that is a
complete, encrypted data string. The data string must have been encrypted using the ENCRYPT
function (SQLSTATE 428FE).

The result of the function is VARCHAR(32 OCTETS). The result can be null; if the hint parameter was not
added to the encrypted-data by the ENCRYPT function or the first argument is null, the result is the null
value.

Example
In this example the hint 'Ocean' is stored to help the user remember the encryption password 'Pacific'.

352 IBM Db2 V11.5: SQL Reference

 INSERT INTO EMP (SSN) VALUES ENCRYPT('289-46-8832', 'Pacific','Ocean');
 SELECT GETHINT(SSN)
 FROM EMP;

The value returned is 'Ocean'.

GRAPHIC
The GRAPHIC function returns a fixed-length graphic string representation of a value of a different data
type.

Integer to graphic
GRAPHIC (integer-expression)

Decimal to graphic
GRAPHIC (decimal-expression

, decimal-character

)

Floating-point to graphic
GRAPHIC (floating-point-expression

, decimal-character

)

Decimal floating-point to graphic
GRAPHIC (decimal-floating-point-expression

, decimal-character

)

Character to graphic
GRAPHIC (character-expression

, integer

)

Graphic to graphic
GRAPHIC (graphic-expression

, integer

)

Datetime to graphic
GRAPHIC (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

Chapter 1. Structured Query Language (SQL) 353

Boolean to vargraphic
GRAPHIC (boolean-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name when keywords are
used in the function signature.

Integer to graphic
integer-expression

An expression that returns a value that is of an integer data type (SMALLINT, INTEGER, or
BIGINT).

The result is a fixed-length graphic string representation of integer-expression in the form of an SQL
integer constant. The result consists of n double-byte characters, which represent the significant
digits in the argument, and is preceded by a minus sign if the argument is negative. The result is
left-aligned.

• If the first argument is a small integer, the length of the result is 6.
• If the first argument is a large integer, the length of the result is 11.
• If the first argument is a big integer, the length of the result is 20.

If the number of double-byte characters in the result is less than the defined length of the result, the
result is padded on the right with blanks.

The code page of the result is the DBCS code page of the section.

Decimal to graphic
decimal-expression

An expression that returns a value that is a decimal data type. The DECIMAL scalar function can
be used to change the precision and scale.

decimal-character
Specifies the double-byte character constant that is used to delimit the decimal digits in the result
graphic string. The double-byte character constant cannot be a digit, the plus sign (+), the minus
sign (-), or a blank (SQLSTATE 42815). The default is the period (.) character.

The result is a fixed-length graphic string representation of decimal-expression in the form of an SQL
decimal constant. The length of the result is 2+p, where p is the precision of decimal-expression.
Leading zeros are not included. Trailing zeros are included. If decimal-expression is negative, the first
double-byte character of the result is a minus sign; otherwise, the first double-byte character is a
digit or the decimal character. If the scale of decimal-expression is zero, the decimal character is not
returned. If the number of double-byte characters in the result is less than the defined length of the
result, the result is padded on the right with blanks.

The code page of the result is the DBCS code page of the section.

Floating-point to graphic
floating-point-expression

An expression that returns a value that is a floating-point data type (DOUBLE or REAL).
decimal-character

Specifies the double-byte character constant that is used to delimit the decimal digits in the result
graphic string. The double-byte character constant cannot be a digit, the plus sign (+), the minus
sign (-), or a blank (SQLSTATE 42815). The default is the period (.) character.

The result is a fixed-length graphic string representation of floating-point-expression in the form of
an SQL floating-point constant. The length of the result is 24. The result is the smallest number
of double-byte characters that can represent the value of floating-point-expression such that the
mantissa consists of a single digit other than zero followed by a period and a sequence of digits.
If floating-point-expression is negative, the first double-byte character of the result is a minus sign;
otherwise, the first double-byte character is a digit. If floating-point-expression is zero, the result is

354 IBM Db2 V11.5: SQL Reference

0E0. If the number of double-byte characters in the result is less than 24, the result is padded on the
right with blanks.

The code page of the result is the DBCS code page of the section.

Decimal floating-point to graphic
decimal-floating-point-expression

An expression that returns a value that is a decimal floating-point data type (DECFLOAT).
decimal-character

Specifies the double-byte character constant that is used to delimit the decimal digits in the result
graphic string. The double-byte character constant cannot be a digit, the plus sign (+), the minus
sign (-), or a blank (SQLSTATE 42815). The default is the period (.) character.

The result is a fixed-length graphic string representation of decimal-floating-point-expression in the
form of an SQL decimal floating-point constant. The length attribute of the result is 42. The result is
the smallest number of double-byte characters that can represent the value of decimal-floating-point-
expression. If decimal-floating-point-expression is negative, the first double-byte character of the
result is a minus sign; otherwise, the first double-byte character is a digit. If decimal-floating-point-
expression is zero, the result is 0.

If the value of decimal-floating-point-expression is the special value Infinity, sNaN, or NaN, the strings
G'INFINITY', G'SNAN', and G'NAN', respectively, are returned. If the special value is negative, the first
double-byte character of the result is a minus sign. The decimal floating-point special value sNaN
does not result in a warning when converted to a string. If the number of double-byte characters in
the result is less than 42, the result is padded on the right with blanks.

The code page of the result is the DBCS code page of the section.

Character to graphic
In Unicode databases:
character-expression

An expression that returns a value that is a built-in character string data type. The expression
must not be a FOR BIT DATA subtype (SQLSTATE 42846).

integer
An integer constant that specifies the length attribute for the resulting fixed-length graphic string.
The value must be between 0 and the maximum length for the GRAPHIC data type in the string
units of the result.

If the second argument is not specified:

• If the character-expression is the empty string constant, the length attribute of the result is 0.
• Otherwise, the length attribute of the result is the lower of the following values:

– The maximum length for the GRAPHIC data type in the string units of the result
– The length attribute of the first argument

The result is a fixed-length graphic string that is converted from character-expression. The length
attribute of the result is determined by the value of integer.

The actual length of the result is the same as the length attribute of the result.

If the length of character-expression that is converted to a graphic string is less than the length
attribute of the result, the result is padded with blanks up to the length attribute of the result.

If the length of character-expression that is converted to a graphic string is greater than the length
attribute of the result, several scenarios exist:

• If the string unit of the result is CODEUNITS32, truncation is performed. If only blank characters
are truncated and character-expression is CHAR or VARCHAR, no warning is returned. Otherwise, a
warning is returned (SQLSTATE 01004).

• If integer is specified, truncation is performed. If only blank characters are truncated and character-
expression is CHAR or VARCHAR, no warning is returned. Otherwise, a warning is returned

Chapter 1. Structured Query Language (SQL) 355

(SQLSTATE 01004). When the output string is truncated, such that the last character is a high
surrogate, that surrogate is converted to the blank character (X'0020'). Do not rely on this behavior
because it might change in a future release.

• If integer is not specified, an error is returned (SQLSTATE 22001).

For details about the conversion process, see “VARGRAPHIC ” on page 573.

In non-Unicode databases:
character-expression

An expression that returns a value that is a built-in CHAR or VARCHAR data type.

The result is a fixed-length graphic string that is converted from character-expression. The length
attribute of the result is the minimum of the length attribute of character-expression and the
maximum length for the GRAPHIC data type.

The actual length of the result is the same as the length attribute of the result. If the length of
character-expression that is converted to a graphic string is less than the length attribute of the
result, the result is padded with blanks up to the length attribute of the result. If the length of
character-expression that is converted to a graphic string is greater than the length attribute of the
result, an error is returned (SQLSTATE 22001).

For details about the conversion process, see “VARGRAPHIC ” on page 573.

Graphic to graphic
graphic-expression

An expression that returns a built-in value that is a graphic string data type.
integer

An integer constant that specifies the length attribute for the resulting fixed-length graphic string.
The value must be between 0 and the maximum length for the GRAPHIC data type in the string
units of the result.

If the second argument is not specified:

• If the graphic-expression is the empty string constant, the length attribute of the result is 0.
• Otherwise, the length attribute of the result is the lower of the following values:

– The maximum length for the GRAPHIC data type in the string units of the result
– The length attribute of the first argument

The result is a fixed-length graphic string. The length attribute of the result is determined by the value
of integer.

The actual length of the result is the same as the length attribute of the result.

If the length of graphic-expression is less than the length attribute of the result, the result is padded
with blanks up to the length attribute of the result.

If the length of graphic-expression is greater than the length attribute of the result, several scenarios
exist:

• If the string unit of the result is CODEUNITS32, truncation is performed. If only blank characters are
truncated and graphic-expression is GRAPHIC or VARGRAPHIC, no warning is returned. Otherwise, a
warning is returned (SQLSTATE 01004).

• If integer is specified, truncation is performed. If only blank characters are truncated and graphic-
expression is GRAPHIC or VARGRAPHIC, no warning is returned. Otherwise, a warning is returned
(SQLSTATE 01004). In a Unicode database, when the output string is truncated, such that the last
character is a high surrogate, that surrogate is converted to the blank character (X'0020'). Do not
rely on this behavior because it might change in a future release.

• If integer is not specified and graphic-expression is VARGRAPHIC, truncation behavior is as follows:

– If only blank characters must be truncated, truncation is performed with no warning returned.
– If non-blank characters must be truncated, an error is returned (SQLSTATE 22001).

356 IBM Db2 V11.5: SQL Reference

• If integer is not specified and graphic-expression is DBCLOB, an error is returned (SQLSTATE 22001).

Datetime to graphic
datetime-expression

An expression that is of one of the following data types:
DATE

The result is the graphic string representation of the date in the format specified by the
second argument. The length of the result is 10. An error is returned if the second argument is
specified and is not a valid value (SQLSTATE 42703).

TIME
The result is the graphic string representation of the time in the format specified by the second
argument. The length of the result is 8. An error is returned if the second argument is specified
and is not a valid value (SQLSTATE 42703).

TIMESTAMP
The result is the graphic string representation of the timestamp. If the data type of datetime-
expression is TIMESTAMP(0), the length of the result is 19. If the data type of datetime-
expression is TIMESTAMP(n), where n is between 1 and 12, the length of the result is 20+n.
Otherwise, the length of the result is 26.

The code page of the string is the code page of the section.

Boolean to graphic
boolean-expression

An expression that returns a Boolean value (TRUE or FALSE). The result is either 'TRUE ' (note the
blank after the E) or 'FALSE'.

Result
The GRAPHIC function returns a fixed-length graphic string representation of:

• An integer number (Unicode database only), if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number (Unicode database only), if the first argument is a decimal number
• A double-precision floating-point number (Unicode database only), if the first argument is a DOUBLE or

REAL
• A decimal floating-point number (Unicode database only), if the argument is a decimal floating-point

number (DECFLOAT)
• A character string, if the first argument is any type of character string
• A graphic string, if the first argument is any type of graphic string
• A datetime value (Unicode database only), if the first argument is a DATE, TIME, or TIMESTAMP
• A Boolean value (TRUE or FALSE)

In a non-Unicode database, the string units of the result is double bytes. Otherwise, the string units of the
result are determined by the data type of the first argument.

• CODEUNITS16, if the first argument is character string or a graphic string with string units of OCTETS or
CODEUNITS16.

• CODEUNITS32, if the first argument is character string or a graphic string with string units of
CODEUNITS32.

• Determined by the default string unit of the environment, if the first argument is not a character string or
a graphic string.

If the first argument can be null, the result can be null; if the first argument is null, the result is the null
value.

Chapter 1. Structured Query Language (SQL) 357

Notes
• Increasing portability of applications: If the first argument is numeric, or if the first argument is a

string and the length argument is specified, use the “CAST specification” on page 152 instead of this
function to increase the portability of your applications.

Examples
• Example 1: The EDLEVEL column is defined as SMALLINT. The following returns the value as a fixed-
length graphic string.

 SELECT GRAPHIC(EDLEVEL)
 FROM EMPLOYEE
 WHERE LASTNAME = 'HAAS'

Results in the value G'18 '.
• Example 2: The SALARY and COMM columns are defined as DECIMAL with a precision of 9 and a scale of

2. Return the total income for employee Haas using the comma decimal character.

 SELECT GRAPHIC(SALARY + COMM, ',')
 FROM EMPLOYEE
 WHERE LASTNAME = 'HAAS'

Results in the value G'56970,00 '.
• Example 3: The following statement returns a string of data type GRAPHIC with the value 'TRUE '.

 values GRAPHIC(3=3)

• Example 4: The following statement returns a string of data type GRAPHIC with the value 'FALSE'.

 values GRAPHIC(3>3)

GREATEST
The GREATEST function returns the maximum value in a set of values.

GREATEST (expression , expression)

The schema is SYSIBM.

expression

An expression that returns a value of any built-in data type or user-defined data type that is
comparable with the data type of the other argument. The data type cannot be a LOB, distinct type
based on a LOB, XML, array, cursor, row, or structured type.

Result
The result of the function is the largest argument value. The result can be null if at least one argument can
be null; the result is the null value if any argument is null.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined by the data types of all the arguments as explained in "Rules for result data types".

Notes
• The GREATEST scalar function is a synonym for the MAX scalar function.

358 IBM Db2 V11.5: SQL Reference

• The GREATEST function cannot be used as a source function when creating a user-defined function.
Because this function accepts any comparable data types as arguments, it is not necessary to create
additional signatures to support user-defined data types.

Example
Assume that table T1 contains three columns C1, C2, and C3 with values 1, 7, and 4, respectively. The
query:

 SELECT GREATEST (C1, C2, C3) FROM T1

returns 7.

If column C3 has a value of null instead of 4, the same query returns the null value.

HASH
The HASH function returns a 128-bit, 160-bit, 256-bit or 512-bit hash of the input data, depending on the
algorithm selected, and is intended for cryptographic purposes.

HASH (string-expression

, 0

, algorithm

)

The schema is SYSIBM.

string-expression
An expression that represents the string value to be hashed. This expression must return a built-in
character string, graphic string, binary string, numeric value, Boolean value, or datetime value. If the
value is not a character, graphic, or binary string, it is implicitly cast to VARCHAR before the function is
evaluated.

algorithm
An expression that returns a value that indicates which algorithm is to be used for hashing. The
expression must return a value that has a built-in numeric, a CHAR, or a VARCHAR data type. In a
Unicode database, the expression can also return a GRAPHIC or VARGRAPHIC data type. If the value
is not an INTEGER, it is cast to INTEGER before the function is evaluated. If no algorithm is specified,
the default algorithm value of 0 is used.

Table 60 on page 359 shows the algorithm used, the result size, and the number of return values for each
algorithm value.

Table 60. Resulting size from each algorithm

Algorithm value Algorithm Result size
Number of return
values

0 MD5 128 bit 2128

1 SHA1 160 bit 2160

2 SHA2_256 256 bit 2256

3 SHA2_512 512 bit 2512

Note that security flaws have been identified in both the SHA1 and MD5 algorithms. You can find
acceptable hash algorithms in applicable compliance documentation, such as National Institute of
Standards and Technology (NIST) Special Publication 800-131A.

Chapter 1. Structured Query Language (SQL) 359

Result
The data type of the result is VARBINARY. If any argument can be null, the result can be null. If any
argument is null, the result is the null value.

Example

values hash('Charlie at IBM', 1)
result is x'D6E42303462491FC696EAC53C1B086A5034735A7'

HASH4
The HASH4 function returns the 32-bit checksum hash of the input data. The function provides 232

distinct return values and is intended for data retrieval (lookups).

HASH4 (string-expression

, algorithm

)

The schema is SYSIBM.

string-expression
An expression that represents the string value to be hashed. This expression must return a built-in
character string, graphic string, binary string, numeric value, Boolean value, or datetime value. If the
value is not a character, graphic, or binary string, it is implicitly cast to VARCHAR before the function is
evaluated.

algorithm
An expression that specifies the algorithm to use for hashing. The expression must return a value
that is a built-in numeric, a CHAR, or a VARCHAR data type. In a Unicode database, the expression
can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC
are supported using implicit casting. If the expression is not a INTEGER, it is cast to INTEGER before
evaluating the function.

The algorithm value can be either 0 or 1. 0 is the default value and indicates the Adler algorithm. 1
indicates the CRC32 algorithm. The Adler algorithm provides a faster checksum hash; however, it has
poor coverage when the messages are less than a few hundred bytes (poor coverage means that two
different integers hash to the same value, referred to as a "collision"). In this case, use the CRC32
algorithm, or switch to hash8 instead.

Result
The data type of the result is INTEGER. If the first argument can be null, the result can be null. If the first
argument is null, the result is the null value.

Example
The following example gives a hashed value of a string of text:

values hash4('Charlie at IBM', 0)
The result is 622396582

360 IBM Db2 V11.5: SQL Reference

HASH8
The HASH8 function returns the 64-bit hash of an input string. The function provides 264 distinct return
values and is intended for data retrieval (that is, lookups). The result for a particular input string differs
depending on the endianness (big-endian or little-endian) of your system.

HASH8 (string-expression

, 0

, algorithm

)

The schema is SYSIBM.

string-expression
An expression that represents the string value to be hashed. This expression must return a built-in
character string, graphic string, binary string, numeric value, Boolean value, or datetime value. If the
value is not a character, graphic, or binary string, it is implicitly cast to VARCHAR before the function is
evaluated.

algorithm
An expression that returns a value that indicates which algorithm is to be used for hashing. The
expression must return a value that has a built-in numeric, a CHAR, or a VARCHAR data type. In a
Unicode database, the expression can also return a GRAPHIC or VARGRAPHIC data type. If the value
is not an INTEGER, it is cast to INTEGER before the function is evaluated. The returned value must be
0, which indicates the Jenkins algorithm.

Result
The data type of the result is BIGINT. If the first argument can be null, the result can be null. If the first
argument is null, the result is the null value.

Example

values hash8('Charlie at IBM', 0)

• On a little-endian system, the result is 4570902652830829618.
• On a big-endian system, the result is 7187665777530874019.

HASHEDVALUE
The HASHEDVALUE function returns the distribution map index of the row obtained by applying the
partitioning function on the distribution key value of the row.

HASHEDVALUE (column-name)

The schema is SYSIBM.

column-name
The qualified or unqualified name of a column in a table. The column can have any data type.

If the column is a column of a view, the expression in the view for the column must reference a
column of the underlying base table and the view must be deletable. A nested or common table
expression follows the same rules as a view.

An example application for this function is in a SELECT clause, where it returns the distribution map index
for each row of the table that was used to form the result of the SELECT statement.

The distribution map index returned on transition variables and tables is derived from the current
transition values of the distribution key columns. For example, in a before insert trigger, the function
will return the projected distribution map index given the current values of the new transition variables.
However, the values of the distribution key columns may be modified by a subsequent before insert

Chapter 1. Structured Query Language (SQL) 361

trigger. Thus, the final distribution map index of the row when it is inserted into the database may differ
from the projected value.

The specific row (and table) for which the distribution map index is returned by the HASHEDVALUE
function is determined from the context of the SQL statement that uses the function.

Result
The data type of the result is INTEGER in the range 0 to 32767. For a table with no distribution key, the
result is always 0. A null value is never returned. Since row-level information is returned, the results are
the same, regardless of which column is specified for the table.

Notes
• The HASHEDVALUE function cannot be used on replicated tables, within check constraints, or in the
definition of generated columns (SQLSTATE 42881).

• The HASHEDVALUE function cannot be used as a source function when creating a user-defined function.
Because it accepts any data type as an argument, it is not necessary to create additional signatures to
support user-defined distinct types.

• The HASHEDVALUE function cannot be used as part of an expression-based key in a CREATE INDEX
statement.

• Syntax alternatives: For compatibility with previous versions of Db2 products, the function name
PARTITION is a synonym for HASHEDVALUE.

Examples
• Example 1: List the employee numbers (EMPNO) from the EMPLOYEE table for all rows with a

distribution map index of 100.

 SELECT EMPNO FROM EMPLOYEE
 WHERE HASHEDVALUE(PHONENO) = 100

• Example 2: Log the employee number and the projected distribution map index of the new row into a
table called EMPINSERTLOG2 for any insertion of employees by creating a before trigger on the table
EMPLOYEE.

 CREATE TRIGGER EMPINSLOGTRIG2
 BEFORE INSERT ON EMPLOYEE
 REFERENCING NEW AW NEWTABLE
 FOR EACH ROW
 INSERT INTO EMPINSERTLOG2
 VALUES(NEWTABLE.EMPNO, HASHEDVALUE(NEWTABLE.EMPNO))

HEX
The HEX function returns a hexadecimal representation of a value as a character string.

HEX (expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in data type that is not XML, with a maximum length of
16 336 bytes.

The result of the function is a character string with string units of OCTETS. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The code page is the section code page.

The result is a string of hexadecimal digits. The first two represent the first byte of the argument, the
next two represent the second byte of the argument, and so forth. If the argument is a datetime value or

362 IBM Db2 V11.5: SQL Reference

a numeric value the result is the hexadecimal representation of the internal form of the argument. The
hexadecimal representation that is returned may be different depending on the application server where
the function is executed. Cases where differences would be evident include:

• Character string arguments when the HEX function is performed on an ASCII client with an EBCDIC
server or on an EBCDIC client with an ASCII server.

• Numeric arguments (in some cases) when the HEX function is performed where client and server
systems have different byte orderings for numeric values.

The type and length of the result vary based on the type, length, and string units of the character and
graphic string arguments.

Table 61. Data type of the result as a function of the data types of the argument data type and the length
attribute

Argument data type1 Length attribute2 Result data type

CHAR(A) or BINARY(A) A<128 CHAR(A*2)

CHAR(A) or BINARY(A) A>127 VARCHAR(A*2)

VARCHAR(A), VARBINARY(A),
CLOB(A), or BLOB(A)

A<16337 VARCHAR(A*2)

GRAPHIC(A) A<64 CHAR(A*2*2)

GRAPHIC(A) A>63 VARCHAR(A*2*2)

VARGRAPHIC(A) or DBCLOB(A) A<8169 VARCHAR(A*2*2)

CHAR(A CODEUNITS32) A<64 VARCHAR(A*4*2)

VARCHAR(A CODEUNITS32) or
CLOB(A CODEUNITS32)

A<4085 VARCHAR(A*4*2)

GRAPHIC(A CODEUNITS32) A<64 VARCHAR(A*2*2*2)

VARGRAPHIC(A CODEUNITS32)
or DBCLOB(A CODEUNITS32)

A<4085 VARCHAR(A*2*2*2)

1. If string units are not specified, then the string units for the data type are not CODEUNITS32.
2. The maximum length attributes reflect a data type limit or the limit of 16336 bytes for the input
argument.

Examples
Assume the use of a database application server on AIX® or Linux® for the following examples.

• Example 1: Using the DEPARTMENT table set the host variable HEX_MGRNO (char(12)) to the
hexadecimal representation of the manager number (MGRNO) for the "PLANNING" department
(DEPTNAME).

 SELECT HEX(MGRNO)
 INTO :HEX_MGRNO
 FROM DEPARTMENT
 WHERE DEPTNAME = 'PLANNING'

HEX_MGRNO will be set to "303030303230" when using the sample table (character value is
"000020").

• Example 2: Suppose COL_1 is a column with a data type of char(1) and a value of "B". The hexadecimal
representation of the letter "B" is X'42'. HEX(COL_1) returns a two byte long string "42".

• Example 3: Suppose COL_3 is a column with a data type of decimal(6,2) and a value of 40.1. An eight
byte long string "0004010C" is the result of applying the HEX function to the internal representation of
the decimal value, 40.1.

Chapter 1. Structured Query Language (SQL) 363

HEXTORAW
The HEXTORAW function returns a bit string representation of a hexadecimal character string.

HEXTORAW (character-expression)

The schema is SYSIBM.

In a Unicode database, if a supplied argument is a graphic string, it is converted to a character string
before the function is executed.

character-expression
An expression that returns a value that is a built-in character string that is not a CLOB (SQLSTATE
42815). The length must be an even number of characters from the ranges '0' to '9', 'a' to 'f', and 'A' to
'F' (SQLSTATE 42815).

The result of the function is a VARBINARY. The length attribute of the result is half the length attribute of
character-expression and the actual length is half the length of the actual length of character-expression.
If the first argument can be null, the result can be null; if the first argument is null, the result is the null
value.

Example
Represent a string of hexadecimal characters in binary form.

 HEXTORAW('ef01abC9')

The result is a VARBINARY(4) data type with a value of BX'EF01ABC9'.

HOUR
The HOUR function returns the hour part of a value.

HOUR (expression)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: a DATE, a TIME, a
TIMESTAMP, a character string, or an exact numeric data type.

If expression is a character string, it must not be a CLOB and its value must be a valid string
representation of a datetime value. For the valid formats of string representations of datetime values,
see "String representations of datetime values" in "Datetime values".

If expression is an exact numeric value, it must be a time duration or timestamp duration. For
information about valid time durations and timestamp durations, see "Datetime operands and
durations".

Only Unicode databases support an expression that is a valid graphic string representation of a
datetime value that is not a DBCLOB. The graphic string is converted to a character string before the
function is executed.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a TIME, TIMESTAMP or valid string representation of a time or timestamp:

– The result is the hour part of the value, which is an integer between 0 and 24.
• If the argument is a DATE or valid string representation of a date:

– The result is 0.

364 IBM Db2 V11.5: SQL Reference

• If the argument is a time duration or timestamp duration:

– The result is the hour part of the value, which is an integer between -99 and 99. A nonzero result has
the same sign as the argument.

Example
Using the CL_SCHED sample table, select all the classes that start in the afternoon.

 SELECT * FROM CL_SCHED
 WHERE HOUR(STARTING) BETWEEN 12 AND 17

HOURS_BETWEEN
The HOURS_BETWEEN function returns the number of full hours between the specified arguments.

HOURS_BETWEEN (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that specifies the first datetime value to compute the number of full hours between two
datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR
data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type.
CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If expression1
is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is accepted
by the TIMESTAMP scalar function.

expression2
An expression that specifies the second datetime value to compute the number of full hours between
two datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or
VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC
data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If
expression2 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that
is accepted by the TIMESTAMP scalar function.

If there is less than a full hour between expression1 and expression2, the result is zero. If expression1
is later than expression2, the result is positive. If expression1 is earlier than expression2, the result is
negative. In NPS compatibility mode, this function always returns a positive number. If expression1 or
expression2 contains time information, this information is also used to determine the number of full
hours. If expression1 or expression2 does not contain time information, a time of midnight (00.00.00) is
used for the argument that is missing time information.

The result of the function is an INTEGER. If either argument can be null, the result can be null. If either
argument is null, the result is the null value.

Examples
1. Set the host variable NUM_HOURS to the number of full hours between 2012-03-01-01.00.00 and

2012-02-28-00.00.00.

 SET :NUM_HOURS = HOURS_BETWEEN(TIMESTAMP '2012-03-01-01.00.00',
 TIMESTAMP '2012-02-28-00.00.00')

The host variable NUM_HOURS is set to 49 because an additional day is incurred for February 29,
2012.

2. Set the host variable NUM_HOURS to the number of full hours between 2013-09-11-23.59.59 and
2013-09-01-00.00.00.

 SET :NUM_HOURS = HOURS_BETWEEN(TIMESTAMP '2013-09-11-23.59.59',
 TIMESTAMP '2013-09-01-00.00.00')

Chapter 1. Structured Query Language (SQL) 365

The host variable NUM_HOURS is set to 263 because there is 1 second less than a full 264 hours
between the arguments. It is positive because the first argument is later than the second argument.

3. Set the host variable NUM_HOURS to the number of full hours between 2013-09-01-00.00.00 and
2013-09-11-23.59.59.

 SET :NUM_HOURS = HOURS_BETWEEN(TIMESTAMP '2013-09-01-00.00.00',
 TIMESTAMP '2013-09-11-23.59.59')

The host variable NUM_HOURS is set to -263 because there is 1 second less than a full 264 hours
between the arguments. It is negative because the first argument is earlier than the second argument.

IDENTITY_VAL_LOCAL
The IDENTITY_VAL_LOCAL function is a non-deterministic function that returns the most recently
assigned value for an identity column, where the assignment occurred as a result of a single INSERT
statement using a VALUES clause.

IDENTITY_VAL_LOCAL ()

The schema is SYSIBM.

The function has no input parameters.

The result is a DECIMAL(31,0), regardless of the actual data type of the corresponding identity column.

The value returned by the function is the value assigned to the identity column of the table identified in
the most recent single row insert operation. The INSERT statement must contain a VALUES clause on a
table containing an identity column. The INSERT statement must also be issued at the same level; that is,
the value must be available locally at the level it was assigned, until it is replaced by the next assigned
value. (A new level is initiated each time a trigger or routine is invoked.)

The assigned value is either a value supplied by the user (if the identity column is defined as GENERATED
BY DEFAULT), or an identity value generated by the database manager.

It is recommended that a SELECT FROM data-change-table-reference statement be used to obtain the
assigned value for an identity column. See "table-reference" in "subselect" for more information.

The function returns a null value if a single row INSERT statement with a VALUES clause has not been
issued at the current processing level against a table containing an identity column.

The result of the function is not affected by the following operations:

• A single row INSERT statement with a VALUES clause for a table without an identity column
• A multiple row INSERT statement with a VALUES clause
• An INSERT statement with a fullselect
• A ROLLBACK TO SAVEPOINT statement

Notes
• Expressions in the VALUES clause of an INSERT statement are evaluated before the assignments for the

target columns of the insert operation. Thus, an invocation of an IDENTITY_VAL_LOCAL function inside
the VALUES clause of an INSERT statement will use the most recently assigned value for an identity
column from a previous insert operation. The function returns the null value if no previous single row
INSERT statement with a VALUES clause for a table containing an identity column has been executed
within the same level as the IDENTITY_VAL_LOCAL function.

• The identity column value of the table for which the trigger is defined can be determined within a trigger
by referencing the trigger transition variable for the identity column.

• The result of invoking the IDENTITY_VAL_LOCAL function from within the trigger condition of an insert
trigger is a null value.

366 IBM Db2 V11.5: SQL Reference

• It is possible that multiple before or after insert triggers exist for a table. In this case, each trigger
is processed separately, and identity values assigned by one triggered action are not available to
other triggered actions using the IDENTITY_VAL_LOCAL function. This is true even though the multiple
triggered actions are conceptually defined at the same level.

• It is not generally recommended to use the IDENTITY_VAL_LOCAL function in the body of a before
insert trigger. The result of invoking the IDENTITY_VAL_LOCAL function from within the triggered action
of a before insert trigger is the null value. The value for the identity column of the table for which
the trigger is defined cannot be obtained by invoking the IDENTITY_VAL_LOCAL function within the
triggered action of a before insert trigger. However, the value for the identity column can be obtained in
the triggered action by referencing the trigger transition variable for the identity column.

• The result of invoking the IDENTITY_VAL_LOCAL function from within the triggered action of an after
insert trigger is the value assigned to an identity column of the table identified in the most recent
single row insert operation invoked in the same triggered action that had a VALUES clause for a
table containing an identity column. (This applies to both FOR EACH ROW and FOR EACH STATEMENT
after insert triggers.) If a single row INSERT statement with a VALUES clause for a table containing
an identity column was not executed within the same triggered action, before the invocation of the
IDENTITY_VAL_LOCAL function, the function returns a null value.

• Because IDENTITY_VAL_LOCAL is a non-deterministic function, the result of invoking this function
within the SELECT statement of a cursor can vary for each FETCH statement.

• The assigned value is the value actually assigned to the identity column (that is, the value that would
be returned on a subsequent SELECT statement). This value is not necessarily the value provided in the
VALUES clause of the INSERT statement, or a value generated by the database manager. The assigned
value could be a value specified in a SET transition variable statement, within the body of a before insert
trigger, for a trigger transition variable associated with the identity column.

• Scope of IDENTITY_VAL_LOCAL: The IDENTITY_VAL_LOCAL value persists until the next insert in the
current session into a table that has an identity column defined on it, or the application session ends.
The value is unaffected by COMMIT or ROLLBACK statements. The IDENTITY_VAL_LOCAL value cannot
be directly set and is a result of inserting a row into a table.

A technique commonly used, especially for performance, is for an application or product to manage a
set of connections and route transactions to an arbitrary connection. In these situations, the availability
of the IDENTITY_VAL_LOCAL value should be relied on only until the end of the transaction. Examples
of where this type of situation can occur include applications that use XA protocols, use connection
pooling, use the connection concentrator, and use HADR to achieve failover.

• The value returned by the function following a failed single row INSERT statement with a VALUES
clause into a table with an identity column is unpredictable. It could be the value that would have been
returned from the function had it been invoked before the failed insert operation, or it could be the value
that would have been assigned had the insert operation succeeded. The actual value returned depends
on the point of failure, and is therefore unpredictable.

Examples
• Example 1: Create two tables, T1 and T2, each with an identity column named C1. Start the identity

sequence for table T2 at 10. Insert some values for C2 into T1.

 CREATE TABLE T1
 (C1 INTEGER GENERATED ALWAYS AS IDENTITY,
 C2 INTEGER)

 CREATE TABLE T2
 (C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY (START WITH 10),
 C2 INTEGER)

 INSERT INTO T1 (C2) VALUES (5)

 INSERT INTO T1 (C2) VALUES (6)

 SELECT * FROM T1

This query returns:

Chapter 1. Structured Query Language (SQL) 367

C1 C2
----------- -----------
 1 5
 2 6

Insert a single row into table T2, where column C2 gets its value from the IDENTITY_VAL_LOCAL
function.

 INSERT INTO T2 (C2) VALUES (IDENTITY_VAL_LOCAL())

 SELECT * FROM T2

This query returns:

C1 C2
----------------- -----------
 10. 2

• Example 2: In a nested environment involving a trigger, use the IDENTITY_VAL_LOCAL function to
retrieve the identity value assigned at a particular level, even though there might have been identity
values assigned at lower levels. Assume that there are three tables, EMPLOYEE, EMP_ACT, and
ACCT_LOG. There is an after insert trigger defined on EMPLOYEE that results in additional inserts into
the EMP_ACT and ACCT_LOG tables.

 CREATE TABLE EMPLOYEE
 (EMPNO SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 1000),
 NAME CHAR(30),
 SALARY DECIMAL(5,2),
 DEPTNO SMALLINT)

 CREATE TABLE EMP_ACT
 (ACNT_NUM SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 1),
 EMPNO SMALLINT)

 CREATE TABLE ACCT_LOG
 (ID SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 100),
 ACNT_NUM SMALLINT,
 EMPNO SMALLINT)

 CREATE TRIGGER NEW_HIRE
 AFTER INSERT ON EMPLOYEE
 REFERENCING NEW AS NEW_EMP
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO EMP_ACT (EMPNO) VALUES (NEW_EMP.EMPNO);
 INSERT INTO ACCT_LOG (ACNT_NUM, EMPNO)
 VALUES (IDENTITY_VAL_LOCAL(), NEW_EMP.EMPNO);
 END

The first triggered insert operation inserts a row into the EMP_ACT table. The statement uses a trigger
transition variable for the EMPNO column of the EMPLOYEE table to indicate that the identity value
for the EMPNO column of the EMPLOYEE table is to be copied to the EMPNO column of the EMP_ACT
table. The IDENTITY_VAL_LOCAL function could not be used to obtain the value assigned to the EMPNO
column of the EMPLOYEE table, because an INSERT statement has not been issued at this level of
the nesting. If the IDENTITY_VAL_LOCAL function were invoked in the VALUES clause of the INSERT
statement for the EMP_ACT table, it would return a null value. The insert operation against the EMP_ACT
table also results in the generation of a new identity value for the ACNT_NUM column.

The second triggered insert operation inserts a row into the ACCT_LOG table. The statement invokes the
IDENTITY_VAL_LOCAL function to indicate that the identity value assigned to the ACNT_NUM column
of the EMP_ACT table in the previous insert operation in the triggered action is to be copied to the
ACNT_NUM column of the ACCT_LOG table. The EMPNO column is assigned the same value as the
EMPNO column of the EMPLOYEE table.

After the following INSERT statement and all of the triggered actions have been processed:

 INSERT INTO EMPLOYEE (NAME, SALARY, DEPTNO)
 VALUES ('Rupert', 989.99, 50)

the contents of the three tables are as follows:

368 IBM Db2 V11.5: SQL Reference

 SELECT EMPNO, SUBSTR(NAME,1,10) AS NAME, SALARY, DEPTNO
 FROM EMPLOYEE

EMPNO NAME SALARY DEPTNO
------ ---------- ------- ------
 1000 Rupert 989.99 50

 SELECT ACNT_NUM, EMPNO
 FROM EMP_ACT

ACNT_NUM EMPNO
-------- ------
 1 1000

 SELECT * FROM ACCT_LOG

ID ACNT_NUM EMPNO
------ -------- ------
 100 1 1000

The result of the IDENTITY_VAL_LOCAL function is the most recently assigned value for an identity
column at the same nesting level. After processing the original INSERT statement and all of the
triggered actions, the IDENTITY_VAL_LOCAL function returns a value of 1000, because this is the value
that was assigned to the EMPNO column of the EMPLOYEE table.

IFNULL
The IFNULL function returns the first non-null expression in a list of two expressions.

IFNULL (expression1 , expression2)

The schema is SYSIBM.

The IFNULL function is identical to the “COALESCE ” on page 308, except that IFNULL is limited to two
arguments.

INITCAP
The INITCAP function returns a string with the first character of each word converted to uppercase,
using the UPPER function semantics, and the other characters converted to lowercase, using the LOWER
function semantics.

INITCAP (string-expression)

The schema is SYSIBM.

A word is delimited by any of the following characters:

Table 62. Word delimiter characters

Character or range of characters
Unicode code points or range of Unicode code
points

(blank) U+0020

! " # $ % & ' () * + , -. / U+0021 to U+002F

: ; < = > ? @ U+003A to U+0040

[\] ^ _ ` U+005B to U+0060

{ | } ~ U+007B to U+007E

Chapter 1. Structured Query Language (SQL) 369

Table 62. Word delimiter characters (continued)

Character or range of characters
Unicode code points or range of Unicode code
points

Control characters, including the following SQL
control characters:

• tab
• new line
• form feed
• carriage return
• line feed

U+0009, U+000A, U+000B, U+000C, U+000D,
U+0085

Note: A character listed in the preceding table might not have an allocated code point in a particular
database code page.

string-expression
An expression that returns a CHAR or VARCHAR data type. In a Unicode database, the expression can
return a GRAPHIC or VARGRAPHIC data type.

The data type of the result depends on the data type of string-expression, as described in the following
table:

Table 63. Data type of string-expression compared to the data type of the result

Data type of string-expression Data type of the result

CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC VARGRAPHIC

The length attribute of the result is the same as the length attribute of string-expression.

If the argument can be null, the result can be null; if the argument is null, the result is the null value.

Examples
• Example 1: Input the string "a prospective book title" to return the string "A Prospective Book Title".

VALUES INITCAP ('a prospective book title')
1

A Prospective Book Title

• Example 2: Input the string "YOUR NAME" to return the string "Your Name".

VALUES INITCAP ('YOUR NAME')
1

Your Name

• Example 3: Input the string "my_résumé" to return the string "My_Résumé".

VALUES INITCAP ('my_résumé')
1

My_Résumé

• Example 4: Input the string "élégant" to return the string "Élégant".

VALUES INITCAP ('FORMAT:élégant')
1

Format:Élégant

370 IBM Db2 V11.5: SQL Reference

INSERT
The INSERT function returns a string where, beginning at start in source-string, length of the specified
code units have been deleted and insert-string has been inserted.

INSERT (source-string , start , length , insert-string

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM. The SYSFUN version of the INSERT function continues to be available.

The INSERT function is identical to the OVERLAY function, except that the length argument is mandatory.

source-string
An expression that specifies the source string. The expression must return a value that is a built-in
string, numeric, boolean, or datetime data type. If the value is not a string data type, it is implicitly
cast to VARCHAR before evaluating the function.

start
An expression that returns an integer value. The integer value specifies the starting point within the
source string where the deletion of code units and the insertion of another string is to begin. The
expression must return a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC
data type. If the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the
function. The integer value is the starting point in code units using the specified string units. The
integer value must be between 1 and the actual length of source-string in implicit or explicit string
units plus one (SQLSTATE 22001). If OCTETS is specified and the result is graphic data, the value
must be an odd number between 1 and the actual octet length of source-string plus one (SQLSTATE
428GC or 22011).

length
An expression that specifies the number of code units (in the specified string units) that are to be
deleted from the source string, starting at the position identified by start. The expression must return
a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. If the value
is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function. The value must
be positive integer or zero (SQLSTATE 22011). If OCTETS is specified and the result is graphic data,
the value must be an even number or zero (SQLSTATE 428GC).

insert-string
An expression that specifies the string to be inserted into source-string, starting at the position
identified by start. The expression must return a value that is a built-in string, numeric, boolean, or
datetime data type. If the value is not a string data type, it is implicitly cast to VARCHAR before
evaluating the function.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of start and length.

CODEUNITS16 specifies that start and length are expressed in 16-bit UTF-16 code units.
CODEUNITS32 specifies that start and length are expressed in 32-bit UTF-32 code units. OCTETS
specifies that start and length are expressed in bytes.

If the string unit is specified as CODEUNITS16 or CODEUNITS32, and the result is a binary string
or bit data, an error is returned (SQLSTATE 428GC). If the string unit is specified as CODEUNITS16
or OCTETS, and the string units of source-string is CODEUNITS32, an error is returned (SQLSTATE
428GC). If the string unit is specified as OCTETS, the operation is performed in the code page of the
source-string. If a string unit is not explicitly specified, the string unit of the source-string determines
the unit that is used. For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see
"String units in built-in functions" in "Character strings".

Chapter 1. Structured Query Language (SQL) 371

The data type of the result depends on the data types of source-string and insert-string, as shown in
the following tables of supported type combinations. The string unit of the result is the string unit of
source-string. If either source-string or insert-string is defined as FOR BIT DATA the other argument cannot
be defined with string units of CODEUNITS32.The second table applies only to Unicode databases.

Table 64. Data type of the result as a function of the data types of source-string and insert-string

source-string insert-string Result

CHAR or VARCHAR CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC GRAPHIC or VARGRAPHIC VARGRAPHIC

CLOB CHAR, VARCHAR, or CLOB CLOB

CHAR or VARCHAR CLOB CLOB

DBCLOB GRAPHIC, VARGRAPHIC, or
DBCLOB

DBCLOB

GRAPHIC or VARGRAPHIC DBCLOB DBCLOB

CHAR or VARCHAR CHAR FOR BIT DATA or VARCHAR
FOR BIT DATA

VARCHAR FOR BIT DATA

CHAR FOR BIT DATA or VARCHAR
FOR BIT DATA

CHAR, VARCHAR, CHAR FOR BIT
DATA, or VARCHAR FOR BIT
DATA

VARCHAR FOR BIT DATA

BINARY or VARBINARY BINARY or VARBINARY VARBINARY

BLOB BINARY, VARBINARY, or BLOB BLOB

BINARY or VARBINARY BLOB BLOB

Note: If source-string or insert-string is a binary data type and the other is a FOR BIT DATA string, the
argument that is not a binary data type is handled as if it was cast to the corresponding binary data type.

Table 65. Data type of the result as a function of the data types of source-string and insert-string (Unicode
databases only)

source-string insert-string Result

CHAR or VARCHAR GRAPHIC or VARGRAPHIC VARCHAR

GRAPHIC or VARGRAPHIC CHAR or VARCHAR VARGRAPHIC

CLOB GRAPHIC, VARGRAPHIC, or
DBCLOB

CLOB

DBCLOB CHAR, VARCHAR, or CLOB DBCLOB

A source-string can have a length of 0; in this case, start must be 1 (as implied by the bounds for start
described previously), and the result of the function is a copy of the insert-string.

An insert-string can also have a length of 0. This has the effect of deleting the code units identified by start
and length from the source-string.

The length attribute of the result is the length attribute of source-string plus the length attribute of
insert-string when the string units of the source-string and insert-string are the same or the result string
units is CODEUNITS32. Special cases are listed in the following table.

Table 66. Data type of the result as a function of the data types of source-string and insert-string (special cases)

source-string insert-string Result

Data type String units Data type String units Length attribute String units

372 IBM Db2 V11.5: SQL Reference

Table 66. Data type of the result as a function of the data types of source-string and insert-string (special cases) (continued)

source-string insert-string Result

Character string
with length
attribute A

OCTETS Graphic string with
length attribute B

CODEUNITS16 A+3*B OCTETS

Character string
with length
attribute A

OCTETS Graphic string with
length attribute B

CODEUNITS32 A+4*B OCTETS

Character string
with length
attribute A

OCTETS Character with
length attribute B

CODEUNITS32 A+4*B OCTETS

Graphic string with
length attribute A

CODEUNITS16 Character with
length attribute B

OCTETS A+B CODEUNITS16

Graphic string with
length attribute A

CODEUNITS16 Character with
length attribute B

CODEUNITS32 A+2*B CODEUNITS16

Graphic string with
length attribute A

CODEUNITS16 Graphic string with
length attribute B

CODEUNITS32 A+2*B CODEUNITS16

The actual length of the result depends on the actual length of source-string, the actual length of the
of the deleted string, the actual length of the insert-string, and string units used for the start and length
arguments. For example, if the string arguments are character strings in OCTETS and the OCTETS is used
as the fourth argument, the actual length of the result is A1 - MIN((A1 - V2 + 1), V3) + A4, where:

• A1 is the actual length of source-string
• V2 is the value of start
• V3 is the value of length
• A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the return data type, an error is returned
(SQLSTATE 54006).

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Examples
• Example 1: Create the strings "INSISTING", "INSISERTING", and "INSTING" from the string

"INSERTING" by inserting text into the middle of the existing text.

 SELECT INSERT('INSERTING',4,2,'IS'),
 INSERT('INSERTING',4,0,'IS'),
 INSERT('INSERTING',4,2,'')
 FROM SYSIBM.SYSDUMMY1

• Example 2: Create the strings "XXINSERTING", "XXNSERTING", "XXSERTING", and "XXERTING" from
the string "INSERTING" by inserting text before the existing text, using 1 as the starting point.

 SELECT INSERT('INSERTING',1,0,'XX'),
 INSERT('INSERTING',1,1,'XX'),
 INSERT('INSERTING',1,2,'XX'),
 INSERT('INSERTING',1,3,'XX')
 FROM SYSIBM.SYSDUMMY1

• Example 3: Create the string "ABCABCXX" from the string "ABCABC" by inserting text after the existing
text. Because the source string is 6 characters long, set the starting position to 7 (one plus the length of
the source string).

 SELECT INSERT('ABCABC',7,0,'XX')
 FROM SYSIBM.SYSDUMMY1

Chapter 1. Structured Query Language (SQL) 373

• Example 4: Change the string "Hegelstraße" to "Hegelstrasse".

 SELECT INSERT('Hegelstraße',10,1,'ss',CODEUNITS16)
 FROM SYSIBM.SYSDUMMY1

• Example 5: The following example works with the Unicode string "&N~AB", where "&" is the musical
symbol G clef character, and "~ " is the combining tilde character. This string is shown in different
Unicode encoding forms in the following example:

"&" "N" "~" "A" "B"

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16BE X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

Assume that the variables UTF8_VAR and UTF16_VAR contain the UTF-8 and the UTF-16BE
representations of the string, respectively. Use the INSERT function to insert a "C" into the Unicode
string "&N~AB".

 SELECT INSERT(UTF8_VAR, 1, 4, 'C', CODEUNITS16),
 INSERT(UTF8_VAR, 1, 4, 'C', CODEUNITS32),
 INSERT(UTF8_VAR, 1, 4, 'C', OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "CAB", "CB", and "CN~AB", respectively.

 SELECT INSERT(UTF8_VAR, 5, 1, 'C', CODEUNITS16),
 INSERT(UTF8_VAR, 5, 1, 'C', CODEUNITS32),
 INSERT(UTF8_VAR, 5, 1, 'C', OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "&N~CB", "&N~AC", and "&C~AB", respectively.

 SELECT INSERT(UTF16_VAR, 1, 4, 'C', CODEUNITS16),
 INSERT(UTF16_VAR, 1, 4, 'C', CODEUNITS32),
 INSERT(UTF16_VAR, 1, 4, 'C', OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "CAB", "CB", and "CN~AB", respectively.

 SELECT INSERT(UTF16_VAR, 5, 2, 'C', CODEUNITS16),
 INSERT(UTF16_VAR, 5, 1, 'C', CODEUNITS32),
 INSERT(UTF16_VAR, 5, 4, 'C', OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "&N~C", "&N~AC", and "&CAB", respectively.

INSTR
The INSTR function returns the starting position of a string (the search string) within another string (the
source string). The INSTR scalar function is a synonym for the LOCATE_IN_STRING scalar function.

INSTR (source-string , search-string

, start

, instance

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM

374 IBM Db2 V11.5: SQL Reference

INSTR2
The INSTR2 function returns the starting position, in 16-bit UTF-16 string units (CODEUNITS16), of a
string within another string.

INSTR2 (source-string , search-string

, start

, instance

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place.

search-string
An expression that specifies the string that is the object of the search.

start
An expression that specifies the position within source-string at which the search for a match is to
start.

instance
An expression that specifies which instance of search-string to search for within source-string.

The INSTR2 scalar function invoked with character or graphic strings as the first two arguments is
equivalent to invoking the LOCATE_IN_STRING function with CODEUNITS16 specified. The INSTR2
scalar function invoked with binary strings as the first two arguments is equivalent to invoking the
LOCATE_IN_STRING function without a string units argument.

INSTR4
The INSTR4 function returns the starting position, in 32-bit UTF-32 string units (CODEUNITS32), of a
string within another string.

INSTR4 (source-string , search-string

, start

, instance

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place.

search-string
An expression that specifies the string that is the object of the search.

start
An expression that specifies the position within source-string at which the search for a match is to
start.

instance
An expression that specifies which instance of search-string to search for within source-string.

The INSTR4 scalar function invoked with character or graphic strings as the first two arguments is
equivalent to invoking the LOCATE_IN_STRING function with CODEUNITS32 specified. The INSTR4
scalar function invoked with binary strings as the first two arguments is equivalent to invoking the
LOCATE_IN_STRING function without a string units argument.

Chapter 1. Structured Query Language (SQL) 375

INSTRB
The INSTRB function returns the starting position, in bytes, of a string within another string.

INSTRB (source-string , search-string

, start

, instance

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place.

search-string
An expression that specifies the string that is the object of the search.

start
An expression that specifies the position within the source string at which the search for a match is to
start.

instance
An expression that specifies which instance of the search string to search for within the source string.

The INSTRB scalar function invoked with character or graphic strings as the first two arguments
is equivalent to invoking the LOCATE_IN_STRING function with OCTETS specified. The INSTRB
scalar function invoked with binary strings as the first two arguments is equivalent to invoking the
LOCATE_IN_STRING function without a string units argument.

INT
The INT function returns a large integer (a binary integer with a precision of 31 bits) representation of a
value of a different data type.

INT (expression)

The schema is SYSIBM.

The INT scalar function is a synonym for the INTEGER scalar function.

INTERVAL
The INTERVAL function converts a character string representation of an interval to a decimal duration.

The schema is SYSIBM.

Syntax
INTERVAL (string-constant)

string-constant
A character string representation of an interval, for example:

'4 years 2 months 3 days'
'3 day 4 year 2 month'
'-4y -2 m -3d'
'-2 hr -21 min -34sec'
'4years 2months 3 days 2 hours 21minutes 34seconds 75 milliseconds 27 microseconds'
'2 mons 3 days 4 yrs 2 hrs 20 mins 30 secs 75 ms 27 us'

Note:

376 IBM Db2 V11.5: SQL Reference

• The input must be a string constant, not an expression or column value (sqlcode SQL0171N with
SQLSTATE=42815).

• A blank between each value and its unit keyword is optional.
• Values must be either all positive or all negative.
• The unit keywords are case-insensitive.
• The order of the unit keywords is unimportant.
• A unit keyword cannot be used more than once.
• The number that is specified for each unit must be a whole number.
• The following statements are equivalent:

INTERVAL (string-constant)
CAST (string-constant as INTERVAL)

The specified interval can be of one of the following types:
time interval

The input value does not contain units other than hours, minutes, or seconds, and cannot exceed
the equivalent of '99h 99m 99s' (sqlcode SQL0105N with SQLSTATE=42604). A minutes value
that exceeds 99 is converted to hours, and a seconds value that exceeds 99 is converted to
minutes. For example, 100 seconds is converted to 1 minute and 40 seconds.

date interval
The input value does not contain units other than years, months, or days, and cannot exceed the
equivalent of '9999y 99m 99d' (sqlcode SQL0105N with SQLSTATE=42604). A months value
that exceeds 99 is converted to years, and a days value that exceeds 99 is converted to 30-day
months. For example, 100 days is converted to 3 months and 10 days.

timestamp interval
The input value cannot exceed the equivalent of '9999y 99m 99d 99h 99m 99s 999999us'
(sqlcode SQL0105N with SQLSTATE=42604). The millisecond and microsecond values are
combined into a single microsecond value before they are evaluated. If the resulting value
exceeds 999999 microseconds, it is converted to seconds. For example, '88 ms 5000000 us'
is converted to 5088000 microseconds. This exceeds 999999 microseconds, so it is converted
to 5.088000 seconds. A seconds value that exceeds 99 is converted to minutes. A minutes value
that exceeds 99 is converted to hours. An hours value that exceeds 99 is converted to days. A
days value that exceeds 99 is converted to 30-day months. A months value that exceeds 99 is
converted to years.

Table 67. Keywords for representing time units

Keywords Maximum value allowed when specifying a...

time interval date interval timestamp interval

year, years, yrs, yr, y (not allowed) 9999 9999

month, months, mons,
mon

(not allowed) 119999 119999

day, days, d (not allowed) 3599999 3599999

hour, hours, hrs, hr, h 99 (not allowed) 86399999

minute, minutes, mins,
min, m

5999 (not allowed) 2147483647

second, seconds, secs,
sec, s

359999 (not allowed) 2147483647

millisecond,
milliseconds, ms

(not allowed) (not allowed) 2147483647

Chapter 1. Structured Query Language (SQL) 377

Table 67. Keywords for representing time units (continued)

Keywords Maximum value allowed when specifying a...

time interval date interval timestamp interval

microsecond,
microseconds, us

(not allowed) (not allowed) 2147483647

Result
The data type of the result depends on the type of the input interval. If the input value represents:

• A date interval, the result is a date duration, which is a DECIMAL(8,0) value.
• A time interval, the result is a time duration, which is a DECIMAL(6,0) value.
• A timestamp interval, the result is a timestamp duration, which is a DECIMAL value. The precision

of this value depends on whether, after combining millisecond and microsecond values into a single
microsecond value, and after then converting any microseconds in excess of 999999 to seconds, the
number of microseconds remaining is zero:

– If so, the result is DECIMAL(14,0)
– If not, the result is DECIMAL(20,6)

Examples
• The following statement returns the DECIMAL(8,0) value 40203:

interval('4years 2months 3days')

• The following statement returns the DECIMAL(6,0) value -122030:

interval('-12 hours -20 minutes -30 seconds')

• The following statement returns the DECIMAL(20,6) value 40801092630.007055:

interval('4 years 9 hour 26min 30 seconds 7 ms 55us 8months 1d')

• The following statement returns the DECIMAL(14,0) value 22035:

interval('2 hours 20 minutes 30 seconds 1500 ms 3500000 us')

The millisecond (1500) and microsecond (3500000) values are combined into a single microsecond
value (5000000) before they are evaluated. The resulting value exceeds 999999 microseconds, so it is
converted to 5 seconds, which are added to the specified 30 seconds for a total of 35 seconds.

• The following statement returns the DECIMAL(8,0) value 90714, which corresponds to 9 years, 7
months, and 14 days.

interval('1 years 100 months 104 days')

Because the number of days exceeds 99, the 104 days are converted to 3 30-day months, plus a
remainder of 14 days. The 3 months are added to the specified 100 months for a total of 103 months.
Because the number of months exceeds 99, the 103 months are converted to 8 12-month years, plus a
remainder of 7 months. The 8 years are added to the specified 1 year for a total of 9 years.

• The following statement returns the DECIMAL(6,0) value 230120, which corresponds to 23 hours, 1
minute, and 20 seconds.

interval('20 hours 181 minutes 20 seconds')

Because the number of minutes exceeds 99, the 181 minutes are converted to 3 60-minute hours, plus
a remainder of 1 minute. The 3 hours are added to the specified 20 hours for a total of 23 hours.

378 IBM Db2 V11.5: SQL Reference

Related reference
“Datetime operations and durations” on page 145
Datetime values can be incremented, decremented, and subtracted. These operations can involve
decimal numbers called durations.

INTEGER
The INTEGER function returns a large integer (a binary integer with a precision of 31 bits) representation
of a value of a different data type.

Numeric to INTEGER
INTEGER (numeric-expression)

String to INTEGER
INTEGER (string-expression)

Date to INTEGER
INTEGER (date-expression)

Time to INTEGER
INTEGER (time-expression)

Boolean to INTEGER
INTEGER (boolean-expression)

The schema is SYSIBM.

Numeric to INTEGER
numeric-expression

An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a large integer
column or variable. The fractional part of the argument is truncated. If the whole part of the
argument is not within the range of integers, an error is returned (SQLSTATE 22003).

String to INTEGER
string-expression

An expression that returns a value that is a character-string or Unicode graphic-string
representation of a number with a of length not greater than the maximum length of a character
constant.

The result is the same number that would result from CAST(string-expresssion AS INTEGER).
Leading and trailing blanks are eliminated and the resulting string must conform to the rules
for forming an integer, decimal, floating-point, or decimal floating-point constant (SQLSTATE
22018). If the whole part of the argument is not within the range of integers, an error is returned
(SQLSTATE 22003). The data type of string-expression must not be CLOB or DBCLOB (SQLSTATE
42884).

Date to INTEGER
date-expression

An expression that returns a value of the DATE data type. The result is an INTEGER value
representing the date as yyyymmdd.

Chapter 1. Structured Query Language (SQL) 379

Time to INTEGER
time-expression

An expression that returns a value of the TIME data type. The result is an INTEGER value
representing the time as hhmmss.

Boolean to INTEGER
boolean-expression

An expression that returns a Boolean value (TRUE or FALSE). The result is either 1 (for TRUE) or 0
(for FALSE).

Result
The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Notes
• Increasing portability of applications: If the first argument is numeric, or if the first argument is a

string and the length argument is specified, use the “CAST specification” on page 152 instead of this
function to increase the portability of your applications.

Examples
• Example 1: Using the EMPLOYEE table, select a list containing salary (SALARY) divided by education

level (EDLEVEL). Truncate any decimal in the calculation. The list should also contain the values used in
the calculation and employee number (EMPNO). The list should be in descending order of the calculated
value.

 SELECT INTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
 FROM EMPLOYEE
 ORDER BY 1 DESC

• Example 2: Using the EMPLOYEE table, select the EMPNO column in integer form for further processing
in the application.

 SELECT INTEGER(EMPNO) FROM EMPLOYEE

• Example 3: Assume that the column BIRTHDATE (whose data type is DATE) has an internal value
equivalent to '1964-07-20'.

 INTEGER(BIRTHDATE)

results in the value 19 640 720.
• Example 4: Assume that the column STARTTIME (whose data type is TIME) has an internal value

equivalent to '12:03:04'.

 INTEGER(STARTTIME)

results in the value 120 304.
• Example 5: The following statement returns the value 1 of data type INTEGER.

 values INTEGER(TRUE)

• Example 6: The following statement returns the value 0 of data type INTEGER.

 values INTEGER(3>3)

380 IBM Db2 V11.5: SQL Reference

INT2
The INT2 function returns a small integer (a binary integer with a precision of 15 bits) representation of a
value of a different data type.

INT2 (expression)

The schema is SYSIBM.

The INT2 scalar function is a synonym for the SMALLINT scalar function.

INT4
The INT4 function returns a large integer (a binary integer with a precision of 31 bits) representation of a
value of a different data type.

INT4 (expression)

The schema is SYSIBM.

The INT4 scalar function is a synonym for the INTEGER scalar function.

INT8
The INT8 function returns a big integer (a binary integer with a precision of 63 bits) representation of a
value of a different data type.

INT8 (expression)

The schema is SYSIBM.

The INT8 scalar function is a synonym for the BIGINT scalar function.

INTNAND, INTNOR, INTNXOR, and INTNNOT
These bitwise functions operate on the "two's complement" representation of the integer value of the
input arguments and return the result as a corresponding base 10 integer value.

INT2AND

INT4AND

INT8AND

INT2OR

INT4OR

INT8OR

INT2XOR

INT4XOR

INT8XOR

(expression1 , expression2) INT2NOT

INT4NOT

INT8NOT

(

expression)

The schema is SYSIBM.

In each function, the placeholder N represents the byte size of the integer data type that the function
operates on and returns, as shown in Table 69 on page 382.

Chapter 1. Structured Query Language (SQL) 381

Table 68. The bit manipulation functions

Function Description
A bit in the two's complement
representation of the result is:

INTNAND Performs a bitwise AND
operation.

1 only if the corresponding bits in
both arguments are 1.

INTNOR Performs a bitwise OR operation. 1 unless the corresponding bits
in both arguments are zero.

INTNXOR Performs a bitwise exclusive OR
operation.

1 unless the corresponding bits
in both arguments are the same.

INTNNOT Performs a bitwise NOT
operation.

Opposite of the corresponding bit
in the argument.

Table 69. Meaning of placeholder N

Value of N Data type function operates on and returns

2 SMALLINT

4 INTEGER

8 BIGINT

expression or expression1 or expression2

The arguments must be integer values represented by the data types SMALLINT, INTEGER, BIGINT,
DECFLOAT, DECIMAL, REAL, or DOUBLE. If the input argument is not of the same data type as
represented by N, then the input is implicitly cast to the data type represented by N. As a result, if a
value larger than the maximum value supported by the data type represented by N is passed as input
to the function, then an overflow can occur (SQLSTATE=22003).

If either argument can be null, the result can be null; if either argument is null, the result is the null
value.

Due to differences in internal representation between data types and on different hardware platforms,
using functions (such as HEX) or host language constructs to view or compare internal representations
of BIT function results and arguments is data type-dependent and not portable. The data type- and
platform-independent way to view or compare BIT function results and arguments is to use the actual
integer values.

Examples
• Example 1: A value larger than the maximum supported by 2 byte SMALLINT is passed as input to the

function INT2AND.

select INT2AND(1234567,1) from SYSIBM.SYSDUMMY1
SQL0413N Overflow occurred during numeric data type conversion.
SQLSTATE=22003

• Example 2: Assume BIGINT columns col1 and col2 have values 137266 and 123825 respectively.

SELECT INT8AND(col1,col2) from TAB1
returns the value 48

• Example 3: Assume SMALLINT columns col1 and col2 have values 12 and 13 respectively.

SELECT INT2AND(col1,col2) from TAB1
returns the value 12

382 IBM Db2 V11.5: SQL Reference

ISNULL
The ISNULL function returns the first non-null expression in a list of two expressions.

ISNULL (expression1 , expression2)

The schema is SYSIBM.

The ISNULL function is identical to the “COALESCE ” on page 308, except that ISNULL is limited to two
arguments.

JSON_ARRAY
The JSON_ARRAY function generates a JSON array by explicitly listing the array elements by using
JSON-expression, or by using a query.

JSON_ARRAY (
,

JSON-expression

FORMAT JSON

BSON

fullselect

FORMAT JSON

BSON

ABSENT ON NULL

NULL ON NULL

RETURNING CLOB(2G) FORMAT JSON

RETURNING data-type

FORMAT JSON

ENCODING UTF8

)

data-type

Chapter 1. Structured Query Language (SQL) 383

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

Although the schema for this function is SYSIBM, the function cannot be specified as a qualified name.

JSON-expression
The expression that is used to generate a value in the JSON array.

The result type of this expression can be any built-in data type, except the following data types
(SQLSTATE 42815):

• GRAPHIC
• VARGRAPHIC
• DBCLOB
• BINARY
• CHAR FOR BIT DATA
• VARCHAR FOR BIT DATA
• XML
• A user-defined type that is sourced on any of the previously listed data types

If the generated value is numeric, it cannot be Infinity, NaN, or sNaN (SQLSTATE 22023).

If FORMAT JSON or FORMAT BSON is not specified, and the generated value is not numeric, any
special characters (for example, backslash or double quotation marks) within the result string are
escaped.

If FORMAT JSON or FORMAT BSON is not specified and JSON-expression is binary string type, it is
interpreted as FORMAT BSON.

FORMAT JSON
JSON-expression is formatted as JSON data.

If JSON-expression is a character string data type, it is treated as JSON data.

If JSON-expression is a binary string data type, it is interpreted as UTF-8 data.

384 IBM Db2 V11.5: SQL Reference

FORMAT BSON
Specifies that JSON-expression is formatted as the BSON representation of JSON data (SQLSTATE
22032). JSON-expression must be a binary string data type (SQLSTATE 42815).

fullselect
Specifies a fullselect that returns a single column to be used to generate the values in the array
(SQLSTATE 42823). The value of each row is used to generate a value in the JSON array.

The result type of this column cannot be any of the following data types (SQLSTATE 42815):

• GRAPHIC
• VARGRAPHIC
• DBCLOB
• BINARY
• CHAR FOR BIT DATA
• VARCHAR FOR BIT DATA
• XML
• A user-defined type that is sourced on any of the previously listed data types

If the generated value is numeric, it cannot be Infinity, NaN, or sNaN (SQLSTATE 22023).

If FORMAT JSON or FORMAT BSON is not specified and the generated value is not numeric, any
special characters (for example, backslash or double quotation marks) within the result string are
escaped.

If FORMAT JSON or FORMAT BSON is not specified and the fullselect is binary string type, it is
interpreted as FORMAT BSON.

FORMAT JSON
fullselect is formatted as JSON data.

If fullselect is a character string data type, it is treated as JSON data.

If fullselect is a binary string data type, it is interpreted as UTF-8 data.

FORMAT BSON
Specifies that fullselect is formatted as the BSON representation of JSON data (SQLSTATE 22032).
fullselect must be a binary string data type (SQLSTATE 42815).

ON NULL
Specifies what to return when an array element produced by JSON-expression or fullselect is the null
value.
ABSENT ON NULL

A null array element is not included in the JSON array. This clause is the default.
NULL ON NULL

A null array element is included in the JSON array.
RETURNING data-type

The data type of the result can be CHAR, VARCHAR, CLOB, VARBINARY, or BLOB (SQLSTATE 42815).
The default is CLOB (2 GB).

See “CREATE TABLE ” on page 1351 for the description of built-in data types.

FORMAT JSON
The returned data is formatted as JSON data.
ENCODING UTF8

Specifies the encoding to use when data-type is a binary string type. This clause is allowed
only for binary string types. The default for binary strings is UTF-8.

Chapter 1. Structured Query Language (SQL) 385

Notes
• If parameter markers are not explicitly cast to a supported data type, an error is returned (SQLSTATE

42815)

Examples
1. Generate a JSON array that contains the values 'Washington', 'Jefferson', and 'Hamilton'.

VALUES JSON_ARRAY('Washington', 'Jefferson', 'Hamilton');

1

["Washington","Jefferson","Hamilton"]

2. Generate a JSON array that includes all department numbers.

VALUES JSON_ARRAY(SELECT DEPTNO FROM DEPT);

1

["F22","G22","H22","I22","J22"]

JSON_OBJECT
The JSON_OBJECT function generates a JSON object by using the specified key:value pairs. If no
key:value pairs are provided, an empty object is returned.

JSON_OBJECT(
,

KEY
key-expression VALUE JSON-expression

FORMAT JSON

BSON

NULL ON NULL

ABSENT ON NULL

WITHOUT UNIQUE KEYS

WITH UNIQUE KEYS

RETURNING CLOB(2G) FORMAT JSON

RETURNING data-type

FORMAT JSON

ENCODING UTF8

FORMAT BSON

)

data-type

386 IBM Db2 V11.5: SQL Reference

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

Although the schema for this function is SYSIBM, the function cannot be specified as a qualified name.

key-expression
The name of the JSON key. The name must not be null (SQLSTATE 22004). The result of key-
expression must be a built-in character string data type, except the following data types (SQLSTATE
42815):

• GRAPHIC
• VARGRAPHIC
• DBCLOB
• CHAR FOR BIT DATA
• VARCHAR FOR BIT DATA

JSON-expression
The expression that is used to generate the JSON value that is associated with key-expression.

The result type of this expression can be any built-in data type, except the following data types
(SQLSTATE 42815):

• GRAPHIC
• VARGRAPHIC
• DBCLOB
• BINARY
• CHAR FOR BIT DATA
• VARCHAR FOR BIT DATA
• XML
• A user-defined type that is sourced on any of the previously listed data types

If the generated value is numeric, it cannot be Infinity, NaN, or sNaN (SQLSTATE 22023).

Chapter 1. Structured Query Language (SQL) 387

If FORMAT JSON or FORMAT BSON is not specified, and the generated value is not numeric, any
special characters (for example, backslash or double quotation marks) within the result string are
escaped.

If FORMAT JSON or FORMAT BSON is not specified and the expression is binary string type, it is
interpreted as FORMAT BSON.

FORMAT JSON
JSON-expression is formatted as JSON data.

If JSON-expression is a character string data type, it is treated as JSON data.

If JSON-expression is a binary string data type, it is interpreted as UTF-8 data.

FORMAT BSON
Specifies that JSON-expression is formatted as the BSON representation of JSON data (SQLSTATE
22032). JSON-expression must be a binary string data type (SQLSTATE 42815).

ON NULL
Specifies what to return when JSON-expression is the null value.
NULL ON NULL

A character string that represents the null value is returned. This clause is the default.
ABSENT ON NULL

The key:value pair is omitted from the JSON object.
WITHOUT UNIQUE KEYS or WITH UNIQUE KEYS

Specifies whether the key values for the resulting JSON object must be unique.
WITHOUT UNIQUE KEYS

The resulting JSON object is not checked for duplicate keys. This clause is the default.
WITH UNIQUE KEYS

The resulting JSON object must have unique key values (SQLSTATE 22037).

Generating a JSON object with unique keys is considered best practice. If key-expression generates
unique key names, omit WITH UNIQUE KEYS to improve performance.

RETURNING data-type
The data type of the result can be CHAR, VARCHAR, CLOB, VARBINARY, or BLOB (SQLSTATE 42815).
The default is CLOB (2 GB).

See “CREATE TABLE ” on page 1351 for the description of built-in data types.

FORMAT JSON
The returned data is formatted as JSON data.
ENCODING UTF8

Specifies the encoding to use when data-type is a binary string type. This clause is allowed
only for binary string types. The default for binary strings is UTF-8.

FORMAT BSON
The returned data is formatted as the BSON representation of JSON data (SQLSTATE 22032).
data-type must be a binary string data type (SQLSTATE 42815).

Notes
• If parameter markers are not explicitly cast to a supported data type, an error is returned (SQLSTATE

42815)

Examples
1. Generate a JSON object for a person’s name.

VALUES JSON_OBJECT(KEY 'first' VALUE 'John', KEY 'last' VALUE 'Doe')

1

388 IBM Db2 V11.5: SQL Reference

{"first":"John","last":"Doe"}

2. Generate a JSON object that contains the surname, hire date, and salary for the employee with an
employee number of '000020'.

SELECT JSON_OBJECT(KEY 'Last name' VALUE LASTNAME,
 KEY 'Hire date' VALUE HIREDATE,
 KEY 'Salary' VALUE SALARY)
 FROM EMPLOYEE
 WHERE EMPNO = '000020';

1

{"Last name":"THOMPSON","Hire date":"1973-10-10","Salary":41250.00}

JSON_QUERY
The JSON_QUERY function returns an SQL/JSON value from the specified JSON text by using an SQL/
JSON path expression.

JSON_QUERY (JSON-expression

FORMAT JSON

FORMAT BSON

, sql-json-path-expression

AS path-name

RETURNING CLOB(2G) FORMAT JSON

RETURNING data-type

FORMAT JSON

ENCODING UTF8

FORMAT BSON

WITHOUT
ARRAY

WRAPPER

WITH
UNCONDITIONAL

CONDITIONAL

ARRAY
WRAPPER

KEEP QUOTES
ON SCALAR STRING

OMIT QUOTES
ON SCALAR STRING

NULL ON EMPTY

ERROR

EMPTY ARRAY

EMPTY OBJECT

ON EMPTY

NULL ON ERROR

ERROR

EMPTY ARRAY

EMPTY OBJECT

ON ERROR

)

data-type

Chapter 1. Structured Query Language (SQL) 389

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

Although the schema for this function is SYSIBM, the function cannot be specified as a qualified name.

JSON-expression
An expression that returns a value that is a built-in string data type, except the following data types
(SQLSTATE 42815):

• GRAPHIC
• VARGRAPHIC
• DBCLOB
• BINARY
• CHAR FOR BIT DATA
• VARCHAR FOR BIT DATA
• A user-defined type that is sourced on any of the previously listed data types

If a character value is returned, it must contain correctly formatted JSON data (SQLSTATE 22032). If a
binary data type is returned, it is interpreted according to the explicit or implicit FORMAT clause.

FORMAT JSON
JSON-expression is formatted as JSON data.

If JSON-expression is a character string data type, it is treated as JSON data.

If JSON-expression is a binary string data type, it is interpreted as UTF-8 data.

FORMAT BSON
Specifies that JSON-expression is formatted as the BSON representation of JSON data (SQLSTATE
22032). JSON-expression must be a binary string data type (SQLSTATE 42815).

sql-json-path-expression
An expression that returns a value that is a built-in character string data type. The string is interpreted
as an SQL/JSON path expression and is used to locate a JSON value within the JSON data that

390 IBM Db2 V11.5: SQL Reference

is specified by JSON-expression. For more information about the SQL/JSON path expression, see
“sql-json-path-expression” on page 179.

AS path-name
Specifies a name to be used to identify sql-json-path-expression.

RETURNING data-type
The data type of the result can be CHAR, VARCHAR, CLOB, VARBINARY, or BLOB (SQLSTATE 42815).
The default is CLOB (2 GB).

See “CREATE TABLE ” on page 1351 for the description of built-in data types.

FORMAT JSON
The returned data is formatted as JSON data.
ENCODING UTF8

Specifies the encoding to use when data-type is a binary string type. This clause is allowed
only for binary string types. The default for binary strings is UTF-8.

FORMAT BSON
The returned data is formatted as the BSON representation of JSON data (SQLSTATE 22032).
data-type must be a binary string data type (SQLSTATE 42815).

WITHOUT ARRAY WRAPPER or WITH ARRAY WRAPPER
Specifies whether the output value is wrapped in a JSON array.
WITHOUT ARRAY WRAPPER

The result is not wrapped. This clause is the default. Using a strict SQL/JSON path definition that
resolves to a sequence of two or more SQL/JSON elements results in an error (SQLSTATE 2203A).
Using a lax SQL/JSON path definition with the ON EMPTY that resolves to a sequence of two or
more SQL/JSON elements will result in an error (SQLSTATE 22035).

WITH UNCONDITIONAL ARRAY WRAPPER
The result is enclosed in square brackets to create a JSON array.

WITH CONDITIONAL ARRAY WRAPPER
Indicates that the result is enclosed in square brackets to create a JSON array for either of the
following scenarios:

• More than one SQL/JSON element is returned.
• A single SQL/JSON element that is not a JSON array or a JSON object is returned.

KEEP QUOTES or OMIT QUOTES
Specifies whether the surrounding quotation marks should be removed when a scalar string is
returned.
KEEP QUOTES

Quotation marks are not removed from scalar strings. This clause is the default.
OMIT QUOTES

Quotation marks are removed from scalar strings. When OMIT QUOTES is specified, the WITH
ARRAY WRAPPER clause cannot be specified (SQLSTATE 42601).

ON EMPTY
Specifies the behavior when an empty sequence is returned by sql-json-path-expression.
NULL ON EMPTY

A null value is returned. This clause is the default.
ERROR ON EMPTY

An error is returned.
EMPTY ARRAY ON EMPTY

An empty array is returned.
EMPTY OBJECT ON EMPTY

An empty object is returned.

Chapter 1. Structured Query Language (SQL) 391

ON ERROR
Specifies the behavior when an error is encountered by JSON_QUERY.
NULL ON ERROR

A null value is returned. This clause is the default.
ERROR ON ERROR

An error is returned.
EMPTY ARRAY ON ERROR

An empty array is returned.
EMPTY OBJECT ON ERROR

An empty object is returned.

The result can be null. If JSON-expression is null, the result is the null value.

Notes
• If parameter markers are not explicitly cast to a supported data type, an error is returned (SQLSTATE

42815)

Example
1. Return the JSON object that is associated with the name key from JSON text.

VALUES JSON_QUERY('{"id":"701", "name":{"first":"John", "last":"Doe"}}', '$.name');

The result is the following string that represents a JSON object:

{"first":"John", "last":"Doe"}

See the example at “sql-json-path-expression” on page 179 for different array wrapper options with
JSON_QUERY.

JSON_TO_BSON
The JSON_TO_BSON function converts a string that contains data that is formatted for JSON to a binary
string that contains data that is formatted as BSON.

JSON_TO_BSON (JSON-expression)

Although the schema for this function is SYSIBM, the function cannot be specified as a qualified name.

JSON-expression
Specifies an expression that returns a character string value. It must contain formatted JSON data
(SQLSTATE 22032).

If JSON-expression can be null, the result can be null; if JSON-expression is null, the result is the null
value.

Notes
• If parameter markers are not explicitly cast to a supported data type, an error is returned (SQLSTATE

42815)

Examples
1. Convert a valid JSON document to BSON format and insert it into in a table.

INSERT INTO TESTJSON VALUES (JSON_TO_BSON('{"Name":"George"}'));

392 IBM Db2 V11.5: SQL Reference

This example inserts x'16000000024E616D65000700000047656F7267650000' into the table
named TESTJSON.

2. Convert an incorrectly formatted JSON document, which is missing a value for the key "Name".

INSERT INTO TESTJSON VALUES (JSON_TO_BSON('{"Name":, "Age" : 32}'));

SQL16402N JSON data is not valid. SQLSTATE=22032

This example results in an error.

JSON_VALUE
The JSON_VALUE function returns an SQL scalar value from JSON text, by using an SQL/JSON path
expression.

JSON_VALUE (JSON-expression

FORMAT JSON

FORMAT BSON

, sql-json-path-expression

AS path-name

RETURNING CLOB(2G)

RETURNING data-type

NULL ON EMPTY

ERROR

DEFAULT default-expression

ON EMPTY

NULL ON ERROR

ERROR

DEFAULT default-expression

ON ERROR

)

data-type

Chapter 1. Structured Query Language (SQL) 393

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( precision-integer
,0

, scale-integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

Although the schema for this function is SYSIBM, the function cannot be specified as a qualified name.

JSON-expression
An expression that returns a value that is a built-in string data type, except the following data types
(SQLSTATE 42815):

394 IBM Db2 V11.5: SQL Reference

• GRAPHIC
• VARGRAPHIC
• DBCLOB
• BINARY
• CHAR FOR BIT DATA
• VARCHAR FOR BIT DATA
• A user-defined type that is sourced on any of the previously listed data types

If a character value is returned, it must contain correctly formatted JSON data (SQLSTATE 22032). If a
binary data type is returned, it is interpreted according to the explicit or implicit FORMAT clause.

FORMAT JSON
JSON-expression is formatted as JSON data.

If JSON-expression is a character string data type, it is treated as JSON data.

If JSON-expression is a binary string data type, it is interpreted as UTF-8 data.

FORMAT BSON
Specifies that JSON-expression is formatted as the BSON representation of JSON data (SQLSTATE
22032). JSON-expression must be a binary string data type (SQLSTATE 42815).

sql-json-path-expression
An expression that returns a value that is a built-in character string data type. The string is interpreted
as an SQL/JSON path expression and is used to locate a JSON value within the JSON data that
is specified by JSON-expression. For more information about the SQL/JSON path expression, see
“sql-json-path-expression” on page 179.

AS path-name
Specifies a name to be used to identify sql-json-path-expression.

RETURNING data-type
Specifies the data type of the result. The default is CLOB (2 GB). The default encoding used when
data-type is a binary string type is UTF-8.

See “CREATE TABLE ” on page 1351 for the description of built-in data types.

ON EMPTY
Specifies the behavior when an empty sequence is returned by sql-json-path-expression.
NULL ON EMPTY

A null value is returned. This clause is the default.
ERROR ON EMPTY

An error is returned.
DEFAULT default-expression ON EMPTY

The value that is specified by default-expression is returned. The data type of default-expression
must be the same as the returning data type (SQLSTATE 42815).

ON ERROR
Specifies the behavior when an error is encountered by JSON_VALUE.
NULL ON ERROR

A null value is returned. This clause is the default.
ERROR ON ERROR

An error is returned.
DEFAULT default-expression ON ERROR

The value that is specified by default-expression is returned. The data type of default-expression
must be the same as the returning data type (SQLSTATE 42815).

The result can be null. If JSON-expression is null, the result is the null value.

Chapter 1. Structured Query Language (SQL) 395

Notes
• If parameter markers are not explicitly cast to a supported data type, an error is returned (SQLSTATE

42815)

Examples
1. Return a value from JSON text as an integer.

VALUES (JSON_VALUE('{"id":"987"}', 'strict $.id' RETURNING INTEGER));

The result is 987.
2. Get the value for the bonus field from JSON text. Return it as an integer.

VALUES (JSON_VALUE('{"pay":{"salary":94250.00,"bonus":800.00,"comm":3300.00}}',
 'strict $.pay.bonus' RETURNING INTEGER));

The result is 800.

JULIAN_DAY
Returns an integer value representing the number of days from January 1, 4713 B.C. (the start of the
Julian date calendar) to the date value specified in the argument.

JULIAN_DAY (expression)

The schema is SYSFUN.

expression
An expression that returns a value of one of the following built-in data types: a DATE, TIMESTAMP, or a
valid character string representation of a date or timestamp that is not a CLOB. In a Unicode database,
if a supplied argument is a graphic string, it is first converted to a character string before the function
is executed.

The result of the function is INTEGER. The result can be null; if the argument is null, the result is the null
value.

LAST_DAY
The LAST_DAY scalar function returns a date or timestamp value that represents the last day of the month
of the argument.

LAST_DAY (expression)

The schema is SYSIBM.

expression
An expression that specifies the starting date. The expression must return a value of one of the
following built-in data types: a DATE or a TIMESTAMP.

The result of the function has the same data type as expression, unless expression is a string, in which
case the result data type is DATE. The result can be null; if the value of date-expression is null, the result is
the null value.

Any hours, minutes, seconds or fractional seconds information included in expression is not changed by
the function.

396 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: Set the host variable END_OF_MONTH with the last day of the current month.

 SET :END_OF_MONTH = LAST_DAY(CURRENT_DATE);

The host variable END_OF_MONTH is set with the value representing the end of the current month. If the
current day is 2000-02-10, then END_OF_MONTH is set to 2000-02-29.

• Example 2: Set the host variable END_OF_MONTH with the last day of the month in EUR format for the
given date.

 SET :END_OF_MONTH = CHAR(LAST_DAY('1965-07-07'), EUR);

The host variable END_OF_MONTH is set with the value '31.07.1965'.

LCASE
The LCASE function returns a string in which all the SBCS characters of the input string have been
converted to lowercase characters. The LCASE scalar function is a synonym for the LOWER scalar
function.

LCASE (string-expression)

The schema is SYSIBM.

LCASE (locale sensitive)
The LCASE function returns a string in which all characters have been converted to lowercase characters
using the rules associated with the specified locale. The LCASE scalar function is a synonym for the
LOWER scalar function.

LCASE (string-expression , locale-name

, code-units

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

LCASE (SYSFUN schema)
The LCASE function returns a string in which all SBCS characters have been converted to lowercase
characters, that is, the characters A-Z have been converted to the characters a-z. Characters with
diacritical marks are not converted. Consequently, a statement of the form LCASE(UCASE(string))
will not necessarily return the same result as LCASE(string).

LCASE (expression)

The schema is SYSFUN.

expression
An expression that returns a built-in character string or Boolean value. In a Unicode database, the
expression can also return a graphic string, in which case it is first converted to a character string
before the function is evaluated. For a VARCHAR, the maximum length is 4000 bytes. For a CLOB, the
maximum length is 1,048,576 bytes.

Chapter 1. Structured Query Language (SQL) 397

Result
The data type of the result depends on the data type of the input expression:

• VARCHAR(4000) if the input expression is VARCHAR or CHAR
• CLOB(1M) if the input expression is CLOB or LONG VARCHAR

The result can be null; if the input expression is null, the result is the null value.

LEAST
The LEAST function returns the minimum value in a set of values.

LEAST (expression , expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in data type or user-defined data type that is
comparable with the data type of the other argument. The data type cannot be a LOB, distinct type
base on a LOB, XML, array, cursor, row, or structured type.

Result
The result of the function is the smallest argument value. The result can be null if at least one argument
can be null; the result is the null value if any argument is null.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined by the data types of all the arguments as explained in "Rules for result data types".

Notes
• The LEAST scalar function is a synonym for the MIN scalar function.
• The LEAST function cannot be used as a source function when creating a user-defined function.

Because this function accepts any comparable data types as arguments, it is not necessary to create
additional signatures to support user-defined data types.

Example
Assume that table T1 contains three columns C1, C2, and C3 with values 1, 7, and 4, respectively. The
query:

 SELECT LEAST (C1, C2, C3) FROM T1

returns 1.

If column C3 has a value of null instead of 4, the same query returns the null value.

LEFT
The LEFT function returns the leftmost string of string-expression of length length, expressed in the
specified string unit.

LEFT (string-expression , length

, CODEUNITS16

CODEUNITS32

OCTETS

)

398 IBM Db2 V11.5: SQL Reference

The schema is SYSIBM. The SYSFUN version of the LEFT function continues to be available.

string-expression
An expression that specifies the string from which the result is derived. The expression must return
a built-in string, numeric value, Boolean value, or datetime value. If the value is not a string, it is
implicitly cast to VARCHAR before the function is evaluated. Zero or more contiguous code points of
the string comprise a substring of the string.

The string-expression is padded on the right with the necessary number of padding characters so that
the specified substring of string-expression always exists. The character used for padding is the same
character that is used to pad the string in contexts where padding would occur. For more information
about padding, see "String assignments" in "Assignments and comparisons".

length

An expression that specifies the length of the result. The expression must return a value that is a
built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. If the value is not of type
INTEGER, it is implicitly cast to INTEGER before evaluating the function. length must be greater than
or equal to 0 (SQLSTATE 22011). If OCTETS is specified and the result is graphic data, the value must
be an even number (SQLSTATE 428GC).

If length is not a constant and a string unit is not specified, length must be less than or equal to the
length attribute of string-expression (SQLSTATE 22011).

If length is not a constant and a string unit is specified, length must be less than or equal to the
corresponding value from the following table (SQLSTATE 22011):

Table 70. Maximum value of length when length is not a constant and a string unit is specified

String unit of string-expression Specified string unit Maximum value of length

L = length attribute of string-
expression

OCTETS OCTETS L

OCTETS CODEUNITS16 L/2

OCTETS CODEUNITS32 L/4

CODEUNITS16 OCTETS L*2

CODEUNITS16 CODEUNITS16 L

CODEUNITS16 CODEUNITS32 L/2

CODEUNITS32 OCTETS L*4

CODEUNITS32 CODEUNITS16 L*2

CODEUNITS32 CODEUNITS32 L

If length is a constant and the data type of string-expression is:
CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC

length must be less than or equal to 32,672 OCTETS, 16,336 CODEUNITS16 or 8168
CODEUNITS32 (SQLSTATE 22011).

CLOB or DBCLOB
length must be less than or equal to 2,147,483,647 OCTETS, 1,073,741,823 CODEUNITS16, or
53,6870,911 CODEUNITS32 (SQLSTATE 22011).

BLOB
length must be less than or equal to 2,147,483,647 OCTETS (SQLSTATE 22011).

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of length.

Chapter 1. Structured Query Language (SQL) 399

CODEUNITS16 specifies that length is expressed in 16-bit UTF-16 code units. CODEUNITS32
specifies that length is expressed in 32-bit UTF-32 code units. OCTETS specifies that length is
expressed in bytes.

If the string unit is specified as CODEUNITS16 or CODEUNITS32, and string-expression is a binary
string or bit data, an error is returned (SQLSTATE 428GC). If the string unit is specified as OCTETS and
string-expression is a graphic string, length must be an even number; otherwise, an error is returned
(SQLSTATE 428GC). If a string unit is not explicitly specified, the string unit of string-expression
determines the unit that is used. For more information about CODEUNITS16, CODEUNITS32, and
OCTETS, see "String units in built-in functions" in "Character strings".

Result
The result of the function is a varying-length string that depends on the data type of string-expression:

• VARCHAR if string-expression is CHAR or VARCHAR
• CLOB if string-expression is CLOB
• VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC
• DBCLOB if string-expression is DBCLOB
• VARBINARY if string-expression is BINARY or VARBINARY
• BLOB if string-expression is BLOB

The string unit of the result is the string unit of string-expression.The length attribute of the result depends
on how length and string unit are specified:

• If length is not a constant, then the length attribute of the result is the same as the length attribute of
string-expression.

• If length is a constant and a string unit is not specified, then the length attribute of the result is the
maximum of length and the length attribute of string-expression.

• If length is a constant and a string unit is specified, then the length attribute of the result is shown in
Table 2:

Table 71. Length attribute of result when length is a constant and a string unit is specified

String unit of string-expression Specified string unit Maximum value of length

L = length attribute of string-
expression

OCTETS OCTETS max(L, length)

OCTETS CODEUNITS16 max(L, length * 2)

OCTETS CODEUNITS32 max(L, length * 4)

CODEUNITS16 OCTETS max(L, length / 2)

CODEUNITS16 CODEUNITS16 max(L, length)

CODEUNITS16 CODEUNITS32 max(L, length * 2)

CODEUNITS32 OCTETS max(L, length / 4)

CODEUNITS32 CODEUNITS16 max(L, length / 2)

CODEUNITS32 CODEUNITS32 max(L, length)

The actual length of the result (in string units) is length.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

400 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: Assume that variable ALPHA has a value of "ABCDEF". The following statement:

 SELECT LEFT(ALPHA,3)
 FROM SYSIBM.SYSDUMMY1

returns "ABC", which are the three leftmost characters in ALPHA.
• Example 2: Assume that variable NAME, which is defined as VARCHAR(50), has a value of "KATIE

AUSTIN", and that the integer variable FIRSTNAME_LEN has a value of 5. The following statement:

 SELECT LEFT(NAME,FIRSTNAME_LEN)
 FROM SYSIBM.SYSDUMMY1

returns the value "KATIE".
• Example 3: The following statement returns a zero-length string.

 SELECT LEFT('ABCABC',0)
 FROM SYSIBM.SYSDUMMY1

• Example 4: The FIRSTNME column in the EMPLOYEE table is defined as VARCHAR(12). Find the first
name of an employee whose last name is "BROWN" and return the first name in a 10-byte string.

 SELECT LEFT(FIRSTNME, 10)
 FROM EMPLOYEE
 WHERE LASTNAME = 'BROWN'

returns a VARCHAR(12) string that has the value "DAVID" followed by five blank characters.
• Example 5: In a Unicode database, FIRSTNAME is a VARCHAR(12) column. One of its values is the

6-character string "Jürgen". When FIRSTNAME has this value:

 Function... Returns...

 LEFT(FIRSTNAME,2,CODEUNITS32) 'Jü' -- x'4AC3BC'
 LEFT(FIRSTNAME,2,CODEUNITS16) 'Jü' -- x'4AC3BC'
 LEFT(FIRSTNAME,2,OCTETS) 'J' -- x'4A20', a truncated string

• Example 6: The following example works with the Unicode string "&N~AB", where "&" is the musical
symbol G clef character, and "~" is the combining tilde character. This string is shown in different
Unicode encoding forms in the following example:

"&" "N" "~" "A" "B"

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16BE X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

Assume that the variable UTF8_VAR, with a length attribute of 20 bytes, contains the UTF-8
representation of the string.

 SELECT LEFT(UTF8_VAR, 2, CODEUNITS16),
 LEFT(UTF8_VAR, 2, CODEUNITS32),
 LEFT(UTF8_VAR, 2, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "&", "&N", and "bb", respectively, where "b" represents the blank character.

 SELECT LEFT(UTF8_VAR, 5, CODEUNITS16),
 LEFT(UTF8_VAR, 5, CODEUNITS32),
 LEFT(UTF8_VAR, 5, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "&N~A", "&N~AB", and "&N", respectively.

 SELECT LEFT(UTF8_VAR, 10, CODEUNITS16),
 LEFT(UTF8_VAR, 10, CODEUNITS32),

Chapter 1. Structured Query Language (SQL) 401

 LEFT(UTF8_VAR, 10, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "&N~ABbbbb", "&N~ABbbbbb", and "&N~ABb", respectively, where "b" represents
the blank character.

Assume that the variable UTF16_VAR, with a length attribute of 20 code units, contains the UTF-16BE
representation of the string.

 SELECT LEFT(UTF16_VAR, 2, CODEUNITS16),
 LEFT(UTF16_VAR, 2, CODEUNITS32),
 HEX (LEFT(UTF16_VAR, 2, OCTETS))
 FROM SYSIBM.SYSDUMMY1

returns the values "&", "&N", and X'D834', respectively, where X'D834' is an unmatched high surrogate.

 SELECT LEFT(UTF16_VAR, 5, CODEUNITS16),
 LEFT(UTF16_VAR, 5, CODEUNITS32),
 LEFT(UTF16_VAR, 6, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "&N~A", "&N~AB", and "&N", respectively.

 SELECT LEFT(UTF16_VAR, 10, CODEUNITS16),
 LEFT(UTF16_VAR, 10, CODEUNITS32),
 LEFT(UTF16_VAR, 10, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "&N~ABbbbb", "&N~ABbbbbb", and "&N~A", respectively, where "b" represents the
blank character.

LENGTH
The LENGTH function returns the length of expression in the implicit or explicit string unit.

LENGTH (expression

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

expression
An expression that returns a value that is a built-in data type. If expression can be null, the result can
be null; if expression is null, the result is the null value.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the result. CODEUNITS16 specifies that the result is to be expressed in
16-bit UTF-16 code units. CODEUNITS32 specifies that the result is to be expressed in 32-bit UTF-32
code units. OCTETS specifies that the result is to be expressed in bytes.

If a string unit is explicitly specified, and if expression is not string data, an error is returned
(SQLSTATE 428F5). If a string unit is specified as CODEUNITS16 or CODEUNITS32, and expression is a
binary string or bit data, an error is returned (SQLSTATE 428GC). If a string unit is specified as OCTETS
and expression is a binary string, an error is returned (SQLSTATE 42815). For more information about
CODEUNITS16, CODEUNITS32, and OCTETS, see "String units in built-in functions" in "Character
strings".

If a string unit argument is not explicitly specified and if expression is a character or graphic string, the
string units of expression determines the string unit that is used for the result. Otherwise, the value
returned specifies the length in bytes.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

402 IBM Db2 V11.5: SQL Reference

The length of character and graphic strings includes trailing blanks. The length of binary strings includes
binary zeros. The length of varying-length strings is the actual length and not the maximum length. The
length of all other values is the number of bytes used to represent the value:

• 2 for small integer (SMALLINT)
• 4 for large integer (INTEGER)
• 8 for big integer (BIGINT)
• (p/2)+1 for decimal numbers with precision p
• 8 for DECFLOAT(16)
• 16 for DECFLOAT(34)
• The length of the string for binary strings
• The length of the string for character strings
• 4 for single-precision floating-point
• 8 for double-precision floating-point
• 4 for DATE
• 3 for TIME
• 7+(p+1)/2 for TIMESTAMP(p)

Examples
• Example 1: Assume that the host variable ADDRESS is a varying-length character string with a value of

'895 Don Mills Road'.

 LENGTH(:ADDRESS)

returns the value 18.
• Example 2: Assume that START_DATE is a column of type DATE.

 LENGTH(START_DATE)

returns the value 4.
• Example 3: The following example returns the value 10.

 LENGTH(CHAR(START_DATE, EUR))

• Example 4: The following examples work with the Unicode string '&N~AB', where '&' is the musical
symbol G clef character, and '~' is the combining tilde character. This string is shown in different
Unicode encoding forms in the following example:

'&' 'N' '~' 'A' 'B'

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16BE X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

UTF-32BE X'0001D11E' X'0000004E' X'00000303' X'00000041' X'00000042'

Assume that the variable UTF8_VAR contains the UTF-8 representation of the string.

 SELECT LENGTH(UTF8_VAR, CODEUNITS16),
 LENGTH(UTF8_VAR, CODEUNITS32),
 LENGTH(UTF8_VAR, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 9, respectively.

Assume that the variable UTF16_VAR contains the UTF-16BE representation of the string.

Chapter 1. Structured Query Language (SQL) 403

 SELECT LENGTH(UTF16_VAR, CODEUNITS16),
 LENGTH(UTF16_VAR, CODEUNITS32),
 LENGTH(UTF16_VAR, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 12, respectively.

LENGTH2
The LENGTH2 function returns the length of expression in 16-bit UTF-16 string units (CODEUNITS16).

LENGTH2 (expression)

The schema is SYSIBM.

expression
An expression that returns a value that is a built-in data type.

The LENGTH2 scalar function invoked with a character or graphic string as the argument is equivalent to
invoking the LENGTH function with CODEUNITS16 specified. The LENGTH2 scalar function invoked with
any other data type as the argument is equivalent to invoking the LENGTH function without a string units
argument.

LENGTH4
The LENGTH4 function returns the length of expression in 32-bit UTF-32 string units (CODEUNITS32).

LENGTH4 (expression)

The schema is SYSIBM.

expression
An expression that returns a value that is a built-in data type.

The LENGTH4 scalar function invoked with a character or graphic string as the argument is equivalent to
invoking the LENGTH function with CODEUNITS32 specified. The LENGTH4 scalar function invoked with
any other data type as the argument is equivalent to invoking the LENGTH function without a string units
argument.

LENGTHB
The LENGTHB function returns the length of expression in bytes.

LENGTHB (expression)

The schema is SYSIBM.

expression
An expression that returns a value that is a built-in data type.

The LENGTHB scalar function invoked with a character or graphic string as the argument is equivalent
to invoking the LENGTH function with OCTETS specified. The LENGTHB scalar function invoked with any
other data type as the argument is equivalent to invoking the LENGTH function without a string units
argument.

LN
The LN function returns the natural logarithm of a number. The LN and EXP functions are inverse
operations.

LN (expression)

404 IBM Db2 V11.5: SQL Reference

The schema is SYSIBM. (The SYSFUN version of the LN function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type. If the value is of decimal
floating-point data type, the operation is performed in decimal floating-point; otherwise, the value is
converted to double-precision floating-point for processing by the function. The value of the argument
must be greater than zero (SQLSTATE 22003).

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result is a double-precision
floating-point number. The result can be null; if the argument is null, the result is the null value.

Notes
• Results involving DECFLOAT special values: For decimal floating-point values, the special values are

treated as follows:

– LN(NaN) returns NaN.
– LN(-NaN) returns -NaN.
– LN(Infinity) returns Infinity.
– LN(-Infinity) returns NaN and a warning.
– LN(sNaN) returns NaN and a warning.
– LN(-sNaN) returns -NaN and a warning.
– LN(DECFLOAT('0') returns -Infinity.

• Syntax alternatives: For compatibility with other SQL dialects, LOG can be specified in place of LN.
However, because some database managers and applications use LOG to mean a common logarithm
rather than a natural logarithm, use LN instead of LOG whenever possible.

Example
Assume that NATLOG is a DECIMAL(4,2) host variable with a value of 31.62.

 VALUES LN(:NATLOG)

Returns the approximate value 3.45.

LOCATE
The LOCATE function returns the starting position of the first occurrence of one string (called the search-
string) within another string (called the source-string).

LOCATE (search-string , source-string

, start

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM. The SYSFUN version of the LOCATE function continues to be available, but it is not
sensitive to the database collation.

If the search-string is not found and neither argument is null, the result is zero. If the search-string is
found, the result is a number from 1 to the actual length of the source-string. The search is done using the
collation of the database, unless search-string or source-string is defined as a binary string or as FOR BIT
DATA , in which case the search is done using a binary comparison.

Chapter 1. Structured Query Language (SQL) 405

If the optional start is specified, it indicates the character position in the source-string at which the search
is to begin. An optional string unit can be specified to indicate in what units the start and result of the
function are expressed.

If the search-string has a length of zero, the result returned by the function is 1. Otherwise, if the
source-string has a length of zero, the result returned by the function is 0. Otherwise:

• If the value of search-string is equal to an identical length of substring of contiguous positions within
the value of source-string, the result returned by the function is the starting position of the first such
substring within the source-string value.

• Otherwise, the result returned by the function is 0.

search-string
An expression that specifies the string that is the object of the search. The expression must return a
value that is a built-in CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, binary string, numeric, Boolean, or
datetime data type. If the value is not a CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, or binary string
data type, it is implicitly cast to VARCHAR before evaluating the function. The expression cannot be
specified by a LOB file reference variable.

source-string
An expression that specifies the string in which the search is to take place. The expression must
return a value that is a built-in string, numeric, Boolean, or datetime data type. If the value is not a
string data type, it is implicitly cast to VARCHAR before evaluating the function.

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC or VARGRAPHIC
data type. If the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the
function. The value of the integer must be greater than or equal to zero. If start is specified, the
LOCATE function is similar to:

 POSITION(search-string,
 SUBSTRING(source-string, start, string-unit),
 string-unit) + start - 1

where string-unit is either CODEUNITS16, CODEUNITS32, or OCTETS.

If start is not specified, the search begins at the first position of the source string, and the LOCATE
function is similar to:

 POSITION(search-string, source-string, string-unit)

If OCTETS is specified and source-string is graphic data, the value of the integer must be odd
(SQLSTATE 428GC).

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of start and the result. CODEUNITS16 specifies that start and the result are to
be expressed in 16-bit UTF-16 code units. CODEUNITS32 specifies that start and the result are to be
expressed in 32-bit UTF-32 code units. OCTETS specifies that start and the result are to be expressed
in bytes.

If a string unit is specified as CODEUNITS16 or CODEUNITS32, and search-string or source-string is a
binary string or FOR BIT DATA, an error is returned (SQLSTATE 428GC). If the string unit is specified as
CODEUNITS16 or OCTETS, and the string units of source-string is CODEUNITS32, an error is returned
(SQLSTATE 428GC).

If a string unit is not explicitly specified and if source-string is a character or graphic string, the
string units of source-string determines the unit that is used for the result and for start (if specified).
Otherwise, they are expressed in bytes.

If a locale-sensitive UCA-based collation is used for this function, then the CODEUNITS16 option
offers the best performance characteristics.

406 IBM Db2 V11.5: SQL Reference

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see "String units in built-in
functions" in "Character strings".

The first and second arguments must have compatible string types. For more information about
compatibility, see "Rules for string conversions". In a Unicode database, if one string argument is
character (not FOR BIT DATA) and the other string argument is graphic, then the search-string is converted
to the data type of the source-string for processing. If one argument is character FOR BIT DATA, the other
argument must not be graphic (SQLSTATE 42846).

The result of the function is a large integer. If any argument can be null, the result can be null; if any
argument is null, the result is the null value.

Examples
• Example 1: Find the location of the first occurrence of the character "N" in the string "DINING".

 SELECT LOCATE('N', 'DINING')
 FROM SYSIBM.SYSDUMMY1

The result is the value 3.
• Example 2: For all the rows in the table named IN_TRAY, select the RECEIVED column, the SUBJECT

column, and the starting position of the string "GOOD" within the NOTE_TEXT column.

 SELECT RECEIVED, SUBJECT, LOCATE('GOOD', NOTE_TEXT)
 FROM IN_TRAY
 WHERE LOCATE('GOOD', NOTE_TEXT) <> 0

• Example 3: Locate the character "ß" in the string "Jürgen lives on Hegelstraße", and set the host
variable LOCATION with the position, as measured in CODEUNITS32 units, within the string.

 SET :LOCATION = LOCATE('ß', 'Jürgen lives on Hegelstraße', 1, CODEUNITS32)

The value of host variable LOCATION is set to 26.
• Example 4: Locate the character '"ß" in the string "Jürgen lives on Hegelstraße", and set the host

variable LOCATION with the position, as measured in CODEUNITS16 units, within the string.

 SET :LOCATION = LOCATE('ß', 'Jürgen lives on Hegelstraße', 1, CODEUNITS16)

The value of host variable LOCATION is set to 26.
• Example 5: Locate the character "ß" in the string "Jürgen lives on Hegelstraße", and set the host

variable LOCATION with the position, as measured in OCTETS, within the string.

 SET :LOCATION = LOCATE('ß', 'Jürgen lives on Hegelstraße', 1, OCTETS)

The value of host variable LOCATION is set to 27.
• Example 6: The following examples work with the Unicode string "&N~AB", where "&" is the musical

symbol G clef character, and "~" is the non-spacing combining tilde character. This string is shown in
different Unicode encoding forms in the following example:

"&" "N" "~" "A" "B"

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16BE X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

Assume that the variable UTF8_VAR contains the UTF-8 representation of the string.

 SELECT LOCATE('~', UTF8_VAR, CODEUNITS16),
 LOCATE('~', UTF8_VAR, CODEUNITS32),
 LOCATE('~', UTF8_VAR, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values 4, 3, and 6, respectively.

Chapter 1. Structured Query Language (SQL) 407

Assume that the variable UTF16_VAR contains the UTF-16BE representation of the string.

 SELECT LOCATE('~', UTF16_VAR, CODEUNITS16),
 LOCATE('~', UTF16_VAR, CODEUNITS32),
 LOCATE('~', UTF16_VAR, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values 4, 3, and 7, respectively.
• Example 7: In a Unicode database created with the case insensitive collation CLDR181_LEN_S1, find

the position of the word "Brown" in the phrase "The quick brown fox".

SET :LOCATION = LOCATE('Brown', 'The quick brown fox', CODEUNITS16)

The value of the host variable LOCATION is set to 11.

LOCATE_IN_STRING
The LOCATE_IN_STRING function returns the starting position of a string (called the search-string) within
another string (called the source-string).

LOCATE_IN_STRING (source-string , search-string

, start

, instance

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM

If the search-string is not found and neither argument is null, the result is zero. If the search-string is
found, the result is a number from 1 to the actual length of the source-string. The search is done using the
collation of the database, unless search-string or source-string is defined as a binary string or as FOR BIT
DATA, in which case the search is done using a binary comparison.

If the optional start is specified, it indicates the character position in the source-string at which the search
is to begin. If the start is specified, an instance number can also be specified. The instance argument is
used to determine the position of a specific occurrence of search-string within source-string. An optional
string unit can be specified to indicate in what units the start and result of the function are expressed.

If the search-string has a length of zero, the result returned by the function is 1. If the source-string
has a length of zero, the result returned by the function is 0. If neither condition exists, and if the value
of search-string is equal to an identical length of a substring of contiguous positions within the value
of source-string, the result returned by the function is the starting position of that substring within the
source-string value; otherwise, the result returned by the function is 0.

source-string
An expression that specifies the string in which the search is to take place. The expression must
return a value that is a built-in string, numeric, Boolean, or datetime data type. If the value is not a
string data type, it is implicitly cast to VARCHAR before evaluating the function.

search-string
An expression that specifies the string that is the object of the search. The expression must return a
value that is a built-in CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, binary string, numeric, Boolean, or
datetime data type. If the value is not a CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, or binary string
data type, it is implicitly cast to VARCHAR before evaluating the function. The expression cannot be
specified by a LOB file reference variable.

start
An expression that specifies the position within source-string at which the search for a match is to
start. The expression must return a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC or

408 IBM Db2 V11.5: SQL Reference

VARGRAPHIC data type. If the value is not of type INTEGER, it is implicitly cast to INTEGER before
evaluating the function.

If the value of the integer is greater than zero, the search begins at start and continues for each
position to the end of the string. If the value of the integer is less than zero, the search begins at
LENGTH(source-string) + start + 1 and continues for each position to the beginning of the string.

If start is not specified, the default is 1. If OCTETS is specified and source-string is graphic data, the
value of the integer must be odd (SQLSTATE 428GC). If the value of the integer is zero, an error is
returned (SQLSTATE 42815).

instance
An expression that specifies which instance of search-string to search for within source-string. The
expression must return a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC or VARGRAPHIC
data type. If the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the
function. If instance is not specified, the default is 1. The value of the integer must be greater than or
equal to 1 (SQLSTATE 42815).

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of start and the result. CODEUNITS16 specifies that start and the result are to
be expressed in 16-bit UTF-16 code units. CODEUNITS32 specifies that start and the result are to be
expressed in 32-bit UTF-32 code units. OCTETS specifies that start and the result are to be expressed
in bytes.

If a string unit is specified as CODEUNITS16 or CODEUNITS32, and search-string or source-string is a
binary string or FOR BIT DATA, an error is returned (SQLSTATE 428GC). If the string unit is specified as
CODEUNITS16 or OCTETS, and the string units of source-string is CODEUNITS32, an error is returned
(SQLSTATE 428GC).

If a string unit is not explicitly specified and if source-string is a character or graphic string, the
string units of source-string determines the unit that is used for the result and for start (if specified).
Otherwise, they are expressed in bytes.

If a locale-sensitive UCA-based collation is used for this function, then the CODEUNITS16 option
offers the best performance characteristics.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see "String units in built-in
functions" in "Character strings".

The first and second arguments must have compatible string types. For more information about
compatibility, see "Rules for string conversions". In a Unicode database, if one string argument is
character (not FOR BIT DATA) and the other string argument is graphic, then the search-string is converted
to the data type of the source-string for processing. If one argument is character FOR BIT DATA, the other
argument must not be graphic (SQLSTATE 42846).

At each search position, a match is found when the substring at that position and LENGTH(search-string) -
1 values to the right of the search position in source-string, is equal to search-string.

The result of the function is a large integer. The result is the starting position of the instance of
search-string within source-string. The value is relative to the beginning of the string (regardless of the
specification of start). If any argument can be null, the result can be null; if any argument is null, the result
is the null value.

INSTR can be used as a synonym for LOCATE_IN_STRING.

The INSTRB scalar function is equivalent to invoking the LOCATE_IN_STRING function with OCTETS
(where allowed) specified to indicate that start position and the result are expressed in bytes.

Chapter 1. Structured Query Language (SQL) 409

Examples
• Example 1: Locate the character "ß" in the string "Jürgen lives on Hegelstraße" by searching from the

end of the string, and set the host variable POSITION with the position, as measured in CODEUNITS32
units, within the string.

 SET :POSITION = LOCATE_IN_STRING('Jürgen lives on Hegelstraße',
 'ß',-1,CODEUNITS32);

The value of host variable POSITION is set to 26.
• Example 2: Find the location of the third occurrence of the character "N" in the string "WINNING" by

searching from the start of the string and then set the host variable POSITION with the position of the
character, as measured in bytes, within the string.

 SET :POSITION =
 LOCATE_IN_STRING('WINNING','N',1,3,OCTETS);

The value of host variable POSITION is set to 6.

LOG10
The LOG10 function returns the common logarithm (base 10) of a number.

LOG10 (expression)

The schema is SYSIBM. (The SYSFUN version of the LOG10 function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type. If the value is of decimal
floating-point data type, the operation is performed in decimal floating-point; otherwise, the value is
converted to double-precision floating-point for processing by the function. The value of the argument
must be greater than zero (SQLSTATE 22003).

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result is a double-precision
floating-point number. The result can be null; if the argument is null, the result is the null value.

Notes
• Results involving DECFLOAT special values: For decimal floating-point values, the special values are

treated as follows:

– LOG10(NaN) returns NaN.
– LOG10(-NaN) returns -NaN.
– LOG10(Infinity) returns Infinity.
– LOG10(-Infinity) returns NaN and a warning.
– LOG10(sNaN) returns NaN and a warning.
– LOG10(-sNaN) returns -NaN and a warning.
– LOG10(DECFLOAT('0') returns -Infinity.

Example
Assume that L is a DECIMAL(4,2) host variable with a value of 31.62.

 VALUES LOG10(:L)

Returns the DOUBLE value +1.49996186559619E+000.

410 IBM Db2 V11.5: SQL Reference

LONG_VARCHAR
The LONG_VARCHAR function is deprecated and might be removed in a future release.

LONG_VARCHAR (character-string-expression)

The function is compatible with earlier Db2 versions.

LONG_VARGRAPHIC
The LONG_VARGRAPHIC function is deprecated and might be removed in a future release.

LONG_VARGRAPHIC (graphic-expression)

The function is compatible with earlier Db2 versions.

LOWER
The LOWER function returns a string in which all the SBCS characters have been converted to lowercase
characters.

LOWER (string-expression)

The schema is SYSIBM. (The SYSFUN version of this function continues to be available with support for
CLOB arguments.)

string-expression
An expression that returns a built-in character string or Boolean value. In a Unicode database, the
expression can also return a graphic string, in which case it is first converted to a character string
before the function is evaluated.

Result
The characters A-Z are converted to the characters a-z, and other characters are converted to their
lowercase equivalents, if they exist. For example, in code page 850, É maps to é. If the code point
length of the result character is not the same as the code point length of the source character, the
source character is not converted. Because not all characters are converted, LOWER(UPPER(string-
expression)) does not necessarily return the same result as LOWER(string-expression).

The result of the function has the same data type, string unit, and length attribute as the argument. If the
argument can be null, the result can be null; if the argument is null, the result is the null value.

Example
Ensure that the characters in the value of column JOB in the EMPLOYEE table are returned in lowercase
characters.

 SELECT LOWER(JOB)
 FROM EMPLOYEE
 WHERE EMPNO = '000020';

The result is the value 'manager'.

Chapter 1. Structured Query Language (SQL) 411

LOWER (locale sensitive)
The LOWER function returns a string in which all characters have been converted to lowercase characters
using the rules associated with the specified locale.

LOWER (string-expression , locale-name

, code-units

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

string-expression
An expression that returns a built-in character string, , Boolean value, or graphic string. If the
expression returns a character string, the expression cannot specify FOR BIT DATA (SQLSTATE
42815).

locale-name
A character constant that specifies the locale that defines the rules for conversion to lowercase
characters. This value is not case sensitive and must be a valid locale (SQLSTATE 42815). For
information about valid locales and their naming, see "Locale names for SQL and XQuery".

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 and later versions,
passing UNI_SIMPLE as locale-name will enable use of simple case folding mapping.

code-units
An integer constant that specifies the number of code units in the result. If specified, this must be an
integer between:

• 1 and 32672, if the string unit of the result is OCTETS
• 1 and 16336, if the string unit of the result is double bytes or CODEUNITS16
• 1 and 8168, if the string unit of the result is CODEUNITS32

Otherwise, an error is returned (SQLSTATE 42815). The default is the length attribute of string-
expression.

The value that can be specified for code-units depends on which string units are used:

• If the string unit OCTETS is specified for the string expression and the result is graphic data, the
value must be even (SQLSTATE 428GC).

• If the string unit OCTETS is specified for the string expression and the string unit of the result is
CODEUNIT32, the value must be a multiple of 4 (SQLSTATE 428GC).

• If the string unit CODEUNITS16 is specified for the string expression and the string unit of the result
is CODEUNITS32, the value must be a multiple of 2 (SQLSTATE 428GC).

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of code-units.

CODEUNITS16 specifies that code-units is expressed in 16-bit UTF-16 code units. CODEUNITS32
specifies that code-units is expressed in 32-bit UTF-32 code units. OCTETS specifies that code-units is
expressed in bytes.

If a string unit is not explicitly specified, the string unit of string-expression determines the unit that
is used. For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see "String units in
built-in functions" in "Character strings".

412 IBM Db2 V11.5: SQL Reference

Result
The result of the function is VARCHAR if string-expression is CHAR or VARCHAR, and VARGRAPHIC if
string-expression is GRAPHIC or VARGRAPHIC. The string units of the result is the same as the string units
of string-expression.

The length attribute of the result is determined by the implicit or explicit value of code-units, the implicit
or explicit string unit, the result data type, and the result string units, as shown in the following table:

Table 72. Length attribute of the result of LOWER as a function of string unit and result type

Data type and string
units of result

Length attribute
for code-units in
CODEUNITS16

Length attribute
for code-units in
CODEUNITS32

Length attribute for
code-units in OCTETS

VARCHAR in OCTETS MIN(code-units * 3,
32672)

MIN(code-units * 4,
32672)

code-units

VARCHAR in
CODEUNITS32

MIN(code-units / 2,
8168)

MIN(code-units, 8168) MIN(code-units / 4,
8168)

VARGRAPHIC in
CODEUNITS16 or
double bytes

code-units MIN(code-units * 2,
16336)

MIN(code-units / 2,
16336)

VARGRAPHIC in
CODEUNITS32

MIN(code-units / 2,
8168)

MIN(code-units, 8168) MIN(code-units / 4,
8168)

The actual length of the result might be greater than the length of string-expression. If the actual length
of the result is greater than the length attribute of the result, an error is returned (SQLSTATE 42815). If
the number of code units in the result exceeds the value of code-units, an error is returned (SQLSTATE
42815).

If string-expression is not in UTF-16, this function performs code page conversion of string-expression
to UTF-16, and of the result from UTF-16 to the code page of string-expression. If either code page
conversion results in at least one substitution character, the result includes the substitution character, a
warning is returned (SQLSTATE 01517), and the warning flag SQLWARN8 in the SQLCA is set to 'W'.

If the first argument can be null, the result can be null; if the first argument is null, the result is the null
value.

Examples
• Example 1: Ensure that the characters in the value of column JOB in the EMPLOYEE table are returned in

lowercase characters.

 SELECT LOWER(JOB, 'en_US')
 FROM EMPLOYEE
 WHERE EMPNO = '000020'

The result is the value 'manager'.
• Example 2: Find the lowercase characters for all the 'I' characters in a Turkish string.

 VALUES LOWER('Iİıi', 'tr_TR', CODEUNITS16)

The result is the string 'ıiıi'.

Chapter 1. Structured Query Language (SQL) 413

LPAD
The LPAD function pads a string on the left with a specified character string or with blanks.

LPAD (string-expression , integer

, pad

)

The schema is SYSIBM.

The LPAD function treats leading or trailing blanks in the string expression as significant. Padding will only
occur if the actual length of string-expression is less than integer, and pad is not an empty string.

string-expression
An expression that specifies the source string. The expression must return a built-in character string,
graphic string, binary string, CLOB or DBCLOB value, numeric value, Boolean value, or datetime value.
If the value is:

• A CLOB, numeric, Boolean, or datetime value, it is implicitly cast to VARCHAR before the function is
evaluated

• A DBCLOB value, it is implicitly cast to VARGRAPHIC before the function is evaluated

The data type of the value cannot be a BLOB (SQLSTATE 42815).
integer

An expression that specifies the actual length of the result in the string units of the string expression.
The expression must return a built-in numeric value, Boolean value, or character string. In a Unicode
database, the expression can also return a graphic string, in which case it is first converted to a
character string before the function is evaluated. If the value returned by the expression is not an
integer, it is cast to INTEGER before the function is evaluated. The value must be zero or a positive
integer that is less than or equal to the maximum length for the result data type in the units of the
string expression.

pad
An expression that specifies the string with which to pad. The expression must return a built-in
character string, graphic string, binary string, CLOB or DBCLOB value, numeric value, Boolean value, or
datetime value. If the value is:

• A CLOB, numeric, Boolean, or datetime value, it is implicitly cast to VARCHAR before the function is
evaluated

• A DBCLOB value, it is implicitly cast to VARGRAPHIC before the function is evaluated

The data type of pad cannot be a BLOB (SQLSTATE 42815).

The data type of the string expression determines the default pad string:

• The SBCS blank character, if the string expression is a character string.
• The ideographic blank character, if the string expression is a graphic string. For graphic string in an

EUC database, X'3000' is used. For graphic string in a Unicode database, X'0020' is used.
• Hexadecimal zero (X'00'), if the string expression is a binary string.

Result
The data type of the result depends on the data type of the string expression:

• VARCHAR if the data type is VARCHAR or CHAR
• VARGRAPHIC if the data type is VARGRAPHIC or GRAPHIC
• VARBINARY if the data type is VARBINARY or BINARY

The result of the function is a varying length string that has the same string unit and code page as the
string expression. The values for the string expression and the pad expression must have compatible data
types. If the string expression and pad expression have different code pages, then the pad expression is

414 IBM Db2 V11.5: SQL Reference

converted to the code page of the string expression. If either the string expression or the pad expression
is FOR BIT DATA or a binary string, no character conversion occurs.

The length attribute of the result depends on whether the value for integer is available when the SQL
statement containing the function invocation is compiled (for example, if it is specified as a constant or a
constant expression) or available only when the function is executed (for example, if it is specified as the
result of invoking a function). When the value is available when the SQL statement containing the function
invocation is compiled, if integer is greater than zero, the length attribute of the result is integer. If integer
is 0, the length attribute of the result is 1. When the value is available only when the function is executed,
the length attribute of the result is determined according to the following table:

Table 73. Determining the result length when integer is available only when the function is executed

Data type of string-expression Result data type length

CHAR(n), VARCHAR(n), BINARY(n), or
VARBINARY(n)

Minimum of n+100 and 32 672

GRAPHIC(n) or VARGRAPHIC(n) Minimum of n+100 and 16 336

CHAR(n) or VARCHAR(n) or GRAPHIC(n) or
VARGRAPHIC(n) with string units of CODEUNITS32
(Unicode database only)

Minimum of n+100 and 8 168

The actual length of the result is determined from integer. If integer is 0 the actual length is 0, and the
result is the empty result string. If integer is less than the actual length of string-expression, the actual
length is integer and the result is truncated.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Examples
• Example 1: Assume that NAME is a VARCHAR(15) column that contains the values "Chris", "Meg", and

"Jeff". The following query will completely pad out a value on the left with periods:

SELECT LPAD(NAME,15,'.') AS NAME FROM T1;

returns:

NAME

..........Chris
............Meg
...........Jeff

• Example 2: Assume that NAME is a VARCHAR(15) column that contains the values "Chris", "Meg", and
"Jeff". The following query will only pad each value to a length of 5:

SELECT LPAD(NAME,5,'.') AS NAME FROM T1;

returns:

NAME

Chris
..Meg
.Jeff

• Example 3: Assume that NAME is a CHAR(15) column containing the values "Chris", "Meg", and "Jeff".
The LPAD function does not pad because NAME is a fixed length character field and is blank padded
already. However, since the length of the result is 5, the columns are truncated:

SELECT LPAD(NAME,5,'.') AS NAME FROM T1;

returns:

Chapter 1. Structured Query Language (SQL) 415

NAME

Chris
Meg
Jeff

• Example 4: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and
"Jeff". In some cases, a partial instance of the pad specification is returned:

SELECT LPAD(NAME,15,'123') AS NAME FROM T1;

returns:

NAME

1231231231Chris
123123123123Meg
12312312312Jeff

• Example 5: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and
"Jeff". Note that "Chris" is truncated, "Meg" is padded, and "Jeff" is unchanged:

SELECT LPAD(NAME,4,'.') AS NAME FROM T1;

returns:

NAME

Chri
.Meg
Jeff

LTRIM
The LTRIM function removes any of the specified characters from the beginning of a string.

The character search compares the binary representation of each character (consisting of one or more
bytes) in the trim expression to the binary representation of each character (consisting of one or more
bytes) at the beginning of the string expression. The database collation does not affect the search. If the
string expression is defined as FOR BIT DATA or is a binary string, the search compares each byte in the
trim expression to the byte at the beginning of the string expression.

LTRIM (string-expression

, trim-expression

)

The schema is SYSIBM. (The SYSFUN version of this function is also available. That version uses a single
parameter, removes leading blanks only, and accepts CLOB arguments.)

string-expression

An expression that specifies the string to be trimmed.

• If only one argument is specified, the expression must return a built-in character string, graphic
string, binary string, CLOB or DBCLOB value, numeric value, Boolean value, or datetime value. If the
value is:

– A CLOB, numeric, Boolean, or datetime value, it is implicitly cast to VARCHAR before the function
is evaluated

– A DBCLOB value, it is implicitly cast to VARGRAPHIC before the function is evaluated

The data type of the value cannot be a BLOB (SQLSTATE 42815).
• If both arguments are specified, the expression must return a value that is a built-in character

string, numeric value, Boolean value, or datetime value. If the data type of the value is numeric or
datetime, the value is implicitly cast to VARCHAR before the function is evaluated. The actual length
of a CLOB value is limited to the maximum size of a VARCHAR data type (SQLSTATE 22001). The

416 IBM Db2 V11.5: SQL Reference

actual length of a BLOB value is limited to the maximum size of a VARBINARY (SQLSTATE 22001).
The actual length of a DBCLOB value is limited to the maximum size of a VARGRAPHIC data type
(SQLSTATE 22001).

trim-expression

An expression that specifies the characters that are to be removed from the beginning of a string
expression. The expression must return a built-in character string, numeric value, Boolean value, or
datetime value.

• If the data type of the trim expression is not a string, then the value is implicitly cast to VARCHAR
before the function is evaluated.

• If the data type of the trim expression is a CLOB, then the actual length of the value is limited to the
maximum size of a VARCHAR (SQLSTATE 22001).

• If the data type of the trim expression is a DBCLOB, then the actual length of the value is limited to
the maximum size of a VARGRAPHIC (SQLSTATE 22001).

• If the data type of the trim expression is BLOB, then the actual length of the value is limited to the
maximum size of a VARBINARY (SQLSTATE 22001).

• If the string expression is not defined as FOR BIT DATA, then the trim expression cannot be defined
as FOR BIT DATA (SQLSTATE 42815).

The data type of the string expression determines the default trim expression:

• A double byte blank, if the string expression is a graphic string in a DBCS or EUC database
• A UCS-2 blank, if the string expression is a graphic string in a Unicode database
• The value X'20', if the string expression is a FOR BIT DATA string
• The value X'00', if the string expression is a binary string
• A single-byte blank in all other cases

The values for the string expression and trim expression must have compatible data types. If one function
argument is character FOR BIT DATA, then the other argument cannot be a graphic (SQLSTATE 42846).
A combination of character string and graphic string arguments can be used only in a Unicode database
(SQLSTATE 42815).

Result
The data type of the result depends on the data type of the string expression:

• VARCHAR if the data type is VARCHAR or CHAR
• CLOB if the data type is CLOB
• VARBINARY if the data type is VARBINARY or BINARY
• BLOB if the data type is BLOB
• VARGRAPHIC if the data type is VARGRAPHIC or GRAPHIC
• DBCLOB if the data type is DBCLOB

The length attribute of the result data type is the same as the length attribute of the data type of the string
expression.

The actual length of the result is the length of string-expression minus the number of string units removed.
If all of the characters are removed, the result is an empty string with a length of zero.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Chapter 1. Structured Query Language (SQL) 417

Examples
• Example 1: Use the LTRIM function when the host variable HELLO is defined as CHAR(6) and has a value

of " Hello".

 VALUES LTRIM(:HELLO)

The result is 'Hello'. When a trim-expression is not specified only blanks are removed.
• Example 2: Use the LTRIM function to remove the characters specified in the trim-expression from the

beginning of the string-expression.

 VALUES LTRIM('...$V..$AR', '$.')

The result is 'V..$AR'. The function stops when it encounters a character not in the trim-expression.
• Example 3: Use the LTRIM function to remove the characters specified in the trim-expression from the

beginning of the string-expression

 VALUES LTRIM('[[-78]]', '- []')

The result is '78]]'. When removing characters and blanks, you must include a blank in the trim-
expression.

LTRIM (SYSFUN schema)
Returns the characters of the argument with leading blanks removed.

LTRIM (expression)

The schema is SYSFUN.
expression

An expression that returns the built-in character string or Boolean value that is to be trimmed. The
maximum length is:

• 4000 bytes for a VARCHAR
• 1,048,576 bytes for a CLOB

Result
The data type of the result is:

• VARCHAR(4000) if the data type of the expression is CHAR or VARCHAR
• CLOB(1M) if the data type of the expression is CLOB or LONG VARCHAR

The result can be null; if the expression is null, the result is the null value.

MAX
The MAX function returns the maximum value in a set of values.

MAX (expression , expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in data type or user-defined data type that is
comparable with data type of the other arguments. The data type cannot be a LOB, distinct type
base on a LOB, XML, array, cursor, row, or structured type.

418 IBM Db2 V11.5: SQL Reference

The result of the function is the largest argument value. The result can be null if at least one argument can
be null; the result is the null value if any argument is null.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined by the data types of all the arguments as explained in "Rules for result data types".

Notes
• The MAX scalar function is a synonym for the GREATEST scalar function.
• The MAX function cannot be used as a source function when creating a user-defined function. Because

this function accepts any comparable data types as arguments, it is not necessary to create additional
signatures to support user-defined data types.

Example
Return the bonus for an employee, the greater of 500 and 5% of the employee's salary.

 SELECT EMPNO, MAX(SALARY * 0.05, 500)
 FROM EMPLOYEE

MAX_CARDINALITY
The MAX_CARDINALITY function returns a value of type BIGINT representing the maximum number
of elements that an array can contain. This is the cardinality that was specified in the CREATE TYPE
statement for the ordinary array type.

MAX_CARDINALITY (array-expression)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an array type, or a CAST specification of a
parameter marker to an array type.

Result
The result can be null; if the argument is an associative array, the result is the null value.

Example
1. Return the maximum cardinality of the RECENT_CALLS array variable of array type PHONENUMBERS:

 SET LIST_SIZE = MAX_CARDINALITY(RECENT_CALLS)

The SQL variable LIST_SIZE is set to 50, which is the maximum cardinality that the array type
PHONENUMBERS was defined with.

MICROSECOND
The MICROSECOND function returns the microsecond part of a value.

MICROSECOND (expression)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIMESTAMP,
timestamp duration, or a valid character string representation of a date or timestamp that is not a
CLOB. If a supplied argument is a DATE, it is first converted to a TIMESTAMP(0) value, assuming a

Chapter 1. Structured Query Language (SQL) 419

time of exactly midnight (00.00.00). In a Unicode database, if a supplied argument is a GRAPHIC or
VARGRAPHIC data type, it is first converted to a character string before the function is executed.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a DATE, TIMESTAMP, or a valid string representation of a date or timestamp:

– The integer ranges from 0 through 999 999.
– If the precision of the timestamp exceeds 6, the value is truncated.

• If the argument is a duration:

– The result reflects the microsecond part of the value which is an integer between -999 999 through
999 999. A nonzero result has the same sign as the argument.

Example
Assume a table TABLEA contains two columns, TS1 and TS2, of type TIMESTAMP. Select all rows in which
the microseconds portion of TS1 is not zero and the seconds portion of TS1 and TS2 are identical.

 SELECT * FROM TABLEA
 WHERE MICROSECOND(TS1) <> 0
 AND
 SECOND(TS1) = SECOND(TS2)

MIDNIGHT_SECONDS
Returns an integer value in the range 0 to 86 400, representing the number of seconds between midnight
and the time value specified in the argument.

MIDNIGHT_SECONDS (expression)

The schema is SYSFUN.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIME,
TIMESTAMP, or a valid character string representation of a date, time, or timestamp that is not a
CLOB. If the expression is a DATE or a valid string representation of a date, it is first converted to
a TIMESTAMP(0) value, assuming a time of exactly midnight (00.00.00). In a Unicode database, if a
supplied argument is a graphic string, it is first converted to a character string before the function is
executed.

The result of the function is INTEGER. The result can be null; if the argument is null, the result is the null
value.

Examples
• Example 1: Find the number of seconds between midnight and 00:10:10, and midnight and 13:10:10.

 VALUES (MIDNIGHT_SECONDS('00:10:10'), MIDNIGHT_SECONDS('13:10:10'))

This example returns the following:

1 2
----------- -----------
 610 47410

Since a minute is 60 seconds, there are 610 seconds between midnight and the specified time. The
same follows for the second example. There are 3600 seconds in an hour, and 60 seconds in a minute,
resulting in 47 410 seconds between the specified time and midnight.

420 IBM Db2 V11.5: SQL Reference

• Example 2: Find the number of seconds between midnight and 24:00:00, and midnight and 00:00:00.

 VALUES (MIDNIGHT_SECONDS('24:00:00'), MIDNIGHT_SECONDS('00:00:00'))

This example returns the following:

1 2
----------- -----------
 86400 0

Note that these two values represent the same point in time, but return different MIDNIGHT_SECONDS
values.

MIN
The MIN function returns the minimum value in a set of values.

MIN (expression , expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in data type or user-defined data type that is
comparable with data type of the other arguments. The data type cannot be a LOB, distinct type
base on a LOB, XML, array, cursor, row, or structured type.

The result of the function is the smallest argument value. The result can be null if at least one argument
can be null; the result is the null value if any argument is null.

The selected argument is converted, if necessary, to the attributes of the result. The attributes of the
result are determined by the data types of all the arguments as explained in "Rules for result data types".

Notes
• The MIN scalar function is a synonym for the LEAST scalar function.
• The MIN function cannot be used as a source function when creating a user-defined function. Because

this function accepts any comparable data types as arguments, it is not necessary to create additional
signatures to support user-defined data types.

Example
Return the bonus for an employee, the LESSER of 5000 and 5% of the employee's salary.

 SELECT EMPNO, MIN(SALARY * 0.05, 5000)
 FROM EMPLOYEE

MINUTE
The MINUTE function returns the minute part of a value.

MINUTE (expression)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIME,
TIMESTAMP, time duration, timestamp duration, or a valid character string representation of a date,
time, or timestamp that is not a CLOB. If a supplied argument is a DATE, it is first converted to a
TIMESTAMP(0) value, assuming a time of exactly midnight (00.00.00). In a Unicode database, if a

Chapter 1. Structured Query Language (SQL) 421

supplied argument is a GRAPHIC or VARGRAPHIC data type, it is first converted to a character string
before the function is executed.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a DATE, TIME, TIMESTAMP, or valid string representation of a date, time or
timestamp:

– The result is the minute part of the value, which is an integer between 0 and 59.
• If the argument is a time duration or timestamp duration:

– The result is the minute part of the value, which is an integer between -99 and 99. A nonzero result
has the same sign as the argument.

Examples
Using the CL_SCHED sample table, select all classes with a duration less than 50 minutes.

 SELECT * FROM CL_SCHED
 WHERE HOUR(ENDING - STARTING) = 0
 AND
 MINUTE(ENDING - STARTING) < 50

MINUTES_BETWEEN
The MINUTES_BETWEEN function returns the number of full minutes between the specified arguments.

MINUTES_BETWEEN (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that specifies the first datetime value to compute the number of full minutes between
two datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or
VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC
data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If
expression1 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that
is accepted by the TIMESTAMP scalar function.

expression2
An expression that specifies the second datetime value to compute the number of full minutes
between two datetime values. The expression must return a value that is a DATE, TIMESTAMP,
CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC
or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using
implicit casting. If expression2 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be
a valid string that is accepted by the TIMESTAMP scalar function.

If there is less than a full minute between expression1 and expression2, the result is zero. If expression1
is later than expression2, the result is positive. If expression1 is earlier than expression2, the result is
negative. In NPS compatibility mode, this function always returns a positive number. If expression1 or
expression2 contains time information, this information is also used to determine the number of full
minutes. If expression1 or expression2 does not contain time information, a time of midnight (00.00.00) is
used for the argument that is missing time information.

The result of the function is a BIGINT. If either argument can be null, the result can be null. If either
argument is null, the result is the null value.

422 IBM Db2 V11.5: SQL Reference

Examples
1. Set the host variable NUM_MINUTES to the number of full minutes between 2012-03-01-01.00.00

and 2012-02-28-00.00.00.

 SET :NUM_MINUTES = MINUTES_BETWEEN(TIMESTAMP '2012-03-01-01.07.00',
 TIMESTAMP '2012-02-28-00.00.00')

The host variable NUM_MINUTES is set to 2940; 1440 of those minutes are incurred due to February
29, 2012.

2. Set the host variable NUM_MINUTES to the number of full minutes between 2013-09-11-23.59.59
and 2013-09-01-00.00.00.

 SET :NUM_MINUTES = MINUTES_BETWEEN(TIMESTAMP '2013-09-11-23.59.59',
 TIMESTAMP '2013-09-01-00.00.00')

The host variable NUM_MINUTES is set to 15839 because there is 1 second less than a full 15840
minutes between the arguments. It is positive because the first argument is later than the second
argument.

3. Set the host variable NUM_MINUTES to the number of full minutes between 2013-09-01-00.00.00
and 2013-09-11-23.59.59.

 SET :NUM_MINUTES = MINUTES_BETWEEN(TIMESTAMP '2013-09-01-00.00.00',
 TIMESTAMP '2013-09-11-23.59.59')

The host variable NUM_MINUTES is set to -15839 because there is 1 second less than a full 15840
minutes between the arguments. It is negative because the first argument is earlier than the second
argument.

MOD
Returns the remainder of the first argument divided by the second argument.

MOD (expression1 , expression2)

The schema is SYSIBM. (The SYSFUN version of this function continues to be available.)

expression1
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a value of any built-in numeric data type. This expression can only be zero
when at least one of the function arguments is a decimal floating point.

The formula for calculating the remainder is:

MOD(x,y) = x-(x/y)*y

where x/y is the truncated integer result of the division.

The result only is negative when the first argument is negative.

The result can be null if either argument can be null or if neither argument is a decimal floating-point
number and the dft_sqlmathwarn database configuration parameter is set to YES; the result is the null
value when either argument is NULL.

The data type of the result depends on the data types of the arguments.

• Small integer if both arguments are small integers.
• Large integer if one argument is a large integer and the other argument is either a small integer or a

large integer.
• Big integer if both arguments are integers and at least one argument is a big integer.

Chapter 1. Structured Query Language (SQL) 423

• Decimal if one argument is an integer and the other argument is a decimal. The result has the same
precision as the decimal argument.

• Decimal if both arguments are decimals. The precision of the result is MIN (p-s,p'-s')+
(MAX(s,s') and the scale is (MAX(s,s'). Where p and s represent the precision and scale of the
first argument and p' and s' represent the precision and scale of the second argument.

• Double-precision floating point if one argument is a floating-point number and the other is not a
DECFLOAT. The arguments are converted to double-precision floating point numbers before performing
the MOD function. For example, if one argument is a floating-point number and the other is an integer
or decimal, the function is performed with a temporary copy of the integer or decimal, which has been
converted to double-precision floating-point. The result must be in the range of floating-point numbers.

• Double-precision floating point if both arguments are floating-point numbers. The result must be in the
range of floating-point numbers.

• DECFLOAT(34) if either argument is a decimal floating-point. If expression2 evaluates to zero, the result
is not a number (NaN) and an invalid operation warning with the associated SQLSTATE is issued.

If either argument is a special decimal floating-point value, the general arithmetic operation rules for
decimal floating-point apply (see Expressions).

• Results when arguments include infinity:

– MOD(x, +/-INFINITY) returns the value x.
– MOD(+/-INFINITY, +/-INFINITY) returns NaN and an invalid operation warning with the

associated SQLSTATE.
– MOD(+/-INFINITY, x) returns NaN and an invalid operation warning with the associated

SQLSTATE.

Examples
• Example 1: Assume the host variable M1 is an INTEGER with a value of 5 and host variable M2 is an

INTEGER with a value of 2

 SELECT MOD(:M1, :M2)
 FROM SYSIBM.SYSDUMMY1

The result is 1 with a data type of INTEGER.
• Example 2: Assume the host variable M1 is an INTEGER with a value of 5 and host variable M2 is a

DECIMAL(3,2) with a value of 2.20

 SELECT MOD(:M1, :M2)
 FROM SYSIBM.SYSDUMMY1

The result is 0.60 with a data type of DECIMAL(3,2).
• Example 3: Assume the host variable M1 is a DECIMAL(4,2) with a value of 5.5 and host variable M2 is a

DECIMAL(4,1) with a value of 2.0

 SELECT MOD(:M1, :M2)
 FROM SYSIBM.SYSDUMMY1

The result is 1.50 with a data type of DECIMAL(4,2).

MOD (SYSFUN schema)
Returns the remainder of the first argument divided by the second argument.

MOD (expression , expression)

The schema is SYSFUN.

The result is negative only if first argument is negative. The result of the function is:

424 IBM Db2 V11.5: SQL Reference

• SMALLINT if both arguments are SMALLINT
• INTEGER if one argument is INTEGER and the other is INTEGER or SMALLINT
• BIGINT if one argument is BIGINT and the other argument is BIGINT, INTEGER or SMALLINT.

The result can be null; if any argument is null, the result is the null value.

MONTH
The MONTH function returns the month part of a value.

MONTH (expression)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIMESTAMP, date
duration, timestamp duration, or a valid character string representation of a date or timestamp that is
not a CLOB. In a Unicode database, if a supplied argument is a graphic string (except DBCLOB), it is
first converted to a character string before the function is executed.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a DATE, TIMESTAMP, or a valid string representation of a date or timestamp:

– The result is the month part of the value, which is an integer between 1 and 12.
• If the argument is a date duration or timestamp duration:

– The result is the month part of the value, which is an integer between -99 and 99. A nonzero result
has the same sign as the argument.

Example
Select all rows from the EMPLOYEE table for people who were born (BIRTHDATE) in DECEMBER.

 SELECT * FROM EMPLOYEE
 WHERE MONTH(BIRTHDATE) = 12

MONTHNAME
The MONTHNAME function returns a character string containing the name of the month (for example,
January) for the month portion of the input value.

MONTHNAME (expression

, locale-name

)

The schema is SYSIBM. The SYSFUN version of the MONTHNAME function continues to be available.

The character string returned is based on locale-name or the value of the special register CURRENT
LOCALE LC_TIME.

expression
An expression that returns a value of one of the following built-in data types: a DATE, TIMESTAMP, or a
valid character string representation of a date or timestamp that is not a CLOB. In a Unicode database,
if a supplied argument is a graphic string, it is first converted to a character string before the function
is executed.

locale-name
A character constant that specifies the locale used to determine the language of the result. The value
of locale-name is not case-sensitive and must be a valid locale (SQLSTATE 42815). For information

Chapter 1. Structured Query Language (SQL) 425

about valid locales and their naming, see "Locale names for SQL and XQuery". If locale-name is not
specified, the value of the special register CURRENT LOCALE LC_TIME is used.

The result is a varying-length character string. The length attribute is 100. If the resulting string exceeds
the length attribute of the result, the result will be truncated. If the expression argument can be null, the
result can be null; if the expression argument is null, the result is the null value. The code page of the
result is the code page of the section. The string units of the result is determined by the string units of the
environment.

Notes
• Julian and Gregorian calendar: The transition from the Julian calendar to the Gregorian calendar on 15

October 1582 is taken into account by this function. However, the SYSFUN version of the MONTHNAME
function assumes the Gregorian calendar for all calculations.

• Determinism: MONTHNAME is a deterministic function. However, when locale-name is not explicitly
specified, the invocation of the function depends on the value of the special register CURRENT LOCALE
LC_TIME. This invocation that depends on the value of a special register cannot be used wherever
special registers cannot be used (SQLSTATE 42621, 428EC, or 429BX).

Example
Assume that the variable TMSTAMP is defined as TIMESTAMP and has the following value:
2007-03-09-14.07.38.123456. The following examples show several invocations of the function and
the resulting string values. The result type in each case is VARCHAR(100).

Function invocation Result
-------------------------- ----------
MONTHNAME (TMSTAMP, 'CLDR181_en_US') March
MONTHNAME (TSMTAMP, 'CLDR181_de_DE') Marz
MONTHNAME (TMSTAMP, 'CLDR181_fr_FR') mars

MONTHS_BETWEEN
The MONTHS_BETWEEN function returns an estimate of the number of months between expression1 and
expression2.

MONTHS_BETWEEN (expression1 , expression2)

The schema is SYSIBM.

expression1 or expression2
Expressions that return a value of either a DATE or TIMESTAMP data type.

If expression1 represents a date that is later than expression2, the result is positive. If expression1
represents a date that is earlier than expression2, the result is negative.

• If expression1 and expression2 represent dates or timestamps with the same day of the month, or both
arguments represent the last day of their respective months, the result is a the whole number difference
based on the year and month values ignoring any time portions of timestamp arguments.

• Otherwise, the whole number part of the result is the difference based on the year and month values.
The fractional part of the result is calculated from the remainder based on an assumption that every
month has 31 days. If either argument represents a timestamp, the arguments are effectively processed
as timestamps with maximum precision, and the time portions of these values are also considered
when determining the result.

The result of the function is a DECIMAL(31,15). If either argument can be null, the result can be null. If
either argument is null, the result is the null value.

426 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: Calculate the number of months that project AD3100 will take. Assume that the start date is

1982-01-01 and the end date is 1983-02-01.

 SELECT MONTHS_BETWEEN (PRENDATE, PRSDATE)
 FROM PROJECT
 WHERE PROJNO='AD3100'

The result is 13.000000000000000.
• Example 2: Here are some additional examples to consider:

Table 74. Additional examples using MONTHS_BETWEEN

Value for argument e1 Value for argument e2

Value returned by
MONTHS_BETWEEN
(e1,e2)

Value returned by
ROUND
(
MONTHS_BETWEEN
(e1,e2)*31,2
) Comment

2005-02-02 2005-01-01 1.032258064516129 32.00

2007-11-01-09.00.00.0
0000

2007-12-07-14.30.12.12
345

-1.200945386592741 -37.23

2007-12-13-09.40.30.0
0000

2007-11-13-08.40.30.00
000

1.000000000000000 31.00 See Note 1

2007-03-15 2007-02-20 0.838709677419354 26.00 See Note 2

2008-02-29 2008-02-28-12.00.00 0.016129032258064 0.50

2008-03-29 2008-02-29 1.000000000000000 31.00

2008-03-30 2008-02-29 1.032258064516129 32.00

2008-03-31 2008-02-29 1.000000000000000 31.00 See Note 3

Note:

1. The time difference is ignored because the day of the month is the same for both values.
2. The result is not 23 because, even though February has 28 days, the assumption is that all months

have 31 days.
3. The result is not 33 because both dates are the last day of their respective month, and so the result

is only based on the year and month portions.

MULTIPLY_ALT
The MULTIPLY_ALT scalar function returns the product of the two arguments.

MULTIPLY_ALT (numeric_expression1 , numeric_expression2)

The schema is SYSIBM.

numeric_expression1
An expression that returns a value of any built-in numeric data type.

numeric_expression2
An expression that returns a value of any built-in numeric data type.

The MULTIPLY_ALT function is provided as an alternative to the multiplication operator, especially when
the sum of the decimal precisions of the arguments exceeds 31.

The result of the function is DECIMAL when both arguments are exact numeric data types (DECIMAL,
BIGINT, INTEGER, or SMALLINT); otherwise the operation is carried out using decimal floating-point
arithmetic and the result of the function is decimal floating-point with a precision determined by the data

Chapter 1. Structured Query Language (SQL) 427

type of the arguments in the same way the precision is determined for decimal floating-point arithmetic. A
floating-point or string argument is cast to DECFLOAT(34) before evaluating the function.

When the result of the function is DECIMAL, the precision and scale of the result are determined as
follows, using the symbols p and s to denote the precision and scale of the first argument, and the
symbols p' and s' to denote the precision and scale of the second argument.

• The precision is MIN(31, p + p')
• The scale is:

– 0 if the scale of both arguments is 0
– MIN(31, s + s') if p + p' is less than or equal to 31
– MAX(MIN(3, s + s'), 31 - (p - s + p' - s')) if p + p' is greater than 31.

The result can be null if at least one argument can be null, or if the database is configured with
dft_sqlmathwarn set to YES; the result is the null value if one of the arguments is null.

The MULTIPLY_ALT function is a preferable choice to the multiplication operator when performing decimal
arithmetic where a scale of at least 3 is required and the sum of the precisions exceeds 31. In these
cases, the internal computation is performed so that overflows are avoided. The final result is then
assigned to the result data type, using truncation where necessary to match the scale. Note that overflow
of the final result is still possible when the scale is 3.

The following table is a sample comparing the result types using MULTIPLY_ALT and the multiplication
operator.

Type of argument 1 Type of argument 2 Result using
MULTIPLY_ALT

Result using
multiplication operator

DECIMAL(31,3) DECIMAL(15,8) DECIMAL(31,3) DECIMAL(31,11)

DECIMAL(26,23) DECIMAL(10,1) DECIMAL(31,19) DECIMAL(31,24)

DECIMAL(18,17) DECIMAL(20,19) DECIMAL(31,29) DECIMAL(31,31)

DECIMAL(16,3) DECIMAL(17,8) DECIMAL(31,9) DECIMAL(31,11)

DECIMAL(26,5) DECIMAL(11,0) DECIMAL(31,3) DECIMAL(31,5)

DECIMAL(21,1) DECIMAL(15,1) DECIMAL(31,2) DECIMAL(31,2)

Example
Multiply two values where the data type of the first argument is DECIMAL(26,3) and the data type of the
second argument is DECIMAL(9,8). The data type of the result is DECIMAL(31,7).

values multiply_alt(98765432109876543210987.654,5.43210987)
1

536504678578875294857887.5277415

Note that the complete product of these two numbers is 536504678578875294857887.52774154498,
but the last 4 digits are truncated to match the scale of the result data type. Using the multiplication
operator with the same values will cause an arithmetic overflow, since the result data type is
DECIMAL(31,11) and the result value has 24 digits left of the decimal, but the result data type only
supports 20 digits.

428 IBM Db2 V11.5: SQL Reference

NCHAR
The NCHAR function returns a fixed-length national character string representation of a variety of data
types.

Integer to nchar
NCHAR (integer-expression)

Decimal to nchar
NCHAR (decimal-expression

, decimal-character

)

Floating-point to nchar
NCHAR (floating-point-expression

, decimal-character

)

Decimal floating-point to nchar
NCHAR (decimal-floating-point-expression

, decimal-character

)

Character to nchar
NCHAR (character-expression

, integer

)

Graphic to nchar
NCHAR (graphic-expression

, integer

)

Nchar to nchar
NCHAR (national-character-expression

, integer

)

Datetime to nchar
NCHAR (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

Chapter 1. Structured Query Language (SQL) 429

Boolean to nvarchar
NVARCHAR (boolean-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name when keywords are
used in the function signature.

The NCHAR function can be specified only in a Unicode database (SQLSTATE 560AA).

Result
The NCHAR function returns a fixed-length national character string representation of:

• An integer number, if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number, if the first argument is a decimal number
• A double-precision floating-point number, if the first argument is a DOUBLE or REAL
• A decimal floating-point number, if the argument is a decimal floating-point number (DECFLOAT)
• A character string, if the first argument is any type of character string
• A graphic string, if the first argument is any type of graphic string
• A national character string, if the first argument is any type of national character string
• A datetime value, if the first argument is a DATE, TIME, or TIMESTAMP
• A Boolean value (TRUE or FALSE)

The NCHAR scalar function is a synonym for a scalar cast function with result string units as specified in
the following table.

Table 75. NCHAR scalar function synonyms

NCHAR_MAPPING value Synonym function Result string units

CHAR_CU32 CHAR CODEUNITS32

GRAPHIC_CU32 GRAPHIC CODEUNITS32

GRAPHIC_CU16 GRAPHIC1 CODEUNITS16

1. When the first argument has string units of CODEUNITS32 and the second argument is not specified,
the length attribute of the result is different from the GRAPHIC function because the string units
of the result is CODEUNITS16. In this case, the length attribute of the result is 2 times the length
attribute of the result that is determined by the GRAPHIC function.

NCHR
The NCHR function returns a Unicode character with the specified UTF-32 Unicode code point.

NCHR (integer-expression)

The schema is SYSIBM.

Note: The NCHR function can be specified only in a Unicode database (SQLSTATE 560AA).

integer-expression
An expression that specifies the UTF-32 Unicode code point.
The expression must return a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC data type.
If the value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated.
The integer-expression must be greater than or equal to 0 (SQLSTATE 42815).
The integer-expression must represent a valid UTF-32 Unicode character (SQLSTATE 22021).

430 IBM Db2 V11.5: SQL Reference

Result
The result of the function is a Unicode character with the CHAR data type and a length of 1
CODEUNITS32.

If the argument can be null, the result can be null. If the argument is null, the result is the null value.

Notes
As a syntax alternative, you can specify UNICHR as a synonym for NCHR.

In the following example, the variable GCLEF is assigned the value '𝀀' (UTF-32 Unicode value U&'\
+01d11e'= 119070):SET GCLEF=NCHR(119070):

SET GCLEF=NCHR(119070);

NCLOB
The NCLOB function returns a NCLOB representation of any type of national character string.

NCLOB (national-character-expression

, integer

)

The schema is SYSIBM.

The NCLOB function can be specified only in a Unicode database (SQLSTATE 560AA).

The NCLOB scalar function is a synonym for a scalar cast function with result string units as specified in
the following table.

Table 76. NCLOB scalar function synonyms

NCLOB_MAPPING value Synonym function Result string units

CHAR_CU32 CLOB CODEUNITS32

GRAPHIC_CU32 DCLOB CODEUNITS32

GRAPHIC_CU16 DCLOB1 CODEUNITS16

1. When the first argument has string units CODEUNITS32 and the second argument is not specified,
the length attribute of the result is different from the DCLOB function because the string units of the
result is CODEUNITS16. In this case, the length attribute of the result is 2 times the length attribute
of the result that is otherwise determined by the DCLOB function.

NVARCHAR
The NVARCHAR function returns a varying-length national character string representation of a variety of
data types.

Integer to nvarchar
NVARCHAR (integer-expression)

Decimal to nvarchar
NVARCHAR (decimal-expression

, decimal-character

)

Chapter 1. Structured Query Language (SQL) 431

Floating-point to nvarchar
NVARCHAR (floating-point-expression

, decimal-character

)

Decimal floating-point to nvarchar
NVARCHAR (decimal-floating-point-expression

, decimal-character

)

Character to nvarchar
NVARCHAR (character-expression

, integer

)

Graphic to nvarchar
NVARCHAR (graphic-expression

, integer

)

Nchar to nvarchar
NVARCHAR (national-character-expression

, integer

)

Datetime to nvarchar
NVARCHAR (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

Boolean to nvarchar
NVARCHAR (boolean-expression)

The schema is SYSIBM.

The function name cannot be specified as a qualified name when keywords are used in the function
signature.

NVARCHAR can be specified only in a Unicode database (SQLSTATE 560AA).

Result
The NVARCHAR function returns a varying-length national character string representation of:

• An integer number, if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number, if the first argument is a decimal number
• A double-precision floating-point number, if the first argument is a DOUBLE or REAL

432 IBM Db2 V11.5: SQL Reference

• A decimal floating-point number, if the first argument is a decimal floating-point number (DECFLOAT)
• A character string, if the first argument is any type of character string
• A graphic string, if the first argument is any type of graphic string
• An national character string, if the first argument is any type of national character string
• A datetime value, if the first argument is a DATE, TIME, or TIMESTAMP
• A Boolean value (TRUE or FALSE)

The NVARCHAR scalar function is a synonym for a scalar cast function with result string units as specified
in the following table.

Table 77. NVARCHAR scalar function synonyms

NCHAR_MAPPING Synonym function Result string units

CHAR_CU32 VARCHAR CODEUNITS32

GRAPHIC_CU32 VARGRAPHIC CODEUNITS32

GRAPHIC_CU16 VARGRAPHIC1 CODEUNITS16

1. When the first argument has string units CODEUNITS32 and the second argument is not specified,
the length attribute of the result is different from the VARGRAPHIC function because the string units
of the result is CODEUNITS16. In this case, the length attribute of the result is 2 times the length
attribute of the result that is otherwise determined by the VARGRAPHIC function.

NEXT_DAY
The NEXT_DAY scalar function returns a datetime value that represents the first weekday, named by
string-expression, that is later than the date in expression.

NEXT_DAY (expression , string-expression

locale-name

)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: a DATE or a TIMESTAMP.

string-expression
An expression that returns a built-in character data type. The value must be a valid day of the week
for the locale-name. The value can be specified either as the full name of the day or the associated
abbreviation. For example, if the locale is 'en_US' then the following values are valid:

Table 78. Valid day names and abbreviations for the 'en_US' locale

Day of week Abbreviation

MONDAY MON

TUESDAY TUE

WEDNESDAY WED

THURSDAY THU

FRIDAY FRI

SATURDAY SAT

SUNDAY SUN

Chapter 1. Structured Query Language (SQL) 433

The minimum length of the input value is the length of the abbreviation. The characters can be
specified in lower or upper case and any characters immediately following a valid abbreviation are
ignored.

locale-name
A character constant that specifies the locale used to determine the language of the string-expression
value. The value of locale-name is not case sensitive and must be a valid locale (SQLSTATE 42815).
For information about valid locales and their naming, see "Locale names for SQL and XQuery". If
locale-name is not specified, the value of the special register CURRENT LOCALE LC_TIME is used.

The result of the function has the same data type as expression, unless expression is a string, in which
case the result data type is TIMESTAMP(6) . The result can be null; if any argument is null, the result is the
null value.

Any hours, minutes, seconds or fractional seconds information included in expression is not changed by
the function. If expression is a string representing a date, the time information in the resulting TIMESTAMP
value is all set to zero.

Notes
• Determinism: NEXT_DAY is a deterministic function. However, when locale-name is not explicitly
specified, the invocation of the function depends on the value of the special register CURRENT LOCALE
LC_TIME. Invocations of the function that depend on the value of a special register cannot be used
wherever special registers cannot be used (SQLSTATE 42621, 428EC, or 429BX).

Examples
• Example 1: Set the variable NEXTDAY with the date of the Tuesday following April 24, 2007.

 SET NEXTDAY = NEXT_DAY(DATE '2007-04-24', 'TUESDAY')

The variable NEXTDAY is set with the value of '2007-05-01', since April 24, 2007 is itself a Tuesday.
• Example 2: Set the variable vNEXTDAY with the timestamp of the first Monday in May, 2007. Assume

the variable vDAYOFWEEK = 'MON'.

 SET vNEXTDAY = NEXT_DAY(LAST_DAY(CURRENT_TIMESTAMP),vDAYOFWEEK)

The variable vNEXTDAY is set with the value of '2007-05-07-12.01.01.123456', assuming that the
value of the CURRENT_TIMESTAMP special register is '2007-04-24-12.01.01.123456'.

NEXT_MONTH
The NEXT_MONTH function returns the first day of the next month after the specified date.

NEXT_MONTH (datetime-expression)

The schema is SYSIBM.

datetime-expression
An expression that specifies a date after which the first day of the next month is to be returned.
The expression must return a value that is a DATE, a TIMESTAMP, a CHAR, or a VARCHAR data type.
In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported using implicit casting. If datetime-expression
is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string accepted by the
TIMESTAMP scalar function.

The result of the function is DATE. If the argument can be null, the result can be null. If the argument is
null, the result is the null value.

434 IBM Db2 V11.5: SQL Reference

Example
The following example returns the date value of the first day of the next month after the date specified by
the input:

values next_month('2007-02-18')
 Result: 2007-03-01

NEXT_QUARTER
The NEXT_QUARTER function returns the first day of the next quarter after the date specified by the input.

NEXT_QUARTER (datetime-expression)

The schema is SYSIBM.

datetime-expression
An expression that specifies a date after which the first day of the next quarter is to be returned.
The expression must return a value that is a DATE, a TIMESTAMP, a CHAR, or a VARCHAR data type.
In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported using implicit casting. If datetime-expression
is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string accepted by the
TIMESTAMP scalar function.

The result of the function is DATE. If the argument can be null, the result can be null. If the argument is
null, the result is the null value.

Example
The following example returns the date value of the first day of the next quarter after the date specified by
the input:

values next_quarter('2007-02-18')
 Result: 2007-04-01

NEXT_WEEK
The NEXT_WEEK function returns the first day of the next week after the specified date. Sunday is
considered the first day of that new week.

NEXT_WEEK (datetime-expression)

The schema is SYSIBM.

datetime-expression
An expression that specifies a date after which the first day of the next week is to be returned. The
expression must return a value that is a DATE, a TIMESTAMP, a CHAR, or a VARCHAR data type.
In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported using implicit casting. If datetime-expression
is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string accepted by the
TIMESTAMP scalar function.

The result of the function is DATE. If the argument can be null, the result can be null. If the argument is
null, the result is the null value.

Example
The following example returns the date value of the first day of the next week after the date specified by
the input:

Chapter 1. Structured Query Language (SQL) 435

values next_week('2007-02-18')
 Result: 2007-02-25

NEXT_YEAR
The NEXT_YEAR function returns the first day of the year follows the year containing the date specified by
the input.

NEXT_YEAR (datetime-expression)

The schema is SYSIBM.

datetime-expression
An expression that specifies a date after which first day of the next year is to be returned. The
expression must return a value that is a DATE, a TIMESTAMP, a CHAR, or a VARCHAR data type.
In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported using implicit casting. If datetime-expression
is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string accepted by the
TIMESTAMP scalar function.

The result of the function is DATE. If the argument can be null, the result can be null. If the argument is
null, the result is the null value.

Example
Returns the date value of the first day of the year that follows the year containing the date specified by the
input.

values next_year('2007-02-18')
 Result: 2008-01-01

NORMALIZE_ DECFLOAT
The NORMALIZE_DECFLOAT function returns a decimal floating-point value equal to the input argument
set to its simplest form; that is, a nonzero number with trailing zeros in the coefficient has those zeros
removed.

NORMALIZE_DECFLOAT (expression)

The schema is SYSIBM.

Returning a decimal floating-point value equal to the input argument set to its simplest form may require
representing the number in normalized form by dividing the coefficient by the appropriate power of ten
and adjusting the exponent accordingly. A zero value has its exponent set to 0.

expression
An expression that returns a value of any built-in numeric data type. Arguments of type SMALLINT,
INTEGER, REAL, DOUBLE, or DECIMAL(p,s), where p <= 16, are converted to DECFLOAT(16)
for processing. Arguments of type BIGINT or DECIMAL(p,s), where p > 16, are converted to
DECFLOAT(34) for processing.

The result of the function is a DECFLOAT(16) value if the data type of expression after conversion to
decimal floating-point is DECFLOAT(16). Otherwise, the result of the function is a DECFLOAT(34) value.
If the argument is a special decimal floating-point value, the result is the same special decimal floating-
point value. If the argument can be null, the result can be null; if the argument is null, the result is the null
value.

436 IBM Db2 V11.5: SQL Reference

Examples
The following examples show the values that are returned by the NORMALIZE_DECFLOAT function, given
a variety of input decimal floating-point values:

NORMALIZE_DECFLOAT(DECFLOAT(2.1)) = 2.1
NORMALIZE_DECFLOAT(DECFLOAT(-2.0)) = -2
NORMALIZE_DECFLOAT(DECFLOAT(1.200)) = 1.2
NORMALIZE_DECFLOAT(DECFLOAT(-120)) = -1.2E+2
NORMALIZE_DECFLOAT(DECFLOAT(120.00)) = 1.2E+2
NORMALIZE_DECFLOAT(DECFLOAT(0.00)) = 0
NORMALIZE_DECFLOAT(-NAN) = -NaN
NORMALIZE_DECFLOAT(-INFINITY) = -Infinity

NOW
The NOW function returns a timestamp based on a reading of the time-of-day clock when the SQL
statement is executed at the current server.

NOW (
6

integer

)

The schema is SYSIBM.

integer
Specifies the precision of the timestamp. Valid values are 0 to 12, inclusive. If you do not specify an
integer, the default precision of 6 is used.

The value returned by the NOW function is the same as the value returned by the CURRENT TIMESTAMP
special register. If this function is used more than once within a single SQL statement or used with
CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP special registers within a single statement, all
values are based on a single clock reading.

The precision of the clock reading varies by platform and the resulting value is padded with zeros if the
precision of the retrieved clock reading is less than the precision of the request.

The data type of the result is a timestamp. The result cannot be null.

Example
Return the timestamp for the current time.

values now().
 Result: 2015-04-01-03.17.04.579645.

NULLIF
The NULLIF function returns a null value if the arguments are equal, otherwise it returns the value of the
first argument.

NULLIF (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that returns a value of any built-in or user-defined data type.

expression2
An expression that returns a value of any built-in or user-defined data type that is comparable with
the data type of the other argument according to the rules for equality comparison.

The result of using NULLIF(e1,e2) is the same as using the following expression:

Chapter 1. Structured Query Language (SQL) 437

 CASE WHEN e1=e2 THEN NULL ELSE e1 END

When e1=e2 evaluates to unknown (because one or both arguments is NULL), CASE expressions consider
this not true. Therefore, in this situation, NULLIF returns the value of the first argument.

Notes
• The NULLIF function cannot be used as a source function when creating a user-defined function.

Because this function accepts any comparable data types as arguments, it is not necessary to create
additional signatures to support user-defined data types.

Example
Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data types with the values 4500.00,
500.00, and 5000.00 respectively:

 NULLIF (:PROFIT + :CASH , :LOSSES)

Returns a null value.

NUMERIC
The NUMERIC function returns a decimal representation of a number, a string representation of a number,
or a datetime value.

NUMERIC (expression)

The schema is SYSIBM.

The NUMERIC scalar function is a synonym for the DECIMAL scalar function.

NVL
The NVL function returns the first argument that is not null.

NVL (expression , expression)

The schema is SYSIBM.

NVL is a synonym for COALESCE.

NVL2
The NVL2 function returns the second argument when the first argument is not NULL. If the first argument
is NULL, the third argument is returned.

NVL2 (expression , result-expression , else-expression)

The schema is SYSIBM.

The NVL2 function is a synonym for the following statement:

CASE WHEN expression IS NOT NULL
 THEN result-expression
 ELSE else-expression
END

438 IBM Db2 V11.5: SQL Reference

OCTET_LENGTH
The OCTET_LENGTH function returns the length of expression in octets (bytes).

OCTET_LENGTH (expression)

The schema is SYSIBM.

expression
An expression that returns a value that is a built-in string data type.

The result of the function is INTEGER. If the argument can be null, the result can be null; if the argument
is null, the result is the null value.

The length of character or graphic strings includes trailing blanks. The length of binary strings includes
binary zeros. The length of varying-length strings is the actual length and not the maximum length.

For greater portability, code your application to be able to accept a result of data type DECIMAL(31).

Examples
• Example 1: Assume that table T1 has a GRAPHIC(10) column named C1.

 SELECT OCTET_LENGTH(C1) FROM T1

returns the value 20.
• Example 2: The following example works with the Unicode string '&N~AB', where '&' is the musical

symbol G clef character, and '~' is the combining tilde character. This string is shown in different
Unicode encoding forms in the following example:

'&' 'N' '~' 'A' 'B'

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16BE X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

Assume that the variables UTF8_VAR and UTF16_VAR contain the UTF-8 and the UTF-16BE
representations of the string, respectively.

 SELECT OCTET_LENGTH(UTF8_VAR),
 OCTET_LENGTH(UTF16_VAR)
 FROM SYSIBM.SYSDUMMY1

returns the values 9 and 12, respectively.

Chapter 1. Structured Query Language (SQL) 439

OVERLAY
The OVERLAY function returns a string in which, beginning at start in source-string, length of the specified
code units have been deleted and insert-string has been inserted.

OVERLAY (source-string

PLACING insert-string FROM start

FOR length USING CODEUNITS16

CODEUNITS32

OCTETS

, insert-string , start

, length , CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the source string. The expression must return a value that is a built-in
string, numeric, boolean, or datetime data type. If the value is not a string data type, it is implicitly
cast to VARCHAR before evaluating the function.

insert-string
An expression that specifies the string to be inserted into source-string, starting at the position
identified by start. The expression must return a value that is a built-in string, numeric, boolean, or
datetime data type. If the value is not a string data type, it is implicitly cast to VARCHAR before
evaluating the function. If the code page of the insert-string differs from that of the source-string,
insert-string is converted to the code page of the source-string.

start
An expression that returns an integer value. The integer value specifies the starting point within the
source string where the deletion and the insertion of another string is to begin. The expression must
return a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. If
the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function. The
integer value is the starting point in code units using the specified string units. The integer value must
be between 1 and the actual length of source-string in the specified string units plus one (SQLSTATE
42815). If OCTETS is specified and the result is graphic data, the value must be an odd number
between 1 and the actual octet length of source-string plus one (SQLSTATE 428GC or 22011).

length
An expression that specifies the number of code units (in the specified string units) that are to be
deleted from the source string, starting at the position identified by start. The expression must return
a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. If the value
is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function. The value must
be a positive integer or zero (SQLSTATE 22011). If OCTETS is specified and the result is graphic data,
the value must be an even number or zero (SQLSTATE 428GC).

Not specifying length is equivalent to specifying a value of 1, except when OCTETS is specified and the
result is graphic data, in which case, not specifying length is equivalent to specifying a value of 2.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of start and length.

CODEUNITS16 specifies that start and length are expressed in 16-bit UTF-16 code units.
CODEUNITS32 specifies that start and length are expressed in 32-bit UTF-32 code units. OCTETS
specifies that start and length are expressed in bytes.

If the string unit is specified as CODEUNITS16 or CODEUNITS32, and the result is a binary string
or a FOR BIT DATA string, an error is returned (SQLSTATE 428GC). If the string unit is specified as

440 IBM Db2 V11.5: SQL Reference

CODEUNITS16 or OCTETS, and the string units of source-string is CODEUNITS32, an error is returned
(SQLSTATE 428GC). If the string unit is specified as OCTETS, the operation is performed in the code
page of the source-string.

If a string unit argument is not specified and both source-string and insert-string are either a character
string that is not FOR BIT DATA or is a graphic string, the default is CODEUNITS32. Otherwise, the
default is OCTETS.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see "String units in built-in
functions" in "Character strings".

The data type of the result depends on the data types of source-string and insert-string, as shown in
the following tables of supported type combinations. The string unit of the result is the string unit of
source-string. If either source-string or insert-string is defined as FOR BIT DATA the other argument cannot
be defined with string units of CODEUNITS32. The second table applies to Unicode databases only.

Table 79. Data type of the result as a function of the data types of source-string and insert-string

source-string insert-string Result

CHAR or VARCHAR CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC GRAPHIC or VARGRAPHIC VARGRAPHIC

CLOB CHAR, VARCHAR, or CLOB CLOB

CHAR or VARCHAR CLOB CLOB

DBCLOB GRAPHIC, VARGRAPHIC, or
DBCLOB

DBCLOB

GRAPHIC or VARGRAPHIC DBCLOB DBCLOB

CHAR or VARCHAR CHAR FOR BIT DATA or VARCHAR
FOR BIT DATA

VARCHAR FOR BIT DATA

CHAR FOR BIT DATA or VARCHAR
FOR BIT DATA

CHAR, VARCHAR, CHAR FOR BIT
DATA, or VARCHAR FOR BIT
DATA

VARCHAR FOR BIT DATA

BINARY or VARBINARY BINARY or VARBINARY VARBINARY

BLOB BLOB BLOB

BINARY or VARBINARY BLOB BLOB

Note: If the data types for source-string and insert-string are a combination of binary and FOR BIT DATA
string, the argument that is not a binary data type is handled as if it was cast to the corresponding binary
data type.

Table 80. Data type of the result as a function of the data types of source-string and insert-string (Unicode
databases only)

source-string insert-string Result

CHAR or VARCHAR GRAPHIC or VARGRAPHIC VARCHAR

GRAPHIC or VARGRAPHIC CHAR or VARCHAR VARGRAPHIC

CLOB GRAPHIC, VARGRAPHIC, or
DBCLOB

CLOB

DBCLOB CHAR, VARCHAR, or CLOB DBCLOB

A source-string can have a length of 0; in this case, start must be 1 (as implied by the bounds provided in
the description for start), and the result of the function is a copy of the insert-string.

Chapter 1. Structured Query Language (SQL) 441

An insert-string can also have a length of 0. This has the effect of deleting the code units identified by start
and length from the source-string.

The length attribute of the result is the length attribute of source-string plus the length attribute of
insert-string when the string units of the source-string and insert-string are the same or the result string
units is CODEUNITS32. Special cases are listed in the following table.

Table 81. Data type of the result as a function of the data types of source-string and insert-string (special cases, Unicode
databases only)

source-string insert-string Result

Data type String units Data type String units Length attribute String units

Character string
with length
attribute A

OCTETS Graphic string with
length attribute B

CODEUNITS16 A+3*B OCTETS

CODEUNITS32 A+4*B

Character with
length attribute B

CODEUNITS32 A+4*B

Graphic string with
length attribute A

CODEUNITS16 Character with
length attribute B

OCTETS A+B CODEUNITS16

CODEUNITS32 A+2*B

Graphic string with
length attribute B

CODEUNITS32 A+2*B

The actual length of the result depends on the actual length of source-string, the actual length of
the deleted string, the actual length of the insert-string, and string units used for the start and length
arguments. For example, if the string arguments are character strings in OCTETS and the OCTETS is used
as the fourth argument, the actual length of the result is A1 - MIN((A1 - V2 + 1), V3) + A4, where:

• A1 is the actual length of source-string
• V2 is the value of start
• V3 is the value of length
• A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the return data type, an error is returned
(SQLSTATE 54006).

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Examples
• Example 1: Create the strings 'INSISTING', 'INSISERTING', and 'INSTING' from the string 'INSERTING'

by inserting text into the middle of the existing text.

 SELECT OVERLAY('INSERTING','IS',4,2,OCTETS),
 OVERLAY('INSERTING','IS',4,0,OCTETS),
 OVERLAY('INSERTING','',4,2,OCTETS)
 FROM SYSIBM.SYSDUMMY1

• Example 2: Create the strings 'XXINSERTING', 'XXNSERTING', 'XXSERTING', and 'XXERTING' from the
string 'INSERTING' by inserting text before the existing text, using 1 as the starting point.

 SELECT OVERLAY('INSERTING','XX',1,0,CODEUNITS16)),
 OVERLAY('INSERTING','XX',1,1,CODEUNITS16)),
 OVERLAY('INSERTING','XX',1,2,CODEUNITS16)),
 OVERLAY('INSERTING','XX',1,3,CODEUNITS16))
 FROM SYSIBM.SYSDUMMY1

442 IBM Db2 V11.5: SQL Reference

• Example 3: Create the string 'ABCABCXX' from the string 'ABCABC' by inserting text after the existing
text. Because the source string is 6 characters long, set the starting position to 7 (one plus the length of
the source string).

 SELECT OVERLAY('ABCABC','XX',7,0,CODEUNITS16))
 FROM SYSIBM.SYSDUMMY1

• Example 4: Change the string 'Hegelstraße' to 'Hegelstrasse'.

 SELECT OVERLAY('Hegelstraße','ss',10,1,CODEUNITS16))
 FROM SYSIBM.SYSDUMMY1

• Example 5: The following example works with the Unicode string '&N~AB', where '&' is the musical
symbol G clef character, and '~' is the combining tilde character. This string is shown in different
Unicode encoding forms in the following example:

'&' 'N' '~' 'A' 'B'

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16BE X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

Assume that the variables UTF8_VAR and UTF16_VAR contain the UTF-8 and the UTF-16BE
representations of the string, respectively. Use the OVERLAY function to insert a 'C' into the Unicode
string '&N~AB'.

 SELECT OVERLAY(UTF8_VAR, 'C', 1, CODEUNITS16),
 OVERLAY(UTF8_VAR, 'C', 1, CODEUNITS32),
 OVERLAY(UTF8_VAR, 'C', 1, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values 'C?N~AB', 'CN~AB', and 'CbbbN~AB', respectively, where '?' represents X'EDB49E',
which corresponds to the X'DD1E' in the intermediate UTF-16 form, and 'bbb' replaces the UTF-8
incomplete characters X'9D849E'.

 SELECT OVERLAY(UTF8_VAR, 'C', 5, CODEUNITS16),
 OVERLAY(UTF8_VAR, 'C', 5, CODEUNITS32),
 OVERLAY(UTF8_VAR, 'C', 5, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values '&N~CB', '&N~AC', and '&N~AB', respectively.

 SELECT OVERLAY(UTF16_VAR, 'C', 1, CODEUNITS16),
 OVERLAY(UTF16_VAR, 'C', 1, CODEUNITS32)
 FROM SYSIBM.SYSDUMMY1

returns the values 'C?N~AB' and 'CN~AB', respectively, where '?' represents the unmatched low
surrogate U+DD1E.

 SELECT OVERLAY(UTF16_VAR, 'C', 5, CODEUNITS16),
 OVERLAY(UTF16_VAR, 'C', 5, CODEUNITS32)
 FROM SYSIBM.SYSDUMMY1

returns the values '&N~CB' and '&N~AC', respectively.

PARAMETER
The PARAMETER function represents a position in an SQL statement where the value is provided
dynamically by XQuery as part of the invocation of the db2-fn:sqlquery function.

PARAMETER (integer-constant)

The schema is SYSIBM.

Chapter 1. Structured Query Language (SQL) 443

integer-constant
An integer constant that specifies a position index of a value in the arguments of db2-fn:sqlquery. The
value must be between 1 and the total number of the arguments specified in the db2-fn:sqlquery SQL
statement (SQLSTATE 42815).

The PARAMETER function represents a position in an SQL statement where the value is provided
dynamically by XQuery as part of the invocation of the db2-fn:sqlquery function. The argument of the
PARAMETER function determines which value is substituted for the PARAMETER function when the
db2-fn:sqlquery function is executed. The value supplied by the PARAMETER function can be referenced
multiple times within the same SQL statement.

This function can only be used in a fullselect contained in the string literal argument of the db2-
fn:sqlquery function in an XQuery expression (SQLSTATE 42887).

Example
In the following example, the db2-fn:sqlquery function call uses one PARAMETER function call and the
XQuery expression $po/@OrderDate, the order date attribute. The PARAMETER function call returns the
value of order date attribute:

 xquery
 declare default element namespace "http://posample.org";
 for $po in db2-fn:xmlcolumn('PURCHASEORDER.PORDER')/PurchaseOrder,
 $item in $po/item/partid
 for $p in db2-fn:sqlquery(
 "select description from product where promostart < PARAMETER(1)",
 $po/@OrderDate)
 where $p//@pid = $item
 return
 <RESULT>
 <PoNum>{data($po/@PoNum)}</PoNum>
 <PartID>{data($item)} </PartID>
 <PoDate>{data($po/@OrderDate)}</PoDate>
 </RESULT>

The example returns the purchase ID, part ID, and the purchase date for all the parts sold after the
promotional start date.

POSITION
The POSITION function returns the starting position of the first occurrence of one string within another
string.

POSITION (

search-string IN source-string

USING CODEUNITS16

CODEUNITS32

OCTETS

search-string , source-string

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

The string the POSITION function searches for is called the search-string. The string it searches in is
called the source-string. The POSITION function returns the starting position of the first occurrence of
one string (called the search-string) within another string (called the source-string). If search-string is not
found and neither argument is null, the result is zero. If the search-string is found, the result is a number
from 1 to the actual length of source-string, expressed in the string unit that is explicitly specified. The

444 IBM Db2 V11.5: SQL Reference

search is done using the collation of the database, unless search-string or source-string is defined as a
binary string or as FOR BIT DATA, in which case the search is done using a binary comparison.

If source-string has an actual length of 0, the result of the function is 0. If search-string has an actual
length of 0 and source-string is not null, the result of the function is 1.

search-string
An expression that specifies the string that is to be searched for. This expression must return a
value that is a built-in character string, graphic string, binary string, numeric value, Boolean value, or
datetime value. If the value is not a character string, graphic string, or binary string, it is implicitly cast
to VARCHAR before the function is evaluated. The expression cannot be a LOB file reference variable.

source-string
An expression that specifies the string to be searched through. This expression must return a value
that is a built-in character string, numeric value, Boolean value, or datetime value. If the value is not a
string data type, it is implicitly cast to VARCHAR before evaluating the function.

CODEUNITS16 or CODEUNITS32 or OCTETS
Specifies the string unit of the result. CODEUNITS16 specifies that the result is to be expressed in
16-bit UTF-16 code units. CODEUNITS32 specifies that the result is to be expressed in 32-bit UTF-32
code units. OCTETS specifies that the result is to be expressed in bytes.

If a string unit is specified as CODEUNITS16 or CODEUNITS32, and search-string or source-string is a
binary string or a FOR BIT DATA string, an error is returned (SQLSTATE 428GC).

If a string unit argument is not specified and both search-string and source-string are either a
character string that is not FOR BIT DATA or is a graphic string, the default is CODEUNITS32.
Otherwise, the default is OCTETS.

If a locale-sensitive UCA-based collation is used for this function, then the CODEUNITS16 option
offers the best performance characteristics.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see "String units in built-in
functions" in "Character strings".

The first and second arguments must have compatible string types. For more information about
compatibility, see "Rules for string conversions". In a Unicode database, if one string argument is
character (not FOR BIT DATA) and the other string argument is graphic, then the search-string is converted
to the data type of the source-string for processing. If one argument is character FOR BIT DATA, the other
argument must not be graphic (SQLSTATE 42846).

Result
The result of the function is a large integer. If any argument can be null, the result can be null; if any
argument is null, the result is the null value.

Examples
• Example 1: Select the RECEIVED column, the SUBJECT column, and the starting position of the string

'GOOD BEER' within the NOTE_TEXT column for all rows in the IN_TRAY table that contain that string.

 SELECT RECEIVED, SUBJECT, POSITION('GOOD BEER', NOTE_TEXT, OCTETS)
 FROM IN_TRAY
 WHERE POSITION('GOOD BEER', NOTE_TEXT, OCTETS) <> 0

• Example 2: Find the position of the character 'ß' in the string 'Jürgen lives on Hegelstraße', and set the
host variable LOCATION with the position, as measured in CODEUNITS32 units, within the string.

 SET :LOCATION = POSITION(
 'ß', 'Jürgen lives on Hegelstraße', CODEUNITS32
)

The value of host variable LOCATION is set to 26.

Chapter 1. Structured Query Language (SQL) 445

• Example 3: Find the position of the character 'ß' in the string 'Jürgen lives on Hegelstraße', and set the
host variable LOCATION with the position, as measured in OCTETS, within the string.

 SET :LOCATION = POSITION(
 'ß', 'Jürgen lives on Hegelstraße', OCTETS
)

The value of host variable LOCATION is set to 27.
• Example 4: The following examples work with the Unicode string '&N~AB', where '&' is the musical

symbol G clef character, and '~' is the non-spacing combining tilde character. This string is shown in
different Unicode encoding forms in the following example:

'&' 'N' '~' 'A' 'B'

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16BE X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

Assume that the variable UTF8_VAR contains the UTF-8 representation of the string.

 SELECT POSITION('N', UTF8_VAR, CODEUNITS16),
 POSITION('N', UTF8_VAR, CODEUNITS32),
 POSITION('N', UTF8_VAR, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values 3, 2, and 5, respectively.

Assume that the variable UTF16_VAR contains the UTF-16BE representation of the string.

 SELECT POSITION('B', UTF16_VAR, CODEUNITS16),
 POSITION('B', UTF16_VAR, CODEUNITS32),
 POSITION('B', UTF16_VAR, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 11, respectively.
• Example 5: In a Unicode database created with the case insensitive collation CLDR181_LEN_S1, find

the position of the word 'Brown' in the phrase 'The quick brown fox'.

SET :LOCATION = POSITION('Brown', 'The quick brown fox', CODEUNITS16)

The value of the host variable LOCATION is set to 11.

POSSTR
The POSSTR function returns the starting position of the first occurrence of one string (called the search-
string) within another string (called the source-string).

POSSTR (source-string , search-string)

The schema is SYSIBM.

Numbers for the search-string position start at 1 (not 0).

The result of the function is a large integer. If either of the arguments can be null, the result can be null; if
either of the arguments is null, the result is the null value.

source-string
An expression that specifies the string to be searched through. This expression must return a built-in
character string, numeric value, Boolean value, or datetime value. If the value is not a character string,
it is implicitly cast to VARCHAR before the function is evaluated.

search-string
An expression that specifies the string that is to be searched for. This expression must return a value
that is a built-in string, signed numeric, Boolean, or datetime value. If the value is not a string, it is

446 IBM Db2 V11.5: SQL Reference

implicitly cast to VARCHAR before the function is evaluated. The actual length must not exceed the
maximum length of a VARCHAR.

The expression cannot include any of the following elements (SQLSTATE 42824):

• A LOB file reference variable
• A parameter of an inlined SQL user-defined function
• A transition variable in an inlined trigger
• A local variable in a compound SQL (inlined) statement
• A user-defined function
• A non-deterministic built-in function
• A scalar fullselect

In a Unicode database, if one argument is character (not FOR BIT DATA) and the other argument is
graphic, then the search-string is converted to the data type of the source-string for processing. If one
argument is character FOR BIT DATA, the other argument must not be graphic (SQLSTATE 42846).

Both search-string and source-string have zero or more contiguous positions. If the strings are character
or binary strings, a position is a byte. If the strings are graphic strings, a position is a double byte. POSSTR
operates on a strict byte-count basis, without awareness of either the database collation or changes
between single and multi-byte characters. The POSITION, LOCATE, or LOCATE_IN_STRING functions can
be used to operate with awareness of the database collation and the string units.

The following rules apply:

• The data types of source-string and search-string must be compatible, otherwise an error is raised
(SQLSTATE 42884).

– If source-string is a character string, then search-string must be a character string, but not a CLOB,
with an actual length of 32672 bytes or less.

– If source-string is a graphic string, then search-string must be a graphic string, but not a DBCLOB,
with an actual length of 16336 double-byte characters or less.

– If source-string is a binary string, then search-string must be a binary string with an actual length of
32672 bytes or less.

• If search-string has a length of zero, the result returned by the function is 1.
• Otherwise:

– If source-string has a length of zero, the result returned by the function is zero.
– Otherwise:

- If the value of search-string is equal to an identical length substring of contiguous positions from
the value of source-string, then the result returned by the function is the starting position of the first
such substring within the source-string value.

- Otherwise, the result returned by the function is 0.

Example
Select RECEIVED and SUBJECT columns as well as the starting position of the words 'GOOD BEER' within
the NOTE_TEXT column for all entries in the IN_TRAY table that contain these words.

 SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, 'GOOD BEER')
 FROM IN_TRAY
 WHERE POSSTR(NOTE_TEXT, 'GOOD BEER') <> 0

Chapter 1. Structured Query Language (SQL) 447

POW
The POW function returns the result of raising the first argument to the power of the second argument.

POW (expression1 , expression2)

The schema is SYSIBM.

POW is a synonym for POWER.

POWER
The POWER function returns the result of raising the first argument to the power of the second argument.

POWER (expression1 , expression2)

The schema is SYSIBM. (The SYSFUN version of the POWER function continues to be available.)

expression1
An expression that returns a value of any built-in numeric data type.

expression2
An expression that returns a value of any built-in numeric data type.

If the value of expression1 is equal to zero, then expression2 must be greater than or equal to zero. If
both arguments are 0, the result is 1. If the value of expression1 is less than zero, then expression2
must be an integer value.

The result of the function is:

• INTEGER if both arguments are INTEGER or SMALLINT
• BIGINT if one argument is BIGINT and the other argument is BIGINT, INTEGER or SMALLINT
• DECFLOAT(34) if one of the arguments is decimal floating-point. If either argument is a DECFLOAT and

one of the following statements is true, the result is NAN and an invalid operation condition:

– Both arguments are zero
– The second argument has a nonzero fractional part
– The second argument has more than 9 digits
– The second argument is INFINITY

• DOUBLE otherwise

If the argument is a special decimal floating-point value, the rules for general arithmetic operations for
decimal floating-point apply. See “General arithmetic operation rules for decimal floating-point” on page
142 in “Expressions” on page 132.

The result can be null; if any argument is null, the result is the null value.

Example
Assume that the host variable HPOWER is an integer with a value of 3.

 VALUES POWER(2,:HPOWER)

Returns the value 8.

QUANTIZE
The QUANTIZE function returns a decimal floating-point value that is equal in value (except for any
rounding) and sign to numeric-expression and that has an exponent equal to the exponent of exp-
expression.

The number of digits (16 or 34) is the same as the number of digits in numeric-expression.

448 IBM Db2 V11.5: SQL Reference

QUANTIZE (numeric-expression , exp-expression)

The schema is SYSIBM.

numeric-expression
An expression that returns a value of any built-in numeric data type. If the argument is not a decimal
floating-point value, it is converted to DECFLOAT(34) for processing.

exp-expression
An expression that returns a value of any built-in numeric data type. If the argument is not a decimal
floating-point value, it is converted to DECFLOAT(34) for processing. The exp-expression is used as
an example pattern for rescaling numeric-expression. The sign and coefficient of exp-expression are
ignored.

The coefficient of the result is derived from that of numeric-expression. It is rounded, if necessary (if the
exponent is being increased), multiplied by a power of ten (if the exponent is being decreased), or remains
unchanged (if the exponent is already equal to that of exp-expression).

The CURRENT DECFLOAT ROUNDING MODE special register determines the rounding mode.

Unlike other arithmetic operations on the decimal floating-point data type, if the length of the coefficient
after the quantize operation is greater than the precision specified by exp-expression, the result is NaN
and a warning is returned (SQLSTATE 0168D). This ensures that, unless there is a warning condition, the
exponent of the result of QUANTIZE is always equal to that of exp-expression.

• if either argument is NaN, NaN is returned
• if either argument is sNaN, NaN is returned and a warning is returned (SQLSTATE 01565)
• if both arguments are infinity (positive or negative), infinity with the same sign as the first argument is

returned
• if one argument is infinity (positive or negative) and the other argument is not infinity, NaN is returned

and a warning is returned (SQLSTATE 0168D)

The result of the function is a DECFLOAT(16) value if both arguments are DECFLOAT(16). Otherwise, the
result of the function is a DECFLOAT(34) value. The result can be null; if any argument is null, the result is
the null value.

Examples
• Example 1: The following examples show the values that are returned by the QUANTIZE function given a

variety of input decimal floating-point values and assuming a rounding mode of ROUND_HALF_UP:

QUANTIZE(2.17, DECFLOAT(0.001)) = 2.170
QUANTIZE(2.17, DECFLOAT(0.01)) = 2.17
QUANTIZE(2.17, DECFLOAT(0.1)) = 2.2
QUANTIZE(2.17, DECFLOAT('1E+0')) = 2
QUANTIZE(2.17, DECFLOAT('1E+1')) = 0E+1
QUANTIZE(2, DECFLOAT(INFINITY)) = NaN -- warning
QUANTIZE(0, DECFLOAT('1E+5')) = 0E+5
QUANTIZE(217, DECFLOAT('1E-1')) = 217.0
QUANTIZE(217, DECFLOAT('1E+0')) = 217
QUANTIZE(217, DECFLOAT('1E+1')) = 2.2E+2
QUANTIZE(217, DECFLOAT('1E+2')) = 2E+2

• Example 2: In the following example the value -0 is returned for the QUANTIZE function. The CHAR
function is used to avoid the potential removal of the minus sign by a client program:

CHAR(QUANTIZE(-0.1, DECFLOAT(1))) = -0

Chapter 1. Structured Query Language (SQL) 449

QUARTER
Returns an integer value in the range 1 to 4, representing the quarter of the year for the date specified in
the argument.

QUARTER (expression)

The schema is SYSFUN.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIMESTAMP, or a
valid character string representation of a date or timestamp that is not a CLOB. In a Unicode database,
if a supplied argument is a graphic string (except DBCLOB), it is first converted to a character string
before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is null, the result is the null
value.

QUOTE_IDENT
The QUOTE_IDENT function returns a string that can be used as an identifier in an SQL statement.

The schema is SYSIBM.

Syntax
QUOTE_IDENT (string-expression)

string-expression

An expression that specifies the input string. The expression must return a character string, signed
numeric value, or datetime value. If the data type of the input string is not VARCHAR, it is implicitly
cast to VARCHAR before the function is evaluated. If the data type of the input string is CHAR or
VARCHAR, the expression must not be FOR BIT DATA (SQLSTATE 42815).

Result
The data type of the result is VARCHAR, and the result has the same codepage and string units as the
input string. The length attribute of the result depends on the length attribute of the input string:

Length attribute of the input string Length attribute of the result

L OCTETS min(32672,(L*2)+2) OCTETS

L CODEUNITS32 min(8168,(L*2)+2) CODEUNITS32

If the argument can be null, the result can be null. If the argument is null, the result is the null value.

Examples
Statement Result

quote_ident('HELLO WORLD') "HELLO WORLD"

quote_ident('HELLOWORLD') HELLOWORLD

quote_ident('HELLO_WORLD') HELLO_WORLD

quote_ident('hello world') "hello world"

quote_ident('hello"world') "hello""world"

quote_ident('hello''world') "hello'world"

450 IBM Db2 V11.5: SQL Reference

Statement Result

quote_ident('') ""

Related reference
“Identifiers” on page 5
An identifier is a token that is used to form a name. An identifier in an SQL statement is either an SQL
identifier or a host identifier.

QUOTE_LITERAL
The QUOTE_LITERAL function returns a string that can be used as a string constant in an SQL statement.

The schema is SYSIBM.

Syntax
QUOTE_LITERAL (string-expression)

string-expression

An expression that specifies the input string. The expression must return a character string, signed
numeric value, or datetime value. If the data type of the input string is not VARCHAR, it is implicitly
cast to VARCHAR before the function is evaluated. If the data type of the input string is CHAR or
VARCHAR, the expression must not be FOR BIT DATA (SQLSTATE 42815).

Result
The data type of the result is VARCHAR, and the result has the same codepage and string units as the
input string. The length attribute of the result depends on the length attribute of the input string:

Length attribute of the input string Length attribute of the result

L OCTETS min(32672,(L*2)+2) OCTETS

L CODEUNITS32 min(8168,(L*2)+2) CODEUNITS32

If the argument can be null, the result can be null. If the argument is null, the result is the null value.

Examples
Statement Result

quote_literal(42.5) '42.5'

quote_literal('You''re here!') 'You''re here!'

Related reference
“Identifiers” on page 5
An identifier is a token that is used to form a name. An identifier in an SQL statement is either an SQL
identifier or a host identifier.

RADIANS
The RADIANS function returns the number of radians for an argument that is expressed in degrees.

RADIANS (expression)

The schema is SYSIBM. (The SYSFUN version of the RADIANS function continues to be available.)

Chapter 1. Structured Query Language (SQL) 451

expression
An expression that returns a value of any built-in numeric data type. If the argument is decimal
floating-point, the operation is performed in decimal floating-point; otherwise, the argument is
converted to double-precision floating-point for processing by the function.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result is a double-precision
floating-point number. The result can be null; if the argument is null, the result is the null value.

Example
Assume that host variable HDEG is an INTEGER with a value of 180. The following statement:

 VALUES RADIANS(:HDEG)

Returns the value +3.14159265358979E+000.

RAISE_ERROR
The RAISE_ERROR function causes the statement that includes the function to return an error with the
specified SQLSTATE, SQLCODE -438, and diagnostic-string.

RAISE_ERROR (sqlstate , diagnostic-string)

The schema is SYSIBM.

sqlstate
A character string containing exactly 5 bytes. It must be of type CHAR defined with a length of 5 or
type VARCHAR defined with a length of 5 or greater. In a Unicode database, the expression can also
return a graphic string. If the returned value is not a character string, it is cast to a character string
before the function is evaluated.

The sqlstate value must obey the following rules for application-defined SQLSTATEs:

• Each character must be from the set of digits ("0" through "9") or non-accented upper case letters
("A" through "Z")

• The SQLSTATE class (first two characters) cannot be "00", "01", or "02" because these are not error
classes.

• If the SQLSTATE class (first two characters) starts with the character "0" through "6" or "A" through
"H", then the subclass (last three characters) must start with a letter in the range "I" through "Z".

• If the SQLSTATE class (first two characters) starts with the character "7", "8", "9" or "I" though "Z",
then the subclass (last three characters) can be any of "0" through "9" or "A" through "Z".

If the SQLSTATE does not conform to these rules, an error occurs (SQLSTATE 428B3).

diagnostic-string
An expression that returns a character string that describes the error condition, or a Boolean value.
In a Unicode database, the expression can also return a graphic string. If the returned value is not a
character string, it is cast to a character string before the function is evaluated. If the string exceeds
70 bytes, it is truncated.

Result
The RAISE_ERROR function always returns the null value with an undefined data type. To use this
function in a context where the data type cannot be determined, a cast specification must be used to give
the null returned value a data type. A CASE expression is where the RAISE_ERROR function will be most
useful.

452 IBM Db2 V11.5: SQL Reference

Example
List employee numbers and education levels as Post Graduate, Graduate and Diploma. If an education
level is greater than 20, raise an error.

 SELECT EMPNO,
 CASE WHEN EDUCLVL < 16 THEN 'Diploma'
 WHEN EDUCLVL < 18 THEN 'Graduate'
 WHEN EDUCLVL < 21 THEN 'Post Graduate'
 ELSE RAISE_ERROR('70001',
 'EDUCLVL has a value greater than 20')
 END
 FROM EMPLOYEE

RAND (SYSFUN schema)
The RAND function returns a floating point value between 0 and 1. RAND is a non-deterministic function.

RAND (

expression

)

The schema is SYSFUN.

expression
An expression that returns a value of data type SMALLINT, INTEGER, or BOOLEAN. The value must be
between 0 and 2,147,483,647. The returned value is used as a seed value.

A specific seed value produces the same sequence of random numbers for a specific instance of a RAND
function in a query each time the query is executed. The seed value is used only for the first invocation of
an instance of the RAND function within a statement. If a seed value is not specified, a different sequence
of random numbers is produced each time the query is executed within the same session. To produce a
set of random numbers that varies from session to session, specify a random seed; for example, one that
is based on the current time.

The RAND scalar function does not guarantee the uniqueness of the random numbers. Use the
GENERATE_UNIQUE scalar function to generate a series unique numbers.

The RAND function relies on the random number facilities of the host operating system. The random
number facility of each host might vary in factors such as the number of potential distinct values and the
quality of the randomness. For these reasons, the output of this function is not suitable as a source of
randomness in a cryptographic system.

Result
The data type of the result is double-precision floating point. If the argument is null, the result is the null
value. If either argument can be null, the result can be null. If either argument is null, the result is the null
value.

RAND (SYSIBM schema)
The RAND function returns a floating point value between 0 and 1. RAND is a non-deterministic function.

RAND (

expression

)

The schema is SYSIBM.

expression
The expression represents the value of a seed which is used to initialize the random number
generator. The expression must return a built-in character string, Boolean value, or numeric value. In a
Unicode database, the expression can also return a graphic string, in which case it is first converted to

Chapter 1. Structured Query Language (SQL) 453

a character string before the function is evaluated. If the returned value is not a INTEGER, it is cast to
INTEGER before evaluating the function. The value must be between 0 and 2,147,483,647.

A specific seed value produces the same sequence of random numbers for a specific instance of a RAND
function in a query each time the query is executed. The seed value is used only for the first invocation of
an instance of the RAND function within a statement. If a seed value is not specified, a different sequence
of random numbers is produced each time the query is executed within the same session. To produce a
set of random numbers that varies from session to session, specify a random seed; for example, one that
is based on the current time.

The RAND scalar function does not guarantee the uniqueness of the random numbers. Use the
GENERATE_UNIQUE scalar function to generate a series unique numbers.

The RAND function relies on the random number facilities of the host operating system. The random
number facility of each host might vary in factors such as the number of potential distinct values and the
quality of the randomness. For these reasons, the output of this function is not suitable as a source of
randomness in a cryptographic system.

Result
The data type of the result is double-precision floating point. If the argument is null, the result is the null
value. If either argument can be null, the result can be null. If either argument is null, the result is the null
value.

RANDOM
The RANDOM function returns a floating point value between 0 and 1. RANDOM is a non-deterministic
function.

RANDOM

(expression)

The schema is SYSIBM.

The RANDOM scalar function is a synonym for the “RAND (SYSIBM schema) ” on page 453.

RAWTOHEX
The RAWTOHEX function returns a hexadecimal representation of a value as a character string.

RAWTOHEX (expression)

The schema is SYSIBM.

expression
An expression that specifies the string for which the hexadecimal value is to be returned. The
expression must return a built-in character string, graphic string, binary string, numeric value, Boolean
value, or datetime value. If the value is not a character, graphic, or, binary string, it is implicitly cast to
VARCHAR before the function is evaluated.

Result
The result of the function is VARCHAR. If the argument can be null, the result can be null. If the argument
is null, the result is the null value. The length of the result is computed based on the following table:

Table 82. Data type of the result as a function of the data types of the argument data type and the length
attribute

Argument data type1 Length attribute2 Result data type

CHAR(A) or BINARY(A) A<128 CHAR(A*2)

454 IBM Db2 V11.5: SQL Reference

Table 82. Data type of the result as a function of the data types of the argument data type and the length
attribute (continued)

Argument data type1 Length attribute2 Result data type

CHAR(A) or BINARY(A) A>127 VARCHAR(A*2)

VARCHAR(A), VARBINARY(A),
CLOB(A), or BLOB(A)

A<16337 VARCHAR(A*2)

GRAPHIC(A) A<64 CHAR(A*2*2)

GRAPHIC(A) A>63 VARCHAR(A*2*2)

VARGRAPHIC(A) or DBCLOB(A) A<8169 VARCHAR(A*2*2)

CHAR(A CODEUNITS32) A<64 VARCHAR(A*4*2)

VARCHAR(A CODEUNITS32) or
CLOB(A CODEUNITS32)

A<4085 VARCHAR(A*4*2)

GRAPHIC(A CODEUNITS32) A<64 VARCHAR(A*2*2*2)

VARGRAPHIC(A CODEUNITS32)
or DBCLOB(A CODEUNITS32)

A<4085 VARCHAR(A*2*2*2)

1. If string units are not specified, then the string units for the data type are not CODEUNITS32.
2. The maximum length attributes reflect a data type limit or the limit of 16336 bytes for the input
argument.

Example

values rawtohex('hello')
 returns 68656C6C6F

REAL
The REAL function returns a single-precision floating-point representation of either a number or a string
representation of a number.

Numeric to REAL
REAL (numeric-expression)

String to REAL
REAL (string-expression)

The schema is SYSIBM.

Numeric to REAL
numeric-expression

An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a single-precision
floating-point column or variable. If the numeric value of the argument is not within the range of
single-precision floating-point, an error is returned (SQLSTATE 22003).

Chapter 1. Structured Query Language (SQL) 455

String to REAL
string-expression

An expression that returns a value that is character-string or Unicode graphic-string representation of
a number. The data type of string-expression must not be a CLOB or a DBCLOB (SQLSTATE 42884).

The result is the same number that would result from CAST(string-expression AS REAL). Leading and
trailing blanks are eliminated and the resulting string must conform to the rules for forming a valid
numeric constant (SQLSTATE 22018). If the numeric value of the argument is not within the range of
single-precision floating-point, an error is returned (SQLSTATE 22003).

The result of the function is a single-precision floating-point number. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

Notes
• The CAST specification should be used to increase the portability of applications.

Example
Using the EMPLOYEE table, find the ratio of salary to commission for employees whose commission is
not zero. The columns involved (SALARY and COMM) have DECIMAL data types. The required result is in
single-precision floating point. Therefore, REAL is applied to SALARY so that the division is carried out in
floating point (actually double-precision) and then REAL is applied to the complete expression to return
the result in single-precision floating point.

 SELECT EMPNO, REAL(REAL(SALARY)/COMM)
 FROM EMPLOYEE
 WHERE COMM > 0

REC2XML
The REC2XML function returns a string formatted with XML tags, containing column names and column
data.

REC2XML (decimal-constant , format-string , row-tag-string

, column-name)

The schema is SYSIBM.

In a Unicode database, if a supplied argument is a graphic string, it is first converted to a character string
before the function is executed.

decimal-constant
The expansion factor for replacing column data characters. The decimal value must be greater than
0.0 and less than or equal to 6.0. (SQLSTATE 42820).

The decimal-constant value is used to calculate the result length of the function. For every column
with a character data type, the length attribute of the column is multiplied by this expansion factor
before it is added in to the result length.

To specify no expansion, use a value of 1.0. Specifying a value less than 1.0 reduces the calculated
result length. If the actual length of the result string is greater than the calculated result length of the
function, then an error is raised (SQLSTATE 22001).

format-string
The string constant that specifies which format the function is to use during execution.

The format-string is case-sensitive, so the following values must be specified in uppercase to be
recognized.

456 IBM Db2 V11.5: SQL Reference

COLATTVAL or COLATTVAL_XML
These formats return a string with columns as attribute values.

< row-tag-string >

< column-name = "column-name" > column-value </ column >

null="true" />

</ row-tag-string >

Column names may or may not be valid XML attribute values. For column names which are not valid
XML attribute values, character replacement is performed on the column name before it is included in
the result string.

Column values may or may not be valid XML element names. If the format-string COLATTVAL is
specified, then for the column names which are not valid XML element values, character replacement
is performed on the column value before it is included in the result string. If the format-string
COLATTVAL_XML is specified, then character replacement is not performed on column values
(although character replacement is still performed on column names).

row-tag-string
A string constant that specifies the tag used for each row. If an empty string is specified, then a value
of "row" is assumed.

If a string of one or more blank characters is specified, then no beginning row-tag-string or ending
row-tag-string (including the angle bracket delimiters) will appear in the result string.

column-name
A qualified or unqualified name of a table column. The column must have one of the following data
types (SQLSTATE 42815):

• numeric (SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE)
• character string (CHAR, VARCHAR; a character string with a subtype of BIT DATA is not allowed)
• datetime (DATE, TIME, TIMESTAMP)
• a user-defined type based on one of the previously listed data types

The same column name cannot be specified more than once (SQLSTATE 42734).

The result of the function is VARCHAR in OCTETS, regardless of the string units of the environment or the
specified columns. The maximum length is 32 672 bytes (SQLSTATE 54006).

Consider the following invocation:

 REC2XML (dc, fs, rt, c1, c2, ..., cn)

If the value of "fs" is either "COLATTVAL" or "COLATTVAL_XML", then the result is the same as this
expression:

'<' CONCAT rt CONCAT '>' CONCAT y1 CONCAT y2
CONCAT ... CONCAT yn CONCAT '</' CONCAT rt CONCAT '>'

where yn is equivalent to:

'<column name="' CONCAT xvcn CONCAT vn

and vn is equivalent to:

'">' CONCAT rn CONCAT '</column>'

if the column is not null, and

Chapter 1. Structured Query Language (SQL) 457

'" null="true"/>'

if the column value is null.

xvcn is equivalent to a string representation of the column name of cn, where any characters appearing in
Table 84 on page 458 are replaced with the corresponding representation. This ensures that the resulting
string is a valid XML attribute or element value token.

The rn is equivalent to a string representation as indicated in Table 83 on page 458

Table 83. Column Values String Result

Data type of cn rn

CHAR, VARCHAR The value is a string. If the format-string does
not end in the characters "_XML", then each
character in cn is replaced with the corresponding
replacement representation from Table 84 on page
458, as indicated. The length attribute is: dc * the
length attribute of cn.

SMALLINT, INTEGER, BIGINT, DECIMAL,
NUMERIC, REAL, DOUBLE

The value is LTRIM(RTRIM(CHAR(cn))). The length
attribute is the result length of CHAR(cn). The
decimal character is always the period (".")
character.

DATE The value is CHAR(cn,ISO). The length attribute is
the result length of CHAR(cn,ISO).

TIME The value is CHAR(cn,JIS). The length attribute is
the result length of CHAR(cn,JIS)

TIMESTAMP The value is CHAR(cn). The length attribute is the
result length of CHAR(cn).

Character replacement:

Depending on the value specified for the format-string, certain characters in column names and column
values will be replaced to ensure that the column names form valid XML attribute values and the column
values form valid XML element values.

Table 84. Character Replacements for XML Attribute Values and Element Values

Character Replacement

< <

> >

" "

& &

' '

Examples
Note: REC2XML does not insert blank spaces or new line characters in the output. All example output has
been formatted to enhance readability.

• Example 1: Using the DEPARTMENT table in the sample database, format the department table row,
except the DEPTNAME and LOCATION columns, for department 'D01' into an XML string. Since the data

458 IBM Db2 V11.5: SQL Reference

does not contain any of the characters which require replacement, the expansion factor will be 1.0 (no
expansion). Also note that the MGRNO value is null for this row.

 SELECT REC2XML (1.0, 'COLATTVAL', '', DEPTNO, MGRNO, ADMRDEPT)
 FROM DEPARTMENT
 WHERE DEPTNO = 'D01'

This example returns the following VARCHAR(117) string:

 <row>
 <column name="DEPTNO">D01</column>
 <column name="MGRNO" null="true"/>
 <column name="ADMRDEPT">A00</column>
 </row>

• Example 2: A 5-day university schedule introduces a class named "&43<FIE" to a table called
CL_SCHED, with a new format for the CLASS_CODE column. Using the REC2XML function, this example
formats an XML string with this new class data, except for the class end time.

The length attribute for the REC2XML call with an expansion factor of 1.0 would be 128 (11 for
the "<row>" and "</row>" overhead, 21 for the column names, 75 for the "<column name=", ">",
"</column>" and double quotation marks, 7 for the CLASS_CODE data, 6 for the DAY data, and 8 for the
STARTING data). Since the "&" and "<" characters will be replaced, an expansion factor of 1.0 will not
be sufficient. The length attribute of the function will need to support an increase from 7 to 14 bytes for
the new format CLASS_CODE data.

However, since it is known that the DAY value will never be more than 1 digit long, an unused extra 5
units of length are added to the total. Therefore, the expansion only needs to handle an increase of 2.
Since CLASS_CODE is the only character string column in the argument list, this is the only column data
to which the expansion factor applies. To get an increase of 2 for the length, an expansion factor of 9/7
(approximately 1.2857) would be needed. An expansion factor of 1.3 will be used.

 SELECT REC2XML (1.3, 'COLATTVAL', 'record', CLASS_CODE, DAY, STARTING)
 FROM CL_SCHED
 WHERE CLASS_CODE = '&43<FIE'

This example returns the following VARCHAR(167) string:

 <record>
 <column name="CLASS_CODE">&43<FIE</column>
 <column name="DAY">5</column>
 <column name="STARTING">06:45:00</column>
 </record>

• Example 3: Assume that new rows have been added to the EMP_RESUME table in the sample database.
The new rows store the resumes as strings of valid XML. The COLATTVAL_XML format-string is used so
character replacement will not be carried out. None of the resumes are more than 3500 bytes in length.
The following query is used to select the XML version of the resumes from the EMP_RESUME table and
format it into an XML document fragment.

 SELECT REC2XML (1.0, 'COLATTVAL_XML', 'row', EMPNO, RESUME_XML)
 FROM (SELECT EMPNO, CAST(RESUME AS VARCHAR(3500)) AS RESUME_XML
 FROM EMP_RESUME
 WHERE RESUME_FORMAT = 'XML')
 AS EMP_RESUME_XML

This example returns a row for each employee who has a resume in XML format. Each returned row will
be a string with the following format:

 <row>
 <column name="EMPNO">{employee number}</column>
 <column name="RESUME_XML">{resume in XML}</column>
 </row>

Where "{employee number}" is the actual EMPNO value for the column and "{resume in XML}" is the
actual XML fragment string value that is the resume.

Chapter 1. Structured Query Language (SQL) 459

REGEXP_COUNT
The REGEXP_COUNT scalar function returns a count of the number of times that a regular expression
pattern is matched in a string.

REGEXP_COUNT (source-string , pattern-expression

, start

, flags

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute (SQLSTATE 42815).

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. The length of a CLOB or DBCLOB expression must not be greater than the
maximum length of a VARCHAR or VARGRAPHIC data type. A character string cannot specify the FOR
BIT DATA attribute (SQLSTATE 42815).

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string is
graphic data, the value of the integer must be odd (SQLSTATE 428GC). The default start value is 1. See
parameter description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to
the start position.

flags
An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute (SQLSTATE 42815).
The string can include one or more valid flag values and the combination of flag values must be valid
(SQLSTATE 2201T). An empty string is the same as the value 'c'. The default flag value is 'c'.

Table 85. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

460 IBM Db2 V11.5: SQL Reference

Table 85. Supported flag values (continued)

Flag
value Description

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator, and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the start value:

• CODEUNITS16 specifies that the start value is expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value is expressed in 32-bit UTF-32 code units. This is the

default.
• OCTETS specifies that the start value is expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and if the string unit of the source string is
CODEUNITS32, an error is returned (SQLSTATE 428GC).

For more information, see "String units in built-in functions" in “Character strings” on page 31.

Result
The result of the function is an INTEGER that represents the number of occurrences of the pattern
expression within the source string. If the pattern expression is not found and no argument is null, the
result is 0.

If any argument of the REGEXP_COUNT function can be null, the result can be null. If any argument is null,
the result is the null value.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only half-width control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

Example
Count the number of times "Steven" or "Stephen" occurs in the string "Steven Jones and Stephen Smith
are the best players".

SELECT REGEXP_COUNT(
 'Steven Jones and Stephen Smith are the best players', 'Ste(v|ph)en')
 FROM sysibm.sysdummy1

The result is 2.

Chapter 1. Structured Query Language (SQL) 461

REGEXP_EXTRACT
The REGEXP_EXTRACT scalar function returns one occurrence of a substring of a string that matches the
regular expression pattern.

REGEXP_EXTRACT (source-string , pattern-expression

, start
, occurrence

, flags

, group

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

The REGEXP_EXTRACT scalar function is a synonym for the REGEXP_SUBSTR scalar function.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only half-width control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

– The source string and replacement string arguments must both be character string data types or both
be graphic string data types.

REGEXP_INSTR
The REGEXP_INSTR scalar function returns the starting or ending position of the matched substring,
depending on the value of the return_option argument.

REGEXP_INSTR (source-string , pattern-expression

, start
, occurrence

, return_option

, flags

, group

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

462 IBM Db2 V11.5: SQL Reference

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute (SQLSTATE 42815).

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. The length of a CLOB or DBCLOB expression must not be greater than the
maximum length of a VARCHAR or VARGRAPHIC data type. A character string cannot specify the FOR
BIT DATA attribute (SQLSTATE 42815).

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string is
graphic data, the value of the integer must be odd (SQLSTATE 428GC). The default start value is 1. See
parameter description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to
the start position.

occurrence
An expression that specifies which occurrence of the pattern expression within the source string to
search for. The expression must return a built-in character string, graphic string, Boolean, or numeric
value. If the value is not of type INTEGER, it is implicitly cast to INTEGER before the function is
evaluated. This value must be greater than or equal 1. The default occurrence value is 1, which
indicates that only the first occurrence of the pattern expression is considered.

return-option
An expression that specifies what is returned relative to the occurrence. The expression must return a
built-in character string, graphic string, Boolean, or numeric value. If the value is not of type INTEGER,
it is implicitly cast to INTEGER before the function is evaluated. This value must be 0 or 1 (SQLSTATE
22546):

• A value of 0 returns the position of the first string unit of the occurrence.
• A value of 1 returns the position of the string unit that follows the occurrence.

The default return option value is 0.
flags

An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute (SQLSTATE 42815).
The string can include one or more valid flag values and the combination of flag values must be valid
(SQLSTATE 2201T). An empty string is the same as the value 'c'. The default flag value is 'c'.

Table 86. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

Chapter 1. Structured Query Language (SQL) 463

Table 86. Supported flag values (continued)

Flag
value Description

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator, and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

group
An expression that specifies which capture group of the pattern expression is used to determine the
position within source string to return. The expression must return a built-in character string, graphic
string, Boolean, or numeric value. If the value is not of type INTEGER, it is implicitly cast to INTEGER
before the function is evaluated. This value must be greater than or equal to 0 and must not be greater
than the number of capture groups in the pattern expression (SQLSTATE 22546). The default group
value is 0, which indicates that the position is based on the string that matches the entire pattern.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of both the start value and the result:

• CODEUNITS16 specifies that the start value and result are expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value and result are expressed in 32-bit UTF-32 code units.

This is the default.
• OCTETS specifies that the start value and result are expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and the string unit of the source string is
CODEUNITS32, an error is returned (SQLSTATE 428GC).

For more information, see "String units in built-in functions" in “Character strings” on page 31.

Result
The result of the function is a large integer. If the pattern expression is found, the result is a number from
1 to n, where n is the actual length of the source string plus 1. The result value represents the position
expressed in the string units used to process the function. If the pattern expression is not found and no
argument is null, the result is 0.

If any argument of the REGEXP_INSTR function can be null, the result can be null. If any argument is null,
the result is the null value.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only half-width control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

Examples
1. Find the first occurrence of a 'o' that has a character that is preceding it.

464 IBM Db2 V11.5: SQL Reference

SELECT REGEXP_INSTR('hello to you', '.o',1,1)
 FROM sysibm.sysdummy1

The result is 4, which is the position of the second 'l' character.
2. Find the second occurrence of a 'o' that has a character that is preceding it.

SELECT REGEXP_INSTR('hello to you', '.o',1,2)
 FROM sysibm.sysdummy1

The result is 7, which is the position of the character 't'.
3. Find the position after the third occurrence of the first capture group of the regular expression '(.o).'

using case insensitive matching.

SELECT REGEXP_INSTR('hello TO you', '(.o).', 1,3,1,'i',1)
 FROM sysibm.sysdummy1

The result is 12, which is the position of the character 'u' at the end of the string.

REGEXP_LIKE
The REGEXP_LIKE scalar function returns a boolean value indicating if the regular expression pattern is
found in a string. The function can be used only where a predicate is supported.

REGEXP_LIKE (source-string , pattern-expression

, start

, flags

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute (SQLSTATE 42815).

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. The length of a CLOB or DBCLOB expression must not be greater than the
maximum length of a VARCHAR or VARGRAPHIC data type. A character string cannot specify the FOR
BIT DATA attribute (SQLSTATE 42815).

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string is
graphic data, the value of the integer must be odd (SQLSTATE 428GC). The default start value is 1. See
parameter description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to
the start position.

flags
An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute (SQLSTATE 42815).

Chapter 1. Structured Query Language (SQL) 465

The string can include one or more valid flag values and the combination of flag values must be valid
(SQLSTATE 2201T). An empty string is the same as the value 'c'. The default flag value is 'c'.

Table 87. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator, and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the start value:

• CODEUNITS16 specifies that the start value is expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value is expressed in 32-bit UTF-32 code units. This is the

default.
• OCTETS specifies that the start value is expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and if the string unit of the source string is
CODEUNITS32, an error is returned (SQLSTATE 428GC).

For more information, see "String units in built-in functions" in “Character strings” on page 31.

Result
The result of the function is a BOOLEAN value. If the pattern expression is found, the result is true. If the
pattern expression is not found, the result is false. If the value of any of the arguments is null, the result is
unknown.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only half-width control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

– The source string and replacement string arguments must both be character string data types or both
be graphic string data types.

466 IBM Db2 V11.5: SQL Reference

Examples
1. Select the employee number where the last name is spelled LUCCHESSI, LUCHESSI, or LUCHESI from

the EMPLOYEE table without considering upper or lower case letters.

 SELECT EMPNO FROM EMPLOYEE
 WHERE REGEXP_LIKE(LASTNAME,'luc+?hes+?i','i')

The result is 1 row with EMPNO value '000110'.
2. Select any invalid product identifier values from the PRODUCT table. The expected format is 'nnn-nnn-

nn' where 'n' is a digit 0 - 9.

SELECT PID FROM PRODUCT
 WHERE NOT REGEXP_LIKE(pid,'[0-9]{3}-[0-9]{3}-[0-9]{2}')

The result is 0 rows because all the product identifiers match the pattern.

REGEXP_MATCH_COUNT
The REGEXP_MATCH_COUNT scalar function returns a count of the number of times that a regular
expression pattern is matched in a string.

REGEXP_MATCH_COUNT (source-string , pattern-expression

, start

, flags

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

The REGEXP_MATCH_COUNT scalar function is a synonym for the REGEXP_COUNT scalar function.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only half-width control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

– The source string and replacement string arguments must both be character string data types or both
be graphic string data types.

Chapter 1. Structured Query Language (SQL) 467

REGEXP_REPLACE
The REGEXP_REPLACE scalar function returns a modified version of the source string where occurrences
of the regular expression pattern found in the source string are replaced with the specified replacement
string.

REGEXP_REPLACE (source-string , pattern-expression

, replacement-string

, start
, occurrence

, flags

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute (SQLSTATE 42815).

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. The length of a CLOB or DBCLOB expression must not be greater than the
maximum length of a VARCHAR or VARGRAPHIC data type. A character string cannot specify the FOR
BIT DATA attribute (SQLSTATE 42815).

replacement-string
An expression that specifies the replacement string for matching substrings. The expression must
return a value that is a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. A character string cannot specify the FOR BIT DATA attribute (SQLSTATE
42815). The default replacement string is the empty string.

The content of the replacement string can include references to capture group text from the search to
use in the replacement text. These references are of the form '$n' or '\n', where n is the number of the
capture group and 0 represents the entire string that matches the pattern. The value for n must be in
the range 0-9 and not greater than the number of capture groups in the pattern (SQLSTATE 2201V).
For example, either '$2' or '\2' can be used to refer to the content found in the source string for
the second capture group that is specified in the pattern expression. If the pattern expression must
include a literal reference to a '$' or '\' character, that character must be preceded with an '/' character
as an escape character ('\$' or '\\').

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string is
graphic data, the value of the integer must be odd (SQLSTATE 428GC). The default start value is 1. See
parameter description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to
the start position.

468 IBM Db2 V11.5: SQL Reference

occurrence
An expression that specifies which occurrence of the pattern expression within the source string
is to be searched for and replaced. The expression must return a built-in character string, graphic
string, Boolean, or numeric value. If the value is not of type INTEGER, it is implicitly cast to INTEGER
before the function is evaluated. The occurrence value must be greater than or equal to 0. The default
occurrence value is 0, which indicates that all occurrences of the pattern expression in the source
string are replaced.

flags
An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute (SQLSTATE 42815).
The string can include one or more valid flag values and the combination of flag values must be valid
(SQLSTATE 2201T). An empty string is the same as the value 'c'. The default flag value is 'c'.

Table 88. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator, and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the start value:

• CODEUNITS16 specifies that the start value is expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value is expressed in 32-bit UTF-32 code units. This is the

default.
• OCTETS specifies that the start value is expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and if the string unit of the source string is
CODEUNITS32, an error is returned (SQLSTATE 428GC).

For more information, see "String units in built-in functions" in “Character strings” on page 31.

Result
The result of the function is a string. If there are no occurrences of the pattern to be replaced and no
argument is null, the original string is returned. The data type of the string is the same data type as the
source string, except for CHAR, which becomes VARCHAR; and VARGRAPHIC, which becomes GRAPHIC.

The length attribute of the result data type is determined based on the length attributes of the source
string and the replacement string by using the following calculation:

 MIN(MaxTypeLen, LAS+(LAS+1)*LAR)

Chapter 1. Structured Query Language (SQL) 469

where MaxTypeLen represents the maximum length attribute for the data type of the result, LAS
represents the length attribute for the data type of the source-string, and LAR represents the length
attribute for the data type of the replacement string. If the replacement string is not specified, the value
for LAR is 0. If the actual length of the result string exceeds the maximum for the return data type, an
error is returned (SQLSTATE 54006).

If any argument of the REGEXP_REPLACE function can be null, the result can be null. If any argument is
null, the result is the null value.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only half-width control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

– The source string and replacement string arguments must both be character string data types or both
be graphic string data types.

Example
Replace the second occurrence of the pattern 'R.d' with 'Orange' using a case sensitive search.

SELECT REGEXP_REPLACE(
 'Red Yellow RED Blue Red Green Blue', 'R.d','Orange',1,2,'c')
 FROM sysibm.sysdummy1

The result is 'Red Yellow RED Blue Orange Green Blue'.

REGEXP_SUBSTR
The REGEXP_SUBSTR scalar function returns one occurrence of a substring of a string that matches the
regular expression pattern.

REGEXP_SUBSTR (source-string , pattern-expression

, start
, occurrence

, flags

, group

, CODEUNITS32

, CODEUNITS16

OCTETS

)

The schema is SYSIBM.

source-string
An expression that specifies the string in which the search is to take place. This expression must
return a built-in character string, graphic string, numeric value, Boolean value, or datetime value. A
numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the function is evaluated. A
character string cannot specify the FOR BIT DATA attribute (SQLSTATE 42815).

470 IBM Db2 V11.5: SQL Reference

pattern-expression
An expression that specifies the regular expression string that is the pattern for the search. This
expression must return a built-in character string, graphic string, numeric value, Boolean value, or
datetime value. A numeric, Boolean, or datetime value is implicitly cast to VARCHAR before the
function is evaluated. The length of a CLOB or DBCLOB expression must not be greater than the
maximum length of a VARCHAR or VARGRAPHIC data type. A character string cannot specify the FOR
BIT DATA attribute (SQLSTATE 42815).

start
An expression that specifies the position within source-string at which the search is to start. The
expression must return a built-in character string, graphic string, Boolean, or numeric value. If the
value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
value of the integer must be greater than or equal to 1. If OCTETS is specified and the source string is
graphic data, the value of the integer must be odd (SQLSTATE 428GC). The default start value is 1. See
parameter description for CODEUNITS16, CODEUNITS32, or OCTETS for the string unit that applies to
the start position.

occurrence
An expression that specifies which occurrence of the pattern expression within source-string to search
for. The expression must return a built-in character string, graphic string, Boolean, or numeric value. If
the value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
occurrence value must be greater than or equal 1. The default occurrence value is 1, which indicates
that only the first occurrence of the pattern expression is considered.

flags
An expression that specifies flags that controls aspects of the pattern matching. The expression must
return a built-in character string that does not specify the FOR BIT DATA attribute (SQLSTATE 42815).
The string can include one or more valid flag values and the combination of flag values must be valid
(SQLSTATE 2201T). An empty string is the same as the value 'c'. The default flag value is 'c'.

Table 89. Supported flag values

Flag
value Description

c Specifies that matching is case-sensitive. This flag is the default value if 'c' or 'i' is not
specified. This value must not be specified with a value of 'i'.

i Specifies that matching is case insensitive. This value must not be specified with a value
of 'c'.

m Specifies that the input data can contain more than one line. By default, the '^' in a pattern
matches only the start of the input string; the '$' in a pattern matches only the end of the
input string. If this flag is set, "^" and "$" also matches at the start and end of each line
within the input string.

n Specifies that the '.' character in a pattern matches a line terminator in the input string. By
default, the '.' character in a pattern does not match a line terminator. A carriage-return
and line-feed pair in the input string behaves as a single-line terminator, and matches a
single "." in a pattern.

s Specifies that the '.' character in a pattern matches a line terminator in the input string.
This value is a synonym for the 'n' value.

x Specifies that white space characters in a pattern are ignored, unless escaped.

group
An expression that specifies which capture group of the pattern expression within source string to
return. The expression must return a built-in character, binary, or graphic string, or a Boolean value. If
the value is not of type INTEGER, it is implicitly cast to INTEGER before the function is evaluated. The
group value must be greater than or equal to 0 and must not be greater than the number of capture
groups in the pattern expression (SQLSTATE 22546). The default group value is 0, which indicates that
the string that matches the entire pattern is to be returned.

Chapter 1. Structured Query Language (SQL) 471

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of the start value:

• CODEUNITS16 specifies that the start value is expressed in 16-bit UTF-16 code units.
• CODEUNITS32 specifies that the start value is expressed in 32-bit UTF-32 code units. This is the

default.
• OCTETS specifies that the start value is expressed in bytes.

If the string unit is specified as CODEUNITS16 or OCTETS, and if the string unit of the source string is
CODEUNITS32, an error is returned (SQLSTATE 428GC).

For more information, see "String units in built-in functions" in “Character strings” on page 31.

Result
The result of the function is a string. The data type of the string is the same data type as the source string,
except for CHAR, which becomes VARCHAR; and GRAPHIC, which becomes and VARGRAPHIC. The length
attribute of the result data type is same as the length attribute of the source string. The actual length of
the result is the length of the occurrence in the string that matches the pattern expression. If the pattern
expression is not found, the result is the null value.

The result of the REGEXP_SUBSTR function can be null. If any argument is null, the result is the null value.

Notes
• The regular expression processing is done by using the International Components for Unicode (ICU)

regular expression interface.
• Considerations for non-Unicode databases:

– A regular expression pattern supports only half-width control characters; use a character string data
type for the pattern expression argument. A character string data type can be used for the pattern
expression argument even when a graphic string data type is used for the source string argument.

– The source string argument must be a graphic string data type if the pattern expression argument is a
graphic string data type.

Examples
1. Return the string which matches any character preceding a 'o'.

SELECT REGEXP_SUBSTR('hello to you', '.o',1,1)
 FROM sysibm.sysdummy1

The result is 'lo'.
2. Return the second string occurrence which matches any character preceding a 'o'.

SELECT REGEXP_SUBSTR('hello to you', '.o',1,2)
 FROM sysibm.sysdummy1

The result is 'to'.
3. Return the third string occurrence which matches any character preceding a 'o'.

SELECT REGEXP_SUBSTR('hello to you', '.o',1,3)
 FROM sysibm.sysdummy1

The result is 'yo'.

472 IBM Db2 V11.5: SQL Reference

REPEAT
The REPEAT function returns a character string that is composed of the first argument repeated the
number of times that are specified by the second argument.

REPEAT (expression1 , expression2)

The schema is SYSIBM. The SYSFUN version of the REPEAT function continues to be available.

expression1
An expression that specifies the string to be repeated. The expression must return a built-in character
string, numeric value, Boolean value, or datetime value. If the value is not a character string, it is
implicitly cast to VARCHAR before the function is evaluated.

expression2
An expression that is a positive integer value or zero that specifies the number of times to repeat the
string. The expression must return a built-in character string, graphic string, or numeric value. If the
value is not an integer, it is implicitly cast to INTEGER before the function is evaluated.

Result
The result of the function is one of the following data types:

• VARBINARY if expression1 is a BINARY or VARBINARY string
• VARCHAR if expression1 is a CHAR or VARCHAR string
• VARGRAPHIC if expression1 is GRAPHIC or VARGRAPHIC string
• CLOB if expression1 is CLOB
• BLOB if expression1 is BLOB
• DBCLOB if expression1 is a DBCLOB

If expression2 is a constant, the length attribute of the result is minimum of the length attribute of
expression1 times expression2 and the maximum length of the result data type. Otherwise, the length
attribute depends on the data type of the result:

• 4000 for VARBINARY and VARCHAR
• 2000 for VARGRAPHIC
• 1 MB for CLOB, DBCLOB, and BLOB

The actual length of the result is the actual length of expression1 times expression2. If the actual length of
the result string exceeds the length attribute for the return type, an error is returned (SQLSTATE 54006).

If the result data type is a character string or graphic string, the string units of the result are the string
units of expression1.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Examples
1. Repeat 'abc' two times to create 'abcabc'.

 SELECT REPEAT('abc',2)
 FROM SYSIBM.SYSDUMMY1

2. List the phrase 'REPEAT THIS' five times. Use the CHAR function to limit the output to 60 bytes.

 SELECT CHAR(REPEAT('REPEAT THIS',5), 60)
 FROM SYSIBM.SYSDUMMY1

This example outputs the following string:

 'REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS '

Chapter 1. Structured Query Language (SQL) 473

3. For the following query, the LENGTH function returns a value of 0 because the result of repeating a
string zero times is an empty string, which is a zero-length string.

 SELECT LENGTH(REPEAT('REPEAT THIS',0))
 FROM SYSIBM.SYSDUMMY1

4. For the following query, the LENGTH function returns a value of 0. A value of 0 because the result of
repeating an empty string any number of times is an empty string, which is a zero-length string.

 SELECT LENGTH(REPEAT('', 5))
 FROM SYSIBM.SYSDUMMY1

REPEAT (SYSFUN schema)
Returns a character string composed of the first argument repeated the number of times specified by the
second argument.

REPEAT (expression1 , expression2)

The schema is SYSFUN.

expression1
An expression that returns a value of built-in character string, graphic string, or binary string data
type. In a Unicode database, the expression can also return a graphic string, in which case it is first
converted to a character string before the function is evaluated. The maximum length is:

• 4000 bytes for a VARCHAR
• 1,048,576 bytes for a CLOB or binary string

expression2
An expression that returns a value of data type SMALLINT or INTEGER. The returned value specifies
the number of times to repeat the string returned by expression1.

Result
The data type of the result is:

• VARCHAR(4000 OCTETS) if the first expression returns a CHAR or VARCHAR value
• CLOB(1M OCTETS) if the first expression returns a CLOB value
• BLOB(1M) if the first expression returns a BLOB value

The result can be null; if any argument is null, the result is the null value.

Examples
List the phrase 'REPEAT THIS' five times.

 VALUES REPEAT('REPEAT THIS', 5)

This example returns the following VARCHAR(4000 OCTETS) output:

1
--
REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS

List the phrase 'REPEAT THIS' five times and limit the output to 60 bytes:

 VALUES CHAR(REPEAT('REPEAT THIS', 5), 60)

This example returns the following CHAR(60) output:

474 IBM Db2 V11.5: SQL Reference

1
--
REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS

REPLACE
Replaces all occurrences of search-string in source-string with replace-string.

REPLACE (source-string , search-string

, ''

, replace-string

)

The schema is SYSIBM. The SYSFUN version of the REPLACE function continues to be available but it is
not sensitive to the database collation.

If the search string is not found in the source string, the search string is returned unchanged. If
the Unicode database is defined with a locale-sensitive UCA-based collation and none of the source-
string, search-string, or replace-string arguments are defined as FOR BIT DATA or as a binary string, a
linguistically correct search is done. Otherwise, the search is done using a binary comparison with no
special consideration for multi-byte characters.

source-string
An expression that specifies the source string. The expression must return a value that is a built-in
character string, numeric value, DBCLOB value, Boolean value, or datetime value. If the value is:

• A numeric, datetime, or CLOB value, it is implicitly cast to VARCHAR before the function is evaluated
• A DBCLOB value, it is implicitly cast to VARGRAPHIC before the function is evaluated

The actual length of binary strings cannot exceed 1,048,576 bytes (SQLSTATE 42815).
search-string

An expression that specifies the string to be removed from the source string. The expression must
return a value that is a built-in character string, numeric value, DBCLOB value, Boolean value, or
datetime value. If the value is:

• A numeric, datetime, or CLOB value, it is implicitly cast to VARCHAR before the function is evaluated
• A DBCLOB value, it is implicitly cast to VARGRAPHIC before the function is evaluated

The actual length of binary strings cannot exceed 1,048,576 bytes (SQLSTATE 42815).
replace-string

An expression that specifies the replacement string. The expression must return a value that is a
built-in character string, numeric value, DBCLOB value, Boolean value, or datetime value. If the value
is:

• A numeric, datetime, or CLOB value, it is implicitly cast to VARCHAR before the function is evaluated
• A DBCLOB value, it is implicitly cast to VARGRAPHIC before the function is evaluated

The actual length of binary strings cannot exceed 1,048,576 bytes (SQLSTATE 42815). If the
expression is an empty string or is not specified, nothing replaces the string that is removed from
the source string.

All three arguments must have compatible data types.

Result
The data type of the result depends on the data type of the arguments:

• If any argument is a BLOB, the result is a BLOB.
• If the arguments are binary strings and not BLOB, the result is a VARBINARY.
• If the arguments are character strings, the result is a VARCHAR. If any argument is defined as FOR BIT

DATA, the result is defined as FOR BIT DATA.

Chapter 1. Structured Query Language (SQL) 475

• If the arguments are graphic strings, the result is a VARGRAPHIC.

In a Unicode database, if both character strings and graphic strings are used as arguments, then the result
data type is based on the string type of the source-string argument. If the source-string argument is a
character string type, then the result data type is VARCHAR. If the source-string argument is a graphic
string type, then the result data type is VARGRAPHIC.

The string unit of the result is the string unit of source-string. If any argument is defined as FOR BIT DATA,
the other arguments cannot be defined with string units of CODEUNITS32.

The string units of the result is the same as the string units of source-string. The length attribute of the
result depends on the arguments:

• The length attribute of the result is the length attribute of the source-string (with the same string units)
in the following cases:

– The replace-string argument is not specified or is specified as an empty string constant.
– The search-string is a constant and the number of bytes in the search-string constant is greater than

or equal to:

- The number of bytes of a constant replace-string.
- The length attribute of a non-constant character string type replace-string in OCTETS.
- The length attribute times 2 of a non-constant graphic string type replace-string in double bytes or

CODEUNITS16.
- The length attribute times 4 of a non-constant replace-string in CODEUNITS32.
- The length attribute of a non-constant binary string type replace-string.

• Otherwise, the length attribute of the result is determined by the following calculation depending on the
data type of the result (that allows for the smallest possible search-string to be replaced by the largest
possible replace-string):

– For VARCHAR with string units of OCTETS:

- If L1 < = 4000, the length attribute of the result is MIN(4000, (L3*(L1/L2)) + MOD(L1,L2))
- Otherwise, the length attribute of the result is MIN(32672, (L3*(L1/L2)) + MOD(L1,L2))

– For VARCHAR with string units of CODEUNITS32, the length attribute of the result is MIN(8168,
(L3*(L1/L2)) + MOD(L1,L2)).

– For VARGRAPHIC with string units of double bytes or CODEUNITS16:

- If L1 < = 2000, the length attribute of the result is MIN(2000, (L3*(L1/L2)) + MOD(L1,L2))
- Otherwise, the length attribute of the result is MIN(16336, (L3*(L1/L2)) + MOD(L1,L2))

– For VARGRAPHIC with string units of CODEUNITS32, the length attribute of the result is MIN(8168,
(L3*(L1/L2)) + MOD(L1,L2)).

– For VARBINARY, the length attribute of the result is MIN(32672, (L3*(L1/L2)) + MOD(L1,L2))
– For BLOB, the length attribute of the result is MIN(2G, (L3*(L1/L2)) + MOD(L1,L2))

where the length values for L1, L2, and L3 are given in the following table based on the string units of the
result:

476 IBM Db2 V11.5: SQL Reference

Table 90. Length values of L1, L2, and L3

String units of the
result L1 L2 L3

OCTETS (a character
string)

Length attribute of
source-string

One (1) if not a constant,
otherwise the actual
number of bytes in the
constant expressed as a
character string type.

• If replace-string is a
constant, the actual
number of bytes in the
constant expressed as
a character string type.

• If replace-string is
a character string
in OCTETS then the
length attribute of
replace-string.

• If replace-string is a
character string or
a graphic string in
CODEUNITS32, then
4 times the length
attribute of replace-
string.

• If replace-string is
a graphic string in
double bytes or
CODEUNITS16, then
3 times the length
attribute of replace-
string.

CODEUNITS16 or
double bytes (a graphic
string)

Length attribute of
source-string

One (1) if not a constant,
otherwise the actual
number of double bytes
or CODEUNITS16 string
units in the constant
expressed as a graphic
string type.

• If replace-string is
a constant, the
actual number of
double bytes or
CODEUNITS16 string
units in the constant
expressed as a graphic
string type.

• If replace-string is a
character string in
OCTETS or a graphic
string in double bytes
or CODEUNITS16 then
the length attribute of
replace-string.

• If replace-string is
a character string
or graphic string in
CODEUNITS32 then
the 2 times the length
attribute of replace-
string.

Chapter 1. Structured Query Language (SQL) 477

Table 90. Length values of L1, L2, and L3 (continued)

String units of the
result L1 L2 L3

CODEUNITS32 (a
character string or a
graphic string)

Length attribute of
source-string

One (1) if not a
constant, otherwise
length attribute of
search-string.

Length attribute of
replace-string

Not applicable (a binary
string)

Length attribute of
source-string

One (1) if not a constant,
otherwise the actual
number of bytes in the
constant expressed as a
binary string type.

• If replace-string is a
constant, the actual
number of bytes in the
constant expressed as
a binary string type.

• If replace-string is
a binary string or
character string that is
FOR BIT DATA, then
the length attribute of
replace-string.

If the result is a character string, the length attribute of the result must not exceed the maximum length of
the VARCHAR data type in the string units of the result. If the result is a graphic string, the length attribute
of the result must not exceed the maximum length of the VARGRAPHIC data type in the string units of the
result.

The actual length of the result is the actual length of source-string plus the number of occurrences of
search-string that exist in source-string multiplied by the actual length of replace-string minus the actual
length of search-string. If the actual length of the result would exceed the length attribute of the result or
would exceed 1,048,576 bytes, an error is returned (SQLSTATE 22001).

If the actual length of the replace-string exceeds the maximum for the return data type, an error is
returned. If any argument can be null, the result can be null; if any argument is null, the result is the null
value.

Examples
• Example 1: Replace all occurrences of the letter 'N' in the word 'DINING' with 'VID'.

 VALUES CHAR (REPLACE ('DINING', 'N', 'VID'), 10)

The result is the string 'DIVIDIVIDG'.
• Example 2: In a Unicode database with case-insensitive collation CLDR181_LEN_S1, replace the word

'QUICK' with the word 'LARGE'.

VALUES REPLACE ('The quick brown fox', 'QUICK', 'LARGE')

The result is the string 'The LARGE brown fox'.

REPLACE (SYSFUN schema)
Replaces all occurrences of expression2 in expression1 with expression3.

REPLACE (expression1 , expression2 , expression3)

The schema is SYSFUN.

The search is done using a binary comparison with no special consideration for multi-byte characters.

478 IBM Db2 V11.5: SQL Reference

expression1 or expression2 or expression3
The data type for the arguments can be of any built-in character string or binary string type.

The expression must return a built-in character string, Boolean value, or binary string. In a Unicode
database, the expression can also return a graphic string, in which case it is first converted to a
character string before the function is evaluated. The maximum length is:

• 4000 bytes for a VARCHAR
• 1,048,576 bytes for a CLOB or binary string

A CHAR value is converted to VARCHAR and a LONG VARCHAR value is converted to CLOB(1M).

Result
The data type of the result is VARCHAR(4000).

The result can be null; if any argument is null, the result is the null value.

Examples
Replace all occurrences of the letter 'N' in the word 'DINING' with 'VID':

 VALUES REPLACE ('DINING', 'N', 'VID')

This example returns the following VARCHAR(4000) output:

 1

 DIVIDIVIDG

Replace all occurrences of the letter 'N' in the word 'DINING' with 'VID', and limit the output to 9 bytes:

 VALUES CHAR (REPLACE ('DINING', 'N', 'VID'), 9)

This example returns the following CHAR(9) output:

 1

 DIVIDIVID

RID and RID_BIT
The RID and RID_BIT functions are used to uniquely identify a row. Each returns the row identifier
(RID) of a row. The result of the RID_BIT function, unlike the result of the RID function, contains
table information to help you avoid inadvertently using it with the wrong table. Both functions are
non-deterministic.

RID

RID_BIT

(

table-designator

)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

RID
Indicates that the RID function is to be run. Starting from Db2 version 11.5.3, the RID function
can be used in partitioned database environment. The value provided by the RID function does not
include database partition information. In a partitioned database environment, use DBPARTITIONNUM
to make the value unique.

RID_BIT
Indicates that the RID_BIT function is to be run.

Chapter 1. Structured Query Language (SQL) 479

table-designator
Uniquely identifies a base table, view, or nested table expression (SQLSTATE 42703). If the table
designator specifies a view or nested table expression, the RID_BIT and RID functions return the RID
of the base table of the view or nested table expression. The specified view or nested table expression
must contain only one base table in its outer subselect (SQLSTATE 42703). The table designator must
be deletable (SQLSTATE 42703). For information about deletable views, see the "Notes" section of
"CREATE VIEW".

If a table designator is not specified, the FROM clause must contain only one element which can be
derived to be the table designator (SQL STATE 42703).

Result
The data type of the result is either BIGINT (for RID) or VARCHAR (16) FOR BIT DATA (for RID_BIT). The
result can be null.

The RID or RID_BIT function might return different values when invoked several times for a single row.
For example, if RID or RID_BIT is run both before and after the reorg utility is run against the specified
table, the function might return a different value each time.

Notes
• To implement optimistic locking in an application, use the values returned by the ROW CHANGE TOKEN

expression as arguments to the RID_BIT scalar function.
• Starting from Db2 version 11.5.3, the RID scalar functions can be used with column-organized tables.
• Syntax alternatives: The following alternatives are non-standard. They are supported for compatibility

with earlier product versions or with other database products.

– The pseudocolumn "ROWID" can be used to refer to the RID. An unqualified ROWID reference
is equivalent to RID_BIT() and a qualified ROWID such as EMPLOYEE.ROWID is equivalent to
RID_BIT(EMPLOYEE).

Examples
• Example 1: Return the RID and last name of employees in department 20 from the EMPLOYEE table.

 SELECT RID_BIT (EMPLOYEE), ROW CHANGE TOKEN FOR EMPLOYEE, LASTNAME
 FROM EMPLOYEE
 WHERE DEPTNO = '20'

• Example 2: Given table EMP1, which is defined as follows:

 CREATE TABLE EMP1 (
 EMPNO CHAR(6),
 NAME CHAR(30),
 SALARY DECIMAL(9,2),
 PICTURE BLOB(250K),
 RESUME CLOB(32K)
)

Set host variable HV_EMP_RID to the value of the RID_BIT built-in scalar function, and HV_EMP_RCT to
the value of the ROW CHANGE TOKEN expression for the row corresponding to employee number 3500.

 SELECT RID_BIT(EMP1), ROW CHANGE TOKEN FOR EMP1
 INTO :HV_EMP_RID, :HV_EMP_RCT FROM EMP1
 WHERE EMPNO = '3500'

Using that RID value to identify the employee, and user-defined function UPDATE_RESUME, increase
the employee's salary by $1000 and update the employee's resume.

 UPDATE EMP1 SET
 SALARY = SALARY + 1000,
 RESUME = UPDATE_RESUME(:HV_RESUME)

480 IBM Db2 V11.5: SQL Reference

 WHERE RID_BIT(EMP1) = :HV_EMP_RID
 AND ROW CHANGE TOKEN FOR EMP1 = :HV_EMP_RCT

RIGHT
The RIGHT function returns the rightmost string of string-expression of length length, expressed in the
specified string unit.

RIGHT (string-expression , length

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM. The SYSFUN version of the RIGHT function continues to be available.

If string-expression is a character string, the result is a character string. If string-expression is a graphic
string, the result is a graphic string

string-expression
An expression that specifies the string from which the result is derived. The expression must return a
value that is a built-in string, numeric, Boolean, or datetime data type. If the value is not a string data
type, it is implicitly cast to VARCHAR before evaluating the function. A substring of string-expression is
zero or more contiguous code points of string-expression.

length

An expression that specifies the length of the result. The expression must return a value that is a
built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. If the value is not of type
INTEGER, it is implicitly cast to INTEGER before evaluating the function. length must be greater than
or equal to 0 (SQLSTATE 22011). If OCTETS is specified and the result is graphic data, the value must
be an even number (SQLSTATE 428GC).

If length is not a constant and a string unit is not specified, then length must be less than or equal to
the length attribute of string-expression (SQLSTATE 22011).

If length is not a constant and a string unit is specified, then length must be less than or equal to the
value from table 1 (SQLSTATE 22011):

Table 91. Maximum value of length when a string unit is specified

String unit of string-expression Specified string unit Maximum value of length

L = length attribute of string-
expression

String unit of string-expression Specified string unit Maximum value of length

L = length attribute of string-
expression

OCTETS OCTETS L

OCTETS CODEUNITS16 L/2

OCTETS CODEUNITS32 L/4

CODEUNITS16 OCTETS L*2

CODEUNITS16 CODEUNITS16 L

CODEUNITS16 CODEUNITS32 L/2

CODEUNITS32 OCTETS L*4

CODEUNITS32 CODEUNITS16 L*2

Chapter 1. Structured Query Language (SQL) 481

Table 91. Maximum value of length when a string unit is specified (continued)

String unit of string-expression Specified string unit Maximum value of length

L = length attribute of string-
expression

CODEUNITS32 CODEUNITS32 L

If length is a constant:

• if string-expressionis CHAR, VARCHAR, GRAPHIC or VARGRAPHIC, length must be less than or equal
to 32 672 OCTETS, 16 336 CODEUNITS16 or 8 168 CODEUNITS32 (SQLSTATE 22011)

• if string-expression is CLOB or DBCLOB, length must be less than or equal to 2147483647 OCTETS,
1 073 741 823 CODEUNITS16 or 536870911 CODEUNITS32 (SQLSTATE 22011)

• if string-expression is BLOB, length must be less than or equal to 2147483647 OCTETS (SQLSTATE
22011)

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of length.

CODEUNITS16 specifies that length is expressed in 16-bit UTF-16 code units. CODEUNITS32
specifies that length is expressed in 32-bit UTF-32 code units. OCTETS specifies that length is
expressed in bytes.

If the string unit is specified as CODEUNITS16 or CODEUNITS32, and string-expression is a binary
string or bit data, an error is returned (SQLSTATE 428GC). If the string unit is specified as OCTETS and
string-expression is a graphic string, length must be an even number; otherwise, an error is returned
(SQLSTATE 428GC). If a string unit is not explicitly specified, the string unit of string-expression
determines the unit that is used. For more information about CODEUNITS16, CODEUNITS32, and
OCTETS, see "String units in built-in functions" in "Character strings".

The string-expression is padded on the right with the necessary number of padding characters so that
the specified substring of string-expression always exists. The character used for padding is the same
character that is used to pad the string in contexts where padding would occur. For more information
about padding, see "String assignments" in "Assignments and comparisons".

The result of the function is a varying-length string that depends on the data type of string-expression:

• VARCHAR if string-expression is CHAR or VARCHAR
• CLOB if string-expression is CLOB
• VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC
• DBCLOB if string-expression is DBCLOB
• VARBINARY if string-expression is BINARY or VARBINARY
• BLOB if string-expression is BLOB

The string unit of the result is the string unit of string-expression.The length attribute of the result depends
on how length and string unit are specified:

• If length is not a constant, then the length attribute of the result is the same as the length attribute of
string-expression.

• If length is a constant and a string unit is not specified, then the length attribute of the result is the
maximum of length and the length attribute of string-expression.

• If length is a constant and a string unit is specified, then the length attribute of the result is shown in
Table 2:

482 IBM Db2 V11.5: SQL Reference

Table 92. Length attribute of result when length is a constant and a string unit is specified

String unit of string-expression Specified string unit Maximum value of length

L = length attribute of string-
expression

OCTETS OCTETS max(L, length)

OCTETS CODEUNITS16 max(L, length * 2)

OCTETS CODEUNITS32 max(L, length * 4)

CODEUNITS16 OCTETS max(L, length / 2)

CODEUNITS16 CODEUNITS16 max(L, length)

CODEUNITS16 CODEUNITS32 max(L, length * 2)

CODEUNITS32 OCTETS max(L, length / 4)

CODEUNITS32 CODEUNITS16 max(L, length / 2)

CODEUNITS32 CODEUNITS32 max(L, length)

The actual length of the result (in string units) is length.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Examples
• Example 1: Assume that variable ALPHA has a value of "ABCDEF". The following statement:

 SELECT RIGHT(ALPHA,3)
 FROM SYSIBM.SYSDUMMY1

returns "DEF", which are the three rightmost characters in ALPHA.
• Example 2: Assume that variable NAME, which is defined as VARCHAR(50), has a value of "KATIE

AUSTIN", and that the integer variable LASTNAME_LEN has a value of 6. The following statement:

 SELECT RIGHT(NAME,LASTNAME_LEN)
 FROM SYSIBM.SYSDUMMY1

returns the value "AUSTIN".
• Example 3: The following statement returns a zero-length string.

 SELECT RIGHT('ABCABC',0)
 FROM SYSIBM.SYSDUMMY1

• Example 4: The FIRSTNME column in the EMPLOYEE table is defined as VARCHAR(12). Find the first
name of an employee whose last name is "BROWN" and return the first name in a 10-byte string.

 SELECT RIGHT(FIRSTNME, 10)
 FROM EMPLOYEE
 WHERE LASTNAME = 'BROWN'

returns a VARCHAR(12) string that has the value "DAVID" followed by five blank characters.
• Example 5: In a Unicode database, FIRSTNAME is a VARCHAR(12) column. One of its values is the

6-character string "Jürgen". When FIRSTNAME has this value:

 Function... Returns...

 RIGHT(FIRSTNAME,5,CODEUNITS32) 'ürgen' -- x'C3BC7267656E'
 RIGHT(FIRSTNAME,5,CODEUNITS16) 'ürgen' -- x'C3BC7267656E'
 RIGHT(FIRSTNAME,5,OCTETS) 'rgen' -- x'207267656E', a truncated string

Chapter 1. Structured Query Language (SQL) 483

• Example 6: The following example works with the Unicode string "&N~AB," where "&" is the musical
symbol G clef character, and "~" is the combining tilde character. This string is shown in different
Unicode encoding forms in the following example:

"&" "N" "~" "A" "B"

UTF-8 X'F09D849E' X'4E' X'CC83' X'41' X'42'

UTF-16BE X'D834DD1E' X'004E' X'0303' X'0041' X'0042'

Assume that the variable UTF8_VAR, with a length attribute of 20 bytes, contains the UTF-8
representation of the string.

 SELECT RIGHT(UTF8_VAR, 2, CODEUNITS16),
 RIGHT(UTF8_VAR, 2, CODEUNITS32),
 RIGHT(UTF8_VAR, 2, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "AB", "AB", and "AB"', respectively.

 SELECT RIGHT(UTF8_VAR, 5, CODEUNITS16),
 RIGHT(UTF8_VAR, 5, CODEUNITS32),
 RIGHT(UTF8_VAR, 5, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "?N~AB", "&N~AB", and "N~AB", respectively, where ?'is X'EDB49E'.

 SELECT RIGHT(UTF8_VAR, 10, CODEUNITS16),
 RIGHT(UTF8_VAR, 10, CODEUNITS32),
 RIGHT(UTF8_VAR, 10, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "&N~ABbbbb", "&N~ABbbbbb", and "&N~ABb", respectively, where "b" represents
the blank character.

Assume that the variable UTF16_VAR, with a length attribute of 20 code units, contains the UTF-16BE
representation of the string.

 SELECT RIGHT(UTF16_VAR, 2, CODEUNITS16),
 RIGHT(UTF16_VAR, 2, CODEUNITS32),
 RIGHT(UTF16_VAR, 2, OCTETS))
 FROM SYSIBM.SYSDUMMY1

returns the values "AB", "AB", and "B", respectively.

 SELECT RIGHT(UTF16_VAR, 5, CODEUNITS16),
 RIGHT(UTF16_VAR, 5, CODEUNITS32),
 RIGHT(UTF16_VAR, 6, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "?N~AB", "&N~AB", and "~AB", respectively, where ? is the stand-alone low
surrogate X'DD1E'.

 SELECT RIGHT(UTF16_VAR, 10, CODEUNITS16),
 RIGHT(UTF16_VAR, 10, CODEUNITS32),
 RIGHT(UTF16_VAR, 10, OCTETS)
 FROM SYSIBM.SYSDUMMY1

returns the values "&N~ABbbbb", "&N~ABbbbbb", and "?N~AB", respectively, where "b" represents the
blank character and ? is X'DD1E'.

484 IBM Db2 V11.5: SQL Reference

ROUND
The ROUND function returns a rounded value of a number or a datetime value.

ROUND numeric

ROUND (numeric-expression1

, 0

, numeric-expression2

)

ROUND datetime

ROUND (datetime-expression

, 'DD'

, format-string

locale-name

)

The schema is SYSIBM. The SYSFUN version of the ROUND numeric function continues to be available.

The return value depends on the first argument:

• If the result of the first argument is a numeric value, the ROUND functions returns a number, rounded to
the specified number of places to the right or left of the decimal point.

• If the first argument is a DATE, TIME, or TIMESTAMP the ROUND functions returns a datetime value,
rounded to the unit specified by format-string.

ROUND numeric

If numeric-expression1 is positive, a digit value of 5 or greater is an indication to round to the next
higher positive number. For example, ROUND(3.5,0) = 4. If numeric-expression1 is negative, a digit
value of 5 or greater is an indication to round to the next lower negative number. For example,
ROUND(-3.5,0) = -4.

numeric-expression1
An expression that must return a value that is a built-in CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, or numeric data type. If the value is not a numeric data type, it is implicitly cast to
DECFLOAT(34) before evaluating the function.

If the expression is a decimal floating-point data type, the DECFLOAT rounding mode will not be
used. The rounding behavior of ROUND corresponds to a value of ROUND_HALF_UP. If a different
rounding behavior is wanted, use the QUANTIZE function.

numeric-expression2
An expression that returns a value that is a built-in numeric data type. If the value is not of type
INTEGER, it is implicitly cast to INTEGER before evaluating the function.

If numeric-expression2 is not negative, numeric-expression1 is rounded to the absolute value of
numeric-expression2 number of places to the right of the decimal point.

If numeric-expression2 is negative, numeric-expression1 is rounded to the absolute value of
numeric-expression2+1 number of places to the left of the decimal point.

If the absolute value of a negative numeric-expression2 is larger than the number of digits to
the left of the decimal point, the result is 0. For example, ROUND(748.58,-4) = 0. If numeric-
expression1 is positive, a digit value of 5 is rounded to the next higher positive number. If numeric-
expression1 is negative, a digit value of 5 is rounded to the next lower negative number.

The data type and length attribute of the result are the same as the data type and length attribute
of the first argument, except that the precision is increased by one if the numeric-expression1

Chapter 1. Structured Query Language (SQL) 485

is DECIMAL and the precision is less than 31. For example, an argument with a data type of
DECIMAL(5,2) results in DECIMAL(6,2). An argument with a data type of DECIMAL(31,2) results in
DECIMAL(31,2). The scale is the same as the scale of the first argument.

If either argument can be null or if the argument is not a decimal floating-point number and the
database is configured with dft_sqlmathwarn set to YES, the result can be null. If either argument
is null, the result is the null value.

This function is not affected by the setting of the CURRENT DECFLOAT ROUNDING MODE special
register, even for decimal floating-point arguments. The rounding behavior of ROUND corresponds to
a value of ROUND_HALF_UP. If you want behavior for a decimal floating-point value that conforms to
the rounding mode specified by the CURRENT DECFLOAT ROUNDING MODE special register, use the
QUANTIZE function instead.

ROUND datetime
If datetime-expression has a datetime data type, the ROUND function returns datetime-expression
rounded to the unit specified by the format-string. If format-string is not specified, datetime-
expression is rounded to the nearest day, as if 'DD' is specified for format-string.
datetime-expression

An expression that must return a value that is a date, a time, or a timestamp. String
representations of these data types are not supported and must be explicitly cast to a DATE,
TIME, or TIMESTAMP for use with this function; alternatively, you can use the ROUND_TIMESTAMP
function for a string representation of a date or timestamp.

format-string
An expression that returns a built-in character string data type with an actual length that is not
greater than 255 bytes. The format element in format-string specifies how datetime-expression
should be rounded. For example, if format-string is 'DD', a timestamp that is represented by
datetime-expression is rounded to the nearest day. Leading and trailing blanks are removed from
the string, and the resulting substring must be a valid format element for the type of datetime-
expression (SQLSTATE 22007). The default is 'DD', which cannot be used if the data type of
datetime-expression is TIME.

Allowable values for format-string are listed in the table of format elements listed in the Table 1.

locale-name
A character constant that specifies the locale used to determine the first day of the week when
using format element values DAY, DY, or D. The value of locale-name is not case sensitive and
must be a valid locale (SQLSTATE 42815). For information about valid locales and their naming,
see "Locale names for SQL and XQuery". If locale-name is not specified, the value of the special
register CURRENT LOCALE LC_TIME is used.

The result of the function has the same DATE type as datetime-expression. The result can be null; if
any argument is null, the result is the null value.

The following format elements are used to identify the rounding or truncation unit of the datetime
value in the ROUND, ROUND_TIMESTAMP, TRUNCATE and TRUNC_TIMESTAMP functions.

Table 93. Format elements for ROUND, ROUND_TIMESTAMP, TRUNCATE, and TRUNC_TIMESTAMP

Format element
Rounding or truncating
unit ROUND example TRUNCATE example

CC
SCC

Century

Rounds up to the start
of the next century after
the 50th year of the
century (for example on
1951-01-01-00.00.00).

Not valid for TIME
argument.

Input Value:
1897-12-04-12.22.22.
000000

Result:
1901-01-01-00.00.00.
000000

Input Value:
1897-12-04-12.22.22.
000000

Result:
1801-01-01-00.00.00.
000000

486 IBM Db2 V11.5: SQL Reference

Table 93. Format elements for ROUND, ROUND_TIMESTAMP, TRUNCATE, and TRUNC_TIMESTAMP
(continued)

Format element
Rounding or truncating
unit ROUND example TRUNCATE example

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year

Rounds up on July 1st
to January 1st of the
next year.

Not valid for TIME
argument.

Input Value:
1897-12-04-12.22.22.
000000

Result:
1898-01-01-00.00.00.
000000

Input Value:
1897-12-04-12.22.22.
000000

Result:
1897-01-01-00.00.00.
000000

IYYY
IYY
IY
I

ISO Year

Rounds up on July 1st
to the first day of the
next ISO year. The first
day of the ISO year is
defined as the Monday
of the first ISO week.

Not valid for TIME
argument.

Input Value:
1897-12-04-12.22.22.
000000

Result:
1898-01-03-00.00.00.
000000

Input Value:
1897-12-04-12.22.22.
000000

Result:
1897-01-04-00.00.00.
000000

Q Quarter

Rounds up on the 16th
day of the second
month of the quarter.

Not valid for TIME
argument.

Input Value:
1999-06-04-12.12.30.
000000

Result:
1999-07-01-00.00.00.
000000

Input Value:
1999-06-04-12.12.30.
000000

Result:
1999-04-01-00.00.00.
000000

MONTH
MON
MM
RM

Month

Rounds up on the 16th
day of the month.

Not valid for TIME
argument.

Input Value:
1999-06-18-12.12.30.
000000

Result:
1999-07-01-00.00.00.
000000

Input Value:
1999-06-18-12.12.30.
000000

Result:
1999-06-01-00.00.00.
000000

WW Same day of the week
as the first day of the
year.

Rounds up on the 12th
hour of the 4th day of
the week, with respect
to the first day of the
year.

Not valid for TIME
argument.

Input Value:
2000-05-05-12.12.30.
000000

Result:
2000-05-06-00.00.00.
000000

Input Value:
2000-05-05-12.12.30.
000000

Result:
2000-04-29-00.00.00.
000000

Chapter 1. Structured Query Language (SQL) 487

Table 93. Format elements for ROUND, ROUND_TIMESTAMP, TRUNCATE, and TRUNC_TIMESTAMP
(continued)

Format element
Rounding or truncating
unit ROUND example TRUNCATE example

IW Same day of the
week as the first
day of the ISO year.
See "WEEK_ISO scalar
function" for details.

Rounds up on the 12th
hour of the 4th day of
the week, with respect
to the first day of the
ISO year.

Not valid for TIME
argument.

Input Value:
2000-05-05-12.12.30.
000000

Result:
2000-05-08-00.00.00.
000000

Input Value:
2000-05-05-12.12.30.
000000

Result:
2000-05-01-00.00.00.
000000

W Same day of the week
as the first day of the
month.

Rounds up on the 12th
hour of the 4th day of
the week, with respect
to the first day of the
month.

Not valid for TIME
argument.

Input Value:
2000-06-21-12.12.30.
000000

Result:
2000-06-22-00.00.00.
000000

Input Value:
2000-06-21-12.12.30.
000000

Result:
2000-06-15-00.00.00.
000000

DDD
DD
J

Day

Rounds up on the 12th
hour of the day.

Not valid for TIME
argument.

Input Value:
2000-05-17-12.59.59.
000000

Result:
2000-05-18-00.00.00.
000000

Input Value:
2000-05-17-12.59.59.
000000

Result:
2000-05-17-00.00.00.
000000

DAY
DY
D

Starting day of the
week.

Rounds up with respect
to the 12th hour of
the 4th day of the
week. The first day of
the week is based on
the locale (see locale-
name).

Not valid for TIME
argument.

Input Value:
2000-05-17-12.59.59.
000000

Result:
2000-05-21-00.00.00.
000000

Input Value:
2000-05-17-12.59.59.
000000

Result:
2000-05-14-00.00.00.
000000

488 IBM Db2 V11.5: SQL Reference

Table 93. Format elements for ROUND, ROUND_TIMESTAMP, TRUNCATE, and TRUNC_TIMESTAMP
(continued)

Format element
Rounding or truncating
unit ROUND example TRUNCATE example

HH
HH12
HH24

Hour

Rounds up at 30
minutes.

Input Value:
2000-05-17-23.59.59.
000000

Result:
2000-05-18-00.00.00.
000000

Input Value:
2000-05-17-23.59.59.
000000

Result:
2000-05-17-23.00.00.
000000

MI Minute

Rounds up at 30
seconds.

Input Value:
2000-05-17-23.58.45.
000000

Result:
2000-05-17-23.59.00.
000000

Input Value:
2000-05-17-23.58.45.
000000

Result:
2000-05-17-23.58.00.
000000

SS Second

Rounds up at half a
second.

Input Value:
2000-05-17-23.58.45.
500000

Result:
2000-05-17-23.58.46.
000000

Input Value:
2000-05-17-23.58.45.
500000

Result:
2000-05-17-23.58.45.
000000

Note: The format elements in Table 93 on page 486 must be specified in uppercase.

If a format element that applies to a time part of a value is specified for a date argument, the date
argument is returned unchanged. If a format element that is not valid for a time argument is specified
for a time argument, an error is returned (SQLSTATE 22007).

Notes
• Determinism: ROUND is a deterministic function. However, the following invocations of the function

depend on the value of the special register CURRENT LOCALE LC_TIME.

– Round of a datetime value when locale-name is not explicitly specified and one of the following is
true:

- format-string is not a constant
- format-string is a constant and includes format elements that are locale sensitive

Invocations of the function that depend on the value of a special register cannot be used wherever
special registers cannot be used (SQLSTATE 42621, 428EC, or 429BX).

Examples
• Example 1: Calculate the value of 873.726, rounded to 2, 1, 0, -1, -2, -3, and -4 decimal places,

respectively.

 VALUES (
 ROUND(873.726, 2),
 ROUND(873.726, 1),
 ROUND(873.726, 0),
 ROUND(873.726,-1),
 ROUND(873.726,-2),
 ROUND(873.726,-3),
 ROUND(873.726,-4))

Chapter 1. Structured Query Language (SQL) 489

This example returns:

1 2 3 4 5 6 7
--------- --------- --------- --------- --------- --------- ---------
 873.730 873.700 874.000 870.000 900.000 1000.000 0.000

• Example 2: Calculate using both positive and negative numbers.

 VALUES (
 ROUND(3.5, 0),
 ROUND(3.1, 0),
 ROUND(-3.1, 0),
 ROUND(-3.5,0))

This example returns:

1 2 3 4
---- ---- ---- ----
 4.0 3.0 -3.0 -4.0

• Example 3: Calculate the decimal floating-point number 3.12350 rounded to three decimal places.

 VALUES (
 ROUND(DECFLOAT('3.12350'), 3))

This example returns:

1

3.12400

• Example 4: Set the host variable RND_DT with the input date rounded to the nearest month value.

 SET :RND_DATE = ROUND(DATE('2000-08-16'), 'MONTH');

The value set is 2000-09-01.
• Example 5: Set the host variable RND_TMSTMP with the input timestamp rounded to the nearest year

value.

 SET :RND_TMSTMP = ROUND(TIMESTAMP('2000-08-14-17.30.00'),
 'YEAR');

The value set is 2001-01-01-00.00.00.000000.

ROUND_TIMESTAMP
The ROUND_TIMESTAMP scalar function returns a TIMESTAMP based on a provided argument
(expression), rounded to the unit specified in another argument (format-string).

ROUND_TIMESTAMP (expression

, 'DD'

, format-string

locale-name

)

The schema is SYSIBM.

If format-string is not specified, expression is rounded to the nearest day, as if 'DD' is specified for
format-string.

expression
An expression that returns a value of one of the following built-in data types: a DATE or a TIMESTAMP.

490 IBM Db2 V11.5: SQL Reference

format-string
An expression that returns a built-in character string data type with an actual length that is not greater
than 255 bytes. The format element in format-string specifies how expression should be rounded. For
example, if format-string is 'DD', the timestamp that is represented by expression is rounded to the
nearest day. Leading and trailing blanks are removed from the string, and the resulting substring must
be a valid format element for a timestamp (SQLSTATE 22007). The default is 'DD'.

Allowable values for format-string are listed in the table of format elements found in the description of
the ROUND function.

locale-name
A character constant that specifies the locale used to determine the first day of the week when using
format model values DAY, DY, or D. The value of locale-name is not case sensitive and must be a valid
locale (SQLSTATE 42815). For information about valid locales and their naming, see "Locale names for
SQL and XQuery". If locale-name is not specified, the value of the special register CURRENT LOCALE
LC_TIME is used.

The result of the function is a TIMESTAMP with a timestamp precision of:

• p when the data type of expression is TIMESTAMP(p)
• 0 when the data type of expression is DATE
• 6 otherwise.

The result can be null; if any argument is null, the result is the null value.

Notes
• Determinism: ROUND_TIMESTAMP is a deterministic function. However, the following invocations of

the function depend on the value of the special register CURRENT LOCALE LC_TIME.

– Round of a date or timestamp value when locale-name is not explicitly specified and one of the
following is true:

- format-string is not a constant
- format-string is a constant and includes format elements that are locale sensitive

Invocations of the function that depend on the value of a special register cannot be used wherever
special registers cannot be used (SQLSTATE 42621, 428EC, or 429BX).

Example
Set the host variable RND_TMSTMP with the input timestamp rounded to the nearest year value.

 SET :RND_TMSTMP = ROUND_TIMESTAMP('2000-08-14-17.30.00', 'YEAR');

The value set is 2001-01-01-00.00.00.000000.

RPAD
The RPAD function returns a string composed of string-expression padded on the right, with pad or blanks.

RPAD (string-expression , integer

, pad

)

The schema is SYSIBM.

The RPAD function treats leading or trailing blanks in string-expression as significant. Padding will only
occur if the actual length of string-expression is less than integer, and pad is not an empty string.

Chapter 1. Structured Query Language (SQL) 491

string-expression
An expression that specifies the source string. The expression must return a value that is a built-in
character string, graphic string, BINARY, VARBINARY, numeric, or datetime data type. CLOB and
DBCLOB are supported through implicit casting. If the value is a CLOB, it is implicitly cast to VARCHAR
before the function is evaluated. If the value is a DBCLOB, it is implicitly cast to VARGRAPHIC before
the function is evaluated. If the data type of the string-expression value is numeric or datetime, the
value is implicitly cast to VARCHAR before the function is evaluated. The data type of string-expression
cannot be a BLOB (SQLSTATE 42815).

integer
An expression that specifies the actual length of the result in the string units of string-expression. The
expression must return a value that is a built-in numeric, CHAR, or VARCHAR data type. In a Unicode
database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR,
GRAPHIC, and VARGRAPHIC are supported through implicit casting. If the expression is not of type
INTEGER, it is cast to INTEGER before the function is evaluated. The value must be zero or a positive
integer that is less than or equal to the maximum length for the result data type in the string units of
string-expression.

pad
An expression that specifies the string with which to pad. The expression must return a value that
is a built-in character string, graphic string, BINARY, VARBINARY, numeric, or datetime data type.
CLOB and DBCLOB are supported through implicit casting. If the value is a CLOB, it is implicitly
cast to VARCHAR before the function is evaluated. If the value is a DBCLOB, it is implicitly cast
to VARGRAPHIC before the function is evaluated. If the data type of the pad value is numeric or
datetime, the value is implicitly cast to VARCHAR before the function is evaluated. The data type of
pad cannot be a BLOB (SQLSTATE 42815).

If pad is not specified, the pad character is determined as follows:

• SBCS blank character if string-expression is a character string.
• Ideographic blank character, if string-expression is a graphic string. For graphic string in an EUC

database, X'3000' is used. For graphic string in a Unicode database, X'0020' is used.
• Hexadecimal zero (X'00'), if string-expression is a binary string.

The data type of the result depends on the data type of the string-expression:

• VARCHAR if the data type is VARCHAR or CHAR
• VARGRAPHIC if the data type is VARGRAPHIC or GRAPHIC
• VARBINARY if the data type is VARBINARY or BINARY

The result of the function is a varying length string that has the same string unit and code page as
string-expression. The value of string-expression and the value of pad must have compatible data types.
If the string-expression and pad have different code pages, then pad is converted to the code page of
string-expression. If either string-expression or pad is FOR BIT DATA or binary, no character conversion
occurs.

The length attribute of the result depends on whether the value for integer is available when the SQL
statement containing the function invocation is compiled (for example, if it is specified as a constant or a
constant expression) or available only when the function is executed (for example, if it is specified as the
result of invoking a function). When the value is available when the SQL statement containing the function
invocation is compiled, if integer is greater than zero, the length attribute of the result is integer. If integer
is 0, the length attribute of the result is 1. When the value is available only when the function is executed,
the length attribute of the result is determined according to the following table:

Table 94. Determining the result length when integer is available only when the function is executed

Data type of string-expression Result data type length

CHAR(n) or VARCHAR(n), BINARY(n) or
VARBINARY(n)

Minimum of n+100 and 32 672

GRAPHIC(n) or VARGRAPHIC(n) Minimum of n+100 and 16 336

492 IBM Db2 V11.5: SQL Reference

Table 94. Determining the result length when integer is available only when the function is executed
(continued)

Data type of string-expression Result data type length

CHAR(n) or VARCHAR(n) or GRAPHIC(n) or
VARGRAPHIC(n) with string units of CODEUNITS32
(Unicode database only)

Minimum of n+100 and 8 168

The actual length of the result is determined from integer. If integer is 0 the actual length is 0, and the
result is the empty result string. If integer is less than the actual length of string-expression, the actual
length is integer and the result is truncated.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Examples
• Example 1: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and

"Jeff". The following query will completely pad out a value on the right with periods:

SELECT RPAD(NAME,15,'.') AS NAME FROM T1;

returns:

NAME

Chris..........
Meg............
Jeff...........

• Example 2: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and
"Jeff". The following query will completely pad out a value on the right with pad (note that in some
cases there is a partial instance of the padding specification):

SELECT RPAD(NAME,15,'123') AS NAME FROM T1;

returns:

NAME

Chris1231231231
Meg123123123123
Jeff12312312312

• Example 3: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and
"Jeff". The following query will only pad each value to a length of 5:

SELECT RPAD(NAME,5,'.') AS NAME FROM T1;

returns:

NAME

Chris
Meg..
Jeff.

• Example 4: Assume that NAME is a CHAR(15) column containing the values "Chris", "Meg", and "Jeff".
Note that the result of RTRIM is a varying length string with the blanks removed:

SELECT RPAD(RTRIM(NAME),15,'.') AS NAME FROM T1;

returns:

NAME

Chapter 1. Structured Query Language (SQL) 493

Chris..........
Meg............
Jeff...........

• Example 5: Assume that NAME is a VARCHAR(15) column containing the values "Chris", "Meg", and
"Jeff". Note that "Chris" is truncated, "Meg" is padded, and "Jeff" is unchanged:

SELECT RPAD(NAME,4,'.') AS NAME FROM T1;

returns:

NAME

Chri
Meg.
Jeff

RTRIM
The RTRIM function removes any of the specified characters from the end of a string.

The RTRIM function removes any of the characters contained in a trim expression from the end of a string
expression. The character search compares the binary representation of each character (consisting of one
or more bytes) in the trim expression to the binary representation of each character (consisting of one or
more bytes) at the end of the string expression. The database collation does not affect the search. If the
string expression is defined as FOR BIT DATA or is a binary type, the search compares each byte in the
trim expression to the byte at the end of the string expression.

RTRIM (string-expression

, trim-expression

)

The schema is SYSIBM. (The SYSFUN version of this function that uses a single parameter continues to be
available with support for CLOB arguments.)

string-expression

An expression that specifies the source string.

• If only one argument is specified, the expression must return a built-in character string, graphic
string, binary string, CLOB or DBCLOB value, Boolean value, numeric value, or datetime value. If the
value is:

– Not a CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, BINARY, VARBINARY, or DBCLOB value, it is
implicitly cast to VARCHAR before the function is evaluated

– A DBCLOB value, it is implicitly cast to VARGRAPHIC before the function is evaluated

The data type of the string expression cannot be BLOB (SQLSTATE 42815).
• If both arguments are specified, the expression must return a built-in character string, Boolean

value, numeric value, or datetime value. If the data type of the string-expression value is not a string
data type, the value is implicitly cast to VARCHAR before the function is evaluated. The actual length
of a CLOB value is limited to the maximum size of a VARCHAR data type (SQLSTATE 22001). The
actual length of a BLOB value is limited to the maximum size of a VARBINARY data type (SQLSTATE
22001). The actual length of a DBCLOB value is limited to the maximum size of a VARGRAPHIC data
type (SQLSTATE 22001).

trim-expression

An expression that specifies the characters that are being removed from the end of a string-
expression. The expression must be a value that is a built-in string, numeric, or datetime data type.

• If the data type of the trim-expression is not a string, then the value is implicitly cast to VARCHAR
before the function is evaluated.

• If the data type of the trim-expression is a CLOB, then the actual length of the value is limited to the
maximum size of a VARCHAR (SQLSTATE 22001).

494 IBM Db2 V11.5: SQL Reference

• If the data type of the trim-expression is a DBCLOB, then the actual length of the value is limited to
the maximum size of a VARGRAPHIC (SQLSTATE 22001).

• If the data type of trim-expression is a BLOB, then the actual length of the value is limited to the
maximum size of a VARBINARY (SQLSTATE 22001).

• If the string-expression is not defined as FOR BIT DATA, then the trim-expression cannot be defined
as FOR BIT DATA (SQLSTATE 42815).

When a trim-expression is not specified, the data type of the string-expression determines the default
value used:

• A double byte blank if the string-expression is a graphic string in a DBCS or EUC database
• A UCS-2 blank if the string-expression is a graphic string in a Unicode database
• A value of X'20' if the string-expression is a FOR BIT DATA string
• A value of X'00' if the string-expression is a binary string
• A single-byte blank for all other cases

The string-expression and trim-expression values must have compatible data types. If one of these
arguments is a FOR BIT DATA character string, the other argument cannot be a graphic string (SQLSTATE
42846). A combination of character string and graphic string arguments can be used only in a Unicode
database (SQLSTATE 42815).

Result
The data type of the result depends on the data type of the string-expression.

• VARCHAR if the data type is VARCHAR or CHAR
• CLOB if the data type is CLOB
• VARBINARY if the data type is VARBINARY or BINARY
• BLOB if the data type is BLOB
• VARGRAPHIC if the data type is VARGRAPHIC or GRAPHIC
• DBCLOB if the data type is DBCLOB

The length attribute of the result data type is the same as the length attribute of the string-expression data
type.

The actual length of the result for character or binary strings is the length of string-expression minus
the number of string units removed. The actual length of the result for graphic strings is the length of
string-expression minus the number of string units removed. If all of the characters are removed, the
result is an empty string with a length of zero.

If any argument can be null, the result can be null; if any argument is null, the result is the null value.

Examples
• Example 1: Use the RTRIM function when the host variable HELLO is defined as CHAR(6) and has a value

of 'Hello '.

 VALUES RTRIM(:HELLO)

The result is 'Hello'. When a trim-expression is not specified only blanks are removed. The host variable
is declared as CHAR(9) and is blank-padded up to 9 bytes.

• Example 2: Use the RTRIM function to remove the characters specified in the trim-expression from the
end of the string-expression.

 VALUES RTRIM('...VAR...', '$.')

The result is '...$VAR'.

Chapter 1. Structured Query Language (SQL) 495

• Example 3: Use the RTRIM function to remove the characters specified in the trim-expression from the
end of the string-expression.

 VALUES RTRIM('((-78.0))', '-0. ()')

The result is '((-78'. When removing characters and blanks, you must include a blank in the trim-
expression.

RTRIM (SYSFUN schema)
Returns the characters of the argument with trailing blanks removed.

RTRIM (expression)

The schema is SYSFUN.

expression
The expression can be of any built-in character string data type. For a VARCHAR the maximum length
is 4 000 bytes and for a CLOB the maximum length is 1 048 576 bytes.

The result of the function is:

• VARCHAR(4000) if expression is VARCHAR (not exceeding 4 000 bytes) or CHAR
• CLOB(1M) if expression is CLOB or LONG VARCHAR

The result can be null; if expression is null, the result is the null.

SECLABEL
The SECLABEL function returns an unnamed security label with a data type of DB2SECURITYLABEL. Use
the SECLABEL function to insert a security label with given component values without having to create a
named security label.

SECLABEL (security-policy-name , security-label-string)

The schema is SYSIBM.

security-policy-name
A string that specifies a security policy that exists at the current server (SQLSTATE 42704). The string
must be a character or graphic string constant or host variable.

security-label-string
An expression that returns a valid representation of a security label for the security policy named by
security-policy-name (SQLSTATE 4274I). The expression must return a value that is a built-in CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC data type.

Examples
• Example 1: The following statement inserts a row in table REGIONS which is protected by the security

policy named CONTRIBUTIONS. The security label for the row to be inserted is given by the SECLABEL
function. The security policy CONTRIBUTIONS has two components. The security label given has the
element LIFE MEMBER for first component, the elements BLUE and YELLOW for the second component.

 INSERT INTO REGIONS
 VALUES (SECLABEL('CONTRIBUTIONS', 'LIFE MEMBER:(BLUE,YELLOW)'),
 1, 'Northeast')

• Example 2: The following statement inserts a row in table CASE_IDS which is protected by the security
policy named TS_SECPOLICY, which has three components. The security label is provided by the

496 IBM Db2 V11.5: SQL Reference

SECLABEL function. The security label inserted has the element HIGH PROFILE for the first component,
the empty value for the second component and the element G19 for the third component.

 INSERT INTO CASE_IDS
 VALUES (SECLABEL('TS_SECPOLICY', 'HIGH PROFILE:():G19') , 3, 'KLB')

SECLABEL_BY_NAME
The SECLABEL_BY_NAME function returns the specified security label. The security label returned has a
data type of DB2SECURITYLABEL. Use this function to insert a named security label.

SECLABEL_BY_NAME (security-policy-name , security-label-name)

The schema is SYSIBM.

security-policy-name
A string that specifies a security policy that exists at the current server (SQLSTATE 42704). The string
must be a character or graphic string constant or host variable.

security-label-name
An expression that returns the name of a security label that exists at the current server for the
security policy named by security-policy-name (SQLSTATE 4274I). The expression must return a value
that is a built-in CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type.

Examples
In the following examples, Tina is trying to insert a row in table REGIONS which is protected by the
security policy named CONTRIBUTIONS. Tina wants the row to be protected by the security label named
EMPLOYEESECLABEL.

• Example 1: This statement fails because CONTRIBUTIONS.EMPLOYEESECLABEL is an unknown
identifier:

 INSERT INTO REGIONS
 VALUES (CONTRIBUTIONS.EMPLOYEESECLABEL, 1, 'Southwest') -- incorrect

• Example 2: This statement fails because the first value is a string, it does not have a data type of
DB2SECURITYLABEL:

 INSERT INTO REGIONS
 VALUES ('CONTRIBUTIONS.EMPLOYEESECLABEL', 1, 'Southwest') -- incorrect

• Example 2: This statement succeeds because the SECLABEL_BY_NAME function returns a security label
that has a data type of DB2SECURITYLABEL:

 INSERT INTO REGIONS
 VALUES (SECLABEL_BY_NAME('CONTRIBUTIONS', 'EMPLOYEESECLABEL'),
 1, 'Southwest') -- correct

SECLABEL_TO_CHAR
The SECLABEL_TO_CHAR function accepts a security label and returns a string that contains all elements
in the security label. The string is in the security label string format.

SECLABEL_TO_CHAR (security-policy-name , security-label)

The schema is SYSIBM.

security-policy-name
A string that specifies a security policy that exists at the current server (SQLSTATE 42704). The string
must be a character or graphic string constant or host variable.

Chapter 1. Structured Query Language (SQL) 497

security-label
An expression that returns a security label value that is valid for the security policy named by
security-policy-name (SQLSTATE 4274I). The expression must return a value that is a built-in
SYSPROC.DB2SECURITYLABEL distinct type.

The result of the function is VARCHAR(32672 OCTETS). The result can be null; if the second argument is
null, the result is the null value.

Notes
• If the authorization ID of the statement executes this function on a security label being read from a

column with a data type of DB2SECURITYLABEL then that authorization ID's LBAC credentials might
affect the output of the function. In such a case an element is not included in the output if the
authorization ID does not have read access to that element. An authorization ID has read access to
an element if its LBAC credentials would allow it to read data that was protected by a security label
containing only that element, and no others.

For the rule set DB2LBACRULES only components of type TREE can contain elements that you do not
have read access to. For other types of component, if any one of the elements block read access then
you will not be able to read the row at all. So only components of type tree will have elements excluded
in this way.

Example
The EMP table has two columns, RECORDNUM and LABEL; RECORDNUM has data type INTEGER, and
LABEL has type DB2SECURITYLABEL. Table EMP is protected by security policy DATA_ACCESSPOLICY,
which uses the DB2LBACRULES rule set and has only one component (GROUPS, of type TREE). GROUPS
has five elements: PROJECT, TEST, DEVELOPMENT, CURRENT, AND FIELD. The following diagram shows
the relationship of these elements to one another:

 PROJECT
 ________|________
 | |
 TEST DEVELOPMENT
 ______|______
 | |
 CURRENT FIELD

The EMP table contains the following data:

RECORDNUM LABEL
--------- ----------------
 1 PROJECT
 2 (TEST, FIELD)
 3 (CURRENT, FIELD)

The user whose ID is Djavan holds a security label for reading that contains only the DEVELOPMENT
element. This means that Djavan has read access to the DEVELOPMENT, CURRENT, and FIELD elements:

 SELECT RECORDNUM, SECLABEL_TO_CHAR('DATA_ACCESSPOLICY', LABEL) FROM EMP

returns:

RECORDNUM LABEL
--------- ----------------
 2 FIELD
 3 (CURRENT, FIELD)

The row with a RECORDNUM value of 1 is not included in the output, because Djavan's LBAC credentials
do not allow him to read that row. In the row with a RECORDNUM value of 2, element TEST is not included
in the output, because Djavan does not have read access to that element; Djavan would not have been
able to access the row at all if TEST were the only element in the security label. Because Djavan has read
access to elements CURRENT and FIELD, both elements appear in the output.

498 IBM Db2 V11.5: SQL Reference

Now Djavan is granted an exemption to the DB2LBACREADTREE rule. This means that no element of a
TREE type component will block read access. The same query returns:

RECORDNUM LABEL
--------- ----------------
 1 PROJECT
 2 (TEST, FIELD)
 3 (CURRENT, FIELD)

This time the output includes all rows and all elements, because the exemption gives Djavan read access
to all of the elements.

SECOND
The SECOND function returns the seconds part of a value with optional fractional seconds.

SECOND (expression

, integer-constant

)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIME,
TIMESTAMP, time duration, timestamp duration, or a valid character string representation of a date,
time, or timestamp that is not a CLOB. If expression is a DATE or a valid string representation of a
date, it is first converted to a TIMESTAMP(0) value, assuming a time of exactly midnight (00.00.00).
If expression is a valid string representation of a timestamp, it is first converted to a TIMESTAMP(12)
value. In a Unicode database, if a supplied argument is a graphic string, it is first converted to a
character string before the function is executed.

integer-constant
An integer constant representing the scale for the fractional seconds. The value must be in the range 0
through 12.

The result of the function with a single argument is a large integer. The result of the function with two
arguments is DECIMAL(2+s,s) where s is the value of the integer-constant. If the first argument can be
null, the result can be null; if the first argument is null, the result is the null value.

The other rules depend on the data type of the first argument and the number of arguments:

• If the first argument is a DATE, TIME, TIMESTAMP, or valid string representation of a date, time, or
timestamp:

– If only one argument is specified, the result is the seconds part of the value (0 and 59).
– If both arguments are specified, the result is the seconds part of the value (0 to 59) and integer-

constant digits of the fractional seconds part of the value where applicable. If there are no fractional
seconds in the value, then zeros are returned.

• If the first argument is a time duration or timestamp duration:

– If only one argument is specified, the result is the seconds part of the value (-99 to 99).
– If both arguments are specified, the result is the seconds part of the value (-99 to 99) and integer-

constant digits of the fractional seconds part of the value where applicable. If there are no fractional
seconds in the value then zeros are returned. A nonzero result has the same sign as the argument.

Examples
• Example 1: Assume that the host variable TIME_DUR (decimal(6,0)) has the value 153045.

 SELECT SECOND(:TIME_DUR)
 FROM SYSIBM.SYSDUMMY1

Returns the value 45.

Chapter 1. Structured Query Language (SQL) 499

• Example 2: Assume that the column RECEIVED (whose data type is TIMESTAMP) has an internal value
equivalent to 1988-12-25-17.12.30.000000.

 SELECT SECOND(RECEIVED)
 FROM IN_TRAY

Returns the value 30.
• Example 3: Get the seconds with fractional seconds from a current timestamp with milliseconds.

 SELECT SECOND (CURRENTTIMESTAMP(3), 3)
 FROM SYSIBM.SYSDUMMY1

Returns a DECIMAL(5,3) value based on the current timestamp that could be something like 54.321.

SECONDS_BETWEEN
The SECONDS_BETWEEN function returns the number of full seconds between the specified arguments.

SECONDS_BETWEEN (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that specifies the first datetime value to compute the number of full seconds between
two datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or
VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC
data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If
expression1 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that
is accepted by the TIMESTAMP scalar function.

expression2
An expression that specifies the second datetime value to compute the number of full seconds
between two datetime values. The expression must return a value that is a DATE, TIMESTAMP,
CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC
or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using
implicit casting. If expression2 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be
a valid string that is accepted by the TIMESTAMP scalar function.

If there is less than a full second between expression1 and expression2, the result is zero. If expression1
is later than expression2, the result is positive. If expression1 is earlier than expression2, the result is
negative. In NPS compatibility mode, this function always returns a positive number. If expression1 or
expression2 contains time information, this information is also used to determine the number of full
seconds. If expression1 or expression2 does not contain time information, a time of midnight (00.00.00) is
used for the argument that is missing time information.

The result of the function is a BIGINT. If either argument can be null, the result can be null. If either
argument is null, the result is the null value.

Examples
1. Set the host variable NUM_SECONDS to the number of full seconds between 2012-03-01-01.00.00

and 2012-02-28-00.00.00.

 SET :NUM_SECONDS = SECONDS_BETWEEN(TIMESTAMP '2012-03-01-01.00.00',
 TIMESTAMP '2012-02-28-00.00.00')

The host variable NUM_SECONDS is set to 176400; 86400 of the seconds are incurred because of
February 29, 2012.

2. Set the host variable NUM_SECONDS to the number of full seconds between
2013-09-11-23.59.59.999999 and 2013-09-01-00.00.00.000000.

500 IBM Db2 V11.5: SQL Reference

 SET :NUM_SECONDS = SECONDS_BETWEEN(TIMESTAMP '2013-09-11-23.59.59.999999',
 TIMESTAMP '2013-09-01-00.00.00.000000')

The host variable NUM_SECONDS is set to 950399 because there are 0.000001 seconds less than a
full 950400 seconds between the arguments. It is positive because the first argument is later than the
second argument.

3. Set the host variable NUM_SECONDS to the number of full seconds between
2013-09-01-00.00.00.000000 and 2013-09-11-23.59.59.999999.

 SET :NUM_SECONDS = SECONDS_BETWEEN(TIMESTAMP '2013-09-01-00.00.00.000000',
 TIMESTAMP '2013-09-11-23.59.59.999999')

The host variable NUM_SECONDS is set to -950399 because there are 0.000001 seconds less than a
full 950400 seconds between the arguments. It is negative because the first argument is earlier than
the second argument.

SIGN
Returns an indicator of the sign of the argument.

SIGN (expression)

The schema is SYSIBM. (The SYSFUN version of the SIGN function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type. DECIMAL and REAL values are
converted to double-precision floating-point numbers for processing by the function.

If the argument is less than zero, -1 is returned. If the argument is the decimal floating-point value of -0,
the decimal floating-point value of -0 is returned. If argument equals zero, 0 is returned. If argument is
greater than zero, 1 is returned.

The result of the function is:

• SMALLINT if the argument is SMALLINT
• INTEGER if the argument is INTEGER
• BIGINT if the argument is BIGINT
• DECFLOAT(n) if the argument is DECFLOAT(n)
• DOUBLE otherwise.

The result can be null; if the argument is null, the result is the null value.

Example
Assume that host variable PROFIT is a large integer with a value of 50000.

 VALUES SIGN(:PROFIT)

Returns the value 1.

SIN
Returns the sine of the argument, where the argument is an angle expressed in radians.

SIN (expression)

The schema is SYSIBM. (The SYSFUN version of the SIN function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

Chapter 1. Structured Query Language (SQL) 501

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

SINH
Returns the hyperbolic sine of the argument, where the argument is an angle expressed in radians.

SINH (expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

SMALLINT
The SMALLINT function returns a small integer (a binary integer with a precision of 15 bits) representation
of a value of a different data type.

Numeric to SMALLINT
SMALLINT (numeric-expression)

String to SMALLINT
SMALLINT (string-expression)

Boolean to SMALLINT
SMALLINT (boolean-expression)

The schema is SYSIBM.

Numeric to SMALLINT
numeric-expression

An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned to a small integer
column or variable. The fractional part of the argument is truncated. If the whole part of the
argument is not within the range of small integers, an error is returned (SQLSTATE 22003).

String to SMALLINT
string-expression

An expression that returns a value that is a character-string or Unicode graphic-string
representation of a number with a length not greater than the maximum length of a character
constant.

The result is the same number that would result from CAST(string-expresssion AS SMALLINT).
Leading and trailing blanks are eliminated and the resulting string must conform to the rules for
forming an integer, decimal, floating-point, or decimal floating-point constant (SQLSTATE 22018).
If the whole part of the argument is not within the range of small integers, an error is returned
(SQLSTATE 22003). The data type of string-expression must not be CLOB or DBCLOB (SQLSTATE
42884).

502 IBM Db2 V11.5: SQL Reference

Boolean to SMALLINT
boolean-expression

An expression that returns a Boolean value (TRUE or FALSE). The result is either 1 (for TRUE) or 0
(for FALSE).

Result
The result of the function is a small integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

Notes
• Increasing portability of applications: If the first argument is numeric, or if the first argument is a

string and the length argument is specified, use the “CAST specification” on page 152 instead of this
function to increase the portability of your applications.

Examples
• Example 1: Using the EMPLOYEE table, select a list containing salary (SALARY) divided by education

level (EDLEVEL). Truncate any decimal in the calculation. The list should also contain the values used in
the calculation and the employee number (EMPNO).

 SELECT SMALLINT(SALARY / EDLEVEL), SALARY, ESDLEVEL, EMPNO
 FROM EMPLOYEE

• Example 2: The following statement returns the value 1 of data type SMALLINT.

 values SMALLINT(TRUE)

• Example 3: The following statement returns the value 0 of data type SMALLINT.

 values SMALLINT(3>3)

SOUNDEX
Returns a 4-character code representing the sound of the words in the argument. The result can be used
to compare with the sound of other strings.

SOUNDEX (expression)

The schema is SYSFUN.

expression
An expression that returns a value of CHAR or VARCHAR data type. The length of the value must
not exceed 4 000 bytes. In a Unicode database, if a supplied argument is a graphic string, it is first
converted to a character string before the function is executed. The function interprets data that is
passed to it as if it were ASCII characters, even if it is encoded in UTF-8.

The result of the function is CHAR(4). The result can be null; if the argument is null, the result is the null
value.

The SOUNDEX function is useful for finding strings for which the sound is known but the precise spelling
is not. It makes assumptions about the way that letters and combinations of letters sound that can help
to search out words with similar sounds. The comparison can be done directly or by passing the strings as
arguments to the DIFFERENCE function.

Example
Using the EMPLOYEE table, find the EMPNO and LASTNAME of the employee with a surname that sounds
like 'Loucesy'.

Chapter 1. Structured Query Language (SQL) 503

 SELECT EMPNO, LASTNAME FROM EMPLOYEE
 WHERE SOUNDEX(LASTNAME) = SOUNDEX('Loucesy')

This example returns the following output:

EMPNO LASTNAME
------ ---------------
000110 LUCCHESSI

SPACE
Returns a character string consisting of blanks with length specified by the argument.

SPACE (expression)

The schema is SYSFUN.

expression
An expression that returns a value of built-in SMALLINT or INTEGER data type.

The result of the function is VARCHAR(4000 OCTETS). The result can be null; if the argument is null, the
result is the null value.

SQRT
The SQRT function returns the square root of a number.

SQRT (expression)

The schema is SYSIBM. (The SYSFUN version of the SQRT function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type. If the argument is decimal
floating-point, the operation is performed in decimal floating-point; otherwise, the argument is
converted to double-precision floating-point for processing by the function.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result is a double-precision
floating-point number.

The result can be null; if the argument is null, the result is the null value.

Notes
• Results involving DECFLOAT special values: If the argument is a special decimal floating-point value,

the rules for general arithmetic operations for decimal floating-point apply. See “General arithmetic
operation rules for decimal floating-point” on page 142 in “Expressions” on page 132.

Example
Assume that SQUARE is a DECIMAL(2,1) host variable with a value of 9.0.

 VALUES SQRT(:SQUARE)

Returns the approximate value 3.00.

504 IBM Db2 V11.5: SQL Reference

STRIP
The STRIP function removes blanks or another specified character from the end, the beginning, or both
ends of a string expression.

STRIP (string-expression

, BOTH

B

LEADING

L

TRAILING

T

, strip-character

)

The schema is SYSIBM. The function name cannot be specified as a qualified name when keywords are
used in the function signature.

The STRIP function is identical to the TRIM scalar function.

string-expression
An expression that specifies the string from which the result is derived. The expression must return
a value that is a built-in CHAR, VARCHAR, BINARY, VARBINARY, GRAPHIC, VARGRAPHIC, numeric,
or datetime data type. If the value is not a CHAR, VARCHAR, BINARY, VARBINARY, GRAPHIC, or
VARGRAPHIC data type, it is cast to VARCHAR before the function is evaluated.

BOTH, LEADING, or TRAILING
Specifies whether characters are removed from the beginning, the end, or from both ends of the string
expression. If this argument is not specified, the characters are removed from both the end and the
beginning of the string.

strip-character
A single-character constant that specifies the character that is to be removed. The strip-character can
be any character whose UTF-32 encoding is a single character or a single digit numeric value. The
binary representation of the character is matched.

If strip-character is not specified and:

• If the string-expression is a DBCS graphic string, the default strip-character is a DBCS blank, whose
code point is dependent on the database code page

• If the string-expression is a UCS-2 graphic string, the default strip-character is a UCS-2 blank
(X'0020')

• If the string-expression is a binary string, the default strip-character is a hexadecimal zero (X'00')
• Otherwise, the default strip-character is an SBCS blank (X'20')

The value for string-expression and the value for strip-character must have compatible data types.

The data type of the result depends on the data type of the string-expression:

• VARCHAR if the data type is VARCHAR or CHAR
• VARGRAPHIC if the data type is VARGRAPHIC or GRAPHIC
• VARBINARY if the data type is VARBINARY or BINARY

The result is a varying-length string with the same maximum length as the length attribute of the string-
expression. The actual length of the result is the length of the string-expression minus the number of string
units that are removed. If all of the characters are removed, the result is an empty varying-length string.
The code page of the result is the same as the code page of the string-expression.

Chapter 1. Structured Query Language (SQL) 505

Example
Assume that the host variable BALANCE of type CHAR(9) has a value of '000345.50'.

 SELECT STRIP(:BALANCE, LEADING, '0'),
 FROM SYSIBM.SYSDUMMY1

returns the value '345.50'.

STRLEFT
The STRLEFT function returns the leftmost string of string-expression of length length, expressed in the
specified string unit.

STRLEFT (string-expression , length

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

The STRLEFT scalar function is a synonym for the LEFT scalar function.

STRPOS

STRPOS (source-string , search-string)

The schema is SYSIBM.

STRPOS is a synonym for POSSTR.

STRRIGHT
The STRRIGHT function returns the right most string of string-expression of length length, expressed in
the specified string unit.

STRRIGHT (string-expression , length

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

The STRRIGHT scalar function is a synonym for the RIGHT scalar function.

SUBSTR
The SUBSTR function returns a substring of a string.

SUBSTR (string , start

, length

)

The schema is SYSIBM.

string
The input expression, which specifies the string from which the substring is to be derived. The
expression must return a value that is a built-in character string, numeric value, Boolean value, or
datetime value. If the value is not a character string, it is implicitly cast to VARCHAR before the

506 IBM Db2 V11.5: SQL Reference

function is evaluated. Any number (zero or more) contiguous string units of this expression constitute
a substring of this expression.

start
An expression that specifies the position, relative to the beginning of the input expression, from which
the substring is to be calculated. For example:

• Position 1 is the first string unit of the input expression. The statement SUBSTR('abcd',1,2)
returns 'ab'.

• Position 2 is one position to the right of position 1. The statement SUBSTR('abcd',2,2) returns
'bc'.

The expression must return a built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC value. If
the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function.

length
An expression that specifies the length of the result. If specified, the expression must return a value
that is a built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. If the value is not of
type INTEGER, it is implicitly cast to INTEGER before evaluating the function. The value of the integer
must be in the range of 0 to n, where n equals (the length attribute of string in string units) - start + 1
(SQLSTATE 22011 if out of range).

If length is explicitly specified, string is effectively padded on the right with the necessary number of
blank characters (single-byte for character strings; double-byte for graphic strings) or hexadecimal
zero characters (for binary strings) so that the specified substring exists. The default length is the
number of string units from the string unit specified by start to the last string unit of string. However,
if string is a varying-length string with a length less than start, the default is zero and the result is the
empty string. It must be specified as number of string units in the context of the database code page
and not the application code page. (For example, the column NAME with a data type of VARCHAR(18)
and a value of 'MCKNIGHT' will yield an empty string with SUBSTR(NAME,10)).

If string is:

• A fixed-length string, the default length is LENGTH(string) - start + 1
• A varying-length string, the default length is either zero or LENGTH(string) - start + 1,

whichever is greater.

Result
If string is a character string, the result is a character string represented in the code page and string units
of its first argument. If it is a binary string, the result is a binary string. If it is a graphic string, the result
is a graphic string represented in the code page and string units of its first argument. If the first argument
is a host variable that is not a binary string and not a FOR BIT DATA character string, the code page of the
result is the database code page. If any argument of the SUBSTR function can be null, the result can be
null; if any argument is null, the result is the null value.

Table 95 on page 507 shows that the result type and length of the SUBSTR function depend on the type
and attributes of its inputs.

Table 95. Data Type and Length of SUBSTR Result

String Argument Data
Type

Length Argument Result Data Type

CHAR(A) constant (l<n)
If the units of string are:

• OCTETS, n=256
• CODEUNITS32, n=64

CHAR(l)

CHAR(A) not specified but start argument is a constant CHAR(A-start+1)

CHAR(A) not a constant VARCHAR(A)

Chapter 1. Structured Query Language (SQL) 507

Table 95. Data Type and Length of SUBSTR Result (continued)

String Argument Data
Type

Length Argument Result Data Type

VARCHAR(A) constant (l<n)
If the units of string are:

• OCTETS, n=256
• CODEUNITS32, n=64

CHAR(l)

VARCHAR(A) constant (m<l<n)
If the units of string are:

• OCTETS, m=256 and n=32673
• CODEUNITS32, m=63 and n=8169

VARCHAR(l)

VARCHAR(A) not a constant or not specified VARCHAR(A)

CLOB(A) constant (l) CLOB(l)

CLOB(A) not a constant or not specified CLOB(A)

GRAPHIC(A) constant (l<n)
If the units of string are:

• double-bytes or CODEUNITS16, n=128
• CODEUNITS32, n=64

GRAPHIC(l)

GRAPHIC(A) not specified but start argument is a constant GRAPHIC(A-start+1)

GRAPHIC(A) not a constant VARGRAPHIC(A)

VARGRAPHIC(A) constant (l<n)
If the units of string are:

• double-bytes or CODEUNITS16, n=128
• CODEUNITS32, n=64

GRAPHIC(l)

VARGRAPHIC(A) constant (m<l<n)
If the units of string are:

• double-bytes or CODEUNITS16, m=127 and
n=16337

• CODEUNITS32, m=63 and n=8169

VARGRAPHIC(l)

VARGRAPHIC(A) not a constant VARGRAPHIC(A)

DBCLOB(A) constant (l) DBCLOB(l)

DBCLOB(A) not a constant or not specified DBCLOB(A)

BINARY(A) constant (l<256) BINARY(l)

BINARY(A) not specified but start argument is a constant BINARY(A-start+1)

BINARY(A) not a constant VARBINARY(A)

VARBINARY(A) constant (l<256) BINARY(l)

VARBINARY(A) constant (255<l<32673) VARBINARY(l)

VARBINARY(A) not a constant or not specified VARBINARY(A)

BLOB(A) constant (l) BLOB(l)

508 IBM Db2 V11.5: SQL Reference

Table 95. Data Type and Length of SUBSTR Result (continued)

String Argument Data
Type

Length Argument Result Data Type

BLOB(A) not a constant or not specified BLOB(A)

Note: The LONG VARCHAR and LONG VARGRAPHIC data types continue to be supported but are
deprecated and not recommended.

Notes
• In dynamic SQL, string, start, and length can be represented by a parameter marker. If a parameter

marker is used for string, the data type of the operand will be VARCHAR, and the operand will be
nullable.

• Though not explicitly stated in the result definitions mentioned previously, the semantics imply that
if string is a mixed single- and multi-byte character string, the result might contain fragments of multi-
byte characters, depending upon the values of start and length. For example, the result could possibly
begin with the second byte of a multi-byte character, or end with the first byte of a multi-byte character.
The SUBSTR function does not detect such fragments, nor provide any special processing should they
occur.

Examples
• Example 1: Assume that the host variable NAME (VARCHAR(50)) has the value 'BLUE JAY':

– The following statement returns the value 'BLUE':

 SUBSTR(:NAME,1,4)

– The following statement returns the value 'JAY':

 SUBSTR(:NAME,6)

– The following statement returns the value 'JA':

 SUBSTR(:NAME,6,2)

• Example 2: Select all rows from the PROJECT table for which the project name (PROJNAME) starts with
the word 'OPERATION'.

 SELECT * FROM PROJECT
 WHERE SUBSTR(PROJNAME,1,10) = 'OPERATION '

The space at the end of the constant is necessary to exclude words such as 'OPERATIONAL'.

SUBSTR2
The SUBSTR2 function returns a substring from a string. The resulting substring starts at a specified
position in the string and continues for a specified or default length. The start and length arguments are
expressed in 16-bit UTF-16 string units (CODEUNITS16).

SUBSTR2 (string , start

, length

)

The schema is SYSIBM.

string
An expression that specifies the string from which the resulting substring is derived. The expression
must return a value that is a built-in character string, graphic string, numeric, or datetime data type.
A character string cannot have the FOR BIT DATA attribute (SQLSTATE 428GC). If the value is not a

Chapter 1. Structured Query Language (SQL) 509

string data type, it is implicitly cast to VARCHAR before evaluating the function. A substring of string is
zero or more contiguous bytes of string.

start
An expression that specifies the starting position in string for the beginning of the result substring
in 16-bit UTF-16 string units. The expression must return a value that is a built-in numeric, CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC data type. If the value is not of type INTEGER, it is implicitly
cast to INTEGER before evaluating the function.

If start is positive, then the starting position is calculated from the beginning of the string. If start is
greater than the length of string in 16-bit UTF-16 string units, then a zero length string is returned.

If start is negative, then the starting position is calculated from the end of the string by counting
backwards. If the absolute value of start is greater than the length of string in 16-bit UTF-16 string
units, then a zero length string is returned.

If start is 0, then a starting position of 1 is used.

length
An expression that specifies the length of the resulting substring in 16-bit UTF-16 string units. If
length is specified, the expression must return a value that is a built-in numeric, CHAR, VARCHAR,
GRAPHIC, or VARGRAPHIC data type. If the value is not of type INTEGER, it is implicitly cast to
INTEGER before evaluating the function.

If the value for length is greater than the number of 16-bit UTF-16 string units from the starting
position to the end of the string, then the length of the resulting substring is the length of the first
argument in 16-bit UTF-16 string units minus the starting position plus one.

If the value for length is less than or equal to zero, the result is a zero length string.

The default value for length is the number of CODEUNITS16 from the position specified by start to the
last byte of string.

If string is a CHAR or VARCHAR data type, the result of the function is a VARCHAR data type. If string is a
CLOB, the result of the function is a CLOB. If string is a GRAPHIC or VARGRAPHIC data type, the result of
the function is a VARGRAPHIC data type. If string is a DBCLOB, the result of the function is a DBCLOB. If
the first argument is a host variable, the code page of the result is the section code page; otherwise, it is
the code page of the first argument.

The length attribute of the result is the same as the length attribute of the first argument, unless the start
or length arguments are specified as constants. When a constant is specified, the length attribute of the
result is based on the first applicable row in the following table.

Table 96. Length Attribute of SUBSTR2 Result when Arguments Include Constants

String Argument Start Argument1 Length Argument Length Attribute of
Result2

character type with
length attribute A

any valid argument constant value L<=0 0

character type with
length attribute A

constant value S and |(S)|>A not specified or any
valid argument

0

character type with
length attribute A

not a constant constant value L>0 MIN(A, L×4)

character type with
length attribute A

constant value S>0 not specified or not a
constant

A-S+1

character type with
length attribute A

constant value S<0 not specified or not a
constant

MIN(A, |(S)×4|)

character type with
length attribute A

constant value S>0 constant value L>0 MIN(A-S+1, L×4)

510 IBM Db2 V11.5: SQL Reference

Table 96. Length Attribute of SUBSTR2 Result when Arguments Include Constants (continued)

String Argument Start Argument1 Length Argument Length Attribute of
Result2

character type with
length attribute A

constant value S<0 constant value L>0 MIN(A,|(S)×4|, L×4)

graphic type with
length attribute A

any valid argument constant value L<=0 0

graphic type with
length attribute A

constant value S and |(S)|>A not specified or any
valid argument

0

graphic type with
length attribute A

not a constant constant value L>0 MIN(A, L)

graphic type with
length attribute A

constant value S>0 not specified or not a
constant

A-S+1

graphic type with
length attribute A

constant value S<0 not specified or not a
constant

|(S)|

graphic type with
length attribute A

constant value S>0 constant value L>0 MIN(A-S+1, L)

graphic type with
length attribute A

constant value S<0 constant value L>0 MIN(|(S)|, L)|

Notes:
1 If a start argument value of 0 is specified, then use a value of 1 for S when referencing this table.
2 The length attribute of the result for some of the character result types involves a constant that is
multiplied by a factor of 4. This multiplier covers the worst case expansion derived from the following
factors:

• Multiplying by 2 to switch from counting in 16-bit UTF-16 string units to counting in bytes used for the
length attributes of a character data type.

• Multiplying by 2 again because a 2-byte character in UTF-16 can be represented by up to 4 bytes in a
character string.

If any argument of the SUBSTR2 function can be null, the result can be null. If any argument is null, the
result is the null value.

Notes
• In dynamic SQL, string, start, and length can be represented by a parameter marker. If an untyped

parameter marker is used for string, the operand will be nullable and if the database supports graphic
data types the data type of the operand will be VARGRAPHIC(16336). Otherwise, the data type will be
VARCHAR(32672).

• If string is a mixed single-byte and multi-byte character string, the result might contain fragments of
multi-byte characters depending on the values of start and length. For example, the result might begin
with the third byte of a multi-byte character, or end with the first byte of a multi-byte character. The
SUBSTR2 function detects these partial characters and replaces each byte of an incomplete character
with a single blank character.

• SUBSTR2 is similar to the SUBSTR function, with the following exceptions:

– SUBSTR2 supports a negative start value, which indicates that processing is to start from the end of
the string.

Chapter 1. Structured Query Language (SQL) 511

– SUBSTR2 supports a length value that is greater than the calculated result length. In such cases, a
shorter string is returned, rather than an error.

– SUBSTR2 returns a result data type of VARCHAR if the input data type is CHAR. VARGRAPHIC is the
result data type returned if the input type is GRAPHIC.

– The length attribute of the result for SUBSTR2 is either the same as the length attribute of the first
argument, or it is derived based on the start or length attributes, if either of these are constants.

– SUSTR2 returns a result with a length attribute that is the same as the length attribute of the
first argument, unless the start or length arguments are specified as constants. When a constant is
specified, the length attribute of the result is derived based on the start or length attributes (see the
preceding table).

Examples
• Example 1: Given the following host variables:

– NAME (VARGRAPHIC(50) with a value of 'Roméo Jürgen'
– SURNAME POS (INTEGER) with a value of 7

SUBSTR2(:NAME, :SURNAME_POS)

returns the value Jürgen

SUBSTR2(:NAME, :SURNAME_POS,2)

returns the value Jü
• Example 2: Select all rows from the PROJECT table which end in 'ING'

SELECT * FROM PROJECT
 WHERE SUBSTR2(PROJNAME,-3) = 'ING'

SUBSTR4
The SUBSTR4 function returns a substring from a string. The resulting substring starts at a specified
position in the string and continues for a specified or default length. The start and length arguments are
expressed in 32-bit UTF-32 string units (CODEUNITS32).

SUBSTR4 (string , start

, length

)

The schema is SYSIBM.

string
An expression that specifies the string from which the resulting substring is derived. The expression
must return a value that is a built-in character string, graphic string, numeric, or datetime data type.
A character string cannot have the FOR BIT DATA attribute (SQLSTATE 428GC). If the value is not a
string data type, it is implicitly cast to VARCHAR before evaluating the function. A substring of string is
zero or more contiguous string units of string.

start
An expression that specifies the starting position in string for the beginning of the result substring
in 32-bit UTF-32 string units. The expression must return a value that is a built-in numeric, CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC data type. If the value is not of type INTEGER, it is implicitly
cast to INTEGER before evaluating the function.

If start is positive, then the starting position is calculated from the beginning of the string. If start is
greater than the length of string in 32-bit UTF-32 string units, then a zero length string is returned.

If start is negative, then the starting position is calculated from the end of the string by counting
backwards. If the absolute value of start is greater than the length of string in 32-bit UTF-32 string
units, then a zero length string is returned.

512 IBM Db2 V11.5: SQL Reference

If start is 0, then a starting position of 1 is used.

length
An expression that specifies the length of the resulting substring in 32-bit UTF-32 string units. If
length is specified, the expression must return a value that is a built-in numeric, CHAR, VARCHAR,
GRAPHIC, or VARGRAPHIC data type. If the value is not of type INTEGER, it is implicitly cast to
INTEGER before evaluating the function.

If the value for length is greater than the number of 32-bit UTF-32 string units from the starting
position to the end of the string, then the length of the resulting substring is the length of the first
argument in 32-bit UTF-32 string units minus the starting position plus one.

If the value for length is less than or equal to zero, the result is a zero length string.

The default value for length is the number of CODEUNITS32 from the position specified by start to the
last string unit of string.

If string is a CHAR or VARCHAR data type, the result of the function is a VARCHAR data type. If string is a
CLOB, the result of the function is a CLOB. If string is a GRAPHIC or VARGRAPHIC data type, the result of
the function is a VARGRAPHIC data type. If string is a DBCLOB, the result of the function is a DBCLOB. If
the first argument is a host variable, the code page of the result is the section code page; otherwise, it is
the code page of the first argument.

The length attribute of the result is the same as the length attribute of the first argument, unless the start
or length arguments are specified as constants. When a constant is specified, the length attribute of the
result is based on the first applicable row in the following table. The string unit of the result is the same as
the string unit of the first argument.

Table 97. Length attribute of SUBSTR4 result when arguments include constants

String Argument Start Argument1 Length Argument Length Attribute of
Result2

character type with
length attribute A

any valid argument constant value L<=0 0

character type with
length attribute A

constant value S and |(S)|>A not specified or any
valid argument

0

character type with
length attribute A

not a constant constant value L>0 MIN(A, L×4) if the
string units of string
is OCTETS
MIN(A, L) if the
string units of string
is CODEUNITS32

character type with
length attribute A

constant value S>0 not specified or not a
constant

A-S+1

character type with
length attribute A

constant value S<0 not specified or not a
constant

MIN(A, |(S)×4|) if the
string units of string
is OCTETS
MIN(A, |S|) if the
string units of string
is CODEUNITS32

character type with
length attribute A

constant value S>0 constant value L>0 MIN(A-S+1, L×4) if
the string units of
string is OCTETS
MIN(A-S+1, L) if the
string units of string
is CODEUNITS32

Chapter 1. Structured Query Language (SQL) 513

Table 97. Length attribute of SUBSTR4 result when arguments include constants (continued)

String Argument Start Argument1 Length Argument Length Attribute of
Result2

character type with
length attribute A

constant value S<0 constant value L>0 MIN(A,|(S)×4|, L×4)
if the string units of
string is OCTETS
MIN(A, |S|, L) if the
string units of string
is CODEUNITS32

graphic type with
length attribute A

any valid argument constant value L<=0 0

graphic type with
length attribute A

constant value S and |(S)|>A not specified or any
valid argument

0

graphic type with
length attribute A

not a constant constant value L>0 MIN(A, L*2) if the
string units of string
is double-bytes or
CODEUNITS16
MIN(A, L) if the
string units of string
is CODEUNITS32

graphic type with
length attribute A

constant value S>0 not specified or not a
constant

A-S+1

graphic type with
length attribute A

constant value S<0 not specified or not a
constant

MIN(A, |(S) *
2|) if the string
units of string
is double-bytes or
CODEUNITS16
MIN(A, |S|) if the
string units of string
is CODEUNITS32

graphic type with
length attribute A

constant value S>0 constant value L>0 MIN(A-S+1, L*2)
if the string
units of string
is double-bytes or
CODEUNITS16
MIN(A-S+1, L) if the
string units of string
is CODEUNITS32

graphic type with
length attribute A

constant value S<0 constant value L>0 MIN(A, |(S)*2|,
L*2) if the string
units of string
is double-bytes or
CODEUNITS16
MIN(A, |S|, L) if the
string units of string
is CODEUNITS32

514 IBM Db2 V11.5: SQL Reference

Table 97. Length attribute of SUBSTR4 result when arguments include constants (continued)

String Argument Start Argument1 Length Argument Length Attribute of
Result2

Notes:
1 If a start argument value of 0 is specified, then use a value of 1 for S when referencing this table.
2 The length attribute of the result for some of the character result types involves a constant that is
multiplied by a factor of 4. This multiplier covers the worst case expansion derived from multiplying by 4
to switch from counting in 32-bit UTF-32 string units to counting in bytes used for the length attributes
of a character data type with string units of OCTETS.
The length attribute of the result for some of the graphic result types involves a constant that is
multiplied by a factor of 2. This multiplier covers the worst case expansion derived from multiplying by
2 because a 4-byte character in UTF-32 could be represented by up to 2 double-byte characters in a
graphic string.

If any argument of the SUBSTR4 function can be null, the result can be null. If any argument is null, the
result is the null value.

Notes
• If string contains combining characters, the result might contain base characters without their

combining characters or combining characters without their base characters depending on the values of
start and length.

• SUBSTR4 is similar to the SUBSTR function, with the following exceptions:

– SUBSTR4 supports a negative start value, which indicates that processing is to start from the end of
the string.

– SUBSTR4 supports a length value that is greater than the calculated result length. In such cases, a
shorter string is returned, rather than an error.

– SUBSTR4 returns a result data type of VARCHAR if the input data type is CHAR. VARGRAPHIC is the
result data type returned if the input type is GRAPHIC.

– The length attribute of the result for SUBSTR4 is either the same as the length attribute of the first
argument, or it is derived based on the start or length attributes, if either of these are constants.

– SUBSTR4 returns a result with a length attribute that is the same as the length attribute of the
first argument, unless the start or length arguments are specified as constants. When a constant is
specified, the length attribute of the result is derived based on the start or length attributes (see the
preceding table).

SUBSTRB
The SUBSTRB function returns a substring of a string, beginning at a specified position in the string.
Lengths are calculated in bytes.

SUBSTRB (string , start

, length

)

The schema is SYSIBM.

The SUBSTRB function is available starting with version 9.7 Fix Pack 1.

string
An expression that specifies the string from which the result is derived.

The expression must return a value that is a built-in character string, numeric value, Boolean value,
or datetime value. If the value is not a character string, it is implicitly cast to VARCHAR before the

Chapter 1. Structured Query Language (SQL) 515

function is evaluated. In a Unicode database, if the value is a graphic data type, it is implicitly cast to
a character string data type before the function is evaluated. Any number (zero or more) contiguous
bytes of this expression constitute a substring of this expression.

start
An expression that specifies the start position in string of the beginning of the result substring. The
expression must return a value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC
data type. If the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the
function.

If start is positive, then the start position is calculated from the beginning of the string. If start is
greater than the length of string, then a zero length string is returned.

If start is negative, then the start position is calculated from the end of the string and by counting
backwards. If the absolute value of start is greater than the length of string, then a zero length string is
returned.

If start is 0, then a start position of 1 is used.

length
An expression that specifies the length of the result in bytes. If specified, the expression must return a
value that is a built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. If the value is
not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function.

If the length is:

• Greater than the number of bytes from the start position to the end of the string, the result length is
the length of the first argument minus the start position plus one

• Less than or equal to zero, the result of SUBSTRB is a zero length string

The default length is the number of bytes from the position specified by start to the last byte of string.

Result
If string is a CHAR or VARCHAR data type, the result of the function is a VARCHAR data type. If string is
a CLOB, the result of the function is a CLOB. If string is a BINARY or VARBINARY data type, the result of
the function is a VARBINARY data type. If string is a BLOB, the result of the function is a BLOB. If the first
argument is a host variable that is not a binary string and not a FOR BIT DATA character string, the code
page of the result is the section code page; otherwise, it is the code page of the first argument.

The length attribute of the result is the same as the length attribute of the first argument unless both
start and length arguments are specified and defined as constants. In this case, the length attribute of the
result is determined as follows:

• If length is a constant which is less than or equal to zero, the length attribute of the result is zero.
• If start is not a constant, but length is a constant, the length attribute of the result is the minimum of the

length attribute of the first argument and length.
• If start is a constant, but length is not a constant or not specified, the length attribute of the result is the

length attribute of the first argument minus the start position, plus one.
• If start and length are constants, the length attribute of the result is the minimum of the following

values:

– length
– The length attribute of the first argument minus the start position plus one

If any argument of the SUBSTRB function can be null, the result can be null; if any argument is null, the
result is the null value.

516 IBM Db2 V11.5: SQL Reference

Notes
• In dynamic SQL, string, start, and length can be represented by a parameter marker. If a parameter

marker is used for string, the data type of the operand will be VARCHAR, and the operand will be
nullable.

• Though not explicitly stated in the previously mentioned result definitions, the semantics imply that
if string is a mixed single-byte and multi-byte character string, the result might contain fragments
of multi-byte characters, depending on the values of start and length. For example, the result could
possibly begin with the second byte of a multi-byte character, or end with the first byte of a multi-byte
character. The SUBSTRB function will detect these partial characters and will replace each byte of an
incomplete character with a single blank character.

• SUBSTRB is similar to the existing SUBSTR function, with the following exceptions:

– SUBSTRB supports a negative start value, which indicates the processing should start from the end of
the string.

– SUBSTRB allows length to be greater than the calculated result length. In this case, a shorter string
will be returned, rather than returning an error.

– Graphic input data is not natively supported for the first argument of SUBSTRB. In a Unicode
database, graphic data is supported, but it is first converted to character data before evaluating
the function, and lengths are calculated in bytes.

– The result data type of SUBSTRB is VARCHAR if the input data type is CHAR.
– The length attribute of the result for SUBSTRB is either the same as the length attribute of the first

argument, or it is derived based on the start or length attributes, if either of these are constants.

Examples
• Example 1: Assume the host variable NAME (VARCHAR(50)) has a value of 'BLUE JAY' and the host

variable SURNAME_POS (INTEGER) has a value of 6.

 SUBSTRB(:NAME, :SURNAME_POS)

Returns the value 'JAY'.

 SUBSTRB(:NAME, :SURNAME_POS,1)

Returns the value 'J'.
• Example 2: Select all rows from the PROJECT table which end in 'ING'.

 SELECT * FROM PROJECT
 WHERE SUBSTRB(PROJNAME,-3) = 'ING'

Chapter 1. Structured Query Language (SQL) 517

SUBSTRING
The SUBSTRING function returns a substring of a string.

SUBSTRING (

expression FROM start

FOR length USING CODEUNITS16

CODEUNITS32

OCTETS

expression , start

, length , CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

expression
An expression that specifies the string from which the result is derived. The expression must return
a built-in character string, numeric value, Boolean value, or datetime value. If the value is not a
character string, it is implicitly cast to VARCHAR before the function is evaluated.

A substring of the input expression comprises zero or more contiguous string units of the input
expression.

start
An expression that specifies the position, relative to the beginning of the input expression, from which
the substring is to be calculated. For example:

• Position 1 is the first string unit of the input expression. The statement SUBSTRING('abc',1,2)
returns 'ab'.

• Position 2 is one position to the right of position 1. The statement SUBSTRING('abc',2,2)
returns 'bc'.

• Position 0 is one position to the left of position 1. The statement SUBSTRING('abc',0,2) returns
'a'.

• Position -1 is two positions to the left of position 1. The statement SUBSTRING('abc',-1,2)
returns a zero-length string.

The expression must return a built-in numeric, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC value. If
the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function.

The start value can be positive, negative, or zero. If OCTETS is specified and the input expression
contains graphic data, the start value must be odd (SQLSTATE 428GC).

length
An expression that specifies the length of the result. The expression must return a built-in numeric,
CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC value. If the value is not of type INTEGER, it is implicitly
cast to INTEGER before evaluating the function.

If the input expression is:

• A fixed-length string, the default length is CHARACTER_LENGTH(expression USING string-
unit) - start + 1. This is the number of string units (CODEUNITS16, CODEUNITS32, or
OCTETS) from the start position to the final position of the input expression.

• A varying-length string, the default length is zero or CHARACTER_LENGTH(expression USING
string-unit) - start + 1, whichever is greater.

518 IBM Db2 V11.5: SQL Reference

If the specified length is zero, the result is the empty string.

If the value is not of type INTEGER, it is implicitly cast to INTEGER before evaluating the function.
The value must be greater than or equal to zero. If a value greater than n is specified, where n is the
(length attribute of expression) - start + 1, then n is used as the length of the resulting substring. The
value is expressed in the string units that are explicitly specified. If OCTETS is specified, and if the
input expression contains graphic data, the length must be an even number (SQLSTATE 428GC).

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string units of start and length. CODEUNITS16 specifies that start and length are to
be expressed in 16-bit UTF-16 code units. CODEUNITS32 specifies that start and length are to be
expressed in 32-bit UTF-32 code units. OCTETS specifies that start and length are to be expressed in
bytes.

If string units are specified as CODEUNITS16 or CODEUNITS32, and expression is a binary string or a
FOR BIT DATA string, an error is returned (SQLSTATE 428GC).

If a string units argument is not specified and expression is a character string that is not FOR BIT DATA
or is a graphic string, the default is CODEUNITS32. Otherwise, the default is OCTETS.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see "String units in built-in
functions" in "Character strings".

When the SUBSTRING function is invoked using OCTETS, and the source-string is encoded in a code
page that requires more than one byte per code point (mixed or MBCS), the SUBSTRING operation
might split a multi-byte code point and the resulting substring might begin or end with a partial code
point. If this occurs, the function replaces the bytes of leading or trailing partial code points with
blanks in a way that does not change the byte length of the result. (See a related example in the
Examples section.)

Result
The data type of the result depends on the data type of the first argument, as shown in the following table.

Table 98. Data type of the result of SUBSTRING

Data type of the first argument Data type of the result

CHAR or VARCHAR VARCHAR

CLOB CLOB

GRAPHIC or VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BINARY or VARBINARY VARBINARY

BLOB BLOB

The length attribute of the result is equal to the length attribute of the input expression. If any argument
of the function can be null, the result can be null; if any argument is null, the result is the null value. The
result is not padded with any character. If the input expression has an actual length of 0, the result also
has an actual length of 0.

Notes
• The length attribute of the result is equal to the length attribute of the input expression. This behavior is

different from the behavior of the SUBSTR function, where the length attribute is derived from the start
and the length arguments of the function.

Chapter 1. Structured Query Language (SQL) 519

Examples
• Example 1: FIRSTNAME is a VARCHAR(12) column in table T1. One of its values is the 6-character string
'Jürgen'. When FIRSTNAME has this value:

Function ... Returns ...
------------------------------------ ------------------------------------
SUBSTRING(FIRSTNAME,1,2,CODEUNITS32) 'Jü' -- x'4AC3BC'
SUBSTRING(FIRSTNAME,1,2,CODEUNITS16) 'Jü' -- x'4AC3BC'
SUBSTRING(FIRSTNAME,1,2,OCTETS) 'J ' -- x'4A20' (a truncated string)
SUBSTRING(FIRSTNAME,8,CODEUNITS16) a zero-length string
SUBSTRING(FIRSTNAME,8,4,OCTETS) a zero-length string
SUBSTRING(FIRSTNAME,0,2,CODEUNITS32) 'J' -- x'4AC3BC'

• Example 2: The following example illustrates how SUBSTRING replaces the bytes of leading or trailing
partial multi-byte code points with blanks when the string length unit is OCTETS. Assume that
UTF8_VAR contains the UTF-8 representation of the Unicode string '&N~AB', where '&' is the musical
symbol G clef and '~' is the combining tilde character.

 SUBSTRING(UTF8_VAR, 2, 5, OCTETS)

Three blank bytes precede the 'N', and one blank byte follows the 'N'.

TABLE_NAME
The TABLE_NAME function returns an unqualified name of the object found after any alias chains have
been resolved.

TABLE_NAME (object-name

, object-schema

)

The schema is SYSIBM.

The specified object-name (and object-schema) are used as the starting point of the resolution. If the
starting point does not refer to an alias, the unqualified name of the starting point is returned. The
resulting name may be of a table, view, or undefined object. In a Unicode database, if a supplied argument
is a graphic string, it is first converted to a character string before the function is executed.

object-name
A character expression representing the unqualified name (usually of an existing alias) to be resolved.
object-name must have a data type of CHAR or VARCHAR and a length greater than 0 and less than
129 bytes.

object-schema
A character expression representing the schema used to qualify the supplied object-name value
before resolution. object-schema must have a data type of CHAR or VARCHAR and a length greater
than 0 and less than 129 bytes.

If object-schema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128 OCTETS). If object-name can be null, the
result can be null; if object-name is null, the result is the null value. If object-schema is the null value, the
default schema name is used. The result is the character string representing an unqualified name. The
result name could represent one of the following objects:
table

The value for object-name was either a table name (the input value is returned) or an alias name that
resolved to the table whose name is returned.

view
The value for object-name was either a view name (the input value is returned) or an alias name that
resolved to the view whose name is returned.

520 IBM Db2 V11.5: SQL Reference

undefined object

The value for object-name was either an undefined object (the input value is returned) or an alias
name that resolved to the undefined object whose name is returned.

Therefore, if a non-null value is given to this function, a value is always returned, even if no object with the
result name exists.

Notes
• To improve performance in partitioned database configurations by avoiding the unnecessary

communication that occurs between the coordinator partition and catalog partition when using the
TABLE_SCHEMA and TABLE_NAME scalar functions, the BASE_TABLE table function can be used
instead.

TABLE_SCHEMA
The TABLE_SCHEMA function returns the schema name of the object found after any alias chains have
been resolved.

TABLE_SCHEMA (object-name

, object-schema

)

The schema is SYSIBM.

The specified object-name (and object-schema) are used as the starting point of the resolution. If the
starting point does not refer to an alias, the schema name of the starting point is returned. The resulting
schema name may be of a table, view, or undefined object. In a Unicode database, if a supplied argument
is a graphic string, it is first converted to a character string before the function is executed.

object-name
A character expression representing the unqualified name (usually of an existing alias) to be resolved.
object-name must have a data type of CHAR or VARCHAR and a length greater than 0 and less than
129 bytes.

object-schema
A character expression representing the schema used to qualify the supplied object-name value
before resolution. object-schema must have a data type of CHAR or VARCHAR and a length greater
than 0 and less than 129 bytes.

If object-schema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128 OCTETS). If object-name can be null, the
result can be null; if object-name is null, the result is the null value. If object-schema is the null value, the
default schema name is used. The result is the character string representing a schema name. The result
schema could represent the schema name for one of the following objects:
table

The value for object-name was either a table name (the input or default value of object-schema is
returned) or an alias name that resolved to a table for which the schema name is returned.

view
The value for object-name was either a view name (the input or default value of object-schema is
returned) or an alias name that resolved to a view for which the schema name is returned.

undefined object
The value for object-name was either an undefined object (the input or default value of object-schema
is returned) or an alias name that resolved to an undefined object for which the schema name is
returned.

Therefore, if a non-null object-name value is given to this function, a value is always returned, even if
the object name with the result schema name does not exist. For example, TABLE_SCHEMA('DEPT',
'PEOPLE') returns 'PEOPLE ' if the catalog entry is not found.

Chapter 1. Structured Query Language (SQL) 521

Notes
• To improve performance in partitioned database configurations by avoiding the unnecessary

communication that occurs between the coordinator partition and catalog partition when using the
TABLE_SCHEMA and TABLE_NAME scalar functions, the BASE_TABLE table function can be used
instead.

Examples
• Example 1: PBIRD tries to select the statistics for a given table from SYSCAT.TABLES using an alias

PBIRD.A1 defined on the table HEDGES.T1.

 SELECT NPAGES, CARD FROM SYSCAT.TABLES
 WHERE TABNAME = TABLE_NAME ('A1')
 AND TABSCHEMA = TABLE_SCHEMA ('A1')

The requested statistics for HEDGES.T1 are retrieved from the catalog.
• Example 2: Select the statistics for an object called HEDGES.X1 from SYSCAT.TABLES using HEDGES.X1.

Use TABLE_NAME and TABLE_SCHEMA since it is not known whether HEDGES.X1 is an alias or a table.

 SELECT NPAGES, CARD FROM SYSCAT.TABLES
 WHERE TABNAME = TABLE_NAME ('X1','HEDGES')
 AND TABSCHEMA = TABLE_SCHEMA ('X1','HEDGES')

Assuming that HEDGES.X1 is a table, the requested statistics for HEDGES.X1 are retrieved from the
catalog.

• Example 3: Select the statistics for a given table from SYSCAT.TABLES using an alias PBIRD.A2 defined
on HEDGES.T2 where HEDGES.T2 does not exist.

 SELECT NPAGES, CARD FROM SYSCAT.TABLES
 WHERE TABNAME = TABLE_NAME ('A2','PBIRD')
 AND TABSCHEMA = TABLE_SCHEMA ('A2',PBIRD')

The statement returns 0 records as no matching entry is found in SYSCAT.TABLES where TABNAME =
'T2' and TABSCHEMA = 'HEDGES'.

• Example 4: Select the qualified name of each entry in SYSCAT.TABLES along with the final referenced
name for any alias entry.

 SELECT TABSCHEMA AS SCHEMA, TABNAME AS NAME,
 TABLE_SCHEMA (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_SCHEMA,
 TABLE_NAME (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_NAME
 FROM SYSCAT.TABLES

The statement returns the qualified name for each object in the catalog and the final referenced name
(after alias has been resolved) for any alias entries. For all non-alias entries, BASE_TABNAME and
BASE_TABSCHEMA are null so the REAL_SCHEMA and REAL_NAME columns will contain nulls.

TAN
Returns the tangent of the argument, where the argument is an angle expressed in radians.

TAN (expression)

The schema is SYSIBM. (The SYSFUN version of the TAN function continues to be available.)

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

522 IBM Db2 V11.5: SQL Reference

TANH
Returns the hyperbolic tangent of the argument, where the argument is an angle expressed in radians.

TANH (expression)

The schema is SYSIBM.

expression
An expression that returns a value of any built-in numeric data type except for DECFLOAT. The value is
converted to a double-precision floating-point number for processing by the function.

The result of the function is a double-precision floating-point number. The result can be null if the
argument can be null or the database is configured with dft_sqlmathwarn set to YES; the result is the
null value if the argument is null.

THIS_MONTH
The THIS_MONTH function returns the first day of the month in the specified date.

THIS_MONTH (datetime-expression)

The schema is SYSIBM.

datetime-expression
An expression that specifies a date for which first day of the month is to be returned. The expression
must return a value that is a DATE, a TIMESTAMP, a CHAR, or a VARCHAR data type. In a Unicode
database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR,
GRAPHIC, and VARGRAPHIC are supported using implicit casting. If datetime-expression is a CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string accepted by the TIMESTAMP
scalar function.

The result of the function is DATE. If the argument can be null, the result can be null. If the argument is
null, the result is the null value.

Example
Returns the date value of the first day of the month specified by the input.

values this_month('2007-02-18')
 Result: 2007-02-01

THIS_QUARTER
The THIS_QUARTER function returns the first day of the quarter that contains the specified date.

THIS_QUARTER (datetime-expression)

The schema is SYSIBM.

datetime-expression
An expression that specifies a date for which first day of the quarter is to be returned. The expression
must return a value that is a DATE, a TIMESTAMP, a CHAR, or a VARCHAR data type. In a Unicode
database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR,
GRAPHIC, and VARGRAPHIC are supported using implicit casting. If datetime-expression is a CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string accepted by the TIMESTAMP
scalar function.

The result of the function is DATE. If the argument can be null, the result can be null. If the argument is
null, the result is the null value.

Chapter 1. Structured Query Language (SQL) 523

Example
Returns the date value of the first day of the quarter of the date specified by the input.

values this_quarter('2007-05-18')
 Result: 2007-04-01

THIS_WEEK
The THIS_WEEK function returns the first day of the week that contains the specified date. Sunday is
considered the first day of that week.

THIS_WEEK (datetime-expression)

The schema is SYSIBM.

datetime-expression
An expression that specifies a date for which first day of the week is to be returned. The expression
must return a value that is a DATE, a TIMESTAMP, a CHAR, or a VARCHAR data type. In a Unicode
database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR,
GRAPHIC, and VARGRAPHIC are supported using implicit casting. If datetime-expression is a CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string accepted by the TIMESTAMP
scalar function.

This function returns a value of data type DATE. If the argument can be null, the result can be null. If the
argument is null, the result is the null value.

Example

values this_week ('1996-02-29')
 Result: 1996-02-25

THIS_YEAR
The THIS_YEAR function returns the first day of the year in the specified date.

THIS_YEAR (datetime-expression)

The schema is SYSIBM.

datetime-expression
An expression that specifies a date for which first day of the year is to be returned. The expression
must return a value that is a DATE, a TIMESTAMP, a CHAR, or a VARCHAR data type. In a Unicode
database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR,
GRAPHIC, and VARGRAPHIC are supported using implicit casting. If datetime-expression is a CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string accepted by the TIMESTAMP
scalar function.

The result of the function is DATE. If the argument can be null, the result can be null. If the argument is
null, the result is the null value.

Example
The following example returns the date value of the first day of the year of the date specified by the input.

values this_year('2007-02-18')
 Result: 2007-01-01

524 IBM Db2 V11.5: SQL Reference

TIME
The TIME function returns a time from a value.

TIME (expression)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIME,
TIMESTAMP, or a valid character string representation of a date, time, or timestamp that is not a
CLOB. In a Unicode database, if an expression returns a value of a graphic string data type, the value is
first converted to a character string before the function is executed.

The result of the function is a TIME. If the argument can be null, the result can be null; if the argument is
null, the result is the null value.

The other rules depend on the data type of the argument:

• If the argument is a DATE or string representation of a date:

– The result is midnight.
• If the argument is a TIME:

– The result is that time.
• If the argument is a TIMESTAMP:

– The result is the time part of the timestamp.
• If the argument is a string representation of time or timestamp:

– The result is the time represented by the string.

Example
Select all notes from the IN_TRAY sample table that were received at least one hour later in the day (any
day) than the current time.

 SELECT * FROM IN_TRAY
 WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

TIMESTAMP
The TIMESTAMP function returns a timestamp from a value or a pair of values.

TIMESTAMP (expression1

,expression2

)

The schema is SYSIBM.

Only Unicode databases support an argument that is a graphic string representation of a date, a time, or
a timestamp. In a Unicode database, if a supplied argument is a graphic string, it is first converted to a
character string before the function is executed.

expression1 and expression2

The rules for the arguments depend on whether expression2 is specified and the data type of
expression2.

• If only one argument is specified it must be an expression that returns a value of one of the
following built-in data types: a DATE, a TIMESTAMP, or a character string that is not a CLOB. If
expression1 is a character string, it must be one of the following:

Chapter 1. Structured Query Language (SQL) 525

– A valid character string representation of a date or a timestamp. For the valid formats of string
representations of date or timestamp values, see "String representations of datetime values" in
Datetime values.

– A character string with an actual length of 13 that is assumed to be a result from the
GENERATE_UNIQUE function.

– A string of length 14 that is a string of digits that represents a valid date and time in the form
yyyyxxddhhmmss, where yyyy is the year, xx is the month, dd is the day, hh is the hour, mm is the
minute, and ss is the seconds.

• If expression1 and expression2 are specified:

– If the data type of expression2 is not an integer:

- expression1 must be a DATE or a valid string representation of a date and the expression2
must be a TIME or a valid string representation of a time.

– If the data type of expression2 is an integer:

- expression1 must be a DATE, TIMESTAMP, or a valid string representation of a timestamp
or date. expression2 must be an integer constant in the range 0 to 12 representing the
timestamp precision.

The result of the function is a TIMESTAMP.

The timestamp precision and other rules depend on whether the second argument is specified:

• If both arguments are specified and the second argument is not an integer:

– The result is a TIMESTAMP(6) with the date specified by the first argument and the time specified by
the second argument. The fractional seconds part of the timestamp is zero.

• If both arguments are specified and the second argument is an integer:

– The result is a TIMESTAMP with the precision specified in the second argument.
• If only one argument is specified and it is a TIMESTAMP(p):

– The result is that TIMESTAMP(p).
• If only one argument is specified and it is a DATE:

– The result is that date with an assumed time of midnight cast to TIMESTAMP(0).
• If only one argument is specified and it is a string:

– The result is the TIMESTAMP(6) value represented by that string extended as described earlier with
any missing time information. If the argument is a string of length 14, the TIMESTAMP has a fractional
seconds part of zero.

If the arguments include only date information, the time information in the result value is all zeros. If
either argument can be null, the result can be null; if either argument is null, the result is the null value.

Examples
• Example 1: Assume the column START_DATE (whose data type is DATE) has a value equivalent to

1988-12-25, and the column START_TIME (whose data type is TIME) has a value equivalent to
17.12.30.

 TIMESTAMP(START_DATE, START_TIME)

Returns the value '1988-12-25-17.12.30.000000'.
• Example 2: Convert a timestamp string with 7 digits of fractional seconds to a TIMESTAMP(9) value.

TIMESTAMP('2007-09-24-15.53.37.2162474',9)

Returns the value '2007-09-24-15.53.37.216247400'.

526 IBM Db2 V11.5: SQL Reference

TIMESTAMP_FORMAT
The TIMESTAMP_FORMAT function returns a timestamp that is based on the interpretation of the input
string using the specified format.

TIMESTAMP_FORMAT (string-expression

, format-string

, 6

, precision-constant , locale-name

, locale-name

, 6

, precision-constant

)

The schema is SYSIBM.

string-expression
The expression must return a value that is a built-in CHAR or VARCHAR data type. In a Unicode
database, if a supplied argument is a GRAPHIC or VARGRAPHIC data type, it is first converted to
VARCHAR before evaluating the function. The string-expression must contain the components of a
timestamp that correspond to the format specified by format-string.

format-string
The expression must return a value that is a built-in CHAR or VARCHAR data type. In a Unicode
database, if a supplied argument is a GRAPHIC or VARGRAPHIC data type, it is first converted to
VARCHAR before evaluating the function. The actual length must not be greater than 255 bytes
(SQLSTATE 22007). The value is a template for how string-expression is interpreted and then
converted to a timestamp value.

A valid format-string must contain at least one format element, must not contain multiple
specifications for any component of a timestamp, and can contain any combination of the format
elements, unless otherwise noted in Table 99 on page 528 (SQLSTATE 22007). For example, format-
string cannot contain both YY and YYYY, because they are both used to interpret the year component
of string-expression. Refer to the table to determine which format elements cannot be specified
together. Two format elements can optionally be separated by one or more of the following separator
characters:

• minus sign (-)
• period (.)
• slash (/)
• comma (,)
• apostrophe (')
• semi-colon (;)
• colon (:)
• blank ()

Separator characters can also be specified at the start or end of format-string. These separator
characters can be used in any combination in the format string, for example 'YYYY/MM-DD HH:MM.SS'.
Separator characters specified in a string-expression are used to separate components and are not
required to match the separator characters specified in the format-string.

Chapter 1. Structured Query Language (SQL) 527

Table 99. Format elements for the TIMESTAMP_FORMAT function

Format element
Related components of a
timestamp Description

AM or PM hour Meridian indicator (morning or
evening) without periods. This
format element is dependent
on locale-name, if specified.
Otherwise, it is dependent on
the value of the special register
CURRENT LOCALE LC_TIME.

A.M. or P.M. hour Meridian indicator (morning or
evening) with periods. This
format element uses the exact
strings "A.M." or "P.M." and is
independent of the locale name
in effect.

DAY, Day, or day none Name of the day in uppercase,
titlecase, or lowercase format.
The language used is dependent
on locale-name, if specified;
otherwise, it is dependent on
the value of the special register
CURRENT LOCALE LC_TIME.

DY, Dy, or dy none Abbreviated name of the day
in uppercase, titlecase, or
lowercase format. The language
used is dependent on locale-
name, if specified; otherwise, it
is dependent on the value of
the special register CURRENT
LOCALE LC_TIME.

D none Day of the week (1-7). The first
day of the week is dependent
on locale-name, if specified;
otherwise, it is dependent on
the value of the special register
CURRENT LOCALE LC_TIME.

DD day Day of month (01-31).

DDD month, day Day of year (001-366).

528 IBM Db2 V11.5: SQL Reference

Table 99. Format elements for the TIMESTAMP_FORMAT function (continued)

Format element
Related components of a
timestamp Description

FF or FFn fractional seconds Fractional seconds
(0-999999999999). The
number n is used to specify
the number of digits expected
in the string-expression. Valid
values for n are 1-12 with no
leading zeros. Specifying FF is
equivalent to specifying FF6.
When the component in string-
expression corresponding to the
FF format element is followed
by a separator character or is
the last component, the number
of digits for the fractional
seconds can be less than what
is specified by the format
element. In this case zero digits
are padded onto the right of the
specified digits.

HH hour HH behaves the same as HH12.

HH12 hour Hour of the day (01-12) in 12-
hour format. AM is the default
meridian indicator.

HH24 hour Hour of the day (00-24) in 24-
hour format.

J year, month, and day Julian day (number of days
since January 1, 4713 BC).

MI minute Minute (00-59).

MM month Month (01-12).

MONTH, Month, or month month Name of the month in
uppercase, titlecase, or
lowercase format. The language
used is dependent on locale-
name, if specified; otherwise, it
is dependent on the value of
the special register CURRENT
LOCALE LC_TIME.

MON, Mon, or mon month Abbreviated name of the month
in uppercase, titlecase, or
lowercase format. The language
used is dependent on locale-
name, if specified; otherwise, it
is dependent on the value of
the special register CURRENT
LOCALE LC_TIME.

NNNNNN microseconds Microseconds
(000000-999999). Same as
FF6.

Chapter 1. Structured Query Language (SQL) 529

Table 99. Format elements for the TIMESTAMP_FORMAT function (continued)

Format element
Related components of a
timestamp Description

RR year Last two digits of the adjusted
year (00-99).

RRRR year 4-digit adjusted year
(0000-9999).

SS seconds Seconds (00-59).

SSSSS hours, minutes, and seconds Seconds since previous
midnight (00000-86400).

Y year Last digit of the year (0-9). First
three digits of the current year
are used to determine the full
4-digit year.

YY year Last two digits of the year
(00-99). First two digits of
the current year are used to
determine the full 4-digit year.

YYY year Last three digits of the year
(000-999). First digit of the
current year is used to
determine the full 4-digit year.

YYYY year 4-digit year (0000-9999).

Note: The format elements in Table 99 on page 528 are not case sensitive, except for the following:

• AM, PM
• A.M., P.M.
• DAY, Day, day
• DY, Dy, dy
• D
• MONTH, Month, month
• MON, Mon, mon

The DAY, Day, day, DY, Dy, dy, and D format elements do not contribute to any components of
the resulting timestamp. However, a specified value for any of these format elements must be
correct for the combination of the year, month, and day components of the resulting timestamp
(SQLSTATE 22007). For example, assuming a value of 'en_US' is used for locale-name, a value of
'Monday 2008-10-06' for string-expression is valid for a value of 'Day YYYY-MM-DD'. However, value of
'Tuesday 2008-10-06' for string-expression would result in error for the same format-string.

The RR and RRRR format elements can be used to alter how a specification for a year is to be
interpreted by adjusting the value to produce a 2-digit value or a 4-digit value depending on the
leftmost two digits of the current year according to the following table.

Last two digits of
the current year

Two-digit year in
string-expression

First two digits of the year component of
timestamp

00-50 00-49 First two digits of the current year

51-99 00-49 First two digits of the current year + 1

530 IBM Db2 V11.5: SQL Reference

Last two digits of
the current year

Two-digit year in
string-expression

First two digits of the year component of
timestamp

00-50 50-99 First two digits of the current year - 1

51-99 50-99 First two digits of the current year

For example, if the current year is 2007, '86' with format 'RR' means 1986, but if the current year is
2052, it means 2086.

The following defaults are used when a format-string does not include a format element for one of the
following components of a timestamp:

Timestamp component Default

year current year, as 4 digits

month current month, as 2 digits

day 01 (first day of the month)

hour 00

minute 00

second 00

fractional seconds a number of zeros matching the timestamp precision of the result

Leading zeros can be specified for any component of the timestamp value (that is, month, day, hour,
minutes, seconds) that does not have the maximum number of significant digits for the corresponding
format element in the format-string.

A substring of the string-expression representing a component of a timestamp (such as year, month,
day, hour, minutes, seconds) can include less than the maximum number of digits for that component
of the timestamp indicated by the corresponding format element. Any missing digits default to zero.
For example, with a format-string of 'YYYY-MM-DD HH24:MI:SS', an input value of '999-3-9 5:7:2'
would produce the same result as '0999-03-09 05:07:02'.

If format-string is not specified, string-expression will be interpreted using a default format based on
the value of the special register CURRENT LOCALE LC_TIME.

precision-constant
An integer constant that specifies the timestamp precision of the result. The value must be in the
range 0 to 12. If not specified, the timestamp precision defaults to 6.

locale-name
A character constant that specifies the locale used for the following format elements:

• AM, PM
• DAY, Day, day
• DY, Dy, dy
• D
• MONTH, Month, month
• MON, Mon, mon

The value of locale-name is not case sensitive and must be a valid locale (SQLSTATE 42815).

For information about valid locales and their naming, see "Locale names for SQL and XQuery" in the
Globalization Guide .

If locale-name is not specified, the value of the special register CURRENT LOCALE LC_TIME is used.

Chapter 1. Structured Query Language (SQL) 531

The result of the function is a TIMESTAMP with a precision based on precision-constant. If either of the
first two arguments can be null, the result can be null; if either of the first two arguments is null, the result
is the null value.

Notes
• Julian and Gregorian calendar: The transition from the Julian calendar to the Gregorian calendar on 15

October 1582 is taken into account by this function.
• Determinism: TIMESTAMP_FORMAT is a deterministic function. However, the following invocations of

the function depend on the value of either the special register CURRENT LOCALE LC_TIME or CURRENT
TIMESTAMP.

– When format-string is not explicitly specified, or when locale-name is not explicitly specified and one
of the following is true:

- format-string is not a constant
- format-string is a constant and includes format elements that are locale sensitive
- format-string is a constant and does not include a format element that fully defines the year (that is,

J or YYYY) and so uses the value of the current year
- format-string is a constant and does not include a format element that fully defines the month (for

example, J, MM, MONTH, or MON) and so uses the value of the current month

These invocations that depend on the value of a special register cannot be used wherever special
registers cannot be used (SQLSTATE 42621, 428EC, or 429BX).

• Syntax alternatives: TO_DATE is a synonym for TIMESTAMP_FORMAT. TO_TIMESTAMP is a similar
function, and the only difference is that the default value for precision-constant is 12.

Examples
• Example 1: Insert a row into the IN_TRAY table with a receiving timestamp that is equal to one second

before the beginning of the year 2000 (December 31, 1999 at 23:59:59).

 INSERT INTO IN_TRAY (RECEIVED)
 VALUES (TIMESTAMP_FORMAT('1999-12-31 23:59:59',
 'YYYY-MM-DD HH24:MI:SS'))

• Example 2: An application receives strings of date information into a variable called INDATEVAR. This
value is not strictly formatted and might include two or four digits for years, and one or two digits
for months and days. Date components might be separated with minus sign (-) or slash (/) characters
and are expected to be in day, month, and year order. Time information consists of hours (in 24-hour
format) and minutes, and is usually separated by a colon. Sample values include '15/12/98 13:48' and
'9-3-2004 8:02'. Insert such values into the IN_TRAY table.

 INSERT INTO IN_TRAY (RECEIVED)
 VALUES (TIMESTAMP_FORMAT(:INDATEVAR,
 'DD/MM/RRRR HH24:MI'))

The use of RRRR in the format allows for 2- and 4-digit year values and assigns missing first two digits
based on the current year. If YYYY were used, input values with a 2-digit year would have leading zeros.
The slash separator also allows the minus sign character. Assuming a current year of 2007, resulting
timestamps from the sample values are:

 '15/12/98 13:48' --> 1998-12-15-13.48.00.000000
 '9-3-2004 8:02' --> 2004-03-09-08.02.00.000000

TIMESTAMP_ISO
Returns a timestamp value based on a date, time, or timestamp argument.

TIMESTAMP_ISO (expression)

532 IBM Db2 V11.5: SQL Reference

The schema is SYSFUN.

expression
An expression that returns a value of one of the following built-in data types: CHAR, VARCHAR, DATE,
TIME, or TIMESTAMP data type. In a Unicode database, if a supplied argument has a GRAPHIC or
VARGRAPHIC data type, it is first converted to a character string before evaluating the function. A
string expression must return a valid character string representation of a date or timestamp.

If the argument is a date value, TIMESTAMP_ISO inserts zero for all the time elements. If the argument
is a time value, TIMESTAMP_ISO inserts the value of the CURRENT DATE special register for the date
elements, and zero for the fractional seconds element. The result of the function is a TIMESTAMP(6). The
result can be null; if the argument is null, the result is the null value.

The TIMESTAMP_ISO function is generally defined as deterministic. If the first argument has the TIME
data type, then the function is not deterministic because the CURRENT DATE is used for the date portion
of the timestamp value.

The result of the function is a TIMESTAMP. The result can be null; if the argument is null, the result is the
null value.

TIMESTAMPDIFF
Returns an estimated number of intervals of the type defined by the first argument, based on the
difference between two timestamps.

TIMESTAMPDIFF (numeric-expression , string-expression)

The schema is SYSIBM. The SYSFUN version of the TIMESTAMPDIFF function continues to be available.

numeric-expression
An expression that returns a value of built-in INTEGER or SMALLINT data type. Valid values represent
an interval as defined in the following table.

Table 100. Valid interval values

Value Interval

1 Microseconds

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

string-expression
An expression that returns a value of built-in CHAR or VARCHAR data type. The value is expected to be
the result of subtracting two timestamps and converting the result to CHAR. If the value is not a CHAR
or VARCHAR data type, it is implicitly cast to VARCHAR before evaluating the function. In a Unicode
database, if a supplied argument is a graphic string, it is first converted to a character string before the
function is executed

If a positive or negative sign is present, it is the first character of the string. The following table
describes the elements of the character string duration.

Chapter 1. Structured Query Language (SQL) 533

Table 101. TIMESTAMPDIFF string elements

String Elements Valid Values
Character position from the
decimal point (negative is left)

Years 1-9998 or blank -14 to -11

Months 0-11 or blank -10 to -9

Days 0-30 or blank -8 to -7

Hours 0-24 or blank -6 to -5

Minutes 0-59 or blank -4 to -3

Seconds 0-59 -2 to -1

Decimal Points Period 0

Microseconds 000000-999999 1 to 6

The result of the function is INTEGER with the same sign as the second argument. The result can be null;
if the argument is null, the result is the null value.

The returned value is determined for each interval as indicated by the following table:

Table 102. TIMESTAMPDIFF computations

Result interval Computation using duration elements

Years Years

Quarters integer value of (months+(years*12))/3

Months months + (years*12)

Weeks integer value of ((days+(months*30))/7)+
(years*52)

Days days + (months*30)+(years*365)

Hours hours + ((days+(months*30)+(years*365))*24)

Minutes (the absolute value of the duration must
not exceed 40850913020759.999999)

minutes + (hours+
((days+(months*30)+(years*365))*24))
*60

Seconds (the absolute value of the duration must
be less than 680105031408.000000)

seconds + (minutes+(hours+
((days+(months*30)+(years*365))
*24))*60)*60

Microseconds (the absolute value of the duration
must be less than 3547.483648)

microseconds + (seconds+(minutes*60))*1000000

The following assumptions may be used in estimating a difference:

• There are 365 days in a year.
• There are 30 days in a month.
• There are 24 hours in a day.
• There are 60 minutes in an hour.
• There are 60 seconds in a minute.

These assumptions are used when converting the information in the second argument, to the interval
type specified in the first argument. The returned estimate may vary by a number of days. For example,
if the number of days (interval 16) is requested for the difference between '1997-03-01-00.00.00' and

534 IBM Db2 V11.5: SQL Reference

'1997-02-01-00.00.00', the result is 30. This is because the difference between the timestamps is 1
month, and the assumption of 30 days in a month applies.

Example
The following example returns 4277, the number of minutes between two timestamps:

 TIMESTAMPDIFF(4,CHAR(TIMESTAMP('2001-09-29-11.25.42.483219') -
 TIMESTAMP('2001-09-26-12.07.58.065497')))

TIMEZONE
The TIMEZONE scalar function converts a date and time in one timezone into a timestamp in another
timezone.

TIMEZONE (datetime-expression , from-timezone , to-timezone)

The schema is SYSIBM.

datetime-expression
An expression that returns a value of data type DATE, TIMESTAMP, CHAR, or VARCHAR. In a Unicode
database, the expression can also be of data type GRAPHIC or VARGRAPHIC. A value of data
type CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC must be a valid string that is accepted by the
“TIMESTAMP ” on page 525 scalar function. Such a string is implicitly cast to a timestamp before
conversion.

from-timezone
An expression that specifies the time zone of the value returned by the input datetime expression.

to-timezone

An expression that specifies the time zone of the output timestamp.

The value returned by a to-timezone or from-timezone expression:

• Must be a built-in character string data type (in a Unicode database, it can also be a graphic string data
type) that contains a time zone name as specified in the Internet Assigned Numbers Authority (IANA)
time zone database (SQLSTATE 22546).

• Cannot be a FOR BIT DATA subtype (SQLSTATE 42815).

If the value is not of data type VARCHAR, it is cast to VARCHAR before the TIMEZONE function is
evaluated.

The standard format for a time zone name in the IANA database is area/location, where:
area

The English name of a continent or ocean, or the special area Etc.
location

The English name of a location within the specified area. This is usually a city or a small island.
For example:

"America/Toronto" [The North American city of Toronto]
"Asia/Sakhalin" [The Asian island of Sakhalin]
"Etc/UTC" [Coordinated Universal Time]

For a complete list of valid time zone names and the rules associated with those time zones, refer to the
IANA time zone database. The database server uses version 2010c of the IANA time zone database. If a
newer version of the IANA time zone database is required, contact IBM support.

The precision of the output timestamp depends on the data type of the value returned by the input
datetime expression:

Chapter 1. Structured Query Language (SQL) 535

• If the input value is a timestamp, the output value is a timestamp with the same precision as the input
value.

• If the data type of the input value is DATE, the data type of the output value is TIMESTAMP(0).
• Otherwise, the data type of the output value is TIMESTAMP(6).

If any argument of the function can be null, the result can be null. If any argument is null, the result is the
null value.

Examples
• The data type of column col1 of table T1 is TIMESTAMP(3), so the data type of the output of the

following statement is also TIMESTAMP(3):

select TIMEZONE(col1, 'America/New_York', 'America/Los_Angeles')from T1;

This statement returns: 2016-12-19-14.00.00.123.
• The data type of column col3 of table T5 is DATE, so the data type of the output of the following

statement is TIMESTAMP(0):

select TIMEZONE(col3, 'America/New_York', 'America/Los_Angeles')from T5;

This statement returns: 2016-07-14-23.00.00.
• The input of each of the following statements is a string literal, so the data type of their output is

TIMESTAMP(6):

values TIMEZONE('2016-09-24 17:00:00.12345678', 'America/New_York', 'America/Los_Angeles');

This statement returns: 2016-09-24-17.00.00.123456.

values TIMEZONE('2016-09-24 17:00:00.123', 'America/New_York', 'America/Los_Angeles');

This statement returns: 2016-09-24-17.00.00.123000.

TO_CHAR
The TO_CHAR function returns a character representation of an input expression.

Character to varchar
TO_CHAR (character-expression)

Timestamp to varchar
TO_CHAR (timestamp-expression

, format-string

, locale-name

)

Decimal floating-point to varchar
TO_CHAR (decimal-floating-point-expression

, format-string

, locale-name

)

536 IBM Db2 V11.5: SQL Reference

The schema is SYSIBM.

The TO_CHAR scalar function is a synonym for the VARCHAR_FORMAT scalar function.

TO_CLOB
The TO_CLOB function returns a CLOB representation of a character string type.

TO_CLOB (character-string-expression

, integer

)

The schema is SYSIBM.

The TO_CLOB scalar function is a synonym for the CLOB scalar function.

TO_DATE
The TO_DATE function returns a timestamp that is based on the interpretation of the input string using the
specified format.

TO_DATE (string-expression

, format-string

, 6

, precision-constant , locale-name

, locale-name

, 6

, precision-constant

)

The schema is SYSIBM.

The TO_DATE scalar function is a synonym for the TIMESTAMP_FORMAT scalar function.

TO_HEX
The TO_HEX function converts a numeric expression into the hexadecimal representation.

TO_HEX (expression)

The schema is SYSIBM.

expression
The expression must return a value that is a built-in character string, Boolean value, or numeric
value. In a Unicode database, the expression can also return a graphic string, in which case it is first
converted to a character string before the function is evaluated. If the data type of the input is not
SMALLINT, INTEGER, or BIGINT, it is implicitly cast to BIGINT before the function is evaluated.

Result
The data type of the result depends on the data type of the input expression:

• For SMALLINT input, the result is VARCHAR(4).
• For INTEGER input, the result is VARCHAR(8).

Chapter 1. Structured Query Language (SQL) 537

• For BIGINT input, the result is VARCHAR(16).

If the argument can be null, the result can be null. If the argument is null, the result is the null value.

Example

values to_hex(565);
 returns value 235.

TO_MULTI_BYTE
The TO_MULTI_BYTE function returns a Unicode string in which the single-byte characters in a string-
expression are converted to their multi-byte (full width) equivalents.

TO_MULTI_BYTE (string-expression)

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character string.
A character string must not be bit data.
The argument can be also a numeric data type.
The numeric argument is implicitly cast to a VARCHAR data type.

Result
The result of the function is VARCHAR.

The result string unit is the same as string-expression.

The result length attribute depends on the string units as follows:

• If string unit is OCTETS, the result length attribute is the minimum of three times the length attribute of
string-expression and the maximum length for the result data type.

• Otherwise, the result length attribute is the same as string-expression.

If the actual length of the result string exceeds the maximum for the return type, an error occurs
(SQLSTATE 54006).

If the argument can be null, the result can be null. If the argument is null, the result is the null value.

Example
In the following example, the query returns the original single-byte string ‘ABC’, the full width equivalent,
and the hexadecimal representation of the full width equivalent:

SELECT S, TO_MULTI_BYTE(S) MB, HEX(TO_MULTI_BYTE(S)) HEX
FROM (VALUES 'ABC') T(S)
S MB HEX

ABC ＡＢＣ EFBCA1EFBCA2EFBCA3

1 record(s) selected.

538 IBM Db2 V11.5: SQL Reference

TO_NCHAR
The TO_NCHAR function returns a national character representation of an input expression that has been
formatted using a character template.

Character to nvarchar
TO_NCHAR (character-expression

Timestamp to nvarchar
TO_NCHAR (timestamp-expression

, format-string

, locale-name

)

Decimal floating-point to nvarchar
TO_NCHAR (decimal-floating-point-expression

, format-string

)

The schema is SYSIBM.

The TO_NCHAR function can be specified only in a Unicode database (SQLSTATE 560AA).

The TO_NCHAR scalar function is equivalent to invoking the TO_CHAR function and casting its result to
NVARCHAR.

For more information about TO_NCHAR refer to VARCHAR_FORMAT.

TO_NCLOB
The TO_NCLOB function returns any type of national character string.

TO_NCLOB (character-string-expression

The schema is SYSIBM.

The TO_NCLOB scalar function is a synonym for the NCLOB scalar function.

The TO_NCLOB function can be specified only in a Unicode database (SQLSTATE 560AA).

TO_NUMBER
The TO_NUMBER function returns a DECFLOAT(34) value that is based on the interpretation of the input
string using the specified format.

TO_NUMBER (string-expression

, format-string

)

The schema is SYSIBM.

The TO_NUMBER scalar function is a synonym for the DECFLOAT_FORMAT scalar function.

Chapter 1. Structured Query Language (SQL) 539

TO_SINGLE_BYTE
The TO_SINGLE_BYTE function returns a string in which multi-byte characters are converted to the
equivalent single-byte character where an equivalent character exists.

TO_SINGLE_BYTE (string-expression)

The schema is SYSIBM.

Only characters that have an equivalent to the single-byte characters represented by the characters in the
UTF-8 code point range U+0020 to U+007E will be converted. If a multi-byte character does not have a
single-byte equivalent, then it remains unchanged.

string-expression
An expression that specifies the string which gets converted. The expression must return a value
that is a built-in CHAR or VARCHAR data type. In a Unicode database, if a supplied argument is a
GRAPHIC or VARGRAPHIC data type, it is first converted to VARCHAR before evaluating the function.
The expression cannot be a character string defined as FOR BIT DATA (SQLSTATE 42815).

The data type, code page and length attribute of the result is the same as the data type, code page and
length attribute of the argument. If the argument can be null, the result can be null. If the argument is
null, the result is the null value.

Example
Convert the full width UTF-8 characters 'ABC' (x'efbca1efbca2efbca3' in hex format) to their single byte
equivalents.

 VALUES TO_SINGLE_BYTE(x'efbca1efbca2efbca3')

The result is the value 'ABC' (x'414243' in hex format).

TO_TIMESTAMP
The TO_TIMESTAMP function returns a timestamp that is based on the interpretation of the input string
using the specified format.

TO_TIMESTAMP (string-expression

, format-string

12

, precision-constant , locale-name

, locale-name
12

, precision-constant

)

The schema is SYSIBM.

The TO_TIMESTAMP scalar function is a synonym for the TIMESTAMP_FORMAT scalar function except that
the default value for precision-constant is 12.

540 IBM Db2 V11.5: SQL Reference

TO_UTC_TIMESTAMP
The TO_UTC_TIMESTAMP scalar function returns a TIMESTAMP that is converted to Coordinated Universal
Time from the timezone that is specified by the timezone string. TO_UTC_TIMESTAMP is a a statement
deterministic function.

TO_UTC_TIMESTAMP (expression , timezone-expression)

The schema is SYSIBM.

expression
An expression that specifies the timestamp that is in the timezone-expression time zone. The
expression must return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR data type. If
expression does not contain time information, a time of midnight (00.00.00) is used for the argument.
In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type. CHAR,
VARCHAR, GRAPHIC, and VARGRAPHIC are supported through implicit casting. If expression is a
CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is accepted by
the TIMESTAMP scalar function.

timezone-expression
An expression that specifies the time zone that the expression is to be adjusted from. The expression
must return a value that is a built-in character string, numeric, or datetime data type. In a Unicode
database, the expression can also be a graphic string data type. Numeric and datetime data types are
supported through implicit casting. If the expression is not a VARCHAR, it is cast to VARCHAR before
the function is evaluated. The expression must not be a FOR BIT DATA subtype (SQLSTATE 42815).
timezone-expression must not be null if expression is not null (SQLSTATE 42815).

The value of the timezone-expression must be a time zone name from the Internet Assigned Numbers
Authority (IANA) time zone database. The standard format for a time zone name in the IANA database
is Area/Location, where:

• Area is the English name of a continent, ocean, or the special area 'Etc'.
• Location is the English name of a location within the area; usually a city, or small island.

Examples:

• "America/Toronto"
• "Asia/Sakhalin"
• "Etc/UTC" (which represents Coordinated Universal Time)

For complete details on the valid set of time zone names and the rules that are associated with those
time zones, refer to the IANA time zone database. The database server uses version 2010c of the
IANA time zone database. Contact IBM support if a newer version of the IANA time zone database is
required.

The result of the function is a timestamp with the same precision as expression, if expression is a
timestamp. If expression is a DATE, the result of the function is a TIMESTAMP(0). Otherwise, the result of
the function is a TIMESTAMP(6).

The result can be null; if the expression is null, the result is the null value. The timezone-expression cannot
be null if a not-null value was supplied for the expression (SQLSTATE 42815).

The result is the expression, adjusted to the Coordinated Universal Time time zone from the time zone
specified by the timezone-expression. If the timezone-expression returns a value that is not a time zone in
the IANA time zone database, then the value of expression is returned without being adjusted.

The timestamp adjustment is done by first applying the raw offset from Coordinated Universal Time of
the timezone-expression. If Daylight Saving Time is in effect at the adjusted timestamp for the time zone
that is specified by the timezone-expression, then the Daylight Saving Time offset is also applied to the
timestamp.

Time zones that use Daylight Saving Time have ambiguities at the transition dates. When a time zone
changes from standard time to Daylight Saving Time, a range of time does not occur as it is skipped during

Chapter 1. Structured Query Language (SQL) 541

http://www.iana.org/time-zones

the transition. When a time zone changes from Daylight Saving Time to standard time, a range of time
occurs twice. Ambiguous timestamps are treated as if they occurred when standard time was in effect for
the time zone.

Examples
1. Convert the timestamp '1970-01-01 00:00:00' to the Coordinated Universal Time timezone from

the 'America/Denver' timezone. The following returns a TIMESTAMP with the value '1970-01-01
07:00:00'.

 TO_UTC_TIMESTAMP(TIMESTAMP'1970-01-01 00:00:00', 'America/Denver')

2. The database administrator created a read-only global variable, SERVER_TIMEZONE, which contains
the server's timezone. In this example, the SERVER_TIMEZONE user-defined global variable is set to
'America/Denver'.

Convert the timestamp '1970-01-01 00:00:00' to the Coordinated Universal Time timezone from the
server's timezone. The following returns a TIMESTAMP with the value '1970-01-01 07:00:00'.

 TO_UTC_TIMESTAMP(TIMESTAMP'1970-01-01 00:00:00', SERVER_TIMEZONE)

TOTALORDER
The TOTALORDER function returns a SMALLINT value of -1, 0, or 1 that indicates the comparison order of
two arguments.

TOTALORDER (decfloat-expression1 , decfloat-expression2)

The schema is SYSIBM.

decfloat-expression1
An expression that returns a value of any built-in numeric data type. If the argument is not
DECFLOAT(34), it is logically converted to DECFLOAT(34) for processing.

decfloat-expression2
An expression that returns a value of any built-in numeric data type. If the argument is not a decimal
floating-point value, it is converted to DECFLOAT(34) for processing.

Numeric comparison is exact, and the result is determined for finite operands as if range and precision
were unlimited. An overflow or underflow condition cannot occur.

If one value is DECFLOAT(16) and the other is DECFLOAT(34), the DECFLOAT(16) value is converted to
DECFLOAT(34) before the comparison is made.

The semantics of the TOTALORDER function are based on the total order predicate rules of IEEE 754R.
TOTALORDER returns the following values:

• -1 if decfloat-expression1 is lower in order compared to decfloat-expression2
• 0 if both decfloat-expression1 and decfloat-expression2 have the same order
• 1 if decfloat-expression1 is higher in order compared to decfloat-expression2

The ordering of the special values and finite numbers is as follows:

-NAN<-SNAN<-INFINITY<-0.10<-0.100<-0<0<0.100<0.10<INFINITY<SNAN<NAN

The result of the function is a SMALLINT value. If either argument can be null, the result can be null; if
either argument is null, the result is the null value.

Examples
The following examples show the use of the TOTALORDER function to compare decimal floating point
values:

542 IBM Db2 V11.5: SQL Reference

TOTALORDER(-INFINITY, -INFINITY) = 0
TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.0)) = 0
TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.00)) = -1
TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-0.5)) = -1
TOTALORDER(DECFLOAT(-1.0), DECFLOAT(0.5)) = -1
TOTALORDER(DECFLOAT(-1.0), INFINITY) = -1
TOTALORDER(DECFLOAT(-1.0), SNAN) = -1
TOTALORDER(DECFLOAT(-1.0), NAN) = -1
TOTALORDER(NAN, DECFLOAT(-1.0)) = 1
TOTALORDER(-NAN, -NAN) = 0
TOTALORDER(-SNAN, -SNAN) = 0
TOTALORDER(NAN, NAN) = 0
TOTALORDER(SNAN, SNAN) = 0
TOTALORDER(-1.0, -1.0) = 0
TOTALORDER(-1.0, -1.00) = -1
TOTALORDER(-1.0, -0.5) = -1
TOTALORDER(-1.0, 0.5) = -1
TOTALORDER(-1.0, INFINITY) = -1
TOTALORDER(-1.0, SNAN) = -1
TOTALORDER(-1.0, NAN) = -1

TRANSLATE
The TRANSLATE function returns a value in which one or more characters in a string expression might
have been converted to other characters.

character string expression:

TRANSLATE (char-string-exp

, to-string-exp , from-string-exp

, ' '

, pad-char-exp

)

graphic string expression:

TRANSLATE (graphic-string-exp , to-string-exp , from-string-exp

, ' '

, pad-char-exp

)

The schema is SYSIBM.

The function converts all the characters in char-string-exp or graphic-string-exp that also occur in from-
string-exp to the corresponding characters in to-string-exp or, if no corresponding characters exist, to the
pad character specified by pad-char-exp.

char-string-exp or graphic-string-exp
The string that is to be converted. The expression must return a value that is a built-in CHAR,
VARCHAR, GRAPHIC, VARGRAPHIC, numeric, or datetime data type. If the value is not a CHAR,
VARCHAR, GRAPHIC, or VARGRAPHIC data type, it is implicitly cast to VARCHAR before evaluating the
function.

to-string-exp
A string of characters to which certain characters in char-string-exp are to be converted.

The expression must return a value that is a built-in CHAR, VARCHAR, GRAPHIC, VARGRAPHIC,
numeric, or datetime data type. If the value is not a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data
type, it is implicitly cast to VARCHAR before evaluating the function. If a value for to-string-exp is not
specified, and the data type is not graphic, all characters in char-string-exp will be in monocase; that

Chapter 1. Structured Query Language (SQL) 543

is, the characters a-z will be converted to the characters A-Z, and other characters will be converted
to their uppercase equivalents, if they exist. For example, in code page 850, é maps to É, but ÿ is not
mapped, because code page 850 does not include Ÿ. If the code point length of the result character is
not the same as the code point length of the source character, the source character is not converted.

from-string-exp
A string of characters that, if found in char-string-exp, are to be converted to the corresponding
character in to-string-exp.

The expression must return a value that is a built-in CHAR, VARCHAR, GRAPHIC, VARGRAPHIC,
numeric, or datetime data type. If the value is not a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC
data type, it is implicitly cast to VARCHAR before evaluating the function. If from-string-exp contains
duplicate characters, the first one found will be used, and the duplicates will be ignored. If to-string-
exp is longer than from-string-exp, the surplus characters will be ignored. If to-string-exp is specified,
from-string-exp must also be specified.

pad-char-exp
A single character used to pad to-string-exp if to-string-exp is shorter than from-string-exp. The
expression must return a value that is a built-in CHAR, VARCHAR, GRAPHIC, VARGRAPHIC, numeric,
or datetime data type. If the value is not a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data
type, it is implicitly cast to VARCHAR before evaluating the function. The value must have a length
attribute of zero or one. If a zero-length string is specified, characters in the from-string-exp with no
corresponding character in the to-string-exp are removed from char-string-exp or graphic-string-exp. If
a value is not specified a single-byte blank character is assumed.

With graphic-string-exp, only pad-char-exp is optional (if a value is not specified, the double-byte blank
character is assumed), and each argument, including the pad character, must be of a graphic data type.

The data type and code page of the result is the same as the data type and code page of the first
argument. If the first argument is a host variable, the code page of the result is the database code page. In
a non-Unicode database, if any argument is graphic string, then all the arguments must be graphic strings
(SQLSTATE 42815). In a Unicode database: if the first argument is a FOR BIT DATA character string, then
no other argument can be a graphic string (SQLSTATE 42846); if the first argument is a graphic string, then
no other argument can be a FOR BIT DATA character string (SQLSTATE 42846).

The length attribute and string units of the result is the same as that of the first argument. If any argument
can be null, the result can be null. If any argument is null, the result is the null value.

If the arguments are of data type CHAR or VARCHAR, the corresponding characters in to-string-exp and
from-string-exp must have the same number of bytes (except in the case of a zero-length string). For
example, it is not valid to convert a single-byte character to a multi-byte character, or to convert a
multi-byte character to a single-byte character. The pad-char-exp argument cannot be the first byte of a
valid multi-byte character (SQLSTATE 42815).

The characters are matched using a binary comparison. The database collation is not used.

If only char-string-exp is specified, single-byte characters will be monocased, and multi-byte characters
will remain unchanged.

Examples
For the provided examples, assume that the host variable SITE (VARCHAR(30)) has a value of 'Hanauma
Bay'.

• Example 1: The following example returns the value 'HANAUMA BAY'.

 TRANSLATE(:SITE)

• Example 2: The following example returns the value 'Hanauma jay'.

 TRANSLATE(:SITE, 'j', 'B')

544 IBM Db2 V11.5: SQL Reference

• Example 3: The following example returns the value 'Heneume Bey'.

 TRANSLATE(:SITE, 'ei', 'aa')

• Example 4: The following example returns the value 'HAnAumA bA%'.

 TRANSLATE(:SITE, 'bA', 'Bay', '%')

• Example 5: The following example returns the value 'Hana ma ray'.

 TRANSLATE(:SITE, 'r', 'Bu')

TRIM
The TRIM function removes blanks or another specified character from the end, the beginning, or both
ends of a string expression.

TRIM (

BOTH

B

LEADING

L

TRAILING

T

strip-character

FROM

string-expression

)

The schema is SYSIBM. The function name cannot be specified as a qualified name when keywords are
used in the function signature.

BOTH, LEADING, or TRAILING
Specifies whether characters are removed from the beginning, the end, or from both ends of the string
expression. If this argument is not specified, the characters are removed from both the end and the
beginning of the string.

strip-character
A single-character constant that specifies the character that is to be removed. The strip-character can
be any character whose UTF-32 encoding is a single character or a single digit numeric value. The
binary representation of the character is matched.

If strip-character is not specified and:

• If the string-expression is a DBCS graphic string, the default strip-character is a DBCS blank, whose
code point is dependent on the database code page

• If the string-expression is a UCS-2 graphic string, the default strip-character is a UCS-2 blank
(X'0020')

• If the string-expression is a binary string, the default strip-character is a hexadecimal zero (X'00')
• Otherwise, the default strip-character is an SBCS blank (X'20')

FROM string-expression
An expression that specifies the string from which the result is derived. The expression must return
a value that is a built-in CHAR, VARCHAR, BINARY, VARBINARY, GRAPHIC, VARGRAPHIC, numeric,
or datetime data type. If the value is not a CHAR, VARCHAR, BINARY, VARBINARY, GRAPHIC, or
VARGRAPHIC data type, it is implicitly cast to VARCHAR before the function is evaluated.

The value for string-expression and the value for strip-character must have compatible data types.

The data type of the result depends on the data type of the string-expression:

Chapter 1. Structured Query Language (SQL) 545

• VARCHAR if the data type is VARCHAR or CHAR
• VARGRAPHIC if the data type is VARGRAPHIC or GRAPHIC
• VARBINARY if the data type is VARBINARY or BINARY

The result is a varying-length string with the same maximum length as the length attribute of the string-
expression. The actual length of the result is the length of the string-expression minus the number of string
units that are removed. If all of the characters are removed, the result is an empty varying-length string.
The code page of the result is the same as the code page of the string-expression.

Examples
• Example 1: Assume that the host variable HELLO of type CHAR(9) has a value of ' Hello'.

 SELECT TRIM(:HELLO),
 TRIM(TRAILING FROM :HELLO)
 FROM SYSIBM.SYSDUMMY1

returns the values 'Hello' and ' Hello', respectively.
• Example 2: Assume that the host variable BALANCE of type CHAR(9) has a value of '000345.50'.

 SELECT TRIM(L '0' FROM :BALANCE),
 FROM SYSIBM.SYSDUMMY1

returns the value '345.50'.

TRIM_ARRAY
The TRIM_ARRAY function deletes elements from the end of an array.

TRIM_ARRAY

ARRAY_TRIM

(array-expression , numeric-expression)

The schema is SYSIBM.

array-expression
An SQL variable, SQL parameter, or global variable of an ordinary array type, or a CAST specification
of a parameter marker to an ordinary array type. An associative array data type cannot be specified
(SQLSTATE 42884).

numeric-expression
Specifies the number of elements trimmed from the end of the array. The numeric expression can
be of any numeric data type with a value that can be cast to INTEGER. The value of the numeric
expression must be between 0 and the cardinality of the array expression (SQLSTATE 2202E).

Result
The function returns a value with the same array type as the array expression but with the cardinality
reduced by the value of INTEGER(numeric-expression).

The result can be null; if either argument is null, the result is the null value.

Rules
• The TRIM_ARRAY function is not supported for associative arrays (SQLSTATE 42884).
• The TRIM_ARRAY function can only be used on the right side of an assignment statement in contexts

where arrays are supported (SQLSTATE 42884).

546 IBM Db2 V11.5: SQL Reference

Examples
1. Example 1: Remove the last element from the array variable RECENT_CALLS.

 SET RECENT_CALLS = TRIM_ARRAY(RECENT_CALLS, 1)

2. Example 2: Assign only the first two elements from the array variable SPECIALNUMBERS to the SQL
array variable EULER_CONST:

SET EULER_CONST = TRIM_ARRAY(SPECIALNUMBERS, 8)

The result is that EULER_CONST will be assigned an array with two elements, the first element value is
2.71828183 and the second element value is the null value.

TRUNC_TIMESTAMP
The TRUNC_TIMESTAMP scalar function returns a TIMESTAMP that is an argument (expression) truncated
to the unit specified by another argument (format-string).

TRUNC_TIMESTAMP (expression

, 'DD'

, format-string

locale-name

)

The schema is SYSIBM.

If format-string is not specified, expression is truncated to the nearest day, as if 'DD' was specified for
format-string.

expression
An expression that returns a value of one of the following built-in data types: a DATE or a TIMESTAMP.

format-string
An expression that returns a built-in character string data type with an actual length that is not greater
than 255 bytes. The format element in format-string specifies how expression should be truncated.
For example, if format-string is 'DD', a timestamp that is represented by expression is truncated to
the nearest day. Leading and trailing blanks are removed from the string, and the resulting substring
must be a valid format element for a timestamp (SQLSTATE 22007). The default is 'DD'.

Allowable values for format-string are listed in the table of format elements found in the description of
the ROUND function.

locale-name
A character constant that specifies the locale used to determine the first day of the week when using
format model values DAY, DY, or D. The value of locale-name is not case sensitive and must be a valid
locale (SQLSTATE 42815). For information about valid locales and their naming, see "Locale names for
SQL and XQuery". If locale-name is not specified, the value of the special register CURRENT LOCALE
LC_TIME is used.

The result of the function is a TIMESTAMP with the same timestamp precision as expression. The
result can be null; if any argument is null, the result is the null value.

The result of the function is a TIMESTAMP with a timestamp precision of:

• p when the data type of expression is TIMESTAMP(p)
• 0 when the data type of expression is DATE
• 6 otherwise

The result can be null; if any argument is null, the result is the null value.

Chapter 1. Structured Query Language (SQL) 547

Notes
• Determinism: TRUNC_TIMESTAMP is a deterministic function. However, the following invocations of the

function depend on the value of the special register CURRENT LOCALE LC_TIME.

– Truncate of a date or timestamp value when locale-name is not explicitly specified and one of the
following is true:

- format-string is not a constant
- format-string is a constant and includes format elements that are locale sensitive

Invocations of the function that depend on the value of a special register cannot be used wherever
special registers cannot be used (SQLSTATE 42621, 428EC, or 429BX).

Example
Set the host variable TRNK_TMSTMP with the current year rounded to the nearest year value.

 SET :TRNK_TMSTMP = TRUNC_TIMESTAMP('2000-03-14-17.30.00', 'YEAR');

The host variable TRNK_TMSTMP is set with the value 2000-01-01-00.00.00.000000.

TRUNCATE or TRUNC
The TRUNCATE function returns a truncated value of a number or a datetime value.

TRUNCATE numeric:

TRUNCATE

TRUNC

(numeric-expression1

, 0

, numeric-expression2

)

TRUNCATE datetime:

TRUNCATE

TRUNC

(datetime-expression

, 'DD'

, format-string

locale-name

)

The schema is SYSIBM. The SYSFUN version of the TRUNCATE numeric function continues to be available.

The data type of the return value depends on the first argument:

• If the result of the first argument is a numeric value, a number is returned, truncated to the specified
number of places to the right or left of the decimal point.

• If the first argument is a DATE, TIME, or TIMESTAMP, a datetime value, truncated to the unit specified by
format-string.

TRUNCATE numeric
If numeric-expression1 has a numeric data type, the TRUNCATE function returns numeric-expression1
truncated to numeric-expression2 places to the right of the decimal point if numeric-expression2
is positive, or to the left of the decimal point if numeric-expression2 is zero or negative. If numeric-
expression2 is not specified, numeric-expression1 is truncated to zero places left of the decimal point.

548 IBM Db2 V11.5: SQL Reference

numeric-expression1
An expression that must return a value that is a built-in CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, or numeric data type. If the value is not a numeric data type, it is implicitly cast to
DECFLOAT(34) before evaluating the function.

If the expression is a decimal floating-point data type, the DECFLOAT rounding mode will not be
used. The rounding behavior of TRUNCATE corresponds to a value of ROUND_DOWN. If a different
rounding behavior is wanted, use the QUANTIZE function.

numeric-expression2
An expression that returns a value that is a built-in numeric data type. If the value is not of type
INTEGER, it is implicitly cast to INTEGER before evaluating the function.

If numeric-expression2 is not negative, numeric-expression1 is truncated to the absolute value of
numeric-expression2 number of places to the right of the decimal point.

If numeric-expression2 is negative, numeric-expression1 is truncated to the absolute value of
numeric-expression2 + 1 number of places to the left of the decimal point. If the absolute value of
a negative numeric-expression2 is larger than the number of digits to the left of the decimal point,
the result is 0. For example:

 TRUNCATE(748.58,-4) = 0

The data type, length, and scale attributes of the result are the same as the data type, length, and
scale attributes of the first argument.

If either argument can be null, the result can be null. If either argument is null, the result is the
null value.

TRUNCATE datetime
If datetime-expression has a datetime data type, the TRUNCATE function returns datetime-expression
rounded to the unit specified by the format-string. If format-string is not specified, datetime-
expression is truncated to the nearest day, as if 'DD' is specified for format-string.
datetime-expression

An expression that must return a value that is a DATE, a TIME, or a TIMESTAMP. String
representations of these data types are not supported and must be explicitly cast to a DATE,
TIME, or TIMESTAMP for use with this function; alternatively, you can use the TRUNC_TIMESTAMP
function for a string representation of a date or timestamp.

format-string
An expression that returns a built-in character string data type with an actual length that is not
greater than 255 bytes. The format element in format-string specifies how datetime-expression
should be truncated. For example, if format-string is 'DD', a timestamp that is represented by
datetime-expression is truncated to the nearest day. Leading and trailing blanks are removed
from the string, and the resulting substring must be a valid format element for the type of
datetime-expression (SQLSTATE 22007). The default is 'DD', which cannot be used if the data type
of datetime-expression is TIME.

Allowable values for format-string are listed in the table of format elements found in the
description of the ROUND function.

locale-name
A character constant that specifies the locale used to determine the first day of the week when
using format element values DAY, DY, or D. The value of locale-name is not case sensitive and
must be a valid locale (SQLSTATE 42815). For information about valid locales and their naming,
see "Locale names for SQL and XQuery". If locale-name is not specified, the value of the special
register CURRENT LOCALE LC_TIME is used.

The result of the function has the same date type as datetime-expression. The result can be null; if any
argument is null, the result is the null value.

The data type and length attribute of the result are the same as the data type and length attribute of the
first argument.

Chapter 1. Structured Query Language (SQL) 549

The result can be null if the argument can be null or if the argument is not a decimal floating-point number
and the database is configured with dft_sqlmathwarn set to YES; the result is the null value if the
argument is null.

Notes
• Determinism: TRUNCATE is a deterministic function. However, the following invocations of the function

depend on the value of the special register CURRENT LOCALE LC_TIME.

– Truncate of a datetime value when locale-name is not explicitly specified and one of the following is
true:

- format-string is not a constant
- format-string is a constant and includes format elements that are locale sensitive

Invocations of the function that depend on the value of a special register cannot be used wherever
special registers cannot be used (SQLSTATE 42621, 428EC, or 429BX).

Examples
• Example 1: Using the EMPLOYEE table, calculate the average monthly salary for the highest paid

employee. Truncate the result two places to the right of the decimal point.

 SELECT TRUNCATE(MAX(SALARY)/12,2)
 FROM EMPLOYEE;

Assuming the highest paid employee earns $52750.00 per year, the example returns 4395.83.
• Example 2: Display the number 873.726 truncated 2, 1, 0, -1, and -2 decimal places, respectively.

 VALUES (
 TRUNCATE(873.726,2),
 TRUNCATE(873.726,1),
 TRUNCATE(873.726,0),
 TRUNCATE(873.726,-1),
 TRUNCATE(873.726,-2),
 TRUNCATE(873.726,-3));

This example returns 873.720, 873.700, 873.000, 870.000, 800.000, and 0.000.
• Example 3: Display the decimal-floating point number 873.726 truncated 0 decimal places.

 VALUES(TRUNCATE(DECFLOAT(873.726),0))

Returns the value 873.
• Example 4: Set the variable vTRNK_DT with the input date rounded to the nearest month value.

 SET vTRNK_DT = TRUNC(DATE('2000-08-16'), 'MONTH');

The value set is 2000-08-01.
• Example 5: Set the host variable TRNK_TMSTMP with the current year rounded to the nearest year

value.

 SET :TRNK_TMSTMP = TRUNCATE(DATE('2000-03-14-17.30.00'), 'YEAR');

The value set is 2000-01-01-00.00.00.000000.

TYPE_ID
The TYPE_ID function returns the internal type identifier of the dynamic data type of the expression.

TYPE_ID (expression)

The schema is SYSIBM.

550 IBM Db2 V11.5: SQL Reference

expression
An expression that returns a value of a user-defined structured data type.

The data type of the result of the function is INTEGER. If expression can be null, the result can be null; if
expression is null, the result is the null value.

The value returned by the TYPE_ID function is not portable across databases. The value may be different,
even though the type schema and type name of the dynamic data type are the same. When coding for
portability, use the TYPE_SCHEMA and TYPE_NAME functions to determine the type schema and type
name.

Notes
• This function cannot be used as a source function when creating a user-defined function. Because it

accepts any structured data type as an argument, it is not necessary to create additional signatures to
support different user-defined types.

Example
A table hierarchy exists having root table EMPLOYEE of type EMP and subtable MANAGER of type MGR.
Another table ACTIVITIES includes a column called WHO_RESPONSIBLE that is defined as REF(EMP)
SCOPE EMPLOYEE. For each reference in ACTIVITIES, display the internal type identifier of the row that
corresponds to the reference.

 SELECT TASK, WHO_RESPONSIBLE->NAME,
 TYPE_ID(DEREF(WHO_RESPONSIBLE))
 FROM ACTIVITIES

The DEREF function is used to return the object corresponding to the row.

TYPE_NAME
The TYPE_NAME function returns the unqualified name of the dynamic data type of the expression.

TYPE_NAME (expression)

The schema is SYSIBM.

expression
An expression that returns a value of a user-defined structured data type.

The data type of the result of the function is VARCHAR(128 OCTETS). If expression can be null, the result
can be null; if expression is null, the result is the null value. Use the TYPE_SCHEMA function to determine
the schema name of the type name returned by TYPE_NAME.

Notes
• This function cannot be used as a source function when creating a user-defined function. Because it

accepts any structured data type as an argument, it is not necessary to create additional signatures to
support different user-defined types.

Example
A table hierarchy exists having root table EMPLOYEE of type EMP and subtable MANAGER of type MGR.
Another table ACTIVITIES includes a column called WHO_RESPONSIBLE that is defined as REF(EMP)
SCOPE EMPLOYEE. For each reference in ACTIVITIES, display the type of the row that corresponds to the
reference.

 SELECT TASK, WHO_RESPONSIBLE->NAME,
 TYPE_NAME(DEREF(WHO_RESPONSIBLE)),
 TYPE_SCHEMA(DEREF(WHO_RESPONSIBLE))
 FROM ACTIVITIES

Chapter 1. Structured Query Language (SQL) 551

The DEREF function is used to return the object corresponding to the row.

TYPE_SCHEMA
The TYPE_SCHEMA function returns the schema name of the dynamic data type of the expression.

TYPE_SCHEMA (expression)

The schema is SYSIBM.

expression
An expression that returns a value of a user-defined structured data type.

The data type of the result of the function is VARCHAR(128 OCTETS). If expression can be null, the result
can be null; if expression is null, the result is the null value. Use the TYPE_NAME function to determine the
type name associated with the schema name returned by TYPE_SCHEMA.

Notes
• This function cannot be used as a source function when creating a user-defined function. Because it

accepts any structured data type as an argument, it is not necessary to create additional signatures to
support different user-defined types.

UCASE
The UCASE function is identical to the TRANSLATE function except that only the first argument (char-
string-exp) is specified.

UCASE (expression)

The schema is SYSIBM.

UCASE is a synonym for UPPER.

UCASE (locale sensitive)
The UCASE function returns a string in which all characters have been converted to uppercase characters
using the rules associated with the specified locale.

UCASE (string-expression , locale-name

, code-units

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

UCASE is a synonym for UPPER.

552 IBM Db2 V11.5: SQL Reference

UNICODE_STR
The UNICODE_STR function returns a string in Unicode UTF-8 or UTF-16, depending on the specified
option. The string represents a Unicode encoding of the input string.

UNICODE_STR (string-expression
UTF8

UTF16

)

The schema is SYSIBM.

string-expression
An expression that returns a value of a built-in character or graphic string.
A character string must not be bit data.
Values that are preceded by a backslash ('\') are treated as Unicode UTF-16 characters, for example,
'\0041' is the Unicode UTF-16 representation for 'A').
A double backslash '\\' indicates a backslash in the string.
A backslash that is not part of a double backslash must be following by four hexadecimal digits
(SQLSTATE 42815).
A partial surrogate character in the expression is replaced with a blank.
The argument can also be a numeric data type.
The numeric argument is implicitly cast to a VARCHAR data type.

UTF8 or UTF16
Specifies the Unicode encoding of the result.

• If UTF8 is specified, the result is returned as a Unicode UTF-8 character string.
• If UTF16 is specified, the result is returned as a Unicode UTF-16 graphic string.

UTF8 is the default.

Result
The result of the function depends on the second argument:

• If UTF8 is specified, the result is VARCHAR.
• If UTF16 is specified, the result is VARGRAPHIC.

The length attribute of the result depends on the second argument (UTF8 or UTF16).

• If the second argument is UTF8, the length attribute of the result is MIN(n,32672) OCTETS, where n
depends on the length attribute and string units of the string-expression as follows:

– If the string-expression contains the string unit OCTETS, n is the length attribute of the input string.
– If the string-expression contains the string unit CODEUNITS16, n is twice the length attribute of the

input string.
– If the string-expression contains the string unit CODEUNITS32, n is four times the length attribute of

the input string.
• If the second argument is UTF16, the length attribute of the result is MIN(n,16336) CODEUNITS16,

where n depends on the length attribute and string units of the string-expression as follows:

– If the string-expression contains the string units OCTETS or CODEUNITS16, n is the length attribute
of the input string.

– If the string-expression contains the string unit CODEUNITS32, n is twice the length attribute of the
input string.

Chapter 1. Structured Query Language (SQL) 553

Notes
As a syntax alternative, you can specify UNISTR as a synonym for UNICODE_STR.

The following example sets the host variable HV1 to a VARCHAR value that represents the Unicode UTF-8
string that corresponds to the argument:

SET :HV1 = UNICODE_STR('Hi, my name is \5CF0');

HV1 is assigned a Unicode UTF-8 string with the following value 'Hi, my name is 峰'.

UPPER
The UPPER function is identical to the TRANSLATE function except that only the first argument (char-
string-exp) is specified.

UPPER (expression)

The schema is SYSIBM. (The SYSFUN version of this function continues to be available for upward
compatibility.)

expression
An expression that returns either a Boolean value or a built-in character string that is not FOR BIT
DATA. In a Unicode database, the expression can also return a graphic string, in which case it is first
converted to a character string before the function is evaluated.

UPPER (locale sensitive)
The UPPER function returns a string in which all characters have been converted to uppercase characters
using the rules associated with the specified locale.

UPPER (string-expression , locale-name

, code-units

, CODEUNITS16

CODEUNITS32

OCTETS

)

The schema is SYSIBM.

string-expression
An expression that returns a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC string. If string-expression
is CHAR or VARCHAR, the expression must not be FOR BIT DATA (SQLSTATE 42815).

locale-name
A character constant that specifies the locale that defines the rules for conversion to uppercase
characters. The value of locale-name is not case sensitive and must be a valid locale (SQLSTATE
42815). For information about valid locales and their naming, see "Locale names for SQL and
XQuery".

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 and later versions,
passing UNI_SIMPLE as locale-name will enable use of simple case folding mapping.

code-units
An integer constant that specifies the number of code units in the result. If specified, code-units must
be an integer between:

• 1 and 32 672 if the string unit of the result is OCTETS
• 1 and 16 336 if the string unit of the result is double bytes or CODEUNITS16

554 IBM Db2 V11.5: SQL Reference

• 1 and 8 168 if the string unit of the result is CODEUNITS32

otherwise an error (SQLSTATE 42815). If code-units is not explicitly specified, it is implicitly the
length attribute of string-expression. If OCTETS is specified and the result is graphic data, the value
of code-units must be even, otherwise an error is returned (SQLSTATE 428GC). If OCTETS is specified
and the string units of the result is CODEUNIT32, the value of code-units must be a multiple of 4
(SQLSTATE 428GC). If CODEUNITS16 is specified and the string units of the result is CODEUNITS32,
the value of code-units must be a multiple of 2 (SQLSTATE 428GC).

CODEUNITS16, CODEUNITS32, or OCTETS
Specifies the string unit of code-units.

CODEUNITS16 specifies that code-units is expressed in 16-bit UTF-16 code units. CODEUNITS32
specifies that code-units is expressed in 32-bit UTF-32 code units. OCTETS specifies that code-units is
expressed in bytes.

If a string unit is not explicitly specified, the string unit of string-expression determines the unit that
is used. For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see "String units in
built-in functions" in "Character strings".

The result of the function is VARCHAR if string-expression is CHAR or VARCHAR, and VARGRAPHIC if
string-expression is GRAPHIC or VARGRAPHIC. The string units of the result is the same as the string units
of string-expression

The length attribute of the result is determined by the implicit or explicit value of code-units, the implicit
or explicit string unit, the result data type, and the result string units, as shown in the following table:

Table 103. Length attribute of the result of UPPER as a function of string unit and result type

Data type and string
units of result

Length attribute
for code-units in
CODEUNITS16

Length attribute
for code-units in
CODEUNITS32

Length attribute for
code-units in OCTETS

VARCHAR in OCTETS MIN(code-units * 3,
32672)

MIN(code-units * 4,
32672)

code-units

VARCHAR in
CODEUNITS32

MIN(code-units / 2,
8168)

MIN(code-units, 8168) MIN(code-units / 4,
8168)

VARGRAPHIC in
CODEUNITS16 or
double bytes

code-units MIN(code-units * 2,
16336)

MIN(code-units / 2,
16336)

VARGRAPHIC in
CODEUNITS32

MIN(code-units / 2,
8168)

MIN(code-units, 8168) MIN(code-units / 4,
8168)

The actual length of the result might be greater than the length of string-expression. If the actual length
of the result is greater than the length attribute of the result, an error is returned (SQLSTATE 42815). If
the number of code units in the result exceeds the value of code-units, an error is returned (SQLSTATE
42815).

If string-expression is not in UTF-16, this function performs code page conversion of string-expression
to UTF-16, and of the result from UTF-16 to the code page of string-expression. If either code page
conversion results in at least one substitution character, the result includes the substitution character, a
warning is returned (SQLSTATE 01517), and the warning flag SQLWARN8 in the SQLCA is set to 'W'.

If the first argument can be null, the result can be null; if the first argument is null, the result is the null
value.

Chapter 1. Structured Query Language (SQL) 555

Examples
• Example 1: Ensure that the characters in the value of column JOB in the EMPLOYEE table are returned in

uppercase characters.

 SELECT UPPER(JOB, 'en_US')
 FROM EMPLOYEE
 WHERE EMPNO = '000020'

The result is the value 'MANAGER'.
• Example 2: Find the uppercase characters for all the 'I' characters in a Turkish string.

 VALUES UPPER('Iİıi', 'tr_TR', CODEUNITS16)

The result is the string 'IİIİ'.
• Example 3: Find the uppercase form of the German 'ß' (sharp S).

 VALUES UPPER('ß', 'de', 2, CODEUNITS16)

The result is the string 'SS'. Note that code-units must be specified in this example, because there are
more code units in the result than in string-expression.

VALUE
The VALUE function returns the first argument that is not null.

VALUE (expression ,expression)

The schema is SYSIBM.

VALUE is a synonym for COALESCE.

VARBINARY
The VARBINARY function returns a VARBINARY (varying-length binary string) representation of a string of
any data type.

VARBINARY (string-expression

, integer

)

The schema is SYSIBM.

string-expression
An expression that returns a value of a string data type.

integer
An integer constant value, which specifies the length attribute of the resulting VARBINARY data type.
The value must be 1 - 32672. If integer is not specified, the length attribute of the result is the lower
of the following values:

• The maximum length for the VARBINARY data type
• The length attribute for the data type of string-expression expressed in bytes:

– The length attribute, if string-expression is a binary string, a character string that is FOR BIT DATA,
or a character string with string units of OCTETS

– The length attribute multiplied by 2, if string-expression is a graphic string with string units of
CODEUNITS16 or double bytes

– The length attribute multiplied by 4, if string-expression is a character or graphic string with string
units of CODEUNITS32

556 IBM Db2 V11.5: SQL Reference

If the length attribute of string-expression is zero and the integer argument is not specified, the length
attribute of the result is 1.

The result of the function is a VARBINARY. If the first argument can be null, the result can be null; if the
first argument is null, the result is the null value.

The actual length of the result is the minimum of the length attribute of the result and the actual length
in bytes of the string-expression. If the length of string-expression that is converted to a binary string is
greater than the length attribute of the result, truncation occurs. A warning (SQLSTATE 01004) is returned
in the following situations:

• The first argument is a character or graphic string (other than a CLOB or DBCLOB) and non-blank
characters are truncated.

• The first argument is a binary string (other than BLOB) and non-hexadecimal zeros are truncated.

Examples
1. The following function returns a varying-length binary string with a length attribute 1, actual length 0,

and a value of empty string.

 SELECT VARBINARY('',1)
 FROM SYSIBM.SYSDUMMY1

2. The following function returns a varying-length binary string with a length attribute 5, actual length 3,
and a value BX'4B4248'.

 SELECT VARBINARY('KBH',5)
 FROM SYSIBM.SYSDUMMY1

3. The following function returns a varying-length binary string with a length attribute 3, actual length 3,
and a value BX'4B4248'.

 SELECT VARBINARY('KBH')
 FROM SYSIBM.SYSDUMMY1

4. The following function returns a varying-length binary string with a length attribute 3, actual length 3,
and a value BX'4B4248'.

 SELECT VARBINARY('KBH ',3)
 FROM SYSIBM.SYSDUMMY1

5. The following function returns a varying-length binary string with a length attribute 3, actual length 3, a
value BX'4B4248', and a warning (SQLSTATE 01004).

 SELECT VARBINARY('KBH 93',3)
 FROM SYSIBM.SYSDUMMY1

VARCHAR
The VARCHAR function returns a varying-length character string representation of a value of a different
data type.

Binary integer to VARCHAR
VARCHAR (integer-expression)

Decimal to VARCHAR
VARCHAR (decimal-expression

, decimal-character

)

Chapter 1. Structured Query Language (SQL) 557

Floating-point to VARCHAR
VARCHAR (floating-point-expression

, decimal-character

)

Decimal floating-point to VARCHAR
VARCHAR (decimal-floating-point-expression

, decimal-character

)

Character string to VARCHAR
VARCHAR (character-expression

, integer

)

Graphic string to VARCHAR
VARCHAR (graphic-expression

, integer

)

Binary string to VARCHAR
VARCHAR (binary-expression

, integer

)

Datetime to VARCHAR
VARCHAR (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

Boolean to VARCHAR
VARCHAR (boolean-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name when keywords are
used in the function signature.

Binary integer to VARCHAR
integer-expression

An expression that returns a value that is of an integer data type (SMALLINT, INTEGER, or
BIGINT).

The result is the varying-length string representation of integer-expression in the form of an SQL
integer constant. The length attribute of the result depends on whether integer-expression is a small,
large or big integer as follows:

• If the first argument is a small integer, the maximum length of the result is 6.
• If the first argument is a large integer, the maximum length of the result is 11.

558 IBM Db2 V11.5: SQL Reference

• If the first argument is a big integer, the maximum length of the result is 20.

The actual length of the result is the smallest number of characters that can be used to represent the
value of the argument. Leading zeros are not included. If the argument is negative, the first character
of the result is a minus sign. Otherwise, the first character is a digit.

The code page of the result is the code page of the section.

Decimal to VARCHAR
decimal-expression

An expression that returns a value that is a decimal data type. The DECIMAL scalar function can
be used to change the precision and scale.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character constant cannot be a digit, the plus sign (+), the minus sign (-), or a
blank (SQLSTATE 42815). The default is the period (.) character.

The result is a varying-length character string representation of decimal-expression in the form of
an SQL decimal constant. The length attribute of the result is 2+p, where p is the precision of
decimal-expression. The actual length of the result is the smallest number of characters that can be
used to represent the result, except that trailing zeros are included. Leading zeros are not included.
If decimal-expression is negative, the first character of the result is a minus sign; otherwise, the first
character is a digit or the decimal character. If the scale of decimal-expression is zero, the decimal
character is not returned.

The code page of the result is the code page of the section.

Floating-point to VARCHAR
floating-point-expression

An expression that returns a value that is a floating-point data type (DOUBLE or REAL).
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character constant cannot be a digit, the plus sign (+), the minus sign (-), or a
blank (SQLSTATE 42815). The default is the period (.) character.

The result is a varying-length character string representation of floating-point-expression in the form
of an SQL floating-point constant.

The maximum length of the result is 24. The actual length of the result is the smallest number of
characters that can represent the value of floating-point-expression such that the mantissa consists
of a single digit other than zero followed by the decimal-character and a sequence of digits. If
floating-point-expression is negative, the first character of the result is a minus sign; otherwise, the
first character is a digit. If floating-point-expression is zero, the result is 0E0.

The code page of the result is the code page of the section.

Decimal floating-point to VARCHAR
decimal-floating-point-expression

An expression that returns a value that is a decimal floating-point data type (DECFLOAT).
decimal-character

Specifies the single-byte character constant that is used to delimit the decimal digits in the result
character string. The character constant cannot be a digit, the plus sign (+), the minus sign (-), or a
blank (SQLSTATE 42815). The default is the period (.) character.

The result is a varying-length character string representation of decimal-floating-point-expression in
the form of an SQL decimal floating-point constant. The maximum length of the result is 42. The
actual length of the result is the smallest number of characters that can represent the value of
decimal-floating-point-expression. If decimal-floating-point-expression is negative, the first character
of the result is a minus sign; otherwise, the first character is a digit. If decimal-floating-point-
expression is zero, the result is 0.

Chapter 1. Structured Query Language (SQL) 559

If the value of decimal-floating-point-expression is the special value Infinity, sNaN, or NaN, the strings
"INFINITY", "SNAN", and "NAN", respectively, are returned. If the special value is negative, the first
character of the result is a minus sign. The decimal floating-point special value sNaN does not result
in a warning when converted to a string.

The code page of the result is the code page of the section.

Character string to VARCHAR
character-expression

An expression that returns a value that is a built-in character string data type.
integer

An integer constant that specifies the length attribute for the resulting varying-length character
string. The value must be between 0 and the maximum length for the VARCHAR data type in the
string units of the result.

If the second argument is not specified:

• If the character-expression is the empty string constant, the length attribute of the result is 0.
• Otherwise, the length attribute of the result is the lower of the following values:

– The maximum length for the VARCHAR data type in the string units of the result
– The length attribute of the first argument

The result is a varying-length character string. The length attribute of the result is determined by the
value of integer. If character-expression is the FOR BIT DATA subtype, the result is FOR BIT DATA.

If the length of character-expression is greater than the length attribute of the result, several
scenarios exist:

• If the string unit of the result is CODEUNITS32, truncation is performed. If only blank characters
are truncated and character-expression is CHAR or VARCHAR, no warning is returned. Otherwise, a
warning is returned (SQLSTATE 01004).

• If integer is specified, truncation is performed. If only blank characters are truncated and character-
expression is CHAR or VARCHAR, no warning is returned. Otherwise, a warning is returned
(SQLSTATE 01004). When part of a multi-byte character is truncated, that partial character is
replaced with the blank character. Do not rely on this behavior because it might change in a future
release.

• If integer is not specified, an error is returned (SQLSTATE 22001).

Graphic string to VARCHAR
graphic-expression

An expression that returns a value that is a built-in graphic string data type.
integer

An integer constant that specifies the length attribute for the resulting varying-length character
string. The value must be between 0 and the maximum length for the VARCHAR data type in the
string units of the result.

If the second argument is not specified:

• If the graphic-expression is the empty string constant, the length attribute of the result is 0.
• If the string units of graphic-expression is CODEUNITS32, the length attribute of the result is the

lower of the following values:

– The maximum length for the VARCHAR data type in the string units of the result
– The length attribute of the first argument

• Otherwise, the length attribute of the result is the lower of the following values:

– The maximum length for the VARCHAR data type in the string units of the result
– 3 * length attribute of the first argument

560 IBM Db2 V11.5: SQL Reference

The result is a varying-length character string that is converted from graphic-expression. The length
attribute of the result is determined by the value of integer.

If the length of graphic-expression that is converted to a character string is greater than the length
attribute of the result, several scenarios exist:

• If the string unit of the result is CODEUNITS32, truncation is performed. If only blank characters are
truncated and graphic-expression is GRAPHIC or VARGRAPHIC, no warning is returned. Otherwise, a
warning is returned (SQLSTATE 01004).

• If integer is specified and graphic-expression is a GRAPHIC or VARGRAPHIC, truncation is performed
with no warning returned.

• If integer is specified and graphic-expression is a DBCLOB, truncation is performed with a warning
returned (SQLSTATE 01004).

• If integer is not specified and graphic-expression is a GRAPHIC or VARGRAPHIC, truncation is
performed with no warning returned.

• If integer is not specified and graphic-expression is a DBCLOB, an error is returned (SQLSTATE
22001).

Binary string to VARCHAR
binary-expression

An expression that returns a value that is a built-in binary string data type.
integer

An integer constant that specifies the length attribute for the resulting varying-length character
string. The value must be between 0 and the maximum length for the VARCHAR data type in the
string units of the result.

The result is a FOR BIT DATA character string.

Datetime to VARCHAR
datetime-expression

An expression that is of one of the following data types:
DATE

The result is the character string representation of the date in the format specified by the
second argument. The length of the result is 10. An error is returned if the second argument is
specified and is not a valid value (SQLSTATE 42703).

TIME
The result is the character string representation of the time in the format specified by the
second argument. The length of the result is 8. An error is returned if the second argument is
specified and is not a valid value (SQLSTATE 42703).

TIMESTAMP
The result is the character string representation of the timestamp. If the data type of
datetime-expression is TIMESTAMP(0), the length of the result is 19. If the data type of
datetime-expression is TIMESTAMP(n), where n is between 1 and 12, the length of the result
is 20+n. Otherwise, the length of the result is 26. The second argument must not be specified
(SQLSTATE 42815).

The code page of the result is the code page of the section.

Boolean to VARCHAR
boolean-expression

An expression that returns a Boolean value (TRUE or FALSE). The result is either 'TRUE' or 'FALSE'.

Result
The VARCHAR function returns a varying-length character string representation of:

• An integer number, if the only argument is a SMALLINT, INTEGER, or BIGINT value

Chapter 1. Structured Query Language (SQL) 561

• A decimal number, if the first argument is a DECIMAL value
• A double-precision floating-point number, if the first argument is a floating-point (DOUBLE or REAL)

value
• A decimal floating-point number, if the first argument is a decimal floating-point (DECFLOAT) value
• A character string, if the first argument is a character string (CHAR, VARCHAR, or CLOB) value
• A graphic string (Unicode databases only), if the first argument is a graphic string (GRAPHIC,

VARGRAPHIC, or DBCLOB) value
• A datetime value, if the first argument is a datetime (DATE, TIME, or TIMESTAMP) value
• A Boolean value ('TRUE' or 'FALSE'), if the only argument is a BOOLEAN value (TRUE or FALSE)

In a non-Unicode database, the string units of the result is OCTETS. Otherwise, the string units of the
result is determined by the data type of the first argument.

• OCTETS, if the first argument is character string or a graphic string with string units of OCTETS,
CODEUNITS16, or double bytes.

• CODEUNITS32, if the first argument is character string or a graphic string with string units of
CODEUNITS32.

• Determined by the default string unit of the environment, if the first argument is not a character string or
a graphic string.

In a Unicode database, when the output string is truncated part-way through a multiple-byte character:

• If the input was a character string, the partial character is replaced with one or more blanks
• If the input was a graphic string, the partial character is replaced by the empty string

Do not rely on either of these behaviors, because they might change in a future release.

If the first argument can be null, the result can be null. If the first argument is null, the result is the null
value.

Notes
• Increasing portability of applications: If the first argument is numeric, or if the first argument is a

string and the length argument is specified, use the “CAST specification” on page 152 instead of this
function to increase the portability of your applications.

Examples
• Example 1: Make EMPNO varying-length with a length of 10.

 SELECT VARCHAR(EMPNO,10)
 INTO :VARHV
 FROM EMPLOYEE

• Example 2: Set the host variable JOB_DESC, defined as VARCHAR(8), to the VARCHAR equivalent of
the job description (which is the value of the JOB column), defined as CHAR(8), for employee Dolores
Quintana.

 SELECT VARCHAR(JOB)
 INTO :JOB_DESC
 FROM EMPLOYEE
 WHERE LASTNAME = 'QUINTANA'

• Example 3: The EDLEVEL column is defined as SMALLINT. The following returns the value as a varying-
length character string.

 SELECT VARCHAR(EDLEVEL)
 FROM EMPLOYEE
 WHERE LASTNAME = 'HAAS'

Results in the value '18'.

562 IBM Db2 V11.5: SQL Reference

• Example 4: The SALARY and COMM columns are defined as DECIMAL with a precision of 9 and a scale of
2. Return the total income for employee Haas using the comma decimal character.

 SELECT VARCHAR(SALARY + COMM, ',')
 FROM EMPLOYEE
 WHERE LASTNAME = 'HAAS'

Results in the value '56970,00'.
• Example 5: The following statement returns a string of data type VARCHAR with the value 'TRUE'.

 values VARCHAR(3=3)

• Example 6: The following statement returns a string of data type VARCHAR with the value 'FALSE'.

 values VARCHAR(3>3)

VARCHAR_BIT_FORMAT
The VARCHAR_BIT_FORMAT function returns a bit string representation of a character string that has
been formatted using a character template.

VARCHAR_BIT_FORMAT (character-expression

, format-string

)

The schema is SYSIBM.

In a Unicode database, if a supplied argument is a graphic string, it is first converted to a character string
before the function is executed.
character-expression

An expression that returns a value that is a built-in character string that is not a CLOB (SQLSTATE
42815). The required length is determined by the specified format string and how the value is
interpreted. If a format-string argument is not specified, the length must be an even number of
characters from the ranges '0' to '9', 'a' to 'f', and 'A' to 'F' (SQLSTATE 42815).

format-string
A character constant that contains a template for how the bytes of character-expression are to be
interpreted.

Valid format strings include: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' and 'XXXXXXXX-
XXXX-XXXX-XXXX-XXXXXXXXXXXX' (SQLSTATE 42815) where each 'x' or 'X' corresponds to one
hexadecimal digit in the result.

The result of the function is a varying-length character string FOR BIT DATA with the length attribute and
actual length based on the format string. For the two valid format strings listed previously, the length
attribute of the result is 36 and the actual length is 16. If a format-string argument is not specified, the
length attribute of the result is half the length attribute of character-expression and the actual length is
half the length of the actual length of character-expression. If the first argument can be null, the result can
be null; if the first argument is null, the result is the null value.

Examples
• Example 1: Represent a Universal Unique Identifier in its binary form:

VARCHAR_BIT_FORMAT('d83d6360-1818-11db-9804-b622a1ef5492',
 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx')

Result returned:

 x'D83D6360181811DB9804B622A1EF5492'

Chapter 1. Structured Query Language (SQL) 563

• Example 2: Represent a Universal Unique Identifier in its binary form:

VARCHAR_BIT_FORMAT('D83D6360-1818-11DB-9804-B622A1EF5492',
 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX')

Result returned:

 x'D83D6360181811DB9804B622A1EF5492'

• Example 3: Represent a string of hexadecimal characters in binary form.

VARCHAR_BIT_FORMAT('ef01abC9')

Result returned as a VARCHAR(4) FOR BIT DATA value:

 x'EF01ABC9'

• Example 4: Represent a string of hexadecimal characters as a character string in the code page of
the database. The result needs to be cast to a VARCHAR data type with the FOR MIXED DATA clause,
assuming the database supports graphic types. Otherwise the result needs to be cast to a VARCHAR
data type with the FOR SBCS clause. The following example assumes a Unicode database:

VALUES CAST(VARCHAR_BIT_FORMAT(HEX('abcdefg')) AS VARCHAR(10) FOR MIXED DATA)

Result returned:

abcdefg

VARCHAR_FORMAT
The VARCHAR_FORMAT function returns a character representation of an input expression.

Character string to VARCHAR
VARCHAR_FORMAT (character-expression)

DATE or TIMESTAMP to VARCHAR
VARCHAR_FORMAT (date-or-timestamp-expression

, format-string1

, locale-name

)

Signed numeric to VARCHAR
VARCHAR_FORMAT (numeric-expression

, format-string2

, locale-name

)

The schema is SYSIBM.

If any argument of the VARCHAR_FORMAT function can be null, the result can be null; if any argument is
null, the result is the null value.

564 IBM Db2 V11.5: SQL Reference

Character string to VARCHAR
character-expression

An expression that returns a value that must be a built-in CHAR or VARCHAR data type. In a Unicode
database, if a supplied argument is a GRAPHIC or VARGRAPHIC data type, it is first converted to
VARCHAR before evaluating the function.

The result is a VARCHAR with a length attribute that matches the length attribute of the argument. The
value of the result is the same as the value of character-expression.

The code page of the result is the code page of the section.

DATE or TIMESTAMP to VARCHAR
date-or-timestamp-expression

An expression that returns a value that must be a DATE or TIMESTAMP, or a valid string representation
of a date or timestamp that is not a CLOB or DBCLOB. In a Unicode database, if the expression returns
a graphic string representation of a date or timestamp, the returned value is first converted to a
character string before the function is evaluated.

If the input expression returns:

• A string, the format-string argument must also be specified.
• A DATE or a string representation of a date, the returned value is first converted to a TIMESTAMP(0)

value with a time component of exactly midnight (00.00.00).
• A string representation of a timestamp, it is first converted to a TIMESTAMP(12) value

For a list of valid formats for string representations of datetime values, see “String representations of
datetime values” on page 39.

format-string1
An expression that returns a value with one of the following built-in data types:

• CHAR or VARCHAR
• Signed numeric
• Datetime
• GRAPHIC or VARGRAPHIC (Unicode databases only)

If the data type is not CHAR or VARCHAR, it is implicitly cast to VARCHAR before the function is
evaluated. The actual length must not be greater than 255 bytes (SQLSTATE 22007). The value is a
template for how timestamp-expression is to be formatted.

The default format string is based on the value of the special register CURRENT LOCALE LC_TIME.

A valid format string must contain a combination of the format elements listed in Table 1 (SQLSTATE
22007). Two format elements can optionally be separated by one or more of the following separator
characters:

• minus sign (-)
• period (.)
• slash (/)
• comma (,)
• apostrophe (')
• semi-colon (;)
• colon (:)
• blank ()

Separator characters can also be specified at the start or end of format-string.

Chapter 1. Structured Query Language (SQL) 565

Table 104. Format elements for DATE or TIMESTAMP to VARCHAR

Format element Description

AM or PM Meridian indicator (morning or evening) without
periods. This format element is dependent
on locale-name, if specified; otherwise, it is
dependent on the value of the special register
CURRENT LOCALE LC_TIME.

A.M. or P.M. Meridian indicator (morning or evening) with
periods. This format element uses the exact
strings 'A.M.' or 'P.M.' and is independent of the
locale name in effect.

CC Century (01-99). If the last two digits of the four-
digit year are zero, the result is the first two digits
of the year; otherwise, the result is the first two
digits of the year plus one.

DAY, Day, or day Name of the day in uppercase, titlecase,
or lowercase format. The language used
is dependent on locale-name, if specified;
otherwise, it is dependent on the value of the
special register CURRENT LOCALE LC_TIME.

DY, Dy, or dy Abbreviated name of the day in uppercase,
titlecase, or lowercase format. The language
used is dependent on locale-name, if specified;
otherwise, it is dependent on the value of the
special register CURRENT LOCALE LC_TIME.

D Day of the week (1-7). The first day of the
week is dependent on locale-name, if specified;
otherwise, it is dependent on the value of the
special register CURRENT LOCALE LC_TIME.

DD Day of month (01-31).

DDD Day of year (001-366).

FF or FFn Fractional seconds (0-999999999999), where n
specifies the scale of the returned value. Valid
values for n are 1 - 12 with no leading zeros.
Specifying FF is equivalent to specifying FF6. If
the scale of the input timestamp is less than n,
the result is padded with trailing zeros.

HH HH behaves the same as HH12.

HH12 Hour of the day (01-12) in 12-hour format.

HH24 Hour of the day (00-24) in 24-hour format.

I ISO year (0-9). The last digit of the year based on
the ISO week that is returned.

ID ISO day of the week (1-7). 1 is Monday and 7 is
Sunday.

566 IBM Db2 V11.5: SQL Reference

Table 104. Format elements for DATE or TIMESTAMP to VARCHAR (continued)

Format element Description

IW ISO week of the year (01-53). The week starts
on Monday and includes seven days. Week 1 is
the first week of the year to contain a Thursday,
which is equivalent to the first week of the year
to contain January 4.

IY ISO year (00-99). The last two digits of the year
based on the ISO week that is returned.

IYY ISO year (000-999). The last three digits of the
year based on the ISO week that is returned.

IYYY ISO year (0000-9999). The 4-digit year based on
the ISO week that is returned.

J Julian day (number of days since January 1,
4713 BC).

MI Minute (00-59).

MM Month (01-12).

MONTH, Month, or month Name of the month in uppercase, titlecase,
or lowercase format. The language used
is dependent on locale-name, if specified;
otherwise, it is dependent on the value of the
special register CURRENT LOCALE LC_TIME.

MON, Mon, or mon Abbreviated name of the month in uppercase,
titlecase, or lowercase format. The language
used is dependent on locale-name, if specified;
otherwise, it is dependent on the value of the
special register CURRENT LOCALE LC_TIME.

MS Milleseconds (000-999). Same as FF3.

NNNNNN Microseconds (000000-999999). Same as FF6.

Q Quarter (1-4), where the months January
through March return 1.

RR RR behaves the same as YY.

RRRR RRRR behaves the same as YYYY.

SS Seconds (00-59).

SSSSS Seconds since previous midnight
(00000-86400).

US Microseconds (000000-999999). Same as FF6.

W Week of the month (1-5), where week 1 starts
on the first day of the month and ends on the
seventh day.

WW Week of the year (01-53), where week 1 starts on
January 1 and ends on January 7.

Y Last digit of the year (0-9).

YY Last two digits of the year (00-99).

Chapter 1. Structured Query Language (SQL) 567

Table 104. Format elements for DATE or TIMESTAMP to VARCHAR (continued)

Format element Description

YYY Last three digits of the year (000-999).

YYYY 4-digit year (0000-9999).

The format elements in Table 104 on page 566 are not case sensitive, with the following exceptions:

• AM, PM
• A.M., P.M.
• DAY, Day, day
• DY, Dy, dy
• D
• MONTH, Month, month
• MON, Mon, mon

In cases where format elements are ambiguous, the case insensitive format elements will be
considered first. For example, 'DDYYYY' would be interpreted as "DD followed by YYYY", not "D
followed by DY followed by YYY".

locale-name
A character constant that specifies the locale used for the following format elements:

• AM, PM
• DAY, Day, day
• DY, Dy, dy
• D
• MONTH, Month, month
• MON, Mon, mon

The specified locale name is not case sensitive and must be a valid locale (SQLSTATE 42815). For
information about valid locales and their naming,, see "Locale names for SQL and XQuery" in the
Globalization Guide . The default is the value of the CURRENT LOCALE LC_TIME special register.

The result is a representation of the input timestamp expression in the format specified by the format
string. The format string is interpreted as a series of format elements that can be separated by one
or more separator characters. A string of characters in the format string is interpreted as the longest
matching format element in Table 104 on page 566. If two format elements that contain the same
characters are not delimited by a separator character, the specification is interpreted, starting from the
left, as the longest matching format element in the table, and continues until matches are found for the
remainder of the format string. For example, 'YYYYYYDD' is interpreted as the format elements 'YYYY',
'YY', and 'DD'.

The result is a varying-length character string. The length attribute is 255. If the string units of the
environment or format-string is CODEUNITS32, the string units of the result is CODEUNITS32. Otherwise,
the string units of the result is OCTETS. The format-string determines the actual length of the result. If the
resulting string exceeds the length attribute of the result, the result is truncated.

The code page of the result is the code page of the section.

Signed numeric to VARCHAR
numeric-expression

An expression that returns a value of any built-in signed numeric data type. If the data type of the
value is not DECFLOAT, it is converted to DECFLOAT(34) for processing.

568 IBM Db2 V11.5: SQL Reference

format-string2
An expression that returns a value that has one of the following built-in data types:

• CHAR or VARCHAR
• Signed numeric
• Datetime
• GRAPHIC or VARGRAPHIC (Unicode databases only)

If the data type is not CHAR or VARCHAR, it is implicitly cast to VARCHAR before the function is
evaluated. The actual length cannot be greater than 255 bytes (SQLSTATE 22018). The value is used
as a template to format the input decimal floating-point expression. Format elements specified as a
prefix can be used only at the beginning of the template. Format elements specified as a suffix can be
used only at the end of the template. The template cannot contain more than one of the MI, S, or PR
format elements (SQLSTATE 22018).

If a format string is not specified, the function is equivalent to VARCHAR(DECFLOAT(numeric-
expression)).

Table 105. Format elements for decimal floating-point to varchar

Format
element Description

0 Each 0 represents a significant digit. Leading zeros in a number are displayed as zeros.

9 Each 9 represents a significant digit. Leading zeros in a number are displayed as
blanks.

PL or pl If the input decimal floating-point expression returns a positive number, a plus sign (+)
is added at the specified position.

G or g The group separator specified by the locale is added at the specified position.

D or d The decimal delimiter specified by the locale is added at the specified position.

, A comma is added at the specified position, for example as a group separator.

. A period is added at the specified position, for example as a decimal point.

S or s Prefix: If the input decimal floating-point expression returns:

• A negative number, a leading minus sign (-) is added to the result
• A positive number, a leading plus sign (+) is added to the result

$ Prefix: A leading dollar sign ($) is added to the result.

MI or mi Suffix: If the input decimal floating-point expression returns:

• A negative number, a trailing minus sign (-) is added to the result
• A positive number, a trailing blank is added to the result

PR or pr Suffix: If the input decimal floating-point expression returns:

• A negative number, a leading less than character (<) and a trailing greater than
character (>) are added to the result

• A positive number, a leading space and a trailing space are added to the result

The format elements are case sensitive.

locale-name
A character constant that specifies the locale used to determine the group separator and decimal
delimiter.

Chapter 1. Structured Query Language (SQL) 569

The specified locale name is not case sensitive and must be a valid locale (SQLSTATE 42815). For
information about valid locales and their naming,, see "Locale names for SQL and XQuery" in the
Globalization Guide . The default is the value of the CURRENT LOCALE LC_TIME special register.

The result is a varying-length character string representation of the input decimal floating-point
expression. If a single argument is specified the length attribute is 42. Otherwise the length attribute
is 254. If the string units of the environment or the format string is CODEUNITS32, the string units of the
result is CODEUNITS32; otherwise, the string units of the result is OCTETS. The actual length of the result
is determined by the format string, if specified; otherwise, the actual length of the result is the smallest
number of characters that can represent the value of the input decimal floating-point expression. If the
resulting string exceeds the length attribute of the result, the result is truncated.

If the value of the input decimal floating-point expression is the special value:

• Infinity, the string "INFINITY" is returned
• sNaN, the string "SNAN" is returned
• NaN, the string "NAN" is returned

If the special value is negative, the first character of the result is a minus sign (-). The decimal floating-
point special value sNaN does not result in an exception when converted to a string.

If the format string does not include any of the format elements MI, S, or PR, and if the value of the input
expression is negative, then a minus sign (-) is included in the result; otherwise, a blank is included in the
result.

If the number of digits to the left of the decimal point in the input expression is greater than the number of
digits to the left of the decimal point in the format string, the result is a string of one or more number sign
(#) characters. If the number of digits to the right of the decimal point in the input expression is greater
than the number of digits to the right of the decimal point in the format string, the result is rounded to the
number of digits to the right of the decimal point in the format string. The DECFLOAT rounding mode will
not be used. The rounding behavior of VARCHAR_FORMAT corresponds to a value of ROUND_HALF_UP.

The code page of the result is the code page of the section.

Notes
• Julian and Gregorian calendar: For Timestamp to varchar, the transition from the Julian calendar to the

Gregorian calendar on 15 October 1582 is taken into account by this function.
• Determinism: VARCHAR_FORMAT is a deterministic function. However, the following invocations of the

function depend on the value of the special register CURRENT LOCALE LC_TIME.

– Timestamp to varchar, when format-string is not explicitly specified, or when locale-name is not
explicitly specified and one of the following statements is true:

- format-string is not a constant
- format-string is a constant and includes format elements that are locale sensitive

These invocations that depend on the value of a special register cannot be used wherever special
registers cannot be used (SQLSTATE 42621, 428EC, or 429BX).

• Syntax alternatives: TO_CHAR is a synonym for VARCHAR_FORMAT.

Examples
• Example 1: Display the names and creation timestamps for all system tables that have names that start

with SYSU.

 SELECT VARCHAR(TABNAME, 20) AS TABLE_NAME,
 VARCHAR_FORMAT(CREATE_TIME, 'YYYY-MM-DD HH24:MI:SS')
 AS CREATION_TIME
 FROM SYSCAT.TABLES
 WHERE TABNAME LIKE 'SYSU%'

This example returns the following output:

570 IBM Db2 V11.5: SQL Reference

 TABLE_NAME CREATION_TIME
 -------------------- -------------------
 SYSUSERAUTH 2000-05-19 08:18:56
 SYSUSEROPTIONS 2000-05-19 08:18:56

• Example 2: The variable TMSTMP is defined as a TIMESTAMP and has the value
2007-03-09-14.07.38.123456. The following examples show invocations of the VARCHAR_FORMAT
function and the resulting string values. The data type of each result is VARCHAR(255).

Function invocation Result
------------------- ------
VARCHAR_FORMAT(TMSTMP,'YYYYMMDDHHMISSFF3') 20070309020738123
VARCHAR_FORMAT(TMSTMP,'YYYYMMDDHH24MISS') 20070309140738
VARCHAR_FORMAT(TMSTMP,'YYYYMMDDHHMI') 200703090207

VARCHAR_FORMAT(TMSTMP,'HH12:MI:SS.MS AM') 02:07:38.123 PM
VARCHAR_FORMAT(TMSTMP,'HH24:MI:SS.US') 14:07:38.123456

VARCHAR_FORMAT(TMSTMP,'DD/MM/YY') 09/03/07
VARCHAR_FORMAT(TMSTMP,'MM-DD-YYYY') 03-09-2007
VARCHAR_FORMAT(TMSTMP,'J') 2454169
VARCHAR_FORMAT(TMSTMP,'Q') 1
VARCHAR_FORMAT(TMSTMP,'W') 2
VARCHAR_FORMAT(TMSTMP,'IW') 10
VARCHAR_FORMAT(TMSTMP,'WW') 10
VARCHAR_FORMAT(TMSTMP,'Month','en_US') March
VARCHAR_FORMAT(TMSTMP,'MONTH','en_US') MARCH
VARCHAR_FORMAT(TMSTMP,'MON','en_US') MAR
VARCHAR_FORMAT(TMSTMP,'Day','en_US') Friday
VARCHAR_FORMAT(TMSTMP,'DAY','en_US') FRIDAY
VARCHAR_FORMAT(TMSTMP,'Dy','en_US') Fri
VARCHAR_FORMAT(TMSTMP,'Month','de_DE') März
VARCHAR_FORMAT(TMSTMP,'MONTH','de_DE') MÄRZ
VARCHAR_FORMAT(TMSTMP,'MON','de_DE') MÄRZ
VARCHAR_FORMAT(TMSTMP,'Day','de_DE') Freitag
VARCHAR_FORMAT(TMSTMP,'DAY','de_DE') FREITAG
VARCHAR_FORMAT(TMSTMP,'Dy','de_DE') Fr.

• Example 3: The variable DTE is defined as a DATE and has the following value: 2007-03-09. The
following examples show several invocations of the function and the resulting string values. The data
type of each result is VARCHAR(255).

Function invocation Result
------------------- ------
VARCHAR_FORMAT(DTE,'YYYYMMDD') 20070309
VARCHAR_FORMAT(DTE,'YYYYMMDDHH24MISS') 20070309000000

• Example 4: The variables POSNUM and NEGNUM are both defined as DECFLOAT(34), and the value
of POSNUM is 1234.56 and the value of NEGNUM is -1234.56. The following examples show several
invocations of the VARCHAR_FORMAT and the resulting string values. The data type of the first two
results is VARCHAR(42) and the rest are VARCHAR(254).

Function invocation Result
------------------- ------
VARCHAR_FORMAT(POSNUM) '1234.56'
VARCHAR_FORMAT(NEGNUM) '-1234.56'
VARCHAR_FORMAT(POSNUM,'9999.99') ' 1234.56'
VARCHAR_FORMAT(NEGNUM,'9999.99') '-1234.56'
VARCHAR_FORMAT(POSNUM,'99999.99') ' 1234.56'
VARCHAR_FORMAT(NEGNUM,'99999.99') ' -1234.56'
VARCHAR_FORMAT(POSNUM,'00000.00') ' 01234.56'
VARCHAR_FORMAT(NEGNUM,'00000.00') '-01234.56'
VARCHAR_FORMAT(POSNUM,'9999.99MI') '1234.56 '
VARCHAR_FORMAT(NEGNUM,'9999.99MI') '1234.56-'
VARCHAR_FORMAT(POSNUM,'S9999.99') '+1234.56'
VARCHAR_FORMAT(NEGNUM,'S9999.99') '-1234.56'
VARCHAR_FORMAT(POSNUM,'9999.99PR') ' 1234.56 '
VARCHAR_FORMAT(NEGNUM,'9999.99PR') '<1234.56>'
VARCHAR_FORMAT(POSNUM,'S$9,999.99') '+$1,234.56'
VARCHAR_FORMAT(NEGNUM,'S$9,999.99') '-$1,234.56'

Chapter 1. Structured Query Language (SQL) 571

VARCHAR_FORMAT(POSNUM,'99,99,99') ' 12,35'
VARCHAR_FORMAT(NEGNUM,'99,99,99') ' -12,35'
VARCHAR_FORMAT(POSNUM,'PL9999.99') '+1234.56'
VARCHAR_FORMAT(NEGNUM,'PL9999.99') ' 1234.56'
VARCHAR_FORMAT(POSNUM,'9999PL') ' 1234+'
VARCHAR_FORMAT(NEGNUM,'9999PL') '-1234 '
VARCHAR_FORMAT(POSNUM,'9999.9') ' 1234.6'
VARCHAR_FORMAT(NEGNUM,'9999.9') '-1234.6'
VARCHAR_FORMAT(POSNUM,'9999') ' 1235'
VARCHAR_FORMAT(NEGNUM,'9999') '-1235'
VARCHAR_FORMAT(POSNUM,'99.99') '######'
VARCHAR_FORMAT(NEGNUM,'99.99') '######'
VARCHAR_FORMAT(POSNUM,'9999D99', 'en_US') ' 1234.56'
VARCHAR_FORMAT(POSNUM,'9999D99', 'fr_FR') ' 1234,56'
VARCHAR_FORMAT(POSNUM,'9G999D99', 'en_US') ' 1,234.56'
VARCHAR_FORMAT(POSNUM,'9G999D99', 'de_DE') ' 1.234,56'

VARCHAR_FORMAT_BIT
The VARCHAR_FORMAT_BIT function returns a character representation of a bit string that has been
formatted using a character template.

VARCHAR_FORMAT_BIT (bit-data-expression , format-string)

The schema is SYSIBM.

bit-data-expression
An expression that returns a value that is a built-in character-string FOR BIT DATA data type
(SQLSTATE 42815). The required length is determined by the specified format string and how the
value is interpreted.

format-string
A character constant that contains a template for how the result is to be formatted.

Valid format strings include: 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' and 'XXXXXXXX-
XXXX-XXXX-XXXX-XXXXXXXXXXXX' (SQLSTATE 42815) where each 'x' or 'X' corresponds to one
hexadecimal digit from bit-data-expression.

The result of the function is a varying-length character string with the length attribute and actual length
based on the format string. If the string units of the environment or format-string is CODEUNITS32, the
string units of the result is CODEUNITS32. Otherwise, the string units of the result is OCTETS For the two
valid format strings listed previously, the length attribute is 36 and the actual length is 36 bytes. If the
first argument can be null, the result can be null; if the first argument is null, the result is the null value.

Examples
• Example 1: Represent a Universal Unique Identifier in its formatted form:

 VARCHAR_FORMAT_BIT(CAST(x'd83d6360181811db9804b622a1ef5492'
 AS VARCHAR(16) FOR BIT DATA),
 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx')

Result returned:

'd83d6360-1818-11db-9804-b622a1ef5492'

• Example 2: Represent a Universal Unique Identifier in its formatted form:

 VARCHAR_FORMAT_BIT(CAST(x'd83d6360181811db9804b622a1ef5492'
 AS CHAR(16) FOR BIT DATA),
 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX')

Result returned:

'D83D6360-1818-11DB-9804-B622A1EF5492'

572 IBM Db2 V11.5: SQL Reference

VARGRAPHIC
The VARGRAPHIC function returns a varying-length graphic string representation of a value of a different
data type.

Integer to vargraphic
VARGRAPHIC (integer-expression)

Decimal to vargraphic
VARGRAPHIC (decimal-expression

, decimal-character

)

Floating-point to vargraphic
VARGRAPHIC (floating-point-expression

, decimal-character)

Decimal floating-point to vargraphic
VARGRAPHIC (decimal-floating-point-expression

, decimal-character)

Character to vargraphic
VARGRAPHIC (character-expression

, integer)

Graphic to vargraphic
VARGRAPHIC (graphic-expression

, integer

)

Datetime to vargraphic
VARGRAPHIC (datetime-expression

, ISO

USA

EUR

JIS

LOCAL

)

Boolean to vargraphic
VARGRAPHIC (boolean-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name when keywords are
used in the function signature.

Chapter 1. Structured Query Language (SQL) 573

Integer to vargraphic
integer-expression

An expression that returns a value that is of an integer data type (SMALLINT, INTEGER, or
BIGINT).

The result is the varying-length graphic string representation of integer-expression in the form of an
SQL integer constant. The length attribute of the result depends on whether integer-expression is a
small, large or big integer as follows:

• If the first argument is a small integer, the maximum length of the result is 6.
• If the first argument is a large integer, the maximum length of the result is 11.
• If the first argument is a big integer, the maximum length of the result is 20.

The actual length of the result is the smallest number of double-byte characters that can be used to
represent the value of the argument. Leading zeros are not included. If the argument is negative, the
first double-byte character of the result is a minus sign; otherwise, the first double-byte character is a
digit.

The code page of the result is the DBCS code page of the section.

Decimal to vargraphic
decimal-expression

An expression that returns a value that is a decimal data type. The DECIMAL scalar function can
be used to change the precision and scale.

decimal-character
Specifies the double-byte character constant that is used to delimit the decimal digits in the result
graphic string. The double-byte character constant cannot be a digit, the plus sign (+), the minus
sign (-), or a blank (SQLSTATE 42815). The default is the period (.) character.

The result is a varying-length graphic string representation of decimal-expression in the form of an
SQL decimal constant. The length attribute of the result is 2+p, where p is the precision of decimal-
expression. The actual length of the result is the smallest number of double-byte characters that
can be used to represent the result, except that trailing zeros are included. Leading zeros are not
included. If decimal-expression is negative, the first double-byte character of the result is a minus
sign; otherwise, the first double-byte character is a digit or the decimal character. If the scale of
decimal-expression is zero, the decimal character is not returned.

The code page of the result is the DBCS code page of the section.

Floating-point to vargraphic
floating-point-expression

An expression that returns a value that is a floating-point data type (DOUBLE or REAL).
decimal-character

Specifies the double-byte character constant that is used to delimit the decimal digits in the result
graphic string. The double-byte character constant cannot be a digit, the plus sign (+), the minus
sign (-), or a blank (SQLSTATE 42815). The default is the period (.) character.

The result is a varying-length graphic string representation of floating-point-expression in the form of
an SQL floating-point constant.

The maximum length of the result is 24. The actual length of the result is the smallest number
of double-byte characters that can represent the value of floating-point-expression such that the
mantissa consists of a single digit other than zero followed by the decimal-character and a sequence
of digits. If floating-point-expression is negative, the first double-byte character of the result is a
minus sign; otherwise, the first double-byte character is a digit. If floating-point-expression is zero, the
result is 0E0.

The code page of the result is the DBCS code page of the section.

574 IBM Db2 V11.5: SQL Reference

Decimal floating-point to vargraphic
decimal-floating-point-expression

An expression that returns a value that is a decimal floating-point data type (DECFLOAT).
decimal-character

Specifies the double-byte character constant that is used to delimit the decimal digits in the result
graphic string. The double-byte character constant cannot be a digit, the plus sign (+), the minus
sign (-), or a blank (SQLSTATE 42815). The default is the period (.) character.

The result is a varying-length graphic string representation of decimal-floating-point-expression in
the form of an SQL decimal floating-point constant. The maximum length of the result is 42. The
actual length of the result is the smallest number of double-byte characters that can represent the
value of decimal-floating-point-expression. If decimal-floating-point-expression is negative, the first
double-byte character of the result is a minus sign; otherwise, the first double-byte character is a
digit. If decimal-floating-point-expression is zero, the result is 0.

If the value of decimal-floating-point-expression is the special value Infinity, sNaN, or NaN, the strings
G'INFINITY', G'SNAN', and G'NAN', respectively, are returned. If the special value is negative, the first
double-byte character of the result is a minus sign. The decimal floating-point special value sNaN
does not result in a warning when converted to a string.

The code page of the result is the DBCS code page of the section.

Character to vargraphic
In Unicode databases:
character-expression

An expression that returns a value that is a built-in character string data type. The expression
must not be a FOR BIT DATA subtype (SQLSTATE 42846).

integer
An integer constant that specifies the length attribute for the resulting varying-length graphic
string. The value must be between 0 and the maximum length for the VARGRAPHIC data type in
the string units of the result.

If the second argument is not specified:

• If the character-expression is the empty string constant, the length attribute of the result is 0.
• Otherwise, the length attribute of the result is the lower of the following values:

– The maximum length for the VARGRAPHIC data type in the string units of the result.
– The length attribute of the first argument.

The result is a varying-length graphic string that is converted from character-expression. The length
attribute of the result is determined by the value of integer.

If the length of character-expression that is converted to a graphic string is greater than the length
attribute of the result, several scenarios exist:

• If the string unit of the result is CODEUNITS32, truncation is performed. If only blank characters
are truncated and character-expression is CHAR or VARCHAR, no warning is returned. Otherwise, a
warning is returned (SQLSTATE 01004).

• If integer is specified, truncation is performed with a warning returned (SQLSTATE 01004). When the
output string is truncated, such that the last character is a high surrogate, that surrogate is deleted.
Do not rely on this behavior because it might change in a future release.

• If integer is not specified and character-expression is a VARCHAR, truncation is performed with a
warning returned (SQLSTATE 01004).

• If integer is not specified and character-expression is a CLOB, an error is returned (SQLSTATE
22001).

This function converts character-expression from UTF-8 to UTF-16. Every character of character-
expression is converted.

Chapter 1. Structured Query Language (SQL) 575

In non-Unicode databases:
character-expression

An expression that returns a value that is a built-in CHAR or VARCHAR data type.

The result is a varying-length graphic string that is converted from character-expression. The length
attribute of the result is the minimum of the length attribute of character-expression and the
maximum length for the VARGRAPHIC data type.

If the length of character-expression that is converted to a graphic string is greater than the length
attribute of the result, an error is returned (SQLSTATE 22001).

For databases with a code set that is not Japanese EUC (code page 954) or Traditional Chinese (code
page 964), each single-byte character in character-expression is converted to its equivalent double-
byte representation or to the double-byte substitution character in the result. Each double-byte
character in character-expression is mapped without extra conversion. If the first byte of a double-
byte character appears as the last byte of character-expression, it is converted to the double-byte
substitution character. The sequential order of the characters in character-expression is preserved. No
warning or error code is generated if one or more double-byte substitution characters are returned in
the result.

For details about the conversion process for databases with a code set that is Japanese EUC
(code page 954) or Traditional Chinese (code page 964), refer to the topic "Japanese and traditional-
Chinese extended UNIX code (EUC) considerations" in Globalization Guide.

Graphic to vargraphic
graphic-expression

An expression that returns a value that is a built-in graphic string data type.
integer

An integer constant that specifies the length attribute for the resulting varying-length graphic
string. The value must be between 0 and the maximum length for the VARGRAPHIC data type in
the string units of the result. If the second argument is not specified:

• If the graphic-expression is the empty string constant, the length attribute of the result is 0.
• Otherwise, the length attribute of the result is the lower of the following values:

– The maximum length for the VARGRAPHIC data type in the string units of the result
– The length attribute of the first argument

The result is a varying-length graphic string. The length attribute of the result is determined by the
value of integer.

If the length of graphic-expression is greater than the length attribute of the result, several scenarios
exist:

• If the string unit of the result is CODEUNITS32, truncation is performed. If only blank characters are
truncated and graphic-expression is GRAPHIC or VARGRAPHIC, no warning is returned. Otherwise, a
warning is returned (SQLSTATE 01004).

• If integer is specified, truncation is performed. If only blank characters are truncated and graphic-
expression is GRAPHIC or VARGRAPHIC, no warning is returned. Otherwise, a warning is returned
(SQLSTATE 01004). In a Unicode database, when the output string is truncated, such that the last
character is a high surrogate, that surrogate is converted to the blank character (X'0020'). Do not
rely on this behavior, because it might change in a future release.

• If integer is not specified, an error is returned (SQLSTATE 22001).

Datetime to vargraphic
datetime-expression

An expression that is one of the following data types:

576 IBM Db2 V11.5: SQL Reference

DATE
The result is the graphic string representation of the date in the format specified by the
second argument. The length of the result is 10. An error is returned if the second argument is
specified and is not a valid value (SQLSTATE 42703).

TIME
The result is the graphic string representation of the time in the format specified by the second
argument. The length of the result is 8. An error is returned if the second argument is specified
and is not a valid value (SQLSTATE 42703).

TIMESTAMP
The result is the graphic string representation of the timestamp. If the data type of datetime-
expression is TIMESTAMP(0), the length of the result is 19. If the data type of datetime-
expression is TIMESTAMP(n), where n is between 1 and 12, the length of the result is
20+n. Otherwise, the length of the result is 26. The second argument must not be specified
(SQLSTATE 42815).

The code page of the result is the DBCS code page of the section.
Boolean to vargraphic

boolean-expression
An expression that returns a Boolean value (TRUE or FALSE). The result is either 'TRUE' or 'FALSE'.

Result
The VARGRAPHIC function returns a varying-length graphic string representation of:

• An integer number (Unicode database only), if the first argument is a SMALLINT, INTEGER, or BIGINT
• A decimal number (Unicode database only), if the first argument is a decimal number
• A double-precision floating-point number (Unicode database only), if the first argument is a DOUBLE or

REAL
• A decimal floating-point number (Unicode database only), if the first argument is a decimal floating-

point number (DECFLOAT)
• A character string, if the first argument is any type of character string
• A graphic string, if the first argument is any type of graphic string
• A datetime value (Unicode databases only), if the first argument is a DATE, TIME, or TIMESTAMP
• A Boolean value (TRUE or FALSE)

In a non-Unicode database, the string units of the result is double bytes. Otherwise, the string units of the
result is determined by the data type of the first argument.

• CODEUNITS16, if the first argument is character string or a graphic string with string units of OCTETS or
CODEUNITS16.

• CODEUNITS32, if the first argument is character string or a graphic string with string units of
CODEUNITS32.

• Determined by the default string unit of the environment, if the first argument is not a character string or
a graphic string.

If the first argument can be null, the result can be null; if the first argument is null, the result is the null
value.

Notes
• Increasing portability of applications: If the first argument is numeric, or if the first argument is a

string and the length argument is specified, use the “CAST specification” on page 152 instead of this
function to increase the portability of your applications.

Chapter 1. Structured Query Language (SQL) 577

Examples
• Example 1: The EDLEVEL column is defined as SMALLINT. The following statement returns the value as

a varying-length graphic string.

 SELECT VARGRAPHIC(EDLEVEL)
 FROM EMPLOYEE
 WHERE LASTNAME = 'HAAS'

Results in the value G'18'.
• Example 2: The SALARY and COMM columns are defined as DECIMAL with a precision of 9 and a scale of

2. Return the total income for employee Haas using the comma decimal character.

 SELECT VARGRAPHIC(SALARY + COMM, ',')
 FROM EMPLOYEE
 WHERE LASTNAME = 'HAAS'

Results in the value G'56970,00'.
• Example 3: The following statement returns a string of data type VARGRAPHIC with the value 'TRUE'.

 values VARGRAPHIC(3=3)

• Example 4: The following statement returns a string of data type VARGRAPHIC with the value 'FALSE'.

 values VARGRAPHIC(3>3)

VERIFY_GROUP_FOR_USER
The VERIFY_GROUP_FOR_USER function returns a value that indicates whether any of the groups
associated with the authorization ID identified by the SESSION_USER special register are in the group
names specified by the list of group-name-expression arguments.

VERIFY_GROUP_FOR_USER (SESSION_USER , group-name-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

group-name-expression
An expression that specifies an authorization name (SQLSTATE 42815). The existence of the
authorization name at the current server is not verified. group-name-expression must return a built-in
character string data type or graphic string data type that is not a LOB (SQLSTATE 42815). The content
of the string is not folded to uppercase and is not left-aligned.

The result of the function is an integer. The result cannot be null. The result is 1 if any of the groups
associated with the authorization ID identified by the SESSION_USER special register are in the list of
group-name-expression arguments. Otherwise, the result is 0.

Example 1
The tellers in a bank can only access customers from their own branch. All tellers are members in the
group TELLER. A row permission is created by a user with SECADM authority to enforce this rule.

CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_GROUP_FOR_USER(SESSION_USER,'TELLER') = 1 AND
 BRANCH = (SELECT HOME_BRANCH FROM INTERNAL_INFO
 WHERE EMP_ID = USER)
ENFORCED FOR ALL ACCESS
ENABLE

578 IBM Db2 V11.5: SQL Reference

Example 2
The determination on whether the user can see the row is determined by the name of the role in the
ACCESS_ROLE column of the table being protected. A row permission is created by a user with the
SECADM authority to check the session user is in this role.

CREATE PERMISSION ROLEACCESS ON CUSTOMER
FOR ROWS WHERE (VERIFY_GROUP_FOR_USER(SESSION_USER, ACCESS_ROLE) = 1)
ENFORCED FOR ALL ACCESS
ENABLE

VERIFY_ROLE_FOR_USER
The VERIFY_ROLE_FOR_USER function returns a value that indicates whether any of the roles associated
with the authorization ID identified by the SESSION_USER special register are in (or contain any of) the
role names specified by the list of role-name-expression arguments.

VERIFY_ROLE_FOR_USER (SESSION_USER , role-name-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

role-name-expression
An expression that specifies a role name (SQLSTATE 42815). The existence of the role name at the
current server is not verified. role-name-expression must return a built-in character string data type or
graphic string data type that is not a LOB (SQLSTATE 42815). The content of the string is not folded to
uppercase and is not left-aligned.

The result of the function is an integer. The result cannot be null. The result is 1 if any of the roles
associated with the authorization ID identified by the SESSION_USER special register are in (or contain
any of) the role names specified by the list of role-name-expression arguments. Otherwise, the result is 0.

Example 1
The tellers in a bank can only access customers from their own branch. All tellers are members in the role
TELLER. A row permission is created by a user with the SECADM authority to enforce this rule.

CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_ROLE_FOR_USER(SESSION_USER,'TELLER') = 1 AND
 BRANCH = (SELECT HOME_BRANCH FROM INTERNAL_INFO
 WHERE EMP_ID = USER)
ENFORCED FOR ALL ACCESS
ENABLE

Example 2
The determination on whether the user can see the row is determined by the name of the role in the
ACCESS_ROLE column of the table being protected. A row permission is created by a user with the
SECADM authority to check the session user is in this role.

CREATE PERMISSION ROLEACCESS ON CUSTOMER
FOR ROWS WHERE (VERIFY_ROLE_FOR_USER(SESSION_USER, ACCESS_ROLE) = 1)
ENFORCED FOR ALL ACCESS
ENABLE

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER
The VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER function returns a value that indicates whether the
authorization ID identified by the SESSION_USER special register has acquired a role under a trusted

Chapter 1. Structured Query Language (SQL) 579

connection associated with some trusted context and that role is in (or part of) the role names specified
by the list of role-name-expression arguments.

VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER (SESSION_USER

, role-name-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

role-name-expression
An expression that specifies a role name (SQLSTATE 42815). The existence of the role name at the
current server is not verified. role-name-expression must return a built-in character string data type or
graphic string data type that is not a LOB (SQLSTATE 42815). The content of the string is not folded to
uppercase and is not left-aligned.

The result of the function is an integer. The result cannot be null. The result is 1 if the authorization
ID identified by the SESSION_USER special register has acquired a role under a trusted connection
associated with some trusted context and that role is in (or contained in any of) the role names specified
by the list of role-name-expression arguments. Otherwise, the result is 0.

Example 1
The tellers in a bank can only access customers from their own branch. All tellers are members in the role
TELLER, which can only be acquired through a trusted connection. A row permission is created by a user
with SECADM authority to enforce this rule.

CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE
 VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER,'TELLER') = 1 AND
 BRANCH = (SELECT HOME_BRANCH FROM INTERNAL_INFO
 WHERE EMP_ID = USER)
ENFORCED FOR ALL ACCESS
ENABLE

Example 2
The determination on whether the user can see the row is determined by the name of the role in the
ACCESS_ROLE column of the table being protected. A row permission is created by a user with the
SECADM authority to check the session user is in this role.

CREATE PERMISSION ROLEACCESS ON CUSTOMER
FOR ROWS WHERE (VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER(SESSION_USER, ACCESS_ROLE) = 1)
ENFORCED FOR ALL ACCESS
ENABLE

WEEK
The WEEK scalar function returns the week of the year of the argument as an integer value in range 1-54.
The week starts with Sunday.

WEEK (expression)

The schema is SYSFUN.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIMESTAMP, or a
valid character string representation of a date or timestamp that is not a CLOB. In a Unicode database,
if a supplied argument is a graphic string, it is first converted to a character string before the function
is executed.

580 IBM Db2 V11.5: SQL Reference

The result of the function is INTEGER. The result can be null; if the argument is null, the result is the null
value.

WEEK_ISO
The WEEK_ISO function returns the week of the year of the argument as an integer value in the range
1-53.

WEEK_ISO (expression)

The schema is SYSFUN.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIMESTAMP, or a
valid character string representation of a date or timestamp that is not a CLOB. In a Unicode database,
if a supplied argument is a graphic string, it is first converted to a character string before the function
is executed.

The week starts with Monday and always includes 7 days. Week 1 is the first week of the year to contain a
Thursday, which is equivalent to the first week containing January 4. It is therefore possible to have up to
3 days at the beginning of a year appear in the last week of the previous year. Conversely, up to 3 days at
the end of a year may appear in the first week of the next year.

The result of the function is INTEGER. The result can be null; if the argument is null, the result is the null
value.

Example
The following list shows examples of the result of WEEK_ISO and DAYOFWEEK_ISO.

DATE WEEK_ISO DAYOFWEEK_ISO
---------- ----------- -------------
1997-12-28 52 7
1997-12-31 1 3
1998-01-01 1 4
1999-01-01 53 5
1999-01-04 1 1
1999-12-31 52 5
2000-01-01 52 6
2000-01-03 1 1

WEEKS_BETWEEN
The WEEKS_BETWEEN function returns the number of full weeks between the specified arguments.

WEEKS_BETWEEN (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that specifies the first datetime value to compute the number of full weeks between
two datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or
VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC
data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If
expression1 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that
is accepted by the TIMESTAMP scalar function.

expression2
An expression that specifies the second datetime value to compute the number of full weeks between
two datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or
VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC
data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If

Chapter 1. Structured Query Language (SQL) 581

expression2 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that
is accepted by the TIMESTAMP scalar function.

If there is less than a full week between expression1 and expression2, the result is zero. If expression1
is later than expression2, the result is positive. If expression1 is earlier than expression2, the result is
negative. In NPS compatibility mode, this function always returns a positive number. If expression1 or
expression2 contains time information, this information is also used to determine the number of full
weeks. If expression1 or expression2 does not contain time information, a time of midnight (00.00.00) is
used for the argument that is missing time information.

The result of the function is an INTEGER. If either argument can be null, the result can be null. If either
argument is null, the result is the null value.

Examples
1. Set the host variable NUM_WEEKS with the number of full weeks between 2012-03-06 and

2012-02-28.

 SET :NUM_WEEKS = WEEKS_BETWEEN(DATE '2012-03-06', DATE '2012-02-28')

The host variable NUM_WEEKS is set to 1 because there are 7 days between the arguments, including
February 29, 2012.

2. Set the host variable NUM_WEEKS with the number of full weeks between 2012-03-05 and
2012-02-28.

 SET :NUM_WEEKS = WEEKS_BETWEEN(DATE '2012-03-05', DATE '2012-02-28')

The host variable NUM_WEEKS is set to 0 because there are only 6 days between the arguments.
3. Set the host variable NUM_WEEKS with the number of full weeks between 2013-09-21-23.59.59 and

2013-09-01-00.00.00.

 SET :NUM_WEEKS = WEEKS_BETWEEN(TIMESTAMP '2013-09-21-23.59.59',
 TIMESTAMP '2013-09-01-00.00.00')

The host variable NUM_WEEKS is set to 2 because there is 1 second less than 3 full weeks between
the arguments. It is positive because the first argument is later than the second argument.

4. Set the host variable NUM_WEEKS with the number of full weeks between 2013-09-01-00.00.00 and
2013-09-21-23.59.59.

 SET :NUM_WEEKS = WEEKS_BETWEEN(TIMESTAMP '2013-09-01-00.00.00',
 TIMESTAMP '2013-09-21-23.59.59')

The host variable NUM_WEEKS is set to -2 because there is 1 second less than 3 full weeks between
the arguments. It is negative because the first argument is earlier than the second argument.

WIDTH_BUCKET
The WIDTH_BUCKET function is used to create equal-width histograms.

WIDTH_BUCKET (expression , bound1 , bound2 , num-buckets)

The schema is SYSIBM.

expression
An expression that specifies the value to be assigned into a bucket. The expression must return a
value that is a built-in numeric, CHAR, or VARCHAR data type. In a Unicode database, the expression
can also be a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC
are supported by using implicit casting. If the data type is DECFLOAT, the value must not be a special
value such as NaN or INFINITY (SQLSTATE 42815).

582 IBM Db2 V11.5: SQL Reference

bound1
An expression that specifies the left end point. The expression must return a value that is a built-in
numeric, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC
or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using
implicit casting. If the data type is DECFLOAT, the value must not be a special value such as NaN or
INFINITY (SQLSTATE 42815).

bound2
An expression that specifies the right end point. The expression must return a value that is a built-in
numeric, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC
or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using
implicit casting. If the data type is DECFLOAT, the value must not be a special value such as NaN or
INFINITY (SQLSTATE 42815). bound1 must not be equal to bound2 (SQLSTATE 2201G).

num-buckets
An expression that specifies the number of buckets between bound1 and bound2. The expression
must return a value that is a SMALLINT, INTEGER, BIGINT, DECIMAL, DECFLOAT, CHAR, or VARCHAR
data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data
type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If the
expression is a CHAR, VARCHAR, a GRAPHIC, or VARGRAPHIC, it is cast to DECFLOAT(34) before the
function is evaluated. If the value is a DECIMAL or DECFLOAT, it is truncated to zero places to the
left of the decimal point. The value must be greater than 0 (SQLSTATE 2201G). If the data type is
DECFLOAT, the value must not be a special value such as NaN or INFINITY (SQLSTATE 42815).

The data type of the result is based on the data type of num-buckets.

Table 106. Data type of the result

Data type of num-buckets Data type of result

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

DECIMAL(p,s) DECIMAL(MIN(31, p-s+1), 0)

DECFLOAT(n) DECFLOAT(n)

This function returns the bucket number that expression falls into given bound1, bound2, and num-
buckets. The range from bound1 to bound2 is divided into num-buckets buckets starting from bucket 1 to
bucket num-buckets.

If any argument can be null, the result can be null. If any argument is null, the result is the null value.

Notes
• If bound1 is less than bound2, each bucket is a left-closed, right-open interval on the real line. If

expression is less than bound1, the result is 0, which represents an underflow bucket. If expression is
greater than or equal to bound2, the result is num-buckets + 1, which represents an overflow bucket.

• If bound1 is greater than bound2, each bucket is a left-closed, right-open interval on the real line. If
expression is greater than bound1, the result is 0, which represents an underflow bucket. If expression
is less than or equal to bound2, the result is num-buckets + 1, which represents an overflow bucket.

• When num-buckets is the maximum value for the data type, an error is returned if the result is num-
buckets + 1 (SQLSTATE 22003).

• Several arithmetic operations are used to compute the result. If any of these arithmetic operations
result in an overflow, an error is returned (SQLSTATE 22003).

Chapter 1. Structured Query Language (SQL) 583

Example
Using the EMPLOYEE table, assign a bucket to each employee's salary using a range of 35000 to 100000
divided into 13 buckets.

 SELECT EMPNO, SALARY, WIDTH_BUCKET(SALARY, 35000, 100000, 13)
 FROM EMPLOYEE ORDER BY EMPNO

15 buckets are assigned with the following ranges:

• Bucket 0: salary < 35000
• Bucket 1: 35000 <= salary < 40000
• Bucket 2: 40000 <= salary < 45000
• Bucket 3: 45000 <= salary < 50000
• Bucket 4: 50000 <= salary < 55000
• Bucket 5: 55000 <= salary < 60000
• Bucket 6: 60000 <= salary < 65000
• Bucket 7: 65000 <= salary < 70000
• Bucket 8: 70000 <= salary < 75000
• Bucket 9: 75000 <= salary < 80000
• Bucket 10: 80000 <= salary < 85000
• Bucket 11: 85000 <= salary < 90000
• Bucket 12: 90000 <= salary < 95000
• Bucket 13: 95000 <= salary < 100000
• Bucket 14: salary >= 100000

The query has the following output:

EMPNO SALARY 3
------ ----------- -----------
000010 152750.00 14
000020 94250.00 12
000030 98250.00 13
000050 80175.00 10
000060 72250.00 8
000070 96170.00 13
000090 89750.00 11
000100 86150.00 11
000110 66500.00 7
000120 49250.00 3
000130 73800.00 8
000140 68420.00 7
000150 55280.00 5
000160 62250.00 6
000170 44680.00 2
000180 51340.00 4
000190 50450.00 4
000200 57740.00 5
000210 68270.00 7
000220 49840.00 3
000230 42180.00 2
000240 48760.00 3
000250 49180.00 3
000260 47250.00 3
000270 37380.00 1
000280 36250.00 1
000290 35340.00 1
000300 37750.00 1
000310 35900.00 1
000320 39950.00 1
000330 45370.00 3
000340 43840.00 2
200010 46500.00 3
200120 39250.00 1
200140 68420.00 7
200170 64680.00 6

584 IBM Db2 V11.5: SQL Reference

200220 69840.00 7
200240 37760.00 1
200280 46250.00 3
200310 35900.00 1
200330 35370.00 1
200340 31840.00 0

 42 record(s) selected.

XMLATTRIBUTES
The XMLATTRIBUTES function constructs XML attributes from the arguments.

XMLATTRIBUTES (

,

attribute-value-expression

AS attribute-name

)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

This function can only be used as an argument of the XMLELEMENT function. The result is an XML
sequence containing an XQuery attribute node for each non-null input value.

attribute-value-expression
An expression whose result is the attribute value. The data type of attribute-value-expression cannot
be an XML type, a BINARY type, a VARBINARY type, or a structured type (SQLSTATE 42884). The
expression can be any SQL expression. If the expression is not a simple column reference, an attribute
name must be specified.

attribute-name
Specifies an attribute name. The name is an SQL identifier that must be in the form of an XML qualified
name, or QName (SQLSTATE 42634). See the W3C XML namespace specifications for more details on
valid names. The attribute name cannot be xmlns or prefixed with xmlns:. A namespace is declared
using the function XMLNAMESPACES. Duplicate attribute names, whether implicit or explicit, are not
allowed (SQLSTATE 42713).

If attribute-name is not specified, attribute-value-expression must be a column name (SQLSTATE
42703). The attribute name is created from the column name using the fully escaped mapping from a
column name to an XML attribute name.

The data type of the result is XML. If the result of attribute-value-expression can be null, the result can be
null; if the result of every attribute-value-expression is null, the result is the null value.

Examples
Note: XMLATTRIBUTES does not insert blank spaces or new line characters in the output. All example
output has been formatted to enhance readability.

• Example 1: Produce an element with attributes.

 SELECT E.EMPNO, XMLELEMENT(
 NAME "Emp",
 XMLATTRIBUTES(
 E.EMPNO, E.FIRSTNME ||' '|| E.LASTNAME AS "name"
)
)
 AS "Result"
 FROM EMPLOYEE E WHERE E.EDLEVEL = 12

This query produces the following result:

EMPNO Result
000290 <Emp EMPNO="000290" name="JOHN PARKER"></Emp>
000310 <Emp EMPNO="000310" name="MAUDE SETRIGHT"></Emp>
200310 <Emp EMPNO="200310" name="MICHELLE SPRINGER"></Emp>

Chapter 1. Structured Query Language (SQL) 585

http://www.w3.org/TR/REC-xml-names/

• Example 2: Produce an element with a namespace declaration that is not used in any QName. The prefix
is used in an attribute value.

 VALUES XMLELEMENT(
 NAME "size",
 XMLNAMESPACES(
 'http://www.w3.org/2001/XMLSchema-instance' AS "xsi",
 'http://www.w3.org/2001/XMLSchema' AS "xsd"
),
 XMLATTRIBUTES(
 'xsd:string' AS "xsi:type"
), '1'
)

This query produces the following result:

<size xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:type="xsd:string">1</size>

XMLCOMMENT
The XMLCOMMENT function returns an XML value with a single XQuery comment node with the input
argument as the content.

XMLCOMMENT (string-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

string-expression
An expression whose value has a character string type: CHAR, VARCHAR or CLOB. The result of the
string-expression is parsed to check for conformance to the requirements for an XML comment, as
specified in the XML 1.0 rule. The result of the string-expression must conform to the following regular
expression:

 ((Char - '-') | ('-' (Char - '-')))*

where Char is defined as any Unicode character excluding surrogate blocks X'FFFE' and X'FFFF'.
Basically, the XML comment cannot contain two adjacent hyphens, and cannot end with a hyphen
(SQLSTATE 2200S).

The data type of the result is XML. If the result of string-expression can be null, the result can be null; if
the input value is null, the result is the null value.

XMLCONCAT
The XMLCONCAT function returns a sequence containing the concatenation of a variable number of XML
input arguments.

XMLCONCAT (XML-expression , XML-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

XML-expression
Specifies an expression of data type XML.

The data type of the result is XML. The result is an XML sequence containing the concatenation of the
non-null input XML values. Null values in the input are ignored. If the result of any XML-expression can be
null, the result can be null; if the result of every input value is null, the result is the null value.

586 IBM Db2 V11.5: SQL Reference

Example
Note: XMLCONCAT does not insert blank spaces or new line characters in the output. All example output
has been formatted to enhance readability.

Construct a department element for departments A00 and B01, containing a list of employees sorted by
first name. Include an introductory comment immediately preceding the department element.

 SELECT XMLCONCAT(
 XMLCOMMENT(
 'Confirm these employees are on track for their product schedule'
),
 XMLELEMENT(
 NAME "Department",
 XMLATTRIBUTES(
 E.WORKDEPT AS "name"
),
 XMLAGG(
 XMLELEMENT(
 NAME "emp", E.FIRSTNME
)
 ORDER BY E.FIRSTNME
)
)
)
 FROM EMPLOYEE E
 WHERE E.WORKDEPT IN ('A00', 'B01')
 GROUP BY E.WORKDEPT

This query produces the following result:

<!--Confirm these employees are on track for their product schedule-->
<Department name="A00">
<emp>CHRISTINE</emp>
<emp>DIAN</emp>
<emp>GREG</emp>
<emp>SEAN</emp>
<emp>VINCENZO</emp>
</Department>
<!--Confirm these employees are on track for their product schedule-->
<Department name="B01">
<emp>MICHAEL</emp>
</Department>

XMLDOCUMENT
The XMLDOCUMENT function returns an XML value with a single XQuery document node with zero or
more children nodes.

XMLDOCUMENT (XML-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

XML-expression
An expression that returns an XML value. A sequence item in the XML value must not be an attribute
node (SQLSTATE 10507).

The data type of the result is XML. If the result of XML-expression can be null, the result can be null; if the
input value is null, the result is the null value.

The children of the resulting document node are constructed as described in the following steps. The
input expression is a sequence of nodes or atomic values, which is referred to in these steps as the
content sequence.

1. If the content sequence contains a document node, the document node is replaced in the content
sequence by the children of the document node.

2. Each adjacent sequence of one or more atomic values in the content sequence are replaced with a
text node containing the result of casting each atomic value to a string with a single blank character
inserted between adjacent values.

Chapter 1. Structured Query Language (SQL) 587

3. For each node in the content sequence, a new deep copy of the node is constructed. A deep copy of a
node is a copy of the whole subtree rooted at that node, including the node itself and its descendants.
Each copied node has a new node identity.

4. The nodes in the content sequence become the children of the new document node.

The XMLDOCUMENT function effectively executes the XQuery computed document constructor. The
result of

XMLQUERY('document {$E}' PASSING BY REF XML-expression AS "E")

is equivalent to

XMLDOCUMENT(XML-expression)

with the exception of the case where XML-expression is null and XMLQUERY returns the empty sequence
compared to XMLDOCUMENT which returns the null value.

Example
Insert a constructed document into an XML column.

 INSERT INTO T1 VALUES(
 123, (
 SELECT XMLDOCUMENT(
 XMLELEMENT(
 NAME "Emp", E.FIRSTNME || ' ' || E.LASTNAME, XMLCOMMENT(
 'This is just a simple example'
)
)
)
 FROM EMPLOYEE E
 WHERE E.EMPNO = '000120'
)
)

XMLELEMENT
The XMLELEMENT function returns an XML value that is an XQuery element node.

XMLELEMENT (NAME element-name

, xmlnamespaces-declaration

, xmlattributes-function

, element-content-expression

OPTION
1

EMPTY ON NULL

NULL ON NULL
2

XMLBINARY
USING

BASE64

XMLBINARY
USING

HEX

3

)

Notes:
1 The OPTION clause can only be specified if at least one xmlattributes-function or element-content-
expression is specified.

588 IBM Db2 V11.5: SQL Reference

2 NULL ON NULL or EMPTY ON NULL can only be specified if at least one element-content-expression is
specified.
3 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

NAME element-name
Specifies the name of an XML element. The name is an SQL identifier that must be in the form of an
XML qualified name, or QName (SQLSTATE 42634). See the W3C XML namespace specifications for
more details on valid names. If the name is qualified, the namespace prefix must be declared within
the scope (SQLSTATE 42635).

xmlnamespaces-declaration
Specifies the XML namespace declarations that are the result of the XMLNAMESPACES declaration.
The namespaces that are declared are in the scope of the XMLELEMENT function. The namespaces
apply to any nested XML functions within the XMLELEMENT function, regardless of whether or not
they appear inside another subselect.

If xmlnamespaces-declaration is not specified, namespace declarations are not associated with the
constructed element.

xmlattributes-function
Specifies the XML attributes for the element. The attributes are the result of the XMLATTRIBUTES
function.

element-content-expression
The content of the generated XML element node is specified by an expression or a list of expressions.
The data type of element-content-expression cannot be a BINARY type, a VARBINARY type, or a
structured type (SQLSTATE 42884). The expression can be any SQL expression.

If element-content-expression is not specified, an empty string is used as the content for the element
and OPTION NULL ON NULL or EMPTY ON NULL must not be specified.

OPTION
Specifies additional options for constructing the XML element. If no OPTION clause is specified,
the default is EMPTY ON NULL XMLBINARY USING BASE64. This clause has no impact on nested
XMLELEMENT invocations specified in element-content-expression.
EMPTY ON NULL or NULL ON NULL

Specifies whether a null value or an empty element is to be returned if the values of each element-
content-expression is a null value. This option only affects null handling of element contents, not
attribute values. The default is EMPTY ON NULL.
EMPTY ON NULL

If the value of each element-content-expression is null, an empty element is returned.
NULL ON NULL

If the value of each element-content-expression is null, a null value is returned.
XMLBINARY USING BASE64 or XMLBINARY USING HEX

Specifies the assumed encoding of binary input data, character string data with the FOR BIT DATA
attribute, or a distinct type that is based on one of these types. The encoding applies to element
content or attribute values. The default is XMLBINARY USING BASE64.
XMLBINARY USING BASE64

Specifies that the assumed encoding is base64 characters, as defined for XML schema type
xs:base64Binary encoding. The base64 encoding uses a 65-character subset of US-ASCII (10
digits, 26 lowercase characters, 26 uppercase characters, '+', and '/') to represent every six
bits of the binary or bit data with one printable character in the subset. These characters are
selected so that they are universally representable. Using this method, the size of the encoded
data is 33 percent larger than the original binary or bit data.

XMLBINARY USING HEX
Specifies that the assumed encoding is hexadecimal characters, as defined for XML schema
type xs:hexBinary encoding. The hexadecimal encoding represents each byte (8 bits) with two

Chapter 1. Structured Query Language (SQL) 589

http://www.w3.org/TR/REC-xml-names/

hexadecimal characters. Using this method, the encoded data is twice the size of the original
binary or bit data.

This function takes an element name, an optional collection of namespace declarations, an optional
collection of attributes, and zero or more arguments that make up the content of the XML element. The
result is an XML sequence containing an XML element node or the null value.

The data type of the result is XML. If any of the element-content-expression arguments can be null, the
result can be null; if all the element-content-expression argument values are null and the NULL ON NULL
option is in effect, the result is the null value.

Notes
• When constructing elements that will be copied as content of another element that defines default

namespaces, default namespaces should be explicitly undeclared in the copied element to avoid
possible errors that could result from inheriting the default namespace from the new parent element.
Predefined namespace prefixes ('xs', 'xsi', 'xml', and 'sqlxml') must also be declared explicitly when they
are used.

• Constructing an element node: The resulting element node is constructed as follows:

1. The xmlnamespaces-declaration adds a set of in-scope namespaces for the constructed element.
Each in-scope namespace associates a namespace prefix (or the default namespace) with a
namespace URI. The in-scope namespaces define the set of namespace prefixes that are available
for interpreting QNames within the scope of the element.

2. If the xmlattributes-function is specified, it is evaluated and the result is a sequence of attribute
nodes.

3. Each element-content-expression is evaluated and the result is converted into a sequence of nodes
as follows:

– If the result type is not XML, it is converted to an XML text node whose content is the result of
element-content-expression mapped to XML according to the rules of mapping SQL data values to
XML data values (see the table that describes supported casts from non-XML values to XML values
in "Casting between data types").

– If the result type is XML, then in general the result is a sequence of items. Some of the items
in that sequence might be document nodes. Each document node in the sequence is replaced
by the sequence of its top-level children. Then for each node in the resulting sequence, a new
deep copy of the node is constructed, including its children and attributes. Each copied node has
a new node identity. Copied element and attribute nodes preserve their type annotation. For each
adjacent sequence of one or more atomic values returned in the sequence, a new text node is
constructed, containing the result of casting each atomic value to a string, with a single blank
character inserted between adjacent values. Adjacent text nodes in the content sequence are
merged into a single text node by concatenating their contents, with no intervening blanks. After
concatenation, any text node whose content is a zero-length string is deleted from the content
sequence.

4. The result sequence of XML attributes and the resulting sequences of all element-content-expression
specifications are concatenated into one sequence which is called the content sequence. Any
sequence of adjacent text nodes in the content sequence is merged into a single text node. If
all the element-content-expression arguments are empty strings, or an element-content-expression
argument is not specified, an empty element is returned.

5. The content sequence must not contain an attribute node following a node that is not an attribute
node (SQLSTATE 10507). Attribute nodes occurring in the content sequence become attributes
of the new element node. Two or more of these attribute nodes must not have the same name
(SQLSTATE 10503). A namespace declaration is created corresponding to any namespace used in
the names of the attribute nodes if the namespace URI is not in the in-scope namespaces of the
constructed element.

6. Element, text, comment, and processing instruction nodes in the content sequence become the
children of the constructed element node.

590 IBM Db2 V11.5: SQL Reference

7. The constructed element node is given a type annotation of xs:anyType, and each of its attributes
is given a type annotation of xdt:untypedAtomic. The node name of the constructed element
node is element-name specified after the NAME keyword.

• Rules for using namespaces within XMLELEMENT: Consider the following rules about scoping of
namespaces:

– The namespaces declared in the XMLNAMESPACES declaration are the in-scope namespaces of the
element node constructed by the XMLELEMENT function. If the element node is serialized, then
each of its in-scope namespaces will be serialized as a namespace attribute unless it is an in-scope
namespace of the parent of the element node and the parent element is serialized too.

– If an XMLQUERY or XMLEXISTS is in an element-content-expression, then the namespaces becomes
the statically known namespaces of the XQuery expression of the XMLQUERY or XMLEXISTS.
Statically known namespaces are used to resolve the QNames in the XQuery expression. If the
XQuery prolog declares a namespace with the same prefix, within the scope of the XQuery
expression, the namespace declared in the prolog will override the namespaces declared in the
XMLNAMESPACES declaration.

– If an attribute of the constructed element comes from an element-content-expression, its namespace
might not already be declared as an in-scope namespace of the constructed element, in this case, a
new namespace is created for it. If this would result in a conflict, which means that the prefix of the
attribute name is already bound to a different URI by a in-scope namespace, a prefix is generated
that does not cause such a conflict and the prefix used in the attribute name is changed to the new
prefix, and a namespace is created for this new prefix. The generated new prefix follows the following
pattern: "db2ns-xx", where "x" is a character chosen from the set [A-Z,a-z,0-9]. For example:

 VALUES XMLELEMENT(
 NAME "c", XMLQUERY(
 'declare namespace ipo="www.ipo.com"; $m/ipo:a/@ipo:b'
 PASSING XMLPARSE(
 DOCUMENT '<tst:a xmlns:tst="www.ipo.com" tst:b="2"/>'
) AS "m"
)
)

returns:

<c xmlns:tst="www.ipo.com" tst:b="2"/>

A second example:

 VALUES XMLELEMENT(
 NAME "tst:c", XMLNAMESPACES(
 'www.tst.com' AS "tst"
),
 XMLQUERY(
 'declare namespace ipo="www.ipo.com"; $m/ipo:a/@ipo:b'
 PASSING XMLPARSE(
 DOCUMENT '<tst:a xmlns:tst="www.ipo.com" tst:b="2"/>'
) AS "m"
)
)

returns:

<tst:c xmlns:tst="www.tst.com" xmlns:db2ns-a1="www.ipo.com"
 db2ns-a1:b="2"/>

Examples
Note: XMLELEMENT does not insert blank spaces or new line characters in the output. All example output
has been formatted to enhance readability.

• Example 1: Construct an element with the NULL ON NULL option.

 SELECT E.FIRSTNME, E.LASTNAME, XMLELEMENT(
 NAME "Emp", XMLELEMENT(

Chapter 1. Structured Query Language (SQL) 591

 NAME "firstname", E.FIRSTNME
),
 XMLELEMENT(
 NAME "lastname", E.LASTNAME
)
 OPTION NULL ON NULL
)
 AS "Result"
 FROM EMPLOYEE E
 WHERE E.EDLEVEL = 12

This query produces the following result:

FIRSTNME LASTNAME Emp
JOHN PARKER <Emp><firstname>JOHN</firstname>
 <lastname>PARKER</lastname></Emp>
MAUDE SETRIGHT <Emp><firstname>MAUDE</firstname>
 <lastname>SETRIGHT</lastname></Emp>
MICHELLE SPRINGER <Emp><firstname>MICHELLE</firstname>
 <lastname>SPRINGER</lastname></Emp>

• Example 2: Produce an element with a list of elements nested as child elements.

 SELECT XMLELEMENT(
 NAME "Department", XMLATTRIBUTES(
 E.WORKDEPT AS "name"
),
 XMLAGG(
 XMLELEMENT(
 NAME "emp", E.FIRSTNME
)
 ORDER BY E.FIRSTNME
)
)
 AS "dept_list"
 FROM EMPLOYEE E
 WHERE E.WORKDEPT IN ('A00', 'B01')
 GROUP BY WORKDEPT

This query produces the following result:

dept_list
<Department name="A00">
<emp>CHRISTINE</emp>
<emp>SEAN</emp>
<emp>VINCENZO</emp>
</Department>
<Department name="B01">
<emp>MICHAEL</emp>
</Department>

• Example 3: Creating nested XML elements specifying a default XML element namespace and using a
subselect.

SELECT XMLELEMENT(
 NAME "root",
 XMLNAMESPACES(DEFAULT 'http://mytest.uri'),
 XMLATTRIBUTES(cid),
 (SELECT
 XMLAGG(
 XMLELEMENT(
 NAME "poid", poid
)
)
 FROM purchaseorder
 WHERE purchaseorder.custid = customer.cid
)
)
FROM customer
WHERE cid = '1002'

The statement returns the following XML document with the default element namespace declared in
the root element:

<root xmlns="http://mytest.uri" CID="1002">
 <poid>5000</poid>

592 IBM Db2 V11.5: SQL Reference

 <poid>5003</poid>
 <poid>5006</poid>
</root>

• Example 4: Using a common table expression with XML namespaces.

When an XML element is constructed with a common table expression and the element is used in
elsewhere in the same SQL statement, any namespace declarations should be specified as part of
the element construction. The following statement specifies the default XML namespace in both the
common table expression that uses the PURCHASEORDER table to create the poid elements and the
SELECT statement that uses the CUSTOMER table to create the root element.

WITH tempid(id, elem) AS
 (SELECT custid, XMLELEMENT(NAME "poid",
 XMLNAMESPACES(DEFAULT 'http://mytest.uri'),
 poid)
 FROM purchaseorder)
SELECT XMLELEMENT(NAME "root",
 XMLNAMESPACES(DEFAULT 'http://mytest.uri'),
 XMLATTRIBUTES(cid),
 (SELECT XMLAGG(elem)
 FROM tempid
 WHERE tempid.id = customer.cid)
)
FROM customer
WHERE cid = '1002'

The statement returns the following XML document with a default element namespace declared in the
root element.

<root xmlns="http://mytest.uri" CID="1002">
 <poid>5000</poid>
 <poid>5003</poid>
 <poid>5006</poid>
</root>

In the following statement, the default element namespace is declared only in the SELECT statement
that uses the CUSTOMER table to create the root element:

WITH tempid(id, elem) AS
 (SELECT custid, XMLELEMENT(NAME "poid", poid)
 FROM purchaseorder)
SELECT XMLELEMENT(NAME "root",
 XMLNAMESPACES(DEFAULT 'http://mytest.uri'),
 XMLATTRIBUTES(cid),
 (SELECT XMLAGG(elem)
 FROM tempid
 WHERE tempid.id = customer.cid)
)
FROM customer
WHERE cid = '1002'

The statement returns the following XML document with the default element namespace declared in
the root element. Because the poid elements are created in the common table expression without a
default element namespace declaration, the default element namespace for the poid elements is not
defined. In the XML document, the default element namespace for the poid elements is set to an
empty string "" because the default element namespace for the poid elements is not defined, and the
poid elements do not belong to the default element namespace of the root element xmlns="http://
mytest.uri".

<root xmlns="http://mytest.uri" CID="1002">
 <poid xmlns="">5000</poid>
 <poid xmlns="">5003</poid>
 <poid xmlns="">5006</poid>
</root>

Chapter 1. Structured Query Language (SQL) 593

XMLFOREST
The XMLFOREST function returns an XML value that is a sequence of XQuery element nodes.

XMLFOREST (

xmlnamespaces-declaration ,

,

element-content-expression

AS element-name

OPTION

NULL ON NULL

EMPTY ON NULL

XMLBINARY
USING

BASE64

XMLBINARY
USING

HEX

1

)

Notes:
1 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

xmlnamespaces-declaration
Specifies the XML namespace declarations that are the result of the XMLNAMESPACES declaration.
The namespaces that are declared are in the scope of the XMLFOREST function. The namespaces
apply to any nested XML functions within the XMLFOREST function, regardless of whether or not they
appear inside another subselect.

If xmlnamespaces-declaration is not specified, namespace declarations are not associated with the
constructed elements.

element-content-expression
The content of the generated XML element node is specified by an expression. The data type of
element-content-expression cannot be a BINARY type, a VARBINARY type, or a structured type
(SQLSTATE 42884). The expression can be any SQL expression. If the expression is not a simple
column reference, an element name must be specified.

AS element-name
Specifies the XML element name as an SQL identifier. The element name must be of the form of an
XML qualified name, or QName (SQLSTATE 42634). See the W3C XML namespace specifications for
more details on valid names. If the name is qualified, the namespace prefix must be declared within
the scope (SQLSTATE 42635). If element-name is not specified, element-content-expression must be a
column name (SQLSTATE 42703). The element name is created from the column name using the fully
escaped mapping from a column name to an QName.

OPTION
Specifies additional options for constructing the XML element. If no OPTION clause is specified,
the default is NULL ON NULL XMLBINARY USING BASE64. This clause has no impact on nested
XMLELEMENT invocations specified in element-content-expression.
EMPTY ON NULL or NULL ON NULL

Specifies whether a null value or an empty element is to be returned if the values of each element-
content-expression is a null value. This option only affects null handling of element contents, not
attribute values. The default is NULL ON NULL.

594 IBM Db2 V11.5: SQL Reference

http://www.w3.org/TR/REC-xml-names/

EMPTY ON NULL
If the value of each element-content-expression is null, an empty element is returned.

NULL ON NULL
If the value of each element-content-expression is null, a null value is returned.

XMLBINARY USING BASE64 or XMLBINARY USING HEX
Specifies the assumed encoding of binary input data, character string data with the FOR BIT DATA
attribute, or a distinct type that is based on one of these types. The encoding applies to element
content or attribute values. The default is XMLBINARY USING BASE64.
XMLBINARY USING BASE64

Specifies that the assumed encoding is base64 characters, as defined for XML schema type
xs:base64Binary encoding. The base64 encoding uses a 65-character subset of US-ASCII (10
digits, 26 lowercase characters, 26 uppercase characters, '+', and '/') to represent every six
bits of the binary or bit data with one printable character in the subset. These characters are
selected so that they are universally representable. Using this method, the size of the encoded
data is 33 percent larger than the original binary or bit data.

XMLBINARY USING HEX
Specifies that the assumed encoding is hexadecimal characters, as defined for XML schema
type xs:hexBinary encoding. The hexadecimal encoding represents each byte (8 bits) with two
hexadecimal characters. Using this method, the encoded data is twice the size of the original
binary or bit data.

This function takes an optional set of namespace declarations and one or more arguments that make up
the name and element content for one or more element nodes. The result is an XML sequence containing
a sequence of XQuery element nodes or the null value.

The data type of the result is XML. If any of the element-content-expression arguments can be null, the
result can be null; if all the element-content-expression argument values are null and the NULL ON NULL
option is in effect, the result is the null value.

The XMLFOREST function can be expressed by using XMLCONCAT and XMLELEMENT. For example, the
following two expressions are semantically equivalent.

XMLFOREST(xmlnamespaces-declaration, arg1 AS name1, arg2 AS name2 ...)

XMLCONCAT(
 XMLELEMENT(
 NAME name1, xmlnamespaces-declaration, arg1
),
 XMLELEMENT(
 NAME name2, xmlnamespaces-declaration, arg2
)
 ...
)

Notes
• When constructing elements that will be copied as content of another element that defines default

namespaces, default namespaces should be explicitly undeclared in the copied element to avoid
possible errors that could result from inheriting the default namespace from the new parent element.
Predefined namespace prefixes ('xs', 'xsi', 'xml', and 'sqlxml') must also be declared explicitly when they
are used.

Example
Note: XMLFOREST does not insert blank spaces or new line characters in the output. All example output
has been formatted to enhance readability.

Construct a forest of elements with a default namespace.

 SELECT EMPNO,
 XMLFOREST(

Chapter 1. Structured Query Language (SQL) 595

 XMLNAMESPACES(
 DEFAULT 'http://hr.org', 'http://fed.gov' AS "d"
),
 LASTNAME, JOB AS "d:job"
)
 AS "Result"
 FROM EMPLOYEE
 WHERE EDLEVEL = 12

This query produces the following result:

EMPNO Result
000290 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">PARKER
 </LASTNAME>
<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">OPERATOR</d:job>

000310 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">SETRIGHT
 </LASTNAME>
<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">OPERATOR</d:job>

200310 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">SPRINGER
 </LASTNAME>
<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">OPERATOR</d:job>

XMLNAMESPACES
The XMLNAMESPACES declaration constructs namespace declarations from the arguments.

xmlnamespaces-declaration

XMLNAMESPACES (

,

namespace-uri AS namespace-prefix

DEFAULT namespace-uri
1

NO DEFAULT

)

Notes:
1 DEFAULT or NO DEFAULT can only be specified once in arguments of XMLNAMESPACES.

The schema is SYSIBM. The declaration name cannot be specified as a qualified name.

This declaration can only be used as an argument for specific functions such as XMLELEMENT,
XMLFOREST and XMLTABLE. The result is one or more XML namespace declarations containing in-scope
namespaces for each non-null input value.

namespace-uri
Specifies the namespace universal resource identifier (URI) as an SQL character string constant. This
character string constant must not be empty if it is used with a namespace-prefix (SQLSTATE 42815).

namespace-prefix
Specifies a namespace prefix. The prefix is an SQL identifier that must be in the form of an XML
NCName (SQLSTATE 42634). See the W3C XML namespace specifications for more details on valid
names. The prefix cannot be xml or xmlns and the prefix must be unique within the list of namespace
declarations (SQLSTATE 42635).

DEFAULT namespace-uri
Specifies the default namespace to use within the scope of this namespace declaration. The
namespace-uri applies for unqualified names in the scope unless overridden in a nested scope by
another DEFAULT declaration or a NO DEFAULT declaration.

NO DEFAULT
Specifies that no default namespace is to be used within the scope of this namespace declaration.
There is no default namespace in the scope unless overridden in a nested scope by a DEFAULT
declaration.

The data type of the result is XML. The result is an XML namespace declaration for each specified
namespace. The result cannot be null.

596 IBM Db2 V11.5: SQL Reference

http://www.w3.org/TR/REC-xml-names/

Examples
Note: XMLNAMESPACES does not insert blank spaces or new line characters in the output. All example
output has been formatted to enhance readability.

• Example 1: Produce an XML element named adm:employee and an XML attribute adm:department, both
associated with a namespace whose prefix is adm.

 SELECT EMPNO, XMLELEMENT(
 NAME "adm:employee", XMLNAMESPACES(
 'http://www.adm.com' AS "adm"
),
 XMLATTRIBUTES(
 WORKDEPT AS "adm:department"
),
 LASTNAME
)
 FROM EMPLOYEE
 WHERE JOB = 'ANALYST'

This query produces the following result:

000130 <adm:employee xmlns:adm="http://www.adm.com" adm:department="C01">
 QUINTANA</adm:employee>
000140 <adm:employee xmlns:adm="http://www.adm.com" adm:department="C01">
 NICHOLLS</adm:employee>
200140 <adm:employee xmlns:adm="http://www.adm.com" adm:department="C01">
 NATZ</adm:employee>

• Example 2: Produce an XML element named 'employee', which is associated with a default namespace,
and a sub-element named 'job', which does not use a default namespace, but whose sub-element
named 'department' does use a default namespace.

 SELECT EMP.EMPNO, XMLELEMENT(
 NAME "employee", XMLNAMESPACES(
 DEFAULT 'http://hr.org'
),
 EMP.LASTNAME, XMLELEMENT(
 NAME "job", XMLNAMESPACES(
 NO DEFAULT
),
 EMP.JOB, XMLELEMENT(
 NAME "department", XMLNAMESPACES(
 DEFAULT 'http://adm.org'
),
 EMP.WORKDEPT
)
)
)
 FROM EMPLOYEE EMP
 WHERE EMP.EDLEVEL = 12

This query produces the following result:

000290 <employee xmlns="http://hr.org">PARKER<job xmlns="">OPERATOR
 <department xmlns="http://adm.org">E11</department></job></employee>
000310 <employee xmlns="http://hr.org">SETRIGHT<job xmlns="">OPERATOR
 <department xmlns="http://adm.org">E11</department></job></employee>
200310 <employee xmlns="http://hr.org">SPRINGER<job xmlns="">OPERATOR
 <department xmlns="http://adm.org">E11</department></job></employee>

XMLPARSE
The XMLPARSE function parses the argument as an XML document and returns an XML value.

XMLPARSE (DOCUMENT string-expression
STRIP WHITESPACE

PRESERVE WHITESPACE

)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

Chapter 1. Structured Query Language (SQL) 597

DOCUMENT
Specifies that the character string expression to be parsed must evaluate to a well-formed XML
document that conforms to XML 1.0, as modified by the XML Namespaces recommendation
(SQLSTATE 2200M).

string-expression
Specifies an expression that returns a character string or BLOB value. If a parameter marker is used, it
must explicitly be cast to one of the supported data types.

STRIP WHITESPACE or PRESERVE WHITESPACE
Specifies whether or not whitespace in the input argument is to be preserved. If neither is specified,
STRIP WHITESPACE is the default.
STRIP WHITESPACE

Specifies that text nodes containing only whitespace characters up to 1000 bytes in length will be
stripped, unless the nearest containing element has the attribute xml:space='preserve'. If any text
node begins with more that 1000 bytes of whitespace, an error is returned (SQLSTATE 54059).

The whitespace characters in the CDATA section are also affected by this option. DTDs may
have DOCTYPE declarations for elements, but the content models of elements are not used to
determine if whitespace is stripped or not.

PRESERVE WHITESPACE
Specifies that all whitespace is to be preserved, even when the nearest containing element has
the attribute xml:space='default'.

The data type of the result is XML. If the result of string-expression can be null, the result can be null; if
the result of string-expression is null, the result is the null value.

Notes
• Encoding of the input string: The input string may contain an XML declaration that identifies the

encoding of the characters in the XML document. If the string is passed to the XMLPARSE function as
a character string, it will be converted to the code page at the database server. This code page may be
different from the originating code page and the encoding identified in the XML declaration.

Therefore, applications should avoid direct use of XMLPARSE with character string input and should
send strings containing XML documents directly using host variables to maintain the match between
the external code page and the encoding in the XML declaration. If XMLPARSE must be used in this
situation, a BLOB type should be specified as the argument to avoid code page conversion.

• Handling of DTDs: External document type definitions (DTDs) and entities must be registered in a
database. Both internal and external DTDs are checked for valid syntax. During the parsing process, the
following actions are also performed:

– Default values that are defined by the internal and external DTDs are applied.
– Entity references and parameter entities are replaced by their expanded forms.
– If an internal DTD and an external DTD define the same element, an error is returned (SQLSTATE

2200M).
– If an internal DTD and an external DTD define the same entity or attribute, the internal definition is

chosen.

After parsing, internal DTDs and entities, as well as references to external DTDs and entities, are not
preserved in the stored representation of the value.

• Character conversion in non-UTF-8 databases: Code page conversion occurs when an XML document
is parsed into a non-Unicode database server, if the document is passed in from a host variable or
parameter marker of a character data type, or from a character string literal. Parsing an XML document
using a host variable or parameter marker of type XML, BLOB or FOR BIT DATA (CHAR FOR BIT
DATA or VARCHAR FOR BIT DATA) prevents code page conversion. When a character data type is
used, care must be taken to ensure that all characters in the XML document have a matching code
point in the target database code page, otherwise substitution characters may be introduced. The
configuration parameter enable_xmlchar can be used to help ensure the integrity of XML data stored

598 IBM Db2 V11.5: SQL Reference

in a non-Unicode database. Setting this parameter to "NO" blocks the insertion of XML documents from
character data types. The BLOB and FOR BIT DATA data types are still allowed, as documents passed
into a database using these data types avoid code page conversion.

Example
Using the PRESERVE WHITESPACE option preserves the white space characters in the XML document
inserted into the table, including the white space characters in the description element.

INSERT INTO PRODUCT VALUES ('100-103-99','Tool bag',14.95,NULL,NULL,NULL,
XMLPARSE(DOCUMENT
 '<product xmlns="http://posample.org" pid="100-103-99">
 <description>
 <name>Tool bag</name>
 <details>
 Super Deluxe tool bag:
 - 26 inches long, 12 inches wide
 - Curved padded handle
 - Locking latch
 - Reinforced exterior pockets
 </details>
 <price>14.95</price>
 <weight>3 kg</weight>
 </description>
 </product>' PRESERVE WHITESPACE));

Running the following select statement

SELECT XMLQUERY ('$d/*:product/*:description/*:details' PASSING DESCRIPTION as "d")
FROM PRODUCT WHERE PID = '100-103-99' ;

returns the details element with the white space characters:

<details xmlns="http://posample.org">
 Super Deluxe tool bag:
 - 26 inches long, 12 inches wide
 - Curved padded handle
 - Locking latch
 - Reinforced exterior pockets
</details>

XMLPI
The XMLPI function returns an XML value with a single XQuery processing instruction node.

XMLPI (NAME pi-name

, string-expression

)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

NAME pi-name
Specifies the name of a processing instruction. The name is an SQL identifier that must be in the form
of an XML NCName (SQLSTATE 42634). See the W3C XML namespace specifications for more details
on valid names. The name cannot be the word 'xml' in any case combination (SQLSTATE 42634).

string-expression
An expression that returns a value that is a character string. The resulting string is converted to UTF-8
and must conform to the content of an XML processing instruction as specified in XML 1.0 rules
(SQLSTATE 2200T):

• The string must not contain the substring '?>' since this substring terminates a processing
instruction

• Each character of the string can be any Unicode character excluding the surrogate blocks, X'FFFE'
and X'FFFF'.

The resulting string becomes the content of the constructed processing instruction node.

Chapter 1. Structured Query Language (SQL) 599

http://www.w3.org/TR/REC-xml-names/

The data type of the result is XML. If the result of string-expression can be null, the result can be null; if
the result of string-expression is null, the result is the null value. If string-expression is an empty string or
is not specified, an empty processing instruction node is returned.

Examples
• Example 1: Generate an XML processing instruction node.

 SELECT XMLPI(
 NAME "Instruction", 'Push the red button'
)
 FROM SYSIBM.SYSDUMMY1

This query produces the following result:

<?Instruction Push the red button?>

• Example 2: Generate an empty XML processing instruction node.

 SELECT XMLPI(
 NAME "Warning"
)
 FROM SYSIBM.SYSDUMMY1

This query produces the following result:

<?Warning ?>

XMLQUERY
The XMLQUERY function returns an XML value from the evaluation of an XQuery expression possibly using
specified input arguments as XQuery variables.

XMLQUERY (xquery-expression-constant

PASSING
BY REF

,

xquery-argument

RETURNING SEQUENCE
BY REF

EMPTY ON EMPTY
)

xquery-argument
xquery-context-item-expression

xquery-variable-expression
1

AS identifier

BY REF

Notes:
1 The data type of the expression cannot be DECFLOAT.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an XQuery expression using
supported XQuery language syntax. The constant string is converted to UTF-8 before being parsed
as an XQuery statement. The XQuery expression executes using an optional set of input XML values,
and returns an output sequence that is also returned as the value of the XMLQUERY expression.
The value for xquery-expression-constant must not be an empty string or a string of blank characters
(SQLSTATE 10505).

600 IBM Db2 V11.5: SQL Reference

PASSING
Specifies input values and the manner in which these values are passed to the XQuery expression
specified by xquery-expression-constant. By default, every unique column name that is in the scope
where the function is invoked is implicitly passed to the XQuery expression using the name of the
column as the variable name. If an identifier in a specified xquery-argument matches an in-scope
column name, then the explicit xquery-argument is passed to the XQuery expression overriding that
implicit column.
BY REF

Specifies that the default passing mechanism is by reference for any xquery-variable-expression
of data type XML and for the returned value. When XML values are passed by reference,
the XQuery evaluation uses the input node trees, if any, directly from the specified input
expressions, preserving all properties, including the original node identities and document order.
If two arguments pass the same XML value, node identity comparisons and document ordering
comparisons involving some nodes contained between the two input arguments might refer to
nodes within the same XML node tree.

This clause has no impact on how non-XML values are passed. The non-XML values create a new
copy of the value during the cast to XML.

xquery-argument
Specifies an argument that is to be passed to the XQuery expression specified by xquery-
expression-constant. An argument specifies a value and the manner in which that value is to
be passed. xquery-argument specifies both a value and the manner in which that value is to be
passed. The method through which an argument, in the PASSING clause, is used in the XQuery
expression depends on whether the argument is specified as xquery-context-item-expression or
xquery-variable-expression. xquery-argument includes an SQL expression that is evaluated before
it passes the result to the XQuery expression.

• If the resulting value is of type XML, it becomes an input-xml-value. A null XML value is
converted to an XML empty sequence.

• If the resulting value is not of type XML, it must be castable to the XML data type. A null value is
converted to an XML empty sequence. The converted value becomes an input-xml-value.

When the xquery-expression-constant is evaluated, an XQuery variable is presented with a value
equal to input-xml-value and a name specified by the AS clause.
xquery-context-item-expression

xquery-context-item-expression specifies the initial context item in the XQuery expression that
is specified by xquery-expression-constant. The value of the initial context item is the result of
xquery-context-item-expression to XML. xquery-context-item-expression must not be specified
more than one time. xquery-context-item-expression must not be a sequence of more than one
item.
If input-xml-value is an empty XML string, the XQuery expression is evaluated with the initial
context item set to an empty XML string. If the value of input-xml-value is null, the function
returns a null value. If the xquery-context-item-expression is not specified or is an empty
sequence, the initial context item in the XQuery expression is undefined and the XQuery
expression must not reference the initial context item.
An XQuery variable is not created for the context item expression.

xquery-variable-expression
Specifies an SQL expression whose value is available to the XQuery expression specified
by xquery-expression-constant during execution. The expression cannot contain a sequence
reference (SQLSTATE 428F9) or an OLAP function (SQLSTATE 42903). The data type of the
expression cannot be DECFLOAT.

AS identifier
Specifies that the value generated by xquery-variable-expression will be passed to xquery-
expression-constant as an XQuery variable. The variable name will be identifier. The leading
dollar sign ($) that precedes variable names in the XQuery language is not included in
identifier. The identifier must be a valid XQuery variable name and is restricted to an XML

Chapter 1. Structured Query Language (SQL) 601

NCName (SQLSTATE 42634). The identifier must not be greater than 128 bytes in length.
Two arguments within the same PASSING clause cannot use the same identifier (SQLSTATE
42711).

BY REF
Indicates that an XML input value is to be passed by reference. When XML values are passed
by reference, the XQuery evaluation uses the input node trees, if any, directly from the
specified input expressions, preserving all properties, including the original node identities
and document order. If two arguments pass the same XML value, node identity comparisons
and document ordering comparisons involving some nodes contained between the two input
arguments might refer to nodes within the same XML node tree. If BY REF is not specified
following an xquery-variable-expression, XML arguments are passed by way of the default
passing mechanism that is provided through the syntax that follows the PASSING keyword.
This option cannot be specified for non-XML values. When a non-XML value is passed, the
value is converted to XML; this process creates a copy.

RETURNING SEQUENCE
Indicates that the XMLQUERY expression returns a sequence.

BY REF
Indicates that the result of the XQuery expression is returned by reference. If this value contains
nodes, any expression using the return value of the XQuery expression will receive node references
directly, preserving all node properties, including the original node identities and document order.
Referenced nodes will remain connected within their node trees. If the BY REF clause is not specified
and the PASSING is specified, the default passing mechanism is used. If BY REF is not specified and
PASSING is not specified, the default returning mechanism is BY REF.

EMPTY ON EMPTY
Specifies that an empty sequence result from processing the XQuery expression is returned as an
empty sequence.

The data type of the result is XML; it cannot be null.

If the evaluation of the XQuery expression results in an error, then the XMLQUERY function returns the
XQuery error (SQLSTATE class '10').

Notes
• XMLQUERY usage restrictions: The XMLQUERY function cannot be:

– Part of the ON clause that is associated with a JOIN operator or a MERGE statement (SQLSTATE
42972)

– Part of the GENERATE KEY USING or RANGE THROUGH clause in the CREATE INDEX EXTENSION
statement (SQLSTATE 428E3)

– Part of the FILTER USING clause in the CREATE FUNCTION (External Scalar) statement, or the FILTER
USING clause in the CREATE INDEX EXTENSION statement (SQLSTATE 428E4)

– Part of a check constraint or a column generation expression (SQLSTATE 42621)
– Part of a group-by-clause (SQLSTATE 42822)
– Part of an argument for an aggregate function (SQLSTATE 42607)

• XMLQUERY as a subquery: An XMLQUERY expression that acts as a subquery can be restricted by
statements that restrict subqueries.

602 IBM Db2 V11.5: SQL Reference

XMLROW
The XMLROW function returns an XML value with a single XQuery document node containing one top-level
element node.

XMLROW (

,

expression

AS qname-identifier

OPTION
1

ROW "row"

ROW row-name

AS ATTRIBUTES

)

Notes:
1 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

expression
The content of each generated XML element node is specified by an expression. The data type of the
expression cannot be a BINARY type, a VARBINARY type, or a structured type (SQLSTATE 42884). The
expression can be any SQL expression. If the expression is not a simple column reference, an element
name must be specified.

AS qname-identifier
Specifies the XML element name or attribute name as an SQL identifier. The qname-identifier must be
of the form of an XML qualified name, or QName (SQLSTATE 42634). See the W3C XML namespace
specifications for more details on valid names. If the name is qualified, the namespace prefix must be
declared within the scope (SQLSTATE 42635). If qname-identifier is not specified, expression must be
a column name (SQLSTATE 42703). The element name or attribute name is created from the column
name using the fully escaped mapping from a column name to an QName.

OPTION
Specifies additional options for constructing the XML value. If no OPTION clause is specified, the
default behavior applies.

AS ATTRIBUTES
Specifies that each expression is mapped to an attribute value with column name or qname-identifier
serving as the attribute name.

ROW row-name
Specifies the name of the element to which each row is mapped. If this option is not specified, the
default element name is "row".

Notes
By default, each row in the result set is mapped to an XML value as follows:

• Each row is transformed into an XML element named "row" and each column is transformed into a
nested element with the column name as the element name.

• The null handling behavior is NULL ON NULL. A null value in a column maps to the absence of the
subelement. If all column values are null, a null value is returned by the function.

• The binary encoding scheme for BLOB and FOR BIT DATA data types is base64Binary encoding.
• A document node will be added implicitly to the row element to make the XML result a well-formed

single-rooted XML document.

Chapter 1. Structured Query Language (SQL) 603

Examples
Assume the following table T1 with columns C1 and C2 that contain numeric data stored in a relational
format:

C1 C2
----------- -----------
 1 2
 - 2
 1 -
 - -

 4 record(s) selected.

• Example 1: The following example shows an XMLRow query and output fragment with default behavior,
using a sequence of row elements to represent the table:

SELECT XMLROW(C1, C2) FROM T1

<row><C1>1</C1><C2>2</C2></row>
<row><C2>2</C2></row>
<row><C1>1</C1></row>

 4 record(s) selected.

• Example 2: The following example shows an XMLRow query and output fragment with attribute centric
mapping. Instead of appearing as nested elements as in the previous example, relational data is
mapped to element attributes:

SELECT XMLROW(C1, C2 OPTION AS ATTRIBUTES) FROM T1

<row C1="1" C2="2"/>
<row C2="2"/>
<row C1="1"/>

 4 record(s) selected.

• Example 3: The following example shows an XMLRow query and output fragment with the default
<row> element replaced by <entry>. Columns C1 and C2 are returned as <column1> and <column2>
elements, and the total of C1 and C2 is returned inside a <total> element:

SELECT XMLROW(
 C1 AS "column1", C2 AS "column2",
 C1+C2 AS "total" OPTION ROW "entry")
FROM T1

<entry><column1>1</column1><column2>2</column2><total>3</total></entry>
<entry><column2>2</column2></entry>
<entry><column1>1</column1></entry>

 4 record(s) selected.

604 IBM Db2 V11.5: SQL Reference

XMLSERIALIZE
The XMLSERIALIZE function returns a serialized XML value of the specified data type generated from the
XML-expression argument.

XMLSERIALIZE (
CONTENT

XML-expression AS data-type

VERSION '1.0'

EXCLUDING XMLDECLARATION

INCLUDING XMLDECLARATION

1
)

data-type

CHARACTER

CHAR

(1)

(integer

OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

(integer

OCTETS

CODEUNITS32

)

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

(integer

K

M

G

OCTETS

CODEUNITS32

)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

Notes:
1 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

CONTENT
Specifies that any XML value can be specified and the result of the serialization is based on this input
value.

XML-expression
Specifies an expression that returns a value of data type XML. The XML sequence value must not
contain an item that is an attribute node (SQLSTATE 2200W). This is the input to the serialization
process.

AS data-type
Specifies the result type. The implicit or explicit length attribute of the specified result data type must
be sufficient to contain the serialized output (SQLSTATE 22001).

Chapter 1. Structured Query Language (SQL) 605

VERSION '1.0'
Specifies the XML version of the serialized value. The only version supported is '1.0' which must be
specified as a string constant (SQLSTATE 42815).

EXCLUDING XMLDECLARATION or INCLUDING XMLDECLARATION
Specifies whether an XML declaration is included in the result. The default is EXCLUDING
XMLDECLARATION.
EXCLUDING XMLDECLARATION

Specifies that an XML declaration is not included in the result.
INCLUDING XMLDECLARATION

Specifies that an XML declaration is included in the result. The XML declaration is the string '<?xml
version="1.0" encoding="UTF-8"?>'.

AS data-type
Specifies the result data type. The implicit or explicit length attribute of the specified result data
type must be sufficient to contain the transformed output (SQLSTATE 22001).

If either the xml-document argument or the xsl-stylesheet argument is null, the result will be null.

Code page conversion might occur when storing any of the previously mentioned documents in a
CHAR, VARCHAR, or CLOB column, which might result in a character loss.

The result has the data type specified by the user. An XML sequence is effectively converted to have a
single document node by applying XMLDOCUMENT to XML-expression before serializing the resulting XML
nodes. If the result of XML-expression can be null, the result can be null; if the result of XML-expression is
null, the result is the null value.

Notes
• Encoding in the serialized result: The serialized result is encoded with UTF-8. If XMLSERIALIZE

is used with a character data type, and the INCLUDING XMLDECLARATION clause is specified, the
resulting character string containing serialized XML might have an XML encoding declaration that does
not match the code page of the character string. Following serialization, which uses UTF-8 encoding, the
character string that is returned from the server to the client is converted to the code page of the client,
and that code page might be different from UTF-8.

Therefore, applications should avoid direct use of XMLSERIALIZE INCLUDING XMLDECLARATION that
return character string types and should retrieve XML values directly into host variables to maintain the
match between the external code page and the encoding in the XML declaration. If XMLSERIALIZE must
be used in this situation, a BLOB type should be specified to avoid code page conversion.

• Syntax alternative: XML2CLOB(XML-expression) can be specified in place of XMLSERIALIZE(XML-
expression AS CLOB(2G)). It is supported only for compatibility with previous Db2 releases.

XMLTEXT
The XMLTEXT function returns an XML value with a single XQuery text node having the input argument as
the content.

XMLTEXT (string-expression)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

string-expression
An expression whose value has a character string type: CHAR, VARCHAR or CLOB.

The data type of the result is XML. If the result of string-expression can be null, the result can be null; if
the input value is null, the result is the null value. If the result of string-expression is an empty string, the
result value is an empty text node.

606 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: Create a simple XMLTEXT query.

 VALUES(
 XMLTEXT(
 'The stock symbol for Johnson&Johnson is JNJ.'
)
)

This query produces the following serialized result:

1

The stock symbol for Johnson&Johnson is JNJ.

Note that the '&' sign is mapped to '&' when a text node is serialized.
• Example 2: Use XMLTEXT with XMLAGG to construct mixed content. Suppose that the content of table T

is as follows:

seqno plaintext
 emphtext
------ ---

1 This query shows how to construct
 mixed content
2 using XMLAGG and XMLTEXT. Without
 XMLTEXT
3 XMLAGG will not have text nodes to group with other nodes,
 mixed content
 therefore, cannot generate

 SELECT
XMLELEMENT(
 NAME "para", XMLAGG(
 XMLCONCAT(
 XMLTEXT(
 PLAINTEXT
),
 XMLELEMENT(
 NAME "emphasis", EMPHTEXT
)
)
 ORDER BY SEQNO
), '.'
) AS "result"
 FROM T

This query produces the following result:

result

<para>This query shows how to construct <emphasis>mixed content</emphasis>
using XMLAGG and XMLTEXT. Without <emphasis>XMLTEXT</emphasis>
, XMLAGG
will not have text nodes to group with other nodes, therefore, cannot
generate
<emphasis>mixed content</emphasis>.</para>

XMLVALIDATE
The XMLVALIDATE function returns a copy of the input XML value augmented with information obtained
from XML schema validation, including default values.

XMLVALIDATE (
DOCUMENT

XML-expression

XML-validate-according-to-clause

)

Chapter 1. Structured Query Language (SQL) 607

XML-validate-according-to-clause
ACCORDING TO XMLSCHEMA

ID XML-schema-name

URI XML-uri1

NO NAMESPACE LOCATION XML-uri2

XML-valid-element-clause

XML-valid-element-clause

NAMESPACE XML-uri3

NO NAMESPACE

ELEMENT XML-element-name

The schema is SYSIBM. The function name cannot be specified as a qualified name.

DOCUMENT
Specifies that the XML value resulting from XML-expression must be a well-formed XML document that
conforms to XML Version 1.0 (SQLSTATE 2200M).

XML-expression
An expression that returns a value of data type XML. If XML-expression is an XML host variable or an
implicitly or explicitly typed parameter marker, the function performs a validating parse that strips
ignorable whitespace and the CURRENT IMPLICIT XMLPARSE OPTION setting is not considered.

XML-validate-according-to-clause
Specifies the information that is to be used when validating the input XML value.
ACCORDING TO XMLSCHEMA

Indicates that the XML schema information for validation is explicitly specified. If this clause is
not included, the XML schema information must be provided in the content of the XML-expression
value.
ID XML-schema-name

Specifies an SQL identifier for the XML schema that is to be used for validation. The name,
including the implicit or explicit SQL schema qualifier, must uniquely identify an existing XML
schema in the XML schema repository at the current server. If no XML schema by this name
exists in the implicitly or explicitly specified SQL schema, an error is returned (SQLSTATE
42704).

URI XML-uri1
Specifies the target namespace URI of the XML schema that is to be used for validation. The
value of XML-uri1 specifies a URI as a character string constant that is not empty. The URI
must be the target namespace of a registered XML schema (SQLSTATE 4274A) and, if no
LOCATION clause is specified, it must uniquely identify the registered XML schema (SQLSTATE
4274B).

NO NAMESPACE
Specifies that the XML schema for validation has no target namespace. The target namespace
URI is equivalent to an empty character string that cannot be specified as an explicit target
namespace URI.

LOCATION XML-uri2
Specifies the XML schema location URI of the XML schema that is to be used for validation.
The value of XML-uri2 specifies a URI as a character string constant that is not empty. The XML
schema location URI, combined with the target namespace URI, must identify a registered
XML schema (SQLSTATE 4274A), and there must be only one such XML schema registered
(SQLSTATE 4274B).

608 IBM Db2 V11.5: SQL Reference

XML-valid-element-clause
Specifies that the XML value in XML-expression must have the specified element name as the root
element of the XML document.
NAMESPACE XML-uri3 or NO NAMESPACE

Specifies the target namespace for the element that is to be validated. If neither clause
is specified, the specified element is assumed to be in the same namespace as the target
namespace of the registered XML schema that is to be used for validation.
NAMESPACE XML-uri3

Specifies the namespace URI for the element that is to be validated. The value of XML-uri3
specifies a URI as a character string constant that is not empty. This can be used when the
registered XML schema that is to be used for validation has more than one namespace.

NO NAMESPACE
Specifies that the element for validation has no target namespace. The target namespace
URI is equivalent to an empty character string which cannot be specified as an explicit target
namespace URI.

ELEMENT xml-element-name
Specifies the name of a global element in the XML schema that is to be used for validation.
The specified element, with implicit or explicit namespace, must match the root element of
the value of XML-expression (SQLSTATE 22535 or 22536).

The data type of the result is XML. If the value of XML-expression can be null, the result can be null; if the
value of XML-expression is null, the result is the null value.

The XML validation process is performed on a serialized XML value. Because XMLVALIDATE is invoked
with an argument of type XML, this value is automatically serialized before validation processing with the
follow two exceptions.

• If the argument to XMLVALIDATE is an XML host variable or an implicitly or explicitly typed parameter
marker, then a validating parse operation is performed on the input value (no implicit non-validating
parse is performed and CURRENT IMPLICIT XMLPARSE OPTION setting is not considered).

• If the argument to XMLVALIDATE is an XMLPARSE invocation using the option PRESERVE WHITESPACE,
then the XML parsing and XML validation of the document may be combined into a single validating
parse operation.

If an XML value has previously been validated, the annotated type information from the previous
validation is removed by the serialization process. However, any default values and entity expansions from
the previous validation remain unchanged. If validation is successful, all ignorable whitespace characters
are stripped from the result.

To validate a document whose root element does not have a namespace, an
xsi:noNamespaceSchemaLocation attribute must be present on the root element.

Notes
• Determining the XML schema: The XML schema can be either specified explicitly with the ACCORDING
TO XMLSCHEMA clause as part of the XMLVALIDATE invocation, or determined implicitly from the XML
schema location information in the input XML value. The explicit or implicit XML schema information
must identify an XML schema registered in the XML schema repository (SQLSTATE 42704, 4274A, or
22532), and there must be only one such registered XML schema (SQLSTATE 4274B or 22533).

If an XML schema for validation is explicitly specified with the ACCORDING TO XMLSCHEMA clause, the
schema location information specified in the input XML value is ignored.

If the XML schema information is not specified with the ACCORDING TO XMLSCHEMA clause, the input
XML value must contain XML schema location information (SQLSTATE 2200M). The schema location
information in the input XML value, a namespace name, and a schema location specifies the XML
schema document in the XML schema repository used for validation.

Chapter 1. Structured Query Language (SQL) 609

• XML schema authorization: The XML schema used for validation must be registered in the XML schema
repository before use. The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

– USAGE privilege on the XML schema that is to be used during validation
– DBADM authority

• Using a maxOccurs attribute value that is greater than 5000 in XML schemas: In Db2 Version 9.7
Fix Pack 1 and later, if an XML schema that is registered in the XSR uses the maxOccurs attribute
where the value is greater than 5000, the maxOccurs attribute value is treated as if you specified
"unbounded". Because document elements that have a maxOccurs attribute value that is greater than
5000 are processed as if you specified "unbounded", an XML document might pass validation when you
use the XMLVALIDATE function even if the number of occurrences of an element exceeds the maximum
according to the XML schema that you used to validate the document.

If you use an XML schema that defines an element that has a maxOccurs attribute value that is greater
than 5000 and you want to reject XML documents that have a maxOccurs attribute value greater than
5000, you can define a trigger or procedure to check for that condition. In the trigger or procedure,
use an XPath expression to count the number of occurrences of the element and return an error if the
number of elements exceeds the maxOccurs attribute value.

For example, the following trigger ensures that a document never has more than 6500 phone elements:

CREATE TRIGGER CUST_INSERT
 AFTER INSERT ON CUSTOMER
 REFERENCING NEW AS NEWROW
 FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC
 SELECT CASE WHEN X <= 6500 THEN 'OK - Do Nothing'
 ELSE RAISE_ERROR('75000', 'TooManyPhones') END

 FROM (
 SELECT XMLCAST(XMLQUERY('$INFO/customerinfo/count(phone)') AS INTEGER) AS X
 FROM CUSTOMER
 WHERE CUSTOMER.CID = NEWROW.CID);
END

Examples
• Example 1: Validate using the XML schema identified by the XML schema hint in the XML instance

document.

 INSERT INTO T1(XMLCOL)
 VALUES (XMLVALIDATE(?))

Assume that the input parameter marker is bound to an XML value that contains the XML schema
information.

 <po:order
 xmlns:po="http://my.world.com"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://my.world.com http://my.world.com/world.xsd" >
 ...
 </po:order>

Further, assume that the XML schema that is associated with the target namespace "http://
my.world.com" and by schemaLocation hint "http://my.world.com/world.xsd" is found in the XML
schema repository.

Based on these assumptions, the input XML value will be validated according to that XML schema.
• Example 2: Validate using the XML schema identified by the SQL name PODOCS.WORLDPO.

 INSERT INTO T1(XMLCOL)
 VALUES (
 XMLVALIDATE(
 ? ACCORDING TO XMLSCHEMA ID PODOCS.WORLDPO

610 IBM Db2 V11.5: SQL Reference

)
)

Assuming that the XML schema that is associated with SQL name FOO.WORLDPO is found in the XML
repository, the input XML value will be validated according to that XML schema.

• Example 3: Validate a specified element of the XML value.

 INSERT INTO T1(XMLCOL)
 VALUES (
 XMLVALIDATE(
 ? ACCORDING TO XMLSCHEMA ID FOO.WORLDPO
 NAMESPACE 'http://my.world.com/Mary'
 ELEMENT "po"
)
)

Assuming that the XML schema that is associated with SQL name FOO.WORLDPO is found in the XML
repository, the XML schema will be validated against the element "po", whose namespace is 'http://
my.world.com/Mary'.

• Example 4: XML schema is identified by target namespace and schema location.

 INSERT INTO T1(XMLCOL)
 VALUES (
 XMLVALIDATE(
 ? ACCORDING TO XMLSCHEMA URI 'http://my.world.com'
 LOCATION 'http://my.world.com/world.xsd'
)
)

Assuming that an XML schema associated with the target namespace "http://my.world.com" and by
schemaLocation hint "http://my.world.com/world.xsd" is found in the XML schema repository, the input
XML value will be validated according to that schema.

XMLXSROBJECTID
The XMLXSROBJECTID function returns the XSR object identifier of the XML schema used to validate the
XML document specified in the argument. The XSR object identifier is returned as a BIGINT value and
provides the key to a single row in SYSCAT.XSROBJECTS.

XMLXSROBJECTID (xml-value-expression)

The schema is SYSIBM.

xml-value-expression
Specifies an expression that results in a value with a data type of XML. The resulting XML value must
be an XML sequence with a single item that is an XML document or the null value (SQLSTATE 42815).
If the argument is null, the function returns null. If xml-value-expression does not specify a validated
XML document, the function returns 0.

Notes
• The XML schema corresponding to an XSR object ID returned by the function might no longer exist,

because an XML schema can be dropped without affecting XML values that were validated using the
XML schema. Therefore, queries that use the XSR object ID to fetch further XML schema information
from the catalog views might return an empty result set.

• Applications can use the XSR object identifier to retrieve additional information about the XML schema.
For example, the XSR object identifier can be used to return the individual XML schema documents that
make up a registered XML schema from SYSCAT.SYSXSROBJECTCOMPONENTS, and the hierarchy of
XML schema documents in the XML schema from SYSCAT.XSROBJECTHIERARCHIES.

Chapter 1. Structured Query Language (SQL) 611

Examples
• Example 1: Retrieve the XML schema identifier for the XML document XMLDOC stored in the table

MYTABLE.

 SELECT XMLXSROBJECTID(XMLDOC) FROM MYTABLE

• Example 2: Retrieve the XML schema documents associated with the XML document that has a specific
ID (in this case where DOCKEY = 1) in the table MYTABLE, including the hierarchy of the XML schema
documents that make up the XML schema.

 SELECT H.HTYPE, C.TARGETNAMESPACE, C.COMPONENT
 FROM SYSCAT.XSROBJECTCOMPONENTS C, SYSCAT.XSROBJECTHIERARCHIES H
 WHERE C.OBJECTID =
 (SELECT XMLXSROBJECTID(XMLDOC) FROM MYTABLE
 WHERE DOCKEY = 1)
 AND C.OBJECTID = H.OBJECTID

XSLTRANSFORM
Use XSLTRANSFORM to convert XML data into other formats, including the conversion of XML documents
that conform to one XML schema into documents that conform to another schema.

XSLTRANSFORM (xml-document USING xsl-stylesheet

WITH xsl-parameters AS data-type

)

data-type

CHARACTER

CHAR

(-1)

(integer

OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

(integer

OCTETS

CODEUNITS32

)

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

(integer

K

M

G

OCTETS

CODEUNITS32

)

BLOB

BINARY LARGE OBJECT

(1M)

(integer

K

M

G

)

The schema is SYSIBM. This function cannot be specified as a qualified name.

The XSLTRANSFORM function transforms an XML document into a different data format. The data can be
transformed into any form possible for the XSLT processor, including but not limited to XML, HTML, or
plain text.

612 IBM Db2 V11.5: SQL Reference

All paths used by XSLTRANSFORM are internal to the database system. This command cannot currently
be used directly with files or stylesheets residing in an external file system.

xml-document
An expression that returns a well-formed XML document with a data type of XML, CHAR, VARCHAR,
CLOB, or BLOB. This is the document that is transformed using the XSL style sheet specified in
xsl-stylesheet.

The XML document must at minimum be single-rooted and well-formed.

xsl-stylesheet
An expression that returns a well-formed XML document with a data type of XML, CHAR, VARCHAR,
CLOB, or BLOB. The document is an XSL style sheet that conforms to the W3C XSLT Version 1.0
Recommendation. Style sheets incorporating XQUERY statements or the xsl:include declaration
are not supported. This stylesheet is applied to transform the value specified in xml-document.

xsl-parameters
An expression that returns a well-formed XML document or null with a data type of XML, CHAR,
VARCHAR, CLOB, or BLOB. This is a document that provides parameter values to the XSL stylesheet
specified in xsl-stylesheet. The value of the parameter can be specified as an attribute, or as a text
node.

The syntax of the parameter document is as follows:

<params xmlns="http://www.ibm.com/XSLTransformParameters">
<param name="..." value="..."/>
<param name="...">enter value here</param>
 ...
</params>

The stylesheet document must have xsl:param element(s) in it with name attribute values that
match the ones specified in the parameter document.

AS data-type
Specifies the result data type. The implicit or explicit length attribute of the specified result data type
must be sufficient to contain the transformed output (SQLSTATE 22001). The default result data type
is CLOB(2G OCTETS) except in a Unicode database where the string units of the environment is set to
CODEUNITS32 when the default is CLOB(536870911 CODEUNITS32).

If either the xml-document argument or the xsl-stylesheet argument is null, the result will be null.

Code page conversion might occur when storing any of the previously mentioned documents in a
CHAR, VARCHAR, or CLOB column, which might result in a character loss.

Example
This example illustrates how to use XSLT as a formatting engine. To get set up, first create the XML_TAB
table and insert a row that includes an XML document and an XSL style sheet into the table.

CREATE TABLE XML_TAB (DOC_ID INTEGER, XML_DOC XML, XSL_DOC XML);

INSERT INTO XML_TAB VALUES
(1,
'<?xml version="1.0"?>
 <students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation = "/home/steffen/xsd/xslt.xsd">
 <student studentID="1" firstName="Steffen" lastName="Siegmund"
 age="23" university="Rostock"/>
 </students>',
'<?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:param name="headline"/>
 <xsl:param name="showUniversity"/>
 <xsl:template match="students">
 <html>
 <head/>
 <body>
 <h1><xsl:value-of select="$headline"/></h1>
 <table border="1">

Chapter 1. Structured Query Language (SQL) 613

 <th>
 <tr>
 <td width="80">StudentID</td>
 <td width="200">First Name</td>
 <td width="200">Last Name</td>
 <td width="50">Age</td>
 <xsl:choose>
 <xsl:when test="$showUniversity =''true''">
 <td width="200">University</td>
 </xsl:when>
 </xsl:choose>
 </tr>
 </th>
 <xsl:apply-templates/>
 </table>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="student">
 <tr>
 <td><xsl:value-of select="@studentID"/></td>
 <td><xsl:value-of select="@firstName"/></td>
 <td><xsl:value-of select="@lastName"/></td>
 <td><xsl:value-of select="@age"/></td>
 <xsl:choose>
 <xsl:when test="$showUniversity = ''true''">
 <td><xsl:value-of select="@university"/></td>
 </xsl:when>
 </xsl:choose>
 </tr>
 </xsl:template>
 </xsl:stylesheet>'
);

Next, call the XSLTRANSFORM function to convert the XML data into HTML and display it.

SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC AS CLOB(1M)) FROM XML_TAB;

The result is this document:

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<h1></h1>
<table border="1">
<th>
<tr>
<td width="80">StudentID</td>
<td width="200">First Name</td>
<td width="200">Last Name</td>
<td width="50">Age</td>
</tr>
</th>
 <tr>
<td>1</td>
<td>Steffen</td><td>Siegmund</td>
<td>23</td>
</tr>
 </table>
</body>
</html>

In this example, the output is HTML and the parameters influence only what HTML is produced and what
data is brought over to it. As such it illustrates the use of XSLT as a formatting engine for end-user output.

Usage note
There are many methods you can use to transform XML documents including the XSLTRANSFORM
function, an XQuery update expression, and XSLT processing by an external application server. For
documents stored in an XML column of a database table, many transformations can be performed more
efficiently by using an XQuery update expression rather than with XSLT because XSLT always requires
parsing of the XML documents that are being transformed. If you decide to transform XML documents

614 IBM Db2 V11.5: SQL Reference

with XSLT, you should make careful decisions about whether to transform the document in the database
or in an application server.

YEAR
The YEAR function returns the year part of a value.

YEAR (expression)

The schema is SYSIBM.

expression
An expression that returns a value of one of the following built-in data types: DATE, TIMESTAMP, date
duration, timestamp duration, or a valid character string representation of a date or timestamp that is
not a CLOB. In a Unicode database, if a supplied argument is a graphic string, it is first converted to a
character string before the function is executed.

The result of the function is a large integer. If the argument can be null, the result can be null; if the
argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:

• If the argument is a DATE, TIMESTAMP, or valid string representation of a date or timestamp:

– The result is the year part of the value, which is an integer between 1 and 9999.
• If the argument is a date duration or timestamp duration:

– The result is the year part of the value, which is an integer between -9999 and 9999. A nonzero result
has the same sign as the argument.

Examples
• Example 1: Select all the projects in the PROJECT table that are scheduled to start (PRSTDATE) and end

(PRENDATE) in the same calendar year.

 SELECT * FROM PROJECT
 WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

• Example 2: Select all the projects in the PROJECT table that are scheduled to take less than one year to
complete.

 SELECT * FROM PROJECT
 WHERE YEAR(PRENDATE - PRSTDATE) < 1

YEARS_BETWEEN
The YEARS_BETWEEN function returns the number of full years between the specified arguments.

YEARS_BETWEEN (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that specifies the first datetime value to compute the number of full years between two
datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or VARCHAR
data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC data type.
CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If expression1
is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that is accepted
by the TIMESTAMP scalar function.

expression2
An expression that specifies the second datetime value to compute the number of full years between
two datetime values. The expression must return a value that is a DATE, TIMESTAMP, CHAR, or

Chapter 1. Structured Query Language (SQL) 615

VARCHAR data type. In a Unicode database, the expression can also be a GRAPHIC or VARGRAPHIC
data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by using implicit casting. If
expression2 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it must be a valid string that
is accepted by the TIMESTAMP scalar function.

If there is less than a full year between expression1 and expression2, the result is zero. If expression1
is later than expression2, the result is positive. If expression1 is earlier than expression2, the result
is negative. If expression1 or expression2 contains time information, this information is also used to
determine the number of full years. If expression1 or expression2 does not contain time information, a
time of midnight (00.00.00) is used for the argument that is missing time information.

The result of the function is an INTEGER. If either argument can be null, the result can be null. If either
argument is null, the result is the null value.

The YEARS_BETWEEN function is a synonym of the following expression:

YEAR(TIMESTAMP(expression1, 12) – TIMESTAMP(expression2, 12))

Examples
1. Set the host variable NUM_YEARS with the number of full years between 2013-02-28 and

2012-02-29.

 SET :NUM_YEARS = YEARS_BETWEEN(DATE '2013-02-28', DATE '2012-02-29')

The host variable NUM_YEARS is set to 0 because there is 1 day less than a full year between the
arguments due to the existence of February 29, 2012.

2. Set the host variable NUM_YEARS with the number of full years between 2013-12-31 and
2001-01-01.

 SET :NUM_YEARS = YEARS_BETWEEN(DATE '2013-12-31', DATE '2001-01-01')

The host variable NUM_YEARS is set to 12 because there is 1 day less than 13 full years between the
arguments. It is positive because the first argument is later than the second argument.

3. Set the host variable NUM_YEARS with the number of full years between 2001-01-01-00.00.00 and
2013-12-31-23.59.59.

 SET :NUM_YEARS = YEARS_BETWEEN(TIMESTAMP '2001-01-01-00.00.00',
 TIMESTAMP '2013-12-31-23.59.59')

The host variable NUM_YEARS is set to -12 because there is 1 day less than 13 full years between the
arguments. It is negative because the first argument is earlier than the second argument.

YMD_BETWEEN
The YMD_BETWEEN function returns a numeric value that specifies the number of full years, full months,
and full days between two datetime values.

YMD_BETWEEN (expression1 , expression2)

The schema is SYSIBM.

expression1
An expression that specifies the first datetime value to compute the number of full years, full months,
and full days between two datetime values. The expression must return a value that is a DATE,
TIMESTAMP, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be a
GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported by
using implicit casting. If expression1 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it
must be a valid string that is accepted by the TIMESTAMP scalar function.

616 IBM Db2 V11.5: SQL Reference

expression2
An expression that specifies the second datetime value to compute the number of full years, full
months, and full days between two datetime values. The expression must return a value that is a
DATE, TIMESTAMP, CHAR, or VARCHAR data type. In a Unicode database, the expression can also be
a GRAPHIC or VARGRAPHIC data type. CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC are supported
by using implicit casting. If expression2 is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type, it
must be a valid string that is accepted by the TIMESTAMP scalar function.

If there is less than a full day between expression1 and expression2, the result is zero. If expression1
is later than expression2, the result is positive. If expression1 is earlier than expression2, the result
is negative. If expression1 or expression2 contains time information, this information is also used to
determine the number of full years, full months, and full days. If expression1 or expression2 does not
contain time information, a time of midnight (00.00.00) is used for the argument that is missing time
information.

The result of the function is an INTEGER. If either argument can be null, the result can be null. If either
argument is null, the result is the null value.

The YMD_BETWEEN function is a synonym of the following expression:

INTEGER((TIMESTAMP(expression1, 12) – TIMESTAMP(expression2, 12)) / 1000000)

The result is the integer representation of the extraction of the year, month, and day components of a
timestamp duration.

Examples
1. Set the host variable YMD to the number of full years, full months, and full days between

2013-09-23-23.59.59.123456789012 and 2013-09-24-23.59.59.123456789011.

 SET :YMD = YMD_BETWEEN(TIMESTAMP '2013-09-24-23.59.59.123456789011',
 TIMESTAMP '2013-09-23-23.59.59.123456789012')

The host variable YMD is set to 0 because there are 0.000000000001 seconds less than a full day
between the arguments. It is positive because the first argument is later than the second argument.

2. Set the host variable YMD to the number of full years, full months, and full days between
2013-09-23-23.59.59.123456789012 and 2013-09-24-23.59.59.123456789012.

 SET :YMD = YMD_BETWEEN(TIMESTAMP '2013-09-24-23.59.59.123456789012',
 TIMESTAMP '2013-09-23-23.59.59.123456789012')

The host variable YMD is set to 1 because there is exactly 1 day between the arguments. It is positive
because the first argument is later than the second argument.

3. Set the host variable YMD to the number of full years, full months, and full days between
2013-09-23-23.59.59.123456789012 and 2016-03-01-23.59.59.123456789011.

 SET :YMD = YMD_BETWEEN(TIMESTAMP '2013-09-23-23.59.59.123456789012',
 TIMESTAMP '2016-03-01-23.59.59.123456789011')

The host variable YMD is set to -20507 because there are 0.000000000001 seconds less than 2 full
years, 5 full months, and 8 full days between the arguments. It is negative because the first argument
is earlier than the second argument.

Table functions
Table functions return columns of a table, resembling a table created through a simple CREATE TABLE
statement.

A table function can be used only in the FROM clause of a statement.

Table functions can be qualified with a schema name.

Chapter 1. Structured Query Language (SQL) 617

BASE_TABLE
The BASE_TABLE function returns both the object name and schema name of the object found after any
alias chains have been resolved.

BASE_TABLE (objectschema , objectname)

The schema is SYSPROC.

The specified objectname (and objectschema) are used as the starting point of the resolution. If the
starting point does not refer to an alias, the schema name and the unqualified name of the starting point
are returned. The function returns a single row table consisting of the following columns:

Table 107. Information returned by the BASE_TABLE function

Column name Data type Description

BASESCHEMA VARCHAR(128) Schema name of the object found
after any alias chains have been
resolved. Matches objectschema
if no matching alias was found.

BASENAME VARCHAR(128) Unqualified name of the object
found after any alias chains
have been resolved. Matches
objectname if no matching alias
was found. The name may
identify a table, a view, or an
undefined object.

objectschema
A character expression representing the schema used to qualify the supplied objectname value before
resolution. objectschema must have a data type of CHAR or VARCHAR and a length greater than 0 and
less than 129 bytes.

objectname
A character expression representing the unqualified name to be resolved. objectname must have a
data type of CHAR or VARCHAR and a length greater than 0 and less than 129 bytes.

Note: The BASE_TABLE table function improves performance in partitioned database configurations by
avoiding the unnecessary communication that occurs between the coordinator partition and catalog
partition when using the TABLE_SCHEMA and TABLE_NAME scalar functions.

Example
The following statement using the TABLE_SCHEMA and TABLE_NAME functions is written as:

SELECT COLCOUNT INTO :H00030
FROM SYSCAT.TABLES
WHERE OWNER = TABLE_SCHEMA(:H00031 ,:H00032)
AND TABNAME = TABLE_NAME(:H00031 ,:H00032)

The equivalent statement using the BASE_TABLE function can be written as:

SELECT COLCOUNT INTO :H00030
FROM SYSCAT.TABLES A, TABLE(SYSPROC.BASE_TABLE(:H00032, :H00031)) AS B
WHERE A.OWNER = B.BASESCHEMA
AND A.TABNAME = B.BASENAME

618 IBM Db2 V11.5: SQL Reference

JSON_TABLE
The JSON_TABLE table function returns a result table from the evaluation of SQL/JSON path expressions.
Each item in the result sequence of the row SQL/JSON path expression represents one or more rows in
the result table.

JSON_TABLE (JSON-expression

FORMAT JSON

FORMAT BSON

, 'strict $'

COLUMNS (

,

json-table-regular-column-definition

json-table-formatted-column-definition

) ERROR ON ERROR)

json-table-regular-column-definition
column-name data-type

PATH column-path-expression-constant

NULL ON EMPTY

ERROR

DEFAULT default-expression

ON EMPTY

NULL

ERROR

DEFAULT default-expression

ON ERROR

json-table-formatted-column-definition

Chapter 1. Structured Query Language (SQL) 619

column-name data-type FORMAT JSON

PATH column-path-expression-constant

WITHOUT
ARRAY

WRAPPER

WITH
UNCONDITIONAL

CONDITIONAL

ARRAY
WRAPPER

KEEP QUOTES
ON SCALAR STRING

OMIT QUOTES
ON SCALAR STRING

NULL ON EMPTY

ERROR

EMPTY ARRAY

EMPTY OBJECT

ON EMPTY NULL

ERROR

EMPTY ARRAY

EMPTY OBJECT

ON ERROR

data-type

CHARACTER

CHAR

(1)

( integer)

CHARACTER

CHAR

VARYING

VARCHAR

( integer)

CHARACTER

CHAR

LARGE OBJECT

CLOB

(1M)

( integer
K

M

G

)

BINARY VARYING

VARBINARY

(integer)

BINARY LARGE OBJECT

BLOB

(1M)

( integer
K

M

G

)

The schema is SYSIBM. The function name cannot be specified as a qualified name.

620 IBM Db2 V11.5: SQL Reference

JSON-expression
An expression that returns a value that is a built-in string data type, except the following data types
(SQLSTATE 42815):

• GRAPHIC
• VARGRAPHIC
• DBCLOB
• BINARY
• CHAR FOR BIT DATA
• VARCHAR FOR BIT DATA
• A user-defined type that is sourced on any of the previously listed data types

If a character value is returned, it must contain correctly formatted JSON data (SQLSTATE 22032). If a
binary data type is returned, it is interpreted according to the explicit or implicit FORMAT clause.

FORMAT JSON
JSON-expression is formatted as JSON data.

If JSON-expression is a character string data type, it is treated as JSON data.

If JSON-expression is a binary string data type, it is interpreted as UTF-8 data.

FORMAT BSON
Specifies that JSON-expression is formatted as the BSON representation of JSON data (SQLSTATE
22032). JSON-expression must be a binary string data type (SQLSTATE 42815).

'strict $'
Specifies that an error is reported when the specified path expression cannot be used to navigate
the current JSON document from the start of the context item. The error is handled according to the
current ON ERROR clause.

COLUMNS
Specifies the output columns of the result table, including the column name, data type, and how the
column value is computed for each row. The sum of the result column lengths cannot exceed 64 KB.

json-table-regular-column-definition
Specifies an output column of the result table, including the column name, data type, and an SQL/
JSON path expression to extract the value from the sequence item for the row.
column-name

Specifies the name of the column in the result table. The name cannot be qualified and the same
name cannot be used for more than one column of the result table (SQLSTATE 42711).

data-type
Specifies the data type of the column.

See “CREATE TABLE ” on page 1351 for the description of built-in data types.

PATH column-path-expression-constant
Specifies a character string constant that is interpreted as an SQL/JSON path. The column-path-
expression-constant specifies an SQL/JSON path expression that determines the column value
regarding an item that is the result of evaluating the SQL/JSON path expression in sql-json-path-
expression.

For more information about the content of an SQL/JSON path expression, see “sql-json-path-
expression” on page 179.

Given an item from the result of processing the sql-json-path-expression as the externally
provided context item, the column-path-expression-constant is evaluated and returns an output
sequence. The column value is determined based on this output sequence as follows:

• If an empty sequence is returned, the ON EMPTY clause provides the value of the column.
• If ERROR ON EMPTY is specified, an error is returned.

Chapter 1. Structured Query Language (SQL) 621

• If an empty sequence is returned and the ON EMPTY clause is not specified, the null value is
assigned to the column.

• If a single element sequence is returned and the type of the element is not a JSON array or a
JSON object, the value is converted to the data type that was specified for the column.

• If a single element sequence is returned and the type of the element is a JSON array or a JSON
object, an error is returned.

• If a sequence with more than one element is returned, an error is returned.
• If an error occurs, the ON ERROR clause specifies the value of the column.

The value of column-path-expression-constant must not be an empty string or a string of all
blanks. If the PATH clause is not specified, the column-path-expression-constant is defined as
'$.' prefixed to column-name.

ON EMPTY
Specifies the behavior when an empty sequence is returned for the column.
NULL ON EMPTY

An SQL null value is returned. This clause is the default.
ERROR ON EMPTY

An error is returned.
DEFAULT default-expression ON EMPTY

The value that is specified by default-expression is returned. The data type of default-
expression must be the same as the return data type (SQLSTATE 42815).

ON ERROR
Specifies the behavior when an error is returned for the column. If this clause is not specified, the
behavior specified for the table-level ON ERROR clause is followed.
NULL ON ERROR

A null value is returned.
ERROR ON ERROR

An error is returned.
DEFAULT default-expression ON ERROR

The value that is specified by default-expression is returned. The data type of default-
expression must be the same as the return data type (SQLSTATE 42815).

json-table-formatted-column-definition
Specifies an output column of the result table. The definition includes the column name, data type,
and an SQL/JSON path expression. This definition is used to extract the value from the sequence item
for the row. The extracted value is formatted as a JSON string.
column-name

Specifies the name of the column in the result table. The name cannot be qualified and the same
name cannot be used for more than one column of the result table (SQLSTATE 42711).

data-type
Specifies the data type of the column. The data type can be CHAR, VARCHAR, CLOB, VARBINARY,
or BLOB (SQLSTATE 42815).

See “CREATE TABLE ” on page 1351 for the description of built-in data types.

FORMAT JSON
Indicates that the data that is retrieved is formatted as a JSON string.

PATH column-path-expression-constant
Specifies a character string constant that is interpreted as an SQL/JSON path.

The column-path-expression-constant specifies an SQL/JSON path expression that determines the
column value regarding the result of evaluating the SQL/JSON path expression in sql-json-path-
expression.

622 IBM Db2 V11.5: SQL Reference

For more information about the content of an SQL/JSON path expression, see “sql-json-path-
expression” on page 179.

Given an item from the result of processing the sql-json-path-expression as the externally
provided context item, the column-path-expression-constant is evaluated and returns an output
sequence. The column value is determined based on this output sequence as follows:

• If an empty sequence is returned, the ON EMPTY clause provides the value of the column.
• If ERROR ON EMPTY is specified, an error is returned.
• If an empty sequence is returned and the ON EMPTY clause is not specified, the null value is

assigned to the column.
• If an error occurs, the ON ERROR clause specifies the value of the column.

The value for column-path-expression-constant must not be an empty string or a string of all
blanks. If the PATH clause is not specified, the column-path-expression-constant is defined as
'$.' prefixed to column-name.

WITHOUT ARRAY WRAPPER or WITH ARRAY WRAPPER
Specifies whether the output value is wrapped in a JSON array.
WITHOUT ARRAY WRAPPER

Indicates that the result is not wrapped. This clause is the default. Using a strict SQL/JSON
path definition that resolves to a sequence of two or more SQL/JSON elements results in
an error (SQLSTATE 2203A). Using a lax SQL/JSON path definition with the ON EMPTY that
resolves to a sequence of two or more SQL/JSON elements results in an error (SQLSTATE
22035).

WITH UNCONDITIONAL ARRAY WRAPPER
Indicates that the result is enclosed in square brackets to create a JSON array.

WITH CONDITIONAL ARRAY WRAPPER
Indicates that the result is enclosed in square brackets to create a JSON array for either of the
following scenarios:

• More than one SQL/JSON element is returned.
• A single SQL/JSON element that is not a JSON array or a JSON object is returned.

KEEP QUOTES or OMIT QUOTES
Specifies whether the surrounding quotation marks are removed when a scalar string is returned.
KEEP QUOTES

Quotation marks are not removed from scalar strings. This clause is the default.
OMIT QUOTES

Quotation marks are removed from scalar strings. When OMIT QUOTES is specified, the WITH
ARRAY WRAPPER clause cannot be specified (SQLSTATE 42601).

ON EMPTY
Specifies the behavior when an empty sequence is returned for a column.
NULL ON EMPTY

An SQL null value is returned. This clause is the default.
ERROR ON EMPTY

An error is returned.
EMPTY ARRAY ON EMPTY

An empty JSON array is returned.
EMPTY OBJECT ON EMPTY

An empty JSON object is returned.
ON ERROR

Specifies the behavior when an error is returned for the column. If this clause is not specified, the
behavior specified for the table-level ON ERROR clause is followed.

Chapter 1. Structured Query Language (SQL) 623

NULL ON ERROR
An SQL null value is returned. This clause is the default.

ERROR ON ERROR
An error is returned.

EMPTY ARRAY ON ERROR
An empty JSON array is returned.

EMPTY OBJECT ON ERROR
An empty JSON object is returned.

ERROR ON ERROR
An error is returned when a table level error is encountered.

Notes
• If parameter markers are not explicitly cast to a supported data type, an error is returned (SQLSTATE

42815)

Example
1. This example is based on the following JSON document:

{
 "id" : 901,
 "firstname" : "John",
 "lastname" : "Doe",
 "phoneno" : "555-3762"
}

List the employee ID, given name, surname, and phone number:

SELECT U."id", U."first name", U."last name", U."phone number"
 FROM EMPLOYEE_TABLE E
 JSON_TABLE(E.jsondoc, 'strict $'
 COLUMNS("id" INTEGER,
 "firstname" VARCHAR(20),
 "lastname" VARCHAR(20),
 "phoneno" VARCHAR(20))
 ERROR ON ERROR) AS U

This query returns the following table:

id firstname lastname phoneno

901 John Doe 555-3762

UNNEST
The UNNEST function returns a result table that includes a row for each element of the specified array. If
there are multiple ordinary array arguments specified, the number of rows will match the array with the
largest cardinality.

UNNEST

TABLE

(

,

array-expression
1

)

Notes:
1 Only a single array-expression argument can be specified if the expression returns an associative
array type or an array type with row type elements

The schema is SYSIBM.

624 IBM Db2 V11.5: SQL Reference

array-expression
An expression that returns an array data type. The expression must be one of the following
expressions:

• An SQL variable
• An SQL parameter
• A global variable
• A function invocation
• A CAST specification of a parameter marker
• A CASE expression

Names for the result columns produced by the UNNEST function can be provided as part of the
correlation-clause of the collection-derived-table clause.

The UNNEST function can only be used in a collection-derived-table clause in a context where arrays are
supported (SQLSTATE 42887).

The result table depends on the input arguments.

• If a single array-expression that returns an ordinary array is specified:

– If the array element is not a row data type, the result is a single column table with a column data type
that matches the array element data type.

– If the array element is a row data type, the result is a table with one column for each row field in the
element data type. The result table column data types match the corresponding array element row
field data types.

• If more than one ordinary array argument is specified and none of the array elements have a row data
type, the first array provides the first column in the result table, the second array provides the second
column, and so on. The data type of each column matches the data type of the array elements of the
corresponding array argument. If the cardinalities of the arrays are not identical, the cardinality of the
resulting table is the same as the array with the largest cardinality. The column values in the table
are set to the null value for all rows whose array index value is greater than the cardinality of the
corresponding array. In other words, if each array is viewed as a table with two columns, one for the
array indexes and one for the data, then UNNEST performs an OUTER JOIN among the arrays, using
equality on the array indexes as a join predicate.

• If a single array-expression that returns an associative array is specified:

– If the array element is not a row data type, the result is a table with 2 columns where the first column
data type matches the array index data type and the second column data type matches the array
element data type.

– If the array element is a row data type, the result is a table with one more column than the number
of fields in the row data type, where the first column data type matches the array index data type and
the remaining column data types match the array element row field data types.

• An error is returned (SQLSTATE 42884):

– If more than one associative array argument is specified.
– If more than one array argument is specified and at least one of the arrays has a element data type

that is a row type.
– If both ordinary array arguments and associative array arguments are specified.

This special table function is only used in collection-derived-table of table-reference in a FROM clause.

If more than one array is provided and at least one of the arguments is an associative array, an error is
returned (SQLSTATE 42884).

If the WITH ORDINALITY clause is used when unnesting an associative array, an error is returned
(SQLSTATE 428HT).

Chapter 1. Structured Query Language (SQL) 625

Examples
1. Assume the ordinary array variable RECENT_CALLS of array type PHONENUMBERS contains only the

three element values 9055553907, 4165554213, and 4085553678.The following query:

SELECT T.ID, T.NUM
FROM UNNEST(RECENT_CALLS) WITH ORDINALITY AS T(NUM, ID)

returns a table formatted as follows:

ID NUM

1 9055553907
2 4165554213
3 4085553678

2. Return the list of personal phone numbers from the array variable PHONELIST of array type
PERSONAL_PHONENUMBERS along with the index string values The following query:

SELECT T.ID, T.PHONE
FROM UNNEST(PHONELIST) AS T(ID, PHONE)

returns a table formatted as follows:

ID PHONE

Home 4163053745
Work 4163053746
Mom 4164789683

XMLTABLE
The XMLTABLE function returns a result table from the evaluation of XQuery expressions, possibly using
specified input arguments as XQuery variables. Each sequence item in the result sequence of the row
XQuery expression represents a row of the result table.

XMLTABLE (

xmlnamespaces-declaration ,

row-xquery-expression-constant

PASSING
BY REF

,

row-xquery-argument

COLUMNS

,

xml-table-regular-column-definition

xml-table-ordinality-column-definition

1
)

row-xquery-argument
xquery-context-item-expression

xquery-variable-expression
2

AS identifier

BY REF

xml-table-regular-column-definition

626 IBM Db2 V11.5: SQL Reference

column-name data-type

BY REF default-clause

PATH column-xquery-expression-constant

xml-table-ordinality-column-definition
column-name FOR ORDINALITY

Notes:
1 The xml-table-ordinality-column-definition clause must not be specified more than once (SQLSTATE
42614).
2 The data type of the expression cannot be DECFLOAT.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

xmlnamespaces-declaration
Specifies one or more XML namespace declarations that become part of the static context of the row-
xquery-expression-constant and the column-xquery-expression-constant. The set of statically known
namespaces for XQuery expressions which are arguments of XMLTABLE is the combination of the
pre-established set of statically known namespaces and the namespace declarations specified in this
clause. The XQuery prolog within an XQuery expression may override these namespaces.

If xmlnamespaces-declaration is not specified, only the pre-established set of statically known
namespaces apply to the XQuery expressions.

row-xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an XQuery expression using
supported XQuery language syntax. The constant string is converted directly to UTF-8 without
conversion to the database or section code page. The XQuery expression executes using an optional
set of input XML values, and returns an output XQuery sequence where a row is generated for each
item in the sequence. The value for row-xquery-expression-constant must not be an empty string or a
string of all blanks (SQLSTATE 10505).

PASSING
Specifies input values and the manner in which these values are passed to the XQuery expression
specified by row-xquery-expression-constant. By default, every unique column name that is in the
scope where the function is invoked is implicitly passed to the XQuery expression using the name
of the column as the variable name. If an identifier in a specified row-xquery-argument matches an
in-scope column name, then the explicit row-xquery-argument is passed to the XQuery expression
overriding that implicit column.
BY REF

Specifies that any XML input arguments are, by default, passed by reference. When XML values
are passed by reference, the XQuery evaluation uses the input node trees, if any, directly from
the specified input expressions, preserving all properties, including the original node identities
and document order. If two arguments pass the same XML value, node identity comparisons
and document ordering comparisons involving some nodes contained between the two input
arguments might refer to nodes within the same XML node tree.

This clause has no impact on how non-XML values are passed. The non-XML values create a new
copy of the value during the cast to XML.

row-xquery-argument
Specifies an argument that is to be passed to the XQuery expression that is specified by
row-xquery-expression-constant. The method through which row-xquery-argument is used in the
XQuery expression depends on whether the argument is specified as an xquery-context-item-
expression or an xquery-variable-expression.

• If the resulting value is of type XML, it becomes an input-xml-value. A null XML value is
converted to an XML empty sequence.

Chapter 1. Structured Query Language (SQL) 627

• If the resulting value is not of type XML, it must be castable to the XML data type. A null value is
converted to an XML empty sequence. The converted value becomes an input-xml-value.

When the row-xquery-expression-constant is evaluated, an XQuery variable is presented with a
value equal to input-xml-value and a name specified by the AS clause.
xquery-context-item-expression

An expression that returns a value that is XML, integer, decimal, or a character or graphic
string that is not a LOB. xquery-context-item-expression must not be a character string that is
bit data.
xquery-context-item-expression specifies the initial context item for the row-xquery-
expression. The value of the initial context item is the result of xquery-context-item-expression
cast to XML. xquery-context-item-expression must not be specified more than one time.

xquery-variable-expression
Specifies an SQL expression whose value is available to the XQuery expression specified
by row-xquery-expression-constant during execution. The expression cannot contain a NEXT
VALUE expression, PREVIOUS VALUE expression (SQLSTATE 428F9), or an OLAP function
(SQLSTATE 42903). The data type of the expression cannot be DECFLOAT.

AS identifier
Specifies that the value generated by xquery-variable-expression will be passed to row-xquery-
expression-constant as an XQuery variable. The variable name will be identifier. The leading
dollar sign ($) that precedes variable names in the XQuery language is not included in
identifier. The identifier must be a valid XQuery variable name and is restricted to an XML
NCName. The identifier must not be greater than 128 bytes in length. Two arguments within
the same PASSING clause cannot use the same identifier (SQLSTATE 42711).

BY REF
Indicates that an XML input value is to be passed by reference. When XML values are passed
by reference, the XQuery evaluation uses the input node trees, if any, directly from the
specified input expressions, preserving all properties, including the original node identities
and document order. If two arguments pass the same XML value, node identity comparisons
and document ordering comparisons involving some nodes contained between the two input
arguments might refer to nodes within the same XML node tree. If BY REF is not specified
following an xquery-expression-variable, XML arguments are passed by way of the default
passing mechanism that is provided through the syntax that follows the PASSING keyword.
This option cannot be specified for non-XML values (SQLSTATE 42636). When a non-XML
value is passed, the value is converted to XML; this process creates a copy.

COLUMNS
Specifies the output columns of the result table. If this clause is not specified, a single unnamed
column of data type XML is returned by reference, with the value based on the sequence item from
evaluating the XQuery expression in the row-xquery-expression-constant (equivalent to specifying
PATH '.'). To reference the result column, a column-name must be specified in the correlation-clause
following the function.
xml-table-regular-column-definition

Specifies the output columns of the result table including the column name, data type, XML
passing mechanism and an XQuery expression to extract the value from the sequence item for the
row
column-name

Specifies the name of the column in the result table. The name cannot be qualified and the
same name cannot be used for more than one column of the table (SQLSTATE 42711).

data-type
Specifies the data type of the column. See CREATE TABLE for the syntax and a description of
types available. A data-type may be used in XMLTable if there is a supported XMLCAST from
the XML data type to the specified data-type.

628 IBM Db2 V11.5: SQL Reference

BY REF
Specifies that XML values are returned by reference for columns of data type XML. By default,
XML values are returned BY REF. When XML values are returned by reference, the XML
value includes the input node trees, if any, directly from the result values, and preserves
all properties, including the original node identities and document order. This option cannot be
specified for non-XML columns (SQLSTATE 42636). When a non-XML column is processed, the
value is converted from XML; this process creates a copy.

default-clause
Specifies a default value for the column. See CREATE TABLE for the syntax and a description of
the default-clause. For XMLTABLE result columns, the default is applied when the processing
the XQuery expression contained in column-xquery-expression-constant returns an empty
sequence.

PATH column-xquery-expression-constant
Specifies an SQL character string constant that is interpreted as an XQuery expression using
supported XQuery language syntax. The constant string is converted directly to UTF-8 without
conversion to the database or section code page. The column-xquery-expression-constant
specifies an XQuery expression that determines the column value with respect to an item that
is the result of evaluating the XQuery expression in row-xquery-expression-constant. Given
an item from the result of processing the row-xquery-expression-constant as the externally
provided context item, the column-xquery-expression-constant is evaluated, returning an
output sequence. The column value is determined based on this output sequence as follows.

• If the output sequence contains zero items, the default-clause provides the value of the
column.

• If an empty sequence is returned and no default-clause was specified, a null value is
assigned to the column.

• If a non-empty sequence is returned, the value is XMLCAST to the data-type specified for the
column. An error could be returned from processing this XMLCAST.

The value for column-xquery-expression-constant must not be an empty string or a string of
all blanks (SQLSTATE 10505). If this clause is not specified, the default XQuery expression is
simply the column-name.

xml-table-ordinality-column-definition
Specifies the ordinality column of the result table.
column-name

Specifies the name of the column in the result table. The name cannot be qualified and the
same name cannot be used for more than one column of the table (SQLSTATE 42711).

FOR ORDINALITY
Specifies that column-name is the ordinality column of the result table. The data type of
this column is BIGINT. The value of this column in the result table is the sequential number
of the item for the row in the resulting sequence from evaluating the XQuery expression in
row-xquery-expression-constant.

If the evaluation of any of the XQuery expressions results in an error, then the XMLTABLE function returns
the XQuery error (SQLSTATE class '10').

Example
List as a table result the purchase order items for orders with a status of 'NEW'.

 SELECT U."PO ID", U."Part #", U."Product Name",
 U."Quantity", U."Price", U."Order Date"
 FROM PURCHASEORDER P,
 XMLTABLE('$po/PurchaseOrder/item' PASSING P.PORDER AS "po"
 COLUMNS "PO ID" INTEGER PATH '../@PoNum',
 "Part #" CHAR(10) PATH 'partid',
 "Product Name" VARCHAR(50) PATH 'name',
 "Quantity" INTEGER PATH 'quantity',
 "Price" DECIMAL(9,2) PATH 'price',

Chapter 1. Structured Query Language (SQL) 629

 "Order Date" DATE PATH '../@OrderDate'
) AS U
 WHERE P.STATUS = 'Unshipped'

User-defined functions
User-defined functions (UDFs) are extensions or additions to the existing built-in functions of the SQL
language.

function-name (
,

expression

row-expression

)

A user-defined function can be a scalar function, which returns a single value each time it is called; an
aggregate function, which is passed a set of like values and returns a single value for the set; a row
function, which returns one row; or a table function, which returns a table.

A number of user-defined functions are provided in the SYSFUN and SYSPROC schemas.

A UDF can be an aggregate function only if it is sourced on an existing aggregate function. A UDF is
referenced by means of a qualified or unqualified function name, followed by parentheses enclosing the
function arguments (if any). A user-defined column or scalar function registered with the database can be
referenced in the same contexts in which any built-in function can appear. A user-defined row function
can be referenced only implicitly when registered as a transform function for a user-defined type. A
user-defined table function registered with the database can be referenced only in the FROM clause of a
SELECT statement.

Function arguments must correspond in number and position to the parameters specified for the user-
defined function when it was registered with the database. In addition, the arguments must be of data
types that are promotable to the data types of the corresponding defined parameters.

The result of the function is specified in the RETURNS clause. The RETURNS clause, defined when the
UDF was registered, determines whether or not a function is a table function. If the RETURNS NULL ON
NULL INPUT clause is specified (or defaulted to) when the function is registered, the result is null if any
argument is null. In the case of table functions, this is interpreted to mean a return table with no rows
(that is, an empty table).

See "Row expressions" for more information about rules and row data types.

Following are some examples of user-defined functions:

• A scalar UDF called ADDRESS extracts the home address from resumes stored in script format. The
ADDRESS function expects a CLOB argument and returns a VARCHAR(4000) value:

 SELECT EMPNO, ADDRESS(RESUME) FROM EMP_RESUME
 WHERE RESUME_FORMAT = 'SCRIPT'

• Table T2 has a numeric column A. Invoking the scalar UDF called ADDRESS from the previous example:

 SELECT ADDRESS(A) FROM T2

raises an error (SQLSTATE 42884), because no function with a matching name and with a parameter
that is promotable from the argument exists.

• A table UDF called WHO returns information about the sessions on the server machine that were active
at the time that the statement is executed. The WHO function is invoked from within a FROM clause
that includes the keyword TABLE and a mandatory correlation variable. The column names of the WHO()
table were defined in the CREATE FUNCTION statement.

 SELECT ID, START_DATE, ORIG_MACHINE
 FROM TABLE(WHO()) AS QQ
 WHERE START_DATE LIKE 'MAY%'

630 IBM Db2 V11.5: SQL Reference

Built-in procedures
A procedure is an application program that can be started through the SQL CALL statement. The
procedure is specified by a procedure name, which may be followed by arguments that are enclosed
within parentheses. Built-in procedures are procedures provided with the database manager.

This topic lists the supported built-in procedures for managing XML schema repository (XSR) objects. See
Table 108 on page 631.

There are additional built-in procedures documented under the following headings:

• ADMIN_CMD procedure and associated SQL routines
• Administrative task scheduler routines and views
• Audit routines and procedures
• Automatic maintenance SQL routines and views
• Common SQL API stored procedures
• Explain routines
• Monitor routines
• Snapshot SQL routines and views
• SQL procedures SQL routines
• Stepwise redistribute SQL routines
• Storage management tool SQL routines
• Text search SQL routines
• Workload management routines
• Miscellaneous SQL routines and views

For details about these additional built-in procedures, see "Supported built-in SQL routines and views" in
Administrative Routines and Views .

Table 108. XML schema repository procedures

Function Description

“XSR_ADDSCHEMADOC” on page 631 Add an XML schema document to an XML schema.

“XSR_COMPLETE” on page 632 Complete the XML schema registration process for
an XML schema.

“XSR_DTD” on page 633 Register a document type declaration.

“XSR_EXTENTITY” on page 634 Register an external entity.

“XSR_REGISTER” on page 635 Register an XML schema.

“XSR_UPDATE” on page 637 Update an existing XML schema.

XSR_ADDSCHEMADOC
Each XML schema in the XML schema repository (XSR) can consist of one or more XML schema
documents. Where an XML schema consists of multiple documents, the XSR_ADDSCHEMADOC procedure
is used to add every XML schema other than the primary XML schema document.

XSR_ADDSCHEMADOC (rschema , name , schemalocation , content ,

docproperty)

The schema is SYSPROC.

Chapter 1. Structured Query Language (SQL) 631

Authorization
The authorization ID of the caller of the procedure must be the owner of the XSR object as recorded in the
catalog view SYSCAT.XSROBJECTS.

rschema
An input argument of type VARCHAR (128) that specifies the SQL schema for the XML schema. The
SQL schema is one part of the SQL identifier used to identify this XML schema in the XSR, which
is to be moved to the complete state. (The other part of the SQL identifier is supplied by the name
argument.) This argument can have a null value, which indicates that the default SQL schema, as
defined in the CURRENT SCHEMA special register, is used. Rules for valid characters and delimiters
that apply to any SQL identifier also apply to this argument. XSR objects will not experience name
collisions with database objects that exist outside of the XSR, because XSR objects occur in a different
namespace than objects outside of the XML schema repository.

name
An input argument of type VARCHAR (128) that specifies the name of the XML schema. The complete
SQL identifier for the XML schema is rschema.name. The XML schema name must already exist
as a result of calling the XSR_REGISTER procedure, and XML schema registration cannot yet be
completed. This argument cannot have a null value. Rules for valid characters and delimiters that
apply to any SQL identifier also apply to this argument.

schemalocation
An input argument of type VARCHAR (1000), which can have a null value, that indicates the schema
location of the primary XML schema document to which the XML schema document is being added.
This argument is the external name of the XML schema, that is, the primary document can be
identified in the XML instance documents with the xsi:schemaLocation attribute.

content
An input parameter of type BLOB (30M) that contains the content of the XML schema document being
added. This argument cannot have a null value; an XML schema document must be supplied.

docproperty
An input parameter of type BLOB (5M) that indicates the properties for the XML schema document
being added. This parameter can have a null value; otherwise, the value is an XML document.

Example

 CALL SYSPROC.XSR_ADDSCHEMADOC(
 'user1',
 'POschema',
 'http://myPOschema/address.xsd',
 :content_host_var,
 0)

XSR_COMPLETE
The XSR_COMPLETE procedure is the final procedure to be called as part of the XML schema registration
process, which registers XML schemas with the XML schema repository (XSR). An XML schema is not
available for validation until the schema registration completes through a call to this procedure.

XSR_COMPLETE (rschema , name , schemaproperties ,

isusedfordecomposition)

The schema is SYSPROC.

Authorization:
The authorization ID of the caller of the procedure must be the owner of the XSR object as recorded in the
catalog view SYSCAT.XSROBJECTS.

632 IBM Db2 V11.5: SQL Reference

rschema
An input argument of type VARCHAR (128) that specifies the SQL schema for the XML schema. The
SQL schema is one part of the SQL identifier used to identify this XML schema in the XSR, which
is to be moved to the complete state. (The other part of the SQL identifier is supplied by the name
argument.) This argument can have a null value, which indicates that the default SQL schema, as
defined in the CURRENT SCHEMA special register, is used. Rules for valid characters and delimiters
that apply to any SQL identifier also apply to this argument. XSR objects will not experience name
collisions with database objects that exist outside of the XSR, because XSR objects occur in a different
namespace than objects outside of the XML schema repository.

name
An input argument of type VARCHAR (128) that specifies the name of the XML schema. The complete
SQL identifier for the XML schema, for which a completion check is to be performed, is rschema.name.
The XML schema name must already exist as a result of calling the XSR_REGISTER procedure, and
XML schema registration cannot yet be completed. This argument cannot have a null value. Rules for
valid characters and delimiters that apply to any SQL identifier also apply to this argument.

schemaproperties
An input argument of type BLOB (5M) that specifies properties, if any, associated with the XML
schema. The value for this argument is either the null value, if there are no associated properties, or
an XML document representing the properties for the XML schema.

isusedfordecomposition
An input parameter of type integer that indicates if an XML schema is to be used for decomposition. If
an XML schema is to be used for decomposition, this value should be set to 1; otherwise, it should be
set to zero.

Example

 CALL SYSPROC.XSR_COMPLETE(
 'user1',
 'POschema',
 :schemaproperty_host_var,
 0)

XSR_DTD
The XSR_DTD procedure registers a document type declaration (DTD) with the XML schema repository
(XSR).

XSR_DTD (rschema , name , systemid , publicid , content)

The schema is SYSPROC.

Authorization
The authorization ID of the caller of the procedure must have at least one of the following:

• DBADM authority.
• IMPLICIT_SCHEMA database authority if the SQL schema does not exist.
• CREATEIN privilege if the SQL schema exists.

rschema
An input and output argument of type VARCHAR (128) that specifies the SQL schema for the DTD.
The SQL schema is one part of the SQL identifier used to identify this DTD in the XSR. (The other part
of the SQL identifier is supplied by the name argument.) This argument can have a null value, which
indicates that the default SQL schema, as defined in the CURRENT SCHEMA special register, is used.
Rules for valid characters and delimiters that apply to any SQL identifier also apply to this argument.
Relational schemas that begin with the string 'SYS' must not be used for this value. XSR objects will
not experience name collisions with database objects that exist outside of the XSR, because XSR
objects occur in a different namespace than objects outside of the XML schema repository.

Chapter 1. Structured Query Language (SQL) 633

name
An input and output argument of type VARCHAR (128) that specifies the name of the DTD. The
complete SQL identifier for the DTD is rschema.name and should be unique among all objects in the
XSR. This argument accepts a null value. When a null value is provided for this argument, a unique
value is generated and stored within the XSR. Rules for valid characters and delimiters that apply to
any SQL identifier also apply to this argument.

systemid
An input parameter of type VARCHAR (1000) that specifies the system identifier of the DTD. The
system ID of the DTD should match the uniform resource identifier of the DTD in the DOCTYPE
declaration of the XML instance document or in an ENTITY declaration (as prefixed by the SYSTEM
keyword, if used). This argument cannot have a null value. The system ID can be specified together
with a public ID.

publicid
An input parameter of type VARCHAR (1000) that specifies the public identifier of the DTD. The public
ID of a DTD should match the uniform resource identifier of the DTD in the DOCTYPE declaration
of the XML instance document or in an ENTITY declaration (as prefixed by the PUBLIC keyword, if
used). This argument accepts a null value and should be used only if also specified in the DOCTYPE
declaration of the XML instance document or in an ENTITY declaration.

content
An input parameter of type BLOB (30M) that contains the content of the DTD document. This
argument cannot have a null value.

Example
Register the DTD identified by the system ID http://www.test.com/person.dtd and public ID http://
www.test.com/person:

CALL SYSPROC.XSR_DTD ('MYDEPT' ,
 'PERSONDTD' ,
 'http://www.test.com/person.dtd' ,
 'http://www.test.com/person',
 :content_host_variable
)

XSR_EXTENTITY
The XSR_EXTENTITY procedure registers an external entity with the XML schema repository (XSR).

XSR_EXTENTITY (rschema , name , systemid , publicid , content

)

The schema is SYSPROC.

Authorization
The authorization ID of the caller of the procedure must have at least one of the following:

• DBADM authority.
• IMPLICIT_SCHEMA database authority if the SQL schema does not exist.
• CREATEIN privilege if the SQL schema exists.

rschema
An input and output argument of type VARCHAR (128) that specifies the SQL schema for the external
entity. The SQL schema is one part of the SQL identifier used to identify this external entity in the
XSR. (The other part of the SQL identifier is supplied by the name argument.) This argument can
have a null value, which indicates that the default SQL schema, as defined in the CURRENT SCHEMA
special register, is used. Rules for valid characters and delimiters that apply to any SQL identifier also

634 IBM Db2 V11.5: SQL Reference

apply to this argument. Relational schemas that begin with the string 'SYS' must not be used for this
value. XSR objects will not experience name collisions with database objects that exist outside of the
XSR, because XSR objects occur in a different namespace than objects outside of the XML schema
repository.

name
An input and output argument of type VARCHAR (128) that specifies the name of the external entity.
The complete SQL identifier for the external entity is rschema.name and should be unique among
all objects in the XSR. This argument accepts a null value. When a null value is provided for this
argument, a unique value is generated and stored within the XSR. Rules for valid characters and
delimiters that apply to any SQL identifier also apply to this argument.

systemid
An input parameter of type VARCHAR (1000) that specifies the system identifier of the external entity.
The system ID of the external entity should match the uniform resource identifier of the external
entity in the ENTITY declaration (as prefixed by the SYSTEM keyword, if used). This argument cannot
have a null value. The system ID can be specified together with a public ID.

publicid
An input parameter of type VARCHAR (1000) that specifies the public identifier of the external entity.
The public ID of a external entity should match the uniform resource identifier of the external entity
in the ENTITY declaration (as prefixed by the PUBLIC keyword, if used). This argument accepts a
null value and should be used only if also specified in the DOCTYPE declaration of the XML instance
document or in an ENTITY declaration.

content
An input parameter of type BLOB (30M) that contains the content of the external entity document.
This argument cannot have a null value.

Example
Register the external entities identified by the system identifiers http://www.test.com/food/chocolate.txt
and http://www.test.com/food/cookie.txt:

CALL SYSPROC.XSR_EXTENTITY ('FOOD' ,
 'CHOCLATE' ,
 'http://www.test.com/food/chocolate.txt' ,
 NULL ,
 :content_of_chocolate.txt_as_a_host_variable
)

CALL SYSPROC.XSR_EXTENTITY ('FOOD' ,
 'COOKIE' ,
 'http://www.test.com/food/cookie.txt' ,
 NULL ,
 :content_of_cookie.txt_as_a_host_variable
)

XSR_REGISTER
The XSR_REGISTER procedure is the first procedure to be called as part of the XML schema registration
process, which registers XML schemas with the XML schema repository (XSR).

XSR_REGISTER (rschema , name , schemalocation , content ,

docproperty)

The schema is SYSPROC.

Authorization
The authorization ID of the caller of the procedure must have at least one of the following authorities:

• DBADM authority.

Chapter 1. Structured Query Language (SQL) 635

• IMPLICIT_SCHEMA database authority if the SQL schema does not exist.
• CREATEIN privilege if the SQL schema exists.

rschema
An input and output argument of type VARCHAR (128) that specifies the SQL schema for the XML
schema. The SQL schema is one part of the SQL identifier used to identify this XML schema in the
XSR. (The other part of the SQL identifier is supplied by the name argument.) This argument can
have a null value, which indicates that the default SQL schema, as defined in the CURRENT SCHEMA
special register, is used. Rules for valid characters and delimiters that apply to any SQL identifier also
apply to this argument. Relational schemas that begin with the string 'SYS' must not be used for this
value. XSR objects will not experience name collisions with database objects that exist outside of the
XSR, because XSR objects occur in a different namespace than objects outside of the XML schema
repository.

name
An input and output argument of type VARCHAR (128) that specifies the name of the XML schema.
The complete SQL identifier for the XML schema is rschema.name and should be unique among
all objects in the XSR. This argument accepts a null value. When a null value is provided for this
argument, a unique value is generated and stored within the XSR. Rules for valid characters and
delimiters that apply to any SQL identifier also apply to this argument.

schemalocation
An input argument of type VARCHAR (1000), which can have a null value, that indicates the schema
location of the primary XML schema document. This argument is the external name of the XML
schema, that is, the primary document can be identified in the XML instance documents with the
xsi:schemaLocation attribute.

content
An input parameter of type BLOB (30M) that contains the content of the primary XML schema
document. This argument cannot have a null value; an XML schema document must be supplied.

docproperty
An input parameter of type BLOB (5M) that indicates the properties for the primary XML schema
document. This parameter can have a null value; otherwise, the value is an XML document.

Examples
• Example 1: The following example shows how to call the XSR_REGISTER procedure from the command

line:

 CALL SYSPROC.XSR_REGISTER(
 'user1',
 'POschema',
 'http://myPOschema/PO.xsd',
 :content_host_var,
 :docproperty_host_var)

• Example 2: The following example shows how to call the XSR_REGISTER procedure from a Java
application program:

 stmt = con.prepareCall("CALL SYSPROC.XSR_REGISTER (?, ?, ?, ?, ?)");
 String xsrObjectName = "myschema1";
 String xmlSchemaLocation = "po.xsd";
 stmt.setNull(1, java.sql.Types.VARCHAR);
 stmt.setString(2, xsrObjectName);
 stmt.setString(3, xmlSchemaLocation);
 stmt.setBinaryStream(4, buffer, (int)length);
 stmt.setNull(5, java.sql.Types.BLOB);
 stmt.registerOutParameter(1, java.sql.Types.VARCHAR);
 stmt.registerOutParameter(2, java.sql.Types.VARCHAR);
 stmt.execute();

636 IBM Db2 V11.5: SQL Reference

XSR_UPDATE
The XSR_UPDATE procedure is used to evolve an existing XML schema in the XML schema repository
(XSR). This enables you to modify or extend an existing XML schema so that it can be used to validate
both already existing and newly inserted XML documents.

XSR_UPDATE (rschema1 , name1 , rschema2 , name2 ,

dropnewschema)

The schema is SYSPROC.

The original XML schema and the new XML schema specified as arguments to XSR_UPDATE must both be
registered and completed in the XSR before the procedure is called. These XML schemas must also be
compatible. For details about the compatibility requirements see Compatibility requirements for evolving
an XML schema.

Authorization
The privileges held by the authorization ID of the caller of the procedure must include at least one of the
following:

• DBADM authority.
• SELECT privilege on the catalog views SYSCAT.XSROBJECTS and SYSCAT.XSROBJECTCOMPONENTS

and one of the following sets of privileges:

– OWNER of the XML schema specified by the SQL schema rschema1 and the object name name1
– ALTERIN privilege on the SQL schema specified by the rschema1 argument and, if the

dropnewschema argument is not equal to zero, DROPIN privilege on the SQL schema specified by
the rschema2 argument.

rschema1
An input argument of type VARCHAR (128) that specifies the SQL schema for the original XML schema
to be updated. The SQL schema is one part of the SQL identifier used to identify this XML schema
in the XSR. (The other part of the SQL identifier is supplied by the name1 argument.) This argument
cannot have a null value. Rules for valid characters and delimiters that apply to any SQL identifier also
apply to this argument.

name1
An input argument of type VARCHAR (128) that specifies the name of the original XML schema to
be updated. The complete SQL identifier for the XML schema is rschema1.name1 . This XML schema
must already be registered and completed in the XSR. This argument cannot have a null value. Rules
for valid characters and delimiters that apply to any SQL identifier also apply to this argument.

rschema2
An input argument of type VARCHAR (128) that specifies the SQL schema for the new XML schema
that will be used to update the original XML schema. The SQL schema is one part of the SQL identifier
used to identify this XML schema in the XSR. (The other part of the SQL identifier is supplied by the
name2 argument.) This argument cannot have a null value. Rules for valid characters and delimiters
that apply to any SQL identifier also apply to this argument.

name2
An input argument of type VARCHAR (128) that specifies the name of the new XML schema that
will be used to update the original XML schema. The complete SQL identifier for the XML schema
is rschema2.name2. This XML schema must already be registered and completed in the XSR. This
argument cannot have a null value. Rules for valid characters and delimiters that apply to any SQL
identifier also apply to this argument.

dropnewschema
An input parameter of type integer that indicates whether the new XML schema should be dropped
after it is used to update the original XML schema. Setting this parameter to any nonzero value will
cause the new XML schema to be dropped. This argument cannot have a null value.

Chapter 1. Structured Query Language (SQL) 637

Example

 CALL SYSPROC.XSR_UPDATE(
 'STORE',
 'PROD',
 'STORE',
 'NEWPROD',
 1)

The contents of the XML schema STORE.PROD is updated with the contents of STORE.NEWPROD, and the
XML schema STORE.NEWPROD is dropped.

SQL queries
A query specifies a result table. A query is a component of certain SQL statements.

The three forms of a query are:

• subselect
• fullselect
• select-statement.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• For each table or view identified in the query, one of the following authorities:

– SELECT privilege on the table or view
– SELECTIN privilege on the schema of the table or view
– DATAACCESS privilege on the schema of the table or view
– CONTROL privilege on the table or view

• DATAACCESS authority

For each global variable used as an expression in the query, the privileges held by the authorization ID of
the statement must include one of the following authorities:

• READ privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

If the query contains an SQL data change statement, the authorization requirements of that statement
also apply to the query.

Group privileges, with the exception of PUBLIC, are not checked for queries that are contained in static
SQL statements or DDL statements.

For nicknames, authorization requirements of the data source for the object referenced by the nickname
are applied when the query is processed. The authorization ID of the statement may be mapped to a
different authorization ID at the data source.

Queries and table expressions
A query is a component of certain SQL statements; it specifies a (temporary) result table.

A table expression creates a temporary result table from a simple query. Clauses further refine the result
table. For example, you can use a table expression as a query to select all of the managers from several

638 IBM Db2 V11.5: SQL Reference

departments, specify that they must have over 15 years of working experience, and be located at the New
York branch office.

A common table expression is like a temporary view within a complex query. It can be referenced in
other places within the query, and can be used in place of a view. Each use of a specific common table
expression within a complex query shares the same temporary view.

Recursive use of a common table expression within a query can be used to support applications such as
airline reservation systems, bill of materials (BOM) generators, and network planning.

subselect
The subselect is a component of the fullselect.

select-clause from-clause

where-clause group-by-clause

having-clause order-by-clause offset-clause

fetch-clause isolation-clause

A subselect specifies a result table derived from the tables, views or nicknames identified in the FROM
clause. The derivation can be described as a sequence of operations in which the result of each operation
is input for the next. (This is only a way of describing the subselect. The method used to perform the
derivation can be quite different from this description. If portions of the subselect do not actually need to
be executed for the correct result to be obtained, they might or might not be executed.)

The authorization for a subselect is described in the Authorization section in "SQL queries".

The clauses of the subselect are processed in the following sequence:

1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause
6. ORDER BY clause
7. OFFSET clause
8. FETCH clause

A subselect that contains an ORDER BY clause, OFFSET clause, or FETCH clause cannot be specified:

• In the outermost fullselect of a view.
• In the outer fullselect of a materialized query table.
• Unless the subselect is enclosed in parenthesis.

For example, the following is not valid (SQLSTATE 428FJ):

SELECT * FROM T1
 ORDER BY C1
UNION
SELECT * FROM T2
 ORDER BY C1

The following example is valid:

(SELECT * FROM T1
 ORDER BY C1)
UNION

Chapter 1. Structured Query Language (SQL) 639

(SELECT * FROM T2
 ORDER BY C1)

Note: An ORDER BY clause in a subselect does not affect the order of the rows returned by a query. An
ORDER BY clause only affects the order of the rows returned if it is specified in the outermost fullselect.

For details about the clauses in the subselect query, refer to the following topics:

• “select-clause” on page 640
• “from-clause” on page 643
• “where-clause” on page 690
• “group-by-clause” on page 691
• “having-clause” on page 702
• “order-by-clause” on page 703
• “offset-clause” on page 706
• “fetch-clause” on page 705
• “isolation-clause (subselect query)” on page 707

select-clause
The SELECT clause specifies the columns of the final result table.

SELECT
ALL

DISTINCT

,

*

expression

AS
new-column-name

exposed-name.*

The column values are produced by the application of the select list to the final result table, R. The
select list is the names or expressions specified in the SELECT clause, and R is the result of the previous
operation of the subselect. For example, if the only clauses specified are SELECT, FROM, and WHERE, R is
the result of that WHERE clause.
ALL

Retains all rows of the final result table, and does not eliminate redundant duplicates. This is the
default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table. If DISTINCT is used,
no string column of the result table can be a LOB type, distinct type based on LOB, or structured
type. DISTINCT can be used more than once in a subselect. This includes SELECT DISTINCT, the
use of DISTINCT in an aggregate function of the select list or HAVING clause, and subqueries of the
subselect.

Two rows are duplicates of one another only if each value in the first is equal to the corresponding
value in the second. For determining duplicates, two null values are considered equal, and two
different decimal floating-point representations of the same number are considered equal. For
example, -0 is equal to +0 and 2.0 is equal to 2.00. Each of the decimal floating-point special values
are also considered equal: -NAN equals -NAN, -SNAN equals -SNAN, -INFINITY equals -INFINITY,
INFINITY equals INFINITY, SNAN equals SNAN, and NAN equals NAN.

640 IBM Db2 V11.5: SQL Reference

When the data type of a column is decimal floating-point, and multiple representations of the same
number exist in the column, the particular value that is returned for a SELECT DISTINCT can be any
one of the representations in the column. For more information, see “Numeric comparisons” on page
65.

For compatibility with other SQL implementations, UNIQUE can be specified as a synonym for
DISTINCT.

Select list notation
*

Represents a list of names that identify the columns of table R, excluding any columns defined as
IMPLICITLY HIDDEN. The first name in the list identifies the first column of R, the second name
identifies the second column of R, and so on.

The list of names is established when the program containing the SELECT clause is bound. Hence
the asterisk (*) does not identify any columns that have been added to a table after the statement
containing the table reference has been bound.

expression
Specifies the values of a result column. Can be any expression that is a valid SQL language element,
but commonly includes column names. Each column name used in the select list must unambiguously
identify a column of R. The result type of the expression cannot be a row type (SQLSTATE 428H2).
new-column-name or AS new-column-name

Names or renames the result column. The name must not be qualified and does not have to be
unique. Subsequent usage of column-name is limited as follows:

• A new-column-name specified in the AS clause can be used in the order-by-clause, provided the
name is unique.

• A new-column-name specified in the AS clause of the select list cannot be used in any other
clause within the subselect (where-clause, group-by-clause or having-clause).

• A new-column-name specified in the AS clause cannot be used in the update-clause.
• A new-column-name specified in the AS clause is known outside the fullselect of nested table

expressions, common table expressions and CREATE VIEW.

exposed-name.*
Represents the list of names that identify the columns of the result table identified by exposed-name,
excluding any columns defined as IMPLICITLY HIDDEN. The exposed-name can be a table name, view
name, nickname, or correlation name, and must designate a table, view or nickname named in the
FROM clause. The first name in the list identifies the first column of the table, view or nickname, the
second name in the list identifies the second column of the table, view or nickname, and so on.

The list of names is established when the statement containing the SELECT clause is bound.
Therefore, * does not identify any columns that have been added to a table after the statement
has been bound.

The number of columns in the result of SELECT is the same as the number of expressions in the
operational form of the select list (that is, the list established when the statement is prepared), and
cannot exceed 500 for a 4K page size or 1012 for an 8K, 16K, or 32K page size.

Limitations on string columns
For restrictions using varying-length character strings on the select list, see “Character strings” on page
31.

Applying the select list
Some of the results of applying the select list to R depend on whether GROUP BY or HAVING is used. The
results are described in two separate lists.

Chapter 1. Structured Query Language (SQL) 641

If GROUP BY or HAVING is used
• An expression X (not an aggregate function) used in the select list must have a GROUP BY clause with:

– a grouping-expression in which each expression or column-name unambiguously identifies a column
of R (see “group-by-clause” on page 691) or

– each column of R referenced in X as a separate grouping-expression.
• The select list is applied to each group of R, and the result contains as many rows as there are groups

in R. When the select list is applied to a group of R, that group is the source of the arguments of the
aggregate functions in the select list.

If neither GROUP BY nor HAVING is used
• Either the select list must not include any aggregate functions, or each column-name in the select list

must be specified within an aggregate function or must be a correlated column reference.
• If the select does not include aggregate functions, then the select list is applied to each row of R and the

result contains as many rows as there are rows in R.
• If the select list is a list of aggregate functions, then R is the source of the arguments of the functions

and the result of applying the select list is one row.

In either case the nth column of the result contains the values specified by applying the nth expression in
the operational form of the select list.

Null attributes of result columns
Result columns do not allow null values if they are derived from:

• A column that does not allow null values
• A constant
• The COUNT or COUNT_BIG function
• A host variable that does not have an indicator variable
• A scalar function or expression that does not include an operand where nulls are allowed
• An expression with a result type that is a weakly typed distinct type defined with a NOT NULL data type

constraint

Result columns allow null values if they are derived from:

• Any aggregate function except COUNT or COUNT_BIG
• A column where null values are allowed
• A scalar function or expression that includes an operand where nulls are allowed
• A NULLIF function with arguments containing equal values
• A host variable that has an indicator variable, an SQL parameter, an SQL variable, or a global variable
• A result of a set operation if at least one of the corresponding items in the select list is nullable
• An arithmetic expression or view column that is derived from an arithmetic expression and the database

is configured with dft_sqlmathwarn set to Yes
• A scalar subselect
• A dereference operation
• A GROUPING SETS grouping-expression

Names of result columns
• If the AS clause is specified, the name of the result column is the name specified on the AS clause.
• If the AS clause is not specified and if a column list is specified in the correlation clause, the name of the

result column is the corresponding name in the correlation column list.

642 IBM Db2 V11.5: SQL Reference

• If neither an AS clause nor a column list in the correlation clause is specified and if the result column is
derived only from a single column (without any functions or operators), the name of the result column is
the unqualified name of that column.

• If neither an AS clause nor a column list in the correlation clause is specified and if the result column is
derived only from a single SQL variable or SQL parameter (without any functions or operators), the name
of the result column is the unqualified name of that SQL variable or SQL parameter.

• If neither an AS clause nor a column list in the correlation clause is specified and if the result column
is derived using a dereference operation, the name of the result column is the unqualified name of the
target column of the dereference operation.

• All other result columns are unnamed. The system assigns temporary numbers (as character strings) to
these columns.

Data types of result columns
Each column of the result of SELECT acquires a data type from the expression from which it is derived.

When the expression is ... The data type of the result column is ...

the name of any numeric column the same as the data type of the column, with the
same precision and scale for DECIMAL columns, or
the same precision for DECFLOAT columns.

a constant the same as the data type of the constant.

the name of any numeric variable the same as the data type of the variable, with the
same precision and scale for DECIMAL variables, or
the same precision for DECFLOAT variables.

the name of any string column the same as the data type of the column, with the
same length attribute.

the name of any string variable the same as the data type of the variable, with
the same length attribute; if the data type of the
variable is not identical to an SQL data type (for
example, a NUL-terminated string in C), the result
column is a varying-length string.

the name of a datetime column the same as the data type of the column.

the name of a user-defined type column the same as the data type of the column.

the name of a reference type column the same as the data type of the column.

from-clause
The FROM clause specifies an intermediate result table.

FROM

,

table-reference

If only one table-reference is specified, the intermediate result table is the result of that table-reference.
If more than one table-reference is specified, the intermediate result table consists of all possible
combinations of the rows of the specified table-reference (the Cartesian product). Each row of the
result is a row from the first table-reference concatenated with a row from the second table-reference,
concatenated in turn with a row from the third, and so on. The number of rows in the result is the product
of the number of rows in all the individual table references. For a description of table-reference, see
“table-reference” on page 644.

Chapter 1. Structured Query Language (SQL) 643

table-reference
A table-reference specifies an intermediate result table.

single-table-reference

single-view-reference

single-nickname-reference

only-table-reference

outer-table-reference

analyze_table-expression

nested-table-expression

data-change-table-reference

table-function-reference

collection-derived-table

xmltable-expression

joined-table
1

external-table-reference

single-table-reference

table-name

period-specification correlation-clause

tablesample-clause

single-view-reference

view-name

period-specification correlation-clause

single-nickname-reference
nickname

correlation-clause

only-table-reference
ONLY (table-name

view-name

)

correlation-clause

outer-table-reference
OUTER (table-name

view-name

)

correlation-clause

analyze_table-expression
table-name

view-name

ANALYZE_TABLE (implementation-clause)

nested-table-expression

644 IBM Db2 V11.5: SQL Reference

LATERAL
2

continue-handler WITHIN

(

WITH

,

common-table-expression

fullselect)

correlation-clause

data-change-table-reference
FINAL

NEW

TABLE (insert-statement)

FINAL

NEW

OLD

TABLE (searched-update-statement)

OLD TABLE (searched-delete-statement)

correlation-clause

table-function-reference
TABLE (

function-name (
,

expression

)

table-UDF-cardinality-clause

)

correlation-clause

typed-correlation-clause
3

collection-derived-table
UNNEST-table-function

WITH ORDINALITY
4 correlation-clause

xmltable-expression

xmltable-function
5

correlation-clause

external-table-reference

Chapter 1. Structured Query Language (SQL) 645

EXTERNAL file-name

AS
 correlation_name

(

,

column-definition)

LIKE table-name1

view-name

nickname

6
USING

(

,

option option-value)

period-specification
FOR SYSTEM_TIME

BUSINESS_TIME

AS OF value

FROM value1 TO value2

BETWEEN value1 AND value2

correlation-clause
AS

correlation-name

(

,

column-name)

tablesample-clause
TABLESAMPLE BERNOULLI

SYSTEM

(numeric-expression1)

REPEATABLE (numeric-expression2)

implementation-clause
IMPLEMENTATION ' string '

continue-handler

RETURN DATA UNTIL

,

specific-condition-value

table-UDF-cardinality-clause
CARDINALITY integer-constant

CARDINALITY MULTIPLIER numeric-constant

typed-correlation-clause
AS

correlation-name

(

,

column-name data-type)

646 IBM Db2 V11.5: SQL Reference

specific-condition-value

FEDERATED SQLSTATE
VALUE

string-constant

SQLCODE

,

integer-constant

column-definition
column-name built-in-type

NOT NULL

built-in-type

Chapter 1. Structured Query Language (SQL) 647

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( precision-integer
,0

, scale-integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA

CLOB

CHARACTER

CHAR

LARGE OBJECT

(65535)

( integer
K OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(32767)

( integer
K CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(16383)

( integer
K

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(65535)

( integer
K

)

DATE

TIME

TIMESTAMP

(6)

(integer)

BOOLEAN

Notes:
1 The syntax for joined-table is covered in a separate topic; refer to “joined-table” on page 685.
2 TABLE can be specified in place of LATERAL.

648 IBM Db2 V11.5: SQL Reference

3 The typed-correlation-clause is required for generic table functions. This clause cannot be specified
for any other table functions.
4 WITH ORDINALITY can be specified only if the argument to the UNNEST table function is one or more
ordinary array variables or functions with ordinary array return types; an associative array variable or
function with an associative array return type cannot be specified (SQLSTATE 428HT).
5 An XMLTABLE function can be part of a table-reference. In this case, subexpressions within the
XMLTABLE expression are in-scope of prior range variables in the FROM clause. For more information,
see the description of "XMLTABLE".
6 Specifying a LIKE clause or at least one column definition is not mandatory for an INSERT INTO
<table> SELECT FROM statement, which acts as an implicit LIKE with respect to the INSERT target
table.

A table-reference specifies an intermediate result table.

• If a single-table-reference is specified without a period-specification or a tablesample-clause, the
intermediate result table is the rows of the table. If a period-specification is specified, the intermediate
result table consists of the rows of the temporal table where the period matches the specification. If a
tablesample-clause is specified, the intermediate result table consists of a sampled subset of the rows
of the table.

• If a single-view-reference is specified without a period-specification, the intermediate result table is
that view. If a period-specification is specified, temporal table references in the view consider only the
rows where the period matches the specification.

• If a single-nickname-reference is specified, the intermediate result table is the data from the data
source for that nickname.

• If an only-table-reference is specified, the intermediate result table consists of only the rows of the
specified table or view without considering the applicable subtables or subviews.

• If an outer-table-reference is specified, the intermediate result table represents a virtual table based on
all the subtables of a typed table or the subviews of a typed view.

• If an analyze_table-expression is specified, the result table contains the result of executing a specific
data mining model by using an in-database analytics provider, a named model implementation, and
input data.

• If a nested-table-expression is specified, the result table is the result of the specified fullselect.
• If a data-change-table-reference is specified, the intermediate result table is the set of rows that are

directly changed by the searched UPDATE, searched DELETE, or INSERT statement that is included in
the clause.

• If a table-function-reference is specified, the intermediate result table is the set of rows that are
returned by the table function.

• If a collection-derived-table is specified, the intermediate result table is the set of rows that are
returned by the UNNEST function.

• If an xmltable-expression is specified, the intermediate result table is the set of rows that are returned
by the XMLTABLE function.

• If a joined-table is specified, the intermediate result table is the result of one or more join operations.
For more information, see “joined-table” on page 685.

• If an external-table-reference is specified without a tablesample-clause, the intermediate result table
is the rows of the external table that is represented by the specified file. If a tablesample-clause is
specified, the intermediate result table consists of a sampled subset of the rows of the external table
that is represented by the specified file.

single-table-reference

Each table-name specified as a table-reference must identify an existing table at the application
server or an existing table at a remote server specified using a remote-object-name. The intermediate
result table is the result of the table. If the table-name references a typed table, the intermediate
result table is the UNION ALL of the table with all its subtables, with only the columns of the
table-name. A period-specification can be used with a temporal table to specify the period from which

Chapter 1. Structured Query Language (SQL) 649

the rows are returned as the intermediate result table. A tablesample-clause can be used to specify
that a sample of the rows be returned as the intermediate result table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value CTST and table-
name identifies a system-period temporal table, the table reference is executed as if it contained the
following specification with the special register set to the null value:

 table-name FOR SYSTEM_TIME AS OF CTST

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a non-null value CTBT and
table-name identifies an application-period temporal table, the table reference is executed as if it
contained the following specification with the special register set to the null value:

 table-name FOR BUSINESS_TIME AS OF CTBT

single-view-reference

Each view-name specified as a table-reference must identify one of the following objects:

• An existing view at the application server
• A view at a remote server specified using a remote-object-name
• The table-name of a common table expression

The intermediate result table is the result of the view or common table expression. If the view-name
references a typed view, the intermediate result table is the UNION ALL of the view with all its
subviews, with only the columns of the view-name. A period-specification can be used with a
view defined over a temporal table to specify the period from which the rows are returned as the
intermediate result table.

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value CTST, and
view-name identifies a system-period temporal table, the table reference is executed as if it contained
the following specification with the special register set to the null value:

view-name FOR SYSTEM_TIME AS OF CTST

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a non-null value CTBT, and
view-name identifies an application-period temporal table, the table reference is executed as if it
contained the following specification with the special register set to the null value:

view-name FOR BUSINESS_TIME AS OF CTBT

single-nickname-reference

Each nickname specified as a table-reference must identify an existing nickname at the application
server. The intermediate result table is the result of the nickname.

only-table-reference

The use of ONLY(table-name) or ONLY(view-name) means that the rows of the applicable subtables or
subviews are not included in the intermediate result table. If the table-name used with ONLY does not
have subtables, then ONLY(table-name) is equivalent to specifying table-name. If the view-name used
with ONLY does not have subviews, then ONLY(view-name) is equivalent to specifying view-name.

The use of ONLY requires the SELECT privilege on every subtable of table-name or subview of view-
name.

outer-table-reference

The use of OUTER(table-name) or OUTER(view-name) represents a virtual table. If the table-name
or view-name used with OUTER does not have subtables or subviews, then specifying OUTER is
equivalent to not specifying OUTER. If the table-name does have subtables, the intermediate result
table from OUTER(table-name) is derived from table-name as follows:

• The columns include the columns of table-name followed by the additional columns introduced by
each of its subtables, if any. The additional columns are added on the right, traversing the subtable

650 IBM Db2 V11.5: SQL Reference

hierarchy in depth-first order. Subtables that have a common parent are traversed in creation order
of their types.

• The rows include all the rows of table-name and all the rows of its subtables. Null values are
returned for columns that are not in the subtable for the row.

If the view-name does have subviews, the intermediate result table from OUTER(view-name) is
derived from view-name as follows:

• The columns include the columns of view-name followed by the additional columns introduced by
each of its subviews, if any. The additional columns are added on the right, traversing the subview
hierarchy in depth-first order. Subviews that have a common parent are traversed in creation order
of their types.

• The rows include all the rows of view-name and all the rows of its subviews. Null values are returned
for columns that are not in the subview for the row.

The use of OUTER requires the SELECT privilege on every subtable of table-name or subview of
view-name.

analyze_table-expression
table-name | view-name

The table-name or view-name variable must identify an existing table or view or identify the
table-name of a common table expression that you define preceding the fullselect containing
the table-reference. You can specify a nickname. However, in-database analytics are intended
for local data, and retrieving the data for a nickname from another data source does not take
advantage of the intended performance benefits.

ANALYZE_TABLE
Returns the result of executing a specific data mining model by using an in-database
analytics provider, a named model implementation, and input data. A query referencing the
ANALYZE_TABLE parameter cannot be a static SQL statement or a data definition language (DDL)
statement. Input or output values cannot be of the following types:

• CHAR FOR BIT DATA or VARCHAR FOR BIT DATA
• BINARY or VARBINARY
• BLOB, CLOB, DBCLOB, or NCLOB
• BOOLEAN
• XML
• DB2SECURITYLABEL

IMPLEMENTATION 'string'
Specifies how the expression is to be evaluated. The string parameter is a string constant whose
maximum length is 1024 bytes. The specified value is used to establish a session with an in-
database analytic provider. When you specify SAS as the provider, you must specify values for the
following case-insensitive parameters:
PROVIDER

Currently, the only supported provider value is SAS.
ROUTINE_SOURCE_TABLE

Specifies a user table containing the DS2 code (and, optionally, any required format or
metadata) to implement the algorithm that is specified by the ROUTINE_SOURCE_NAME
parameter. DS2 is a procedural language processor for SAS, designed for data modeling,
stored procedures, and data extraction, transformation, and load (ETL) processing.

The routine source table has a defined structure (see the examples at the end of the
"analyze_table-expression" section) and, in a partitioned database environment, must be on
the catalog database partition. The table cannot be a global temporary table. The MODELDS2
column for a particular row must not be empty or contain the null value. If the value of the
MODELFORMATS or MODELMETADATA column is not null, the value must have a length greater

Chapter 1. Structured Query Language (SQL) 651

than 0. If you do not specify a table schema name, the value of the CURRENT SCHEMA special
register is used.

ROUTINE_SOURCE_NAME
Specifies the name of the algorithm to use.

For example:

IMPLEMENTATION
 'PROVIDER=SAS;
 ROUTINE_SOURCE_TABLE=ETLIN.SOURCE_TABLE;
 ROUTINE_SOURCE_NAME=SCORING_FUN1;'

If the table name, schema name, or algorithm name contains lowercase or mixed-case letters,
specify delimited identifiers, as shown in the following example:

IMPLEMENTATION
 'PROVIDER=SAS;
 ROUTINE_SOURCE_TABLE="ETLin"."Source_Table";
 ROUTINE_SOURCE_NAME="Scoring_Fun1";'

The following examples show you how to use the ANALYZE_TABLE expression.

SAS tooling helps you to define a table to store model implementations for scoring functions.
A row in this table stores an algorithm that is written in DS2, with any required SAS format
information and metadata. The MODELNAME column serves as the primary key. For a particular value
of the ROUTINE_SOURCE_NAME parameter, at most one row is retrieved from the table that the
ROUTINE_SOURCE_TABLE parameter specifies. For example:

 CREATE TABLE ETLIN.SOURCE_TABLE (
 MODELNAME VARCHAR(128) NOT NULL PRIMARY KEY,
 MODELDS2 BLOB(4M) NOT NULL,
 MODELFORMATS BLOB(4M),
 MODELMETADATA BLOB(4M)
);

The MODELNAME column contains the name of the algorithm. The MODELDS2 column contains
the DS2 source code that implements the algorithm. The MODELFORMATS column contains the
aggregated SAS format definition that the algorithm requires. If the algorithm does not require a SAS
format, this column contains the null value. The MODELMETADATA column contains any additional
metadata that the algorithm requires. If the algorithm does not require any additional metadata, this
column contains the null value. If the SAS EP installer creates the table, it might include additional
columns.

• Use the data in columns C1 and C2 in table T1 as input data with the scoring model
SCORING_FUN1, whose implementation is stored in ETLIN.SOURCE_TABLE:

 WITH sas_score_in (c1,c2) AS
 (SELECT c1,c2 FROM t1)
 SELECT *
 FROM sas_score_in ANALYZE_TABLE(
 IMPLEMENTATION
 'PROVIDER=SAS;
 ROUTINE_SOURCE_TABLE=ETLIN.SOURCE_TABLE;
 ROUTINE_SOURCE_NAME=SCORING_FUN1;');

• Use all the data in the table T2 with the scoring model SCORING_FUN2, whose implementation is
stored in ETLIN.SOURCE_TABLE:

 SELECT *
 FROM t2 ANALYZE_TABLE(
 IMPLEMENTATION
 'PROVIDER=SAS;
 ROUTINE_SOURCE_TABLE=ETLIN.SOURCE_TABLE;
 ROUTINE_SOURCE_NAME=SCORING_FUN2;');

• Use all the data in view V1 with the scoring model SCORING_FUN3, whose implementation is stored
in ETLIN.SOURCE_TABLE, and return the output in ascending order of the first output column:

652 IBM Db2 V11.5: SQL Reference

 SELECT *
 FROM v1 ANALYZE_TABLE(
 IMPLEMENTATION
 'PROVIDER=SAS;
 ROUTINE_SOURCE_TABLE=ETLIN.SOURCE_TABLE;
 ROUTINE_SOURCE_NAME=SCORING_FUN3;')
 ORDER BY 1;

nested-table-expression

A fullselect in parentheses is called a nested table expression. The intermediate result table is the
result of that fullselect. The columns of the result do not need unique names, but a column with a
non-unique name cannot be explicitly referenced. If LATERAL is specified, the fullselect can include
correlated references to results columns of table references specified to the left of the nested table
expression. If the nested table expression involves data from a federated data source, a continue-
handler can be specified to tolerate certain error conditions from the data source.

An expression in the select list of a nested table expression that is referenced within, or is the target
of, a data change statement within a fullselect is valid only when it does not include:

• A function that reads or modifies SQL data
• A function that is non-deterministic
• A function that has external action
• An OLAP function

If a view is referenced directly in, or as the target of a nested table expression in a data change
statement within a FROM clause, the view must meet either of the following conditions:

• Be symmetric (have WITH CHECK OPTION specified)
• Satisfy the restriction for a WITH CHECK OPTION view

If the target of a data change statement within a FROM clause is a nested table expression, the
following restrictions apply:

• Modified rows are not requalified
• WHERE clause predicates are not reevaluated
• ORDER BY or FETCH FIRST operations are not redone

A nested table expression can be used in the following situations:

• In place of a view to avoid creating the view (when general use of the view is not required)
• When the required intermediate result table is based on host variables

data-change-table-reference

A data-change-table-reference clause specifies an intermediate result table. This table is based on the
rows that are directly changed by the searched UPDATE, searched DELETE, or INSERT statement that
is included in the clause. A data-change-table-reference can be specified as the only table-reference in
the FROM clause of the outer fullselect that is used in a select-statement, a SELECT INTO statement,
or a common table expression. A data-change-table-reference can be specified as the only table
reference in the only fullselect in a SET Variable statement (SQLSTATE 428FL). The target table or
view of the data change statement is considered to be a table or view that is referenced in the query;
therefore, the authorization ID of the query must have SELECT privilege on that target table or view. A
data-change-table-reference clause cannot be specified in a view definition, materialized query table
definition, or FOR statement (SQLSTATE 428FL).

The target of the UPDATE, DELETE, or INSERT statement cannot be a temporary view defined in a
common table expression (SQLSTATE 42807) or a nickname (SQLSTATE 25000).

Expressions in the select list of a view or fullselect as target of a data change statement in a table-
reference can be selected only if OLD TABLE is specified or the expression does not include the
following elements (SQLSTATE 428G6):

• A subquery

Chapter 1. Structured Query Language (SQL) 653

• A function that reads or modifies SQL data
• A function is that is non-deterministic or has an external action
• An OLAP function
• A NEXT VALUE FOR sequence reference

FINAL TABLE
Specifies that the rows of the intermediate result table represent the set of rows that are changed
by the SQL data change statement as they exist at the completion of the data change statement.
If there are AFTER triggers or referential constraints that result in further operations on the table
that is the target of the SQL data change statement, an error is returned (SQLSTATE 560C6). If the
target of the SQL data change statement is a view that is defined with an INSTEAD OF trigger for
the type of data change, an error is returned (SQLSTATE 428G3).

NEW TABLE
Specifies that the rows of the intermediate result table represent the set of rows that are changed
by the SQL data change statement before the application of referential constraints and AFTER
triggers. Data in the target table at the completion of the statement might not match the data
in the intermediate result table because of additional processing for referential constraints and
AFTER triggers.

OLD TABLE
Specifies that the rows of the intermediate result table represent the set of rows that are changed
by the SQL data change statement as they existed before the application of the data change
statement.

(searched-update-statement)
Specifies a searched UPDATE statement. A WHERE clause or a SET clause in the UPDATE
statement cannot contain correlated references to columns outside of the UPDATE statement.

(searched-delete-statement)
Specifies a searched DELETE statement. A WHERE clause in the DELETE statement cannot contain
correlated references to columns outside of the DELETE statement.

(insert-statement)
Specifies an INSERT statement. A fullselect in the INSERT statement cannot contain correlated
references to columns outside of the fullselect of the INSERT statement.

The content of the intermediate result table for a data-change-table-reference is determined when the
cursor opens. The intermediate result table contains all manipulated rows, including all the columns
in the specified target table or view. All the columns of the target table or view for an SQL data
change statement are accessible using the column names from the target table or view. If an INCLUDE
clause was specified within a data change statement, the intermediate result table will contain these
additional columns.

table-function-reference

In general, a table function, together with its argument values, can be referenced in the FROM clause
of a SELECT in exactly the same way as a table or view. Each function-name together with the types
of its arguments, specified as a table reference must resolve to an existing table function at the
application server. There are, however, some special considerations which apply.

• Table function column names: Unless alternative column names are provided following the
correlation-name, the column names for the table function are those specified in the RETURNS
or RETURNS GENERIC TABLE clause of the CREATE FUNCTION statement. This is analogous to the
names of the columns of a table, which are defined in the CREATE TABLE statement.

• Table function resolution: The arguments specified in a table function reference, together with the
function name, are used by an algorithm called function resolution to determine the exact function
to be used. This is no different from what happens with other functions (such as scalar functions)
that are used in a statement.

654 IBM Db2 V11.5: SQL Reference

• Table function arguments: As with scalar function arguments, table function arguments can
generally be any valid SQL expression. The following examples are valid syntax:

 Example 1: SELECT c1
 FROM TABLE(tf1('Zachary')) AS z
 WHERE c2 = 'FLORIDA';

 Example 2: SELECT c1
 FROM TABLE(tf2 (:hostvar1, CURRENT DATE)) AS z;

 Example 3: SELECT c1
 FROM t
 WHERE c2 IN
 (SELECT c3 FROM
 TABLE(tf5(t.c4)) AS z -- correlated reference
) -- to previous FROM clause

 Example 4: SELECT c1
 FROM TABLE(tf6('abcd')) -- tf6 is a generic
 AS z (c1 int, c2 varchar(100)) -- java table function

• Table functions that modify SQL data: Table functions that are specified with the MODIFIES
SQL DATA option can be used only as the last table reference in a select-statement, common-table-
expression, or RETURN statement that is a subselect, a SELECT INTO, or a row-fullselect in a SET
statement. Only one table function is allowed in one FROM clause, and the table function arguments
must be correlated to all other table references in the subselect (SQLSTATE 429BL). The following
examples have valid syntax for a table function with the MODIFIES SQL DATA property:

 Example 1: SELECT c1
 FROM TABLE(tfmod('Jones')) AS z

 Example 2: SELECT c1
 FROM t1, t2, TABLE(tfmod(t1.c1, t2.c1)) AS z

 Example 3: SET var =
 (SELECT c1
 FROM TABLE(tfmod('Jones')) AS z

 Example 4: RETURN SELECT c1
 FROM TABLE(tfmod('Jones')) AS z

 Example 5: WITH v1(c1) AS
 (SELECT c1
 FROM TABLE(tfmod(:hostvar1)) AS z)
 SELECT c1
 FROM v1, t1 WHERE v1.c1 = t1.c1

 Example 6: SELECT z.*
 FROM t1, t2, TABLE(tfmod(t1.c1, t2.c1))
 AS z (col1 int)

collection-derived-table

A collection-derived-table can be used to convert the elements of an array into values of a column in
separate rows. If WITH ORDINALITY is specified, an extra column of data type INTEGER is appended.
This column contains the position of the element in the array. The columns can be referenced in
the select list and the in rest of the subselect by using the names specified for the columns in the
correlation-clause. The collection-derived-table clause can be used only in a context where arrays are
supported (SQLSTATE 42887). See the "UNNEST table function" for details.

xmltable-expression
An xmltable-expression specifies an invocation of the built-in XMLTABLE function which determines
the intermediate result table. See XMLTABLE for more information.

external-table-reference
An external table resides in a text-based, delimited or non-delimited file outside of a database. An
external-table-reference specifies the name of the file that contains an external table.

column-definition
The attributes of a column.

Chapter 1. Structured Query Language (SQL) 655

column-name
Names a column of the table. The name cannot be qualified, and the same name cannot be used
for more than one column of the table (SQLSTATE 42711).

built-in-type
One of the following built-in data types:
SMALLINT

A small integer.
[INTEGER | INT]

A large integer.
BIGINT

A big integer.
[DECIMAL | DEC | NUMERIC | NUM](precision-integer, scale-integer)

A decimal number.

• The precision integer specifies the total number of digits. It must be in the range 1 ‑ 31. The
default is 5.

• The scale integer specifies the number of digits to the right of the decimal point. It cannot be
negative and cannot exceed the precision. The default is 0.

FLOAT(integer)
A single or double-precision floating-point number. If the specified length is in the range:

• 1 - 24, the number uses single precision
• 25 - 53, the number uses double-precision

Instead of FLOAT, you can specify:
REAL

For single precision floating-point.
DOUBLE

For double-precision floating-point.
DOUBLE PRECISION

For double-precision floating-point.
FLOAT

For double-precision floating-point.

DECFLOAT(precision-integer)
A decimal floating-point number. The precision integer specifies the total number of digits,
which can be either 16 or 34. The default is 34.

[CHARACTER | CHAR](integer [OCTETS | CODEUNITS32])
A fixed-length character string of the specified number of code units. This number can range
from 1 ‑ 255 OCTETS or from 1 - 63 CODEUNITS32. The default is 1.

[VARCHAR | CHARACTER VARYING | CHAR VARYING](integer [OCTETS | CODEUNITS32])
A varying-length character string with a maximum length of the specified number of code
units. This number can range from 1 ‑ 32672 OCTETS or from 1 - 8168 CODEUNITS32.

FOR BIT DATA
Specifies that the contents of the column are to be treated as bit (binary) data. During data
exchange with other systems, code page conversions are not performed. Comparisons are
done in binary, irrespective of the database collating sequence.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE
42613).

[CLOB | CHARACTER LARGE OBJECT | CHAR LARGE OBJECT](integer [K] [OCTETS |
CODEUNITS32])

A character large object string with a maximum length of the specified number of code units.
The default maximum length is 65,535 bytes.

656 IBM Db2 V11.5: SQL Reference

If you want to multiply the length integer by 1024, specify a K (kilo) multiplier.

• Regardless of whether you use a K multiplier, the resulting length is limited by the
maximum length of a CLOB column in an external table, which is 65,535 OCTETS, 32,767
CODEUNITS16, or 16,383 CODEUNITS32. Note that 64K OCTETS and 16K CODEUNITS32
each exceed the maximum length by one, and so are not allowed.

• Any number of spaces (including zero spaces) are allowed between the data type and the
length specification or between the length integer and the K multiplier. For example, the
following specifications are all equivalent and valid:

CLOB(50K)
CLOB(50 K)
CLOB (50 K)

• The K multiplier can be specified in either uppercase or lowercase.

In a Unicode database, the default string units for a character string data type are determined
by the value of the NLS_STRING_UNITS global variable or string_units database configuration
parameter. In a non-Unicode database, the default string units for character string data types
are OCTETS.

OCTETS
Specifies that the units of the length attribute are bytes.

CODEUNITS32
Specifies that the units of the length attribute are Unicode UTF-32 code units, which
approximates counting in characters. This does not affect the underlying code page of the
data type. The actual length of a data value is determined by counting the UTF-32 code
units as if the data were converted to UTF-32. CODEUNITS32 can be specified only in a
Unicode database (SQLSTATE 560AA).

GRAPHIC(integer [CODEUNITS16 | CODEUNITS32])
A fixed-length graphic string of the specified length, which can range from 1 ‑ 127 double
bytes, 1 ‑ 127 CODEUNITS16, or 1 ‑ 63 CODEUNITS32. The default length is 1.

VARGRAPHIC(integer [CODEUNITS16 | CODEUNITS32])
A varying-length graphic string of the specified maximum length, which can range from
1 ‑ 16336 double bytes, 1 ‑ 16336 CODEUNITS16, or 1 ‑ 8168 CODEUNITS32.

DBCLOB(integer [K] [CODEUNITS16 | CODEUNITS32])
A character large object string of the specified maximum length in double bytes, Unicode
UTF-16 code units, or Unicode UTF-32 code units. The default maximum length is 32,767
double bytes.

If you want to multiply the length integer by 1024, specify a K (kilo) multiplier.

• Regardless of whether you use a K multiplier, the resulting length is limited by the maximum
length of a DBCLOB column in an external table, which is 32,767 CODEUNITS16 or 16,383
CODEUNITS32. Note that 32K CODEUNITS16 and 16K CODEUNITS32 each exceed the
maximum length by one, and so are not allowed.

• Any number of spaces (including zero spaces) are allowed between the data type and the
length specification or between the length integer and the K multiplier. For example, the
following specifications are all equivalent and valid:

DBCLOB(50K)
DBCLOB(50 K)
DBCLOB (50 K)

• The K multiplier can be specified in either uppercase or lowercase.

In a Unicode database, the default string units for a character string data type are determined
by the value of the NLS_STRING_UNITS global variable or string_units database configuration
parameter. In a non-Unicode database, the default string units for character string data types
is CODEUNITS16.

Chapter 1. Structured Query Language (SQL) 657

CODEUNITS16
Specifies that the units of the length attribute are Unicode UTF-16 code units, which is
the same as counting in double bytes. CODEUNITS16 can be specified only in a Unicode
database (SQLSTATE 560AA).

CODEUNITS32
Specifies that the units of the length attribute are Unicode UTF-32 code units. This does
not affect the underlying code page of the data type. The actual length of a data value is
determined by counting the UTF-32 code units as if the data were converted to UTF-32.
CODEUNITS32 can be specified only in a Unicode database (SQLSTATE 560AA).

[NATIONAL CHARACTER | NATIONAL CHAR | NCHAR](integer)
A fixed-length string of the specified length. The default length is 1.

The NATIONAL CHARACTER type maps to either a fixed-length character or a fixed-length
graphic string, depending on the value of the nchar_mapping database configuration
parameter, which also defines the string units.

[NATIONAL CHARACTER VARYING | NATIONAL CHAR VARYING | NCHAR VARYING |
NVARCHAR](integer)

A varying-length string of the specified maximum length.

The NATIONAL CHARACTER VARYING type maps to either a varying-length character or
a varying-length graphic string, depending on the value of the nchar_mapping database
configuration parameter, which also defines the string units.

[NATIONAL CHARACTER LARGE OBJECT | NCHAR LARGE OBJECT | NCLOB](integer [K])
A large object string of the specified maximum length. The default maximum length is 16,383
double bytes.

This data type maps to either a character large object (CLOB) or a double-byte character
large object (DBCLOB), depending on the current value of the nchar_mapping database
configuration parameter, which also defines the string units. See the description of the CLOB
or DBCLOB parameter (whichever applies) for information about possible values for the length
integer and how to use a K (kilo) multiplier.

BINARY(integer)
A fixed-length binary string of the specified length, which must be in the range 1 ‑ 255 bytes.
The default length is 1.

[VARBINARY | BINARY VARYING](integer)
A varying-length binary string of the specified maximum length, which must be in the range
1 ‑ 32672 bytes.

[BLOB | BINARY LARGE OBJECT](integer [K])
A binary large object string with a maximum length of the specified number of code units. The
default maximum length is 65,535 bytes.

If you want to multiply the length integer by 1024, specify a K (kilo) multiplier.

• Regardless of whether you use a K multiplier, the resulting length is limited by the maximum
length of a BLOB column in an external table, which is 65,535 bytes. Note that 64K exceeds
the maximum length by one, and so is not allowed.

• Any number of spaces (including zero spaces) are allowed between the data type and the
length specification or between the length integer and the K multiplier. For example, the
following specifications are all equivalent and valid:

BLOB(50K)
BLOB(50 K)
BLOB (50 K)

• The K multiplier can be specified in either uppercase or lowercase.

DATE
A date.

658 IBM Db2 V11.5: SQL Reference

TIME
A time.

TIMESTAMP(integer) or TIMESTAMP
A timestamp. The integer specifies the number of decimal places for fractions of seconds,
from 0 (seconds) to 12 (picoseconds). The default is 6 (microseconds).

BOOLEAN
A Boolean value.

LIKE table-name1 or view-name or nickname
Specifies that the columns of the table have the same name and description as the columns of the
specified table (table-name1), view (view-name), or nickname (nickname). The specified table, view,
or nickname must either exist in the catalog or must be a declared temporary table. A typed table or
typed view cannot be specified (SQLSTATE 428EC).

The use of LIKE is an implicit definition of n columns, where n is the number of columns in the
identified table (including implicitly hidden columns), view, or nickname. A column of the new table
that corresponds to an implicitly hidden column in the existing table will also be defined as implicitly
hidden. The implicit definition depends on what is specified after LIKE:

• If a table is specified, then the implicit definition includes the column name, data type, hidden
attribute, and nullability characteristic of each of the columns of that table. If EXCLUDING COLUMN
DEFAULTS is not specified, then the column default is also included.

• If a view is specified, then the implicit definition includes the column name, data type, and
nullability characteristic of each of the result columns of the fullselect defined in that view. The
data types of the view columns must be data types that are valid for columns of a table.

• If a nickname is specified, then the implicit definition includes the column name, data type, and
nullability characteristic of each column of that nickname.

• If a protected table is specified, the new table inherits the same security policy and protected
columns as the identified table.

• If a table is specified and if that table contains a row-begin column, row-end column, or transaction-
start-ID column, the corresponding column of the new table inherits only the data type of the source
column. The new column is not considered a generated column.

• If a table that includes a period is specified, the new table does not inherit the period definition.
• If a system-period temporal table is specified, the new table is not a system-period temporal table.
• If a random distribution table that uses the random by generation method is specified,

and if the new table that is being created does not share the same table distribution, the
RANDOM_DISTRIBUTION_KEY column that is used to generate the random distribution values is
not included.

Column default and identity column attributes can be included or excluded, based on the copy-
attributes clauses. The implicit definition does not include any other attributes of the identified table,
view, or nickname. Consequently, the new table does not have any primary key, unique constraints,
foreign key constraints, referential integrity constraints, triggers, indexes, ORGANIZE BY specification,
or PARTITIONING KEY specification. The table is created in the table space implicitly or explicitly
specified by the IN clause, and the table has any other optional clause only if the optional clause is
specified.

When a table is identified in the LIKE clause and that table contains a ROW CHANGE TIMESTAMP
column, the corresponding column of the new table inherits only the data type of the ROW CHANGE
TIMESTAMP column. The new column is not considered to be a generated column.

If a table is specified, and if row or column level access control is activated for that table, it is not
inherited by the new table.

option
The following options control the loading of data to or retrieval of data from an external-table file. The
value of each option is a text string and is not case-sensitive.

Chapter 1. Structured Query Language (SQL) 659

BOOLSTYLE or BOOLEAN_STYLE
During a load operation, all Boolean values must use the same style. This option specifies the
Boolean style that is to be used:

• 1_0 (this is the default)
• T_F
• Y_N
• YES_NO
• TRUE_FALSE

CARDINALITY
Non-zero positive integer value to override the estimation of the expected number of returned
rows.

CCSID
The coded character set identifier (CCSID) of the input data file. The value can be any valid integer
value from the CCSID specification. There is no default value. The CCSID and ENCODING options
are mutually exclusive when the value of the ENCODING option is UTF8, LATIN9, or INTERNAL.

Which styles are used for dates and times depends on whether a CCSID is specified:

• When a CCSID is specified, and when DATESTYLE, TIMESTYLE, DATEDELIM, or TIMEDELIM
are not specified, the values or defaults for DATE_FORMAT, TIME_FORMAT, and
TIMESTAMP_FORMAT are used.

• When a CCSID is not specified, and when TIMESTAMP_FORMAT, DATE_FORMAT or
TIME_FORMAT are not specified, the values or defaults for DATESTYLE, TIMESTYLE,
DATEDELIM, and TIMEDELIM are used.

COMPRESS
For a load operation or an unload operation, whether the data file data is compressed:
GZIP

The data file data is compressed by using the GZIP compression algorithm.
NO

The data file data is not compressed. This is the default.
LZ4

The data file data is compressed by using the LZ4 compression algorithm.
The COMPRESS option cannot be specified if the value of the REMOTESOURCE option is GZIP or
LZ4.

CRINSTRING
How to interpret an unescaped carriage-return (CR) or carriage-return line-feed (CRLF) character:
TRUE or ON

An unescaped CR character is interpreted as data, not as a record delimiter.
FALSE or OFF

An unescaped CR is interpreted as a record delimiter. This is the default.
Use fixed-length format for CRINSTRING only if the value of the CtrlChars option is set to
OFF.

CTRLCHARS
Whether to allow an ASCII value 1 - 31 in a CHAR or VARCHAR field. Any NULL, CR, or LF
characters must be escaped. Allowed values are:
TRUE or ON

An ASCII value 1 - 31 in a CHAR or VARCHAR field is allowed.
If fixed-length format is enabled, all unescaped characters are allowed.

FALSE or OFF
An ASCII value 1 - 31 in a CHAR or VARCHAR field is not allowed. This is the default.

660 IBM Db2 V11.5: SQL Reference

If fixed-length format is enabled, unescaped characters cause an error.
Exceptions for fixed-length format:

• \t, \n
• \r if the CRinString option is set to ON

DATAOBJECT or FILE_NAME
The fully-qualified name of the file (or any medium that can be treated as a file) that is to contain
the external table to be created. This option is mandatory when the name of the file is not
specified immediately after the table name; otherwise, it is not allowed.

When both the REMOTESOURCE option is set to LOCAL (this is its default value) and the
extbl_strict_io configuration parameter is set to NO, the path to the external table file is
an absolute path and must be one of the paths specified by the extbl_location configuration
parameter. Otherwise, the path to the external table file is relative to the path that is specified
by the extbl_location configuration parameter followed by the authorization ID of the table
definer. For example, if extbl_location is set to /home/xyz and the authorization ID of the
table definer is user1, the path to the external table file is relative to /home/xyz/user1/.

The file name must be a valid UTF-8 string.
For a load operation, the following conditions apply:

• The file must already exist.
• Required permissions:

– If the external table is a named external table, the owner must have read permission for the
file and write permission for the LOGDIR directory.

– If the external table is a transient external table, the authorization ID of the statement must
have read permission for the file and write permission for the LOGDIR directory.

For an unload operation, the following conditions apply:

• If the file exists, it is overwritten.
• Required permissions:

– If the external table is a named external table, the owner must have read and write
permission for the directory of this file.

– If the external table is transient, the authorization ID of the statement must have read and
write permission for the directory of this file.

DATEDELIM
The delimiter character that separates the components of a date, according to the format
specified by the DATESTYLE option. If you specify an empty string, there is no delimiter
between the date components, and days and months must be specified as two-digit numbers.
When DATESTYLE is set to MONDY or MONDY2, the default DATEDELIM value is a space. The
TIMESTAMP_FORMAT and DATEDELIM options are mutually exclusive.

DATESTYLE
How to interpret the date format. For days or months in the range 1 ‑ 9, use 1 digit, 2 digits, or a
space followed by a single digit. When the DATEDELIM option is a space, you can specify a comma
after the day. An error occurs if you:

• Specify zero for a day, month, or year
• Specify a nonexistent date (for example, 32 August or 30 February)

The DATESTYLE option and the DATE_FORMAT or TIMESTAMP_FORMAT option are mutually
exclusive.

Chapter 1. Structured Query Language (SQL) 661

Table 109. Possible values for the DateStyle option. The example shows how the date 21 March
2014 would be represented when DATEDELIM is set to '-'.

Value Description Example

YMD 4-digit year, 2-digit month, 2-digit day. This is
the default.

2014-03-21

DMY 2-digit day, 2-digit month, 4-digit year. 21-03-2014

MDY 2-digit month, 2-digit day, 4-digit year. 03-21-2014

MONDY 3-character month, 2-digit day, 4-digit year. Mar 21 2014

DMONY 2-digit day, 3-character month, 4-digit year. 21-Mar-2014

Y2MD 2-digit year, 2-digit month, 2-digit day. Not
supported for unloads.

14-03-21

DMY2 2-digit day, 2-digit month, 2-digit year. Not
supported for unloads.

21-03-14

MDY2 2-digit month, 2-digit day, 2-digit year. Not
supported for unloads.

03-21-14

MONDY2 3-character month, 2-digit day, 2-digit year.
Not supported for unloads.

Mar 21 14

DMONY2 2-digit day, 3-character month, 2-digit year.
Not supported for unloads.

21-Mar-14

DATETIMEDELIM
A single-byte character that separates the date component and time component of the timestamp
data type.
The default delimiter is a space (' ').
Between the date component and the time component, a delimiter is not required. For example,
both of the following values are valid:

2010-10-10 10:10:10
2010-10-1010:10:10

DATE_FORMAT
The format of the date field in the data file. The value can be any of the date format strings
that are accepted by the “TIMESTAMP_FORMAT ” on page 527. The default is YYYY-MM-DD. The
DATE_FORMAT option and the DATEDELIM or DATESTYLE option are mutually exclusive.

DECIMALDELIM or DECIMAL_CHARACTER
The decimal delimiter for the data types FLOAT, DOUBLE, TIME, and TIMESTAMP. Allowed values
are ',' and '.'.

DECPLUSBLANK
Specifies how the positive decimal value is represented during the unload operation.
You can specify one of the following values for this option:
NONE

This is the default.
This value represents a positive decimal value without a sign.

PLUS
Specifies that a positive decimal value is represented by a '+' sign.

BLANK
Specifies that a positive decimal value is represented by a blank sign instead of a '+' sign.

If you specify the DECPLUSBLANK option for the load operation, the output is not affected.

662 IBM Db2 V11.5: SQL Reference

Examples for a table test with ddl (decimal (6,2)) and all the available values for the
DECPLUSBLANK option:

1234
-4563

• Create external table '/tmp/unload.txt' using (DECPLUSBLANK NONE) as select * from test:

unload.txt
1234.00
-4563.00

• Create external table '/tmp/unload.txt' using (DECPLUSBLANK PLUS) as select * from test:

unload.txt
+1234.00
-4563.00

• Create external table '/tmp/unload.txt' using (DECPLUSBLANK BLANK) as select * from test:

unload.txt
 1234.00
-4563.00

DELIMITER or COLUMN_DELIMITER
The character that is used to delimit the fields of an input or output record. The default is a vertical
bar ('|').

You can specify a character in the 7-bit ASCII range (decimal 1 ‑ 127) in any of the following ways:

• As a single character (for example DELIMITER ';')
• By specifying its corresponding ASCII decimal value (for example, DELIMITER 59 or
DELIMITER '59')

• By specifying its corresponding ASCII hex value (for example, DELIMITER x'3B')

The decimal range 128 - 255 is supported only with the ISO character set input file by specifying
its corresponding ASCII decimal value or hex value. If the input file is in the UTF8 character set,
this delimiter value range is not supported.

ENCODING
The type of data in the file:
UTF8

The file uses UTF8 encoding for all character data.
LATIN9

The file uses LATIN9 encoding for all character data.
INTERNAL

This is the default option.
The file uses a mixture of both UTF8 and LATIN9 encoding.
Files are encoded in Netezza internal format and therefore should be used only for files that
are extracted from Netezza by using ENCODING (INTERNAL).
When the target column is CODEUINTS32 (NCHAR/VARCHAR), the input data is validated to be
valid UTF-8 characters.
This option is supported only in a Unicode database.

DBCS_GRAPHIC
This value is allowed only for a load operation, not an unload operation. If this value is
specified, the CCSID option must also be specified. During the load operation, fields of type
GRAPHIC or VARGRAPHIC are encoded using the double-byte character set of the specified
CCSID; fields of all other types are encoded using the mixed-byte character set of the
specified CCSID.

Chapter 1. Structured Query Language (SQL) 663

Note: ENCODING cannot be set to DBCS_GRAPHIC for a DEL file that was created by the
EXPORT utility, because such DEL files are encoded using a single character set.

The CCSID and ENCODING options are mutually exclusive when the value of the ENCODING
option is UTF8, LATIN9, or INTERNAL.

ESCAPECHAR or ESCAPE_CHARACTER
Which character is to be regarded as an escape character. An escape character indicates that
the character that follows it, which would otherwise be treated as a field-delimiter character or
end-of-row sequence character, is instead treated as part of the value in the field. The escape
character is ignored for graphic-string data. There is no default.

FILLRECORD
For a load operation, the field of a record are loaded into the columns of a target table from left
to right. This option specifies whether an input record can contain fewer fields than there are
columns defined for the target table:
TRUE or ON

An input line can contain fewer fields, provided that all columns for which a value is missing
are nullable. Missing values are set to NULL. If one or more columns for which a value is
missing is not nullable, the record is rejected.

FALSE or OFF
An input line that contains fewer columns is rejected. This is the default.

FORMAT or FILE_FORMAT
The data format of the source file:
TEXT

The data to be loaded or unloaded is in text-delimited format. This is the default.
INTERNAL

The data is in an internal format used by Netezza Platform Software (NPS). This value is valid
only when loading data from a file to the database, not when unloading data to a file. If this
value is specified for the FORMAT option, the following options, and only these options, must
also be specified:

• DATAOBJECT or FILE_NAME.
• REMOTESOURCE, SWIFT or S3. If the REMOTESOURCE option is specified, it must have the

value LOCAL or YES.

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 or later
releases, AZURE is compatible, in addition to SWIFT and S3.

• COMPRESS. This must be set to GZIP.

BINARY
The data is in an internal format that is used by Db2.

FIXED
The data is in fixed-length format.
Fixed-length format is supported only for load operations.
Files in fixed-length format use ordinal positions, which are offsets, to identify where fields are
within the record.

Note:

• The following external table options are not supported for the fixed-length format:

– Delimiter
– Encoding
– EscapeChar
– FillRecord
– IgnoreZero

664 IBM Db2 V11.5: SQL Reference

– IncludeZeroSeconds
– Lfinstring
– QuotedValue
– RequireQuotes
– TimeExtraZeros
– TruncString

• There are no field delimiters.
• An end-of-record delimiter is required even for the last record.
• Usually, data in fixed-length format files does not have decimal delimiters or time delimiters

because delimiters are not necessary and use space.
• The locations of delimiters are fixed and specified in the layout definition because the fields

are fixed in size. This definition comes with the fixed-length format data file.
• To load fixed-format data into the database, you must define the target data type for the
fields and the locations within the record.

• You do not have to load all fields in a fixed-length format file. You can skip them by using the
filler specification.

• The order of fields in the data file must match the order in the target table. Alternatively,
you must create an external table definition that specifies the order of the fields as database
columns.

• You can change the field order by using an external table definition in combination with an
insert-select statement.

• Typically, unknown values or null values are represented by known data patterns that are
classified as representing null.

The following parameters apply when the FORMAT option of the external table is set to FIXED:
LAYOUT

Mandatory.
A layout is an ordered collection of zone or field definitions. It defines the location of the
fields of the input record.
Specify comma-separated zone definitions within braces { }.
Each zone definition is made up of mutually exclusive, non-overlapping clauses.
No default value.
The clauses must be in the following order, even if some of them are optional and can be
empty:
USE TYPE

Optional.
Indicates whether a zone is a normal data zone, a reference zone, or a filler zone.
For data zones, this value is omitted.
A reference zone is specified as REF. This specification implies that the zone is referred
by another zone for zone length or null values.
A filler zone is specified as FILLER. Filler zones specify that the bytes or characters
are treated as fillers in a data file.

NAME
Optional.
The name of the zone.
Currently, this definition is not used. Typically, it is provided to identify the field.

TYPE
Optional.

Chapter 1. Structured Query Language (SQL) 665

Defines the type of the zone.
If you do not specify the type, it gets the default value of the corresponding type of a
table column.
Valid values are as follows:

• CHAR
• VARCHAR
• NCHAR
• NVARCHAR
• SMALLINT
• BIGINT
• BINARY
• VARBINARY
• GRAPHIC
• VARGRAPHIC
• FLOAT
• DOUBLE
• DEC, NUM, or NUMERIC
• DECFLOAT
• BOOLEAN
• DATE
• TIME
• TIMESTAMP

STYLE
Optional.
Defines the zone representation.
The default representation is based on zone type and format option.
All other styles are valid only for their corresponding non-textual zone types.
Valid values are as follows:

• INTERNAL

Valid only for textual zones, that is, char, varchar, nchar, and nvarchar.
• DECIMAL

Valid for integer and numeric zone types.
• DECIMALDELIM <'decimal-delim'>

Valid for numeric, float, double, and time style (time and timestamp) zone types.
• FLOATING

Valid for float or double zone types.
• EXPONENTIAL

Valid for float or double zone types.
• YMD <'date-delim'>

Valid for date zones, including other date styles that are supported for the DateStyle
and DateDelim external table options.

• 12Hour <'time-delim'>

666 IBM Db2 V11.5: SQL Reference

Valid for time zones, including other time styles that are supported for the TimeStyle
and TimeDelim external table options.

• 24Hour <'time-delim'>

Valid for time zones, including other time styles that are supported for the TimeStyle
and TimeDelim external table options.

• YMD <'date-delim'> 24Hour <'time-delim'>

Valid for timestamp zones, including other combinations of date and time styles that
are supported for the DateStyle, DateDelim, TimeStyle, and TimeDelim external table
options.

• TRUE_FALSE, Y_N, 1_0

Valid for boolean zones, including other boolean styles that are supported for the
BoolStyle external table option. The style must be in accordance with the format.

LENGTH
Optional.
Specified as bytes or characters followed by the number or the internal reference to
the reference zone.
Number of bytes or characters as provided or as referenced by the reference zone.
For reference zones or filler zones, you cannot use internal references. For reference
zones, the number of bytes specifies how the data is read from the data file to get the
referred value.
You can use plus signs and minus signs as follows:

BYTES @2 + 10
BYTES @2 - 10

NULLIF
Optional.
Definition of the zone NULLESS attribute.
Specifies a known data pattern within the field that, when it is present, signifies that
the field is null.
The length is equal to or less than the column width. The maximum length is 39 bytes.
You can use the following types of references:
@

Internal reference to numeric zones.
Exact match of the numeric value.

&
External reference.
Exact match of the specified value.

&&
Isolated reference.
Leading spaces and trailing spaces are to be skipped with the exact string match.

Nulls are detailed in the following examples:

Table 110. Layout example

Use type Name Type Style Length Nullif

NA f1 int4 DECIMAL Bytes 10 Nullif & = 0

Chapter 1. Structured Query Language (SQL) 667

Table 110. Layout example (continued)

Use type Name Type Style Length Nullif

NA f2 date YMD Bytes 10 Nullif &=
'2000-10-1
0'

NA f3 char(20) INTERNAL Chars 10 Nullif
&&='ab'

Filler f4 char(10) NA Bytes 10 NA

Remember:

• The referred zone in a length clause must be of type integer.
• You must not specify the NULLIF option for reference zones or filler zones.
• Reference zones and filler zones cannot have variable lengths.
• Variable length zones cannot refer themselves.
• Define the referred zone in a length clause as REF.
• Length-clause references can use only the INTERNAL (@) reference. External or isolated

references are not supported.
• Between the referred zone of a length clause and the zone itself, reference zones are not

allowed.
• If the reference type is INTERNAL (@), the NULLIF clause cannot refer to itself.
• If the column is non-nullable, it may not have the NULLIF clause.
• Variable length is allowed only for the string type of zones.
• The NULLIF clause can refer only to REF zones or the zones themselves.
• Between the zone that is referred by the NULLIF clause and the zone itself, other

referred zones are not allowed, except for the zone that is referred in the length clause.
• The record length can point to zone 1 only for reference.
• A REF must have a zone that refers it.
• The NULLIF clause can have external references only if the REF zone is non-integer.

Recordlength
Specifies the length of the entire record, where null-indicator bytes are included if they
exist, and the record delimiter is excluded if it exists.
The value is a constant integer.
The value can also be an internal reference to the reference zone in the layout definition.
There is no default value.
You can use plus signs and minus signs for an internal reference as follows:

RECORDLENGTH @1 + 10
RECORDLENGTH @1 - 10

IGNOREZERO or TRIM_NULLS
Specifies whether the binary value zero in CHAR fields and VARCHAR fields is to be discarded.
TRUE or ON

The byte value zero is ignored.
FALSE or OFF

The byte value zero is not ignored. This is the default.
KEEP

The binary value zero is accepted and allowed as part of the input field.

668 IBM Db2 V11.5: SQL Reference

INCLUDEHEADER or COLUMN_NAMES
For an unload operation, whether the table column names are to be included as headers in the
external-table file:
TRUE or ON

The table column names are to be included as headers.
FALSE or OFF

The table column names are not to be included as headers. This is the default.
INCLUDEZEROSECONDS

For an unload operation, whether to specify 00 as the value for seconds when no value for
seconds is available:
TRUE or ON

Specify 00 as the value for seconds.
FALSE or OFF

Do not specify a value for seconds. This is the default.
INCLUDEHIDDEN

For a load operation, specify whether hidden column values are present in a data file.

The INCLUDEHIDDEN option works when you are creating an external table by using the LIKE or
SAMEAS clause, and base table has hidden columns.

TRUE
A data file contains values against hidden column.

FALSE
A data file does not contain values against hidden column. This is the default. You can change
the default value by using the registry variable DB2_EXTBL_INCLUDE_HIDDEN_COLS.

LFINSTRING
Specifies how to interpret an unescaped line-feed (sometimes called an LF or newline) character
within string data:
TRUE or ON

An unescaped LF character is interpreted as a record delimiter only if it is in the last field of
a record; otherwise, it is treated as data. To cause an LF character that is in the last field of
a record to be treated as data, enclose the value of that field in single or double quotation
marks.

FALSE or OFF
An unescaped LF character is interpreted as a record delimiter regardless of its position. This
is the default.

This option is not supported for unload operations.

Attention: This SQL compatibility enhancement is only available in Db2 Version 11.5 Mod
Pack 2 and later versions.

LOGDIR or ERROR_LOG
The directory to which the following files are written:
<database>.<schema>.<external-table-name>.<file-name>.<application-handle>.<id>.bad

A file containing rejected records (that is, records that could not be processed).
<database>.<schema>.<external-table-name>.<file-name>.<application-handle>.<id>.log

A log file.
The default is the directory to which the external-table file is written. If the length of the name
that is constructed for a .bad or .log file would exceed the allowed maximum, the name of the file
that contains the external table (indicated by <file-name>) is truncated so that the maximum is
not exceeded.

If a .log or .bad file is generated while carrying out an operation on a partition, the name of the
generated file is suffixed with a period followed by the 3-digit partition number.

Chapter 1. Structured Query Language (SQL) 669

MAXERRORS or MAX_ERRORS
For a load operation, the threshold for the number of rejected records at which the system stops
processing and immediately rolls back the load. The default is 1 (that is, a single rejected record
results in a rollback).
For fixed-length format, the following conditions apply:

• The parser reports errors for each field or zone rather than one error for the row.
• Multiple errors can be reported for the same row.
• When the parser detects an error in a field or zone, it recovers by using the field length or zone

length. It then continues from the next field or zone until the end of record is reached, or an
unrecoverable error occurs, or the MaxErrors limit is reached.

• Unrecoverable errors include the following errors:

– RecordLength mismatch.
– RecordDelimiter is not found.
– The RecordLength value is not valid, that is, the value is a negative value or zero.
– The zone length is not valid, that is, the value is a negative value.
– The UTF-8 initial byte is not valid.
– The UTF-8 continuation bytes are not valid.

MULTIPARTSIZEMB

When the DB2_ENABLE_COS_SDK registry variable is set to ON, Db2 remote storage
communication with cloud object storage is facilitated through an embedded vendor COS SDK
which allows Db2 to stream objects/files to cloud object storage in multiple parts (aka ‘multipart
upload’). This parameter specifies the part size for multipart upload, in megabytes (MB), for
the file being unloaded, and overrides the value specified in the MULTIPARTSIZEMB dbm config
parameter. This option is available starting in Version 11.5 Modification Pack 7, in Linux (x86)
environments only.

MAXROWS or MAX_ROWS
If set to a positive integer, this specifies the maximum number of records (rows) in the external
table that are to be processed. If set to 0 (the default), there is no limit and all rows are processed.
During a load operation, if MAXROWS is set to a positive value, after that number of rows are
processed, regardless of whether some of the rows were rejected or skipped, the system ends the
load operation and commits all inserted records.

MERIDIANDELIM
A single-byte character that separates the seconds component from the AM token or PM token in
the 12-hour delimited and undelimited formats of a time value.
The default delimiter is a space (' ').
Between the seconds component and the AM token or PM token, a delimiter is not required. For
example, both of the following values are valid:

1:02:46.12345 AM
1:02:46.12345AM

NOLOG
Specifies whether the .log file for the external table is created.
This option does not apply to .bad files.
Possible values are:
TRUE

No .log file is created.
FALSE

The .log file is created.
This is the default.

670 IBM Db2 V11.5: SQL Reference

https://www.ibm.com/docs/en/db2/11.5?topic=variables-miscellaneous#M_DB2_ENABLE_COS_SDK
https://www.ibm.com/docs/en/db2/11.5?topic=commands-catalog-storage-access
https://www.ibm.com/docs/en/db2/11.5?topic=parameters-multipartsizemb-remote-storage-multipart-upload-part-size

NULLVALUE or NULL_VALUE
The UTF-8 string of at most 4 bytes that is to be used to indicate a null value. The default is
'NULL'.

PARTITION
If the Database Partitioning Feature (DPF) is enabled for the database, an external table can
be partitioned into several files. The name of each of the data files that comprise an external
table are suffixed with a period followed by a 3-digit number from 000 to 999 that indicates the
number of the partition. For example, if an external table with the name dataFile.txt is divided
into three partitions, the files that comprise it have the names dataFile.txt.000, dataFile.txt.001,
and dataFile.txt.002. These files must be accessible from all members.

For a partitioned external table, the PARTITION option specifies to which partition or partitions the
statement applies:
PARTITION ALL

The statement applies to all of the partitions that comprise the external table. For an unload
operation, this is the only value that is allowed.

PARTITION (n TO n)
The statement applies to all of the partitions in the specified range, for example,
PARTITION (54 TO 62).

PARTITION (n,n,…)
The statement applies only to the specified partition or partitions, for example,
PARTITION (53) or PARTITION (51,57,58). If more than one partition number is specified,
they must be in ascending order (sqlcode SQL0263N with SQLSTATE=42615) and there can be
no duplicates (sqlcode SQL0265N with SQLSTATE=42615).

If a .log or .bad file is generated while carrying out an operation on a partitioned external table, the
name of the generated file is suffixed with a period followed by the 3-digit partition number.

If the DPF is enabled and the PARTITION option is not specified, the external table is treated
as single-partitioned table on the coordinator member. The names of the external table file and
the .log and .bad files are not suffixed with a partition number.

If the DPF is not enabled, the PARTITION option can be specified, but only with the value ALL, (0
to 0), or (0) (SQL0644N). It will have no effect.

The REMOTESOURCE and PARTITION options are mutually exclusive.

QUOTEDNULL
For a load operation, how to interpret a value that is enclosed in single or double quotation marks
and that matches the null value specified by the NULLVALUE or NULL_VALUE option (for example,
"NULL" or 'NULL'):
TRUE or ON

The value is interpreted as a null value. This is the default.
FALSE or OFF

The value is interpreted as a character string.
QUOTEDVALUE or STRING_DELIMITER

Whether data values are enclosed in quotation marks:
SINGLE or YES

Data values are enclosed in single quotation marks (').
DOUBLE

Data values are enclosed in double quotation marks (").
NO

Data values are not enclosed in quotation marks. This is the default.
RECORDDELIM or RECORD_DELIMITER

The string literal that is to be interpreted as a row (record) delimiter. The default is '\n'.

Chapter 1. Structured Query Language (SQL) 671

When CRINSTRING is set to TRUE, RECORDDELIM cannot contain a CR ('\r') character - with the
sole exception of a CRLF ('\r\n') delimiter allowed with CRINSTRING for text format only.

REMOTESOURCE
Where the external-table file resides and, if it resides on a remote system, whether the file data is
to be compressed:
LOCAL

The file resides on the local server, that is, the system that hosts the database. This is the
default.

YES
The file resides on a system other than the local server. For example, specify YES if a client
system is connected to the database and the file resides on that system. File data is not
compressed before it is transferred.

GZIP
Similar to YES, except that the file data is compressed using the GZIP compression algorithm
before the data is transferred, and is decompressed after it is received. This improves overall
performance when a large amount of compressible data is being transferred.

LZ4
Similar to YES, except that the file data is compressed using the LZ4 compression algorithm
before the data is transferred, and is decompressed after it is received. This improves overall
performance when a large amount of compressible data is being transferred.

The REMOTESOURCE, SWIFT, and S3 options are mutually exclusive.

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 or later versions,
AZURE is compatible and its options are mutually exclusive with REMOTESOURCE, SWIFT,
and S3.

The REMOTESOURCE and PARTITION options are mutually exclusive. The COMPRESS option
cannot be specified if the value of the REMOTESOURCE option is GZIP or LZ4.

REQUIREQUOTES
Whether quotation marks are mandatory:
TRUE or ON

Quotation marks are mandatory. The QUOTEDVALUE option must be set to YES, SINGLE, or
DOUBLE.

FALSE or OFF
Quotation marks are not mandatory. This is the default.

SKIPROWS or SKIP_ROWS
For a load operation, the number of rows to skip before beginning to load the data. The default is
0. Because skipped rows are processed before they are skipped, a skipped row is still capable of
causing a processing error.

SOCKETBUFSIZE
The size, in bytes, of the chunks of data that are read from the source file. Valid values range from
64 KB ‑ 800 MB. If you specify a value outside this range, the value is set to the nearest valid
value. The default is 8 MB.

STRICTNUMERIC
For a load operation, how to treat a value that is to be inserted into a DECIMAL field when its scale
exceeds that defined for the field:
TRUE or ON

The row containing the value to be inserted is rejected. For example, if any of the following
values were to be loaded into a DECIMAL(5,3) field, the row containing that value would be
rejected:

12.666666666
-98.34496862785
0.00089

672 IBM Db2 V11.5: SQL Reference

FALSE or OFF
The row containing the value to be inserted is accepted, and the portion of the decimal
fraction that exceeds the scale defined for the field is truncated. This is the default. For
example, the values in the previous example would be converted to:

12.666
-98.344
0.000

SWIFT
Specifies that the source data file is located in a Swift object store. The REMOTESOURCE, SWIFT,
and S3 options are mutually exclusive. Use the DATAOBJECT option to specify the file name.

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 or later versions,
AZURE is compatible and its options are mutually exclusive with REMOTESOURCE, SWIFT,
and S3.

Syntax:

SWIFT (endpoint, authKey1, authKey2, bucket)

where:
endpoint

A character string that specifies the URL of the SWIFT web service.
authKey1

A character string that specifies the access ID or username of the Swift open stack account
used to validate the user.

authKey2
A character string that specifies the password of the Swift open stack account used to validate
the user.

bucket
The name of the Swift open stack container (bucket) in which the file resides.

Example:

CREATE EXTERNAL TABLE exttab1(a int) using
 (dataobject 'datafile1.dat'
 swift('https://dal05.objectstorage.softlayer.net/auth/v1.0/',
 'XXXOS123456-2:xxx123456',
 'b207c6e974020737d92174esdf6d5be9382aa4c335945a14eaa9172c70f8df16',
 'my_dev'
)
)

S3
Specifies that the source data file is located in an S3 compatible object store. The
REMOTESOURCE, SWIFT, and S3 options are mutually exclusive. Use the DATAOBJECT option
to specify the file name.

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 or later versions,
AZURE is compatible and its options are mutually exclusive with REMOTESOURCE, SWIFT,
and S3.

Syntax:

S3 (endpoint, authKey1, authKey2, bucket)

where:
endpoint

A character string that specifies the URL of the S3 compatible web service.

Chapter 1. Structured Query Language (SQL) 673

authKey1
A character string that specifies the S3 access key ID of the access keys used to validate the
user and all user actions. For IBM Cloud Object Storage, this is the access key ID from the
HMAC credentials.

authKey2
A character string that specifies the S3 secret key of the access keys that are used to validate
the user and all user actions. For IBM Cloud Object Storage, this is the secret access key from
the HMAC credentials.

bucket
The name of the S3 bucket in which the file resides.

Note: For IBM Cloud Object Storage, to create HMAC credentials, when creating new service
credentials, specify {"HMAC:true} in the Add Inline Configuration Parameters field.

Example using AWS S3:

CREATE EXTERNAL TABLE exttab2(a int) using
 (dataobject 'datafile2.dat'
 s3('s3.amazonaws.com',
 'XXXOS123456-2:xxx123456',
 'bs07c6e974040737d92174e5e96d5be9382aa4c33xxx5a14eaa9172c70f8df16',
 'my_dev'
)
)

Example using IBM Cloud Object Storage:

CREATE EXTERNAL TABLE exttab2(a int) using
 (dataobject 'datafile2.dat'
 s3('s3-api.us-geo.objectstorage.softlayer.net',
 '1a2bkXXXsaddntLo0xX0',
 'XXxxiEPjJ7T7WBUz74E6abcdABCDE8Q7RgU4gYY9',
 'my_dev'
)
)

AZURE

Attention: This feature is available in the container-only release of Db2 Version 11.5 Mod
Pack 1 or later versions.

Specifies that the source data file is located in Microsoft Azure Blob Storage. The
REMOTESOURCE, SWIFT, S3, and AZURE options are mutually exclusive. Use the DATAOBJECT
option to specify the file name. Syntax:

Syntax:

AZURE (endpoint, authKey1, authKey2, bucket)

where:
endpoint

A character string that specifies the URL of the AZURE web service.
authKey1

A character string that specifies the access ID or username of the Azure Blob Storage account
used to validate the user.

authKey2
A character string that specifies the access key of the Azure Blob Storage account used to
validate the user.

bucket
The name of the Azure Blob Storage container (bucket) in which the file resides.

Example:

674 IBM Db2 V11.5: SQL Reference

CREATE EXTERNAL TABLE exttab1(a int) using
 (dataobject 'datafile1.dat'
 azure('https://my_account.blob.core.windows.net',
 'my_account',
 'lW+oHjmZecPS++IKgThAHlMUOaFUA5C6Z2RlFmc9JPpK34RO/ZIOywzILxJnzGPHz6d/
yDrcQDAwH5wySbOZMQ==',
 'my_bucket'
)
)

Example using IBM Cloud Object Storage:

CREATE EXTERNAL TABLE exttab2(a int) using
 (dataobject 'datafile2.dat'
 s3('s3-api.us-geo.objectstorage.softlayer.net',
 '1a2bkXXXsaddntLo0xX0',
 'XXxxiEPjJ7T7WBUz74E6abcdABCDE8Q7RgU4gYY9',
 'my_dev'
)
)

TIMEDELIM
The single-byte character that is to separate time components (hours, minutes, and seconds). The
default is ':'. If TIMEDELIM is set to an empty string, hours, minutes, and seconds must all be
specified as two-digit numbers. The TIMESTAMP_FORMAT and TIMEDELIM options are mutually
exclusive.

TIMEROUNDNANOS or TIMEEXTRAZEROS

Note: This option applies only to TIMESTAMP columns.

Specifies whether records that contain time values whose non-zero precision exceeds six decimal
places are to be accepted (and rounded to the nearest microsecond) or rejected:
TRUE

All records are accepted. Their time values are rounded to the nearest microsecond.
FALSE

Only those records that can be stored without a loss of precision (for example, '08.15.32.123'
or '08.15.32.12345600000', but not '08.15.32.1234567') are accepted. All other records are
rejected. This is the default.

TIMESTYLE
The time format that is to be used in the data file:
24HOUR

24-hour format, for example 23:55. This is the default.
12HOUR

12-hour format, for example 11:55 PM. An AM or PM token can be preceded by a single space
and is not case-sensitive.

The TIMESTYLE option and the TIME_FORMAT or TIMESTAMP_FORMAT option are mutually
exclusive.

TIMESTAMP_FORMAT
The format of the timestamp field in the data file. The value can be any of the format strings
that are accepted by the “TIMESTAMP_FORMAT ” on page 527. The default is 'YYYY-MM-DD
HH.MI.SS'. The TIMESTAMP_FORMAT option and the TIMEDELIM, DATEDELIM, TIMESTYLE, or
DATESTYLE option are mutually exclusive.

TIME_FORMAT
The format of the time field in the data file. The value can be any of the time format strings
that are accepted by the “TIMESTAMP_FORMAT ” on page 527. The default is HH.MI.SS. The
TIME_FORMAT option and a TIMEDELIM or TIMESTYLE option are mutually exclusive.

TRIMBLANKS
How an external table is to treat leading or trailing blanks (that is, leading or trailing space
characters) in a string:

Chapter 1. Structured Query Language (SQL) 675

LEADING
All leading blanks (that is, blanks that precede the first non-blank character) are removed.

TRAILING
All trailing blanks (that is, blanks that follow the last non-blank character) are removed.

BOTH
All leading and trailing blanks are removed.

NONE
No blanks are removed. This is the default.

When reading data from a file and loading it into an external table:

• If QUOTEDVALUE or STRING_DELIMITER is specified with the values SINGLE, YES, or DOUBLE,
leading and trailing blanks within quotation marks are not removed.

• For CHAR and NCHAR data, the values TRAILING or BOTH will not have any effect on trailing
blanks, because the string will automatically be re-padded with trailing blanks.

TRUNCSTRING or TRUNCATE_STRING
How the system processes a CHAR or VARCHAR string that exceeds its declared storage size:
TRUE

The system truncates a string value that exceeds its declared storage size.
FALSE

The system returns an error when a string value exceeds its declared storage size. This is the
default.

Y2BASE
The year that is the beginning of the 100-year range. Years that are specified as 2 digits are
counted from this year. The default is 2000. This option must be specified when DATESTYLE is set
to Y2MD, MDY2, DMY2, MONDY2 or DMONY2.

Table 111. Options

Option Default Applies to
Load

Applies to
Unload

Azure

Attention: This option only
applies to the container-only
release of Db2 Version 11.5 Mod
Pack 1 or later versions.

(no default) Y Y

BOOLSTYLE or BOOLEAN_STYLE 1_0 Y Y

CARDINALITY (no default) Y Y

CCSID (no default) Y Y

COMPRESS NO Y Y

CRINSTRING FALSE Y Y

CTRLCHARS FALSE Y N

DATAOBJECT or FILE_NAME (no default) Y Y

DATEDELIM '-' Y Y

DATETIMEDELIM A space (' ') Y Y

DATESTYLE YMD Y Y

DATE_FORMAT YYYY-MM-DD Y Y

676 IBM Db2 V11.5: SQL Reference

Table 111. Options (continued)

Option Default Applies to
Load

Applies to
Unload

DECIMALDELIM or
DECIMAL_CHARACTER

'.' Y Y

DELIMITER '|' Y Y

ENCODING INTERNAL Y Y1

ESCAPECHAR or ESCAPE_CHARACTER (no default) Y Y

FILLRECORD FALSE Y N

FORMAT or FILE_FORMAT TEXT Y Y

IGNOREZERO or TRIM_NULLS FALSE Y N

INCLUDEHEADER or COLUMN_NAMES FALSE N Y

INCLUDEZEROSECONDS FALSE Y Y

INCLUDEHIDDEN FALSE Y N

LFINSTRING FALSE Y N

LOGDIR or ERROR_LOG target directory of
external-table file

Y N

MULTIPARTSIZEMB value specified by
the MULTIPARTSIZEMB
dbm config parameter.

Y N

MAXERRORS or MAX_ERRORS 1 Y N

MAXROWS or MAX_ROWS 0 Y N

MERIDIANDELIM A space (' ') Y Y

NOLOG FALSE Y Y

NULLVALUE or NULL_VALUE 'NULL' Y Y

PARTITION (no default) Y Y

QUOTEDNULL TRUE Y N

QUOTEDVALUE NO Y N

RECORDDELIM or RECORD_DELIMITER '\n' Y N

REMOTESOURCE LOCAL Y Y

REQUIREQUOTES FALSE Y N

SKIPROWS or SKIP_ROWS 0 Y N

SOCKETBUFSIZE 8 MB Y Y

STRICTNUMERIC FALSE Y N

SWIFT (no default) Y Y

S3 (no default) Y Y

TIMEDELIM ':' Y Y

Chapter 1. Structured Query Language (SQL) 677

https://www.ibm.com/docs/en/db2/11.5?topic=parameters-multipartsizemb-remote-storage-multipart-upload-part-size

Table 111. Options (continued)

Option Default Applies to
Load

Applies to
Unload

TIMEROUNDNANOS or
TIMEEXTRAZEROS

FALSE Y N

TIMESTAMP_FORMAT 'YYYY-MM-DD
HH.MI.SS'

Y Y

TIMESTYLE 24HOUR Y Y

TIME_FORMAT HH.MI.SS Y Y

TRIMBLANKS NONE Y Y

TRUNCSTRING or TRUNCATE_STRING FALSE Y N

Y2BASE 2000 Y N
1 Only for the values INTERNAL, UTF8, and LATIN9.

joined-table

A joined-table specifies an intermediate result set that is the result of one or more join operations. For
more information, see “joined-table” on page 685.

period-specification

A period-specification identifies an intermediate result table consisting of the rows of the referenced
table where the period matches the specification. A period-specification can be specified following
the name of a temporal table or the name of a view. The same period name must not be specified
more than once for the same table reference (SQLSTATE 428HY). The rows of the table reference are
derived by application of the period specifications.

If the table is a system-period temporal table and a period-specification for the SYSTEM_TIME period
is not specified, the table reference includes all current rows and does not include any historical
rows of the table. If the table is an application-period temporal table and a period-specification for
the BUSINESS_TIME period is not specified, the table reference includes all rows of the table. If the
table is a bitemporal table and a period-specification is not specified for both SYSTEM_TIME and
BUSINESS_TIME, the table reference includes all current rows of the table and does not include any
historical rows of the table.

If the table reference is a single-view-reference, the rows of the view reference are derived by
application of the period specifications to all of the temporal tables accessed when computing the
result table of the view. If the view does not access any temporal table, then the period-specification
has no effect on the result table of the view. If period-specification is used, the view definition or
any view definitions referenced when computing the result table of the view must not include any
references to compiled SQL functions or external functions with a data access indication other than
NO SQL (SQLSTATE 428HY).

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a value other than the null
value, then a period-specification that references SYSTEM_TIME must not be specified for the table
reference or view reference, unless the value in effect for the SYSTIMESENSITIVE bind option is NO
(SQLSTATE 428HY).

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a value other than the null
value, then a period specification that references BUSINESS_TIME must not be specified for the table
reference or view reference, unless the value in effect for the BUSTIMESENSITIVE bind option is NO
(SQLSTATE 428HY).

678 IBM Db2 V11.5: SQL Reference

FOR SYSTEM_TIME

Specifies that the SYSTEM_TIME period is used for the period-specification. If the clause is
specified following a table-name, the table must be a system-period temporal table (SQLSTATE
428HY). FOR SYSTEM_TIME must not be specified if the value of the CURRENT TEMPORAL
SYSTEM_TIME special register is not the null value and the SYSTIMESENSITIVE bind option is
set to YES (SQLSTATE 428HY).

FOR BUSINESS_TIME

Specifies that the BUSINESS_TIME period is used for the period-specification. If the clause
is specified following a table-name, BUSINESS_TIME must be a period defined in the table
(SQLSTATE 4274M). FOR BUSINESS_TIME must not be specified if the value of the CURRENT
TEMPORAL BUSINESS_TIME special register is not the null value and the BUSTIMESENSITIVE
bind option is set to YES (SQLSTATE 428HY).

value, value1, and value2

The value, value1, and value2 expressions return the null value or a value of one of the following
built-in data types (SQLSTATE 428HY): a DATE, a TIMESTAMP, or a character string that is not
a CLOB or DBCLOB. If the argument is a character string, it must be a valid character string
representation of a timestamp or a date (SQLSTATE 22007). For the valid formats of string
representations of timestamp values, see the section "String representations of datetime values"
in the topic Datetime values.

Each expression can contain any of the following supported operands (SQLSTATE 428HY):

• Constant
• Special register
• Variable. For details, refer to “References to variables” on page 19.
• Parameter marker
• Scalar function whose arguments are supported operands (user-defined functions and non-

deterministic functions cannot be used)
• CAST specification where the cast operand is a supported operand
• Expression using arithmetic operators and operands

AS OF value

Specifies that the table reference includes each row for which the value of the begin column for
the specified period is less than or equal to value, and the value of the end column for the period is
greater than value. If value is the null value, the table reference is an empty table.

Example: The following query returns the insurance coverage information for insurance policy
number 100 on August 31, 2010.

SELECT coverage FROM policy_info FOR BUSINESS_TIME
 AS OF '2010-08-31' WHERE policy_id = '100'

FROM value1 TO value2

Specifies that the table reference includes rows that exist for the period specified from value1 to
value2. A row is included in the table reference if the value of the begin column for the specified
period in the row is less than value2, and the value of the end column for the specified period in
the row is greater than value1. The table reference contains zero rows if value1 is greater than or
equal to value2. If value1 or value2 is the null value, the table reference is an empty table.

Example: The following query returns the insurance coverage information for insurance policy
100, during the year 2009 (from January 1, 2009 at 12:00 AM until before January 1, 2010).

SELECT coverage FROM policy_info FOR BUSINESS_TIME
 FROM '2009-01-01' TO '2010-01-01' WHERE policy_id = '100'

Chapter 1. Structured Query Language (SQL) 679

BETWEEN value1 AND value2

Specifies that the table reference includes rows in which the specified period overlaps at any point
in time between value1 and value2. A row is included in the table reference if the value of the
begin column for the specified period in the row is less than or equal to value2 and the value of the
end column for the specified period in the row is greater than value1. The table reference contains
zero rows if value1 is greater than value2. If value1 is equal to value2, the expression is equivalent
to AS OF value1. If value1 or value2 is the null value, the table reference is an empty table.

Example: The following query returns the insurance coverage information for insurance policy
number 100, during the year 2008 (between January 1, 2008 and December 31, 2008 inclusive).

SELECT coverage FROM policy_info FOR BUSINESS_TIME
 BETWEEN '2008-01-01' AND '2008-12-31' WHERE policy_id = '100'

Following are syntax alternatives for period-specification clauses:

• AS OF TIMESTAMP can be specified in place of FOR SYSTEM_TIME AS OF
• VERSIONS BETWEEN TIMESTAMP can be specified in place of FOR SYSTEM_TIME BETWEEN

correlation-clause

The exposed names of all table references must be unique. An exposed name is:

• A correlation-name
• A table-name that is not followed by a correlation-name
• A view-name that is not followed by a correlation-name
• A nickname that is not followed by a correlation-name
• An alias-name that is not followed by a correlation-name

If a correlation-clause clause does not follow a function-name reference, xmltable-expression
expression, nested table expression, or data-change-table-reference reference, or if a typed-
correlation-clause clause does not follow a function-name reference, then there is no exposed name
for that table reference.

Each correlation-name is defined as a designator of the immediately preceding table-name, view-
name, nickname, function-name reference, xmltable-expression, nested table expression, or data-
change-table-reference. Any qualified reference to a column must use the exposed name. If the same
table name, view, or nickname is specified twice, at least one specification must be followed by a
correlation-name. The correlation-name is used to qualify references to the columns of the table,
view or nickname. When a correlation-name is specified, column-names can also be specified to
give names to the columns of the table reference. If the correlation-clause does not include column-
names, the exposed column names are determined as follows:

• Column names of the referenced table, view, or nickname when the table-reference is a table-name,
view-name, nickname, or alias-name

• Column names specified in the RETURNS clause of the CREATE FUNCTION statement when the
table-reference is a function-name reference

• Column names specified in the COLUMNS clause of the xmltable-expression when the table-
reference is an xmltable-expression

• Column names exposed by the fullselect when the table-reference is a nested-table-expression
• Column names from the target table of the data change statement, along with any defined INCLUDE

columns when the table-reference is a data-change-table-reference

tablesample-clause

The optional tablesample-clause can be used to obtain a random subset (a sample) of the rows
from the specified table-name, rather than the entire contents of that table-name, for this query.
This sampling is in addition to any predicates that are specified in the where-clause. Unless the
optional REPEATABLE clause is specified, each execution of the query will usually yield a different
sample, except in degenerate cases where the table is so small relative to the sample size that any

680 IBM Db2 V11.5: SQL Reference

sample must return the same rows. The size of the sample is controlled by the numeric-expression1 in
parentheses, representing an approximate percentage (P) of the table to be returned.

TABLESAMPLE

The method by which the sample is obtained is specified after the TABLESAMPLE keyword, and
can be either BERNOULLI or SYSTEM. The exact number of rows in the sample might be different
for each execution of the query, but on average is approximately P percent of the table, before any
predicates further reduce the number of rows.

The table-name must be a stored table. It can be a materialized query table (MQT) name, but not
a subselect or table expression for which an MQT has been defined, because there is no guarantee
that the database manager will route to the MQT for that subselect.

Semantically, sampling of a table occurs before any other query processing, such as applying
predicates or performing joins. Repeated accesses of a sampled table within a single execution of
a query (such as in a nested-loop join or a correlated subquery) will return the same sample. More
than one table can be sampled in a query.

BERNOULLI

BERNOULLI sampling considers each row individually. It includes each row in the sample with
probability P/100 (where P is the value of numeric-expression1), and excludes each row with
probability 1 - P/100, independently of the other rows. So if the numeric-expression1 evaluated to
the value 10, representing a ten percent sample, each row would be included with probability 0.1,
and excluded with probability 0.9.

SYSTEM

SYSTEM sampling permits the database manager to determine the most efficient manner in
which to perform the sampling. In most cases, SYSTEM sampling applied to a table-name means
that each page of table-name is included in the sample with probability P/100, and excluded
with probability 1 - P/100. All rows on each page that is included qualify for the sample.
SYSTEM sampling of a table-name generally executes much faster than BERNOULLI sampling,
because fewer data pages are retrieved. However, SYSTEM sampling can often yield less accurate
estimates for aggregate functions, such as SUM(SALES), especially if the rows of table-name are
clustered on any columns referenced in that query. The optimizer might in certain circumstances
decide that it is more efficient to perform SYSTEM sampling as if it were BERNOULLI sampling.
An example is when a predicate on table-name can be applied by an index and is much more
selective than the sampling rate P.

numeric-expression1

The numeric-expression1 specifies the size of the sample to be obtained from table-name,
expressed as a percentage. It must be a constant numeric expression that cannot contain
columns. The expression must evaluate to a positive number that is less than or equal to 100, but
can be between 1 and 0. For example, a value of 0.01 represents one one-hundredth of a percent,
meaning that 1 row in 10 000 is sampled, on average. A numeric-expression1 that evaluates to
100 is handled as if the tablesample-clause were not specified. If numeric-expression1 evaluates
to the null value, or to a value that is greater than 100 or less than 0, an error is returned
(SQLSTATE 2202H).

REPEATABLE (numeric-expression2)

It is sometimes desirable for sampling to be repeatable from one execution of the query to
the next; for example, during regression testing or query debugging. This can be accomplished
by specifying the REPEATABLE clause. The REPEATABLE clause requires the specification of a
numeric-expression2 in parentheses, which serves the same role as the seed in a random number
generator. Adding the REPEATABLE clause to the tablesample-clause of any table-name ensures
that repeated executions of that query (using the same value for numeric-expression2) return the
same sample, assuming that the data itself has not been updated, reorganized, or repartitioned.
To guarantee that the same sample of table-name is used across multiple queries, use of a global
temporary table is recommended. Alternatively, the multiple queries can be combined into one
query, with multiple references to a sample that is defined using the WITH clause.

Chapter 1. Structured Query Language (SQL) 681

Examples:

1. Request a 10% Bernoulli sample of the Sales table for auditing purposes.

 SELECT * FROM Sales
 TABLESAMPLE BERNOULLI(10)

2. Compute the total sales revenue in the Northeast region for each product category, using a random
1% SYSTEM sample of the Sales table. The semantics of SUM are for the sample itself, so to
extrapolate the sales to the entire Sales table, the query must divide that SUM by the sampling rate
(0.01).

SELECT SUM(Sales.Revenue) / (0.01)
 FROM Sales TABLESAMPLE SYSTEM(1)
 WHERE Sales.RegionName = 'Northeast'
 GROUP BY Sales.ProductCategory

3. Using the REPEATABLE clause, modify the previous query to ensure that the same (yet random)
result is obtained each time the query is executed. The value of the constant enclosed by
parentheses is arbitrary.

SELECT SUM(Sales.Revenue) / (0.01)
 FROM Sales TABLESAMPLE SYSTEM(1) REPEATABLE(3578231)
 WHERE Sales.RegionName = 'Northeast'
 GROUP BY Sales.ProductCategory

table-UDF-cardinality-clause
The table-UDF-cardinality clause can be specified for each user-defined table function reference
within the FROM clause. This option indicates the expected number of rows to be returned only for the
SELECT statement that contains it. The CARDINALITY and CARDINALITY MULTIPLIER clauses are not
allowed if the table function is an inlined SQL table function (SQLSTATE 42887).
CARDINALITY integer-constant

Specifies an estimate of the expected number of rows that are returned by the
reference to the user-defined function. The value range of integer-constant is from 0 to
9 223 372 036 854 775 807 inclusive.

CARDINALITY MULTIPLIER numeric-constant

The product of the specified CARDINALITY MULTIPLIER numeric-constant and the reference
cardinality value are used by the database server as the expected number of rows that are
returned by the table function reference.

In this case, numeric-constant can be in the integer, decimal, or floating-point format. The value
must be greater than or equal to zero. If the decimal number notation is used, the number of
digits can be up to 31. An integer value is treated as a decimal number with no fraction. If zero
is specified or the computed cardinality is less than 1, the cardinality of the reference to the
user-defined table function is assumed to be 1.

The value in the CARDINALITY column of SYSSTAT.ROUTINES for the table function name is
used as the reference cardinality value. If no value is set in the CARDINALITY column of
SYSSTAT.ROUTINES, a finite value is assumed as its default value for the reference cardinality
value. This finite value is the same value that is assumed for tables for which the RUNSTATS utility
has not gathered statistics.

Only a numeric constant can follow the keyword CARDINALITY or CARDINALITY MULTIPLIER. A host
variable or parameter marker is not supported. Specifying a cardinality value in a table function
reference does not change the CARDINALITY column value for the function in the SYSSTAT.ROUTINES
catalog view.

The CARDINALITY value for external and compiled SQL user-defined table functions can be changed
by updating the CARDINALITY column in the SYSSTAT.ROUTINES catalog view. The CARDINALITY
value for an external table function can also be initialized by specifying the CARDINALITY option in
the CREATE FUNCTION (external table) statement when a user-defined table function is created.

682 IBM Db2 V11.5: SQL Reference

typed-correlation-clause

A typed-correlation-clause clause defines the appearance and contents of the table generated by a
generic table function. This clause must be specified when the table-function-references is a generic
table function and cannot be specified for any other table reference. The following data-type values
are supported in generic table functions:

Table 112. Data types supported in generic table functions

SQL column data type Equivalent Java data type

SMALLINT short

INTEGER int

BIGINT long

REAL float

DOUBLE double

DECIMAL(p,s) java.math.BigDecimal

NUMERIC(p,s) java.math.BigDecimal

CHAR(n) java.lang.String

CHAR(n) FOR BIT DATA COM.ibm.db2.app.Blob

VARCHAR(n) java.lang.String

VARCHAR(n) FOR BIT DATA COM.ibm.db2.app.Blob

GRAPHIC(n) java.lang.String

VARGRAPHIC(n) String

BLOB(n) COM.ibm.db2.app.Blob

CLOB(n) COM.ibm.db2.app.Clob

DBCLOB(n) COM.ibm.db2.app.Clob

DATE String

TIME String

TIMESTAMP String

XML AS CLOB(n) COM.ibm.db2.jcc.DB2Xml

continue-handler

Certain errors that occur within a nested-table-expression can be tolerated, and instead of returning
an error, the query can continue and return a result. This is referred to as an error tolerant nested-
table-expression.

Specifying the RETURN DATA UNTIL clause will cause any rows that are returned from the fullselect
before the indicated condition is encountered to make up the result set from the fullselect. This
means that a partial result set (which can also be an empty result set) from the fullselect is acceptable
as the result for the nested-table-expression.

The FEDERATED keyword restricts the condition to handle only errors that occur at a remote data
source.

The condition can be specified as an SQLSTATE value, with a string-constant length of 5. You can
optionally specify an SQLCODE value for each specified SQLSTATE value. For portable applications,
specify SQLSTATE values as much as possible, because SQLCODE values are generally not portable
across platforms and are not part of the SQL standard.

Chapter 1. Structured Query Language (SQL) 683

Only certain conditions can be tolerated. Errors that do not allow the rest of the query to be executed
cannot be tolerated, and an error is returned for the whole query. The specific-condition-value might
specify conditions that cannot actually be tolerated by the database manager, even if a specific
SQLSTATE or SQLCODE value is specified, and for these cases, an error is returned.

A query or view containing an error tolerant nested-table-expression is read-only.

The fullselect of an error tolerant nested-table-expression is not optimized using materialized query
tables.

specific-condition-value

The following SQLSTATE values and SQLCODE values have the potential, when specified, to be
tolerated by the database manager:

• SQLSTATE 08001; SQLCODEs -1336, -30080, -30081, -30082
• SQLSTATE 08004
• SQLSTATE 42501
• SQLSTATE 42704; SQLCODE -204
• SQLSTATE 42720
• SQLSTATE 28000

Correlated references in table-references
Correlated references can be used in nested table expressions or as arguments to table functions. The
basic rule that applies for both of these cases is that the correlated reference must be from a table-
reference at a higher level in the hierarchy of subqueries. This hierarchy includes the table-references
that have already been resolved in the left-to-right processing of the FROM clause. For nested table
expressions, the LATERAL keyword must exist before the fullselect. The following examples have valid
syntax:

 Example 1: SELECT t.c1, z.c5
 FROM t, TABLE(tf3(t.c2)) AS z -- t precedes tf3
 WHERE t.c3 = z.c4; -- in FROM, so t.c2
 -- is known

 Example 2: SELECT t.c1, z.c5
 FROM t, TABLE(tf4(2 * t.c2)) AS z -- t precedes tf4
 WHERE t.c3 = z.c4; -- in FROM, so t.c2
 -- is known

 Example 3: SELECT d.deptno, d.deptname,
 empinfo.avgsal, empinfo.empcount
 FROM department d,
 LATERAL (SELECT AVG(e.salary) AS avgsal,
 COUNT(*) AS empcount
 FROM employee e -- department precedes nested
 WHERE e.workdept=d.deptno -- table expression and
) AS empinfo; -- LATERAL is specified,
 -- so d.deptno is known

But the following examples are not valid:

 Example 4: SELECT t.c1, z.c5
 FROM TABLE(tf6(t.c2)) AS z, t -- cannot resolve t in t.c2!
 WHERE t.c3 = z.c4; -- compare to Example 1 above.

 Example 5: SELECT a.c1, b.c5
 FROM TABLE(tf7a(b.c2)) AS a, TABLE(tf7b(a.c6)) AS b
 WHERE a.c3 = b.c4; -- cannot resolve b in b.c2!

 Example 6: SELECT d.deptno, d.deptname,
 empinfo.avgsal, empinfo.empcount
 FROM department d,
 (SELECT AVG(e.salary) AS avgsal,
 COUNT(*) AS empcount
 FROM employee e -- department precedes nested
 WHERE e.workdept=d.deptno -- table expression but

684 IBM Db2 V11.5: SQL Reference

) AS empinfo; -- LATERAL is not specified,
 -- so d.deptno is unknown

joined-table
A joined table specifies an intermediate result table that is the result of either an inner join or an outer
join. The table is derived by applying one of the join operators: CROSS, INNER, LEFT OUTER, RIGHT
OUTER, or FULL OUTER to its operands.

table-reference
INNER

outer

JOIN table-reference ON join-condition

USING(column-list)

table-reference CROSS JOIN table-reference

(joined-table)

outer

LEFT

RIGHT

FULL

OUTER

column-list
,

column-name

There are several types of joins:
Cross join

Represents the cross product of the tables, where each row of the left table is combined with every
row of the right table.

Inner join
Keeps only the rows for which the join condition is true. Rows from either of the joined tables for
which the join condition is false are excluded from the result table.

Outer join
Contains the rows for which the join condition is true, plus additional rows:
Left outer join

Also includes rows from the left table for which the join condition is false.
Right outer join

Also includes rows from the right table for which the join condition is false.
Full outer join

Also includes rows from both the left and right tables for which the join condition is false.

The order in which multiple joins are performed can affect the result. Joins can be nested within other
joins. The order of processing for joins is generally from left to right, but based on the position of the
required join-condition. You can use parentheses to clarify the order of nested joins. For example, the
following two statements are equivalent:

 T1 LEFT JOIN T2 ON T1.C1=T2.C1
 RIGHT JOIN T3 LEFT JOIN T4 ON T3.C1=T4.C1
 ON T1.C1=T3.C1

 (T1 LEFT JOIN T2 ON T1.C1=T2.C1)
 RIGHT JOIN (T3 LEFT JOIN T4 ON T3.C1=T4.C1)
 ON T1.C1=T3.C1

Chapter 1. Structured Query Language (SQL) 685

A joined table can be used in any context in which any form of the SELECT statement is used. A view or a
cursor is read-only if its SELECT statement includes a joined table.

Column references are resolved using the rules for resolution of column name qualifiers. The same rules
that apply to predicates apply to join conditions.

Join operations
When a row of T1 is joined with a row of T2, a row in the result consists of the values of that row of T1
concatenated with the values of that row of T2. A join operation might result in the generation of a null
row. A null row consists of a null value for each column of a table, regardless of whether null values are
allowed in the columns.

The following list summarizes the result of the join operations:

• The result of T1 CROSS JOIN T2 consists of all possible pairings of their rows.
• The result of T1 INNER JOIN T2 consists of their paired rows where the join-condition is true.
• The result of T1 LEFT OUTER JOIN T2 consists of their paired rows where the join-condition is true

and, for each unpaired row of T1, the concatenation of that row with the null row of T2. Null values are
allowed in all columns derived from T2.

• The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows where the join-condition is true
and, for each unpaired row of T2, the concatenation of that row with the null row of T1. Null values are
allowed in all columns derived from T1.

• The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for each unpaired row of T2, the
concatenation of that row with the null row of T1 and, for each unpaired row of T1, the concatenation of
that row with the null row of T2. Null values are allowed in all columns derived from T1 and T2.

Join conditions
A join condition is a qualification expression that involves the two tables to be joined. It specifies pairings
of t1 and t2, where t1 and t2 represent the names of the left (t1) and right (t2) operand tables of the JOIN
operator. For all possible combinations of rows of t1 and t2, a row of t1 is paired with a row of t2 if the
join-condition is true.

A join condition is similar to a search condition, except that:

• It cannot include any dereference operations or the DEREF function, where the reference value is other
than the object identifier column

• Any column referenced in an expression of the join-condition must be a column of one of the operand
tables of the associated join (in the scope of the same joined-table clause)

• Any function referenced in an expression of the join-condition of a full outer join must be deterministic
and have no external action

• It cannot include an XMLQUERY or XMLEXISTS expression

A join condition must comply with these rules (SQLSTATE 42972).

Join result
You influence which columns are included in the join result by specifying one of the following clauses:
ON <join-condition>

This clause can specify any qualification expression that involves the two tables that are to be joined.
For example:

SELECT * FROM t1 JOIN t2 ON t1.c1 = t2.c1 AND t1.c2 = t2.c2;

The join result contains all columns of t1 followed by all columns of t2.

686 IBM Db2 V11.5: SQL Reference

USING <column-list>
This clause joins the tables on the specified columns. Each column exists in both of the tables to be
joined. The tables are joined where the value in a column is the same in both tables. For example:

SELECT * FROM t1 JOIN t2 USING (c1, c2);

The columns of the join result depend on the join type:
For an inner join or left outer join

The join result contains the join columns from the t1, followed by the non-join columns from t1,
followed by the non-join columns from t2.

For a right outer join
The join result contains the join columns from t2, followed by the non-join columns from t1,
followed by the non-join columns from t2.

For a full outer join
The join result has a non-null value from the join columns followed by the non-join columns from
t1, followed by the non-join columns from t2.

Note that the join columns appear in the join result only once.
Unless a projection column list is explicitly specified, the order of the columns in the output is the same as
in the join result.

Any subsequent, unqualified reference to a join column of a USING clause by another clause (such as a
WHERE, ON, ORDER BY, GROUP BY, or HAVING clause) resolves to the column from the join result. For
example:

CREATE TABLE t1 (c1 int, c2 varchar(10), c3 numeric(4,2));
CREATE TABLE t2 (c1 bigint, c2 char(8), c4 numeric(6,3));
CREATE TABLE t3 (c3 bigint, c5 int, c6 numeric(6,3));

SELECT * FROM t1 FULL JOIN t2 USING (c1, c2) JOIN t3 ON (c1 = t3.c3);
Column projections:
 CASE WHEN (t1.c1 IS NOT NULL) THEN t1.c1 ELSE t2.c1 END AS c1
 CASE WHEN (t1.c2 IS NOT NULL) THEN t1.c2 ELSE t2.c2 END AS c2
 t1.c3
 t2.c4
 t3.c3
 t3.c5
 t3.c6

The reference to column c1 in the ON clause resolves to the CASE expression that represents the join
column c1 from the full outer join. So, the ON clause is transformed to:

ON ((CASE WHEN (t1.c1 IS NOT NULL) THEN t1.c1 ELSE t2.c1 END) = t3.c3)

The following restrictions apply:

• The ON and USING clauses are mutually exclusive for a particular join operation, that is, only one of
these clauses can be specified when joining two tables. However, a single SQL statement can contain
several join operations, and each of these can use either clause.

• An ON or USING clause cannot be used if a plus symbol (+) is used as the outer join operator.

Examples
Assume that the following three tables have been created:

CREATE TABLE t1 (c1 int, c2 varchar(10), c3 numeric(4,2));
CREATE TABLE t2 (c1 bigint, c2 char(8), c4 numeric(6,3));
CREATE TABLE t3 (c3 bigint, c5 int, c6 numeric(6,3));

• For a join with an ON clause:

SELECT * FROM t1 INNER JOIN t2 ON t1.c1 = t2.c1 AND t1.c2 = t2.c2;
Column projections: t1.c1, t1.c2, t1.c3, t2.c1, t2.c2, t2.c4

Chapter 1. Structured Query Language (SQL) 687

SELECT * FROM t1 FULL JOIN t2 ON t1.c1 = t2.c1 AND t1.c2 = t2.c2;
Column projections: t1.c1, t1.c2, t1.c3, t2.c1, t2.c2, t2.c4

• For an inner join or left outer join with a USING clause:

SELECT * FROM t1 INNER JOIN t2 USING (c1, c2);
Column projections: t1.c1, t1.c2, t1.c3, t2.c4

SELECT * FROM t1 LEFT JOIN t2 USING (c1, c2);
Column projections: t1.c1, t1.c2, t1.c3, t2.c4

• For a right outer join with a USING clause:

SELECT * FROM t1 RIGHT JOIN t2 USING (c1, c2);
Column projections: t2.c1, t2.c2, t1.c3, t2.c4

• For a full outer join with a USING clause:

SELECT * FROM t1 FULL JOIN t2 USING (c1, c2);
Column projections:
 CASE WHEN (t1.c1 IS NOT NULL) THEN t1.c1 ELSE t2.c1 END AS c1
 CASE WHEN (t1.c2 IS NOT NULL) THEN t1.c2 ELSE t2.c2 END AS c2
 t1.c3
 t2.c4

Examples of subselect queries with joins
The following examples illustrate the use of joins in a subselect query.

• Example 1: This example illustrates the results of the various joins using tables J1 and J2. These tables
contain rows as shown.

 SELECT * FROM J1

 W X
 --- ------
 A 11
 B 12
 C 13

 SELECT * FROM J2

 Y Z
 --- ------
 A 21
 C 22
 D 23

The following query does an inner join of J1 and J2 matching the first column of both tables.

 SELECT * FROM J1 INNER JOIN J2 ON W=Y

 W X Y Z
 --- ------ --- ------
 A 11 A 21
 C 13 C 22

In this inner join example the row with column W='C' from J1 and the row with column Y='D' from J2 are
not included in the result because they do not have a match in the other table. Note that the following
alternative form of an inner join query produces the same result.

 SELECT * FROM J1, J2 WHERE W=Y

The following left outer join will get back the missing row from J1 with nulls for the columns of J2. Every
row from J1 is included.

 SELECT * FROM J1 LEFT OUTER JOIN J2 ON W=Y

 W X Y Z
 --- ------ --- ------
 A 11 A 21

688 IBM Db2 V11.5: SQL Reference

 B 12 - -
 C 13 C 22

The following right outer join will get back the missing row from J2 with nulls for the columns of J1.
Every row from J2 is included.

 SELECT * FROM J1 RIGHT OUTER JOIN J2 ON W=Y

 W X Y Z
 --- ------ --- ------
 A 11 A 21
 C 13 C 22
 - - D 23

The following full outer join will get back the missing rows from both J1 and J2 with nulls where
appropriate. Every row from both J1 and J2 is included.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 W X Y Z
 --- ------ --- ------
 A 11 A 21
 C 13 C 22
 - - D 23
 B 12 - -

• Example 2: Using the tables J1 and J2 from the previous example, examine what happens when and
additional predicate is added to the search condition.

 SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=13

 W X Y Z
 --- ------ --- ------
 C 13 C 22

The additional condition caused the inner join to select only 1 row compared to the inner join in
Example 1.

Notice what the affect of this is on the full outer join.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=13

 W X Y Z
 --- ------ --- ------
 - - A 21
 C 13 C 22
 - - D 23
 A 11 - -
 B 12 - -

The result now has 5 rows (compared to 4 without the additional predicate) because there was only 1
row in the inner join and all rows of both tables must be returned.

The following query illustrates that placing the same additional predicate in WHERE clause has
completely different results.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y
 WHERE X=13

 W X Y Z
 --- ------ --- ------
 C 13 C 22

The WHERE clause is applied after the intermediate result of the full outer join. This intermediate result
is the same as the result of the full outer join query in Example 1. The WHERE clause is applied to this
intermediate result and eliminates all but the row that has X=13. Choosing the location of a predicate

Chapter 1. Structured Query Language (SQL) 689

when performing outer joins can have a significant affect on the results. Consider what happens if the
predicate was X=12 instead of X=13. The following inner join returns no rows.

 SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=12

Hence, the full outer join returns 6 rows, 3 from J1 with nulls for the columns of J2 and 3 from J2 with
nulls for the columns of J1.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=12

 W X Y Z
 --- ------ --- ------
 - - A 21
 - - C 22
 - - D 23
 A 11 - -
 B 12 - -
 C 13 - -

If the additional predicate is in the WHERE clause instead, 1 row is returned.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y
 WHERE X=12

 W X Y Z
 --- ------ --- ------
 B 12 - -

• Example 3: List every department with the employee number and last name of the manager, including
departments without a manager.

 SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME
 FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE
 ON MGRNO = EMPNO

• Example 4: List every employee number and last name with the employee number and last name of
their manager, including employees without a manager.

 SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME
 FROM EMPLOYEE E LEFT OUTER JOIN
 DEPARTMENT INNER JOIN EMPLOYEE M
 ON MGRNO = M.EMPNO
 ON E.WORKDEPT = DEPTNO

The inner join determines the last name for any manager identified in the DEPARTMENT table and the
left outer join guarantees that each employee is listed even if a corresponding department is not found
in DEPARTMENT.

where-clause
The WHERE clause specifies an intermediate result table that consists of those rows of R for which the
search-condition is true. R is the result of the FROM clause of the subselect.

WHERE search-condition

The search-condition must conform to the following rules:

• Each column-name must unambiguously identify a column of R or be a correlated reference. A column-
name is a correlated reference if it identifies a column of a table-reference in an outer subselect.

• An aggregate function must not be specified unless the WHERE clause is specified in a subquery of a
HAVING clause and the argument of the function is a correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R, and the results are used in
the application of the search-condition to the given row of R. A subquery is actually executed for each row
of R only if it includes a correlated reference. In fact, a subquery with no correlated references might be
executed just once, whereas a subquery with a correlated reference might be executed once for each row.

690 IBM Db2 V11.5: SQL Reference

group-by-clause
The GROUP BY clause specifies an intermediate result table that consists of a grouping of the rows of R. R
is the result of the previous clause of the subselect.

GROUP BY

,

grouping-expression

grouping-sets

super-groups

In its simplest form, a GROUP BY clause contains a grouping expression. A grouping expression is an
expression used in defining the grouping of R. Each expression or column name included in grouping-
expression must unambiguously identify a column of R (SQLSTATE 42702 or 42703). A grouping
expression cannot include a scalar fullselect or an XMLQUERY or XMLEXISTS expression (SQLSTATE
42822), or any expression or function that is not deterministic or has an external action (SQLSTATE
42845).

Note: The following expressions, which do not contain an explicit column reference, can be used in a
grouping-expression to identify a column of R:

• ROW CHANGE TIMESTAMP FOR table-designator
• ROW CHANGE TOKEN FOR table-designator
• RID_BIT or RID scalar function

More complex forms of the GROUP BY clause include grouping-sets and super-groups. For a description of
grouping-sets, see “grouping-sets” on page 692. For a description of super-groups, see “super-groups”
on page 692.

The result of GROUP BY is a set of groups of rows. Each row in this result represents the set of rows
for which the grouping-expression is equal. For grouping, all null values from a grouping-expression are
considered equal.

If a grouping-expression contains decimal floating-point columns, and multiple representations of the
same number exist in these columns, the number that is returned can be any of the representations of the
number.

A grouping-expression can be used in a search condition in a HAVING clause, in an expression in a SELECT
clause, or in a sort-key-expression of an ORDER BY clause (see “order-by-clause” on page 703 for
details). In each case, the reference specifies only one value for each group. For example, if the grouping-
expression is col1+col2, then an allowed expression in the SELECT list is col1+col2+3. Associativity rules
for expressions disallow the similar expression, 3+col1+col2, unless parentheses are used to ensure that
the corresponding expression is evaluated in the same order. Thus, 3+(col1+col2) is also allowed in the
SELECT list. If the concatenation operator is used, the grouping-expression must be used exactly as the
expression was specified in the SELECT list.

If the grouping-expression contains varying-length strings with trailing blanks, the values in the group can
differ in the number of trailing blanks and might not all have the same length. In that case, a reference
to the grouping-expression still specifies only one value for each group. However, the value for a group is
chosen arbitrarily from the available set of values or a normalized form that might or might not be from
the available set of values. Thus, the actual length of the result value is unpredictable.

As noted, there are some cases where the GROUP BY clause cannot refer directly to a column that is
specified in the SELECT clause as an expression (scalar-fullselect, not deterministic or external action
functions). To group using such an expression, use a nested table expression or a common table
expression to first provide a result table with the expression as a column of the result. For an example
using nested table expressions, see Example 9 in “Examples of subselect queries” on page 708.

Chapter 1. Structured Query Language (SQL) 691

grouping-sets

GROUPING SETS (

,

grouping-expression

super-groups

(

,

grouping-expression

super-groups

)

)

A grouping-sets specification can be used to specify multiple grouping clauses in a single statement.
This can be thought of as the union of two or more groups of rows into a single result set. It is logically
equivalent to the union of multiple subselects with the group by clause in each subselect corresponding
to one grouping set. A grouping set can be a single element or can be a list of elements delimited by
parentheses, where an element is either a grouping-expression or a super-group. The groups can be
computed with a single pass over the base table using grouping-sets.

A simple grouping-expression or the more complex forms of super-groups are supported by the grouping-
sets specification. For a description of super-groups, see “super-groups” on page 692.

Note that grouping sets are the fundamental building blocks for GROUP BY operations. A simple GROUP
BY with a single column can be considered a grouping set with one element. For example:

 GROUP BY a

is the same as

 GROUP BY GROUPING SETS((a))

and

 GROUP BY a,b,c

is the same as

 GROUP BY GROUPING SETS((a,b,c))

Non-aggregation columns from the SELECT list of the subselect that are excluded from a grouping set will
return a null for such columns for each row generated for that grouping set. This reflects the fact that
aggregation was done without considering the values for those columns.

The use of grouping sets is illustrated in Example 2 through Example 7 in “Examples of grouping sets,
cube, and rollup queries” on page 696.

super-groups
ROLLUP (grouping-expression-list)

1

CUBE (grouping-expression-list)
2

grand-total

grouping-expression-list

692 IBM Db2 V11.5: SQL Reference

,

grouping-expression

(

,

grouping-expression)

grand-total
()

Notes:
1 Alternate specification when used alone in group-by-clause is: grouping-expression-list WITH
ROLLUP.
2 Alternate specification when used alone in group-by-clause is: grouping-expression-list WITH CUBE.

ROLLUP (grouping-expression-list)
A ROLLUP grouping is an extension to the GROUP BY clause that produces a result set containing
sub-total rows in addition to the "regular" grouped rows. Sub-total rows are "super-aggregate" rows
that contain further aggregates whose values are derived by applying the same aggregate functions
that were used to obtain the grouped rows. These rows are called sub-total rows, because that is their
most common use; however, any aggregate function can be used for the aggregation. For instance,
MAX and AVG are used in Example 8 in “Examples of grouping sets, cube, and rollup queries” on
page 696. The GROUPING aggregate function can be used to indicate if a row was generated by the
super-group.

A ROLLUP grouping is a series of grouping-sets. The general specification of a ROLLUP with n elements

 GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

is equivalent to

 GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn)
 (C1,C2,...,Cn-1)
 ...
 (C1,C2)
 (C1)
 ())

Note that the n elements of the ROLLUP translate to n+1 grouping sets. Note also that the order
in which the grouping-expressions is specified is significant for ROLLUP. For example, the following
clause:

 GROUP BY ROLLUP(a,b)

is equivalent to:

 GROUP BY GROUPING SETS((a,b)
 (a)
 ())

Similarly, the following clause:

 GROUP BY ROLLUP(b,a)

is equivalent to:

 GROUP BY GROUPING SETS((b,a)
 (b)
 ())

The ORDER BY clause is the only way to guarantee the order of the rows in the result set. Example 3 in
“Examples of grouping sets, cube, and rollup queries” on page 696 illustrates the use of ROLLUP.

Chapter 1. Structured Query Language (SQL) 693

CUBE (grouping-expression-list)
A CUBE grouping is an extension to the GROUP BY clause that produces a result set that contains all
the rows of a ROLLUP aggregation and, in addition, contains "cross-tabulation" rows. Cross-tabulation
rows are additional "super-aggregate" rows that are not part of an aggregation with sub-totals. The
GROUPING aggregate function can be used to indicate if a row was generated by the super-group.

Similar to a ROLLUP, a CUBE grouping can also be thought of as a series of grouping-sets. In the case
of a CUBE, all permutations of the cubed grouping-expression-list are computed along with the grand
total. Therefore, the n elements of a CUBE translate to 2**n (2 to the power n) grouping-sets. For
example, a specification of:

 GROUP BY CUBE(a,b,c)

is equivalent to:

 GROUP BY GROUPING SETS((a,b,c)
 (a,b)
 (a,c)
 (b,c)
 (a)
 (b)
 (c)
 ())

Note that the three elements of the CUBE translate into eight grouping sets.

The order of specification of elements does not matter for CUBE. 'CUBE (DayOfYear, Sales_Person)'
and 'CUBE (Sales_Person, DayOfYear)' yield the same result sets. The use of the word 'same' applies
to content of the result set, not to its order. The ORDER BY clause is the only way to guarantee
the order of the rows in the result set. The use of CUBE is illustrated in Example 4 in “Examples of
grouping sets, cube, and rollup queries” on page 696.

grouping-expression-list
A grouping-expression-list is used within a CUBE or ROLLUP clause to define the number of elements
in the CUBE or ROLLUP operation. This is controlled by using parentheses to delimit elements with
multiple grouping-expressions.

For example, suppose that a query is to return the total expenses for the ROLLUP of City within a
Province but not within a County. However, the clause:

 GROUP BY ROLLUP(Province, County, City)

results in unwanted subtotal rows for the County. In the clause:

 GROUP BY ROLLUP(Province, (County, City))

the composite (County, City) forms one element in the ROLLUP and, therefore, a query that uses this
clause will yield the required result. In other words, the two-element ROLLUP:

 GROUP BY ROLLUP(Province, (County, City))

generates:

 GROUP BY GROUPING SETS((Province, County, City)
 (Province)
 ())

and the three-element ROLLUP generates:

 GROUP BY GROUPING SETS((Province, County, City)
 (Province, County)
 (Province)
 ())

694 IBM Db2 V11.5: SQL Reference

Example 2 in “Examples of grouping sets, cube, and rollup queries” on page 696 also utilizes
composite column values.

grand-total
Both CUBE and ROLLUP return a row which is the overall (grand total) aggregation. This can be
separately specified with empty parentheses within the GROUPING SET clause. It can also be
specified directly in the GROUP BY clause, although there is no effect on the result of the query.
Example 4 in “Examples of grouping sets, cube, and rollup queries” on page 696 uses the grand-
total syntax.

Combining grouping sets
This can be used to combine any of the types of GROUP BY clauses. When simple grouping-expression
fields are combined with other groups, they are "appended" to the beginning of the resulting grouping
sets. When ROLLUP or CUBE expressions are combined, they operate similarly to "multipliers" on the
remaining expression, forming additional grouping set entries according to the definition of either ROLLUP
or CUBE.

For instance, combining grouping-expression elements acts as follows:

 GROUP BY a, ROLLUP(b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c)
 (a,b)
 (a))

Or similarly,

 GROUP BY a, b, ROLLUP(c,d)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c,d)
 (a,b,c)
 (a,b))

Combining of ROLLUP elements acts as follows:

 GROUP BY ROLLUP(a), ROLLUP(b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c)
 (a,b)
 (a)
 (b,c)
 (b)
 ())

Similarly,

 GROUP BY ROLLUP(a), CUBE(b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c)
 (a,b)
 (a,c)
 (a)
 (b,c)
 (b)
 (c)
 ())

Chapter 1. Structured Query Language (SQL) 695

Combining of CUBE and ROLLUP elements acts as follows:

 GROUP BY CUBE(a,b), ROLLUP(c,d)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c,d)
 (a,b,c)
 (a,b)
 (a,c,d)
 (a,c)
 (a)
 (b,c,d)
 (b,c)
 (b)
 (c,d)
 (c)
 ())

Similar to a simple grouping-expression, combining grouping sets also eliminates duplicates within each
grouping set. For instance,

 GROUP BY a, ROLLUP(a,b)

is equivalent to

 GROUP BY GROUPING SETS((a,b)
 (a))

A more complete example of combining grouping sets is to construct a result set that eliminates certain
rows that might be returned for a full CUBE aggregation.

For example, consider the following GROUP BY clause:

 GROUP BY Region,
 ROLLUP(Sales_Person, WEEK(Sales_Date)),
 CUBE(YEAR(Sales_Date), MONTH (Sales_Date))

The column listed immediately to the right of GROUP BY is grouped, those within the parenthesis
following ROLLUP are rolled up, and those within the parenthesis following CUBE are cubed. Thus,
the GROUP BY clause results in a cube of MONTH within YEAR which is then rolled up within WEEK
within Sales_Person within the Region aggregation. It does not result in any grand total row or any
cross-tabulation rows on Region, Sales_Person or WEEK(Sales_Date) so produces fewer rows than the
clause:

 GROUP BY ROLLUP (Region, Sales_Person, WEEK(Sales_Date),
 YEAR(Sales_Date), MONTH(Sales_Date))

Examples of grouping sets, cube, and rollup queries
The following examples illustrate the grouping, cube, and rollup forms of subselect queries.

The queries in Example 1 through Example 4 use a subset of the rows in the SALES tables based on the
predicate 'WEEK(SALES_DATE) = 13'.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SALES AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13

which results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 6 LUCCHESSI 3
 13 6 LUCCHESSI 1
 13 6 LEE 2
 13 6 LEE 2

696 IBM Db2 V11.5: SQL Reference

 13 6 LEE 3
 13 6 LEE 5
 13 6 GOUNOT 3
 13 6 GOUNOT 1
 13 6 GOUNOT 7
 13 7 LUCCHESSI 1
 13 7 LUCCHESSI 2
 13 7 LUCCHESSI 1
 13 7 LEE 7
 13 7 LEE 3
 13 7 LEE 7
 13 7 LEE 4
 13 7 GOUNOT 2
 13 7 GOUNOT 18
 13 7 GOUNOT 1

• Example 1: Here is a query with a basic GROUP BY clause over 3 columns:

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 6 GOUNOT 11
 13 6 LEE 12
 13 6 LUCCHESSI 4
 13 7 GOUNOT 21
 13 7 LEE 21
 13 7 LUCCHESSI 4

• Example 2: Produce the result based on two different grouping sets of rows from the SALES table.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY GROUPING SETS ((WEEK(SALES_DATE), SALES_PERSON),
 (DAYOFWEEK(SALES_DATE), SALES_PERSON))
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 - GOUNOT 32
 13 - LEE 33
 13 - LUCCHESSI 8
 - 6 GOUNOT 11
 - 6 LEE 12
 - 6 LUCCHESSI 4
 - 7 GOUNOT 21
 - 7 LEE 21
 - 7 LUCCHESSI 4

The rows with WEEK 13 are from the first grouping set and the other rows are from the second grouping
set.

• Example 3: If you use the 3 distinct columns involved in the grouping sets of Example 2 and perform
a ROLLUP, you can see grouping sets for (WEEK,DAY_WEEK,SALES_PERSON), (WEEK, DAY_WEEK),
(WEEK) and grand total.

SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13

Chapter 1. Structured Query Language (SQL) 697

 GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 6 GOUNOT 11
 13 6 LEE 12
 13 6 LUCCHESSI 4
 13 6 - 27
 13 7 GOUNOT 21
 13 7 LEE 21
 13 7 LUCCHESSI 4
 13 7 - 46
 13 - - 73
 - - - 73

• Example 4: If you run the same query as Example 3 only replace ROLLUP with CUBE, you can
see additional grouping sets for (WEEK,SALES_PERSON), (DAY_WEEK,SALES_PERSON), (DAY_WEEK),
(SALES_PERSON) in the result.

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
 FROM SALES
 WHERE WEEK(SALES_DATE) = 13
 GROUP BY CUBE (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD
 ----------- ----------- --------------- -----------
 13 6 GOUNOT 11
 13 6 LEE 12
 13 6 LUCCHESSI 4
 13 6 - 27
 13 7 GOUNOT 21
 13 7 LEE 21
 13 7 LUCCHESSI 4
 13 7 - 46
 13 - GOUNOT 32
 13 - LEE 33
 13 - LUCCHESSI 8
 13 - - 73
 - 6 GOUNOT 11
 - 6 LEE 12
 - 6 LUCCHESSI 4
 - 6 - 27
 - 7 GOUNOT 21
 - 7 LEE 21
 - 7 LUCCHESSI 4
 - 7 - 46
 - - GOUNOT 32
 - - LEE 33
 - - LUCCHESSI 8
 - - - 73

• Example 5: Obtain a result set which includes a grand-total of selected rows from the SALES table
together with a group of rows aggregated by SALES_PERSON and MONTH.

 SELECT SALES_PERSON,
 MONTH(SALES_DATE) AS MONTH,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY GROUPING SETS ((SALES_PERSON, MONTH(SALES_DATE)),
 ()
)
 ORDER BY SALES_PERSON, MONTH

This results in:

 SALES_PERSON MONTH UNITS_SOLD
 --------------- ----------- -----------

698 IBM Db2 V11.5: SQL Reference

 GOUNOT 3 35
 GOUNOT 4 14
 GOUNOT 12 1
 LEE 3 60
 LEE 4 25
 LEE 12 6
 LUCCHESSI 3 9
 LUCCHESSI 4 4
 LUCCHESSI 12 1
 - - 155

• Example 6: This example shows two simple ROLLUP queries followed by a query which treats the two
ROLLUPs as grouping sets in a single result set and specifies row ordering for each column involved in
the grouping sets.

– Example 6-1:

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))
 ORDER BY WEEK, DAY_WEEK

results in:

 WEEK DAY_WEEK UNITS_SOLD
 ----------- ----------- -----------
 13 6 27
 13 7 46
 13 - 73
 14 1 31
 14 2 43
 14 - 74
 53 1 8
 53 - 8
 - - 155

– Example 6-2:

 SELECT MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY ROLLUP (MONTH(SALES_DATE), REGION);
 ORDER BY MONTH, REGION

results in:

 MONTH REGION UNITS_SOLD
 ----------- --------------- -----------
 3 Manitoba 22
 3 Ontario-North 8
 3 Ontario-South 34
 3 Quebec 40
 3 - 104
 4 Manitoba 17
 4 Ontario-North 1
 4 Ontario-South 14
 4 Quebec 11
 4 - 43
 12 Manitoba 2
 12 Ontario-South 4
 12 Quebec 2
 12 - 8
 - - 155

– Example 6-3:

 SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD
 FROM SALES
 GROUP BY GROUPING SETS (ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE)),

Chapter 1. Structured Query Language (SQL) 699

 ROLLUP(MONTH(SALES_DATE), REGION))
ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:

 WEEK DAY_WEEK MONTH REGION UNITS_SOLD
 ----------- ----------- ----------- --------------- -----------
 13 6 - - 27
 13 7 - - 46
 13 - - - 73
 14 1 - - 31
 14 2 - - 43
 14 - - - 74
 53 1 - - 8
 53 - - - 8
 - - 3 Manitoba 22
 - - 3 Ontario-North 8
 - - 3 Ontario-South 34
 - - 3 Quebec 40
 - - 3 - 104
 - - 4 Manitoba 17
 - - 4 Ontario-North 1
 - - 4 Ontario-South 14
 - - 4 Quebec 11
 - - 4 - 43
 - - 12 Manitoba 2
 - - 12 Ontario-South 4
 - - 12 Quebec 2
 - - 12 - 8
 - - - - 155
 - - - - 155

Using the two ROLLUPs as grouping sets causes the result to include duplicate rows. There are even
two grand total rows.

Observe how the use of ORDER BY has affected the results:

- In the first grouped set, week 53 has been repositioned to the end.
- In the second grouped set, month 12 has now been positioned to the end and the regions now

display in alphabetic order.
- Null values are sorted high.

• Example 7: In queries that perform multiple ROLLUPs in a single pass (such as Example 6-3) you might
want to be able to indicate which grouping set produced each row. The following steps demonstrate
how to provide a column (called GROUP) which indicates the origin of each row in the result set. Origin
means which one of the two grouping sets produced the row in the result set.

Step 1: Introduce a way of "generating" new data values, using a query which selects from a VALUES
clause (which is an alternative form of a fullselect). This query shows how a table can be derived called
"X" having 2 columns "R1" and "R2" and 1 row of data.

 SELECT R1,R2
 FROM (VALUES('GROUP 1','GROUP 2')) AS X(R1,R2);

results in:

 R1 R2
 ------- -------
 GROUP 1 GROUP 2

Step 2: Form the cross product of this table "X" with the SALES table. This add columns "R1" and "R2" to
every row.

 SELECT R1, R2, WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION,
 SALES AS UNITS_SOLD
 FROM SALES,(VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)

This add columns "R1" and "R2" to every row.

700 IBM Db2 V11.5: SQL Reference

Step 3: Now these columns can be combined with the grouping sets to include these columns in the
rollup analysis.

 SELECT R1, R2,
 WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION, SUM(SALES) AS UNITS_SOLD
 FROM SALES,(VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)
 GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),
 DAYOFWEEK(SALES_DATE))),
 (R2,ROLLUP(MONTH(SALES_DATE), REGION)))
 ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:

 R1 R2 WEEK DAY_WEEK MONTH REGION UNITS_SOLD
 ------- ------- -------- --------- --------- --------------- -----------
 GROUP 1 - 13 6 - - 27
 GROUP 1 - 13 7 - - 46
 GROUP 1 - 13 - - - 73
 GROUP 1 - 14 1 - - 31
 GROUP 1 - 14 2 - - 43
 GROUP 1 - 14 - - - 74
 GROUP 1 - 53 1 - - 8
 GROUP 1 - 53 - - - 8
 - GROUP 2 - - 3 Manitoba 22
 - GROUP 2 - - 3 Ontario-North 8
 - GROUP 2 - - 3 Ontario-South 34
 - GROUP 2 - - 3 Quebec 40
 - GROUP 2 - - 3 - 104
 - GROUP 2 - - 4 Manitoba 17
 - GROUP 2 - - 4 Ontario-North 1
 - GROUP 2 - - 4 Ontario-South 14
 - GROUP 2 - - 4 Quebec 11
 - GROUP 2 - - 4 - 43
 - GROUP 2 - - 12 Manitoba 2
 - GROUP 2 - - 12 Ontario-South 4
 - GROUP 2 - - 12 Quebec 2
 - GROUP 2 - - 12 - 8
 - GROUP 2 - - - - 155
 GROUP 1 - - - - - 155

Step 4: Notice that because R1 and R2 are used in different grouping sets, whenever R1 is non-null
in the result, R2 is null and whenever R2 is non-null in the result, R1 is null. That means you can
consolidate these columns into a single column using the COALESCE function. You can also use this
column in the ORDER BY clause to keep the results of the two grouping sets together.

 SELECT COALESCE(R1,R2) AS GROUP,
 WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 MONTH(SALES_DATE) AS MONTH,
 REGION, SUM(SALES) AS UNITS_SOLD
 FROM SALES,(VALUES('GROUP 1','GROUP 2')) AS X(R1,R2)
 GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),
 DAYOFWEEK(SALES_DATE))),
 (R2,ROLLUP(MONTH(SALES_DATE), REGION)))
 ORDER BY GROUP, WEEK, DAY_WEEK, MONTH, REGION;

results in:

 GROUP WEEK DAY_WEEK MONTH REGION UNITS_SOLD
 ------- ----------- ----------- ----------- --------------- -----------
 GROUP 1 13 6 - - 27
 GROUP 1 13 7 - - 46
 GROUP 1 13 - - - 73
 GROUP 1 14 1 - - 31
 GROUP 1 14 2 - - 43
 GROUP 1 14 - - - 74
 GROUP 1 53 1 - - 8
 GROUP 1 53 - - - 8
 GROUP 1 - - - - 155
 GROUP 2 - - 3 Manitoba 22
 GROUP 2 - - 3 Ontario-North 8
 GROUP 2 - - 3 Ontario-South 34
 GROUP 2 - - 3 Quebec 40

Chapter 1. Structured Query Language (SQL) 701

 GROUP 2 - - 3 - 104
 GROUP 2 - - 4 Manitoba 17
 GROUP 2 - - 4 Ontario-North 1
 GROUP 2 - - 4 Ontario-South 14
 GROUP 2 - - 4 Quebec 11
 GROUP 2 - - 4 - 43
 GROUP 2 - - 12 Manitoba 2
 GROUP 2 - - 12 Ontario-South 4
 GROUP 2 - - 12 Quebec 2
 GROUP 2 - - 12 - 8
 GROUP 2 - - - - 155

• Example 8: The following example illustrates the use of various aggregate functions when performing
a CUBE. The example also makes use of cast functions and rounding to produce a decimal result with
reasonable precision and scale.

 SELECT MONTH(SALES_DATE) AS MONTH,
 REGION,
 SUM(SALES) AS UNITS_SOLD,
 MAX(SALES) AS BEST_SALE,
 CAST(ROUND(AVG(DECIMAL(SALES)),2) AS DECIMAL(5,2)) AS AVG_UNITS_SOLD
 FROM SALES
 GROUP BY CUBE(MONTH(SALES_DATE),REGION)
 ORDER BY MONTH, REGION

This results in:

MONTH REGION UNITS_SOLD BEST_SALE AVG_UNITS_SOLD
----------- --------------- ----------- ----------- --------------
 3 Manitoba 22 7 3.14
 3 Ontario-North 8 3 2.67
 3 Ontario-South 34 14 4.25
 3 Quebec 40 18 5.00
 3 - 104 18 4.00
 4 Manitoba 17 9 5.67
 4 Ontario-North 1 1 1.00
 4 Ontario-South 14 8 4.67
 4 Quebec 11 8 5.50
 4 - 43 9 4.78
 12 Manitoba 2 2 2.00
 12 Ontario-South 4 3 2.00
 12 Quebec 2 1 1.00
 12 - 8 3 1.60
 - Manitoba 41 9 3.73
 - Ontario-North 9 3 2.25
 - Ontario-South 52 14 4.00
 - Quebec 53 18 4.42
 - - 155 18 3.87

having-clause
The HAVING clause specifies an intermediate result table that consists of those groups of R for which the
search-condition is true.

R is the result of the previous clause of the subselect. If this clause is not GROUP BY, R is considered to be
a single group with no grouping columns.

HAVING search-condition

Each column-name in the search condition must satisfy one of the following conditions:

• Unambiguously identify a grouping column of R.
• Be specified within an aggregate function.
• Be a correlated reference. A column-name is a correlated reference if it identifies a column of a table-

reference in an outer subselect.

A group of R to which the search condition is applied supplies the argument for each aggregate function in
the search condition, except for any function whose argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as being executed each time
the search condition is applied to a group of R, and the results used in applying the search condition.

702 IBM Db2 V11.5: SQL Reference

In actuality, the subquery is executed for each group only if it contains a correlated reference. For an
illustration of the difference, see Example 6 and Example 7 in “Examples of subselect queries” on page
708.

A correlated reference to a group of R must either identify a grouping column or be contained within an
aggregate function.

When HAVING is used without GROUP BY, the select list can only include column names when they
are arguments to an aggregate function, correlated column references, global variables, host variables,
literals, special registers, SQL variables, or SQL parameters.

Note: The following expressions can only be specified in a HAVING clause if they are contained within an
aggregate function (SQLSTATE 42803):

• ROW CHANGE TIMESTAMP FOR table-designator
• ROW CHANGE TOKEN FOR table-designator
• RID_BIT or RID scalar function

order-by-clause
The ORDER BY clause specifies an ordering of the rows of the result table.

ORDER BY

,

sort-key

ASC
NULLS LAST

NULLS FIRST

DESC
NULLS FIRST

NULLS LAST

ORDER OF table-designator

INPUT SEQUENCE

sort-key
simple-column-name

simple-integer

sort-key-expression

If a single sort specification (one sort-key with associated direction) is identified, the rows are ordered by
the values of that sort specification. If more than one sort specification is identified, the rows are ordered
by the values of the first identified sort specification, then by the values of the second identified sort
specification, and so on. Each sort-key cannot have a data type of CLOB, DBCLOB, BLOB, XML, distinct
type on any of these types, or structured type (SQLSTATE 42907).

A named column in the select list can be identified by a sort-key that is a simple-integer or a simple-
column-name. An unnamed column in the select list must be identified by an simple-integer or, in some
cases, by a sort-key-expression that matches the expression in the select list (see details of sort-key-
expression). A column is unnamed if the AS clause is not specified and it is derived from a constant, an
expression with operators, or a function.

Ordering is performed in accordance with comparison rules. If an ORDER BY clause contains decimal
floating-point columns, and multiple representations of the same number exist in these columns, the
ordering of the multiple representations of the same number is unspecified. The null value is higher than
all other values. If the ORDER BY clause does not completely order the rows, rows with duplicate values
of all identified columns are displayed in an arbitrary order.

Chapter 1. Structured Query Language (SQL) 703

simple-column-name
Usually identifies a column of the result table. In this case, simple-column-name must be the column
name of a named column in the select list.

The simple-column-name can also identify a column name of a table, view, or nested table identified
in the FROM clause if the query is a subselect. This includes columns defined as implicitly hidden. An
error occurs in the following situations:

• If the subselect specifies DISTINCT in the select-clause (SQLSTATE 42822)
• If the subselect produces a grouped result and the simple-column-name is not a grouping-

expression (SQLSTATE 42803)

Determining which column is used for ordering the result is described under "Column names in sort
keys" in the "Notes" section.

simple-integer
Must be greater than 0 and not greater than the number of columns in the result table (SQLSTATE
42805). The integer n identifies the nth column of the result table.

sort-key-expression
An expression that is not simply a column name or an unsigned integer constant. The query to
which ordering is applied must be a subselect to use this form of sort-key. The sort-key-expression
cannot include a correlated scalar fullselect (SQLSTATE 42703) or a function with an external action
(SQLSTATE 42845).

Any column-name within a sort-key-expression must conform to the rules described under "Column
names in sort keys" in the "Notes" section.

There are a number of special cases that further restrict the expressions that can be specified.

• DISTINCT is specified in the SELECT clause of the subselect (SQLSTATE 42822).

The sort-key-expression must match exactly with an expression in the select list of the subselect
(scalar-fullselects are never matched).

• The subselect is grouped (SQLSTATE 42803).

The sort-key-expression can:

– be an expression in the select list of the subselect,
– include a grouping-expression from the GROUP BY clause of the subselect
– include an aggregate function, constant or host variable.

ASC
Order the rows in ascending order. This is the default.

DESC
Order the rows in descending order.

NULLS FIRST
When ordering rows in ascending or descending order, list null values before all other values.

NULLS LAST
When ordering rows in ascending or descending order, list null values after all other values.

ORDER OF table-designator
Specifies that the same ordering used in table-designator applies to the result table of the subselect.
There must be a table reference matching table-designator in the FROM clause of the subselect that
specifies this clause (SQLSTATE 42703). The ordering that is applied is the same as if the columns of
the ORDER BY clause in the nested subselect (or fullselect) were included in the outer subselect (or
fullselect), and these columns were specified in place of the ORDER OF clause.

Note that this form is not allowed in a fullselect (other than the degenerative form of a fullselect). For
example, the following is not valid:

(SELECT C1 FROM T1
 ORDER BY C1)

704 IBM Db2 V11.5: SQL Reference

UNION
SELECT C1 FROM T2
 ORDER BY ORDER OF T1

The following example is valid:

SELECT C1 FROM
 (SELECT C1 FROM T1
 UNION
 SELECT C1 FROM T2
 ORDER BY C1) AS UTABLE
ORDER BY ORDER OF UTABLE

INPUT SEQUENCE
Specifies that, for an INSERT statement, the result table will reflect the input order of ordered data
rows. INPUT SEQUENCE ordering can only be specified if an INSERT statement is used in a FROM
clause (SQLSTATE 428G4). See “table-reference” on page 644. If INPUT SEQUENCE is specified and
the input data is not ordered, the INPUT SEQUENCE clause is ignored.

Notes
• Column names in sort keys:

– The column name is qualified.

The query must be a subselect (SQLSTATE 42877). The column name must unambiguously identify a
column of some table, view or nested table in the FROM clause of the subselect (SQLSTATE 42702).
The value of the column is used to compute the value of the sort specification.

– The column name is unqualified.

- The query is a subselect.

If the column name is identical to the name of more than one column of the result table, the
column name must unambiguously identify a column of some table, view or nested table in the
FROM clause of the ordering subselect (SQLSTATE 42702). If the column name is identical to one
column, that column is used to compute the value of the sort specification. If the column name is
not identical to a column of the result table, then it must unambiguously identify a column of some
table, view or nested table in the FROM clause of the fullselect in the select-statement (SQLSTATE
42702).

- The query is not a subselect (it includes set operations such as union, except or intersect).

The column name must not be identical to the name of more than one column of the result table
(SQLSTATE 42702). The column name must be identical to exactly one column of the result table
(SQLSTATE 42707), and this column is used to compute the value of the sort specification.

• Limits: The use of a sort-key-expression or a simple-column-name where the column is not in the select
list might result in the addition of the column or expression to the temporary table used for sorting. This
might result in reaching the limit of the number of columns in a table or the limit on the size of a row in a
table. Exceeding these limits will result in an error if a temporary table is required to perform the sorting
operation.

fetch-clause
The fetch-clause sets a maximum number of rows that can be retrieved.

FETCH NEXT
1

fetch-row-count

ROW

ROWS

ONLY

The fetch-clause sets a maximum number of rows that can be retrieved. Use this clause to communicate
to the database manager that the application is designed in such a way that it is not to retrieve more than
fetch-row-count rows, regardless of how many rows there are in the intermediate result table. An attempt
to fetch beyond fetch-row-count rows is handled the same way as normal end of data.

Chapter 1. Structured Query Language (SQL) 705

Determining a predictable set of rows to retrieve requires the specification of an ORDER BY clause with
sort keys that would uniquely identify the sort order of each row in the intermediate result table. If
the intermediate result table includes duplicate sort keys for some rows, the order of these rows is not
deterministic. If there is no ORDER BY clause, the intermediate result table is not in a deterministic order.
If the order of the intermediate result table is not deterministic, the set of rows that are retrieved is
unpredictable.

fetch-row-count
An expression that specifies the maximum number of rows to retrieve. The expression must not
contain a column reference, a scalar-fullselect, a function that is not deterministic, a function that has
an external action, or a sequence reference (SQLSTATE 428H7). The numeric value must be a positive
number or zero (SQLSTATE 2201W). If the data type of the expression is not BIGINT, the result of the
expression is cast to a BIGINT value.

Use of the fetch-clause with a constant for fetch-row-count that is not greater than the maximum large
integer influences query optimization of the subselect or fullselect. This influence on query optimization
is based on the fact that, at most, a known number of rows will be retrieved. The database manager uses
the integer from the optimize-for-clause to influence query optimization of the outermost fullselect if the
following clauses are specified:

• The fetch-clause is specified in the outermost fullselect
• The optimize-for-clause is specified for the select statement

Limiting the result table to a specified number of rows can improve performance. In some cases, the
database manager ceases to process the query when it has determined the specified number of rows. If
the offset-clause is also specified with a constant for offset-row-count, the constant offset value is also
considered when a determination is made to cease processing.

If the fullselect contains an SQL data change statement in the FROM clause, all the rows are modified
regardless of the limit on the number of rows to fetch.

Notes
• The keywords FIRST and NEXT can be used interchangeably. The result is unchanged; however, using

the keyword NEXT is more readable when the offset-clause is used.
• The keywords ROW and ROWS can be used interchangeably. The result is unchanged, however using

ROWS is more readable when associated with a number of rows other than 1.
• Syntax alternatives: The following are supported for compatibility with SQL used by other database

products. These alternatives are non-standard and should not be used.

Table 113. Syntax alternatives

Alternative syntax Equivalent syntax

LIMIT x FETCH FIRST x ROWS ONLY

LIMIT x OFFSET y OFFSET y ROWS FETCH NEXT x ROWS ONLY

LIMIT y, x OFFSET y ROWS FETCH NEXT x ROWS ONLY

offset-clause
The offset-clause sets the number of rows to skip.

OFFSET offset-row-count ROW

ROWS

The offset-clause specifies the number of rows to skip before any rows are retrieved. Use this clause to
communicate to the database manager that the application does not start retrieving rows until offset-row-
count rows are skipped. If offset-clause is not specified, the default is equivalent to OFFSET 0 ROWS. An

706 IBM Db2 V11.5: SQL Reference

attempt to skip more rows than the number of rows in the intermediate result table is handled the same
way as an empty result table.

Determining a predictable set of rows to skip requires the specification of an ORDER BY clause with
sort keys that would uniquely identify the sort order of each row in the intermediate result table. If
the intermediate result table includes duplicate sort keys for some rows, the order of these rows is not
deterministic. If there is no ORDER BY clause, the intermediate result table is not in a deterministic order.
If the order of the intermediate result table is not deterministic, the set of skipped rows is unpredictable.

offset-row-count
An expression that specifies the number of rows to skip before any rows are retrieved. The expression
must not contain a column reference, a scalar-fullselect, a function that is not deterministic, a
function that has an external action, or a sequence reference (SQLSTATE 428H7). The numeric value
must be a positive number or zero (SQLSTATE 2201X). If the data type of the expression is not
BIGINT, the result of the expression is cast to a BIGINT value.

If the fullselect contains an SQL data change statement in the FROM clause, all the rows are modified
regardless of the number of rows to skip.

Notes
• The keywords ROW and ROWS can be used interchangeably. The result is unchanged; however, using

ROWS is more readable when associated with a number of rows other than 1.
• Syntax alternatives: See the Notes entry that is associated with the fetch-clause for alternative syntax

to set the number of rows to skip when the maximum number of rows to retrieve is specified.

isolation-clause (subselect query)
The optional isolation-clause specifies the isolation level at which the subselect or fullselect is run, and
whether a specific type of lock is to be acquired.

WITH RR

lock-request-clause

RS

lock-request-clause

CS

UR

• RR - Repeatable Read
• RS - Read Stability
• CS - Cursor Stability
• UR - Uncommitted Read

lock-request-clause
USE AND KEEP SHARE

UPDATE

EXCLUSIVE

LOCKS

The lock-request-clause applies only to queries and to positioning read operations within an insert,
update, or delete operation. The insert, update, and delete operations themselves will run using locking
determined by the database manager.

The optional lock-request-clause specifies the type of lock that the database manager is to acquire and
hold:

Chapter 1. Structured Query Language (SQL) 707

SHARE
Concurrent processes can acquire SHARE or UPDATE locks on the data.

UPDATE
Concurrent processes can acquire SHARE locks on the data, but no concurrent process can acquire an
UPDATE or EXCLUSIVE lock.

EXCLUSIVE
Concurrent processes cannot acquire a lock on the data.

isolation-clause restrictions:

• The isolation-clause is not supported for a CREATE TABLE or ALTER TABLE statement (SQLSTATE
42601).

• The isolation-clause cannot be specified for a subselect or fullselect that will cause trigger invocation,
referential integrity scans, or MQT maintenance (SQLSTATE 42601).

• A subselect or fullselect cannot include a lock-request-clause if that subselect or fullselect references
any SQL functions that are not declared with the option INHERIT ISOLATION LEVEL WITH LOCK
REQUEST (SQLSTATE 42601).

• A subselect or fullselect that contains a lock-request-clause are not be eligible for MQT routing.
• If an isolation-clause is specified for a subselect or fullselect within the body of an SQL function, SQL

method, or trigger, the clause is ignored and a warning is returned.
• If an isolation-clause is specified for a subselect or fullselect that is used by a scrollable cursor, the

clause is ignored and a warning is returned.
• Neither isolation-clause nor lock-request-clause can be specified in the context where they will cause

conflict isolation or lock intent on a common table expression (SQLSTATE 42601). This restriction does
not apply to aliases or base tables. The following examples create an isolation conflict on a and returns
an error:

– View:

create view a as (...);
(select * from a with RR USE AND KEEP SHARE LOCKS)
UNION ALL
(select * from a with UR);

– Common table expression:

WITH a as (...)
(select * from a with RR USE AND KEEP SHARE LOCKS)
UNION ALL
(select * from a with UR);

• An isolation-clause cannot be specified in an XML context (SQLSTATE 2200M).
• The WITH clause specifying isolation cannot be specified at a subselect level in any statement that

accesses a column-organized table (SQLSTATE 42858).
• ISOLATION LEVEL UR could behave differently on Column-organized tables and Row-oranized tables.

Examples of subselect queries
The following examples illustrate the susbelect query.

• Example 1 - Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

• Example 2 - Join the EMP_ACT and EMPLOYEE tables, select all the columns from the EMP_ACT table
and add the employee's surname (LASTNAME) from the EMPLOYEE table to each row of the result.

 SELECT EMP_ACT.*, LASTNAME
 FROM EMP_ACT, EMPLOYEE
 WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO

708 IBM Db2 V11.5: SQL Reference

• Example 3 - Join the EMPLOYEE and DEPARTMENT tables, select the employee number (EMPNO),
employee surname (LASTNAME), department number (WORKDEPT in the EMPLOYEE table, and
DEPTNO in the DEPARTMENT table) and department name (DEPTNAME) of all employees who were
born (BIRTHDATE) earlier than 1955.

 SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
 FROM EMPLOYEE, DEPARTMENT
 WHERE WORKDEPT = DEPTNO
 AND YEAR(BIRTHDATE) < 1955

• Example 4 - Select the job (JOB) and the minimum and maximum salaries (SALARY) for each group of
rows with the same job code in the EMPLOYEE table, but only for groups with more than one row and
with a maximum salary greater than or equal to 27000.

 SELECT JOB, MIN(SALARY), MAX(SALARY)
 FROM EMPLOYEE
 GROUP BY JOB
 HAVING COUNT(*) > 1
 AND MAX(SALARY) >= 27000

• Example 5 - Select all the rows of EMP_ACT table for employees (EMPNO) in department (WORKDEPT)
'E11'. (Employee department numbers are shown in the EMPLOYEE table.)

 SELECT *
 FROM EMP_ACT
 WHERE EMPNO IN
 (SELECT EMPNO
 FROM EMPLOYEE
 WHERE WORKDEPT = 'E11')

• Example 6 - From the EMPLOYEE table, select the department number (WORKDEPT) and maximum
departmental salary (SALARY) for all departments whose maximum salary is less than the average
salary for all employees.

 SELECT WORKDEPT, MAX(SALARY)
 FROM EMPLOYEE
 GROUP BY WORKDEPT
 HAVING MAX(SALARY) < (SELECT AVG(SALARY)
 FROM EMPLOYEE)

The subquery in the HAVING clause is run once in this example.
• Example 7 - Using the EMPLOYEE table, select the department number (WORKDEPT) and maximum

departmental salary (SALARY) for all departments whose maximum salary is less than the average
salary in all other departments.

 SELECT WORKDEPT, MAX(SALARY)
 FROM EMPLOYEE EMP_COR
 GROUP BY WORKDEPT
 HAVING MAX(SALARY) < (SELECT AVG(SALARY)
 FROM EMPLOYEE
 WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to Example 6, the subquery in the HAVING clause is run for each group.
• Example 8 - Determine the employee number and salary of sales representatives along with the

average salary and head count of their departments.

This query must first create a nested table expression (DINFO) to get the AVGSALARY and EMPCOUNT
columns, and the DEPTNO column that is used in the WHERE clause.

 SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT
 FROM EMPLOYEE THIS_EMP,
 (SELECT OTHERS.WORKDEPT AS DEPTNO,
 AVG(OTHERS.SALARY) AS AVGSALARY,
 COUNT(*) AS EMPCOUNT
 FROM EMPLOYEE OTHERS
 GROUP BY OTHERS.WORKDEPT
) AS DINFO
 WHERE THIS_EMP.JOB = 'SALESREP'
 AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Chapter 1. Structured Query Language (SQL) 709

Using a nested table expression for this case saves the processing resources of creating the DINFO view
as a regular view. During statement preparation, accessing the catalog for the view is avoided. Because
of the context of the rest of the query, only the rows for the department of the sales representatives are
considered by the view.

• Example 9 - Display the average education level and salary for five random groups of employees.

This query requires the use of a nested table expression to set a random value for each employee so
that it can later be used in the GROUP BY clause.

 SELECT RANDID , AVG(EDLEVEL), AVG(SALARY)
 FROM (SELECT EDLEVEL, SALARY, INTEGER(RAND()*5) AS RANDID
 FROM EMPLOYEE
) AS EMPRAND
 GROUP BY RANDID

• Example 10 - Query the EMP_ACT table and return those project numbers that have an employee whose
salary is in the top 10 of all employees.

 SELECT EMP_ACT.EMPNO,PROJNO
 FROM EMP_ACT
 WHERE EMP_ACT.EMPNO IN
 (SELECT EMPLOYEE.EMPNO
 FROM EMPLOYEE
 ORDER BY SALARY DESC
 FETCH FIRST 10 ROWS ONLY)

• Example 11 - Assuming that PHONES and IDS are two SQL variables with array values of the same
cardinality, turn these arrays into a table with three columns (one for each array and one for the
position), and one row per array element.

 SELECT T.PHONE, T.ID, T.INDEX FROM UNNEST(PHONES, IDS)
 WITH ORDINALITY AS T(PHONE, ID, INDEX)
 ORDER BY T.INDEX

fullselect
The fullselect is a component of the select-statement, the INSERT statement, and the CREATE VIEW
statement. It is also a component of certain predicates which, in turn, are components of a statement.

A fullselect that is a component of a predicate is called a subquery, and a fullselect that is enclosed in
parentheses is sometimes called a subquery.

subselect

(fullselect)

values-clause

UNION

UNION ALL

EXCEPT

EXCEPT ALL

INTERSECT

INTERSECT ALL

subselect

(fullselect)

values-clause

order-by-clause offset-clause fetch-clause

isolation-clause

values-clause

710 IBM Db2 V11.5: SQL Reference

VALUES

,

values-row

values-row
expression

NULL

row-expression

(

,

expression

NULL

)

The set operators UNION, EXCEPT, and INTERSECT correspond to the relational operators union,
difference, and intersection.

A fullselect specifies a result table. If a set operator is not used, the result of the fullselect is the result of
the specified subselect or values-clause.

The authorization for a fullselect is described in the Authorization section in "SQL queries".

values-clause
Derives a result table by specifying the actual values, using expressions or row expressions, for each
column of a row in the result table. Multiple rows may be specified. If multiple rows are specified,
the extended indicator variable values of DEFAULT and UNASSIGNED must not be used (SQLSTATE
22539). The result type of any expression in the values-clause cannot be a row type (SQLSTATE
428H2).

NULL can only be used with multiple specifications of values-row, either as the column value of a
single column result table or within a row-expression, and at least one row in the same column must
not be NULL (SQLSTATE 42608).

A values-row is specified by:

• A single expression for a single column result table
• n expressions (or NULL) separated by commas and enclosed in parentheses, where n is the number

of columns in the result table or, a row expression for a multiple column result table.

A multiple row VALUES clause must have the same number of columns in each values-row (SQLSTATE
42826).

The following examples show values-clause and their meaning.

 VALUES (1),(2),(3) - 3 rows of 1 column
 VALUES 1, 2, 3 - 3 rows of 1 column
 VALUES (1, 2, 3) - 1 row of 3 columns
 VALUES (1,21),(2,22),(3,23) - 3 rows of 2 columns

A values-clause that is composed of n specifications of values-row, RE1 to REn, where n is greater than
1, is equivalent to:

 RE1 UNION ALL RE2 ... UNION ALL REn

This means that the corresponding columns of each values-row must be comparable (SQLSTATE
42825).

UNION or UNION ALL
Derives a result table by combining two other result tables (R1 and R2). If UNION ALL is specified, the
result consists of all rows in R1 and R2. If UNION is specified without the ALL option, the result is the
set of all rows in either R1 or R2, with the duplicate rows eliminated. In either case, however, each
row of the UNION table is either a row from R1 or a row from R2.

Chapter 1. Structured Query Language (SQL) 711

EXCEPT or EXCEPT ALL
Derives a result table by combining two other result tables (R1 and R2). If EXCEPT ALL is specified,
the result consists of all rows that do not have a corresponding row in R2, where duplicate rows are
significant. If EXCEPT is specified without the ALL option, the result consists of all rows that are only in
R1, with duplicate rows in the result of this operation eliminated.

For compatibility with other SQL implementations, MINUS can be specified as a synonym for EXCEPT.

INTERSECT or INTERSECT ALL
Derives a result table by combining two other result tables (R1 and R2). If INTERSECT ALL is
specified, the result consists of all rows that are in both R1 and R2. If INTERSECT is specified without
the ALL option, the result consists of all rows that are in both R1 and R2, with the duplicate rows
eliminated.

The expression that corresponds to the nth column in R1 and R2 can reference columns with column
masks. The nth column of the result of the set operation can be derived from the masked values in R1 or
R2.

With the set operation, the elimination of the duplicate rows is based on the unmasked values in R1 and
R2. Because all rows are from R1 or R2, the output values in the result table of the set operation may vary
when one or more of the following conditions occur:

• The expression corresponding to the nth column in R1 references columns with column masks, but the
expression corresponding to the nth column in R2 does not. The opposite is also true.

• The expressions corresponding to the nth column in R1 and R2 reference columns with different column
masks.

• The column mask definition references columns that are not the same target column for which the
column mask is defined, and those columns are not part of the set operation. It is recommended that
the column mask definition does not reference other columns from the target table.

For example, a row in R1 is derived from the masked value, and a row in R2 is derived from the unmasked
value. If the row in the result table is from R1, the masked value is returned. If the row in the result table
is from R2, the unmasked value is returned.

order-by-clause
Refer to “subselect” on page 639 for details of the order-by-clause. A fullselect that contains an
ORDER BY clause cannot be specified in (SQLSTATE 428FJ):

• A materialized query table
• The outermost fullselect of a view

Note: An ORDER BY clause in a fullselect does not affect the order of the rows that are returned by a
query. An ORDER BY clause affects only the order of the rows that are returned if it is specified in the
outermost fullselect. Specify an order-by-clause to ensure a predictable order for determining the set
of rows from the fullselect if the offset-clause or fetch-clause are specified.

offset-clause
Refer to “subselect” on page 639 for details of the offset-clause. A fullselect that contains an OFFSET
clause cannot be specified in the following situations (SQLSTATE 428FJ):

• A materialized query table
• The outermost fullselect of a view

fetch-clause
Refer to “subselect” on page 639 for details of the fetch-clause. A fullselect that contains a FETCH
clause cannot be specified in the following situations (SQLSTATE 428FJ):

• A materialized query table
• The outermost fullselect of a view

712 IBM Db2 V11.5: SQL Reference

isolation-clause
Refer to “subselect” on page 639 for details of the isolation-clause. If isolation-clause is specified for
a fullselect and it could apply equally to a subselect of the fullselect, isolation-clause is applied to the
fullselect. For example, consider the following query.

 SELECT NAME FROM PRODUCT
 UNION
 SELECT NAME FROM CATALOG
 WITH UR

Even though the isolation clause WITH UR could apply only to the subselect SELECT NAME FROM
CATALOG, it is applied to the whole fullselect.

The number of columns in the result tables R1 and R2 must be the same (SQLSTATE 42826). If the ALL
keyword is not specified, R1 and R2 must not include any columns having a data type of CLOB, DBCLOB,
BLOB, distinct type on any of these types, or structured type (SQLSTATE 42907).

The column name of the nth column of the result table is the name of the nth column of R1 if it is named.
Otherwise, the nth column of the result table is unnamed. If the fullselect is used as a select-statement,
a generated name is provided when the statement is described. The generated name cannot be used in
other parts of the SQL statement such as the ORDER BY clause or the UPDATE clause. The generated
name can be determined by performing a DESCRIBE of the SQL statement and consulting the SQLNAME
field.

Duplicate rows: Two rows are duplicates if each value in the first is equal to the corresponding value
of the second. For determining duplicates, two null values are considered equal, and two decimal
floating-point representations of the same number are considered equal. For example, 2.00 and 2.0
have the same value (2.00 and 2.0 compare as equal) but have different exponents, which allows you to
represent both 2.00 and 2.0. So, for example, if the result table of a UNION operation contains a decimal
floating-point column and multiple representations of the same number exist, the one that is returned (for
example, 2.00 or 2.0) is unpredictable. For more information, see “Numeric comparisons” on page 65.

When multiple operations are combined in an expression, operations within parentheses are performed
first. If there are no parentheses, the operations are performed from left to right with the exception that
all INTERSECT operations are performed before UNION or EXCEPT operations.

In the following example, the values of tables R1 and R2 are shown on the left. The other headings listed
show the values as a result of various set operations on R1 and R2.

R1 R2 UNION ALL UNION EXCEPT
ALL

EXCEPT INTER-
SECT ALL

INTER-
SECT

1 1 1 1 1 2 1 1

1 1 1 2 2 5 1 3

1 3 1 3 2 3 4

2 3 1 4 2 4

2 3 1 5 4

2 3 2 5

3 4 2

4 2

4 3

5 3

3

3

3

Chapter 1. Structured Query Language (SQL) 713

R1 R2 UNION ALL UNION EXCEPT
ALL

EXCEPT INTER-
SECT ALL

INTER-
SECT

4

4

4

5

Examples of fullselect queries
The following examples illustrate fullselect queries.

• Example 1: Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

• Example 2: List the employee numbers (EMPNO) of all employees in the EMPLOYEE table whose
department number (WORKDEPT) either begins with 'E' or who are assigned to projects in the EMP_ACT
table whose project number (PROJNO) equals 'MA2100', 'MA2110', or 'MA2112'.

 SELECT EMPNO
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO
 FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

• Example 3: Make the same query as in example 2, and, in addition, "tag" the rows from the EMPLOYEE
table with 'emp' and the rows from the EMP_ACT table with 'emp_act'. Unlike the result from example
2, this query might return the same EMPNO more than once, identifying which table it came from by the
associated "tag".

 SELECT EMPNO, 'emp'
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION
 SELECT EMPNO, 'emp_act' FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

• Example 4: Make the same query as in example 2, only use UNION ALL so that no duplicate rows are
eliminated.

 SELECT EMPNO
 FROM EMPLOYEE
 WHERE WORKDEPT LIKE 'E%'
 UNION ALL
 SELECT EMPNO
 FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')

• Example 5: Make the same query as in Example 3, only include an additional two employees currently
not in any table and tag these rows as "new".

 SELECT EMPNO, 'emp'
 FROM EMPLOYEE
 WHEREWORKDEPTLIKE 'E%'
 UNION
 SELECT EMPNO, 'emp_act'
 FROM EMP_ACT
 WHERE PROJNO IN('MA2100', 'MA2110', 'MA2112')
 UNION
 VALUES ('NEWAAA', 'new'), ('NEWBBB', 'new')

714 IBM Db2 V11.5: SQL Reference

• Example 6: This example of EXCEPT produces all rows that are in T1 but not in T2.

 (SELECT * FROM T1)
 EXCEPT ALL
 (SELECT * FROM T2)

If no null values are involved, this example returns the same results as

 SELECT ALL *
 FROM T1
 WHERE NOT EXISTS (SELECT * FROM T2
 WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

• Example 7: This example of INTERSECT produces all rows that are in both tables T1 and T2, removing
duplicates.

 (SELECT * FROM T1)
 INTERSECT
 (SELECT * FROM T2)

If no null values are involved, this example returns the same result as

 SELECT DISTINCT * FROM T1
 WHERE EXISTS (SELECT * FROM T2
 WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

where C1, C2, and so on represent the columns of T1 and T2.

select-statement
The select-statement is the form of a query that can be specified in a DECLARE CURSOR statement,
either directly, or prepared and then referenced. It can also be issued through the use of dynamic SQL
statements, causing a result table to be displayed on the user's screen.

The table specified by a select-statement is the result of the fullselect.

WITH

,

common-table-expression

fullselect ●

read-only-clause

update-clause

●

optimize-for-clause

●

isolation-clause

●

concurrent-access-resolution-clause

●

offset-clause fetch-clause

●

The authorization for a select-statement is described in the Authorization section in "SQL queries".

For details about the clauses in the select-statement query, refer to the following topics:

• “common-table-expression” on page 716
• “update-clause” on page 720
• “read-only-clause” on page 721
• “optimize-for-clause” on page 721
• “isolation-clause (select-statement query)” on page 722
• “lock-request-clause” on page 722

Chapter 1. Structured Query Language (SQL) 715

• “concurrent-access-resolution-clause” on page 722
• “offset-clause” on page 706
• “fetch-clause” on page 705
• “Retrieval of result sets from an SQL data change statement” on page 725

common-table-expression
A common table expression permits defining a result table with a table-name that can be specified as a
table name in any FROM clause of the fullselect that follows.

table-name

(

,

column-name)
1

AS (

WITH common-table-expression
2

fullselect)

Notes:
1 If a common table expression is recursive, or if the fullselect results in duplicate column names,
column names must be specified.
2 For Netezza compatibility, the WITH clause is supported in common table expressions. This SQL
compatibility enhancement is only available in Db2 Version 11.5 Mod Pack 2 and later versions.

Multiple common table expressions can be specified following the single WITH keyword. Each common
table expression specified can also be referenced by name in the FROM clause of subsequent common
table expressions.

If a list of columns is specified, it must consist of as many names as there are columns in the result
table of the fullselect. Each column-name must be unique and unqualified. If these column names are not
specified, the names are derived from the select list of the fullselect used to define the common table
expression.

The table-name of a common table expression must be different from any other common table expression
table-name in the same statement (SQLSTATE 42726). If the common table expression is specified in an
INSERT statement the table-name cannot be the same as the table or view name that is the object of the
insert (SQLSTATE 42726). A common table expression table-name can be specified as a table name in any
FROM clause throughout the fullselect. A table-name of a common table expression overrides any existing
table, view or alias (in the catalog) with the same qualified name.

If more than one common table expression is defined in the same statement, cyclic references between
the common table expressions are not permitted (SQLSTATE 42835). A cyclic reference occurs when two
common table expressions dt1 and dt2 are created such that dt1 refers to dt2 and dt2 refers to dt1.

If the fullselect of a common table expression contains a data-change-table-reference in the FROM
clause, the common table expression is said to modify data. A common table expression that modifies
data is always evaluated when the statement is processed, regardless of whether the common table
expression is used anywhere else in the statement. If there is at least one common table expression that
reads or modifies data, all common table expressions are processed in the order in which they occur,
and each common table expression that reads or modifies data is completely executed, including all
constraints and triggers, before any subsequent common table expressions are executed.

The common table expression is also optional before to the fullselect in the CREATE VIEW and INSERT
statements.

A common table expression can be used in the following situations:

• In place of a view to avoid creating the view (when general use of the view is not required and
positioned updates or deletes are not used)

716 IBM Db2 V11.5: SQL Reference

• To enable grouping by a column that is derived from a scalar subselect or function that is not
deterministic or has external action

• When the required result table is based on host variables
• When the same result table must be shared in a fullselect
• When the result must be derived using recursion
• When multiple SQL data change statements must be processed within the query

If the fullselect of a common table expression contains a reference to itself in a FROM clause, the
common table expression is a recursive common table expression. Queries using recursion are useful in
supporting applications such as bill of materials (BOM), reservation systems, and network planning.

The following must be true of a recursive common table expression:

• Each fullselect that is part of the recursion cycle must start with SELECT or SELECT ALL. Use of SELECT
DISTINCT is not allowed (SQLSTATE 42925). Furthermore, the unions must use UNION ALL (SQLSTATE
42925).

• The column names must be specified following the table-name of the common table expression
(SQLSTATE 42908).

• The first fullselect of the first union (the initialization fullselect) must not include a reference to any
column of the common table expression in any FROM clause (SQLSTATE 42836).

• If a column name of the common table expression is referred to in the iterative fullselect, the data
type, length, and code page for the column are determined based on the initialization fullselect. The
corresponding column in the iterative fullselect must have the same data type and length as the
data type and length determined based on the initialization fullselect and the code page must match
(SQLSTATE 42825). However, for character string types, the length of the two data types can differ. In
this case, the column in the iterative fullselect must have a length that will always be assignable to the
length determined from the initialization fullselect.

• Each fullselect that is part of the recursion cycle must not include any aggregate functions, group-by-
clauses, or having-clauses (SQLSTATE 42836).

The FROM clauses of these fullselects can include at most one reference to a common table expression
that is part of a recursion cycle (SQLSTATE 42836).

• The iterative fullselect and the overall recursive fullselect must not include an order-by-clause
(SQLSTATE 42836).

• Subqueries (scalar or quantified) must not be part of any recursion cycles (SQLSTATE 42836).

When developing recursive common table expressions, remember that an infinite recursion cycle (loop)
can be created. Check that recursion cycles will stop. This is especially important if the data involved is
cyclic. A recursive common table expression is expected to include a predicate that will prevent an infinite
loop. The recursive common table expression is expected to include:

• In the iterative fullselect, an integer column incremented by a constant.
• A predicate in the where clause of the iterative fullselect in the form "counter_col < constant" or

"counter _col < :hostvar".

A warning is issued if this syntax is not found in the recursive common table expression (SQLSTATE
01605).

Recursion example: bill of materials
Bill of materials (BOM) applications are a common requirement in many business environments. To
illustrate the capability of a recursive common table expression for BOM applications, consider a table of
parts with associated subparts and the quantity of subparts required by the part.

For this example, create the table as follows:

 CREATE TABLE PARTLIST
 (PART VARCHAR(8),
 SUBPART VARCHAR(8),
 QUANTITY INTEGER);

Chapter 1. Structured Query Language (SQL) 717

To give query results for this example, assume that the PARTLIST table is populated with the following
values:

 PART SUBPART QUANTITY
 -------- -------- -----------
 00 01 5
 00 05 3
 01 02 2
 01 03 3
 01 04 4
 01 06 3
 02 05 7
 02 06 6
 03 07 6
 04 08 10
 04 09 11
 05 10 10
 05 11 10
 06 12 10
 06 13 10
 07 14 8
 07 12 8

Example 1: Single level explosion
The first example is called single level explosion. It answers the question, "What parts are needed to build
the part identified by '01'?". The list will include the direct subparts, subparts of the subparts and so on.
However, if a part is used multiple times, its subparts are only listed once.

WITH RPL (PART, SUBPART, QUANTITY) AS
 (SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
)
SELECT DISTINCT PART, SUBPART, QUANTITY
 FROM RPL
 ORDER BY PART, SUBPART, QUANTITY;

The preceding query includes a common table expression, identified by the name RPL, that expresses the
recursive part of this query. It illustrates the basic elements of a recursive common table expression.

The first operand (fullselect) of the UNION, referred to as the initialization fullselect, gets the direct
children of part '01'. The FROM clause of this fullselect refers to the source table and will never reference
itself (RPL in this case). The result of this first fullselect goes into the common table expression RPL
(Recursive PARTLIST). As in this example, the UNION must always be a UNION ALL.

The second operand (fullselect) of the UNION uses RPL to compute subparts of subparts by having the
FROM clause refer to the common table expression RPL and the source table with a join of a part from the
source table (child) to a subpart of the current result contained in RPL (parent). The result goes back to
RPL again. The second operand of UNION is then used repeatedly until no more children exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same part/subpart is not listed
more than once.

The result of the query is as follows:

 PART SUBPART QUANTITY
 -------- -------- -----------
 01 02 2
 01 03 3
 01 04 4
 01 06 3
 02 05 7
 02 06 6
 03 07 6
 04 08 10
 04 09 11
 05 10 10

718 IBM Db2 V11.5: SQL Reference

 05 11 10
 06 12 10
 06 13 10
 07 12 8
 07 14 8

Observe in the result that part '01' goes to '02' which goes to '06' and so on. Further, notice that part
'06' is reached twice, once through '01' directly and another time through '02'. In the output, however, its
subcomponents are listed only once (this is the result of using a SELECT DISTINCT) as required.

It is important to remember that with recursive common table expressions it is possible to introduce
an infinite loop. In this example, an infinite loop would be created if the search condition of the second
operand that joins the parent and child tables was coded as:

 PARENT.SUBPART = CHILD.SUBPART

This example of causing an infinite loop is obviously a case of not coding what is intended. Exercise care
when determining what to code so that there is a definite end of the recursion cycle.

The result produced by this example query can be produced in an application program without using a
recursive common table expression. However, this approach would require starting of a new query for
every level of recursion. Furthermore, the application needs to put all the results back in the database
to order the result. This approach complicates the application logic and does not perform well. The
application logic becomes even harder and more inefficient for other bill of material queries, such as
summarized and indented explosion queries.

Example 2: Summarized explosion
The second example is a summarized explosion. The question posed here is, what is the total quantity
of each part required to build part '01'. The main difference from the single level explosion is the
requirement to aggregate the quantities. The first example indicates the quantity of subparts required
for the part whenever it is required. It does not indicate how many of the subparts are needed to build
part '01'.

WITH RPL (PART, SUBPART, QUANTITY) AS
 (
 SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT PARENT.PART, CHILD.SUBPART, PARENT.QUANTITY*CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
)
SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"
 FROM RPL
 GROUP BY PART, SUBPART
 ORDER BY PART, SUBPART;

In the preceding query, the select list of the second operand of the UNION in the recursive common table
expression, identified by the name RPL, shows the aggregation of the quantity. To find out how much of a
subpart is used, the quantity of the parent is multiplied by the quantity per parent of a child. If a part is
used multiple times in different places, it requires another final aggregation. This is done by the grouping
over the common table expression RPL and using the SUM aggregate function in the select list of the main
fullselect.

The result of the query is as follows:

 PART SUBPART Total Qty Used
 -------- -------- --------------
 01 02 2
 01 03 3
 01 04 4
 01 05 14
 01 06 15
 01 07 18
 01 08 40
 01 09 44

Chapter 1. Structured Query Language (SQL) 719

 01 10 140
 01 11 140
 01 12 294
 01 13 150
 01 14 144

Looking at the output, consider the line for subpart '06'. The total quantity used value of 15 is derived
from a quantity of 3 directly for part '01' and a quantity of 6 for part '02' which is needed 2 times by part
'01'.

Example 3: Controlling depth
The question might come to mind, what happens when there are more levels of parts in the table than you
are interested in for your query? That is, how is a query written to answer the question, "What are the first
two levels of parts needed to build the part identified by '01'?" For the sake of clarity in the example, the
level is included in the result.

WITH RPL (LEVEL, PART, SUBPART, QUANTITY) AS
 (
 SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
 FROM PARTLIST ROOT
 WHERE ROOT.PART = '01'
 UNION ALL
 SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY
 FROM RPL PARENT, PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
 AND PARENT.LEVEL < 2
)
 SELECT PART, LEVEL, SUBPART, QUANTITY
 FROM RPL;

This query is similar to example 1. The column LEVEL was introduced to count the levels from the original
part. In the initialization fullselect, the value for the LEVEL column is initialized to 1. In the subsequent
fullselect, the level from the parent is incremented by 1. Then to control the number of levels in the result,
the second fullselect includes the condition that the parent level must be less than 2. This ensures that
the second fullselect only processes children to the second level.

The result of the query is:

 PART LEVEL SUBPART QUANTITY
 -------- ----------- -------- -----------
 01 1 02 2
 01 1 03 3
 01 1 04 4
 01 1 06 3
 02 2 05 7
 02 2 06 6
 03 2 07 6
 04 2 08 10
 04 2 09 11
 06 2 12 10
 06 2 13 10

update-clause
The FOR UPDATE clause identifies the columns that can be targets in an assignment clause in a
subsequent positioned UPDATE statement. Each column-name must be unqualified and must identify
a column of the table or view identified in the first FROM clause of the fullselect.

FOR UPDATE

OF

,

column-name

If a FOR UPDATE clause is specified with a column-name list, and extended indicator variables are not
enabled, then column-name must be an updatable column (SQLSTATE 42808).

720 IBM Db2 V11.5: SQL Reference

If a FOR UPDATE clause is specified without a column-name list, then the implicit column-name list is
determined as follows:

• If extended indicator variables are enabled, all of the columns of the table or view identified in the first
FROM clause of the fullselect are included.

• If extended indicator variables are not enabled, all of the updatable columns of the table or view
identified in the first FROM clause of the fullselect are included.

The FOR UPDATE clause cannot be used if one of the following conditions is true:

• The cursor associated with the select-statement is not deletable .
• One of the selected columns is a non-updatable column of a catalog table and the FOR UPDATE clause

has not been used to exclude that column.

read-only-clause
The FOR READ ONLY clause indicates that the result table is read-only and therefore the cursor cannot be
referred to in Positioned UPDATE and DELETE statements. FOR FETCH ONLY has the same meaning.

FOR READ

FETCH

ONLY

Some result tables are read-only by nature. (For example, a table based on a read-only view.) FOR READ
ONLY can still be specified for such tables, but the specification has no effect.

For result tables in which updates and deletes are allowed, specifying FOR READ ONLY (or FOR FETCH
ONLY) can possibly improve the performance of FETCH operations by allowing the database manager
to do blocking. For example, in programs that contain dynamic SQL statements without the FOR READ
ONLY or ORDER BY clause, the database manager might open cursors as if the FOR UPDATE clause
were specified. It is recommended, therefore, that the FOR READ ONLY clause be used to improve
performance, except in cases where queries will be used in positioned UPDATE or DELETE statements.

A read-only result table must not be referred to in a Positioned UPDATE or DELETE statement, whether it
is read-only by nature or specified as FOR READ ONLY (FOR FETCH ONLY).

optimize-for-clause
The OPTIMIZE FOR clause requests special processing of the select statement.

OPTIMIZE FOR integer ROWS

ROW

If this clause is omitted, it is assumed that all rows of the result table will be retrieved; if it is specified, it
is assumed that the number of rows retrieved will probably not exceed n, where n is the value of integer.
The value of n must be a positive integer (not zero). Use of the OPTIMIZE FOR clause influences query
optimization, based on the assumption that n rows will be retrieved. In addition, for cursors that are
blocked, this clause will influence the number of rows that will be returned in each block (that is, no
more than n rows will be returned in each block). If both the fetch-clause and the optimize-for-clause are
specified, the lower of the integer values from these clauses will be used to influence the communications
buffer size. The values are considered independently for optimization purposes.

This clause does not limit the number of rows that can be fetched, or affect the result in any other way
than performance. Using OPTIMIZE FOR n ROWS can improve performance if no more than n rows are
retrieved, but might degrade performance if more than n rows are retrieved.

If the value of n multiplied by the size of the row exceeds the size of the communication buffer, the
OPTIMIZE FOR clause will have no affect on the data buffers. The size of the communication buffer is
defined by the rqrioblk or the aslheapsz configuration parameter.

Chapter 1. Structured Query Language (SQL) 721

isolation-clause (select-statement query)
The optional isolation-clause specifies the isolation level at which the statement is executed, and whether
a specific type of lock is to be acquired.

WITH RR

lock-request-clause

RS

lock-request-clause

CS

UR

• RR - Repeatable Read (row-organized tables only SQLSTATE 42858)
• RS - Read Stability (row-organized tables only SQLSTATE 42858)
• CS - Cursor Stability
• UR - Uncommitted Read

The default isolation level of the statement is the isolation level of the package in which the statement
is bound. When a nickname is used in a select-statement to access data in IBM family and Microsoft
SQL Server data sources, the isolation-clause can be included in the statement to specify the statement
isolation level. If the isolation-clause is included in statements that access other data sources, the
specified isolation level is ignored. The current isolation level on the federated server is mapped to a
corresponding isolation level at the data source on each connection to the data source. After a connection
is made to a data source, the isolation level cannot be changed for the duration of the connection.

lock-request-clause
The optional lock-request-clause specifies the type of lock that the database manager is to acquire and
hold.

USE AND KEEP SHARE

UPDATE

EXCLUSIVE

LOCKS

SHARE
Concurrent processes can acquire SHARE or UPDATE locks on the data.

UPDATE
Concurrent processes can acquire SHARE locks on the data, but no concurrent process can acquire an
UPDATE or EXCLUSIVE lock.

EXCLUSIVE
Concurrent processes cannot acquire a lock on the data.

The lock-request-clause applies to all base table and index scans required by the query, including those
within subqueries, SQL functions and SQL methods. It has no affect on locks placed by procedures,
external functions, or external methods. Any SQL function or SQL method called (directly or indirectly)
by the statement must be created with INHERIT ISOLATION LEVEL WITH LOCK REQUEST (SQLSTATE
42601). The lock-request-clause cannot be used with a modifying query that might activate triggers or
that requires referential integrity checks (SQLSTATE 42601).

concurrent-access-resolution-clause
The optional concurrent-access-resolution-clause specifies the concurrent access resolution to use for
select-statement.

WAIT FOR OUTCOME

722 IBM Db2 V11.5: SQL Reference

WAIT FOR OUTCOME specifies to wait for the commit or rollback when encountering data in the
process of being updated or deleted. Rows encountered that are in the process of being inserted are
not skipped. The settings for the registry variables DB2_EVALUNCOMMITTED, DB2_SKIPDELETED, and
DB2_SKIPINSERTED are ignored. This clause applies when the isolation level is CS or RS. It is ignored
when an isolation level of UR or RR is in effect, or when the table is column-organized.

This clause causes the following behavior and settings to be overridden:

• Any higher level setting such as bind options, CLI settings, JDBC settings, or lock modifications.

SKIP LOCKED DATA

The SKIP LOCKED DATA clause specifies that rows are skipped when incompatible locks that would block
the progress of the statement are held on the rows by other transactions. These rows can belong to any
accessed table addressed in the statement, including tables accessed in a subquery. This clause applies
when the isolation level is CS or RS and is ignored when an isolation level of UR or RR is in effect. It
applies to row and block level locks.

This clause causes the following behavior and settings to be overridden:

• Any higher level setting such as bind options, CLI settings, JDBC settings, or lock modifications still
apply, with the modified behavior that if a lock request is made and there is a conflict, the corresponding
row is skipped. SKIP LOCKED DATA specified on a statement does override a higher level WAIT FOR
OUTCOME setting.

SKIP LOCKED DATA is ignored if it is specified when WITH RR or WITH UR. The default isolation level of
the statement depends on the isolation of the package or plan with which the statement is bound, and
whether the result table is read-only. If the default isolation level of the statement is Repeatable Read or
Uncommitted Read, then SKIP LOCKED DATA is ignored.

SKIP LOCKED DATA clause is strictly SQL based. Also, it cannot be specified for the following:

• Positioned updates and deletes
• Subquery
• Update/delete statements on column organized table
• PREPARE command
• BIND command

Attention: The following feature is available in Db2 11.5.6 and later versions.

NOWAIT

WAIT <time sec>

The NOWAIT and WAIT clauses specify the number of seconds to wait for a lock before returning
an error indicating that a lock cannot be obtained.

When using the WAIT clause, <time sec> is an integer between -1 and 32767.

Note: For NOWAIT and WAIT 0, locks are not waited for. If no lock is available at the time of the
request, a -911 error is returned.

When a WAIT value of -1 is specified, lock timeout detection is turned off. In this situation a lock
is waited for (if one is not available at the time of the request) until either of the following events
occur:

• The lock is granted.
• A deadlock occurs.

Use of the NOWAIT and WAIT clauses overwrites the value of the LOCKTIMEOUT database
configuration variable and the value of the CURRENT LOCK TIMEOUT special register for this
select statement. This means that adding the NOWAIT/WAIT clause with a wait time value of t has

Chapter 1. Structured Query Language (SQL) 723

the same effect as executing the select statement with a LOCKTIMEOUT value or CURRENT LOCK
TIMEOUT value of t.

Examples of select-statement queries
The following examples illustrate the select-statement query.

• Example 1: Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

• Example 2: Select the project name (PROJNAME), start date (PRSTDATE), and end date (PRENDATE)
from the PROJECT table. Order the result table by the end date with the most recent dates appearing
first.

 SELECT PROJNAME, PRSTDATE, PRENDATE
 FROM PROJECT
 ORDER BY PRENDATE DESC

• Example 3: Select the department number (WORKDEPT) and average departmental salary (SALARY)
for all departments in the EMPLOYEE table. Arrange the result table in ascending order by average
departmental salary.

 SELECT WORKDEPT, AVG(SALARY)
 FROM EMPLOYEE
 GROUP BY WORKDEPT
 ORDER BY 2

• Example 4: Declare a cursor named UP_CUR to be used in a C program to update the start date
(PRSTDATE) and the end date (PRENDATE) columns in the PROJECT table. The program must receive
both of these values together with the project number (PROJNO) value for each row.

 EXEC SQL DECLARE UP_CUR CURSOR FOR
 SELECT PROJNO, PRSTDATE, PRENDATE
 FROM PROJECT
 FOR UPDATE OF PRSTDATE, PRENDATE;

• Example 5: This example names the expression SAL+BONUS+COMM as TOTAL_PAY

 SELECT SALARY+BONUS+COMM AS TOTAL_PAY
 FROM EMPLOYEE
 ORDER BY TOTAL_PAY

• Example 6: Determine the employee number and salary of sales representatives along with the average
salary and head count of their departments. Also, list the average salary of the department with the
highest average salary.

Using a common table expression for this case saves the processing resources of creating the DINFO
view as a regular view. During statement preparation, accessing the catalog for the view is avoided
and, because of the context of the rest of the fullselect, only the rows for the department of the sales
representatives are considered by the view.

 WITH
 DINFO (DEPTNO, AVGSALARY, EMPCOUNT) AS
 (SELECT OTHERS.WORKDEPT, AVG(OTHERS.SALARY), COUNT(*)
 FROM EMPLOYEE OTHERS
 GROUP BY OTHERS.WORKDEPT
),
 DINFOMAX AS
 (SELECT MAX(AVGSALARY) AS AVGMAX FROM DINFO)
 SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY,
 DINFO.AVGSALARY, DINFO.EMPCOUNT, DINFOMAX.AVGMAX
 FROM EMPLOYEE THIS_EMP, DINFO, DINFOMAX
 WHERE THIS_EMP.JOB = 'SALESREP'
 AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

724 IBM Db2 V11.5: SQL Reference

• Example 7: Given two tables, EMPLOYEE and PROJECT, replace employee SALLY with a new employee
GEORGE, assign all projects lead by SALLY to GEORGE, and return the names of the updated projects.

 WITH
 NEWEMP AS (SELECT EMPNO FROM NEW TABLE
 (INSERT INTO EMPLOYEE(EMPNO, FIRSTNME)
 VALUES(NEXT VALUE FOR EMPNO_SEQ, 'GEORGE'))),
 OLDEMP AS (SELECT EMPNO FROM EMPLOYEE WHERE FIRSTNME = 'SALLY'),
 UPPROJ AS (SELECT PROJNAME FROM NEW TABLE
 (UPDATE PROJECT
 SET RESPEMP = (SELECT EMPNO FROM NEWEMP)
 WHERE RESPEMP = (SELECT EMPNO FROM OLDEMP))),
 DELEMP AS (SELECT EMPNO FROM OLD TABLE
 (DELETE FROM EMPLOYEE
 WHERE EMPNO = (SELECT EMPNO FROM OLDEMP)))
 SELECT PROJNAME FROM UPPROJ;

• Example 8: Retrieve data from the DEPT table. That data will later be updated with a searched update,
and will be locked when the query executes.

 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DEPT
 WHERE ADMRDEPT ='A00'
 FOR READ ONLY WITH RS USE AND KEEP EXCLUSIVE LOCKS

• Example 9: Select all columns and rows from the EMPLOYEE table. If another transaction is concurrently
updating, deleting, or inserting data in the EMPLOYEE table, the select operation will wait to get the data
until after the other transaction is completed.

 SELECT * FROM EMPLOYEE WAIT FOR OUTCOME

Retrieval of result sets from an SQL data change statement
Applications that modify tables with INSERT, UPDATE, or DELETE statements might require additional
processing on the modified rows. To facilitate this processing, you can embed SQL data-change
operations in the FROM clause of SELECT and SELECT INTO statements.

Within a single unit of work, applications can retrieve a result set containing the modified rows from a
table or view modified by an SQL data-change operation.

For example, the following statement updates the salaries of all the records in the EMPLOYEE table in the
SAMPLE database and then returns the employee number and new salary for all the updated rows.

SELECT empno, salary FROM FINAL TABLE
 (UPDATE employee SET salary = salary * 1.10 WHERE job = 'CLERK')

To return data successfully, SELECT statements that retrieve result sets FROM SQL data-change
operations require the SQL data-change operations to run successfully. The success of SQL data-change
operations includes the processing of all constraints and triggers, if applicable.

For instance, suppose a user with SELECT privileges, but without INSERT privileges on the EMPLOYEE
table attempts a SELECT FROM INSERT statement on the EMPLOYEE table. The INSERT operation fails
because of the missing privileges, and as a result, the entire SELECT statement fails.

Consider the following query, where records from the EMPLOYEE table are selected and then inserted into
a different table, named EMP. This SELECT statement will fail.

SELECT empno FROM FINAL TABLE
 (INSERT INTO emp(name, salary)
 SELECT firstnme || midinit || lastname, salary
 FROM employee)

If the EMPLOYEE table has 100 rows and row 90 has a SALARY value of $9,999,000.00, then the addition
of $10,000.00 would cause a decimal overflow to occur. The overflow would force the database manager
to roll back the insertions into the EMP table.

Chapter 1. Structured Query Language (SQL) 725

Intermediate result tables
The modified rows of the table or view targeted by an SQL data-change operation in the FROM clause of
a SELECT statement compose an intermediate result table. The intermediate result table includes all the
columns of the target table or view, in addition to any include columns defined in the SQL data-change
operation. You can reference all of the columns in an intermediate result table by name in the select list,
the ORDER BY clause, or the WHERE clause.

The contents of the intermediate result table are dependant on the qualifier specified in the FROM clause.
You must include one of the following FROM clause qualifiers in SELECT statements that retrieve result
sets as intermediate result tables.
OLD TABLE

The rows in the intermediate result table will contain values of the target table rows at the point
immediately preceding the execution of before triggers and the SQL data-change operation. The OLD
TABLE qualifier applies to UPDATE and DELETE operations.

NEW TABLE
The rows in the intermediate result table will contain values of the target table rows at the point
immediately after the SQL data-change statement has been executed, but before referential integrity
evaluation and the firing of any after triggers. The NEW TABLE qualifier applies to UPDATE and INSERT
operations.

FINAL TABLE
This qualifier returns the same intermediate result table as NEW TABLE. In addition, the use of
FINAL TABLE guarantees that no after trigger or referential integrity constraint will further modify the
target of the UPDATE or INSERT operation. The FINAL TABLE qualifier applies to UPDATE and INSERT
operations.

The FROM clause qualifiers determine what version of the targeted data is in the intermediate result
table. These qualifiers do not affect the insertion, deletion, or updates of target table rows.

Target tables and views
When selecting result sets FROM SQL data-change operations, the target can be either a table or a view.

In SQL data-change operations against views, the result table cannot include rows that no longer satisfy
the view definition for NEW TABLE and FINAL TABLE. If you embed an INSERT or UPDATE statement that
references a view in a SELECT statement, the view must be defined as WITH CASCADED CHECK OPTION.
Alternatively, the view must satisfy the restrictions that would allow you to define it as WITH CASCADED
CHECK OPTION.

If the target of SQL data-change operations embedded in the FROM clause of a SELECT statement is a
fullselect, the result table can include rows that no longer qualify in the fullselect. This is because the
predicates in the WHERE clause are not re-evaluated against the updated values.

Result set sorting based on INPUT SEQUENCE
To SELECT rows in the same order as they are inserted into the target table or view, use the INPUT
SEQUENCE keywords in the ORDER BY clause. Use of the INPUT SEQUENCE keywords does not force
rows to be inserted in the same order they are provided.

The following example demonstrates the use of the INPUT SEQUENCE keywords in the ORDER BY clause
to sort the result set of an INSERT operation.

CREATE TABLE orders (purchase_date DATE,
 sales_person VARCHAR(16),
 region VARCHAR(10),
 quantity SMALLINT,
 order_num INTEGER NOT NULL
 GENERATED ALWAYS AS IDENTITY (START WITH 100,
 INCREMENT BY 1))

SELECT * FROM FINAL TABLE
 (INSERT INTO orders
 (purchase_date, sales_person, region, quantity)

726 IBM Db2 V11.5: SQL Reference

 VALUES (CURRENT DATE,'Judith','Beijing',6),
 (CURRENT DATE,'Marieke','Medway',5),
 (CURRENT DATE,'Hanneke','Halifax',5))
 ORDER BY INPUT SEQUENCE

PURCHASE_DATE SALES_PERSON REGION QUANTITY ORDER_NUM
------------- ---------------- ---------- -------- -----------
07/18/2003 Judith Beijing 6 100
07/18/2003 Marieke Medway 5 101
07/18/2003 Hanneke Halifax 5 102

You can also sort result set rows using include columns.

SQL statements
This topic contains tables that list the SQL statements classified by type.

• SQL schema statements (Table 114 on page 727)
• SQL data change statements (Table 115 on page 733)
• SQL data statements (Table 116 on page 733)
• SQL transaction statements (Table 117 on page 734)
• SQL connection statements (Table 118 on page 734)
• SQL dynamic statements (Table 119 on page 734)
• SQL session statements (Table 120 on page 735)
• SQL embedded host language statements (Table 121 on page 736)
• SQL control statements (Table 122 on page 737)

Table 114. SQL schema statements

SQL Statement Purpose

“ALTER AUDIT POLICY ” on page 750 Modifies the definition of an audit policy at the current server.

“ALTER BUFFERPOOL ” on page 752 Changes the definition of a buffer pool.

“ALTER DATABASE ” on page 757 Adds new storage paths to the collection of paths that are used
for automatic storage table spaces.

“ALTER EVENT MONITOR ” on page 761 Changes the definition of a TABLE or UNFORMATTED EVENT
TABLE event monitor.

“ALTER DATABASE PARTITION GROUP ” on
page 754

Changes the definition of a database partition group.

“ALTER FUNCTION ” on page 766 Modifies an existing function by changing the properties of the
function.

“ALTER HISTOGRAM TEMPLATE ” on page
769

Modifies the template describing the type of histogram that can
be used to override one or more of the default histograms of a
service class or a work class.

“ALTER INDEX ” on page 770 Changes the definition of an index.

“ALTER MASK ” on page 771 Changes the definition of a column mask.

“ALTER METHOD ” on page 772 Modifies an existing method by changing the method body
associated with the method.

“ALTER MODULE ” on page 773 Changes the definition of a module.

“ALTER NICKNAME ” on page 779 Changes the definition of a nickname.

“ALTER PACKAGE ” on page 788 Alters bind options for a package at the current server without
having to bind or rebind the package.

Chapter 1. Structured Query Language (SQL) 727

Table 114. SQL schema statements (continued)

SQL Statement Purpose

“ALTER PERMISSION ” on page 790 Changes the definition of a row permission.

“ALTER PROCEDURE (external) ” on page
791

Modifies an existing external procedure by changing the
properties of the procedure.

“ALTER PROCEDURE (sourced) ” on page
794

Modifies an existing sourced procedure by changing the data type
of one or more parameters of the sourced procedure.

“ALTER PROCEDURE (SQL) ” on page 795 Modifies an existing SQL procedure by changing the properties of
the procedure.

“ALTER SCHEMA ” on page 796 Modifies an existing schema by changing the data capture
attribute of the schema.

“ALTER SECURITY LABEL COMPONENT ”
on page 797

Modifies a security label component.

“ALTER SECURITY POLICY ” on page 800 Modifies a security policy.

“ALTER SEQUENCE ” on page 803 Changes the definition of a sequence.

“ALTER SERVER ” on page 806 Changes the definition of a data source in a federated system.

“ALTER SERVICE CLASS ” on page 809 Changes the definition of a service class.

“ALTER STOGROUP ” on page 818 Changes the definition of a storage group.

“ALTER TABLE” on page 822 Changes the definition of a table.

“ALTER TABLESPACE ” on page 880 Changes the definition of a table space.

“ALTER THRESHOLD ” on page 893 Changes the definition of a threshold.

“ALTER TRIGGER ” on page 905 Changes the definition of a trigger.

“ALTER TRUSTED CONTEXT ” on page 906 Changes the definition of a trusted context at the current server.

“ALTER TYPE (structured) ” on page 913 Changes the definition of a structured type.

“ALTER USAGE LIST” on page 919 Changes the definition of a usage list.

“ALTER USER MAPPING ” on page 920 Changes the definition of a user authorization mapping.

“ALTER VIEW ” on page 922 Changes the definition of a view by altering a reference type
column to add a scope.

“ALTER WORK ACTION SET ” on page 923 Adds, alters, or drops work actions within a work action set.

“ALTER WORK CLASS SET ” on page 936 Adds, alters, or drops work classes within a work class set.

“ALTER WORKLOAD ” on page 941 Changes a workload.

“ALTER WRAPPER ” on page 954 Updates the options that, along with a wrapper module, are used
to access data sources of a specific type.

“ALTER XSROBJECT ” on page 955 Enables or disables decomposition support for a specific XML
schema.

“AUDIT ” on page 958 Determines the audit policy that is to be used for a particular
database or database object at the current server.

“COMMENT ” on page 973 Replaces or adds a comment to the description of an object.

“CREATE ALIAS ” on page 1019 Defines an alias for a module, nickname, sequence, table, view, or
another alias.

728 IBM Db2 V11.5: SQL Reference

Table 114. SQL schema statements (continued)

SQL Statement Purpose

“CREATE AUDIT POLICY ” on page 1022 Defines an auditing policy at the current server.

“CREATE BUFFERPOOL ” on page 1024 Defines a new buffer pool.

“CREATE DATABASE PARTITION GROUP ”
on page 1027

Defines a database partition group.

“CREATE EVENT MONITOR ” on page 1029 Specifies events in the database to monitor.

“CREATE EVENT MONITOR (activities) ” on
page 1046

Specifies activity events in the database to monitor.

“CREATE EVENT MONITOR (change
history) ” on page 1055

Specifies change history events in the database to monitor.

“CREATE EVENT MONITOR (locking) ” on
page 1061

Specifies locking events in the database to monitor.

“CREATE EVENT MONITOR (package
cache) statement” on page 1065

Specifies package cache statement events in the database to
monitor.

“CREATE EVENT MONITOR (statistics) ” on
page 1071

Specifies statistics events in the database to monitor.

“CREATE EVENT MONITOR (threshold
violations) ” on page 1081

Specifies threshold violation events in the database to monitor.

“CREATE EXTERNAL TABLE ” on page 1095 Defines an external table.

“CREATE FUNCTION ” on page 1123 Registers a user-defined function.

“CREATE FUNCTION ” on page 1123 Registers a user-defined function.

“CREATE FUNCTION (aggregate interface) ”
on page 1124

Registers a user-defined aggregate function at the current server.

“CREATE FUNCTION (external scalar) ” on
page 1140

Registers a user-defined external scalar function.

“CREATE FUNCTION (external table) ” on
page 1166

Registers a user-defined external table function.

“CREATE FUNCTION (OLE DB external
table) ” on page 1187

Registers a user-defined OLE DB external table function.

“CREATE FUNCTION (sourced or
template) ” on page 1196

Registers a user-defined sourced function or a function template.

“CREATE FUNCTION (SQL scalar, table, or
row) ” on page 1208

Defines a user-defined SQL function.

“CREATE FUNCTION MAPPING ” on page
1224

Defines a function mapping.

“CREATE GLOBAL TEMPORARY TABLE ” on
page 1228

Defines a created temporary table.

“CREATE HISTOGRAM TEMPLATE ” on page
1239

Defines a template describing the type of histogram that can
be used to override one or more of the default histograms of a
service class or a work class.

“CREATE INDEX ” on page 1240 Defines an index on a table.

Chapter 1. Structured Query Language (SQL) 729

Table 114. SQL schema statements (continued)

SQL Statement Purpose

“CREATE INDEX EXTENSION ” on page
1261

Defines an extension object for use with indexes on tables with
structured or distinct type columns.

“CREATE MASK ” on page 1266 Defines a column mask.

“CREATE METHOD ” on page 1271 Defines a method body to associate with a previously defined
method specification.

“CREATE MODULE ” on page 1276 Defines a module.

“CREATE NICKNAME ” on page 1277 Defines a nickname.

“CREATE PERMISSION ” on page 1288 Defines a row permission.

“CREATE PROCEDURE ” on page 1291 Defines a procedure.

“CREATE PROCEDURE (external) ” on page
1292

Defines an external procedure.

“CREATE PROCEDURE (sourced) ” on page
1307

Defines a procedure (the sourced procedure) that is based on
another procedure (the source procedure). In a federated system,
a federated procedure is a sourced procedure whose source
procedure is at a supported data source.

“CREATE PROCEDURE (SQL) ” on page
1312

Defines an SQL procedure.

“CREATE ROLE ” on page 1320 Defines a role at the current server.

“CREATE SCHEMA ” on page 1321 Defines a schema.

“CREATE SECURITY LABEL COMPONENT ”
on page 1324

Defines a component that is to be used as part of a security policy.

“CREATE SECURITY LABEL ” on page 1326 Defines a security label.

“CREATE SECURITY POLICY ” on page
1327

Defines a security policy.

“CREATE SEQUENCE ” on page 1328 Defines a sequence.

“CREATE SERVER ” on page 1343 Defines a data source to a federated database.

“CREATE SERVICE CLASS ” on page 1333 Defines a service class.

“CREATE STOGROUP ” on page 1349 Defines a new storage group within the database.

“CREATE SYNONYM ” on page 1351 Defines a synonym for a module, nickname, sequence, table, view,
or another synonym.

“CREATE TABLE ” on page 1351 Defines a table.

“CREATE TABLESPACE ” on page 1428 Defines a table space.

“CREATE THRESHOLD ” on page 1443 Defines a threshold.

“CREATE TRANSFORM ” on page 1457 Defines transformation functions.

“CREATE TRIGGER ” on page 1460 Defines a trigger.

“CREATE TRUSTED CONTEXT ” on page
1474

Defines a trusted context at the current server.

“CREATE TYPE ” on page 1479 Defines a user-defined data type at the current server.

730 IBM Db2 V11.5: SQL Reference

Table 114. SQL schema statements (continued)

SQL Statement Purpose

“CREATE TYPE (array) ” on page 1480 Defines an array type.

“CREATE TYPE (cursor) ” on page 1485 Defines a cursor type.

“CREATE TYPE (distinct) ” on page 1487 Defines a distinct data type.

“CREATE TYPE (row) ” on page 1495 Defines a row type.

“CREATE TYPE (structured) ” on page 1500 Defines a structured data type.

“CREATE TYPE MAPPING ” on page 1521 Defines a mapping between data types.

“CREATE USAGE LIST” on page 1527 Defines a usage list in order to monitor all unique sections (DML
statements) that have referenced a particular table or index
during their execution.

“CREATE USER MAPPING ” on page 1529 Defines a mapping between user authorizations.

“CREATE VARIABLE ” on page 1531 Defines a global variable.

“CREATE VIEW ” on page 1539 Defines a view of one or more table, view or nickname.

“CREATE WORK ACTION SET ” on page
1552

Defines a work action set and work actions within the work action
set.

“CREATE WORK CLASS SET ” on page 1560 Defines a work class set.

“CREATE WORKLOAD ” on page 1564 Defines a workload.

“CREATE WRAPPER ” on page 1579 Registers a wrapper.

“DROP ” on page 1616 Deletes objects in the database.

“GRANT (database authorities) ” on page
1675

Grants authorities on the entire database.

“GRANT (exemption) ” on page 1680 Grants an exemption on an access rule for a specified label-based
access control (LBAC) security policy.

“GRANT (global variable privileges) ” on
page 1682

Grants one or more privileges on a created global variable.

“GRANT (index privileges) ” on page 1684 Grants the CONTROL privilege on indexes in the database.

“GRANT (module privileges) ” on page
1686

Grants privileges on a module.

“GRANT (package privileges) ” on page
1687

Grants privileges on packages in the database.

“GRANT (role) ” on page 1690 Grants roles to users, groups, or to other roles.

“GRANT (routine privileges) ” on page 1692 Grants privileges on a routine (function, method, or procedure).

“GRANT (schema privileges and
authorities) ” on page 1696

Grants privileges on a schema.

“GRANT (security label) ” on page 1701 Grants a label-based access control (LBAC) security label for read
access, write access, or for both read and write access.

“GRANT (sequence privileges) ” on page
1703

Grants privileges on a sequence.

“GRANT (server privileges) ” on page 1705 Grants privileges to query a specific data source.

Chapter 1. Structured Query Language (SQL) 731

Table 114. SQL schema statements (continued)

SQL Statement Purpose

“GRANT (SETSESSIONUSER privilege) ” on
page 1707

Grants the privilege to use the SET SESSION AUTHORIZATION
statement.

“GRANT (table space privileges) ” on page
1708

Grants privileges on a table space.

“GRANT (table, view, or nickname
privileges) ” on page 1710

Grants privileges on tables, views and nicknames.

“GRANT (workload privileges) ” on page
1716

Grants the USAGE privilege on a workload.

“GRANT (XSR object privileges) ” on page
1717

Grants the USAGE privilege on an XSR object.

“REFRESH TABLE ” on page 1757 Refreshes the data in a materialized query table.

“RENAME ” on page 1762 Renames an existing table.

“RENAME STOGROUP ” on page 1764 Renames an existing storage group.

“RENAME TABLESPACE ” on page 1765 Renames an existing table space.

“REVOKE (database authorities) ” on page
1771

Revokes authorities from the entire database.

“REVOKE (exemption) ” on page 1775 Revokes the exemption on an access rule for a specified label-
based access control (LBAC) security policy.

“REVOKE (global variable privileges) ” on
page 1777

Revokes one or more privileges on a created global variable.

“REVOKE (index privileges) ” on page 1778 Revokes the CONTROL privilege on given indexes.

“REVOKE (module privileges) ” on page
1780

Revokes privileges on a module.

“REVOKE (package privileges) ” on page
1781

Revokes privileges from given packages in the database.

“REVOKE (role) ” on page 1783 Revokes roles from users, groups, or other roles.

“REVOKE (routine privileges) ” on page
1785

Revokes privileges on a routine (function, method, or procedure).

“REVOKE (schema privileges and
authorities) ” on page 1789

Revokes privileges on a schema.

“REVOKE (security label) ” on page 1792 Revokes a label-based access control (LBAC) security label for
read access, write access, or for both read and write access.

“REVOKE (sequence privileges)” on page
1793

Revokes privileges on a sequence.

“REVOKE (server privileges) ” on page
1795

Revokes privileges to query a specific data source.

“REVOKE (SETSESSIONUSER privilege) ”
on page 1797

Revokes the privilege to use the SET SESSION AUTHORIZATION
statement.

“REVOKE (table space privileges) ” on page
1798

Revokes the USE privilege on a given table space.

732 IBM Db2 V11.5: SQL Reference

Table 114. SQL schema statements (continued)

SQL Statement Purpose

“REVOKE (table, view, or nickname
privileges) ” on page 1799

Revokes privileges from given tables, views or nicknames.

“REVOKE (workload privileges) ” on page
1804

Revokes the USAGE privilege on a workload.

“REVOKE (XSR object privileges) ” on page
1805

Revokes the USAGE privilege on an XSR object.

“SET INTEGRITY ” on page 1851 Sets the set integrity pending state and checks data for constraint
violations.

“TRANSFER OWNERSHIP ” on page 1892 Transfers ownership of a database object.

Table 115. SQL data change statements

SQL Statement Purpose

“DELETE ” on page 1599 Deletes one or more rows from a table.

“INSERT ” on page 1721 Inserts one or more rows into a table.

“MERGE ” on page 1735 Updates a target (a table or view) using data from a source (result
of a table reference).

“TRUNCATE ” on page 1902 Deletes all rows from a table.

“UPDATE ” on page 1905 Updates the values of one or more columns in one or more rows
of a table.

Table 116. SQL data statements

SQL Statement Purpose

“ALLOCATE CURSOR ” on page 749 Allocates a cursor for the result set identified by the result set
locator variable.

“ASSOCIATE LOCATORS ” on page 956 Gets the result set locator value for each result set returned by a
procedure.

“CLOSE ” on page 971 Closes a cursor.

“DECLARE CURSOR ” on page 1581 Defines an SQL cursor.

“FETCH ” on page 1659 Assigns values of a row to host variables.

“FLUSH AUTHENTICATION CACHE ” on
page 1668

Removes cached users in the authentication cache

“FLUSH BUFFERPOOLS ” on page 1663 Writes out the dirty pages in the buffer pools to disk.

“FLUSH EVENT MONITOR ” on page 1663 Writes out the active internal buffer of an event monitor.

“FLUSH FEDERATED CACHE ” on page
1664

The FLUSH FEDERATED CACHE statement flushes the federated
cache, allowing fresh metadata to be obtained the next time an
SQL statement is issued against the remote table or view using a
federated three part name.

“FLUSH OPTIMIZATION PROFILE CACHE ”
on page 1665

Removes the cached optimization profiles.

Chapter 1. Structured Query Language (SQL) 733

Table 116. SQL data statements (continued)

SQL Statement Purpose

“FLUSH PACKAGE CACHE ” on page 1667 Removes all cached dynamic SQL statements currently in the
package cache.

“FREE LOCATOR ” on page 1671 Removes the association between a locator variable and its value.

“LOCK TABLE ” on page 1732 Either prevents concurrent processes from changing a table or
prevents concurrent processes from using a table.

“OPEN ” on page 1746 Prepares a cursor that will be used to retrieve values when the
FETCH statement is issued.

“SELECT INTO ” on page 1810 Specifies a result table of no more than one row and assigns the
values to host variables.

“SET variable ” on page 1878 Assigns values to variables.

“VALUES INTO ” on page 1921 Specifies a result table of no more than one row and assigns the
values to host variables.

Table 117. SQL transaction statements

SQL Statement Purpose

“COMMIT ” on page 982 Terminates a unit of work and commits the database changes
made by that unit of work.

“RELEASE SAVEPOINT ” on page 1761 Releases a savepoint within a transaction.

“ROLLBACK ” on page 1806 Terminates a unit of work and backs out the database changes
made by that unit of work.

“SAVEPOINT ” on page 1808 Sets a savepoint within a transaction.

Table 118. SQL connection statements

SQL Statement Purpose

“CONNECT (type 1) ” on page 1006 Connects to an application server according to the rules for
remote unit of work.

“CONNECT (type 2) ” on page 1012 Connects to an application server according to the rules for
application-directed distributed unit of work.

“DISCONNECT ” on page 1614 Terminates one or more connections when there is no active unit
of work.

“RELEASE (connection) ” on page 1760 Places one or more connections in the release-pending state.

“SET CONNECTION ” on page 1814 Changes the state of a connection from dormant to current,
making the specified location the current server.

Table 119. SQL dynamic statements

SQL Statement Purpose

“DESCRIBE ” on page 1608 Obtains information about an object.

“DESCRIBE INPUT ” on page 1608 Obtains information about the input parameter markers of a
prepared statement.

“DESCRIBE OUTPUT ” on page 1611 Obtains information about a prepared statement or information
about the select list columns in a prepared SELECT statement.

734 IBM Db2 V11.5: SQL Reference

Table 119. SQL dynamic statements (continued)

SQL Statement Purpose

“EXECUTE ” on page 1645 Executes a prepared SQL statement.

“EXECUTE IMMEDIATE ” on page 1653 Prepares and executes an SQL statement.

“PREPARE ” on page 1752 Prepares an SQL statement (with optional parameters) for
execution.

Table 120. SQL session statements

SQL Statement Purpose

“DECLARE GLOBAL TEMPORARY TABLE ”
on page 1586

Defines a declared temporary table.

“EXPLAIN ” on page 1655 Captures information about the chosen access plan.

“SET COMPILATION ENVIRONMENT ” on
page 1813

Changes the current compilation environment in the connection
to match the values contained in the compilation environment
provided by a deadlock event monitor.

“SET CURRENT DECFLOAT ROUNDING
MODE ” on page 1816

Verifies that the specified rounding mode is the value that is
currently set for the CURRENT DECFLOAT ROUNDING MODE
special register.

“SET CURRENT DEFAULT TRANSFORM
GROUP ” on page 1817

Changes the value of the CURRENT DEFAULT TRANSFORM GROUP
special register.

“SET CURRENT DEGREE ” on page 1818 Changes the value of the CURRENT DEGREE special register.

“SET CURRENT EXPLAIN MODE ” on page
1820

Changes the value of the CURRENT EXPLAIN MODE special
register.

“SET CURRENT EXPLAIN SNAPSHOT ” on
page 1822

Changes the value of the CURRENT EXPLAIN SNAPSHOT special
register.

“SET CURRENT FEDERATED
ASYNCHRONY ” on page 1824

Changes the value of the CURRENT FEDERATED ASYNCHRONY
special register.

“SET CURRENT IMPLICIT XMLPARSE
OPTION ” on page 1825

Changes the value of the CURRENT IMPLICIT XMLPARSE OPTION
special register.

“SET CURRENT ISOLATION ” on page 1826 Changes the value of the CURRENT ISOLATION special register.

“SET CURRENT LOCALE LC_MESSAGES ”
on page 1827

Changes the value of the CURRENT LOCALE LC_MESSAGES
special register.

“SET CURRENT LOCALE LC_TIME ” on page
1828

Changes the value of the CURRENT LOCALE LC_TIME special
register.

“SET CURRENT LOCK TIMEOUT ” on page
1829

Changes the value of the CURRENT LOCK TIMEOUT special
register.

“SET CURRENT MAINTAINED TABLE TYPES
FOR OPTIMIZATION ” on page 1830

Changes the value of the CURRENT MAINTAINED TABLE TYPES
FOR OPTIMIZATION special register.

“SET CURRENT MDC ROLLOUT MODE ” on
page 1832

Assigns a value to the CURRENT MDC ROLLOUT MODE special
register.

“SET CURRENT OPTIMIZATION PROFILE ”
on page 1834

Assigns a value to the CURRENT OPTIMIZATION PROFILE special
register.

Chapter 1. Structured Query Language (SQL) 735

Table 120. SQL session statements (continued)

SQL Statement Purpose

“SET CURRENT PACKAGE PATH ” on page
1836

Assigns a value to the CURRENT PACKAGE PATH special register.

“SET CURRENT PACKAGESET ” on page
1839

Sets the schema name for package selection.

“SET CURRENT QUERY OPTIMIZATION ”
on page 1841

Changes the value of the CURRENT QUERY OPTIMIZATION
special register.

“SET CURRENT REFRESH AGE ” on page
1843

Changes the value of the CURRENT REFRESH AGE special register.

“SET CURRENT SQL_CCFLAGS ” on page
1845

Changes the value of the CURRENT SQL_CCFLAGS special
register.

“SET CURRENT TEMPORAL
BUSINESS_TIME ” on page 1846

Changes the value of the CURRENT TEMPORAL BUSINESS_TIME
special register.

“SET CURRENT TEMPORAL
SYSTEM_TIME ” on page 1847

Changes the value of the CURRENT TEMPORAL SYSTEM_TIME
special register.

“SET ENCRYPTION PASSWORD ” on page
1848

Sets the password for encryption.

“SET EVENT MONITOR STATE ” on page
1850

Activates or deactivates an event monitor.

“SET PASSTHRU ” on page 1867 Opens a session for submitting data source native SQL directly to
the data source.

“SET PATH ” on page 1868 Changes the value of the CURRENT PATH special register.

“SET ROLE ” on page 1870 Verifies that the authorization ID of the session is a member of a
specific role.

“SET SCHEMA ” on page 1871 Changes the value of the CURRENT SCHEMA special register.

“SET SERVER OPTION ” on page 1873 Sets server option settings.

“SET SESSION AUTHORIZATION ” on page
1874

Changes the value of the SESSION USER special register.

“SET USAGE LIST STATE” on page 1876 Manages the state of a usage list and the associated data and
memory.

Table 121. SQL embedded host language statements

SQL Statement Purpose

“BEGIN DECLARE SECTION ” on page 961 Marks the beginning of a host variable declaration section.

“END DECLARE SECTION ” on page 1645 Marks the end of a host variable declaration section.

“GET DIAGNOSTICS ” on page 1671 Used to obtain information about the previously executed SQL
statement.

“INCLUDE ” on page 1719 Inserts code or declarations into a source program.

“RESIGNAL ” on page 1767 Used to resignal an error or warning condition.

“SIGNAL ” on page 1889 Used to signal an error or warning condition.

“WHENEVER ” on page 1924 Defines actions to be taken on the basis of SQL return codes.

736 IBM Db2 V11.5: SQL Reference

Table 122. SQL control statements

SQL Statement Purpose

“CALL ” on page 962 Calls a procedure.

“CASE ” on page 969 Selects an execution path based on multiple conditions.

“Compound SQL ” on page 984 Encloses SQL statements with BEGIN and END keywords.

“Compound SQL (inlined) ” on page 984 Combines one or more other SQL statements into an dynamic
block.

“Compound SQL (embedded) ” on page
988

Combines one or more other SQL statements into an executable
block.

“Compound SQL (compiled) ” on page
991

Groups other statements together in an SQL procedure.

“FOR ” on page 1668 Executes a statement or group of statements for each row of a
table.

“GOTO ” on page 1674 Used to branch to a user-defined label within an SQL procedure.

“IF ” on page 1718 Selects an execution path based on the evaluation of a condition.

“ITERATE ” on page 1730 Causes the flow of control to return to the beginning of a labelled
loop.

“LEAVE ” on page 1731 Transfers program control out of a loop or a compound statement.

“LOOP ” on page 1733 Repeats the execution of a statement or a group of statements.

“PIPE ” on page 1750 Returns a row from a compiled table function.

“REPEAT ” on page 1766 Executes a statement or group of statements until a search
condition is true.

“RESIGNAL ” on page 1767 Used to resignal an error or warning condition.

“RETURN ” on page 1769 Used to return from a routine.

“SIGNAL ” on page 1889 Used to signal an error or warning condition.

“WHILE ” on page 1926 Repeats the execution of a statement or group of statements
while a specified condition is true.

How SQL statements are invoked
SQL statements are classified as executable or non-executable.

An executable statement can be invoked in four ways. It can be:

• Issued interactively
• Prepared and executed dynamically
• Embedded in an application program
• Embedded in an SQL procedure, trigger, compound SQL (compiled), or compound SQL (inlined) with

some restrictions:

– Refer to "SQL-procedure-statement" in “Compound SQL (compiled) ” on page 991 for the set of
executable statements supported in SQL procedures and compound SQL (compiled) statements.

– Refer to "SQL-statement" in “Compound SQL (inlined) ” on page 984 statement for the set of
executable statements supported in compound SQL (inlined) statements.

– Refer to "SQL-procedure-statement" in “CREATE TRIGGER ” on page 1460 for the set of executable
statements supported in a trigger.

Chapter 1. Structured Query Language (SQL) 737

Depending on the statement, some or all of these methods can be used. Statements embedded in REXX
are prepared and executed dynamically.

A non-executable statement can only be embedded in an application program.

Another SQL statement construct is the select-statement. A select-statement can be invoked in three
ways. It can be:

• Issued interactively
• Prepared dynamically, referenced in DECLARE CURSOR, and executed implicitly by OPEN, FETCH and

CLOSE (dynamic invocation)
• Included in DECLARE CURSOR, and executed implicitly by OPEN, FETCH and CLOSE (static invocation)

Embedding a statement in an application program
SQL statements can be included in a source program that will be submitted to a precompiler. Such
statements are said to be embedded in the program.

An embedded statement can be placed anywhere in the program where a host language statement is
allowed. Each embedded statement must be preceded by the keywords EXEC SQL.

An executable statement embedded in an application program is executed every time a statement of the
host language would be executed if it were specified in the same place. Thus, a statement within a loop is
executed every time the loop is executed, and a statement within a conditional construct is executed only
when the condition is satisfied.

An embedded statement can contain references to host variables. A host variable referenced in this way
can be used in two ways. It can be used:

• As input (the current value of the host variable is used in the execution of the statement)
• As output (the variable is assigned a new value as a result of executing the statement)

In particular, all references to host variables in expressions and predicates are effectively replaced by
current values of the variables; that is, the variables are used as input.

All executable statements should be followed by a test of the SQL return code. Alternatively, the
WHENEVER statement (which is itself non-executable) can be used to change the flow of control
immediately after the execution of an embedded statement.

All objects referenced in data manipulation language (DML) statements must exist when the statements
are bound to a database.

An embedded non-executable statement is processed only by the precompiler. The precompiler reports
any errors encountered in the statement. The statement is never processed during program execution;
therefore, such statements should not be followed by a test of the SQL return code.

Statements can be included in the SQL-procedure-body portion of the CREATE PROCEDURE statement.
Such statements are said to be embedded in the SQL procedure. Whenever an SQL statement description
refers to a host-variable, an SQL-variable can be used if the statement is embedded in an SQL procedure.

Dynamic preparation and execution
An application program can dynamically build an SQL statement in the form of a character string placed in
a host variable.

In general, the statement is built from some data available to the program (for example, input from
a workstation). The statement (not a select-statement) constructed can be prepared for execution by
means of the (embedded) PREPARE statement, and executed by means of the (embedded) EXECUTE
statement. Alternatively, an (embedded) EXECUTE IMMEDIATE statement can be used to prepare and
execute the statement in one step.

A statement that is going to be dynamically prepared must not contain references to host variables. It can
instead contain parameter markers. (For rules concerning parameter markers, see "PREPARE".) When the
prepared statement is executed, the parameter markers are effectively replaced by current values of the

738 IBM Db2 V11.5: SQL Reference

host variables specified in the EXECUTE statement. Once prepared, a statement can be executed several
times with different values for the host variables. Parameter markers are not allowed in the EXECUTE
IMMEDIATE statement.

Successful or unsuccessful execution of the statement is indicated by the setting of an SQL return code
in the SQLCA after the EXECUTE (or EXECUTE IMMEDIATE) statement completes. The SQL return code
should be checked, as previously described. For more information, see “Detecting and processing error
and warning conditions in host language applications” on page 739.

Static invocation of a select-statement
A select-statement can be included as a part of the (non-executable) DECLARE CURSOR statement.

Such a statement is executed every time the cursor is opened by means of the (embedded) OPEN
statement. After the cursor is open, the result table can be retrieved, one row at a time, by successive
executions of the FETCH statement.

Used in this way, the select-statement can contain references to host variables. These references are
effectively replaced by the values that the variables have when the OPEN statement executes.

Dynamic invocation of a select-statement
An application program can dynamically build a select-statement in the form of a character string placed
in a host variable.

In general, the statement is built from some data available to the program (for example, a query obtained
from a workstation). The statement so constructed can be prepared for execution by means of the
(embedded) PREPARE statement, and referenced by a (non-executable) DECLARE CURSOR statement.
The statement is then executed every time the cursor is opened by means of the (embedded) OPEN
statement. After the cursor is open, the result table can be retrieved, one row at a time, by successive
executions of the FETCH statement.

Used in this way, the select-statement must not contain references to host variables. It can contain
parameter markers instead. The parameter markers are effectively replaced by the values of the host
variables specified in the OPEN statement.

Interactive invocation
A capability for entering SQL statements from a workstation is part of the architecture of the database
manager. A statement entered in this way is said to be issued interactively.

Such a statement must be an executable statement that does not contain parameter markers or
references to host variables, because these make sense only in the context of an application program.

SQL use with other host systems
SQL statement syntax exhibits minor variations among different types of host systems (Db2 for z/OS, Db2
for IBM i, Db2).

Regardless of whether the SQL statements in an application are static or dynamic, it is important - if the
application is meant to access different database host systems - to ensure that the SQL statements and
precompile/bind options are supported on the database systems that the application will access.

Further information about SQL statements used in other host systems can be found in the SQL Reference
manuals for Db2 for z/OS and Db2 for IBM i.

Detecting and processing error and warning conditions in host language
applications

An application program containing executable SQL statements can use either SQLCODE or SQLSTATE
values to handle return codes from SQL statements.

There are two ways in which an application can get access to these values.

Chapter 1. Structured Query Language (SQL) 739

• Include a structure named SQLCA. The SQLCA includes an integer variable named SQLCODE and a
character string variable named SQLSTATE. In REXX, an SQLCA is provided automatically. In other
languages, an SQLCA can be obtained by using the INCLUDE SQLCA statement.

• If LANGLEVEL SQL92E is specified as a precompile option, a variable named SQLCODE or SQLSTATE
can be declared in the SQL declare section of the program. If neither of these variables is declared in
the SQL declare section, it is assumed that a variable named SQLCODE is declared elsewhere in the
program. With LANGLEVEL SQL92E, the program should not have an INCLUDE SQLCA statement.

An SQLCODE is set by the database manager after each SQL statement executes. All database managers
conform to the ISO/ANSI SQL standard, as follows:

• If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.
• If SQLCODE = 100, "no data" was found. For example, a FETCH statement returned no data, because

the cursor was positioned after the last row of the result table.
• If SQLCODE > 0 and not = 100, execution was successful with a warning.
• If SQLCODE = 0 and SQLWARN0 = 'W', execution was successful, but one or more warning indicators

were set.
• If SQLCODE < 0, execution was not successful.

The meaning of SQLCODE values other than 0 and 100 is product-specific.

An SQLSTATE is set by the database manager after each SQL statement executes. Application programs
can check the execution of SQL statements by testing SQLSTATE instead of SQLCODE. SQLSTATE provides
common codes for common error conditions. Application programs can test for specific errors or classes
of errors. The coding scheme is the same for all IBM database managers, and is based on the ISO/ANSI
SQL92 standard.

SQL comments
Static SQL statements can include host language or SQL comments. Dynamic SQL statements can include
SQL comments.

There are two types of SQL comments:
simple comments

Simple comments are introduced by two consecutive hyphens (--) and end with the end of line.
bracketed comments

Bracketed comments are introduced by /* and end with */.

The following rules apply to the use of simple comments:

• The two hyphens must be on the same line and must not be separated by a space.
• Simple comments can be started wherever a space is valid (except within a delimiter token or between

'EXEC' and 'SQL').
• Simple comments cannot be continued to the next line.
• In COBOL, the hyphens must be preceded by a space.

The following rules apply to the use of bracketed comments:

• The /* must be on the same line and must not be separated by a space.
• The */ must be on the same line and must not be separated by a space.
• Bracketed comments can be started wherever a space is valid (except within a delimiter token or

between 'EXEC' and 'SQL').
• Bracketed comments can be continued to subsequent lines.

740 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: This example shows how to include simple comments in a statement:

 CREATE VIEW PRJ_MAXPER -- PROJECTS WITH MOST SUPPORT PERSONNEL
 AS SELECT PROJNO, PROJNAME -- NUMBER AND NAME OF PROJECT
 FROM PROJECT
 WHERE DEPTNO = 'E21' -- SYSTEMS SUPPORT DEPT CODE
 AND PRSTAFF > 1

• Example 2: This example shows how to include bracketed comments in a statement:

 CREATE VIEW PRJ_MAXPER /* PROJECTS WITH MOST SUPPORT
 PERSONNEL */
 AS SELECT PROJNO, PROJNAME /* NUMBER AND NAME OF PROJECT */
 FROM PROJECT
 WHERE DEPTNO = 'E21' /* SYSTEMS SUPPORT DEPT CODE */
 AND PRSTAFF > 1

Conditional compilation in SQL
Conditional compilation allows SQL to include compiler directives which are used to determine the actual
SQL that gets compiled.

There are two types of compiler directives that can be used for conditional compilation:
Selection directive

A compiler control statement used to determine the selection of a code fragment. The _IF directive
can reference inquiry directives or global variables that are defined as a constant.

Inquiry directive
A reference to a compiler named constant that is assigned by the system or specified as a conditional
compilation named constant in CURRENT SQL_CCFLAGS. An inquiry directive can be used directly or
in a selection directive.

These directives can be used in the following contexts:

• SQL procedure definitions
• Compiled SQL function definitions
• Compiled trigger definitions
• Oracle PL/SQL package definitions

A directive can only appear after the object type (FUNCTION, PACKAGE, PACKAGE BODY, PROCEDURE, or
TRIGGER) has been identified in the data definition language statement.

Selection directive
The selection directive is very similar to the IF statement except there are prefixes on the keywords to
indicate use of conditional compilation and the terminating keyword is _END.

_IF search-condition _THEN code-fragment

_ELSEIF search-condition _THEN code-fragment

_ELSE code-fragment

_END

search-condition
Specifies the condition that is evaluated to determine what code-fragment, if any, is included. If the
condition is unknown or false, evaluation continues with the next search condition, until a condition

Chapter 1. Structured Query Language (SQL) 741

is true, the _ELSE clause is reached, or the end of the selection directive is reached. The search
condition can include only the following elements (SQLSTATE 428HV):

• Constants of type BOOLEAN, INTEGER, or VARCHAR
• NULL constants
• Inquiry directives
• Global constants, where the defined constant value is a simple literal of type BOOLEAN, INTEGER,

or VARCHAR
• Basic predicates
• NULL predicates
• Predicates that are a Boolean constant or a Boolean inquiry directive
• Logical operators (AND, OR, and NOT)

code-fragment
A portion of SQL code that can be included in the context of the SQL statement where the selection
directive appears. There must not be a selection directive in code-fragment (SQLSTATE 428HV).

Inquiry directive
An inquiry directive is used to inquire about the compilation environment. An inquiry directive is specified
in an SQL statement as an ordinary identifier prefixed with two underscore characters. The actual
identifier can represent one of the following values:

• A compilation environment value defined by the system
• A compilation value defined by a user at the database level or at the individual session level

The only compilation environment variable defined by the system is __SQL_LINE, which provides the line
number of SQL that is currently being compiled.

A user-defined compilation value can be defined at the database level using the sql_ccflags database
configuration parameter or at a session level by assigning it to the CURRENT SQL_CCFLAGS special
register.

If an inquiry directive is referenced but is not defined, processing continues assuming that the value for
the inquiry directive is the null value.

Notes
• References to global variables defined as constants: A reference to a global variable (which can also

be a reference to a module variable published in a module) in a selection directive is used to provide a
value based on a constant at the time of compilation only. The referenced global variable must meet the
following requirements:

– Exist at the current server (SQLSTATE 42704)
– Have a data type of BOOLEAN, INTEGER, or VARCHAR (SQLSTATE 428HV)
– Be defined using the CONSTANT clause with a single constant value (SQLSTATE 428HV)

Such a global variable is known as a global constant. Subsequent changes to the global constant do not
have any impact on statements that are already compiled.

• Syntax alternatives: If the data server environment is enabled for PL/SQL statement execution:

– ELSIF can be specified instead of ELSEIF
– A dollar character ($) can be used instead of an underscore character (_) as the prefix for the

keywords for conditional compilation
– Two dollar characters ($$) can be used instead of two underscore characters (__) as the prefix for an

inquiry directive

742 IBM Db2 V11.5: SQL Reference

The dollar character prefix is intended only to support existing SQL statements that use inquiry
directives and is not recommended for use when writing new SQL statements.

Example
Specify a database-wide setting for a compilation value called DBV97 that has a value of TRUE.

 UPDATE DATABASE CONFIGURATION USING SQL_CCFLAGS DB2V97:TRUE

The value is available as the default for any subsequent connection to the database.

If a particular session needed a maximum number of years compilation value for use in defining some
routines in the current session, the default SQL_CCFLAGS can be extended using the SET CURRENT
SQL_CCFLAGS statement.

 BEGIN
 DECLARE CCFLAGS_LIST VARCHAR(1024);
 SET CCFLAGS_LIST = CURRENT SQL_CCFLAGS CONCAT ',max_years:50';
 SET CURRENT SQL_CCFLAGS = CCFLAGS_LIST;
 END

The use of CURRENT SQL_CCFLAGS on the right side of the assignment to the CCFLAGS_LIST variable
keeps the existing SQL_CCFLAGS settings, while the string constant provides the additional compilation
values.

Here is an example of a CREATE PROCEDURE statement that uses the contents of the CURRENT
SQL_CCFLAGS.

 CREATE PROCEDURE CHECK_YEARS (IN YEARS_WORKED INTEGER)
 BEGIN
 _IF __DB2V97 _THEN
 IF YEARS_WORKED > __MAX_YEARS THEN
 ...
 END IF;
 _END

The inquiry directive __DB2V97 is used as a Boolean value to determine if the code can be included. The
inquiry directive __MAX_YEARS is replaced during compilation by the constant value 50.

About SQL control statements
SQL control statements, also called SQL Procedural Language (SQL PL), are SQL statements that allow
SQL to be used in a manner similar to writing a program in a structured programming language.

SQL control statements provide the capability to control the logic flow, declare, and set variables, and
handle warnings and exceptions. Some SQL control statements include other nested SQL statements. SQL
control statements can be used in the body of a routine, trigger or a compound statement.

References to SQL parameters, SQL variables, and global variables
SQL parameters, SQL variables, and global variables can be referenced anywhere in an SQL procedure
statement where an expression or variable can be specified.

Host variables cannot be specified in SQL routines, SQL triggers or dynamic compound statements. SQL
parameters can be referenced anywhere in the routine body, and can be qualified with the routine name.
SQL variables can be referenced anywhere in the compound statement in which they are declared, and
can be qualified with the label name specified at the beginning of the compound statement. If an SQL
parameter or SQL variable has a row data type, fields can be referenced anywhere an SQL parameter or
SQL variable can be referenced. Global variables can be referenced within any expression as long as the
expression is not required to be deterministic. The following scenarios require deterministic expressions,
which preclude the use of global variables:

• Check constraints
• Definitions of generated columns

Chapter 1. Structured Query Language (SQL) 743

• Refresh immediate MQTs

All SQL parameters, SQL variables, row variable fields, and global variables are considered nullable. The
name of an SQL parameter, SQL variable, row variable field, or global variable in an SQL routine can be the
same as the name of a column in a table or view referenced in the routine. The name of an SQL variable or
row variable field can also be the same as the name of another SQL variable or row variable field declared
in the same routine. This can occur when the two SQL variables are declared in different compound
statements. The compound statement that contains the declaration of an SQL variable determines the
scope of that variable. For more information, see “Compound SQL (compiled) ” on page 991.

The name of an SQL variable or SQL parameter in an SQL routine can be the same as the name of
an identifier used in certain SQL statements. If the name is not qualified, the following rules describe
whether the name refers to the identifier or to the SQL parameter or SQL variable:

• In the SET PATH and SET SCHEMA statements, the name is checked as an SQL parameter or SQL
variable. If not found as an SQL variable or SQL parameter, it is used as an identifier.

• In the CONNECT, DISCONNECT, RELEASE, and SET CONNECTION statements, the name is used as an
identifier.

Names that are the same should be explicitly qualified. Qualifying a name clearly indicates whether the
name refers to a column, SQL variable, SQL parameter, row variable field, or global variable. If the name
is not qualified, or qualified but still ambiguous, the following rules describe whether the name refers to a
column, an SQL variable, an SQL parameter, or a global variable:

• If the tables and views specified in an SQL routine body exist at the time the routine is created, the
name is first checked as a column name. If not found as a column, it is then checked as an SQL variable
in the compound statement, then checked as an SQL parameter, and then, finally, checked as a global
variable.

• If the referenced tables or views do not exist at the time the routine is created, the name is first checked
as an SQL variable in the compound statement, then as an SQL parameter, and then as a global variable.
The variable can be declared within the compound statement that contains the reference, or within a
compound statement in which that compound statement is nested. If two SQL variables are within the
same scope and have the same name, which can happen if they are declared in different compound
statements, the SQL variable that is declared in the innermost compound statement is used. If not
found, it is assumed to be a column.

References to SQL labels
Labels can be specified on most SQL procedure statements.

The compound statement that contains the statement that defines a label determines the scope of that
label name. A label name must be unique within the compound statement in which it is defined, including
any labels defined in compound statements that are nested within that compound statement (SQLSTATE
42734). The label must not be the same as a label specified on the compound statement itself (SQLSTATE
42734), or the same as the name of the routine that contains the SQL procedure statement (SQLSTATE
42734).

A label name can only be referenced within the compound statement in which it is defined, including any
compound statements that are nested within that compound statement. A label can be used to qualify the
name of an SQL variable, or it can be specified as the target of a GOTO, LEAVE, or ITERATE statement.

References to SQL condition names
The name of an SQL condition can be the same as the name of another SQL condition declared in the
same routine.

This can occur when the two SQL conditions are declared in different compound statements. The
compound statement that contains the declaration of an SQL condition name determines the scope of
that condition name. A condition name must be unique within the compound statement in which it is
declared, excluding any declarations in compound statements that are nested within that compound
statement (SQLSTATE 42734). A condition name can only be referenced within the compound statement

744 IBM Db2 V11.5: SQL Reference

in which it is declared, including any compound statements that are nested within that compound
statement. When there is a reference to a condition name, the condition that is declared in the innermost
compound statement is the condition that is used. For more information, see "Compound SQL (inlined)".

References to SQL statement names
The name of an SQL statement can be the same as the name of another SQL statement declared in the
same routine.

This can occur when the two SQL statements are declared in different compound statements. The
compound statement that contains the declaration of an SQL statement name determines the scope
of that statement name. A statement name must be unique within the compound statement in which it
is declared, excluding any declarations in compound statements that are nested within that compound
statement (SQLSTATE 42734). A statement name can only be referenced within the compound statement
in which it is declared, including any compound statements that are nested within that compound
statement. When there is a reference to a statement name, the statement that is declared in the
innermost compound statement is the statement that is used. For more information, see "Compound
SQL (inlined)".

References to SQL cursor names
Cursor names include the names of declared cursors and the names of cursor variables.

The name of an SQL cursor can be the same as the name of another SQL cursor declared in the same
routine. This can occur when the two SQL cursors are declared in different compound statements.

The compound statement that contains the declaration of an SQL cursor determines the scope of that
cursor name. A cursor name must be unique within the compound statement in which it is declared,
excluding any declarations in compound statements that are nested within that compound statement
(SQLSTATE 42734). A cursor name can only be referenced within the compound statement in which it is
declared, including any compound statements that are nested within that compound statement. When
there is a reference to a cursor name, the cursor that is declared in the innermost compound statement is
the cursor that is used. For more information, see "Compound SQL (inlined)".

If the cursor constructor assigned to a cursor variable contains a reference to a local SQL variable, then
any OPEN statement that uses the cursor variable must be within the scope where the local SQL variable
was declared.

Function, method, and procedure designators
This topic describes syntax fragments that are used to uniquely identify a function, method, or procedure
that is not defined in a module.

Function designator
A function designator uniquely identifies a single function. Function designators typically appear in DDL
statements for functions (such as DROP or ALTER). A function designator must not identify a module
function (SQLSTATE 42883).

function-designator
FUNCTION function-name

(
,

data-type

)

SPECIFIC FUNCTION specific-name

Chapter 1. Structured Query Language (SQL) 745

FUNCTION function-name
Identifies a particular function, and is valid only if there is exactly one function instance with the name
function-name in the schema. The identified function can have any number of parameters defined for
it. In dynamic SQL statements, the CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. If no function by this name exists in the named
or implied schema, an error (SQLSTATE 42704) is raised. If there is more than one instance of the
function in the named or implied schema, an error (SQLSTATE 42725) is raised.

FUNCTION function-name (data-type,...)
Provides the function signature, which uniquely identifies the function. The function resolution
algorithm is not used.
function-name

Specifies the name of the function. In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static SQL statements, the
QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified object names.

(data-type,...)
Values must match the data types that were specified (in the corresponding position) on the
CREATE FUNCTION statement. The number of data types, and the logical concatenation of the
data types, is used to identify the specific function instance.

If a data type is unqualified, the type name is resolved by searching the schemas on the SQL path.
This also applies to data type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the parameterized data types.
Instead, an empty set of parentheses can be coded to indicate that these attributes are to be
ignored when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value indicates different data
types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that specified in the CREATE
FUNCTION statement. When length is specified for character and graphic string data types, the
string unit of the length attribute must exactly match that specified in the CREATE FUNCTION
statement.

A type of FLOAT(n) does not need to match the defined value for n, because 0 < n < 25 means
REAL, and 24 < n < 54 means DOUBLE. Matching occurs on the basis of whether the type is REAL
or DOUBLE.

If no function with the specified signature exists in the named or implied schema, an error
(SQLSTATE 42883) is raised.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function, using the name that is specified or defaulted to at
function creation time. In dynamic SQL statements, the CURRENT SCHEMA special register is used as
a qualifier for an unqualified object name. In static SQL statements, the QUALIFIER precompile/bind
option implicitly specifies the qualifier for unqualified object names. The specific-name must identify a
specific function instance in the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

Method designator
A method designator uniquely identifies a single method. Method designators typically appear in DDL
statements for methods (such as DROP or ALTER).

method-designator

746 IBM Db2 V11.5: SQL Reference

METHOD method-name

(
,

data-type

)

FOR type-name

SPECIFIC METHOD specific-name

METHOD method-name
Identifies a particular method, and is valid only if there is exactly one method instance with the name
method-name for the type type-name. The identified method can have any number of parameters
defined for it. If no method by this name exists for the type, an error (SQLSTATE 42704) is raised. If
there is more than one instance of the method for the type, an error (SQLSTATE 42725) is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method. The method resolution
algorithm is not used.
method-name

Specifies the name of the method for the type type-name.
(data-type,...)

Values must match the data types that were specified (in the corresponding position) on the
CREATE TYPE statement. The number of data types, and the logical concatenation of the data
types, is used to identify the specific method instance.

If a data type is unqualified, the type name is resolved by searching the schemas on the SQL path.
This also applies to data type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the parameterized data types.
Instead, an empty set of parentheses can be coded to indicate that these attributes are to be
ignored when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value indicates different data
types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that specified in the CREATE
TYPE statement. When length is specified for character and graphic string data types, the string
unit of the length attribute must exactly match that specified in the CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n, because 0 < n < 25 means
REAL, and 24 < n < 54 means DOUBLE. Matching occurs on the basis of whether the type is REAL
or DOUBLE.

If no method with the specified signature exists for the type in the named or implied schema, an
error (SQLSTATE 42883) is raised.

FOR type-name
Names the type with which the specified method is to be associated. The name must identify
a type already described in the catalog (SQLSTATE 42704). In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an unqualified object name. In
static SQL statements, the QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified object names.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or defaulted to at method creation
time. In dynamic SQL statements, the CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements, the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The specific-name must identify a specific method
instance in the named or implied schema; otherwise, an error (SQLSTATE 42704) is raised.

Chapter 1. Structured Query Language (SQL) 747

Procedure designator
A procedure designator uniquely identifies a single procedure. Procedure designators typically appear in
DDL statements for procedures (such as DROP or ALTER). A procedure designator must not identify a
module procedure (SQLSTATE 42883).

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

PROCEDURE procedure-name
Identifies a particular procedure, and is valid only if there is exactly one procedure instance with the
name procedure-name in the schema. The identified procedure can have any number of parameters
defined for it. In dynamic SQL statements, the CURRENT SCHEMA special register is used as a
qualifier for an unqualified object name. In static SQL statements, the QUALIFIER precompile/bind
option implicitly specifies the qualifier for unqualified object names. If no procedure by this name
exists in the named or implied schema, an error (SQLSTATE 42704) is raised. If there is more than one
instance of the procedure in the named or implied schema, an error (SQLSTATE 42725) is raised.

PROCEDURE procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the procedure. The procedure resolution
algorithm is not used.
procedure-name

Specifies the name of the procedure. In dynamic SQL statements, the CURRENT SCHEMA special
register is used as a qualifier for an unqualified object name. In static SQL statements, the
QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified object names.

(data-type,...)
Values must match the data types that were specified (in the corresponding position) on the
CREATE PROCEDURE statement. The number of data types, and the logical concatenation of the
data types, is used to identify the specific procedure instance.

If a data type is unqualified, the type name is resolved by searching the schemas on the SQL path.
This also applies to data type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the parameterized data types.
Instead, an empty set of parentheses can be coded to indicate that these attributes are to be
ignored when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value indicates different data
types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that specified in the CREATE
PROCEDURE statement. When length is specified for character and graphic string data types, the
string unit of the length attribute must exactly match that specified in the CREATE PROCEDURE
statement.

A type of FLOAT(n) does not need to match the defined value for n, because 0 < n < 25 means
REAL, and 24 < n < 54 means DOUBLE. Matching occurs on the basis of whether the type is REAL
or DOUBLE.

If no procedure with the specified signature exists in the named or implied schema, an error
(SQLSTATE 42883) is raised.

SPECIFIC PROCEDURE specific-name
Identifies a particular procedure, using the name that is specified or defaulted to at procedure
creation time. In dynamic SQL statements, the CURRENT SCHEMA special register is used as a

748 IBM Db2 V11.5: SQL Reference

qualifier for an unqualified object name. In static SQL statements, the QUALIFIER precompile/bind
option implicitly specifies the qualifier for unqualified object names. The specific-name must identify a
specific procedure instance in the named or implied schema; otherwise, an error (SQLSTATE 42704) is
raised.

ALLOCATE CURSOR
The ALLOCATE CURSOR statement allocates a cursor for the result set identified by the result set locator
variable.

For more information about result set locator variables, see the description of the ASSOCIATE LOCATORS
statement.

Invocation
This statement can only be embedded in an SQL procedure. It is not an executable statement and cannot
be dynamically prepared.

Authorization
None required.

Syntax
ALLOCATE cursor-name CURSOR FOR RESULT SET rs-locator-variable

Description
cursor-name

Names the cursor. The name must not identify a cursor that has already been declared in the source
SQL procedure (SQLSTATE 24502).

CURSOR FOR RESULT SET rs-locator-variable

Names a result set locator variable that has been declared in the source SQL procedure, according
to the rules for declaring result set locator variables. For more information about declaring SQL
variables, see "Compound SQL (Procedure) statement".

The result set locator variable must contain a valid result set locator value, as returned by the
ASSOCIATE LOCATORS SQL statement (SQLSTATE 0F001).

Rules
• The following rules apply when using an allocated cursor:

– An allocated cursor cannot be opened with the OPEN statement (SQLSTATE 24502).
– An allocated cursor cannot be used in a positioned UPDATE or DELETE statement (SQLSTATE 42828).
– An allocated cursor can be closed with the CLOSE statement. Closing an allocated cursor closes the

associated cursor.
– Only one cursor can be allocated to each result set.

• Allocated cursors last until a rollback operation, an implicit close, or an explicit close.
• A commit operation destroys allocated cursors that are not defined WITH HOLD.
• Destroying an allocated cursor closes the associated cursor in the SQL procedure.

Example
This SQL procedure example defines and associates cursor C1 with the result set locator variable LOC1
and the related result set returned by the SQL procedure:

Chapter 1. Structured Query Language (SQL) 749

 ALLOCATE C1 CURSOR FOR RESULT SET LOC1;

ALTER AUDIT POLICY
The ALTER AUDIT POLICY statement modifies the definition of an audit policy at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
ALTER AUDIT POLICY policy-name

1
CATEGORIES

,
2

ALL

AUDIT

CHECKING

CONTEXT

EXECUTE
WITHOUT DATA

WITH DATA

OBJMAINT

SECMAINT

SYSADMIN

VALIDATE

STATUS BOTH

FAILURE

NONE

SUCCESS

ERROR TYPE NORMAL

AUDIT

Notes:
1 Each of the CATEGORIES and ERROR TYPE clauses can be specified at most once (SQLSTATE
42614).
2 Each category can be specified at most once (SQLSTATE 42614), and no other category can be
specified if ALL is specified (SQLSTATE 42601).

Description
policy-name

Identifies the audit policy that is to be altered. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). The name must uniquely identify an existing audit policy at the current server
(SQLSTATE 42704).

CATEGORIES
A list of one or more audit categories for which a new status value is specified. If ALL is not specified,
the STATUS of any category that is not explicitly specified remains unchanged.
ALL

Sets all categories to the same status. The EXECUTE category is WITHOUT DATA.

750 IBM Db2 V11.5: SQL Reference

AUDIT
Generates records when audit settings are changed or when the audit log is accessed.

CHECKING
Generates records during authorization checking of attempts to access or manipulate database
objects or functions.

CONTEXT
Generates records to show the operation context when a database operation is performed.

EXECUTE
Generates records to show the execution of SQL statements.
WITHOUT DATA or WITH DATA

Specifies whether or not input data values provided for any host variables and parameter
markers should be logged as part of the EXECUTE category.
WITHOUT DATA

Input data values provided for any host variables and parameter markers are not logged as
part of the EXECUTE category.

WITH DATA
Input data values provided for any host variables and parameter markers are logged as
part of the EXECUTE category. Not all input values are logged; specifically, LOB, LONG,
XML, and structured type parameters appear as the null value. Date, time, and timestamp
fields are logged in ISO format. The input data values are converted to the database code
page before being logged. If code page conversion fails, no errors are returned and the
unconverted data is logged.

OBJMAINT
Generates records when data objects are created or dropped.

SECMAINT
Generates records when object privileges, database privileges, or DBADM authority is granted
or revoked. Records are also generated when the database manager security configuration
parameters sysadm_group, sysctrl_group, or sysmaint_group are modified.

SYSADMIN
Generates records when operations requiring SYSADM, SYSMAINT, or SYSCTRL authority are
performed.

VALIDATE
Generates records when users are authenticated or when system security information related to a
user is retrieved.

STATUS
Specifies a status for the specified category.
BOTH

Successful and failing events will be audited.
FAILURE

Only failing events will be audited.
SUCCESS

Only successful events will be audited.
NONE

No events in this category will be audited.
ERROR TYPE

Specifies whether audit errors are to be returned or ignored.
NORMAL

Any errors generated by the audit are ignored and only the SQLCODEs for errors associated with
the operation being performed are returned to the application.

AUDIT
All errors, including errors occurring within the audit facility itself, are returned to the application.

Chapter 1. Structured Query Language (SQL) 751

Rules
• An AUDIT-exclusive SQL statement must be followed by a COMMIT or ROLLBACK statement (SQLSTATE

5U021). AUDIT-exclusive SQL statements are:

– AUDIT
– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT POLICY)
– DROP (ROLE) or DROP (TRUSTED CONTEXT) if the role or trusted context is associated with an audit

policy
• An AUDIT-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041)

such as, for example, an XA transaction.

Notes
• Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time across all database

partitions. If an uncommitted AUDIT-exclusive SQL statement is executing, subsequent AUDIT-
exclusive SQL statements wait until the current AUDIT-exclusive SQL statement commits or rolls back.

• Changes are written to the system catalog, but do not take effect until they are committed, even for the
connection that issues the statement.

• If the audit policy that is being altered is currently associated with a database object, the changes do
not take effect until the next unit of work for the application that is affected by the change. For example,
if the audit policy is in use for the database, no current units of work will see the change to the policy
until after a COMMIT or a ROLLBACK statement for that unit of work completes.

Example
Alter the SECMAINT, CHECKING, and VALIDATE categories of an audit policy named DBAUDPRF to audit
both successes and failures.

 ALTER AUDIT POLICY DBAUDPRF
 CATEGORIES SECMAINT STATUS BOTH,
 CHECKING STATUS BOTH,
 VALIDATE STATUS BOTH

ALTER BUFFERPOOL
The ALTER BUFFERPOOL statement is used to modify the characteristics or behavior of a buffer pool.
There are a number of reasons to use the ALTER BUFFERPOOL statement, for example, to enable self-
tuning memory.

The ALTER BUFFERPOOL statement can modify a buffer pool in the following ways:

• Modify the size of the buffer pool on all members or on a single member
• Enable or disable automatic sizing of the buffer pool
• Add this buffer pool definition to a new database partition group
• Modify the block area of the buffer pool for block-based I/O

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SYSCTRL or SYSADM authority.

752 IBM Db2 V11.5: SQL Reference

Syntax
ALTER BUFFERPOOL bufferpool-name

IMMEDIATE

DEFERRED MEMBER member-number

SIZE number-of-pages

number-of-pages

AUTOMATIC

ADD DATABASE PARTITION GROUP db-partition-group-name

NUMBLOCKPAGES number-of-pages

BLOCKSIZE number-of-pages

BLOCKSIZE number-of-pages

Description
bufferpool-name

Names the buffer pool. This is a one-part name. It is an SQL identifier (either ordinary or delimited). It
must be a buffer pool described in the catalog.

IMMEDIATE or DEFERRED
Indicates whether or not the buffer pool size will be changed immediately.
IMMEDIATE

The buffer pool size will be changed immediately. If there is not enough reserved space in the
database shared memory to allocate new space (SQLSTATE 01657), the statement is executed as
DEFERRED.

DEFERRED
The buffer pool size will be changed when the database is reactivated (all applications need to
be disconnected from the database). Reserved memory space is not needed; the database will
allocate the required memory from the system at activation time.

MEMBER member-number
Specifies the member on which the size of the buffer pool is modified. An exception entry is
created in the SYSCAT.BUFFERPOOLEXCEPTIONS catalog view. The member must be in one of the
database partition groups for the buffer pool (SQLSTATE 42729). If this clause is not specified, the
size of the buffer pool is modified on all members except those that have an exception entry in
SYSCAT.BUFFERPOOLEXCEPTIONS.

SIZE
Specifies a new size for the buffer pool, or enables or disables self tuning for this buffer pool.
number-of-pages

The number of pages for the new buffer pool size. If the buffer pool is already a self-tuning buffer
pool, and the SIZE number-of-pages clause is specified, the alter operation disables self-tuning for
this buffer pool.

AUTOMATIC
Enables self tuning for this buffer pool. The database manager adjusts the size of the buffer pool
in response to workload requirements. If the number of pages is specified, the current buffer pool
size is set to that value unless the deferred keyword is also specified, in which case the number
of pages will be ignored. On subsequent database activations, the buffer pool size is based on
the last tuning value that is determined by the self-tuning memory manager (STMM). The STMM
enforces a minimum size for automatic buffer pools, which is the minimum of the current size and
5000 pages. To determine the current size of buffer pools that are enabled for self tuning, use the
MON_GET_BUFFERPOOL routine and examine the current size of the buffer pools. The size of the
buffer pool is found in thebp_cur_buffsz monitor element. When AUTOMATIC is specified, the
MEMBER clause cannot be specified (SQLSTATE 42601).

ADD DATABASE PARTITION GROUP db-partition-group-name
Adds this database partition group to the list of database partition groups to which the buffer pool
definition is applicable. For any member in the database partition group that does not already have

Chapter 1. Structured Query Language (SQL) 753

the buffer pool defined, the buffer pool is created on the member using the default size specified for
the buffer pool. Table spaces in db-partition-group-name may specify this buffer pool. The database
partition group must currently exist in the database (SQLSTATE 42704).

NUMBLOCKPAGES number-of-pages
Specifies the number of pages that should exist in the block-based area. The number of pages must
not be greater than 98 percent of the number of pages for the buffer pool, based on the NPAGES value
in SYSCAT.BUFFERPOOLS (SQLSTATE 54052). Specifying the value 0 disables block I/O. The actual
value of NUMBLOCKPAGES used will be a multiple of BLOCKSIZE.

NUMBLOCKPAGES is not supported in a Db2 pureScale environment (SQLSTATE 56038).

BLOCKSIZE number-of-pages
Specifies the number of pages in a block. The block size must be a value between 2 and 256
(SQLSTATE 54053). The default value is 32.

BLOCKSIZE is not supported in a Db2 pureScale environment (SQLSTATE 56038).

Notes
• Only the buffer pool size can be changed dynamically (immediately). All other changes are deferred, and

will only come into effect after the database is reactivated.
• If the statement is executed as deferred, although the buffer pool definition is transactional and the

changes to the buffer pool definition will be reflected in the catalog tables on commit, no changes to the
actual buffer pool will take effect until the next time the database is started. The current attributes of
the buffer pool will exist until then, and there will not be any impact to the buffer pool in the interim.
Tables created in table spaces of new database partition groups will use the default buffer pool. The
statement is IMMEDIATE by default when that keyword applies.

• There should be enough real memory on the machine for the total of all the buffer pools, as well as for
the rest of the database manager and application requirements.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– DBPARTITIONNUM or NODE can be specified in place of MEMBER except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

ALTER DATABASE PARTITION GROUP
The ALTER DATABASE PARTITION GROUP statement is used to add one or more database partitions to a
database partition group, or drop one or more database partitions from a database partition group.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have SYSCTRL or SYSADM authority.

754 IBM Db2 V11.5: SQL Reference

Syntax
ALTER DATABASE PARTITION GROUP db-partition-name

,

ADD DBPARTITIONNUM

DBPARTITIONNUMS

db-partitions-clause

db-partition-options

DROP DBPARTITIONNUM

DBPARTITIONNUMS

db-partitions-clause

db-partitions-clause

(

,

db-partition-number1

TO db-partition-number2

)

db-partition-options
LIKE DBPARTITIONNUM db-partition-number

WITHOUT TABLESPACES

Description
db-partition-name

Names the database partition group. This is a one-part name. It is an SQL identifier (either ordinary
or delimited). It must be a database partition group described in the catalog. IBMCATGROUP and
IBMTEMPGROUP cannot be specified (SQLSTATE 42832).

ADD DBPARTITIONNUM
Specifies the specific database partition or partitions to add to the database partition group.
DBPARTITIONNUMS is a synonym for DBPARTITIONNUM. Any specified database partition must not
already be defined in the database partition group (SQLSTATE 42728).

DROP DBPARTITIONNUM
Specifies the specific database partition or partitions to drop from the database partition group.
DBPARTITIONNUMS is a synonym for DBPARTITIONNUM. Any specified database partition must
already be defined in the database partition group (SQLSTATE 42729).

db-partitions-clause
Specifies the database partition or partitions to be added or dropped.
db-partition-number1

Specify a specific database partition number.
TO db-partition-number2

Specify a range of database partition numbers. The value of db-partition-number2 must be greater
than or equal to the value of db-partition-number1 (SQLSTATE 428A9).

db-partition-options
LIKE DBPARTITIONNUM db-partition-number

Specifies that the containers for the existing table spaces in the database partition group will be
the same as the containers on the specified db-partition-number. The specified database partition
must be a partition that existed in the database partition group before this statement, and that is
not included in a DROP DBPARTITIONNUM clause of the same statement.

For table spaces that are defined to use automatic storage (that is, table spaces that were created
with the MANAGED BY AUTOMATIC STORAGE clause of the CREATE TABLESPACE statement,
or for which no MANAGED BY clause was specified at all), the containers will not necessarily
match those from the specified partition. Instead, containers will automatically be assigned by
the database manager based on the storage paths that are associated with the database, and this

Chapter 1. Structured Query Language (SQL) 755

might or might not result in the same containers being used. The size of each table space is based
on the initial size that was specified when the table space was created, and might not match the
current size of the table space on the specified partition.

WITHOUT TABLESPACES
Specifies that the containers for existing table spaces in the database partition group are not
created on the newly added database partition or partitions. The ALTER TABLESPACE statement
using the db-partitions-clause or the MANAGED BY AUTOMATIC STORAGE clause must be used
to define containers for use with the table spaces that are defined on this database partition
group. If this option is not specified, the default containers are specified on newly added database
partitions for each table space defined on the database partition group.

This option is ignored for table spaces that are defined to use automatic storage (that is, table
spaces that were created with the MANAGED BY AUTOMATIC STORAGE clause of the CREATE
TABLESPACE statement, or for which no MANAGED BY clause was specified at all). There is no
way to defer container creation for these table spaces. Containers will automatically be assigned
by the database manager based on the storage paths that are associated with the database. The
size of each table space will be based on the initial size that was specified when the table space
was created.

Rules
• Each database partition specified by number must be defined in the db2nodes.cfg file (SQLSTATE

42729).
• Each db-partition-number listed in the db-partitions-clause must be for a unique database partition

(SQLSTATE 42728).
• A valid database partition number is between 0 and 999 inclusive (SQLSTATE 42729).
• A database partition cannot appear in both the ADD and DROP clauses (SQLSTATE 42728).
• There must be at least one database partition remaining in the database partition group. The last

database partition cannot be dropped from a database partition group (SQLSTATE 428C0).
• If neither the LIKE DBPARTITIONNUM clause nor the WITHOUT TABLESPACES clause is specified

when adding a database partition, the default is to use the lowest database partition number of
the existing database partitions in the database partition group (say it is 2) and proceed as if LIKE
DBPARTITIONNUM 2 had been specified. For an existing database partition to be used as the default, it
must have containers defined for all the table spaces in the database partition group (column IN_USE of
SYSCAT.DBPARTITIONGROUPDEF is not 'T').

• The ALTER DATABASE PARTITION GROUP statement might fail (SQLSTATE 55071) if an add database
partition server request is either pending or in progress. This statement might also fail (SQLSTATE
55077) if a new database partition server is added online to the instance and not all applications are
aware of the new database partition server.

Notes
• When a database partition is added to a database partition group, a catalog entry is made for

the database partition (see SYSCAT.DBPARTITIONGROUPDEF). The distribution map is changed
immediately to include the new database partition, along with an indicator (IN_USE) that the database
partition is in the distribution map if either:

– no table spaces are defined in the database partition group or
– no tables are defined in the table spaces defined in the database partition group and the WITHOUT

TABLESPACES clause was not specified.

The distribution map is not changed and the indicator (IN_USE) is set to indicate that the database
partition is not included in the distribution map if either:

– Tables exist in table spaces in the database partition group or

756 IBM Db2 V11.5: SQL Reference

– Table spaces exist in the database partition group and the WITHOUT TABLESPACES clause was
specified (unless all of the table spaces are defined to use automatic storage, in which case the
WITHOUT TABLESPACES clause is ignored)

To change the distribution map, the REDISTRIBUTE DATABASE PARTITION GROUP command must be
used. This redistributes any data, changes the distribution map, and changes the indicator. Table space
containers need to be added before attempting to redistribute data if the WITHOUT TABLESPACES
clause was specified.

• When a database partition is dropped from a database partition group, the catalog entry for the
database partition (see SYSCAT.DBPARTITIONGROUPDEF) is updated. If there are no tables defined
in the table spaces defined in the database partition group, the distribution map is changed immediately
to exclude the dropped database partition and the entry for the database partition in the database
partition group is dropped. If tables exist, the distribution map is not changed and the indicator
(IN_USE) is set to indicate that the database partition is waiting to be dropped. The REDISTRIBUTE
DATABASE PARTITION GROUP command must be used to redistribute the data and drop the entry for
the database partition from the database partition group.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– NODE can be specified in place of DBPARTITIONNUM
– NODES can be specified in place of DBPARTITIONNUMS
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Example
Assume that you have a six-partition database that has the following database partitions: 0, 1, 2, 5, 7, and
8. Two database partitions (3 and 6) are added to the system.

• Example 1: Assume that you want to add database partitions 3 and 6 to a database partition group
called MAXGROUP, and have table space containers like those on database partition 2. The statement is
as follows:

 ALTER DATABASE PARTITION GROUP MAXGROUP
 ADD DBPARTITIONNUMS (3,6)LIKE DBPARTITIONNUM 2

• Example 2: Assume that you want to drop database partition 1 and add database partition 6 to database
partition group MEDGROUP. You will define the table space containers separately for database partition
6 using ALTER TABLESPACE. The statement is as follows:

 ALTER DATABASE PARTITION GROUP MEDGROUP
 ADD DBPARTITIONNUM(6)WITHOUT TABLESPACES
 DROP DBPARTITIONNUM(1)

ALTER DATABASE
The ALTER DATABASE statement adds new storage paths to, or removes existing storage paths from, the
collection of paths that are used for automatic storage table spaces.

An automatic storage table space is a table space that has been created using automatic storage; that
is, the MANAGED BY AUTOMATIC STORAGE clause has been specified on the CREATE TABLESPACE
statement, or no MANAGED BY clause has been specified at all. If a database is enabled for automatic
storage, container and space management characteristics of its table spaces can be completely
determined by the database manager. If the database is not currently enabled for automatic storage
then the act of adding storage paths will enable it.

Important: This statement is deprecated and might be removed in a future release. Use the CREATE
STOGROUP or ALTER STOGROUP statements instead.

Chapter 1. Structured Query Language (SQL) 757

Invocation
The statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include either SYSADM or SYSCTRL
authority.

Syntax
ALTER DATABASE

database-name

1
ADD STORAGE ON

,

'storage-path'

DROP STORAGE ON

,

'storage-path'

Notes:
1 Each clause can be specified only once.

Description
database-name

An optional value specifying the name of the database that is to be altered. If specified, the value
must match the name of the database to which the application is currently connected (not the alias
that the client might have cataloged); otherwise, an error is returned (SQLSTATE 42961).

ADD STORAGE ON
Specifies that one or more new storage paths are to be added to the collection of storage paths that
are used for automatic storage table spaces.
'storage-path'

A string constant that specifies the location where containers for automatic storage table spaces
are to be created. The format of the string depends on the operating system, as illustrated in the
following table:

Operating system String format

Linux
AIX

An absolute path.

Windows The letter name of a drive.

DROP STORAGE ON
Specifies that one or more storage paths are to be removed from the collection of storage paths that
are used for automatic storage table spaces. If table spaces are actively using a storage path being
dropped, then the state of the storage path is changed from "In Use" to "Drop Pending" and future use
of the storage path will be prevented.
'storage-path'

A string constant that specifies the location from which storage paths are to be removed. The
format of the string depends on the operating system, as illustrated in the following table:

758 IBM Db2 V11.5: SQL Reference

Operating system String format

Linux
AIX

An absolute path.

Windows The letter name of a drive.

Rules
• For a database that is running on version 10.1 or later, the operations of this statement are applied to

the default storage group for the database. If no storage group is defined for the database, the name
IBMSTOGROUP is used.

• A storage path being added, must be valid according to the naming rules for paths, and must be
accessible (SQLSTATE 57019). Similarly, in a partitioned database environment, the storage path must
exist and be accessible on every database partition (SQLSTATE 57019).

• A storage path being dropped must currently exist in the database (SQLSTATE 57019) and cannot
already be in the "Drop Pending" state (SQLSTATE 55073).

• A database enabled for automatic storage must have at least one storage path. Dropping all storage
paths from the database is not permitted (SQLSTATE 428HH).

• The ALTER DATABASE statement cannot be executed while a database partition server is being added
(SQLSTATE 55071).

• DROP STORAGE ON cannot be specified in a Db2 pureScale environment (SQLSTATE 56038).

Notes
• When adding new storage paths:

– Existing regular and large table spaces using automatic storage will not initially use these new paths.
The database manager might choose to create new table space containers on these paths only if an
out-of-space condition occurs.

– Existing temporary table spaces managed by automatic storage do not automatically use new storage
paths. The database must be stopped normally then restarted for containers in these table spaces to
use the new storage path or paths. As an alternative, the temporary table spaces can be dropped and
recreated. When created, these table spaces automatically use all storage paths that have sufficient
free space.

• Adding storage paths to the database to enable automatic storage will not cause the database to
convert existing non-automatic storage enabled table spaces to use automatic storage.

• Although ADD STORAGE and DROP STORAGE are logged operations, whether they are redone during
a rollforward operation depends on how the database was restored. If the restore operation does not
redefine the storage paths that are associated with the database, the log record that contains the
storage path change is redone, and the storage paths that are described in the log record are added
or dropped during the rollforward operation. However, if the storage paths are redefined during the
restore operation, the rollforward operation will not redo ADD STORAGE or DROP STORAGE log records,
because it is assumed that you have already set up the storage paths.

• When free space is calculated for a storage path on a database partition, the database manager checks
for the existence of the following directories or mount points within the storage path, and will use the
first one that is found.

<storage path>/<instance name>/NODE####/<database name>
<storage path>/<instance name>/NODE####
<storage path>/<instance name>
<storage path>

Where:

– <storage path> is a storage path associated with the database
– <instance name> is the instance under which the database resides

Chapter 1. Structured Query Language (SQL) 759

– NODE#### corresponds to the database partition number (for example, NODE0000 or NODE0001)
– <database name> is the name of the database

File systems can be mounted at a point beneath the storage path, and the database manager will
recognize that the actual amount of free space available for table space containers might not be the
same amount that is associated with the storage path directory itself.

Consider an example in which two logical database partitions exist on one physical machine, and there
is a single storage path (/dbdata). Each database partition will use this storage path, but you might
want to isolate the data from each partition within its own file system. In this case, a separate file
system can be created for each partition and it can be mounted at /dbdata/<instance>/NODE####.
When creating containers on the storage path and determining free space, the database manager will
not retrieve free space information for /dbdata, but instead will retrieve it for the corresponding /
dbdata/<instance>/NODE#### directory.

• In general, the same storage paths must be used for each partition in a partitioned database
environment. One exception to this is the case in which database partition expressions are used within
the storage path. Doing this allows the database partition number to be reflected in the storage path,
such that the resulting path name is different on each partition.

• When dropping a storage path that is in use by one or more table spaces, the state of the path changes
from "In Use" to "Drop Pending". Future growth on the path will not occur. Before the path can be
fully removed from the database, each affected table space must be rebalanced (using the REBALANCE
clause of the ALTER TABLESPACE statement) so that its container data is moved off the storage path.
Rebalance is only supported for regular and large table spaces. Temporary table spaces should be
dropped and recreated to have their containers removed from the dropped path. When the path is no
longer in use by any table space, it will be physically removed from the database.

For a partitioned database, the path is maintained independently on each partition. When a path is
no longer in use on a given database partition, it will be physically removed from that partition. Other
partitions may still show the path as being in the "Drop Pending" state.

The list of automatic storage table spaces using drop pending storage paths can be determined by
issuing the following SQL statement:

SELECT DISTINCT A.TBSP_NAME, A.TBSP_ID, A.TBSP_CONTENT_TYPE
 FROM TABLE(MON_GET_TABLESPACE(NULL,-2)) AS A
 WHERE A.TBSP_PATHS_DROPPED = 1

• When dropping a storage path that was originally specified using a database partition expression, the
same storage path string, including the database partition expression, must be used in the drop. If a
database partition expression was specified then this path string can be found in the "Path with db
partition expression" element (db_storage_path_with_dpe) of a database snapshot. This element is not
shown if a database partition expression was not included in the original path specified.

• It is possible for a given storage path to be added to a database multiple times. When using the DROP
STORAGE ON clause, specifying that particular path once will drop all instances of the path from the
database.

Examples
1. Add two paths under the /db directory (/db/filesystem1 and /db/filesystem2) and a third path

named /filesystem3 to the space for automatic storage table spaces that is associated with the
currently connected database.

 ALTER DATABASE ADD STORAGE ON '/db/filesystem1', '/db/filesystem2',
 '/filesystem3'

2. Add drives D and E to the space for automatic storage table spaces that is associated with the SAMPLE
database.

 ALTER DATABASE SAMPLE ADD STORAGE ON 'D:', 'E:\'

760 IBM Db2 V11.5: SQL Reference

3. Add directory F:\DBDATA and drive G to the space for automatic storage table spaces that is
associated with the currently connected database.

 ALTER DATABASE ADD STORAGE ON 'F:\DBDATA', 'G:'

4. Add a storage path that uses a database partition expression to differentiate the storage paths on each
of the database partitions.

 ALTER DATABASE ADD STORAGE ON '/dataForPartition $N'

The storage path that would be used on database partition 0 is /dataForPartition0; on database
partition 1, it would be /dataForPartition1; and so on.

5. Add storage paths to a database that is not automatic storage enabled, for the purposes of enabling
automatic storage for the database.

 CREATE DATABASE MYDB AUTOMATIC STORAGE NO
 CONNECT TO MYDB
 ALTER DATABASE ADD STORAGE ON '/db/filesystem1', '/db/filesystem2'

Database MYDB is now enabled for automatic storage.
6. Remove paths /db/filesystem1 and /db/filesystem2 from the currently connected database.

 ALTER DATABASE DROP STORAGE ON '/db/filesystem1', '/db/filesystem2'

After the storage is dropped successfully, use the ALTER TABLESPACE statement with the REBALANCE
clause for each table space that was using these storage paths to rebalance the table space.

7. A storage path with a database partition expression (/dataForPartition $N) was previously added to the
database and now it is to be removed.

 ALTER DATABASE DROP STORAGE ON '/dataForPartition $N'

After the storage is dropped successfully, use the ALTER TABLESPACE statement with the REBALANCE
clause for each table space that was using these storage paths to rebalance the table space.

ALTER EVENT MONITOR
The ALTER EVENT MONITOR statement alters the definition of an event monitor that has a target for the
event monitor data of TABLE.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following authorities:

• DBADM authority
• SQLADM authority

Chapter 1. Structured Query Language (SQL) 761

Syntax
ALTER EVENT MONITOR event-monitor-name

ADD LOGICAL GROUP
1

evm-group

(target-table-options)

target-table-options

23

TABLE table-name

IN tablespace-name

PCTDEACTIVATE integer

Notes:
1 A logical group can be added only to TABLE event monitors (not UNFORMATTED EVENT TABLE event
monitors).
2 Each clause can be specified only once.
3 Clauses can be separated with a space or a comma.

Description
event-monitor-name

The event-monitor-name must identify an event monitor that exists at the current server and has a
target for the event monitor data of TABLE.

ADD LOGICAL GROUP
Adds a logical group to the event monitor that has a target for the data of TABLE.
evm-group

Identifies the logical data group for which a target table is being added. The value depends upon
the type of event monitor, as shown in the following table:

Table 123. Values for evm-group based on the type of event monitor

Type of Event Monitor evm-group value

Database • DB
• CONTROL1

• DBMEMUSE

Tables • TABLE
• CONTROL1

Deadlocks • CONNHEADER
• DEADLOCK
• DLCONN
• CONTROL1

762 IBM Db2 V11.5: SQL Reference

Table 123. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor evm-group value

Deadlocks with details • CONNHEADER
• DEADLOCK
• DLCONN2

• DLLOCK3

• CONTROL1

Deadlocks with details history • CONNHEADER
• DEADLOCK
• DLCONN2

• DLLOCK3

• STMTHIST
• CONTROL1

Deadlocks with details history
values

• CONNHEADER
• DEADLOCK
• DLCONN2

• DLLOCK3

• STMTHIST
• STMTVALS
• CONTROL1

Table spaces • TABLESPACE
• CONTROL1

Buffer pools • BUFFERPOOL
• CONTROL1

Connections • CONNHEADER
• CONN
• CONTROL1

• CONNMEMUSE

Statements • CONNHEADER
• STMT
• SUBSECTION4

• CONTROL1

Transactions • CONNHEADER
• XACT
• CONTROL1

Chapter 1. Structured Query Language (SQL) 763

Table 123. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor evm-group value

Activities • ACTIVITY
• ACTIVITYMETRICS
• ACTIVITYSTMT
• ACTIVITYVALS
• CONTROL1

Statistics • QSTATS
• SCSTATS
• SCMETRICS
• WCSTATS
• WLSTATS
• WLMETRICS
• HISTOGRAMBIN
• CONTROL1

Threshold Violations • THRESHOLDVIOLATIONS
• CONTROL1

Locking5 • LOCK
• LOCK_PARTICIPANTS
• LOCK_PARTICIPANT_ACTIVITIES
• LOCK_ACTIVITY_VALUES
• CONTROL1

Package Cache5 • PKGCACHE
• PKGCACHE_METRICS
• CONTROL1

Unit of Work5 • UOW
• UOW_METRICS
• UOW_PACKGE_LIST
• UOW_EXECUTABLE_LIST
• CONTROL1

764 IBM Db2 V11.5: SQL Reference

Table 123. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor evm-group value

Change History • CHANGESUMMARY
• EVMONSTART
• TXNCOMPLETION
• DDLSTMTEXEC
• DBDBMCFG
• REGVAR
• UTILSTART
• UTILSTOP
• UTILPHASE
• UTILLOCATION
• CONTROL1

1 Logical data groups dbheader (conn_time element only), start, and overflow, are all written
to the CONTROL group. The overflow group is written if the event monitor is non-blocked and
events were discarded.
2 Corresponds to the DETAILED_DLCONN event.
3 Corresponds to the LOCK logical data groups that occur within each DETAILED_DLCONN event.
4 Created only for partitioned database environments.
5 Refers to the Formatted Event Table version of this event monitor type.

TABLE table-name
Specifies the name of the target table. The target table must be a non-partitioned table. If the
name is unqualified, the table schema defaults to the value in the CURRENT SCHEMA special
register. If no name is provided, the unqualified name is derived from evm-group and event-
monitor-name as follows:

 substring(evm-group CONCAT '_'
 CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created. If no table space name is provided,
the table space is chosen using the same process as when a table is created without a table space
name using the CREATE TABLE statement.

When specifying the table space name for an activities, locking, package cache, or unit of work
event monitor, the table space's page size affects the INLINE LOB lengths used. Therefore,
consider specifying a table space with as large a page size as possible to improve the INSERT
performance of the event monitor.

PCTDEACTIVATE integer
If a table is being created in a DMS table space, PCTDEACTIVATE specifies how full the table
space must be before the event monitor automatically deactivates. The specified value, which
represents a percentage, can range from 0 to 100. The default value is 100 (meaning that the
event monitor deactivates when the table space becomes completely full). This option is ignored
for SMS table spaces. When a target table space has auto-resize enabled, it is recommended that
PCTDEACTIVATE be set to 100.

Chapter 1. Structured Query Language (SQL) 765

Notes
• When system catalog changes take effect: Changes are written to the system catalog, but do not take

effect until they are committed and the event monitor is reactivated.

Example
The event monitor ACT is missing the ACTIVITYMETRICS group. Alter the event monitor to add this group
and give the table the name "ACTMETRICS".

 ALTER EVENT MONITOR ACT
 ADD LOGICAL GROUP ACTIVITYMETRICS TABLE ACTMETRICS

ALTER FUNCTION
The ALTER FUNCTION statement modifies the properties of an existing function.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTERIN privilege on the schema of the function
• Owner of the function, as recorded in the OWNER column of the SYSCAT.ROUTINES catalog view
• SCHEMAADM authority on the schema of the function
• DBADM authority

To alter the EXTERNAL NAME of a function, the privileges held by the authorization ID of the statement
must also include at least one of the following authorities:

• CREATE_EXTERNAL_ROUTINE authority on the database
• DBADM authority

To alter a function to be not fenced, the privileges held by the authorization ID of the statement must also
include at least one of the following authorities:

• CREATE_NOT_FENCED_ROUTINE authority on the database
• DBADM authority

To alter a function to be fenced, no additional authorities or privileges are required.

To alter a function to be SECURED or NOT SECURED the privileges held by the authorization ID of the
statement must include at least one of the following authorities:

• SECADM authority
• CREATE_SECURE_OBJECT authority

If no other clauses are specified, then no other privileges are required to process the statement.

766 IBM Db2 V11.5: SQL Reference

Syntax

ALTER function-designator EXTERNAL NAME 'string'

identifier

FENCED

NOT FENCED

SECURED

NOT SECURED

THREADSAFE

NOT THREADSAFE

function-designator
FUNCTION function-name

(
,

data-type

)

SPECIFIC FUNCTION specific-name

Description
function-designator

Uniquely identifies the function to be altered. For more information, see “Function, method, and
procedure designators” on page 745.

EXTERNAL NAME 'string' or identifier
Identifies the name of the user-written code that implements the function. This option can only be
specified when altering external functions (SQLSTATE 42849).

FENCED or NOT FENCED
Specifies whether the function is considered safe to run in the database manager operating
environment's process or address space (NOT FENCED), or not (FENCED). Most functions have the
option of running as FENCED or NOT FENCED.

If a function is altered to be FENCED, the database manager insulates its internal resources (for
example, data buffers) from access by the function. In general, a function running as FENCED will not
perform as well as a similar one running as NOT FENCED.

CAUTION: Use of NOT FENCED for functions that were not adequately coded, reviewed, and
tested can compromise the integrity of a Db2 database. Db2 databases take some precautions
against many of the common types of inadvertent failures that might occur, but cannot
guarantee complete integrity when NOT FENCED user-defined functions are used.

A function declared as NOT THREADSAFE cannot be altered to be NOT FENCED (SQLSTATE 42613).

If a function has any parameters defined AS LOCATOR, and was defined with the NO SQL option, the
function cannot be altered to be FENCED (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE, OLEDB, or CLR functions (SQLSTATE 42849).

This option cannot be altered for a function that is registered as a component routine of an aggregate
interface function (SQLSTATE 42849).

SECURED or NOT SECURED
Specifies whether the function is considered secure for row and column access control.

Chapter 1. Structured Query Language (SQL) 767

NOT SECURED
Indicates that the function is not considered secure. When the function is invoked, the arguments
of the function must not reference a column for which a column mask is enabled and column level
access control is activated for its table (SQLSTATE 428HA). This rule applies to the non secure
user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure.

The function must be secure when it is referenced in a row permission or a column mask
(SQLSTATE 428H8).

The function must be secure when it is referenced in a materialized query table and the
materialized query table references any table that has row or column level access control
activated (SQLSTATE 428H8).

This option cannot be altered for a function that is registered as a component routine of an
aggregate interface function (SQLSTATE 42849).

THREADSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same process as other routines
(THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE and OLEDB:

• If the function is defined as THREADSAFE, the database manager can invoke the function in the
same process as other routines. In general, to be threadsafe, a function should not use any global or
static data areas. Most programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED functions can be THREADSAFE.

• If the function is defined as NOT THREADSAFE, the database manager will never simultaneously
invoke the function in the same process as another routine. Only a fenced function can be NOT
THREADSAFE (SQLSTATE 42613).

This option may not be altered for LANGUAGE OLE or OLEDB functions (SQLSTATE 42849).

This option cannot be altered for a function that is registered as a component routine of an aggregate
interface function (SQLSTATE 42849).

Notes
• It is not possible to alter a function that is in the following schema (SQLSTATE 42832):

– SYSIBM
– SYSFUN
– SYSPROC

• Functions declared as LANGUAGE SQL, sourced functions, or template functions cannot be altered
(SQLSTATE 42917).

• Altering a function from NOT SECURED to SECURED: Normally users with SECADM authority do not
have privileges to alter database objects such as user-defined functions and triggers. Typically they will
examine the actions taken by a function, ensure it is secure, then grant the CREATE_SECURE_OBJECT
authority to someone who has required privileges to alter the user-defined function to be secure. After
the function is altered, they will revoke the CREATE_SECURE_OBJECT authority from the user who was
granted this authority.

The function is considered secure. The SECURED attribute is considered to be an assertion that declares
the user has established a change control audit procedure for all changes to the user-defined function.
The database manager assumes that such a control audit procedure is in place for all subsequent ALTER
FUNCTION statements or changes to external packages.

Packages and dynamically cached SQL statements that depend on the function might be invalidated
because the secure attribute affects the access path selection for statements involving tables for which
row or column level access control is activated and the function being replaced.

768 IBM Db2 V11.5: SQL Reference

• Altering a function from SECURED to NOT SECURED: The function is considered not secure. Packages
and dynamically cached SQL statements that depend on the function might be invalidated because
the secure attribute affects the access path selection for statements involving tables for which row or
column level access control is activated.

• Invoking other user-defined functions in a secure function: When a secure user-defined function is
referenced in a data manipulation statement where a row or column access control enforced table
is referenced, if the secure user-defined function invokes other user-defined functions, the database
manager does not validate whether those nested user-defined functions are secure. If those nested
functions can access sensitive data, the user with SECADM authority needs to ensure those functions
are allowed to access those data and a change control audit procedure has been established for all
changes to those functions.

Example
The function MAIL() has been thoroughly tested. To improve its performance, alter the function to be not
fenced.

 ALTER FUNCTION MAIL() NOT FENCED

ALTER HISTOGRAM TEMPLATE
The ALTER HISTOGRAM TEMPLATE statement is used to modify the template describing the type of
histogram that can be used to override one or more of the default histograms of a service class or a work
class.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include WLMADM or DBADM authority.

Syntax
ALTER HISTOGRAM TEMPLATE template-name HIGH BIN VALUE bigint-constant

Description
template-name

Names the histogram template. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The name must identify an existing histogram template at the current server (SQLSTATE
42704). The template name can be the default system histogram template SYSDEFAULTHISTOGRAM.

HIGH BIN VALUE bigint-constant
Specifies the top value of the second to last bin (the last bin has an unbounded top value). The units
depend on how the histogram is used. The maximum value is 268 435 456.

Rules
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)

Chapter 1. Structured Query Language (SQL) 769

– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an

uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• Changes are written to the system catalog, but do not take effect until they are committed, even for the
connection that issues the statement.

Example
Change the high bin value of a histogram template named LIFETIMETEMP.

 ALTER HISTOGRAM TEMPLATE LIFETIMETEMP
 HIGH BIN VALUE 90000

ALTER INDEX
The ALTER INDEX statement alters the definition of an index.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTERIN privilege on the schema of the index
• ALTER privilege on the table on which the index is defined
• CONTROL privilege on the index
• SCHEMAADM authority on the schema of the index
• DBADM authority

Syntax
ALTER INDEX index-name COMPRESS NO

YES

Description
INDEX index-name

Identifies the index to be altered. The name must identify an index that exists at the current server
(SQLSTATE 42704).

770 IBM Db2 V11.5: SQL Reference

COMPRESS
Specifies whether index compression is to be enabled or disabled. The index must not be an MDC
or ITC block index, catalog index, XML path index, index specification, or an index on a created
temporary table or declared temporary table (SQLSTATE 56090).
NO

Specifies that index compression is disabled. A compressed index will remain compressed until
the index is rebuilt via index reorganization or recreation.

YES
Specifies that index compression is enabled. An uncompressed index will remain uncompressed
until the index is rebuilt via index reorganization or recreation.

Example
Alter index JOB_BY_DPT to be compressed index.

 ALTER INDEX JOB_BY_DPT
 COMPRESS YES

Related reference
“CREATE INDEX ” on page 1240
The CREATE INDEX statement is used to define an index on a database table.
Related information
BIND command

ALTER MASK
The ALTER MASK statement alters a column mask that exists at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly
specified.

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
ALTER MASK mask-name ENABLE

DISABLE

Description
mask-name

Identifies the column mask to be altered. The name must identify a mask that exists at the current
server (SQLSTATE 42704).

ENABLE

Enables the column mask. If column level access control is not currently activated on the table, the
column mask will become effective when column level access control is activated on the table. If
column level access control is currently activated on the table, the column mask becomes effective
immediately and all packages and dynamically cached statements that reference the table are
invalidated.

ENABLE is ignored if the column mask is already enabled.

Chapter 1. Structured Query Language (SQL) 771

DISABLE

Disables the column mask. If column level access control is not currently activated on the table,
the column mask will remain ineffective when column level access control is activated on the
table. If column level access control is currently activated on the table, the column mask becomes
ineffective immediately and all packages and dynamically cached statements that reference the table
are invalidated.

DISABLE is ignored if the column mask is already disabled.

Examples
• Example 1: Enable column mask M1.

ALTER MASK M1 ENABLE

• Example 2: Disable column mask M1.

ALTER MASK M1 DISABLE

ALTER METHOD
The ALTER METHOD statement modifies an existing method by changing the method body associated
with the method.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CREATE_EXTERNAL_ROUTINE authority on the database, and at least one of:

– ALTERIN privilege on the schema of the type
– SCHEMAADM privilege on the schema of the type
– Owner of the type, as recorded in the OWNER column of the SYSCAT.DATATYPES catalog view

• DBADM authority

Syntax
ALTER method-designator EXTERNAL NAME 'string'

identifier

method-designator
METHOD method-name

(
,

data-type

)

FOR type-name

SPECIFIC METHOD specific-name

772 IBM Db2 V11.5: SQL Reference

Description
method-designator

Uniquely identifies the method to be altered. For more information, see “Function, method, and
procedure designators” on page 745.

EXTERNAL NAME 'string' or identifier
Identifies the name of the user-written code that implements the method. This option can only be
specified when altering external methods (SQLSTATE 42849).

Notes
• It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC schema (SQLSTATE

42832).
• Methods declared as LANGUAGE SQL cannot be altered (SQLSTATE 42917).
• Methods declared as LANGUAGE CLR cannot be altered (SQLSTATE 42849).
• The specified method must have a body before it can be altered (SQLSTATE 42704).

Example
Alter the method DISTANCE() in the structured type ADDRESS_T to use the library newaddresslib.

 ALTER METHOD DISTANCE()
 FOR ADDRESS_T
 EXTERNAL NAME 'newaddresslib!distance2'

ALTER MODULE
The ALTER MODULE statement alters the definition of a module.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include ownership of the module and
also include all of the privileges necessary to invoke the SQL statements that are specified within the
ALTER MODULE statement.

Chapter 1. Structured Query Language (SQL) 773

Syntax
ALTER MODULE module-name ADD module-condition-definition

module-function-definition

module-procedure-definition

module-type-definition

module-variable-definition

DROP BODY

module-object-identification

PUBLISH module-condition-definition

module-function-definition

module-procedure-definition

module-type-definition

module-variable-definition

module-condition-definition
CONDITION condition-name

FOR

SQLSTATE
VALUE

string-constant

module-object-identification
module-function-designator

module-procedure-designator

CONDITION condition-name

TYPE type-name

VARIABLE variable-name

module-function-designator
FUNCTION unqualified-function-name

(
,

data-type

)

SPECIFIC FUNCTION unqualified-specific-name

module-procedure-designator
PROCEDURE unqualified-procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE unqualified-specific-name

774 IBM Db2 V11.5: SQL Reference

Description
module-name

Identifies the module to be altered. The module-name must identify a module that exists at the
current server (SQLSTATE 42704). The specified name must not be an alias for a module (SQLSTATE
560CT).

ADD
Adds an object to the module or adds the body to a routine definition that already exists in the module
without a body. If adding a user-defined type or a global variable, the object must not identify a
user-defined type or global variable that already exists in the module. If the user-defined type or
global variable did not exist, it is added to the module for use within the module only.

If adding a routine and the specified routine does not exist, the routine is added. If adding a routine
and the specified routine exists, the existing routine definition must not include a routine body
(SQLSTATE 42723). This routine prototype is completely replaced by the new routine definition,
including the routine attributes and the routine body, except that the published attribute is retained.
The specified routine is considered to exist if one of the following conditions is true:

• There is a routine in the module with the same specific name and same routine name.
• The specified routine is a procedure and there is a procedure in the module with the same

procedure name and the same number of parameters. The names and data types of the parameters
do not need to match.

• The specified routine is a function and there is a function in the module with the same function
name and the same number of parameters with matching data types. The length, precision, and
scale of parameter data types are not compared and can be different when determining if the
specified routine exists. The names of the parameters do not need to match.

module-condition-definition
Adds a module condition.
condition-name

Name of the condition. The name must not identify an existing condition in the module. The
condition-name must be specified without any qualification (SQLSTATE 42601). The name of
the condition must be unique within the module.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The string-constant must be
specified as five characters enclosed in single quotation marks, and the SQLSTATE class (the
first two characters) must not be '00'. This is an optional clause.

module-function-definition
The syntax to add a function is the same as the CREATE FUNCTION statement excluding the
CREATE keyword and both the function-name and specific-name must be specified without any
qualification (SQLSTATE 42601). If the function is unique within the module, a new function is
added. If the function matches an existing function that does not include a body (SQL-routine-
body or EXTERNAL NAME clause), then this function prototype is replaced by the new definition
except that the published attribute is retained.

The module function definition must not specify the SOURCE clause, the TEMPLATE clause, or the
LANGUAGE OLEDEB option (SQLSTATE 42613).

module-procedure-definition
The syntax to define the procedure is the same as the CREATE PROCEDURE statement excluding
the CREATE keyword and both the procedure-name and specific-name must be specified without
any qualification (SQLSTATE 42601). If the procedure signature is unique within the module, a
new procedure is added. If the procedure matches an existing procedure that does not include a
body (SQL-routine-body or EXTERNAL NAME clause), then this procedure prototype is replaced by
the new definition except that the published attribute is retained. The name of the procedure can
begin with "SYS_" only to add the module initialization procedure called SYS_INIT. See Notes for
details.

Chapter 1. Structured Query Language (SQL) 775

module-type-definition
The syntax to define the user-defined type is the same as the CREATE TYPE statement excluding
the CREATE keyword and the type-name must be specified without any qualification (SQLSTATE
42601). The name of the user-defined type must be unique within the module. A structured type
cannot be defined in a module. Any generated functions required to support the type definition
are also defined in the module. If the module user-defined type is published then so are the
generated functions.

module-variable-definition
The syntax to define the variable is the same as the CREATE VARIABLE statement excluding the
CREATE keyword and the variable-name must be specified without any qualification (SQLSTATE
42601). The name of the variable must be unique within the module.

DROP
Drops a specified part of a module. The module-object-identification syntax is used to identify the
object to be dropped unless the body of the module is being dropped.
BODY

Drops the module body, which includes:

• all objects that are not published.
• the routine body of any published SQL routines
• the EXTERNAL reference for any published external routines.

PUBLISH
Adds a new object to the module and makes it available for use outside the module. In the case
of routines, a routine prototype can be specified that does not include the executable body of the
routine.
module-condition-definition

Adds a module condition that is available for use outside the module.
condition-name

Name of the condition. The name must not identify an existing condition in the module. The
condition-name must be specified without any qualification (SQLSTATE 42601). The name of
the condition must be unique within the module.

FOR SQLSTATE string-constant
Specifies the SQLSTATE that is associated with the condition. The string-constant must be
specified as five characters enclosed in single quotation marks, and the SQLSTATE class (the
first two characters) must not be '00'. This is an optional clause.

module-function-definition
The syntax to define the function is the same as the CREATE FUNCTION statement excluding the
CREATE keyword and both the function-name and specific-name must be specified without any
qualification (SQLSTATE 42601). The definition of the function must include the function name,
full specification of any parameters and the returns clause. Module user-defined data types that
are not published are not candidates for the parameter data types or the RETURNS clause data
type. Module variables that are not published are not candidates for the anchor object in an
ANCHOR clause of a parameter data type or a returns data type. A function prototype can be
specified by omitting the LANGUAGE clause (or specifying LANGUAGE SQL) and the SQL-routine-
body. The function signature must be unique within the module. The name of the function must
not begin with "SYS_" (SQLSTATE 42939). All SQL functions added to a module are processed as if
a compound SQL (compiled) statement was used.

The module function definition can only specify the RETURNS TABLE clause when the SQL-
routine-body is an compound SQL (compiled) statement that specifies NOT ATOMIC. The module
function definition must not specify the SOURCE clause, the TEMPLATE clause, or the LANGUAGE
OLEDEB option (SQLSTATE 42613).

module-procedure-definition
The syntax to define the procedure is the same as the CREATE PROCEDURE statement excluding
the CREATE keyword and both the procedure-name and specific-name must be specified without

776 IBM Db2 V11.5: SQL Reference

any qualification (SQLSTATE 42601). The definition of the procedure must include the procedure
name and full specification of any parameters. Module user-defined data types that are not
published are not candidates for the parameter data types. Module variables that are not
published are not candidates for the anchor object in an ANCHOR clause of a parameter definition.
A function prototype can be specified by omitting the LANGUAGE clause (or specifying LANGUAGE
SQL) and the SQL-routine-body. The procedure signature must be unique within the module. The
name of the procedure must not begin with "SYS_" (SQLSTATE 42939).

module-type-definition
The syntax to define the user-defined type is the same as the CREATE TYPE statement excluding
the CREATE keyword and the type-name must be specified without any qualification (SQLSTATE
42601). Module user-defined data types that are not published are not candidates for any data
type referenced in the module user-defined data type definition. Module variables that are not
published are not candidates for the anchor object in an ANCHOR clause. The name of the
user-defined type must not begin with "SYS_" (SQLSTATE 42939) and must be unique within the
module. A structured type cannot be defined in a module. Any generated functions required to
support the type definition are also defined in the module as published functions.

module-variable-definition
The syntax to define the variable is the same as the CREATE VARIABLE statement excluding the
CREATE keyword and the variable-name must be specified without any qualification (SQLSTATE
42601). Module user-defined data types that are not published are not candidates for the any
data type referenced in the variable definition. Module variables that are not published are not
candidates for the anchor object in an ANCHOR clause. The name of the variable must not begin
with "SYS_" (SQLSTATE 42939) and must be unique within the module.

module-object-identification
Identifies a unique module object.
module-function-designator

Uniquely identifies a single module function.
FUNCTION unqualified-function-name

Identifies a particular function, and is valid only if there is exactly one function instance
with the name unqualified-function-name in the module. The identified function can have any
number of parameters defined for it. If no function by this name exists in the module, an error
(SQLSTATE 42704) is raised. If there is more than one instance of the function in the module,
an error (SQLSTATE 42725) is raised.

FUNCTION unqualified-function-name (data type,...)
Provides the function signature, which uniquely identifies the function. The function resolution
algorithm is not used.

unqualified-function-name
Specifies the name of the function.

(data-type,...)
Values must match the data types that were specified (in the corresponding position) when
the function was originally defined. The number of data types, and the logical concatenation of
the data types, is used to identify the specific function instance.

If a data type is unqualified, the type name is resolved by searching the schemas on the SQL
path. This also applies to data type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the parameterized data types.
Instead, an empty set of parentheses can be coded to indicate that these attributes are to
be ignored when looking for a data type match. FLOAT() cannot be used (SQLSTATE 42601),
because the parameter value indicates different data types (REAL or DOUBLE). If length,
precision, or scale is coded, the value must exactly match that specified when the function
was defined.

A type of FLOAT(n) does not need to match the defined value for n, because 0 < n < 25 means
REAL, and 24 < n < 54 means DOUBLE. Matching occurs on the basis of whether the type

Chapter 1. Structured Query Language (SQL) 777

is REAL or DOUBLE. If no function with the specified signature exists in the module, an error
(SQLSTATE 42883) is raised.

SPECIFIC FUNCTION unqualified-specific-name
Identifies a particular user-defined function, using the name that is specified or defaulted
to at function definition time. The unqualified-specific-name must identify a specific function
instance in the module; otherwise, an error is returned (SQLSTATE 42704).

module-procedure-designator
Uniquely identifies a single module procedure.
PROCEDURE unqualified-procedure-name

Identifies a particular procedure, and is valid only if there is exactly one procedure instance
with the name unqualified-procedure-name in the module. The identified procedure can have
any number of parameters defined for it. If no procedure by this name exists in the module, an
error is returned (SQLSTATE 42704). If there is more than one instance of the procedure in the
module, an error is returned (SQLSTATE 42725).

PROCEDURE unqualified-procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the procedure. The procedure
resolution algorithm is not used.
unqualified-procedure-name

Specifies the name of the procedure.
(data-type,...)

Values must match the data types that were specified (in the corresponding position)
when the procedure was originally defined. The number of data types, and the logical
concatenation of the data types, is used to identify the specific procedure instance.

If a data type is unqualified, the type name is resolved by searching the schemas on the
SQL path. This also applies to data type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the parameterized data
types. Instead, an empty set of parentheses can be coded to indicate that these attributes
are to be ignored when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value indicates
different data types (REAL or DOUBLE). If length, precision, or scale is coded, the value
must exactly match that specified in when the procedure was defined.

A type of FLOAT(n) does not need to match the defined value for n, because 0 < n < 25
means REAL, and 24 < n < 54 means DOUBLE. Matching occurs on the basis of whether
the type is REAL or DOUBLE.

If no procedure with the specified signature exists in the module, an error is returned
(SQLSTATE 42883).

SPECIFIC PROCEDURE unqualified-specific-name
Identifies a particular procedure, using the name that is specified or defaulted to
at procedure definition time. The unqualified-specific-name must identify a specific
procedure instance in the module; otherwise, an error is returned (SQLSTATE 42704).

TYPE type-name
Identifies a user-defined type from the module. The type-name must be specified without
any qualification (SQLSTATE 42601) and must identify a user-defined type that exists in the
module (SQLSTATE 42704).

VARIABLE variable-name
Identifies a global variable from the module. The variable-name must be specified without any
qualification (SQLSTATE 42601) and must identify a global variable that exists in the module
(SQLSTATE 42704).

CONDITION condition-name
Identifies a condition from the module. The condition-name must be specified without any
qualification and must identify a condition that exists in the module (SQLSTATE 42737).

778 IBM Db2 V11.5: SQL Reference

Rules
• Names of objects in the module cannot begin with "SYS_" with the exception of specifically designated

SYS_INIT procedure name (SQLSTATE 42939).
• ALTER MODULE DROP FUNCTION: If the function is referenced in the definition of a row permission or

column mask, the function cannot be dropped (SQLSTATE 42893).
• ALTER MODULE DROP VARIABLE: If the variable is referenced in the definition of a row permission or

column mask, the variable cannot be dropped (SQLSTATE 42893).
• ALTER MODULE DROP BODY: If the module is referenced in the definition of a row permission or

column mask, the module cannot be dropped (SQLSTATE 42893).

Notes
• Module initialization: A module can have a special initialization procedure called SYS_INIT that is

implicitly executed when the first reference is made to a module routine or module global variable. The
SYS_INIT procedure must be implemented with no parameters, cannot return result sets, and can be
an SQL or external procedure that cannot be published (SQLSTATE 428HP). If the SYS_INIT procedure
fails, an error is returned for the statement that caused the module initialization (SQLSTATE 56098).

• Use of module conditions: A module condition can only be used with a SIGNAL statement, RESIGNAL
statement or a handler declaration that is within a compound SQL (compiled) statement.

• Invalidation: If a routine prototype is replaced using the ADD action, all objects that depended on the
published module routine are invalidated. If DROP BODY is issued, all objects dependent on published
module routines are invalidated.

• Obfuscation: The ALTER MODULE ADD FUNCTION, ALTER MODULE ADD PROCEDURE, ALTER MODULE
PUBLISH FUNCTION, and ALTER MODULE PUBLISH PROCEDURE statements can be submitted in
obfuscated form. In an obfuscated statement, only the routine name and its parameters are readable.
The rest of the statement is encoded in such a way that is not readable but can be decoded by the
database server. Obfuscated statements can be produced by calling the DBMS_DDL.WRAP function.

Example
The following statements create a module named INVENTORY containing an associative array type, a
variable of that data type, a procedure that adds elements to the array and a function that extracts
elements from the array. Only the function and the procedure can be referenced from outside of the
module based on the PUBLISH keyword in the corresponding ALTER MODULE statements. The data type
and the variable can only be referenced by other objects in the module.

 CREATE MODULE INVENTORY

 ALTER MODULE INVENTORY ADD
 TYPE ITEMLIST AS INTEGER ARRAY[VARCHAR(100)]

 ALTER MODULE INVENTORY ADD
 VARIABLE ITEMS ITEMLIST

 ALTER MODULE INVENTORY PUBLISH
 PROCEDURE UPDATE_ITEM(NAME VARCHAR(100), QUANTITY INTEGER)
 BEGIN
 SET ITEMS[NAME] = QUANTITY;
 END

 ALTER MODULE INVENTORY PUBLISH
 FUNCTION CHECK_ITEM(NAME VARCHAR(100)) RETURNS INTEGER
 RETURN ITEMS[NAME]

ALTER NICKNAME
The ALTER NICKNAME statement modifies the nickname information associated with a data source object
(such as a table, view, or file).

This statement modifies the information that is stored in the federated database in the following ways:

Chapter 1. Structured Query Language (SQL) 779

• Altering the local column names for the columns of the data source object
• Altering the local data types for the columns of the data source object
• Adding, setting, or dropping nickname and column options
• Adding or dropping a primary key
• Adding or dropping one or more unique, referential, or check constraints
• Altering one or more referential or check constraint attributes
• Altering the caching of data at a federated server

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTER privilege on the nickname specified in the statement
• CONTROL privilege on the nickname specified in the statement
• ALTERIN privilege on the schema, if the schema name of the nickname exists
• SCHEMAADM authority on the schema, if the schema name of the nickname exists
• Owner of the nickname, as recorded in the OWNER column of the SYSCAT.TABLES catalog view
• DBADM authority

780 IBM Db2 V11.5: SQL Reference

Syntax
ALTER NICKNAME nickname

OPTIONS (

,

ADD

SET

nickname-option-name string-constant

DROP nickname-option-name

)

ALTER
COLUMN

column-name
1

,

LOCAL NAME column-name

LOCAL TYPE local-data-type

federated-column-options
2

ADD unique-constraint

referential-constraint

check-constraint

ALTER FOREIGN KEY

CHECK

constraint-name constraint-alteration

DROP PRIMARY KEY

FOREIGN KEY

UNIQUE

CHECK

CONSTRAINT

constraint-name

ALLOW CACHING

DISALLOW CACHING

local-data-type
built-in-type

distinct-type-name
3

built-in-type

Chapter 1. Structured Query Language (SQL) 781

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

CHARACTER

CHAR

(1)

( integer
OCTETS

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

)

FOR BIT DATA

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

)

GRAPHIC

(1)

( integer
CODEUNITS16

)

VARGRAPHIC ( integer
CODEUNITS16

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

federated-column-options

782 IBM Db2 V11.5: SQL Reference

OPTIONS (

,

ADD

SET

column-option-name string-constant

DROP column-option-name

)

unique-constraint

CONSTRAINT constraint-name

UNIQUE

PRIMARY KEY

(

,

column-name

) constraint-attributes

referential-constraint

CONSTRAINT constraint-name

FOREIGN KEY (

,

column-name)

references-clause

references-clause
REFERENCES table-name

nickname

(

,

column-name)

constraint-attributes

check-constraint

CONSTRAINT constraint-name

CHECK (check-condition)

constraint-attributes

check-condition
search-condition

functional-dependency

functional-dependency
column-name

(

,

column-name)

DETERMINED BY

column-name

(

,

column-name)

constraint-attributes

Chapter 1. Structured Query Language (SQL) 783

● NOT ENFORCED
TRUSTED

NOT TRUSTED

●

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION
4

●

constraint-alteration

5

ENABLE

DISABLE

QUERY OPTIMIZATION

NOT ENFORCED
TRUSTED

NOT TRUSTED

Notes:
1 You cannot specify both the ALTER COLUMN clause and an ADD, ALTER, or DROP informational
constraint clause in the same ALTER NICKNAME statement.
2 If you need to specify the federated-column-options clause in addition to the LOCAL NAME
parameter, the LOCAL TYPE parameter, or both, you must specify the federated-column-options clause
last.
3 The specified distinct type cannot have any data type constraints and the source type cannot be an
anchored data type (SQLSTATE 428H2).
4 DISABLE QUERY OPTIMIZATION is not supported for a unique or primary key constraint.
5 The same clause must not be specified more than once.

Description
nickname

Identifies the nickname for the data source object (such as a table, view, or file) that contains the
column being altered. It must be a nickname described in the catalog.

OPTIONS
Indicates the nickname options that are added, set, or dropped when the nickname is altered.
ADD

Adds a nickname option.
SET

Changes the setting of a nickname option.
nickname-option-name

The nickname option that is to be added or set. Which options you can specify depends on the
data source of the object for which a nickname is being created. For a list of data sources and the
nickname options that apply to each, see Data source options.

string-constant
The nickname option setting as a character string constant enclosed in single quotation marks.

DROP nickname-option-name
Drops a nickname option.

ALTER COLUMN column-name
Names the column to be altered. The column-name is the federated server's current name for the
column of the table or view at the data source. The column-name must identify an existing column of
the nickname (SQLSTATE 42703). You cannot reference the same column name multiple times in the
same ALTER NICKNAME statement (SQLSTATE 42711).

784 IBM Db2 V11.5: SQL Reference

LOCAL NAME column-name
Specifies a new name, column-name, by which the federated server is to reference the column to be
altered. The new name cannot be qualified, and the same name cannot be used for more than one
column of the nickname (SQLSTATE 42711).

LOCAL TYPE local-data-type
Specifies a new local data type to which the data type of the column that is to be altered will map. The
new type is denoted by local-data-type.

Some wrappers only support a subset of the SQL data types. For descriptions of specific data types,
see the description of the "CREATE TABLE" statement.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

OPTIONS
Indicates what column options are to be added, set, or dropped for the column specified after the
COLUMN keyword.
ADD

Adds a column option.
SET

Changes the setting of a column option.
column-option-name

Names a column option that is to be added or set.
string-constant

Specifies the setting for column-option-name as a character string constant.
DROP column-option-name

Drops a column option.
ADD unique-constraint

Defines a unique constraint. See the description of the "CREATE NICKNAME" statement.
ADD referential-constraint

Defines a referential constraint. See the description of the "CREATE NICKNAME" statement.
ADD check-constraint

Defines a check constraint. See the description of the "CREATE NICKNAME" statement.
ALTER FOREIGN KEY constraint-name

Alters the constraint attributes of the referential constraint constraint-name. For a description of the
constraint attributes, see the "CREATE NICKNAME" statement. The constraint-name must identify an
existing referential constraint (SQLSTATE 42704).

ALTER CHECK constraint-name
Alters the constraint attributes of the check constraint constraint-name. The constraint-name must
identify an existing check constraint (SQLSTATE 42704).

constraint-alteration
Provides options for changing the attributes associated with referential or check constraints.
ENABLE QUERY OPTIMIZATION

The constraint can be used for query optimization under appropriate circumstances.
DISABLE QUERY OPTIMIZATION

The constraint cannot be used for query optimization.
NOT ENFORCED

Specifies that the constraint is not enforced by the database manager during normal operations
such as insert, update, or delete.
TRUSTED

The data can be trusted to conform to the constraint. TRUSTED must be used only if the
data in the table is independently known to conform to the constraint. Query results might
be unpredictable if the data does not actually conform to the constraint. This is the default
option.

Chapter 1. Structured Query Language (SQL) 785

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT TRUSTED is intended for cases
where the data conforms to the constraint for most rows, but it is not independently known
that all the rows or future additions will conform to the constraint. If a constraint is NOT
TRUSTED and enabled for query optimization, then it will not be used to perform optimizations
that depend on the data conforming completely to the constraint. NOT TRUSTED can be
specified only for referential integrity constraints (SQLSTATE 42613).

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints that are dependent upon this
primary key. The nickname must have a primary key.

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must identify an existing
referential constraint defined on the nickname.

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all referential constraints that
are dependent upon this unique constraint. The constraint-name must identify an existing unique
constraint.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an existing check
constraint defined on the nickname.

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an existing check constraint,
referential constraint, primary key, or unique constraint defined on the nickname.

ALLOW CACHING or DISALLOW CACHING
Specifies whether the nickname can be referenced in a query that defines a materialized query table,
which could be used to cache data from the data source at the federated server.
ALLOW CACHING

Specifies that the nickname can be referenced in a query that defines a materialized query table,
which allows data from the data source to be cached in the materialized query table at the
federated server. The refreshable options defined for the materialized query table specify how the
cached data in the materialized query table is maintained.

DISALLOW CACHING
Specifies that the nickname cannot be referenced in a query that defines a materialized query
table. DISALLOW CACHING cannot be specified for a nickname that is referenced in the fullselect
of a materialized query table definition (SQLSTATE 42917).

Rules
• If a nickname is used in a view, SQL method, or SQL function, or informational constraints are defined

on it, the ALTER NICKNAME statement cannot be used to change the local names or data types for the
columns in the nickname (SQLSTATE 42893). The statement can be used, however, to add, set, or drop
column options, nickname options, or informational constraints.

• If a nickname is referenced by a materialized query table definition, the ALTER NICKNAME statement
cannot be used to change the local names, data types, column options, or nickname options (SQLSTATE
42893). Moreover, the statement cannot be used to disable caching (SQLSTATE 42917). The statement
can be used, however, to add, alter, or drop informational constraints.

• A column option cannot be specified more than once in the same ALTER NICKNAME statement
(SQLSTATE 42853). When a column option is enabled, reset, or dropped, any other column options
that are in use are not affected.

• For relational nicknames, the ALTER NICKNAME statement within a given unit of work (UOW) cannot be
processed under either of the following conditions (SQLSTATE 55007):

– A nickname referenced in this statement has a cursor open on it in the same UOW

786 IBM Db2 V11.5: SQL Reference

– Either an INSERT, DELETE, or UPDATE statement is already issued in the same UOW against the
nickname that is referenced in this statement

• For non-relational nicknames, the ALTER NICKNAME statement within a given unit of work (UOW)
cannot be processed under any of the following conditions (SQLSTATE 55007):

– A nickname referenced in this statement has a cursor open on it in the same UOW
– A nickname referenced in this statement is already referenced by a SELECT statement in the same

UOW
– Either an INSERT, DELETE, or UPDATE statement has already been issued in the same UOW against

the nickname that is referenced in this statement

Notes
• If the ALTER NICKNAME statement is used to change the local name for a column of a nickname,

queries against that column must reference it by its new name.
• When the local specification of a column's data type is changed, the database manager invalidates any

statistics (HIGH2KEY, LOW2KEY, and so on) gathered for that column.
• Caching and protected objects: For nicknames whose data source object is protected, specify
DISALLOW CACHING. This ensures that each time the nickname is used, data for the appropriate
authorization ID is returned from the data source at query execution time. This is done by restricting the
nickname from being used in the definition of a materialized query table at the federated server, which
might be being used to cache the nickname data.

• BINARY and VARBINARY types are not supported in a Federated system.

Examples
1. The nickname NICK1 references a Db2 for IBM i table called T1. Also, COL1 is the local name that

references this table's first column, C1. Rename the local name for C1 from COL1 to NEWCOL.

 ALTER NICKNAME NICK1
 ALTER COLUMN COL1
 LOCAL NAME NEWCOL

2. The nickname EMPLOYEE references a Db2 for z/OS table called EMP. Also, SALARY is the local name
that references EMP_SAL, one of this table's columns. The column's data type, FLOAT, maps to the
local data type, DOUBLE. Change the mapping so that FLOAT maps to DECIMAL (10, 5).

 ALTER NICKNAME EMPLOYEE
 ALTER COLUMN SALARY
 LOCAL TYPE DECIMAL(10,5)

3. Indicate that in an Oracle table, a column with the data type of VARCHAR does not have trailing blanks.
The nickname for the table is NICK2, and the local name for the column is COL1.

 ALTER NICKNAME NICK2
 ALTER COLUMN COL1
 OPTIONS (ADD VARCHAR_NO_TRAILING_BLANKS 'Y')

4. Alter the fully qualified path for the table-structured file, drugdata1.txt, for the nickname DRUGDATA1.
Use the FILE_PATH nickname option and change the path from the current value of '/user/pat/
drugdata1.txt' to '/usr/kelly/data/drugdata1.txt'.

 ALTER NICKNAME DRUGDATA1
 OPTIONS (SET FILE_PATH '/usr/kelly/data/drugdata1.txt')

Chapter 1. Structured Query Language (SQL) 787

ALTER PACKAGE
The ALTER PACKAGE statement alters bind options for a package at the current server without having to
bind or rebind the package.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTERIN privilege on the schema
• BIND privilege on the package
• SCHEMAADM authority on the schema
• DBADM authority

ALTER PACKAGE package-name

VERSION
version-id

1

ACCESS PLAN REUSE YES

NO

OPTIMIZATION PROFILE NONE

optimization-profile-name

KEEP DYNAMIC YES

NO

Notes:
1 The same clause must not be specified more than once.

Description
package-name

Identifies the package that is to be altered. The package name must identify a package that exists at
the current server (SQLSTATE 42704).
VERSION version-id

Identifies which package version is to be altered. If a value is not specified, the version defaults
to the empty string. If multiple packages with the same package name but different versions exist,
only one package version can be altered in one invocation of the ALTER PACKAGE statement.
Delimit the version identifier with double quotation marks when it:

• Is generated by the VERSION(AUTO) precompiler option
• Begins with a digit
• Contains lowercase or mixed-case letters

788 IBM Db2 V11.5: SQL Reference

If the statement is invoked from an operating system command prompt, precede each double
quotation mark delimiter with a back slash character to ensure that the operating system does not
strip the delimiters.

ACCESS PLAN REUSE
Indicates whether the query compiler should attempt to reuse the access plans for static statements
in the package during future implicit and explicit rebinds.
NO

Specifies not to reuse access plans.
YES

Specifies to attempt to reuse access plans.
OPTIMIZATION PROFILE

Indicates what, if any, optimization profile to associate with the package.
NONE

Associates no optimization profile with the package. If an optimization profile is already
associated with the package, the association is removed.

optimization-profile-name
Associates the optimization profile optimization-profile-name with the package. The optimization
profile is a two-part name. If the specified optimization-profile-name is unqualified, the value of
the CURRENT DEFAULT SCHEMA special register is used as the implicit qualifier. If an optimization
profile is already associated with the package, the association is replaced with optimization-
profile-name.

While the ALTER PACKAGE statement removes the current copy of the package from the Db2 package
cache, it does not invalidate the package and does not cause an implicit rebind to take place. This
means that although dynamic SQL is affected by the changes made by the statement, query execution
plans for static statements are not be affected until the next implicit or explicit rebind.

KEEP DYNAMIC

Starting with Db2 Version 9.8 Fix Pack 2, you can modify the value of the KEEPDYNAMIC bind option
for a package without requiring a fresh bind operation, thereby avoiding unnecessary recompilation
until the next bind operation occurs. This option controls how long the statement text and section
associated with a prepared statement are kept in the SQL context. It takes effect after all applications
that are using the package have completed the transactions that were running when the ALTER
PACKAGE statement was executed.
YES

Instructs the SQL context to keep the statement text and section associated with prepared
statements indefinitely. Dynamic SQL statements are kept across transactions. All packages
bound with KEEPDYNAMIC YES are by default compatible with the existing package cache
behavior.

NO

Instructs the SQL context to remove the statement text and section associated with prepared
statements at the end of each unit of work. The executable versions of prepared statements and
the statement text in packages bound with the KEEP DYNAMIC NO option are removed from
the SQL context at transaction boundaries. The client, driver, or application needs to prepare any
dynamic SQL statement it wishes to reuse in a new unit of work again.

For remote applications that use an IBM non-embedded API, once you have ensured that
statements will be prepared in new transactions, you can use this option so that WLB will not
be disallowed solely based on the KEEP DYNAMIC behavior. However even with this option, WLB
may be disallowed for other reasons.

SELECT statements issued by cursors with the WITH HOLD option are disassociated from the
SQL context at the next transaction boundary where the cursor is closed. As a result, workload
balancing is allowed as long as there are no executable versions of prepared statements
associated with the application in the SQL context.

Chapter 1. Structured Query Language (SQL) 789

Note: Workload balancing is not restricted for dynamic SQL applications that use IBM non-embedded
APIs, such as JDBC, .NET, or CLI/ODBC, to run SQL within the common client packages. These
interfaces implicitly re-prepare SQL statements before executing them in transactions where their
connection might have been moved to a new executable version of prepared statements.

Notes
• Catalog view values may not reflect the settings that were in effect for the package: Because

this statement does not trigger a rebind of the package, the settings for a package as shown in the
SYSCAT.PACKAGES catalog view might not reflect what was actually in effect during the last BIND or
REBIND. If the ALTER_TIME is greater than the LAST_BIND_TIME, then this might be the case.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with the BIND
and REBIND commands. These alternatives are non-standard and should not be used.

– APREUSE can be specified in place of ACCESS PLAN REUSE.
– OPTPROFILE can be specified in place of OPTIMIZATION PROFILE.
– KEEPDYNAMIC can be specified in place of KEEP DYNAMIC.

Examples

Example 1: Enable access plan reuse for package TRUUVERT.EMPADMIN.

 ALTER PACKAGE TRUUVERT.EMPADMIN ACCESS PLAN REUSE YES

Example 2: Assume access plan reuse has been enabled for package TRUUVERT.EMPADMIN. Assume
also that optimization profile AYYANG.INDEXHINTS contains a statement profile for a specific statement
within the package. Associate the optimization profile with this package so that it will override the reuse
of the access plan for the statement.

 ALTER PACKAGE TRUUVERT.EMPADMIN OPTIMIZATION PROFILE AYYANG.INDEXHINTS

Dynamic statements will be affected after the statement commits; static statements will be affected at
the next rebind. When the package is rebound, the query compiler will attempt to reuse the access plans
for all static statements in the package, with the exception of the statement identified by the optimization
profile. When recompiling this statement, the query compiler will instead attempt to apply the statement
profile.

Example 3: The following statement will result in no optimization profile being associated with package
TRUUVERT.EMPADMIN.

 ALTER PACKAGE TRUUVERT.EMPADMIN OPTIMIZATION PROFILE NONE

ALTER PERMISSION
The ALTER PERMISSION statement alters a row permission that exists at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly
specified.

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

790 IBM Db2 V11.5: SQL Reference

Syntax
ALTER PERMISSION permission-name ENABLE

DISABLE

Description
permission-name

This is the name of the row permission to be altered. The name must identify a row permission that
already exists at the current server (SQLSTATE 42704). The name must not identify a default row
permission that is created implicitly by the database manager (SQLSTATE 428H9).

ENABLE

Enables the row permission. If row level access control is not currently activated on the table, the row
permission will become effective when row level access control is activated on the table. If row level
access control is currently activated on the table, the row permission becomes effective immediately
and all packages and dynamic cached statements that reference the table are invalidated.

ENABLE is ignored if the row permission is already defined as enabled.

DISABLE

Disables the row permission. If row level access control is not currently activated on the table,
the row permission will remain ineffective when row level access control is activated on the
table. If row level access control is currently activated on the table, the row permission becomes
ineffective immediately and all packages and dynamic cached statements that reference the table are
invalidated.

DISABLE is ignored if the row permission is already defined as disabled.

Examples
• Example 1: Enable permission P1.

ALTER PERMISSION P1 ENABLE

• Example 2: Disable permission P1.

ALTER PERMISSION P1 DISABLE

ALTER PROCEDURE (external)
The ALTER PROCEDURE (External) statement modifies an existing external procedure by changing the
properties of the procedure.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTERIN privilege on the schema of the procedure
• Owner of the procedure, as recorded in the OWNER column of the SYSCAT.ROUTINES catalog view
• SCHEMAADM authority on the schema of the procedure
• DBADM authority

Chapter 1. Structured Query Language (SQL) 791

To alter the EXTERNAL NAME of a procedure, the privileges held by the authorization ID of the statement
must also include at least one of the following authorities:

• CREATE_EXTERNAL_ROUTINE authority on the database
• DBADM authority

To alter a procedure to be not fenced, the privileges held by the authorization ID of the statement must
also include at least one of the following authorities:

• CREATE_NOT_FENCED_ROUTINE authority on the database
• DBADM authority

To alter a procedure to be fenced, no additional authorities or privileges are required.

Syntax

ALTER procedure-designator EXTERNAL NAME 'string'

identifier

FENCED

NOT FENCED

EXTERNAL ACTION

NO EXTERNAL ACTION

THREADSAFE

NOT THREADSAFE

NEW SAVEPOINT LEVEL

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

Description
procedure-designator

Identifies the procedure to alter. The procedure-designator must identify a procedure that exists at
the current server. The owner of the procedure and all privileges on the procedure are preserved. For
more information, see “Function, method, and procedure designators” on page 745.

EXTERNAL NAME 'string' or identifier
Identifies the name of the user-written code that implements the procedure.

FENCED or NOT FENCED
Specifies whether the procedure is considered safe to run in the database manager operating
environment's process or address space (NOT FENCED), or not (FENCED). Most procedures have the
option of running as FENCED or NOT FENCED.

If a procedure is altered to be FENCED, the database manager insulates its internal resources (for
example, data buffers) from access by the procedure. In general, a procedure running as FENCED will
not perform as well as a similar one running as NOT FENCED.

CAUTION: Use of NOT FENCED for procedures that were not adequately coded, reviewed,
and tested can compromise the integrity of a Db2 database. Db2 databases take some

792 IBM Db2 V11.5: SQL Reference

precautions against many of the common types of inadvertent failures that might occur, but
cannot guarantee complete integrity when NOT FENCED stored procedures are used.

A procedure declared as NOT THREADSAFE cannot be altered to be NOT FENCED (SQLSTATE 42613).

If a procedure has any parameters defined AS LOCATOR, and was defined with the NO SQL option, the
procedure cannot be altered to be FENCED (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE or CLR procedures (SQLSTATE 42849).

This option cannot be altered for a procedure that is registered as a component routine of an
aggregate interface function (SQLSTATE 42849).

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an object not managed
by the database manager (EXTERNAL ACTION), or not (NO EXTERNAL ACTION). If NO EXTERNAL
ACTION is specified, the system can use certain optimizations that assume the procedure has no
external impact.

This option cannot be altered for a procedure that is registered as a component routine of an
aggregate interface function (SQLSTATE 42849).

THREADSAFE or NOT THREADSAFE
Specifies whether the procedure is considered safe to run in the same process as other routines
(THREADSAFE), or not (NOT THREADSAFE).

If the procedure is defined with LANGUAGE other than OLE:

• If the procedure is defined as THREADSAFE, the database manager can invoke the procedure in
the same process as other routines. In general, to be threadsafe, a procedure should not use any
global or static data areas. Most programming references include a discussion of writing threadsafe
routines. Both FENCED and NOT FENCED procedures can be THREADSAFE.

• If the procedure is defined as NOT THREADSAFE, the database manager will never invoke
the procedure in the same process as another routine. Only a fenced procedure can be NOT
THREADSAFE (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE procedures (SQLSTATE 42849).

This option cannot be altered for a procedure that is registered as a component routine of an
aggregate interface function (SQLSTATE 42849).

NEW SAVEPOINT LEVEL
Specifies that a new savepoint level is to be created for the procedure. A savepoint level refers to
the scope of reference for any savepoint-related statement, as well as to the name space used for
comparison and reference of any savepoint names.

The savepoint level for a procedure can only be altered to NEW SAVEPOINT LEVEL.

This option cannot be altered for a procedure that is registered as a component routine of an
aggregate interface function (SQLSTATE 42849).

Rules
• It is not possible to alter a procedure that is in the following schema (SQLSTATE 42832):

– SYSIBM
– SYSFUN
– SYSPROC

Example
Alter the procedure PARTS_ON_HAND() to be not fenced.

 ALTER PROCEDURE PARTS_ON_HAND() NOT FENCED

Chapter 1. Structured Query Language (SQL) 793

ALTER PROCEDURE (sourced)
The ALTER PROCEDURE (Sourced) statement modifies an existing sourced procedure by changing the
data type of one or more parameters of the sourced procedure.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTERIN privilege on the schema of the procedure
• Owner of the procedure, as recorded in the OWNER column of the SYSCAT.ROUTINES catalog view
• SCHEMAADM authority on the schema of the procedure
• DBADM authority

Syntax

ALTER procedure-designator ALTER PARAMETER parameter-alteration

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

parameter-alteration
parameter-name SET DATA TYPE data-type

Description
procedure-designator

Uniquely identifies the procedure to be altered. The identified procedure must be a sourced procedure
(SQLSTATE 42849). For more information, see “Function, method, and procedure designators” on
page 745.

parameter-name
Identifies the parameter to be altered. The parameter-name must identify an existing parameter of
the procedure (SQLSTATE 42703). The name must not identify a parameter that is otherwise being
altered in the same ALTER PROCEDURE statement (SQLSTATE 42713).

data-type
Specifies the new local data type of the parameter. SQL data type specifications and abbreviations
that are valid for the data-type definition of a CREATE TABLE statement can be specified. BLOB, CLOB,
DBCLOB, DECFLOAT, XML, REFERENCE, and user-defined types are not supported (SQLSTATE 42815).

794 IBM Db2 V11.5: SQL Reference

Example
Assume that federated procedure FEDEMPLOYEE has been created for a remote Oracle procedure named
'EMPLOYEE'. The data type of an input parameter named SALARY maps to a DOUBLE(8) in Db2. Alter the
data type of this parameter to DECIMAL(5,2).

 ALTER PROCEDURE FEDEMPLOYEE
 ALTER PARAMETER SALARY
 SET DATA TYPE DECIMAL(5,2)

ALTER PROCEDURE (SQL)
The ALTER PROCEDURE (SQL) statement modifies an existing SQL procedure by changing the properties
of the procedure.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTERIN privilege on the schema of the procedure
• Owner of the procedure, as recorded in the OWNER column of the SYSCAT.ROUTINES catalog view
• SCHEMAADM authority on the schema of the procedure
• DBADM authority

Syntax

ALTER procedure-designator EXTERNAL ACTION

NO EXTERNAL ACTION

NEW SAVEPOINT LEVEL

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

Description
procedure-designator

Identifies the procedure to alter. The procedure-designator must identify a procedure that exists at
the current server. The owner of the procedure and all privileges on the procedure are preserved. For
more information, see “Function, method, and procedure designators” on page 745.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an object not managed
by the database manager (EXTERNAL ACTION), or not (NO EXTERNAL ACTION). If NO EXTERNAL

Chapter 1. Structured Query Language (SQL) 795

ACTION is specified, the system can use certain optimizations that assume the procedure has no
external impact.

NEW SAVEPOINT LEVEL
Specifies that a new savepoint level is to be created for the procedure. A savepoint level refers to
the scope of reference for any savepoint-related statement, as well as to the name space used for
comparison and reference of any savepoint names.

The savepoint level for a procedure can only be altered to NEW SAVEPOINT LEVEL.

Rules
• It is not possible to alter a procedure that is in the following schema (SQLSTATE 42832):

– SYSIBM
– SYSFUN
– SYSPROC

Example
Alter the procedure MEDIAN_RESULT_SET to indicate that it has no external action.

 ALTER PROCEDURE MEDIAN_RESULT_SET(DOUBLE)
 NO EXTERNAL ACTION

ALTER SCHEMA
The ALTER SCHEMA statement modifies the data capture attribute of an existing schema.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• Owner of the schema, as recorded in the OWNER column of SYSCAT.SCHEMATA catalog view
• DBADM authority

Syntax
ALTER SCHEMA schema-name DATA CAPTURE NONE

CHANGES

ENABLE ROW MODIFICATION TRACKING

Description
schema-name

Identifies the schema to be altered. The schema-name must identify a schema that exists at the
current server (SQLSTATE 42704).

DATA CAPTURE
Indicates whether extra information for data replication is to be written to the log.

796 IBM Db2 V11.5: SQL Reference

NONE
Indicates that no extra information for data replication will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this schema will be written to the log.
This option is required if this schema will be replicated and a replication capture program is used
to capture changes for this schema from the log.

ENABLE ROW MODIFICATION TRACKING
Indicates tables created in the schema are to be enabled for logical backup. This only applies
to columnar organized tables. For a list of restrictions, see Schema enabled for row modification
tracking.

Notes
• Altering the DATA CAPTURE attribute at the schema level causes newly created tables to inherit the

DATA CAPTURE attribute from the schema if one is not specified at the table level. Altering the DATA
CAPTURE attribute at the schema level does not affect the DATA CAPTURE attribute of existing tables
within that schema. If the DATA CAPTURE attribute is changed and any existing tables do not match the
new attribute, a warning is returned (SQLSTATE 01696).

• To find the list of tables that have the DATA CAPTURE attribute set to CHANGES, issue the following
query:

SELECT TABNAME, TABSCHEMA FROM SYSCAT.TABLES
 WHERE TYPE IN ('T','S','L')
 AND DATACAPTURE <> 'N'

• To find the list of tables that have the DATA CAPTURE attribute set to NONE, issue the following query:

SELECT TABNAME, TABSCHEMA FROM SYSCAT.TABLES
 WHERE TYPE IN ('T','S','L')
 AND DATACAPTURE = 'N'

Related information
Schema enabled for row modification tracking

ALTER SECURITY LABEL COMPONENT
The ALTER SECURITY LABEL COMPONENT statement modifies a security label component.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
ALTER SECURITY LABEL COMPONENT component-name add-element-clause

add-element-clause
ADD ELEMENT string-constant

array-element-clause

tree-element-clause

array-element-clause

Chapter 1. Structured Query Language (SQL) 797

https://www.ibm.com/docs/en/db2/11.5?topic=databases-schema-enabled-row-modification-tracking
https://www.ibm.com/docs/en/db2/11.5?topic=databases-schema-enabled-row-modification-tracking

BEFORE

AFTER

string-constant

tree-element-clause
ROOT

UNDER string-constant
,

OVER string-constant

Description
component-name

Specifies the name of the security label component to be altered. The named component must exist
at the current server (SQLSTATE 42704).

ADD ELEMENT
Specifies the element to be added to the security label component. If array-element-clause and
tree-element-clause are not specified, the element is added to a set component.
string-constant

The string constant value to be added to the set of valid values for the security label component.
The value cannot be the same as any other value in the set of valid values for the security label
component (SQLSTATE 42713).

BEFORE or AFTER
For an array component, specifies where the element is to be added in the ordered set of element
values for the security label component.
BEFORE

The element to be added is to be ranked immediately before the identified existing element.
AFTER

The element to be added is to be ranked immediately after the identified existing element.
string-constant

Specifies a string constant value of an existing element in the array component (SQLSTATE
42704).

ROOT or UNDER
For a tree component, specifies where the element is to be added in the tree structure of node
element values for the security label component.
ROOT

The element to be added is to be considered the root node of the tree.
UNDER string-constant

The element to be added is an immediate child of the element identified by the string-constant.
The string-constant value must be an existing element in the tree component (SQLSTATE 42704).
OVER string-constant,...

The element to be added is an immediate child of every element identified by the list of
string-constant values. Each string-constant value must be an existing element in the tree
component (SQLSTATE 42704).

Rules
• Element names cannot contain any of these characters (SQLSTATE 42601):

– Opening parenthesis - (
– Closing parenthesis -)
– Comma - ,

798 IBM Db2 V11.5: SQL Reference

– Colon - :
• An element name can have no more than 32 bytes (SQLSTATE 42622).
• If a security label component is a set or a tree, no more than 64 elements can be part of that

component.
• If the component is an array, it might or might not be possible to arrive at an array whose total number

of elements matches the total number of elements that could be specified when creating a security
label component of type array (65 535). The database manager assigns an encoded value to the new
element from within the interval into which the new element is added. Depending on the pattern
followed when adding elements to an array component, the number of possible values that can be
assigned from within a particular interval might be quickly exhausted if several elements are inserted
into that interval.

• BEFORE and AFTER must only be specified for a security label component that is an array (SQLSTATE
42613).

• ROOT and UNDER must only be specified for a security label component that is a tree (SQLSTATE
42613).

Notes
• For a set component, there is no order to the elements in the set.

Examples
• Example 1: Add the element 'High classified' to the LEVEL security label array component between the

elements 'Secret' and 'Classified'.

 ALTER SECURITY LABEL COMPONENT LEVEL
 ADD ELEMENT 'High classified' BEFORE 'Classified'

• Example 2: Add the element 'Funding' to the COMPARTMENTS security label set component.

 ALTER SECURITY LABEL COMPONENT COMPARTMENTS
 ADD ELEMENT 'Funding'

• Example 3: Add the elements 'ENGINE' and 'TOOLS' to the GROUPS security label array component. The
following diagram shows where these new elements are to be placed.

 PROJECT
 ________|________
 | |
 ENGINE TOOLS
 ________|________
 | |
 TEST DEVELOPMENT
 ______|______
 | |
 CURRENT FIELD

 ALTER SECURITY LABEL COMPONENT GROUPS
 ADD ELEMENT 'TOOLS' UNDER 'PROJECT'

 ALTER SECURITY LABEL COMPONENT GROUPS
 ADD ELEMENT 'ENGINE' UNDER 'PROJECT'
 OVER 'TEST', 'DEVELOPMENT'

Chapter 1. Structured Query Language (SQL) 799

ALTER SECURITY POLICY
The ALTER SECURITY POLICY statement modifies a security policy.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
ALTER SECURITY POLICY security-policy-name

ADD SECURITY LABEL COMPONENT component-name
1

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

USE GROUP AUTHORIZATIONS

IGNORE GROUP AUTHORIZATIONS

USE ROLE AUTHORIZATIONS

IGNORE ROLE AUTHORIZATIONS

Notes:
1 Only the ADD SECURITY LABEL COMPONENT clause can be specified more than once.

Description
security-policy-name

Specifies the name of the security policy to be altered. The name must identify an existing security
policy at the current server (SQLSTATE 42710).

ADD SECURITY LABEL COMPONENT component-name
Adds a security label component to the security policy. The same security component must not
be specified more than once for the security policy (SQLSTATE 42713). The security policy cannot
currently be in use by a table (SQLSTATE 42893).

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT NOT AUTHORIZED WRITE
SECURITY LABEL

Specifies the action taken when a user is not authorized to write the explicitly specified security label
that is provided in the INSERT or UPDATE statement issued against a table that is protected with this
security policy. A user's security label and exemption credentials determine the user's authorization
to write an explicitly provided security label.
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the value of the user's security label, rather than the explicitly specified security
label, is used for write access during an insert or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the insert or update operation will fail if the user is not authorized to write the
explicitly specified security label that is provided in the INSERT or UPDATE statement (SQLSTATE
42519).

800 IBM Db2 V11.5: SQL Reference

USE GROUP AUTHORIZATION or IGNORE GROUP AUTHORIZATION
Specifies whether or not security labels and exemptions granted to groups, directly or indirectly, are
considered for any access attempt.
USE GROUP AUTHORIZATION

Indicates that any security labels or exemptions granted to groups, directly or indirectly, are
considered.

IGNORE GROUP AUTHORIZATION
Indicates that any security labels or exemptions granted to groups are not considered.

USE ROLE AUTHORIZATION or IGNORE ROLE AUTHORIZATION
Specifies whether or not security labels and exemptions granted to roles, directly or indirectly, are
considered for any access attempt.
USE ROLE AUTHORIZATION

Indicates that any security labels or exemptions granted to roles, directly or indirectly, are
considered.

IGNORE ROLE AUTHORIZATION
Indicates that any security labels or exemptions granted to roles are not considered.

Rules
• If a user does not directly hold a security label for write access, an error is returned in the following

situations (SQLSTATE 42519):

– A value for the row security label column is not explicitly provided as part of the SQL statement
– The OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option is in effect for the security policy,

and the user is not allowed to write a data object with the provided security label

Notes
• New components are logically added at the end of the existing security label definition contained by the
modified policy. Existing security labels defined for this security policy are modified to contain the new
component as part of their definition with no element in their value for this component.

• Cache invalidation when changing NOT AUTHORIZED WRITE SECURITY LABEL: Changing the NOT
AUTHORIZED WRITE SECURITY LABEL to a new value will cause the invalidation of any cached dynamic
or static SQL statements that are dependent on any table that is protected by the security policy being
altered.

• Because the session authorization ID is the focus authorization ID for label-based access control,
security labels granted to groups or to roles that are accessible through groups are eligible for
consideration for all types of SQL statements, including static SQL.

• If more than one security label or exemption is available to a user with associated groups or roles at
the time of a read or write access attempt, those security labels and exemptions will be evaluated for
eligibility based on the following rules:

– If the security policy enables only role authorizations for consideration, all security labels and
exemptions granted to roles of which the user authorization ID is a direct or indirect member will be
considered. Security labels and exemptions granted to roles for which membership is only accessible
through the groups associated with the user authorization ID will not be considered.

– If the security policy enables only group authorizations for consideration, all security labels and
exemptions granted to groups associated with the user authorization ID will be considered. Security
labels and exemptions granted to roles for which membership is only accessible through the groups
associated with the user authorization ID will not be considered.

– If the security policy enables both group and role authorizations for consideration, any security labels
and exemptions granted to roles accessible to the user indirectly through groups associated with the
user authorization ID will be considered.

Chapter 1. Structured Query Language (SQL) 801

– Role authorizations that are accessible to the user only through PUBLIC will not be considered at any
time.

• If more than one security label is eligible for consideration during an access attempt, the values
provided for each security label are merged at the individual component level to form a security label
that reflects the combination of all available values at each component piece of the security policy. This
is the security label value that will be used for the access attempt.

The mechanisms for combining security labels vary by component type. The components of the
resultant security label are as follows:

– Set components contain the union of all unique values encountered in the eligible security labels
– Array components contain the highest order element encountered in the eligible security labels
– Tree components contain the union of all unique values encountered in the eligible security labels

• If more than one exemption is eligible for consideration during an access attempt, all found exemptions
are applied to the access attempt.

Examples
• Example 1: Alter a security policy named DATA_ACCESS to add a new component named REGION.

 ALTER SECURITY POLICY DATA_ACCESS
 ADD COMPONENT REGION

• Example 2: Alter a security policy named DATA_ACCESS to allow access through security labels granted
to roles.

 ALTER SECURITY POLICY DATA_ACCESS
 USE ROLE AUTHORIZATIONS

• Example 3: Show the eligible security labels that would be considered depending on the settings for
group or role authorizations in a security policy. The security policy SECUR_POL has an array component
and a set component, consisting of the following elements:

Array = {TS, S, C, U}
Set = {A, B, X, Y}

The following security labels are defined for SECUR_POL:

Security label L1 = C:A
Security label L2 = S:B
Security label L3 = TS:X
Security label L4 = U:Y

User Paul is a member of role R1 and group G1. Group G1 is a member of role R2. Security label L1 is
granted to Paul. Security label L2 is granted to role R1. Security label L3 is granted to group G1. Security
label L4 is granted to role R2. The following table shows what security labels would be considered
for any access attempt by Paul, depending on the different possible settings of the security policy
SECUR_POL.

Table 124. Security labels considered as a function of security policy settings

Roles Enabled Roles Disabled

Groups Enabled L1, L2, L3, L4 L1, L3

Groups Disabled L1, L2 L1

The following table shows the value of the combined security label for any access attempt by Paul,
depending on the different settings of the security policy SECUR_POL.

802 IBM Db2 V11.5: SQL Reference

Table 125. Combined security labels as a function of security policy settings

Roles Enabled Roles Disabled

Groups Enabled TS:(A, B, X, Y) TS:(A, X)

Groups Disabled S:(A, B) C:A

ALTER SEQUENCE
The ALTER SEQUENCE statement can be used to change a sequence.

A sequence can be changed in the following ways:

• Restarting the sequence
• Changing the increment between future sequence values
• Setting or eliminating the minimum or maximum values
• Changing the number of cached sequence numbers
• Changing the attribute that determines whether the sequence can cycle or not
• Changing whether sequence numbers must be generated in order of request

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTER privilege on the sequence to be altered
• ALTERIN privilege on the schema implicitly or explicitly specified
• SCHEMAADM authority on the schema implicitly or explicitly specified
• DBADM authority

Chapter 1. Structured Query Language (SQL) 803

Syntax
ALTER SEQUENCE sequence-name

1
RESTART

WITH numeric-constant

INCREMENT BY numeric-constant

MINVALUE numeric-constant

NO MINVALUE

MAXVALUE numeric-constant

NO MAXVALUE

CYCLE

NO CYCLE

CACHE integer-constant

NO CACHE

ORDER

NO ORDER

Notes:
1 The same clause must not be specified more than once.

Description
sequence-name

Identifies the sequence that is to be changed. The name, including the implicit or explicit schema
qualifier, must uniquely identify an existing sequence at the current server. If no sequence by this
name exists in the explicitly or implicitly specified schema, an error (SQLSTATE 42704) is returned.
sequence-name must not be a sequence generated by the system for an identity column (SQLSTATE
428FB).

RESTART
Restarts the sequence. If numeric-constant is not specified, the sequence is restarted at the value
specified implicitly or explicitly as the starting value on the CREATE SEQUENCE statement that
originally created the sequence.
WITH numeric-constant

Restarts the sequence with the specified value. This value can be any positive or negative value
that could be assigned to a column of the data type associated with the sequence (SQLSTATE
42815), without nonzero digits existing to the right of the decimal point (SQLSTATE 428FA).

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. This value can be any positive
or negative value that could be assigned to a column of the data type associated with the sequence
(SQLSTATE 42815). The value must not exceed the value of a large integer constant (SQLSTATE
42820) and must not contain nonzero digits to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, then this is a descending sequence. If this value is 0 or positive, this is an
ascending sequence after the ALTER statement.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending sequence either cycles or stops generating
values, or an ascending sequence cycles to after reaching the maximum value.

804 IBM Db2 V11.5: SQL Reference

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value can be any positive or
negative value that could be assigned to a column of the data type associated with the sequence
(SQLSTATE 42815), without nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be less than or equal to the maximum value (SQLSTATE 42815).

NO MINVALUE
For an ascending sequence, the value is the original starting value. For a descending sequence, the
value is the minimum value of the data type associated with the sequence.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending sequence either cycles or stops generating
values, or a descending sequence cycles to after reaching the minimum value.
MAXVALUE numeric-constant

Specifies the numeric constant that is the maximum value. This value can be any positive or
negative value that could be assigned to a column of the data type associated with the sequence
(SQLSTATE 42815), without nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be greater than or equal to the minimum value (SQLSTATE 42815).

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the data type associated with the
sequence. For a descending sequence, the value is the original starting value.

CYCLE or NO CYCLE
Specifies whether the sequence should continue to generate values after reaching either its maximum
or minimum value. The boundary of the sequence can be reached either with the next value landing
exactly on the boundary condition, or by overshooting the value.
CYCLE

Specifies that values continue to be generated for this sequence after the maximum or minimum
value has been reached. If this option is used, after an ascending sequence reaches its maximum
value, it generates its minimum value; or after a descending sequence reaches its minimum value,
it generates its maximum value. The maximum and minimum values for the sequence determine
the range that is used for cycling.

When CYCLE is in effect, then duplicate values can be generated for the sequence.

NO CYCLE
Specifies that values will not be generated for the sequence once the maximum or minimum value
for the sequence has been reached.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory for faster access. This is a
performance and tuning option.
CACHE integer-constant

Specifies the maximum number of sequence values that are preallocated and kept in memory.
Preallocating and storing values in the cache reduces synchronous I/O to the log when values are
generated for the sequence.

In the event of a system failure, all cached sequence values that have not been used in committed
statements are lost (that is, they will never be used).The maximum number of sequence values
that can be lost is calculated as follows:

• If ORDER is specified, the maximum is the value specified for the CACHE option.
• In a multi-partition or Db2 pureScale environment, the maximum is the value specified for the

CACHE option times the number of members that generate new identity values.

The minimum value is 2 (SQLSTATE 42815).

NO CACHE
Specifies that values of the sequence are not to be preallocated. It ensures that there is not a loss
of values in the case of a system failure, shutdown or database deactivation. When this option is

Chapter 1. Structured Query Language (SQL) 805

specified, the values of the sequence are not stored in the cache. In this case, every request for a
new value for the sequence results in synchronous I/O to the log.

ORDER or NO ORDER
Specifies whether the sequence numbers must be generated in order of request.
ORDER

Specifies that the sequence numbers are generated in order of request.
NO ORDER

Specifies that the sequence numbers do not need to be generated in order of request.

Notes
• Only future sequence numbers are affected by the ALTER SEQUENCE statement.
• The data type of a sequence cannot be changed. Instead, drop and re-create the sequence specifying

the required data type for the new sequence.
• All cached values are lost when a sequence is altered.
• After restarting a sequence or changing to CYCLE, it is possible for sequence numbers to be duplicate

values of ones generated by the sequence previously.
• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous

versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– A comma can be used to separate multiple sequence options.
– NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER can be specified in place of NO

MINVALUE, NO MAXVALUE, NO CYCLE, NO CACHE, and NO ORDER, respectively

Example
A possible reason for specifying RESTART without a numeric value would be to reset the sequence to the
START WITH value. In this example, the goal is to generate the numbers from 1 up to the number of rows
in the table and then inserting the numbers into a column added to the table using temporary tables.
Another use would be to get results back where all the resulting rows are numbered:

 ALTER SEQUENCE ORG_SEQ RESTART
 SELECT NEXT VALUE FOR ORG_SEQ, ORG.* FROM ORG

ALTER SERVER
The ALTER SERVER statement is used to modify the definition or configuration of a data source.

This statement can be used to make the following changes:

• Modify the definition of a specific data source, or the definition of a category of data sources.
• Make changes in the configuration of a specific data source, or the configuration of a category of data

sources-changes that will persist over multiple connections to the federated database.

In this statement, the word SERVER and the parameter names that start with server- refer only to data
sources in a federated system. They do not refer to the federated server in such a system, or to DRDA
application servers.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

806 IBM Db2 V11.5: SQL Reference

Authorization
The privileges held by the authorization ID of the statement must include DBADM authority.

Syntax
ALTER SERVER

server-name

VERSION server-version

TYPE server-type

VERSION server-version

WRAPPER wrapper-name

OPTIONS (

,

ADD

SET

server-option-name string-constant

DROP server-option-name

)

server-version
version

. release

. mod

version-string-constant

Description
server-name

Identifies the federated server's name for the data source to which the changes being requested are
to apply. The data source must be one that is described in the catalog.

VERSION
After server-name, VERSION and its parameter specify a new version of the data source that server-
name denotes.
version

Specifies the version number. The value must be an integer.
release

Specifies the number of the release of the version denoted by version. The value must be an
integer.

mod
Specifies the number of the modification of the release denoted by release. The value must be an
integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant can be a single
value (for example, '8i'); or it can be the concatenated values of version, release and, if applicable,
mod (for example, '8.0.3').

TYPE server-type
Specifies the type of data source to which the changes being requested are to apply.

VERSION
After server-type, VERSION and its parameter specify the version of the data sources for which server
options are to be enabled, reset, or dropped.

Chapter 1. Structured Query Language (SQL) 807

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to interact with data sources of the
type and version denoted by server-type and server-version. The wrapper must be listed in the catalog.

OPTIONS
Indicates what server options are to be enabled, reset, or dropped for the data source denoted
by server-name, or for the category of data sources denoted by server-type and its associated
parameters.
ADD

Enables a new server option.
SET

Changes the setting of a server option.
server-option-name

The server option that is to be added or reset. Which options you can specify depends on the data
source of the object for which a wrapper is being created. For a list of data sources and the server
options that apply to each, see Data source options.

string-constant
The server option setting as a character string constant enclosed in single quotation marks.

DROP server-option-name
Drops a server option.

Notes
• A server option cannot be specified more than once in the same ALTER SERVER statement (SQLSTATE

42853). When a server option is enabled, reset, or dropped, any other server options that are in use are
not affected.

• An ALTER SERVER statement within a given unit of work (UOW) cannot be processed (SQLSTATE 55007)
under either of the following conditions:

– The statement references a single data source, and the UOW already includes one of the following:

- A SELECT statement that references a nickname for a table or view within this data source
- An open cursor on a nickname for a table or view within this data source
- Either an INSERT, DELETE, or UPDATE statement issued against a nickname for a table or view

within this data source
– The statement references a category of data sources (for example, all data sources of a specific type

and version), and the UOW already includes one of the following:

- A SELECT statement that references a nickname for a table or view within one of these data sources
- An open cursor on a nickname for a table or view within one of these data sources
- Either an INSERT, DELETE, or UPDATE statement issued against a nickname for a table or view

within one of these data sources
• If the server option is set to one value for a type of data source, and set to another value for an

instance of this type, the second value overrides the first one for the instance. For example, assume that
PLAN_HINTS is set to 'Y' for server type ORACLE, and to 'N' for an Oracle data source named DELPHI.
This configuration causes plan hints to be enabled at all Oracle data sources except DELPHI.

• You can only alter set or alter drop server options for a category of data sources that was enabled by a
prior alter add server option operation (SQLSTATE 42704).

• When altering the server version, no verification occurs to ensure that the specified server version
matches the remote server version. Specifying an incorrect server version can result in SQL errors when
you access nicknames that belong to the database server definition. This is most likely when you specify
a server version that is later than the remote server version. In that case, when you access nicknames
that belong to the server definition, the database server might send SQL that the remote server does not
recognize.

• Server option HOST and NODE cannot be dropped at the same time (SQLSTATE 428EG).

808 IBM Db2 V11.5: SQL Reference

• Both HOST and NODE keywords are included in the server option list, NODE is used even if NODE
specified an unrecognized data source.

• PORT option is not mandatory. When PORT is dropped, ODBC wrapper uses default PORT number
according to remote data source. The default PORT number is listed in CREATE SERVER.

Examples
• Example 1: Ensure that when authorization IDs are sent to your Oracle 8.0.3 data sources, the case of

the IDs will remain unchanged. Also, assume that the local federated server CPU is twice as fast as the
data source CPU. Inform the optimizer of this statistic.

 ALTER SERVER
 TYPE ORACLE
 VERSION 8.0.3
 OPTIONS
 (ADD FOLD_ID 'N',
 SET CPU_RATIO '2.0')

• Example 2: Indicate that the Documentum data source called DCTM_SVR_ASIA has been changed to
Version 4.

 ALTER SERVER DCTM_SVR_ASIA
 VERSION 4

• Example 3: Drop the NODE option, add new HOST option. ODBC driver uses DSN-less mode instead of
DSN connection to access a Hive server.

 ALTER SERVER HIVE
OPTIONS (add HOST ‘9.123.111.214’, DROP NODE)

ALTER SERVICE CLASS
The ALTER SERVICE CLASS statement alters the definition of a service class.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• SQLADM authority, only if every alteration clause is a COLLECT clause
• WLMADM authority
• DBADM authority

Chapter 1. Structured Query Language (SQL) 809

Syntax
ALTER SERVICE CLASS service-class-name

UNDER service-superclass-name

1

SOFT

HARD

RESOURCE SHARES integer-constant

HARD

SOFT

CPU SHARES integer-constant

CPU LIMIT integer-constant

NONE

ACTIVITY SORTMEM LIMIT integer-constant

NONE

MINIMUM RESOURCE SHARE integer-constant PERCENT

2
ADMISSION QUEUE ORDER FIFO

LATENCY
3

DEGREE SCALEBACK

DEFAULT

ON

OFF
4

MAXIMUM DEGREE

DEFAULT

NONE

degree

PREFETCH PRIORITY DEFAULT

HIGH

MEDIUM

LOW

OUTBOUND CORRELATOR NONE

string-constant

BUFFERPOOL PRIORITY DEFAULT

HIGH

MEDIUM

LOW

COLLECT AGGREGATE ACTIVITY DATA
BASE

EXTENDED

NONE

COLLECT AGGREGATE REQUEST DATA
BASE

NONE

COLLECT AGGREGATE UNIT OF WORK DATA
BASE

NONE

5
COLLECT REQUEST METRICS

BASE

NONE

EXTENDED
6

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

UOW LIFETIME HISTOGRAM TEMPLATE template-name

ENABLE

DISABLE

collect-activity-data-clause

810 IBM Db2 V11.5: SQL Reference

COLLECT ACTIVITY DATA alter-collect-activity-data-clause

NONE

alter-collect-activity-data-clause

ON COORDINATOR
MEMBER

ON ALL
MEMBERS

WITHOUT DETAILS

WITH

,

DETAILS
7

SECTION

INCLUDE ACTUALS BASE

AND VALUES

Notes:
1 The same clause must not be specified more than once (SQLSTATE 42613).
2 The ADMISSION QUEUE ORDER clause is valid only for a service subclass (SQLSTATE 5U043).
3 The DEGREE SCALEBACK DEFAULT option is valid only for a service subclass (SQLSTATE 5U043).
4 The MAXIMUM DEGREE DEFAULT option is valid only for a service subclass (SQLSTATE 5U043).
5 The COLLECT REQUEST METRICS clause is valid only for a service superclass (SQLSTATE 05U44).
6 The REQUEST EXECUTETIME AND UOW LIFETIME HISTOGRAM TEMPLATE clauses are valid only for
a service subclass (SQLSTATE 05U43).
7 The DETAILS keyword is the minimum to be specified, followed by the option separated by a comma.

Description
service-class-name

Identifies the service class that is to be altered. This is a one-part name. It is an SQL identifier (either
ordinary or delimited).The service-class-name must identify a service class that exists in the database
(SQLSTATE 42704). To alter a service subclass, the service-superclass-name must be specified using
the UNDER clause.

UNDER service-superclass-name
This clause is used only for altering a service subclass. The service-superclass-name identifies the
service superclass of the service subclass and must identify a service superclass that exists in the
database (SQLSTATE 42704).

RESOURCE SHARES
Specifies the number of shares of resources to which this service class is entitled, and whether the
service class is allowed to exceed this number when other service classes in the same scope are
not using their full entitlements. This value affects the amount of work the workload manager (WLM)
adaptive admission control allows into the system.
HARD

The service class is not allowed to exceed its resource share entitlement.
SOFT

The service class is allowed to exceed its resource share entitlement when other service classes
are not using their full entitlements.

Valid values are integers 1 - 65535.

Note: To use resource shares with WLM, you must enable the wlm_admission_ctrl configuration
parameter.

Chapter 1. Structured Query Language (SQL) 811

CPU SHARES
Specifies the number of CPU shares that the workload manager (WLM) dispatcher allocates to this
service class when work is executing within this service class, and whether the service class is
allowed to exceed this number when other service classes in the same scope are not using their full
entitlement.
HARD

The service class is not allowed to exceed its CPU share entitlement.
SOFT

The service class is allowed to exceed its CPU share entitlement when other service classes are
not using their full entitlements.

Valid values are integers 1 - 65535.

Note: To use CPU shares with WLM dispatcher, you must enable the wlm_disp_cpu_shares
database manager configuration parameter.

CPU LIMIT
Specifies the maximum percentage of the CPU resources that the WLM dispatcher can assign to this
service class. Valid values for the integer-constant are integers between 1 and 100. You can also
specify CPU LIMIT NONE to indicate that there is no CPU limit.

ACTIVITY SORTMEM LIMIT

Specifies the maximum percentage of the configured shared sort memory (SHEAPTHRES_SHR) that
individual queries executing in the service class are allowed to consume. Queries requiring more
memory than the configured limit will have individual per-operator SORTHEAP values reduced at
runtime. Memory requests that exceed the limit will be throttled. Valid values for the integer-constant
are integers ranging between 10 and 100. You can also specify NONE to indicate there is no activity
sort memory limit. The default is NONE.

The effective sort memory limit for a query will be the most restrictive of the limit defined at the
subclass, superclass and database via the ACT_SORTMEM_LIMIT database configuration parameter.
The sort memory limit applied to an activity is determined when the activity is first admitted for
execution. The applied sort memory limit will not change if a query is remapped at runtime to a
different service subclass.

The activity sort memory limit will only be enforced for queries that are managed by the adaptive
workload manager. If the adaptive workload manager is disabled (WLM_ADMISSION_CTRL database
config parameter is set to NO,) or a query bypasses the adaptive workload manager, no sort memory
limit is applied to the query regardless of which service class it runs in.

Note: Setting an activity sort memory limit too low may result in reduced performance for queries.

MINIMUM RESOURCE SHARE integer-constant PERCENT
Specifies the percentage of entitled resources managed by WLM adaptive admission control that is
held in reserve for the service class when other service classes exceed their admission resource
entitlement. Valid values for the integer-constant are integers 0 - 100.

ADMISSION QUEUE ORDER
Specifies the queue order for activities queued by WLM adaptive admission control.
FIFO

Requests are queued in a first-in first-out order. This is the default.
LATENCY

The position of a request in the queue is based on its estimated execution time (that is, its latency)
relative to the amount of time that has elapsed since it joined the queue.

DEGREE SCALEBACK
Specifies whether work running in this service class may have its degree scaled back. Queries set to
DEGREE ANY may have their actual runtime degree scaled back by the database manager based on
current CPU loads.

Scaling back the degree for service classes running simple queries may result in less contention
and improved throughput. Disabling degree scale back for service classes with complex queries can

812 IBM Db2 V11.5: SQL Reference

help ensure more consistent and predictable response times. A setting of DEFAULT means a service
subclass inherits its DEGREE SCALEBACK setting from the parent superclass. The DEFAULT setting is
only applicable to service subclasses. The default setting for a service superclass is ON. The default
value for a service subclass is DEFAULT.

MAXIMUM DEGREE
Specifies the maximum runtime degree of parallelism for activities running in this service class. The
MAXIMUM DEGREE DEFAULT option is only valid for a service subclass (SQLSTATE 5U043).
DEFAULT

This service subclass should inherit its maximum degree value from its parent superclass. This
setting is only applicable to service subclass.

NONE
This service class does not specify a maximum runtime degree for assigned applications. The
actual runtime degree is determined as the lower of the value of max_querydegree configuration
parameter, the value set by SET RUNTIME DEGREE command, the SQL statement compilation
degree and the MAXIMUM DEGREE value set on the Workload.

degree
Specifies the maximum degree of parallelism for this service class. Valid values are 1 to
32767. The actual runtime degree is determined as the lower of this degree, the value of
max_querydegree configuration parameter, the value set by SET RUNTIME DEGREE command,
the SQL statement compilation degree and the MAXIMUM DEGREE set on the Workload.

PREFETCH PRIORITY
This parameter controls the priority with which agents in the service class can submit their prefetch
requests:
HIGH

Prefetch requests are submitted to the high priority queue.
MEDIUM

Prefetch requests are submitted to the medium low priority queue.
LOW

Prefetch requests are submitted to the low priority queue.
DEFAULT

The default value is DEFAULT, which is internally mapped to MEDIUM for service superclasses.
If DEFAULT is specified for a service subclass, it inherits the PREFETCH PRIORITY of its parent
superclass.

Other values are not valid (SQLSTATE 42615).

Prefetchers empty the priority queue in order from high to low. Agents in the service class submit
their prefetch requests at the PREFETCH PRIORITY level when the next activity begins. If PREFETCH
PRIORITY is altered after a prefetch request is submitted, the request priority does not change.
PREFETCH PRIORITY cannot be altered for a default subclass (SQLSTATE 5U032).

OUTBOUND CORRELATOR
Specifies whether or not to associate threads from this service class to an external workload manager
service class.

If OUTBOUND CORRELATOR is set to a string-constant for the service superclass and OUTBOUND
CORRELATOR NONE is set for a service subclass, the service subclass inherits the OUTBOUND
CORRELATOR of its parent.
OUTBOUND CORRELATOR NONE

For a service superclass, specifies that there is no external workload manager service class
association with this service class, and for a service subclass, specifies that the external workload
manager service class association is the same as its parent.

OUTBOUND CORRELATOR string-constant
Specifies the string-constant that is to be used as a correlator to associate threads from this
service class to an external workload manager service class. The external workload manager must

Chapter 1. Structured Query Language (SQL) 813

be active (SQLSTATE 5U030). The external workload manager should be set up to recognize the
value of the specified string constant.

BUFFERPOOL PRIORITY
This parameter controls the bufferpool priority (HIGH, MEDIUM, or LOW) of pages fetched by activities
in this service class. If DEFAULT is specified for a service subclass, it inherits the BUFFERPOOL
PRIORITY from its parent superclass. Other values are not valid (SQLSTATE 42615).

Pages fetched by activities in a service class with higher bufferpool priority are less likely to be
swapped out than pages fetched by activities in a service class with lower bufferpool priority.
BUFFERPOOL PRIORITY cannot be altered for a default subclass (SQLSTATE 5U032).

COLLECT ACTIVITY DATA
Specifies that information about each activity that executes in this service class is to be sent to any
active activities event monitor when the activity completes.
alter-collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that activity data is to be collected only at the coordinator member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the activity is processed.
On remote members, a record for the activity may be captured multiple times as the activity
comes and goes on those members. If the AND VALUES clause is specified, activity input
values will be collected only for the members of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that executes in the service class is to be sent to
any active activities event monitor, when the activity completes execution. Details about
statement, compilation environment, and section environment data are not sent.

WITH DETAILS
Specifies that statement and compilation environment data is to be sent to any active
activities event monitor, for those activities that have them. Section environment data is
not sent.

SECTION
Specifies that statement, compilation environment, section environment data, and section
actuals are to be sent to any active activities event monitor for those activities that have
them. DETAILS must be specified if SECTION is specified. Section actuals will be collected
on any partition where the activity data is collected.
INCLUDE ACTUALS BASE

Specifies that section actuals should also be collected on any partition where the
activity data is collected. For section actuals to be collected, either INCLUDE ACTUALS
clause must be specified or the section_actuals database configuration parameter
must be set.

The effective setting for the collection of section actuals is the combination of
the INCLUDE ACTUALS clause (specified on the WORK ACTION, SERVICE CLASS,
or WORKLOAD), the section_actuals database configuration parameter, and
the <collectsectionactuals> setting specified on the WLM_SET_CONN_ENV routine.
For example, if INCLUDE ACTUALS BASE is specified, yet the section_actuals
database configuration parameter value is NONE and <collectsectionactuals> is set to
NONE, then the effective setting for the collection of section actuals is BASE.

BASE specifies that the following actuals should be enabled and collected during the
activity's execution:

• Basic operator cardinality counts
• Statistics for each object referenced (DML statements only)

814 IBM Db2 V11.5: SQL Reference

AND VALUES
Specifies that input data values are to be sent to any active activities event monitor,
for those activities that have them. This data does not include SQL statements that are
compiled by using the REOPT ALWAYS bind option.

NONE
Specifies that activity data should not be collected for each activity that executes in this service
class.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data should be captured for this service class and sent to the
statistics event monitor, if one is active. This information is collected periodically on an interval that
is specified by the wlm_collect_int database configuration parameter. The default is COLLECT
AGGREGATE ACTIVITY DATA BASE.
BASE

Specifies that basic aggregate activity data should be captured for this service class and sent to
the statistics event monitor, if one is active. Basic aggregate activity data includes:

• Estimated activity cost high watermark
• Rows returned high watermark
• Temporary table space usage high watermark

Note: Only activities that have an SQLTEMPSPACE threshold applied to them participate in this
high watermark.

• Activity life time histogram
• Activity queue time histogram
• Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data should be captured for this service class and sent to the
statistics event monitor, if one is active. This includes all basic aggregate activity data plus:

• Activity data manipulation language (DML) estimated cost histogram
• Activity DML inter-arrival time histogram

NONE
Specifies that no aggregate activity data should be captured for this service class.

COLLECT AGGREGATE REQUEST DATA
Specifies that aggregate request data should be captured for this service class and sent to the
statistics event monitor, if one is active. This information is collected periodically on an interval
specified by the wlm_collect_int database configuration parameter. The default is COLLECT
AGGREGATE REQUEST DATA NONE. The COLLECT AGGREGATE REQUEST DATA clause is valid only
for a service subclass.
BASE

Specifies that basic aggregate request data should be captured for this service class and sent to
the statistics event monitor, if one is active.

NONE
Specifies that no aggregate request data should be captured for this service class.

COLLECT AGGREGATE UNIT OF WORK DATA
Specifies that aggregate unit of work data is to be captured for this service class and sent to the
statistics event monitor, if one is active. This information is collected periodically on an interval that
is specified by the wlm_collect_int database configuration parameter. The default, when COLLECT
AGGREGATE UNIT OF WORK DATA is specified, is COLLECT AGGREGATE UNIT OF WORK DATA BASE.
BASE

Specifies that basic aggregate unit of work data is to be captured for this service class and sent to
the statistics event monitor, if one is active. Basic aggregate unit of work data includes:

Chapter 1. Structured Query Language (SQL) 815

• Unit of work lifetime histogram

NONE
Specifies that no aggregate unit of work data is to be collected for this service class.

COLLECT REQUEST METRICS
Specifies that monitor metrics should be collected for any request submitted by a connection that
is associated with the specified service superclass and sent to the statistics and unit of work
event monitors, if active. The default is COLLECT REQUEST METRICS NONE. The COLLECT REQUEST
METRICS clause is only valid for a service superclass (SQLSTATE 50U44).

Note: The effective request metrics collection setting is the combination of the attribute specified
by the COLLECT REQUEST METRICS clause on the service superclass associated with the connection
submitting the request, and the mon_req_metrics database configuration parameter. If either the
service superclass attribute or the configuration parameter has a value other than NONE, metrics will
be collected for the request.

BASE
Specifies that basic metrics will be collected for any request submitted by a connection associated
with the service superclass.

EXTENDED
Specifies that basic metrics will be collected for any request submitted by a connection associated
with the service superclass. In addition, specifies that the values for the following monitor
elements should be determined with additional granularity:

• total_section_time
• total_section_proc_time
• total_routine_user_code_time
• total_routine_user_code_proc_time
• total_routine_time

NONE
Specifies that no metrics will be collected for any request submitted by a connection associated
with the service superclass.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE
Specifies the template that describes the histogram used to collect statistical data about the duration,
in milliseconds, of database activities running in the service class during a specific interval. This time
includes both time queued and time executing. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE
Specifies the template that describes the histogram used to collect statistical data about the length of
time, in milliseconds, that database activities running in the service class are queued during a specific
interval. This information is only collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified, with either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE
Specifies the template that describes the histogram used to collect statistical data about the length
of time, in milliseconds, that database activities running in the service class are executing during
a specific interval. This time does not include the time spent queued. Activity execution time is
collected in this histogram at the coordinator member only. The time does not include idle time. Idle
time is the time between the execution of requests belonging to the same activity when no work is
being done. An example of idle time is the time between the end of opening a cursor and the start of
fetching from that cursor. This information is only collected when the COLLECT AGGREGATE ACTIVITY
DATA clause is specified, with either the BASE or EXTENDED option.

REQUEST EXECUTETIME HISTOGRAM TEMPLATE
Specifies the template that describes the histogram used to collect statistical data about the length
of time, in milliseconds, that database requests running in the service class are executing during
a specific interval. This time does not include the time spent queued. Request execution time is
collected in this histogram on each member where the request executes. This information is only

816 IBM Db2 V11.5: SQL Reference

collected when the COLLECT AGGREGATE REQUEST DATA clause is specified with the BASE option.
This clause is only valid for a service subclass.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE
Specifies the template that describes the histogram used to collect statistical data about the
estimated cost, in timerons, of DML activities running in the service class. This information is only
collected when the COLLECT AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED
option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE
Specifies the template that describes the histogram used to collect statistical data about the length of
time, in milliseconds, between the arrival of one DML activity and the arrival of the next DML activity.
This information is only collected when the COLLECT AGGREGATE ACTIVITY DATA clause is specified
with the EXTENDED option.

UOW LIFETIME HISTOGRAM TEMPLATE
Specifies the template that describes the histogram used to collect statistical data about the duration,
in milliseconds, of units of work running in the service class during a specific interval. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the COLLECT AGGREGATE UNIT OF
WORK DATA clause is specified with the BASE option.

ENABLE or DISABLE
Specifies whether or not connections and activities can be mapped to the service class.
ENABLE

Connections and activities can be mapped to the service class.
DISABLE

Connections and activities cannot be mapped to the service class. New connections or activities
that are mapped to a disabled service class will be rejected (SQLSTATE 5U028). When a service
superclass is disabled, its service subclasses are also disabled. When the service superclass is
re-enabled, its service subclasses return to states that are defined in the system catalog. A default
service class cannot be disabled (SQLSTATE 5U032).

Rules
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (histogram template)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (service class)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (threshold)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (work action set)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (work class set)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (workload)
– GRANT (workload privileges) or REVOKE (workload privileges)

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all members. If an

uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• Changes are written to the system catalog, but do not take effect until after a COMMIT statement, even
for the connection that issues the statement.

• After the ALTER SERVICE CLASS statement is committed, changes to PREFETCH PRIORITY, OUTBOUND
CORRELATOR, and COLLECT take effect for the next new activity in the service class. Existing activities
in the service class continue to complete their work using the old settings.

Chapter 1. Structured Query Language (SQL) 817

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– o DATABASE PARTITION can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– o DATABASE PARTITIONS can be specified in place of MEMBERS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
• Example 1: Alter the amount of CPU that can be consumed by work running in service superclass

PETSALES to a maximum of 50%.

 ALTER SERVICE CLASS PETSALES CPU LIMIT 50

• Example 2: Alter service superclass BARNSALES and add an outbound correlator 'osLowPriority'.
Threads running in the service superclass and its service subclasses will have the outbound correlator
'osLowPriority' associated with them.

 ALTER SERVICE CLASS BARNSALES OUTBOUND CORRELATOR 'osLowPriority'

ALTER STOGROUP
The ALTER STOGROUP statement is used to alter the definition of a storage group.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SYSCTRL or SYSADM authority.

Syntax
ALTER STOGROUP storagegroup-name

ADD

,

'storage-path'

DROP

,

'storage-path'

OVERHEAD number-of-milliseconds

DEVICE READ RATE number-megabytes-per-second

DATA TAG integer-constant

NONE

SET AS DEFAULT

1

Notes:
1 Each clause can be specified only once.

818 IBM Db2 V11.5: SQL Reference

Description
storagegroup-name

Identifies the storage group to be altered; storagegroup-name must identify a storage group that
exists at the current server (SQLSTATE 42704). This is a one-part name.

ADD
Specifies that one or more new storage paths are to be added to the specified storage group.
storage-path

A string constant that specifies containers the location where automatic storage table spaces are
to be created. The format of the string depends on the operating system, as illustrated in the
following table:

Operating system Format of storage path string

Linux
AIX

An absolute path

Windows The letter name of a drive

The string can include database partition expressions to specify database partition number
information in the storage path. For predictable performance, ensure the storage paths added
to a storage group have similar media characteristics.

The maximum length of a storage path is 175 characters (SQLSTATE 54036).

A storage path being added must be valid according to the naming rules for paths, and must be
accessible (SQLSTATE 57019). Similarly, in a partitioned database environment, the storage path
must exist and be accessible on every database partition (SQLSTATE 57019).

DROP
Specifies that one or more storage paths are to be removed from the given storage group. If table
spaces are actively using a storage path being dropped, then the state of the storage path is changed
from "In Use" to "Drop Pending" and future use of the storage path will be prevented.

The DROP storage-path clause is not supported in a Db2 pureScale environment (SQLSTATE 56038).

storage-path
A string constant that specifies the storage path from which storage groups are to be dropped. The
format of the string depends on the operating system, as illustrated in the following table:

Operating system Format of storage path string

Linux
AIX

An absolute path

Windows The letter name of a drive

The string can include database partition expressions to specify database partition number
information in the storage path.

A storage path being dropped must currently exist in the storage group (SQLSTATE 57019) and
cannot already be in the "Drop Pending" state (SQLSTATE 55073).

OVERHEAD number-of-milliseconds
Specifies the I/O controller usage and disk seek and latency time. This value is used to determine
the cost of I/O during query optimization. The value of number-of-milliseconds is any numeric literal
(integer, decimal, or floating point). If this value is not the same for all storage paths, set the value to a
numeric literal which represents the average for all storage paths that belong to the storage group.

DEVICE READ RATE number-megabytes-per-second
Represents the device specification for the read transfer rate in megabytes per second. This value
is used to determine the cost of I/O during query optimization. The value of number-megabytes-per-
second is any numeric literal (integer, decimal, or floating point). If this value is not the same for all

Chapter 1. Structured Query Language (SQL) 819

storage paths, set the value to a numeric literal which represents the average for all storage paths that
belong to the storage group.

DATA TAG integer-constant or DATA TAG NONE
Specifies a tag for the data in a given storage group. This value can be used as part of a WLM
configuration in a work class definition or referenced within a threshold definition. For more
information, see the CREATE WORK CLASS SET, ALTER WORK CLASS SET, CREATE THRESHOLD, and
ALTER THRESHOLD statements.
integer-constant

Valid values for integer-constant are integers from 1 to 9.
NONE

If NONE is specified, there is no data tag.
SET AS DEFAULT

Specifies that the storage group being altered is designated as the default storage group. There can be
only one storage group designated as the default storage group. There is no affect to the existing table
spaces using that storage group. The designated default storage group is used by automatic storage
table spaces when no storage group is specified at table space creation and a database managed
table space is converted to automatic storage managed during redirected restore.

Rules
• A storage group must have at least one storage path. Dropping all storage paths from the storage group

is not permitted (SQLSTATE 428HH).
• The ALTER STOGROUP statement cannot be executed while a database partition server is being added

(SQLSTATE 55071).
• A storage group can have up to 128 defined storage paths (SQLSTATE 5U009).
• A transaction can have at most one ALTER STOGROUP statement per storage group. In the case of the

default storage group, there can be at most one ALTER DATABASE statement or one ALTER STOGROUP
statement on the default storage group (SQLSTATE 25502).

Notes
• Adding new storage paths: When adding new storage paths:

– Existing REGULAR and LARGE table spaces using this storage group will not initially use these new
paths. The database manager might choose to create new table space containers on these paths only
if an out-of-space condition occurs. You can issue ALTER TABLESPACE REBALANCE statements for
existing table spaces to stripe them over the newly added storage paths.

– Existing temporary table spaces managed by automatic storage do not automatically use new storage
paths. The database must be stopped normally then restarted for containers in these table spaces to
use the new storage path or paths. As an alternative, the temporary table spaces can be dropped and
re-created. When created, these table spaces automatically use all storage paths that have sufficient
free space.

• Calculation of free space: When free space is calculated for a storage path on a database partition,
the database manager checks for the existence of the following directories or mount points within the
storage path, and will use the first one that is found.

<storage path>/<instance name>/NODE####/<database name>
<storage path>/<instance name>/NODE####
<storage path>/<instance name>
<storage path>

Where:

– <storage path> is a storage path associated with the database.
– <instance name> is the instance under which the database resides.
– NODE#### corresponds to the database partition number (for example, NODE0000 or NODE0001).

820 IBM Db2 V11.5: SQL Reference

– <database name> is the name of the database.
• Isolating multiple database partitions under one storage path: File systems can be mounted at a point

beneath the storage path, and the database manager will recognize that the actual amount of free space
available for table space containers might not be the same amount that is associated with the storage
path directory itself.

Consider an example in which two logical database partitions exist on one physical computer, and there
is a single storage path (/dbdata). Each database partition will use this storage path, but you might
want to isolate the data from each partition within its own file system. In this case, a separate file
system can be created for each partition and it can be mounted at /dbdata/<instance>/NODE####.
When creating containers on the storage path and determining free space, the database manager will
not retrieve free space information for /dbdata, but instead will retrieve it for the corresponding /
dbdata/<instance>/NODE#### directory.

• Dropping a storage path that is in use by one or more table spaces: When dropping a storage path that
is in use by one or more table spaces, the state of the path changes from "In Use" to "Drop Pending".
Future growth on the path will not occur.

Before the path can be fully removed from the storage group, each affected table space must be
rebalanced (using the REBALANCE clause of the ALTER TABLESPACE statement) so that its container
data is moved off the storage path. Rebalance is supported only for REGULAR and LARGE table spaces.
Drop and re-create temporary table spaces to have their containers removed from the dropped path.
When the path is no longer in use by any table space, it will be physically removed from the database.

For a partitioned database environment, the path is maintained independently on each partition. When
a path is no longer in use on a given database partition, it will be physically removed from that partition.
Other partitions might still show the path as being in the "Drop Pending" state. The list of automatic
storage table spaces using drop pending storage paths can be determined by issuing the following SQL
statement:

SELECT DISTINCT TBSP_NAME, TBSP_ID, TBSP_CONTENT_TYPE
 FROM TABLE(MON_GET_TABLESPACE(NULL,-2)) AS T
 WHERE TBSP_PATHS_DROPPED = 1

• Dropping a storage path that was added to a storage group multiple times: It is possible for a given
storage path to be added to a storage group multiple times. When using the DROP clause, specifying
that particular path once will drop all instances of the path from the storage group.

Examples
1. Add drives D and E to the storage group named COMPLIANCE.

ALTER STOGROUP COMPLIANCE ADD 'D:\', 'E:\'

2. Add storage paths to the storage group named COMPLIANCE.

ALTER STOGROUP COMPLIANCE ADD '/db/filesystem3', '/db/filesystem4'

3. Change the data tag for the OPERATIONAL storage group and designate it as the default storage group.

ALTER STOGROUP OPERATIONAL DATA TAG 3 SET AS DEFAULT

4. Add a storage path that uses a database partition expression to differentiate the storage paths on each
of the database partitions.

ALTER STOGROUP TESTDATA ADD '/dataForPartition $N'

5. Remove paths /db/filesystem1 and /db/filesystem2 from storage group TESTDATA.

ALTER STOGROUP TESTDATA DROP '/db/filesystem1', '/db/filesystem2'

Chapter 1. Structured Query Language (SQL) 821

ALTER TABLE
The ALTER TABLE statement alters the definition of a table.

Invocation
This statement can be embedded in an application program or issued by using dynamic SQL statements.
It is an executable statement that can be dynamically prepared only if DYNAMICRULES run behavior is in
effect for the package (SQLSTATE 42509).

Authorization
The privileges that are held by the authorization ID of the statement must include at least one of the
following authorities:

• ALTER privilege on the table to be altered
• CONTROL privilege on the table to be altered
• ALTERIN privilege on the schema of the table
• SCHEMAADM authority on the schema of the table
• DBADM authority

To create or drop a foreign key, the privileges that are held by the authorization ID of the statement must
include one of the following authorities on the parent table:

• REFERENCES privilege on the table
• REFERENCES privilege on each column of the specified parent key
• CONTROL privilege on the table
• SCHEMAADM authority on the schema of the table
• DBADM authority

To drop the primary key or a unique constraint on table T, the privileges of the authorization ID of the
statement must include at least one of the following authorities on every table that is a dependent of T's
parent key:

• ALTER privilege on the table
• CONTROL privilege on the table
• ALTERIN privilege on the schema of the table
• SCHEMAADM authority on the schema of the table
• DBADM authority

To alter a table to become a materialized query table (by using a fullselect), the privileges that are held by
the authorization ID of the statement must include at least one of the following authorities:

• CONTROL privilege on the table
• SCHEMAADM authority on the schema of the table
• DBADM authority

and at least one of the following authorities on each table or view that is identified in the fullselect
(excluding group privileges):

• All of the following:

– SELECT privilege on the table or view or SELECTIN privilege on the schema of the table or view
– ALTER privilege on the table or view or ALTERIN privilege (including group privileges) on the schema

of the table or view
• CONTROL privilege on the table or view
• DATAACCESS on the schema of the table or view

822 IBM Db2 V11.5: SQL Reference

• DATAACCESS authority on the database

To alter a table so that it is no longer a materialized query table, the privileges of the authorization ID of
the statement must include at least one of the following authorities on each table or view that is identified
in the fullselect that is used to define the materialized query table:

• ALTER privilege on the table or view
• CONTROL privilege on the table or view
• ALTERIN privilege on the schema of the table or view
• SCHEMAADM authority on the schema of the table
• DBADM authority

To add a column of type DB2SECURITYLABEL to a table, the privileges of the authorization ID of the
statement must include at least a security label from the security policy that is associated with the table.

To remove the security policy from a table, the privileges that are held by the authorization ID of the
statement must include SECADM authority.

To alter a table to attach a data partition, the privileges of the authorization ID of the statement must also
include at least one of the following authorities on the source table:

• SELECT privilege on the table or SELECTIN privilege on the schema containing the source table and
DROPIN privilege on the schema of the table

• CONTROL privilege on the table
• DATAACCESS authority on the schema of the table
• DATAACCESS authority on the database

and at least one of the following authorities on the target table:

• All of the following:

– ALTER privilege on the table or ALTERIN privilege on the schema of the table
– INSERT privilege on the table or INSERTIN privilege on the schema of the table

• CONTROL privilege on the table
• DATAACCESS authority on the schema of the table
• DATAACCESS authority on the database

To alter a table to detach a data partition, the privileges of the authorization ID of the statement must also
include at least one of the following authorities on the target table of the detached partition:

• CREATETAB authority on the database, and USE privilege on the table spaces used by the table, and one
of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the new table
does not exist

– CREATEIN privilege on the schema, if the schema name of the new table refers to an existing schema
– SCHEMAADM authority on the schema of the table and USE privilege on the table spaces that are

used by the table
• DBADM authority

and at least one of the following authorities on the source table:

• All of the following:

– SELECT privilege on the table or SELECTIN privilege on the schema of the table
– ALTER privilege on the table or ALTERIN privilege on the schema of the table
– DELETE privilege on the table or DELETEIN privilege on the schema of the table

• CONTROL privilege on the table
• DATAACCESS authority on the schema of the table

Chapter 1. Structured Query Language (SQL) 823

• DATAACCESS authority on the database

To alter a table to activate not logged initially with empty table, the privileges that are held by the
authorization ID of the statement must include at least one of the following authorities:

• All of the following:

– ALTER privilege on the table or ALTERIN privilege on the schema of the table
– DELETE privilege on the table or DELETEIN privilege on the schema of the table

• CONTROL privilege on the table
• SCHEMAADM authority on the schema of the table
• DBADM authority

To alter a table that is protected by a security policy to activate not logged initially with empty table, the
privileges that are held by the authorization ID of the statement must include at least one of the following
authorities:

• CONTROL privilege on the table
• SCHEMAADM authority on the schema of the table
• DBADM authority

To alter a table to ACTIVATE and DEACTIVATE row and column access control, the privileges that are held
by the authorization ID of the statement must include the SECADM authority.

To alter a table with ACTIVATE NOT LOGGED INITIALLY WITH EMPTY TABLE, if that table activated row
access control, the privileges that are held by the authorization ID of the statement must include at least
one of the following authorities:

• CONTROL privilege on the table
• SCHEMAADM authority on the schema of the table
• DBADM authority

When altering system period temporal tables, one of the following authorities is required by the
authorization ID of the statement:

• ALTER privilege on the history table
• CONTROL privilege on the history table
• ALTERIN privilege on the schema of the history table
• SCHEMAADM authority on the schema of the history table
• DBADM authority

This condition applies when altering a table to become a system-period temporal table (with the ADD
VERSIONING clause). It also applies when altering a system-period temporal table where one or more
changes result in changes to the associated history table.

824 IBM Db2 V11.5: SQL Reference

Syntax
ALTER TABLE table-name

1

ADD
COLUMN

column-definition

unique-constraint

referential-constraint

check-constraint

distribution-clause

RESTRICT ON DROP

ADD

MATERIALIZED
QUERY

materialized-query-definition

ALTER FOREIGN KEY

CHECK

constraint-name constraint-alteration

ALTER
COLUMN

column-alteration

ACTIVATE

DEACTIVATE

ROW ACCESS CONTROL
2

ACTIVATE

DEACTIVATE

COLUMN ACCESS CONTROL
3

RENAME COLUMN source-column-name TO target-column-name

DROP PRIMARY KEY

FOREIGN KEY

UNIQUE

CHECK

CONSTRAINT

constraint-name

COLUMN
column-name

CASCADE

RESTRICT

RESTRICT ON DROP

DROP DISTRIBUTION

DROP
MATERIALIZED

QUERY

ADD PERIOD period-definition

DROP PERIOD period-name

DATA CAPTURE NONE

CHANGES

INCLUDE LONGVAR COLUMNS

ACTIVATE NOT LOGGED INITIALLY

WITH EMPTY TABLE

PCTFREE integer

LOCKSIZE ROW

BLOCKINSERT

TABLE

APPEND ON

OFF

VOLATILE

NOT VOLATILE

CARDINALITY

COMPRESS YES
ADAPTIVE

STATIC

NO

ACTIVATE

DEACTIVATE

VALUE COMPRESSION

LOG INDEX BUILD NULL

OFF

ON

ADD PARTITION add-partition

ATTACH PARTITION attach-partition

DETACH PARTITION partition-name INTO table-name1

ADD SECURITY POLICY policy-name

DROP SECURITY POLICY

ADD VERSIONING USE HISTORY TABLE history-table-name

DROP VERSIONING

add-partition

Chapter 1. Structured Query Language (SQL) 825

partition-name

boundary-spec

IN tablespace-name

INDEX IN tablespace-name

LONG IN tablespace-name

boundary-spec
starting-clause ending-clause

ending-clause

starting-clause

STARTING
FROM

(

,

constant

MINVALUE

MAXVALUE

)

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

ending-clause

ENDING
AT

(

,

constant

MINVALUE

MAXVALUE

)

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

attach-partition

partition-name

boundary-spec FROM table-name

BUILD MISSING INDEXES

REQUIRE MATCHING INDEXES

column-definition
column-name

data-type
4 column-options

column-options

826 IBM Db2 V11.5: SQL Reference

NOT NULL

lob-options
5

SCOPE typed-table-name2

typed-view-name2

6

CONSTRAINT constraint-name

UNIQUE

PRIMARY KEY

references-clause

CHECK (check-condition)

constraint-attributes

7

default-clause

generated-clause

COMPRESS SYSTEM DEFAULT

COLUMN
SECURED WITH security-label-name

NOT HIDDEN

IMPLICITLY HIDDEN

lob-options

●
LOGGED

NOT LOGGED

●
NOT COMPACT

COMPACT

●

references-clause
REFERENCES table-name

nickname

(

,

column-name)

rule-clause

constraint-attributes

rule-clause

●
ON DELETE NO ACTION

ON DELETE RESTRICT

CASCADE

SET NULL

●
ON UPDATE NO ACTION

ON UPDATE RESTRICT

●

Constraint-attributes
●

ENFORCED

NOT ENFORCED
TRUSTED

NOT TRUSTED

●

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

●

default-clause

Chapter 1. Structured Query Language (SQL) 827

WITH
DEFAULT

constant

datetime-special-register

user-special-register

CURRENT SCHEMA

CURRENT MEMBER

NULL

cast-function (constant

datetime-special-register

user-special-register

CURRENT SCHEMA

)

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_BLOB()

generated-clause

GENERATED
ALWAYS

BY DEFAULT

as-row-change-timestamp-clause

GENERATED
ALWAYS

as-generated-expression-clause

as-row-transaction-timestamp-clause

as-row-transaction-start-id-clause

as-row-change-timestamp-clause
8

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

as-generated-expression-clause
AS (generation-expression)

as-row-transaction-timestamp-clause
AS ROW BEGIN

END

as-row-transaction-start-id-clause
AS TRANSACTION START ID

unique-constraint

CONSTRAINT constraint-name

UNIQUE

PRIMARY KEY

(

,

column-name

, BUSINESS_TIME WITHOUT OVERLAPS

) constraint-attributes

referential-constraint

828 IBM Db2 V11.5: SQL Reference

CONSTRAINT constraint-name

FOREIGN KEY (

,

column-name)

references-clause

check-constraint

CONSTRAINT constraint-name

CHECK (check-condition)

constraint-attributes

check-condition
search-condition

functional-dependency

functional-dependency
column-name

(

,

column-name)

DETERMINED BY

column-name

(

,

column-name)

distribution-clause

DISTRIBUTE BY
HASH

(

,

column-name)

materialized-query-definition
(fullselect) refreshable-table-options

refreshable-table-options
● DATA INITIALLY DEFERRED ● REFRESH DEFERRED

IMMEDIATE

●

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

●

MAINTAINED BY SYSTEM

MAINTAINED BY USER

REPLICATION

FEDERATED_TOOL

●

constraint-alteration

Chapter 1. Structured Query Language (SQL) 829

9

ENABLE

DISABLE

QUERY OPTIMIZATION

ENFORCED

NOT ENFORCED
TRUSTED

NOT TRUSTED

column-alteration
column-name

SET DATA TYPE altered-data-type

NOT NULL

INLINE LENGTH integer

default-clause

EXPRESSION as-generated-expression-clause

NOT HIDDEN

IMPLICITLY HIDDEN

SET generation-alteration

SET generation-alteration

identity-alteration

SET generation-attribute as-identity-clause

SET GENERATED
ALWAYS

as-generated-expression-clause

as-row-transacton-start-id-clause

as-row-transaction-timestamp-clause

DROP DEFAULT

GENERATED

NOT NULL

ADD SCOPE typed-table-name

typed-view-name

COMPRESS SYSTEM DEFAULT

OFF

SECURED WITH security-label-name

DROP COLUMN SECURITY

altered-data-type
built-in-type

distinct-type-name
10

built-in-type

830 IBM Db2 V11.5: SQL Reference

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
11

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

BOOLEAN

as-identity-clause

Chapter 1. Structured Query Language (SQL) 831

AS IDENTITY

(
9

START WITH

1

numeric-constant

INCREMENT BY

1

numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer-constant

)

generation-alteration
SET GENERATED ALWAYS

BY DEFAULT

identity-alteration

9

SET INCREMENT BY numeric-constant

SET NO MINVALUE

MINVALUE numeric-constant

SET NO MAXVALUE

MAXVALUE numeric-constant

SET NO CYCLE

CYCLE

SET NO CACHE

CACHE integer-constant

SET NO ORDER

ORDER

RESTART

WITH numeric-constant

generation-attribute

GENERATED
ALWAYS

BY DEFAULT

period-definition

832 IBM Db2 V11.5: SQL Reference

SYSTEM_TIME

BUSINESS_TIME

(begin-column-name , end-column-name)

Notes:
1 The same clause must not be specified more than once (SQLSTATE 42614).
2 If an ACTIVATE or DEACTIVATE clause is specified for row access control, no other clause except
ACTIVATE or DEACTIVATE column access control can be specified in the same ALTER TABLE statement
(SQLSTATE 42613).
3 If an ACTIVATE or DEACTIVATE clause is specified for column access control, no other clause except
ACTIVATE or DEACTIVATE row access control can be specified in the same ALTER TABLE statement
(SQLSTATE 42613).
4 If the first column option chosen is generated-clause, data-type can be omitted; it is computed by the
generation expression.
5 The lob-options clause applies to large object types (CLOB, DBCLOB, and BLOB), and to distinct types
that are based on large object types only.
6 The SCOPE clause applies to the REF type only.
7 The default-clause and generated-clause cannot both be specified for the same column definition
(SQLSTATE 42614).
8 Data type is optional for a row change timestamp column if the first column-option specified is
a generated-clause. The data type default is TIMESTAMP(6). Data type is optional for row-begin,
row-end, and transaction-start-ID columns if the first column-option is a generated-clause; the data
type default is TIMESTAMP(12).
9 The same clause must not be specified more than once.
10 The specified distinct type cannot have any data type constraints and the source type cannot be an
anchored data type (SQLSTATE 428H2).
11 The FOR BIT DATA clause can be specified in any order with the other column constraints that
follow. The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE
42613).

Description
table-name

The table-name must identify a table that exists at the current server. It cannot be a nickname
(SQLSTATE 42809) and must not be a view, a catalog table, a created temporary table, or a declared
temporary table (SQLSTATE 42995).

If table-name identifies a materialized query table, alterations are limited to adding or dropping
the materialized query, starting the ACTIVATING NOT LOGGED INITIALLY clause, adding or
dropping RESTRICT ON DROP, modifying data capture, pctfree, locksize, append, volatile, data row
compression, value compression, and activating or deactivating row and column access control.

If table-name identifies a shadow table, alterations can include adding or dropping primary keys in
addition to the alterations that are supported for a materialized query table.

If table-name identifies a range-clustered table, alterations are limited to adding, changing, or
dropping constraints, activating not logged initially, adding or dropping RESTRICT ON DROP, changing
locksize, data capture, or volatile, and setting column default values.

ADD column-definition
Adds a column to the table.

A column cannot be added to the following tables:

• A history table for a system-period temporal table (SQLSTATE 428HZ)
• A typed table (SQLSTATE 428DH)
• A table whose compression dictionary is being created in an asynchronous background operation

(SQL20054N)

Chapter 1. Structured Query Language (SQL) 833

For all existing rows in the table, the value of the new column is set to its default value. The new
column is the last column of the table; that is, if initially n columns exist, the added column is column
n+1.

Adding the new column must not cause the total byte count of all columns to exceed the maximum
record size.

If the table is a column-organized table, a LOB column can not be added to an existing table.

Note: This restriction has been removed starting from Db2version 11.5.1

If the table is a system-period temporal table, the column is added to the associated history table as
well.

If the added column is a generated column that is based on an expression, the expression must not
reference a column for which a column mask is defined (SQLSTATE 42621).

If a column is added to a table on which a mask or a permission is defined, or to a table that is
referenced in the definition of a mask or a permission, that mask or permission is invalidated. Access
to a table that activates column access control and a defined invalid mask on it is blocked until the
invalid mask is either disabled, dropped, or re-created (SQLSTATE 560D0). Access to a table that
activates row access control and a defined invalid row permission on it is blocked until the invalid
permission is either disabled, dropped, or re-created (SQLSTATE 560D0).

column-name
Is the name of the column to be added to the table. The name cannot be qualified. Existing
column names or period names in the table cannot be used (SQLSTATE 42711).

data-type
Is one of the data types that are listed under "CREATE TABLE".

NOT NULL
Prevents the column from containing null values. The default-clause must also be specified
(SQLSTATE 42601).

lob-options
Specifies options for LOB data types. See lob-options in "CREATE TABLE".

SCOPE
Specify a scope for a reference type column.
typed-table-name2

The name of a typed table. The data type of column-name must be REF(S), where S is the
type of typed-table-name2 (SQLSTATE 428DM). No checking is done of the default value for
column-name to ensure that the value references an existing row in typed-table-name2.

typed-view-name2
The name of a typed view. The data type of column-name must be REF(S), where S is the
type of typed-view-name2 (SQLSTATE 428DM). No checking is done of the default value for
column-name to ensure that the values reference an existing row in typed-view-name2.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint that was already specified
within the same ALTER TABLE statement, or as the name of any other existing constraint on the
table (SQLSTATE 42710).

If the constraint name is not specified by the user, an 18-byte long identifier unique within the
identifiers of the existing constraints that are defined on the table is generated by the system.
(The identifier consists of "SQL" followed by a sequence of 15 numeric characters that are
generated by a timestamp-based function).

When used with a PRIMARY KEY or UNIQUE constraint:

• the constraint-name might be used as the name of an index that is created to support the
constraint. See Notes for details on index names that are associated with unique constraints.

• you can use an existing index that is defined with RANDOM columns for the key index if
applicable. If there is more than one index that can satisfy the primary or unique requirement,

834 IBM Db2 V11.5: SQL Reference

then the index that is chosen cannot be predicted. An existing primary or unique key index
cannot be altered to be an index with random ordering. If a primary or unique key index with
random ordering is required, a suitable index must first be defined with the RANDOM keyword.
Then, the table must be altered to add the primary or unique key.

PRIMARY KEY
Provides a shorthand method of defining a primary key that is composed of a single column.
Thus, if PRIMARY KEY is specified in the definition of column C, the effect is the same as if the
PRIMARY KEY(C) clause were specified as a separate clause. The column cannot contain null
values, so the NOT NULL attribute must also be specified (SQLSTATE 42831).

See PRIMARY KEY within the unique-constraint description.

UNIQUE
Provides a shorthand method of defining a unique key that is composed of a single column.
Thus, if UNIQUE is specified in the definition of column C, the effect is the same as if the
UNIQUE(C) clause were specified as a separate clause.

See UNIQUE within the unique-constraint description.

references-clause
Provides a shorthand method of defining a foreign key that is composed of a single column.
Thus, if a references-clause is specified in the definition of column C, the effect is the same as
if that references-clause were specified as part of a FOREIGN KEY clause in which C is the only
identified column.

See references-clause in "CREATE TABLE".

rule-clause
See rule-clause in "CREATE TABLE".

CHECK (check-condition)
Provides a shorthand method of defining a check constraint that applies to a single column.
See check-condition in "CREATE TABLE".

constraint-attributes
See constraint-attributes in "CREATE TABLE".

default-clause
Specifies a default value for the column.
WITH

An optional keyword.
DEFAULT

Provides a default value when a value is not supplied on INSERT or is specified as DEFAULT on
INSERT or UPDATE. If a specific default value is not specified following the DEFAULT keyword,
the default value depends on the data type of the column as shown in Table 126 on page
835. If a column is defined as an XML or structured type, then a DEFAULT clause cannot be
specified.

If a column is defined that uses a distinct type, then the default value of the column is the
default value of the source data type cast to the distinct type.

Table 126. Default Values (when no value specified)

Data Type Default Value

Numeric 0

Fixed-length character string A string of blanks

Varying-length character string A string of length 0

Fixed-length graphic string A string of double-byte blanks

Varying-length graphic string A string of length 0

Chapter 1. Structured Query Language (SQL) 835

Table 126. Default Values (when no value specified) (continued)

Data Type Default Value

Fixed-length binary string A string of hexadecimal zeros

Varying-length binary string A string of length 0

Date For existing rows, a date corresponding to
January 1, 0001. For added rows, the current
date.

Time For existing rows, a time corresponding to 0
hours, 0 minutes, and 0 seconds. For added
rows, the current time.

Timestamp For existing rows, a date corresponding to
01 January 0001, and a time corresponding
to 0 hours, 0 minutes, 0 seconds, and 0
microseconds. For added rows, the current
time stamp.

Binary string (blob) A string of length 0

Boolean FALSE

Omission of DEFAULT from a column-definition results in the use of the null value as the
default for the column.

Specific types of values that can be specified with the DEFAULT keyword are as follows.

constant
Specifies the constant as the default value for the column. The specified constant must:

• Represent a value that might be assigned to the column in accordance with the rules of
assignment as described in Chapter 3

• Not be a floating-point constant unless the column is defined with a floating-point data
type

• Be a numeric constant or a decimal floating-point special value if the data type of
the column is decimal floating-point. Floating-point constants are first interpreted as
DOUBLE and then converted to decimal floating-point. For DECFLOAT(16) columns,
decimal constants must have a precision value less than or equal to 16.

• Not have nonzero digits beyond the scale of the column data type if the constant is a
decimal constant (for example, 1.234 cannot be the default for a DECIMAL(5,2) column)

• The constant must be expressed with no more than 254 bytes including the quotation
characters, any introducer character such as the X for a hexadecimal constant, and
characters from the fully qualified function name and parentheses when the constant is
the argument of a cast-function.

datetime-special-register
Specifies the value of the datetime special register (CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP) at the time of INSERT, UPDATE, or LOAD as the default for the
column. The data type of the column must be the data type that corresponds to the
special register specified (for example, data type must be DATE when CURRENT DATE is
specified). For existing rows, the value is the current date, current time, or current time
stamp when the ALTER TABLE statement is processed.

user-special-register
Specifies the value of the user special register (CURRENT USER, SESSION_USER,
SYSTEM_USER) at the time of INSERT, UPDATE, or LOAD as the default for the column. The
data type of the column must be a character string with a length not less than the length
attribute of a user special register. USER can be specified in place of SESSION_USER and

836 IBM Db2 V11.5: SQL Reference

CURRENT_USER can be specified in place of CURRENT USER. For existing rows, the value
is the CURRENT USER, SESSION_USER, or SYSTEM_USER of the ALTER TABLE statement.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register at the time of INSERT,
UPDATE, or LOAD as the default for the column. If CURRENT SCHEMA is specified, the
data type of the column must be a character string with a length greater than or equal
to the length attribute of the CURRENT SCHEMA special register. For existing rows, the
value of the CURRENT SCHEMA special register at the time the ALTER TABLE statement is
processed.

CURRENT MEMBER
Specifies the value of the CURRENT MEMBER special register at the time of INSERT,
UPDATE, or LOAD as the default for the column. If CURRENT MEMBER is specified, the
data type of the column must allow assignment from an integer. For existing rows, the
value of the CURRENT MEMBER special register at the time the ALTER TABLE statement is
processed.

NULL
Specifies NULL as the default for the column. If NOT NULL was specified, DEFAULT NULL
must not be specified within the same column definition.

cast-function
This form of a default value can be used with columns defined as a distinct type, BLOB, or
datetime (DATE, TIME, or TIMESTAMP) data type. For distinct type only, except for distinct
types based on BLOB or datetime types, the name of the function must match the name
of the distinct type for the column. If qualified with a schema name, it must be the same
as the schema name for the distinct type. If not qualified, the schema name from function
resolution must be the same as the schema name for the distinct type. For a distinct type
based on a datetime type, where the default value is a constant, a function must be used
and the name of the function must match the name of the source type of the distinct
type with an implicit or explicit schema name of SYSIBM. For other datetime columns, the
corresponding datetime function can also be used. For a BLOB or a distinct type based on
BLOB, a function must be used and the name of the function must be BLOB with an implicit
or explicit schema name of SYSIBM.
constant

Specifies one constant as the argument. The constant must conform to the rules of a
constant for the source type of the distinct type or for the data type if not a distinct
type. If the cast-function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP. The source type
of the distinct type of the column must be the data type that corresponds to the
specified special register.

user-special-register
Specifies CURRENT USER, SESSION_USER, or SYSTEM_USER. The data type of the
source type of the distinct type of the column must be a string data type with a length
of at least 8 bytes. If the cast-function is BLOB, the length attribute must be at least 8
bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register. The data type of the
source type of the distinct type of the column must be a character string with a length
greater than or equal to the length attribute of the CURRENT SCHEMA special register.
If the cast-function is BLOB, the length attribute must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()
Specifies a zero-length string as the default for the column. The column must have the
data type that corresponds to the result data type of the function.

If the value specified is not valid, an error (SQLSTATE 42894) is returned.

Chapter 1. Structured Query Language (SQL) 837

generated-clause
Specifies a generated value for the column. This clause must not be specified with default-clause
in a column definition (SQLSTATE 42623). A generated column cannot be added to a system-
period temporal table (SQLSTATE 428HZ). For details on column generation, see "CREATE TABLE".
GENERATED

Specifies that the database manager generates values for the column. GENERATED must be
specified whether the column is to be considered an identity column, row change timestamp
column, row-begin column, row-end column, transaction start-ID column, or generated
expression column.

If the column is nullable, the null value is assigned as the value for the column in existing
rows. Otherwise, the value for the column in existing rows depends on the definition of the
column:

• ROW CHANGE TIMESTAMP uses a date that corresponds to January 1, 0001 and a time that
corresponds to 0 hours, 0 minutes, 0 seconds, and 0 fractional seconds

• ROW BEGIN uses a date that corresponds to January 1, 0001 and a time that corresponds to
0 hours, 0 minutes, 0 seconds, and 0 fractional seconds

• ROW END uses a date that corresponds to December 30, 9999, and a time that corresponds
to 0 hours, 0 minutes, 0 seconds, and 0 fractional seconds

• TRANSACTION START ID uses a date that corresponds to January 1, 0001, and a time that
corresponds to 0 hours, 0 minutes, 0 seconds, and 0 fractional seconds

• Expressions use the value that is derived from the expression

ALWAYS
Specifies that the database manager always generates a value for the column when a
row is inserted or updated and a value must be generated. The result of the expression
is stored in the table. GENERATED ALWAYS is the recommended option unless data
propagation or unload and reload operations are running. GENERATED ALWAYS is the
default for generated columns.

BY DEFAULT
Specifies that the database manager generates a value for the column when a row is
inserted into the table, or updated, specifying DEFAULT for the column, unless an explicit
value is specified. BY DEFAULT can be specified with as-row-change-timestamp-clause
only. BY DEFAULT is the recommended option when you use data propagation or running
unload and reload operations.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a timestamp column with values that are generated by the
database manager. A value is generated for the column in each row that is inserted, and for
any row in which any column is updated. The value that is generated for a ROW CHANGE
TIMESTAMP column is a timestamp that corresponds to the insert or update time for that
row. If multiple rows are inserted or updated with a single statement, the value of the ROW
CHANGE TIMESTAMP column might be different for each row.

A table can have one ROW CHANGE TIMESTAMP column (SQLSTATE 428C1) only. If data-
type is specified, it must be TIMESTAMP or TIMESTAMP(6) (SQLSTATE 42842). A ROW
CHANGE TIMESTAMP column cannot have a DEFAULT clause (SQLSTATE 42623). NOT
NULL must be specified for a ROW CHANGE TIMESTAMP column (SQLSTATE 42831).

AS (generation-expression)
Specifies that the definition of the column is based on an expression. Requires the table to
be placed in set integrity pending no access state, by using the SET INTEGRITY statement
with the OFF NO ACCESS option. After the ALTER TABLE statement, the SET INTEGRITY
statement with the IMMEDIATE CHECKED and FORCE GENERATED options must be used
to update and check all the values in that column against the new expression. For details
on specifying a column with a generation-expression, see "CREATE TABLE".

838 IBM Db2 V11.5: SQL Reference

AS ROW BEGIN

Specifies that the value is assigned by the database manager whenever a row is inserted
into the table or any column in the row is updated. The value is generated by using a
reading of the time-of-day clock during execution of the first of the following events in the
transaction:

• A data change statement that requires a value to be assigned to the row-begin or
transaction start-ID column in a table

• A deletion of a row in a system-period temporal table

For a system-period temporal table, the database manager ensures uniqueness of the
generated values for a row-begin column across transactions. The timestamp value might
be adjusted to ensure that rows that are inserted into an associated history table have
the end timestamp value greater than the begin timestamp value (SQLSTATE 01695). This
can happen when a conflicting transaction is updating the same row in the system-period
temporal table. The database configuration parameter systime_period_adj must be
set to Yes for this adjustment to the timestamp value to occur otherwise an error is
returned (SQLSTATE 57062). If multiple rows are inserted or updated within a single SQL
transaction and an adjustment is not needed, the values for the row-begin column are
the same for all the rows and are unique from the values that are generated for the
column for another transaction. A row-begin column is required as the begin column of a
SYSTEM_TIME period, which is the intended use for this type of generated column.

A table can have only one row-begin column (SQLSTATE 428C1). If data-type is not
specified, the column is defined as a TIMESTAMP(12). If data-type is specified, it must
be TIMESTAMP(12) (SQLSTATE 42842). The column must be defined as NOT NULL
(SQLSTATE 42831). A row-begin column cannot be updated.

AS ROW END

Specifies that a value for the data type of the column is assigned by the database manager
whenever a row is inserted or any column in the row is updated. The assigned value is
TIMESTAMP '9999-12-30-00.00.00.000000000000'.

A row-end column is required as the second column of a SYSTEM_TIME period, which is
the intended use for this type of generated column.

A table can have only one row-end column (SQLSTATE 428C1). If data-type is not
specified, the column is defined as TIMESTAMP(12). If data-type is specified, it must
be TIMESTAMP(12) (SQLSTATE 42842). The column must be defined as NOT NULL
(SQLSTATE 42831). A row-end column cannot be updated.

AS TRANSACTION START ID

Specifies that the value is assigned by the database manager whenever a row is inserted
into the table or any column in the row is updated. The database manager assigns a
unique timestamp value per transaction or the null value. The null value is assigned to the
transaction start-ID column if the column is nullable and if a row-begin column in the table
for which the value did not need to be adjusted exists. Otherwise, the value is generated
by using a reading of the time-of-day clock during execution of the first of the following
events in the transaction:

• A data change statement that requires a value to be assigned to the row-begin or
transaction start-ID column in a table

• A deletion of a row in a system-period temporal table

If multiple rows are inserted or updated within a single SQL transaction, the values for the
transaction start-ID column are the same for all the rows and are unique from the values
that are generated for the column for another transaction.

A transaction start-ID column is required for a system-period temporal table, which is the
intended use for this type of generated column.

Chapter 1. Structured Query Language (SQL) 839

A table can have only one transaction start-ID column (SQLSTATE 428C1). If data-type is
not specified, the column is defined as TIMESTAMP(12). If data-type is specified, it must
be TIMESTAMP(12). A transaction start-ID column cannot be updated.

COMPRESS SYSTEM DEFAULT
Specifies that system default values (that is, the default values used for the data types when
no specific values are specified) are to be stored in minimal space. If the VALUE COMPRESSION
clause is not specified, a warning is returned (SQLSTATE 01648) and system default values are not
stored in minimal space.

Allowing system default values to be stored in this manner causes a slight performance penalty
during insert and update operations on the column because of extra checking that is done.

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or structured data type
(SQLSTATE 42842). If the base data type is a varying-length string, this clause is ignored. String
values of length 0 are automatically compressed if a table is set with VALUE COMPRESSION.

COLUMN SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is associated with the table. The
name must not be qualified (SQLSTATE 42601). The table must be associated with a security
policy (SQLSTATE 55064). The table must not be a system-period temporal table.

NOT HIDDEN or IMPLICITLY HIDDEN
Specifies whether the column is to be defined as hidden. The hidden attribute determines whether
the column is included in an implicit reference to the table, or whether it can be explicitly
referenced in SQL statements. The default is NOT HIDDEN.
NOT HIDDEN

Specifies that the column is included in implicit references to the table, and that the column
can be explicitly referenced.

IMPLICITLY HIDDEN
Specifies that the column is not visible in SQL statements unless the column is explicitly
referenced by name. For example, assuming that a table includes a column that is defined
with the IMPLICITLY HIDDEN clause, the result of a SELECT * does not include the implicitly
hidden column. However, the result of a SELECT that explicitly refers to the name of an
implicitly hidden column includes that column in the result table.

ADD unique-constraint
Defines a unique or primary key constraint. A primary key or unique constraint cannot be added to a
table that is a subtable (SQLSTATE 429B3). If the table is a supertable at the top of the hierarchy, the
constraint applies to the table and all its subtables.
CONSTRAINT constraint-name

Names the primary key or unique constraint. For more information, see constraint-name in
“CREATE TABLE ” on page 1351.

UNIQUE (column-name, ... BUSINESS_TIME WITHOUT OVERLAPS)
Defines a unique key that is composed of the identified columns and periods. The identified
columns must be defined as NOT NULL. Each column-name must identify a column of the table
and the same column must not be identified more than once. The name cannot be qualified. The
number of identified columns plus two times the number of identified periods must not exceed
64, and the sum of their stored lengths must not exceed the index key length limit for the page
size. For column stored lengths, see "Byte Counts" in "CREATE TABLE". For key length limits, see
"SQL and XML limits". No LOB, distinct type based on any of these types, or structured type can
be used as part of a unique key, even if the length attribute of the column is small enough to fit
within the index key length limit for the page size (SQLSTATE 54008). The set of columns in the
unique key cannot be the same as the set of columns of the primary key or another unique key
(SQLSTATE 01543). If LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891. Any
existing values in the set of identified columns must be unique (SQLSTATE 23515).

A check is run to determine whether an existing index matches the unique key definition (ignoring
any INCLUDE columns in the index). An index definition matches if it identifies the same set
of columns without regard to the order of the columns or the direction (ASC/DESC/RANDOM)

840 IBM Db2 V11.5: SQL Reference

specifications. However, for partitioned tables, non-unique partitioned indexes whose columns are
not a superset of the table-partitioning key columns are not considered matching indexes.

If a matching index definition is found, the description of the index is changed to indicate that
it is required by the system and it is changed to unique after ensuring uniqueness if it was a
non-unique index. If the table has more than one matching index, an existing unique index is
selected. If multiple unique indexes exist, the selection is arbitrary with one exception:

• For partitioned tables, matching unique partitioned indexes are favored over matching unique
nonpartitioned indexes or matching non-unique indexes (partitioned or nonpartitioned).

If no matching index is found, a unique bidirectional index is automatically created for the
columns, as described in CREATE TABLE. See Notes for details on index names that are associated
with unique constraints.

BUSINESS_TIME WITHOUT OVERLAPS
For a constraint, BUSINESS_TIME indicates the period name in this table. The period must
exist in the table (SQLSTATE 42727).

BUSINESS_TIME WITHOUT OVERLAPS specifies that overlapping periods for BUSINESS_TIME
are not allowed, and that values for the rest of the keys must be unique regarding any period
of BUSINESS_TIME. When BUSINESS_TIME WITHOUT OVERLAPS is specified, the end column
and begin column of the period BUSINESS_TIME (in this order of the columns) is automatically
added to the index key in ascending order and enforce that no overlaps in time exist. The
columns that are used to defined BUSINESS_TIME must not be specified as part of the
constraint (SQLSTATE 428HW).

When a partition is attached to a range partitioned application-period temporal table that has
a partitioned BUSINESS_TIME WITHOUT OVERLAPS index, the source table must have an
index that matches the partitioned BUSINESS_TIME WITHOUT OVERLAPS index. Additionally,
the PERIODNAME and PERIODPOLICY attributes on the indexes must also match.

PRIMARY KEY (column-name, ... BUSINESS_TIME WITHOUT OVERLAPS)
Defines a primary key that is composed of the identified columns. Each column-name must
identify a column of the table, and the same column must not be identified more than once. The
name cannot be qualified. The number of identified columns must not exceed 64, and the sum
of their stored lengths must not exceed the index key length limit for the page size. For column
stored lengths, see "Byte Counts" in "CREATE TABLE". For key length limits, see "SQL limits". The
table must not have a primary key and the identified columns must be defined as NOT NULL. No
LOB, distinct type based on any of these types, or structured type can be used as part of a primary
key, even if the length attribute of the column is small enough to fit within the index key length
limit for the page size (SQLSTATE 54008). The set of columns in the primary key cannot be the
same as the set of columns in a unique key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or MIA,
an error is returned, SQLSTATE 42891). Any existing values in the set of identified columns must
be unique (SQLSTATE 23515). column-name must not be the name of a row change timestamp, or
a begin or end column of the period (SQLSTATE 428HW).

A check runs to determine whether an existing index matches the primary key definition (ignoring
any INCLUDE columns in the index). An index definition matches if it identifies the same set
of columns without regard to the order of the columns or the direction (ASC/DESC/RANDOM)
specifications. However, for partitioned tables, non-unique partitioned indexes whose columns are
not a superset of the table-partitioning key columns are not considered matching indexes.

If a matching index definition is found, the description of the index is changed to indicate that it
is the primary index, as required by the system, and it is changed to unique after uniqueness is
ensured if it was a non-unique index. If the table has more than one matching index, an existing
unique index is selected. If multiple unique indexes exist, the selection is arbitrary with one
exception:

• For partitioned tables, matching unique partitioned indexes are favored over matching unique
nonpartitioned indexes or matching non-unique indexes (partitioned or nonpartitioned).

Chapter 1. Structured Query Language (SQL) 841

If no matching index is found, a unique bidirectional index is automatically created for the
columns, as described in CREATE TABLE. See Notes for details on index names that are associated
with unique constraints.

If the primary key is being added to a shadow table, the columns of the primary key must match
the columns of an enforced primary key constraint or an enforced unique constraint of the base
table that is referenced in the fullselect of materizalized-query-definition.

A primary key cannot be created on a materialized query table that is not defined with
MAINTAINED BY REPLICATION.

Only one primary key can be defined on a table.

BUSINESS_TIME WITHOUT OVERLAPS
For a constraint, BUSINESS_TIME indicates the period name in this table. The period must
exist in the table (SQLSTATE 42727).

BUSINESS_TIME WITHOUT OVERLAPS specifies that overlapping periods for BUSINESS_TIME
are not allowed, and that values for the rest of the keys must be unique regarding any period
of BUSINESS_TIME. When BUSINESS_TIME WITHOUT OVERLAPS is specified, the end column
and begin column of the period BUSINESS_TIME (in this order of the columns) is automatically
added to the index key in ascending order and enforce that no overlaps in time exist. The
columns that are used to defined BUSINESS_TIME must not be specified as part of the
constraint (SQLSTATE 428HW).

When a partition is attached to a range partitioned application-period temporal table that has
a partitioned BUSINESS_TIME WITHOUT OVERLAPS index, the source table must have an
index that matches the partitioned BUSINESS_TIME WITHOUT OVERLAPS index. Additionally,
the PERIODNAME and PERIODPOLICY attributes on the indexes must also match.

constraint-attributes
See constraint-attributes in "CREATE TABLE".

ADD referential-constraint
Defines a referential constraint. See referential-constraint in "CREATE TABLE".

ADD check-constraint
Defines a check constraint or functional dependency. See check-constraint in "CREATE TABLE".
constraint-attributes

See constraint-attributes in "CREATE TABLE".
ADD distribution-clause

Defines a distribution key. The table must be defined in a table space on a single-partition database
partition group (SQLSTATE 55037) and must not already have a distribution key (SQLSTATE 42889).
If a distribution key exists for the table, the existing key must be dropped before you add the new
distribution key. A distribution key cannot be added to a table that is a subtable (SQLSTATE 428DH) .
DISTRIBUTE BY HASH (column-name...)

Defines a distribution key by using the specified columns. Each column-name must identify a
column of the table, and the same column must not be identified more than once. The name
cannot be qualified. A column cannot be used as part of a distribution key if the data type of the
column is a BLOB, CLOB, DBCLOB, XML, distinct type on any of these types, or structured type.

ADD RESTRICT ON DROP
Specifies that the table cannot be dropped, and that the table space that contains the table cannot be
dropped.

ADD MATERIALIZED QUERY
materialized-query-definition

Changes a regular table to a materialized query table for use during query optimization. The table
that is specified by table-name must not:

• Be previously defined as a materialized query table
• Be a typed table

842 IBM Db2 V11.5: SQL Reference

• Have any constraints, unique indexes, or triggers defined
• Reference a nickname that is marked with caching disabled
• Be referenced in the definition of another materialized query table
• Be referenced in the definition of a view that is enabled for query optimization

If table-name does not meet these criteria, an error is returned (SQLSTATE 428EW).

If row level or column level access control is activated for any table that is directly or indirectly
referenced in the fullselect of materizalized-query-definition, and row level access control is not
activated for the altered table, row level access control is implicitly activated for the altered
table. This restricts direct access to the contents of the materialized query table. A query that
explicitly references the table before such a row permission is defined returns a warning that no
data in the table exists (SQLSTATE 02000). To provide access to the materialized query table, an
appropriate row permission can be created, or an ALTER TABLE DEACTIVATE ROW ACCESS
CONTROL on the materialized query table can be entered to remove the row level protection if that
is appropriate.

If the materialized query table references any table that has row level or column level access
control that is activated, the functions that are referenced in the fullselect of materizalized-query-
definition must be defined with the SECURED attribute (SQLSTATE 428EC).

If the table that is altered to a materialized query table has any permissions (excluding the system
generated default permission) or masks defined on it, ALTER fails (SQLSTATE 428EW).

fullselect
Defines the query in which the table is based. The columns of the existing table must:

• have the same number of columns
• have the same data types
• have the same column names in the same ordinal positions

As the result columns of fullselect (SQLSTATE 428EW). For information about specifying the
fullselect for a materialized query table, see "CREATE TABLE". One extra restriction is that
table-name cannot be directly or indirectly referenced in the fullselect.

refreshable-table-options
Specifies the refreshable options for altering a materialized query table.
DATA INITIALLY DEFERRED

The data in the table must be validated by using the REFRESH TABLE or SET INTEGRITY
statement.

REFRESH
Indicates how the data in the table is maintained.
DEFERRED

The data in the table can be refreshed at any time by using the REFRESH TABLE
statement. The data in the table reflects the result of the query as a snapshot at the
time the REFRESH TABLE statement is processed only. Materialized query tables that
are defined with this attribute do not allow INSERT, UPDATE, or DELETE statements
(SQLSTATE 42807).

IMMEDIATE
The changes that are made to the underlying tables as part of a DELETE, INSERT,
or UPDATE are cascaded to the materialized query table. In this case, the content of
the table, at any point-in-time, is the same as if the specified subselect is processed.
Materialized query tables (MQTs) defined with this attribute do not allow INSERT,
UPDATE, or DELETE statements (SQLSTATE 42807). Column-organized MQTs that
use the REFRESH IMMEDIATE option are not supported when the MAINTAINED BY
SYSTEM clause is specified (SQL20058N).

ENABLE QUERY OPTIMIZATION
The materialized query table can be used for query optimization.

Chapter 1. Structured Query Language (SQL) 843

DISABLE QUERY OPTIMIZATION
The materialized query table is not used for query optimization. The table can still be
queried directly.

MAINTAINED BY
Specifies whether the data in the materialized query table is maintained by the system,
user, or replication tool.
SYSTEM

Specifies that the data in the materialized query table is maintained by the system.
USER

Specifies that the data in the materialized query table is maintained by the user. The
user is allowed to run update, delete, or insert operations against user-maintained
materialized query tables. The REFRESH TABLE statement, which is used for system-
maintained materialized query tables, cannot be started against user-maintained
materialized query tables. Only a REFRESH DEFERRED materialized query table can
be defined as MAINTAINED BY USER.

REPLICATION
Specifies that the data in the materialized query table is maintained by an external
replication technology. The REFRESH TABLE statement, which is used for system-
maintained materialized query tables, cannot be issued against replication-maintained
materialized query tables, which are referred to as shadow tables. Only a REFRESH
DEFERRED materialized query table can be defined as MAINTAINED BY REPLICATION,
and the altered table must be a column-organized table.

FEDERATED_TOOL
Specifies that the data in the materialized query table is maintained by a federated
replication tool. The REFRESH TABLE statement, which is used for system-maintained
materialized query tables, cannot be started against federated_tool-maintained
materialized query tables. Only a REFRESH DEFERRED materialized query table can
be defined as MAINTAINED BY FEDERATED_TOOL.

ALTER FOREIGN KEY constraint-name
Alters the constraint attributes of the referential constraint constraint-name. The constraint-name
must identify an existing referential constraint (SQLSTATE 42704).

ALTER CHECK constraint-name
Alters the constraint attributes of the check constraint or functional dependency constraint-name.
The constraint-name must identify an existing check constraint or functional dependency (SQLSTATE
42704).

constraint-alteration
Options for changing attributes that are associated with referential or check constraints.
ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION

Specifies whether the constraint or functional dependency can be used for query optimization
under appropriate circumstances.
ENABLE QUERY OPTIMIZATION

The constraint is assumed to be true and can be used for query optimization.
DISABLE QUERY OPTIMIZATION

The constraint cannot be used for query optimization.
ENFORCED or NOT ENFORCED

Specifies whether the constraint is enforced by the database manager during normal operations
such as insert, update, or delete. A foreign key constraint cannot be altered from NOT ENFORCED
to ENFORCED if the parent key is not enforced (SQLSTATE 42888).
ENFORCED

Change the constraint to ENFORCED. ENFORCED cannot be specified for a functional
dependency (SQLSTATE 42621).

844 IBM Db2 V11.5: SQL Reference

NOT ENFORCED
Change the constraint to NOT ENFORCED.
TRUSTED

The data can be trusted to conform to the constraint. TRUSTED must be used only if the
data in the table is independently known to conform to the constraint. Query results might
be unpredictable if the data does not conform to the constraint. This is the default option.
Informational constraints must not be violated at any time. Informational constraints are
used in query optimization, and the incremental processing of REFRESH IMMEDIATE MQT
and staging tables. These processes might produce unpredictable results or incorrect
MQT and staging table content if the constraints are violated. For example, the order in
which parent-child tables are maintained is important. When you want to add rows to a
parent-child table, you must insert rows into the parent table first. To remove rows from
a parent-child table, you must delete rows from the child table first. This ensures that no
orphan rows in the child table exist at any time. If informational constraints are violated,
the incremental maintenance of dependent MQT data and staging table data might be
optimized based on the violated informational constraints, producing incorrect data.

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT TRUSTED is intended for
cases where the data conforms to the constraint for most rows, but it is not independently
known that all the rows or future additions conform to the constraint. If a constraint is
NOT TRUSTED and enabled for query optimization, then it is not used to run optimizations
that depend on the data that conforms completely to the constraint. NOT TRUSTED can be
specified only for foreign keys (SQLSTATE 42601).

ALTER column-alteration
Alters the definition of a column. Only the specified attributes are altered; others remain unchanged.
Columns of a typed table cannot be altered (SQLSTATE 428DH). The table must not be defined as a
history table (SQLSTATE 428FR). Columns that are used in expression-based index keys cannot be
altered (SQLSTATE 42893), unless the operation involves the following column attributes:

• Identity (by using clauses under identity-alteration)
• Default compression (by using COMPRESS clause)
• Security (by using SECURED WITH or DROP COLUMN SECURITY clauses)

column-name
Specifies the name of the column that is to be altered. The column-name must identify an existing
column of the table (SQLSTATE 42703). The name must not be qualified. The name must not
identify a column that is otherwise being added, altered, or dropped in the same ALTER TABLE
statement (SQLSTATE 42711).

SET DATA TYPE altered-data-type
Specifies the new data type of the column. The new data type must be castable from the existing
data type of the column (SQLSTATE 42837) except when one of the data types is a distinct type,
in which case the source data type of the distinct type is used in determining whether the data
types are castable. A LOB column cannot be altered to a different data type (SQLSTATE 42837). A
non-LOB column cannot be altered to a LOB data type (SQLSTATE 42837).

Altering a column to a character or graphic string data type that results in the truncation of
non-blank characters from existing data is not allowed (SQLSTATE 42837). Similarly, altering a
column to a binary string data type that results in truncation of bytes other than hexadecimal
zeros is not allowed.

Data type alterations require a classic table reorganization before the table can be fully accessed
(SQLSTATE 57007), except in the following situations:

• Increasing the length of a VARCHAR, VARGRAPHIC, or VARBINARY column
• Decreasing the length of a VARCHAR, VARGRAPHIC, or VARBINARY column without truncating

trailing blanks from existing data, when no indexes exist on the column

Chapter 1. Structured Query Language (SQL) 845

The administrative routine SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS can be called to do table
reorganization. A data type alteration that requires a table reorganization cannot be specified if
the table is in SET INTEGRITY PENDING state (SQLSTATE 57007).

A string data type cannot be altered if the column is a column of a table-partitioning key.

If the column is a column of a distribution key, then the new data type must meet the following
requirements (SQLSTATE 42997):

• Be the same data type as the current column type
• Have the same length of the current column type, except when increasing column length of

VARCHAR, VARGRAPHIC, and VARBINARY data type columns
• Cannot be modified to FOR BIT DATA or vice versa in the cases of CHAR and VARCHAR data

types

If the data type is LOB, the specified length attribute cannot allow for the possibility of any
truncated data (SQLSTATE 42837).

The data type of an identity column cannot be altered (SQLSTATE 42997).

The data type of a column that is defined as ROW BEGIN, ROW END, or TRANSACTION START ID
cannot be altered (SQLSTATE 428FR).

The data type and nullability of BUSINESS_TIME period columns cannot be altered (SQLSTATE
428FR).

The table cannot have data capture enabled (SQLSTATE 42997).

The data type of a column cannot be altered if any of the following conditions are true (SQLSTATE
42893):

• The column is a generated expression column and the data of the generated expression column
changes if the column is altered

• The column is referenced in an expression of a generated expression column and the data of the
generated expression column changes if the column is altered

• The column is referenced in a check constraint and the check constraint is not satisfied if the
column is altered

• The column is used in a referential integrity constraint and the referential integrity constraint is
not satisfied if the column is altered

Altering a column must not cause the total byte count of all columns to exceed the maximum
record size (SQLSTATE 54010). If the column is used in a unique constraint or an index, the new
length must not cause the sum of the stored lengths for the unique constraint or index to exceed
the index key length limit for the page size (SQLSTATE 54008). For column stored lengths, see
"Byte Counts" in "CREATE TABLE". For key length limits, see "SQL and XML limits".

If auto_reval is set to DISABLED, the cascaded effects of altering a column is shown in Table
127 on page 846.

If either a row permission or a column mask depends on the column that is altered (as recorded in
the SYSCAT.CONTROLDEP catalog view), an error is returned (SQLSTATE 42917).

Table 127. Cascaded effects of altering a column

Operation Effect

Altering a column that is referenced by a view
or check constraint

The object is regenerated during alter
processing. If a view, function or method
resolution for the object is different after the
alter operation, changes the semantics of the
object. In the case of a check constraint, if the
semantics of the object change as a result of
the alter operation, the operation fails.

846 IBM Db2 V11.5: SQL Reference

Table 127. Cascaded effects of altering a column (continued)

Operation Effect

Altering a column in a table that has a
dependent package, trigger, or SQL routine

The object is marked invalid, and is re-
validated on next use.

Altering the type of a column in a table that
is referenced by an XSROBJECT enabled for
decomposition

The XSROBJECT is marked inoperative for
decomposition. Reenabling the XSROBJECT
might require readjustment of its mappings;
afterward, issue an ALTER XSROBJECT
ENABLE DECOMPOSITION statement against
the XSROBJECT.

Altering a column that is referenced in the
default expression of a global variable

The default expression of the global variable
is validated during alter processing. If a user-
defined function that is used in the default
expression cannot be resolved, the operation
fails.

If the table is a system-period temporal table, the column is also changed in any associated
history table. If the table is a system-period temporal table, string data type columns cannot be
altered to a length that requires data truncation, and numeric data type columns cannot be altered
to lower precision data types (SQLSTATE 42837).

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SET NOT NULL
Specifies that the column cannot contain null values. No value for this column in existing rows
of the table can be the null value (SQLSTATE 23502). This clause is not allowed if the column is
specified in the foreign key of a referential constraint with a DELETE rule of SET NULL, and no
other nullable columns exist in the foreign key (SQLSTATE 42831).

Altering this attribute for a column requires a classic table reorganization before full table access
is allowed (SQLSTATE 57007).

If a row permission or column mask exists, which depends on the column to be altered, an error is
issued (SQLSTATE 42917).

If the table is a system-period temporal table, the column is also changed in any associated
history table.

SET INLINE LENGTH integer
Changes the inline length of an existing structured type, XML, or LOB data type column. The inline
length indicates the maximum size in bytes of an instance of a structured type, XML, or LOB data
type to store in the base table row. Instances of a structured type or XML data type that cannot
be stored inline in the base table row are stored separately, similar to the way that LOB values are
stored.

The data type of column-name must be a structured type, XML, or LOB data type (SQLSTATE
42842).

The default inline length for a structured type column is the inline length of its data type (specified
explicitly or by default in the CREATE TYPE statement). If the inline length of a structured type is
less than 292, the value 292 is used for the inline length of the column.

The explicit inline length value can be increased only (SQLSTATE 429B2); it cannot exceed 32673
(SQLSTATE 54010). For a structured type or XML data type column, it must be at least 292. For a
LOB data type column, the INLINE LENGTH must not be less than the maximum LOB descriptor
size.

Altering the column must not cause the total byte count of all columns to exceed the row size limit
(SQLSTATE 54010).

Chapter 1. Structured Query Language (SQL) 847

Data that is already stored separately from the rest of the row is not moved inline into the base
table row by this statement.

To take advantage of the altered inline length of a structured type column, start the REORG
command against the specified table after altering the inline length of its column.

To take advantage of the altered inline length of an XML data type column in an existing table,
update all rows with an UPDATE statement.

The REORG command has no effect on the row storage of XML documents.

To take advantage of the altered inline length of a LOB data type column, use the REORG
command with the LONGLOBDATA option or UPDATE the corresponding LOB column.

For example:

UPDATE table-name SET lob-column = lob-column
 WHERE LENGTH(lob-column) <= chosen-inline-length - 4

where table-name is the table that had the inline length of the LOB data type column that is
altered, lob-column is the LOB data type column that was altered, and chosen-inline-length is the
new value that was chosen for the INLINE LENGTH.

If a row permission or column mask exists, which depends on the column to be altered, an error is
returned (SQLSTATE 42917).

If the table is a system-period temporal table, inline length changes are propagated to the history
table.

SET default-clause
Specifies a new default value for the column that is to be altered. The column must not already
be defined as a generated column (SQLSTATE 42623). The specified default value must represent
a value that could be assigned to the column in accordance with the rules for assignment as
described in "Assignments and comparisons". Altering the default value does not change the value
that is associated with this column for existing rows.

SET EXPRESSION AS (generation-expression)
Changes the expression for the column to the specified generation-expression. SET EXPRESSION
requires the table to be put in set integrity pending state by using the SET INTEGRITY statement
with the OFF option. After the ALTER TABLE statement, the SET INTEGRITY statement with the
IMMEDIATE CHECKED and FORCE GENERATED options must be used to update and check all
the values in that column against the new expression. The column must already be defined as a
generated column based on an expression (SQLSTATE 42837), and must not have appeared in the
PARTITIONING KEY, DIMENSIONS, or KEY SEQUENCE clauses of the table (SQLSTATE 42997).
The generation-expression must conform to the same rules that apply when defining a generated
column. The result data type of the generation-expression must be assignable to the data type of
the column (SQLSTATE 42821).

The generation-expression must not reference a column for which a column mask is defined
(SQLSTATE 42621).

SET NOT HIDDEN or SET IMPLICITLY HIDDEN
Specifies the hidden attribute for the column.

If the table is a system-period temporal table, the column is also changed in any associated
history table.

NOT HIDDEN
Specifies that the column is included in implicit references to the table, and that the column
can be explicitly referenced.

IMPLICITLY HIDDEN
Specifies that the column is not visible in SQL statements unless the column is explicitly
referenced by name. For example, assuming that a table includes a column that is defined
with the IMPLICITLY HIDDEN clause, the result of a SELECT * does not include the implicitly

848 IBM Db2 V11.5: SQL Reference

hidden column. However, the result of a SELECT that explicitly refers to the name of an
implicitly hidden column includes that column in the result table.

IMPLICITLY HIDDEN must not be specified for the last column of the table that is not hidden
(SQLSTATE 428GU).

SET generation-alteration
Specifies that the generation attribute for the column is to be changed. GENERATED might be
specified whether the column is an identity column or a row change timestamp column (SQLSTATE
42837). If the table is a system-period temporal table, the column in the associated history table
is not affected by the change. If a default for the column exists, that default must be dropped,
which can be done in the same column-alteration by using one of the DROP DEFAULT clauses. SET
GENERATED must not be specified for a column of a temporal history table (SQLSTATE 428FR).
GENERATED ALWAYS

Specifies that the database manager always generates a value for the column when a
row is inserted or updated and a value must be generated. GENERATED ALWAYS is the
recommended option unless data propagation or unload and reload operations are being
performed. ALWAYS is the default for generated columns.

GENERATED BY DEFAULT
Specifies that the database manager generates a value for the column when a row is inserted
into the table, or updated, specifying DEFAULT for the column, unless an explicit value is
specified. GENERATED BY DEFAULT can be specified with as-row-change-timestamp-clause
only. GENERATED BY DEFAULT is the recommended option when using data propagation or
performing unload and reload operations.

identity-alteration
Alters the identity attributes of the column. The column must be an identity column.
SET INCREMENT BY numeric-constant

Specifies the interval between consecutive values of the identity column. The next value to
be generated for the identity column will be determined from the last assigned value with
the increment applied. The column must already be defined with the IDENTITY attribute
(SQLSTATE 42837).

This value can be any positive or negative value that might be assigned to this column
(SQLSTATE 42815), and does not exceed the value of a large integer constant (SQLSTATE
42820), without nonzero digits that exist to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, this is a descending sequence after the ALTER statement. If this value
is 0 or positive, this is an ascending sequence after the ALTER statement.

SET NO MINVALUE or MINVALUE numeric-constant
Specifies the minimum value at which a descending identity column either cycles or stops
generating values, or the value to which an ascending identity column cycle after it reaches
the maximum value. The column must exist in the specified table (SQLSTATE 42703), and
must already be defined with the IDENTITY attribute (SQLSTATE 42837).
NO MINVALUE

For an ascending sequence, the value is the original starting value. For a descending
sequence, the value is the minimum value of the data type of the column.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value can be any positive
or negative value that might be assigned to this column (SQLSTATE 42815), without
nonzero digits that exist to the right of the decimal point (SQLSTATE 428FA), but the value
must be less than or equal to the maximum value (SQLSTATE 42815).

SET NO MAXVALUE or MAXVALUE numeric-constant
Specifies the maximum value at which an ascending identity column either cycles or stops
generating values, or the value to which a descending identity column cycle after it reaches
the minimum value. The column must exist in the specified table (SQLSTATE 42703), and must
already be defined with the IDENTITY attribute (SQLSTATE 42837).

Chapter 1. Structured Query Language (SQL) 849

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the data type of the
column. For a descending sequence, the value is the original starting value.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value can be any positive
or negative value that might be assigned to this column (SQLSTATE 42815), without
nonzero digits that exist to the right of the decimal point (SQLSTATE 428FA), but the value
must be greater than or equal to the minimum value (SQLSTATE 42815).

SET NO CYCLE or CYCLE
Specifies whether this identity column continues to generate values after generating either its
maximum or minimum value. The column must exist in the specified table (SQLSTATE 42703),
and must already be defined with the IDENTITY attribute (SQLSTATE 42837).
NO CYCLE

Specifies that values are not generated for the identity column after the maximum or
minimum value is reached.

CYCLE
Specifies that values continue to be generated for this column after the maximum or
minimum value is reached. If this option is used, then after an ascending identity column
reaches the maximum value, it generates its minimum value; or after a descending
sequence reaches the minimum value, it generates its maximum value. The maximum
and minimum values for the identity column determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated for an identity column.
Although not required, if unique values are wanted, a single-column unique index that
is defined by using the identity column ensures uniqueness. If a unique index exists on
such an identity column and a non-unique value is generated, an error occurs (SQLSTATE
23505).

SET NO CACHE or CACHE integer-constant
Specifies whether to keep some pre-allocated values in memory for faster access. This is
a performance and tuning option. The column must already be defined with the IDENTITY
attribute (SQLSTATE 42837).
NO CACHE

Specifies that values for the identity column are not to be pre-allocated.

In a Db2 pureScale environment, if the identity values must be generated in order of
request, the NO CACHE option must be used.

When this option is specified, the values of the identity column are not stored in the cache.
In this case, every request for a new identity value results in synchronous I/O to the log.

CACHE integer-constant
Specifies how many values of the identity sequence are pre-allocated and kept in memory.
When values are generated for the identity column, pre-allocating and storing values in the
cache reduces synchronous I/O to the log.

If a new value is needed for the identity column and no unused values available in the
cache exist, the allocation of the value requires waiting for I/O to the log. However, when
a new value is needed for the identity column and an unused value in the cache exist, the
allocation of that identity value can happen more quickly by avoiding the I/O to the log.

If a database deactivates, either normally or due to a system failure, all cached sequence
values that are not used in committed statements are lost (that is, they are never used).
The maximum number of identity column values that can be lost is calculated as follows:

• If ORDER is specified, the maximum is the value that is specified for the CACHE option.
• In a multi-partition or Db2 pureScale, the maximum is the value that is specified for the

CACHE option times the number of members that generate new identity values.

The minimum value is 2 (SQLSTATE 42815).

850 IBM Db2 V11.5: SQL Reference

In a Db2 pureScale environment, if both CACHE and ORDER are specified, the specification
of ORDER overrides the specification of CACHE and instead NO CACHE is in effect.

SET NO ORDER or ORDER
Specifies whether the identity column values must be generated in order of request. The
column must exist in the specified table (SQLSTATE 42703), and must already be defined with
the IDENTITY attribute (SQLSTATE 42837).
NO ORDER

Specifies that the identity column values do not need to be generated in order of request.
ORDER

Specifies that the identity column values must be generated in order of request.
RESTART or RESTART WITH numeric-constant

Resets the state of the sequence that is associated with the identity column. If WITH numeric-
constant is not specified, the sequence for the identity column is restarted at the value that
was specified, either implicitly or explicitly, as the starting value when the identity column was
originally created.

The column must exist in the specified table (SQLSTATE 42703), and must already be defined
with the IDENTITY attribute (SQLSTATE 42837). RESTART does not change the original START
WITH value.

The numeric-constant is an exact numeric constant that can be any positive or negative value
that might be assigned to this column (SQLSTATE 42815), without nonzero digits that exist to
the right of the decimal point (SQLSTATE 428FA). The numeric-constant will be used as the
next value for the column.

SET generation-attribute as-identity-clause
Changes the column to an identity column. This column alteration must not be specified whether
the column has a default or is already a generated column (SQLSTATE 42837). If the table is a
system-period temporal table, the column in the associated history table is not affected by the
change.
GENERATED ALWAYS

Specifies that the database manager always generates a value for the column when a row
is inserted or updated and a value must be generated. ALWAYS is the default for generated
columns.

GENERATED BY DEFAULT
Specifies that the database manager generates a value for the column when a row is inserted
or updated and a default value must be generated, unless an explicit value is specified.

as-identity-clause
Specifies that the column is the identity column for the table. A table can have a single identity
column (SQLSTATE 428C1). The column must be specified as not nullable (SQLSTATE 42997)
only, and the data type associated with the column must be an exact numeric data type with
a scale of zero (SQLSTATE 42815). An exact numeric data type is one of: SMALLINT, INTEGER,
BIGINT, DECIMAL, or NUMERIC with a scale of zero, or a distinct type based on one of these
types. For details on identity options, see "CREATE TABLE".

SET GENERATED ALWAYS
Changes the column to a generated expression column, a row-begin column, a row-end column,
or a transaction-start-ID column. GENERATED ALWAYS specifies that the database manager
always generates a value for the column when a row is inserted or updated and a value must
be generated.
AS (generation-expression)

Specifies that the definition of the column is based on an expression. The column must
not already be defined with a generation expression, cannot be the identity column, or
cannot have an explicit default (SQLSTATE 42837). The generation-expression must conform
to the same rules that apply when defining a generated column. The result data type of the
generation-expression must be assignable to the data type of the column (SQLSTATE 42821).

Chapter 1. Structured Query Language (SQL) 851

The column must not be referenced in the distribution key column or in the multidimensional
clustering (MDC) key (SQLSTATE 42997).

The generation-expression must not reference a column for which a column mask is defined
(SQLSTATE 42621).

AS ROW BEGIN

Specifies that the value is assigned by the database manager whenever a row is inserted into
the table or any column in the row is updated. The value is generated by using a reading of the
time-of-day clock during execution of the first of the following events in the transaction:

• A data change statement that requires a value to be assigned to the row-begin or transaction
start-ID column in a table

• A deletion of a row in a system-period temporal table

For a system-period temporal table, the database manager ensures uniqueness of the
generated values for a row-begin column across transactions. The timestamp value might
be adjusted to ensure that rows that are inserted into an associated history table have the end
timestamp value greater than the begin timestamp value (SQLSTATE 01695). This can happen
when a conflicting transaction is updating the same row in the system-period temporal table.
The database configuration parameter systime_period_adj must be set to Yes for this
adjustment to the timestamp value to occur otherwise an error is returned (SQLSTATE 57062).
If multiple rows are inserted or updated within a single SQL transaction and an adjustment is
not needed, the values for the row-begin column are the same for all the rows and are unique
from the values that are generated for the column for another transaction. A row-begin column
is required as the begin column of a SYSTEM_TIME period, which is the intended use for this
type of generated column.

A table can have only one row-begin column (SQLSTATE 428C1). If data-type is not
specified, the column is defined as a TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12) (SQLSTATE 42842). The column must be defined as NOT NULL (SQLSTATE
42831). A row-begin column cannot be updated.

AS ROW END

Specifies that the maximum value for the data type of the column is assigned by the database
manager whenever a row is inserted or any column in the row is updated.

A row-end column is required as the second column of a SYSTEM_TIME period, which is the
intended use for this type of generated column.

A table can have only one row-end column (SQLSTATE 428C1). If data-type is not specified,
the column is defined as TIMESTAMP(12). If data-type is specified, it must be TIMESTAMP(12)
(SQLSTATE 42842). The column must be defined as NOT NULL (SQLSTATE 42831). A row-end
column cannot be updated.

AS TRANSACTION START ID

Specifies that the value is assigned by the database manager whenever a row is inserted
into the table or any column in the row is updated. The database manager assigns a unique
timestamp value per transaction or the null value. The null value is assigned to the transaction
start-ID column if the column is nullable and if a row-begin column exists in the table for
which the value did not need to be adjusted. Otherwise, the value is generated by using a
reading of the time-of-day clock during execution of the first of the following events in the
transaction:

• A data change statement that requires a value to be assigned to the row-begin or transaction
start-ID column in a table

• A deletion of a row in a system-period temporal table

If multiple rows are inserted or updated within a single SQL transaction, the values for the
transaction start-ID column are the same for all the rows and are unique from the values that
are generated for the column for another transaction.

852 IBM Db2 V11.5: SQL Reference

A transaction start-ID column is required for a system-period temporal table, which is the
intended use for this type of generated column.

A table can have only one transaction start-ID column (SQLSTATE 428C1). If data-type is
not specified, the column is defined as TIMESTAMP(12). If data-type is specified, it must be
TIMESTAMP(12). A transaction start-ID column cannot be updated.

DROP DEFAULT
Drops the current default for the column. The specified column must have a default value
(SQLSTATE 42837). This action is propagated to the history table for a system-period temporal
table.

DROP GENERATED
Drops the generated attributes of the column. The column must be defined as a generated column
(SQLSTATE 42837). The column must not be defined as a row-begin column, row-end column, or a
transaction-start-ID column in a system-period temporal table (SQLSTATE 428FR).

DROP NOT NULL
Drops the NOT NULL attribute of the column, allowing the column to have the null value. This
clause is not allowed if the column is specified in the primary key, in a unique constraint of the
table (SQLSTATE 42831), a row-begin column, or a row-end column (SQLSTATE 42837).

Altering this attribute for a column requires a classic table reorganization before full table access
is allowed (SQLSTATE 57007).

The table cannot have data capture enabled (SQLSTATE 42997). DROP NOT NULL is blocked for
columns that belong to the BUSINESS_TIME period (SQLSTATE 428FR).

If the table is a system-period temporal table, the NOT NULL attribute is also dropped from the
corresponding column in any associated history table.

If either a row permission or column mask exists, which depends on the column to be altered, an
error is issued (SQLSTATE 42917).

ADD SCOPE
Add a scope to an existing reference type column that does not already define a scope that is
defined (SQLSTATE 428DK). If the altered table is a typed table, the column must not be inherited
from a supertable (SQLSTATE 428DJ).
typed-table-name

The name of a typed table. The data type of column-name must be REF(S), where S is the
type of typed-table-name (SQLSTATE 428DM). No checking is done of any existing values in
column-name to ensure that the values reference existing rows in typed-table-name.

typed-view-name
The name of a typed view. The data type of column-name must be REF(S), where S is the
type of typed-view-name (SQLSTATE 428DM). No checking is done of any existing values in
column-name to ensure that the values reference existing rows in typed-view-name.

COMPRESS
Specifies whether default values for this column are to be stored more efficiently.
SYSTEM DEFAULT

Specifies that system default values (that is, the default values used for the data types when
no specific values are specified) are to be stored by using minimal space. If the table is
not already set with the VALUE COMPRESSION attribute activated, a warning is returned
(SQLSTATE 01648), and system default values are not stored by using minimal space.

Allowing system default values to be stored in this manner causes a slight performance
penalty during insert and update operations on the column because of the extra checking that
is done.

Existing data in the column is not changed. Consider offline table reorganization to enable
existing data to take advantage of storing system default values by using minimal space.

Chapter 1. Structured Query Language (SQL) 853

OFF
Specifies that system default values are to be stored in the column as regular values. Existing
data in the column is not changed. Offline reorganization is recommended to change existing
data.

The base data type must not be DATE, TIME, or TIMESTAMP (SQLSTATE 42842). If the base data
type is a varying-length string, this clause is ignored. String values of length 0 are automatically
compressed if a table was set with VALUE COMPRESSION.

If the altered table is a typed table, the column must not be inherited from a supertable
(SQLSTATE 428DJ).

SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is associated with the table. The
name must not be qualified (SQLSTATE 42601). The table must be associated with a security
(SQLSTATE 55064). The table must not be a system-period temporal table.

DROP COLUMN SECURITY
Alters a column to make it a non-protected column.

ACTIVATE ROW ACCESS CONTROL

Activates row level access control on the table. The table must not be a typed table, a catalog table
(SQLSTATE 55019), a created temporary table, a declared temporary table (SQLSTATE 42995), a
nickname (SQLSTATE 42809), a view (SQLSTATE 42809), or an external table (SQLSTATE 42858). The
table must not identify a shadow table or a base table of a shadow table (SQLSTATE 428HZ).

A default row permission is implicitly created and allows no access to any rows of the table, unless
permitted by a row permission that is explicitly created by a user with SECADM authority.

When the table is referenced in a data manipulation statement, all enabled row permissions that were
created for the table, including the default row permission, are applied implicitly by the database
manager to control the set of rows in the table that are accessible.

If a trigger exists for the table, the trigger must be defined with the SECURED attribute (SQLSTATE
55019).

The table must not be referenced in the definition of a view if an INSTEAD OF trigger that is defined
with the NOT SECURED attribute exists for the view (SQLSTATE 55019).

If a materialized query table references the table, the functions that are referenced in the fullselect of
materizalized-query-definition must be defined with the SECURED attribute (SQLSTATE 55019).

If a materialized query table (or a staging table) that depends on the table (directly or indirectly
through a view) for which row level access control is being activated and that materialized query
table (or a staging table) did not already activate row level access control, row level access control is
implicitly activated for the materialized query table (or a staging table). This restricts direct access to
the contents of the materialized query table (or a staging table). A query that explicitly references
the table before such a row permission is defined returns a warning that no data in the table
exists (SQLSTATE 02000). To provide access to the materialized query table (or a staging table), an
appropriate row permission can be created, or an ALTER TABLE DEACTIVATE ROW ACCESS CONTROL
statement on the materialized query table (or a staging table) can be issued to remove the row level
protection if that is appropriate.

ACTIVATE ROW ACCESS CONTROL is ignored if row access control is already defined as activated for
the table.

If the table is a system-period temporal table, the database manager automatically activates row
access control on the history table and creates a default row permission for the history table.

If the table is a column-organized table, the database manager automatically activates row access
control on the synopsis table and creates a default row permission for the synopsis table.

854 IBM Db2 V11.5: SQL Reference

ACTIVATE COLUMN ACCESS CONTROL

Activates column level access control on the table. The table must not be a typed table, a catalog
table (SQLSTATE 55019), a created temporary table, a declared temporary table (SQLSTATE 42995), a
nickname (SQLSTATE 42809), a view (SQLSTATE 42809), or an external table (SQLSTATE 42858). The
table must not identify a shadow table or a base table of a shadow table (SQLSTATE 428HZ).

The access to the table is not restricted but when the table is referenced in a data manipulation
statement, all enabled column masks that were created for the table are applied implicitly by the
database manager to mask the values that are returned for the referenced columns in the final result
table of the queries.

If a trigger exists for the table, the trigger must be defined with the SECURED attribute (SQLSTATE
55019).

If a materialized query table references the table, the functions that are referenced in the fullselect of
materizalized-query-definition must be defined with the SECURED attribute (SQLSTATE 55019).

The table must not be referenced in the definition of a view if an INSTEAD OF trigger that is defined
with the NOT SECURED attribute exists for the view (SQLSTATE 55019). If a materialized query table
that depends on the table (directly or indirectly through a view) for which column level access control
is being activated and that materialized query table did not already activate row level access control,
row level access control is implicitly activated for the materialized query table. This restricts direct
access to the contents of the materialized query table. A query that explicitly references the table
before such a row permission is defined returns a warning that no data in the table exists (SQLSTATE
02000). To provide access to the materialized query table, an appropriate row permission can be
created, or an ALTER TABLE DEACTIVATE ROW ACCESS CONTROL statement on the materialized
query table can be issued to remove the row level protection if that is appropriate.

ACTIVATE COLUMN ACCESS CONTROL is ignored if column level access control is already defined as
activated for the table.

If the table is a system-period temporal table, the database manager automatically activates row
access control on the history table and creates a default row permission for the history table.

If the table is a column-organized table, the database manager automatically activates row access
control on the synopsis table and creates a default row permission for the synopsis table.

DEACTIVATE ROW ACCESS CONTROL

Deactivates row level access control on the table. When the table is referenced in a data manipulation
statement, any existing enabled row permissions that are defined on the table are not applied by
the database manager to control the set of rows in the table that are accessible. The table must not
identify a shadow table or a base table of a shadow table (SQLSTATE 428HZ).

DEACTIVATE ROW ACCESS CONTROL is ignored if row access control is not activated for the table.

DEACTIVATE COLUMN ACCESS CONTROL

Deactivates column level access control on the table. When the table is referenced in a data
manipulation statement, any existing enabled column masks defined on the table are not applied
by the database manager to control the values that are returned for the columns that are referenced
in the final result table of the queries. The table must not identify a shadow table or a base table of a
shadow table (SQLSTATE 428HZ).

DEACTIVATE COLUMN ACCESS CONTROL is ignored if column access control is not activated for the
table.

RENAME COLUMN source-column-name TO target-column-name
Renames the column that is specified in source-column-name to the name that is specified in target-
column-name. If the auto_reval database configuration parameter is set to DISABLED, the RENAME
COLUMN option of the ALTER TABLE statement behaves like it is under the control of revalidation
immediate semantics.

The table must not be defined as a history table (SQLSTATE 42986). If the table is a system-period
temporal table, the column is also renamed in any associated history table.

Chapter 1. Structured Query Language (SQL) 855

Columns that are used in expression-based index keys cannot be renamed (SQLSTATE 42893).

RENAME COLUMN must not rename a column that is referenced in the definition of a row permission
or a column mask. Also, It must not rename a column for which a column mask is defined (SQLSTATE
42917). If you rename a column that belongs to a table on which a mask or a permission is defined,
or to a table that is referenced in the definition of a mask or a permission, that mask or permission is
invalidated. Access to a table that activated column access control and a defined invalid mask on it is
blocked until the invalid mask is either disabled, dropped, or re-created (SQLSTATE 560D0). Access to
a table that activated row access control and defined an invalid row permission on it is blocked until
the invalid permission is either disabled, dropped, or re-created (SQLSTATE 560D0).
source-column-name

Specifies the name of the column that is to be renamed. The source-column-name must identify
an existing column of the table (SQLSTATE 42703). The name must not be qualified. The name
must not identify a column that is otherwise being added, altered, or dropped in the same ALTER
TABLE statement (SQLSTATE 42711).

target-column-name
The new name for the column. The name must not be qualified. Existing column names or period
names in the table must not be used (SQLSTATE 42711).

DROP PRIMARY KEY
Drops the definition of the primary key and all referential constraints dependent on this primary key.
The table must have a primary key (SQLSTATE 42888).

DROP FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must identify a referential
constraint (SQLSTATE 42704). For information about implications of dropping a referential constraint,
see Notes.

DROP UNIQUE constraint-name
Drops the definition of the unique constraint constraint-name and all referential constraints
dependent on this unique constraint. The constraint-name must identify an existing UNIQUE
constraint (SQLSTATE 42704). For information on implications of dropping a unique constraint, see
Notes.

DROP CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify an existing check
constraint that is defined on the table (SQLSTATE 42704).

DROP CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify an existing check constraint,
referential constraint, primary key, or unique constraint defined on the table (SQLSTATE 42704). For
information about implications of dropping a constraint, see Notes.

DROP COLUMN
Drops the identified column from the table. The table must not be a typed table (SQLSTATE 428DH).
The table cannot have data capture enabled (SQLSTATE 42997).

Dropping a column requires a classic table reorganization before full table access is allowed
(SQLSTATE 57007).

An XML column can be dropped only if all of the other XML columns in the table are dropped at the
same time only.

DROP COLUMN must not drop a column that is referenced in the definition of a row permission or
a column mask (SQLSTATE 42917). However, a column for which a column mask is defined can be
dropped. When the column is dropped, any column mask that is defined on that column is also
dropped.

column-name
Identifies the column that is to be dropped. The column name must not be qualified. The name
must identify a column of the specified table (SQLSTATE 42703). The name must not identify
the only column of the table (SQLSTATE 42814), or a column referenced in the definition of a
period (SQLSTATE 42817). The name must not identify the last column of the table that is not

856 IBM Db2 V11.5: SQL Reference

hidden (SQLSTATE 428GU). The name must not identify a column in a table that is defined as
a system-period temporal table or history table (SQLSTATE 428FR). The name must not identify
a column that is part of the distribution key, table-partitioning key, or organizing dimensions
(SQLSTATE 42997).

CASCADE
Specifies the following actions, based on the object:

• Any views that depend on the column that is dropped are marked inoperative
• Any indexes, triggers, SQL functions, constraints, or global variables that depend on the column

that is dropped are also dropped
• Any decomposition-enabled XSROBJECTs that depend on the table that contains the column are

made inoperative for decomposition.

A trigger depends on the column if it is referenced in the UPDATE OF column list, or anywhere
in the triggered action. A decomposition-enabled XSROBJECT depends on a table if it contains a
mapping of an XML element or attribute to the table. If an SQL function or global variable depends
on another database object, it might not be possible to drop the function or global variable by
using the CASCADE option. CASCADE is the default.

RESTRICT
Specifies that the column cannot be dropped if any views, indexes, triggers, constraints, or global
variables depend on the column, or if any decomposition-enabled XSROBJECT depends on the
table that contains the column (SQLSTATE 42893). A trigger depends on the column if it is
referenced in the UPDATE OF column list, or anywhere in the triggered action. A decomposition-
enabled XSROBJECT depends on a table if it contains a mapping of an XML element or attribute to
the table. The first dependent object that is detected is identified in the administration log.

Table 128. Cascaded Effects of Dropping a Column

Operation RESTRICT Effect CASCADE Effect

Dropping a column that is
referenced by a view or a trigger

Dropping the column is not
allowed.

The object and all objects that
depend on that object are
dropped.

Dropping a column that is
referenced in the key of an index

If all columns that are
referenced in the index are
dropped in the same ALTER
TABLE statement, dropping the
index is allowed. Otherwise,
dropping the column is not
allowed.

The index is dropped.

Dropping a column that
is referenced in a unique
constraint

If all columns that are
referenced in the unique
constraint are dropped in the
same ALTER TABLE statement,
and the unique constraint is
not referenced by a referential
constraint, the columns and the
constraint are dropped. (The
index that is used to satisfy
the constraint is also dropped).
Otherwise, dropping the column
is not allowed.

The unique constraint and
any referential constraints,
which reference that unique
constraint, are dropped. (Any
indexes that are used by those
constraints are also dropped).

Chapter 1. Structured Query Language (SQL) 857

Table 128. Cascaded Effects of Dropping a Column (continued)

Operation RESTRICT Effect CASCADE Effect

Dropping a column that is
referenced in a referential
constraint

If all columns that are
referenced in the referential
constraint are dropped in
the same ALTER TABLE
statement, the columns and
the constraint are dropped.
Otherwise, dropping the column
is not allowed.

The referential constraint is
dropped.

Dropping a column that
is referenced by a system-
generated column that is not
being dropped.

Dropping the column is not
allowed.

Dropping the column is not
allowed.

Dropping a column that is
referenced in a check constraint

Dropping the column is not
allowed.

The check constraint is
dropped.

Dropping a column that is
referenced in a decomposition-
enabled XSROBJECT

Dropping the column is not
allowed.

The XSROBJECT is marked
inoperative for decomposition.
Reenabling the XSROBJECT
might require readjustment of
its mappings; afterward, issue
an ALTER XSROBJECT ENABLE
DECOMPOSITION statement
against the XSROBJECT.

Dropping a column that is
referenced in the default
expression of a global variable

Dropping the column is not
allowed.

The global variable is dropped,
unless the dropping of the
global variable is disallowed
because other objects exist,
which do not allow the cascade,
that depends on the global
variable.

DROP RESTRICT ON DROP
Removes the restriction, if there is one, on dropping the table and the table space that contains the
table.

DROP DISTRIBUTION
Drops the distribution definition for the table. The table must have a distribution definition (SQLSTATE
428FT). The table space for the table must be defined on a single partition database partition group.

DROP MATERIALIZED QUERY
Changes a materialized query table so that it is no longer considered to be a materialized query table.
The table that is specified by table-name must be defined as a materialized query table that is not
replicated (SQLSTATE 428EW). The definition of the columns of table-name is not changed, but the
table can no longer be used for query optimization, and the REFRESH TABLE statement can no longer
be used.

If row level access control or column level access control is in effect for the table, this control remains
after the table is no longer a materialized query table.

ADD PERIOD period-definition
Adds a period definition to the table.
SYSTEM_TIME (begin-column-name, end-column-name)

Defines a system period with the name SYSTEM_TIME. There must not be a column in the table
with the name SYSTEM_TIME (SQLSTATE 42711). A table can have only one SYSTEM_TIME period

858 IBM Db2 V11.5: SQL Reference

(SQLSTATE 42711). begin-column-name must be defined as ROW BEGIN and end-column-name
must be defined as ROW END (SQLSTATE 428HN).

BUSINESS_TIME (begin-column-name, end-column-name)

Defines an application period with the name BUSINESS_TIME. There must not be a column
in the table with the name BUSINESS_TIME (SQLSTATE 42711). A table can have only one
BUSINESS_TIME period (SQLSTATE 42711). begin-column-name and end-column-name must
both be defined as DATE or TIMESTAMP(p) where p is 0 - 12 (SQLSTATE 42842), and the columns
must be defined as NOT NULL (SQLSTATE 42831). begin-column-name and end-column-name
must not identify a column that is defined with a GENERATED clause (SQLSTATE 428HZ). Business
time period columns cannot be added to a table that is in set integrity pending state.

An implicit check constraint is generated to ensure that the value of end-column-name is greater
than the value of begin-column-name. The name of the implicitly created check constraint is
DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME and must not be the name of an
existing check constraint (SQLSTATE 42710).

DROP PERIOD period-name
Drops the identified period from the table. The name must not identify a period that was already
added or altered in this ALTER TABLE statement (SQLSTATE 42711). Any implicitly generated check
constraints for the period (created when the period was defined) and any indexes that reference the
period are also dropped.
period-name

Identifies the period. Valid period names are BUSINESS_TIME or SYSTEM_TIME. The period must
exist in the table (SQLSTATE 4274M).

When a BUSINESS_TIME period is dropped, all packages with the application-period temporal
table dependency type on that table are invalidated. Other dependent objects like views and
triggers that record a dependency on the table are also marked as invalid.

SYSTEM_TIME period cannot be dropped if the table is a system-period temporal table (SQLSTATE
428HZ).

DATA CAPTURE
Indicates whether extra information for data replication is to be written to the log.

If the table is a typed table, then this option is not supported (SQLSTATE 428DH for root tables or
428DR for other subtables).

NONE
Indicates that no extra information is logged.

CHANGES
Indicates that extra information with regards to SQL changes to this table is written to the log. This
option is required if this table is replicated and the Capture program is used to capture changes for
this table from the log.
INCLUDE LONGVAR COLUMNS

Allows data replication utilities to capture changes that are made to LONG VARCHAR or LONG
VARGRAPHIC columns. The clause can be specified for tables that do not have any LONG
VARCHAR or LONG VARGRAPHIC columns since it is possible to ALTER the table to include
such columns.

ACTIVATE NOT LOGGED INITIALLY
Activates the NOT LOGGED INITIALLY attribute of the table for this current unit of work.

Any changes that are made to the table by an INSERT, DELETE, UPDATE, CREATE INDEX, DROP
INDEX, or ALTER TABLE in the same unit of work after the table is altered by this statement are not
logged. Any changes that are made to the system catalog by the ALTER statement in which the NOT
LOGGED INITIALLY attribute is activated are logged. Any subsequent changes that are made in the
same unit of work to the system catalog information are logged.

At the completion of the current unit of work, the NOT LOGGED INITIALLY attribute is deactivated and
all operations that are done on the table in subsequent units of work are logged.

Chapter 1. Structured Query Language (SQL) 859

If you use this feature to avoid locks on the catalog tables while you insert data, it is important that
only this clause is specified on the ALTER TABLE statement. Use of any other clause in the ALTER
TABLE statement results in catalog locks. If no other clauses are specified for the ALTER TABLE
statement, then only a SHARE lock is acquired on the system catalog tables. This can greatly reduce
the possibility of concurrency conflicts during time between when this statement is run and when the
unit of work in which it was run is ended.

If the table is a typed table, this option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

If the table is a system-period temporal table or a history table, this option is not supported.

For more information about the NOT LOGGED INITIALLY attribute, see the description of this attribute
in “CREATE TABLE ” on page 1351.

Note: If non-logged activity occurs against a table that has the NOT LOGGED INITIALLY attribute
activated, and if a statement fails (causing a rollback), or a ROLLBACK TO SAVEPOINT is run, the
entire unit of work is rolled back (SQL1476N). Furthermore, the table for which the NOT LOGGED
INITIALLY attribute was activated is marked inaccessible after the rollback occurs and can be
dropped only. Therefore, the opportunity for errors within the unit of work in which the NOT LOGGED
INITIALLY attribute is activated is minimized.

WITH EMPTY TABLE
Causes all data currently in table to be removed. When the data is removed, it cannot be
recovered except through use of the RESTORE facility. If the unit of work in which this alter
statement was issued is rolled back, the table data is not returned to its original state.

When this action is requested, no DELETE triggers defined on the affected table are fired. The
index data is also deleted for all indexes that exist on the table.

A partitioned table with attached data partitions or logically detached partitions cannot be
emptied (SQLSTATE 42928).

PCTFREE integer
Specifies the percentage of each page that is to be left as free space during a load or a table
reorganization operation. The first row on each page is added without restriction. When more rows
are added to a page, at least integer percent of the page is left as free space. The PCTFREE value is
considered only by the load and table reorg utilities. The value of integer can range 0 - 99. A PCTFREE
value of -1 in the system catalog (SYSCAT.TABLES) is interpreted as the default value. The default
PCTFREE value for a table page is 0. If the table is a typed table, this option is only supported on the
root table of the typed table hierarchy (SQLSTATE 428DR).

LOCKSIZE
Indicates the size (granularity) of locks used when the table is accessed. Use of this option in the table
definition does not prevent normal lock escalation from occurring.

If the table is a typed table, this option is only supported on the root table of the typed table hierarchy
(SQLSTATE 428DR).

The LOCKSIZE keyword is not supported for column-organized tables (SQLSTATE 42858).

ROW
Indicates the use of row locks. This is the default lock size when a table is created.

BLOCKINSERT
Indicates the use of block locks during insert operations. This means that the appropriate
exclusive lock is acquired on the block before insertion, and row locking is not done on the
inserted row. This option is useful when separate transactions are inserting into separate cells in
the table. Transactions inserting into the same cells can still do so concurrently, but insert into
distinct blocks, and this can impact the size of the cell if more blocks are needed. This option is
only valid for MDC tables (SQLSTATE 42613).

TABLE
Indicates the use of table locks. This means that the appropriate share or exclusive lock is
acquired on the table, and that intent locks (except intent none) are not used. For partitioned

860 IBM Db2 V11.5: SQL Reference

tables, this lock strategy is applied to both the table lock and the data partition locks for any data
partitions that are accessed. Use of this value can improve the performance of queries by limiting
the number of locks that need to be acquired. However, concurrency is also reduced because all
locks are held over the complete table.

APPEND
Indicates whether data is appended to the end of the table data or placed where free space is
available in data pages. If the table is a typed table, this option is only supported on the root table of
the typed table hierarchy (SQLSTATE 428DR).
ON

Indicates that table data is appended and information about free space on pages is not kept. The
table must not have a clustered index (SQLSTATE 428CA).

OFF
Indicates that table data is placed in available space. This is the default when a table is created.

The table is reorganized after you set APPEND OFF since the information about available free
space is not accurate and can result in poor performance during insert.

VOLATILE CARDINALITY or NOT VOLATILE CARDINALITY
Indicates to the optimizer whether the cardinality of table table-name can vary significantly at run
time. Volatility applies to the number of rows in the table, not to the table itself. CARDINALITY is an
optional keyword. The default is NOT VOLATILE.
VOLATILE

Specifies that the cardinality of table table-name can vary significantly at run time, from empty to
large. To access the table, the optimizer uses an index scan (rather than a table scan, regardless of
the statistics) if that index is index-only (all referenced columns are in the index), or that index is
able to apply a predicate in the index scan. The list prefetch access method is not used to access
the table. If the table is a typed table, this option is only supported on the root table of the typed
table hierarchy (SQLSTATE 428DR).

NOT VOLATILE
Specifies that the cardinality of table-name is not volatile. Access plans to this table continues to
be based on existing statistics and on the current optimization level.

COMPRESS
Specifies whether data compression applies to the rows of the table.
YES

Specifies that row and XML compression are enabled. Insert and update operations on the table
are subject to compression. Index compression is enabled for new indexes unless explicitly
disabled in the CREATE INDEX statement. Existing indexes can be compressed by using the ALTER
INDEX statement.

After a table is altered to enable row compression, all rows in the table can be compressed
immediately by running one of the following actions:

• REORG command
• Online table move
• Data unload and reload

ADAPTIVE
Enables adaptive compression for the table. Data rows are subject to compression with
both table-level and page-level compression dictionaries. XML documents in the XML storage
object are subject to compression with a table-level XML compression dictionary. Page-level
compression dictionaries are created automatically as rows are inserted or updated. Table-
level compression dictionaries are created for both row and XML data automatically after
sufficient data is added, unless they exist.

STATIC
Enables classic row compression for the table. Data rows are subject to compression with
a table-level compression dictionary, and XML documents in the XML storage object are

Chapter 1. Structured Query Language (SQL) 861

subject to compression by using a table-level XML compression dictionary. If no table-level
compression dictionaries exist for either row or XML data, they will be created automatically
after sufficient data is added.

If neither of the preceding two options are specified along with the COMPRESS YES clause,
ADAPTIVE is used implicitly.

NO
Specifies that data row and XML compression are disabled. Inserted and updated data rows and
XML documents in the table is no longer subject to compression. Any rows and XML documents
in the table that are already in compressed format remain in compressed format until they are
converted to non-compressed format when they are updated.

An offline reorganization of the table decompresses any rows that are remain compressed.

If table-level or page-level compression dictionaries exist, they are discarded during table
reorganization or truncation (such as a LOAD REPLACE operation). Index compression is disabled
for new indexes that are created on that table unless explicitly enabled in the CREATE INDEX
statement. Index compression for existing indexes can be explicitly disabled by using the ALTER
INDEX statement.

VALUE COMPRESSION
This determines the row format that is to be used. Each data type has a different byte count
depending on the row format that is used. For more information, see "Byte Counts" in “CREATE
TABLE ” on page 1351. An update operation causes an existing row to be changed to the new row
format.

Offline table reorganization is recommended to improve the performance of update operations on
existing rows. This can also result in the table to take up less space.

If the row size, which is calculated by using the appropriate column in the table "Byte Counts of
Columns by Data Type" (see "CREATE TABLE"), would no longer fit within the row size limit, as
indicated in the table "Limits for Number of Columns and Row Size In Each Table Space Page Size", an
error is returned (SQLSTATE 54010). If the table is a typed table, this option is only supported on the
root table of the typed table hierarchy (SQLSTATE 428DR).

ACTIVATE
The NULL value is stored by using 3 bytes. This is the same or less space than when VALUE
COMPRESSION is not active for columns of all data types, except for CHAR(1). Whether a column
is defined as nullable has no effect on the row size calculation. The zero-length data values
for columns whose data type is VARCHAR, VARGRAPHIC, VARBINARY, CLOB, DBCLOB, or BLOB
are to be stored by using 2 bytes only, which is less than the storage required when VALUE
COMPRESSION is not active. When a column is defined by using the COMPRESS SYSTEM DEFAULT
option, this also allows the system default value for the column to be stored by using 3 bytes of
total storage. The row format that is used to support this determines the byte counts for each data
type, and tends to cause data fragmentation when updating to or from NULL, a zero-length value,
or the system default value.

DEACTIVATE
The null value is stored with space set aside for possible future updates. This space is not set
aside for varying-length columns. It also does not support efficient storage of system default
values for a column. If columns exist with the COMPRESS SYSTEM DEFAULT attribute, a warning is
returned (SQLSTATE 01648).

LOG INDEX BUILD
Specifies the level of logging that is to be performed during create, re-create, or reorganize index
operations on this table.
NULL

Specifies that the value of the logindexbuild database configuration parameter is used to
determine whether index build operations are to be logged. This is the default when the table is
created.

862 IBM Db2 V11.5: SQL Reference

OFF
Specifies that any index build operations on this table will be logged minimally. This value
overrides the setting of the logindexbuild database configuration parameter.

ON
Specifies that any index build operations on this table will be logged completely. This value
overrides the setting of the logindexbuild database configuration parameter.

ADD PARTITION add-partition
Adds one or more data partitions to a partitioned table. If the specified table is not a partitioned table,
an error is returned (SQLSTATE 428FT). The number of data partitions must not exceed 32 767.
partition-name

Names the data partition. The name must not be the same as any other data partition for the
table (SQLSTATE 42710). If this clause is not specified, the name will be 'PART' followed by the
character form of an integer value to make the name unique for the table.

boundary-spec
Specifies the range of values for the new data partition. This range must not overlap that of
an existing data partition (SQLSTATE 56016). For a description of the starting-clause and the
ending-clause, see "CREATE TABLE".

If the starting-clause is omitted, the new data partition is assumed to be at the end of the table. If
the ending-clause is omitted, the new data partition is assumed to be at the start of the table.

IN tablespace-name
Specifies the table space where the data partition is to be stored. The named table space must
have the same page size, be in the same database partition group, and manage space in the same
way as the other table spaces of the partitioned table (SQLSTATE 42838). This can be a table
space that is already being used for another data partition of the same table, or a table space
that is not being used by this table, but it must be a table space on which the authorization ID of
the statement holds the USE privilege (SQLSTATE 42727). If this clause is not specified, the table
space of the first visible or attached data partition of the table is used.

INDEX IN tablespace-name
Specifies the table space where partitioned indexes on the data partition are stored. If the INDEX
IN clause is not specified, partitioned indexes on the data partition are stored in the same table
space as the data partition.

The table space that is used by the new index partition, whether default or specified by the INDEX
IN clause, must match the type (SMS or DMS), page size, and extent size of the table spaces used
by all other index partitions (SQLSTATE 42838).

LONG IN tablespace-name
Specifies the table space where the data partition that contains long column data is to be
stored. The named table space must have the same page size, be in the same database partition
group, and manage space in the same way as the other table spaces and data partitions of the
partitioned table (SQLSTATE 42838); it must be a table space on which the authorization ID of the
statement holds the USE privilege. The page size and extent size for the named table space can be
different from the page size and extent size of the other data partitions of the partitioned table.

For rules that govern the use of the LONG IN clause with partitioned tables, see "Large object
behavior in partitioned tables".

ATTACH PARTITION attach-partition
Attaches another table as a new data partition. The data object of the table being attached becomes a
new partition of the table being attached to. There is no data movement involved. The table is placed
in set integrity pending state, and referential integrity checking is deferred until execution of a SET
INTEGRITY statement. The ALTER TABLE ATTACH operation does not allow the use of the IN or LONG
IN clause. The placement of LOBs for that data partition is determined at the time the source table is
created. For rules that govern the use of the LONG IN clause with partitioned tables, see "Large object
behavior in partitioned tables".

Chapter 1. Structured Query Language (SQL) 863

If the table being attached has either row level access control or column level access control
activated, then the table to attach to must have the same controls activated. No row permissions
or column masks are automatically carried over from the table being attached to the target table.
The column masks and row permissions do not necessarily need to be the same on both tables,
although this would be best from a security perspective. But if the table being attached has row level
access control activated then the table to attach to must also have row level access control activated
(SQLSTATE 428GE). Similarly, if the table being attached has column level access control activated
and at least one column mask object that is enabled then the table to attach to must also have
column level access control activated and a column mask object that is enabled for the corresponding
columns (SQLSTATE 428GE).

partition-name
Names the data partition. The name must not be the same as any other data partition for the table
(SQLSTATE 42710). If this clause is not specified, the name is 'PART' followed by the character
form of an integer value to make the name unique for the table.

boundary-spec
Specifies the range of values for the new data partition. This range must not overlap that of
an existing data partition (SQLSTATE 56016). For a description of the starting-clause and the
ending-clause, see "CREATE TABLE".

If the starting-clause is omitted, the new data partition is assumed to be at the end of the table. If
the ending-clause is omitted, the new data partition is assumed to be at the start of the table.

FROM table-name1
Specifies the table that is to be used as the source of data for the new partition. The table
definition of table-name1 cannot have multiple data partitions, and it must match the altered table
in the following ways (SQLSTATE 428GE):

• The number of columns must be the same.
• The data types of the columns in the same ordinal position in the table must be the same.
• The nullability characteristic of the columns in the same ordinal position in the table must be the

same.
• If the target table has a row change timestamp column, the corresponding column of the source

table must be a row change timestamp column.
• If the data is also distributed, it must be distributed over the same database partition group by

using the same distribution keys.
• If either table is a random distribution table that uses the random by generation method, the

other table must be one too.
• If the data in either table is organized, the organization must match.
• For structured, XML, or LOB data type, the value for INLINE LENGTH must be the same.
• If the target table has a defined BUSINESS_TIME period, the source table must have a defined

BUSINESS_TIME period on the corresponding columns.

After the data from table-name1 is successfully attached, an operation equivalent to DROP TABLE
table-name1 is performed to remove this table, which no longer has data, from the database.

BUILD MISSING INDEXES
Specifies that if the source table does not have indexes that correspond to the partitioned indexes
on the target table, a SET INTEGRITY operation builds partitioned indexes on the new data
partition to correspond to the partitioned indexes on the existing data partitions. Indexes on the
source table that do not match the partitioned indexes on the target table are dropped during
attach processing.

REQUIRE MATCHING INDEXES
Specifies that the source table must have indexes to match the partitioned indexes on the
target table; otherwise, an error is returned (SQLSTATE 428GE) and information is written to the
administration log about the indexes that do not match.

864 IBM Db2 V11.5: SQL Reference

If the REQUIRE MATCHING INDEXES clause is not specified and the indexes on the source table
do not match all the partitioned indexes on the target table, the following behavior occurs:

1. For indexes on the target table that do not have a match on the source table and are either
unique indexes or XML indexes that are defined with REJECT INVALID VALUES, the ATTACH
operation fails (SQLSTATE 428GE).

2. For all other indexes on the target table that do not have a match on the source table, the
index object on the source table is marked invalid during the attach operation. If the source
table does not have any indexes, an empty index object is created and marked as invalid.
The ATTACH operation succeeds, but the index object on the new data partition is marked
as invalid. Typically, SET INTEGRITY is the next operation to run against the data partition.
SET INTEGRITY forces a rebuild, if required, of the index object on data partitions that were
recently attached. The index rebuild can increase the time that is required to bring the new
data online.

3. Information is written to the administration log about the indexes that do not match.

DETACH PARTITION partition-name INTO table-name1
Detaches the data partition partition-name from the altered table, and uses the data partition to
create a new table named table-name1. The data partition is detached from the altered table and
is used to create the new table without any data movement. The specified data partition cannot be
the last remaining partition of the table being altered (SQLSTATE 428G2). The table being altered to
detach a partition must not be a system-period temporal table (SQLSTATE 428HZ).

When a partition is detached from a table for which either row level access control or column level
access control is defined, the new table that is created for the detached data will automatically have
row level access control (though not column level access control) activated to protect the detached
data. Direct access to this new table returns no rows until appropriate row permissions are defined for
the table or row level access control is deactivated for this table.

ADD SECURITY POLICY policy-name
Adds a security policy to the table. The security policy must exist at the current server (SQLSTATE
42704). The table must not already have a security policy (SQLSTATE 55065), and must not be a
typed table (SQLSTATE 428DH), materialized query table (MQT), or staging table (SQLSTATE 428FG).

DROP SECURITY POLICY
Removes the security policy and all LBAC protection from the table. The table that is specified by
table-name must be protected by a security policy (SQLSTATE 428GT). If the table has a column with
data type DB2SECURITYLABEL, the data type is changed to VARCHAR (128) FOR BIT DATA. If the
table has one or more protected columns, those columns become unprotected.

ADD VERSIONING USE HISTORY TABLE history-table-name
Specifies that the table is a system-period temporal table. The table must not already be defined as
a system-period temporal table or a history table (SQLSTATE 428HM). A SYSTEM_TIME period and a
transaction-start-ID column must be defined in the table (SQLSTATE 428HM).

The table must not be a materialized query table (SQLSTATE 428HM).

Historical versions of the rows in the table are retained by the database manager. The database
manager records extra information that indicates when a row was inserted into the table, and when it
was updated or deleted. When a row in a system-period temporal table is updated, a previous version
of the row is kept. When data in a system-period temporal table is deleted, the old version of the row
is inserted as a historical record. An associated history table is used to store the historical rows of the
table.

References to the table can include a time period search condition to indicate which system versions
of the data are to be returned.

history-table-name identifies a history table where historical rows of the system-period temporal
table are kept. history-table-name must identify a table that exists at the current server (SQLSTATE
42704), and is not a catalog table (SQLSTATE 42832), an existing system-period temporal table,
an existing history table, a declared global temporary table, a created global temporary table, a
materialized query table, or a view (SQLSTATE 428HX).

Chapter 1. Structured Query Language (SQL) 865

The identified history table must not contain an identity column, row change timestamp column,
row-begin column, row-end column, transaction start-ID column, generated expression column, or
include a period (SQLSTATE 428HX).

The system-period temporal table and the identified history table must have the same number and
order of columns (SQLSTATE 428HX). The following attributes for the corresponding columns of the
two tables must be the same (SQLSTATE 428HX):

• Column name
• Column data type
• Column length (including inline LOB lengths), precision, and scale
• Column FOR BIT attribute for character string columns
• Column null attribute
• Column hidden attribute

If row access control or column access control is activated for the system-period temporal table and
row access control is not activated on the history table, the database manager automatically activates
row access control on the history table and creates a default row permission for the history table.

DROP VERSIONING
Specifies that the table is no longer a system-period temporal table. The table must be a system-
period temporal table (SQLSTATE 428HZ). Historical data is no longer recorded and maintained for the
table. The definition of the columns and data of the table are not changed, but the table is no longer
treated as a system-period temporal table. The SYSTEM_TIME period is retained. Subsequent queries
that reference the table must not specify a SYSTEM_TIME period specification for the table. The
relationship between the system-period temporal table and the associated history table is removed.
The history table is not dropped and the contents of the history table are not affected.

When a table is altered with DROP VERSIONING, all packages with the system-period temporal table
dependency type on that table are invalidated. Other dependent objects like views and triggers that
record a dependency on the table are also marked as invalid.

Rules
• Any enforced unique or primary key constraint that is defined on the table must be a superset of the

distribution key, if there is one (SQLSTATE 42997).
• Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).
• A column can be referenced in one ADD, ALTER, or DROP COLUMN clause in a single ALTER TABLE

statement only (SQLSTATE 42711).
• A column length, data type, or hidden attribute cannot be altered, nor can the column be dropped, if the

table has any materialized query tables that depend on the table (SQLSTATE 42997).
• VARCHAR, VARGRAPHIC, and VARBINARY columns that was altered to be greater than 4000 and 2000,

respectively, must not be used as input parameters in functions in the SYSFUN schema (SQLSTATE
22001).

• A column length cannot be altered if the table has any views enabled for query optimization that depend
on the table (SQLSTATE 42997).

• The table must be put in set integrity pending state, by using the SET INTEGRITY statement with the
OFF option (SQLSTATE 55019) before:

– Adding a column with a generation expression
– Altering the generated expression of a column
– Changing a column to have a generated expression

• An existing column cannot be altered to become of type DB2SECURITYLABEL (SQLSTATE 42837).
• Defining a column of type DB2SECURITYLABEL fails if the table is not associated with a security policy

(SQLSTATE 55064).

866 IBM Db2 V11.5: SQL Reference

• A column of type DB2SECURITYLABEL cannot be altered or dropped (SQLSTATE 42817).
• An ALTER TABLE operation to mark a table as protected fails if there exists an MQT that depends on that

table (SQLSTATE 55067).
• Attaching a partition to a protected partitioned table fails if the source table and the target table are not

protected by using the same security policy, do not have the same row security label column, and do not
have the same set of protected columns (SQLSTATE 428GE).

• If a generated column is referenced in a table-partitioning key, the generated column expression cannot
be altered (SQLSTATE 42837).

• The isolation-clause cannot be specified in the fullselect of the materialized-query-definition (SQLSTATE
42601).

• Adding or attaching a data partition to a partitioned table fails with SQL0612N after detaching the same
partition name, if asynchronous index cleanup has not finished deleting index entries for the partition
(SQLSTATE 42711).

Notes
• A REORG-recommended operation occurs when changes that result from an ALTER TABLE statement

affect the row format of existing data. When this occurs, most subsequent operations on the table
are restricted until a table reorganization operation completes successfully (SQLSTATE 57007). Many
REORG-recommended ALTER TABLE actions may be run against a table in a single unit of work, either
in the same statement or spread over multiple statements. This is considered to be a single REORG-
recommended operation. For example, dropping two columns in a single ALTER TABLE statement
or in two statements in the same unit of work is considered to be a single REORG-recommended
operation. There can be up to three units of work containing REORG-recommended operations before
a classic offline table reorganization must be done (SQLTATE 55019). The reorg pending state and the
number of REORG-recommended operations are returned from SYSIBMADM.ADMINTABINFO columns
reorg_pending and num_reorg_rec_alters respectively.

• The following is the full list of REORG-recommended ALTER statements that cause a version change and
place the table into a REORG-pending state:

– DROP COLUMN
– ALTER COLUMN SET NOT NULL
– ALTER COLUMN DROP NOT NULL
– ALTER COLUMN SET DATA TYPE, except in the following situations:

- Increasing the length of a VARCHAR or VARGRAPHIC column
- Decreasing the length of a VARCHAR or VARGRAPHIC column without truncating trailing blanks

from existing data, when no indexes exist on the column
• The following table operations are allowed after a successful REORG-recommended operation occurs:

– ALTER TABLE. However, the following operations are not allowed (SQLSTATE 57007):

- ADD CHECK CONSTRAINT
- ADD REFERENTIAL CONSTRAINT
- ADD UNIQUE CONSTRAINT

– DROP TABLE
– RENAME TABLE
– REORG TABLE
– TRUNCATE TABLE
– Table scan access of table data

• Altering a table to make it a materialized query table puts the table in set integrity pending state. If
the table is defined as REFRESH IMMEDIATE, the table must be taken out of set integrity pending state
before INSERT, DELETE, or UPDATE commands can be started on the table that is referenced by the

Chapter 1. Structured Query Language (SQL) 867

fullselect. The table can be taken out of set integrity pending state by using REFRESH TABLE or SET
INTEGRITY, with the IMMEDIATE CHECKED option, to completely refresh the data in the table based
on the fullselect. If the data in the table accurately reflects the result of the fullselect, the IMMEDIATE
UNCHECKED option of SET INTEGRITY can be used to take the table out of set integrity pending state.

• Altering a table to change it to a REFRESH IMMEDIATE materialized query table causes any packages
with INSERT, DELETE, or UPDATE usage on the table that is referenced by the fullselect to be
invalidated.

• Altering a table to change from a materialized query table to a regular table causes any packages
dependent on the table to be invalidated.

• Altering a table to change from a MAINTAINED BY FEDERATED_TOOL materialized query table
to a regular table does not cause any change in the subscription setup of the replication tool.
Because a subsequent change to a MAINTAINED BY SYSTEM materialized query table causes the
replication tool to fail, you must change the subscription setting when you change a MAINTAINED BY
FEDERATED_TOOL materialized query table.

• If a deferred materialized query table is associated with a staging table, the staging table is dropped if
the materialized query table is altered to a regular table.

• ADD column clauses are processed before all other clauses. Other clauses are processed in the order
that they are specified.

• Any columns added through an alter table operation is not automatically added to any existing view of
the table.

• Adding or attaching a data partition to a partitioned table, or detaching a data partition from a
partitioned table, causes any packages that depend on that table to be invalidated.

• After you detach a data partition from a data partitioned table, the STATUS of the detached partition in
the SYSCAT.DATAPARTITIONS catalog can be 'L' when the partition is logically detached and the detach
operation is not completed. If the STATUS of the detached partition is 'L', the following operations
cannot be performed on the source table (SQLSTATE 55057):

– Adding a unique or primary key constraint that attempts to create a nonpartitioned index
– Adding, dropping, or renaming a column
– Activating value compression or compression
– Deactivating value compression or compression

• To drop the partitioning for a table, the table must be dropped and then re-created.
• To drop the organization for a table, the table must be dropped and then re-created.
• When an index is automatically created for a unique or primary key constraint, the database manager

tries to use the specified constraint name as the index name with a schema name that matches the
schema name of the table. If this matches an existing index name or no name for the constraint was
specified, the index is created in the SYSIBM schema with a system-generated name that is formed
of "SQL" followed by a sequence of 15 numeric characters that are generated by a timestamp-based
function.

• When a nonpartitioned index is created on a partitioned table with attached data partitions, the index
does not include the data in the attached data partitions. Use the SET INTEGRITY statement to maintain
all indexes for all attached data partitions.

• When you create a partitioned index in the presence of attached data partitions (STATUS of 'A' in
SYSCAT.DATAPARTITIONS), an index partition for each attached data partition is also created. If the
partitioned index is being created as unique, or is an XML index that is created with REJECT INVALID
VALUES, then the index creation can fail if an attached data partition contains any violations (duplicates
for a unique index, or invalid values for the XML index).

• If a table has a nonpartitioned index, you cannot access a new data partition in that table within the
same transaction as the add or attach operation that created the partition, if the transaction does not
have the table locked in exclusive mode (SQLSTATE 57007).

868 IBM Db2 V11.5: SQL Reference

• Any table that might be involved in a DELETE operation on table T is said to be delete-connected to T.
Thus, a table is delete-connected to T if it is a dependent of T or it is a dependent of a table in which
deletes from T cascade.

• A package has an insert (update/delete) usage on table T if records are inserted into (updated in/
deleted from) T either directly by a statement in the package, or indirectly through constraints or
triggers run by the package on behalf of one of its statements. Similarly, a package has an update usage
on a column if the column is modified directly by a statement in the package, or indirectly through
constraints or triggers run by the package on behalf of one of its statements.

• In a federated system, a remote base table that was created by using transparent DDL can be altered.
However, transparent DDL does impose some limitations on the modifications that can be made:

– A remote base table can be altered by adding new columns or specifying a primary key only.
– Specific clauses that are supported by transparent DDL include:

- ADD COLUMN column-definition
- NOT NULL and PRIMARY KEY in the column-options clause
- ADD unique-constraint (PRIMARY KEY only)

– You cannot specify a comment on an existing column in a remote base table.
– An existing primary key in a remote base table cannot be altered or dropped.
– Altering a remote base table invalidates any packages that depend on the nickname that is

associated with that remote base table.
– The remote data source must support the changes being requested through the ALTER TABLE

statement. Depending on how the data source responds to requests it does not support, an error
might be returned or the request might be ignored.

– An attempt to alter a remote base table that was not created by using transparent DDL returns an
error.

• Any changes, whether implicit or explicit, to primary key, unique keys, or foreign keys might have the
following effects on packages, indexes, and other foreign keys:

Table 129. Changes to keys, and their effects on packages, indexes, and other foreign keys

Action Effect on packages, indexes, and other foreign keys

Primary key or unique
key is added

There is no effect on packages, foreign keys, or existing unique keys. (If the
primary or unique key uses an existing unique index that was created in
a previous version and was not converted to support deferred uniqueness,
the index is converted, and packages with update usage on the associated
table are invalidated).

Primary key or unique
key is dropped

– The index is dropped if it was automatically created for the constraint.
Any packages dependent on the index are invalidated.

– The index is set back to non-unique if it was converted to unique for the
constraint and it is no longer system-required. Any packages dependent
on the index are invalidated.

– The index is set to no longer system required if it was an existing unique
index that is used for the constraint. There is no effect on packages.

– A primary key or unique constraint of the table cannot be dropped if it is
the last enforced primary key or unique constraint whose set of columns
is in the select list of an associated shadow table.

– A primary key or unique constraint cannot be dropped if the table has an
associated shadow table, and the primary key of the associated shadow
table depends on the constraint being dropped.

– All dependent foreign keys are dropped. Further action is taken for each
dependent foreign key, as specified in the next row.

Chapter 1. Structured Query Language (SQL) 869

Table 129. Changes to keys, and their effects on packages, indexes, and other foreign keys (continued)

Action Effect on packages, indexes, and other foreign keys

Foreign key is added,
dropped, altered from
NOT ENFORCED to
ENFORCED, or altered
from ENFORCED to NOT
ENFORCED

– All packages with an insert usage on the object table are invalidated.
– All packages with an update usage on at least one column in the foreign

key are invalidated.
– All packages with a delete usage on the parent table are invalidated.
– All packages with an update usage on at least one column in the parent

key are invalidated.

Foreign key or a
functional dependency
is altered from ENABLE
QUERY OPTIMIZATION
to DISABLE QUERY
OPTIMIZATION

All packages with dependencies on the constraint for optimization purposes
are invalidated.

• Adding a column to a table results in invalidation of all packages with insert usage on the altered table.
If the added column is the first user-defined structured type column in the table, packages with DELETE
usage on the altered table is also invalidated.

• Adding a check or referential constraint to a table that exists and that is not in set integrity pending
state, or altering the existing check or referential constraint from NOT ENFORCED to ENFORCED on
an existing table that is not in set integrity pending state causes the existing rows in the table to be
immediately evaluated against the constraint. If the verification fails, an error is returned (SQLSTATE
23512). If a table is in set integrity pending state, adding a check or referential constraint, or altering
a constraint from NOT ENFORCED to ENFORCED does not immediately lead to the enforcement of
the constraint. Issue the SET INTEGRITY statement with the IMMEDIATE CHECKED option to begin
enforcing the constraint.

• Adding, altering, or dropping a check constraint results in invalidation of all packages with either an
insert usage on the object table, an update usage on at least one of the columns that are involved in the
constraint, or a select usage using the constraint to improve performance.

• Adding a distribution key invalidates all packages with an update usage on at least one of the columns
of the distribution key.

• A distribution key that was defined by default is not affected by dropping the primary key and adding a
different primary key.

• Dropping a column or changing its data type removes all runstats information from the table being
altered. Runstats must be run on the table after it is again accessible. The statistical profile of the table
is preserved if the table does not contain a column that was explicitly dropped.

• Altering a column (to change its length, data type, nullability, or hidden attribute) or dropping a column
invalidates all packages that reference (directly or indirectly through a referential constraint or trigger)
its table.

• Altering a column (to change its length, data type, nullability, or hidden attribute) regenerates views
(except typed views) that depend on its table. If a problem occurs while regenerating such a view, an
error is returned (SQLSTATE 56098). Any typed views that depend on the table are marked inoperative.

• Altering a column (to change its length, data type, or hidden attribute) marks all dependent triggers
and SQL functions as invalid; they are implicitly recompiled on next use. If a problem occurs while
regenerating such an object, an error is returned (SQLSTATE 56098).

• Altering a column (to change its length, data type, or nullability attribute) might cause errors (SQLSTATE
54010) while processing a trigger or an SQL function when a statement that involves the trigger or SQL
function is prepared or bound. This can occur if the row size based on the sum of the lengths of the
transition variables and transition table columns is too long. If such a trigger or SQL function is dropped,
a subsequent attempt to re-create it returns an error (SQLSTATE 54040).

870 IBM Db2 V11.5: SQL Reference

• A WLM activity event monitor created in an earlier version must be dropped and re-created to add new
table columns that are introduced by this fix pack and any subsequent fix packs or releases.

• Altering a structured or XML type column to increase the inline length invalidates all packages that
reference the table, either directly or indirectly through a referential constraint or trigger.

• Altering a structured or XML type column to increase the inline length regenerates views that depend on
the table.

• A compression dictionary can be created for the XML storage object of a table only if the XML columns
are added to the table, or if the table is migrated the using an online table move.

• Changing the LOCKSIZE for a table results in invalidation of all packages that have a dependency on the
altered table.

• Changing VOLATILE or NOT VOLATILE CARDINALITY results in invalidation of all dynamic SQL
statements that have a dependency on the altered table.

• Replication: Exercise caution when you increase the length or changing the data type of a column. The
change data table that is associated with an application table might already be at or near the row size
limit. The change data table must be altered before the application table, or the two tables must be
altered within the same unit of work to ensure that the alteration can be completed for both tables.
Consideration should be given to copies, which might also be at or near the row size limit, or reside on
platforms that lack the ability to increase the length of an existing column.

If the change data table is not altered before the Capture program processes log records with the
altered attributes, the Capture program will likely fail. If a copy that contains the altered column is not
altered before the subscription maintaining the copy runs, the subscription will likely fail.

• When detaching a partition from a protected table, the target table that is automatically created by the
database server is protected in the same way the source table is protected.

• When a table is altered such that it becomes protected with row level granularity, any cached dynamic
SQL sections that depend on such a table are invalidated. Similarly, any packages that depend on such a
table are also invalidated.

• When a column of a table, T, is altered such that it becomes a protected column, any cached dynamic
SQL sections that depend on table T are invalidated. Similarly, any packages that depend on table T are
also invalidated.

• When a column of a table, T, is altered such that it becomes a non protected column, any cached
dynamic SQL sections that depend on table T are invalidated. Similarly, any packages that depend on
table T are also invalidated.

• For existing rows in the table, the value of the security label column defaults to the security label for
write access of the session authorization ID at the time the ALTER statement that adds a row security
label column is executed.

• Add materialized query: When a base table is altered to become a materialized query table, the
label-based access control security attributes (security policy, column security labels, row security label
column) are derived in the same way when creating a new materialized query table. If the base table
that is altered already has label-based access control security attributes, these attributes are factored
in the derivation process as follows:

– Column access control: The existing security label for a column is aggregated with the corresponding
security label that is derived from the query that defines the materialized query table.

– Row access control: The row access control attributes are set up exactly in the same way as for a new
materialized query table.

• In Db2 Version 9.7 Fix Pack 1 or later releases, new multidimensional clustering (MDC) table block
indexes are partitioned. Adding a data partition to a data partitioned multidimensional clustering (MDC)
table creates the corresponding empty index partitions for the new partition, including the MDC block
indexes. Also, a new index partition entry is added to SYSCAT.SYSINDEXPARTITIONS for each MDC
block index and for each partitioned index.

• When you attach a data partition to a partitioned MDC table created with Db2 V9.7 Fix Pack 1 or later
releases, the source table that is specified by attach-partition can be a nonpartitioned MDC table or a
single-partition partitioned MDC table.

Chapter 1. Structured Query Language (SQL) 871

– If the source table is nonpartitioned: MDC block indexes on the source table will be inherited and
become the partitioned MDC indexes for the new partition after the ATTACH operation completes.

– If the source table is partitioned: If the source table is a partitioned MDC table that is created with
Db2 V9.7 Fix Pack 1 or later releases, the block indexes are partitioned. The block indexes become
the new block indexes on the partition.

– If the source partitioned MDC table is created at a level lower than Db2 V9.7 Fix Pack 1, the block
indexes on the table are nonpartitioned. During the ATTACH operation, the block indexes are dropped
and created as partitioned indexes similar to the other partitioned indexes on the source table.

Issuing the SET INTEGRITY statement on the target table is required to bring the attached partition
online.

If the REQUIRE MATCHING INDEXES clause is specified, and the target table is a partitioned MDC
table that is created in Db2 V9.7 Fix Pack 1 or later releases, the ALTER TABLE ... ATTACH PARTITION
statement fails and returns SQL20307N (SQLSTATE 428GE). Removing the REQUIRE MATCHING
INDEXES clause allows the attach process to proceed.

If the target partitioned MDC table was created at a level lower than Db2 V9.7 Fix Pack 1, the block
indexes are nonpartitioned. The block indexes on the source MDC table are dropped during the ATTACH
operation. Issuing a SET INTEGRITY statement on the target table is required to bring the attached
partition online. New rows from the attached partition are added to existing nonpartitioned block
indexes.

• When you detach a data partition from a data partitioned MDC table that is created at a level lower than
Db2 V9.7 Fix Pack 1, the block indexes are nonpartitioned. The following restrictions apply:

– Access to the newly detached table is not allowed in the same unit of work as the detach operation.
– Block indexes on the target table, created as part of the detach operation, are rebuilt upon the first

access to the table after the detach operation is committed. If the source table had any partitioned
indexes before the detach operation, then the index object for the target table is marked invalid to
allow for recreation of the block indexes. As a result, access time is increased while the block indexes
and all other partitioned indexes are re-created.

When you detach a partition from a partitioned MDC table created by using Db2 V9.7 Fix Pack 1 or later
releases, the block indexes are partitioned, and the previous restrictions do not apply. Assuming that no
other dependent objects such as dependent MQTs exist, access to the newly detached table is allowed
in the same unit of work. All the partitioned indexes, including block indexes, become indexes on the
target table without the need to be re-created.

• Considerations for implicitly hidden columns: A column that is defined as implicitly hidden can be
explicitly referenced in an ALTER TABLE statement. For example, an implicitly hidden column can be
altered or specified as part of a referential constraint, check constraint, or materialized query table
definition.

Altering a table to make some of its columns implicitly hidden can impact the behavior of data
movement utilities that are working with the table. When a table contains implicitly hidden columns,
utilities like IMPORT, INGEST, and LOAD require that you specify whether data for the hidden columns
is included in the operation. For example, this might mean that a load operation that ran successfully
before the table was altered, now fails (SQLCODE SQL2437N). Similarly, EXPORT requires that you
specify whether data for the hidden columns is included in the operation.

Data movement utilities must use the DB2_DMU_DEFAULT registry variable, or the
implicitlyhiddeninclude or implicitlyhiddenmissing file type modifiers when working with
tables that contain implicitly hidden columns.

• Row access control that is activated explicitly: The ACTIVATE ROW ACCESS CONTROL clause is used to
activate row access control for a table. When this happens, a default row permission is implicitly created
and allows no access to any rows of the table, unless permitted by a row permission that is explicitly
created by the security administrator. The default row permission is always enabled.

When the table is referenced in a data manipulation statement, all enabled row permissions that
have been created for the table, including the default row permission, are implicitly applied by the
database manager to control which rows in the table are accessible. A row access control search

872 IBM Db2 V11.5: SQL Reference

condition is derived by application of the logical OR operator to the search condition in each enabled
row permission. This derived search condition acts as a filter to the table before any user specified
operations, such as predicates, grouping, ordering, are processed. This derived search condition
permits the authorization IDs that are specified in the permission definitions to access certain rows
in the table.

When the ACTIVATE ROW ACCESS CONTROL clause is used, all the packages and dynamically cached
statements that reference the table are invalidated.

Row access control remains enforced until the DEACTIVATE ROW ACCESS CONTROL clause is used to
stop enforcing it.

• Implicit object that is created when row access control is activated for a table: When the ACTIVATE
ROW ACCESS CONTROL clause is used to activate row access control for a table, the database manager
implicitly creates a default row permission for the table. The default row permission prevents all access
to the table. The implicitly created row permission resides in the same schema of the base table and
has a name in the form of SYS_DEFAULT_ROW_PERMISSION__table-name ... up to 128 characters.
Notice two underscores after "PERMISSION". If this name is not unique, the last 4 characters are
reserved for a unique number 'nnnn', where 'nnnn' is a four-alphanumeric-character string that start at
'0000' and is incremented by one value each time until a unique name is found.

The owner of the default row permission is SYSIBM. The default row permission is always enabled. The
default row permission is dropped when row access control is deactivated or when the table is dropped.

• Activating column access control: The ACTIVATE COLUMN ACCESS CONTROL clause is used to activate
column level access control for a table. The access to the table is not restricted but when the table is
referenced in a data manipulation statement, all enabled column masks that were created for the table
are applied to mask the column values referenced in the final result table.

When column masks are used to mask the column values, they determine the values in the final result
table. If a column has a column mask and the column (specifically a simple reference to a column
name or a column that is embedded in an expression) appears in the outermost select list, the column
mask is applied to the column to produce the values for the final result table. If the column does not
appear in the outermost select list but it participates in the final result table, for example, it appears in a
materialized table expression or view, the column mask is applied to the column in such a way that the
masked value is included in the result table of the materialized table expression or view so that it can be
used in the final result table.

The application of column masks does not interfere with the operations of other clauses within the
statement such as the WHERE, GROUP BY, HAVING, SELECT DISTINCT, and ORDER BY. The rows that
are returned in the final result table remain the same, except that the values in the resulting rows might
have been masked by the column masks. As such, if the masked column also appears in an ORDER
BY sort-key, the order is based on the original column values and the masked values in the final result
table might not reflect that order. Similarly, the masked values might not reflect the uniqueness that is
enforced by SELECT DISTINCT.

A column mask is applied in the following contexts:

– The outermost SELECT clause or clauses of a SELECT or SELECT INTO statement, or if the column
does not appear in the outermost select list but it participates in the final result table, one or more
outermost SELECT clauses of the corresponding materialized table expression or view where the
column appears.

– The outermost SELECT clause or clauses of a SELECT FROM INSERT, SELECT FROM UPDATE, or
SELECT FROM DELETE operation.

– The outermost SELECT clause or clauses that are used to derive the new values for an INSERT,
UPDATE, or MERGE statement, or a SET transition-variable-name assignment statement. The same
masking applies to a scalar fullselect expression that appears in the outermost SELECT clause or
clauses of the previously mentioned statements, the right side of a SET host-variable assignment
statement, the VALUES INTO statement, or the VALUES statement.

Column masks are not applied when the masked column appears in the following contexts:

– WHERE clauses.

Chapter 1. Structured Query Language (SQL) 873

– GROUP BY clauses.
– HAVING clauses.
– SELECT DISTINCT.
– ORDER BY clauses.

• Row and column access control are not enforced when EXPLAIN tables are populated: Row and
column access control can be enforced for EXPLAIN tables. However, the enabled row permissions and
column masks are not applied when the database manager inserts rows into those tables.

• Row and column access control are not enforced when event monitor tables are populated: Row and
column access control can be enforced for event monitor tables. However, the enabled row permissions
and column masks are not applied when the database manager inserts rows into those tables.

• Row and column access control are not enforced when temporal history tables are populated: Row
and column access control can be enforced for temporal history tables. However, the enabled row
permissions and column masks are not applied when the database manager accesses those tables for
operations on the system-period temporal tables.

• Stop enforcing row or column access control: The DEACTIVATE ROW ACCESS CONTROL clause is used
to stop enforcing row access control for a table. The default row permission is dropped. Thereafter,
when the table is referenced in a data manipulation statement, explicitly created row permissions are
not applied.

The DEACTIVATE COLUMN ACCESS CONTROL clause is used to stop enforcing column access control for
a table. Thereafter, when the table is referenced in a data manipulation statement, the column masks
are not applied.

The explicitly created row permissions or column masks, if any, remain but have no effect.

All the packages and dynamically cached statements that reference the table are invalidated when row
or column access control is deactivated.

• Secure triggers for row and column access control: Triggers are used for database integrity, and as
such, a balance between row and column access control (security) and database integrity is needed.
Enabled row permissions and column masks are not applied to the initial values of transition variables
and transition tables. Row and column access control enforced for the triggering table is also ignored
for any transition variables or transition tables that are referenced in the trigger body. To ensure that
no security concern exist for SQL statements in the trigger action to access sensitive data in transition
variables and transition tables, the trigger must be created or altered with the SECURED option. If
a trigger is not secure, row and column access control cannot be enforced for the triggering table
(SQLSTATE 55019).

• Secure user-defined functions for row and column access control: If a row permission or column
mask definition references a user-defined function, the function must be altered with the SECURED
option because the sensitive data might be passed as arguments to the function. When a user-defined
function is referenced in a data manipulation statement where a table that enforces row or column
access control is referenced, and the function arguments reference the columns from such a table, if
the function is not secure, this impacts the access plan selection and might yield poor performance. The
database manager considers the SECURED option an assertion that declares the user has established a
change control audit procedure for all changes to the user-defined function. It is assumed that such a
control audit procedure is in place and that all subsequent ALTER FUNCTION statements or changes to
external packages are being reviewed by this audit process.

• Database operations where row and column access control is not applicable: Row and column access
control must not compromise database integrity. Columns that are involved in primary keys, unique
keys, indexes, check constraints, and referential integrity must not be subject to row and column access
control. Column masks can be defined for those columns but they are not applied during the process of
key building or constraint or RI enforcement.

• Defining a system-period temporal table: A system-period temporal table definition includes the
following aspects:

– A system period named SYSTEM_TIME, which is defined by using a row-begin column and a row-end
column. See the descriptions of AS ROW BEGIN, AS ROW END, and period-definition.

874 IBM Db2 V11.5: SQL Reference

– A transaction-start-ID column. See the description of AS TRANSACTION START ID.
– A system-period data versioning definition that is specified on a subsequent ALTER TABLE statement

by using the ADD VERSIONING action, which includes the name of the associated history table. See
the description of the ADD VERSIONING clause under ALTER TABLE.

To ensure that the history table cannot be implicitly dropped when a system-period temporal table is
dropped, use the WITH RESTRICT ON DROP clause in the definition of the history table.

• Defining an application-period temporal table: An application-period temporal table definition includes
an application period with the name BUSINESS_TIME. The application period is defined by using a
begin column and an end column with both columns having the same data type that is either DATE or
TIMESTAMP(p). See the description of period-definition.

Data-change operations on an application-period temporal table can result in an automatic insert of
one or two extra rows when a row is updated or deleted. When an update or delete of a row in an
application-period temporal table is specified for a portion of the period represented by that row, the
row is updated or deleted and one or two rows are automatically inserted to represent the portion of the
row that is not changed. New values are generated for each generated column in an application-period
temporal table for each row that is automatically inserted as a result of an update or delete operation on
the table. If a generated column is defined as part of a unique or primary key, parent key in a referential
constraint, or unique index, it is possible that an automatic insert violates a constraint or index in which
case an error is returned.

• Considerations for transaction-start-ID columns: A transaction-start-ID column contains a null value if
the column allows null values, and there is a row-begin column, and the value of the row-begin column
is unique from values of row-begin columns that are generated for other transactions. Given that the
column might contain null values, it is recommended that one of the following methods be used when
you retrieve a value from the column:

– COALESCE (transaction_start_id_col, row_begin_col)
– CASE WHEN transaction_start_id_col IS NOT NULL THEN transaction_start_id_col ELSE

row_begin_col END
• Considerations for system-period temporal tables and row and column access control: Row and

column access control can be defined on both the system-period temporal table and the associated
history table.

– When a system-period temporal table is accessed, any row and column access rules that are defined
on the system-period temporal table are applied to all of the rows that are returned from the system-
period temporal table, regardless of whether the rows are stored in the system-period temporal table
or the history table. The row and column access rules that are defined on the history table are not
applied.

– When the history table is accessed directly, the row and column access rules that are defined on the
history table are applied.

When a system-period temporal table is defined and row access control or column access control
is activated for the system-period temporal table, the database manager automatically activates row
access control on the history table and creates a default row permission for the history table.

• Considerations for column-organized tables: The following options can be specified to alter a column-
organized table definition (underlined options are defaults):

– ACTIVATE NOT LOGGED INITIALLY
– ACTIVATE/DEACTIVATE COLUMN ACCESS CONTROL
– ACTIVATE/DEACTIVATE ROW ACCESS CONTROL
– ADD {PRIMARY KEY | UNIQUE} [ENFORCED | NOT ENFORCED]
– ADD COLUMN, unless there is an outstanding asynchronous background process that is creating the

table's column compression dictionary (SQL20054N)
– ADD CONSTRAINT <constraint-name> CHECK NOT ENFORCED (when used with {ENABLE | DISABLE}

QUERY OPTIMIZATION)

Chapter 1. Structured Query Language (SQL) 875

– ADD CONSTRAINT <constraint-name> {PRIMARY KEY | UNIQUE | FOREIGN KEY NOT ENFORCED}
– ADD MATERIALIZED QUERY
– ADD PERIOD {SYSTEM_TIME | BUSINESS_TIME}
– ADD RESTRICT ON DROP
– ADD VERSIONING USE HISTORY TABLE
– ALTER COLUMN <column name> SET DATA TYPE (increase VARCHAR/VARGRAPHIC column length

only)
– ALTER COLUMN <column-name> SET {NOT HIDDEN | IMPLICITLY HIDDEN}
– DATA CAPTURE NONE
– DROP {PRIMARY KEY | UNIQUE | CONSTRAINT} <constraint-name>
– DROP DEFAULT
– DROP GENERATED
– DROP MATERIALIZED QUERY
– DROP PERIOD {SYSTEM_TIME | BUSINESS_TIME}
– DROP RESTRICT ON DROP
– DROP VERSIONING
– LOG INDEX BUILD {NULL | OFF | ON}
– SET GENERATED [ALWAYS | BY DEFAULT]
– SET DEFAULT
– SET GENERATED AS ROW {BEGIN | END}
– SET GENERATED AS TRANSACTION START ID

Other options are not supported for column-organized tables.
• Considerations for random distribution tables

– Altering the table to make it a materialized query table is not supported
• Considerations for random distribution tables that use generate by random method

– The following options are not supported to alter a random distribution key column definition (in
addition to those options, which are already not supported for a distribution key column in a non-
random distribution table):

- ALTER COLUMN <column-name> SET NOT HIDDEN
- ALTER COLUMN <column-name> DROP NOT NULL
- ALTER COLUMN <column-name> DROP GENERATED
- ALTER COLUMN <column-name> COMPRESS {OFF | SYSTEM DEFAULT}
- RENAME COLUMN <column-name>

– Random distribution cannot be dropped with ALTER TABLE DROP DISTRIBUTION statement.
• Syntax alternatives: The following alternatives are non-standard. They are supported for compatibility

with earlier product versions or with other database products.

– The ADD keyword is optional for:

- Unnamed PRIMARY KEY constraints
- Unnamed referential constraints
- Referential constraints whose name follows the phrase FOREIGN KEY

– The CONSTRAINT keyword can be omitted from a column-definition defining a references-clause
– constraint-name can be specified following FOREIGN KEY (without the CONSTRAINT keyword)
– SET SUMMARY AS can be specified in place of SET MATERIALIZED QUERY AS

876 IBM Db2 V11.5: SQL Reference

– SET MATERIALIZED QUERY AS DEFINITION ONLY can be specified in place of DROP MATERIALIZED
QUERY

– SET MATERIALIZED QUERY AS (fullselect) can be specified in place of ADD MATERIALIZED QUERY
(fullselect)

– ADD PARTITIONING KEY can be specified in place of ADD DISTRIBUTE BY HASH; the optional USING
HASHING clause can also still be specified in this case

– DROP PARTITIONING KEY can be specified in place of DROP DISTRIBUTION
– The LONG VARCHAR and LONG VARGRAPHIC data types continue to be supported but are

deprecated and not recommended, especially for portable applications
– A comma can be used to separate multiple options in the identity-alteration clause
– PART can be specified in place of PARTITION
– VALUES can be specified in place of ENDING AT
– NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER can be specified in place of NO

MINVALUE, NO MAXVALUE, NO CYCLE, NO CACHE, and NO ORDER, respectively
– DROP EXPRESSION can be specified in place of DROP GENERATED to drop the generated expression

attribute for a column.
– DROP IDENTITY can be specified in place of DROP GENERATED to drop the identity attribute for a

column.
– When you specify the value of the datetime special register, NOW() can be specified in place of

CURRENT_TIMESTAMP.
• When an ALTER TABLE statement invalidates an existing VIEW, the statistics profile for the invalidated

VIEW is blanked.

Examples
1. Add a column named RATING, which is one character long, to the DEPARTMENT table.

 ALTER TABLE DEPARTMENT
 ADD RATING CHAR(1)

2. Add a column named SITE_NOTES to the PROJECT table. Create SITE_NOTES as a varying-length
column with a maximum length of 1000 bytes. The values of the column do not have an associated
character set and therefore must not be converted.

 ALTER TABLE PROJECT
 ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA

3. Assume a table that is called EQUIPMENT exists defined with the following columns:

 Column Name Data Type
 EQUIP_NO INT
 EQUIP_DESC VARCHAR(50)
 LOCATION VARCHAR(50)
 EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner (EQUIP_OWNER) must be a
department number (DEPTNO) that is present in the DEPARTMENT table. DEPTNO is the primary
key of the DEPARTMENT table. If a department is removed from the DEPARTMENT table, the
owner (EQUIP_OWNER) values for all equipment that is owned by that department should become
unassigned (or set to null). Give the constraint the name DEPTQUIP.

 ALTER TABLE EQUIPMENT
 ADD CONSTRAINT DEPTQUIP
 FOREIGN KEY (EQUIP_OWNER)
 REFERENCES DEPARTMENT
 ON DELETE SET NULL

Chapter 1. Structured Query Language (SQL) 877

Also, an extra column is needed to allow the recording of the quantity that is associated with this
equipment record. Unless otherwise specified, the EQUIP_QTY column should have a value of 1 and
must never be null.

 ALTER TABLE EQUIPMENT
 ADD COLUMN EQUIP_QTY
 SMALLINT NOT NULL DEFAULT 1

4. Alter table EMPLOYEE. Add the check constraint that is named REVENUE defined so that each
employee must make a total of salary and commission greater than $30,000.

 ALTER TABLE EMPLOYEE
 ADD CONSTRAINT REVENUE
 CHECK (SALARY + COMM > 30000)

5. Alter table EMPLOYEE. Drop the constraint REVENUE, which was previously defined.

 ALTER TABLE EMPLOYEE
 DROP CONSTRAINT REVENUE

6. Alter a table to log SQL changes in the default format.

 ALTER TABLE SALARY1
 DATA CAPTURE NONE

7. Alter a table to log SQL changes in an expanded format.

 ALTER TABLE SALARY2
 DATA CAPTURE CHANGES

8. Alter the EMPLOYEE table to add four new columns with default values.

 ALTER TABLE EMPLOYEE
 ADD COLUMN HEIGHT MEASURE DEFAULT MEASURE(1)
 ADD COLUMN BIRTHDAY BIRTHDATE DEFAULT DATE('01-01-1850')
 ADD COLUMN FLAGS BLOB(1M) DEFAULT BLOB(X'01')
 ADD COLUMN PHOTO PICTURE DEFAULT BLOB(X'00')

The default values use various function names when specifying the default. Since MEASURE is a
distinct type based on INTEGER, the MEASURE function is used. The HEIGHT column default could
have been specified without the function since the source type of MEASURE is not BLOB or a
datetime data type. Since BIRTHDATE is a distinct type based on DATE, the DATE function is used
(BIRTHDATE cannot be used here). For the FLAGS and PHOTO columns the default is specified by
using the BLOB function even though PHOTO is a distinct type. To specify a default for BIRTHDAY,
FLAGS and PHOTO columns, a function must be used because the type is a BLOB or a distinct type
that is sourced on a BLOB or datetime data type.

9. A table called CUSTOMERS is defined with the following columns:

 Column Name Data Type
 BRANCH_NO SMALLINT
 CUSTOMER_NO DECIMAL(7)
 CUSTOMER_NAME VARCHAR(50)

In this table, the primary key is made up of the BRANCH_NO and CUSTOMER_NO columns. To
distribute the table, you need to create a distribution key for the table. The table must be defined in
a table space on a single-node database partition group. The primary key must be a superset of the
distribution key columns, and at least one of the columns of the primary key must be used as the
distribution key. Make BRANCH_NO the distribution key as follows:

 ALTER TABLE CUSTOMERS
 ADD DISTRIBUTE BY HASH (BRANCH_NO)

10. A remote table EMPLOYEE was created in a federated system by using transparent DDL. Alter the
remote table EMPLOYEE to add the columns PHONE_NO and WORK_DEPT; also, add a primary key
on the existing column EMP_NO and the new column WORK_DEPT.

878 IBM Db2 V11.5: SQL Reference

 ALTER TABLE EMPLOYEE
 ADD COLUMN PHONE_NO CHAR(4) NOT NULL
 ADD COLUMN WORK_DEPT CHAR(3)
 ADD PRIMARY KEY (EMP_NO, WORK_DEPT)

11. Alter the DEPARTMENT table to add a functional dependency FD1, then drop the functional
dependency FD1 from the DEPARTMENT table.

 ALTER TABLE DEPARTMENT
 ADD CONSTRAINT FD1
 CHECK (DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED

 ALTER TABLE DEPARTMENT
 DROP CHECK FD1

12. Change the default value for the WORKDEPT column in the EMPLOYEE table to 123.

 ALTER TABLE EMPLOYEE
 ALTER COLUMN WORKDEPT
 SET DEFAULT '123'

13. Associate the security policy DATA_ACCESS with the table EMPLOYEE.

 ALTER TABLE EMPLOYEE
 ADD SECURITY POLICY DATA_ACCESS

14. Alter the table EMPLOYEE to protect the SALARY column.

 ALTER TABLE EMPLOYEE
 ALTER COLUMN SALARY
 SECURED WITH EMPLOYEESECLABEL

15. Assume that you have a table that is named SALARY_DATA that is defined with the following columns:

Column Name Data Type
----------- ---------
EMP_NAME VARCHAR(50) NOT NULL
EMP_ID SMALLINT NOT NULL
EMP_POSITION VARCHAR(100) NOT NULL
SALARY DECIMAL(5,2)
PROMOTION_DATE DATE NOT NULL

Change this table to allow salaries to be stored in a DECIMAL(6,2) column, make PROMOTION_DATE
an optional field that can be set to the null value, and remove the EMP_POSITION column.

 ALTER TABLE SALARY_DATA
 ALTER COLUMN SALARY SET DATA TYPE DECIMAL(6,2)
 ALTER COLUMN PROMOTION_DATE DROP NOT NULL
 DROP COLUMN EMP_POSITION

16. Add a column named DATE_ADDED to the table BOOKS. The default value for this column is the
current time stamp.

 ALTER TABLE BOOKS
 ADD COLUMN DATE_ADDED TIMESTAMP
 WITH DEFAULT CURRENT TIMESTAMP

17. Alter table with label-based access control security attributes into a materialized query table. Base
tables tt1 and tt2 exist and were created with the following SQL:

 CREATE TABLE tt1
 (c1 INT SECURED WITH C, c2 DB2SECURITYLABEL) SECURITY POLICY P;
 CREATE TABLE tt2
 (c3 INT SECURED WITH B, c4 DB2SECURITYLABEL) SECURITY POLICY P;

Table tt2 can be altered to be a materialized query table with the following SQL:

 ALTER TABLE tt2 ADD (SELECT * FROM tt1 WHERE c1 > 10)
 DATA INITIALLY DEFERRED REFRESH DEFERRED;

Chapter 1. Structured Query Language (SQL) 879

Table tt2 becomes a materialized query table with the secure policy P. tt2.c3 has security label P.B.
tt2.c4 has security label P.C and it is also DB2SECURITYLABEL.

ALTER TABLESPACE
The ALTER TABLESPACE statement is used to modify an existing table space.

You can modify a table space in the following ways:

• Add a container to, or drop a container from a DMS table space; that is, a table space created with the
MANAGED BY DATABASE option.

• Modify the size of a container in a DMS table space.
• Lower the high water mark for a DMS table space through extent movement.
• Add a container to an SMS table space on a database partition that currently has no containers.
• Modify the PREFETCHSIZE setting for a table space.
• Modify the BUFFERPOOL used for tables in the table space.
• Modify the OVERHEAD setting for a table space.
• Modify the TRANSFERRATE setting for a table space.
• Modify the file system caching policy for a table space.
• Enable or disable auto-resize for a DMS or automatic storage table space.
• Rebalance a regular or large automatic storage table space.
• Modify the DATA TAG setting for a table space.
• Alter a DMS table space to an automatic storage table space.
• Modify the STOGROUP setting that is associated with a table space.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges that are held by the authorization ID of the statement must include SYSCTRL or SYSADM
authority.

880 IBM Db2 V11.5: SQL Reference

Syntax
ALTER TABLESPACE tablespace-name

ADD add-clause

BEGIN NEW STRIPE SET db-container-clause

on-db-partitions-clause

DROP drop-container-clause

on-db-partitions-clause

REDUCE

db-container-clause

all-containers-clause

MAX

STOP

integer

K

M

G

PERCENT

on-db-partitions-clause

EXTEND

RESIZE

db-container-clause

all-containers-clause on-db-partitions-clause

REBALANCE

SUSPEND

RESUME

PREFETCHSIZE AUTOMATIC

number-of-pages

integer K

M

BUFFERPOOL bufferpool-name

OVERHEAD number-of-milliseconds

INHERIT

TRANSFERRATE number-of-milliseconds

INHERIT

FILE SYSTEM CACHING

NO FILE SYSTEM CACHING

DROPPED TABLE RECOVERY ON

OFF

SWITCH ONLINE

AUTORESIZE NO

YES

INCREASESIZE integer PERCENT

K

M

G

MAXSIZE integer K

M

G

NONE

CONVERT TO LARGE

LOWER HIGH WATER MARK

STOP

USING STOGROUP storagegroup-name

DATA TAG integer-constant

INHERIT

NONE

MANAGED BY AUTOMATIC STORAGE

add-clause

Chapter 1. Structured Query Language (SQL) 881

TO STRIPE SET stripeset

db-container-clause

on-db-partitions-clause

system-container-clause on-db-partitions-clause

db-container-clause

(

,

FILE

DEVICE

'container-string' number-of-pages

integer K

M

G

)

drop-container-clause

(

,

FILE

DEVICE

'container-string')

system-container-clause

(

,

'container-string')

on-db-partitions-clause
ON DBPARTITIONNUM

DBPARTITIONNUMS

(

,

db-partition-number1

TO db-partition-number2

)

all-containers-clause

(ALL
CONTAINERS

number-of-pages

integer K

M

G

)

Description
tablespace-name

Names the table space. This is a one-part name. It is a long SQL identifier (either ordinary or
delimited).

ADD
Specifies that one or more new containers are to be added to the table space.

TO STRIPE SET stripeset
Specifies that one or more new containers are added to the table space, and that they are placed into
the provided stripe set.

882 IBM Db2 V11.5: SQL Reference

BEGIN NEW STRIPE SET
Specifies that a new stripe set is to be created in the table space, and that one or more containers are
to be added to this new stripe set. Subsequently, containers that are added by using the ADD option
are added to this new stripe set unless TO STRIPE SET is specified.

DROP
Specifies that one or more containers are to be dropped from the table space.

REDUCE
For non-automatic storage table spaces, specifies that existing containers are to be reduced in size.
The size that is specified is the size by which the existing container is decreased. If the all-containers-
clause is specified, all containers in the table space decrease by this size. If the reduction in size
results in a table space size that is smaller than the current high water mark, an attempt is made to
reduce the high water mark before attempting to reduce the containers. For non-automatic storage
table spaces, the REDUCE clause must be followed by a db-container-clause or an all-containers-
clause.

For automatic storage table spaces, specifies that the current high water mark is to be reduced,
if possible, and that the size of the table space is to be reduced to the new high water mark. For
automatic storage table spaces, the REDUCE clause must not be followed by a db-container-clause,
an all-containers-clause, or an on-db-partitions-clause.

Note: The REDUCE option with the MAX, numeric value, PERCENT, or STOP clauses, and the LOWER
HIGH WATER MARK option with the STOP clause, are only available for database and automatic
storage-managed table spaces with the reclaimable storage attribute. Moreover, these options must
be specified and run without any other options, including each other.

The MAX, STOP, integer [K | M | G], or integer PERCENT clause takes effect when the statement is
processed and is not rolled back if the unit of work, in which the statement is executed, is rolled back.

db-container-clause
Adds one or more containers to a DMS table space. The table space must identify a DMS table
space that already exists at the application server.

all-containers-clause
Extends, reduces, or resizes all of the containers in a DMS table space. The table space must
identify a DMS table space that already exists at the application server.

MAX
For automatic storage table spaces with reclaimable storage, specifies that the maximum number
of extents should be moved to the beginning of the table space to lower the high water mark.
Additionally, the size of the table space is reduced to the new high water mark. This reduction
does not apply to non-automatic storage table spaces.

STOP
For automatic storage table spaces with reclaimable storage, interrupts the extent movement
operation if in progress. This option is not available for non-automatic storage table spaces.

integer [K | M | G] or integer PERCENT
For automatic storage table spaces with reclaimable storage, specifies the numeric value by which
the table space is to be reduced through extent movement. The value can be expressed in several
ways:

• An integer that is specified without K, M, G, or PERCENT indicates that the numeric value is the
number of pages by which the table space is to be reduced.

• An integer that is specified with K, M, or G indicates the reduction size in kilobytes, megabytes,
or gigabytes. The value is first converted from bytes to number of pages based on the page size
of the table space.

• An integer that is specified with PERCENT indicates the number of extents to move, as a
percentage of the current size of the table space.

After extent movement is complete, the table space size is reduced to the new high water mark.
This option is not available for non-automatic storage table spaces.

Chapter 1. Structured Query Language (SQL) 883

on-db-partitions-clause
Specifies one or more database partitions for the corresponding container operations.

EXTEND
Specifies that existing containers are to be increased in size. The size specified is the size by which
the existing container is increased. If the all-containers-clause is specified, all containers in the table
space increase by this size.

RESIZE
Specifies that the size of existing containers is to be changed. The size specified is the new size for the
container. If the all-containers-clause is specified, all containers in the table space are changed to this
size. If the operation affects more than one container, these containers must all either increase in size,
or decrease in size. It is not possible to increase some while decreasing others (SQLSTATE 429BC).

db-container-clause
Adds one or more containers to a DMS table space. The table space must identify a DMS table space
that already exists at the application server.

drop-container-clause
Drops one or more containers from a DMS table space. The table space must identify a DMS table
space that already exists at the application server.

system-container-clause
Adds one or more containers to an SMS table space on the specified database partitions. The table
space must identify an SMS table space that already exists at the application server. There must not
be any containers on the specified database partitions for the table space (SQLSTATE 42921).

on-db-partitions-clause
Specifies one or more database partitions for the corresponding container operations.

all-containers-clause
Extends, reduces, or resizes all of the containers in a DMS table space. The table space must identify a
DMS table space that already exists at the application server.

REBALANCE
For regular and large automatic storage table spaces, initiates the creation of containers on recently
added storage paths, the drop of containers from storage paths that are in the "Drop Pending"
state, or both. During the rebalance, data is moved into containers on new paths, and moved out of
containers on dropped paths. The rebalance runs asynchronously in the background and does not
affect the availability of data.

Note: The SUSPEND or RESUME clause takes effect when the statement is processed and is not rolled
back if the unit of work, in which the statement is executed, is rolled back.

SUSPEND
Suspends the active rebalance operation on the specified table space. If no active rebalance
operation exists, no action is taken and success is returned. The suspend state is persistent and
if the database is deactivated while the rebalance is suspended, then upon database activation
the rebalance operation is restarted from the suspended state. Suspending a rebalance operation
when it is already suspended has no effect and success is returned.

RESUME
Resumes a previously suspended rebalance operation. If no active rebalance operation exists, no
action is taken and success is returned. If the rebalance is PAUSED because of an online backup
operation, then the table space rebalance is taken out of the suspended state but remains paused
until the online backup is completed.

PREFETCHSIZE
Specifies to read in the data needed by a query before it is referenced by the query so that the query
does not need to wait for I/O to be performed.
AUTOMATIC

Specifies that the prefetch size of a table space is to be updated automatically; that is, the
prefetch size is managed by the database manager.

884 IBM Db2 V11.5: SQL Reference

The database updates the prefetch size automatically whenever the number of containers in
a table space changes (following successful execution of an ALTER TABLESPACE statement
that adds or drops one or more containers). The prefetch size is also automatically updated at
database startup.

Automatic updating of the prefetch size can be turned off by specifying a numeric value in the
PREFETCHSIZE clause.

number-of-pages
Specifies the number of PAGESIZE pages that are read from the table space when data
prefetching is being performed. The maximum value is 32767.

integer K | M
Specifies the prefetch size value as an integer value followed by K (for kilobytes) or M (for
megabytes). If specified in this way, the floor of the number of bytes divided by the page size is
used to determine the number of pages value for prefetch size.

BUFFERPOOL bufferpool-name
The name of the buffer pool that is used for tables in this table space. The buffer pool must currently
exist in the database (SQLSTATE 42704). The database partition group of the table space must be
defined for the buffer pool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds or OVERHEAD INHERIT
Specifies the I/O controller overhead and disk seek and latency time. This value is used to determine
the cost of I/O during query optimization. For more information on tuning, refer to Table space impact
on query optimization.
number-of-milliseconds

Any numeric literal (integer, decimal, or floating point) that specifies the I/O controller overhead
and disk seek and latency time, in milliseconds. The number should be an average for all
containers that belong to the table space, if not the same for all containers.

INHERIT
If INHERIT is specified, the table space must be defined using automatic storage and the
OVERHEAD is dynamically inherited from the storage group. INHERIT cannot be specified if the
table space is not defined using automatic storage (SQLSTATE 42858). If the OVERHEAD is set to
undefined for the storage group and you set OVERHEAD to INHERIT, the database creation default
is used.

version 10.1 For a database that was created in Db2 or later, the default I/O controller overhead
and disk seek and latency time is 6.725 milliseconds.

For a database that was upgraded from a previous version of Db2 to Db2 version 10.1 or later, the
default I/O controller overhead and disk seek and latency time is as follows:

• 7.5 milliseconds for a database that is created in Db2 version 9.7 or higher.

TRANSFERRATE number-of-milliseconds or TRANSFERRATE INHERIT
Specifies the time to read one page into memory. This value is used to determine the cost of I/O
during query optimization. For more information on tuning, refer to Table space impact on query
optimization.
number-of-milliseconds

Any numeric literal (integer, decimal, or floating point) that specifies the time to read one page (4
K or 8 K) into memory, in milliseconds. The number should be an average for all containers that
belong to the table space, if not the same for all containers.

INHERIT
If INHERIT is specified, the table space must be defined using automatic storage and the
TRANSFERRATE is dynamically inherited from the storage group. INHERIT cannot be specified
if the table space is not defined using automatic storage (SQLSTATE 42858). If the DEVICE READ
RATE of the storage group is set to undefined and the user sets TRANSFERRATE to INHERIT, the
database creation default is used.

Chapter 1. Structured Query Language (SQL) 885

When an automatic storage table space inherits the TRANSFERRATE setting from the storage
group it is using, the DEVICE READ RATE of the storage group, which is in megabytes per second,
is converted into milliseconds per page read accounting for the table space's PAGESIZE setting of
the table space. The conversion formula follows:

TRANSFERRATE = (1 / DEVICE READ RATE) * 1000 / 1024000 * PAGESIZE

For a database that was created in Db2 version 10.1 or later, the default time to read one page into
memory for 4 KB PAGESIZE table space is 0.04 milliseconds.

For a database that was upgraded from a previous version of Db2 to Db2 version 10.1 or later, the
default time to read one page into memory is as follows:

• 0.06 milliseconds for a database that is created in Db2 version 9.7 or higher

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING
Specifies whether I/O operations are buffered or non-cached at the file system level. Changes to the
I/O mode are not dynamic and will take effect on the next database activation. The default I/O mode
is determined based on operating system, file system type, and in the case of SMS table spaces, data
object type. For more information, see "file system caching configurations". After a non-default file
system caching option is chosen, it is not possible to return to the default (unspecified) behavior.
Instead, the file system caching mode must be selected explicitly.
FILE SYSTEM CACHING

All I/O operations in the target table space are cached at the file system level.
NO FILE SYSTEM CACHING

Specifies that all I/O operations are to bypass the file system-level cache. LOB and Long field data
in SMS table spaces are excepted.

Note:

Db2 supports disk devices with physical sector sizes of 512 bytes or 4096 bytes.

Support for 4096 byte sector sizes is not enabled by default, and can be enabled using the
DB2_4K_DEVICE_SUPPORT registry variable.

DROPPED TABLE RECOVERY
Specifies whether tables that have been dropped from tablespace-name can be recovered by
using the RECOVER DROPPED TABLE ON option of the ROLLFORWARD DATABASE command. For
partitioned tables, dropped table recovery is always on, even if dropped table recovery is turned off
for non-partitioned tables in one or more table spaces.
ON

Specifies that dropped tables can be recovered.
OFF

Specifies that dropped tables cannot be recovered.
SWITCH ONLINE

Specifies that table spaces in OFFLINE state are to be brought online if their containers become
accessible. If the containers are not accessible, an error is returned (SQLSTATE 57048).

AUTORESIZE
Specifies whether the auto-resize capability of a database-managed space (DMS) table space or an
automatic storage table space is to be enabled. Auto-resizable table spaces automatically increase in
size when they become full.
NO

Specifies that the auto-resize capability of a DMS table space or an automatic storage table
space is to be disabled. If the auto-resize capability is disabled, any values that were previously
specified for INCREASESIZE or MAXSIZE are not kept.

YES
Specifies that the auto-resize capability of a DMS table space or an automatic storage table space
is to be enabled.

886 IBM Db2 V11.5: SQL Reference

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G
Specifies the amount, per database partition, by which a table space that is enabled for auto-resize is
automatically increased, in the case that the table space is full and a request for space was made. The
integer value must be followed by:

• PERCENT to specify the amount as a percentage of the table space size at the time that a request
for space is made. When PERCENT is specified, the integer value must be in the range 0 - 100
(SQLSTATE 42615).

• K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the amount in bytes.

The actual value used might be slightly smaller or larger than what was specified, because the
database manager strives to maintain consistent growth across containers in the table space.

MAXSIZE integer K | M | G or MAXSIZE NONE
Specifies the maximum size to which a table space that is enabled for auto-resize can automatically
be increased.
integer

Specifies a hard limit on the size, per database partition, to which a DMS table space or an
automatic storage table space can automatically be increased. The integer value must be followed
by K (for kilobytes), M (for megabytes), or G (for gigabytes). The actual value used might be slightly
smaller than what was specified, because the database manager strives to maintain consistent
growth across containers in the table space.

NONE
Specifies that the table space is to be allowed to grow to file system capacity, or to the maximum
table space size (described in "SQL and XML limits").

CONVERT TO LARGE
Modifies an existing regular DMS table space to be a large DMS table space. The table space and its
contents are locked during conversion. This option can only be used on regular DMS table spaces.
If an SMS table space, a temporary table space, or the system catalog table space is specified,
an error is returned (SQLSTATE 560CF). You cannot convert a table space that contains a data
partition of a partitioned table that has data partitions in another table space (SQLSTATE 560CF).
Conversion cannot be reversed after being committed. If tables in the table space are defined with
DATA CAPTURE CHANGES, consider the storage and capacity limits of the target table and table
space.

LOWER HIGH WATER MARK
For both automatic storage and non-automatic storage table spaces with reclaimable storage,
triggers the extent movement operation to move the maximum number of extents lower in the
table space. Although the high water mark is lowered, the size of the table space is not reduced.
This must be followed by an ALTER TABLESPACE REDUCE for automatic storage table spaces or
ALTER TABLESPACE REDUCE with the db-container-clause or all-containers-clause for non-automatic
storage table spaces.

Note: The LOWER HIGH WATER MARK option with the STOP clause, and the REDUCE option with
the MAX, numeric value, PERCENT, or STOP clauses, are only available for database-managed and
automatic storage-managed table spaces with the reclaimable storage attribute. Moreover, these
options must be specified and run without any other options, including each other.

Note: This clause takes effect when the statement is processed and is not rolled back if the unit of
work, in which the statement is executed, is rolled back.

STOP
For both automatic storage and non-automatic storage table spaces with reclaimable storage,
interrupts the extent movement operation if in progress.

USING STOGROUP
Associates a table space with a different storage group. The data that is associated with the table
space is moved from its current storage group to the specified storage group. This clause only applies
to automatic storage table spaces unless specified with the MANAGED BY AUTOMATIC STORAGE
clause (SQLSTATE 42858).

Chapter 1. Structured Query Language (SQL) 887

For automatic storage table spaces, an implicit REBALANCE is started at commit time. For a database-
managed table space being converted to automatic storage-managed, an explicit REBALANCE
statement is required.

In a partitioned database environment, to alter the storage group association of a table space, the
table space must be defined by using automatic storage on all database partitions. If the table space
on any database partition is not defined by using automatic storage, this command will fail unless
specified with the MANAGED BY AUTOMATIC STORAGE clause (SQLSTATE 42858). However, it is not
required that a table space has the same storage group association on all database partitions for this
command to succeed in moving the table space on all database partitions.

storagegroup-name
Identifies the storage group in which table space data is stored. storagegroup-name must identify
a storage group that exists at the current server (SQLSTATE 42704). This is a one-part name.

DATA TAG integer-constant, DATA TAG INHERIT or DATA TAG NONE
Specifies a tag for the data in the table space. This value can be used as part of a WLM configuration
in a work class definition or referenced within a threshold definition. For more information, refer to the
CREATE WORK CLASS SET, ALTER WORK CLASS SET, CREATE THRESHOLD, and ALTER THRESHOLD
statements. This clause cannot be specified for USER or SYSTEM TEMPORARY table spaces or for the
catalog table space (SQLSTATE 42858).
integer-constant

Valid values for integer-constant are integers in the range 1 - 9. If an integer-constant is specified
and an associated storage group exists, the data tag that is specified for the table space overrides
any data tag value that is specified for the associated storage group.

INHERIT
If INHERIT is specified, the table space must be defined using automatic storage and the DATA
TAG is dynamically inherited from the storage group. INHERIT cannot be specified if the table
space is not defined using automatic storage (SQLSTATE 42858).

NONE
If NONE is specified, there is no data tag.

MANAGED BY AUTOMATIC STORAGE
Enables automatic storage for a database-managed (DMS) table space. After automatic storage is
enabled, no further container operations can be executed on the table space. The table space being
converted cannot be using RAW (DEVICE) containers.

If the USING STOGROUP clause is not included when converting from a DMS table space to an
automatic storage table space, then the default storage group is specified.

Rules
• The BEGIN NEW STRIPE SET clause cannot be specified in the same statement as ADD, DROP,

EXTEND, REDUCE, and RESIZE, unless those clauses are being directed to different database partitions
(SQLSTATE 429BC).

• The stripe set value that is specified with the TO STRIPE SET clause must be within the valid range for
the table space being altered (SQLSTATE 42615).

• When adding or removing space from the table space, the following rules must be followed:

– EXTEND and RESIZE can be used in the same statement if the size of each container is increasing
(SQLSTATE 429BC).

– REDUCE and RESIZE can be used in the same statement if the size of each container is decreasing
(SQLSTATE 429BC).

– EXTEND and REDUCE cannot be used in the same statement, unless they are being directed to
different database partitions (SQLSTATE 429BC).

– ADD cannot be used with REDUCE or DROP in the same statement, unless they are being directed to
different database partitions (SQLSTATE 429BC).

888 IBM Db2 V11.5: SQL Reference

– DROP cannot be used with EXTEND or ADD in the same statement, unless they are being directed to
different database partitions (SQLSTATE 429BC).

• The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified for system-managed space
(SMS) table spaces, temporary table spaces that were created using automatic storage, or DMS table
spaces that are defined to use raw device containers (SQLSTATE 42601).

• The INCREASESIZE or MAXSIZE clause cannot be specified if the table space is not auto-resizable
(SQLSTATE 42601).

• When specifying a new maximum size for a table space, the value must be larger than the current size
on each database partition (SQLSTATE 560B0).

• Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE SET) cannot be
performed on automatic storage table spaces, because the database manager is controlling the space
management of such table spaces (SQLSTATE 42858).

• Raw device containers cannot be added to an auto-resizable DMS table space (SQLSTATE 42601).
• The CONVERT TO LARGE clause cannot be specified in the same statement as any other clause

(SQLSTATE 429BC).
• The REBALANCE clause cannot be specified with any other clause (SQLSTATE 429BC).
• The REBALANCE clause is only valid for regular and large automatic storage table spaces (SQLSTATE

42601). Temporary automatic storage table spaces should be dropped and re-created to take
advantage of recently added storage paths or to have their containers removed from storage paths
being dropped.

• Container operations and the REBALANCE clause cannot be specified if the table space is in the "DMS
rebalancer is active" state (SQLSTATE 55041).

• The USING STOGROUP clause cannot be specified for temporary table spaces (SQLSTATE 42858).
• The following clauses are not supported in Db2 pureScale environments:

– ADD db-container-clause
– BEGIN NEW STRIPE SET db-container-clause
– DROP db-container-clause
– REBALANCE
– RESIZE db-container-clause
– USING STOGROUP

• The ADD, DROP, RESIZE, EXTEND, REDUCE, LOWER HIGH WATER MARK, and BEGIN_STRIPE_SET
clauses cannot be used with the MANAGED BY AUTOMATIC STORAGE clause or the USING STOGROUP
clause (SQLSTATE 429BC).

• The USING STOGROUP clause cannot be specified if the table space is in the "rebalancer is active "state
(SQLSTATE 55041).

• Container size limit: In DMS table spaces, a container must be at least two times the extent size pages
in length (SQLSTATE 54039). The maximum size of a container is operating system dependent.

• Container definition length limit: Each container definition requires 53 bytes plus the number of bytes
necessary to store the container name. The combined length of all container definitions for the table
space cannot exceed 208 kilobytes (SQLSTATE 54034).

Notes
• Default container operations are container operations that are specified in the ALTER TABLESPACE

statement, but that are not explicitly directed to a specific database partition. These container
operations are sent to any database partition that is not listed in the statement. If these default
container operations are not sent to any database partition, because all database partitions are
explicitly mentioned for a container operation, a warning is returned (SQLSTATE 01589).

Chapter 1. Structured Query Language (SQL) 889

• After space has been added or removed from a table space, and the transaction is committed, the
contents of the table space can be rebalanced across the containers. Access to the table space is not
restricted during rebalancing.

• If the table space is in OFFLINE state and the containers are accessible, the user can disconnect
all applications and connect to the database again to bring the table space out of OFFLINE state.
Alternatively, the SWITCH ONLINE option can bring the table space up (out of OFFLINE) while the rest
of the database is still up and being used.

• If adding more than one container to a table space, it is recommended that they are added in the same
statement so that the cost of rebalancing is incurred only once. An attempt to add containers to the
same table space in separate ALTER TABLESPACE statements within a single transaction result in an
error (SQLSTATE 55041).

• Any attempts to extend, reduce, resize, or drop containers that do not exist will raise an error
(SQLSTATE 428B2).

• When extending, reducing, or resizing a container, the container type must match the type that was
used when the container was created (SQLSTATE 428B2).

• An attempt to change container sizes in the same table space, using separate ALTER TABLESPACE
statements but within a single transaction, will raise an error (SQLSTATE 55041).

• In a partitioned database, if more than one database partition exists on the same physical node, the
same device or specific path cannot be specified for such database partitions (SQLSTATE 42730). For
this environment, either specify a unique container-string for each database partition or use a relative
path name.

• Although the table space definition is transactional and the changes to the table space definition are
reflected in the catalog tables on commit, the buffer pool with the new definition cannot be used until
the next time the database is started. The buffer pool that was in use when the ALTER TABLESPACE
statement was issued will continue to be used in the interim.

• The REDUCE, RESIZE, or DROP option attempts to free unused extents, if necessary, for DMS table
spaces, and the REDUCE option attempts to free unused extents for automatic storage table spaces.
The removal of unused extents allows the table space high water mark to be reduced to a value that
accurately represents the amount of space used, which, in turn, enables larger reductions in table space
size.

• Conversion to large DMS table spaces: After conversion, it is recommended that you issue the COMMIT
statement and then increase the storage capacity of the table space.

– If the table space is enabled for auto-resize, the MAXSIZE table space attribute should be increased,
unless it is already set to NONE.

– If the table space is not enabled for auto-resize, you have two choices:

- Enable auto-resize by issuing the ALTER TABLESPACE statement with the AUTORESIZE YES option.
- Add more storage by adding stripe sets, extending the size of existing containers, or both.

Indexes for tables in a converted table space must be reorganized or rebuilt before they can support
large record identifiers (RIDs).

– The indexes can be rebuilt by using the REORG INDEXES ALL command with the REBUILD option.
Specify the ALLOW NO ACCESS option for partitioned tables.

– Alternatively, the tables can be reorganized (not INPLACE), which will rebuild all indexes and enable
the tables to support more than 255 rows per page.

To determine which tables do not yet support large RIDs, use the ADMIN_GET_TAB_INFO table
function.

• The rebalance of an automatic storage table space that has containers on a storage path in the "Drop
Pending" state will drop those containers. New containers might need to be created to hold the data
that is being moved off the dropped containers. There must be sufficient free space on the other
storage paths in the database to allow those containers to be created, otherwise an error is returned
SQLSTATE 57011. The actual amount of free space that is required depends on many factors, including
the location of the high-water mark extent and the stripe sets being altered. However, to ensure that the

890 IBM Db2 V11.5: SQL Reference

operation is successful, there should be at least enough free space on the remaining storage paths as
space is being consumed by the containers being dropped.

• If the REBALANCE clause is specified but the data server determines that there is no need to create
new containers or drop existing ones, a rebalance does not occur and the statement succeeds with a
warning (SQLSTATE 01690).

• In addition to adding containers on recently added paths, the REBALANCE operation can also be used
to add containers on existing storage paths. Each stripe set in the table space is examined and storage
paths that are not in use by a particular stripe set are identified. For each storage path identified, if
sufficient free space on it exists, a new container is created. The container will have the same size as the
other containers in the stripe set. This would be beneficial if a given storage path ran out of space, table
spaces stopped using it (by creating stripe sets on the other paths), and more storage was given to the
path. In this case, no new paths have been added, but the rebalance will attempt to include that storage
path in stripe sets where it wasn't included before.

• Auto-resize can still occur while a rebalance of an automatic storage table space is in progress.
• When a DMS table space is enabled for automatic storage by the MANAGED BY AUTOMATIC STORAGE

clause, that table space has one or more stripe sets of user-defined (non-automatic storage) containers
and one or more stripe sets of automatic storage containers. Rebalancing the table space (by using the
REBALANCE clause) removes all of the user-defined containers. The database manager might extend
existing automatic storage containers or create new automatic storage containers to hold the data being
moved from the user-defined containers.

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– NODE can be specified in place of DBPARTITIONNUM.
– NODES can be specified in place of DBPARTITIONNUMS.

• For the Db2 Developer-C Edition:

– Altering an auto-resize table space without specifying MAXSIZE will implicitly set MAXSIZE to the
remaining capacity, up to the defined storage size.

– An attempt to resize, add, or extend the container size of all table spaces larger than the defined
storage size will result in a fail.

– Altering a table space fails if there exists a subsequent ALTER TABLESPACE that hasn’t been
committed.

Examples
• Example 1: Add a device to the PAYROLL table space.

 ALTER TABLESPACE PAYROLL
 ADD (DEVICE '/dev/rhdisk9' 10000)

• Example 2: Change the prefetch size and I/O overhead for the ACCOUNTING table space.

 ALTER TABLESPACE ACCOUNTING
 PREFETCHSIZE 64
 OVERHEAD 19.3

• Example 3: Create a table space TS1, then resize the containers so that all of the containers have 2000
pages. (Three different ALTER TABLESPACE statements that accomplish this resizing are shown.)

 CREATE TABLESPACE TS1
 MANAGED BY DATABASE
 USING (FILE '/conts/cont0' 1000,
 DEVICE '/dev/rcont1' 500,
 FILE 'cont2' 700)
 ALTER TABLESPACE TS1
 RESIZE (FILE '/conts/cont0' 2000,
 DEVICE '/dev/rcont1' 2000,
 FILE 'cont2' 2000)

Chapter 1. Structured Query Language (SQL) 891

OR

 ALTER TABLESPACE TS1
 RESIZE (ALL 2000)

OR

 ALTER TABLESPACE TS1
 EXTEND (FILE '/conts/cont0' 1000,
 DEVICE '/dev/rcont1' 1500,
 FILE 'cont2' 1300)

• Example 4: Extend all of the containers in the DATA_TS table space by 1000 pages.

 ALTER TABLESPACE DATA_TS
 EXTEND (ALL 1000)

• Example 5: Resize all of the containers in the INDEX_TS table space to 100 megabytes (MB).

 ALTER TABLESPACE INDEX_TS
 RESIZE (ALL 100 M)

• Example 6: Add three new containers. Extend the first container, and resize the second.

 ALTER TABLESPACE TS0
 ADD (FILE 'cont2' 2000, FILE 'cont3' 2000)
 ADD (FILE 'cont4' 2000)
 EXTEND (FILE 'cont0' 100)
 RESIZE (FILE 'cont1' 3000)

• Example 7: Table space TSO exists on database partitions 0, 1 and 2. Add a new container to database
partition 0. Extend all of the containers on database partition 1. Resize a container on all database
partitions other than the ones that were explicitly specified (that is, database partitions 0 and 1).

 ALTER TABLESPACE TS0
 ADD (FILE 'A' 200) ON DBPARTITIONNUM (0)
 EXTEND (ALL 200) ON DBPARTITIONNUM (1)
 RESIZE (FILE 'B' 500)

The RESIZE clause is the default container clause in this example, and will be executed on database
partition 2, because other operations are being explicitly sent to database partitions 0 and 1. However,
if there had only been these two database partitions, the statement would have succeeded, but
returned a warning (SQL1758W) that default containers had been specified but not used.

• Example 8: Enable the auto-resize option for table space DMS_TS1, and set its maximum size to 256
megabytes.

 ALTER TABLESPACE DMS_TS1
 AUTORESIZE YES MAXSIZE 256 M

• Example 9: Enable the auto-resize option for table space AUTOSTORE1, and change its growth rate to
5%.

 ALTER TABLESPACE AUTOSTORE1
 AUTORESIZE YES INCREASESIZE 5 PERCENT

• Example 10: Change the growth rate for an auto-resizable table space named MY_TS to 512 kilobytes,
and set its maximum size to be as large as possible.

 ALTER TABLESPACE MY_TS
 INCREASESIZE 512 K MAXSIZE NONE

• Example 11: Enable automatic storage for database-managed table space DMS_TS10 and have it use
storage group sg_3.

 ALTER TABLESPACE DMS_TS10
 MANAGED BY AUTOMATIC STORAGE
 USING STOGROUP sg_3

892 IBM Db2 V11.5: SQL Reference

• Example 12: An ALTER DATABASE statement removed the paths /db/filesystem1 and /db/
filesystem2 from the currently connected database. The table spaces named PRODTS1, PRODTS2,
and PRODTS3 were the only table spaces using the removed paths. Rebalance these table spaces.
Three ALTER TABLESPACE statements must be used.

 ALTER TABLESPACE PRODTS1 REBALANCE
 ALTER TABLESPACE PRODTS2 REBALANCE
 ALTER TABLESPACE PRODTS3 REBALANCE

• Example 13: Enable automatic storage for database-managed table space DATA1 and remove all of the
existing non-automatic storage containers from the table space. The first statement must be committed
before the second statement can be run.

 ALTER TABLESPACE DATA1 MANAGED BY AUTOMATIC STORAGE
 ALTER TABLESPACE DATA1 REBALANCE

• Example 14: Trigger extent movement for an automatic storage table space with reclaimable storage
attribute, in order to reduce the size of the containers by 10 MB.

 ALTER TABLESPACE DMS_TS1 REDUCE 10 M

• Example 15: Trigger extent movement for a non-automatic storage table space with reclaimable storage
attribute and then reduce the size of each container by 10 MB.

 ALTER TABLESPACE TBSP1 LOWER HIGH WATER MARK
 ALTER TABLESPACE TBSP1 REDUCE (ALL CONTAINERS 10 M)

ALTER THRESHOLD
The ALTER THRESHOLD statement alters the definition of a threshold.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• SQLADM authority, only if every alteration clause is a COLLECT clause
• WLMADM authority
• DBADM authority

Chapter 1. Structured Query Language (SQL) 893

Syntax
ALTER THRESHOLD threshold-name

1

WHEN alter-threshold-predicate PERFORM ACTION

alter-threshold-exceeded-actions

EXCEEDED alter-threshold-exceeded-actions

ENABLE

DISABLE

alter-threshold-predicate

894 IBM Db2 V11.5: SQL Reference

TOTALMEMBERCONNECTIONS > integer-value

TOTALSCMEMBERCONNECTIONS > integer-value

AND QUEUEDCONNECTIONS > integer-value

AND QUEUEDCONNECTIONS UNBOUNDED

CONNECTIONIDLETIME > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

CONCURRENTWORKLOADOCCURRENCES > integer-value

CONCURRENTWORKLOADACTIVITIES > integer-value

CONCURRENTDBCOORDACTIVITIES > integer-value

AND QUEUEDACTIVITIES > integer-value

AND QUEUEDACTIVITIES UNBOUNDED

ESTIMATEDSQLCOST > bigint-value

SQLROWSRETURNED > integer-value

ACTIVITYTOTALTIME > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

UOWTOTALTIME > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

SQLTEMPSPACE > integer-value K

M

G

AGGSQLTEMPSPACE > integer-value K

M

G

SQLROWSREAD > bigint-value

CHECKING EVERY integer-value SECOND

SECONDS

SQLROWSREADINSC > bigint-value

CHECKING EVERY integer-value SECOND

SECONDS

CPUTIME > integer-value HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

CHECKING EVERY integer-value SECOND

SECONDS

CPUTIMEINSC > integer-value HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

CHECKING EVERY integer-value SECOND

SECONDS

ACTIVITYTOTALRUNTIME > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

ACTIVITYTOTALRUNTIMEINALLSC > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

SORTSHRHEAPUTIL
2

> integer-value PERCENT

AND BLOCKING ADMISSION FOR > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

3
DATATAGINSC IN

NOT IN

(

,

integer-constant)

alter-threshold-exceeded-actions

Chapter 1. Structured Query Language (SQL) 895

1

COLLECT ACTIVITY DATA alter-collect-activity-data-clause

NONE

STOP EXECUTION

CONTINUE

FORCE APPLICATION

remap-activity-action

alter-collect-activity-data-clause

ON COORDINATOR
MEMBER

ON ALL
MEMBERS

WITHOUT DETAILS

WITH

,

DETAILS
4

SECTION AND VALUES

remap-activity-action

REMAP ACTIVITY TO service-subclass-name
NO EVENT MONITOR RECORD

LOG EVENT MONITOR RECORD

Notes:
1 The same clause must not be specified more than once.
2 This feature is available in Db2 Version 11.5 Mod Pack 2 and later versions.
3 Each data tag value can be specified only once.
4 The DETAILS keyword is the minimum to be specified, followed by the option separated by a comma.

Description
threshold-name

Identifies the threshold to be altered. This is a one-part name. It is an SQL identifier (either ordinary
or delimited). The name must uniquely identify an existing threshold at the current server (SQLSTATE
42704).

WHEN alter-threshold-predicate or WHEN EXCEEDED
Replaces the existing upper bound value in the threshold predicate condition with a new upper bound
value. The condition of the threshold cannot be changed to a different one.
PERFORM ACTION

When altering the value of the threshold predicate condition, specifies that the threshold
exceeded action is not changed.

EXCEEDED
Specifies to keep the same threshold predicate that was specified originally for this altered
threshold.

896 IBM Db2 V11.5: SQL Reference

alter-threshold-predicate
TOTALMEMBERCONNECTIONS > integer-value

This condition defines an upper bound on the number of coordinator connections that can run
concurrently on a member. This value can be zero or any positive integer (SQLSTATE 42820). A
value of zero means that any new coordinator connection will be prevented from connecting. All
currently running or queued connections will continue.

TOTALSCMEMBERCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator connections that can run
concurrently on a member in a specific service superclass. This value can be zero or any positive
integer (SQLSTATE 42820). A value of zero means that any new connection will be prevented from
joining the service class. All currently running or queued connections will continue.
AND QUEUEDCONNECTIONS > integer-value or AND QUEUEDCONNECTIONS UNBOUNDED

Specifies a queue size for when the maximum number of coordinator connections is exceeded.
This value can be zero or any positive integer (SQLSTATE 42820). A value of zero means that
no coordinator connections are queued. Specifying UNBOUNDED will queue every connection
that exceeds the specified maximum number of coordinator connections, and the threshold-
exceeded-actions will never be executed.

CONNECTIONIDLETIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES
This condition defines an upper bound for the amount of time the database manager will allow
a connection to remain idle. This value can be any positive integer (not zero) (SQLSTATE 42820).
Use a valid duration keyword to specify an appropriate unit of time for integer-value. This condition
is enforced at the coordinator member.

If you specify the STOP EXECUTION action with CONNECTIONIDLETIME thresholds, the
connection for the application is dropped when the threshold is exceeded. Any subsequent
attempt by the application to access the data server will receive SQLSTATE 5U026 since the
application is no longer connected to the data server.

The maximum value for this threshold is 2 147 483 640 seconds. Any value specified that has a
seconds equivalent larger than 2 147 483 640 seconds will be set to this number of seconds.

CONCURRENTWORKLOADOCCURRENCES > integer-value
This condition defines an upper bound on the number of concurrent occurrences for the workload
on each member. This value can be any positive integer (not zero) (SQLSTATE 42820).

CONCURRENTWORKLOADACTIVITIES > integer-value
This condition defines an upper bound on the number of concurrent coordinator activities and
nested activities for the workload on each member. This value can be any positive integer (not
zero) (SQLSTATE 42820).

Each nested activity must satisfy the following conditions:

• It must be a recognized coordinator activity. Any nested coordinator activity that does not
fall within the recognized types of activities will not be counted. Similarly, nested subagent
activities, such as remote node requests, are not counted.

• It must be directly invoked from user logic, such as a user-written procedure issuing SQL
statements.

Internal SQL activities, such as those generated by the setting of a constraint or the refreshing of a
materialized query table, are also not counted by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

CONCURRENTDBCOORDACTIVITIES > integer-value
This condition defines an upper bound on the number of recognized database coordinator
activities that can run concurrently on all members in the specified domain. This value can be
zero or any positive integer (SQLSTATE 42820). A value of zero means that any new database
coordinator activities will be prevented from executing. All currently running or queued database
coordinator activities will continue. All activities are tracked by this condition, except for the
following items:

Chapter 1. Structured Query Language (SQL) 897

• CALL statements are not controlled by this threshold, but all nested child activities started
within the called routine are under this threshold's control. Anonymous blocks and autonomous
routines are classified as CALL statements.

• User-defined functions are controlled by this threshold, but child activities nested in a user-
defined function are not controlled. If an autonomous routine is called from within a user
defined function, neither the autonomous routine nor any child activities of the autonomous
routine are under threshold control.

• Trigger actions that invoke CALL statements and the child activities of these CALL statements
are not controlled by this threshold. INSERT, UPDATE, or DELETE statements that can cause a
trigger to activate continue to be under threshold control.

Important: Before using CONCURRENTDBCOORDACTIVITIES thresholds, be sure to become
familiar with the effects that they can have on the database system.

For more information, refer to "CONCURRENTDBCOORDACTIVITIES threshold" in Db2 Workload
Management Guide and Reference.

AND QUEUEDACTIVITIES > integer-value or AND QUEUEDACTIVITIES UNBOUNDED
Specifies a queue size for when the maximum number of database coordinator activities is
exceeded. This value can be zero or any positive integer (SQLSTATE 42820). A value of zero
means that no database coordinator activities are queued. Specifying UNBOUNDED will queue
every database coordinator activity that exceeds the specified maximum number of database
coordinator activities, and the threshold-exceeded-actions will never be executed.

Note: If a threshold action of CONTINUE is specified for a queuing threshold, it effectively
makes the size of the queue unbounded, regardless of any hard value specified for the queue
size.

ESTIMATEDSQLCOST > bigint-value
This condition defines an upper bound for the optimizer-assigned cost (in timerons) of an activity.
This value can be any positive big integer (not zero) (SQLSTATE 42820). This condition is enforced
at the coordinator member. Activities tracked by this condition are:

• Coordinator activities of type data manipulation language (DML).
• Nested DML activities that are invoked from user logic. Consequently, DML activities that can be

initiated by the database manager through internal SQL are not tracked by this condition (unless
their cost is included in the parent's estimate, in which case they are indirectly tracked).

SQLROWSRETURNED > integer-value
This condition defines an upper bound for the number of rows returned to a client application from
the application server. This value can be any positive integer (not zero) (SQLSTATE 42820).This
condition is enforced at the coordinator member. Activities tracked by this condition are:

• Coordinator activities of type DML.
• Nested DML activities that are derived from user logic. Activities that are initiated by the

database manager through internal SQL are not affected by this condition.

Result sets returned from within a procedure are treated separately as individual activities. There
is no aggregation of the rows that are returned by the procedure itself.

ACTIVITYTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES |
SECONDS

This condition defines an upper bound for the amount of time the database manager will allow
an activity to execute, including the time the activity was queued. The definition domain for this
condition must be DATABASE, work action (a threshold for a work action definition domain is
created using a CREATE WORK ACTION SET or ALTER WORK ACTION SET statement, and the
work action set must be applied to a workload or a database), SERVICE SUPERCLASS, SERVICE
SUBCLASS, or WORKLOAD, and the enforcement scope must be DATABASE (SQLSTATE 5U037).
This condition is logically enforced at the coordinator member.

The specified integer-value must be an integer that is greater than zero (SQLSTATE 42820). Use
a valid duration keyword to specify an appropriate unit of time for integer-value. If the specified

898 IBM Db2 V11.5: SQL Reference

time unit is SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). The maximum value
that can be specified for this threshold is 2 147 483 640 seconds. If any value (using the DAY,
HOUR, MINUTE, or SECONDS time unit) has a seconds equivalent larger than the maximum value,
an error is returned (SQLSTATE 42615).

UOWTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES | SECONDS
This condition defines an upper bound for the amount of time the database manager will allow a
unit of work to execute. This value can be any non-zero positive integer (SQLSTATE 42820). Use a
valid duration keyword to specify an appropriate unit of time for integer-value. If the specified time
unit is SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). This condition is enforced
at the coordinator member.

The maximum value that can be specified for this threshold is 2 147 483 640 seconds. If any
value (using the DAY, HOUR, MINUTE, or SECONDS time unit) has a seconds equivalent larger than
the maximum value, an error is returned (SQLSTATE 42615).

SQLTEMPSPACE > integer-value K | M | G
This condition defines the maximum amount of system temporary space that can be consumed
by an SQL statement on a member. This value can be any positive integer (not zero) (SQLSTATE
42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum size is 1024 times
integer-value. If integer-value M is specified, the maximum size is 1 048 576 times integer-value. If
integer-value G is specified, the maximum size is 1 073 741 824 times integer-value.

Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (subsection execution).
• Nested DML activities that are derived from user logic and their corresponding subagent work

(subsection execution). Activities that are initiated by the database manager through an internal
SQL are not affected by this condition.

AGGSQLTEMPSPACE > integer-value K | M | G

This condition defines the maximum amount of system temporary space that can be consumed
by a set of statements in a service class on a member. This value can be any positive integer (not
zero) (SQLSTATE 42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum size is 1024 times
integer-value. If integer-value M is specified, the maximum size is 1 048 576 times integer-value. If
integer-value G is specified, the maximum size is 1 073 741 824 times integer-value.

Activities contributing to the aggregate that is tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work like subsection execution.
• Nested DML activities that are derived from user logic and their corresponding subagent work

like subsection execution. Activities initiated by the database manager through an internal SQL
statement are not affected by this condition.

SQLROWSREAD > bigint-value
This condition defines an upper bound on the number of rows that may be read by an activity
during its lifetime on a particular member. This value can be any positive big integer (not zero)
(SQLSTATE 42820). Note that the number of rows read is different from the number of rows
returned, which is controlled by the SQLROWSRETURNED condition.

Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (like subsection execution).
• Internal SQL activities like those initiated by the setting of a constraint, or the refreshing of a

materialized query table, are also not tracked by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

Chapter 1. Structured Query Language (SQL) 899

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an activity. The threshold is
checked at the end of each request (like a fetch operation, for example) and on the interval
defined by the CHECKING clause. The CHECKING clause defines an upper bound on how long
a threshold violation may go undetected. The value can be any positive integer (not zero)
with a maximum value of 86400 seconds (SQLSTATE 42820). Setting a low value may impact
system performance negatively.

SQLROWSREADINSC > bigint-value
This condition defines an upper bound on the number of rows that may be read by an activity
on a particular member while it is executing in a service subclass. Rows read before executing
in the service subclass specified are not counted. This value can be any positive big integer (not
zero) (SQLSTATE 42820). Note that the number of rows read is different from the number of rows
returned, which is controlled by the SQLROWSRETURNED condition.

Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (like subsection execution).
• Internal SQL activities like those initiated by the setting of a constraint, or the refreshing of a

materialized query table, are also not tracked by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an activity. The threshold is
checked at the end of each request (like a fetch operation, for example) and on the interval
defined by the CHECKING clause. The CHECKING clause defines an upper bound on how long
a threshold violation may go undetected. The value can be any positive integer (not zero)
with a maximum value of 86400 seconds (SQLSTATE 42820). Setting a low value may impact
system performance negatively.

CPUTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES | SECOND | SECONDS
This condition defines an upper bound for the amount of processor time that an activity may
consume during its lifetime on a particular member. The processor time tracked by this threshold
is measured from the time that the activity starts executing. This value can be any positive integer
(not zero) (SQLSTATE 42820).

Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (like subsection execution).
• Internal SQL activities, like those initiated by the setting of a constraint or the refreshing of a

materialized query table, are also not tracked by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

• Activities of type CALL. For CALL activities, the processor time tracked for the procedure does
not include the processor time used by any child activity or by any fenced mode processes. The
threshold condition will be checked only upon return from user logic to the database engine.
For example: During execution of a trusted routine, the threshold condition will be checked only
when the routine issues a request to the database engine.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an activity. The granularity of
the CPUTIME threshold is approximately this number multiplied by the degree of parallelism
for the activity. For example: If the threshold is checked every 60 seconds and the degree
of parallelism is 2, the activity might use an extra 2 minutes of processor time instead of 1
minute before the threshold violation is detected. The value can be any positive integer (not
zero) with a maximum value of 86400 seconds (SQLSTATE 42820). Setting a low value may
impact system performance negatively.

CPUTIMEINSC > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES | SECOND |
SECONDS

This condition defines an upper bound for the amount of processor time that an activity may
consume on a particular member while it is executing in a service subclass. The processor time

900 IBM Db2 V11.5: SQL Reference

tracked by this threshold is measured from the time that the activity starts executing in the service
subclass identified in the threshold domain. Any processor time used before that point is not
counted toward the limit imposed by this threshold. This value can be any positive integer (not
zero) (SQLSTATE 42820).

Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (like subsection execution).
• Internal SQL activities, like those initiated by the setting of a constraint or the refreshing of a

materialized query table, are also not tracked by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

• Activities of type CALL. For CALL activities, the processor time tracked for the procedure does
not include the processor time used by any child activity or by any fenced mode processes. The
threshold condition will be checked only upon return from user logic to the database engine.
For example: During execution of a trusted routine, the threshold condition will be checked only
when the routine issues a request to the database engine.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an activity. The granularity
of the CPUTIMEINSC threshold is approximately this number multiplied by the degree of
parallelism for the activity. For example: If the threshold is checked every 60 seconds and the
degree of parallelism is 2, the activity might use an extra 2 minutes of processor time instead
of 1 minute before the threshold violation is detected. The value can be any positive integer
(not zero) with a maximum value of 86400 seconds (SQLSTATE 42820). Setting a low value
may impact system performance negatively.

ACTIVITYTOTALRUNTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES |
SECONDS

This condition is used to define an upper bound for the amount of time the database manager
allows an activity to run. The amount of time does not include the time that the activity was
queued by a WLM concurrency threshold. The definition domain for this condition must be one of
the following thresholds (SQLSTATE 5U037):

• Database
• Service superclass
• Service subclass
• Statement
• Workload
• Work action 1

1. A threshold for a work action definition domain is created by using a CREATE WORK ACTION
SET or ALTER WORK ACTION SET statement. The work action set must be applied to a
workload or a database.

The enforcement scope must be DATABASE (SQLSTATE 5U037).

The specified integer-value must be an integer that is greater than zero (SQLSTATE 42820). Use
a valid duration keyword to specify an appropriate unit of time for integer-value. If the specified
time unit is SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). The maximum value
that can be specified for this threshold is 2 147 483 640 seconds. If any value for the DAY, HOUR,
MINUTE, or SECONDS time unit has a seconds equivalent larger than the maximum value, an error
is returned (SQLSTATE 42615).

ACTIVITYTOTALRUNTIMEINALLSC > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |
MINUTES | SECONDS

This condition is used to define an upper bound for the amount of time the database manager
allows an activity to run. The amount of time does not include the time that the activity was
queued by a WLM concurrency threshold. The execution time that is tracked by this threshold is
measured from the time that the activity starts running.

Chapter 1. Structured Query Language (SQL) 901

The definition domain for this condition must be service subclass (SERVICE CLASS specifying the
UNDER clause), and the enforcement scope must be DATABASE (SQLSTATE 5U037).

The specified integer-value must be an integer that is greater than zero (SQLSTATE 42820). Use
a valid duration keyword to specify an appropriate unit of time for integer-value. If the specified
time unit is SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). The maximum value
that can be specified for this threshold is 2 147 483 640 seconds. If any value for the DAY, HOUR,
MINUTE, or SECONDS time unit has a seconds equivalent larger than the maximum value, an error
is returned (SQLSTATE 42615).

SORTSHRHEAPUTIL > integer-value PERCENT

Attention: This feature is available in Db2 Version 11.5 Mod Pack 2 and later versions.

This condition defines the maximum shared sort memory that may be requested by a query as
a percentage of the total database shared sort memory (sheapthres_shr). When the adaptive
workload manager is enabled, the threshold considers both estimated and actual memory
requirements for a query. Any positive integer between 1 to 100 can be specified as a percent
value.

Activities tracked by this condition are:

• Coordinator activities of type data manipulation language (DML).
• Nested DML activities that are directly invoked from user logic.

AND BLOCKING ADMISSION FOR integer-value
Specifies that action will only be taken if the sort memory requirements are exceeded, work
is currently queued behind the violating activity and WLM admission control has not admitted
any requests for the specified amount of time. For work inside the WLM admission queue,
this condition will only be evaluated once a request reaches the front of the admission queue.
Every time a request is allowed by admission control, the queue time will be reset. If multiple
requests violate this threshold a cascading effect will be observed until something that doesn't
violate this threshold is found or the last request is reached (as in, no other requests behind).
The maximum value for this threshold is 2147483640 seconds. Any value specified that
has a seconds equivalent larger than 2147483640 seconds will be set to this number of
seconds. The time specified has a minimum accuracy of 10 seconds, so any value specified is
subject to accuracy of this amount. A value of zero is equivalent to not specifying a BLOCKING
ADMISSION FOR clause.

DATATAGINSC IN (integer-constant, ...)
This condition defines one or more data tag values specified on a table space that the activity
touches. The data tag on a table space, or its underlying storage group (where applicable), can be
either not be set or set to a value from 1 to 9. If the activity touches a table space that has no data
tag set (either at the table space or storage group level), this threshold will not have any affect
on that activity. The definition domain for this condition must be a service subclass (SERVICE
CLASS specifying the UNDER clause), and the enforcement scope must be DATABASE PARTITION
(SQLSTATE 5U037). This condition is enforced independently at each database partition.

Activities tracked by this condition are:

• Coordinator activities of type data manipulation language (DML).
• Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager through internal SQL are not tracked
by this condition.

This threshold is only checked when a scan is opened on a table or when an insert is performed
into a table. Fetching data from a table after a scan has been opened will not violate the threshold.

DATATAGINSC NOT IN (integer-constant, ...)
This condition defines one or more data tag values not specified on a table space that the activity
touches. The data tag on a table space, or its underlying storage group (where applicable), can be

902 IBM Db2 V11.5: SQL Reference

either not be set or set to a value from 1 to 9. If the activity touches a table space that has no data
tag set (either at the table space or storage group level), this threshold will not have any affect
on that activity. The definition domain for this condition must be a service subclass (SERVICE
CLASS specifying the UNDER clause), and the enforcement scope must be DATABASE PARTITION
(SQLSTATE 5U037). This condition is enforced independently at each database partition.

Activities tracked by this condition are:

• Coordinator activities of type data manipulation language (DML).
• Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager through internal SQL are not tracked
by this condition.

This threshold is only checked when a scan is opened on a table or when an insert is performed
into a table. Fetching data from a table after a scan has been opened will not violate the threshold.

alter-threshold-exceeded-actions
Specifies what action is to be taken when a condition is exceeded. Each time that a condition is
exceeded, an event is recorded in all active threshold violations event monitors.
COLLECT ACTIVITY DATA

Specifies that data about each activity that exceeded the threshold is
to be sent to any active activities event monitor when the activity
completes. The COLLECT ACTIVITY DATA setting does not apply to non-
activity thresholds, such as CONNECTIONIDLETIME, TOTALDBPARTITIONCONNECTIONS,
TOTALSCPARTITIONCONNECTIONS, CONCURRENTWORKLOADOCCURRENCES, or
UOWTOTALTIME.
alter-collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected only at the coordinator member of the
activity.

ON ALL MEMBERS
Specifies that the activity data is to be collected at all members on which the activity
is processed. On remote members, a record for the activity may be captured multiple
times as the activity comes and goes on those members. For predictive thresholds, activity
information is collected at all members only if you also specify the CONTINUE action for
exceeded thresholds. For reactive thresholds, the ON ALL MEMBERS clause has no effect
and activity information is always collected only at the coordinator member. For both
predictive and reactive thresholds, any input data values, section information, or values
will be collected only at the coordinator member.

WITHOUT DETAILS
Specifies that data about each activity associated with the work class for which this work
action is defined should be sent to any active activities event monitor, when the activity
completes execution. Details about statement, compilation environment, and section
environment data are not sent.

WITH
DETAILS

Specifies that statement and compilation environment data is to be sent to any active
activities event monitor, for those activities that have them. Section environment data
is not sent.

SECTION
Specifies that statement, compilation environment, section environment data, and
section actuals are to be sent to any active activities event monitor for those activities
that have them. DETAILS must be specified if SECTION is specified. For predictive
thresholds, section actuals will be collected on any member where the activity data
is collected. For reactive thresholds, section actuals will be collected only on the
coordinator member.

Chapter 1. Structured Query Language (SQL) 903

AND VALUES
Specifies that input data values are to be sent to any active activities event monitor,
for those activities that have them. This data does not include SQL statements that are
compiled by using the REOPT ALWAYS bind option.

NONE
Specifies that activity data should not be collected for each activity that exceeds the
threshold.

STOP EXECUTION
The execution of the activity is stopped and an error is returned (SQLSTATE 5U026). In the case of
the UOWTOTALTIME threshold, the unit of work is rolled back.

CONTINUE
The execution of the activity is not stopped. When the condition also has a queue, this option
causes queuing to extend beyond the size of the queue.

FORCE APPLICATION
The application is forced off the system (SQLSTATE 55032). This action can only be specified for
the UOWTOTALTIME threshold.

remap-activity-action
REMAP ACTIVITY TO service-subclass-name

The activity is mapped to service-subclass-name. The execution of the activity is not
stopped. This action is valid only for in-service-class and in-all-service-class thresholds
like CPUTIMEINSC, SQLROWSREADINSC, DATATAGINSC IN and DATATAGINSC NOT IN and
ACTIVITYTOTALRUNTIMEINALLSC thresholds (SQLSTATE 5U037). The service-subclass-name
must identify an existing service subclass under the same superclass associated with the
threshold (SQLSTATE 5U037). The service-subclass-name cannot be the same as the associated
service subclass of the threshold (SQLSTATE 5U037).

NO EVENT MONITOR RECORD
Specifies that no threshold violation record will be written.

LOG EVENT MONITOR RECORD
Specifies that if a THRESHOLD VIOLATIONS event monitor exists and is active, a threshold
violation record is written to it.

ENABLE or DISABLE
Specifies whether or not the threshold is enabled for use by the database manager.
ENABLE

The threshold is used by the database manager to restrict the execution of database activities.
Currently running database activities will continue to execute without the restriction of this
threshold.

DISABLE
The threshold is not used by the database manager to restrict the execution of database activities.
New database activities will not be restricted by this threshold. Thresholds with a queue,
for example TOTALSCMEMBERCONNECTIONS or CONCURRENTDBCOORDACTIVITIES, must be
disabled before they can be dropped.

Notes
• Thresholds can be defined on different aspects of database behavior to monitor and control that

behavior. When a threshold is defined on activities, unless otherwise specified, it will be enforced only
during the actual execution of SQL statements, not including compilation time, and the load utility.

• The CONCURRENTWORKLOADOCCURRENCES threshold and the CONCURRENTWORKLOADACTIVITIES
threshold differ in scope. CONCURRENTWORKLOADOCCURRENCES controls how many connections can
map to a workload definition simultaneously, and CONCURRENTWORKLOADACTIVITIES controls how
many activities each connection that is mapped to the workload definition can submit concurrently.

• Changes are written to the system catalog, but do not take effect until after a COMMIT statement, even
for the connection that issues the statement.

904 IBM Db2 V11.5: SQL Reference

• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an
uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• The new value for a threshold affects only database activities that start executing after the alter
operation commits.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– DATABASE PARTITION can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– DATABASE PARTITIONS can be specified in place of MEMBERS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– TOTALDBPARTITIONCONNECTIONS can be specified in place of TOTALMEMBERCONNECTIONS,
except when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– TOTALSCPARTITIONCONNECTIONS can be specified in place of TOTALSCMEMBERCONNECTIONS,
except when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Example
Alter the threshold MAXBIGQUERIESCONCURRENCY to a maximum of three activities rather than two.

 ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY
 WHEN CONCURRENTDBCOORDACTIVITIES > 3
 STOP EXECUTION

Because this is a threshold with a queue, the threshold cannot be dropped unless it is disabled, as
follows:

 ALTER THRESHOLD MAXBIGQUERIESCONCURRENCY DISABLE

ALTER TRIGGER
The ALTER TRIGGER statement changes the description of a trigger at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly
specified.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
privileges:

• SECADM authority
• CREATE_SECURE_OBJECT authority

Syntax
ALTER TRIGGER trigger-name SECURED

NOT SECURED

Chapter 1. Structured Query Language (SQL) 905

Description
trigger-name

Identifies the trigger to be altered. The trigger-name must identify a trigger that exists at the current
server (SQLSTATE 42704).

NOT SECURED or SECURED
Specifies whether the trigger is considered secure.
SECURED

Specifies the trigger is considered secure. SECURED must be specified for a trigger whose subject
table is a table on which row level or column level access control has been activated (SQLSTATE
428H8). Similarly, SECURED must be specified for a trigger that is created on a view and one or
more of the underlying tables in that view definition has row level or column level access control
activated (SQLSTATE 428H8).

NOT SECURED
Specifies the trigger is considered not secure. Altering a trigger from secured to not secured
fails if the trigger is defined on a table for which row or column level access control is activated
(SQLSTATE 428H8). Similarly, altering a trigger from secured to not secured fails if the trigger is
defined on a view and one or more of the underlying tables in that view definition has row or
column level access control activated (SQLSTATE 428H8).

Examples
• Example 1: Alter trigger TRIGGER1 to SECURED.

ALTER TRIGGER TRIGGER1 SECURED

• Example 2: Alter trigger TRIGGER1 to NOT SECURED.

ALTER TRIGGER TRIGGER1 NOT SECURED

ALTER TRUSTED CONTEXT
The ALTER TRUSTED CONTEXT statement modifies the definition of a trusted context at the current
server.

Important: The DATA_ENCRYPT authentication type is deprecated and might be removed in a future
release. To encrypt data in-transit between clients and Db2 databases, we recommend that you use the
Db2 database system support of Transport Layer Security (TLS). For more information, see Encryption of
data in transit

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

906 IBM Db2 V11.5: SQL Reference

https://www.ibm.com/docs/en/db2/11.5?topic=encryption-data-in-transit
https://www.ibm.com/docs/en/db2/11.5?topic=encryption-data-in-transit

Syntax
ALTER TRUSTED CONTEXT context-name

1
ALTER SYSTEM AUTHID authorization-name

ATTRIBUTES
2

(

,

address-clause
3

ENCRYPTION encryption-value

)

NO DEFAULT ROLE

DEFAULT ROLE role-name

DISABLE

ENABLE

ADD ATTRIBUTES
2

(

,

address-clause)

DROP ATTRIBUTES
2

(

,

ADDRESS address-value)

user-clause

address-clause
ADDRESS address-value

WITH ENCRYPTION encryption-value

user-clause

ADD USE FOR

,

authorization-name

ROLE role-name

PUBLIC

WITHOUT AUTHENTICATION

WITH AUTHENTICATION

REPLACE USE FOR

,

authorization-name

ROLE role-name

PUBLIC

WITHOUT AUTHENTICATION

WITH AUTHENTICATION

DROP USE FOR

,

authorization-name

PUBLIC

Notes:
1 Each of the ATTRIBUTES, DEFAULT ROLE, ENABLE, and WITH USE clauses can be specified at most
once (SQLSTATE 42614).
2 Each attribute name and corresponding value must be unique (SQLSTATE 4274D).
3 ENCRYPTION cannot be specified more than once (SQLSTATE 42614); however, WITH ENCRYPTION
can be specified for each ADDRESS that is specified.

Chapter 1. Structured Query Language (SQL) 907

Description
context-name

Identifies the trusted context that is to be altered. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The context-name must identify a trusted context that exists at the
current server (SQLSTATE 42704).

ALTER
Alters the options and attributes of a trusted context.
SYSTEM AUTHID authorization-name

Specifies that the context is a connection established by system authorization ID authorization-
name, which must not be associated with an existing trusted context (SQLSTATE 428GL). It cannot
be the authorization ID of the statement (SQLSTATE 42502).

ATTRIBUTES (...)
Specifies a list of one or more connection trust attributes, upon which the trusted context is
defined, that are to be modified. Existing values for the specified attributes are replaced with
the new values. If an attribute is not currently part of the trusted context definition, an error is
returned (SQLSTATE 4274C). Attributes that are not specified retain their previous values.
ADDRESS address-value

Specifies the actual communication address used by the client to communicate with the
database server. The only protocol supported is TCP/IP. Previous ADDRESS values for the
specified trusted context are removed. The ADDRESS attribute can be specified multiple
times, but each address-value pair must be unique for the set of attributes (SQLSTATE 4274D).

When establishing a trusted connection, if multiple values are defined for the ADDRESS
attribute of a trusted context, a candidate connection is considered to match this attribute
if the address used by the connection matches any of the defined values for the ADDRESS
attribute of the trusted context.

address-value
Specifies a string constant that contains the value to be associated with the ADDRESS
trust attribute. The address-value must be an IPv4 address, an IPv6 address, or a secure
domain name.

• An IPv4 address must not contain leading spaces and is represented as a dotted decimal
address. An example of an IPv4 address is 9.112.46.111. The value 'localhost' or its
equivalent representation '127.0.0.1' will not result in a match; the real IPv4 address of
the host must be specified instead.

• An IPv6 address must not contain leading spaces and is represented
as a colon hexadecimal address. An example of an IPv6 address is
2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6 addresses (for
example, ::ffff:192.0.2.128) will not result in a match. Similarly, 'localhost' or its IPv6
short representation '::1' will not result in a match.

• A domain name is converted to an IP address by the domain name server where
a resulting IPv4 or IPv6 address is determined. An example of a domain name is
corona.torolab.ibm.com. When a domain name is converted to an IP address, the result
of this conversion could be a set of one or more IP addresses. In this case, an incoming
connection is said to match the ADDRESS attribute of a trusted context object if the
IP address from which the connection originates matches any of the IP addresses
to which the domain name was converted. When creating a trusted context object,
it is advantageous to provide domain name values for the ADDRESS attribute instead
of static IP addresses, particularly in Dynamic Host Configuration Protocol (DHCP)
environments. With DHCP, a device can have a different IP address each time it connects
to the network. So, if a static IP address is provided for the ADDRESS attribute of a
trusted context object, some device might acquire a trusted connection unintentionally.
Providing domain names for the ADDRESS attribute of a trusted context object avoids
this problem in DHCP environments.

908 IBM Db2 V11.5: SQL Reference

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or network encryption for
this specific address-value. This encryption-value overrides the global ENCRYPTION
attribute setting for this specific address-value.
encryption-value

Specifies a string constant that contains the value to be associated with the
ENCRYPTION trust attribute for this specific address-value. The encryption-value
must be one of the following values (SQLSTATE 42615):

• NONE, no specific level of encryption is required
• LOW, a minimum of light encryption is required; the authentication type on

the database manager must be DATA_ENCRYPT if an incoming connection is to
match the encryption setting for this specific address

• HIGH, Secure Sockets Layer (SSL) encryption, or equivalent, must be used for
data communication between the database client and the database server if an
incoming connection is to match the encryption setting for this specific address

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or network encryption. The
default is NONE.
encryption-value

Specifies a string constant that contains the value to be associated with the ENCRYPTION
trust attribute for this specific address-value. The encryption-value must be one of the
following values (SQLSTATE 42615):

• NONE, no specific level of encryption is required for an incoming connection to match
the ENCRYPTION attribute of this trusted context object

• LOW, a minimum of light encryption is required; the authentication type on the
database manager must be DATA_ENCRYPT if an incoming connection is to match the
ENCRYPTION attribute of this trusted context object

• HIGH, Secure Sockets Layer (SSL) encryption, or equivalent, must be used for data
communication between the database client and the database server if an incoming
connection is to match the ENCRYPTION attribute of this trusted context object

For details about the ENCRYPTION trust attribute, see "CREATE TRUSTED CONTEXT".
NO DEFAULT ROLE or DEFAULT ROLE role-name

Specifies whether or not a default role is associated with a trusted connection that is based on this
trusted context. If a trusted connection for this context is active, the change comes into effect on the
next switch user request or a new connection request.
NO DEFAULT ROLE

Specifies that the trusted context does not have a default role.
DEFAULT ROLE role-name

Specifies that role-name is the default role for the trusted context. The role-name must identify
a role that exists at the current server (SQLSTATE 42704). This role is used with the user in a
trusted connection, based on this trusted context, when the user does not have a user-specific
role defined as part of the definition of the trusted context.

ENABLE or DISABLE
Specifies whether the trusted context is enabled or disabled.
ENABLE

Specifies that the trusted context is enabled.
DISABLE

Specifies that the trusted context is disabled. A trusted context that is disabled is not considered
when a trusted connection is established.

ADD ATTRIBUTES
Specifies a list of one or more additional trust attributes on which the trusted context is defined.

Chapter 1. Structured Query Language (SQL) 909

ADDRESS address-value
Specifies the actual communication address used by the client to communicate with the database
server. The only protocol supported is TCP/IP. The ADDRESS attribute can be specified multiple
times, but each address-value pair must be unique for the set of attributes (SQLSTATE 4274D).

When establishing a trusted connection, if multiple values are defined for the ADDRESS attribute
of a trusted context, a candidate connection is considered to match this attribute if the address
used by the connection matches any of the defined values for the ADDRESS attribute of the
trusted context.

address-value
Specifies a string constant that contains the value to be associated with the ADDRESS trust
attribute. The address-value must be an IPv4 address, an IPv6 address, or a secure domain
name.

• An IPv4 address must not contain leading spaces and is represented as a dotted decimal
address. An example of an IPv4 address is 9.112.46.111. The value 'localhost' or its
equivalent representation '127.0.0.1' will not result in a match; the real IPv4 address of
the host must be specified instead.

• An IPv6 address must not contain leading spaces and is represented as a colon hexadecimal
address. An example of an IPv6 address is 2001:0DB8:0000:0000:0008:0800:200C:417A.
IPv4-mapped IPv6 addresses (for example, ::ffff:192.0.2.128) will not result in a match.
Similarly, 'localhost' or its IPv6 short representation '::1' will not result in a match.

• A domain name is converted to an IP address by the domain name server, where
a resulting IPv4 or IPv6 address is determined. An example of a domain name is
corona.torolab.ibm.com.

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or network encryption
for this specific address-value. This encryption-value overrides the global ENCRYPTION
attribute setting for this specific address-value.
encryption-value

Specifies a string constant that contains the value to be associated with the
ENCRYPTION trust attribute for this specific address-value. The encryption-value must
be one of the following values (SQLSTATE 42615):

• NONE, no specific level of encryption is required
• LOW, a minimum of light encryption is required; the authentication type on the

database manager must be DATA_ENCRYPT if an incoming connection is to match
the encryption setting for this specific address

• HIGH, Secure Sockets Layer (SSL) encryption, or equivalent, must be used for data
communication between the database client and the database server if an incoming
connection is to match the ENCRYPTION attribute of this trusted context object

DROP ATTRIBUTES
Specifies that one or more attributes are to be dropped from the definition of the trusted context. If
the attribute and attribute value pair is not currently part of the trusted context definition, an error is
returned (SQLSTATE 4274C).
ADDRESS address-value

Specifies that the identified communication address is to be removed from the definition of
the trusted context. The address-value specifies a string constant that contains the value of an
existing ADDRESS trust attribute.

ADD USE FOR
Specifies additional users who can use a trusted connection based on this trusted context. If the
definition of a trusted context allows access by PUBLIC and a list of users, the specifications for a user
override the specifications for PUBLIC.

910 IBM Db2 V11.5: SQL Reference

authorization-name
Specifies that the trusted connection can be used by the specified authorization-name. The
authorization-name must not identify an authorization ID that is already defined to use the trusted
context, and must not be specified more than once in the ADD USE FOR clause (SQLSTATE
428GM). It must also not be the authorization ID of the statement (SQLSTATE 42502).
ROLE role-name

Specifies that role-name is the role to be used for the user. The role-name must identify a role
that exists at the current server (SQLSTATE 42704). The role explicitly specified for the user
overrides any default role associated with the trusted context.

PUBLIC
Specifies that a trusted connection that is based on this trusted context can be used by any user.
PUBLIC must not already be defined to use the trusted context, and PUBLIC must not be specified
more than once in the ADD USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the current user on a trusted connection based on this trusted
context requires authentication.
WITHOUT AUTHENTICATION

Specifies that switching the current user on a trusted connection based on this trusted context
to this user does not require authentication.

WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection based on this trusted context
to this user requires authentication.

REPLACE USE FOR
Specifies that the way in which a particular user or PUBLIC uses the trusted context is to change.
authorization-name

Specifies the authorization-name of the user whose use of the trusted connection is to change.
The trusted context must already be defined to allow use by the authorization-name (SQLSTATE
428GN), and authorization-name must not be specified more than once in the REPLACE USE FOR
clause (SQLSTATE 428GM). It must also not be the authorization ID of the statement (SQLSTATE
42502).
ROLE role-name

Specifies that role-name is the role for the user. The role-name must identify a role that exists
at the current server (SQLSTATE 42704). The role explicitly specified for the user overrides any
default role associated with the trusted context.

PUBLIC
Specifies that the attributes for use of the trusted connection by PUBLIC are to change. The
trusted context must already be defined to allow use by PUBLIC (SQLSTATE 428GN), and PUBLIC
must not be specified more than once in the REPLACE USE FOR clause (SQLSTATE 428GM).

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the current user on a trusted connection based on this trusted
context requires authentication.
WITHOUT AUTHENTICATION

Specifies that switching the current user on a trusted connection based on this trusted context
to this user does not require authentication.

WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection based on this trusted context
to this user requires authentication.

DROP USE FOR
Specifies who can no longer use the trusted context. The users who are removed from the definition
of the trusted context are those users who are currently allowed to use the trusted context. If one
or more, but not all, users can be removed from the definition of the trusted context, the specified

Chapter 1. Structured Query Language (SQL) 911

users are removed and a warning is returned (SQLSTATE 01682). If none of the specified users can be
removed from the definition of the trusted context, an error is returned (SQLSTATE 428GN).
authorization-name

Removes the ability of the specified authorization ID to use this trusted context.
PUBLIC

Removes the ability of all users (except the system authorization ID and individual authorization
IDs that have been explicitly enabled) to use this trusted context.

Rules
• A trusted context-exclusive SQL statement must be followed by a COMMIT or a ROLLBACK statement

(SQLSTATE 5U021). Trusted context-exclusive SQL statements are:

– CREATE TRUSTED CONTEXT, ALTER TRUSTED CONTEXT, or DROP (TRUSTED CONTEXT)
• A trusted context-exclusive SQL statement cannot be issued within a global transaction; for example,

an XA transaction or a global transaction that is initiated as part of two-phase commit for federated
transactions (SQLSTATE 51041).

Notes
• When providing an IP address as part of a trusted context definition, the address must be in the format

that is in effect for the network. For example, providing an address in an IPv6 format when the network
is IPv4 will not result in a match. In a mixed environment, it is advantageous to specify both the
IPv4 and the IPv6 representations of the address, or better yet, to specify a secure domain name (for
example, corona.torolab.ibm.com), which hides the address format details.

• Only one uncommitted trusted context-exclusive SQL statement is allowed at a time across all database
partitions. If an uncommitted trusted context-exclusive SQL statement is executing, subsequent trusted
context-exclusive SQL statements will wait until the current trusted context-exclusive SQL statement
commits or rolls back.

• Changes are written to the system catalog but do not take effect until they are committed, even for the
connection that issues the statement.

• Order of operations: The order of operations within an ALTER TRUSTED CONTEXT statement is:

– DROP
– ALTER
– ADD ATTRIBUTES
– ADD USE FOR
– REPLACE USE FOR

• Effect of changes on existing trusted connections: If trusted connections exist for the trusted context
being altered, the connections remain trusted with the definition in effect before the ALTER TRUSTED
CONTEXT statement until the next switch user request or the connection terminates. If the trusted
context is disabled while trusted connections for this context are active, the connections remain trusted
until the next switch user request or the connection terminates. If trust attributes are changed with the
ALTER TRUSTED CONTEXT statement, trusted connections that exist at the time of the ALTER TRUSTED
CONTEXT statement that use the trusted context are allowed to continue.

• Role privileges: If there is no role associated with the user or the trusted context, only the privileges
associated with the user are applicable. This is the same as not being in a trusted context.

912 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: Assume that trusted context APPSERVER exists and that it is enabled. Issue an ALTER

TRUSTED CONTEXT statement to allow Bill to use the trusted context APPSERVER, but put the trusted
context in the disabled state.

 ALTER TRUSTED CONTEXT APPSERVER
 DISABLE
 ADD USE FOR BILL

• Example 2: Assume that trusted context SECUREROLE exists. Issue an ALTER TRUSTED CONTEXT
statement to modify the existing user Joe to use the trusted context with authentication and to add
everyone else to use the trusted context without authentication.

 ALTER TRUSTED CONTEXT SECUREROLE
 REPLACE USE FOR JOE WITH AUTHENTICATION
 ADD USE FOR PUBLIC WITHOUT AUTHENTICATION

• Example 3: Assume that trusted context SECUREROLEENCRYPT exists with ADDRESS attribute values
'9.13.55.100' and '9.12.30.112', and ENCRYPTION attribute value 'NONE'. Issue an ALTER statement to
modify the ADDRESS attribute values and the encryption attribute to 'LOW'.

 ALTER TRUSTED CONTEXT SECUREROLEENCRYPT
 ALTER ATTRIBUTES (ADDRESS '9.12.155.200',
 ENCRYPTION 'LOW')

ALTER TYPE (structured)
The ALTER TYPE statement is used to add or drop attributes or method specifications of a user-defined
structured type. Properties of existing methods can also be altered.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTERIN privilege on the schema of the type
• Owner of the type, as recorded in the OWNER column of the SYSCAT.DATATYPES catalog view
• SCHEMAADM authority on the schema of the type
• DBADM authority

To alter a method to be not fenced, the privileges held by the authorization ID of the statement must also
include at least one of the following authorities:

• CREATE_NOT_FENCED_ROUTINE authority on the database
• DBADM authority

To alter a method to be fenced, no additional authorities or privileges are required.

Chapter 1. Structured Query Language (SQL) 913

Syntax
ALTER TYPE type-name

ADD ATTRIBUTE attribute-definition

DROP ATTRIBUTE attribute-name
RESTRICT

ADD METHOD method-specification

ALTER method-identifier method-options

DROP method-identifier
RESTRICT

method-identifier
METHOD method-name

(

(

,

data-type)

)

SPECIFIC METHOD specific-name

method-options
FENCED

NOT FENCED

THREADSAFE

NOT THREADSAFE

Description
type-name

Identifies the structured type to be changed. It must be an existing type defined in the catalog
(SQLSTATE 42704), and the type must be a structured type (SQLSTATE 428DP). In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier for an unqualified object
name. In static SQL statements, the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names.

ADD ATTRIBUTE
Adds an attribute after the last attribute of the existing structured type.
attribute-definition

Defines the attributes of the structured type.
attribute-name

Specifies a name for the attribute. The name cannot be the same as any other attribute of
this structured type (including inherited attributes) or any subtype of this structured type
(SQLSTATE 42711).

A number of names used as keywords in predicates are reserved for system use, and may
not be used as an attribute-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT,
AND, OR, BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH and the
comparison operators.

914 IBM Db2 V11.5: SQL Reference

data-type 1
Specifies the data type of the attribute. It is one of the data types listed under CREATE
TABLE, other than XML (SQLSTATE 42601). The data type must identify an existing data type
(SQLSTATE 42704). If data-type is specified without a schema name, the type is resolved
by searching the schemas on the SQL path. The description of various data types is given in
"CREATE TABLE". If the attribute data type is a reference type, the target type of the reference
must be a structured type that exists (SQLSTATE 42704).

To prevent type definitions that, at run time, would permit an instance of the type to directly,
or indirectly, contain another instance of the same type or one of its subtypes, there is a
restriction that a type may not be defined such that one of its attribute types directly or
indirectly uses itself (SQLSTATE 428EP).

Character and graphic string data types cannot specify string units of CODEUNITS32.

lob-options
Specifies the options associated with LOB types (or distinct types based on LOB types). For a
detailed description of lob-options, see "CREATE TABLE".

DROP ATTRIBUTE
Drops an attribute of the existing structured type.
attribute-name

The name of the attribute. The attribute must exist as an attribute of the type (SQLSTATE 42703).
RESTRICT

Enforces the rule that no attribute can be dropped if type-name is used as the type of an existing
table, view, column, attribute nested inside the type of a column, or an index extension.

ADD METHOD method-specification
Adds a method specification to the type identified by type-name. The method cannot be used until a
separate CREATE METHOD statement is used to give the method a body. For more information about
method-specification, see "CREATE TYPE (Structured)".

ALTER method-identifier
Uniquely identifies an instance of a method that is to be altered. The specified method may or may
not have an existing method body. Methods declared as LANGUAGE SQL cannot be altered (SQLSTATE
42917).
method-identifier

METHOD method-name
Identifies a particular method, and is valid only if there is exactly one method instance with
the name method-name for the type type-name. The identified method can have any number
of parameters defined for it. If no method by this name exists for the type, an error (SQLSTATE
42704) is raised. If there is more than one instance of the method for the type, an error
(SQLSTATE 42725) is raised.

METHOD method-name (data-type,...)
Provides the method signature, which uniquely identifies the method. The method resolution
algorithm is not used.
method-name

Specifies the name of the method for the type type-name.
(data-type,...)

Values must match the data types that were specified (in the corresponding position) on
the CREATE TYPE statement. The number of data types, and the logical concatenation of
the data types, is used to identify the specific method instance.

If a data type is unqualified, the type name is resolved by searching the schemas on the
SQL path. This also applies to data type names specified for a REFERENCE type.

It is not necessary to specify the length, precision, or scale for the parameterized data
types. Instead, an empty set of parentheses can be coded to indicate that these attributes
are to be ignored when looking for a data type match.

Chapter 1. Structured Query Language (SQL) 915

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value indicates
different data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that specified in the
CREATE TYPE statement.

A type of FLOAT(n) does not need to match the defined value for n, because 0 < n < 25
means REAL, and 24 < n < 54 means DOUBLE. Matching occurs on the basis of whether
the type is REAL or DOUBLE.

If no method with the specified signature exists for the type in the named or implied
schema, an error (SQLSTATE 42883) is raised.

SPECIFIC METHOD specific-name
Identifies a particular method, using the name that is specified or defaulted to at method
creation time. In dynamic SQL statements, the CURRENT SCHEMA special register is used as a
qualifier for an unqualified object name. In static SQL statements, the QUALIFIER precompile/
bind option implicitly specifies the qualifier for unqualified object names. The specific-name
must identify a specific method instance in the named or implied schema; otherwise, an error
(SQLSTATE 42704) is raised.

method-options
Specifies the options that are to be altered for the method.
FENCED or NOT FENCED

Specifies whether the method is considered safe to run in the database manager operating
environment's process or address space (NOT FENCED), or not (FENCED). Most methods have
the option of running as FENCED or NOT FENCED.

If a method is altered to be FENCED, the database manager insulates its internal resources (for
example, data buffers) from access by the method. In general, a method running as FENCED will
not perform as well as a similar one running as NOT FENCED.

CAUTION: Use of NOT FENCED for methods that were not adequately coded, reviewed,
and tested can compromise the integrity of a Db2 database. Db2 databases take some
precautions against many of the common types of inadvertent failures that might occur, but
cannot guarantee complete integrity when NOT FENCED methods are used.

A method declared as NOT THREADSAFE cannot be altered to be NOT FENCED (SQLSTATE
42613).

If a method has any parameters defined AS LOCATOR, and was defined with the NO SQL option,
the method cannot be altered to be FENCED (SQLSTATE 42613).

This option cannot be altered for LANGUAGE OLE methods (SQLSTATE 42849).

THREADSAFE or NOT THREADSAFE
Specifies whether a method is considered safe to run in the same process as other routines
(THREADSAFE), or not (NOT THREADSAFE).

If the method is defined with LANGUAGE other than OLE:

• If the method is defined as THREADSAFE, the database manager can invoke the method in
the same process as other routines. In general, to be threadsafe, a method should not use
any global or static data areas. Most programming references include a discussion of writing
threadsafe routines. Both FENCED and NOT FENCED methods can be THREADSAFE. If the
method is defined with LANGUAGE OLE, THREADSAFE may not be specified (SQLSTATE 42613).

• If the method is defined as NOT THREADSAFE, the database manager will never invoke
the method in the same process as another routine. Only a fenced method can be NOT
THREADSAFE (SQLSTATE 42613).

DROP method-identifier
Uniquely identifies an instance of a method that is to be dropped. The specified method must not have
an existing method body (SQLSTATE 428ER). Use the DROP METHOD statement to drop the method

916 IBM Db2 V11.5: SQL Reference

body before using ALTER TYPE DROP METHOD. Methods implicitly generated by the CREATE TYPE
statement (such as mutators and observers) cannot be dropped (SQLSTATE 42917).

RESTRICT
Indicates that the specified method is restricted from having an existing method body. Use the DROP
METHOD statement to drop the method body before using ALTER TYPE DROP METHOD.

Rules
• Adding or dropping an attribute is not allowed for type type-name (SQLSTATE 55043) if either:

– The type or one of its subtypes is the type of an existing table or view.
– There exists a column of a table whose type directly or indirectly uses type-name. The terms directly

uses and indirectly uses are defined in "Structured types".
– The type or one of its subtypes is used in an index extension.

• A type may not be altered by adding attributes so that the total number of attributes for the type, or any
of its subtypes, exceeds 4082 (SQLSTATE 54050).

• ADD ATTRIBUTE option:

– ADD ATTRIBUTE generates observer and mutator methods for the new attribute. These methods are
similar to those generated when a structured type is created (see "CREATE TYPE (Structured)"). If
these methods conflict with or override any existing methods or functions, the ALTER TYPE statement
fails (SQLSTATE 42745).

– If the INLINE LENGTH for the type (or any of its subtypes) was explicitly specified by the user with a
value less than 292, and the attributes added cause the specified inline length to be less than the size
of the result of the constructor function for the altered type (32 bytes plus 10 bytes per attribute),
then an error results (SQLSTATE 42611).

• DROP ATTRIBUTE option:

– An attribute that is inherited from an existing supertype cannot be dropped (SQLSTATE 428DJ).
– DROP ATTRIBUTE drops the mutator and observer methods of the dropped attributes, and checks

dependencies on those dropped methods.
• DROP METHOD option:

– An original method that is overridden by other methods cannot be dropped (SQLSTATE 42893).

Notes
• It is not possible to alter a method that is in the SYSIBM, SYSFUN, or SYSPROC schema (SQLSTATE

42832).
• When a type is altered by adding or dropping an attribute, all packages are invalidated that depend on

functions or methods that use this type or a subtype of this type as a parameter or a result.
• When an attribute is added to or dropped from a structured type:

– If the INLINE LENGTH of the type was calculated by the system when the type was created, the
INLINE LENGTH values are automatically modified for the altered type, and all of its subtypes to
account for the change. The INLINE LENGTH values are also automatically (recursively) modified for
all structured types where the INLINE LENGTH was calculated by the system and the type includes
an attribute of any type with a changed INLINE LENGTH.

– If the INLINE LENGTH of any type affected by adding or dropping attributes was explicitly specified
by a user, then the INLINE LENGTH for that particular type is not changed. Special care must be taken
for explicitly specified inline lengths. If it is likely that a type will have attributes added later on, then
the inline length, for any uses of that type or one of its subtypes in a column definition, should be
large enough to account for the possible increase in length of the instantiated object.

– If new attributes are to be made visible to application programs, existing transform functions must be
modified to match the new structure of the data type.

Chapter 1. Structured Query Language (SQL) 917

• In a partitioned database environment, the use of SQL in external user-defined functions or methods is
not supported (SQLSTATE 42997).

• Privileges: The EXECUTE privilege is not given for any methods explicitly specified in the ALTER TYPE
statement until a method body is defined using the CREATE METHOD statement. The owner of the
user-defined type has the ability to drop the method specification using the ALTER TYPE statement.

Examples
• Example 1: The ALTER TYPE statement can be used to permit a cycle of mutually referencing types and

tables. Consider mutually referencing tables named EMPLOYEE and DEPARTMENT.

The following sequence would allow the types and tables to be created.

 CREATE TYPE DEPT ...
 CREATE TYPE EMP ... (including attribute named DEPTREF of type REF(DEPT))
 ALTER TYPE DEPT ADD ATTRIBUTE MANAGER REF(EMP)
 CREATE TABLE DEPARTMENT OF DEPT ...
 CREATE TABLE EMPLOYEE OF EMP (DEPTREF WITH OPTIONS SCOPE DEPARTMENT)
 ALTER TABLE DEPARTMENT ALTER COLUMN MANAGER ADD SCOPE EMPLOYEE

The following sequence would allow these tables and types to be dropped.

 DROP TABLE EMPLOYEE (the MANAGER column in DEPARTMENT becomes unscoped)
 DROP TABLE DEPARTMENT
 ALTER TYPE DEPT DROP ATTRIBUTE MANAGER
 DROP TYPE EMP
 DROP TYPE DEPT

• Example 2: The ALTER TYPE statement can be used to create a type with an attribute that references a
subtype.

 CREATE TYPE EMP ...
 CREATE TYPE MGR UNDER EMP ...
 ALTER TYPE EMP ADD ATTRIBUTE MANAGER REF(MGR)

• Example 3: The ALTER TYPE statement can be used to add an attribute. The following statement adds
the SPECIAL attribute to the EMP type. Because the inline length was not specified on the original
CREATE TYPE statement, the inline length is recalculated by adding 13 (10 bytes for the new attribute +
attribute length + 2 bytes for a non-LOB attribute).

 ALTER TYPE EMP ...
 ADD ATTRIBUTE SPECIAL CHAR(1)

• Example 4: The ALTER TYPE statement can be used to add a method associated with a type. The
following statement adds a method called BONUS.

 ALTER TYPE EMP ...
 ADD METHOD BONUS (RATE DOUBLE)
 RETURNS INTEGER
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC

Note that the BONUS method cannot be used until a CREATE METHOD statement is issued to create
the method body. If it is assumed that type EMP includes an attribute called SALARY, then the following
example shows a method body definition.

 CREATE METHOD BONUS(RATE DOUBLE) FOR EMP
 RETURN CAST(SELF.SALARY * RATE AS INTEGER)

918 IBM Db2 V11.5: SQL Reference

ALTER USAGE LIST
The ALTER USAGE LIST statement alters the definition of a usage list.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following privileges:

• DBADM authority
• SQLADM authority

Syntax

ALTER USAGE LIST usage-list-name
1

LIST SIZE integer-value

WHEN FULL WRAP

DEACTIVATE

INACTIVE ON START DATABASE

ACTIVE ON START DATABASE

Notes:
1 The same clause cannot be specified more than once

Description
usage-list-name

Identifies the usage list to be altered. The usage-list-name must identify a usage list that exists at the
current server (SQLSTATE 42704).

LIST SIZE integer-value
Specifies that the size of this list is integer-value entries. The minimum size that can be specified is 10
and the maximum is 5000 (SQLSTATE 428B7).

WHEN FULL
Specifies the action to perform when an active usage list becomes full.
WRAP

Specifies that the usage list wraps and replaces the oldest entries.
DEACTIVATE

Specifies that the usage list deactivates.
INACTIVE ON START DATABASE

Specifies that the usage list is not activated for monitoring whenever the database is activated.
Collection must be explicitly started using the SET USAGE LIST statement.

ACTIVE ON START DATABASE
Specifies that the usage list is automatically activated for monitoring whenever the database is
activated. In a partitioned database environment or Db2 pureScale environment, the collection is
automatically started whenever the database member is activated.

Chapter 1. Structured Query Language (SQL) 919

Notes
• When changes take effect: If the current state of a usage list is active, then the alterations do not

take effect when the statement is processed or when the changes are committed. The changes to the
usage list take effect the next time the state of usage list is set to active. In a partitioned database
environment or Db2 pureScale environment, the alterations take effect the next time the usage list at a
member is activated.

ALTER USER MAPPING
The ALTER USER MAPPING statement is used to change the authorization ID or password that is used at a
data source for a specified federated server authorization ID.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
If the authorization ID of the statement is different from the authorization name that is mapped to the
data source, the privileges held by the authorization ID of the statement must include DBADM authority.
Otherwise, if the authorization ID and the authorization name match, no authorities or privileges are
required.

When altering a public user mapping, the privileges held by the authorization ID of the statement must
include DBADM authority.

Syntax
ALTER USER MAPPING FOR authorization-name

USER

PUBLIC

SERVER server-name

OPTIONS (

,

ADD

SET

um-option-name string-constant

DROP um-option-name

)

Description
authorization-name

Specifies the authorization name under which a user or application connects to a federated database.
USER

The value in the special register USER. When USER is specified, then the authorization ID of the ALTER
USER MAPPING statement will be mapped to the data source authorization ID that is specified in the
REMOTE_AUTHID user option.

PUBLIC
Specifies that any valid authorization ID for the local federated database will be mapped to the data
source authorization ID that is specified in the REMOTE_AUTHID user option.

SERVER server-name
Identifies the data source accessible under the remote authorization ID that maps to the local
authorization ID that's denoted by authorization-name or referenced by USER.

920 IBM Db2 V11.5: SQL Reference

OPTIONS
Indicates what user options are to be enabled, reset, or dropped for the mapping that is being altered.
ADD

Enables a new user option.
SET

Changes the setting of a user option.
um-option-name

The user mapping option that is to be added or reset. Which options you can specify depends on
the data source of the object for which a wrapper is being created. For a list of data sources and
the user mapping options that apply to each, see Data source options.

string-constant
The user-mapping option setting as a character string constant enclosed in single quotation
marks.

DROP um-option-name
Drops a user mapping option.

Notes
• A user option cannot be specified more than once in the same ALTER USER MAPPING statement

(SQLSTATE 42853). When a user option is enabled, reset, or dropped, any other user options that are in
use are not affected.

• An ALTER USER MAPPING statement within a given unit of work (UOW) cannot be processed (SQLSTATE
55007) if the UOW already includes one of the following items:

– A SELECT statement that references a nickname for a table or view at the data source that is to be
included in the mapping

– An open cursor on a nickname for a table or view at the data source that is to be included in the
mapping

– Either an INSERT, DELETE, or UPDATE issued against a nickname for a table or view at the data
source that is to be included in the mapping.

• Public user mappings and non-public user mappings cannot coexist on the same federated server. This
means that if you have created public user mappings, you will not be able to create non-public user
mappings on the same federated server. The reverse is also true, if you have created non-public user
mappings, you will not be able to create public user mappings on the same federated server.

Examples
1. Jim uses a local database to connect to an Oracle data source called ORACLE1. He accesses the local

database under the authorization ID KLEEWEIN; KLEEWEIN maps to CORONA, the authorization ID
under which he accesses ORACLE1. Jim is going to start accessing ORACLE1 under a new ID, JIMK. So
KLEEWEIN now needs to map to JIMK.

 ALTER USER MAPPING FOR KLEEWEIN
 SERVER ORACLE1
 OPTIONS (SET REMOTE_AUTHID 'JIMK')

2. Mary uses a federated database to connect to a Db2 for z/OS data source called DORADO. She uses
one authorization ID to access Db2 and another to access DORADO, and she has created a mapping
between these two IDs. She has been using the same password with both IDs, but now decides to use
a separate password, ZNYQ, with the ID for DORADO. Accordingly, she needs to map her federated
database password to ZNYQ.

 ALTER USER MAPPING FOR MARY
 SERVER DORADO
 OPTIONS (ADD REMOTE_PASSWORD 'ZNYQ')

Chapter 1. Structured Query Language (SQL) 921

ALTER VIEW
The ALTER VIEW statement modifies an existing view by altering a reference type column to add a scope.
The ALTER VIEW statement also enables or disables a view for use in query optimization.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTERIN privilege on the schema of the view
• Owner of the view to be altered
• CONTROL privilege on the view to be altered
• SCHEMAADM authority on the schema of the view
• DBADM authority

To enable or disable a view for use in query optimization, the privileges held by the authorization ID of the
statement must also include at least one of the following authorities for each of the tables or underlying
tables of views that are referenced in the FROM clause of the view fullselect:

• ALTER privilege on the table
• ALTERIN privilege on the schema of the table
• SCHEMAADM authority on the schema of the table
• DBADM authority

Syntax
ALTER VIEW view-name

ALTER
COLUMN

column-name ADD SCOPE typed-table-name

typed-view-name

ENABLE

DISABLE

QUERY OPTIMIZATION

Description
view-name

Specifies the view that is to be changed. It must be a view that is described in the catalog.
ALTER COLUMN column-name

Specifies the name of the column that is to be altered. The column-name must identify an existing
column of the view (SQLSTATE 42703). The name cannot be qualified.

ADD SCOPE
Adds a scope to an existing reference type column that does not already have a scope defined
(SQLSTATE 428DK). The column must not be inherited from a superview (SQLSTATE 428DJ).

922 IBM Db2 V11.5: SQL Reference

typed-table-name
Specifies the name of a typed table. The data type of column-name must be REF(S), where S is
the type of typed-table-name (SQLSTATE 428DM). No checking is done of any existing values in
column-name to ensure that the values actually reference existing rows in typed-table-name.

typed-view-name
Specifies the name of a typed view. The data type of column-name must be REF(S), where S is
the type of typed-view-name (SQLSTATE 428DM). No checking is done of any existing values in
column-name to ensure that the values actually reference existing rows in typed-view-name.

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether or not the view and any associated statistics are to be used to improve the
optimization of queries. DISABLE QUERY OPTIMIZATION is the default when a view is created.
ENABLE QUERY OPTIMIZATION

Specifies that the view includes statistics that can be used to improve the optimization of queries
that involve this view or queries that include subqueries similar to the fullselect of this view.

DISABLE QUERY OPTIMIZATION
Specifies that the view and any associated statistics are not to be used to improve the
optimization of queries.

Rules
• A view cannot be enabled for query optimization if:

– The view directly or indirectly references a materialized query table (MQT). Note that an MQT or
statistical view can reference a statistical view

– The view directly or indirectly references a catalog table.
– It is a typed view

Notes
• To be considered for optimizing a query, a view:

– Cannot contain an aggregation or distinct operation
– Cannot contain a union, except, or intersect operation
– Cannot contain an OLAP specification

• If a view is altered to disable query optimization, cached query plans that used the view for query
optimization are invalidated. If a view is altered to enable query optimization, cached query plans are
invalidated if they reference the same tables as the newly enabled view references, either directly
or indirectly through other views. The invalidation of these cached query plans results in implicit
revalidation that takes the view's changed query optimization property into account.

The query optimization property for a view has no impact on static embedded SQL statements.

ALTER WORK ACTION SET
The ALTER WORK ACTION SET statement alters a work action set by adding, altering, or dropping work
actions within the work action set.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Chapter 1. Structured Query Language (SQL) 923

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• SQLADM authority, only if every alteration clause is a COLLECT clause
• WLMADM authority
• DBADM authority

Syntax
ALTER WORK ACTION SET work-action-set-name

1

ADD work-action-definition

ALTER work-action-alteration

DROP
WORK ACTION

work-action-name
2

ENABLE

DISABLE

work-action-definition
WORK ACTION

work-action-name ON WORK CLASS work-class-name

action-types-clause histogram-template-clause
ENABLE

DISABLE

action-types-clause

MAP ACTIVITY
WITH NESTED

WITHOUT NESTED

TO service-subclass-name

WHEN threshold-predicate-clause threshold-exceeded-actions

PREVENT EXECUTION

COUNT ACTIVITY

COLLECT ACTIVITY DATA collect-activity-data-clause

COLLECT AGGREGATE ACTIVITY DATA
BASE

EXTENDED

threshold-predicate-clause

924 IBM Db2 V11.5: SQL Reference

3

CONCURRENTDBCOORDACTIVITIES > integer

AND QUEUEDACTIVITIES > integer

AND QUEUEDACTIVITIES UNBOUNDED

SQLTEMPSPACE > integer K

M

G

SQLROWSRETURNED > integer

ESTIMATEDSQLCOST > bigint

CPUTIME > integer-value HOUR

HOURS

MINUTE

MINUTES

CHECKING EVERY integer-value SECOND

SECONDS

SQLROWSREAD > bigint-value

CHECKING EVERY integer-value SECOND

SECONDS

SORTSHRHEAPUTIL > integer-value PERCENT

AND BLOCKING ADMISSION FOR > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

ACTIVITYTOTALTIME > integer DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

ACTIVITYTOTALRUNTIME > integer DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

threshold-exceeded-actions
COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA collect-activity-data-clause

STOP EXECUTION

CONTINUE

collect-activity-data-clause

Chapter 1. Structured Query Language (SQL) 925

ON COORDINATOR
MEMBER

ON ALL
MEMBERS

WITHOUT DETAILS

WITH

,

DETAILS
4

SECTION

INCLUDE ACTUALS BASE
5

AND VALUES

histogram-template-clause

●
ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

●

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

●

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

●

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

●

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

●

work-action-alteration

926 IBM Db2 V11.5: SQL Reference

WORK ACTION
work-action-name

6
SET WORK CLASS work-class-name

alter-action-types-clause

● ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name ●

● ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name ●

● ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name ●

● ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name ●

● ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name ●

ENABLE

DISABLE

alter-action-types-clause

MAP ACTIVITY
WITH NESTED

WITHOUT NESTED

TO service-subclass-name

WHEN threshold-predicate-clause PERFORM ACTION

alter-threshold-exceeded-actions

EXCEEDED alter-threshold-exceeded-actions

PREVENT EXECUTION

COUNT ACTIVITY

COLLECT ACTIVITY DATA alter-collect-activity-data-clause

COLLECT AGGREGATE ACTIVITY DATA
BASE

EXTENDED

alter-threshold-exceeded-actions

78

COLLECT ACTIVITY DATA alter-collect-activity-data-clause

NONE

STOP EXECUTION

CONTINUE

alter-collect-activity-data-clause

Chapter 1. Structured Query Language (SQL) 927

ON COORDINATOR
MEMBER

ON ALL
MEMBERS

WITHOUT DETAILS

WITH

,

DETAILS
9

SECTION

INCLUDE ACTUALS BASE

AND VALUES

Notes:
1 The ADD, ALTER, and DROP clauses are processed in the order in which they are specified.
2 The ENABLE or DISABLE clause can only be specified once in the same statement.
3 Only one work action of the same threshold type can be applied to a single work class at a time.
When altering a threshold work action, the threshold predicate cannot be changed.
4 The DETAILS keyword is the minimum to be specified, followed by the option separated by a comma.
5 This clause does not apply to thresholds.
6 The same clause must not be specified more than once.
7 The same clause must not be specified more than once.
8 If an existing work action does not have a threshold-exceeded action defined for it and it is being
altered to become a threshold work action, then either STOP EXECUTION or CONTINUE must be
specified, and if COLLECT ACTIVITY DATA is not specified, then COLLECT ACTIVITY DATA NONE is the
default.
9 The DETAILS keyword is the minimum to be specified, followed by the option separated by a comma.

Description
work-action-set-name

Identifies the work action set that is to be altered. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The work-action-set-name must identify a work action set that exists at
the current server (SQLSTATE 42704).

ADD
Adds a work action to the work action set.
WORK ACTION work-action-name

Names the work action. The work-action-name must not identify a work action that already exists
at the current server under this work action set (SQLSTATE 42710). The work-action-name cannot
begin with 'SYS' (SQLSTATE 42939).

ON WORK CLASS work-class-name
Specifies the work class that identifies the database activities to which this work action will apply.
The work-class-name must exist in the work-class-set-name at the current server (SQLSTATE
42704).

MAP ACTIVITY
Specifies a work action of mapping the activity. This action can only be specified if the object for
which this work action set is defined is a service superclass (SQLSTATE 5U034).
WITH NESTED or WITHOUT NESTED

Specifies whether or not activities that are nested under this activity are mapped to the
service subclass. The default is WITH NESTED.
WITH NESTED

All database activities that have a nesting level of zero that are classified under the work
class, and all database activities nested under this activity, are mapped to the service

928 IBM Db2 V11.5: SQL Reference

subclass; that is, activities with a nesting level greater than zero are run under the same
service class as activities with a nesting level of zero.

WITHOUT NESTED
Only database activities that have a nesting level of zero that are classified under the work
class are mapped to the service subclass. Database activities that are nested under this
activity are handled according to their activity type.

TO service-subclass-name
Specifies the service subclass to which activities are to be mapped. The service-
subclass-name must already exist in the service-superclass-name at the current server
(SQLSTATE 42704). The service-subclass-name cannot be the default service subclass,
SYSDEFAULTSUBCLASS (SQLSTATE 5U018).

WHEN
Specifies the threshold that will be applied to the database activity that is associated with the
work class for which this work action is defined. A threshold can only be specified if the database
manager object for which this work action set is defined is a database (SQLSTATE 5U034). None
of these thresholds apply to internal database activities initiated by the database manager or to
database activities generated by administrative SQL routines.
threshold-predicate-clause

For a description of valid threshold types, see the "CREATE THRESHOLD" statement.
threshold-exceeded-actions

For a description of valid threshold-exceeded actions, see the "CREATE THRESHOLD"
statement.

PREVENT EXECUTION
Specifies that none of the database activities associated with the work class for which this work
action is defined will be allowed to run (SQLSTATE 5U033).

COUNT ACTIVITY
Specifies that all of the database activities associated with the work class are to be run and that
each time one is run, the counter for the work class will be incremented.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with the work class for which this work action is
defined is to be sent to any active activities event monitor when the activity completes.
collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected at only the coordinator member of the
activity.

ON ALL MEMBERS
Specifies that the activity data is to be collected at all members on which the activity
is processed. For predictive thresholds, activity information is collected at all members
only if you also specify the CONTINUE action for exceeded thresholds. For reactive
thresholds, the ON ALL MEMBERS clause has no effect and activity information is always
collected only at the coordinator member. For both predictive and reactive thresholds, any
input data values, section information, or values will be collected only at the coordinator
member.

WITHOUT DETAILS
Specifies that data about each activity associated with the work class for which this work
action is defined should be sent to any active activities event monitor, when the activity
completes execution. Details about statement, compilation environment, and section
environment data are not sent.

Chapter 1. Structured Query Language (SQL) 929

WITH
DETAILS

Specifies that statement and compilation environment data is to be sent to any active
activities event monitor, for those activities that have them. Section environment data
is not sent.

SECTION
Specifies that statement, compilation environment and section environment data is
to be sent to any active activities event monitor for those activities that have them.
DETAILS must be specified if SECTION is specified.
INCLUDE ACTUALS BASE

Specifies that section actuals should also be collected on any partition where
the activity data is collected. For section actuals to be collected, either
INCLUDE ACTUALS clause must be specified or the section_actuals database
configuration parameter must be set.

The effective setting for the collection of section actuals is the
combination of the INCLUDE ACTUALS clause, the section_actuals database
configuration parameter, and the <collectsectionactuals> setting specified on
the WLM_SET_CONN_ENV routine. For example, if INCLUDE ACTUALS BASE is
specified, yet the section_actuals database configuration parameter value is
NONE and <collectsectionactuals> is set to NONE, then the effective setting for the
collection of section actuals is BASE.

BASE specifies that the following actuals should be enabled and collected during
the activity's execution:

• Basic operator cardinality counts
• Statistics for each object referenced (DML statements only)

AND VALUES
Specifies that input data values are to be sent to any active activities event monitor, for
those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that is associated with the
work class for which this work action is defined.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data is to be captured for activities that are associated with
the work class for which this work action is defined and sent to the statistics event monitor,
if one is active. This information is collected periodically on an interval that is specified by
the wlm_collect_int database configuration parameter. The default is COLLECT AGGREGATE
ACTIVITY DATA BASE. This clause cannot be specified for a work action defined in a work action
set that is applied to a database.
BASE

Specifies that basic aggregate activity data should be captured for activities associated with
the work class for which this work action is defined and sent to the statistics event monitor, if
one is active. Basic aggregate activity data includes:

• Estimated activity cost high watermark
• Rows returned high watermark
• Temporary table space usage high watermark. Only activities that have an SQLTEMPSPACE

threshold applied to them participate in this high watermark.
• Activity life time histogram
• Activity queue time histogram
• Activity execution time histogram

930 IBM Db2 V11.5: SQL Reference

EXTENDED
Specifies that all aggregate activity data should be captured for activities associated with the
work class for which this work action is defined and sent to the statistics event monitor, if one
is active. This includes all basic aggregate activity data plus:

• Activity data manipulation language (DML) estimated cost histogram
• Activity DML inter-arrival time histogram

ENABLE or DISABLE
Specifies whether or not the work action is to be considered when database activities are
submitted. The default is ENABLE.
ENABLE

Specifies that the work action is enabled and will be considered when database activities are
submitted.

DISABLE
Specifies that the work action is disabled and will not be considered when database activities
are submitted.

histogram-template-clause
Specifies histogram templates to use when collecting aggregate activity data for activities
associated with the work class to which this work action is assigned. Aggregate activity data is
only collected for the work class when the work action type is COLLECT AGGREGATE ACTIVITY
DATA.
ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical data about
the duration, in milliseconds, of database activities running during a specific interval. The
database activities are those associated with the work class to which this work action
is assigned. This time includes both time queued and time executing. The default is
SYSDEFAULTHISTOGRAM. This information is only collected when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database activities are queued during a specific interval.
The database activities are those associated with the work class to which this work action is
assigned. The default is SYSDEFAULTHISTOGRAM. This information is only collected when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or EXTENDED
option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about
the length of time, in milliseconds, that database activities are executing during a specific
interval. The database activities are those associated with the work class to which this work
action is assigned. This time does not include the time spent queued. Activity execution time
is collected in this histogram at each member where the activity executes. On the activity's
coordinator member, this is the end-to-end execution time (that is, the life time less the
time spent queued). On non-coordinator members, this is the time that these members
spend working on behalf of the activity. During the execution of a given activity, the database
manager might present work to a non-coordinator member more than once, and each time
the non-coordinator member will collect the execution time for that occurrence of the activity.
Therefore, the counts in the execution time histogram might not represent the actual number
of unique activities that executed on a member. The default is SYSDEFAULTHISTOGRAM.
This information is only collected when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified, with either the BASE or EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about
the estimated cost, in timerons, of DML activities associated with the work class to which
this work action is assigned. The default is SYSDEFAULTHISTOGRAM. This information is

Chapter 1. Structured Query Language (SQL) 931

only collected when the COLLECT AGGREGATE ACTIVITY DATA clause is specified with the
EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, between the arrival of one DML activity and the arrival of the
next DML activity, for any activity associated with the work class to which this work action is
assigned. The default is SYSDEFAULTHISTOGRAM. This information is only collected when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED option.

ALTER
Alters the definition of the work action. You can change the work class to which this work action
applies, and the action that is to be applied to the database activity that falls within the work class.
WORK ACTION work-action-name

Identifies the work action. The work-action-name must identify a work action that exists at the
current server under this work action set (SQLSTATE 42704).

SET WORK CLASS work-class-name
Specifies the work class that identifies the database activities to which this work action will apply.
The work-class-name must exist in the work-class-set-name at the current server (SQLSTATE
42704).

MAP ACTIVITY
Specifies a work action of mapping the activity. This action can only be specified if the object for
which this work action set is defined is a service superclass (SQLSTATE 5U034).
WITH NESTED or WITHOUT NESTED

Specifies whether or not activities that are nested under this activity are mapped to the
service subclass. The default is WITH NESTED.
WITH NESTED

All database activities that have a nesting level of zero that are classified under the work
class, and all database activities nested under this activity are mapped to the service
subclass.

WITHOUT NESTED
Only database activities that have a nesting level of zero that are classified under the work
class are mapped to the service subclass. Database activities that are nested under this
activity are handled according to their activity type.

TO service-subclass-name
Specifies the service subclass to which activities are to be mapped. The service-
subclass-name must already exist in the service-superclass-name at the current server
(SQLSTATE 42704). The service-subclass-name cannot be the default service subclass,
SYSDEFAULTSUBCLASS (SQLSTATE 5U018).

WHEN
Specifies the threshold to be altered for the database activity that is associated with the work
class for which this work action is defined.
threshold-predicate-clause

For a description of valid threshold types, see the "CREATE THRESHOLD" statement.
PERFORM ACTION

When altering the value of the threshold predicate condition, specifies that the threshold
exceeded action is not changed. The work action must be a threshold (SQLSTATE 42613).

alter-threshold-exceeded-actions
For a description of valid alter-threshold-exceeded-actions, see threshold-exceeded-actions
in the "CREATE THRESHOLD" statement.

EXCEEDED
Specifies to keep the same threshold predicate that was specified originally for this altered
threshold. The work action must be a threshold (SQLSTATE 42613).

932 IBM Db2 V11.5: SQL Reference

PREVENT EXECUTION
Specifies that none of the database activities associated with the work class for which this work
action is defined will be allowed to run (SQLSTATE 5U033).

COUNT ACTIVITY
Specifies that all of the database activities associated with the work class are to be run and that
each time one is run, the counter for the work class will be incremented.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with the work class for which this work action is
defined is to be sent to any active activities event monitor when the activity completes.
alter-collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected only at the coordinator member of the
activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the activity is
processed. On remote members, a record for the activity may be captured multiple times
as the activity comes and goes on those members. If the AND VALUES clause is specified,
activity input values will be collected only for the members of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that is associated with the work class for which
this work action is defined should be sent to any active activities event monitor when
the activity completes execution. Details about statement, compilation environment, and
section environment data are not sent.

WITH
DETAILS

Specifies that statement and compilation environment data is to be sent to any active
activities event monitor, for those activities that have them. Section environment data
is not sent.

SECTION
Specifies that statement, compilation environment, section environment data, and
section actuals are to be sent to any active activities event monitor for those activities
that have them. DETAILS must be specified if SECTION is specified. Section actuals
will be collected on any member where the activity data is collected.
INCLUDE ACTUALS BASE

Specifies that section actuals should also be collected on any partition where
the activity data is collected. For section actuals to be collected, either
INCLUDE ACTUALS clause must be specified or the section_actuals database
configuration parameter must be set.

The effective setting for the collection of section actuals is the
combination of the INCLUDE ACTUALS clause, the section_actuals database
configuration parameter, and the <collectsectionactuals> setting specified on
the WLM_SET_CONN_ENV routine. For example, if INCLUDE ACTUALS BASE is
specified, yet the section_actuals database configuration parameter value is
NONE and <collectsectionactuals> is set to NONE, then the effective setting for the
collection of section actuals is BASE.

BASE specifies that the following actuals should be enabled and collected during
the activity's execution:

• Basic operator cardinality counts
• Statistics for each object referenced (DML statements only)

Chapter 1. Structured Query Language (SQL) 933

AND VALUES
Specifies that input data values are to be sent to any active activities event monitor, for
those activities that have them.

NONE
Specifies that activity data should not be collected for each activity that is associated with the
work class for which this work action is defined.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data is to be captured for activities that are associated with
the work class for which this work action is defined and sent to the statistics event monitor,
if one is active. This information is collected periodically on an interval that is specified by
the wlm_collect_int database configuration parameter. The default is COLLECT AGGREGATE
ACTIVITY DATA BASE. This clause cannot be specified for a work action defined in a work action
set that is applied to a database.
BASE

Specifies that basic aggregate activity data should be captured for activities associated with
the work class for which this work action is defined and sent to the statistics event monitor, if
one is active. Basic aggregate activity data includes:

• Estimated activity cost high watermark
• Rows returned high watermark
• Temporary table space usage high watermark
• Activity life time histogram
• Activity queue time histogram
• Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data should be captured for activities associated with the
work class for which this work action is defined and sent to the statistics event monitor, if one
is active. This includes all basic aggregate activity data plus:

• Activity DML estimated cost histogram
• Activity DML inter-arrival time histogram

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
duration, in milliseconds, of database activities running during a specific interval. This time
includes both time queued and time executing. The database activities are those associated with
the work class to which this work action is assigned. The default is SYSDEFAULTHISTOGRAM. This
information is only collected when the COLLECT AGGREGATE ACTIVITY DATA clause is specified,
with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database activities are queued during a specific interval. The
database activities are those associated with the work class to which this work action is assigned.
The default is SYSDEFAULTHISTOGRAM. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database activities are executing during a specific interval. The
database activities are those associated with the work class to which this work action is assigned.
This time does not include the time spent queued. Activity execution time is collected in this
histogram at each member where the activity executes. On the activity's coordinator member,
this is the end-to-end execution time (that is, the life time less the time spent queued). On
non-coordinator members, this is the time that these members spend working on behalf of the
activity. During the execution of a given activity, the database manager might present work to a
non-coordinator member more than once, and each time the non-coordinator member will collect

934 IBM Db2 V11.5: SQL Reference

the execution time for that occurrence of the activity. Therefore, the counts in the execution time
histogram might not represent the actual number of unique activities that executed on a member.
The default is SYSDEFAULTHISTOGRAM. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
estimated cost, in timerons, of data manipulation language (DML) activities associated with the
work class to which this work action is assigned. The default is SYSDEFAULTHISTOGRAM. This
information is only collected when the COLLECT AGGREGATE ACTIVITY DATA clause is specified
with the EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, between the arrival of one DML activity and the arrival of the next
DML activity, for any activity associated with the work class to which this work action is assigned.
The default is SYSDEFAULTHISTOGRAM. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED option.

ENABLE or DISABLE
Specifies whether or not the work action is to be considered when database activities are
submitted.
ENABLE

Specifies that the work action is enabled and will be considered when database activities are
submitted.

DISABLE
Specifies that the work action is disabled and will not be considered when database activities
are submitted.

DROP work-action-name
Drops the work action from the work action set. The work-action-name must identify a work action
that exists at the current server under this work action set (SQLSTATE 42704).

A threshold created as part of a work action set cannot be manipulated directly. You must first
disable the work action in order to disable the threshold. You can then drop the work action once the
threshold is not being used. For more information, see "Dropping a work action" in the Db2 Workload
Management Guide and Reference.

ENABLE or DISABLE
Specifies whether or not the work action set is to be considered when database activities are
submitted.
ENABLE

Specifies that the work action set is enabled and will be considered when database activities are
submitted.

DISABLE
Specifies that the work action set is disabled and will not be considered when database activities
are submitted.

Rules
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (histogram template)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (service class)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (threshold)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (work action set)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (work class set)

Chapter 1. Structured Query Language (SQL) 935

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (workload)
– GRANT (workload privileges) or REVOKE (workload privileges)

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• Changes are written to the system catalog, but do not take effect until they are committed, even for the

connection that issues the statement.
• Thresholds with a queue, for example CONCURRENTDBCOORDACTIVITIES, must be disabled before

they can be dropped.
• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an

uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– DATABASE PARTITION can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– DATABASE PARTITIONS can be specified in place of MEMBERS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
• Example 1: Alter the DATABASE_ACTIONS work action set and add two work actions using the work

class LARGE_SELECTS. For the work action ONE_CONCURRENT_SELECT, apply a concurrency threshold
of 1 to control the number of activities that can run at one time, and allow a maximum of 3 to be
queued. For work action BIG_ROWS_RETURNED, limit the number of rows that can be returned by
database activities that fall within that class to 1 000 000.

 ALTER WORK ACTION SET DATABASE_ACTIONS
 ADD WORK ACTION ONE_CONCURRENT_SELECT ON WORK CLASS LARGE_SELECTS
 WHEN CONCURRENTDBCOORDACTIVITIES > 1
 AND QUEUEDACTIVITIES > 3 STOP EXECUTION
 ADD WORK ACTION BIG_ROWS_RETURNED ON WORK CLASS LARGE_SELECTS
 WHEN SQLROWSRETURNED > 1000000 STOP EXECUTION

• Example 2: Alter the ADMIN_APPS_ACTIONS work action set to alter the MAP_SELECTS work action
to map all activities that run in super service class ADMIN_APPS under the work class SELECT_CLASS
to the service subclass ALL_SELECTS. Also add a new work action called MAP_UPDATES that maps all
activities that would run in the work class UPDATE_CLASS to the service subclass ALL_SELECTS.

 ALTER WORK ACTION SET ADMIN_APPS_ACTIONS
 ALTER WORK ACTION MAP_SELECTS MAP ACTIVITY TO ALL_SELECTS
 ADD WORK ACTION MAP_UPDATES ON WORK CLASS UPDATE_CLASS
 MAP ACTIVITY TO ALL_SELECTS

ALTER WORK CLASS SET
The ALTER WORK CLASS SET statement adds, alters, or drops work classes within a work class set.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

936 IBM Db2 V11.5: SQL Reference

Authorization
The privileges held by the authorization ID of the statement must include WLMADM or DBADM authority.

Syntax
ALTER WORK CLASS SET work-class-set-name

1

ADD work-class-definition

ALTER work-class-alteration

DROP
WORK CLASS

work-class-name

work-class-definition
WORK CLASS

work-class-name work-attributes position-clause

work-attributes
WORK TYPE

READ

for-from-to-clause data-tag-clause

WRITE

for-from-to-clause data-tag-clause

CALL

schema-clause

DML

for-from-to-clause data-tag-clause

DDL

LOAD

ALL

for-from-to-clause schema-clause data-tag-clause

for-from-to-clause

FOR TIMERONCOST

CARDINALITY

FROM from-value
TO UNBOUNDED

TO to-value

data-tag-clause
DATA TAG LIST CONTAINS  integer-constant

schema-clause
ROUTINES IN SCHEMA schema-name

position-clause

Chapter 1. Structured Query Language (SQL) 937

POSITION LAST

POSITION BEFORE work-class-name

POSITION AFTER work-class-name

POSITION AT integer

work-class-alteration

WORK CLASS
work-class-name

2
for-from-to-alter-clause

schema-alter-clause

data-tag-alter-clause

position-clause

for-from-to-alter-clause

FOR TIMERONCOST

CARDINALITY

FROM from-value
TO UNBOUNDED

TO to-value

ALL UNITS UNBOUNDED

schema-alter-clause
ROUTINES IN SCHEMA schema-name

ALL

data-tag-alter-clause
DATA TAG LIST CONTAINS integer-constant

ANY

Notes:
1 The ADD, ALTER, and DROP clauses are processed in the order in which they are specified.
2 The same clause must not be specified more than once.

Description
work-class-set-name

Identifies the work class set that is to be altered. This is a one-part name. It is an SQL identifier
(either ordinary or delimited). The work-class-set-name must identify a work class set that exists at
the current server (SQLSTATE 42704).

ADD
Adds a work class to the work class set. For details, see "CREATE WORK CLASS SET".

ALTER
Alters the database activity attributes and the position of a specific work class within the work class
set.
WORK CLASS work-class-name

Identifies the work class to be altered. The work-class-name must identify a work class that exists
within the work class set at the current server (SQLSTATE 42704).

DROP
Drops the work class from the work class set.
WORK CLASS work-class-name

Identifies the work class to be dropped. The work-class-name must identify a work class that
exists within the work class set at the current server (SQLSTATE 42704). A work class cannot be

938 IBM Db2 V11.5: SQL Reference

dropped if there is a work action in any of the work action sets associated with this work class set
that is dependent on it (SQLSTATE 42893).

for-to-from-alter-clause
FOR

Indicates the type of information that is being specified in the FROM from-value TO to-value
clause. The FOR clause is only used for the following work types:

• ALL
• DML
• READ
• WRITE

TIMERONCOST
The estimated cost of the work, in timerons. This value is used to determine whether the work
falls within the range specified in the FROM from-value TO to-value clause.

CARDINALITY
The estimated cardinality of the work. This value is used to determine whether the work falls
within the range specified in the FROM from-value TO to-value clause.

FROM from-value TO UNBOUNDED or FROM from-value TO to-value
Specifies the range of either timeron value (for estimated cost) or cardinality within which
the database activity must fall if it is to be part of this work class. The range is inclusive of
from-value and to-value. This range is only used for the following work types:

• ALL
• DML
• READ
• WRITE

FROM from-value TO UNBOUNDED
The from-value must be zero or a positive DOUBLE value (SQLSTATE 5U019). The range
has no upper bound.

FROM from-value TO to-value
The from-value must be zero or a positive DOUBLE value and the to-value must be a
positive DOUBLE value. The from-value must be smaller than or equal to the to-value
(SQLSTATE 5U019).

ALL UNITS UNBOUNDED
Indicates that no range is to be specified in the FROM from-value TO to-value clause, and that
all work that falls within the specified work type is to be included.

schema-alter-clause
ROUTINES

This clause is only used if the work type is CALL or ALL and the database activity is a CALL
statement.
IN SCHEMA schema-name

Specifies the schema name of the procedure that the CALL statement will be calling.
ALL

Specifies that all schemas are included.
data-tag-alter-clause

DATA TAG LIST CONTAINS integer-constant
Specifies the value of the tag given to any data which the database activity might touch if it is
to be part of this work class. If the clause is not specified for the work class, all work that falls
within the specified work type, regardless of what data it might touch, will be included (that is,
the default is to ignore the data tag). This clause is used only if the work type is READ, WRITE,

Chapter 1. Structured Query Language (SQL) 939

DML, or ALL and the database activity is a DML statement. Valid values for integer-constant are
integers from 1 to 9.

DATA TAG LIST CONTAINS ANY
Indicates that any data tag setting, including no data tag, is valid for the work class. All work
that falls within the specified work type is to be included, regardless of the data tag.

position-clause
POSITION

Specifies where this work class is to be placed within the work class set, which determines
the order in which work classes are evaluated. When performing work class assignment at run
time, the database manager first determines the work class set that is associated with the
object, either the database or a service superclass. The first matching work class within that
work class set is then selected. If this keyword is not specified, the work class is placed in the
last position.
LAST

Specifies that the work class is to be placed last in the ordered list of work classes within
the work class set.

BEFORE work-class-name
Specifies that the work class is to be placed before work class work-class-name in the list.
The work-class-name must identify a work class in the work class set that exists at the
current server (SQLSTATE 42704).

AFTER work-class-name
Specifies that the work class is to be placed after work class work-class-name in the list.
The work-class-name must identify a work class in the work class set that exists at the
current server (SQLSTATE 42704).

AT position
Specifies the absolute position at which the work class is to be placed within the work
class set in the ordered list of work classes. This value can be any positive integer (not
zero) (SQLSTATE 42615). If position is greater than the number of existing work classes
plus one, the work class is placed at the last position within the work class set.

Rules
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• Changes are written to the system catalog, but do not take effect until they are committed, even for the

connection that issues the statement.
• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an

uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

940 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: Alter work class set LARGE_QUERIES and set the two existing work classes to have each

range starting at 100 000, keeping the range unbounded. Add a third work class for all SELECT
statements that have an estimated timeron cost greater than or equal to 10 000, and position this
work class to take priority over the existing two work classes.

 ALTER WORK CLASS SET LARGE_QUERIES
 ALTER WORK CLASS LARGE_ESTIMATED_COST
 FOR TIMERONCOST FROM 100000 TO UNBOUNDED
 ALTER WORK CLASS LARGE_CARDINALITY
 FOR CARDINALITY FROM 100000 TO UNBOUNDED
 ADD WORK CLASS LARGE_SELECTS WORK TYPE READ
 FOR TIMERONCOST FROM 10000 TO UNBOUNDED POSITION AT 1

• Example 2: Alter a work class set named DML_STATEMENTS to add a work class that represents all DML
SELECT statements that contain a DELETE, INSERT, MERGE, or UPDATE statement.

 ALTER WORK CLASS SET DML_STATEMENTS
 ADD WORK CLASS UPDATE_CLASS WORK TYPE WRITE

ALTER WORKLOAD
The ALTER WORKLOAD statement alters a workload.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• SQLADM authority, only if every alteration clause is a COLLECT clause
• WLMADM authority
• DBADM authority

To specify any clause other than a COLLECT clause, the authorization ID of the statement must include
DBADM or WLMADM authority.

Chapter 1. Structured Query Language (SQL) 941

Syntax
ALTER WORKLOAD workload-name

1

ADD connection-attributes

DROP connection-attributes

ALLOW DB ACCESS

DISALLOW DB ACCESS

ENABLE

DISABLE

MAXIMUM DEGREE DEFAULT

MAXIMUM DEGREE degree

SERVICE CLASS service-class-name

UNDER service-superclass-name

POSITION LAST

BEFORE workload-name

AFTER workload-name

AT position

PRIORITY CRITICAL

HIGH

MEDIUM

LOW

COLLECT ACTIVITY DATA alter-collect-activity-data-clause

NONE

COLLECT ACTIVITY METRICS
BASE

NONE

EXTENDED

COLLECT AGGREGATE ACTIVITY DATA
BASE

EXTENDED

NONE

COLLECT AGGREGATE UNIT OF WORK DATA
BASE

NONE

COLLECT LOCK TIMEOUT DATA alter-collect-history-clause

NONE

COLLECT DEADLOCK DATA alter-collect-history-clause

COLLECT LOCK WAIT DATA alter-collect-lock-wait-data-clause

NONE

COLLECT UNIT OF WORK DATA
BASE

BASE

INCLUDE

,

PACKAGE LIST

EXECUTABLE LIST

NONE

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

UOW LIFETIME HISTOGRAM TEMPLATE template-name

connection-attributes

942 IBM Db2 V11.5: SQL Reference

2
ADDRESS ('address-value')

APPLNAME ('application-name')

SYSTEM_USER ('authorization-name')

SESSION_USER ('authorization-name')

SESSION_USER GROUP ('authorization-name')

SESSION_USER ROLE ('authorization-name')

CURRENT CLIENT_USERID ('user-id')

CURRENT CLIENT_APPLNAME ('client-application-name')

CURRENT CLIENT_WRKSTNNAME ('workstation-name')

CURRENT CLIENT_ACCTNG ('accounting-string')

alter-collect-activity-data-clause

ON COORDINATOR
MEMBER

ON ALL
MEMBERS

WITHOUT DETAILS

WITH

,

DETAILS
3

SECTION

INCLUDE ACTUALS BASE

AND VALUES

alter-collect-history-clause
WITHOUT HISTORY

WITH HISTORY

AND VALUES

alter-collect-lock-wait-data-clause

Chapter 1. Structured Query Language (SQL) 943

● FOR LOCKS WAITING MORE THAN wait-time SECONDS

MICROSECONDS

1 SECOND

●

alter-collect-history-clause ●

Notes:
1 The same clause must not be specified more than once.
2 Each connection attribute clause can only be specified once.
3 The DETAILS keyword is the minimum to be specified, followed by the option separated by a comma.

Description
workload-name

Identifies the workload that is to be altered. This is a one-part name. It is an SQL identifier (either
ordinary or delimited). The workload-name must identify a workload that exists at the current server
(SQLSTATE 42704).

ADD connection-attributes
Adds one or more connection attribute values to the definition of the workload. Each specified
connection attribute value must not already be defined for the workload (SQLSTATE 5U039).
The ADD option cannot be specified if workload-name is 'SYSDEFAULTUSERWORKLOAD' or
'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

DROP connection-attributes
Drops one or more connection attribute values from the definition of the workload. Each
specified connection attribute value must be defined for the workload (SQLSTATE 5U040).
The DROP option cannot be specified if workload-name is 'SYSDEFAULTUSERWORKLOAD' or
'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832). There must be at least one defined connection
attribute value. The last connection attribute value cannot be dropped (SQLSTATE 5U022).

connection-attributes
Specifies connection attribute values for the workload. All connection attributes are case sensitive,
except for ADDRESS.
ADDRESS ('address-value', ...)

Specifies one or more IPv4 addresses, IPv6 addresses, or secure domain names for the ADDRESS
connection attribute. An address value cannot appear more than once in the list (SQLSTATE
42713). The only supported protocol is TCP/IP. Each address value must be an IPv4 address, an
IPv6 address, or a secure domain name.

An IPv4 address must not contain leading spaces and is represented as a dotted decimal
address. An example of an IPv4 address is 9.112.46.111. The value localhost or its
equivalent representation 127.0.0.1 will not result in a match; the real IPv4 address
of the host must be specified instead. An IPv6 address must not contain leading
spaces and is represented as a colon hexadecimal address. An example of an IPv6
address is 2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6 addresses
(::ffff:192.0.2.128, for example) will not result in a match. Similarly, localhost or its IPv6
short representation ::1 will not result in a match. A domain name is converted to an IP address
by the domain name server where a resulting IPv4 or IPv6 address is determined. An example
of a domain name is corona.torolab.ibm.com. When a domain name is converted to an IP
address, the result of this conversion could be a set of one or more IP addresses. In this case, an
incoming connection is said to match the ADDRESS attribute of a workload object if the IP address
from which the connection originates matches any of the IP addresses to which the domain name
was converted.

When creating a workload object, you should specify domain name values for the ADDRESS
attribute instead of static IP addresses, particularly in Dynamic Host Configuration Protocol
(DHCP) environments where a device can have a different IP address each time it connects to
the network.

944 IBM Db2 V11.5: SQL Reference

APPLNAME ('application-name', ...)
Specifies one or more applications for the APPLNAME connection attribute. An application name
cannot appear more than once in the list (SQLSTATE 42713). If application-name does not contain
a single asterisk character (*), is equivalent to the value shown in the "Application name" field in
system monitor output and in output from the LIST APPLICATIONS command. If application-name
does contain a single asterisk character (*), the value is used as an expression to represent a set
of application names, where the asterisk (*) represents a string of zero or more characters. If the
expression needs to include an asterisk character in the application name, use a sequence of two
asterisk characters (**).

SYSTEM_USER ('authorization-name', ...)
Specifies one or more authorization IDs for the SYSTEM USER connection attribute. An
authorization ID cannot appear more than once in the list (SQLSTATE 42713).

SESSION_USER ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION USER connection attribute. An
authorization ID cannot appear more than once in the list (SQLSTATE 42713).

SESSION_USER GROUP ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION_USER GROUP connection attribute. An
authorization ID cannot appear more than once in the list (SQLSTATE 42713).

SESSION_USER ROLE ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION_USER ROLE connection attribute. The
roles of a session authorization ID in this context refer to all the roles that are available to the
session authorization ID, regardless of how the roles were obtained. An authorization ID cannot
appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_USERID ('user-id', ...)
Specifies one or more client user IDs for the CURRENT CLIENT_USERID connection attribute. A
client user ID cannot appear more than once in the list (SQLSTATE 42713). If user-id contains a
single asterisk character (*), the value is used as an expression to represent a set of user IDs,
where the asterisk (*) represents a string of zero or more characters. If the expression needs to
include an asterisk character in the user ID, use a sequence of two asterisk characters (**).

CURRENT CLIENT_APPLNAME ('client-application-name', ...)
Specifies one or more applications for the CURRENT CLIENT_APPLNAME connection attribute.
An application name cannot appear more than once in the list (SQLSTATE 42713). If client-
application-name does not contain a single asterisk character (*), is equivalent to the value shown
in the "TP Monitor client application name" field in system monitor output. If client-application-
name does contain a single asterisk character (*), the value is used as an expression to represent
a set of application names, where the asterisk (*) represents a string of zero or more characters. If
the expression needs to include an asterisk character in the application name, use a sequence of
two asterisk characters (**).

CURRENT CLIENT_WRKSTNNAME ('workstation-name', ...)
Specifies one or more client workstation names for the CURRENT CLIENT_WRKSTNNAME
connection attribute. A client workstation name cannot appear more than once in the list
(SQLSTATE 42713). If workstation-name contains a single asterisk character (*), the value is used
as an expression to represent a set of workstation names, where the asterisk (*) represents a
string of zero or more characters. If the expression needs to include an asterisk character in the
workstation name, use a sequence of two asterisk characters (**).

CURRENT CLIENT_ACCTNG ('accounting-string', ...)
Specifies one or more client accounting strings for the CURRENT CLIENT_ACCTNG connection
attribute. A client accounting string cannot appear more than once in the list (SQLSTATE 42713).
If accounting-string contains a single asterisk character (*), the value is used as an expression to
represent a set of accounting strings, where the asterisk (*) represents a string of zero or more
characters. If the expression needs to include an asterisk character in the accounting string, use a
sequence of two asterisk characters (**).

Chapter 1. Structured Query Language (SQL) 945

ALLOW DB ACCESS or DISALLOW DB ACCESS
Specifies whether or not a workload occurrence associated with this workload is allowed access to
the database.
ALLOW DB ACCESS

Specifies that workload occurrences associated with this workload are allowed access to the
database.

DISALLOW DB ACCESS
Specifies that workload occurrences associated with this workload are not allowed access to the
database. The next unit of work associated with this workload will be rejected (SQLSTATE 5U020).
Workload occurrences that are already running are allowed to complete. This option cannot be
specified if workload-name is 'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

ENABLE or DISABLE
Specifies whether or not this workload will be considered when a workload is chosen.
ENABLE

Specifies that the workload is enabled and will be considered when a workload is chosen.
DISABLE

Specifies that the workload is disabled and will not be considered when a workload is
chosen. This option cannot be specified if workload-name is SYSDEFAULTUSERWORKLOAD or
SYSDEFAULTADMWORKLOAD (SQLSTATE 42832).

MAXIMUM DEGREE
Specifies the maximum runtime degree of parallelism for this workload. The MAXIMUM DEGREE
attribute can not be altered if workload-name is SYSDEFAULTADMWORKLOAD.
DEFAULT

If DB2_WORKLOAD=ANALYTICS, this setting enables intrapartition parallelism for this workload.
Otherwise, this setting specifies that this workload inherits the intrapartition parallelism setting
from the database manager configuration parameter intra_parallel. When intra_parallel
is set to NO, this workload runs with intrapartition parallelism disabled. When intra_parallel
is set to YES, this workload runs with intrapartition parallelism enabled. This workload does
not specify a maximum runtime degree for assigned applications. Therefore, the actual runtime
degree is determined as the lower of the value of max_querydegree configuration parameter,
the MAXIMUM DEGREE set on the query service class, the value set by SET RUNTIME DEGREE
command, and the SQL statement compilation degree.

degree
Specifies the maximum degree of parallelism for this workload. Valid values are 1 to 32,767.
With value 1, the associated requests run with intrapartition parallelism disabled. With value 2 to
32,767, the associated requests run with intrapartition parallelism enabled. The actual runtime
degree is determined as the lower of this degree, the value of max_querydegree configuration
parameter, the MAXIMUM DEGREE set on the query service class, the value set by SET RUNTIME
DEGREE command and the SQL statement compilation degree.

SERVICE CLASS service-class-name
Specifies that requests associated with this workload are to be executed in the service class
service-class-name. The service-class-name must identify a service class that exists at the
current server (SQLSTATE 42704). The service-class-name cannot be 'SYSDEFAULTSUBCLASS',
'SYSDEFAULTSYSTEMCLASS', or 'SYSDEFAULTMAINTENANCECLASS' (SQLSTATE 5U032). This option
cannot be specified if workload-name is 'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).
UNDER service-superclass-name

This clause is used when specifying a service subclass. The service-superclass-name identifies
the service superclass of service-class-name. The service-superclass-name must identify a
service superclass that exists at the current server (SQLSTATE 42704). The service-superclass-
name cannot be 'SYSDEFAULTSYSTEMCLASS' or 'SYSDEFAULTMAINTENANCECLASS' (SQLSTATE
5U032).

946 IBM Db2 V11.5: SQL Reference

POSITION
Specifies where this workload is to be placed within the ordered list of workloads. At run
time, this list is searched in order for the first workload that matches the required connection
attributes. This option cannot be specified if workload-name is 'SYSDEFAULTUSERWORKLOAD' or
'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).
LAST

Specifies that the workload is to be last in the list, before the default workloads
SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD.

BEFORE relative-workload-name
Specifies that the workload is to be placed before workload relative-workload-name in the
list. The relative-workload-name must identify a workload that exists at the current server
(SQLSTATE 42704). The BEFORE option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD' or 'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

AFTER relative-workload-name
Specifies that the workload is to be placed after workload relative-workload-name in the
list. The relative-workload-name must identify a workload that exists at the current server
(SQLSTATE 42704). The AFTER option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD' or 'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

AT position
Specifies the absolute position at which the workload is to be placed in the list. This value
can be any positive integer (not zero) (SQLSTATE 42615). If position is greater than the
number of existing workloads plus one, the workload is placed at the last position, just before
SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD.

PRIORITY
Specifies the priority of the work from this workload compared to that of the work in other workloads
in the same service superclass. Within a service superclass priority is used to prioritize more
important jobs over less important jobs. Work scheduling across superclasses does not use the
priority for scheduling, but instead uses only resource-based scheduling.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with this workload is to be sent to any active
activities event monitor when the activity completes.
alter-collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that activity data is to be collected only at the coordinator member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the activity is processed.
On remote members, a record for the activity may be captured multiple times as the activity
comes and goes on those members. If the AND VALUES clause is specified, activity input
values will be collected only for the members of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that is associated with this workload is to be sent
to any active activities event monitor, when the activity completes execution. Details about
statement, compilation environment, and section environment data are not sent.

WITH
DETAILS

Specifies that statement and compilation environment data is to be sent to any active
activities event monitor, for those activities that have them. Section environment data is
not sent.

SECTION
Specifies that statement, compilation environment, section environment data, and section
actuals are to be sent to any active activities event monitor for those activities that have
them. DETAILS must be specified if SECTION is specified. Section actuals will be collected
on any member where the activity data is collected.

Chapter 1. Structured Query Language (SQL) 947

INCLUDE ACTUALS BASE
Specifies that section actuals should also be collected on any partition where the
activity data is collected. For section actuals to be collected, either INCLUDE ACTUALS
clause must be specified or the section_actuals database configuration parameter
must be set.

The effective setting for the collection of section actuals is the combination of the
INCLUDE ACTUALS clause, the section_actuals database configuration parameter,
and the <collectsectionactuals> setting specified on the WLM_SET_CONN_ENV
routine. For example, if INCLUDE ACTUALS BASE is specified, yet the
section_actuals database configuration parameter value is NONE and
<collectsectionactuals> is set to NONE, then the effective setting for the collection
of section actuals is BASE.

BASE specifies that the following actuals should be enabled and collected during the
activity's execution:

• Basic operator cardinality counts
• Statistics for each object referenced (DML statements only)

AND VALUES
Specifies that input data values are to be sent to any active activities event monitor,
for those activities that have them. This data does not include SQL statements that are
compiled by using the REOPT ALWAYS bind option.

NONE
Specifies that activity data is not collected for each activity that is associated with this workload.

COLLECT ACTIVITY METRICS
Specifies that monitor metrics should be collected for an activity submitted by an occurrence of the
workload. The default is COLLECT ACTIVITY METRICS NONE.

The effective activity metrics collection setting is the combination of the attribute specified
by the COLLECT ACTIVITY METRICS clause on the workload submitting the activity, and the
MON_ACT_METRICS database configuration parameter. If either the workload attribute or the
configuration parameter has a value other than NONE, metrics will be collected for the activity.

NONE
Specifies that no metrics will be collected for any activity submitted by an occurrence of the
workload.

BASE
Specifies that basic metrics will be collected for any activity submitted by an occurrence of the
workload.

EXTENDED
Specifies that basic metrics will be collected for any activity submitted by an occurrence of the
workload. In addition, specifies that the values for the following monitor elements should be
determined with additional granularity:

• total_section_time
• total_section_proc_time
• total_routine_user_code_time
• total_routine_user_code_proc_time
• total_routine_time

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data about the activities associated with this workload is to be sent
to the statistics event monitor, if one is active. This information is collected periodically on an interval
that is specified by the wlm_collect_int database configuration parameter. The default when
COLLECT AGGREGATE ACTIVITY DATA is specified is COLLECT AGGREGATE ACTIVITY DATA BASE.

948 IBM Db2 V11.5: SQL Reference

BASE
Specifies that basic aggregate activity data about the activities associated with this workload is to
be sent to the statistics event monitor, if one is active. Basic aggregate activity data includes:

• Estimated activity cost high watermark
• Rows returned high watermark
• Temporary table space usage high watermark. Only activities that have an SQLTEMPSPACE

threshold applied to them participate in this high watermark.
• Activity life time histogram
• Activity queue time histogram
• Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data about the activities associated with this workload is to be
sent to the statistics event monitor, if one is active. This includes all basic aggregate activity data
plus:

• Activity data manipulation language (DML) estimated cost histogram
• Activity DML inter-arrival time histogram

NONE
Specifies that no aggregate activity data is to be collected for this workload.

COLLECT AGGREGATE UNIT OF WORK DATA
Specifies that aggregate unit of work data about the units of work associated with this workload is to
be sent to the statistics event monitor, if one is active. This information is collected periodically on
an interval that is specified by the wlm_collect_int database configuration parameter. The default,
when COLLECT AGGREGATE UNIT OF WORK DATA is specified, is COLLECT AGGREGATE UNIT OF
WORK DATA BASE.
BASE

Specifies that basic aggregate unit of work data about the units of work associated with this
workload is to be sent to the statistics event monitor, if one is active. Basic aggregate unit of work
data includes:

• Unit of work lifetime histogram

NONE
Specifies that no aggregate unit of work data is to be collected for this workload.

COLLECT LOCK TIMEOUT DATA
Specifies that data about lock timeout events that occur within this workload is sent to any active
locking event monitor when the lock event occurs. The lock timeout data is collected on all members.
This setting works in conjunction with the MON_LOCKTIMEOUT database configuration setting. The
setting that produces the most detailed output is honored.
alter-collect-history-clause

WITHOUT HISTORY
Specifies that data about lock events that occur within this workload is sent to any active
locking event monitor when the lock event occurs. Past activity history and input values are
not sent to the event monitor.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for all of this type of lock
events. The activity history buffer will wrap after the maximum size limit is used.

The default limit on the number of past activities to be kept by any one application is 250. If
the number of past activities is greater than the limit, only the newest activities are reported.
This default value can be overridden using the registry variable DB2_MAX_INACT_STMTS to
specify a different value. You can choose a different value for the limit to increase or reduce
the amount of system monitor heap used for past activity information.

Chapter 1. Structured Query Language (SQL) 949

AND VALUES
Specifies that input data values are to be sent to any active locking event monitor for those
activities that have them. These data values will not include LOB data, LONG VARCHAR
data, LONG VARGRAPHIC data, structured type data, or XML data. For SQL statements
compiled using the REOPT ALWAYS bind option, there will be no REOPT compilation or
statement execution data values provided in the event information.

NONE
Specifies that lock timeout data for the workload is not collected at any member.

COLLECT DEADLOCK DATA
Specifies that data about deadlock events that occur within this workload is sent to any active locking
event monitor when the lock event occurs. The deadlock data is collected on all members. This setting
is only honored if the MON_DEADLOCK database configuration parameter is not set to NONE.
alter-collect-history-clause

WITHOUT HISTORY
Specifies that data about lock events that occur within this workload is sent to any active
locking event monitor when the lock event occurs. Past activity history and input values are
not sent to the event monitor.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for all of these type of lock
events. The activity history buffer will wrap after the maximum size limit is used.

The default limit on the number of past activities to be kept by any one application is 250. If
the number of past activities is greater than the limit, only the newest activities are reported.
This default value can be overridden using the registry variable DB2_MAX_INACT_STMTS to
specify a different value. You can choose a different value for the limit to increase or reduce
the amount of system monitor heap used for past activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking event monitor for those
activities that have them. These data values will not include LOB data, LONG VARCHAR
data, LONG VARGRAPHIC data, structured type data, or XML data. For SQL statements
compiled using the REOPT ALWAYS bind option, there will be no REOPT compilation or
statement execution data values provided in the event information.

COLLECT LOCK WAIT DATA
Specifies that data about lock wait events that occur within this workload is sent to any active locking
even monitor when the lock has not been acquired within wait-time. This setting works in conjunction
with the mon_lockwait and mon_lw_thresh database configuration parameters. The setting that
produces the most detailed output is honored.
alter-collect-lock-wait-data-clause

FOR LOCKS WAITING MORE THAN wait-time SECONDS | MICROSECONDS) | 1 SECOND
Specifies that data about lock wait events that occur within this workload is sent to the
applicable event monitor when the lock has not been acquired within wait-time.

This value can be any non-negative integer. Use a valid duration keyword to specify an
appropriate unit of time for wait-time. The minimum valid value for the wait-time parameter is
1000 microseconds.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for all of this type of lock
events. The activity history buffer will wrap after the maximum size limit is used.

The default limit on the number of past activities to be kept by any one application is 250. If
the number of past activities is greater than the limit, only the newest activities are reported.
This default value can be overridden using the registry variable DB2_MAX_INACT_STMTS to
specify a different value. You can choose a different value for the limit to increase or reduce
the amount of system monitor heap used for past activity information.

950 IBM Db2 V11.5: SQL Reference

AND VALUES
Specifies that input data values are to be sent to any active locking event monitor for those
activities that have them. These data values will not include LOB data, LONG VARCHAR
data, LONG VARGRAPHIC data, structured type data, or XML data. For SQL statements
compiled using the REOPT ALWAYS bind option, there will be no REOPT compilation or
statement execution data values provided in the event information.

NONE
Specifies that the lock wait event for the workload is not collected at any member.

COLLECT UNIT OF WORK DATA
Specifies that data about each unit of work, also referred to as a transaction, associated with this
workload is to be sent to the unit of work event monitors, if any have been created, when the
unit of work ends. The default is COLLECT UNIT OF WORK BASE. If the mon_uow_data database
configuration parameter is set to BASE, it takes precedence over the COLLECT UNIT OF WORK DATA
parameter. A value of NONE for the mon_uow_data indicates that the COLLECT UNIT OF WORK DATA
parameters of individual workloads is used.
BASE

Specifies that the base level of data for transactions, associated with this workload, is sent to the
unit of work event monitors.

Some of the information reported in a unit of work event are system level request metrics. The
collection of these metrics is controlled independently from the collection of the unit of work data.
The request metrics are controlled with the COLLECT REQUEST METRICS clause on superclass,
or using the mon_req_metrics database configuration parameter. The service super class which
the workload is associated with, or the service super class of the service subclass which the
workload is associated with, must have the collection of request metrics enabled in order for the
request metrics to be present in the unit of work event. If the request metrics collection is not
enabled, the value of the request metrics will be zero.

INCLUDE PACKAGE LIST
Specifies that base level of data and the package list for transactions associated with this
workload are sent to the unit of work event monitor.

The size of the collected package list is determined by the value of the mon_pkglist_sz
database configuration parameter. If this value is 0, then the package list is not collected even
if the PACKAGE LIST option is specified.

In a partitioned database environment, the package list is only available on the coordinator
member. The BASE level will be collected on remote members.

Some of the information reported in a unit of work event are system level request metrics. The
collection of these metrics is controlled independently from the collection of the unit of work data.
The request metrics are controlled with the COLLECT REQUEST METRICS clause on superclass,
or using the mon_req_metrics database configuration parameter. The service super class which
the workload is associated with, or the service super class of the service subclass which the
workload is associated with, must have the collection of request metrics enabled in order for the
request metrics to be present in the unit of work event. If the request metrics collection is not
enabled, the value of the request metrics will be zero.

INCLUDE EXECUTABLE LIST
Specifies that executable ID list will be collected for a unit of work together with base level of data
and sent to the unit of work event monitor.

NONE
Specifies that no unit of work data for transactions associated with this workload is sent to the
unit of work event monitor.

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the duration,
in milliseconds, of database activities running in the workload during a specific interval. This time

Chapter 1. Structured Query Language (SQL) 951

includes both time queued and time executing. This information is collected only when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the length
of time, in milliseconds, that database activities running in the workload are queued during a specific
interval. This information is collected only when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified, with either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the length of
time, in milliseconds, that database activities running in the workload are executing during a specific
interval. This time does not include the time spent queued. Activity execution time is collected in this
histogram at the coordinator member only. The time does not include idle time. Idle time is the time
between the execution of requests belonging to the same activity when no work is being done. An
example of idle time is the time between the end of opening a cursor and the start of fetching from
that cursor. This information is collected only when the COLLECT AGGREGATE ACTIVITY DATA clause
is specified, with either the BASE or EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
estimated cost, in timerons, of DML activities running in the workload. This information is collected
only when the COLLECT AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the length
of time, in milliseconds, between the arrival of one DML activity into this workload and the arrival
of the next DML activity into this workload. This information is collected only when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED option.

UOW LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the duration,
in milliseconds, of units of work running in the workload during a specific interval. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the COLLECT AGGREGATE UNIT OF
WORK DATA clause is specified with the BASE option.

Rules
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• Changes are written to the system catalog, but do not take effect until they are committed, even for the

connection that issues the statement. For newly submitted workload occurrences, changes take effect
after the ALTER WORKLOAD statement commits. For active workload occurrences, changes take effect
at the beginning of the next unit of work.

952 IBM Db2 V11.5: SQL Reference

• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an
uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• If the DISABLE option is specified, the workload is disabled after the statement commits. The workload
is not considered the next time that a workload is chosen. If there is an active workload occurrence
associated with this workload when the ALTER WORKLOAD statement commits, it continues to run until
the end of the current unit of work. At the beginning of the next unit of work, a workload re-evaluation
takes place, and the connection becomes associated with a different workload.

• Privileges: The USAGE privilege is not granted to any user, group, or role when a workload is created. To
enable use of a workload, grant USAGE privilege on that workload to a user, a group, or a role using the
GRANT USAGE ON WORKLOAD statement.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– DATABASE PARTITION can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– DATABASE PARTITIONS can be specified in place of MEMBERS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– COLLECT UNIT OF WORK DATA PACKAGE LIST can be specified in place of COLLECT UNIT OF WORK
DATA BASE INCLUDE PACKAGE LIST.

Examples
• Example 1: The workload PAYROLL is currently positioned such that the workload INVENTORY is

considered first when the database manager chooses a workload at run time. Alter the evaluation order
so that PAYROLL will be considered first.

 ALTER WORKLOAD PAYROLL
 POSITION BEFORE INVENTORY

• Example 2: Alter the evaluation order so that the workload BENCHMARK is evaluated by the database
manager before any other workload in the catalog.

 ALTER WORKLOAD BENCHMARK
 POSITION AT 1

• Example 3: The workload REPORTS was created with APPLNAME set to appl1, appl2, and appl3,
and SYSTEM_USER set to BOB and MARY. Alter the workload to add a new application, appl4 to the
application name list, and remove appl2, because it should no longer be mapped to REPORTS.

 ALTER WORKLOAD REPORTS
 ADD APPLNAME ('appl4')
 DROP APPLNAME ('appl2')

• Example 4: Assuming a lock event monitor called LOCK exists and is active, create lock event records
with statement history for lock timeout events that occur within the workload APP.

 ALTER WORKLOAD APP
 COLLECT LOCK TIMEOUT DATA WITH HISTORY

• Example 5: Assuming a lock event monitor called LOCK exists and is active, create lock event records for
only deadlock and lock timeout events that occur within the workload PAYROLL on all partitions.

 ALTER WORKLOAD PAYROLL
 COLLECT DEADLOCK DATA
 COLLECT LOCK TIMEOUT DATA WITHOUT HISTORY

Chapter 1. Structured Query Language (SQL) 953

• Example 6: Assuming a lock event monitor called LOCK exists and is active, create lock event records
with statement history and values for deadlock events that occur within the workload INVOICE.

 ALTER WORKLOAD INVOICE
 COLLECT DEADLOCK DATA WITH HISTORY AND VALUES

• Example 7: Assuming a lock event monitor called LOCK exists and is active, create lock event records
with statement history and values for locks acquired after waiting for more than 150 milliseconds that
occur within the workload INVOICE.

 ALTER WORKLOAD INVOICE
 COLLECT LOCK WAIT DATA FOR LOCKS WAITING MORE THAN 150000
 MICROSECONDS WITH HISTORY AND VALUES

• Example 8: Alter the workload REPORTS to collect unit of work data and send it to the unit of work event
monitor:

 ALTER WORKLOAD REPORTS
 COLLECT UNIT OF WORK DATA BASE

ALTER WRAPPER
The ALTER WRAPPER statement is used to update the properties of a wrapper.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include DBADM authority.

Syntax
ALTER WRAPPER wrapper-name OPTIONS (

,

ADD

SET

wrapper-option-name string-constant

DROP wrapper-option-name

)

Description
wrapper-name

Specifies the name of the wrapper.
OPTIONS

Indicates what wrapper options are to be enabled, reset, or dropped.
ADD

Enables a new wrapper option.
SET

Changes the setting of a wrapper option.

954 IBM Db2 V11.5: SQL Reference

wrapper-option-name
The wrapper option that is to be added or reset. Which options you can specify depends on the
data source of the object for which a wrapper is being created. For a list of data sources and the
wrapper options that apply to each, see Data source options.

string-constant
The wrapper option setting as a character string constant enclosed in single quotation marks.

DROP wrapper-option-name
Drops a wrapper option.

Notes
• Execution of the ALTER WRAPPER statement does not include checking the validity of wrapper-specific

options.
• An ALTER WRAPPER statement within a given unit of work (UOW) cannot be processed (SQLSTATE

55007) if the UOW already includes one of the following items:

– A SELECT statement that references a nickname that belongs to the wrapper.
– An open cursor on a nickname that belongs to the wrapper.
– An INSERT, DELETE, or UPDATE statement issued against a nickname that belongs to the wrapper.

Example
Set the DB2_FENCED option on for wrapper NET8.

 ALTER WRAPPER NET8 OPTIONS (SET DB2_FENCED 'Y')

ALTER XSROBJECT
This statement is used to either enable or disable the decomposition support for a specific XML
schema. Annotated XML schemas can be used to decompose XML documents into relational tables, if
decomposition has been enabled for those XML schemas.

Invocation
The ALTER XSROBJECT statement can be embedded in an application program or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically prepared only if the
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization
One of the following authorities is required:

• DBADM
• ALTERIN on the SQL schema
• SCHEMAADM authority on the SQL schema
• Ownership of the XSR object to be altered

Syntax
ALTER XSROBJECT xsrobject-name ENABLE DECOMPOSITION

DISABLE DECOMPOSITION

Chapter 1. Structured Query Language (SQL) 955

Description
xsrobject-name

Identifies the XSR object to be altered. The xsrobject-name, including the implicit or explicit schema
qualifier, must uniquely identify an existing XSR object at the current server. If no XSR object with this
identifier exists, an error is returned (SQLSTATE 42704).

ENABLE DECOMPOSITION or DISABLE DECOMPOSITION
Enables or disables the use of the XSR object for decomposition. The identified XSR object must
be an XML schema (SQLSTATE 42809). In order to enable decomposition, the XML schema needs
to be annotated with decomposition rules (SQLSTATE 225DE) and the objects referenced by the
decomposition rules must exist at the current server (SQLSTATE 42704).

Notes
• When decomposition for an XSR object is disabled, all related catalog entries are removed.
• Decomposition support for an XSR object will be disabled if any objects the XSR object depends on

(such as tables) are dropped or altered to become incompatible with the XSR object.
• In a partitioned database environment, you can issue this statement by connecting to any partition.

ASSOCIATE LOCATORS
The ASSOCIATE LOCATORS statement gets the result set locator value for each result set returned by a
procedure.

Invocation
This statement can only be embedded in an SQL procedure. It is not an executable statement and cannot
be dynamically prepared.

Authorization
None required.

Syntax

ASSOCIATE
RESULT SET

LOCATOR

LOCATORS

(

,

rs-locator-variable)

WITH PROCEDURE procedure-name

Description
rs-locator-variable

Specifies a result set locator variable that has been declared in a compound SQL (Procedure)
statement.

WITH PROCEDURE
Identifies the procedure that returns result set locators by the specified procedure name.
procedure-name

A procedure name is a qualified or unqualified name.

A fully qualified procedure name is a two-part name. The first part is an identifier that contains
the schema name of the procedure. The last part is an identifier that contains the name of the
procedure. A period must separate each of the parts. Any or all of the parts can be a delimited
identifier.

956 IBM Db2 V11.5: SQL Reference

If the procedure name is unqualified, it has only one name because the implicit schema name
is not added as a qualifier to the procedure name. Successful execution of the ASSOCIATE
LOCATOR statement only requires that the unqualified procedure name in the statement be the
same as the procedure name in the most recently executed CALL statement that was specified
with an unqualified procedure name. The implicit schema name for the unqualified name in the
CALL statement is not considered in the match. The rules for how the procedure name must be
specified are described in the following paragraph.

When the ASSOCIATE LOCATORS statement is executed, the procedure name or specification must
identify a procedure that the requester has already invoked using the CALL statement. The procedure
name in the ASSOCIATE LOCATORS statement must be specified the same way that it was specified
on the CALL statement. For example, if a two-part name was specified on the CALL statement, you
must use a two-part name in the ASSOCIATE LOCATORS statement.

Notes
• If the number of result set locator variables that are listed in the ASSOCIATE LOCATORS statement is

less than the number of locators returned by the procedure, all variables in the statement are assigned
a value, and a warning is issued.

• If the number of result set locator variables that are listed in the ASSOCIATE LOCATORS statement is
greater than the number of locators returned by the procedure, the extra variables are assigned a value
of 0.

• If a procedure is called more than once from the same caller, only the most recent result sets are
accessible.

• Result set locator values are available for a procedure that is called using an EXECUTE statement
executing the CALL statement that was previously prepared by the PREPARE statement. Result set
locator values, however, are not available for a procedure that is called using an EXECUTE IMMEDIATE
statement.

• Module-procedure names referenced in an ASSOCIATE LOCATORS statement can only be 1-part or
2-part qualified name references. A 3-part name reference is not allowed (SQLSTATE 42601). Any
CALL statement that references a module-procedure that was referenced in an ASSOCIATE LOCATORS
statement, must specify the module-procedure with the same 1-part or 2-part qualified name used in
the ASSOCIATE LOCATORS statement.

Examples
The statements in the following examples are assumed to be embedded in SQL Procedures.

• Example 1: Use result set locator variables LOC1 and LOC2 to get the result set locator values for the
two result sets returned by procedure P1. Assume that the procedure is called with a one-part name.

 CALL P1;
 ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)
 WITH PROCEDURE P1;

• Example 2: Repeat the scenario in Example 1, but use a two-part name to specify an explicit schema
name for the procedure to ensure that procedure P1 in schema MYSCHEMA is used.

 CALL MYSCHEMA.P1;
 ASSOCIATE RESULT SET LOCATORS (LOC1, LOC2)
 WITH PROCEDURE MYSCHEMA.P1;

Chapter 1. Structured Query Language (SQL) 957

AUDIT
The AUDIT statement determines the audit policy that is to be used for a particular database or database
object at the current server. Whenever the object is in use, it is audited according to that policy.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax

AUDIT

,
1

DATABASE

TABLE table-name

TRUSTED CONTEXT context-name

USER

GROUP

ROLE

authorization-name

ACCESSCTRL

CREATE_SECURE_OBJECT

DATAACCESS

DBADM

SECADM

SQLADM

SYSADM

SYSCTRL

SYSMAINT

SYSMON

WLMADM

USING

REPLACE

POLICY policy-name

REMOVE POLICY

Notes:
1 Each clause (with the same object name, if applicable) can be specified at most once (SQLSTATE
42713).

958 IBM Db2 V11.5: SQL Reference

Description
ACCESSCTRL, CREATE_SECURE_OBJECT, DATAACCESS, DBADM, SECADM, SQLADM, SYSADM,
SYSCTRL, SYSMAINT, SYSMON, or WLMADM

Specifies that an audit policy is to be associated with or removed from the specified authority. All
auditable events that are initiated by a user who holds the specified authority, even if that authority is
not required for the event, will be audited according to the associated audit policy.

DATABASE
Specifies that an audit policy is to be associated with or removed from the database at the current
server. All auditable events that occur within the database are audited according to the associated
audit policy.

TABLE table-name
Specifies that an audit policy is to be associated with or removed from table-name. The table-name
must identify a table, materialized query table (MQT), or nickname that exists at the current server
(SQLSTATE 42704). It cannot be a view, a catalog table, a created temporary table, a declared
temporary table (SQLSTATE 42995), or a typed table (SQLSTATE 42997). Only EXECUTE category
audit events, with or without data, will be generated when the table is accessed, even if the policy
indicates that other categories should be audited.

TRUSTED CONTEXT context-name
Specifies that an audit policy is to be associated with or removed from context-name. The context-
name must identify a trusted context that exists at the current server (SQLSTATE 42704). All auditable
events that happen within the trusted connection defined by the trusted context context-name will be
audited according to the associated audit policy.

USER authorization-name
Specifies that an audit policy is to be associated with or removed from the user with authorization
ID authorization-name. All auditable events that are initiated by authorization-name will be audited
according to the associated audit policy.

GROUP authorization-name
Specifies that an audit policy is to be associated with or removed from the group with authorization
ID authorization-name. All auditable events that are initiated by users who are members of
authorization-name will be audited according to the associated audit policy. If user membership in a
group cannot be determined, the policy will not apply to that user.

ROLE authorization-name
Specifies that an audit policy is to be associated with or removed from the role with authorization
ID authorization-name. The authorization-name must identify a role that exists at the current server
(SQLSTATE 42704). All auditable events that are initiated by users who are members of authorization-
name will be audited according to the associated audit policy. Indirect role membership through other
roles or groups is valid.

USING, REMOVE, or REPLACE
Specifies whether the audit policy should be used, removed, or replaced for the specified object.
USING

Specifies that the audit policy is to be used for the specified object. An existing audit policy must
not already be defined for the object (SQLSTATE 5U041). If an audit policy already exists, it must
be removed or replaced.

REMOVE
Specifies that the audit policy is to be removed from the specified object. Use of the object will no
longer be audited according to the audit policy. The association is deleted from the catalog when
the audit policy is removed from the object.

REPLACE
Specifies that the audit policy is to replace an existing audit policy for the specified object. This
combines both REMOVE and USING options into one step to ensure that there is no period of time
in which an audit policy does not apply to the specified object. If a policy was not in use for the
specified object, REPLACE is equivalent to USING.

Chapter 1. Structured Query Language (SQL) 959

POLICY policy-name
Specifies the audit policy that is to be used to determine audit settings. The policy-name must identify
an existing audit policy at the current server (SQLSTATE 42704).

Rules
• An AUDIT-exclusive SQL statement must be followed by a COMMIT or ROLLBACK statement (SQLSTATE

5U021). AUDIT-exclusive SQL statements are:

– AUDIT
– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT POLICY)
– DROP (ROLE or TRUSTED CONTEXT if it is associated with an audit policy)

• An AUDIT-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041)
such as, for example, an XA transaction.

• An object can be associated with no more than one policy (SQLSTATE 5U042).

Notes
• Packages that are dependent on the table that is being audited become invalid when an audit policy is

added or removed from that table.
• Changes are written to the catalog, but do not take effect until after a COMMIT statement executes.
• Changes do not take effect until the next unit of work that references the object to which the audit

policy applies. For example, if the audit policy is in use for the database, no current units of work will
begin auditing according to the policy until after a COMMIT or a ROLLBACK statement completes.

• Views accessing a table that is associated with an audit policy are audited according to the underlying
table's policy.

• The audit policy that applies to a table does not apply to a materialized query table (MQT) based on that
table. It is recommended that if you associate an audit policy with a table, you also associate that policy
with any MQT based on that table. The compiler might automatically use an MQT, even though an SQL
statement references the base table; however, the audit policy in use for the base table will still be in
effect.

• When a switch user operation is performed within a trusted context, all audit policies are re-evaluated
according to the new user, and no policies from the old user are used for the current session.
This applies specifically to audit policies associated directly with the user, the user's group or role
memberships, and the user's authorities. For example, if the current session was audited because the
previous user was a member of an audited role, and the switched-to user is not a member of that role,
that policy no longer applies to the session.

• When a SET SESSION USER statement is executed, the audit policies associated with the original user
(and that user's group and role memberships and authorities) are combined with the policies that are
associated with the user specified in the SET SESSION USER statement. The audit policies associated
with the original user are still in effect, as are the policies for the user specified in the SET SESSION
USER statement. If multiple SET SESSION USER statements are issued within a session, only the audit
policies associated with the original user and the current user are considered.

• If the object with which an audit policy is associated is dropped, the association to the audit policy is
removed from the catalog and no longer exists. If that object is recreated at some later time, the object
will not be audited according to the policy that was associated with it when the object was dropped.

• When multiple objects are specified, the policy applies to each of them individually. The policy applies
to the individual objects within the statement, and not their intersection. It is not possible to combine
policies with an "AND" type configuration.

960 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: Use the audit policy DBAUDPRF to determine the audit settings for the database at the

current server.

 AUDIT DATABASE USING POLICY DBAUDPRF

• Example 2: Remove the audit policy from the EMPLOYEE table.

 AUDIT TABLE EMPLOYEE REMOVE POLICY

• Example 3: Use the audit policy POWERUSERS to determine the audit settings for the authorities
SYSADM, DBADM, and SECADM, as well as the group DBAS.

 AUDIT SYSADM, DBADM, SECADM, GROUP DBAS USING POLICY POWERUSERS

• Example 4: Replace the audit policy for the role TELLER with the new policy TELLERPRF.

 AUDIT ROLE TELLER REPLACE POLICY TELLERPRF

• Example 5: Specifying multiple objects

AUDIT TABLE EMPLOYEE, ROLE TELLER USING POLICY TABLEAUDIT

The above statement is equivalent to these separate statements:

AUDIT TABLE EMPLOYEE USING POLICY TABLEAUDIT
AUDIT ROLE TELLER USING POLICY TABLEAUDIT

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of a host variable declare section.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in REXX.

Authorization
None required.

Syntax
BEGIN DECLARE SECTION

Description
The BEGIN DECLARE SECTION statement may be coded in the application program wherever variable
declarations can appear in accordance with the rules of the host language. It is used to indicate the
beginning of a host variable declaration section. A host variable section ends with an END DECLARE
SECTION statement.

Rules
• The BEGIN DECLARE SECTION and the END DECLARE SECTION statements must be paired and may

not be nested.
• SQL statements cannot be included within the declare section.
• Variables referenced in SQL statements must be declared in a declare section in all host languages

other than REXX. Furthermore, the section must appear before the first reference to the variable.

Chapter 1. Structured Query Language (SQL) 961

Generally, host variables are not declared in REXX with the exception of LOB locators and file reference
variables. In this case, they are not declared within a BEGIN DECLARE SECTION.

• Variables declared outside a declare section should not have the same name as variables declared
within a declare section.

• LOB data types must have their data type and length preceded with the SQL TYPE IS keywords.

Examples
• Example 1: Define the host variables hv_smint (smallint), hv_vchar24 (varchar(24)), hv_double (double),

hv_blob_50k (blob(51200)), hv_struct (of structured type "struct_type" as blob(10240)) in a C program.

 EXEC SQL BEGIN DECLARE SECTION;
 short hv_smint;
 struct {
 short hv_vchar24_len;
 char hv_vchar24_value[24];
 } hv_vchar24;
 double hv_double;
 SQL TYPE IS BLOB(50K) hv_blob_50k;
 SQL TYPE IS struct_type AS BLOB(10k) hv_struct;
 EXEC SQL END DECLARE SECTION;

• Example 2: Define the host variables HV-SMINT (smallint), HV-VCHAR24 (varchar(24)), HV-DEC72
(dec(7,2)), and HV-BLOB-50k (blob(51200)) in a COBOL program.

 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 HV-SMINT PIC S9(4) COMP-4.
 01 HV-VCHAR24.
 49 HV-VCHAR24-LENGTH PIC S9(4) COMP-4.
 49 HV-VCHAR24-VALUE PIC X(24).
 01 HV-DEC72 PIC S9(5)V9(2) COMP-3.
 01 HV-BLOB-50K USAGE SQL TYPE IS BLOB(50K).
 EXEC SQL END DECLARE SECTION END-EXEC.

• Example 3: Define the host variables HVSMINT (smallint), HVVCHAR24 (char(24)), HVDOUBLE (double),
and HVBLOB50k (blob(51200)) in a Fortran program.

 EXEC SQL BEGIN DECLARE SECTION
 INTEGER*2 HVSMINT
 CHARACTER*24 HVVCHAR24
 REAL*8 HVDOUBLE
 SQL TYPE IS BLOB(50K) HVBLOB50K
 EXEC SQL END DECLARE SECTION

Note: In Fortran, if the expected value is greater than 254 bytes, then a CLOB host variable should be
used.

• Example 4: Define the host variables HVSMINT (smallint), HVBLOB50K (blob(51200)), and HVCLOBLOC
(a CLOB locator) in a REXX program.

 DECLARE :HVCLOBLOC LANGUAGE TYPE CLOB LOCATOR
 call sqlexec 'FETCH c1 INTO :HVSMINT, :HVBLOB50K'

Note that the variables HVSMINT and HVBLOB50K were implicitly defined by using them in the FETCH
statement.

CALL
The CALL statement calls a procedure or a foreign procedure.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

962 IBM Db2 V11.5: SQL Reference

When invoked using the command line processor, there are some additional rules for specifying
arguments of the procedure.

For more information, refer to "Using command line SQL statements and XQuery statements" in
Command Reference.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• EXECUTE privilege on the procedure
• EXECUTEIN privilege on the schema containing the procedure
• DATAACCESS authority on the schema containing the procedure
• DATAACCESS authority

If a matching procedure exists that the authorization ID of the statement is not authorized to execute, an
error is returned (SQLSTATE 42501).

Syntax
CALL procedure-name

(

,

argument)

argument

parameter-name =>

expression

DEFAULT

NULL

Description
procedure-name

Specifies the procedure that is to be called. It must be a procedure that is described in the catalog
or that is declared in the scope of the compound SQL (compiled) statement that includes the CALL
statement. The specific procedure to invoke is chosen using procedure resolution. (For more details,
see the "Notes" section of this statement.)

argument
parameter-name

Name of the parameter to which the argument is assigned. When an argument is assigned to
a parameter by name, then all the arguments that follow it must also be assigned by name
(SQLSTATE 4274K).

A named argument must be specified only once (implicitly or explicitly) (SQLSTATE 4274K).

Named arguments are not supported on the call to an uncataloged procedure (SQLSTATE 4274K).

expression or DEFAULT or NULL
Each specification of expression, the DEFAULT keyword, or the NULL keyword is an argument of
the CALL. The nth unnamed argument of the CALL statement corresponds to the nth parameter
defined in the CREATE PROCEDURE statement for the procedure.

Named arguments correspond to the same named parameter, regardless of the order in which
they are specified.

If the DEFAULT keyword is specified, the default as defined in the CREATE PROCEDURE statement
is used if it exists; otherwise the null value is used as the default.

Chapter 1. Structured Query Language (SQL) 963

If the NULL keyword is specified, the null value is passed as the parameter value.

Each argument of the CALL must be compatible with the corresponding parameter in the
procedure definition as follows:

• IN parameter

– The argument must be assignable to the parameter.
– The assignment of a string argument uses the storage assignment rules.

• OUT parameter

– The argument must be a single variable or parameter marker (SQLSTATE 42886).
– The argument must be assignable to the parameter.
– The assignment of a string argument uses the retrieval assignment rules.

• INOUT parameter

– The argument must be a single variable or parameter marker (SQLSTATE 42886).
– The argument must be assignable to the parameter.
– The assignment of a string argument uses the storage assignment rules on invocation and the

retrieval assignment rules on return.

Notes
• Parameter assignments: When the CALL statement is executed, the value of each of its arguments is

assigned (using storage assignment) to the corresponding parameter of the procedure. A parameter
value that is defined to have a default value can be omitted from the argument list when invoking the
procedure.

When the CALL statement is executed, control is passed to the procedure according to the calling
conventions of the host language. When execution of the procedure is complete, the value of each
parameter of the procedure is assigned (using storage assignment) to the corresponding argument
of the CALL statement defined as OUT or INOUT. If an error is returned by the procedure, OUT
arguments are undefined and INOUT arguments are unchanged. For details on the assignment rules,
see "Assignments and comparisons".

When the CALL statement is in an SQL procedure and is calling another SQL procedure, assignment of
XML parameters is done by reference. When an XML argument is passed by reference, the input node
trees, if any, are used directly from the XML argument, preserving all properties, including document
order, the original node identities, and all parent properties.

• Procedure signatures: A procedure is identified by its schema, a procedure name, and the number of
parameters. This is called a procedure signature, which must be unique within the database. There can
be more than one procedure with the same name in a schema, provided that the number of parameters
is different for each procedure.

• SQL path: A procedure can be invoked by referring to a qualified name (schema and procedure name),
followed by an optional list of arguments enclosed by parentheses. A procedure can also be invoked
without the schema name, resulting in a choice of possible procedures in different schemas with the
same number of parameters. In this case, the SQL path is used to assist in procedure resolution. The
SQL path is a list of schemas that is searched to identify a procedure with the same name and number
of parameters. For static CALL statements, SQL path is specified using the FUNCPATH bind option. For
dynamic CALL statements, SQL path is the value of the CURRENT PATH special register.

• Procedure resolution: Given a procedure invocation, the database manager must decide which of the
possible procedures with the same name to execute.

Local scope procedure resolution is used when a procedure is invoked from within a compound SQL
(compiled) statement and either of the following criteria exist:

– A procedure with the same name as the invoked procedure is declared in the same compound SQL
(compiled) statement

964 IBM Db2 V11.5: SQL Reference

– A procedure with the same name as the invoked procedure is declared in a compound SQL (compiled)
statement within which the compound SQL (compiled) statement that invoked the procedure is
nested

Local scope procedure resolution means that only declared procedures within the scope of the
compound SQL (compiled) statement that invoked the procedure are considered during procedure
resolution regardless of the existence of possible matching built-in procedures, schema procedures,
or module procedures. Global scope procedure resolution is used in all other cases and considers
candidates from schemas and modules depending on the context of the invocation and the qualification
of the procedure name.

– Let A be the number of arguments in a procedure invocation.
– Let P be the number of parameters in a procedure signature.
– Let N be the number of parameters without a default.

Candidate procedures for resolution of a procedure invocation are selected based on the following
criteria:

– Each candidate procedure has a matching name and an applicable number of parameters. An
applicable number of parameters satisfies the condition N ≤ A ≤ P.

– Each candidate procedure has parameters such that for each named argument in the CALL statement
there exists a parameter with a matching name that does not already correspond to a positional (or
unnamed) argument.

– Each parameter of a candidate procedure that does not have a corresponding argument in the CALL
statement, specified by either position or name, is defined with a default.

– Each candidate procedure from a set of one or more schemas has the EXECUTE privilege associated
with the authorization ID of the statement invoking the function.

– Each candidate procedure from a schema has the EXECUTEIN privilege or DATAACCESS authority on
the schema associated with the authorization ID of the statement invoking the function.

In addition, the set of candidate procedures depends on the environment where the procedure is
invoked and how the procedure name is qualified.

– If the procedure name is unqualified, procedure resolution is done using the steps that follow:

1. If the procedure is invoked from within a compound SQL (compiled) statement and a declared
procedure with the same name exists in the nested scope, search the set of compound SQL
(compiled) statements within which the CALL statement is nested for candidate procedures. If
no candidate procedures are found, an error is returned (SQLSTATE 42884). If a single candidate
procedure is found, resolution is complete. If there are multiple candidate procedures, determine
the candidate procedure with the lowest number of parameters and eliminate candidate
procedures with a higher number of parameters.

2. If the procedure is invoked from within a module object, search within the module for candidate
procedures. If one or more candidate procedures are found in the context module, then these
candidate procedures are included with any candidate procedures from the schemas in the SQL
path (see next item).

3. Search all schema procedures with a schema in the SQL path for candidate procedures. If one
or more candidate procedures are found in the schemas of the SQL path, then these candidate
procedures are included with any candidate procedures from the context module (see previous
item). If a single candidate procedure remains, resolution is complete. If there are multiple
candidate procedures, choose the procedure from the context module if still a candidate and
otherwise choose the procedure whose schema is earliest in the SQL path. If there are still
multiple candidate procedures, determine the candidate procedure with the lowest number of
parameters and eliminate candidate procedures with a higher number of parameters.

If there are no candidate procedures remaining after step 3, an error is returned (SQLSTATE 42884).
– If the procedure name is qualified, procedure resolution is done using the steps that follow:

Chapter 1. Structured Query Language (SQL) 965

1. If the procedure is invoked from within a compound SQL (compiled) statement and a declared
procedure with the same name exists where the qualifier matches the label of the compound SQL
(compiled) statement from the set of compound SQL (compiled) statements within which the CALL
statement is nested, search that compound SQL (compiled) statement with the matching label
for candidate procedures. If no candidate procedures are found, an error is returned (SQLSTATE
42884). If a single candidate procedure is found, resolution is complete. If there are multiple
candidate procedures, determine the candidate procedure with the lowest number of parameters
and eliminate candidate procedures with a higher number of parameters.

2. If the procedure is invoked from within a module and the qualifier matches the name of the
module from within which the procedure is invoked, search within the module for candidate
procedures. If the qualifier is a single identifier, then the schema name of the module is ignored
when matching the module name. If the qualifier is a two part identifier, then it is compared to
the schema-qualified module name when determining a match. If a single candidate procedure
exists, resolution is complete. If there are multiple candidate procedures, choose the candidate
procedure with the least number of parameters. If the qualifier does not match or there are no
candidate procedures, then continue with the next step.

3. Consider the qualifier as a schema name and search within that schema for candidate procedures.
If a single candidate procedure exists, resolution is complete. If there are multiple candidate
procedures, choose the candidate procedure with the least number of parameters and resolution
is complete. If the schema does not exist or there are no authorized candidate procedures, and
the qualifier matched the name of the module in the first step, then return an error. Otherwise,
continue to the next step.

4. Consider the qualifier as a module name, without considering EXECUTE privilege on modules.

- If the module name is qualified with a schema name, then search published procedures within
this module for candidate procedures.

- If the module name is not qualified with a schema name, then the schema for the module is the
first schema in the SQL path that has a matching module name. If found, then search published
procedures within this module for candidate procedures.

- If the module is not found using the SQL path, check for a module public alias that matches the
name of the procedure qualifier. If found, then search published procedures within this module
for candidate procedures.

If a matching module is not found or there are no candidate procedures in the matching module,
then a procedure not found error is returned (SQLSTATE 42884). If there are multiple candidate
procedures, choose the candidate procedure with the least number of parameters. Resolution is
complete if the authorization ID of the CALL statement has EXECUTE privilege on the module,
or EXECUTEIN privilege on the schema containing the module, of the remaining candidate
procedure, otherwise an authorization error is returned (SQLSTATE 42501).

• Retrieving the DB2_RETURN_STATUS from an SQL procedure: If an SQL procedure successfully issues
a RETURN statement with a status value, this value is returned in the first SQLERRD field of the SQLCA.
If the CALL statement is issued in an SQL procedure, use the GET DIAGNOSTICS statement to retrieve
the DB2_RETURN_STATUS value. The value is -1 if the SQLSTATE indicates an error. The values is 0 if no
error is returned and the RETURN statement was not specified in the procedure.

• Returning result sets from procedures: If the calling program is written using CLI, JDBC, or SQLJ, or the
caller is an SQL procedure, result sets can be returned directly to the caller. The procedure indicates
that a result set is to be returned by declaring a cursor on that result set, opening a cursor on the result
set, and leaving the cursor open when exiting the procedure.

At the end of a procedure:

– For every cursor that has been left open, a result set is returned to the caller or (for WITH RETURN TO
CLIENT cursors) directly to the client.

– Only unread rows are passed back. For example, if the result set of a cursor has 500 rows, and 150
of those rows have been read by the procedure at the time the procedure is terminated, rows 151
through 500 will be returned to the caller or application (as appropriate).

966 IBM Db2 V11.5: SQL Reference

If the procedure was invoked from CLI or JDBC, and more than one cursor is left open, the result sets
can only be processed in the order in which the cursors were opened.

• Improving performance: The values of all arguments are passed from the application to the procedure.
To improve the performance of this operation, host variables that correspond to OUT parameters and
have lengths of more than a few bytes should be set to the null value before the CALL statement is
executed.

• Nesting CALL statements: Procedures can be called from routines as well as application programs.
When a procedure is called from a routine, the call is considered to be nested.

If a procedure returns any query result sets, the result sets are returned as follows:

– RETURN TO CALLER result sets are visible only to the program that is at the previous nesting level.
– RETURN TO CLIENT results sets are visible only if the procedure was invoked from a set of nested

procedures. If a function or method occurs anywhere in the call chain, the result set is not visible. If
the result set is visible, it is only visible to the client application that made the initial procedure call.

Consider the following example:

 Client program:
 EXEC SQL CALL PROCA;

 PROCA:
 EXEC SQL CALL PROCB;

 PROCB:
 EXEC SQL DECLARE B1 CURSOR WITH RETURN TO CLIENT ...;
 EXEC SQL DECLARE B2 CURSOR WITH RETURN TO CALLER ...;
 EXEC SQL DECLARE B3 CURSOR FOR SELECT UDFA FROM T1;

 UDFA:
 EXEC SQL CALL PROCC;

 PROCC:
 EXEC SQL DECLARE C1 CURSOR WITH RETURN TO CLIENT ...;
 EXEC SQL DECLARE C2 CURSOR WITH RETURN TO CALLER ...;

From procedure PROCB:

– Cursor B1 is visible in the client application, but not visible in procedure PROCA.
– Cursor B2 is visible in PROCA, but not visible to the client.

From procedure PROCC:

– Cursor C1 is visible to neither UDFA nor to the client application. (Because UDFA appears in the call
chain between the client and PROCC, the result set is not returned to the client.)

– Cursor C2 is visible in UDFA, but not visible to any of the higher procedures.
• Nesting procedures within triggers, compound statements, functions, or methods: When a procedure is

called within a trigger, compound statement, function, or method:

– The procedure must not issue a COMMIT or a ROLLBACK statement.
– Result sets returned from the procedure cannot be accessed.
– If the procedure is defined as READS SQL DATA or MODIFIES SQL DATA, no statement in the

procedure can access a table that is being modified by the statement that invoked the procedure
(SQLSTATE 57053). If the procedure is defined as MODIFIES SQL DATA, no statement in the
procedure can modify a table that is being read or modified by the statement that invoked the
procedure (SQLSTATE 57053).

When a procedure is called within a function or method:

- The procedure has the same table access restrictions as the invoking function or method.
- Savepoints defined before the function or method was invoked will not be visible to the procedure,

and savepoints defined inside the procedure will not be visible outside the function or method.
- RETURN TO CLIENT result sets returned from the procedure cannot be accessed from the client.

Chapter 1. Structured Query Language (SQL) 967

• Compilation of CALL statements from Db2 for IBM i and Db2 for z/OS: The compilation of CALL
statements from Db2 for IBM i and Db2 for z/OS implicitly behave as if CALL_RESOLUTION DEFERRED
was specified. When CALL statements are compiled with CALL_RESOLUTION DEFERRED, all arguments
must be provided via host variables, and expressions are not allowed.

• Syntax alternatives: There is an older form of the CALL statement that can be embedded in an
application by precompiling the application with the CALL_RESOLUTION DEFERRED option. This option
is not available for SQL procedures and federated procedures.

Examples
• Example 1: A Java procedure is defined in the database using the following statement:

 CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
 OUT COST DECIMAL(7,2),
 OUT QUANTITY INTEGER)
 EXTERNAL NAME 'parts!onhand'
 LANGUAGE JAVA
 PARAMETER STYLE DB2GENERAL;

A Java application calls this procedure using the following code fragment:

 ...
 CallableStatement stpCall;

 String sql = "CALL PARTS_ON_HAND (?, ?, ?)";

 stpCall = con.prepareCall(sql); /*con is the connection */

 stpCall.setInt(1, hvPartnum);
 stpCall.setBigDecimal(2, hvCost);
 stpCall.setInt(3, hvQuantity);

 stpCall.registerOutParameter(2, Types.DECIMAL, 2);
 stpCall.registerOutParameter(3, Types.INTEGER);

 stpCall.execute();

 hvCost = stpCall.getBigDecimal(2);
 hvQuantity = stpCall.getInt(3);
 ...

This application code fragment will invoke the Java method onhand in class parts, because the
procedure name specified on the CALL statement is found in the database and has the external name
parts!onhand.

• Example 2: There are six FOO procedures, in four different schemas, registered as follows (note that not
all required keywords appear):

 CREATE PROCEDURE AUGUSTUS.FOO (INT) SPECIFIC FOO_1 ...
 CREATE PROCEDURE AUGUSTUS.FOO (DOUBLE, DECIMAL(15, 3)) SPECIFIC FOO_2 ...
 CREATE PROCEDURE JULIUS.FOO (INT) SPECIFIC FOO_3 ...
 CREATE PROCEDURE JULIUS.FOO (INT, INT, INT) SPECIFIC FOO_4 ...
 CREATE PROCEDURE CAESAR.FOO (INT, INT) SPECIFIC FOO_5 ...
 CREATE PROCEDURE NERO.FOO (INT,INT) SPECIFIC FOO_6 ...

The procedure reference is as follows (where I1 and I2 are INTEGER values):

 CALL FOO(I1, I2)

Assume that the application making this reference has an SQL path established as:

 "JULIUS", "AUGUSTUS", "CAESAR"

Following through the algorithm...

The procedure with specific name FOO_6 is eliminated as a candidate, because the schema "NERO"
is not included in the SQL path. FOO_1, FOO_3, and FOO_4 are eliminated as candidates, because
they have the wrong number of parameters. The remaining candidates are considered in order, as
determined by the SQL path. Note that the types of the arguments and parameters are ignored.

968 IBM Db2 V11.5: SQL Reference

The parameters of FOO_5 exactly match the arguments in the CALL, but FOO_2 is chosen because
"AUGUSTUS" appears before "CAESAR" in the SQL path.

• Example 3: Assume the following procedure exists.

 CREATE PROCEDURE update_order(
 IN IN_POID BIGINT,
 IN IN_CUSTID BIGINT DEFAULT GLOBAL_CUST_ID,
 IN NEW_STATUS VARCHAR(10) DEFAULT NULL,
 IN NEW_ORDERDATE DATE DEFAULT NULL,
 IN NEW_COMMENTS VARCHAR(1000)DEFAULT NULL)...

Also assume that the global variable GLOBAL_CUST_ID is set to the value 1002. Call the procedure to
change the status of order 5000 for customer 1002 to 'Shipped'. Leave the rest of the order data as it is
by allowing the rest of the arguments to default to the null value.

 CALL update_order (5000, NEW_STATUS => 'Shipped')

The customer with ID 1001 has called and indicated that they received their shipment for purchase
order 5002 and are satisfied. Update their order.

 CALL update_order (5002,
 IN_CUSTID => 1001,
 NEW_STATUS => 'Received',
 NEW_COMMENTS => 'Customer satisfied with the order.')

• Example 4: The following example illustrates procedure resolution, given two procedures named p1:

 CREATE PROCEDURE p1(i1 INT)...
 CREATE PROCEDURE p1(i1 INT DEFAULT 0, i2 INT DEFAULT 0)...
 CALL p1(i2=>1)

The argument names are taken into consideration during the candidate selection process. Therefore,
only the second version of p1 will be considered a candidate. Furthermore, it can be successfully called
because i1 in this version of p1 is defined with a default, so only specifying i2 on the call to p1 is valid.

• Example 5: The following example is another illustration of procedure resolution, given two procedures
named p1:

 CREATE PROCEDURE p1(i1 INT, i2 INT DEFAULT 0)...
 CREATE PROCEDURE p1(i1 INT DEFAULT 0, i2 INT DEFAULT 0, i3 INT DEFAULT 0)...
 CALL p1(i2=>1)

One of the criteria for a procedure parameter which does not have a corresponding argument in the
CALL statement (specified by either position or name) is that the parameter is defined with a default
value. Therefore, the first version of p1 is not considered a candidate.

CASE
The CASE statement selects an execution path based on multiple conditions. This statement should not
be confused with the CASE expression, which allows an expression to be selected based on the evaluation
of one or more conditions.

Invocation
This statement can be embedded in:

• An SQL procedure definition
• A compound SQL (compiled) statement
• A compound SQL (inlined) statement

The compound SQL statements can be embedded in an SQL procedure definition, SQL function definition,
or SQL trigger definition. The CASE statement is not an executable statement and cannot be dynamically
prepared.

Chapter 1. Structured Query Language (SQL) 969

Authorization
No privileges are required to invoke the CASE statement. However, the privileges held by the authorization
ID of the statement must include all necessary privileges to invoke the SQL statements and expressions
that are embedded in the CASE statement.

Syntax
CASE searched-case-statement-when-clause

simple-case-statement-when-clause

END CASE

simple-case-statement-when-clause

expression WHEN expression THEN SQL-procedure-statement ;

ELSE SQL-procedure-statement ;

searched-case-statement-when-clause

WHEN search-condition THEN SQL-procedure-statement ;

ELSE SQL-procedure-statement ;

Description
CASE

Begins a case-statement.
simple-case-statement-when-clause

The value of the expression before the first WHEN keyword is tested for equality with the value of
each expression that follows the WHEN keyword. If the search condition is true, the THEN statement
is executed. If the result is unknown or false, processing continues to the next search condition. If the
result does not match any of the search conditions, and an ELSE clause is present, the statements in
the ELSE clause are processed.

searched-case-statement-when-clause
The search-condition following the WHEN keyword is evaluated. If it evaluates to true, the statements
in the associated THEN clause are processed. If it evaluates to false, or unknown, the next search-
condition is evaluated. If no search-condition evaluates to true and an ELSE clause is present, the
statements in the ELSE clause are processed.

SQL-procedure-statement
Specifies a statement that should be invoked. See SQL-procedure-statement in "Compound SQL
(compiled)" statement.

END CASE
Ends a case-statement.

970 IBM Db2 V11.5: SQL Reference

Notes
• If none of the conditions specified in the WHEN are true, and an ELSE clause is not specified, an error is

issued at runtime, and the execution of the case statement is terminated (SQLSTATE 20000).
• Ensure that your CASE statement covers all possible execution conditions.

Examples
Depending on the value of SQL variable v_workdept, update column DEPTNAME in table DEPARTMENT
with the appropriate name.

• Example 1: The following example shows how to do this using the syntax for a simple-case-statement-
when-clause:

 CASE v_workdept
 WHEN'A00'
 THEN UPDATE department
 SET deptname = 'DATA ACCESS 1';
 WHEN 'B01'
 THEN UPDATE department
 SET deptname = 'DATA ACCESS 2';
 ELSE UPDATE department
 SET deptname = 'DATA ACCESS 3';
 END CASE

• Example 2: The following example shows how to do this using the syntax for a searched-case-
statement-when-clause:

 CASE
 WHEN v_workdept = 'A00'
 THEN UPDATE department
 SET deptname = 'DATA ACCESS 1';
 WHEN v_workdept = 'B01'
 THEN UPDATE department
 SET deptname = 'DATA ACCESS 2';
 ELSE UPDATE department
 SET deptname = 'DATA ACCESS 3';
 END CASE

CLOSE
The CLOSE statement closes a cursor. If a result table was created when the cursor was opened, that
table is destroyed.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that cannot be dynamically prepared. When invoked using the command line processor, some
options cannot be specified. For more information, refer to "Using command line SQL statements and
XQuery statements".

Authorization
If the cursor-variable-name references a global variable, then the privileges held by the authorization ID
of the statement must include one of the following authorities:

• READ privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

For the authorization required to use a cursor, see "DECLARE CURSOR".

Chapter 1. Structured Query Language (SQL) 971

Syntax
CLOSE cursor-name

cursor-variable-name WITH RELEASE

Description
cursor-name

Identifies the cursor to be closed. The cursor-name must identify a declared cursor as explained in the
DECLARE CURSOR statement. When the CLOSE statement is executed, the cursor must be in the open
state.

cursor-variable-name
Identifies the cursor to be closed. The cursor-variable-name must identify a cursor variable. When
the CLOSE statement is executed, the underlying cursor of cursor-variable-name must be in the open
state (SQLSTATE 24501). A CLOSE statement using cursor-variable-name can only be used within a
compound SQL (compiled) statement.

WITH RELEASE
The release of all locks that have been held for the cursor is attempted. Note that not all of the locks
are necessarily released; these locks may be held for other operations or activities.

Notes
• At the end of a unit of work, all cursors that belong to an application process and that were declared

without the WITH HOLD option are implicitly closed.
• An underlying cursor of a cursor variable is implicitly closed when it becomes an orphaned cursor. An

underlying cursor becomes orphaned when it is no longer an underlying cursor of any cursor variable.
For example, this could occur if all the cursor variables for an underlying cursor are in the same scope
and all of them go out of scope at the same time.

• The WITH RELEASE clause has no effect when closing cursors defined in functions or methods. The
clause also has no effect when closing cursors defined in procedures called from functions or methods.

• The WITH RELEASE clause has no effect for cursors that are operating under isolation levels CS or
UR. When specified for cursors that are operating under isolation levels RS or RR, WITH RELEASE
terminates some of the guarantees of those isolation levels. Specifically, if the cursor is opened again,
an RS cursor may experience the 'nonrepeatable read' phenomenon and an RR cursor may experience
either the 'nonrepeatable read' or 'phantom' phenomenon.

If a cursor that was originally either RR or RS is reopened after being closed using the WITH RELEASE
clause, new locks will be acquired.

• Special rules apply to cursors within a procedure that have not been closed before returning to the
calling program.

• While a cursor is open (that is, it has not been closed yet), any changes to sequence values as a
result of statements involving that cursor (for example, a FETCH or an UPDATE using the cursor that
includes a NEXT VALUE expression for a sequence) will not result in an update to PREVIOUS VALUE
for those sequences as seen by that cursor. The PREVIOUS VALUE values for these affected sequences
are updated when the cursor is closed explicitly with the CLOSE statement. In a partitioned database
environment, if a cursor is closed implicitly by a commit or a rollback, the PREVIOUS VALUE may not be
updated with the most recently generated value for the sequence.

Example
A cursor is used to fetch one row at a time into the C program variables dnum, dname, and mnum. Finally,
the cursor is closed. If the cursor is reopened, it is again located at the beginning of the rows to be
fetched.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO

972 IBM Db2 V11.5: SQL Reference

 FROM TDEPT
 WHERE ADMRDEPT = 'A00';

 EXEC SQL OPEN C1;

 while (SQLCODE==0) { .
 EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;
 .
 .
 }
 EXEC SQL CLOSE C1;

COMMENT
The COMMENT statement adds or replaces comments in the catalog descriptions of various objects.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• Owner of the object (underlying table for column or constraint), as recorded in the OWNER column of
the catalog view for the object

• ALTERIN privilege on the schema (applicable only to objects that allow more than one-part names)
• CONTROL privilege on the object (applicable only to index, package, table, or view objects)
• ALTER privilege on the object (applicable only to table objects)
• CREATE_SECURE_OBJECT authority (applicable only to secure functions or secure triggers)
• The WITH ADMIN OPTION (applicable only to roles)
• SCHEMAADM authority on the schema (applicable only to objects that allow more than one-part names)
• WLMADM authority (applicable only to workload manager objects)
• SECADM authority (applicable only to audit policy, column mask, role, row permission, secure function,

secure trigger, security label, security label component, security policy, or trusted context objects;
also applicable to tables for which row level access control or column level access control has been
activated)

• DBADM authority (applicable to all objects except audit policy, role, security label, security label
component, security policy, or trusted context objects)

Note that for table space, storage group, or database partition group, and bufferpools, the authorization
ID must have SYSCTRL or SYSADM authority.

Syntax
COMMENT ON

objects IS string-constant

table-name

view-name

(

,

column-name IS string-constant)

objects

Chapter 1. Structured Query Language (SQL) 973

alias-designator

AUDIT POLICY policy-name

COLUMN table-name.column-name

view-name.column-name

CONSTRAINT table-name.constraint-name

DATABASE PARTITION GROUP db-partition-group-name

function-designator

FUNCTION MAPPING function-mapping-name

HISTOGRAM TEMPLATE template-name

INDEX index-name
1

MASK mask-name

MODULE module-name

NICKNAME nickname

PACKAGE package-name

VERSION
version-id

PERMISSION permission-name

procedure-designator

ROLE role-name

SCHEMA schema-name

SECURITY LABEL sec-label-name

SECURITY LABEL COMPONENT label-comp-name

SECURITY POLICY label-pol-name

SEQUENCE sequence-name

SERVER server-name

SERVER OPTION server-option-name FOR remote-server

service-class-designator

STOGROUP storagegroup-name

TABLE table-name

view-name

TABLESPACE tablespace-name

THRESHOLD threshold-name

TRIGGER trigger-name

TRUSTED CONTEXT context-name

TYPE type-name

TYPE MAPPING type-mapping-name

USAGE LIST usage-list-name

VARIABLE variable-name

WORK ACTION SET work-action-set-name

WORK CLASS SET work-class-set-name

WORKLOAD workload-name

WRAPPER wrapper-name

XSROBJECT xsrobject-name

alias-designator

974 IBM Db2 V11.5: SQL Reference

PUBLIC

ALIAS alias-name
FOR TABLE

FOR MODULE

FOR SEQUENCE

function-designator
FUNCTION function-name

(
,

data-type

)

SPECIFIC FUNCTION specific-name

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

remote-server
SERVER server-name

SERVER TYPE server-type

VERSION server-version

WRAPPER wrapper-name

server-version
version

. release

. mod

version-string-constant

service-class-designator
SERVICE CLASS service-class-name

UNDER service-superclass-name

Notes:
1 Index-name can be the name of either an index or an index specification.

Description
alias-designator

ALIAS alias-name
Indicates a comment will be added or replaced for an alias. The alias-name must identify an alias
that exists at the current server (SQLSTATE 42704).
FOR TABLE, FOR MODULE, or FOR SEQUENCE

Specifies the object type for the alias.
FOR TABLE

The alias is for a table, view, or nickname. The comment replaces the value of the
REMARKS column of the SYSCAT.TABLES catalog view for the row that describes the alias.

Chapter 1. Structured Query Language (SQL) 975

FOR MODULE
The alias is for a module. The comment replaces the value of the REMARKS column of the
SYSCAT.MODULES catalog view for the row that describes the alias.

FOR SEQUENCE
The alias is for a sequence. The comment replaces the value of the REMARKS column of
the SYSCAT.SEQUENCES catalog view for the row that describes the alias.

If PUBLIC is specified, the alias-name must identify a public alias that exists at the current
server (SQLSTATE 42704).

AUDIT POLICY policy-name
Indicates a comment will be added or replaced for an audit policy. The policy-name must identify an
audit policy that exists at the current server (SQLSTATE 42704). The comment replaces the value of
the REMARKS column of the SYSCAT.AUDITPOLICIES catalog view for the row that describes the audit
policy.

COLUMN table-name.column-name or view-name.column-name
Indicates that a comment for a column will be added or replaced. The table-name.column-name or
view-name.column-name combination must identify a column and table combination that exists at the
current server (SQLSTATE 42704), but must not identify a global temporary table (SQLSTATE 42995).
The comment replaces the value of the REMARKS column of the SYSCAT.COLUMNS catalog view for
the row that describes the column.

CONSTRAINT table-name.constraint-name
Indicates a comment will be added or replaced for a constraint. The table-name.constraint-name
combination must identify a constraint and the table that it constrains; they must exist at the
current server (SQLSTATE 42704). The comment replaces the value of the REMARKS column of the
SYSCAT.TABCONST catalog view for the row that describes the constraint.

DATABASE PARTITION GROUP db-partition-group-name
Indicates a comment will be added or replaced for a database partition group. The db-
partition-group-name must identify a distinct database partition group that exists at the current
server (SQLSTATE 42704). The comment replaces the value for the REMARKS column of the
SYSCAT.DBPARTITIONGROUPS catalog view for the row that describes the database partition group.

function-designator
Indicates a comment will be added or replaced for a function. For more information, see “Function,
method, and procedure designators” on page 745.

It is not possible to comment on a function that is in the SYSIBM, SYSIBMADM, SYSFUN, or SYSPROC
schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the SYSCAT.ROUTINES catalog view for
the row that describes the function.

FUNCTION MAPPING function-mapping-name
Indicates a comment will be added or replaced for a function mapping. The function-mapping-name
must identify a function mapping that exists at the current server (SQLSTATE 42704). The comment
replaces the value for the REMARKS column of the SYSCAT.FUNCMAPPINGS catalog view for the row
that describes the function mapping.

HISTOGRAM TEMPLATE template-name
Indicates a comment will be added or replaced for a histogram template. The template-name must
identify a histogram template that exists at the current server (SQLSTATE 42704). The comment
replaces the value for the REMARKS column of the SYSCAT.HISTOGRAMTEMPLATES catalog view for
the row that describes the histogram template.

INDEX index-name
Indicates a comment will be added or replaced for an index or index specification. The index-
name must identify either a distinct index or an index specification that exists at the current
server (SQLSTATE 42704). The comment replaces the value for the REMARKS column of the
SYSCAT.INDEXES catalog view for the row that describes the index or index specification.

976 IBM Db2 V11.5: SQL Reference

MASK mask-name
Identifies the column mask to which the comment applies. mask-name must identify a column mask
that exists at the current server (SQLSTATE 42704). The comment is placed in the REMARKS column
of the SYSCAT.CONTROLS catalog table for the row that describes the mask.

MODULE module-name
Indicates a comment will be added or replaced for a module. The module-name must identify a
module that exists at the current server (SQLSTATE 42704). The specified name must not be an alias
for a module (SQLSTATE 560CT). The comment replaces the value for the REMARKS column of the
SYSCAT.MODULES catalog view for the row that describes the module.

NICKNAME nickname
Indicates a comment will be added or replaced for a nickname. The nickname must be a nickname
that exists at the current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.TABLES catalog view for the row that describes the nickname.

PACKAGE package-name
Indicates that a comment will be added or replaced for a package. The package name must identify a
package that exists at the current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.PACKAGES catalog view for the row that describes the package.
VERSION version-id

Identifies which package version is to be commented on. If a value is not specified, the version
defaults to the empty string. If multiple packages with the same package name but different
versions exist, only one package version can be commented on in one invocation of the COMMENT
statement. Delimit the version identifier with double quotation marks when it:

• Is generated by the VERSION(AUTO) precompiler option
• Begins with a digit
• Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt, precede each double
quotation mark delimiter with a back slash character to ensure that the operating system does not
strip the delimiters.

PERMISSION permission-name
Identifies the row permission to which the comment applies. permission-name must identify a row
permission that exists at the current server (SQLSTATE 42704, SQLCODE -204). The comment is
placed in the REMARKS column of the SYSCAT.CONTROLS catalog table for the row that describes the
permission.

procedure-designator
Indicates a comment will be added or replaced for a procedure. For more information, see “Function,
method, and procedure designators” on page 745.

It is not possible to comment on a procedure that is in the SYSIBM, SYSIBMADM, SYSFUN, or
SYSPROC schema (SQLSTATE 42832).

The comment replaces the value of the REMARKS column of the SYSCAT.ROUTINES catalog view for
the row that describes the procedure.

ROLE role-name
Indicates a comment will be added or replaced for a role. The role-name must identify a role that
exists at the current server (SQLSTATE 42704). The comment replaces the value of the REMARKS
column of the SYSCAT.ROLES catalog view for the row that describes the role.

SCHEMA schema-name
Indicates a comment will be added or replaced for a schema. The schema-name must identify a
schema that exists at the current server (SQLSTATE 42704). The comment replaces the value of the
REMARKS column of the SYSCAT.SCHEMATA catalog view for the row that describes the schema.

SECURITY LABEL sec-label-name
Indicates that a comment will be added or replaced for the security label named sec-label-name. The
name must be qualified with a security policy and must identify a security label that exists at the

Chapter 1. Structured Query Language (SQL) 977

current server (SQLSTATE 42704). The comment replaces the value for the REMARKS column of the
SYSCAT.SECURITYLABELS catalog view for the row that describes the security label.

SECURITY LABEL COMPONENT label-comp-name
Indicates that a comment will be added or replaced for the security label component named
label-comp-name. The label-comp-name must identify a security label component that exists at the
current server (SQLSTATE 42704). The comment replaces the value for the REMARKS column of
the SYSCAT.SECURITYLABELCOMPONENTS catalog view for the row that describes the security label
component.

SECURITY POLICY label-pol-name
Indicates that a comment will be added or replaced for the security policy named label-pol-name.
The label-pol-name must identify a security policy that exists at the current server (SQLSTATE 42704).
The comment replaces the value for the REMARKS column of the SYSCAT.SECURITYPOLICIES catalog
view for the row that describes the security policy.

SEQUENCE sequence-name
Indicates a comment will be added or replaced for a sequence. The sequence-name must identify a
sequence that exists at the current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.SEQUENCES catalog view for the row that describes the sequence.

SERVER server-name
Indicates a comment will be added or replaced for a data source. The server-name must identify a
data source that exists at the current server (SQLSTATE 42704). The comment replaces the value
for the REMARKS column of the SYSCAT.SERVERS catalog view for the row that describes the data
source.

SERVER OPTION server-option-name FOR remote-server
Indicates a comment will be added or replaced for a server option.
server-option-name

Identifies a server option. This option must be one that exists at the current server
(SQLSTATE 42704). The comment replaces the value for the REMARKS column of the
SYSCAT.SERVEROPTIONS catalog view for the row that describes the server option.

remote-server
Describes the data source to which the server-option applies.
SERVER server-name

Names the data source to which the server-option applies. The server-name must identify a
data source that exists at the current server.

TYPE server-type
Specifies the type of data source (such as Db2 for z/OS or Oracle) to which the server-option
applies. The server-type can be specified in either lower- or uppercase; it will be stored in
uppercase in the catalog.

VERSION
Specifies the version of the data source identified by server-name.
version

Specifies the version number. version must be an integer.
release

Specifies the number of the release of the version denoted by version. release must be an
integer.

mod
Specifies the number of the modification of the release denoted by release. mod must be
an integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant can be a
single value (for example, '8i'); or it can be the concatenated values of version, release,
and, if applicable, mod (for example, '8.0.3').

978 IBM Db2 V11.5: SQL Reference

WRAPPER wrapper-name
Identifies the wrapper that is used to access the data source referenced by server-name.

service-class-designator
SERVICE CLASS service-class-name

Indicates a comment will be added or replaced for a service class. The service-class-name
must identify a service class that exists at the current server (SQLSTATE 42704). To add
or replace a comment for a service subclass, the service-superclass-name must be specified
using the UNDER clause. The comment replaces the value for the REMARKS column of the
SYSCAT.SERVICECLASSES catalog view for the row that describes the service class.
UNDER service-superclass-name

Specifies the service superclass of the service subclass when adding or replacing a comment
for a service subclass. The service-superclass-name must identify a service superclass that
exists at the current server (SQLSTATE 42704).

STOGROUP storagegroup-name
Indicates a comment will be added or replaced for a storage group. The storagegroup-name must
identify a distinct storage group that exists at the current server (SQLSTATE 42704). The comment
replaces the value for the REMARKS column of the SYSCAT.STOGROUPS catalog view for the row that
describes the storage group.

TABLE table-name or view-name
Indicates a comment will be added or replaced for a table or view. The table-name or view-name
must identify a table or view (not an alias or nickname) that exists at the current server (SQLSTATE
42704) and must not identify a declared temporary table (SQLSTATE 42995). The comment replaces
the value for the REMARKS column of the SYSCAT.TABLES catalog view for the row that describes the
table or view.

TABLESPACE tablespace-name
Indicates a comment will be added or replaced for a table space. The tablespace-name must identify
a distinct table space that exists at the current server (SQLSTATE 42704). The comment replaces the
value for the REMARKS column of the SYSCAT.TABLESPACES catalog view for the row that describes
the table space.

THRESHOLD threshold-name
Indicates a comment will be added or replaced for a threshold. The threshold-name must identify a
threshold that exists at the current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.THRESHOLDS catalog view for the row that describes the threshold.

TRIGGER trigger-name
Indicates a comment will be added or replaced for a trigger. The trigger-name must identify a distinct
trigger that exists at the current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.TRIGGERS catalog view for the row that describes the trigger.

TRUSTED CONTEXT context-name
Indicates a comment will be added or replaced for a trusted context. The context-name must identify
a trusted context that exists at the current server (SQLSTATE 42704). The comment replaces the
value for the REMARKS column of the SYSCAT.CONTEXTS catalog view for the row that describes the
trusted context.

TYPE type-name
Indicates a comment will be added or replaced for a user-defined type. The type-name must identify
a user-defined type that exists at the current server (SQLSTATE 42704). The comment replaces the
value of the REMARKS column of the SYSCAT.DATATYPES catalog view for the row that describes the
user-defined type.

In dynamic SQL statements, the CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names.

TYPE MAPPING type-mapping-name
Indicates a comment will be added or replaced for a user-defined data type mapping. The type-
mapping-name must identify a data type mapping that exists at the current server (SQLSTATE 42704).

Chapter 1. Structured Query Language (SQL) 979

The comment replaces the value for the REMARKS column of the SYSCAT.TYPEMAPPINGS catalog
view for the row that describes the mapping.

USAGE LIST usage-list-name
Indicates a comment will be added or replaced for a usage list. The usage-list-name must identify a
usage list that exists at the current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.USAGELISTS catalog view for the row that describes the usage list.

VARIABLE variable-name
Indicates a comment will be added or replaced for a global variable. The variable-name must identify
a global variable that exists at the current server (SQLSTATE 42704). The comment replaces the
value for the REMARKS column of the SYSCAT.VARIABLES catalog view for the row that describes the
variable.

WORK ACTION SET work-action-set-name
Indicates a comment will be added or replaced for a work action set. The work-action-set-name must
identify a work action set that exists at the current server (SQLSTATE 42704). The comment replaces
the value for the REMARKS column of the SYSCAT.WORKACTIONSETS catalog view for the row that
describes the work action set.

WORK CLASS SET work-class-set-name
Indicates a comment will be added or replaced for a work class set. The work-class-set-name must
identify a work class set that exists at the current server (SQLSTATE 42704). The comment replaces
the value for the REMARKS column of the SYSCAT.WORKCLASSSETS catalog view for the row that
describes the work class set.

WORKLOAD workload-name
Indicates that a comment will be added or replaced for a workload. The workload-name must identify
a workload that exists at the current server (SQLSTATE 42704). The comment replaces the value
for the REMARKS column of the SYSCAT.WORKLOADS catalog view for the row that describes the
workload.

WRAPPER wrapper-name
Indicates a comment will be added or replaced for a wrapper. The wrapper-name must identify a
wrapper that exists at the current server (SQLSTATE 42704). The comment replaces the value for the
REMARKS column of the SYSCAT.WRAPPERS catalog view for the row that describes the wrapper.

XSROBJECT xsrobject-name
Indicates a comment will be added or replaced for an XSR object. The xsrobject-name must identify
an XSR object that exists at the current server (SQLSTATE 42704). The comment replaces the value
for the REMARKS column of the SYSCAT.XSROBJECTS catalog view for the row that describes the XSR
object.

IS string-constant
Specifies the comment to be added or replaced. The string-constant can be any character string
constant of up to 254 bytes. (Carriage return and line feed each count as 1 byte.)

table-name|view-name ({ column-name IS string-constant } ...)
This form of the COMMENT statement provides the ability to specify comments for multiple columns
of a table or view. The column names must not be qualified, each name must identify a column of the
specified table or view, and the table or view must exist at the current server. The table-name cannot
be a declared temporary table (SQLSTATE 42995).

A comment cannot be made on a column of an inoperative view (SQLSTATE 51024).

Notes
• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous

versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP
– DISTINCT TYPE type-name can be specified in place of TYPE type-name
– DATA TYPE type-name can be specified in place of TYPE type-name

980 IBM Db2 V11.5: SQL Reference

– SYNONYM can be specified in place of ALIAS

Examples
• Example 1: Add a comment for the EMPLOYEE table.

 COMMENT ON TABLE EMPLOYEE
 IS 'Reflects first quarter reorganization'

• Example 2: Add a comment for the EMP_VIEW1 view.

 COMMENT ON TABLE EMP_VIEW1
 IS 'View of the EMPLOYEE table without salary information'

• Example 3: Add a comment for the EDLEVEL column of the EMPLOYEE table.

 COMMENT ON COLUMN EMPLOYEE.EDLEVEL
 IS 'highest grade level passed in school'

• Example 4: Add comments for two different columns of the EMPLOYEE table.

 COMMENT ON EMPLOYEE
 (WORKDEPT IS 'see DEPARTMENT table for names',
 EDLEVEL IS 'highest grade level passed in school')

• Example 5: Pellow wants to comment on the CENTER function, which he created in his PELLOW
schema, using the signature to identify the specific function to be commented on.

 COMMENT ON FUNCTION CENTER (INT,FLOAT)
 IS 'Frank''s CENTER fctn, uses Chebychev method'

• Example 6: McBride wants to comment on another CENTER function, which she created in the PELLOW
schema, using the specific name to identify the function instance to be commented on:

 COMMENT ON SPECIFIC FUNCTION PELLOW.FOCUS92 IS
 'Louise''s most triumphant CENTER function, uses the
 Brownian fuzzy-focus technique'

• Example 7: Comment on the function ATOMIC_WEIGHT in the CHEM schema, where it is known that
there is only one function with that name:

 COMMENT ON FUNCTION CHEM.ATOMIC_WEIGHT
 IS 'takes atomic nbr, gives atomic weight'

• Example 8: Eigler wants to comment on the SEARCH procedure, which he created in his EIGLER
schema, using the signature to identify the specific procedure to be commented on.

 COMMENT ON PROCEDURE SEARCH (CHAR,INT)
 IS 'Frank''s mass search and replace algorithm'

• Example 9: Macdonald wants to comment on another SEARCH function, which he created in the EIGLER
schema, using the specific name to identify the procedure instance to be commented on:

 COMMENT ON SPECIFIC PROCEDURE EIGLER.DESTROY IS
 'Patrick''s mass search and destroy algorithm'

• Example 10: Comment on the procedure OSMOSIS in the BIOLOGY schema, where it is known that
there is only one procedure with that name:

 COMMENT ON PROCEDURE BIOLOGY.OSMOSIS
 IS 'Calculations modelling osmosis'

• Example 11: Comment on an index specification named INDEXSPEC.

 COMMENT ON INDEX INDEXSPEC
 IS 'An index specification that indicates to the optimizer
 that the table referenced by nickname NICK1 has an index.'

Chapter 1. Structured Query Language (SQL) 981

• Example 12: Comment on the wrapper whose default name is NET8.

 COMMENT ON WRAPPER NET8
 IS 'The wrapper for data sources associated with
 Oracle's Net8 client software.'

• Example 13: Create a comment on the XML schema HR.EMPLOYEE.

 COMMENT ON XSROBJECT HR.EMPLOYEE
 IS 'This is the base XML Schema for employee data.'

• Example 14: Create a comment for trusted context APPSERVER.

 COMMENT ON TRUSTED CONTEXT APPSERVER
 IS 'WebSphere Server'

• Example 15: Create a comment for column mask M1.

 COMMENT ON MASK M1 IS 'Column mask for column EMP.SALARY'

COMMIT
The COMMIT statement terminates a unit of work and commits the database changes that were made by
that unit of work.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

COMMIT
WORK

Description
The unit of work in which the COMMIT statement is executed is terminated and a new unit of work is
initiated. All changes made by the following statements executed during the unit of work are committed:
ALTER, COMMENT, CREATE, DROP, GRANT, LOCK TABLE, REVOKE, SET INTEGRITY, and the data change
statements (INSERT, DELETE, MERGE, UPDATE), including those nested in a query.

The following statements, however, are not under transaction control and changes made by them are
independent of the COMMIT statement:

• SET CONNECTION
• SET ENCRYPTION PASSWORD
• SET EVENT MONITOR STATE
• SET PASSTHRU

Note: Although the SET PASSTHRU statement is not under transaction control, the passthru session
initiated by the statement is under transaction control.

• SET SERVER OPTION
• SET variable
• Assignments to updatable special registers

982 IBM Db2 V11.5: SQL Reference

All locks acquired by the unit of work subsequent to its initiation are released, except necessary locks for
open cursors that are declared WITH HOLD. All open cursors not defined WITH HOLD are closed. Open
cursors defined WITH HOLD remain open, and the cursor is positioned before the next logical row of the
result table. (A FETCH must be performed before a positioned UPDATE or DELETE statement is issued.)
All LOB locators are freed. Note that this is true even when the locators are associated with LOB values
retrieved via a cursor that has the WITH HOLD property.

Dynamic SQL statements prepared in a package bound with the KEEPDYNAMIC YES option are kept in
the SQL context after a COMMIT statement. This is the default behavior. The statement might be implicitly
prepared again, as a result of DDL operations that are rolled back within the unit of work. Inactive
dynamic SQL statements prepared in a package bound with KEEPDYNAMIC NO are removed from the
SQL context after a COMMIT. The statement must be prepared again before it can be executed in a new
transaction.

All savepoints set within the transaction are released.

The following statements behave differently than other data definition language (DDL) and data control
language (DCL) statements. Changes made by these statements do not take effect until the statement is
committed, even for the current connection that issues the statement. Only one of these statements can
be issued by any application at a time, and only one of these statements is allowed within any one unit
of work. Each statement must be followed by a COMMIT or a ROLLBACK statement before another one of
these statements can be issued.

• CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE CLASS)
• CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
• CREATE WORK ACTION, ALTER WORK ACTION, or DROP (WORK ACTION)
• CREATE WORK CLASS, ALTER WORK CLASS, or DROP (WORK CLASS)
• CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
• GRANT (Workload Privileges) or REVOKE (Workload Privileges)

Notes
• It is strongly recommended that each application process explicitly ends its unit of work before

terminating. If the application program ends normally without a COMMIT or ROLLBACK statement then
the database manager attempts a commit or rollback depending on the application environment.

• For information about the impact of COMMIT on cached dynamic SQL statements, see "EXECUTE".
• For information about potential impacts of COMMIT on created temporary tables, see "CREATE GLOBAL

TEMPORARY TABLE".
• For information about potential impacts of COMMIT on declared temporary tables, see "DECLARE

GLOBAL TEMPORARY TABLE".
• The following dynamic SQL statements may be active during COMMIT:

– Open WITH HOLD cursor
– COMMIT statement
– CALL statements under which the COMMIT statement was executed

Example
Commit alterations to the database made since the last commit point.

 COMMIT WORK

Chapter 1. Structured Query Language (SQL) 983

Compound SQL
A compound SQL statement is a sequence of individual SQL statements enclosed by BEGIN and END
keywords.

There are three types of compound SQL statements:

• Inlined: A compound SQL (inlined) statement is a compound SQL statement that is inlined at run
time within another SQL statement. Compound SQL (inlined) statements have the property of being
atomically executed; if the execution of any of the statements raises an error, the full statement is rolled
back.

• Embedded: Combines one or more other SQL statements (sub-statements) into an executable block.
• Compiled: A compound SQL (compiled) statement can contain SQL control statements and SQL

statements. Compound SQL (compiled) statements can be used to implement procedural logic through
a sequence of SQL statements with a local scope for variables, conditions, cursors, and handlers.

Compound SQL (inlined)
A compound SQL (inlined) statement is a compound SQL statement that is inlined at run time within
another SQL statement. Compound SQL (inlined) statements have the property of being atomically
executed; if the execution of any of the statements raises an error, the full statement is rolled back.

Invocation
This statement can be embedded in a trigger, SQL function, or SQL method, or issued through the use of
dynamic SQL statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must also include all of the privileges
necessary to invoke the SQL statements that are specified in the compound statement.

Syntax

label:
1

BEGIN ATOMIC

SQL-variable-declaration

condition-declaration

;

,

SQL-statement ;

END

label

SQL-variable-declaration

DECLARE

,

SQL-variable-name data-type
DEFAULT NULL

DEFAULT constant

condition-declaration

DECLARE condition-name CONDITION FOR

SQLSTATE
VALUE

string-constant

984 IBM Db2 V11.5: SQL Reference

SQL-statement
CALL

FOR

WITH

,

common-table-expression

fullselect

GET DIAGNOSTICS

IF

INSERT

ITERATE

LEAVE

MERGE

RETURN

searched-delete

searched-update

SET Variable

SIGNAL

WHILE

Notes:
1 A label can only be specified when the statement is in a function, method, or trigger definition.

Description
label

Defines the label for the code block. If the beginning label is specified, it can be used to qualify SQL
variables declared in the compound SQL (inlined) statement and can also be specified on a LEAVE
statement. If the ending label is specified, it must be the same as the beginning label.

ATOMIC
ATOMIC indicates that, if an error occurs in the compound statement, all SQL statements in the
compound statement will be rolled back, and any remaining SQL statements in the compound
statement are not processed.

If the ATOMIC keyword is specified in an SQL function in a module or an SQL procedure, the
compound statement is processed as a compound SQL (compiled) statement.

SQL-statement
Specifies an SQL statement to be executed within the compound SQL (inlined) statement.

SQL-variable-declaration
Declares a variable that is local to the compound SQL (inlined) statement.
SQL-variable-name

Defines the name of a local variable. SQL variable names are converted to uppercase. The name
cannot be the same as:

• Another SQL variable within the compound statement
• A parameter name

If an SQL statement contains an identifier with the same name as an SQL variable and a column
reference, the identifier is interpreted as a column.

Chapter 1. Structured Query Language (SQL) 985

data-type
Specifies the data type of the variable. The XML data type is not supported in a compound SQL
(inlined) statement used in a trigger, in a method, or as a stand-alone statement (SQLSTATE
429BB). The XML data type is supported when the compound SQL (inlined) statement is used in
an SQL function body.

DEFAULT
Defines the default for the SQL variable. The variable is initialized when the compound SQL
(inlined) statement is executed. The default value must be assignment-compatible with the data
type of the variable. If a default value is not specified, the default for the SQL variable is initialized
to the null value.
NULL

Specifies NULL as the default for the SQL variable.
constant

Specifies a constant as the default for the SQL variable.
condition-declaration

Declares a condition name and corresponding SQLSTATE value.
condition-name

Specifies the name of the condition. The condition name must be unique within the compound
statement in which it is declared, excluding any declarations in compound statements that
are nested within that compound statement (SQLSTATE 42734). A condition name can only be
referenced within the compound statement in which it is declared, including any compound
statements that are nested within that compound statement (SQLSTATE 42737).

FOR SQLSTATE string-constant
Specifies the SQLSTATE associated with the condition. The string-constant must be specified
as five characters enclosed by single quotation marks, and the SQLSTATE class (the first two
characters) must not be '00'.

Notes
• Compound SQL (inlined) statements are compiled as one single statement. This statement is effective

for short scripts involving little control flow logic but significant data flow. For larger constructs with
requirements for nested control flow or condition handling, a better choice is to use the compound SQL
(compiled) statement or an SQL procedure.

• A procedure called within a compound statement must not issue a COMMIT or a ROLLBACK statement
(SQLSTATE 42985).

• Table access restrictions: If a procedure is defined as READS SQL DATA or MODIFIES SQL DATA, no
statement in the procedure can access a table that is being modified by the compound statement
that invoked the procedure (SQLSTATE 57053). If the procedure is defined as MODIFIES SQL DATA,
no statement in the procedure can modify a table that is being read or modified by the compound
statement that invoked the procedure (SQLSTATE 57053).

• XML assignments: Assignment to parameters and variables of data type XML is done by reference in
SQL function bodies.

When XML values are passed by reference, any input node trees are used directly. This direct
usage preserves all properties, including document order, the original node identities, and all parent
properties.

• Isolation level: If a select-statement, fullselect, or subselect specifies an isolation-clause, the clause is
ignored and a warning is returned.

Example
This example illustrates how inline SQL PL can be used in a data warehousing scenario for data cleansing.

986 IBM Db2 V11.5: SQL Reference

The example introduces three tables. The TARGET table contains the cleansed data. The EXCEPT table
stores rows that cannot be cleansed (exceptions) and the SOURCE table contains the raw data to be
cleansed.

A simple SQL function called DISCRETIZE is used to classify and modify the data. It returns the null
value for all bad data. The compound SQL (inlined) statement then cleanses the data. It walks all rows
of the SOURCE table in a FOR-loop and decides whether the current row gets inserted into the TARGET
or the EXCEPT table, depending on the result of the DISCRETIZE function. More elaborate mechanisms
(multistage cleansing) are possible with this technique.

The same code can be written using an SQL Procedure or any other procedure or application in a host
language. However, the compound SQL (inlined) statement offers a unique advantage in that the FOR-loop
does not open a cursor and the single row inserts are not really single row inserts. In fact, the logic is
effectively a multi-table insert from a shared select.

This is achieved by compilation of the compound SQL (inlined) statement as a single statement. Similar to
a view whose body is integrated into the query that uses it and then is compiled and optimized as a whole
within the query context, the database optimizer compiles and optimizes both the control and data flow
together. The whole logic is therefore executed within the runtime environment of the database. No data
is moved outside of the core database engine, as would be done for a procedure.

The first step is to create the required tables:

 CREATE TABLE TARGET
 (PK INTEGER NOT NULL
 PRIMARY KEY, C1 INTEGER)

This creates a table called TARGET to contain the cleansed data.

 CREATE TABLE EXCEPT
 (PK INTEGER NOT NULL
 PRIMARY KEY, C1 INTEGER)

This creates a table called EXCEPT to contain the exceptions.

 CREATE TABLE SOURCE
 (PK INTEGER NOT NULL
 PRIMARY KEY, C1 INTEGER)

This creates a table called SOURCE to hold the data that is to be cleansed.

Next, a function named DISCRETIZE is created to cleanse the data by throwing out all values outside
[0..1000] and aligning them to steps of 10.

 CREATE FUNCTION DISCRETIZE(RAW INTEGER) RETURNS INTEGER
 RETURN CASE
 WHEN RAW < 0 THEN CAST(NULL AS INTEGER)
 WHEN RAW > 1000 THEN NULL
 ELSE ((RAW / 10) * 10) + 5
 END

Then the values are inserted:

 INSERT INTO SOURCE (PK, C1)
 VALUES (1, -5),
 (2, NULL),
 (3, 1200),
 (4, 23),
 (5, 10),
 (6, 876)

Invoke the function:

 BEGIN ATOMIC
 FOR ROW AS
 SELECT PK, C1, DISCRETIZE(C1) AS D FROM SOURCE
 DO
 IF ROW.D IS NULL THEN

Chapter 1. Structured Query Language (SQL) 987

 INSERT INTO EXCEPT VALUES(ROW.PK, ROW.C1);
 ELSE
 INSERT INTO TARGET VALUES(ROW.PK, ROW.D);
 END IF;
 END FOR;
 END

And test the results:

 SELECT * FROM EXCEPT ORDER BY 1
 PK C1
 ----------- -----------
 1 -5
 2 -
 3 1200
 3 record(s) selected.

 SELECT * FROM TARGET ORDER BY 1
 PK C1
 ----------- -----------
 4 25
 5 15
 6 875
 3 record(s) selected.

The final step is to clean up:

 DROP FUNCTION DISCRETIZE
 DROP TABLE SOURCE
 DROP TABLE TARGET
 DROP TABLE EXCEPT

Compound SQL (embedded)
Combines one or more other SQL statements (sub-statements) into an executable block.

Invocation
This statement can only be embedded in an application program. The entire compound SQL (embedded)
statement construct is an executable statement that cannot be dynamically prepared. The statement is
not supported in REXX.

Authorization
No privileges are required to invoke an compound SQL (embedded). However, the privileges held by the
authorization ID of the statement must include all necessary privileges to invoke the SQL statements that
are embedded in the compound statement.

Syntax
BEGIN COMPOUND ATOMIC

NOT ATOMIC

STATIC

STOP AFTER FIRST host-variable STATEMENTS

sql-statement ;

END COMPOUND

988 IBM Db2 V11.5: SQL Reference

Description
ATOMIC

Specifies that, if any of the sub-statements within the compound SQL (embedded) statement fail,
then all changes made to the database by any of the sub-statements, including changes made by
successful sub-statements, are undone.

NOT ATOMIC
Specifies that, regardless of the failure of any sub-statements, the compound SQL (embedded)
statement will not undo any changes made to the database by the other sub-statements.

STATIC
Specifies that input variables for all sub-statements retain their original value. For example, if

 SELECT ... INTO :abc ...

is followed by:

 UPDATE T1 SET C1 = 5 WHERE C2 = :abc

the UPDATE statement will use the value that :abc had at the start of the execution of the compound
SQL (embedded) statement, not the value that follows the SELECT INTO.

If the same variable is set by more than one sub-statement, the value of that variable following the
compound SQL (embedded) statement is the value set by the last sub-statement.

Note: Non-static behavior is not supported. This means that the sub-statements should be viewed as
executing non-sequentially and sub-statements should not have interdependencies.

STOP AFTER FIRST
Specifies that only a certain number of sub-statements will be executed.

host-variable
A small integer that specifies the number of sub-statements to be executed.

STATEMENTS
Completes the STOP AFTER FIRST host-variable clause.

sql-statement
All executable statements except the following can be contained within an embedded static
compound SQL (embedded) statement:

 CALL FETCH
 CLOSE OPEN
 CONNECT PREPARE
 Compound SQL RELEASE (Connection)
 DESCRIBE ROLLBACK
 DISCONNECT SET CONNECTION
 EXECUTE IMMEDIATE SET variable

Note: INSERT, UPDATE, and DELETE are not supported in compound SQL for use with nicknames.

If a COMMIT statement is included, it must be the last sub-statement. If COMMIT is in this position, it
will be issued even if the STOP AFTER FIRST host-variable STATEMENTS clause indicates that not all
of the sub-statements are to executed. For example, suppose COMMIT is the last sub-statement in a
compound SQL block of 100 sub-statements. If the STOP AFTER FIRST STATEMENTS clause indicates
that only 50 sub-statements are to be executed, then COMMIT will be the 51st sub-statement.

An error will be returned if COMMIT is included when using CONNECT TYPE 2 or running in an XA
distributed transaction processing environment (SQLSTATE 25000).

Rules
• Db2 Connect does not support SELECT statements selecting LOB columns in a compound SQL block.
• No host language code is allowed within a compound SQL (embedded) statement; that is, no host

language code is allowed between the sub-statements that make up the compound SQL (embedded)
statement.

Chapter 1. Structured Query Language (SQL) 989

• Only NOT ATOMIC compound SQL (embedded) statements will be accepted by Db2 Connect.
• Compound SQL (embedded) statements cannot be nested.
• A prepared COMMIT statement is not allowed in an ATOMIC compound SQL (embedded) statement

Notes
• One SQLCA is returned for the entire compound SQL (embedded) statement. Most of the information in

that SQLCA reflects the values set by the application server when it processed the last sub-statement.
For instance:

– The SQLCODE and SQLSTATE are normally those for the last sub-statement (the exception is
described in the next point).

– If a "no data found" warning (SQLSTATE 02000) is returned, that warning is given precedence over
any other warning so that a WHENEVER NOT FOUND exception can be acted upon. (This means that
the SQLCODE, SQLERRML, SQLERRMC, and SQLERRP fields in the SQLCA that is eventually returned
to the application are those from the sub-statement that triggered the "no data found" warning. If
there is more than one "no data found" warning within the compound SQL (embedded) statement,
the fields for the last sub-statement will be the fields that are returned.)

– The SQLWARN indicators are an accumulation of the indicators set for all sub-statements.
• If one or more errors occurred during NOT ATOMIC compound SQL execution and none of these are

of a serious nature, the SQLERRMC will contain information about these errors, up to a maximum of
seven errors. The first token of the SQLERRMC will indicate the total number of errors that occurred. The
remaining tokens will each contain the ordinal position and the SQLSTATE of the failing sub-statement
within the compound SQL (embedded) statement. The format is a character string of the form:

 nnnXsssccccc

with the substring starting with X repeating up to six more times and the string elements defined as
follows.
nnn

The total number of statements that produced errors. (If the number would exceed 999, counting
restarts at zero.) This field is left-aligned and padded with blanks.

X
The token separator X'FF'.

sss
The ordinal position of the statement that caused the error. (If the number would exceed 999,
counting restarts at zero.) For example, if the first statement failed, this field would contain the
number one left-aligned ("1").

ccccc
The SQLSTATE of the error.

• The second SQLERRD field contains the number of statements that failed (returned negative
SQLCODEs).

• The third SQLERRD field in the SQLCA is an accumulation of the number of rows affected by all
sub-statements.

• The fourth SQLERRD field in the SQLCA is a count of the number of successful sub-statements. If,
for example, the third sub-statement in a compound SQL (embedded) statement failed, the fourth
SQLERRD field would be set to 2, indicating that 2 sub-statements were successfully processed before
the error was encountered.

• The fifth SQLERRD field in the SQLCA is an accumulation of the number of rows updated or deleted
due to the enforcement of referential integrity constraints for all sub-statements that triggered such
constraint activity.

990 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: In a C program, issue a compound SQL (embedded) statement that updates both the

ACCOUNTS and TELLERS tables. If there is an error in any of the statements, undo the effect of all
statements (ATOMIC). If there are no errors, commit the current unit of work.

 EXEC SQL BEGIN COMPOUND ATOMIC STATIC
 UPDATE ACCOUNTS SET ABALANCE = ABALANCE + :delta
 WHERE AID = :aid;
 UPDATE TELLERS SET TBALANCE = TBALANCE + :delta
 WHERE TID = :tid;
 INSERT INTO TELLERS (TID, BID, TBALANCE) VALUES (:i, :branch_id, 0);
 COMMIT;
 END COMPOUND;

• Example 2: In a C program, insert 10 rows of data into the database. Assume the host variable :nbr
contains the value 10 and S1 is a prepared INSERT statement. Further, assume that all the inserts
should be attempted regardless of errors (NOT ATOMIC).

 EXEC SQL BEGIN COMPOUND NOT ATOMIC STATIC STOP AFTER FIRST :nbr STATEMENTS
 EXECUTE S1 USING DESCRIPTOR :*sqlda0;
 EXECUTE S1 USING DESCRIPTOR :*sqlda1;
 EXECUTE S1 USING DESCRIPTOR :*sqlda2;
 EXECUTE S1 USING DESCRIPTOR :*sqlda3;
 EXECUTE S1 USING DESCRIPTOR :*sqlda4;
 EXECUTE S1 USING DESCRIPTOR :*sqlda5;
 EXECUTE S1 USING DESCRIPTOR :*sqlda6;
 EXECUTE S1 USING DESCRIPTOR :*sqlda7;
 EXECUTE S1 USING DESCRIPTOR :*sqlda8;
 EXECUTE S1 USING DESCRIPTOR :*sqlda9;
 END COMPOUND;

Compound SQL (compiled)
A compound SQL (compiled) statement can contain SQL control statements and SQL statements.
Compound SQL (compiled) statements can be used to implement procedural logic through a sequence of
SQL statements with a local scope for variables, conditions, cursors, and handlers.

Invocation
This statement can be embedded in a trigger, SQL function, or SQL procedure; or issued through the use
of dynamic SQL statements. It is an executable statement that can be dynamically prepared.

Authorization
For an SQL-variable-declaration that specifies a cursor-value-constructor that uses a select-statement, the
privileges held by the authorization ID of the statement must include the privileges necessary to execute
the select-statement. See the Authorization section in "SQL queries".

The privileges held by the authorization ID of the statement must also include all of the privileges
necessary to invoke the SQL statements that are specified in the compound statement.

Only PUBLIC group privileges are considered for any SQL objects specified inside the body of compound
statement.

Chapter 1. Structured Query Language (SQL) 991

Syntax

label:

BEGIN
NOT ATOMIC

ATOMIC

type-declaration ;

SQL-variable-declaration

condition-declaration

return-codes-declaration

;

statement-declaration ;

DECLARE-CURSOR-statement ;

procedure-declaration ; handler-declaration ;

SQL-procedure-statement ;

END

label

type-declaration
DECLARE TYPEtype-name

type-name TYPE

AS array-type-definition

distinct-type-definition

row-type-definition

array-type-definition

data-type1 ARRAY [
2147483647

integer-constant

data-type2

]

data-type1
built-in-type

anchored-data-type

row-type-name

built-in-type

992 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

BOOLEAN

CURSOR

anchored-data-type

Chapter 1. Structured Query Language (SQL) 993

ANCHOR
DATA TYPE TO

variable-name

table-name.column-name

ROW
OF

table-name

view-name

cursor-variable-name

data-type2
INTEGER

INT

VARCHAR

CHARACTER

CHAR

VARYING

(integer)

anchored-non-row-data-type

anchored-non-row-data-type

ANCHOR
DATA TYPE TO

variable-name

table-name.column-name

distinct-type-definition
source-data-type WITH WEAK TYPE RULES

NOT NULL

CHECK (check-condition)

source-data-type
built-in-type

anchored-non-row-data-type

row-type-definition

ROW (

,

field-name data-type3)

anchored-row-data-type

data-type3
built-in-type

anchored-non-row-data-type

distinct-type-name

anchored-row-data-type

994 IBM Db2 V11.5: SQL Reference

ANCHOR
DATA TYPE TO

variable-name

ROW
OF

table-name

view-name

cursor-variable-name

SQL-variable-declaration

DECLARE

,

SQL-variable-name

data-type4
DEFAULT NULL

CONSTANT NULL

DEFAULT

CONSTANT

constant

(cursor-value-constructor)

2

RESULT_SET_LOCATOR VARYING

data-type4
built-in-type

anchored-data-type

array-type-name
3

cursor-type-name

distinct-type-name

row-type-name
4

cursor-value-constructor
CURSOR

(

,

cursor-parameter-declaration)

holdability FOR

select-statement

statement-name
5

cursor-parameter-declaration
parameter-name data-type5

data-type5
built-in-type

anchored-non-row-data-type

distinct-type-name

holdability

Chapter 1. Structured Query Language (SQL) 995

WITHOUT HOLD

WITH HOLD

condition-declaration
DECLARE condition-name CONDITION

FOR

SQLSTATE
VALUE

string-constant

statement-declaration

DECLARE

,

statement-name STATEMENT

return-codes-declaration

DECLARE SQLSTATE CHARACTER(5)

CHAR(5)

DEFAULT '00000'

DEFAULT string-constant

SQLCODE INTEGER

INT

DEFAULT 0

DEFAULT integer-constant

procedure-declaration
DECLARE PROCEDURE procedure-name

procedure-name PROCEDURE

(
,

parameter-declaration

) SQL-procedure-body

SQL-procedure-body
SQL-procedure-statement

handler-declaration
DECLARE CONTINUE

EXIT

UNDO

HANDLER FOR specific-condition-value

general-condition-value

SQL-procedure-statement

specific-condition-value
,

SQLSTATE
VALUE

string-constant

condition-name

general-condition-value

996 IBM Db2 V11.5: SQL Reference

,

SQLEXCEPTION

SQLWARNING

NOT FOUND

SQL-procedure-statement

label:

SQL-statement

Notes:
1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).
2 If data-type4 specifies a CURSOR built-in type or cursor-type-name, only NULL or cursor-value-
constructor can be specified. Only DEFAULT NULL can be explicitly specified for array-type-name or
row-type-name .
3 Only DEFAULT NULL can be explicitly specified for array-type-name.
4 Only DEFAULT NULL can be explicitly specified for row-type-name.
5 statement-name cannot be specified if cursor-parameter-declaration is specified.

Description
label

Defines the label for the code block. If the beginning label is specified, it can be used to qualify SQL
variables declared in the compound statement and can also be specified on a LEAVE statement. If the
ending label is specified, it must be the same as the beginning label.

ATOMIC or NOT ATOMIC
ATOMIC indicates that if an unhandled exception condition occurs in the compound statement, all SQL
statements in the compound statement will be rolled back.

NOT ATOMIC indicates that an unhandled exception condition within the compound statement does
not cause the compound statement to be rolled back.

If the ATOMIC keyword is specified in a dynamically prepared compound statement or an SQL
function that is not within a module, the compound statement is processed as a compound SQL
(inlined) statement.

A compound statement that is used in the function body of a module table function can only be
defined as NOT ATOMIC.

type-declaration
Declares a user-defined data type that is local to the compound statement.
type-name

Specifies the name of a local user-defined data type. The name cannot be the same as any
other type declared within the current compound statement (SQLSTATE 42734). The unqualified
type-name has the same restrictions as described in any CREATE TYPE statement (SQLSTATE
42939).

array-type-definition
Specifies the attributes of an array data type to associate with the type-name. See "CREATE TYPE
(array)" for a description of the syntax elements. The row-type-name can refer to a declared
row type that is previously declared and in the scope of the current compound SQL (compiled)
statement. The variable-name specified in an anchored-data-type clause can refer to a local
variable in the scope of the current compound SQL (compiled) statement.

distinct-type-definition
Specifies the source type and optional data type constraints of a weakly typed distinct type to
associate with the type-name. See "CREATE TYPE (distinct)" for a complete description of the

Chapter 1. Structured Query Language (SQL) 997

syntax elements. The variable-name specified in anchored-non-row-data-type clause can refer to
a local variable in the scope of the current compound SQL (compiled) statement. The data type of
the anchor variable-name or column-name must be a built-in data type.

row-type-definition
Specifies the fields of a row data type to associate with the type-name. See "CREATE TYPE (row)"
for a complete description of the syntax elements. The variable-name specified in anchored-non-
row-data-type or anchored-row-data-type clauses can refer to a local variable in the scope of the
current compound SQL (compiled) statement.

SQL-variable-declaration
Declares a variable that is local to the compound statement.
SQL-variable-name

Defines the name of a local variable. All SQL variable names are converted to uppercase. The
name cannot be the same as another SQL variable within the same compound statement and
cannot be the same as a parameter name. An SQL variable name must not be the same as a
column name. If an SQL statement contains an identifier with the same name as an SQL variable
and a column reference, the identifier is interpreted as a column. If the compound statement in
which the variable is declared has a label, then references to the variable can be qualified with the
label. For example, variable V declared in a compound statement with a label C can be referred to
as C.V.

data-type4
Specifies the data type of the variable. A structured type or reference type cannot be specified
(SQLSTATE 429BB).
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type
except BOOLEAN and CURSOR, which cannot be specified for a table, see "CREATE TABLE".
The XML data type cannot be specified in a compound SQL (compiled) statement used in a
trigger, in a function, or as a stand-alone statement (SQLSTATE 429BB). The XML data type
can be specified when the compound SQL (compiled) statement is used in an SQL procedure
body.
BOOLEAN

For a Boolean.
CURSOR

For a cursor.
anchored-data-type

Identifies another object used to determine the data type of the SQL variable. The data type of
the anchor object has the same limitations that apply to specifying the data type directly, or in
the case of a row, to creating a row type.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.
variable-name

Identifies an SQL variable, SQL parameter, or global variable. The data type of the
referenced variable is used as the data type for SQL-variable-name.

table-name.column-name
Identifies a column name of an existing table or view. The data type of the column is
used as the data type for SQL-variable-name.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based on the column
names and column data types of the table identified by table-name or the view
identified by view-name. The data type of SQL-variable-name is an unnamed row type.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on the field names
and field data types of the cursor variable identified by cursor-variable-name. The
specified cursor variable must be one of the following elements (SQLSTATE 428HS):

998 IBM Db2 V11.5: SQL Reference

• An SQL variable or global variable with a strongly typed cursor data type
• An SQL variable or global variable with a weakly typed cursor data type that was

created or declared with a CONSTANT clause specifying a select-statement where all
the result columns are named.

If the cursor type of the cursor variable is not strongly rtyped using a named row type,
the data type of SQL-variable-name is an unnamed row type.

array-type-name
Specifies the name of a user-defined array type. The array data type can be a locally declared
data type, a schema data type, or a module data type.

cursor-type-name
Specifies the name of a cursor type. The cursor data type can be a schema data type or a
module data type.

distinct-type-name
Specifies the name of a distinct type. The distinct data type can be a schema data type or a
module data type. The length, precision, and scale of the declared variable are, respectively,
the length, precision, and scale of the source type of the distinct type.

row-type-name
Specifies the name of a user-defined row type. The row data type can be a locally declared
data type, a schema data type or a module data type. The fields of the variable are the fields of
the row type.

DEFAULT or CONSTANT
Specifies a value for the SQL variable when the compound SQL (compiled) statement is
referenced. If neither is specified, the default for the SQL variable is the null value. Only DEFAULT
NULL can be explicitly specified if array-type-name or row-type-name is specified.
DEFAULT

Defines the default for the SQL variable. The variable is initialized when the compound SQL
(compiled) statement is referenced. The default value must be assignment-compatible with
the data type of the variable.

CONSTANT
Specifies that the SQL variable has a fixed value that cannot be changed. An SQL variable that
is defined using CONSTANT cannot be used as the target of any assignment operation. The
fixed value must be assignment-compatible with the data type of the variable.

NULL
Specifies NULL as the default for the SQL variable.

constant
Specifies a constant as the default for the SQL variable. If data-type4 specifies a CURSOR
built-in type or cursor-type-name, constant cannot be specified (SQLSTATE 42601).

cursor-value-constructor
A cursor-value-constructor specifies the select-statement that is associated with the SQL
variable. The assignment of a cursor-value-constructor to a cursor variable defines the
underlying cursor of that cursor variable.
(cursor-parameter-declaration, ...)

Specifies the input parameters of the cursor, including the name and the data type of
each parameter. Named input parameters can be specified only if select-statement is also
specified in cursor-value-constructor (SQLSTATE 428HU).
parameter-name

Names the cursor parameter for use as an SQL variable within select-statement. The
name cannot be the same as any other parameter name for the cursor. Names should
also be chosen to avoid any column names that could be used in select-statement,
since column names are resolved before parameter names.

Chapter 1. Structured Query Language (SQL) 999

data-type5
Specifies the data type of the cursor parameter used within select-statement.
Structured types, and reference types cannot be specified (SQLSTATE 429BB).
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data
type, see "CREATE TABLE". The BOOLEAN and CURSOR built-in types cannot be
specified (SQLSTATE 429BB).

anchored-non-row-data-type
Identifies another object used to determine the data type of the cursor parameter.
The data type of the anchor object has the same limitations that apply to specifying
the data type directly.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.
variable-name

Identifies a local SQL variable, an SQL parameter, or a global variable. The
data type of the referenced variable is used as the data type for the cursor
parameter.

table-name.column-name
Identifies a column name of an existing table or view. The data type of the
column is used as the data type for the cursor parameter.

distinct-type-name
Specifies the name of a distinct type. If distinct-type-name is specified without a
schema name, the distinct type is resolved by searching the schemas in the SQL
path.

holdability
Specifies whether the cursor is prevented from being closed as a consequence of a commit
operation. See "DECLARE CURSOR" for more information. The default is WITHOUT HOLD.
WITHOUT HOLD

Does not prevent the cursor from being closed as a consequence of a commit
operation.

WITH HOLD
Maintains resources across multiple units of work. Prevents the cursor from being
closed as a consequence of a commit operation.

select-statement
Specifies the SELECT statement of the cursor. See "select-statement" for more
information. If cursor-parameter-declaration is included in cursor-value-constructor, then
select-statement must not include any local SQL variables or routine SQL parameters
(SQLSTATE 42704).

statement-name
Specifies the prepared select-statement of the cursor. See "PREPARE" for an explanation
of prepared statements. The target cursor variable must not have a data type that is a
strongly rtyped user-defined cursor type (SQLSTATE 428HU). Named input parameters
must not be specified in cursor-value-constructor if statement-name is specified
(SQLSTATE 428HU).

RESULT_SET_LOCATOR VARYING
Specifies the data type for a result set locator variable.

condition-declaration
Declares a condition name with an optional associated SQLSTATE value.
condition-name

Specifies the name of the condition. The condition name must be unique within the compound
statement in which it is declared, excluding any declarations in compound statements that
are nested within that compound statement (SQLSTATE 42734). A condition name can only be

1000 IBM Db2 V11.5: SQL Reference

referenced within the compound statement in which it is declared, including any compound
statements that are nested within that compound statement (SQLSTATE 42737).

CONDITION FOR SQLSTATE VALUEstring-constant
Specifies the SQLSTATE that is associated with the condition. The string constant must be
specified as five characters enclosed in single quotation marks, and the SQLSTATE class (the first
two characters) must not be '00'. If this clause is not specified, the condition has no associated
SQLSTATE value.

statement-declaration
Declares a list of one or more names that are local to the compound statement. Each name in
statement-name must not be the same as any other statement name declared in the same compound
statement.

return-codes-declaration
Declares special variables called SQLSTATE and SQLCODE that are set automatically to the value
returned after processing an SQL statement. Both the SQLSTATE and SQLCODE variables can only be
declared in the outermost compound statement when there are nested compound SQL (compiled)
statements; for example in an SQL procedure body. These variables may be declared only once per
SQL procedure.

declare-cursor-statement
Declares a built-in cursor in the procedure body. Variables of user-defined cursor data types are
declared using SQL-variable-declaration statements.

Each declared cursor must have a unique name within the compound statement in which it is
declared, excluding any declarations in compound statements that are nested within that compound
statement (SQLSTATE 42734). The cursor can be referenced only from within the compound
statement in which it is declared, including any compound statements that are nested within that
compound statement (SQLSTATE 34000).

Use an OPEN statement to open the cursor, and a FETCH statement to read rows using the cursor. To
return result sets from the SQL procedure to the client application, the cursor must be declared using
the WITH RETURN clause. The following example returns one result set to the client application:

 CREATE PROCEDURE RESULT_SET()
 LANGUAGE SQL
 RESULT SETS 1
 BEGIN
 DECLARE C1 CURSOR WITH RETURN FOR
 SELECT id, name, dept, job
 FROM staff;
 OPEN C1;
 END

Note: To process result sets, you must write your client application using one of the Db2 Call Level
Interface (Db2 Call Level Interface), Open Database Connectivity (ODBC), Java Database Connectivity
(JDBC), or embedded SQL for Java (SQLJ) application programming interfaces.

For more information about declaring a cursor, see "DECLARE CURSOR".

procedure-declaration
Declares a procedure that is local to the compound statement. The definition of a local procedure
does not include the specification of any of the options possible in a "CREATE PROCEDURE (SQL)"
statement. The options default as they would for a "CREATE PROCEDURE (SQL)" statement with
the exception of MODIFIES SQL DATA. The data access level for the procedure is automatically
determined to be the minimum level required to process the SQL procedure body.
procedure-name

Defines the names of a local procedure. The name must be specified without any qualification
(SQLSTATE 42601). The procedure signature, consisting of the procedure-name and the number of
declared parameters, must be unique within the current compound statement. Outer compound
statements within which the current compound statement is nested cannot contain a procedure
with the same name.

Chapter 1. Structured Query Language (SQL) 1001

parameter-declaration
Specifies the parameters of the local procedure. See "CREATE PROCEDURE (SQL)" for a
description of the syntax elements. The parameter data type can be a locally declared data type in
the scope of the current compound statement.

SQL-procedure-body
Specifies the SQL statement that is the body of the SQL procedure. Names referenced in the
SQL-procedure-body can refer to declared objects (such as declared variables, data types, and
procedures) that are previously declared and in the scope of the compound statement in which
the local procedure is declared.

handler-declaration
Specifies a handler, and a set of one or more SQL-procedure-statements to execute when an exception
or completion condition occurs in the compound statement.SQL-procedure-statement is a statement
that executes when the handler receives control.

A handler is said to be active for the duration of the execution of the set of SQL-procedure-statements
that follow the set of handler-declarations within the compound statement in which the handler is
declared, including any nested compound statements.

There are three types of condition handlers:

CONTINUE
After the handler is invoked successfully, control is returned to the SQL statement that follows
the statement that raised the exception. If the error that raised the exception is a FOR, IF, CASE,
WHILE, or REPEAT statement (but not an SQL-procedure-statement within one of these), then
control returns to the statement that follows END FOR, END IF, END CASE, END WHILE, or END
REPEAT.

EXIT
After the handler is invoked successfully, control is returned to the end of the compound
statement that declared the handler.

UNDO
Before the handler is invoked, any SQL changes that were made in the compound statement
are rolled back. After the handler is invoked successfully, control is returned to the end of the
compound statement that declared the handler. If UNDO is specified, the compound statement
where the handler is declared must be ATOMIC.

The conditions that cause the handler to be activated are defined in the handler-declaration as
follows:

specific-condition-value
Specifies that the handler is a specific condition handler.
SQLSTATE VALUEstring-constant

Specifies an SQLSTATE for which the handler is invoked. The first two characters of the
SQLSTATE value must not be '00'.

condition-name
Specifies a condition name for which the handler is invoked. The condition name must be
previously defined in a condition declaration or it must identify a condition that exists at the
current server.

general-condition-value
Specifies that the handler is a general condition handler.
SQLEXCEPTION

Specifies that the handler is invoked when an exception condition occurs. An exception
condition is represented by an SQLSTATE value whose first two characters are not '00', '01', or
'02'.

SQLWARNING
Specifies that the handler is invoked when a warning condition occurs. A warning condition is
represented by an SQLSTATE value whose first two characters are '01'.

1002 IBM Db2 V11.5: SQL Reference

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition occurs. A NOT FOUND
condition is represented by an SQLSTATE value whose first two characters are '02'.

SQL-procedure-statement
Specifies the SQL procedure statement.
label

Specifies a label for the SQL procedure statement. The label must be unique within a list of
SQL procedure statements, including any compound statements nested within the list. Note that
compound statements that are not nested can use the same label. A list of SQL procedure
statements is possible in a number of SQL control statements.

SQL-statement
All executable SQL statements except for:

• ALTER
• CONNECT
• CREATE
• DESCRIBE
• DISCONNECT
• DROP
• FLUSH EVENT MONITOR
• FREE LOCATOR
• GRANT
• REFRESH TABLE
• RELEASE (connection only)
• RENAME TABLE
• RENAME TABLESPACE
• REVOKE
• SET CONNECTION
• SET INTEGRITY
• SET PASSTHRU
• SET SERVER OPTION
• TRANSFER OWNERSHIP

The following executable statements are not supported in stand-alone compound SQL (compiled)
statements, but are supported in compound SQL (compiled) statements used within an SQL
function, SQL procedure, or trigger:

• CREATE of an index, table, or view
• DECLARE GLOBAL TEMPORARY TABLE
• DROP of an index, table, or view
• GRANT
• ROLLBACK

The ROLLBACK statement is also not supported in any nested statement invoked within the
stand-alone compound SQL (compiled) statement.

The following statements, which are not executable statements, are supported in compound SQL
(compiled) statements:

• ALLOCATE CURSOR
• ASSOCIATE LOCATORS

Chapter 1. Structured Query Language (SQL) 1003

Rules
• ATOMIC compound statements cannot be nested.
• The following rules apply to handler declarations:

– A handler declaration cannot contain the same condition-name or SQLSTATE value more than once,
and cannot contain an SQLSTATE value and a condition-name that represent the same SQLSTATE
value.

– Where two or more condition handlers are declared in a compound statement:

- No two handler declarations may specify the same general condition category (SQLEXCEPTION,
SQLWARNING, NOT FOUND).

- No two handler declarations may specify the same specific condition, either as an SQLSTATE value
or as a condition-name that represents the same value.

– A handler is activated when it is the most appropriate handler for an exception or completion
condition. The most appropriate handler is determined based on the following considerations:

- The scope of a handler declaration H is the list of SQL-procedure-statement that follows the handler
declarations contained within the compound statement in which H appears. This means that the
scope of H does not include the statements contained in the body of the condition handler H,
implying that a condition handler cannot handle conditions that arise inside its own body. Similarly,
for any two handlers H1 and H2 declared in the same compound statement, H1 will not handle
conditions arising in the body of H2, and H2 will not handle conditions arising in the body of H1.

- A handler for a specific-condition-value or a general-condition-value C declared in an inner scope
takes precedence over another handler for C declared in an enclosing scope.

- When a specific handler for condition C and a general handler which would also handle C are
declared in the same scope, the specific handler takes precedence over the general handler.

- When a handler for a module condition that has no associated SQLSTATE value and a handler
for SQLSTATE 45000 are declared in the same scope, the handler for the module condition takes
precedence over the handler for SQLSTATE 45000.

If an exception condition occurs for which there is no appropriate handler, the SQL procedure
containing the failing statement is terminated with an unhandled exception condition. If a completion
condition occurs for which there is no appropriate handler, execution continues with the next SQL
statement.

• Referencing variables or parameters of data type XML in SQL procedures after a commit or rollback
operation occurs, without first assigning new values to these variables, is not supported (SQLSTATE
560CE).

• Use of anchored data types: An anchored data type cannot refer to the following objects (SQLSTATE
428HS): a nickname, typed table, typed view, statistical view that is associated with an expression-
based index, declared temporary table, row definition that is associated with a weakly typed cursor,
object with a code page or collation that is different from the database code page or database collation.

• If named parameter markers are used in a compound SQL (compiled) statement that is dynamically
prepared or executed, every parameter marker name must be unique (SQLSTATE 42997).

Notes
• XML assignments: Assignment to parameters and variables of data type XML is done by reference.

Passing parameters of data type XML in a CALL statement to an SQL procedure is done by reference.
When XML values are passed by reference, any input node trees are used directly from the XML
argument. This direct usage preserves all properties, including document order, the original node
identities, and all parent properties.

1004 IBM Db2 V11.5: SQL Reference

Examples
• Example 1: A simple stand-alone compound statement that outputs the word 'Hello':

 SET SERVEROUTPUT ON;
 BEGIN
 CALL DBMS_OUTPUT.PUT_LINE ('Hello');
 END

• Example 2: A simple stand-alone compound statement that counts the number of records in staff and
outputs the result:

 SET SERVEROUTPUT ON;
 BEGIN
 DECLARE v_numRecords INTEGER DEFAULT 1;
 SELECT COUNT(*) INTO v_numRecords FROM staff;

 CALL DBMS_OUTPUT.PUT_LINE (v_numRecords);
 END

• Example 3: Create a procedure with a compound SQL (compiled) statement that performs the following
actions:

1. Declares SQL variables
2. Declares a cursor to return the salary of employees in a department determined by an IN parameter.

In the SELECT statement, casts the data type of the salary column from a DECIMAL into a DOUBLE.
3. Declares an EXIT handler for the condition NOT FOUND (end of file) which assigns the value '6666' to

the OUT parameter medianSalary
4. Select the number of employees in the given department into the SQL variable numRecords
5. Fetch rows from the cursor in a WHILE loop until 50% + 1 of the employees have been retrieved
6. Return the median salary

 CREATE PROCEDURE DEPT_MEDIAN
 (IN deptNumber SMALLINT, OUT medianSalary DOUBLE)
 LANGUAGE SQL
 BEGIN
 DECLARE v_numRecords INTEGER DEFAULT 1;
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE c1 CURSOR FOR
 SELECT CAST(salary AS DOUBLE) FROM staff
 WHERE DEPT = deptNumber
 ORDER BY salary;
 DECLARE EXIT HANDLER FOR NOT FOUND
 SET medianSalary = 6666;
 -- initialize OUT parameter
 SET medianSalary = 0;
 SELECT COUNT(*) INTO v_numRecords FROM staff
 WHERE DEPT = deptNumber;
 OPEN c1;
 WHILE v_counter < (v_numRecords / 2 + 1) DO
 FETCH c1 INTO medianSalary;
 SET v_counter = v_counter + 1;
 END WHILE;
 CLOSE c1;
 END

• Example 4: The following example illustrates the flow of execution in a hypothetical case where an
UNDO handler is activated from another condition as the result of RESIGNAL:

 CREATE PROCEDURE A()
 LANGUAGE SQL
 CS1: BEGIN ATOMIC
 DECLARE C CONDITION FOR SQLSTATE '12345';
 DECLARE D CONDITION FOR SQLSTATE '23456';

 DECLARE UNDO HANDLER FOR C
 H1: BEGIN
 -- Perform rollback after error, perform final cleanup, and exit
 -- procedure A.

 -- ...

Chapter 1. Structured Query Language (SQL) 1005

 -- When this handler completes, execution continues after
 -- compound statement CS1; procedure A will terminate.
 END;

 -- Perform some work here ...
 CS2: BEGIN
 DECLARE CONTINUE HANDLER FOR D
 H2: BEGIN
 -- Perform local recovery, then forward the error
 -- condition to the outer handler for additional
 -- processing.

 -- ...

 RESIGNAL C; -- will activate UNDO handler H1; execution
 -- WILL NOT return here. Any local cursors
 -- declared in H2 and CS2 will be closed.
 END;

 -- Perform some more work here ...

 -- Simulate raising of condition D by some SQL statement
 -- in compound statement CS2:
 SIGNAL D; -- will activate H2
 END;
 END

CONNECT (type 1)
The CONNECT (Type 1) statement connects an application process to the identified application server
according to the rules for remote unit of work.

An application process can only be connected to one application server at a time. This is called the current
server. A default application server may be established when the application requester is initialized. If
implicit connect is available and an application process is started, it is implicitly connected to the default
application server. The application process can explicitly connect to a different application server by
issuing a CONNECT statement. A connection lasts until a CONNECT RESET statement or a DISCONNECT
statement is issued or until another CONNECT statement changes the application server.

Invocation
Although an interactive SQL facility might provide an interface that gives the appearance of interactive
execution, this statement can only be embedded within an application program. It is an executable
statement that cannot be dynamically prepared. When invoked using the command line processor,
additional options can be specified.

For more information, refer to "Using command line SQL statements and XQuery statements" in
Command Reference.

Authorization
CONNECT processing goes through two levels of access control. Both levels must be satisfied for the
connection to be successful.

The first level of access control is authentication, where the user ID associated with the connection must
be successfully authenticated according to the authentication method set up for the server. At successful
authentication, a database authorization ID is derived from the connection user ID according to the
authentication plug-in in effect for the server. This database authorization ID must then pass the second
level of access control for the connection, that is, authorization. To do so, this authorization ID must hold
at least one of the following authorities:

• CONNECT authority
• SECADM authority
• DBADM authority
• SYSADM authority

1006 IBM Db2 V11.5: SQL Reference

• SYSCTRL authority
• SYSMAINT authority
• SYSMON authority

Note: For a partitioned database, the user and group definitions must be identical across all database
partitions.

Syntax
CONNECT

TO server-name

host-variable lock-block authorization

RESET

authorization
1

authorization
USER authorization-name

passwords

accesstoken
2

APIKEY api-key
3

passwords
USING password

NEW password CONFIRM password

accesstoken

ACCESSTOKEN token
4

ACCESSTOKENTYPE token-type

lock-block
IN SHARE MODE

IN EXCLUSIVE MODE

ON SINGLE MEMBER

Notes:
1 This form is only valid if implicit connect is enabled.
2 This feature is available starting from Db2 Version 11.5 Mod Pack 4.
3 This feature is available starting from Db2 Version 11.5 Mod Pack 4.
4 This feature is available starting from Db2 Version 11.5 Mod Pack 4.

Description
CONNECT (with no operand)

Returns information about the current server. The information is returned in the SQLERRP field of the
SQLCA as described in "Successful Connection".

If a connection state exists, the authorization ID and database alias are placed in the SQLERRMC field
of the SQLCA. If the authorization ID is longer than 8 bytes, it will be truncated to 8 bytes, and the
truncation will be flagged in the SQLWARN0 and SQLWARN1 fields of the SQLCA, with 'W' and 'A',
respectively.

Chapter 1. Structured Query Language (SQL) 1007

If no connection exists and implicit connect is possible, then an attempt to make an implicit
connection is made. If implicit connect is not available, this attempt results in an error (no existing
connection). If no connection, then the SQLERRMC field is blank.

The territory code and code page of the application server are placed in the SQLERRMC field (as they
are with a successful CONNECT statement).

This form of CONNECT:

• Does not require the application process to be in the connectable state.
• If connected, does not change the connection state.
• If unconnected and implicit connect is available, a connection to the default application server is

made. In this case, the country or region code and code page of the application server are placed in
the SQLERRMC field, like a successful CONNECT statement.

• If unconnected and implicit connect is not available, the application process remains unconnected.
• Does not close cursors.

TO server-name or host-variable
Identifies the application server by the specified server-name or a host-variable which contains the
server-name.

If a host-variable is specified, it must be a character string variable with a length attribute that is not
greater than 8, and it must not include an indicator variable. The server-name that is contained within
the host-variable must be left-aligned and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server. It must be listed in the
application requester's local directory.

When the CONNECT statement is executed, the application process must be in the connectable state.

Successful Connection
If the CONNECT statement is successful:

• All open cursors are closed, all prepared statements are destroyed, and all locks are released
from the previous application server.

• The application process is disconnected from its previous application server, if any, and
connected to the identified application server.

• The actual name of the application server (not an alias) is placed in the CURRENT SERVER
special register.

• Information about the application server is placed in the SQLERRP field of the SQLCA. If the
application server is an IBM product, the information has the form pppvvrrm, where:

– ppp represents one of the following product identifiers:

- DSN for Db2 for z/OS
- ARI for Db2 Server for VSE & VM
- QSQ for Db2 for IBM i
- SQL for Db2

– vv is a two-digit version identifier, such as '08'
– rr is a two-digit release identifier, such as '01'
– m is a one-character modification level identifier, such as '0'.

For example, Version 9.5 of Db2 is identified as 'SQL09050'.
• The SQLERRMC field of the SQLCA is set to contain the following values (separated by X'FF')

1. The country or region code of the application server (or blanks if using Db2 Connect),
2. The code page of the application server (or CCSID if using Db2 Connect),
3. The authorization ID (up to first 8 bytes only),

1008 IBM Db2 V11.5: SQL Reference

4. The database alias,
5. The platform type of the application server. Currently identified values are:

Token
Server

QAS
Db2 for IBM i

QDB2
Db2 for z/OS

QDB2/6000
Db2 Database for AIX

QDB2/LINUX
Db2 Database for Linux

QDB2/NT
Db2 Database for Windows

QSQLDS/VM
Db2 Server for VM

QSQLDS/VSE
Db2 Server for VSE

6. The agent ID. It identifies the agent executing within the database manager on behalf of
the application. This field is the same as the agent_id element returned by the database
monitor.

7. The agent index. It identifies the index of the agent and is used for service.
8. If the server instance operates in a Db2 pureScale environment, as indicated by SQLWARN0

and SQLWARN4 being set to 'W' and 'S' respectively, this value represents the member
number. If, as indicated by token 10, the server instance operates in a partitioned
environment, this token represents the member number. If the server instance operates
in a non-partitioned environment and outside of a Db2 pureScale environment, this value is
not applicable and is always 0.

9. The code page of the application client.
10. If this value is zero, the server instance operates in a non-partitioned environment and

outside of a Db2 pureScale environment. Otherwise, this non-zero value represents the
number of members in a Db2 pureScale instance, if SQLWARN0 and SQLWARN4 are set to
'W' and 'S' respectively. If this value is non-zero but neither SQLWARN0 nor SQLWARN4 is
set, it represents the number of members in a partitioned environment.

• The SQLERRD(1) field of the SQLCA indicates the maximum expected difference in length of
mixed character data (CHAR data types) when converted to the database code page from the
application code page. A value of 0 or 1 indicates no expansion; a value greater than 1 indicates
a possible expansion in length; a negative value indicates a possible contraction.

• The SQLERRD(2) field of the SQLCA indicates the maximum expected difference in length of
mixed character data (CHAR data types) when converted to the application code page from the
database code page. A value of 0 or 1 indicates no expansion; a value greater than 1 indicates a
possible expansion in length; a negative value indicates a possible contraction.

• The SQLERRD(3) field of the SQLCA indicates whether or not the database on the connection
is updatable. A database is initially updatable, but is changed to read-only if a unit of work
determines the authorization ID cannot perform updates. The value is one of:

– 1 - updatable
– 2 - read-only

• The SQLERRD(4) field of the SQLCA returns certain characteristics of the connection. The value
is one of:

Chapter 1. Structured Query Language (SQL) 1009

0
N/A (only possible if running from a client which is not at the latest level, is one-phase
commit, and is an updater).

1
one-phase commit.

2
one-phase commit; read-only (only applicable to connections to DRDA1 databases in a TP
Monitor environment).

3
two-phase commit.

• The SQLERRD(5) field of the SQLCA returns the authentication type for the connection. The
value is one of:
0

Authenticated on the server.
1

Authenticated on the client.
2

Authenticated using Db2 Connect.
4

Authenticated on the server with encryption.
5

Authenticated using Db2 Connect with encryption.
7

Authenticated using an external Kerberos security mechanism.
9

Authenticated using an external GSS API plug-in security mechanism.
11

Authenticated on the server, which accepts encrypted data.
255

Authentication not specified.
• The SQLERRD(6) field of the SQLCA returns the database partition number of the database

partition to which the connection was made if in a partitioned database environment. Otherwise,
a value of 0 is returned.

• The SQLWARN1 field in the SQLCA will be set to 'A' if the authorization ID of the successful
connection is longer than 8 bytes. This indicates that truncation has occurred. The SQLWARN0
field in the SQLCA will be set to 'W' to indicate this warning.

Unsuccessful Connection
If the CONNECT statement is unsuccessful:

• The SQLERRP field of the SQLCA is set to the name of the module at the application requester
that detected the error. The first three characters of the module name identify the product.

• If the CONNECT statement is unsuccessful because the application process is not in the
connectable state, the connection state of the application process is unchanged.

• If the CONNECT statement is unsuccessful because the server-name is not listed in the local
directory, an error message (SQLSTATE 08001) is issued and the connection state of the
application process remains unchanged:

– If the application requester was not connected to an application server then the application
process remains unconnected.

– If the application requester was already connected to an application server, the application
process remains connected to that application server. Any further statements are executed at
that application server.

1010 IBM Db2 V11.5: SQL Reference

• If the CONNECT statement is unsuccessful for any other reason, the application process is
placed into the unconnected state.

IN SHARE MODE
Allows other concurrent connections to the database and prevents other users from connecting to the
database in exclusive mode.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations at the application server,
unless they have the same authorization ID as the user holding the exclusive lock. This option is not
supported by Db2 Connect.
ON SINGLE MEMBER

Specifies that the coordinator database member is connected in exclusive mode and all other
members are connected in share mode.

If the database is neither in a partitioned environment nor a Db2 pureScale environment, this
option can be specified, but it has no effect.

RESET
Disconnects the application process from the current server. A commit operation is performed. If
implicit connect is available, the application process remains unconnected until an SQL statement is
issued.

USER authorization-name/host-variable
Identifies the user ID trying to connect to the application server. If a host-variable is specified, it must
be a character string variable that does not include an indicator variable. The user ID that is contained
within the host-variable must be left-aligned and must not be delimited by quotation marks.

USING password/host-variable
Identifies the password of the user ID trying to connect to the application server. The maximum
length of the password is determined by the data server you are connecting to. If a host variable is
specified, it must be a character string variable and it must not include an indicator variable.

NEW password/host-variable CONFIRM password
Identifies the new password that should be assigned to the user ID identified by the USER option.
The maximum length of the password is determined by the data server you are connecting to. If a
host variable is specified, it must be a character string variable and it must not include an indicator
variable. The system on which the password will be changed depends on how the user authentication
has been set up. To support the changing passwords on Linux, the database instance must be
configured to use the security plug-ins IBMOSchgpwdclient and IBMOSchgpwdserver.

Notes
• It is good practice for the first SQL statement executed by an application process to be the CONNECT

statement.
• If a CONNECT statement is issued to the current application server with a different user ID and

password then the conversation is deallocated and reallocated. All cursors are closed by the database
manager (with the loss of the cursor position if the WITH HOLD option was used).

• If a CONNECT statement is issued to the current application server with the same user ID and password
then the conversation is not deallocated and reallocated. Cursors, in this case, are not closed.

• To use a multiple-partition partitioned database environment, the user or application must connect to
one of the database partitions listed in the db2nodes.cfg file. You should try to ensure that not all
users use the same database partition as the coordinator partition.

• The authorization-name SYSTEM cannot be explicitly specified in the CONNECT statement. However, on
Windows operating systems, local applications running under the Local System Account can implicitly
connect to the database, such that the user ID is SYSTEM.

• When connecting to Windows Server explicitly, the authorization-name or user host-variable can be
specified using the Microsoft Windows Security Account Manager (SAM)-compatible name.

Chapter 1. Structured Query Language (SQL) 1011

• The database can be inaccessible if the database was not explicitly activated, a client application
performs frequent reconnections, or the time interval between issuing the DEACTIVATE DATABASE
and ACTIVATE DATABASE commands is very short. Activate the database by issuing the ACTIVATE
DATABASE command and then attempt to connect to the database.

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
• Example 1: In a C program, connect to the application server TOROLAB, using database alias TOROLAB,

user ID FERMAT, and password THEOREM.

 EXEC SQL CONNECT TO TOROLAB USER FERMAT USING THEOREM;

• Example 2: In a C program, connect to an application server whose database alias is stored in the host
variable APP_SERVER (varchar(8)). Following a successful connection, copy the 3-character product
identifier of the application server to the variable PRODUCT (char(3)).

 EXEC SQL CONNECT TO :APP_SERVER;
 if (strncmp(SQLSTATE,'00000',5))
 strncpy(PRODUCT,sqlca.sqlerrp,3);

• Example 3: Connect to the SAMPLE database using a JWT access token.

connect to sample accesstoken <access_token> accesstokentype jwt

 Database Connection Information

 Database server = DB2/LINUXX8664 11.5.4.0
 SQL authorization ID = NEWTON
 Local database alias = SAMPLE

CONNECT (type 2)
The CONNECT (Type 2) statement connects an application process to the identified application server
and establishes the rules for application-directed distributed unit of work. This server is then the current
server for the process.

Most aspects of a CONNECT (Type 1) statement also apply to a CONNECT (Type 2) statement. Rather than
repeating that material here, this section describes only those elements of Type 2 that differ from Type 1.

Invocation
Although an interactive SQL facility might provide an interface that gives the appearance of interactive
execution, this statement can only be embedded within an application program. It is an executable
statement that cannot be dynamically prepared. When invoked using the command line processor,
additional options can be specified.

For more information, refer to "Using command line SQL statements and XQuery statements" in
Command Reference.

Authorization
CONNECT processing goes through two levels of access control. Both levels must be satisfied for the
connection to be successful.

The first level of access control is authentication, where the user ID associated with the connection must
be successfully authenticated according to the authentication method set up for the server. At successful
authentication, a database authorization ID is derived from the connection user ID according to the
authentication plug-in in effect for the server. This database authorization ID must then pass the second

1012 IBM Db2 V11.5: SQL Reference

level of access control for the connection, that is, authorization. To do so, this authorization ID must hold
at least one of the following authorities:

• CONNECT authority
• SECADM authority
• DBADM authority
• SYSADM authority
• SYSCTRL authority
• SYSMAINT authority
• SYSMON authority

Note: For a partitioned database, the user and group definitions must be identical across all database
partitions.

Syntax
The selection between Type 1 and Type 2 is determined by precompiler options. For an overview of these
options, see "Connecting to distributed relational databases".

CONNECT

TO server-name

host-variable lock-block authorization

RESET

authorization
1

authorization
USER authorization-name

passwords

accesstoken
2

APIKEY api-key
3

passwords
USING password

NEW password CONFIRM password

CHANGE PASSWORD

accesstoken

ACCESSTOKEN token
4

ACCESSTOKENTYPE token-type

lock-block
IN SHARE MODE

IN EXCLUSIVE MODE

ON SINGLE MEMBER

Notes:
1 This form is only valid if implicit connect is enabled.
2 This feature is available starting from Db2 Version 11.5 Mod Pack 4.
3 This feature is available starting from Db2 Version 11.5 Mod Pack 4.
4 This feature is available starting from Db2 Version 11.5 Mod Pack 4.

Chapter 1. Structured Query Language (SQL) 1013

Description
TO server-name/host-variable

The rules for coding the name of the server are the same as for Type 1.

If the SQLRULES(STD) option is in effect, the server-name must not identify an existing connection of
the application process, otherwise an error (SQLSTATE 08002) is raised.

If the SQLRULES(DB2) option is in effect and the server-name identifies an existing connection of
the application process, that connection is made current and the old connection is placed into the
dormant state. That is, the effect of the CONNECT statement in this situation is the same as that of a
SET CONNECTION statement.

For information about the specification of SQLRULES, see "Options that Govern Distributed Unit of
Work Semantics".

Successful Connection
If the CONNECT statement is successful:

• A connection to the application server is either created (or made non-dormant) and placed into
the current and held states.

• If the CONNECT TO is directed to a different server than the current server, then the current
connection is placed into the dormant state.

• The CURRENT SERVER special register and the SQLCA are updated in the same way as for
CONNECT (Type 1).

Unsuccessful Connection
If the CONNECT statement is unsuccessful:

• No matter what the reason for failure, the connection state of the application process and the
states of its connections are unchanged.

• As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the SQLCA is set to the name of
the module at the application requester or server that detected the error.

CONNECT (with no operand), IN SHARE/EXCLUSIVE MODE, USER, and USING
If a connection exists, Type 2 behaves like a Type 1. The authorization ID and database alias are
placed in the SQLERRMC field of the SQLCA. If a connection does not exist, no attempt to make an
implicit connection is made and the SQLERRP and SQLERRMC fields return a blank. (Applications can
check if a current connection exists by checking these fields.)

A CONNECT with no operand that includes USER and USING can still connect an application process
to a database using the DB2DBDFT environment variable. This method is equivalent to a Type 2
CONNECT RESET, but permits the use of a user ID and password.

RESET
Equivalent to an explicit connect to the default database if it is available. If a default database is
not available, the connection state of the application process and the states of its connections are
unchanged.

Availability of a default database is determined by installation options, environment variables, and
authentication settings.

Rules
• As outlined in "Options that Govern Distributed Unit of Work Semantics", a set of connection options

governs the semantics of connection management. Default values are assigned to every preprocessed
source file. An application can consist of multiple source files precompiled with different connection
options.

Unless a SET CLIENT command or API has been executed first, the connection options used when
preprocessing the source file containing the first SQL statement executed at run time become the
effective connection options.

1014 IBM Db2 V11.5: SQL Reference

If a CONNECT statement from a source file preprocessed with different connection options is
subsequently executed without the execution of any intervening SET CLIENT command or API, an error
(SQLSTATE 08001) is returned. Note that once a SET CLIENT command or API has been executed, the
connection options used when preprocessing all source files in the application are ignored.

Example 1 in the "Examples" section of this statement illustrates these rules.
• Although the CONNECT statement can be used to establish or switch connections, CONNECT with the

USER/USING clause will only be accepted when there is no current or dormant connection to the named
server. The connection must be released before issuing a connection to the same server with the USER/
USING clause, otherwise it will be rejected (SQLSTATE 51022). Release the connection by issuing a
DISCONNECT statement or a RELEASE statement followed by a COMMIT statement.

Comparing Type 1 and Type 2 CONNECT Statements
The semantics of the CONNECT statement are determined by the CONNECT precompiler option or the
SET CLIENT API (see "Options that Govern Distributed Unit of Work Semantics"). CONNECT Type 1 or
CONNECT Type 2 can be specified and the CONNECT statements in those programs are known as Type 1
and Type 2 CONNECT statements, respectively. Their semantics are described in the following tables:

Use of CONNECT:

Type 1 Type 2

Each unit of work can only establish connection to
one application server.

Each unit of work can establish connection to
multiple application servers.

The current unit of work must be committed or
rolled back before allowing a connection to another
application server.

The current unit of work need not be committed
or rolled back before connecting to another
application server.

The CONNECT statement establishes the current
connection. Subsequent SQL requests are
forwarded to this connection until changed by
another CONNECT.

Same as Type 1 CONNECT if establishing the first
connection. If switching to a dormant connection
and SQLRULES is set to STD, then the SET
CONNECTION statement must be used instead.

Connecting to the current connection is valid and
does not change the current connection.

Same as Type 1 CONNECT if the SQLRULES
precompiler option is set to 'DB2'. If SQLRULES is
set to STD, then the SET CONNECTION statement
must be used instead.

Connecting to another application server
disconnects the current connection. The new
connection becomes the current connection. Only
one connection is maintained in a unit of work.

Connecting to another application server puts the
current connection into the dormant state. The
new connection becomes the current connection.
Multiple connections can be maintained in a unit of
work.

If the CONNECT is for an application server on
a dormant connection, it becomes the current
connection.

Connecting to a dormant connection using
CONNECT is only allowed if SQLRULES(DB2) was
specified. If SQLRULES(STD) was specified, then
the SET CONNECTION statement must be used
instead.

SET CONNECTION statement is supported for Type
1 connections, but the only valid target is the
current connection.

SET CONNECTION statement is supported for Type
2 connections to change the state of a connection
from dormant to current.

Use of CONNECT...USER...USING:

Chapter 1. Structured Query Language (SQL) 1015

Type 1 Type 2

Connecting with the USER...USING clauses
disconnects the current connection and establishes
a new connection with the given authorization
name and password.

Connecting with the USER/USING clause will only
be accepted when there is no current or dormant
connection to the same named server.

Use of Implicit CONNECT, CONNECT RESET, and Disconnecting:

Type 1 Type 2

CONNECT RESET can be used to disconnect the
current connection.

CONNECT RESET is equivalent to connecting to the
default application server explicitly if one has been
defined in the system.

Connections can be disconnected by the
application at a successful COMMIT. Prior to
the commit, use the RELEASE statement to
mark a connection as release-pending. All such
connections will be disconnected at the next
COMMIT.

An alternative is to use the
precompiler options DISCONNECT(EXPLICIT),
DISCONNECT(CONDITIONAL),
DISCONNECT(AUTOMATIC), or the DISCONNECT
statement instead of the RELEASE statement.

After using CONNECT RESET to disconnect the
current connection, if the next SQL statement is
not a CONNECT statement, then it will perform an
implicit connect to the default application server if
one has been defined in the system.

CONNECT RESET is equivalent to an explicit
connect to the default application server if one has
been defined in the system.

It is an error to issue consecutive CONNECT
RESETs.

It is an error to issue consecutive CONNECT
RESETs ONLY if SQLRULES(STD) was specified
because this option disallows the use of CONNECT
to existing connection.

CONNECT RESET implicitly commits the current
unit of work.

CONNECT RESET implicitly rolls back the current
unit of work.

If an existing connection is disconnected by the
system for whatever reasons, then subsequent
non-CONNECT SQL statements to this database
will receive an SQLSTATE of 08003.

If an existing connection is disconnected by
the system, COMMIT, ROLLBACK, and SET
CONNECTION statements are still permitted.

The unit of work will be implicitly committed when
the application process terminates successfully.

Same as Type 1.

All connections (only one) are disconnected when
the application process terminates.

All connections (current, dormant, and those
marked for release pending) are disconnected
when the application process terminates.

CONNECT Failures:

1016 IBM Db2 V11.5: SQL Reference

Type 1 Type 2

Regardless of whether there is a current
connection when a CONNECT fails (with an error
other than server-name not defined in the local
directory), the application process is placed in
the unconnected state. Subsequent non-CONNECT
statements receive an SQLSTATE of 08003.

If there is a current connection when a CONNECT
fails, the current connection is unaffected.

If there was no current connection when the
CONNECT fails, then the program is then in
an unconnected state. Subsequent non-CONNECT
statements receive an SQLSTATE of 08003.

Notes
• Implicit connect is supported for the first SQL statement in an application with Type 2 connections. In

order to execute SQL statements on the default database, first the CONNECT RESET or the CONNECT
USER/USING statement must be used to establish the connection. The CONNECT statement with no
operands will display information about the current connection if there is one, but will not connect to
the default database if there is no current connection.

• The authorization-name SYSTEM cannot be explicitly specified in the CONNECT statement. However, on
Windows operating systems, local applications running under the Local System Account can implicitly
connect to the database, such that the user ID is SYSTEM.

• When connecting to Windows Server explicitly, the authorization-name or user host-variable can be
specified using the Microsoft Windows Security Account Manager (SAM)-compatible name.

• Termination of a connection: When a connection is terminated and a transaction has not yet been
committed or rolled back, see "Use of Implicit CONNECT, CONNECT RESET, and Disconnecting" section
for details on what happens to such transactions. To ensure consistent behavior, code an explicit
COMMIT statement or ROLLBACK statement instead of depending on the behavior of the CONNECT
statement.

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
• Example 1: This example illustrates the use of multiple source programs (shown in the boxes), some

preprocessed with different connection options (shown in the statement preceding the code), and one
of which contains a SET CLIENT API call.

PGM1: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

 ...
 exec sql CONNECT TO OTTAWA;
 exec sql SELECT col1 INTO :hv1
 FROM tbl1;
 ...

PGM2: CONNECT(2) SQLRULES(STD) DISCONNECT(AUTOMATIC)

 ...
 exec sql CONNECT TO QUEBEC;
 exec sql SELECT col1 INTO :hv1
 FROM tbl2;
 ...

PGM3: CONNECT(2) SQLRULES(STD) DISCONNECT(EXPLICIT)

 ...
 SET CLIENT CONNECT 2 SQLRULES DB2 DISCONNECT EXPLICIT 1
 exec sql CONNECT TO LONDON;
 exec sql SELECT col1 INTO :hv1

Chapter 1. Structured Query Language (SQL) 1017

 FROM tbl3;
 ...

Note:

1. Not the actual syntax of the SET CLIENT API

PGM4: CONNECT(2) SQLRULES(DB2) DISCONNECT(CONDITIONAL)

 ...
 exec sql CONNECT TO REGINA;
 exec sql SELECT col1 INTO :hv1
 FROM tbl4;
 ...

If the application executes PGM1 then PGM2:

– connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL
– connect to QUEBEC fails with SQLSTATE 08001 because both SQLRULES and DISCONNECT are

different.

If the application executes PGM1 then PGM3:

– connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL
– connect to LONDON runs: connect=2, sqlrules=DB2, disconnect=EXPLICIT

This is OK because the SET CLIENT API is run before the second CONNECT statement.

If the application executes PGM1 then PGM4:

– connect to OTTAWA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL
– connect to REGINA runs: connect=2, sqlrules=DB2, disconnect=CONDITIONAL

This is OK because the preprocessor options for PGM1 are the same as those for PGM4.
• Example 2: This example shows the interrelationships of the CONNECT (Type 2), SET CONNECTION,

RELEASE, and DISCONNECT statements. S0, S1, S2, and S3 represent four servers.

Sequence Statement Current Server Dormant
Connections

Release
Pending

0 – No statement – None – None – None

1 – SELECT * FROM TBLA – S0 (default) – None – None

2 – CONNECT TO S1
– SELECT * FROM TBLB

– S1
– S1

– S0
– S0

– None
– None

3 – CONNECT TO S2
– UPDATE TBLC SET ...

– S2
– S2

– S0, S1
– S0, S1

– None
– None

4 – CONNECT TO S3
– SELECT * FROM TBLD

– S3
– S3

– S0, S1, S2
– S0, S1, S2

– None
– None

5 – SET CONNECTION S2 – S2 – S0, S1, S3 – None

6 – RELEASE S3 – S2 – S0, S1 – S3

7 – COMMIT – S2 – S0, S1 – None

8 – SELECT * FROM TBLE – S2 – S0, S1 – None

1018 IBM Db2 V11.5: SQL Reference

Sequence Statement Current Server Dormant
Connections

Release
Pending

9 – DISCONNECT S1
– SELECT * FROM TBLF

– S2
– S2

– S0
– S0

– None
– None

• Example 3: Connect to the SAMPLE database using a JWT access token.

connect to sample accesstoken <access_token> accesstokentype jwt

 Database Connection Information

 Database server = DB2/LINUXX8664 11.5.4.0
 SQL authorization ID = NEWTON
 Local database alias = SAMPLE

CREATE ALIAS
The CREATE ALIAS statement defines an alias for a module, nickname, sequence, table, view, or another
alias. Aliases are also known as synonyms.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the alias does
not exist

• SCHEMAADM authority on the schema if the schema name of the alias refers to an existing schema
• CREATEIN privilege on the schema, if the schema name of the alias refers to an existing schema, or

CREATEIN privilege on SYSPUBLIC, if a public alias is being created
• DBADM authority

Privileges required to use the referenced object through its alias are identical to the privileges required to
use the object directly.

To replace an existing alias, the authorization ID of the statement must be the owner of the existing alias
(SQLSTATE 42501).

Syntax
CREATE

OR REPLACE PUBLIC

ALIAS table-alias

module-alias

sequence-alias

table-alias

alias-name FOR
TABLE

table-name

view-name

nickname

alias-name2

Chapter 1. Structured Query Language (SQL) 1019

module-alias
alias-name FOR MODULE module-name

alias-name2

sequence-alias
alias-name FOR SEQUENCE sequence-name

alias-name2

Description
OR REPLACE

Specifies to replace the definition for the alias if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog. This option is
ignored if a definition for the alias does not exist at the current server. This option can be specified
only by the owner of the object.

PUBLIC
Specifies that the alias is an object in the system schema SYSPUBLIC.

alias-name
Names the alias. For a table alias, the name must not identify a nickname, table, view, or table alias
that exists at the current server. For a module alias, the name must not identify a module or module
alias that exists at the current server. For a sequence alias, the name must not identify a sequence or
sequence alias that exists at the current server.

If a two-part name is specified, the schema name cannot begin with 'SYS' (SQLSTATE 42939) except if
PUBLIC is specified, then the schema name must be SYSPUBLIC (SQLSTATE 428EK).

FOR TABLE table-name, view-name, nickname, or alias-name2
Identifies the table, view, nickname, or table alias for which alias-name is defined. If another alias
name is supplied (alias-name2), then it must not be the same as the new alias-name being defined (in
its fully-qualified form). The table-name cannot be a declared temporary table (SQLSTATE 42995).

FOR MODULE module-name, or alias-name2
Identifies the module or module alias for which alias-name is defined. If another alias name is
supplied (alias-name2), then it must not be the same as the new alias-name being defined (in its
fully-qualified form).

FOR SEQUENCE sequence-name, or alias-name2
Identifies the sequence or sequence alias for which alias-name is defined. If another alias name is
supplied (alias-name2), then it must not be the same as the new alias-name being defined (in its
fully-qualified form). The sequence-name must not be a sequence generated by the system for an
identity column (SQLSTATE 428FB).

Notes
• The keyword PUBLIC is used to create a public alias (also known as a public synonym). If the keyword

PUBLIC is not used, the type of alias is a private alias (also known as a private synonym).
• Public aliases can be used only in SQL statements and with the LOAD utility.
• The definition of the newly created table alias is stored in SYSCAT.TABLES. The definition of the newly

created module alias is stored in SYSCAT.MODULES. The definition of the newly created sequence alias
is stored in SYSCAT.SEQUENCES.

• An alias can be defined for an object that does not exist at the time of the definition. If it does not
exist, a warning is issued (SQLSTATE 01522). However, the referenced object must exist when a SQL
statement containing the alias is compiled, otherwise an error is issued (SQLSTATE 52004).

• An alias can be defined to refer to another alias as part of an alias chain but this chain is subject to the
same restrictions as a single alias when used in an SQL statement. An alias chain is resolved in the same
way as a single alias. If an alias used in a statement in a package, an SQL routine, a trigger, the default

1020 IBM Db2 V11.5: SQL Reference

expression for a global variable, or a view definition points to an alias chain, then a dependency is
recorded for the package, SQL routine, trigger, global variable, or view on each alias in the chain. An alias
cannot refer to itself in an alias chain and such a cycle is detected at alias definition time (SQLSTATE
42916).

• Resolving an unqualified alias name: When resolving an unqualified name, private aliases are
considered before public aliases.

• Conservative binding for public aliases: If a public alias is used in a statement in a package, an SQL
routine, a trigger, the default expression for a global variable, or a view definition, the public alias will
continue to be used by these objects regardless of what other object with the same name is created
subsequently.

• Creating an alias with a schema name that does not already exist will result in the implicit creation
of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products.

– SYNONYM can be specified in place of ALIAS

Examples
• Example 1: HEDGES attempts to create an alias for a table T1 (both unqualified).

 CREATE ALIAS A1 FOR T1

The alias HEDGES.A1 is created for HEDGES.T1.
• Example 2: HEDGES attempts to create an alias for a table (both qualified).

 CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1

The alias HEDGES.A1 is created for MCKNIGHT.T1.
• Example 3: HEDGES attempts to create an alias for a table (alias in a different schema; HEDGES is not a

DBADM; HEDGES does not have CREATEIN on schema MCKNIGHT).

 CREATE ALIAS MCKNIGHT.A1 FOR MCKNIGHT.T1

This example fails (SQLSTATE 42501).
• Example 4: HEDGES attempts to create an alias for an undefined table (both qualified; FUZZY.WUZZY

does not exist).

 CREATE ALIAS HEDGES.A1 FOR FUZZY.WUZZY

This statement succeeds but with a warning (SQLSTATE 01522).
• Example 5: HEDGES attempts to create an alias for an alias (both qualified).

 CREATE ALIAS HEDGES.A1 FOR MCKNIGHT.T1
 CREATE ALIAS HEDGES.A2 FOR HEDGES.A1

The first statement succeeds (as per example 2).

The second statement succeeds and an alias chain is created, consisting of HEDGES.A2 which refers to
HEDGES.A1 which refers to MCKNIGHT.T1. Note that it does not matter whether or not HEDGES has any
privileges on MCKNIGHT.T1. The alias is created regardless of the table privileges.

• Example 6: Designate A1 as an alias for the nickname FUZZYBEAR.

 CREATE ALIAS A1 FOR FUZZYBEAR

• Example 7: A large organization has a finance department numbered D108 and a personnel department
numbered D577. D108 keeps certain information in a table that resides at a Db2 RDBMS. D577 keeps

Chapter 1. Structured Query Language (SQL) 1021

certain records in a table that resides at an Oracle RDBMS. A DBA defines the two RDBMSs as data
sources within a federated system, and gives the tables the nicknames of DEPTD108 and DEPTD577,
respectively. A federated system user needs to create joins between these tables, but would like to
reference them by names that are more meaningful than their alphanumeric nicknames. So the user
defines FINANCE as an alias for DEPTD108 and PERSONNEL as an alias for DEPTD577.

 CREATE ALIAS FINANCE FOR DEPTD108
 CREATE ALIAS PERSONNEL FOR DEPTD577

• Example 8: Create a public alias called TABS for the catalog view SYSCAT.TABLES.

 CREATE PUBLIC ALIAS TABS FOR SYSCAT.TABLES

CREATE AUDIT POLICY
The CREATE AUDIT POLICY statement defines an auditing policy at the current server. The policy
determines what categories are to be audited; it can then be applied to other database objects to
determine how the use of those objects is to be audited.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
CREATE AUDIT POLICY policy-name ● CATEGORIES

,
1

ALL

AUDIT

CHECKING

CONTEXT

EXECUTE
WITHOUT DATA

WITH DATA

OBJMAINT

SECMAINT

SYSADMIN

VALIDATE

STATUS BOTH

FAILURE

NONE

SUCCESS

●

ERROR TYPE NORMAL

AUDIT

●

Notes:
1 Each category can be specified at most once (SQLSTATE 42614), and no other category can be
specified if ALL is specified (SQLSTATE 42601).

1022 IBM Db2 V11.5: SQL Reference

Description
policy-name

Names the audit policy. This is a one-part name. It is an SQL identifier (either ordinary or delimited).
The policy-name must not identify an audit policy already described in the catalog (SQLSTATE 42710).
The name must not begin with the characters 'SYS' (SQLSTATE 42939).

CATEGORIES
A list of one or more audit categories for which a status is specified. If ALL is not specified, the STATUS
of any category that is not explicitly specified is set to NONE.
ALL

Sets all categories to the same status. The EXECUTE category is WITHOUT DATA.
AUDIT

Generates records when audit settings are changed or when the audit log is accessed.
CHECKING

Generates records during authorization checking of attempts to access or manipulate database
objects or functions.

CONTEXT
Generates records to show the operation context when a database operation is performed.

EXECUTE
Generates records to show the execution of SQL statements.
WITHOUT DATA or WITH DATA

Specifies whether or not input data values provided for any host variables and parameter
markers should be logged as part of the EXECUTE category.
WITHOUT DATA

Input data values provided for any host variables and parameter markers are not logged as
part of the EXECUTE category. WITHOUT DATA is the default.

WITH DATA
Input data values provided for any host variables and parameter markers are logged as
part of the EXECUTE category. Not all input values are logged; specifically, LOB, LONG,
XML, and structured type parameters appear as the null value. Date, time, and timestamp
fields are logged in ISO format. The input data values are converted to the database code
page before being logged. If code page conversion fails, no errors are returned and the
unconverted data is logged.

OBJMAINT
Generates records when data objects are created or dropped.

SECMAINT
Generates records when object privileges, database privileges, or DBADM authority is granted
or revoked. Records are also generated when the database manager security configuration
parameters sysadm_group, sysctrl_group, or sysmaint_group are modified.

SYSADMIN
Generates records when operations requiring SYSADM, SYSMAINT, or SYSCTRL authority are
performed.

VALIDATE
Generates records when users are authenticated or when system security information related to a
user is retrieved.

STATUS
Specifies a status for the specified category.
BOTH

Successful and failing events will be audited.
FAILURE

Only failing events will be audited.

Chapter 1. Structured Query Language (SQL) 1023

SUCCESS
Only successful events will be audited.

NONE
No events in this category will be audited.

ERROR TYPE
Specifies whether audit errors are to be returned or ignored.
NORMAL

Any errors generated by the audit are ignored and only the SQLCODEs for errors associated with
the operation being performed are returned to the application.

AUDIT
All errors, including errors occurring within the audit facility itself, are returned to the application.

Rules
• An AUDIT-exclusive SQL statement must be followed by a COMMIT or ROLLBACK statement (SQLSTATE

5U021). AUDIT-exclusive SQL statements are:

– AUDIT
– CREATE AUDIT POLICY, ALTER AUDIT POLICY, or DROP (AUDIT POLICY)
– DROP (ROLE or TRUSTED CONTEXT if it is associated with an audit policy)

• An AUDIT-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041)
such as, for example, an XA transaction.

Notes
• Only one uncommitted AUDIT-exclusive SQL statement is allowed at a time across all database

partitions. If an uncommitted AUDIT-exclusive SQL statement is executing, subsequent AUDIT-
exclusive SQL statements wait until the current AUDIT-exclusive SQL statement commits or rolls back.

• Changes are written to the system catalog, but do not take effect until they are committed, even for the
connection that issues the statement.

Example
Create an audit policy to audit successes and failures for the AUDIT and OBJMAINT categories; only
failures for the SECMAINT, CHECKING, and VALIDATE categories, and no events for the other categories.

 CREATE AUDIT POLICY DBAUDPRF
 CATEGORIES AUDIT STATUS BOTH,
 SECMAINT STATUS FAILURE,
 OBJMAINT STATUS BOTH,
 CHECKING STATUS FAILURE,
 VALIDATE STATUS FAILURE
 ERROR TYPE NORMAL

CREATE BUFFERPOOL
The CREATE BUFFERPOOL statement defines a buffer pool at the current server. Buffer pools are defined
on members which can access data partitions.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

1024 IBM Db2 V11.5: SQL Reference

Authorization
The privileges held by the authorization ID of the statement must include SYSCTRL or SYSADM authority.

Syntax

CREATE BUFFERPOOL bufferpool-name
IMMEDIATE

DEFERRED

ALL DBPARTITIONNUMS

DATABASE PARTITION GROUP

,

db-partition-group-name

SIZE 1000 AUTOMATIC

SIZE number-of-pages

SIZE
1000

number-of-pages

AUTOMATIC

●

except-clause

●

NUMBLOCKPAGES 0

NUMBLOCKPAGES number-of-pages

BLOCKSIZE number-of-pages

●

PAGESIZE integer

K

●

except-clause
EXCEPT ON MEMBER

MEMBERS

(

,

member-number1

TO member-number2

SIZE number-of-pages

)

Description
bufferpool-name

Names the buffer pool. This is a one-part name. It is an SQL identifier (either ordinary or delimited).
The bufferpool-name must not identify a buffer pool that already exists in the catalog (SQLSTATE
42710). The bufferpool-name must not begin with the characters 'SYS' (SQLSTATE 42939).

IMMEDIATE or DEFERRED
Indicates whether or not the buffer pool will be created immediately.

Chapter 1. Structured Query Language (SQL) 1025

IMMEDIATE
The buffer pool will be created immediately after the CREATE BUFFERPOOL statement is
committed. If there is not enough reserved space in the database shared memory to allocate
the new buffer pool (SQLSTATE 01657) the statement is executed as DEFERRED.

DEFERRED
The buffer pool will be created when the database is deactivated (all applications need to be
disconnected from the database). Reserved memory space is not needed; required memory will
be allocated from the system.

ALL DBPARTITIONNUMS or DATABASE PARTITION GROUP
Identifies the members on which the buffer pool is to be defined. The default is ALL
DBPARTITIONNUMS.
ALL DBPARTITIONNUMS

This buffer pool will be created on all members which can access all data partitions in the
database.

DATABASE PARTITION GROUP db-partition-group-name, ...
Identifies the database partition group or groups to which the buffer pool definition applies. The
buffer pool will be created only on members in the specified database partition groups. Each
database partition group must exist in the database (SQLSTATE 42704).

SIZE
Specifies the size of the buffer pool. This size will be the default size for all members on which the
buffer pool exists. The default is 1000 pages.
number-of-pages

The number of pages for the new buffer pool. The minimum number of pages is 2 and the
maximum is architecture-dependent (SQLSTATE 42615).

AUTOMATIC
Enables self tuning for this buffer pool. The database manager adjusts the size of the buffer pool
in response to workload requirements. The implicit or explicit number of pages that are specified
is used as the initial size of the buffer pool. On subsequent database activations, the buffer pool
size is based on the last tuning value that is determined by the self-tuning memory manager
(STMM). The STMM enforces a minimum size for automatic buffer pools, which is the minimum of
the current size and 5000 pages. To determine the current size of buffer pools that are enabled
for self tuning, use the MON_GET_BUFFERPOOL routine and examine the current size of the buffer
pools. The size of the buffer pool is found in the bp_cur_buffsz monitor element.

NUMBLOCKPAGES number-of-pages
Specifies the number of pages that should exist in the block-based area. The number of pages
must not be greater than 98 percent of the number of pages for the buffer pool (SQLSTATE 54052).
Specifying the value 0 disables block I/O. The actual value of NUMBLOCKPAGES used will be a
multiple of BLOCKSIZE.

NUMBLOCKPAGES is not supported in a Db2 pureScale environment (SQLSTATE 56038).

BLOCKSIZE number-of-pages
Specifies the number of pages in a block. The block size must be a value between 2 and 256
(SQLSTATE 54053). The default value is 32.

BLOCKSIZE is not supported in a Db2 pureScale environment (SQLSTATE 56038).

EXCEPT ON MEMBER or EXCEPT ON MEMBERS
Specifies the member or members for which the size of the buffer pool will be different than the
default specified for the database partition group to which the member has access. If this clause
is not specified, all members that can access the data partitions in the specified database partition
group will have the same size as specified for this buffer pool.
member-number1

Specifies a member number for a member that has access to a data partition for which the buffer
pool is created (SQLSTATE 42729).

1026 IBM Db2 V11.5: SQL Reference

TO member-number2
Specifies a range of member numbers. The value of member-number2 must be greater than
or equal to the value of member-number1 (SQLSTATE 428A9). Each member identified by the
member number range inclusive must have access to the data partition for which the buffer pool is
created (SQLSTATE 428A9).

SIZE number-of-pages
The size of the buffer pool specified as the number of pages. The minimum number of pages is 2
and the maximum is architecture-dependent (SQLSTATE 42615).

PAGESIZE integer [K]
Defines the size of pages used for the buffer pool. The valid values for integer without the suffix K are
4096, 8192, 16384, or 32768. The valid values for integer with the suffix K are 4, 8, 16, or 32. Any
number of spaces is allowed between integer and K, including no space. If the page size is not one of
these values, an error is returned (SQLSTATE 428DE).

The default value is provided by the pagesize database configuration parameter, which is set when
the database is created.

Notes
• If the buffer pool is created using the DEFERRED option, any table space created in this buffer pool will

use a small system buffer pool of the same page size, until next database activation. The database has
to be restarted for the buffer pool to become active and for table space assignments to the new buffer
pool to take effect. The default option is IMMEDIATE.

• There should be enough real memory on the machine for the total of all the buffer pools, as well as
for the rest of the database manager and application requirements. If the database is unable to obtain
memory for the regular buffer pools, it will attempt to start with small system buffer pools, one for each
page size (4K, 8K, 16K and 32K). In this situation, a warning will be returned to the user (SQLSTATE
01626), and the pages from all table spaces will use the system buffer pools.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP
– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except when the

DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON
– DBPARTITIONNUMS or NODES can be specified in place of MEMBERS, except when the

DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON

CREATE DATABASE PARTITION GROUP
The CREATE DATABASE PARTITION GROUP statement defines a new database partition group within the
database, assigns database partitions to the database partition group, and records the database partition
group definition in the system catalog.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SYSCTRL or SYSADM authority.

Chapter 1. Structured Query Language (SQL) 1027

Syntax
CREATE DATABASE PARTITION GROUP db-partition-group-name

ON ALL DBPARTITIONNUMS

ON DBPARTITIONNUMS

DBPARTITIONNUM

(

,

db-partition-number1

TO db-partition-number2

)

Description
db-partition-group-name

Names the database partition group. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The db-partition-group-name must not identify a database partition group that already
exists in the catalog (SQLSTATE 42710). The db-partition-group-name must not begin with the
characters 'SYS' or 'IBM' (SQLSTATE 42939).

ON ALL DBPARTITIONNUMS
Specifies that the database partition group is defined over all database partitions defined to the
database (db2nodes.cfg file) at the time the database partition group is created.

If a database partition is added to the database system, the ALTER DATABASE PARTITION GROUP
statement should be issued to include this new database partition in a database partition group
(including IBMDEFAULTGROUP). Furthermore, the REDISTRIBUTE DATABASE PARTITION GROUP
command must be issued to move data to the database partition.

ON DBPARTITIONNUMS
Specifies the database partitions that are in the database partition group. DBPARTITIONNUM is a
synonym for DBPARTITIONNUMS.
db-partition-number1

Specify a database partition number. (A node-name of the form NODEnnnnn can be specified for
compatibility with the previous version.)

TO db-partition-number2
Specify a range of database partition numbers. The value of db-partition-number2 must be greater
than or equal to the value of db-partition-number1 (SQLSTATE 428A9). All database partitions
between and including the specified database partition numbers are included in the database
partition group.

Rules
• Each database partition specified by number must be defined in the db2nodes.cfg file (SQLSTATE

42729).
• Each db-partition-number listed in the ON DBPARTITIONNUMS clause can appear only once (SQLSTATE

42728).
• A valid db-partition-number is between 0 and 999 inclusive (SQLSTATE 42729).
• The CREATE DATABASE PARTITION GROUP statement might fail (SQLSTATE 55071) if an add database

partition server request is either pending or in progress. This statement might also fail (SQLSTATE
55077) if a new database partition server is added online to the instance and not all applications are
aware of the new database partition server.

Notes
• This statement creates a distribution map for the database partition group. A distribution map identifier

(PMAP_ID) is generated for each distribution map. This information is recorded in the catalog and
can be retrieved from SYSCAT.DBPARTITIONGROUPS and SYSCAT.PARTITIONMAPS. Each entry in the
distribution map specifies the target database partition on which all rows that are hashed reside. For

1028 IBM Db2 V11.5: SQL Reference

a single-partition database partition group, the corresponding distribution map has only one entry. For
a multiple partition database partition group, the corresponding distribution map has 32768 entries,
where the database partition numbers are assigned to the map entries in a round-robin fashion, by
default.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– NODE can be specified in place of DBPARTITIONNUM
– NODES can be specified in place of DBPARTITIONNUMS
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP

Examples
The following examples are based on a partitioned database with six database partitions defined as 0, 1,
2, 5, 7, and 8.

• Example 1: Assume that you want to create a database partition group called MAXGROUP on all six
database partitions. The statement is as follows:

 CREATE DATABASE PARTITION GROUP MAXGROUP ON ALL DBPARTITIONNUMS

• Example 2: Assume that you want to create a database partition group called MEDGROUP on database
partitions 0, 1, 2, 5, and 8. The statement is as follows:

 CREATE DATABASE PARTITION GROUP MEDGROUP
 ON DBPARTITIONNUMS(0 TO 2, 5, 8)

• Example 3: Assume that you want to create a single-partition database partition group MINGROUP on
database partition 7. The statement is as follows:

 CREATE DATABASE PARTITION GROUP MINGROUP
 ON DBPARTITIONNUM (7)

CREATE EVENT MONITOR
The CREATE EVENT MONITOR statement defines a monitor that records certain events that occur when
you use the database. The definition of each event monitor also specifies where the database records the
events.

Several different types of event monitors can be created by using this statement. Some of these types are
described here, while the remaining types are described separately (see Related links). The types of event
monitors that are described separately are as follows:

• Activities. The event monitor records activity events that occur by using the database. The definition of
the activities event monitor also specifies where the database records the events.

• Change history. The event monitor records events for changes to configuration parameters, registry
variables, and the execution of DDL statements and utilities. The event monitor also records initial
configuration and registry values at event monitor startup time.

• Locking. The event monitor records lock-related events that occur by using the database. All records are
collected in the unformatted event table.

• Package cache. The event monitor records events that are related to the package cache statement.
• Statistics. The event monitor records statistics events that occur by using the database. The definition of

the statistics event monitor also specifies where the database records the events.
• Threshold violations. The event monitor records threshold violation events that occur by using the

database. The definition of the threshold violations event monitor also specifies where the database
records the events.

Chapter 1. Structured Query Language (SQL) 1029

• Unit of work. The event monitor records events when a unit of work completes. All records are collected
in the unformatted event table.

Invocation
This statement can be embedded in an application program or entered interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges that are held by the authorization ID of the statement must include one of the following
authorities:

• DBADM authority
• SQLADM authority

Syntax
CREATE EVENT MONITOR event-monitor-name FOR

,

DATABASE

TABLES

DEADLOCKS

WITH DETAILS

HISTORY

VALUES

TABLESPACES

BUFFERPOOLS

CONNECTIONS

STATEMENTS

TRANSACTIONS

WHERE event-condition

WRITE TO TABLE evm-group-info

PIPE pipe-name

FILE path-name file-options

●
MANUALSTART

AUTOSTART

●

ON DBPARTITIONNUM db-partition-number

●
LOCAL

GLOBAL

●

event-condition

1030 IBM Db2 V11.5: SQL Reference

AND | OR

NOT

APPL_ID

AUTH_ID

APPL_NAME

=

<>
1

>

>=
1

<

<=
1

LIKE

NOT LIKE

comparison-string

(event-condition)

evm-group-info

●
,

evm-group

(target-table-options)

BLOCKED

target-table-options

2
TABLE table-name

IN tablespace-name

PCTDEACTIVATE 100

PCTDEACTIVATE integer

TRUNC

INCLUDES

EXCLUDES

(

,

element)

file-options

●
MAXFILES NONE

MAXFILES number-of-files

●

MAXFILESIZE pages

NONE

●

BUFFERSIZE 4

BUFFERSIZE pages

●
BLOCKED

NONBLOCKED

●
APPEND

REPLACE

●

Notes:
1 Other forms of these operators are also supported.
2 Each clause can be specified once.
3 Clauses can be separated with a space or a comma.

Chapter 1. Structured Query Language (SQL) 1031

Description
event-monitor-name

Name of the event monitor is a one-part name. It is an SQL identifier (either ordinary or delimited).
The event-monitor-name must not identify an event monitor that exists in the catalog (SQLSTATE
42710).

FOR
Introduces the type of event to record.
DATABASE

Specifies that the event monitor records a database event when the last application disconnects
from the database.

TABLES
Specifies that the event monitor records a table event for each active table when the last
application disconnects from the database. For partitioned tables, a table event is recorded for
each data partition of each active table. An active table is a table that changed since the first
connection to the database.

DEADLOCKS

Note: This option was deprecated. Its use is no longer recommended and might be removed in a
future release. Use the CREATE EVENT MONITOR FOR LOCKING statement to monitor lock-related
events, such as lock timeouts, lock waits, and deadlocks.

Specifies that the event monitor records a deadlock event whenever a deadlock occurs.
WITH DETAILS

Specifies that the event monitor is to generate a more detailed deadlock connection event for
each application that is involved in a deadlock. This additional detail includes:

• Information about the statement that the application was running when the deadlock
occurred, such as the statement text.

• The locks that are held by the application when the deadlock occurred. In a partitioned
database environment, includes only those locks that are held on the database partition on
which the application was waiting for its lock when the deadlock occurred. For partitioned
tables, includes the data partition identifier.

HISTORY
Specifies that the event monitor data also includes:

• The history of all statements in the current unit of work at the participating node
(including WITH HOLD cursors that are opened in previous units of work). SELECT
statements that are entered at the uncommitted read (UR) isolation level are not
included in the statement history.

• The statement compilation environment for each SQL statement in binary format (if
available)

VALUES
Specifies that the event monitor data also includes:

• The data values used as input variables for each SQL statement. These data values
do not include LOB data, long data, structured type data, or XML data.

Only one of the following commands: DEADLOCKS, DEADLOCKS WITH DETAILS, DEADLOCKS
WITH DETAILS HISTORY, or DEADLOCKS WITH DETAILS HISTORY VALUES can be specified in a
single CREATE EVENT MONITOR statement (SQLSTATE 42613).

TABLESPACES
Specifies that the event monitor records a table space event for each table space when the last
application disconnects from the database.

BUFFERPOOLS
Specifies that the event monitor records a buffer pool event when the last application disconnects
from the database.

1032 IBM Db2 V11.5: SQL Reference

CONNECTIONS
Specifies that the event monitor records a connection event when an application disconnects from
the database.

STATEMENTS
Specifies that the event monitor records a statement event whenever an SQL statement finishes
running.

TRANSACTIONS

Note: This option was deprecated. Its use is no longer recommended and might be removed in
a future release. Use the CREATE EVENT MONITOR FOR UNIT OF WORK statement to monitor
transaction events.

Specifies that the event monitor records a transaction event whenever a transaction completes
(that is, whenever there is a commit or rollback operation).

WHERE event-condition
Defines a filter that determines which connections cause a CONNECTION, STATEMENT, or
TRANSACTION event to occur. If the result of the event condition is TRUE for a particular
connection, then that connection generates the requested events.

This clause is a special form of the WHERE clause that should not be confused with a standard
search condition.

To determine whether an application generates events for a particular event monitor, the WHERE
clause is evaluated:

• For each active connection when an event monitor is first turned on,
• Then, for each new connection to the database at connect time

The WHERE clause is not evaluated for each event.

If no WHERE clause is specified, all events of the specified event type are monitored.

The event-condition must not exceed 32 678 bytes in the database code page (SQLSTATE 22001).

APPL_ID
Specifies that the application ID of each connection is compared with the comparison-string
to determine whether the connection generates CONNECTION, STATEMENT, or TRANSACTION
events (whichever was specified).

AUTH_ID
Specifies that the authorization ID of each connection is compared with the comparison-string
to determine whether the connection generates CONNECTION, STATEMENT, or TRANSACTION
events (whichever was specified).

APPL_NAME
Specifies that the application program name of each connection is compared with
the comparison-string to determine whether the connection generates CONNECTION,
STATEMENT, or TRANSACTION events (whichever was specified).

The application program name is the first 20 bytes of the application program file name after
the last path separator.

comparison-string
A string to be compared with the APPL_ID, AUTH_ID, or APPL_NAME of each application that
connects to the database. comparison-string must be a string constant (that is, you cannot use
host variables and other string expressions).

WRITE TO
Introduces the target for the data.
TABLE

Indicates that the target for the event monitor data is a set of database tables. The event monitor
separates the data stream into one or more logical data groups and inserts each group into a
separate table. Data for groups with a target table is kept, whereas data for groups not having

Chapter 1. Structured Query Language (SQL) 1033

a target table is discarded. Each monitor element that is contained within a group is mapped to
a table column with the same name. Only elements that have a corresponding table column are
inserted into the table. Other elements are discarded.
evm-group-info

Defines the target table for a logical data group. This clause must be specified for each
grouping that is to be recorded. However, if no evm-group-info clauses are specified, all
groups for the event monitor type are recorded.

For more information about logical data groups, see "Logical data groups and event monitor
output tables" in Database Monitoring Guide and Reference.

evm-group
Identifies the logical data group for which a target table is being defined. The value
depends upon the type of event monitor, as shown in the following table:

Table 130. Values for evm-group based on the type of event monitor

Type of Event Monitor evm-group value

Database • DB
• CONTROL1

• DBMEMUSE

Tables • TABLE
• CONTROL1

Deadlocks • CONNHEADER
• DEADLOCK
• DLCONN
• CONTROL1

Deadlocks with details • CONNHEADER
• DEADLOCK
• DLCONN2

• DLLOCK3

• CONTROL1

Deadlocks with details
history

• CONNHEADER
• DEADLOCK
• DLCONN2

• DLLOCK3

• STMTHIST
• CONTROL1

Deadlocks with details
history values

• CONNHEADER
• DEADLOCK
• DLCONN2

• DLLOCK3

• STMTHIST
• STMTVALS
• CONTROL1

1034 IBM Db2 V11.5: SQL Reference

Table 130. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor evm-group value

Table spaces • TABLESPACE
• CONTROL1

Buffer pools • BUFFERPOOL
• CONTROL1

Connections • CONNHEADER
• CONN
• CONTROL1

• CONNMEMUSE

Statements • CONNHEADER
• STMT
• SUBSECTION4

• CONTROL1

Transactions • CONNHEADER
• XACT
• CONTROL1

Activities • ACTIVITY
• ACTIVITYMETRICS
• ACTIVITYSTMT
• ACTIVITYVALS
• CONTROL1

Statistics • QSTATS
• SCSTATS
• SCMETRICS
• WCSTATS
• WLSTATS
• WLMETRICS
• HISTOGRAMBIN
• CONTROL1

Threshold Violations • THRESHOLDVIOLATIONS
• CONTROL1

Locking5 • LOCK
• LOCK_PARTICIPANTS
• LOCK_PARTICIPANT_ACTIVITIES
• LOCK_ACTIVITY_VALUES
• CONTROL1

Chapter 1. Structured Query Language (SQL) 1035

Table 130. Values for evm-group based on the type of event monitor (continued)

Type of Event Monitor evm-group value

Package Cache5 • PKGCACHE
• PKGCACHE_METRICS
• CONTROL1

Unit of Work5 • UOW
• UOW_METRICS
• UOW_PACKGE_LIST
• UOW_EXECUTABLE_LIST
• CONTROL1

Change History • CHANGESUMMARY
• EVMONSTART
• TXNCOMPLETION
• DDLSTMTEXEC
• DBDBMCFG
• REGVAR
• UTILSTART
• UTILSTOP
• UTILPHASE
• UTILLOCATION
• CONTROL1

1 Logical data groups dbheader (conn_time element only), start, and overflow, are all
written to the CONTROL group. The overflow group is written if the event monitor is
non-blocked and events were discarded.
2 Corresponds to the DETAILED_DLCONN event.
3 Corresponds to the LOCK logical data groups that occur within each DETAILED_DLCONN
event.
4 Created only for partitioned database environments.
5 Refers to the Formatted Event Table version of this event monitor type.

target-table-options
Identifies the target table for the group. If a value for target-table-options is not
specified, CREATE EVENT MONITOR processing proceeds as follows:

• A derived table name is used (see description for TABLE table-name).
• A default table space is chosen (see description for IN tablespace-name).
• All elements are included.
• PCTDEACTIVATE and TRUNC are not specified.

TABLE table-name
Specifies the name of the target table. The target table must be a nonpartitioned
row-organized table. If the name is unqualified, the table schema defaults to

1036 IBM Db2 V11.5: SQL Reference

the value in the CURRENT SCHEMA special register. If no name is provided, the
unqualified name is derived from evm-group and event-monitor-name as follows:

 substring(evm-group CONCAT '_'
 CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created. If no table space name
is provided, the table space is chosen by using the same process as when a table is
created without a table space name that uses CREATE TABLE.

PCTDEACTIVATE integer
If a table for the event monitor is being created in the automatic storage (non-
temporary) or DMS table space, the PCTDEACTIVATE parameter specifies how full
the table space must be before the event monitor automatically deactivates. The
specified value, which represents a percentage, can range 0 - 100, where 100
means that the event monitor deactivates when the table space becomes full. The
default value is 100 if PCTDEACTIVATE is not specified. This option is ignored for
SMS table spaces.

Important: If the target table space has auto-resize enabled, set PCTDEACTIVATE
to 100. Alternatively, omit this clause entirely to have the default of 100 apply.
Otherwise, the event monitor might deactivate unexpectedly if the table space
reaches the threshold that is specified by PCTDEACTIVTATE before the table space
is automatically resized.

It is recommended that, when a target table space has auto-resize enabled, the
PCTDEACTIVATE parameter be set to 100.

TRUNC
Specifies that the STMT_TEXT and STMT_VALUE_DATA columns are defined as
VARCHAR(n), where n is the largest size that can fit into the table row. In this case,
any data that is longer than n bytes is truncated. The following example illustrates
how the value of n is calculated. Assume that:

• The table is created in a table space that uses 32K pages.
• The total length of all the other columns in the table equals 357 bytes.

In this case, the maximum row size for a table is 32677 bytes. Therefore, the
element would be defined as VARCHAR(32316); that is, 32677 - 357 - 4. If TRUNC
is not specified, the column is defined as CLOB(2M). STMT_TEXT is found in the
STMT event group, the STMT_HISTORY event group, and the DLCONN event group
(for deadlocks with details event monitors). STMT_VALUE_DATA is found in the
DATA_VALUE event group.

INCLUDES
Specifies that the following elements are to be included in the table.

EXCLUDES
Specifies that the following elements are not to be included in the table.

element
Identifies a monitor element. Element information can be provided in one of the
following forms:

• Specify no element information. In this case, all elements are included in the
CREATE TABLE statement.

• Specify the elements to include in the form: INCLUDES (element1, element2, ...,
elementn). Only table columns are created for these elements.

• Specify the elements to exclude in the form: EXCLUDES (element1, element2, ...,
elementn). Only table columns are created for all elements except these.

Use the db2evtbl command to build a CREATE EVENT MONITOR statement that
includes a complete list of elements for a group.

Chapter 1. Structured Query Language (SQL) 1037

BLOCKED
Specifies that each agent that generates an event must wait for an event buffer to be
written out to disk if the agent determines that both event buffers are full. Select BLOCKED
to prevent event data loss. It is the default option.

PIPE
Specifies that the target for the event monitor data is a named pipe. The event monitor writes the
data to the pipe in a single stream (that is, as if it were a single, infinitely long file). Writing the
data to a pipe, an event monitor does not perform blocked writes. If the pipe buffer has no room,
then the event monitor discards the data. It is the monitoring application's responsibility to read
the data promptly if it wants to ensure no data loss.
pipe-name

The name of the pipe (FIFO on AIX) to which the event monitor writes the data.

The naming rules for pipes are platform-specific.

Operating system Naming rules

AIX Pipe names are treated like file names. As
a result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Linux Pipe names are treated like file names. As
a result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Windows There is special syntax for a pipe name and
as a result, absolute pipe names are required.

The existence of the pipe is not checked at event monitor creation time. It is the responsibility
of the monitoring application to create and open the pipe for reading at the time that the event
monitor is activated. If the pipe is not available now, then the event monitor turns itself off
and logs an error. (That is, if the event monitor was activated at database start time as a result
of the AUTOSTART option, then the event monitor logs an error in the system error log). If
the event monitor is activated by the SET EVENT MONITOR STATE SQL statement, then that
statement fails (SQLSTATE 58030).

In a Db2 pureScale environment, the pipe-name must be on a shared file system whether the
event monitor is LOCAL or GLOBAL. This requirement is to allow this event monitors to operate
correctly if a member failover occurs. Failure to use a pipe-name on a shared file system
results in an error (SQLSTATE 428A3) if the event monitor activates during a member failover.

FILE
Indicates that the target for the event monitor data is a file (or set of files). The event monitor
writes out the stream of data as a series of eight character numbered files, with the extension
"evt". (For example, 00000000.evt, 00000001.evt, and 00000002.evt). The data should be
considered to be one logical file even though the data is broken up into smaller pieces (that is, the
start of the data stream is the first byte in the file00000000.evt; the end of the data stream is
the last byte in the file nnnnnnnn.evt).

The maximum size of each file and the maximum number of files can be defined. An event monitor
does not split a single event record across two files. However, an event monitor might write
related records in two different files. It is the responsibility of the application that uses this data to
track related information when it is processing the event files.

path-name
The name of the directory in which the event monitor writes the event files data. The path
must be known at the server; however, the path itself might reside on another database
partition (for example, an NFS-mounted file). A string constant must be used to specify the
path-name.

1038 IBM Db2 V11.5: SQL Reference

The directory does not have to exist at CREATE EVENT MONITOR time. However, a check is
made for the existence of the target path when the event monitor is activated. Then, if the
target path does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path is specified, the specified path is the one used.

In environments other than Db2 pureScale, if a relative path (a path that does not start
with the root) is specified, then the path relative to the DB2EVENT directory in the database
directory is used. In a Db2 pureScale environment, if a relative path is specified, then the path
relative to the directory owning the database in the database directory is used.

It is possible to specify two or more event monitors that have the same target path. However,
when one of the event monitors is activated for the first time, and if the target directory is not
empty, it is impossible to activate any of the other event monitors.

In a Db2 pureScale environment, the path-name must be on a shared file system whether this
event monitor is LOCAL or GLOBAL. This requirement is to allow event monitors to operate
correctly if a member failover occurs. Failure to use a path-name on a shared file system
results in an error (SQLSTATE 428A3) if the event monitor activates during a member failover.

file-options
Specifies the options for the file format.
MAXFILES NONE

Specifies that the event monitor can create any number of event files. This is the default.
MAXFILES number-of-files

Specifies that the number of event monitor files that exist for a particular event monitor at
any time is limited. Whenever an event monitor must create another file, it checks to make
sure that the number of .evt files in the directory is less than number-of-files. If this limit is
already reached, then the event monitor turns itself off.

If an application removes the event files from the directory after they are written, then the
total number of files that an event monitor can produce can exceed number-of-files. This
option is provided so that the event data does not use more than a specified amount of
disk space.

MAXFILESIZE pages
Specifies that the size of each event monitor file has a limit. Whenever an event monitor
writes a new event record to a file. It checks that the file does not grow to be greater than
pages (in units of 4K pages). If the resulting file would be too large, then the event monitor
switches to the next file. The default for this option is:

• Linux - 1000 4K pages
• UNIX - 1000 4K pages
• Windows - 200 4K pages

The number of pages must be greater than at least the size of the event buffer in pages. If
this requirement is not met, then an error (SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that a file's size has no set limit. If MAXFILESIZE NONE is specified, then
MAXFILES 1 must also be specified. This option means that one file contains all of
the event data for a particular event monitor. In this case, the only event file is
00000000.evt.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K pages). All event monitor
file I/O is buffered to improve the performance of the event monitors. The larger the
buffers, the less I/O is performed by the event monitor. Highly active event monitors have
larger buffers than relatively inactive event monitors. When the monitor is started, two
buffers of the specified size are allocated. Event monitors use double buffering to permit
asynchronous I/O.

Chapter 1. Structured Query Language (SQL) 1039

The default size of each buffer is four pages (two 16K buffers are allocated). The
minimum size is one page. The maximum size of the buffers is limited by the value
of the MAXFILESIZE parameter and the size of the monitor heap because the buffers
are allocated from that heap. If many event monitors are being used at the same time,
increase the size of the mon_heap_sz database manager configuration parameter.

Event monitors that write their data to a pipe also have two internal (non-configurable)
buffers that are each one page in size. These buffers are also allocated from the monitor
heap (MON_HEAP). For each active event monitor that has a pipe target, increase the size
of the database heap by two pages.

BLOCKED
Specifies that each agent that generates an event must wait for an event buffer to be
written out to disk if the agent determines that both event buffers are full. BLOCKED must
be selected to prevent event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event must not wait for the event buffer to be
written out to disk if the agent determines that both event buffers are full. NONBLOCKED
event monitors do not slow down database operations to the extent of BLOCKED event
monitors. However, NONBLOCKED event monitors are subject to data loss on highly active
systems.

APPEND
Specifies that if event data files exist when the event monitor is turned on, then the event
monitor appends the new event data to the existing stream of data files. When the event
monitor is reactivated, it resumes writing to the event files from when it was turned off.
APPEND is the default option.

The APPEND option does not apply at CREATE EVENT MONITOR time, if there exists event
data in the directory where the newly created event monitor is to write its event data.

REPLACE
Specifies that if event data files exist when the event monitor is turned on, then the event
monitor erases all of the event files and start writing data to file 00000000.evt.

MANUALSTART
Specifies that the event monitor must be activated manually by using the SET EVENT MONITOR STATE
statement. After a MANUALSTART event monitor is activated, it can be deactivated only by using the
SET EVENT MONITOR STATE statement or by stopping the instance. This is the default.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the database partition on
which the event monitor runs is activated.

ON DBPARTITIONNUM db-partition-number
Specifies the database partition (in a partitioned database environment) or member (in a Db2
pureScale environment) on which a file or pipe event monitor is to run. When the monitoring scope is
defined as LOCAL, data is collected only on the specified partition or member. When the monitoring
scope is defined as GLOBAL, all database partitions or members collect data and report to the
database partition or member with the specified number. The I/O component physically runs on the
specified database partition or member, write records to the specified file or pipe.

When Db2 pureScale is enabled, -1 can be specified, which allows the I/O component to run from
any active member. Additionally, if the I/O component is no longer able to run on member, the event
monitor is restarted with the I/O component that is activated on another available active member.

This clause is not valid for table event monitors. In a partitioned database environment, write-to-table
event monitors runs and writes events on all database partitions where table spaces for target tables
are defined.

In a Db2 pureScale environment, write-to-table event monitors record events on all active members.

If this clause is not specified and Db2 pureScale is not enabled, the currently connected database
partition number (for the application) is used.

1040 IBM Db2 V11.5: SQL Reference

If this clause is not specified and Db2 pureScale is enabled, the I/O component is able to run on any
currently connected database partition number.

LOCAL
The event monitor reports only on the database partition that is running. It gives a partial trace of the
database activity. This is the default.

This clause is valid for file or pipe monitors. It is not valid for table event monitors.

GLOBAL
The event monitor reports on all database partitions. For a partitioned database, only DEADLOCKS
event monitors can be defined as GLOBAL.

This clause is valid for file or pipe monitors. It is not valid for table event monitors.

Rules
• Each of the event types (DATABASE, TABLES, DEADLOCKs, ...) can be specified only in a particular event

monitor definition.

Notes
• Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS catalog view. The events

themselves are recorded in the SYSCAT.EVENTS catalog view. The names of target tables are recorded
in the SYSCAT.EVENTTABLES catalog view.

• A performance impact occurs by using DEADLOCKS WITH DETAILS rather than DEADLOCKS. When a
deadlock occurs, the database manager requires extra time to record the extra deadlock information.

• A CONNHEADER event is normally written whenever a connection is established. However, if an event
monitor is created only for DEADLOCKS WITH DETAILS, a CONNHEADER event is written the first time
that the connection participates in a deadlock.

• In a database with multiple database partitions, the ON DBPARTITIONNUM clause can be used with
FILE and PIPE event monitors having a DEADLOCKS event type to indicate where the event monitor
itself resides. Information from other database partitions, if relevant, is sent to that location for
processing.

• In a database with multiple database partitions, a deadlock event monitor receives information about
applications that have locks in the deadlock from all the database partitions on which those locks
existed. If the database partition to which the application is connected (the application coordinator
partition) is not one of the participating database partitions, no information about a deadlock event is
received from that database partition.

• The BUFFERSIZE parameter restricts the size of STMT, STMT_HISTORY, DATA_VALUE, and
DETAILED_DLCONN events. If an STMT or a STMT_HISTORY event cannot fit within a buffer, it is
truncated by truncating statement text. If a DETAILED_DLCONN event cannot fit within a buffer, it is
truncated by removing locks. If it still cannot fit, statement text is truncated. If a DATA_VAL event
cannot fit within a buffer, the data value is truncated.

Event monitors WITH DETAILS HISTORY VALUES (and to a lesser extent, WITH DETAILS HISTORY) use
a significant amount of monitor heap space to track statements and their data values, as described in
the mon_heap_sz configuration parameter.

• If the database partition on which the event monitor is to run is not active, event monitor activation
occurs when that database partition next activates.

• After an event monitor is activated, it behaves like an autostart event monitor until that event monitor is
explicitly deactivated or the instance is recycled. That is, if an event monitor is active when a database
partition is deactivated, and that database partition is later reactivated, the event monitor is also
explicitly reactivated.

• Write to table event monitors General notes:

– All target tables are created when the CREATE EVENT MONITOR statement runs.

Chapter 1. Structured Query Language (SQL) 1041

– If the creation of a table fails for any reason, an error is passed back to the application program, and
the CREATE EVENT MONITOR statement fails.

– A target table can be used by one event monitor only. During CREATE EVENT MONITOR processing, if
a target table is found to be defined for use by another event monitor, the CREATE EVENT MONITOR
statement fails and an error is passed back to the application program. A table is defined for use by
another event monitor if the table name matches a value found in the SYSCAT.EVENTTABLES catalog
view.

– During CREATE EVENT MONITOR processing, if a table exists, but is not defined for use by another
event monitor, no table is created, and processing continues. A warning is passed back to the
application program.

– Any table spaces must exist before the CREATE EVENT MONITOR statement runs. The CREATE
EVENT MONITOR statement does not create table spaces.

– If specified, the LOCAL and GLOBAL keywords are ignored. With WRITE TO TABLE event monitors,
an event monitor output process or thread is started on each database partition in the instance, and
each of these processes reports data only for the database partition on which it is running.

– The following event types from the flat monitor log file or pipe format are not recorded by writing to
table event monitors:

- LOG_STREAM_HEADER
- LOG_HEADER
- DB_HEADER (Elements db_name and db_path are not recorded. The element conn_time is

recorded in CONTROL).
– In a partitioned database environment, data is only written to target tables on the database partitions

where their table spaces exist. If a table space for a target table does not exist on some database
partition, data for that target table is ignored. This behavior allows users to choose a subset of
database partitions for monitoring, by creating a table space that exists only on certain database
partitions.

In a Db2 pureScale environment, data is written from every member.

In a partitioned database environment, if some target tables do not reside on a database partition,
but other target tables do reside on that database partition, only the data for the target tables that do
reside on that database partition is recorded.

– Users must manually prune all target tables.

Table Columns:

– Column names in a table match an event monitor element identifier. Any event monitor element that
does not have a corresponding target table column is ignored.

– Use the db2evtbl command to build a CREATE EVENT MONITOR command that includes a complete
list of elements for a group.

– The types of columns that are used for monitor elements correlate to the following mapping:

SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)
 (If the data in the event monitor
 record exceeds n bytes,
 it is truncated.)
SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_16BIT and SQLM_TYPE_U16BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT
SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT
sqlm_timestamp TIMESTAMP
sqlm_time(elapsed time) BIGINT
sqlca:
 sqlerrmc VARCHAR[72]
 sqlstate CHAR[5]
 sqlwarn CHAR[11]
 other fields INTEGER or BIGINT

– Columns are defined to be NOT NULL.

1042 IBM Db2 V11.5: SQL Reference

– Because the performance of tables with CLOB columns is inferior to tables that have VARCHAR
columns, consider using the TRUNC keyword to specify the STMT evm-group value (or the DLCONN
evm-group value when using the DEADLOCKS WITH DETAILS event type).

– Unlike other target tables, the columns in the CONTROL table do not match monitor element
identifiers. Columns are defined as follows:

Column Name Data type Nullable Description

PARTITION_KEY INTEGER N Distribution key
(partitioned database
only)

PARTITION_NUMBER INTEGER N Database partition
number (partitioned
database only)

EVMONNAME VARCHAR(128) N Name of the event
monitor

MESSAGE VARCHAR(128) N Describes the nature
of the MESSAGE_TIME
column.

For more information,
see "message - Control
Table Message monitor
element" in the Database
Monitoring Guide and
Reference.

MESSAGE_TIME TIMESTAMP N Timestamp

– In a partitioned database environment, the first column of each table is named PARTITION_KEY,
is NOT NULL, and is of type INTEGER. This column is used as the distribution key for the table.
The value of this column is chosen so that each event monitor process inserts data into the
database partition on which the process is running. That is, insert operations run locally on the
database partition where the event monitor process is running. On any database partition, the
PARTITION_KEY field contains the same value. This means that if a database partition is dropped
and data is redistributed, all data on the dropped database partition goes to one other database
partition instead of being evenly distributed. Therefore, before you remove a database partition,
consider deleting all table rows on that database partition.

– In a partitioned database environment, a column that is named PARTITION_NUMBER can be defined
for each table. This column is NOT NULL and is of type INTEGER. It contains the number of
the database partition on which the data was inserted. Unlike the PARTITION_KEY column, the
PARTITION_NUMBER column is not mandatory. The PARTITION_NUMBER column is not allowed in a
nonpartitioned database environment.

Table Attributes:

– Default table attributes are used. Besides, distribution key (partitioned databases only), no extra
options are specified when you create tables.

– Indexes on the table can be created.
– Extra table attributes (such as volatile, RI, triggers, constraints) can be added, but the event monitor

process (or thread) ignores them.
– If "not logged initially" is added as a table attribute, it is turned off at the first COMMIT, and is not set

back on.

Event Monitor Activation:

– When an event monitor activates, all target table names are retrieved from the SYSCAT.EVENTTABLES
catalog view.

Chapter 1. Structured Query Language (SQL) 1043

– In a partitioned database environment, activation processing occurs on every database partition of
the instance. On a particular database partition, activation processing determines the table spaces
and database partition groups for each target table. The event monitor activates on a database
partition if at least one target table exists on that database partition. Moreover, if some target table
is not found on a database partition, that target table is flagged so that data that is destined for that
table is dropped during runtime processing.

– If a target table does not exist when the event monitor activates (or, in a partitioned database
environment, if the table space does not reside on a database partition), activation continues, and
data that would otherwise be inserted into this table is ignored.

– Activation processing validates each target table. If validation fails, activation of the event monitor
fails, and messages are written to the administration log.

– During activation in a partitioned database environment, the CONTROL table rows for
FIRST_CONNECT and EVMON_START are only inserted on the catalog database partition. The table
space for the control table must exist on the catalog database partition. If it does not exist on the
catalog database partition, these inserts are not inserted.

– In a partitioned database environment, if a partition is not yet active when a write to table event
monitor is activated, the event monitor is activated the next time that partition is activated.

Run Time:

– An event monitor runs with DATAACCESS authority.
– While an event monitor is active, an insert operation into a target table fails:

- Uncommitted changes are rolled back.
- A message is written to the administration log.
- The event monitor is deactivated.

– If an event monitor is active, a local COMMIT runs when it finishes processing an event monitor
buffer.

– In a partitioned database environment, the actual statement text, which can be up to 2 MB, is only
stored (in the STMT or DLCONN table) by the event monitor process on the application coordinator
database partition. On other database partitions, this value has zero length.

– In an environment other than a partitioned database or a Db2 pureScale database, all write to table
event monitors are deactivated when the last application exits (and the database was not activated
explicitly). In a Db2 pureScale environment, write to table event monitors are deactivated on a
given member when the database deactivates on that member and reactivates when the database
activates on that member again. In a partitioned database environment, write to table event monitors
are deactivated when the catalog partition deactivates.

– The DROP EVENT MONITOR statement does not drop target tables.
– Whenever a write-to-table event monitor activates, it acquires IN table locks on each target table to

prevent them from being modified while the event monitor is active. Table locks are maintained on all
tables while the event monitor is active. If exclusive access is required for any of the target tables (for
example, when a utility is to be run), first deactivate the event monitor to release the table locks, and
then attempting such access.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– NODE can be specified in place of DBPARTITIONNUM
– Commas can be used to separate multiple options in the target-table-options clause.

Examples
• Example 1: The following example creates an event monitor called SMITHPAY. This event monitor

collects event data for the database and for the SQL statements that are run by the PAYROLL application
that is owned by the JSMITH authorization ID. The data is appended to the absolute path /home/

1044 IBM Db2 V11.5: SQL Reference

jsmith/event/smithpay/. A maximum of 25 files are created. Each file is a maximum of 1 024 4K
pages long. The file I/O is non-blocked.

 CREATE EVENT MONITOR SMITHPAY
 FOR DATABASE, STATEMENTS
 WHERE APPL_NAME = 'PAYROLL' AND AUTH_ID = 'JSMITH'
 WRITE TO FILE '/home/jsmith/event/smithpay'
 MAXFILES 25
 MAXFILESIZE 1024
 NONBLOCKED
 APPEND

• Example 2: The following example creates an event monitor called DEADLOCKS_EVTS. This event
monitor collects deadlock events and writes them to the relative path DLOCKS. One file is written, and
the file size has no limit. Each time the event monitor is activated, it appends the event data to the file
00000000.evt if it exists. The event monitor is started each time that the database is started. The I/0
is blocked by default.

 CREATE EVENT MONITOR DEADLOCK_EVTS
 FOR DEADLOCKS
 WRITE TO FILE 'DLOCKS'
 MAXFILES 1
 MAXFILESIZE NONE
 AUTOSTART

• Example 3: This example creates an event monitor called DB_APPLS. This event monitor collects
connection events, and writes the data to the named pipe /home/jsmith/applpipe.

 CREATE EVENT MONITOR DB_APPLS
 FOR CONNECTIONS
 WRITE TO PIPE '/home/jsmith/applpipe'

• Example 4: This example, which assumes a partitioned database environment, creates an event monitor
called FOO. This event monitor collects SQL statement events and writes them to SQL tables with the
following derived names:

– CONNHEADER_FOO
– STMT_FOO
– SUBSECTION_FOO
– CONTROL_FOO

Because no table space information is supplied, all tables are created in a table space selected by
the system, based on the rules described under the IN tablespace-name clause. All tables include all
elements for their group (that is, columns are defined whose names are equivalent to the element
names.)

 CREATE EVENT MONITOR FOO
 FOR STATEMENTS
 WRITE TO TABLE

• Example 5: This example, which assumes a partitioned database environment, creates an event monitor
called BAR. This event monitor collects SQL statement and transaction events and writes them to tables
as follows:

– Any data from the STMT group is written to table MYDEPT.MYSTMTINFO. The table is created
in table space MYTABLESPACE. Create columns only for the following elements: ROWS_READ,
ROWS_WRITTEN, and STMT_TEXT. Any other elements of the group is discarded.

– Any data from the SUBSECTION group is written to table MYDEPT.MYSUBSECTIONINFO. The table
is created in table space MYTABLESPACE. The table includes all columns, except START_TIME,
STOP_TIME, and PARTIAL_RECORD.

– Any data from the XACT group is written to table XACT_BAR. Because no table space information is
supplied, the table is created in a table space selected by the system, based on the rules described
under the IN tablespace-name clause. This table includes all elements that are contained in the XACT
group.

Chapter 1. Structured Query Language (SQL) 1045

– No tables are created for connheader or control, and all data for these groups is discarded.

 CREATE EVENT MONITOR BAR
 FOR STATEMENTS, TRANSACTIONS
 WRITE TO TABLE
 STMT(TABLE MYDEPT.MYSTMTINFO IN MYTABLESPACE
 INCLUDES(ROWS_READ, ROWS_WRITTEN, STMT_TEXT)),
 STMT(TABLE MYDEPT.MYSTMTINFO IN MYTABLESPACE
 EXCLUDES(START_TIME, STOP_TIME, PARTIAL_RECORD)),
 XACT

CREATE EVENT MONITOR (activities)
The CREATE EVENT MONITOR (activities) statement defines a monitor that will record activity events
that occur when using the database. The definition of the activity event monitor also specifies where the
database should record the events.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following authorities:

• DBADM authority
• SQLADM authority

Syntax
CREATE EVENT MONITOR event-monitor-name FOR ACTIVITIES WRITE TO

TABLE formatted-event-table-info

PIPE pipe-name

FILE path-name file-options

●
AUTOSTART

MANUALSTART

●

ON MEMBER member-number

●
LOCAL

●

formatted-event-table-info
●

,

evm-group

(target-table-options)

●

BLOCKED
●

target-table-options

1046 IBM Db2 V11.5: SQL Reference

1
TABLE table-name

IN tablespace-name

PCTDEACTIVATE 100

PCTDEACTIVATE integer

file-options

●
MAXFILES NONE

MAXFILES number-of-files

●

MAXFILESIZE pages

NONE

●

BLOCKED
●

APPEND

REPLACE

●

Notes:
1 Each clause can be specified only once.
2 Clauses can be separated with a space or a comma.

Description
event-monitor-name

Name of the event monitor. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The event-monitor-name must not identify an event monitor that already exists in the
catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.
ACTIVITIES

Specifies that the event monitor records an activity event when an activity finishes
executing, or before the completion of execution if the event is triggered by the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure. The activity must either:

• Belong to a service class or workload that has COLLECT ACTIVITY DATA set
• Belong to a work class whose associated work action is COLLECT ACTIVITY DATA
• Be identified as the activity that violated a threshold whose COLLECT ACTIVITY DATA clause

was specified
• Have been identified in a call to the WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure before

completing

WRITE TO
Introduces the target for the data.
TABLE

Indicates that the target for the event monitor data is a set of database tables. The event monitor
separates the data stream into one or more logical data groups and inserts each group into a
separate table. Data for groups having a target table is kept, whereas data for groups not having
a target table is discarded. Each monitor element contained within a group is mapped to a table
column with the same name. Only elements that have a corresponding table column are inserted
into the table. Other elements are discarded.

Chapter 1. Structured Query Language (SQL) 1047

formatted-event-table-info
Defines the target tables for an event monitor. This clause should be specified for each
grouping that is to be recorded. However, if no evm-group-info clauses are specified, all
groups for the event monitor type are recorded.

For more information about logical data groups, see "Logical data groups and event monitor
output tables" in Database Monitoring Guide and Reference.

evm-group
Identifies the logical data group for which a target table is being defined. The value
depends upon the type of event monitor, as shown in the following table:

Type of Event Monitor evm-group Value

Activities • ACTIVITY
• ACTIVITYMETRICS
• ACTIVITYSTMT
• ACTIVITYVALS
• CONTROL

target-table-options
Identifies the target table for the group.
TABLE table-name

Specifies the name of the target table. The target table must be a non-partitioned
table. If the name is unqualified, the table schema defaults to the value in the
CURRENT SCHEMA special register. If no name is provided, the unqualified name is
derived from evm-group and event-monitor-name as follows:

 substring(evm-group CONCAT '_'
 CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created. If no table space name
is provided, the table space is chosen using the same process as when a table is
created without a table space name using CREATE TABLE.

Since the page size affects the INLINE LOB lengths used, consider specifying a
table space with as large a page size as possible in order to improve the INSERT
performance of the event monitor.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage (non-
temporary) or DMS table space, the PCTDEACTIVATE parameter specifies how full
the table space must be before the event monitor automatically deactivates. The
specified value, which represents a percentage, can range from 0 to 100, where
100 means that the event monitor deactivates when the table space becomes
completely full. The default value assumed is 100 if PCTDEACTIVATE is not
specified. This option is ignored for SMS table spaces.

Important: If the target table space has auto-resize enabled, set PCTDEACTIVATE
parameter to 100. Alternatively, omit this clause entirely to have the default of
100 apply. Otherwise, the event monitor might deactivate unexpectedly if the table
space reaches the threshold specified by PCTDEACTIVTATE before the table space
is automatically resized.

If a value for target-table-options is not specified, CREATE EVENT MONITOR
processing proceeds as follows:

• A derived table name is used.
• A default table space is chosen.

1048 IBM Db2 V11.5: SQL Reference

• The PCTDEACTIVATE parameter defaults to 100.

BLOCKED
Specifies that each agent that generates an event should wait for an event buffer to be
written out to disk if the agent determines that both event buffers are full. BLOCKED
should be selected to guarantee no event data loss. This is the default option.

PIPE
Specifies that the target for the event monitor data is a named pipe. The event monitor writes
the data to the pipe in a single stream (that is, as if it were a single, infinitely long file). When
writing the data to a pipe, an event monitor does not perform blocked writes. If there is no room
in the pipe buffer, then the event monitor will discard the data. It is the monitoring application's
responsibility to read the data promptly if it wishes to ensure no data loss.
pipe-name

The name of the pipe (FIFO on AIX) to which the event monitor will write the data.

The naming rules for pipes are platform specific.

Operating system Naming rules

AIX Pipe names are treated like file names. As
a result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Linux Pipe names are treated like file names. As
a result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Windows There is a special syntax for a pipe name and,
as a result, absolute pipe names are required.

The existence of the pipe will not be checked at event monitor creation time. It is the
responsibility of the monitoring application to have created and opened the pipe for reading
at the time that the event monitor is activated. If the pipe is not available at this time, then
the event monitor will turn itself off, and will log an error. (That is, if the event monitor was
activated at database start time as a result of the AUTOSTART option, then the event monitor
will log an error in the system error log.) If the event monitor is activated via the SET EVENT
MONITOR STATE SQL statement, then that statement will fail (SQLSTATE 58030).

FILE
Indicates that the target for the event monitor data is a file (or set of files). The event monitor
writes out the stream of data as a series of 8 character numbered files, with the extension
"evt". (for example, 00000000.evt, 00000001.evt, and 00000002.evt). The data should be
considered to be one logical file even though the data is broken up into smaller pieces (that is, the
start of the data stream is the first byte in the file 00000000.evt; the end of the data stream is
the last byte in the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the maximum number of files. An event
monitor will never split a single event record across two files. However, an event monitor may
write related records in two different files. It is the responsibility of the application that uses this
data to keep track of such related information when processing the event files.

path-name
The name of the directory in which the event monitor should write the event files data. The
path must be known at the server; however, the path itself could reside on another database
partition (for example, an NFS mounted file). A string constant must be used when specifying
the path-name.

Chapter 1. Structured Query Language (SQL) 1049

The directory does not have to exist at CREATE EVENT MONITOR time. However, a check is
made for the existence of the target path when the event monitor is activated. At that time, if
the target path does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path is specified, the specified path will be the one used. In environments other
than Db2 pureScale, if a relative path (a path that does not start with the root) is specified,
then the path relative to the DB2EVENT directory in the database directory will be used. In
a Db2 pureScale environment, if a relative path is specified, then the path relative to the
database owning directory in the database directory will be used.

It is possible to specify two or more event monitors that have the same target path. However,
once one of the event monitors has been activated for the first time, and as long as the target
directory is not empty, it will be impossible to activate any of the other event monitors.

file-options
Specifies the options for the file format.
MAXFILES NONE

Specifies that there is no limit to the number of event files that the event monitor will
create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor files that will exist for a
particular event monitor at any time. Whenever an event monitor has to create another
file, it will check to make sure that the number of .evt files in the directory is less than
number-of-files. If this limit has already been reached, then the event monitor will turn
itself off.

If an application removes the event files from the directory after they have been written,
then the total number of files that an event monitor can produce can exceed number-of-
files. This option has been provided to allow a user to guarantee that the event data will
not consume more than a specified amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor file. Whenever an event
monitor writes a new event record to a file, it checks that the file will not grow to be greater
than pages (in units of 4K pages). If the resulting file would be too large, then the event
monitor switches to the next file. The default for this option is:

• Linux - 1000 4K pages
• UNIX - 1000 4K pages
• Windows - 200 4K pages

The number of pages must be greater than at least the size of the event buffer in pages. If
this requirement is not met, then an error (SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file's size. If MAXFILESIZE NONE is specified,
then MAXFILES 1 must also be specified. This option means that one file will contain all
of the event data for a particular event monitor. In this case the only event file will be
00000000.evt.

BLOCKED
Specifies that each agent that generates an event should wait for an event buffer to be
written out to disk if the agent determines that both event buffers are full. BLOCKED
should be selected to guarantee no event data loss. This is the default option.

APPEND
Specifies that if event data files already exist when the event monitor is turned on, then
the event monitor will append the new event data to the existing stream of data files.
When the event monitor is reactivated, it will resume writing to the event files as if it had
never been turned off. APPEND is the default option.

1050 IBM Db2 V11.5: SQL Reference

The APPEND option does not apply at CREATE EVENT MONITOR time, if there is existing
event data in the directory where the newly created event monitor is to write its event
data.

REPLACE
Specifies that if event data files already exist when the event monitor is turned on,
then the event monitor will erase all of the event files and start writing data to file
00000000.evt.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET EVENT MONITOR STATE
statement. After a MANUALSTART event monitor has been activated, it can be deactivated only by
using the SET EVENT MONITOR STATE statement or by stopping the instance.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the database partition on
which the event monitor runs is activated. This is the default behavior of the activities event monitor.

ON MEMBER member-number
Specifies the member on which a file or pipe event monitor is to run. When the monitoring scope is
defined as LOCAL, data is collected only on the specified member. The I/O component will physically
run on the specified member, writing records to the specified file or pipe.

When the Db2 pureScale feature is enabled, -1 is the default.

If a value of -1 is specified, it allows the I/O component to run from any active member. Additionally,
in the event that the I/O component is no longer able to run on a given member, the event monitor will
be restarted with the I/O component running on another available active member.

This clause is not valid for table event monitors. In a partitioned database environment, write-to-table
event monitors will run and write events on all database partitions where table spaces for target
tables are defined.

In a Db2 pureScale environment, write-to-table event monitors will record events on all active
members.

If this clause is not specified and Db2 pureScale is not enabled, the currently connected member (for
the application) is used.

If this clause is not specified and Db2 pureScale is enabled, the I/O component is able to run on any
currently connected member.

LOCAL
The event monitor reports only on the member that is running. It gives a partial trace of the database
activity. This is the default.

This clause is valid for file or pipe monitors. It is not valid for table event monitors.

GLOBAL is not a valid scope for this type of event monitor.

Rules
• The ACTIVITIES event type cannot be combined with any other event types in a particular event monitor
definition.

Notes
• Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS catalog view. The events

themselves are recorded in the SYSCAT.EVENTS catalog view. The names of target tables are recorded
in the SYSCAT.EVENTTABLES catalog view.

• If the member on which the event monitor is to run is not active, event monitor activation occurs when
that member is reactivated.

• After an event monitor is activated, it behaves like an autostart event monitor until that event monitor is
explicitly deactivated or the instance is recycled. That is, if an event monitor is active when a member

Chapter 1. Structured Query Language (SQL) 1051

is deactivated, and that member is subsequently reactivated, the event monitor is also explicitly
reactivated.

• The FLUSH EVENT MONITOR statement is not applicable to this event monitor and will have no effect
when issued against it.

• Write to table event monitors: General notes:

– All target tables are created when the CREATE EVENT MONITOR statement executes.
– If the creation of a table fails for any reason, an error is passed back to the application program, and

the CREATE EVENT MONITOR statement fails.
– A target table can only be used by one event monitor. During CREATE EVENT MONITOR processing,

if a target table is found to have already been defined for use by another event monitor, the
CREATE EVENT MONITOR statement fails, and an error is passed back to the application program.
A table is defined for use by another event monitor if the table name matches a value found in the
SYSCAT.EVENTTABLES catalog view.

– During CREATE EVENT MONITOR processing, if a table already exists, but is not defined for use by
another event monitor, no table is created, and processing continues. A warning is passed back to the
application program.

– Any table spaces must exist before the CREATE EVENT MONITOR statement is executed. The CREATE
EVENT MONITOR statement does not create table spaces.

– If specified, the LOCAL and GLOBAL keywords are ignored. With WRITE TO TABLE event monitors, an
event monitor output process or thread is started on each member in the instance, and each of these
processes reports data only for the member on which it is running.

– The following event types from the flat monitor log file or pipe format are not recorded by write to
table event monitors:

- LOG_STREAM_HEADER
- LOG_HEADER
- DB_HEADER (Elements db_name and db_path are not recorded. The element conn_time is

recorded in CONTROL.)
– In a partitioned database environment, data is only written to target tables on the database partitions

where their table spaces exist. If a table space for a target table does not exist on some database
partition, data for that target table is ignored. This behavior allows users to choose a subset of
database partitions for monitoring, by creating a table space that exists only on certain database
partitions.

In a Db2 pureScale environment, data will be written from every member.

In a partitioned database environment, if some target tables do not reside on a database partition,
but other target tables do reside on that same database partition, only the data for the target tables
that do reside on that database partition is recorded.

– Users must manually prune all target tables.

Table Columns:

– Column names in a table match an event monitor element identifier. Any event monitor element that
does not have a corresponding target table column is ignored.

– Use the db2evtbl command to build a CREATE EVENT MONITOR statement that includes a
complete list of elements for a group.

– The types of columns being used for monitor elements correlate to the following mapping:

SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)
 (If the data in the event monitor
 record exceeds n bytes,
 it is truncated.)
SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_16BIT and SQLM_TYPE_U16BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT
SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT
sqlm_timestamp TIMESTAMP

1052 IBM Db2 V11.5: SQL Reference

sqlm_time(elapsed time) BIGINT
sqlca:
 sqlerrmc VARCHAR[72]
 sqlstate CHAR[5]
 sqlwarn CHAR[11]
 other fields INTEGER or BIGINT

– Columns are defined to be NOT NULL.
– Unlike other target tables, the columns in the CONTROL table do not match monitor element

identifiers. Columns are defined as follows:

Column Name Data Type Nullable Description

PARTITION_KEY INTEGER N Distribution key
(partitioned database
only)

PARTITION_NUMBER INTEGER N Database partition
number (partitioned
database only)

EVMONNAME VARCHAR(128) N Name of the event
monitor

MESSAGE VARCHAR(128) N Describes the nature
of the MESSAGE_TIME
column.

For more details see,
"message - Control
Table Message monitor
element" in the Database
Monitoring Guide and
Reference

MESSAGE_TIME TIMESTAMP N Timestamp

– In a partitioned database environment, the first column of each table is named PARTITION_KEY, is
NOT NULL, and is of type INTEGER. This column is used as the distribution key for the table. The
value of this column is chosen so that each event monitor process inserts data into the member
on which the process is running; that is, insert operations are performed locally on the member
where the event monitor process is running. On any database partition, the PARTITION_KEY field will
contain the same value. This means that if a database partition is dropped and data redistribution is
performed, all data on the dropped database partition will go to one other database partition instead
of being evenly distributed. Therefore, before removing a database partition, consider deleting all
table rows on that database partition.

– In a partitioned database environment, a column named PARTITION_NUMBER can be defined
for each table. This column is NOT NULL and is of type INTEGER. It contains the number of
the database partition on which the data was inserted. Unlike the PARTITION_KEY column, the
PARTITION_NUMBER column is not mandatory. The PARTITION_NUMBER column is not allowed in a
non-partitioned database environment.

Table Attributes:

– Default table attributes are used. Besides distribution key (partitioned databases only), no extra
options are specified when creating tables.

– Indexes on the table can be created.
– Extra table attributes (such as volatile, RI, triggers, constraints, and so on) can be added, but the

event monitor process (or thread) will ignore them.
– If "not logged initially" is added as a table attribute, it is turned off at the first COMMIT, and is not set

back on.

Chapter 1. Structured Query Language (SQL) 1053

Event Monitor Activation:

– When an event monitor activates, all target table names are retrieved from the SYSCAT.EVENTTABLES
catalog view.

– In a partitioned database environment, activation processing occurs on every member of the
instance. On a particular member, activation processing determines the table spaces and database
partition groups for each target table. The event monitor only activates on a database partition if at
least one target table exists on that database partition. Moreover, if some target table is not found on
a database partition, that target table is flagged so that data destined for that table is dropped during
runtime processing.

– If a target table does not exist when the event monitor activates (or, in a partitioned database
environment, if the table space does not reside on a database partition), activation continues, and
data that would otherwise be inserted into this table is ignored.

– Activation processing validates each target table. If validation fails, activation of the event monitor
fails, and messages are written to the administration log.

– During activation in a partitioned database environment, the CONTROL table rows for
FIRST_CONNECT and EVMON_START are only inserted on the catalog database partition. This
requires that the table space for the control table exist on the catalog database partition. If it does
not exist on the catalog database partition, these inserts are not performed.

– In a partitioned database environment, if a member is not yet active when a write to table event
monitor is activated, the event monitor will be activated the next time that member is activated.

Run Time:

– An event monitor runs with DATAACCESS authority.
– If, while an event monitor is active, an insert operation into a target table fails:

- Uncommitted changes are rolled back.
- A message is written to the administration log.
- The event monitor is deactivated.

– If an event monitor is active, it performs a local COMMIT when it has finished processing an event
monitor buffer.

– In an environment other than a partitioned database or a Db2 pureScale environment, all write to
table event monitors are deactivated when the last application terminates (and the database has not
been explicitly activated).

In a Db2 pureScale environment, write to table event monitors are deactivated on a given member
when the member stops and is reactivated when the member restarts.

In a partitioned database environment, write to table event monitors are deactivated when the
catalog partition deactivates.

– The DROP EVENT MONITOR statement does not drop target tables.
– Whenever a write-to-table event monitor activates, it will acquire IN table locks on each target table

in order to prevent them from being modified while the event monitor is active. Table locks are
maintained on all tables while the event monitor is active. If exclusive access is required on any of the
target tables (for example, when a utility is to be run), first deactivate the event monitor to release the
table locks before attempting such access.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– Commas can be used to separate multiple options in the target-table-options clause

1054 IBM Db2 V11.5: SQL Reference

Example

Define an activity event monitor named DBACTIVITIES

 CREATE EVENT MONITOR DBACTIVITIES
 FOR ACTIVITIES
 WRITE TO TABLE
 ACTIVITY (TABLE ACTIVITY_DBACTIVITIES
 IN USERSPACE1
 PCTDEACTIVATE 100),

 ACTIVITYMETRICS (TABLE ACTIVITYMETRICS_DBACTIVITIES
 IN USERSPACE1
 PCTDEACTIVATE 100),

 ACTIVITYSTMT (TABLE ACTIVITYSTMT_DBACTIVITIES
 IN USERSPACE1
 PCTDEACTIVATE 100),
 ACTIVITYVALS (TABLE ACTIVITYVALS_DBACTIVITIES
 IN USERSPACE1
 PCTDEACTIVATE 100),
 CONTROL (TABLE CONTROL_DBACTIVITIES
 IN USERSPACE1
 PCTDEACTIVATE 100)
 AUTOSTART;

CREATE EVENT MONITOR (change history)
The CREATE EVENT MONITOR (change history) statement creates an event monitor that can record
events for changes to configuration parameters, registry variables, and the execution of DDL statements
and utilities.

The event monitor created by the CREATE EVENT MONITOR (change history) statement can also record
initial configuration and registry values at event monitor startup time. The set of events recorded depends
on the event controls specified in the CREATE EVENT MONITOR statement.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following authorities:

• SQLADM authority
• DBADM authority

Syntax
CREATE EVENT MONITOR event-monitor-name FOR CHANGE HISTORY WHERE EVENT IN (

,

event-control) WRITE TO TABLE formatted-event-table-info

AUTOSTART

MANUALSTART

event-control

Chapter 1. Structured Query Language (SQL) 1055

ALL

ADC

BACKUP

CFGALL

DBCFG

DBCFGVALUES

DBMCFG

DBMCFGVALUES

DDLALL

DDLDATA

DDLFEDERATED

DDLMONITOR

DDLSECURITY

DDLSQL

DDLSTORAGE

DDLWLM

DDLXML

LOAD

MOVETABLE

ONLINERECOVERY

REDISTRIBUTE

REGVAR

REGVARVALUES

REORG

RESTORE

ROLLFORWARD

RUNSTATS

UTILALL

formatted-event-table-info

,

evm-group

(target-table-options)

target-table-options

1 2
TABLE table-name

IN tablespace-name

PCTDEACTIVATE 100

PCTDEACTIVATE integer

Notes:

1056 IBM Db2 V11.5: SQL Reference

1 Each condition can be specified only once (SQLSTATE 42613).
2 Clauses can be separated with a space or a comma.

Description
event-monitor-name

Name of the event monitor. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The event-monitor-name must not identify an event monitor that exists in the catalog
(SQLSTATE 42710).

FOR
Introduces the type of event to record.

CHANGE HISTORY
Specifies that this event monitor can record events for configuration changes, registry changes, and
the execution of DDL statements and utilities. It can also record initial configuration and registry
values at event monitor startup time. The set of events recorded depends on the event controls
specified in the WHERE EVENT IN clause.

WHERE EVENT IN (event-control, ...)
Specifies one or more event controls used to identify which events are captured by the event monitor.
event-control

ALL
Capture all event types.

ADC
Capture execution of the automatic dictionary creation (ADC) utility.

BACKUP
Capture execution of the online backup utility.

CFGALL
Capture all configuration parameter and registry variable event types.

DBCFG
Capture database configuration parameter changes.

DBCFGVALUES
Record initial values for all database configuration parameters at event monitor startup time if
any database configuration parameter update was not captured by the event monitor.

DBMCFG
Capture database manager configuration parameter changes.

DBMCFGVALUES
Record initial values for all database manager configuration parameters at event monitor
startup time if any database manager configuration parameter update was not captured by the
event monitor.

DDLALL
Capture execution for all types of DDL statements.

DDLDATA
Capture execution of index, sequence, table, and temporary table DDL.

DDLFEDERATED
Capture execution of nickname, server, type mapping, user mapping, and wrapper DDL.

DDLMONITOR
Capture execution of event monitor and usage list DDL.

DDLSECURITY
Capture execution of audit policy, grant, mask, permission role, revoke, security label, security
label component, security policy, and trusted context DDL.

Chapter 1. Structured Query Language (SQL) 1057

DDLSQL
Capture execution of alias, function, method, module, package, procedure, schema, synonym,
transform, trigger, type, variable, and view DDL.

DDLSTORAGE
Capture execution of the ALTER DATABASE statement and buffer pool, partition group, storage
group, and table space DDL.

DDLWLM
Capture execution of histogram, service class, threshold, work action set, work class set, and
workload DDL.

DDLXML
Capture execution of XSROBJECT DDL.

LOAD
Capture execution of the load utility.

MOVETABLE
Capture execution of the table move utility (invocations of the ADMIN_MOVE_TABLE stored
procedure).

ONLINERECOVERY
Capture execution of a crash recovery operation which utilized an asynchronous backward
phase that allowed for database connectivity during the operation. (This includes the implicit
crash recovery performed during an HADR TAKEOVER).

REDISTRIBUTE
Capture execution of the redistribute partition group utility.

REGVAR
Capture immediate registry variables changes.

REGVARVALUES
Record initial values for registry variables at event monitor startup time.

REORG
Capture execution of the reorg utility.

RESTORE
Capture execution of the online restore utility.

ROLLFORWARD
Capture execution of the online rollforward utility.

RUNSTATS
Capture execution of the runstats utility.

UTILALL
Capture execution of the load, move table, online backup, online restore, online rollforward,
redistribute, reorg and runstats utilities.

WRITE TO
Introduces the target for the data.

TABLE
Indicates that the target for the event monitor data is a set of database tables. The event monitor
separates the data stream into one or more logical data groups and inserts each group into a separate
table. Each monitor element contained within a group is mapped to a table column with the same
name. Only elements that have a corresponding table column are inserted into the table.

formatted-event-table-info
Defines the target table for a logical data group. Specify this clause for each grouping that is to be
recorded. However, if no evm-group clauses are specified, the groups required for the event-control
options specified are created along with the CONTROL, CHANGESUMMARY, and EVMONSTART logical
groups.

1058 IBM Db2 V11.5: SQL Reference

evm-group
Identifies the logical data group for which a target table is being defined. The value depends upon
the type of event monitor, as shown in the following table:

Type of event monitor evm-group value

Change history • CONTROL
• CHANGESUMMARY
• EVMONSTART
• TXNCOMPLETION
• DDLSTMTEXEC
• DBDBMCFG
• REGVAR
• UTILSTART
• UTILSTOP
• UTILPHASE
• UTILLOCATION

target-table-options
Identifies the target table for the group.
TABLE table-name

Specifies the name of the target table. The target table must be a non-partitioned table. If
the name is unqualified, the table schema defaults to the value in the CURRENT SCHEMA
special register. If no name is provided, the unqualified name is derived from evm-group and
event-monitor-name as follows:

SUBSTRING(evm-group CONCAT '_'
 CONCAT event-monitor-name, 1, 128)

IN tablespace-name
Defines the table space in which the table is to be created. If no table space name is provided,
the table space is chosen using the same process as when a table is created without a table
space name using CREATE TABLE.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage (non-temporary) or
DMS table space, the PCTDEACTIVATE parameter specifies how full the table space must be
before the event monitor automatically deactivates. The specified value, which represents a
percentage, can range from 0 to 100, where 100 means that the event monitor deactivates
when the table space becomes full. The default value is 100 if PCTDEACTIVATE is not
specified. This option is ignored for SMS table spaces.

Important: If the target table space has auto-resize enabled, set PCTDEACTIVATE parameter
to 100. Alternatively, omit this clause entirely to have the default of 100 apply. Otherwise,
the event monitor might deactivate unexpectedly if the table space reaches the threshold
specified by PCTDEACTIVTATE before the table space is automatically resized.

If a value for target-table-info is not specified, CREATE EVENT MONITOR processing proceeds as
follows:

• A derived table name is used.
• A default table space is chosen.
• The PCTDEACTIVATE parameter defaults to 100.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the database partition on
which the event monitor runs is activated. This is the default behavior.

Chapter 1. Structured Query Language (SQL) 1059

MANUALSTART
Specifies that the event monitor must be activated manually using the SET EVENT MONITOR STATE
statement. After a MANUALSTART event monitor is activated, it can be deactivated by using the SET
EVENT MONITOR STATE statement or by stopping the instance.

Notes
• Creation of target event tables: The target event tables are created when the CREATE EVENT MONITOR

FOR CHANGE HISTORY statement executes if the target tables do not exist.
• Previously created event tables: During CREATE EVENT MONITOR FOR CHANGE HISTORY processing, if

an event table has already been defined for use by another event monitor, the CREATE EVENT MONITOR
FOR CHANGE HISTORY statement fails, and an error is returned to the application program. An event
table is defined for use by another event monitor if the event table name matches a value found in the
SYSCAT.EVENTTABLES catalog view. If the event table exists and is not defined for use by another event
monitor, then a table is not created, any other table options parameters are ignored, and processing
continues. A warning is returned to the application program.

• Dropping event monitors: Dropping the event monitor does not drop the event tables. The associated
event tables must be manually dropped after the event monitor is dropped.

• Pruning: The event tables must be manually pruned.
• Behavior in a partitioned environment: In a partitioned environment, if some target event tables do not

exist on a partition, but other target event tables do exist on that same partition, only the data for the
target event tables that do exist on that partition is recorded.

• FLUSH EVENT MONITOR: The FLUSH EVENT MONITOR statement is not applicable to this event monitor
and has no effect when issued against it.

• Modifying event controls after monitor creation: After the change history event monitor is created, the
event controls specified using the WHERE EVENT IN clause in the CREATE EVENT MONITOR statement
cannot be changed or altered. To change the event controls, the event monitor must be deactivated,
dropped, and then recreated specifying a new set of event controls using the WHERE EVENT IN clause.

Examples
• Example 1: This example creates a change history event monitor called CFG_WITH_OFFLINE that

records configuration changes and initial values for configuration.

CREATE EVENT MONITOR CFG_WITH_OFFLINE
 FOR CHANGE HISTORY WHERE EVENT IN (CFGALL)
 WRITE TO TABLE
 CHANGESUMMARY (TABLE CHG_SUMMARY_HISTORY),
 DBDBMCFG (TABLE DB_DBM_HISTORY),
 REGVAR (TABLE REGVAR_HISTORY)
 AUTOSTART

In this example the target tables are explicitly specified. The previous statement creates the following
tables:

CHG_SUMMARY_HISTORY
DB_DBM_HISTORY
REGVAR_HISTORY

• Example 2: This example creates a change history event monitor called BKP_REST that collects events
describing all online backup and restore utility executions.

CREATE EVENT MONITOR BKP_REST
 FOR CHANGE HISTORY WHERE EVENT IN (BACKUP, RESTORE)
 WRITE TO TABLE

In this example the target tables are not explicitly specified. The CREATE EVENT MONITOR statement
creates only the target tables that are needed based on the controls specified in the WHERE EVENT
IN clause, along with tables for the CONTROL, CHANGESUMMARY, and EVMONSTART logical data
groups. The BACKUP and RESTORE controls enable collection of utility events for online backup and

1060 IBM Db2 V11.5: SQL Reference

restore, and require the UTILSTART, UTILSTOP, UTILLOCATION, and UTILPHASE logical data groups.
The previous statement creates the following tables:

CONTROL_BKP_REST
CHANGESUMMARY_BKP_REST
EVMONSTART_BKP_REST
UTILSTART_BKP_REST
UTILSTOP_BKP_REST
UTILLOCATION_BKP_REST
UTILPHASE_BKP_REST

CREATE EVENT MONITOR (locking)
The CREATE EVENT MONITOR (locking) statement creates an event monitor that will record lock-related
events that occur when using the database.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following authorities:

• DBADM authority
• SQLADM authority

Syntax
CREATE EVENT MONITOR event-monitor-name FOR LOCKING

WRITE TO TABLE formatted-event-table-info

UNFORMATTED EVENT TABLE

(target-table-options)

AUTOSTART

MANUALSTART

formatted-event-table-info

,

evm-group

(target-table-options)

target-table-options

1 2
TABLE table-name

IN tablespace-name

PCTDEACTIVATE 100

PCTDEACTIVATE integer

Notes:

Chapter 1. Structured Query Language (SQL) 1061

1 Each table option can be specified a maximum of one time (SQLSTATE 42613).
2 Clauses can be separated with a space or a comma.

Description
event-monitor-name

Name of the event monitor. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The event-monitor-name must not identify an event monitor that already exists in the
catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.
LOCKING

Specifies that this passive event monitor will record any lock event produced when the database
manager encounters one or more of these conditions:

• LOCKTIMEOUT: the lock has timed-out.
• DEADLOCK: the lock was involved in a deadlock (victim and participant(s)).
• LOCKWAIT: locks that are not acquired in the specified duration.

The creation of the lock event monitor does not indicate that the locking data will be collected
immediately. The actual locking event of interest is controlled at the workload level or database
level.

WRITE TO
Specifies the target for the data.
TABLE

Indicates that the target for the event monitor data is a set of formatted event tables. The event
monitor separates the data stream into one or more logical data groups and inserts each group
into a separate table. Data for groups having a target table is kept, whereas data for groups not
having a target table is discarded. Each monitor element contained within a group is mapped to
a table column with the same name. Only elements that have a corresponding table column are
inserted into the table. Other elements are discarded.
formatted-event-table-info

Defines the target formatted event tables for the event monitor. This clause should specify
each grouping that is to be recorded. However, if no evm-group clauses are specified, all
groups for the event monitor type are recorded.

For more information about logical data groups, see "Logical data groups and event monitor
output tables" in Database Monitoring Guide and Reference.

evm-group
Identifies a logical data group for which a target table is being defined. The value depends
upon the type of event monitor, as shown in the following table:

Type of Event Monitor evm-group Value

Locking • LOCK
• LOCK_PARTICIPANTS
• LOCK_PARTICIPANT_ACTIVITIES
• LOCK_ACTIVITY_VALUES
• CONTROL

UNFORMATTED EVENT TABLE
Specifies that the target for the event monitor is an unformatted event table. The unformatted
event table is used to store collected locking event monitor data. Data is stored in an internal
binary format within an inlined BLOB column. Each event can insert multiple records into this table
and each inserted record can be of a different type with the associated BLOB content varying as

1062 IBM Db2 V11.5: SQL Reference

well. The data in the BLOB column is not in a readable format and requires conversion, through
use of the db2evmonfmt Java-based tool, EVMON_FORMAT_UE_TO_XML table function, or
EVMON_FORMAT_UE_TO_TABLES procedure, into a consumable format such as an XML document
or a relational table.

target-table-options
Identifies options for the target table. If a value for target-table-options is not specified, CREATE
EVENT MONITOR FOR LOCKING processing proceeds as follows:

• A derived table name is used (as explained in the description for TABLE table-name).
• A default table space is chosen using the same process as when a table is created without a

table space name using CREATE TABLE.
• PCTDEACTIVATE is set to 100.

TABLE table-name
Specifies the name of the target table. The target table must be a non-partitioned table. If the
name is unqualified, the table schema defaults to the value in the CURRENT SCHEMA special
register. If a name is not provided for an unformatted event table, the unqualified name is
equal to the event-monitor-name, that is, the unformatted event table will be named after the
event monitor. If no name is provided for a formatted event table, the unqualified name is
derived from evm-group and event-monitorname as follows:

 substring(evm-group CONCAT '_'
 CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created. The CREATE EVENT MONITOR FOR
LOCKING statement does not create table spaces.

If a table space name is not provided, the table space is chosen using the same process as
when a table is created without a table space name using CREATE TABLE.

When specifying the table space name for a formatted event table, the table space's page size
affects the INLINE LOB lengths used Consider specifying a table space with as large a page
size as possible in order to improve the INSERT performance of the event monitor.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage (non-temporary)
or DMS table space, the PCTDEACTIVATE parameter specifies how full the table space must
be before the event monitor automatically deactivates. The specified value, which represents
a percentage, can range from 0 to 100. The default value is 100, where 100 means the
event monitor deactivates when the table space becomes completely full. The default value
assumed is 100 if PCTDEACTIVATE is not specified. This option is ignored for SMS table
spaces.

Important: If the target table space has auto-resize enabled, set PCTDEACTIVATE to 100.
Alternatively, omit this clause entirely to have the default of 100 apply. Otherwise, the event
monitor might deactivate unexpectedly if the table space reaches the threshold specified by
PCTDEACTIVTATE before the table space is automatically resized.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the database partition on
which the event monitor runs is activated. This is the default behavior of the locking event monitor.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET EVENT MONITOR STATE
statement. After a MANUALSTART event monitor has been activated, it can be deactivated only by
using the SET EVENT MONITOR STATE statement or by stopping the instance.

Notes
• The target table is created when the CREATE EVENT MONITOR FOR LOCKING statement executes, if it

doesn't already exist.

Chapter 1. Structured Query Language (SQL) 1063

• During CREATE EVENT MONITOR FOR LOCKING processing, if a table is found to have already been
defined for use by another event monitor, the CREATE EVENT MONITOR FOR LOCKING statement fails,
and an error is passed back to the application program. A table is defined for use by another event
monitor if the table name matches a value found in the SYSCAT.EVENTTABLES catalog view. If the table
exists and is not defined for use by another event monitor, then the event monitor will re-use the table.

• Dropping the event monitor will not drop any tables. Any associated tables must be manually dropped
after the event monitor is dropped.

• Lock event data is not automatically pruned from either unformatted event tables or regular tables
created by this event monitor. An option for pruning data from UE tables is available when using the
EVMON_FORMAT_UE_TO_TABLES procedure. For event monitors that write to regular tables, event data
must be pruned manually.

• The FLUSH EVENT MONITOR statement is not applicable to this event monitor and will have no effect
when issued against it.

• For unformatted event tables event data is inserted into the table into an inlined BLOB data column.
Normally, BLOB data is stored in a separate LOB table space and can experience additional performance
overhead as a result. When inlined into the data page of the base table, the BLOB data does not
experience this overhead. The database manager will automatically inline the BLOB data portion of an
unformatted event table record if the size of the BLOB data is less than the table space page size minus
the record prefix. Therefore to achieve high efficiency and application throughput, it is suggested that
you create the event monitor in as large a table space as possible up to and including a 32KB table
space and associated bufferpool.
Example

The lock event monitor currently has the following two record types:

– Application Info Record
– Application Activity Record

Application Info Record = maximum size 3.5KB

Application Activity Record = 3KB + SQL statement text size (where SQL statement text size is max
2MB)

The Application Info Record is very small and should always be inlined as long as a 4KB page size is
being used. The Application Activity Record will be inlined based on the following formula:

Application Activity Record < inline length (Pagesize - overhead non-LOB
columns (0.5KB))
 3KB + SQL statement text < inline length (Pagesize - overhead non-LOB
columns (0.5KB))

 SQL statement text < Pagesize - nonLOB overhead (1K) - 3KB
 SQL statement text < 16KB - 1KB - 3KB
 < 12KB

Therefore, when using a 16KB pagesize, the lock event monitor records will only be inlined if the
SQL statement being captured is less than 12KB in size.

• Create only one locking event monitor per database. Creating more than one locking event monitor uses
additional processor cycles and storage, without providing any additional data.

Important: For compatibility with older versions of the product, all databases are created with the
DB2DETAILDEADLOCK event monitor enabled. The locking event monitor introduced in Db2 Version
9.7 is the preferred mechanism for collecting data related to locks; the DB2DETAILEDDEALOCK event
monitor is deprecated and might be removed in a future release. When you create a locking event
monitor, disable and drop the DB2DETAILEDDEADLOCK event monitor to prevent the collection of
duplicate, unnecessary information.

To remove the DB2DETAILDEADLOCK event monitor, issue the following SQL statements:

SET EVENT MONITOR DB2DETAILDEADLOCK state 0
DROP EVENT MONITOR DB2DETAILDEADLOCK

1064 IBM Db2 V11.5: SQL Reference

• In a partitioned database environment, data is written only to target tables on the database partitions
where their table spaces exist. If a table space for a target table does not exist on some database
partition, data for that target table is ignored. This behavior allows users to choose a subset of database
partitions for monitoring to be chosen, by creating a table space that exists only on certain database
partitions.

• In a partitioned database environment, if some target tables do not reside on a database partition, but
other target tables do reside on that same database partition, only the data for the target unformatted
event tables that do reside on that database partition is recorded.

Examples
• Example 1: This example creates a locking event monitor LOCKEVMON that will collect locking events

that occur on the database of creation.

 CREATE EVENT MONITOR LOCKEVMON
 FOR LOCKING
 WRITE TO TABLE

This event monitor writes its output to the following tables:

LOCK_LOCKEVMON
LOCK_PARTICIPANTS_LOCKEVMON
LOCK_PARTICIPANT_ACTIVITIES_LOCKEVMON
LOCK_ACTIVITY_VALUES_LOCKEVMON
CONTROL_LOCKEVMON

• Example 2: This example creates a locking event monitor LOCKEVMON that will collect locking events
that occur on the database of creation and store it in the unformatted event table IMRAN.LOCKEVENTS.

 CREATE EVENT MONITOR LOCKEVMON
 FOR LOCKING
 WRITE TO UNFORMATTED EVENT TABLE (TABLE IMRAN.LOCKEVENTS)

• Example 3: This example creates a locking event monitor LOCKEVMON that will collect locking events
that occur on the database of creation and store it in the unformatted event table IMRAN.LOCKEVENTS
in table space APPSPACE. The event monitor will deactivate when the table space becomes 85% full.

 CREATE EVENT MONITOR LOCKEVMON
 FOR LOCKING
 WRITE TO UNFORMATTED EVENT TABLE
 (TABLE IMRAN.LOCKEVENTS IN APPSPACE PCTDEACTIVATE 85)

CREATE EVENT MONITOR (package cache) statement
The CREATE EVENT MONITOR (package cache) statement creates an event monitor that will record
events when the cache entry for a section is flushed from the package cache.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following authorities:

• DBADM authority
• SQLADM authority

Chapter 1. Structured Query Language (SQL) 1065

Syntax
CREATE EVENT MONITOR event-monitor-name FOR PACKAGE CACHE

filter-and-collection-options

WRITE TO TABLE formatted-event-table-info

UNFORMATTED EVENT TABLE

(target-table-options)

AUTOSTART

MANUALSTART

filter-and-collection-options

WHERE event-condition

COLLECT BASE DATA

COLLECT DETAILED DATA

event-condition

AND
1

UPDATED_SINCE_BOUNDARY_TIME

NUM_EXECUTIONS

STMT_EXEC_TIME

>

<

<=

=

>=

integer-constant

formatted-event-table-info

,

evm-group

(target-table-options)

target-table-options

2 3
TABLE table-name

IN tablespace-name

PCTDEACTIVATE 100

PCTDEACTIVATE integer

Notes:
1 Each condition can be specified only once (SQLSTATE 42613).
2 Each table option can be specified a maximum of one time (SQLSTATE 42613).
3 Clauses can be separated with a space or a comma.

1066 IBM Db2 V11.5: SQL Reference

Description
event-monitor-name

Name of the event monitor. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The event-monitor-name must not identify an event monitor that already exists in the
catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.
PACKAGE CACHE

Specifies that this event monitor will record an event when the cache entry for a static or dynamic
SQL statement is flushed from the package cache. This event monitor is not passive and will start
to record events once it is activated.

filter-and-collection-options
Specify a set of filter and collection options.
WHERE

event-condition
Defines a filter that determines whether entries that are flushed from the package cache
should cause an event to occur. If the event condition is TRUE for a particular entry that is
being flushed from the package cache, then that entry will be recorded as an event.

This clause is a special form of the WHERE clause that should not be confused with a standard
search condition. This is a simple WHERE clause that includes the use of NOT, OR, and LIKE
operators, unlike the WHERE clause specified for the CONNECTIONS, TRANSACTIONS, and
STATEMENTS event monitors.

If the WHERE clause is not specified, all entries flushed from the package cache will be
monitored.

UPDATED_SINCE_BOUNDARY_TIME
Specifies that evicted entries, whose metrics were updated after the boundary time,
should be collected by this event monitor. The boundary time is set by calling
the MON_GET_PKG_CACHE_STMT table function with the value of the input key
"updated_boundary_time" set as the name of this event monitor.

The boundary time is initially set to the activation timestamp of the event monitor.

NUM_EXECUTIONS > | < | <= | = | >= integer-constant
Specifies that the monitor element num_executions should be compared with the integer-
constant in order to determine whether to generate an event. NUM_EXECUTIONS is the
number of times that the section of the evicted entry was executed.

Note: The num_executions monitor element counts all executions of a statement, whether
or not the execution of the statement contributed to the activity metrics that are reported.

STMT_EXEC_TIME > | < | <= | = | >= integer-constant
Specifies that the monitor element stmt_exec_time should be compared with the integer-
constant in order to determine whether to generate an event. STMT_EXEC_TIME is the total
aggregated time spent executing the statement of the evicted entry. The unit of time for the
integer-constant must be specified as milliseconds.

COLLECT BASE DATA
Specifies that the same level of information returned by the MON_GET_PKG_CACHE_STMT table
function should be captured. This is the default collect option.

COLLECT DETAILED DATA
Specifies that the BASE level information should be collected as well as the runtime executable
section of the flushed entry.

WRITE TO
Specifies the target for the data.

Chapter 1. Structured Query Language (SQL) 1067

TABLE
Indicates that the target for the event monitor data is a set of database tables. The event monitor
separates the data stream into one or more logical data groups and inserts each group into a
separate table. Data for groups having a target table is kept, whereas data for groups not having
a target table is discarded. Each monitor element contained within a group is mapped to a table
column with the same name. Only elements that have a corresponding table column are inserted
into the table. Other elements are discarded.
formatted-event-table-info

Defines the target formatted event tables for the event monitor. This clause should specify
each grouping that is to be recorded. However, if no evm-group clauses are specified, all
groups for the event monitor type are recorded.

For more information about logical data groups, see "Logical data groups and event monitor
output tables" in Database Monitoring Guide and Reference.

evm-group
Identifies a logical data group for which a target table is being defined. The value depends
upon the type of event monitor, as shown in the following table:

Type of Event Monitor evm-group Value

Package Cache • PKGCACHE
• PKGCACHE_METRICS
• PKGCACHE_STMT_ARGS
• CONTROL

UNFORMATTED EVENT TABLE
Specifies that the target for the event monitor is an unformatted event table. The unformatted
event table is used to store collected package cache event monitor data. Data is stored
in its original binary format within an inlined BLOB column. The BLOB column can contain
multiple binary records of different types. The data in the BLOB column is not in a
readable format and requires conversion, through use of the db2evmonfmt Java-based tool,
EVMON_FORMAT_UE_TO_XML table function, or EVMON_FORMAT_UE_TO_TABLES procedure,
into a consumable format such as an XML document or a relational table.

target-table-options
Identifies options for the target table. If a value for target-table-options is not specified, CREATE
EVENT MONITOR FOR PACKAGE CACHE processing proceeds as follows:

• A derived table name is used (as explained in the description for TABLE table-name).
• A default table space is chosen using the same process as when a table is created without a

table space name using CREATE TABLE.
• PCTDEACTIVATE is set to 100.

TABLE table-name
Specifies the name of the target table. The target table must be a non-partitioned table. If the
name is unqualified, the table schema defaults to the value in the CURRENT SCHEMA special
register. If a name is not provided for an unformatted event table, the unqualified name is
equal to the event-monitor-name, that is, the unformatted event table will be named after the
event monitor. If no name is provided for a formatted event table, the unqualified name is
derived from evm-group and event-monitor-name as follows:

 substring(evm-group CONCAT '_'
 CONCAT event-monitor-name,1,128)

IN tablespace-name
Specifies the table space in which the table is to be created. The CREATE EVENT MONITOR
FOR PACKAGE CACHE statement does not create table spaces.

1068 IBM Db2 V11.5: SQL Reference

If a table space name is not provided, the table space is chosen using the same process as
when a table is created without a table space name using CREATE TABLE.

The table space's page size affects the INLINE LOB lengths used. Consider specifying a table
space with as large a page size as possible in order to improve the INSERT performance of the
event monitor.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage (non-temporary)
or DMS table space, the PCTDEACTIVATE parameter specifies how full the table space
must be before the event monitor automatically deactivates. The specified value, which
represents a percentage, can range from 0 to 100, where 100 means that the event monitor
deactivates when the table space becomes completely full. The default value assumed is 100
if PCTDEACTIVATE is not specified. This option is ignored for SMS table spaces.

Important: If the target table space has auto-resize enabled, set PCTDEACTIVATE parameter
to 100. Alternatively, omit this clause entirely to have the default of 100 apply. Otherwise,
the event monitor might deactivate unexpectedly if the table space reaches the threshold
specified by PCTDEACTIVTATE before the table space is automatically resized.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the database partition on
which the event monitor runs is activated. This is the default behavior of the package cache event
monitor.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET EVENT MONITOR STATE
statement. After a MANUALSTART event monitor has been activated, it can be deactivated by using
the SET EVENT MONITOR STATE statement or by stopping the instance.

Notes
• The target table is created when the CREATE EVENT MONITOR FOR PACKAGE CACHE statement

executes, if it doesn't already exist.
• During CREATE EVENT MONITOR FOR PACKAGE CACHE processing, if a table is found to have already

been defined for use by another event monitor, the CREATE EVENT MONITOR FOR PACKAGE CACHE
statement fails, and an error is passed back to the application program. A table is defined for use by
another event monitor if the table name matches a value found in the SYSCAT.EVENTTABLES catalog
view. If the table exists and is not defined for use by another event monitor, then the event monitor will
re-use the table.

• Dropping the event monitor will not drop any tables. Any associated tables must be manually dropped
after the event monitor is dropped.

• Lock event data is not automatically pruned from either unformatted event tables or regular tables
created by this event monitor. An option for pruning data from UE tables is available when using the
EVMON_FORMAT_UE_TO_TABLES procedure. For event monitors that write to regular tables, event data
must be pruned manually.

• In a partitioned database environment, data is written to target tables only on the members where
their table spaces exist. If a table space for a target table does not exist on a member, the event data
that would be written to that target table is not captured on that member. This behavior allows users
to choose a subset of members for monitoring, by creating a table space that exists only on certain
members.

• In a partitioned database environment, data is written to target tables only on the member where the
entries are evicted from the database package cache.

• In a partitioned database environment, if some target tables do not reside on a member, but other
target tables do reside on that same member, only the data for the target unformatted event tables that
do reside on that member is recorded.

• The FLUSH EVENT MONITOR statement is not applicable to this event monitor and will have no effect
when issued against it.

Chapter 1. Structured Query Language (SQL) 1069

• After the package cache event monitor is created, the filter and control options cannot be changed or
altered. To change the filter and control options, the event monitor must be deactivated, dropped, and
then recreated with the new filter and control options.

Use large table space for high throughput
Event data is inserted into the unformatted event table into an inlined BLOB data column. Normally,
BLOB data is stored in a separate LOB table space and can experience additional performance
overhead as a result. When inlined into the data page of the base table, the BLOB data does not
experience this overhead. The database manager will automatically inline the BLOB data portion of
an unformatted event table record if the size of the BLOB data is less than the table space page
size minus the record prefix. Therefore, to achieve high efficiency and application throughput, it is
suggested that you create the event monitor in as large a table space as possible, up to and including
a 32 KB table space, and associated bufferpool.
Inline of package cache records

For the package cache event monitor, the size of the stmt_text, comp_env_desc, and the
section_env monitor elements will determine if the package cache record will be inlined or not.
If the total of these fields exceeds the table space size, then the record will not be inlined.

Determine if EVENT_DATA is inlined
Use the ADMIN_IS_INLINED and ADMIN_EST_INLINE_LENGTH functions to determine whether
the record is inlined and get an estimate of the inline length that is required.

Restrictions
• During database deactivation, evicted entries will not be collected by the package cache event monitor.

Examples
• Example 1: This example creates a package cache event monitor called CACHEEVMON that will collect

data related to package cache section eviction events and write the data to tables.

 CREATE EVENT MONITOR CACHEEVMON
 FOR PACKAGE CACHE
 WRITE TO TABLE

This event monitor writes its output to the following tables:

PKGCACHE_CACHEEVMON
PKGCACHE_METRICS_CACHEEVMON
PKGCACHE_STMT_ARGS
CONTROL_CACHEEVMON

• Example 2: This example creates a package cache event monitor called CACHESTMTEVMON that will
collect data related to package cache section eviction events and store it in the unformatted event table
ALAN.STMTEVENTS.

 CREATE EVENT MONITOR CACHESTMTEVMON
 FOR PACKAGE CACHE
 WRITE TO UNFORMATTED EVENT TABLE (TABLE ALAN.STMTEVENTS)

• Example 3: This example creates a package cache event monitor called CACHESTMTEVMON that will
collect data related to package cache section eviction events and store it in the unformatted event table
ALAN.STMTEVENTS in table space APPSPACE. The event monitor will deactivate when the table space
becomes 85% full.

 CREATE EVENT MONITOR CACHESTMTEVMON
 FOR PACKAGE CACHE
 WRITE TO UNFORMATTED EVENT TABLE
 (TABLE ALAN.STMTEVENTS IN APPSPACE PCTDEACTIVATE 85)

1070 IBM Db2 V11.5: SQL Reference

CREATE EVENT MONITOR (statistics)
The CREATE EVENT MONITOR (statistics) statement defines a monitor that will record statistics events
that occur when using the database. The definition of the statistics event monitor also specifies where the
database should record the events.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following authorities:

• DBADM authority
• SQLADM authority

Syntax
CREATE EVENT MONITOR event-monitor-name FOR STATISTICS WRITE TO

TABLE formatted-event-table-info

PIPE pipe-name

FILE path-name file-options

●
AUTOSTART

MANUALSTART

●

ON MEMBER member-number

●
LOCAL

●

formatted-event-table-info
●

,

evm-group

(target-table-options)

●

BUFFERSIZE 4

BUFFERSIZE pages

●
BLOCKED

NONBLOCKED

●

target-table-options

1
TABLE table-name

IN tablespace-name

PCTDEACTIVATE 100

PCTDEACTIVATE integer

file-options

Chapter 1. Structured Query Language (SQL) 1071

●
MAXFILES NONE

MAXFILES number-of-files

●

MAXFILESIZE pages

NONE

●

BUFFERSIZE 4

BUFFERSIZE pages

●
BLOCKED

NONBLOCKED

●
APPEND

REPLACE

●

Notes:
1 Each clause can be specified only once.
2 Clauses can be separated with a space or a comma.

Description
event-monitor-name

Name of the event monitor. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The event-monitor-name must not identify an event monitor that already exists in the
catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.
STATISTICS

Specifies that the event monitor records a service class, workload, or work class event:

• Every period minutes, where period is the value of the wlm_collect_int database
configuration parameter

• When the mon_collect_stats procedure is called

WRITE TO
Introduces the target for the data.
TABLE

Indicates that the target for the event monitor data is a set of database tables. The event monitor
separates the data stream into one or more logical data groups and inserts each group into a
separate table. Data for groups having a target table is kept, whereas data for groups not having
a target table is discarded. Each monitor element contained within a group is mapped to a table
column with the same name. Only elements that have a corresponding table column are inserted
into the table. Other elements are discarded.
formatted-event-table-info

Defines the target tables for an event monitor. This clause should be specified for each
grouping that is to be recorded. However, if no evm-group-info clauses are specified, all
groups for the event monitor type are recorded.

For more information about logical data groups, see "Logical data groups and event monitor
output tables" in Database Monitoring Guide and Reference.

evm-group
Identifies the logical data group for which a target table is being defined. The value
depends upon the type of event monitor, as shown in the following table:

1072 IBM Db2 V11.5: SQL Reference

Type of Event Monitor evm-group Value

Statistics • CONTROL
• HISTOGRAMBIN
• OSMETRICS
• QSTATS
• SCMETRICS
• SCSTATS
• SUPERCLASSMETRICS
• SUPERCLASSSTATS
• WCSTATS
• WLMETRICS
• WLSTATS

target-table-options
Identifies the target table for the group.
TABLE table-name

Specifies the name of the target table. The target table must be a non-partitioned
table. If the name is unqualified, the table schema defaults to the value in the
CURRENT SCHEMA special register. If no name is provided, the unqualified name is
derived from evm-group and event-monitor-name as follows:

 substring(evm-group CONCAT '_'
 CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created. If no table space name
is provided, the table space is chosen using the same process as when a table is
created without a table space name using CREATE TABLE.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage (non-
temporary) or DMS table space, the PCTDEACTIVATE parameter specifies how full
the table space must be before the event monitor automatically deactivates. The
specified value, which represents a percentage, can range from 0 to 100, where
100 means that the event monitor deactivates when the table space becomes
completely full. The default value assumed is 100 if PCTDEACTIVATE is not
specified. This option is ignored for SMS table spaces.

Important: If the target table space has auto-resize enabled, set PCTDEACTIVATE
parameter to 100. Alternatively, omit this clause entirely to have the default of
100 apply. Otherwise, the event monitor might deactivate unexpectedly if the table
space reaches the threshold specified by PCTDEACTIVTATE before the table space
is automatically resized.

If a value for target-table-options is not specified, CREATE EVENT MONITOR
processing proceeds as follows:

• A derived table name is used.
• A default table space is chosen.
• PCTDEACTIVATE defaults to 100.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K pages). Table event monitors
insert all data from a buffer, and issues a COMMIT once the buffer has been processed.
The larger the buffers, the larger the commit scope used by the event monitor. Highly

Chapter 1. Structured Query Language (SQL) 1073

active event monitors should have larger buffers than relatively inactive event monitors.
When a monitor is started, two buffers of the specified size are allocated. Event monitors
use double buffering to permit asynchronous I/O.

The default size of each buffer is 4 pages (two 16K buffers are allocated). The minimum
size is 1 page. The maximum size of the buffers is limited by the size of the monitor heap,
because the buffers are allocated from that heap. If many event monitors are being used
at the same time, increase the size of the mon_heap_sz database manager configuration
parameter.

Note: This keyword is not supported for statistics event monitors. The compiler accepts
this keyword, but the keyword has no effect on the behavior of the event monitor.

BLOCKED
Specifies that each agent that generates an event should wait for an event buffer to be
written out to disk if the agent determines that both event buffers are full. BLOCKED
should be selected to guarantee no event data loss. This is the default option.

Note: This keyword is not supported for statistics event monitors. The compiler accepts
this keyword, but the keyword has no effect for statistics event monitors. The event
monitor is created as if the BLOCKED keyword was specified.

NONBLOCKED
Specifies that each agent that generates an event should not wait for the event buffer to be
written out to disk if the agent determines that both event buffers are full. NONBLOCKED
event monitors do not slow down database operations to the extent of BLOCKED event
monitors. However, NONBLOCKED event monitors are subject to data loss on highly active
systems.

PIPE
Specifies that the target for the event monitor data is a named pipe. The event monitor writes
the data to the pipe in a single stream (that is, as if it were a single, infinitely long file). When
writing the data to a pipe, an event monitor does not perform blocked writes. If there is no room
in the pipe buffer, then the event monitor will discard the data. It is the monitoring application's
responsibility to read the data promptly if it wishes to ensure no data loss.
pipe-name

The name of the pipe (FIFO on AIX) to which the event monitor will write the data.

The naming rules for pipes are platform specific.

Operating system Naming rules

AIX Pipe names are treated like file names. As
a result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Linux Pipe names are treated like file names. As
a result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Windows There is a special syntax for a pipe name and,
as a result, absolute pipe names are required.

The existence of the pipe will not be checked at event monitor creation time. It is the
responsibility of the monitoring application to have created and opened the pipe for reading
at the time that the event monitor is activated. If the pipe is not available at this time, then
the event monitor will turn itself off, and will log an error. (That is, if the event monitor was
activated at database start time as a result of the AUTOSTART option, then the event monitor
will log an error in the system error log.) If the event monitor is activated via the SET EVENT
MONITOR STATE SQL statement, then that statement will fail (SQLSTATE 58030).

1074 IBM Db2 V11.5: SQL Reference

FILE
Indicates that the target for the event monitor data is a file (or set of files). The event monitor
writes out the stream of data as a series of 8 character numbered files, with the extension "evt".
(for example, 00000000.evt, 00000001.evt, and 00000002.evt). The data should be considered
to be one logical file even though the data is broken up into smaller pieces (that is, the start of the
data stream is the first byte in the file 00000000.evt; the end of the data stream is the last byte in
the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the maximum number of files. An event
monitor will never split a single event record across two files. However, an event monitor may
write related records in two different files. It is the responsibility of the application that uses this
data to keep track of such related information when processing the event files.

path-name
The name of the directory in which the event monitor should write the event files data. The
path must be known at the server; however, the path itself could reside on another database
partition (for example, an NFS mounted file). A string constant must be used when specifying
the path-name.

The directory does not have to exist at CREATE EVENT MONITOR time. However, a check is
made for the existence of the target path when the event monitor is activated. At that time, if
the target path does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path is specified, the specified path will be the one used.

In a Db2 pureScale environment, if a relative path is specified, then the path relative to the
database owning directory in the database directory will be used.

In environments other than Db2 pureScale, if a relative path (a path that does not start
with the root) is specified, then the path relative to the DB2EVENT directory in the database
directory will be used.

It is possible to specify two or more event monitors that have the same target path. However,
once one of the event monitors has been activated for the first time, and as long as the target
directory is not empty, it will be impossible to activate any of the other event monitors.

file-options
Specifies the options for the file format.
MAXFILES NONE

Specifies that there is no limit to the number of event files that the event monitor will
create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor files that will exist for a
particular event monitor at any time. Whenever an event monitor has to create another
file, it will check to make sure that the number of .evt files in the directory is less than
number-of-files. If this limit has already been reached, then the event monitor will turn
itself off.

If an application removes the event files from the directory after they have been written,
then the total number of files that an event monitor can produce can exceed number-of-
files. This option has been provided to allow a user to guarantee that the event data will
not consume more than a specified amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor file. Whenever an event
monitor writes a new event record to a file, it checks that the file will not grow to be greater
than pages (in units of 4K pages). If the resulting file would be too large, then the event
monitor switches to the next file. The default for this option is:

• Linux - 1000 4K pages
• UNIX - 1000 4K pages
• Windows - 200 4K pages

Chapter 1. Structured Query Language (SQL) 1075

The number of pages must be greater than at least the size of the event buffer in pages. If
this requirement is not met, then an error (SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file's size. If MAXFILESIZE NONE is specified,
then MAXFILES 1 must also be specified. This option means that one file will contain all
of the event data for a particular event monitor. In this case the only event file will be
00000000.evt.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K pages). All event monitor file
I/O is buffered to improve the performance of the event monitors. The larger the buffers,
the less I/O will be performed by the event monitor. Highly active event monitors should
have larger buffers than relatively inactive event monitors. When the monitor is started,
two buffers of the specified size are allocated. Event monitors use double buffering to
permit asynchronous I/O.

The default size of each buffer is 4 pages (two 16K buffers are allocated). The minimum
size is 1 page. The maximum size of the buffers is limited by the value of the MAXFILESIZE
parameter, as well as the size of the monitor heap, because the buffers are allocated from
that heap. If many event monitors are being used at the same time, increase the size of the
mon_heap_sz database manager configuration parameter.

Event monitors that write their data to a pipe also have two internal (non-configurable)
buffers that are each 1 page in size. These buffers are also allocated from the monitor
heap (MON_HEAP). For each active event monitor that has a pipe target, increase the size
of the database heap by 2 pages.

Note: This keyword is not supported for statistics event monitors. The compiler accepts
this keyword, but the keyword has no effect on the behavior of the event monitor.

BLOCKED
Specifies that each agent that generates an event should wait for an event buffer to be
written out to disk if the agent determines that both event buffers are full. BLOCKED
should be selected to guarantee no event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should not wait for the event buffer to be
written out to disk if the agent determines that both event buffers are full. NONBLOCKED
event monitors do not slow down database operations to the extent of BLOCKED event
monitors. However, NONBLOCKED event monitors are subject to data loss on highly active
systems.

Note: This keyword is not supported for statistics event monitors. The compiler accepts
this keyword, but the keyword has no effect for statistics event monitors. The event
monitor is created as if the BLOCKED keyword was specified.

APPEND
Specifies that if event data files already exist when the event monitor is turned on, then
the event monitor will append the new event data to the existing stream of data files.
When the event monitor is reactivated, it will resume writing to the event files as if it had
never been turned off. APPEND is the default option.

The APPEND option does not apply at CREATE EVENT MONITOR time, if there is existing
event data in the directory where the newly created event monitor is to write its event
data.

REPLACE
Specifies that if event data files already exist when the event monitor is turned on,
then the event monitor will erase all of the event files and start writing data to file
00000000.evt.

1076 IBM Db2 V11.5: SQL Reference

MANUALSTART
Specifies that the event monitor must be activated manually using the SET EVENT MONITOR STATE
statement. After a MANUALSTART event monitor has been activated, it can be deactivated only by
using the SET EVENT MONITOR STATE statement or by stopping the instance.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the member on which the
event monitor runs is activated. This is the default behavior of the statistics event monitor.

ON MEMBER member-number
Specifies the member on which a file or pipe event monitor is to run. When the monitoring scope is
defined as LOCAL, data is collected only on the specified member. The I/O component will physically
run on the specified member, writing records to the specified file or pipe.

When Db2 pureScale feature is enabled, -1 is the default.

If -1 is specified, it allows the I/O component to run from any active member. Additionally, in the
event that the I/O component is no longer able to run on a given member, the event monitor will be
restarted with the I/O component running on another available active member.

This clause is not valid for table event monitors. In a partitioned database environment, write-to-table
event monitors will run and write events on all database partitions where table spaces for target
tables are defined.

In a Db2 pureScale environment, write-to-table event monitors will record events on all active
members.

If this clause is not specified and the Db2 pureScale feature is not enabled, the currently connected
database partition number (for the application) is used.

If this clause is not specified and Db2 pureScale is enabled, the I/O component is able to run on any
currently connected member.

LOCAL
The event monitor reports only on the member that is running. It gives a partial trace of the database
activity. This is the default.

This clause is valid for file or pipe monitors. It is not valid for table event monitors.

GLOBAL is not a valid scope for this type of event monitor.

Rules
• The STATISTICS event type cannot be combined with any other event types in a particular event monitor
definition.

Notes
• Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS catalog view. The events

themselves are recorded in the SYSCAT.EVENTS catalog view. The names of target tables are recorded
in the SYSCAT.EVENTTABLES catalog view.

• If the member on which the event monitor is to run is not active, event monitor activation occurs when
that member next activates.

• After an event monitor is activated, it behaves like an autostart event monitor until that event monitor is
explicitly deactivated or the instance is recycled. That is, if an event monitor is active when a member
is deactivated, and that member is subsequently reactivated, the event monitor is also explicitly
reactivated.

• If you create the event monitor such that the logical data groups event_scstats or event_wlstats are
included in the event monitor output, metrics are reported in two XML documents contained in the
event monitor output. The monitor elements reported in the metrics document show the change in
value for the monitor elements since the last time statistics were collected. The elements reported in

Chapter 1. Structured Query Language (SQL) 1077

details_xml are the same monitor elements, however, they show the values since the database was
activated. That is, they continue to increase until the database is deactivated.

Important: The XML document details_xml is deprecated in the statistics event monitor, and might
be removed in a future release. For more information, see "Reporting of metrics in details_xml by
the statistics event monitor has been deprecated" at http://www.ibm.com/support/knowledgecenter/
SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060390.html.

• Write to table event monitors: General notes:

– All target tables are created when the CREATE EVENT MONITOR statement executes.
– If the creation of a table fails for any reason, an error is passed back to the application program, and

the CREATE EVENT MONITOR statement fails.
– A target table can only be used by one event monitor. During CREATE EVENT MONITOR processing,

if a target table is found to have already been defined for use by another event monitor, the
CREATE EVENT MONITOR statement fails, and an error is passed back to the application program.
A table is defined for use by another event monitor if the table name matches a value found in the
SYSCAT.EVENTTABLES catalog view.

– During CREATE EVENT MONITOR processing, if a table already exists, but is not defined for use by
another event monitor, no table is created, and processing continues. A warning is passed back to the
application program.

– Any table spaces must exist before the CREATE EVENT MONITOR statement is executed. The CREATE
EVENT MONITOR statement does not create table spaces.

– If specified, the LOCAL and GLOBAL keywords are ignored. With WRITE TO TABLE event monitors, an
event monitor output process or thread is started on each member in the instance, and each of these
processes reports data only for the member on which it is running.

– The following event types from the flat monitor log file or pipe format are not recorded by write to
table event monitors:

- LOG_STREAM_HEADER
- LOG_HEADER
- DB_HEADER (Elements db_name and db_path are not recorded. The element conn_time is

recorded in CONTROL.)
– In a partitioned database environment, data is only written to target tables on the database partitions

where their table spaces exist. If a table space for a target table does not exist on some database
partition, data for that target table is ignored. This behavior allows users to choose a subset of
member for monitoring, by creating a table space that exists only on certain member.

In a Db2 pureScale environment, data will be written from every member.

In a partitioned database environment, if some target tables do not reside on a database partition,
but other target tables do reside on that same database partition, only the data for the target tables
that do reside on that database partition is recorded.

– Users must manually prune all target tables.

Table Columns:

– Column names in a table match an event monitor element identifier. Any event monitor element that
does not have a corresponding target table column is ignored.

– Use the db2evtbl command to build a CREATE EVENT MONITOR command that includes a complete
list of elements for a group.

– The types of columns being used for monitor elements correlate to the following mapping:

SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)
 (If the data in the event monitor
 record exceeds n bytes,
 it is truncated.)
SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_16BIT and SQLM_TYPE_U16BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT

1078 IBM Db2 V11.5: SQL Reference

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060390.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060390.html

SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT
sqlm_timestamp TIMESTAMP
sqlm_time(elapsed time) BIGINT
sqlca:
 sqlerrmc VARCHAR[72]
 sqlstate CHAR[5]
 sqlwarn CHAR[11]
 other fields INTEGER or BIGINT

– Columns are defined to be NOT NULL.
– Unlike other target tables, the columns in the CONTROL table do not match monitor element

identifiers. Columns are defined as follows:

Column Name Data Type Nullable Description

PARTITION_KEY INTEGER N Distribution key
(partitioned database
only)

PARTITION_NUMBER INTEGER N Database partition
number (partitioned
database only)

EVMONNAME VARCHAR(128) N Name of the event
monitor

MESSAGE VARCHAR(128) N Describes the nature
of the MESSAGE_TIME
column.

For more details see,
"message - Control
Table Message monitor
element" in the Database
Monitoring Guide and
Reference

MESSAGE_TIME TIMESTAMP N Timestamp

– In a partitioned database environment, the first column of each table is named PARTITION_KEY, is
NOT NULL, and is of type INTEGER. This column is used as the distribution key for the table. The
value of this column is chosen so that each event monitor process inserts data into the member
on which the process is running; that is, insert operations are performed locally on the member
where the event monitor process is running. On any database partition, the PARTITION_KEY field will
contain the same value. This means that if a database partition is dropped and data redistribution is
performed, all data on the dropped database partition will go to one other database partition instead
of being evenly distributed. Therefore, before removing a database partition, consider deleting all
table rows on that database partition.

– In a partitioned database environment, a column named PARTITION_NUMBER can be defined
for each table. This column is NOT NULL and is of type INTEGER. It contains the number of
the database partition on which the data was inserted. Unlike the PARTITION_KEY column, the
PARTITION_NUMBER column is not mandatory. The PARTITION_NUMBER column is not allowed in a
non-partitioned database environment.

Table Attributes:

– Default table attributes are used. Besides distribution key (partitioned databases only), no extra
options are specified when creating tables.

– Indexes on the table can be created.
– Extra table attributes (such as volatile, RI, triggers, constraints, and so on) can be added, but the

event monitor process (or thread) will ignore them.

Chapter 1. Structured Query Language (SQL) 1079

– If "not logged initially" is added as a table attribute, it is turned off at the first COMMIT, and is not set
back on.

Event Monitor Activation:

– When an event monitor activates, all target table names are retrieved from the SYSCAT.EVENTTABLES
catalog view.

– In a partitioned database environment, activation processing occurs on every member of the
instance. On a particular member, activation processing determines the table spaces and database
partition groups for each target table. The event monitor only activates on a member if at least
one target table exists on that database partition. Moreover, if some target table is not found on a
database partition, that target table is flagged so that data destined for that table is dropped during
runtime processing.

– If a target table does not exist when the event monitor activates (or, in a partitioned database
environment, if the table space does not reside on a database partition), activation continues, and
data that would otherwise be inserted into this table is ignored.

– Activation processing validates each target table. If validation fails, activation of the event monitor
fails, and messages are written to the administration log.

– During activation in a partitioned database environment, the CONTROL table rows for
FIRST_CONNECT and EVMON_START are only inserted on the catalog database partition. This
requires that the table space for the control table exist on the catalog database partition. If it does
not exist on the catalog database partition, these inserts are not performed.

– In a partitioned database environment, if a member is not yet active when a write to table event
monitor is activated, the event monitor will be activated the next time that member is activated.

Run Time:

– An event monitor runs with DATAACCESS authority.
– If, while an event monitor is active, an insert operation into a target table fails:

- Uncommitted changes are rolled back.
- A message is written to the administration log.
- The event monitor is deactivated.

– If an event monitor is active, it performs a local COMMIT when it has finished processing an event
monitor buffer.

– In an environment other than a partitioned database or a Db2 pureScale environment, all write to
table event monitors are deactivated when the last application terminates (and the database has not
been explicitly activated).

In a Db2 pureScale environment, write to table event monitors are deactivated on a given member
when the member stops and is reactivated when the member restarts.

In a partitioned database environment, write to table event monitors are deactivated when the
catalog partition deactivates.

– The DROP EVENT MONITOR statement does not drop target tables.
– Whenever a write-to-table event monitor activates, it will acquire IN table locks on each target table

in order to prevent them from being modified while the event monitor is active. Table locks are
maintained on all tables while the event monitor is active. If exclusive access is required on any of the
target tables (for example, when a utility is to be run), first deactivate the event monitor to release the
table locks before attempting such access.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– Commas can be used to separate multiple options in the target-table-options clause

1080 IBM Db2 V11.5: SQL Reference

Example
Define a statistics event monitor named DBSTATISTICS

 CREATE EVENT MONITOR DBSTATISTICS
 FOR STATISTICS
 WRITE TO TABLE
 SCSTATS (TABLE SCSTATS_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 SCMETRICS (TABLE SCMETRICS_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 SUPERCLASSSTATS (TABLE SUPERCLASSTATS_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 SUPERCLASSMETRICS (TABLE SUPERCLASSMETRICS_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 WCSTATS (TABLE WCSTATS_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 WLSTATS (TABLE WLSTATS_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 QSTATS (TABLE QSTATS_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 HISTOGRAMBIN (TABLE HISTOGRAMBIN_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 OSMETRICS (TABLE OSMETRICS_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 CONTROL (TABLE CONTROL_DBSTATISTICS
 IN USERSPACE1
 PCTDEACTIVATE 100)
 AUTOSTART;

CREATE EVENT MONITOR (threshold violations)
The CREATE EVENT MONITOR (threshold violations) statement defines a monitor that will record
threshold violation events that occur when using the database. The definition of the threshold violations
event monitor also specifies where the database should record the events.

Invocation
The threshold violations event monitor can collect more information about the application that violated
the threshold. The addition of these monitor elements does not affect existing threshold violations event
monitors, but in order to collect the additional application information existing monitors must dropped
and recreated.

This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following authorities:

• DBADM authority
• SQLADM authority

Chapter 1. Structured Query Language (SQL) 1081

Syntax
CREATE EVENT MONITOR event-monitor-name FOR THRESHOLD VIOLATIONS WRITE TO

TABLE formatted-event-table-info

PIPE pipe-name

FILE path-name file-options

●
AUTOSTART

MANUALSTART

●

ON MEMBER member-number

●
LOCAL

●

formatted-event-table-info
●

,

evm-group

(target-table-options)

●

BUFFERSIZE 4

BUFFERSIZE pages

●
BLOCKED

NONBLOCKED

●

target-table-options

1
TABLE table-name

IN tablespace-name

PCTDEACTIVATE 100

PCTDEACTIVATE integer

file-options

●
MAXFILES NONE

MAXFILES number-of-files

●

MAXFILESIZE pages

NONE

●

BUFFERSIZE 4

BUFFERSIZE pages

●
BLOCKED

NONBLOCKED

●
APPEND

REPLACE

●

Notes:
1 Each clause can be specified only once.
2 Clauses can be separated with a space or a comma.

1082 IBM Db2 V11.5: SQL Reference

Description
event-monitor-name

Name of the event monitor. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The event-monitor-name must not identify an event monitor that already exists in the
catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.
THRESHOLD VIOLATIONS

Specifies that the event monitor records a threshold violation event when a threshold is violated.
Such events can be recorded at any point in the life of an activity, not just at completion.

WRITE TO
Introduces the target for the data.
TABLE

Indicates that the target for the event monitor data is a set of database tables. The event monitor
separates the data stream into one or more logical data groups and inserts each group into a
separate table. Data for groups having a target table is kept, whereas data for groups not having
a target table is discarded. Each monitor element contained within a group is mapped to a table
column with the same name. Only elements that have a corresponding table column are inserted
into the table. Other elements are discarded.
formatted-event-table-info

Defines the target tables for an event monitor. This clause should be specified for each
grouping that is to be recorded. However, if no evm-group-info clauses are specified, all
groups for the event monitor type are recorded.

For more information about logical data groups, see "Logical data groups and event monitor
output tables" in Database Monitoring Guide and Reference.

evm-group
Identifies the logical data group for which a target table is being defined. The value
depends upon the type of event monitor, as shown in the following table:

Type of Event Monitor evm-group Value

Threshold violations • THRESHOLDVIOLATIONS
• CONTROL

target-table-options
Identifies the target table for the group.
TABLE table-name

Specifies the name of the target table. The target table must be a non-partitioned
table. If the name is unqualified, the table schema defaults to the value in the
CURRENT SCHEMA special register. If no name is provided, the unqualified name is
derived from evm-group and event-monitor-name as follows:

 substring(evm-group CONCAT '_'
 CONCAT event-monitor-name,1,128)

IN tablespace-name
Defines the table space in which the table is to be created. If no table space name
is provided, the table space is chosen using the same process as when a table is
created without a table space name using CREATE TABLE.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage (non-
temporary) or DMS table space, the PCTDEACTIVATE parameter specifies how full
the table space must be before the event monitor automatically deactivates. The
specified value, which represents a percentage, can range from 0 to 100, where

Chapter 1. Structured Query Language (SQL) 1083

100 means that the event monitor deactivates when the table space becomes
completely full. The default value assumed is 100 if PCTDEACTIVATE is not
specified. This option is ignored for SMS table spaces.

Important: If the target table space has auto-resize enabled, set PCTDEACTIVATE
parameter to 100. Alternatively, omit this clause entirely to have the default of
100 apply. Otherwise, the event monitor might deactivate unexpectedly if the table
space reaches the threshold specified by PCTDEACTIVTATE before the table space
is automatically resized.

If a value for target-table-options is not specified, CREATE EVENT MONITOR
processing proceeds as follows:

• A derived table name is used.
• A default table space is chosen.
• The PCTDEACTIVATE parameter defaults to 100.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K pages). Table event monitors
insert all data from a buffer, and issues a COMMIT once the buffer has been processed.
The larger the buffers, the larger the commit scope used by the event monitor. Highly
active event monitors should have larger buffers than relatively inactive event monitors.
When a monitor is started, two buffers of the specified size are allocated. Event monitors
use double buffering to permit asynchronous I/O.

The default size of each buffer is 4 pages (two 16K buffers are allocated). The minimum
size is 1 page. The maximum size of the buffers is limited by the size of the monitor heap,
because the buffers are allocated from that heap. If many event monitors are being used
at the same time, increase the size of the mon_heap_sz database manager configuration
parameter.

Note: This keyword is not supported for threshold violation event monitors. The compiler
accepts this keyword, but the keyword has no effect on the behavior of the event monitor.

BLOCKED
Specifies that each agent that generates an event should wait for an event buffer to be
written out to disk if the agent determines that both event buffers are full. BLOCKED
should be selected to guarantee no event data loss. This is the default option.

NONBLOCKED
Specifies that each agent that generates an event should not wait for the event buffer to be
written out to disk if the agent determines that both event buffers are full. NONBLOCKED
event monitors do not slow down database operations to the extent of BLOCKED event
monitors. However, NONBLOCKED event monitors are subject to data loss on highly active
systems.

Note: This keyword is not supported for threshold violation event monitors. The compiler
accepts this keyword, but the keyword has no effect for threshold violation event monitors.
The event monitor is created as if the BLOCKED keyword was specified.

PIPE
Specifies that the target for the event monitor data is a named pipe. The event monitor writes
the data to the pipe in a single stream (that is, as if it were a single, infinitely long file). When
writing the data to a pipe, an event monitor does not perform blocked writes. If there is no room
in the pipe buffer, then the event monitor will discard the data. It is the monitoring application's
responsibility to read the data promptly if it wishes to ensure no data loss.
pipe-name

The name of the pipe (FIFO on AIX) to which the event monitor will write the data.

The naming rules for pipes are platform specific.

1084 IBM Db2 V11.5: SQL Reference

Operating system Naming rules

AIX Pipe names are treated like file names. As
a result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Linux Pipe names are treated like file names. As
a result, relative pipe names are permitted,
and are treated like relative path-names (see
description for path-name).

Windows There is a special syntax for a pipe name and,
as a result, absolute pipe names are required.

The existence of the pipe will not be checked at event monitor creation time. It is the
responsibility of the monitoring application to have created and opened the pipe for reading
at the time that the event monitor is activated. If the pipe is not available at this time, then
the event monitor will turn itself off, and will log an error. (That is, if the event monitor was
activated at database start time as a result of the AUTOSTART option, then the event monitor
will log an error in the system error log.) If the event monitor is activated via the SET EVENT
MONITOR STATE SQL statement, then that statement will fail (SQLSTATE 58030).

FILE
Indicates that the target for the event monitor data is a file (or set of files). The event monitor
writes out the stream of data as a series of 8 character numbered files, with the extension "evt".
(for example, 00000000.evt, 00000001.evt, and 00000002.evt). The data should be considered
to be one logical file even though the data is broken up into smaller pieces (that is, the start of the
data stream is the first byte in the file 00000000.evt; the end of the data stream is the last byte in
the file nnnnnnnn.evt).

The maximum size of each file can be defined as well as the maximum number of files. An event
monitor will never split a single event record across two files. However, an event monitor may
write related records in two different files. It is the responsibility of the application that uses this
data to keep track of such related information when processing the event files.

path-name
The name of the directory in which the event monitor should write the event files data. The
path must be known at the server; however, the path itself could reside on another database
partition (for example, an NFS mounted file). A string constant must be used when specifying
the path-name.

The directory does not have to exist at CREATE EVENT MONITOR time. However, a check is
made for the existence of the target path when the event monitor is activated. At that time, if
the target path does not exist, an error (SQLSTATE 428A3) is raised.

If an absolute path is specified, the specified path will be the one used.

In environments other than Db2 pureScale, if a relative path (a path that does not start
with the root) is specified, then the path relative to the DB2EVENT directory in the database
directory will be used.

In a Db2 pureScale environment, if a relative path is specified, then the path relative to the
database owning directory in the database directory will be used.

It is possible to specify two or more event monitors that have the same target path. However,
once one of the event monitors has been activated for the first time, and as long as the target
directory is not empty, it will be impossible to activate any of the other event monitors.

file-options
Specifies the options for the file format.

Chapter 1. Structured Query Language (SQL) 1085

MAXFILES NONE
Specifies that there is no limit to the number of event files that the event monitor will
create. This is the default.

MAXFILES number-of-files
Specifies that there is a limit on the number of event monitor files that will exist for a
particular event monitor at any time. Whenever an event monitor has to create another
file, it will check to make sure that the number of .evt files in the directory is less than
number-of-files. If this limit has already been reached, then the event monitor will turn
itself off.

If an application removes the event files from the directory after they have been written,
then the total number of files that an event monitor can produce can exceed number-of-
files. This option has been provided to allow a user to guarantee that the event data will
not consume more than a specified amount of disk space.

MAXFILESIZE pages
Specifies that there is a limit to the size of each event monitor file. Whenever an event
monitor writes a new event record to a file, it checks that the file will not grow to be greater
than pages (in units of 4K pages). If the resulting file would be too large, then the event
monitor switches to the next file. The default for this option is:

• Linux - 1000 4K pages
• UNIX - 1000 4K pages
• Windows - 200 4K pages

The number of pages must be greater than at least the size of the event buffer in pages. If
this requirement is not met, then an error (SQLSTATE 428A4) is raised.

MAXFILESIZE NONE
Specifies that there is no set limit on a file's size. If MAXFILESIZE NONE is specified,
then MAXFILES 1 must also be specified. This option means that one file will contain all
of the event data for a particular event monitor. In this case the only event file will be
00000000.evt.

BUFFERSIZE pages
Specifies the size of the event monitor buffers (in units of 4K pages). All event monitor file
I/O is buffered to improve the performance of the event monitors. The larger the buffers,
the less I/O will be performed by the event monitor. Highly active event monitors should
have larger buffers than relatively inactive event monitors. When the monitor is started,
two buffers of the specified size are allocated. Event monitors use double buffering to
permit asynchronous I/O.

The default size of each buffer is 4 pages (two 16K buffers are allocated). The minimum
size is 1 page. The maximum size of the buffers is limited by the value of the MAXFILESIZE
parameter, as well as the size of the monitor heap, because the buffers are allocated from
that heap. If many event monitors are being used at the same time, increase the size of the
mon_heap_sz database manager configuration parameter.

Event monitors that write their data to a pipe also have two internal (non-configurable)
buffers that are each 1 page in size. These buffers are also allocated from the monitor
heap (MON_HEAP). For each active event monitor that has a pipe target, increase the size
of the database heap by 2 pages.

Note: This keyword is not supported for threshold violation event monitors. The compiler
accepts this keyword, but the keyword has no effect on the behavior of the event monitor.

BLOCKED
Specifies that each agent that generates an event should wait for an event buffer to be
written out to disk if the agent determines that both event buffers are full. BLOCKED
should be selected to guarantee no event data loss. This is the default option.

1086 IBM Db2 V11.5: SQL Reference

NONBLOCKED
Specifies that each agent that generates an event should not wait for the event buffer to be
written out to disk if the agent determines that both event buffers are full. NONBLOCKED
event monitors do not slow down database operations to the extent of BLOCKED event
monitors. However, NONBLOCKED event monitors are subject to data loss on highly active
systems.

Note: This keyword is not supported for threshold violation event monitors. The compiler
accepts this keyword, but the keyword has no effect for threshold violation event monitors.
The event monitor is created as if the BLOCKED keyword was specified.

APPEND
Specifies that if event data files already exist when the event monitor is turned on, then
the event monitor will append the new event data to the existing stream of data files.
When the event monitor is reactivated, it will resume writing to the event files as if it had
never been turned off. APPEND is the default option.

The APPEND option does not apply at CREATE EVENT MONITOR time, if there is existing
event data in the directory where the newly created event monitor is to write its event
data.

REPLACE
Specifies that if event data files already exist when the event monitor is turned on,
then the event monitor will erase all of the event files and start writing data to file
00000000.evt.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET EVENT MONITOR STATE
statement. After a MANUALSTART event monitor has been activated, it can be deactivated only by
using the SET EVENT MONITOR STATE statement or by stopping the instance.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the database partition on
which the event monitor runs is activated. This is the default behavior of the threshold violations event
monitor.

ON MEMBER member-number
Specifies the member on which a file or pipe event monitor is to run. When the monitoring scope is
defined as LOCAL, data is collected only on the member. The I/O component will physically run on the
specified member, writing records to the specified file or pipe.

When the Db2 pureScale is enabled, -1 is the default.

If the value is -1, it allows the I/O component to run from any active member. Additionally, in the
event that the I/O component is no longer able to run on a given member, the event monitor will be
restarted with the I/O component running on another available active member.

This clause is not valid for table event monitors. In a partitioned database environment, write-to-table
event monitors will run and write events on all database partitions where table spaces for target
tables are defined.

In a Db2 pureScale environment, write-to-table event monitors will record events on all active
members.

If this clause is not specified and Db2 pureScale is not enabled, the currently connected member is
used.

If this clause is not specified and Db2 pureScale is enabled, the I/O component is able to run on any
currently connected member.

LOCAL
The event monitor reports only on the member that is running. It gives a partial trace of the database
activity. This is the default.

This clause is valid for file or pipe monitors. It is not valid for table event monitors.

Chapter 1. Structured Query Language (SQL) 1087

GLOBAL is not a valid scope for this type of event monitor.

Rules
• The THRESHOLD VIOLATIONS event type cannot be combined with any other event types in a particular

event monitor definition.

Notes
• Event monitor definitions are recorded in the SYSCAT.EVENTMONITORS catalog view. The events

themselves are recorded in the SYSCAT.EVENTS catalog view. The names of target tables are recorded
in the SYSCAT.EVENTTABLES catalog view.

• If the member on which the event monitor is to run is not active, event monitor activation occurs when
that member next activates.

• After an event monitor is activated, it behaves like an autostart event monitor until that event monitor is
explicitly deactivated or the instance is recycled. That is, if an event monitor is active when a member
is deactivated, and that member is subsequently reactivated, the event monitor is also explicitly
reactivated.

• Write to table event monitors: General notes:

– All target tables are created when the CREATE EVENT MONITOR statement executes.
– If the creation of a table fails for any reason, an error is passed back to the application program, and

the CREATE EVENT MONITOR statement fails.
– A target table can only be used by one event monitor. During CREATE EVENT MONITOR processing,

if a target table is found to have already been defined for use by another event monitor, the
CREATE EVENT MONITOR statement fails, and an error is passed back to the application program.
A table is defined for use by another event monitor if the table name matches a value found in the
SYSCAT.EVENTTABLES catalog view.

– During CREATE EVENT MONITOR processing, if a table already exists, but is not defined for use by
another event monitor, no table is created, and processing continues. A warning is passed back to the
application program.

– Any table spaces must exist before the CREATE EVENT MONITOR statement is executed. The CREATE
EVENT MONITOR statement does not create table spaces.

– If specified, the LOCAL and GLOBAL keywords are ignored. With WRITE TO TABLE event monitors, an
event monitor output process or thread is started on each member in the instance, and each of these
processes reports data only for the member on which it is running.

– The following event types from the flat monitor log file or pipe format are not recorded by write to
table event monitors:

- LOG_STREAM_HEADER
- LOG_HEADER
- DB_HEADER (Elements db_name and db_path are not recorded. The element conn_time is

recorded in CONTROL.)
– In a partitioned database environment, data is only written to target tables on the database partitions

where their table spaces exist. If a table space for a target table does not exist on some database
partition, data for that target table is ignored. This behavior allows users to choose a subset of
database partitions for monitoring, by creating a table space that exists only on certain database
partitions.

In a Db2 pureScale environment, data will be written from every member.

In a partitioned database environment, if some target tables do not reside on a database partition,
but other target tables do reside on that same database partition, only the data for the target tables
that do reside on that database partition is recorded.

– Users must manually prune all target tables.

1088 IBM Db2 V11.5: SQL Reference

Table Columns:

– Column names in a table match an event monitor element identifier. Any event monitor element that
does not have a corresponding target table column is ignored.

– Use the db2evtbl command to build a CREATE EVENT MONITOR command that includes a complete
list of elements for a group.

– The types of columns being used for monitor elements correlate to the following mapping:

SQLM_TYPE_STRING CHAR[n], VARCHAR[n] or CLOB(n)
 (If the data in the event monitor
 record exceeds n bytes,
 it is truncated.)
SQLM_TYPE_U8BIT and SQLM_TYPE_8BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_16BIT and SQLM_TYPE_U16BIT SMALLINT, INTEGER or BIGINT
SQLM_TYPE_32BIT and SQLM_TYPE_U32BIT INTEGER or BIGINT
SQLM_TYPE_U64BIT and SQLM_TYPE_64BIT BIGINT
sqlm_timestamp TIMESTAMP
sqlm_time(elapsed time) BIGINT
sqlca:
 sqlerrmc VARCHAR[72]
 sqlstate CHAR[5]
 sqlwarn CHAR[11]
 other fields INTEGER or BIGINT

– Columns are defined to be NOT NULL.
– Unlike other target tables, the columns in the CONTROL table do not match monitor element

identifiers. Columns are defined as follows:

Column Name Data Type Nullable Description

PARTITION_KEY INTEGER N Distribution key
(partitioned database
only)

PARTITION_NUMBER INTEGER N Database partition
number (partitioned
database only)

EVMONNAME VARCHAR(128) N Name of the event
monitor

MESSAGE VARCHAR(128) N Describes the nature
of the MESSAGE_TIME
column.

For more details see,
"message - Control
Table Message monitor
element" in the Database
Monitoring Guide and
Reference

MESSAGE_TIME TIMESTAMP N Timestamp

– In a partitioned database environment, the first column of each table is named PARTITION_KEY, is
NOT NULL, and is of type INTEGER. This column is used as the distribution key for the table. The
value of this column is chosen so that each event monitor process inserts data into the database
partition on which the process is running; that is, insert operations are performed locally on the
database partition where the event monitor process is running. On any database partition, the
PARTITION_KEY field will contain the same value. This means that if a database partition is dropped
and data redistribution is performed, all data on the dropped database partition will go to one
other database partition instead of being evenly distributed. Therefore, before removing a database
partition, consider deleting all table rows on that database partition.

Chapter 1. Structured Query Language (SQL) 1089

– In a partitioned database environment, a column named PARTITION_NUMBER can be defined
for each table. This column is NOT NULL and is of type INTEGER. It contains the number of
the database partition on which the data was inserted. Unlike the PARTITION_KEY column, the
PARTITION_NUMBER column is not mandatory. The PARTITION_NUMBER column is not allowed in a
non-partitioned database environment.

Table Attributes:

– Default table attributes are used. Besides distribution key (partitioned databases only), no extra
options are specified when creating tables.

– Indexes on the table can be created.
– Extra table attributes (such as volatile, RI, triggers, constraints, and so on) can be added, but the

event monitor process (or thread) will ignore them.
– If "not logged initially" is added as a table attribute, it is turned off at the first COMMIT, and is not set

back on.

Event Monitor Activation:

– When an event monitor activates, all target table names are retrieved from the SYSCAT.EVENTTABLES
catalog view.

– In a partitioned database environment, activation processing occurs on every database partition of
the instance. On a particular database partition, activation processing determines the table spaces
and database partition groups for each target table. The event monitor only activates on a database
partition if at least one target table exists on that database partition. Moreover, if some target table
is not found on a database partition, that target table is flagged so that data destined for that table is
dropped during runtime processing.

– If a target table does not exist when the event monitor activates (or, in a partitioned database
environment, if the table space does not reside on a database partition), activation continues, and
data that would otherwise be inserted into this table is ignored.

– Activation processing validates each target table. If validation fails, activation of the event monitor
fails, and messages are written to the administration log.

– During activation in a partitioned database environment, the CONTROL table rows for
FIRST_CONNECT and EVMON_START are only inserted on the catalog database partition. This
requires that the table space for the control table exist on the catalog database partition. If it does
not exist on the catalog database partition, these inserts are not performed.

– In a partitioned database environment, if a partition is not yet active when a write to table event
monitor is activated, the event monitor will be activated the next time that partition is activated.

Run Time:

– An event monitor runs with DATAACCESS authority.
– If, while an event monitor is active, an insert operation into a target table fails:

- Uncommitted changes are rolled back.
- A message is written to the administration log.
- The event monitor is deactivated.

– If an event monitor is active, it performs a local COMMIT when it has finished processing an event
monitor buffer.

– In an environment other than a partitioned database or a Db2 pureScale environment, all write to
table event monitors are deactivated when the last application terminates (and the database has not
been explicitly activated).

In a Db2 pureScale environment, write to table event monitors are deactivated on a given member
when the member stops and is reactivated when the member restarts.

In a partitioned database environment, write to table event monitors are deactivated when the
catalog partition deactivates.

1090 IBM Db2 V11.5: SQL Reference

– The DROP EVENT MONITOR statement does not drop target tables.
– Whenever a write-to-table event monitor activates, it will acquire IN table locks on each target table

in order to prevent them from being modified while the event monitor is active. Table locks are
maintained on all tables while the event monitor is active. If exclusive access is required on any of the
target tables (for example, when a utility is to be run), first deactivate the event monitor to release the
table locks before attempting such access.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– DBPARTITIONNUM or NODE can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– Commas can be used to separate multiple options in the target-table-options clause

Example
Define a threshold violation event monitor named DBTHRESHOLDVIOLATIONS

 CREATE EVENT MONITOR DBTHRESHOLDVIOLATIONS
 FOR THRESHOLD VIOLATIONS
 WRITE TO TABLE
 THRESHOLDVIOLATIONS (TABLE THRESHOLDVIOLATIONS_DBTHRESHOLDVIOLATIONS
 IN USERSPACE1
 PCTDEACTIVATE 100),
 CONTROL (TABLE CONTROL_DBTHRESHOLDVIOLATIONS
 IN USERSPACE1
 PCTDEACTIVATE 100)
 AUTOSTART;

CREATE EVENT MONITOR (unit of work)
The CREATE EVENT MONITOR (unit of work) statement creates an event monitor that will record events
when a unit of work completes.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following authorities:

• DBADM authority
• SQLADM authority

Syntax
CREATE EVENT MONITOR event-monitor-name FOR UNIT OF WORK

WRITE TO TABLE formatted-event-table-info

UNFORMATTED EVENT TABLE

(target-table-options)

AUTOSTART

MANUALSTART

formatted-event-table-info

Chapter 1. Structured Query Language (SQL) 1091

,

evm-group

(target-table-options)

target-table-options

1 2
TABLE table-name

IN tablespace-name

PCTDEACTIVATE 100

PCTDEACTIVATE integer

Notes:
1 Each table option can be specified a maximum of one time (SQLSTATE 42613).
2 Clauses can be separated with a space or a comma.

Description
event-monitor-name

Name of the event monitor. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The event-monitor-name must not identify an event monitor that already exists in the
catalog (SQLSTATE 42710).

FOR
Introduces the type of event to record.
UNIT OF WORK

Specifies that this passive event monitor will record an event whenever a unit of work is
completed (that is, whenever there is a commit or rollback).

The creation of the unit of work event monitor does not indicate that the unit of work data will be
collected immediately. The actual unit of work event of interest is controlled at the workload level.

WRITE TO
Specifies the target for the data.
TABLE

Indicates that the target for the event monitor data is a set of database tables. The event monitor
separates the data stream into one or more logical data groups and inserts each group into a
separate table. Data for groups having a target table is kept, whereas data for groups not having
a target table is discarded. Each monitor element contained within a group is mapped to a table
column with the same name. Only elements that have a corresponding table column are inserted
into the table. Other elements are discarded.
formatted-event-table-info

Defines the target formatted event tables for the event monitor. This clause should specify
each grouping that is to be recorded. However, if no evm-group clauses are specified, all
groups for the event monitor type are recorded.

For more information about logical data groups, see "Logical data groups and event monitor
output tables" in Database Monitoring Guide and Reference.

evm-group
Identifies a logical data group for which a target table is being defined. The value depends
upon the type of event monitor, as shown in the following table:

1092 IBM Db2 V11.5: SQL Reference

Type of Event Monitor evm-group Value

Unit of work • UOW
• UOW_METRICS
• UOW_PACKAGE_LIST
• UOW_EXECUTABLE_LIST
• CONTROL

UNFORMATTED EVENT TABLE
Specifies that the target for the event monitor is an unformatted event table. The unformatted
event table is used to store collected unit of work event monitor data. Data is stored in its original
binary format within an inlined BLOB column. The BLOB column can contain multiple binary
records of different types. The data in the BLOB column is not in a readable format and requires
conversion, through use of the db2evmonfmt Java-based tool, EVMON_FORMAT_UE_TO_XML
table function, or EVMON_FORMAT_UE_TO_TABLES procedure, into a consumable format such as
an XML document or a relational table.

target-table-options
Identifies options for the target table. If a value for target-table-options is not specified, CREATE
EVENT MONITOR processing proceeds as follows:

• A derived table name is used (as explained in the description for TABLE table-name).
• A default table space is chosen using the same process as when a table is created without a

table space name using CREATE TABLE.
• PCTDEACTIVATE is set to 100.

TABLE table-name
Specifies the name of the target table. The target table must be a non-partitioned table. If the
name is unqualified, the table schema defaults to the value in the CURRENT SCHEMA special
register. For an unformatted event table if a name is not provided, the unqualified name is
equal to the event-monitor-name, that is, the unformatted event table will be named after the
event monitor. For a formatted event table if no name is provided, the unqualified name is
derived from evm-group and event-monitor-name as follows:

 substring(evm-group CONCAT '_'
 CONCAT event-monitor-name,1,128)

IN tablespace-name
Specifies the table space in which the table is to be created. The CREATE EVENT MONITOR
FOR UNIT OR WORK statement does not create table spaces.

If a table space name is not provided, the table space is chosen using the same process as
when a table is created without a table space name using CREATE TABLE.

Since the page size affects the INLINE LOB lengths used, consider specifying a table space
with as large a page size as possible in order to improve the INSERT performance of the event
monitor.

PCTDEACTIVATE integer
If a table for the event monitor is being created in an automatic storage (non-temporary)
or DMS table space, the PCTDEACTIVATE parameter specifies how full the table space
must be before the event monitor automatically deactivates. The specified value, which
represents a percentage, can range from 0 to 100, where 100 means that the event monitor
deactivates when the table space becomes completely full. The default value assumed is 100
if PCTDEACTIVATE is not specified. This option is ignored for SMS table spaces.

Important: If the target table space has auto-resize enabled, set PCTDEACTIVATE parameter
to 100. Alternatively, omit this clause entirely to have the default of 100 apply. Otherwise,

Chapter 1. Structured Query Language (SQL) 1093

the event monitor might deactivate unexpectedly if the table space reaches the threshold
specified by PCTDEACTIVTATE before the table space is automatically resized.

AUTOSTART
Specifies that the event monitor is to be automatically activated whenever the database partition
on which the event monitor runs is activated. This is the default behavior of the unit of work event
monitor.

MANUALSTART
Specifies that the event monitor must be activated manually using the SET EVENT MONITOR STATE
statement. After a MANUALSTART event monitor has been activated, it can be deactivated only by
using the SET EVENT MONITOR STATE statement or by stopping the instance.

Notes
• The table is created when the CREATE EVENT MONITOR FOR UNIT OF WORK statement executes, if it

doesn't already exist.
• During CREATE EVENT MONITOR FOR UNIT OF WORK processing, if a table is found to have already

been defined for use by another event monitor, the CREATE EVENT MONITOR FOR UNIT OF WORK
statement fails, and an error is passed back to the application program. A table is defined for use by
another event monitor if the table name matches a value found in the SYSCAT.EVENTTABLES catalog
view. If the table exists and is not defined for use by another event monitor, then no table is created,
any other table target-table-options parameters are ignored, and processing continues. A warning is
passed back to the application program.

• Dropping the event monitor will not drop any tables. Any associated tables must be manually dropped
after the event monitor is dropped.

• Lock event data is not automatically pruned from either unformatted event tables or regular tables
created by this event monitor. An option for pruning data from UE tables is available when using the
EVMON_FORMAT_UE_TO_TABLES procedure. For event monitors that write to regular tables, event data
must be pruned manually.

• For unformatted event tables event data is inserted into the table into an inlined BLOB data column.
Normally, BLOB data is stored in a separate LOB table space and can experience additional performance
overhead as a result. When inlined into the data page of the base table, the BLOB data does not
experience this overhead. The database manager will automatically inline the BLOB data portion of an
unformatted event table record if the size of the BLOB data is less than the table space page size minus
the record prefix. Therefore to achieve high efficiency and application throughput, it is suggested that
you create the event monitor in as large a table space as possible up to and including a 32 KB table
space and associated bufferpool.

• Create only one unit of work event monitor per database and not create multiple unit of work event
monitors on the same database.

• In a partitioned database environment, data is written only to target tables on the database partitions
where their table spaces exist. If a table space for a target unformatted event table does not exist on
some database partition, data for that target table is ignored. This behavior allows users to choose a
subset of database partitions for monitoring to be chosen, by creating a table space that exists only on
certain database partitions.

• In a multi-member environment, data is only written to target tables on the member where work occurs
within the unit of work.

• In a partitioned database environment, if some target tables do not reside on a database partition, but
other target tables do reside on that same database partition, only the data for the target tables that do
reside on that database partition is recorded.

• The unit of work event monitor is not affected by the unit or work event monitor switch. The unit of work
event monitor switch is not changed when a unit or work event monitor is created, and the contents of
the unit or work event monitor are not affected by changes to the unit of work event monitor switch.

• The FLUSH EVENT MONITOR statement is not applicable to this event monitor and will have no effect
when issued against it.

1094 IBM Db2 V11.5: SQL Reference

• Creation of the unit of work event monitor does not cause events to be written to the event monitor. The
unit of work event monitor must be activated with SET EVENT MONITOR STATE, and the unit of work
data must be collected by either altering the appropriate workload to specify COLLECT UNIT OF WORK
DATA or setting the mon_uow_data database configuration parameter to a value other than NONE.

• When using unformatted event tables, create the unit of work event monitor in a table space with at
least 8 KB page size to ensure that the event data is contained within the inlined BLOB column of the
unformatted event table. If the BLOB column is not inlined, then the performance of writing and reading
the events to the unformatted event table might not be efficient.

Examples
• Example 1: This example creates a unit of work event monitor UOWEVMON that collects data for unit of

work events that occur on the database of creation, and writes data tables using default table names:

 CREATE EVENT MONITOR UOWEVMON
 FOR UNIT OF WORK
 WRITE TO TABLE

This event monitor writes its output to the following tables:

UOW_UOWEVMON
UOW_METRICS_UOWEVMON
UOW_PACKAGE_LIST_UOWEVMON
UOW_EXECUTABLE_LIST_UOWEVMON
UOW_CONTROL_UOWEVMON

Note: Whether the tables for package list and executable list information are populated with data
is dependent on whether you specify that that data is to be collected. You control the collection of
this data is using the mon_uow_pkglist or mon_uow_execlist configuration parameters, or with the
appropriate COLLECT UNIT OF WORK DATA clause on the CREATE or ALTER WORKLOAD statements.

• Example 2: This example creates a unit of work event monitor UOWEVMON that will collect unit
of work events that occur on the database of creation and store it in the unformatted event table
GREG.UOWEVENTS.

 CREATE EVENT MONITOR UOWEVMON
 FOR UNIT OF WORK
 WRITE TO UNFORMATTED EVENT TABLE (TABLE GREG.UOWEVENTS)

• Example 3: This example creates a unit of work event monitor UOWEVMON that will collect unit
of work events that occur on the database of creation and store it in the unformatted event table
GREG.UOWEVENTS in table space APPSPACE. The event monitor will deactivate when the table space
becomes 85% full.

 CREATE EVENT MONITOR UOWEVMON
 FOR UNIT OF WORK
 WRITE TO UNFORMATTED EVENT TABLE
 (TABLE GREG.UOWEVENTS IN APPSPACE PCTDEACTIVATE 85)

CREATE EXTERNAL TABLE
While tables typically reside in a database, an external table resides in a text-based, delimited file, or in a
fixed-length-format file outside of a database.

Use an external table to:

• Store data outside the database while retaining the ability to query that data. To unload data from the
database into an external file, specify the external table as the target table in one of the following SQL
statements:

– INSERT SQL
– SELECT INTO SQL

Chapter 1. Structured Query Language (SQL) 1095

– CREATE EXTERNAL TABLE AS SELECT SQL
• Load data from an external file into a table in the database. You can perform operations such as casts,

joins, and dropping columns to manipulate data during loading. To load data into the database from an
external table, use a FROM clause in a SELECT SQL statement as you would for any other table.

• Transfer data to another application.

An advantage of using external tables for Extraction-Transformation-Loading (ETL) processes is that they
can be carried out using plain SQL. Because an SQL-based ETL process can be initiated from any SQL
client, it eliminates the need for special ETL tools.

An external table is of one of the following types:
Named

The external table has a name and catalog entry similar to a normal table.
Transient

The external table has a system-generated name of the form SYSTET<number> and does not have a
catalog entry. For example, the system might create a transient external table to hold the result of a
query. The lifetime of such a table is the duration of the query.

Invocation
This statement can be embedded in an application program or issued using dynamic SQL statements. It
is an executable statement that can be dynamically prepared only if DYNAMICRULES run behavior is in
effect for the package (SQLSTATE 42509).

Authorization
The privileges that are held by the authorization ID of the statement must have either DBADM authority or
the following privileges or authorities:

• CREATETAB authority
• One of the following privileges or authorities:

– USE privilege on the table space
– SYSADM authority
– SYSCTRL authority

• One of the following privileges or authorities:

– IMPLICIT_SCHEMA authority on the database (if the implicit or explicit schema name of the table
does not exist)

– CREATEIN privilege on the schema (if the schema name of the table refers to an existing schema)
– SCHEMAADM authority on the schema (if the schema name of the table refers to an existing schema)

If a subtable is being defined, one of the following conditions must be met:

• The authorization ID must be the same as the owner of the root table of the table hierarchy.
• The privileges that are held by the authorization ID must include SCHEMAADM authority on the schema

that contains the root table of the table hierarchy.
• The privileges that are held by the authorization ID must include DBADM authority.

Syntax
The syntax of this statement depends on the nature of the external table that is to be created:

• Use the following syntax to create, in the catalog, a table definition for a new external table. Specifying
a table name is mandatory, so the resulting external table is a named table. A DATAOBJECT or
FILE_NAME option must be specified to identify the target file.

1096 IBM Db2 V11.5: SQL Reference

CREATE EXTERNAL TABLE table-name (

,

column-definition)

LIKE table-name1

view-name

nickname

USING

(

option option-value)

• Use the following syntax to use an existing table as a template for a new external table and to populate
it with the contents of the source table. If this statement specifies a table name explicitly, the resulting
external table is a named table; otherwise, the resulting external table is a transient table. The file name
must be specified by either the file-name parameter or a DATAOBJECT or FILE_NAME option.

CREATE EXTERNAL TABLE

table-name

file-name USING

(

option option-value) AS fullselect

If you specify one or more column definitions, the following additional parameters apply:
column-definition

column-name built-in-type

NOT NULL

built-in-type

Chapter 1. Structured Query Language (SQL) 1097

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( precision-integer
,0

, scale-integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA

CLOB

CHARACTER

CHAR

LARGE OBJECT

(65535)

( integer
K OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(32767)

( integer
K CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(16383)

( integer
K

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(65535)

( integer
K

)

DATE

TIME

TIMESTAMP

(6)

(integer)

BOOLEAN

1098 IBM Db2 V11.5: SQL Reference

Description
table-name

The names of the external table. The name, including the implicit or explicit qualifier, must not identify
a table, view, nickname, or alias that is already described in the catalog. The schema name cannot be
SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE 42939).

file-name
The fully-qualified name of the file (or any medium that can be treated as a file) that is to contain the
external table to be created. If this parameter is specified, the DATAOBJECT or FILE_NAME option
cannot be specified.
If the input data file is gzip compressed, this will be detected and the data is uncompressed by
the Db2 server. The COMPRESS GZIP option can be used, but it is not mandatory for loading gzip
compressed files.
If the input data file is lz4 compressed, the COMPRESS LZ4 option must be specified.

When both the REMOTESOURCE option is set to LOCAL (this is its default value) and the
extbl_strict_io configuration parameter is set to NO, the path to the external table file is
an absolute path and must be one of the paths specified by the extbl_location configuration
parameter. Otherwise, the path to the external table file is relative to the path that is specified by the
extbl_location configuration parameter followed by the authorization ID of the table definer. For
example, if extbl_location is set to /home/xyz and the authorization ID of the table definer is
user1, the path to the external table file is relative to /home/xyz/user1/.

The file name must be a valid UTF-8 string.
For a load operation, the following conditions apply:

• The file must already exist.
• Required permissions:

– If the external table is a named external table, the owner must have read permission for the file
and write permission for the LOGDIR directory.

– If the external table is a transient external table, the authorization ID of the statement must have
read permission for the file and write permission for the LOGDIR directory.

For an unload operation, the following conditions apply:

• If the file exists, it is overwritten.
• Required permissions:

– If the external table is a named external table, the owner must have read and write permission for
the directory of this file.

– If the external table is transient, the authorization ID of the statement must have read and write
permission for the directory of this file.

column-definition
Defines the attributes of a column.
column-name

Names a column of the table. The name cannot be qualified, and the same name cannot be used
for more than one column of the table (SQLSTATE 42711).

built-in-type
One of the following built-in data types:
SMALLINT

A small integer.
[INTEGER | INT]

A large integer.
BIGINT

A big integer.

Chapter 1. Structured Query Language (SQL) 1099

[DECIMAL | DEC | NUMERIC | NUM](precision-integer, scale-integer)
A decimal number.

• The precision integer specifies the total number of digits. It must be in the range 1 ‑ 31. The
default is 5.

• The scale integer specifies the number of digits to the right of the decimal point. It cannot be
negative and cannot exceed the precision. The default is 0.

FLOAT(integer)
A single or double-precision floating-point number. If the specified length is in the range:

• 1 - 24, the number uses single precision
• 25 - 53, the number uses double-precision

Instead of FLOAT, you can specify:
REAL

For single precision floating-point.
DOUBLE

For double-precision floating-point.
DOUBLE PRECISION

For double-precision floating-point.
FLOAT

For double-precision floating-point.

DECFLOAT(precision-integer)
A decimal floating-point number. The precision integer specifies the total number of digits,
which can be either 16 or 34. The default is 34.

[CHARACTER | CHAR](integer [OCTETS | CODEUNITS32])
A fixed-length character string of the specified number of code units. This number can range
from 1 ‑ 255 OCTETS or from 1 - 63 CODEUNITS32. The default is 1.

[VARCHAR | CHARACTER VARYING | CHAR VARYING](integer [OCTETS | CODEUNITS32])
A varying-length character string with a maximum length of the specified number of code
units. This number can range from 1 ‑ 32672 OCTETS or from 1 - 8168 CODEUNITS32.

FOR BIT DATA
Specifies that the contents of the column are to be treated as bit (binary) data. During data
exchange with other systems, code page conversions are not performed. Comparisons are
done in binary, irrespective of the database collating sequence.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE
42613).

[CLOB | CHARACTER LARGE OBJECT | CHAR LARGE OBJECT](integer [K] [OCTETS |
CODEUNITS32])

A character large object string with a maximum length of the specified number of code units.
The default maximum length is 65,535 bytes.

If you want to multiply the length integer by 1024, specify a K (kilo) multiplier.

• Regardless of whether you use a K multiplier, the resulting length is limited by the
maximum length of a CLOB column in an external table, which is 65,535 OCTETS, 32,767
CODEUNITS16, or 16,383 CODEUNITS32. Note that 64K OCTETS and 16K CODEUNITS32
each exceed the maximum length by one, and so are not allowed.

• Any number of spaces (including zero spaces) are allowed between the data type and the
length specification or between the length integer and the K multiplier. For example, the
following specifications are all equivalent and valid:

CLOB(50K)
CLOB(50 K)
CLOB (50 K)

1100 IBM Db2 V11.5: SQL Reference

• The K multiplier can be specified in either uppercase or lowercase.

In a Unicode database, the default string units for a character string data type are determined
by the value of the NLS_STRING_UNITS global variable or string_units database configuration
parameter. In a non-Unicode database, the default string units for character string data types
are OCTETS.

OCTETS
Specifies that the units of the length attribute are bytes.

CODEUNITS32
Specifies that the units of the length attribute are Unicode UTF-32 code units, which
approximates counting in characters. This does not affect the underlying code page of the
data type. The actual length of a data value is determined by counting the UTF-32 code
units as if the data were converted to UTF-32. CODEUNITS32 can be specified only in a
Unicode database (SQLSTATE 560AA).

GRAPHIC(integer [CODEUNITS16 | CODEUNITS32])
A fixed-length graphic string of the specified length, which can range from 1 ‑ 127 double
bytes, 1 ‑ 127 CODEUNITS16, or 1 ‑ 63 CODEUNITS32. The default length is 1.

VARGRAPHIC(integer [CODEUNITS16 | CODEUNITS32])
A varying-length graphic string of the specified maximum length, which can range from
1 ‑ 16336 double bytes, 1 ‑ 16336 CODEUNITS16, or 1 ‑ 8168 CODEUNITS32.

DBCLOB(integer [K] [CODEUNITS16 | CODEUNITS32])
A character large object string of the specified maximum length in double bytes, Unicode
UTF-16 code units, or Unicode UTF-32 code units. The default maximum length is 32,767
double bytes.

If you want to multiply the length integer by 1024, specify a K (kilo) multiplier.

• Regardless of whether you use a K multiplier, the resulting length is limited by the maximum
length of a DBCLOB column in an external table, which is 32,767 CODEUNITS16 or 16,383
CODEUNITS32. Note that 32K CODEUNITS16 and 16K CODEUNITS32 each exceed the
maximum length by one, and so are not allowed.

• Any number of spaces (including zero spaces) are allowed between the data type and the
length specification or between the length integer and the K multiplier. For example, the
following specifications are all equivalent and valid:

DBCLOB(50K)
DBCLOB(50 K)
DBCLOB (50 K)

• The K multiplier can be specified in either uppercase or lowercase.

In a Unicode database, the default string units for a character string data type are determined
by the value of the NLS_STRING_UNITS global variable or string_units database configuration
parameter. In a non-Unicode database, the default string units for character string data types
is CODEUNITS16.

CODEUNITS16
Specifies that the units of the length attribute are Unicode UTF-16 code units, which is
the same as counting in double bytes. CODEUNITS16 can be specified only in a Unicode
database (SQLSTATE 560AA).

CODEUNITS32
Specifies that the units of the length attribute are Unicode UTF-32 code units. This does
not affect the underlying code page of the data type. The actual length of a data value is
determined by counting the UTF-32 code units as if the data were converted to UTF-32.
CODEUNITS32 can be specified only in a Unicode database (SQLSTATE 560AA).

[NATIONAL CHARACTER | NATIONAL CHAR | NCHAR](integer)
A fixed-length string of the specified length. The default length is 1.

Chapter 1. Structured Query Language (SQL) 1101

The NATIONAL CHARACTER type maps to either a fixed-length character or a fixed-length
graphic string, depending on the value of the nchar_mapping database configuration
parameter, which also defines the string units.

[NATIONAL CHARACTER VARYING | NATIONAL CHAR VARYING | NCHAR VARYING |
NVARCHAR](integer)

A varying-length string of the specified maximum length.

The NATIONAL CHARACTER VARYING type maps to either a varying-length character or
a varying-length graphic string, depending on the value of the nchar_mapping database
configuration parameter, which also defines the string units.

[NATIONAL CHARACTER LARGE OBJECT | NCHAR LARGE OBJECT | NCLOB](integer [K])
A large object string of the specified maximum length. The default maximum length is 16,383
double bytes.

This data type maps to either a character large object (CLOB) or a double-byte character
large object (DBCLOB), depending on the current value of the nchar_mapping database
configuration parameter, which also defines the string units. See the description of the CLOB
or DBCLOB parameter (whichever applies) for information about possible values for the length
integer and how to use a K (kilo) multiplier.

BINARY(integer)
A fixed-length binary string of the specified length, which must be in the range 1 ‑ 255 bytes.
The default length is 1.

[VARBINARY | BINARY VARYING](integer)
A varying-length binary string of the specified maximum length, which must be in the range
1 ‑ 32672 bytes.

[BLOB | BINARY LARGE OBJECT](integer [K])
A binary large object string with a maximum length of the specified number of code units. The
default maximum length is 65,535 bytes.

If you want to multiply the length integer by 1024, specify a K (kilo) multiplier.

• Regardless of whether you use a K multiplier, the resulting length is limited by the maximum
length of a BLOB column in an external table, which is 65,535 bytes. Note that 64K exceeds
the maximum length by one, and so is not allowed.

• Any number of spaces (including zero spaces) are allowed between the data type and the
length specification or between the length integer and the K multiplier. For example, the
following specifications are all equivalent and valid:

BLOB(50K)
BLOB(50 K)
BLOB (50 K)

• The K multiplier can be specified in either uppercase or lowercase.

DATE
A date.

TIME
A time.

TIMESTAMP(integer) or TIMESTAMP
A timestamp. The integer specifies the number of decimal places for fractions of seconds,
from 0 (seconds) to 12 (picoseconds). The default is 6 (microseconds).

BOOLEAN
A Boolean value.

LIKE table-name1 or view-name or nickname
Specifies that the columns of the table have the same name and description as the columns of the
specified table (table-name1), view (view-name), or nickname (nickname). The specified table, view,

1102 IBM Db2 V11.5: SQL Reference

or nickname must either exist in the catalog or must be a declared temporary table. A typed table or
typed view cannot be specified (SQLSTATE 428EC).

The use of LIKE is an implicit definition of n columns, where n is the number of columns in the
identified table (including implicitly hidden columns), view, or nickname. A column of the new table
that corresponds to an implicitly hidden column in the existing table will also be defined as implicitly
hidden. The implicit definition depends on what is specified after LIKE:

• If a table is specified, then the implicit definition includes the column name, data type, hidden
attribute, and nullability characteristic of each of the columns of that table. If EXCLUDING COLUMN
DEFAULTS is not specified, then the column default is also included.

• If a view is specified, then the implicit definition includes the column name, data type, and
nullability characteristic of each of the result columns of the fullselect defined in that view. The
data types of the view columns must be data types that are valid for columns of a table.

• If a nickname is specified, then the implicit definition includes the column name, data type, and
nullability characteristic of each column of that nickname.

• If a protected table is specified, the new table inherits the same security policy and protected
columns as the identified table.

• If a table is specified and if that table contains a row-begin column, row-end column, or transaction-
start-ID column, the corresponding column of the new table inherits only the data type of the source
column. The new column is not considered a generated column.

• If a table that includes a period is specified, the new table does not inherit the period definition.
• If a system-period temporal table is specified, the new table is not a system-period temporal table.
• If a random distribution table that uses the random by generation method is specified,

and if the new table that is being created does not share the same table distribution, the
RANDOM_DISTRIBUTION_KEY column that is used to generate the random distribution values is
not included.

Column default attributes can be included or excluded, based on the copy-attributes clauses.
The implicit definition does not include any other attributes of the specified table, view, or
nickname. Consequently, the new table does not have any primary key, unique constraints, foreign
key constraints, referential integrity constraints, triggers, indexes, ORGANIZE BY specification, or
PARTITIONING KEY specification.

When a table is identified in the LIKE clause and that table contains a ROW CHANGE TIMESTAMP
column, the corresponding column of the new table inherits only the data type of the ROW CHANGE
TIMESTAMP column. The new column is not considered to be a generated column.

If a table is specified, and if row or column level access control is activated for that table, it is not
inherited by the new table.

option
The following options control the loading of data to or retrieval of data from an external-table file. The
value of each option is a text string and is not case-sensitive.
BOOLSTYLE or BOOLEAN_STYLE

During a load operation, all Boolean values must use the same style. This option specifies the
Boolean style that is to be used:

• 1_0 (this is the default)
• T_F
• Y_N
• YES_NO
• TRUE_FALSE

CARDINALITY
Non-zero positive integer value to override the estimation of the expected number of returned
rows.

Chapter 1. Structured Query Language (SQL) 1103

CCSID
The coded character set identifier (CCSID) of the input data file. The value can be any valid integer
value from the CCSID specification. There is no default value. The CCSID and ENCODING options
are mutually exclusive when the value of the ENCODING option is UTF8, LATIN9, or INTERNAL.

Which styles are used for dates and times depends on whether a CCSID is specified:

• When a CCSID is specified, and when DATESTYLE, TIMESTYLE, DATEDELIM, or TIMEDELIM
are not specified, the values or defaults for DATE_FORMAT, TIME_FORMAT, and
TIMESTAMP_FORMAT are used.

• When a CCSID is not specified, and when TIMESTAMP_FORMAT, DATE_FORMAT or
TIME_FORMAT are not specified, the values or defaults for DATESTYLE, TIMESTYLE,
DATEDELIM, and TIMEDELIM are used.

COMPRESS
For a load operation or an unload operation, whether the data file data is compressed:
GZIP

The data file data is compressed by using the GZIP compression algorithm.
NO

The data file data is not compressed. This is the default.
LZ4

The data file data is compressed by using the LZ4 compression algorithm.
The COMPRESS option cannot be specified if the value of the REMOTESOURCE option is GZIP or
LZ4.

CRINSTRING
How to interpret an unescaped carriage-return (CR) or carriage-return line-feed (CRLF) character:
TRUE or ON

An unescaped CR character is interpreted as data, not as a record delimiter.
FALSE or OFF

An unescaped CR is interpreted as a record delimiter. This is the default.
Use fixed-length format for CRINSTRING only if the value of the CtrlChars option is set to
OFF.

CTRLCHARS
Whether to allow an ASCII value 1 - 31 in a CHAR or VARCHAR field. Any NULL, CR, or LF
characters must be escaped. Allowed values are:
TRUE or ON

An ASCII value 1 - 31 in a CHAR or VARCHAR field is allowed.
If fixed-length format is enabled, all unescaped characters are allowed.

FALSE or OFF
An ASCII value 1 - 31 in a CHAR or VARCHAR field is not allowed. This is the default.
If fixed-length format is enabled, unescaped characters cause an error.
Exceptions for fixed-length format:

• \t, \n
• \r if the CRinString option is set to ON

DATAOBJECT or FILE_NAME
The fully-qualified name of the file (or any medium that can be treated as a file) that is to contain
the external table to be created. This option is mandatory when the name of the file is not
specified immediately after the table name; otherwise, it is not allowed.

When both the REMOTESOURCE option is set to LOCAL (this is its default value) and the
extbl_strict_io configuration parameter is set to NO, the path to the external table file is
an absolute path and must be one of the paths specified by the extbl_location configuration
parameter. Otherwise, the path to the external table file is relative to the path that is specified

1104 IBM Db2 V11.5: SQL Reference

by the extbl_location configuration parameter followed by the authorization ID of the table
definer. For example, if extbl_location is set to /home/xyz and the authorization ID of the
table definer is user1, the path to the external table file is relative to /home/xyz/user1/.

The file name must be a valid UTF-8 string.
For a load operation, the following conditions apply:

• The file must already exist.
• Required permissions:

– If the external table is a named external table, the owner must have read permission for the
file and write permission for the LOGDIR directory.

– If the external table is a transient external table, the authorization ID of the statement must
have read permission for the file and write permission for the LOGDIR directory.

For an unload operation, the following conditions apply:

• If the file exists, it is overwritten.
• Required permissions:

– If the external table is a named external table, the owner must have read and write
permission for the directory of this file.

– If the external table is transient, the authorization ID of the statement must have read and
write permission for the directory of this file.

DATEDELIM
The delimiter character that separates the components of a date, according to the format
specified by the DATESTYLE option. If you specify an empty string, there is no delimiter
between the date components, and days and months must be specified as two-digit numbers.
When DATESTYLE is set to MONDY or MONDY2, the default DATEDELIM value is a space. The
TIMESTAMP_FORMAT and DATEDELIM options are mutually exclusive.

DATESTYLE
How to interpret the date format. For days or months in the range 1 ‑ 9, use 1 digit, 2 digits, or a
space followed by a single digit. When the DATEDELIM option is a space, you can specify a comma
after the day. An error occurs if you:

• Specify zero for a day, month, or year
• Specify a nonexistent date (for example, 32 August or 30 February)

The DATESTYLE option and the DATE_FORMAT or TIMESTAMP_FORMAT option are mutually
exclusive.

Table 131. Possible values for the DateStyle option. The example shows how the date 21 March
2014 would be represented when DATEDELIM is set to '-'.

Value Description Example

YMD 4-digit year, 2-digit month, 2-digit day. This is
the default.

2014-03-21

DMY 2-digit day, 2-digit month, 4-digit year. 21-03-2014

MDY 2-digit month, 2-digit day, 4-digit year. 03-21-2014

MONDY 3-character month, 2-digit day, 4-digit year. Mar 21 2014

DMONY 2-digit day, 3-character month, 4-digit year. 21-Mar-2014

Y2MD 2-digit year, 2-digit month, 2-digit day. Not
supported for unloads.

14-03-21

DMY2 2-digit day, 2-digit month, 2-digit year. Not
supported for unloads.

21-03-14

Chapter 1. Structured Query Language (SQL) 1105

Table 131. Possible values for the DateStyle option. The example shows how the date 21 March
2014 would be represented when DATEDELIM is set to '-'. (continued)

Value Description Example

MDY2 2-digit month, 2-digit day, 2-digit year. Not
supported for unloads.

03-21-14

MONDY2 3-character month, 2-digit day, 2-digit year.
Not supported for unloads.

Mar 21 14

DMONY2 2-digit day, 3-character month, 2-digit year.
Not supported for unloads.

21-Mar-14

DATETIMEDELIM
A single-byte character that separates the date component and time component of the timestamp
data type.
The default delimiter is a space (' ').
Between the date component and the time component, a delimiter is not required. For example,
both of the following values are valid:

2010-10-10 10:10:10
2010-10-1010:10:10

DATE_FORMAT
The format of the date field in the data file. The value can be any of the date format strings
that are accepted by the “TIMESTAMP_FORMAT ” on page 527. The default is YYYY-MM-DD. The
DATE_FORMAT option and the DATEDELIM or DATESTYLE option are mutually exclusive.

DECIMALDELIM or DECIMAL_CHARACTER
The decimal delimiter for the data types FLOAT, DOUBLE, TIME, and TIMESTAMP. Allowed values
are ',' and '.'.

DECPLUSBLANK
Specifies how the positive decimal value is represented during the unload operation.
You can specify one of the following values for this option:
NONE

This is the default.
This value represents a positive decimal value without a sign.

PLUS
Specifies that a positive decimal value is represented by a '+' sign.

BLANK
Specifies that a positive decimal value is represented by a blank sign instead of a '+' sign.

If you specify the DECPLUSBLANK option for the load operation, the output is not affected.
Examples for a table test with ddl (decimal (6,2)) and all the available values for the
DECPLUSBLANK option:

1234
-4563

• Create external table '/tmp/unload.txt' using (DECPLUSBLANK NONE) as select * from test:

unload.txt
1234.00
-4563.00

• Create external table '/tmp/unload.txt' using (DECPLUSBLANK PLUS) as select * from test:

1106 IBM Db2 V11.5: SQL Reference

unload.txt
+1234.00
-4563.00

• Create external table '/tmp/unload.txt' using (DECPLUSBLANK BLANK) as select * from test:

unload.txt
 1234.00
-4563.00

DELIMITER or COLUMN_DELIMITER
The character that is used to delimit the fields of an input or output record. The default is a vertical
bar ('|').

You can specify a character in the 7-bit ASCII range (decimal 1 ‑ 127) in any of the following ways:

• As a single character (for example DELIMITER ';')
• By specifying its corresponding ASCII decimal value (for example, DELIMITER 59 or
DELIMITER '59')

• By specifying its corresponding ASCII hex value (for example, DELIMITER x'3B')

The decimal range 128 - 255 is supported only with the ISO character set input file by specifying
its corresponding ASCII decimal value or hex value. If the input file is in the UTF8 character set,
this delimiter value range is not supported.

ENCODING
The type of data in the file:
UTF8

The file uses UTF8 encoding for all character data.
LATIN9

The file uses LATIN9 encoding for all character data.
INTERNAL

This is the default option.
The file uses a mixture of both UTF8 and LATIN9 encoding.
Files are encoded in Netezza internal format and therefore should be used only for files that
are extracted from Netezza by using ENCODING (INTERNAL).
When the target column is CODEUINTS32 (NCHAR/VARCHAR), the input data is validated to be
valid UTF-8 characters.
This option is supported only in a Unicode database.

DBCS_GRAPHIC
This value is allowed only for a load operation, not an unload operation. If this value is
specified, the CCSID option must also be specified. During the load operation, fields of type
GRAPHIC or VARGRAPHIC are encoded using the double-byte character set of the specified
CCSID; fields of all other types are encoded using the mixed-byte character set of the
specified CCSID.

Note: ENCODING cannot be set to DBCS_GRAPHIC for a DEL file that was created by the
EXPORT utility, because such DEL files are encoded using a single character set.

The CCSID and ENCODING options are mutually exclusive when the value of the ENCODING
option is UTF8, LATIN9, or INTERNAL.

ESCAPECHAR or ESCAPE_CHARACTER
Which character is to be regarded as an escape character. An escape character indicates that
the character that follows it, which would otherwise be treated as a field-delimiter character or
end-of-row sequence character, is instead treated as part of the value in the field. The escape
character is ignored for graphic-string data. There is no default.

Chapter 1. Structured Query Language (SQL) 1107

FILLRECORD
For a load operation, the field of a record are loaded into the columns of a target table from left
to right. This option specifies whether an input record can contain fewer fields than there are
columns defined for the target table:
TRUE or ON

An input line can contain fewer fields, provided that all columns for which a value is missing
are nullable. Missing values are set to NULL. If one or more columns for which a value is
missing is not nullable, the record is rejected.

FALSE or OFF
An input line that contains fewer columns is rejected. This is the default.

FORMAT or FILE_FORMAT
The data format of the source file:
TEXT

The data to be loaded or unloaded is in text-delimited format. This is the default.
INTERNAL

The data is in an internal format used by Netezza Platform Software (NPS). This value is valid
only when loading data from a file to the database, not when unloading data to a file. If this
value is specified for the FORMAT option, the following options, and only these options, must
also be specified:

• DATAOBJECT or FILE_NAME.
• REMOTESOURCE, SWIFT or S3. If the REMOTESOURCE option is specified, it must have the

value LOCAL or YES.

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 or later
releases, AZURE is compatible, in addition to SWIFT and S3.

• COMPRESS. This must be set to GZIP.

BINARY
The data is in an internal format that is used by Db2.

FIXED
The data is in fixed-length format.
Fixed-length format is supported only for load operations.
Files in fixed-length format use ordinal positions, which are offsets, to identify where fields are
within the record.

Note:

• The following external table options are not supported for the fixed-length format:

– Delimiter
– Encoding
– EscapeChar
– FillRecord
– IgnoreZero
– IncludeZeroSeconds
– Lfinstring
– QuotedValue
– RequireQuotes
– TimeExtraZeros
– TruncString

• There are no field delimiters.

1108 IBM Db2 V11.5: SQL Reference

• An end-of-record delimiter is required even for the last record.
• Usually, data in fixed-length format files does not have decimal delimiters or time delimiters

because delimiters are not necessary and use space.
• The locations of delimiters are fixed and specified in the layout definition because the fields

are fixed in size. This definition comes with the fixed-length format data file.
• To load fixed-format data into the database, you must define the target data type for the
fields and the locations within the record.

• You do not have to load all fields in a fixed-length format file. You can skip them by using the
filler specification.

• The order of fields in the data file must match the order in the target table. Alternatively,
you must create an external table definition that specifies the order of the fields as database
columns.

• You can change the field order by using an external table definition in combination with an
insert-select statement.

• Typically, unknown values or null values are represented by known data patterns that are
classified as representing null.

The following parameters apply when the FORMAT option of the external table is set to FIXED:
LAYOUT

Mandatory.
A layout is an ordered collection of zone or field definitions. It defines the location of the
fields of the input record.
Specify comma-separated zone definitions within braces { }.
Each zone definition is made up of mutually exclusive, non-overlapping clauses.
No default value.
The clauses must be in the following order, even if some of them are optional and can be
empty:
USE TYPE

Optional.
Indicates whether a zone is a normal data zone, a reference zone, or a filler zone.
For data zones, this value is omitted.
A reference zone is specified as REF. This specification implies that the zone is referred
by another zone for zone length or null values.
A filler zone is specified as FILLER. Filler zones specify that the bytes or characters
are treated as fillers in a data file.

NAME
Optional.
The name of the zone.
Currently, this definition is not used. Typically, it is provided to identify the field.

TYPE
Optional.
Defines the type of the zone.
If you do not specify the type, it gets the default value of the corresponding type of a
table column.
Valid values are as follows:

• CHAR
• VARCHAR
• NCHAR

Chapter 1. Structured Query Language (SQL) 1109

• NVARCHAR
• SMALLINT
• BIGINT
• BINARY
• VARBINARY
• GRAPHIC
• VARGRAPHIC
• FLOAT
• DOUBLE
• DEC, NUM, or NUMERIC
• DECFLOAT
• BOOLEAN
• DATE
• TIME
• TIMESTAMP

STYLE
Optional.
Defines the zone representation.
The default representation is based on zone type and format option.
All other styles are valid only for their corresponding non-textual zone types.
Valid values are as follows:

• INTERNAL

Valid only for textual zones, that is, char, varchar, nchar, and nvarchar.
• DECIMAL

Valid for integer and numeric zone types.
• DECIMALDELIM <'decimal-delim'>

Valid for numeric, float, double, and time style (time and timestamp) zone types.
• FLOATING

Valid for float or double zone types.
• EXPONENTIAL

Valid for float or double zone types.
• YMD <'date-delim'>

Valid for date zones, including other date styles that are supported for the DateStyle
and DateDelim external table options.

• 12Hour <'time-delim'>

Valid for time zones, including other time styles that are supported for the TimeStyle
and TimeDelim external table options.

• 24Hour <'time-delim'>

Valid for time zones, including other time styles that are supported for the TimeStyle
and TimeDelim external table options.

• YMD <'date-delim'> 24Hour <'time-delim'>

1110 IBM Db2 V11.5: SQL Reference

Valid for timestamp zones, including other combinations of date and time styles that
are supported for the DateStyle, DateDelim, TimeStyle, and TimeDelim external table
options.

• TRUE_FALSE, Y_N, 1_0

Valid for boolean zones, including other boolean styles that are supported for the
BoolStyle external table option. The style must be in accordance with the format.

LENGTH
Optional.
Specified as bytes or characters followed by the number or the internal reference to
the reference zone.
Number of bytes or characters as provided or as referenced by the reference zone.
For reference zones or filler zones, you cannot use internal references. For reference
zones, the number of bytes specifies how the data is read from the data file to get the
referred value.
You can use plus signs and minus signs as follows:

BYTES @2 + 10
BYTES @2 - 10

NULLIF
Optional.
Definition of the zone NULLESS attribute.
Specifies a known data pattern within the field that, when it is present, signifies that
the field is null.
The length is equal to or less than the column width. The maximum length is 39 bytes.
You can use the following types of references:
@

Internal reference to numeric zones.
Exact match of the numeric value.

&
External reference.
Exact match of the specified value.

&&
Isolated reference.
Leading spaces and trailing spaces are to be skipped with the exact string match.

Nulls are detailed in the following examples:

Table 132. Layout example

Use type Name Type Style Length Nullif

NA f1 int4 DECIMAL Bytes 10 Nullif & = 0

NA f2 date YMD Bytes 10 Nullif &=
'2000-10-1
0'

NA f3 char(20) INTERNAL Chars 10 Nullif
&&='ab'

Filler f4 char(10) NA Bytes 10 NA

Remember:

• The referred zone in a length clause must be of type integer.

Chapter 1. Structured Query Language (SQL) 1111

• You must not specify the NULLIF option for reference zones or filler zones.
• Reference zones and filler zones cannot have variable lengths.
• Variable length zones cannot refer themselves.
• Define the referred zone in a length clause as REF.
• Length-clause references can use only the INTERNAL (@) reference. External or isolated

references are not supported.
• Between the referred zone of a length clause and the zone itself, reference zones are not

allowed.
• If the reference type is INTERNAL (@), the NULLIF clause cannot refer to itself.
• If the column is non-nullable, it may not have the NULLIF clause.
• Variable length is allowed only for the string type of zones.
• The NULLIF clause can refer only to REF zones or the zones themselves.
• Between the zone that is referred by the NULLIF clause and the zone itself, other

referred zones are not allowed, except for the zone that is referred in the length clause.
• The record length can point to zone 1 only for reference.
• A REF must have a zone that refers it.
• The NULLIF clause can have external references only if the REF zone is non-integer.

Recordlength
Specifies the length of the entire record, where null-indicator bytes are included if they
exist, and the record delimiter is excluded if it exists.
The value is a constant integer.
The value can also be an internal reference to the reference zone in the layout definition.
There is no default value.
You can use plus signs and minus signs for an internal reference as follows:

RECORDLENGTH @1 + 10
RECORDLENGTH @1 - 10

IGNOREZERO or TRIM_NULLS
Specifies whether the binary value zero in CHAR fields and VARCHAR fields is to be discarded.
TRUE or ON

The byte value zero is ignored.
FALSE or OFF

The byte value zero is not ignored. This is the default.
KEEP

The binary value zero is accepted and allowed as part of the input field.
INCLUDEHEADER or COLUMN_NAMES

For an unload operation, whether the table column names are to be included as headers in the
external-table file:
TRUE or ON

The table column names are to be included as headers.
FALSE or OFF

The table column names are not to be included as headers. This is the default.
INCLUDEZEROSECONDS

For an unload operation, whether to specify 00 as the value for seconds when no value for
seconds is available:
TRUE or ON

Specify 00 as the value for seconds.

1112 IBM Db2 V11.5: SQL Reference

FALSE or OFF
Do not specify a value for seconds. This is the default.

INCLUDEHIDDEN
For a load operation, specify whether hidden column values are present in a data file.

The INCLUDEHIDDEN option works when you are creating an external table by using the LIKE or
SAMEAS clause, and base table has hidden columns.

TRUE
A data file contains values against hidden column.

FALSE
A data file does not contain values against hidden column. This is the default. You can change
the default value by using the registry variable DB2_EXTBL_INCLUDE_HIDDEN_COLS.

LFINSTRING
Specifies how to interpret an unescaped line-feed (sometimes called an LF or newline) character
within string data:
TRUE or ON

An unescaped LF character is interpreted as a record delimiter only if it is in the last field of
a record; otherwise, it is treated as data. To cause an LF character that is in the last field of
a record to be treated as data, enclose the value of that field in single or double quotation
marks.

FALSE or OFF
An unescaped LF character is interpreted as a record delimiter regardless of its position. This
is the default.

This option is not supported for unload operations.

Attention: This SQL compatibility enhancement is only available in Db2 Version 11.5 Mod
Pack 2 and later versions.

LOGDIR or ERROR_LOG
The directory to which the following files are written:
<database>.<schema>.<external-table-name>.<file-name>.<application-handle>.<id>.bad

A file containing rejected records (that is, records that could not be processed).
<database>.<schema>.<external-table-name>.<file-name>.<application-handle>.<id>.log

A log file.
The default is the directory to which the external-table file is written. If the length of the name
that is constructed for a .bad or .log file would exceed the allowed maximum, the name of the file
that contains the external table (indicated by <file-name>) is truncated so that the maximum is
not exceeded.

If a .log or .bad file is generated while carrying out an operation on a partition, the name of the
generated file is suffixed with a period followed by the 3-digit partition number.

MAXERRORS or MAX_ERRORS
For a load operation, the threshold for the number of rejected records at which the system stops
processing and immediately rolls back the load. The default is 1 (that is, a single rejected record
results in a rollback).
For fixed-length format, the following conditions apply:

• The parser reports errors for each field or zone rather than one error for the row.
• Multiple errors can be reported for the same row.
• When the parser detects an error in a field or zone, it recovers by using the field length or zone

length. It then continues from the next field or zone until the end of record is reached, or an
unrecoverable error occurs, or the MaxErrors limit is reached.

• Unrecoverable errors include the following errors:

– RecordLength mismatch.

Chapter 1. Structured Query Language (SQL) 1113

– RecordDelimiter is not found.
– The RecordLength value is not valid, that is, the value is a negative value or zero.
– The zone length is not valid, that is, the value is a negative value.
– The UTF-8 initial byte is not valid.
– The UTF-8 continuation bytes are not valid.

MULTIPARTSIZEMB

When the DB2_ENABLE_COS_SDK registry variable is set to ON, Db2 remote storage
communication with cloud object storage is facilitated through an embedded vendor COS SDK
which allows Db2 to stream objects/files to cloud object storage in multiple parts (aka ‘multipart
upload’). This parameter specifies the part size for multipart upload, in megabytes (MB), for
the file being unloaded, and overrides the value specified in the MULTIPARTSIZEMB dbm config
parameter. This option is available starting in Version 11.5 Modification Pack 7, in Linux (x86)
environments only.

MAXROWS or MAX_ROWS
If set to a positive integer, this specifies the maximum number of records (rows) in the external
table that are to be processed. If set to 0 (the default), there is no limit and all rows are processed.
During a load operation, if MAXROWS is set to a positive value, after that number of rows are
processed, regardless of whether some of the rows were rejected or skipped, the system ends the
load operation and commits all inserted records.

MERIDIANDELIM
A single-byte character that separates the seconds component from the AM token or PM token in
the 12-hour delimited and undelimited formats of a time value.
The default delimiter is a space (' ').
Between the seconds component and the AM token or PM token, a delimiter is not required. For
example, both of the following values are valid:

1:02:46.12345 AM
1:02:46.12345AM

NOLOG
Specifies whether the .log file for the external table is created.
This option does not apply to .bad files.
Possible values are:
TRUE

No .log file is created.
FALSE

The .log file is created.
This is the default.

NULLVALUE or NULL_VALUE
The UTF-8 string of at most 4 bytes that is to be used to indicate a null value. The default is
'NULL'.

PARTITION
If the Database Partitioning Feature (DPF) is enabled for the database, an external table can
be partitioned into several files. The name of each of the data files that comprise an external
table are suffixed with a period followed by a 3-digit number from 000 to 999 that indicates the
number of the partition. For example, if an external table with the name dataFile.txt is divided
into three partitions, the files that comprise it have the names dataFile.txt.000, dataFile.txt.001,
and dataFile.txt.002. These files must be accessible from all members.

For a partitioned external table, the PARTITION option specifies to which partition or partitions the
statement applies:

1114 IBM Db2 V11.5: SQL Reference

https://www.ibm.com/docs/en/db2/11.5?topic=variables-miscellaneous#M_DB2_ENABLE_COS_SDK
https://www.ibm.com/docs/en/db2/11.5?topic=commands-catalog-storage-access
https://www.ibm.com/docs/en/db2/11.5?topic=parameters-multipartsizemb-remote-storage-multipart-upload-part-size

PARTITION ALL
The statement applies to all of the partitions that comprise the external table. For an unload
operation, this is the only value that is allowed.

PARTITION (n TO n)
The statement applies to all of the partitions in the specified range, for example,
PARTITION (54 TO 62).

PARTITION (n,n,…)
The statement applies only to the specified partition or partitions, for example,
PARTITION (53) or PARTITION (51,57,58). If more than one partition number is specified,
they must be in ascending order (sqlcode SQL0263N with SQLSTATE=42615) and there can be
no duplicates (sqlcode SQL0265N with SQLSTATE=42615).

If a .log or .bad file is generated while carrying out an operation on a partitioned external table, the
name of the generated file is suffixed with a period followed by the 3-digit partition number.

If the DPF is enabled and the PARTITION option is not specified, the external table is treated
as single-partitioned table on the coordinator member. The names of the external table file and
the .log and .bad files are not suffixed with a partition number.

If the DPF is not enabled, the PARTITION option can be specified, but only with the value ALL, (0
to 0), or (0) (SQL0644N). It will have no effect.

The REMOTESOURCE and PARTITION options are mutually exclusive.

QUOTEDNULL
For a load operation, how to interpret a value that is enclosed in single or double quotation marks
and that matches the null value specified by the NULLVALUE or NULL_VALUE option (for example,
"NULL" or 'NULL'):
TRUE or ON

The value is interpreted as a null value. This is the default.
FALSE or OFF

The value is interpreted as a character string.
QUOTEDVALUE or STRING_DELIMITER

Whether data values are enclosed in quotation marks:
SINGLE or YES

Data values are enclosed in single quotation marks (').
DOUBLE

Data values are enclosed in double quotation marks (").
NO

Data values are not enclosed in quotation marks. This is the default.
RECORDDELIM or RECORD_DELIMITER

The string literal that is to be interpreted as a row (record) delimiter. The default is '\n'.

When CRINSTRING is set to TRUE, RECORDDELIM cannot contain a CR ('\r') character - with the
sole exception of a CRLF ('\r\n') delimiter allowed with CRINSTRING for text format only.

REMOTESOURCE
Where the external-table file resides and, if it resides on a remote system, whether the file data is
to be compressed:
LOCAL

The file resides on the local server, that is, the system that hosts the database. This is the
default.

YES
The file resides on a system other than the local server. For example, specify YES if a client
system is connected to the database and the file resides on that system. File data is not
compressed before it is transferred.

Chapter 1. Structured Query Language (SQL) 1115

GZIP
Similar to YES, except that the file data is compressed using the GZIP compression algorithm
before the data is transferred, and is decompressed after it is received. This improves overall
performance when a large amount of compressible data is being transferred.

LZ4
Similar to YES, except that the file data is compressed using the LZ4 compression algorithm
before the data is transferred, and is decompressed after it is received. This improves overall
performance when a large amount of compressible data is being transferred.

The REMOTESOURCE, SWIFT, and S3 options are mutually exclusive.

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 or later versions,
AZURE is compatible and its options are mutually exclusive with REMOTESOURCE, SWIFT,
and S3.

The REMOTESOURCE and PARTITION options are mutually exclusive. The COMPRESS option
cannot be specified if the value of the REMOTESOURCE option is GZIP or LZ4.

REQUIREQUOTES
Whether quotation marks are mandatory:
TRUE or ON

Quotation marks are mandatory. The QUOTEDVALUE option must be set to YES, SINGLE, or
DOUBLE.

FALSE or OFF
Quotation marks are not mandatory. This is the default.

SKIPROWS or SKIP_ROWS
For a load operation, the number of rows to skip before beginning to load the data. The default is
0. Because skipped rows are processed before they are skipped, a skipped row is still capable of
causing a processing error.

SOCKETBUFSIZE
The size, in bytes, of the chunks of data that are read from the source file. Valid values range from
64 KB ‑ 800 MB. If you specify a value outside this range, the value is set to the nearest valid
value. The default is 8 MB.

STRICTNUMERIC
For a load operation, how to treat a value that is to be inserted into a DECIMAL field when its scale
exceeds that defined for the field:
TRUE or ON

The row containing the value to be inserted is rejected. For example, if any of the following
values were to be loaded into a DECIMAL(5,3) field, the row containing that value would be
rejected:

12.666666666
-98.34496862785
0.00089

FALSE or OFF
The row containing the value to be inserted is accepted, and the portion of the decimal
fraction that exceeds the scale defined for the field is truncated. This is the default. For
example, the values in the previous example would be converted to:

12.666
-98.344
0.000

SWIFT
Specifies that the source data file is located in a Swift object store. The REMOTESOURCE, SWIFT,
and S3 options are mutually exclusive. Use the DATAOBJECT option to specify the file name.

1116 IBM Db2 V11.5: SQL Reference

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 or later versions,
AZURE is compatible and its options are mutually exclusive with REMOTESOURCE, SWIFT,
and S3.

Syntax:

SWIFT (endpoint, authKey1, authKey2, bucket)

where:
endpoint

A character string that specifies the URL of the SWIFT web service.
authKey1

A character string that specifies the access ID or username of the Swift open stack account
used to validate the user.

authKey2
A character string that specifies the password of the Swift open stack account used to validate
the user.

bucket
The name of the Swift open stack container (bucket) in which the file resides.

Example:

CREATE EXTERNAL TABLE exttab1(a int) using
 (dataobject 'datafile1.dat'
 swift('https://dal05.objectstorage.softlayer.net/auth/v1.0/',
 'XXXOS123456-2:xxx123456',
 'b207c6e974020737d92174esdf6d5be9382aa4c335945a14eaa9172c70f8df16',
 'my_dev'
)
)

S3
Specifies that the source data file is located in an S3 compatible object store. The
REMOTESOURCE, SWIFT, and S3 options are mutually exclusive. Use the DATAOBJECT option
to specify the file name.

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 or later versions,
AZURE is compatible and its options are mutually exclusive with REMOTESOURCE, SWIFT,
and S3.

Syntax:

S3 (endpoint, authKey1, authKey2, bucket)

where:
endpoint

A character string that specifies the URL of the S3 compatible web service.
authKey1

A character string that specifies the S3 access key ID of the access keys used to validate the
user and all user actions. For IBM Cloud Object Storage, this is the access key ID from the
HMAC credentials.

authKey2
A character string that specifies the S3 secret key of the access keys that are used to validate
the user and all user actions. For IBM Cloud Object Storage, this is the secret access key from
the HMAC credentials.

bucket
The name of the S3 bucket in which the file resides.

Note: For IBM Cloud Object Storage, to create HMAC credentials, when creating new service
credentials, specify {"HMAC:true} in the Add Inline Configuration Parameters field.

Chapter 1. Structured Query Language (SQL) 1117

Example using AWS S3:

CREATE EXTERNAL TABLE exttab2(a int) using
 (dataobject 'datafile2.dat'
 s3('s3.amazonaws.com',
 'XXXOS123456-2:xxx123456',
 'bs07c6e974040737d92174e5e96d5be9382aa4c33xxx5a14eaa9172c70f8df16',
 'my_dev'
)
)

Example using IBM Cloud Object Storage:

CREATE EXTERNAL TABLE exttab2(a int) using
 (dataobject 'datafile2.dat'
 s3('s3-api.us-geo.objectstorage.softlayer.net',
 '1a2bkXXXsaddntLo0xX0',
 'XXxxiEPjJ7T7WBUz74E6abcdABCDE8Q7RgU4gYY9',
 'my_dev'
)
)

AZURE

Attention: This feature is available in the container-only release of Db2 Version 11.5 Mod
Pack 1 or later versions.

Specifies that the source data file is located in Microsoft Azure Blob Storage. The
REMOTESOURCE, SWIFT, S3, and AZURE options are mutually exclusive. Use the DATAOBJECT
option to specify the file name. Syntax:

Syntax:

AZURE (endpoint, authKey1, authKey2, bucket)

where:
endpoint

A character string that specifies the URL of the AZURE web service.
authKey1

A character string that specifies the access ID or username of the Azure Blob Storage account
used to validate the user.

authKey2
A character string that specifies the access key of the Azure Blob Storage account used to
validate the user.

bucket
The name of the Azure Blob Storage container (bucket) in which the file resides.

Example:

CREATE EXTERNAL TABLE exttab1(a int) using
 (dataobject 'datafile1.dat'
 azure('https://my_account.blob.core.windows.net',
 'my_account',
 'lW+oHjmZecPS++IKgThAHlMUOaFUA5C6Z2RlFmc9JPpK34RO/ZIOywzILxJnzGPHz6d/
yDrcQDAwH5wySbOZMQ==',
 'my_bucket'
)
)

Example using IBM Cloud Object Storage:

CREATE EXTERNAL TABLE exttab2(a int) using
 (dataobject 'datafile2.dat'
 s3('s3-api.us-geo.objectstorage.softlayer.net',
 '1a2bkXXXsaddntLo0xX0',
 'XXxxiEPjJ7T7WBUz74E6abcdABCDE8Q7RgU4gYY9',
 'my_dev'

1118 IBM Db2 V11.5: SQL Reference

)
)

TIMEDELIM
The single-byte character that is to separate time components (hours, minutes, and seconds). The
default is ':'. If TIMEDELIM is set to an empty string, hours, minutes, and seconds must all be
specified as two-digit numbers. The TIMESTAMP_FORMAT and TIMEDELIM options are mutually
exclusive.

TIMEROUNDNANOS or TIMEEXTRAZEROS

Note: This option applies only to TIMESTAMP columns.

Specifies whether records that contain time values whose non-zero precision exceeds six decimal
places are to be accepted (and rounded to the nearest microsecond) or rejected:
TRUE

All records are accepted. Their time values are rounded to the nearest microsecond.
FALSE

Only those records that can be stored without a loss of precision (for example, '08.15.32.123'
or '08.15.32.12345600000', but not '08.15.32.1234567') are accepted. All other records are
rejected. This is the default.

TIMESTYLE
The time format that is to be used in the data file:
24HOUR

24-hour format, for example 23:55. This is the default.
12HOUR

12-hour format, for example 11:55 PM. An AM or PM token can be preceded by a single space
and is not case-sensitive.

The TIMESTYLE option and the TIME_FORMAT or TIMESTAMP_FORMAT option are mutually
exclusive.

TIMESTAMP_FORMAT
The format of the timestamp field in the data file. The value can be any of the format strings
that are accepted by the “TIMESTAMP_FORMAT ” on page 527. The default is 'YYYY-MM-DD
HH.MI.SS'. The TIMESTAMP_FORMAT option and the TIMEDELIM, DATEDELIM, TIMESTYLE, or
DATESTYLE option are mutually exclusive.

TIME_FORMAT
The format of the time field in the data file. The value can be any of the time format strings
that are accepted by the “TIMESTAMP_FORMAT ” on page 527. The default is HH.MI.SS. The
TIME_FORMAT option and a TIMEDELIM or TIMESTYLE option are mutually exclusive.

TRIMBLANKS
How an external table is to treat leading or trailing blanks (that is, leading or trailing space
characters) in a string:
LEADING

All leading blanks (that is, blanks that precede the first non-blank character) are removed.
TRAILING

All trailing blanks (that is, blanks that follow the last non-blank character) are removed.
BOTH

All leading and trailing blanks are removed.
NONE

No blanks are removed. This is the default.
When reading data from a file and loading it into an external table:

• If QUOTEDVALUE or STRING_DELIMITER is specified with the values SINGLE, YES, or DOUBLE,
leading and trailing blanks within quotation marks are not removed.

Chapter 1. Structured Query Language (SQL) 1119

• For CHAR and NCHAR data, the values TRAILING or BOTH will not have any effect on trailing
blanks, because the string will automatically be re-padded with trailing blanks.

TRUNCSTRING or TRUNCATE_STRING
How the system processes a CHAR or VARCHAR string that exceeds its declared storage size:
TRUE

The system truncates a string value that exceeds its declared storage size.
FALSE

The system returns an error when a string value exceeds its declared storage size. This is the
default.

Y2BASE
The year that is the beginning of the 100-year range. Years that are specified as 2 digits are
counted from this year. The default is 2000. This option must be specified when DATESTYLE is set
to Y2MD, MDY2, DMY2, MONDY2 or DMONY2.

Table 133. Options

Option Default Applies to
Load

Applies to
Unload

Azure

Attention: This option only
applies to the container-only
release of Db2 Version 11.5 Mod
Pack 1 or later versions.

(no default) Y Y

BOOLSTYLE or BOOLEAN_STYLE 1_0 Y Y

CARDINALITY (no default) Y Y

CCSID (no default) Y Y

COMPRESS NO Y Y

CRINSTRING FALSE Y Y

CTRLCHARS FALSE Y N

DATAOBJECT or FILE_NAME (no default) Y Y

DATEDELIM '-' Y Y

DATETIMEDELIM A space (' ') Y Y

DATESTYLE YMD Y Y

DATE_FORMAT YYYY-MM-DD Y Y

DECIMALDELIM or
DECIMAL_CHARACTER

'.' Y Y

DELIMITER '|' Y Y

ENCODING INTERNAL Y Y1

ESCAPECHAR or ESCAPE_CHARACTER (no default) Y Y

FILLRECORD FALSE Y N

FORMAT or FILE_FORMAT TEXT Y Y

IGNOREZERO or TRIM_NULLS FALSE Y N

INCLUDEHEADER or COLUMN_NAMES FALSE N Y

1120 IBM Db2 V11.5: SQL Reference

Table 133. Options (continued)

Option Default Applies to
Load

Applies to
Unload

INCLUDEZEROSECONDS FALSE Y Y

INCLUDEHIDDEN FALSE Y N

LFINSTRING FALSE Y N

LOGDIR or ERROR_LOG target directory of
external-table file

Y N

MULTIPARTSIZEMB value specified by
the MULTIPARTSIZEMB
dbm config parameter.

Y N

MAXERRORS or MAX_ERRORS 1 Y N

MAXROWS or MAX_ROWS 0 Y N

MERIDIANDELIM A space (' ') Y Y

NOLOG FALSE Y Y

NULLVALUE or NULL_VALUE 'NULL' Y Y

PARTITION (no default) Y Y

QUOTEDNULL TRUE Y N

QUOTEDVALUE NO Y N

RECORDDELIM or RECORD_DELIMITER '\n' Y N

REMOTESOURCE LOCAL Y Y

REQUIREQUOTES FALSE Y N

SKIPROWS or SKIP_ROWS 0 Y N

SOCKETBUFSIZE 8 MB Y Y

STRICTNUMERIC FALSE Y N

SWIFT (no default) Y Y

S3 (no default) Y Y

TIMEDELIM ':' Y Y

TIMEROUNDNANOS or
TIMEEXTRAZEROS

FALSE Y N

TIMESTAMP_FORMAT 'YYYY-MM-DD
HH.MI.SS'

Y Y

TIMESTYLE 24HOUR Y Y

TIME_FORMAT HH.MI.SS Y Y

TRIMBLANKS NONE Y Y

TRUNCSTRING or TRUNCATE_STRING FALSE Y N

Y2BASE 2000 Y N
1 Only for the values INTERNAL, UTF8, and LATIN9.

Chapter 1. Structured Query Language (SQL) 1121

https://www.ibm.com/docs/en/db2/11.5?topic=parameters-multipartsizemb-remote-storage-multipart-upload-part-size

AS SELECT STATEMENT
Specifies that, for each column in the derived result table of the fullselect, a corresponding column is
to be defined for the table and populated with the results of the query. Each defined column adopts
the following attributes from its corresponding column of the result table (if applicable to the data
type):

• Column name
• Column description
• Data type, length, precision, and scale
• Nullability

Notes
• Records that cannot be processed (if any) are written to a file with a name of the form:

<database>.<schema>.<external-table-name>.<file-name>.<application-handle>.<id>.bad

Errors are logged in a file with a name of the form:

<database>.<schema>.<external-table-name>.<file-name>.<application-handle>.<id>.log

These files are located in the directory specified by the LOGDIR or ERROR_LOG option.

For an operation on a partition, the name of the generated .bad or .log file is suffixed with a period
followed by the 3-digit partition number.

• To create, insert into, or drop a named external table, issue a CREATE, INSERT, or DROP statement. You
cannot insert into or drop a transient external table.

• Dropping an external table deletes the table definition but does not delete the data file that is
associated with the table.

Restrictions
• Remote external table restrictions:

– It is not allowed within routines
– It is not allowed with the use of LOAD CURSOR
– For remote external tables (that is, for external tables are not located in a Swift or S3 object store and

for which the REMOTESOURCE option is set to a value other than LOCAL):

Attention: In the container-only release of Db2 Version 11.5 Mod Pack 1 or later versions,
AZURE is compatible, with the same remote external table restriction.

Note: A single query or subquery cannot select from more than one external table at a time, and
cannot reference the same external table more than once. If necessary, combine data from several
external tables into a single table and use that table in the query.

In addition, a union operation cannot involve more than one external table.
• External tables can be queried only by a user ID defined within the operating system.
• External tables cannot be used by a Db2 instance running on a Windows system.
• Data being loaded must be properly formatted.
• You cannot delete, truncate, or update an external table.

Syntax alternatives
The following alternatives are non-standard. They are supported for compatibility with earlier product
versions or with other database products.

• SAMEAS can be used in place of LIKE.

1122 IBM Db2 V11.5: SQL Reference

• For the REMOTESOURCE option, the values ODBC, JDBC, or OLE-DB can be specified in place of YES.
• If the FORMAT option is set to INTERNAL, the value YES can be specified in place of GZIP for the

COMPRESS option.

Examples

• Unload data to an external table:

CREATE EXTERNAL TABLE 'order.tbl' USING (DELIMITER '|') AS SELECT * from orders;

CREATE EXTERNAL TABLE 'export.csv' USING (DELIMITER ',') AS SELECT foo.x, bar.y, bar.dt FROM
foo, bar WHERE foo.x = bar.x;

• Load data from an external table:

INSERT INTO target SELECT * FROM EXTERNAL 'data.txt' USING (DELIMITER '|');

INSERT INTO orders SELECT * FROM EXTERNAL 'order.tbl'(order_num INT, order_dt TIMESTAMP)
USING (DELIMITER '|');

• Select data from an external table:

SELECT * FROM EXTERNAL 'order.tbl' (order_num INT, order_dt TIMESTAMP) USING (DELIMITER '|');

SELECT * FROM EXTERNAL 'test.txt' LIKE test_table USING (DELIMITER ',');

SELECT x, y AS dt FROM EXTERNAL 'test.txt' (x integer, y decimal(18,4)) USING (DELIMITER
',');

CREATE FUNCTION
The CREATE FUNCTION statement is used to register or define a user-defined function or function
template at the current server.

There are five different types of functions that can be created using this statement. Each of these is
described separately.

• External Scalar. The function is written in a programming language and returns a scalar value. The
external executable is registered in the database, along with various attributes of the function.

• External Table. The function is written in a programming language and returns a complete table. The
external executable is registered in the database along with various attributes of the function.

• OLE DB External Table. A user-defined OLE DB external table function is registered in the database to
access data from an OLE DB provider.

• Sourced or Template. A source function is implemented by invoking another function (either built-in,
external, SQL, or source) that is already registered in the database.

It is possible to create a partial function, called a function template, which defines what types of values
are to be returned, but which contains no executable code. The user maps it to a data source function
within a federated system, so that the data source function can be invoked from a federated database.
A function template can be registered only with an application server that is designated as a federated
server.

• SQL Scalar, Table or Row. The function body is written in SQL and defined together with the registration
in the database. It returns a scalar value, a table, or a single row.

• Aggregate interface. A aggregate interface function is implemented by invoking several external
procedures and an external function which are referred to as component routines.

The CREATE FUNCTION statement can be submitted in obfuscated form. In an obfuscated statement,
only the function name and its parameters are readable. The rest of the statement is encoded in such

Chapter 1. Structured Query Language (SQL) 1123

a way that is not readable but can be decoded by the database server. Obfuscated statements can be
produced by calling the DBMS_DDL.WRAP function.

CREATE FUNCTION (aggregate interface)
The CREATE FUNCTION (aggregate interface) statement is used to register a user-defined aggregate
function at the current server.

An aggregate function returns a single value that is the result of an evaluation of a set of like values, such
as those in a column within a set of rows.

Invocation
This statement can be embedded in an application program or issued in dynamic SQL statements. It is an
executable statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect
for the package (SQLSTATE 42509).

Authorization
The privileges that are held by the authorization ID of the statement must include at least one of the
following authorities:

• IMPLICIT_SCHEMA authority on the database, if the schema name of the function does not refer to an
existing schema

• CREATEIN privilege on the schema, if the schema name of the function refers to an existing schema
• DBADM authority

The privileges that are held by the authorization ID of the statement must also include EXECUTE privilege
on the following routines, if the authorization ID of the statement does not have DATAACCESS authority:

• INITIATE
• ACCUMULATE
• MERGE
• FINALIZE

Group privileges, except for PUBLIC, are not considered on any dependent object specified in the CREATE
FUNCTION statement.

To replace an existing function, the authorization ID of the statement must be the owner of the existing
function (SQLSTATE 42501).

If the SECURED option is specified, the authorization ID of the statement must include SECADM or
CREATE_SECURE_OBJECT authority (SQLSTATE 42501).

1124 IBM Db2 V11.5: SQL Reference

Syntax
CREATE

OR REPLACE

FUNCTION function-name (

,

parameter-declaration

) ● RETURNS

data-type2

data-type3 CAST FROM data-type4

option-list ● AGGREGATE

WITH (

,

state-variable-declaration) USING

IN MODULE module-name

INITIALIZE procedure-designator

ACCUMULATE procedure-designator MERGE procedure-designator FINALIZE

function-designator ●

parameter-declaration

IN
parameter-name

data-type1

default-clause

data-type1, data-type2, data-type3, data-type4, data-type5
built-in-type

built-in-type

Chapter 1. Structured Query Language (SQL) 1125

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

SYSPROC.
DB2SECURITYLABEL

2 3

default-clause

1126 IBM Db2 V11.5: SQL Reference

DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list

●

SPECIFIC specific-name

●
NOT DETERMINISTIC

DETERMINISTIC

●

CALLED ON NULL INPUT
●

EXTERNAL ACTION

NO EXTERNAL ACTION

●

NO SCRATCHPAD
●

NO FINAL CALL
●

ALLOW PARALLEL

●
NOT SECURED

SECURED

state-variable-declaration

state-variable-name

data-type5

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

function-designator
FUNCTION function-name

(
,

data-type

)

SPECIFIC FUNCTION specific-name

Notes:
1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).
2 DB2SECURITYLABEL is the built-in distinct type that must be used to define the row security label
column of a protected table.
3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is implicit and cannot be
explicitly specified (SQLSTATE 42842). The default value for a column of type DB2SECURITYLABEL is
the session authorization ID's security label for write access.

Chapter 1. Structured Query Language (SQL) 1127

Description
OR REPLACE

Specifies to replace the definition for the function if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the function are not affected. This option can be
specified only by the owner of the object. This option is ignored if a definition for the function does
not exist at the current server. An existing function can be replaced if either of the following conditions
apply:

• The specific name and function name of the new definition must be the same as the specific name
and function name of the old definition

• The signature of the new definition must match the signature of the old definition

Otherwise, a new function is created.

If the function is referenced in the definition of a row permission or a column mask, the function
cannot be replaced (SQLSTATE 42893).

function-name
Names the function that is being defined. It is a qualified or unqualified name that designates a
function. The unqualified form of function-name is an SQL identifier. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period and an SQL identifier. The
qualified name must not be the same as the data type of the first parameter, if that first parameter is a
structured type.

The function signature must not identify a function or method described in the catalog (SQLSTATE
42723). When the name is being assessed, the number of parameters and the data type of each
parameter (without regard for any length, precision or scale attributes of the data type) is considered.
The unqualified name, together with the number and data types of the parameters, must be unique
within its schema. However, the name does not need to be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with "SYS" (SQLSTATE 42939).

A number of names that are used as keywords in predicates are reserved for system use, and cannot
be used as a function-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR,
BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison
operators.

In general, the same name can be used for more than one function if the function signatures are
different.

Although it is not prohibited, do not give an aggregate interface function the same name as a built-in
function, unless it is an intentional override. Examples of such functions are MAX, MIN, and AVG.
Creating a user-defined function that has different behavior, yet the same name, and consistent
arguments as a built-in scalar or aggregate function, can lead to problems. Examples include:

• Problems in dynamic SQL statements
• Static SQL applications can fail when they are rebound
• Applications might appear to run successfully but provide a different result

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the mode, name, data
type, and optional default value of each parameter. One entry in the list must be specified for each
parameter that the function expects to receive. Up to 90 parameters can be specified (SQLSTATE
54023).

You can register a function that has no parameters; the parentheses must still be coded, with no
intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

1128 IBM Db2 V11.5: SQL Reference

Two functions with identical names in the same schema cannot have the same type for
all corresponding parameters. Lengths, precisions, and scales are not considered in this type
comparison. Therefore, CHAR(8) and CHAR(35) are considered to be the same type, as are
DECIMAL(11,2) and DECIMAL (4,3). A weakly typed distinct type that is specified for a parameter
is considered to be the same data type as the source type of the distinct type. For a Unicode database,
CHAR(13) and GRAPHIC(8) are considered to be the same type. Further bundling of types causes
them to be treated as the same type for this purpose, such as DECIMAL and NUMERIC. A duplicate
signature returns an error (SQLSTATE 42723).
IN

Identifies the parameter as an input parameter to the function. Any changes that are made to the
parameter within the function are not available to the invoking context when control is returned.

parameter-name
Specifies an optional name for the parameter. The name cannot be the same as any other
parameter-name in the parameter list (SQLSTATE 42734).

data-type1
Specifies the data type of the parameter. The data type can be a built-in data type. For a complete
description of each built-in data type, see “CREATE TABLE ” on page 1351. The data type must not
be XML, CLOB, DBCLOB, or BLOB. (SQLSTATE 42815). The data type must not be a distinct type
(SQLSTATE 42611).

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The special registers that can be specified as
the default are the same as those special registers that can be specified for a column default (see
default-clause in the “CREATE TABLE ” on page 1351). Other special registers can be specified as
the default by using an expression.

The expression can be any expression of the type described in “Expressions” on page 132. If
a default value is not specified, the parameter has no default and the corresponding argument
cannot be omitted on invocation of the procedure. The maximum size of the expression is 64 KB.

The default expression must not modify SQL data (SQLSTATE 428FL or SQLSTATE 429BL). The
expression must be assignment compatible to the parameter data type (SQLSTATE 42821).

RETURNS
This mandatory clause identifies the output of the function.
data-type2

Specifies the data type of the output.

In this case, the same considerations apply as described in data-type1 for function parameters.

The data type must not be a distinct type (SQLSTATE 42611).

data-type3 CAST FROM data-type4
Specifies the data type of the output.

This form of the RETURNS clause returns a different data type to the invoking statement than the
data type that was returned by the function code of the FINALIZE function. Example:

 CREATE FUNCTION GET_HIRE_DATE(CHAR(6))
 RETURNS DATE CAST FROM CHAR(10)
 ...

In the preceding code, the function code returns a CHAR(10) value to the database manager. The
database manager then converts it to a DATE and passes that value to the invoking statement. The
data-type4 must be castable to the data-type3 parameter. If it is not castable, an error (SQLSTATE
42880) is returned.

The length, precision, or scale for data-type3 can be inferred from data-type4. Although you
can specify the length, precision, or scale for parameterized types for data-type3, it is not
necessary. Instead, empty parentheses can be used. For example, VARCHAR() can be used).

Chapter 1. Structured Query Language (SQL) 1129

FLOAT() cannot be used (SQLSTATE 42601) since parameter value indicates different data types
(REAL or DOUBLE).

Distinct types are not valid as the type specified in data-type3 or data-type4 (SQLSTATE 42815).

The cast operation is also subject to runtime checks that might result in conversion errors.

built-in-type
See “CREATE TABLE ” on page 1351 for the description of built-in data types.

option-list
SPECIFIC specific-name

Provides a unique name for the instance of the function that is being defined. This specific
name can be used when sourcing on this function, dropping the function, or commenting on the
function. It can never be used to invoke the function. The unqualified form of specific-name is an
SQL identifier. The qualified form is a schema-name followed by a period and an SQL identifier.
The name, including the implicit or explicit qualifier, must not identify another function instance or
method specification that exists at the application server; otherwise, an error (SQLSTATE 42710)
is returned.

The specific-name can be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used. If a qualifier is
specified, it must be the same as the explicit or implicit qualifier of function-name or an error
(SQLSTATE 42882) is returned.

If specific-name is not specified, a unique name is generated by the database manager. The
unique name is SQL followed by a character timestamp, SQLyymmddhhmmssxxx.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the same results for given
argument values (DETERMINISTIC) or whether the function depends on some state values that
affect the results (NOT DETERMINISTIC). That is, a DETERMINISTIC function must always return
the same result from successive invocations with identical inputs. Optimizations taking advantage
of the fact that identical inputs always produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a NOT DETERMINISTIC function would be a random-number
generator. An example of a DETERMINISTIC function would be a function that determines the
square root of the input. If DETERMINISTIC is specified, then the INITIALIZE, ACCUMULATE,
MERGE, and FINALIZE routines that are identified must also be DETERMINISTIC (SQLSTATE
428IA).

CALLED ON NULL INPUT
CALLED ON NULL INPUT always applies to aggregate interface functions. In other words, the
function is called regardless of whether any argument's set of values are all null. The INITIALIZE,
ACCUMULATE, and MERGE procedures that are identified are also always CALLED ON NULL INPUT
since they are procedures. The FINALIZE function that is identified must also be CALLED ON
NULL INPUT (SQLSTATE 428IA). Any parameter of the component routines can return a null value
or a normal (non-null) value. Responsibility for testing for null argument values lies with the
component routine.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function has actions that change the state of an object that the database
manager does not manage. An example of an external action is sending a message or writing a
record to a file. The default is EXTERNAL ACTION.
EXTERNAL ACTION

Specifies that the function has actions that change the state of an object that the database
manager does not manage.

A function with external actions might return incorrect results if the function is executed by
parallel tasks. For example, if the function sends a note for each initial call to it, one note is
sent for each parallel task instead of once for the function.

1130 IBM Db2 V11.5: SQL Reference

NO EXTERNAL ACTION
Specifies that the function does not have actions that change the state of an object that
the database manager does not manage. The database manager uses this information during
optimization of SQL statements. If NO EXTERNAL ACTION is specified, then the INITIALIZE,
ACCUMULATE, MERGE, and FINALIZE routines that are identified must also be NO EXTERNAL
ACTION (SQLSTATE 428IA).

NO SCRATCHPAD
This optional clause can be used to specify whether a scratchpad is to be provided for an external
function. NO SCRATCHPAD is allowed for an aggregate interface function. The INITIALIZE,
ACCUMULATE, and MERGE procedures identified always have NO SCRATCHPAD since they are
procedures. The FINALIZE function that is identified must also be NO SCRATCHPAD (SQLSTATE
428IA).

NO FINAL CALL
This optional clause specifies whether a final call is to be made to an external function. NO
FINAL CALL is allowed for an aggregate interface function. The INITIALIZE, ACCUMULATE, and
MERGE procedures that are identified always are NO FINAL CALL since they are procedures. The
FINALIZE function that is identified must also be NO FINAL CALL (SQLSTATE 428IA).

ALLOW PARALLEL
This optional clause specifies whether, for a single reference to the function, the invocation of
the function can be parallelized. For aggregate interface functions, only ALLOW PARALLEL is
supported.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row and column access control. The
default is NOT SECURED.
NOT SECURED

Indicates that the function is not considered secure. When the function is invoked, the
arguments of the function must not reference a column for which a column mask is enabled
and column level access control is activated for its table (SQLSTATE 428HA). This rule applies
to the non-secure user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure.

AGGREGATE
This mandatory clause indicates that the CREATE FUNCTION statement is being used to register a
user-defined aggregate function.
WITH

This clause is used to specify the state variables that are available between the stages of
aggregate function processing. There must be at least one state variable defined.
state-variable-name

Specifies an optional name for the state variable. The name cannot be the same as any other
state-variable-name in the list of state variables for this function definition (SQLSTATE 42734).

data-type5
Specifies the data type of a state variable.

The considerations that apply for the parameters of functions (as described in data-type1)
also apply for function parameters. However, XML, CLOB, DBCLOB, and BLOB data types are
not allowed as state variable data types (SQLSTATE 42611). The data type for data-type5 must
not be a distinct type (SQLSTATE 42611).

The total byte count of the state variables cannot be bigger than 32677 using the table row
size approach to counting bytes (SQLSTATE 42611).

USING
This mandatory clause specifies how the aggregate function processing is implemented. The
USING clause specifies a set of user-defined procedures and a user-defined scalar function that
implement the phases of aggregate function processing.

Chapter 1. Structured Query Language (SQL) 1131

IN MODULE module-name
This optional clause specifies that the three procedures and one function that are specified in
the INITIALIZE, ACCUMULATE, MERGE, and FINALIZE clauses are in module module-name.
If this clause is specified, the procedure-name, function-name, or specific-name specified in
procedure-designator and function-designator must be unqualified names (SQLSTATE 42601).

INITIALIZE procedure-designator
Uniquely identifies a single procedure that implements the initialization phase of the aggregation.

The procedure that is selected must have output parameters only. The number of output
parameters must be the same as the number of state variables specified in the AGGREGATE
WITH clause (SQLSTATE 428IA). The data type of each output parameter in the procedure that
is selected must have the exact same type as the corresponding data type specified in the
AGGREGATE WITH clause (SQLSTATE 428IA).

Specify the following combinations of options for the selected procedure (SQLSTATE 428IA):

• LANGUAGE C and NO SQL
• LANGUAGE JAVA and NO SQL
• LANGUAGE SQL and CONTAINS SQL

The procedure must exist when this statement is run, unless the AUTO_REVAL database
configuration parameter is set to DEFERRED_FORCE.

ACCUMULATE procedure-designator
Uniquely identifies a single procedure that implements the accumulate phase of the aggregation.

The procedure that is selected must meet the following criteria (SQLSTATE 428IA):

• The procedure that is selected must first have the same number of input-only parameters as the
number of the parameters specified in the aggregation function.

• The procedure that is selected must then have the same number of INOUT parameters as the
number of the state variables specified in the AGGREGATE WITH clause.

The data type of each input-only parameter in the procedure that is selected must have the exact
same type as the corresponding data type specified in parameter-declaration (SQLSTATE 428IA).
The data type of each INOUT parameter in the procedure that is selected must have the exact
same type as the corresponding data type specified in the AGGREGATE WITH clause (SQLSTATE
428IA).

Specify the following combinations of options for the selected procedure (SQLSTATE 428IA):

• LANGUAGE C and NO SQL
• LANGUAGE JAVA and NO SQL
• LANGUAGE SQL and CONTAINS SQL

The procedure must exist when this statement is run, unless the AUTO_REVAL database
configuration parameter is set to DEFERRED_FORCE.

MERGE procedure-designator
Uniquely identifies a single procedure that implements the merge phase of the aggregation.

The procedure that is selected must meet the following criteria (SQLSTATE 428IA):

• The procedure that is selected must first have the same number of input-only parameters as the
number of the state variables specified in the AGGREGATE WITH clause.

• The procedure that is selected must then have the same number of INOUT parameters as the
number of the state variables specified in the AGGREGATE WITH clause.

The data type of each input-only parameter in the procedure that is selected must have the
exact same data type as the corresponding data type specified in the AGGREGATE WITH clause
(SQLSTATE 428IA). The data type of each INOUT parameter in the procedure that is selected
must have the exact same type as the corresponding data type specified in the AGGREGATE WITH
clause (SQLSTATE 428IA).

1132 IBM Db2 V11.5: SQL Reference

Specify the following combinations of options for the selected procedure (SQLSTATE 428IA):

• LANGUAGE C and NO SQL
• LANGUAGE JAVA and NO SQL
• LANGUAGE SQL and CONTAINS SQL

The procedure must exist when this statement is run, unless the AUTO_REVAL database
configuration parameter is set to DEFERRED_FORCE.

FINALIZE function-designator
Uniquely identifies a single user-defined scalar function that implements the final result phase of
the aggregation.

The function that is selected must have the same number of input-only parameters as the number
of the state variables specified in the AGGREGATE WITH clause (SQLSTATE 428IA). The data type
of each input-only parameter in the function that is selected must have the exact same data type
as the corresponding data type specified in the AGGREGATE WITH clause (SQLSTATE 428IA). The
output data type of the function that is selected must have the exact same type as the output data
type specified in the RETURNS clause (SQLSTATE 428IA).

Specify the following combinations of options for the selected procedure (SQLSTATE 428IA):

• LANGUAGE C and NO SQL
• LANGUAGE JAVA and NO SQL
• LANGUAGE SQL and CONTAINS SQL

The function must exist when this statement is run, unless the AUTO_REVAL database
configuration parameter is set to DEFERRED_FORCE.

In the descriptions for the INITIALIZE, ACCUMULATE, MERGE, and FINALIZE routines, exact same
data type means that lengths, precisions, scales, string units, and CCSIDs are considered in this type
comparison. Therefore, the following data types are considered different:

• CHAR(8) and CHAR(35)
• VARCHAR(10 OCTETS) and VARCHAR(10 CODEUNIT32)
• DECIMAL(11,2) and DECIMAL (4,3)

A weakly typed distinct type is considered to be a different data type as the source type of the distinct
type. CHAR(13) and GRAPHIC(13) are considered to be different types, even in a Unicode database.

procedure-designator
PROCEDURE procedure-name

Identifies a particular procedure, and is valid only if exactly one procedure instance with the
name procedure-name exists in the schema. The identified procedure can have any number of
parameters defined for it. In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified object names. If no
procedure by this name exists in the named or implied schema, an error (SQLSTATE 42704) is
returned. If there is more than one instance of the procedure in the named or implied schema, an
error (SQLSTATE 42725) is returned. If a procedure by this name exists and the authorization ID of
the statement does not have EXECUTE privilege on this procedure, an error (SQLSTATE 42501) is
returned.

PROCEDURE procedure-name (data-type,...)
Provides the procedure signature, which uniquely identifies the procedure. The procedure
resolution algorithm is not used.
procedure-name

Specifies the name of the procedure. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name. In static SQL statements,
the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified object
names.

Chapter 1. Structured Query Language (SQL) 1133

(data-type,...)
Values must match the data types that were specified (in the corresponding position) on the
CREATE PROCEDURE statement. The number of data types, and the logical concatenation of
the data types, is used to identify the specific procedure instance.

If a data type is unqualified, the type name is resolved by searching the schemas on the SQL
path.

It is not necessary to specify the length, precision, or scale for the parameterized data types.
Instead, an empty set of parentheses can be coded to indicate that these attributes are to be
ignored when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) because the parameter value indicates different
data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that specified in the
CREATE PROCEDURE statement. When length is specified for character and graphic string data
types, the string unit of the length attribute must exactly match that specified in the CREATE
PROCEDURE statement.

A type of FLOAT(n) does not need to match the defined value for n because 0 < n < 25 means
REAL, and 24 < n < 54 means DOUBLE. Matching occurs based on whether the type is REAL or
DOUBLE.

If no procedure with the specified signature exists in the named or implied schema, an error
(SQLSTATE 42883) is returned.

If a procedure by this procedure signature exists and the authorization ID of the statement
does not have EXECUTE privilege on this procedure, an error (SQLSTATE 42501) is returned.

SPECIFIC PROCEDURE specific-name
Identifies a particular procedure, by using the name that is specified or defaulted to at procedure
creation time. In dynamic SQL statements, the CURRENT SCHEMA special register is used as a
qualifier for an unqualified object name. In static SQL statements, the QUALIFIER precompile/
bind option implicitly specifies the qualifier for unqualified object names. The specific-name
must identify a specific procedure instance in the named or implied schema; otherwise, an error
(SQLSTATE 42704) is returned. If a procedure by this specific-name exists, and the authorization
ID of the statement does not have EXECUTE privilege on this procedure, an error (SQLSTATE
42501) is returned.

FUNCTION function-name
Identifies a particular function, and is valid only if exactly one function instance with the name
function-name exists in the schema. The identified function can have any number of parameters
defined for it. In dynamic SQL statements, the CURRENT SCHEMA special register is used as
a qualifier for an unqualified object name. In static SQL statements, the QUALIFIER precompile/
bind option implicitly specifies the qualifier for unqualified object names. If no function by this
name exists in the named or implied schema, an error (SQLSTATE 42704) is returned. If there
is more than one instance of the function in the named or implied schema, an error (SQLSTATE
42725) is returned. If a function by this name exists and the authorization ID of the statement
does not have EXECUTE privilege on this function, an error (SQLSTATE 42501) is returned.

function-designator
FUNCTION function-name (data-type,...)

Provides the function signature, which uniquely identifies the function. The function resolution
algorithm is not used.
function-name

Specifies the name of the function. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name. In static SQL statements,
the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified object
names.

1134 IBM Db2 V11.5: SQL Reference

(data-type,...)
Values must match the data types that were specified (in the corresponding position) on the
CREATE FUNCTION statement. The number of data types, and the logical concatenation of the
data types, is used to identify the specific function instance.

If a data type is unqualified, the type name is resolved by searching the schemas on the SQL
path.

It is not necessary to specify the length, precision, or scale for the parameterized data types.
Instead, an empty set of parentheses can be coded to indicate that these attributes are to be
ignored when looking for a data type match.

FLOAT() cannot be used (SQLSTATE 42601) because the parameter value indicates different
data types (REAL or DOUBLE).

If length, precision, or scale is coded, the value must exactly match that specified in the
CREATE FUNCTION statement. When length is specified for character and graphic string data
types, the string unit of the length attribute must exactly match that specified in the CREATE
FUNCTION statement.

A type of FLOAT(n) does not need to match the defined value for n because 0 < n < 25 means
REAL, and 24 < n < 54 means DOUBLE. Matching occurs based on whether the type is REAL or
DOUBLE.

If no function with the specified signature exists in the named or implied schema, an error
(SQLSTATE 42883) is returned.

If a function by this function signature exists and the authorization ID of the statement does
not have EXECUTE privilege on this function, an error (SQLSTATE 42501) is returned.

SPECIFIC FUNCTION specific-name
Identifies a particular user-defined function, by using the name that is specified or defaulted to
at function creation time. In dynamic SQL statements, the CURRENT SCHEMA special register
is used as a qualifier for an unqualified object name. In static SQL statements, the QUALIFIER
precompile/bind option implicitly specifies the qualifier for unqualified object names. The specific-
name must identify a specific function instance in the named or implied schema; otherwise,
an error (SQLSTATE 42704) is returned. If a function by this specific-name exists, and the
authorization ID of the statement does not have EXECUTE privilege on this function, an error
(SQLSTATE 42501) is returned.

Notes
• Privileges: The definer of a function always receives the EXECUTE privilege on the function. The definer

of a function also receives the right to drop the function. The definer of the function is also given the
WITH GRANT OPTION if the definer of the function has EXECUTE WITH GRANT OPTION on all of the
component routines.

Examples
1. Define an aggregate function that returns the average of a set of numeric values, by using Java

routines.

CREATE OR REPLACE PROCEDURE myavg_initialize(OUT sum DOUBLE, OUT count INT)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_initialize';

CREATE OR REPLACE PROCEDURE myavg_accumulate(IN input DOUBLE, INOUT sum DOUBLE, INOUT count
INT)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_accumulate';

CREATE OR REPLACE PROCEDURE myavg_merge(IN sum DOUBLE, IN count INT,
 INOUT mergesum DOUBLE, INOUT mergecount INT)
 LANGUAGE JAVA PARAMETER STYLE JAVA

Chapter 1. Structured Query Language (SQL) 1135

 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_merge';

CREATE OR REPLACE FUNCTION myavg_finalize(sum DOUBLE, count INT)
 RETURNS DECFLOAT(34)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_finalize';

CREATE OR REPLACE FUNCTION myavg(DOUBLE)
 RETURNS DECFLOAT(34)
 AGGREGATE WITH (sum DOUBLE, count INT)
 USING
 INITIALIZE PROCEDURE myavg_initialize
 ACCUMULATE PROCEDURE myavg_accumulate
 MERGE PROCEDURE myavg_merge
 FINALIZE FUNCTION myavg_finalize;

2. Define an aggregate function with procedure and function names that are unqualified. Define the
aggregate function under the schema FOO. Invoke the aggregate function under schema BAR.

SET SCHEMA FOO;

CREATE OR REPLACE FUNCTION myavg(DOUBLE)
 RETURNS DOUBLE
 AGGREGATE WITH (sum DOUBLE, count INT)
 USING
 INITIALIZE PROCEDURE myavg_initialize
 ACCUMULATE PROCEDURE myavg_accumulate
 MERGE PROCEDURE myavg_merge
 FINALIZE FUNCTION myavg_finalize;

SET SCHEMA BAR;

SELECT FOO.myavg(c1) FROM t1;

The database manager looks for procedures with the names of FOO.myavg_initialize,
FOO.myavg_accumulate, FOO.myavg_merge, and function with the name of FOO.myavg_finalize for
the invocation of FOO.myavg.

3. Define an aggregate function with specific procedure and function names that are unqualified. Define
the aggregate function under the schema FOO. Invoke the aggregate function under schema BAR.

SET SCHEMA FOO;

CREATE OR REPLACE FUNCTION myavg(DOUBLE)
 RETURNS DOUBLE
 AGGREGATE WITH (sum DOUBLE, count INT)
 USING
 INITIALIZE SPECIFIC PROCEDURE myavg_initialize1
 ACCUMULATE SPECIFIC PROCEDURE myavg_accumulate1
 MERGE SPECIFIC PROCEDURE myavg_merge1
 FINALIZE SPECIFIC FUNCTION myavg_finalize1;

SET SCHEMA BAR;

SELECT FOO.myavg(c1) FROM t1;

The database manager looks for procedures with the specific names of FOO.myavg_initialize1,
FOO.myavg_accumulate1, FOO.myavg_merge1, and function with the specific name of
FOO.myavg_finalize1 for the invocation of FOO.myavg.

4. Define an aggregate function without some of the component routines. The aggregate function will be
created as invalid and revalidation will be invoked in the next access.

UPDATE DB CFG USING AUTO_REVAL DEFERRED_FORCE;

CREATE OR REPLACE PROCEDURE myavg_initialize(OUT sum DOUBLE, OUT count INT)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_initialize';

CREATE OR REPLACE PROCEDURE myavg_accumulate(IN input DOUBLE, INOUT sum DOUBLE, INOUT count
INT)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL

1136 IBM Db2 V11.5: SQL Reference

 EXTERNAL NAME 'myclass!myavg_accumulate';

-- component routine merge and finalize are missing, the creation is successful and myavg is
invalid:
CREATE OR REPLACE FUNCTION myavg(DOUBLE)
 RETURNS DOUBLE
 AGGREGATE WITH (sum DOUBLE, count INT)
 USING
 INITIALIZE PROCEDURE myavg_initialize
 ACCUMULATE PROCEDURE myavg_accumulate
 MERGE PROCEDURE myavg_merge
 FINALIZE FUNCTION myavg_finalize;

CREATE OR REPLACE PROCEDURE myavg_merge(IN sum DOUBLE, IN count INT,
 INOUT mergesum DOUBLE, INOUT mergecount INT)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_merge';

CREATE OR REPLACE FUNCTION myavg_finalize(sum DOUBLE, count INT)
 RETURNS DOUBLE
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_finalize';

-- revalidation of myavg will be invoked and it will be successful
SELECT myavg(c1) FROM t1;

5. Define an aggregate function by using a global variable as a default for its parameter. Dropping the
global variable invalidates the function.

CREATE VARIABLE gv1 DOUBLE;

-- create all 4 component routines (myavg_initialize, myavg_accumulate, myavg_merge,
myavg_finalize) like Example 1
...
...
...

CREATE OR REPLACE FUNCTION myavg(p1 DOUBLE DEFAULT gv1)
 RETURNS DOUBLE
 AGGREGATE WITH (sum DOUBLE, count INT)
 USING
 INITIALIZE SPECIFIC PROCEDURE myavg_initialize
 ACCUMULATE SPECIFIC PROCEDURE myavg_accumulate
 MERGE SPECIFIC PROCEDURE myavg_merge
 FINALIZE SPECIFIC FUNCTION myavg_finalize;

-- the following statement invalidates the function 'myavg'
DROP VARIABLE gv1;

6. Define an aggregate function whose component routines use a global variable as a default for its
parameter. Dropping the global variable invalidates both the component routine and the aggregate
function.

CREATE VARIABLE gv1 INT;

CREATE OR REPLACE PROCEDURE myavg_initialize(OUT sum DOUBLE, OUT count INT DEFAULT gv1)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_initialize';

-- create the remaining 3 component routines (myavg_accumulate, myavg_merge, myavg_finalize)
like Example 1
...
...
...

CREATE OR REPLACE FUNCTION myavg(DOUBLE)
 RETURNS DOUBLE
 AGGREGATE WITH (sum DOUBLE, count INT)
 USING
 INITIALIZE SPECIFIC PROCEDURE myavg_initialize
 ACCUMULATE SPECIFIC PROCEDURE myavg_accumulate
 MERGE SPECIFIC PROCEDURE myavg_merge
 FINALIZE SPECIFIC FUNCTION myavg_finalize;

-- the following statement invalidates both the routine 'myavg_initialize' and the function

Chapter 1. Structured Query Language (SQL) 1137

'myavg'
DROP VARIABLE gv1;

7. Define an aggregation function, then create a procedure that calls the aggregation function. Next, drop
or replace one of the component routines. Either action invalidates both the aggregation function and
the procedure that calls it.

CREATE OR REPLACE PROCEDURE myavg_initialize(OUT sum DOUBLE, OUT count INT)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_initialize';

-- create the remaining 3 component routines (myavg_accumulate, myavg_merge, myavg_finalize)
like Example 1
...
...
...

CREATE OR REPLACE FUNCTION myavg(DOUBLE)
 RETURNS DOUBLE
 AGGREGATE WITH (sum DOUBLE, count INT)
 USING
 INITIALIZE SPECIFIC PROCEDURE myavg_initialize
 ACCUMULATE SPECIFIC PROCEDURE myavg_accumulate
 MERGE SPECIFIC PROCEDURE myavg_merge
 FINALIZE SPECIFIC FUNCTION myavg_finalize;

CREATE OR REPLACE PROCEDURE myproc (OUT p1 DOUBLE)
BEGIN
 SET p1 = (SELECT myavg(c1) FROM t1);
END;

-- drop the component routine
-- this action invalidates both the 'myavg' aggregation function and the 'myproc' procedure
that calls it:
DROP PROCEDURE myavg_initialize;

-- re-create the component routine
-- like the DROP statement, this action invalidates both the 'myavg' aggregation function
and the 'myproc' procedure that calls it:
CREATE OR REPLACE PROCEDURE myavg_initialize(OUT sum DOUBLE, OUT count INT)
 LANGUAGE C PARAMETER STYLE C
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_initialize_C_version';

-- revaliation is invoked the next time 'myproc' is accessed
-- both the 'myavg' aggregation function and the 'myproc' procedure are revalidated
CALL myproc(?);

8. Use the AUTO_REVAL database configuration parameter to control the invalidation and revalidation
semantics.

UPDATE DB CFG USING AUTO_REVAL DEFERRED_FORCE;

-- global variable 'gv1' does not exist; the 'myavg_initialize' procedure can be created,
but it is invalid
CREATE OR REPLACE PROCEDURE myavg_initialize(OUT sum DOUBLE, OUT count INT default gv1)
 LANGUAGE JAVA PARAMETER STYLE JAVA
 FENCED NO SQL
 EXTERNAL NAME 'myclass!myavg_initialize';

-- create the remaining 3 component routines (myavg_accumulate, myavg_merge, myavg_finalize)
like Example 1
...
...
...

-- the 'myavg' function can be created, but it is invalid
CREATE OR REPLACE FUNCTION myavg(DOUBLE)
 RETURNS mydouble
 AGGREGATE WITH (sum DOUBLE, count INT)
 USING
 INITIALIZE SPECIFIC PROCEDURE myavg_initialize
 ACCUMULATE SPECIFIC PROCEDURE myavg_accumulate
 MERGE SPECIFIC PROCEDURE myavg_merge
 FINALIZE SPECIFIC FUNCTION myavg_finalize;

-- create the global variable 'gv1'
CREATE VARIABLE gv1 DOUBLE;

1138 IBM Db2 V11.5: SQL Reference

-- revalidation of 'myavg' function and 'myavg_initialize' procedure is invoked;
revalidation is successful
SELECT myavg(c1) FROM t1;

-- change the setting of the AUTO_REVAL database configuration parameter to IMMEDAITE
UPDATE DB CFG USING AUTO_REVAL IMMEDIATE;

-- the CREATE OR REPLACE VARIABLE statement invokes the revalidation for both 'myavg'
function and 'myavg_initialize' procedure
CREATE OR REPLACE VARIABLE gv1 DOUBLE DEFAULT 1.0;

9. Create an aggregate function that uses SQL routines to calculate and return the average of a set of
numeric values.

CREATE OR REPLACE PROCEDURE myavg_initialize(OUT sum DECFLOAT, OUT count INT)
LANGUAGE SQL
CONTAINS SQL
BEGIN

 SET sum = 0;
 SET count = 0;

END @

CREATE OR REPLACE PROCEDURE myavg_accumulate(IN input DECFLOAT, INOUT sum DECFLOAT, INOUT
count INT)
LANGUAGE SQL
CONTAINS SQL
BEGIN

 SET sum = sum + input;
 SET count = count + 1;

END @

CREATE OR REPLACE PROCEDURE myavg_merge(IN sum DECFLOAT, IN count INT,
INOUT mergesum DECFLOAT, INOUT mergecount INT)
LANGUAGE SQL
CONTAINS SQL
BEGIN

 SET mergesum = sum + mergesum;
 SET mergecount = count + mergecount;

END @

CREATE OR REPLACE FUNCTION myavg_finalize(sum DECFLOAT, count INT)
LANGUAGE SQL
CONTAINS SQL
RETURNS DECFLOAT(34)
BEGIN

 RETURN (sum / count);

END @

CREATE OR REPLACE FUNCTION myavg(DECFLOAT)
RETURNS DECFLOAT(34)
AGGREGATE WITH (sum DECFLOAT, count INT)
USING
INITIALIZE PROCEDURE myavg_initialize
ACCUMULATE PROCEDURE myavg_accumulate
MERGE PROCEDURE myavg_merge
FINALIZE FUNCTION myavg_finalize
@

Chapter 1. Structured Query Language (SQL) 1139

CREATE FUNCTION (external scalar)
The CREATE FUNCTION (External Scalar) statement is used to register a user-defined external scalar
function at the current server. A scalar function returns a single value each time it is invoked, and is in
general valid wherever an SQL expression is valid.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CREATE_EXTERNAL_ROUTINE authority on the database and at least one of the following authorities:

– IMPLICIT_SCHEMA authority on the database, if the schema name of the function does not refer to
an existing schema

– CREATEIN privilege on the schema, if the schema name of the function refers to an existing schema
– SCHEMAADM authority on the schema, if the schema name of the function refers to an existing

schema
• DBADM authority

Group privileges are not considered for any table or view specified in the CREATE FUNCTION statement.

To create a not-fenced function, the privileges held by the authorization ID of the statement must also
include at least one of the following authorities:

• CREATE_NOT_FENCED_ROUTINE authority on the database
• DBADM authority

To create a fenced function, no additional authorities or privileges are required.

To replace an existing function, the authorization ID of the statement must be the owner of the existing
function (SQLSTATE 42501).

If the SECURED option is specified, the authorization ID of the statement must include SECADM or
CREATE_SECURE_OBJECT authority (SQLSTATE 42501).

Syntax
CREATE

OR REPLACE

FUNCTION function-name (

,

parameter-declaration

) ● RETURNS

data-type2

AS LOCATOR

data-type3 CAST FROM data-type4

AS LOCATOR

option-list

parameter-declaration

1140 IBM Db2 V11.5: SQL Reference

IN

OUT
1

INOUT

parameter-name

data-type1

default-clause

AS LOCATOR

data-type1, data-type2, data-type3, data-type4
built-in-type

distinct-type-name

structured-type-name

REF (type-name)

built-in-type

Chapter 1. Structured Query Language (SQL) 1141

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
2

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

SYSPROC.
DB2SECURITYLABEL

3 4

default-clause

1142 IBM Db2 V11.5: SQL Reference

DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list

Chapter 1. Structured Query Language (SQL) 1143

● LANGUAGE C

JAVA

CLR

OLE

CPP

PYTHON

5
●

SPECIFIC specific-name

●

EXTERNAL

NAME 'string'

identifier

● PARAMETER STYLE

DB2GENERAL

JAVA

SQL

NPSGENERIC

●

PARAMETER CCSID ASCII

UNICODE

●

NOT DETERMINISTIC

DETERMINISTIC

●
FENCED

FENCED ● THREADSAFE

NOT THREADSAFE

NOT FENCED ●
THREADSAFE

●

RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

●

READS SQL DATA

NO SQL

CONTAINS SQL

●

STATIC DISPATCH
●

EXTERNAL ACTION

NO EXTERNAL ACTION

●

NO SCRATCHPAD

SCRATCHPAD
100

length

●
NO FINAL CALL

FINAL CALL

●

ALLOW PARALLEL

DISALLOW PARALLEL

●
NO DBINFO

DBINFO

●

TRANSFORM GROUP group-name

●

PREDICATES (predicate-specification)

●

INHERIT SPECIAL REGISTERS
●

NOT SECURED

SECURED

●

STAY RESIDENT NO

●

predicate-specification

1144 IBM Db2 V11.5: SQL Reference

WHEN =

 <>

 <

 >

 <=

 >=

constant

EXPRESSION AS expression-name

data-filter

index-exploitation

index-exploitation

data-filter

data-filter
FILTER USING function-invocation

case-expression

index-exploitation
SEARCH BY

EXACT

INDEX EXTENSION index-extension-name

exploitation-rule

exploitation-rule
WHEN KEY (parameter-name1) USE search-method-name (

,

parameter-name2)

Notes:
1 OUT and INOUT are valid only if the function has LANGUAGE C.
2 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).
3 DB2SECURITYLABEL is the built-in distinct type that must be used to define the row security label
column of a protected table.
4 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is implicit and cannot be
explicitly specified (SQLSTATE 42842). The default value for a column of type DB2SECURITYLABEL is
the session authorization ID's security label for write access.
5 LANGUAGE SQL is also supported.

Description
OR REPLACE

Specifies to replace the definition for the function if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the function are not affected. This option can be
specified only by the owner of the object. This option is ignored if a definition for the function does
not exist at the current server. To replace an existing function, the specific name and function name
of the new definition must be the same as the specific name and function name of the old definition,
or the signature of the new definition must match the signature of the old definition. Otherwise, a new
function is created.

Chapter 1. Structured Query Language (SQL) 1145

If the function is referenced in the definition of a row permission or a column mask, the function
cannot be replaced (SQLSTATE 42893).

function-name
Names the function being defined. It is a qualified or unqualified name that designates a function. The
unqualified form of function-name is an SQL identifier. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period and an SQL identifier. The
qualified name must not be the same as the data type of the first parameter, if that first parameter is a
structured type.

The name, including the implicit or explicit qualifiers, together with the number of parameters and
the data type of each parameter (without regard for any length, precision or scale attributes of the
data type) must not identify a function or method described in the catalog (SQLSTATE 42723). The
unqualified name, together with the number and data types of the parameters, while of course unique
within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with "SYS";. Otherwise, an error
(SQLSTATE 42939) is raised.

A number of names used as keywords in predicates are reserved for system use, and cannot be used
as a function-name. The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL, LIKE, EXISTS,
IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators. Failure to observe this rule
will lead to an error (SQLSTATE 42939).

In general, the same name can be used for more than one function if there is some difference in the
signature of the functions.

Although there is no prohibition against it, an external user-defined function should not be given the
same name as a built-in function, unless it is an intentional override. To give a function having a
different meaning the same name (for example, LENGTH, VALUE, MAX), with consistent arguments,
as a built-in scalar or aggregate function, is to invite trouble for dynamic SQL statements, or when
static SQL applications are rebound; the application may fail, or perhaps worse, may appear to run
successfully while providing a different result.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the mode, name, data
type, and optional default value of each parameter. One entry in the list must be specified for each
parameter that the function expects to receive. Up to 90 parameters can be specified (SQLSTATE
54023).

You can register a function that has no parameters; the parentheses must still be coded, with no
intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have exactly the same
type for all corresponding parameters. Lengths, precisions, and scales are not considered in this
type comparison. Therefore, CHAR(8) and CHAR(35) are considered to be the same type, as are
DECIMAL(11,2) and DECIMAL (4,3). A weakly typed distinct type specified for a parameter is
considered to be the same data type as the source type of the distinct type. For a Unicode database,
CHAR(13) and GRAPHIC(8) are considered to be the same type. There is some further bundling of
types that causes them to be treated as the same type for this purpose, such as DECIMAL and
NUMERIC. A duplicate signature returns an error (SQLSTATE 42723).

IN | OUT | INOUT
Specifies the mode of the parameter. If an error is returned by the function, OUT parameters are
undefined and INOUT parameters are unchanged. The default is IN.

1146 IBM Db2 V11.5: SQL Reference

IN
Identifies the parameter as an input parameter to the function. Any changes made to the
parameter within the function are not available to the invoking context when control is
returned.

OUT
Identifies the parameter as an output parameter for the function.
The function must be defined with LANGUAGE C (SQLSTATE 42613).
The function can be referenced only on the right side of an assignment statement that is
in a compound SQL (compiled) statement, and the function reference cannot be part of an
expression (SQLSTATE 42887).

INOUT
Identifies the parameter as both an input and output parameter for the function.
The function must be defined with LANGUAGE C (SQLSTATE 42613).
The function can be referenced only on the right side of an assignment statement that is
in a compound SQL (compiled) statement, and the function reference cannot be part of an
expression (SQLSTATE 42887).

parameter-name
Specifies an optional name for the parameter. Parameter names are required to reference the
parameters of a function in the index-exploitation clause of a predicate specification. The name
cannot be the same as any other parameter-name in the parameter list (SQLSTATE 42734).

data-type1
Specifies the data type of the parameter. The data type can be a built-in data type, a distinct
type, a structured type, or a reference type. For a more complete description of each built-in data
type, see "CREATE TABLE". Some data types are not supported in all languages. For details on the
mapping between SQL data types and host language data types, see "Data types that map to SQL
data types in embedded SQL applications".

• A datetime type parameter is passed as a character data type, and the data is passed in the ISO
format.

• DECIMAL (and NUMERIC) are invalid with LANGUAGE C and OLE (SQLSTATE 42815).
• DECFLOAT is invalid with LANGUAGE C, COBOL, CLR, JAVA, and OLE (SQLSTATE 42815).
• XML is invalid with LANGUAGE OLE.
• Because the XML value that is seen inside a function is a serialized version of the XML value that

is passed as a parameter in the function call, parameters of type XML must be declared using
the syntax XML AS CLOB(n).

• CLR does not support DECIMAL scale greater than 28 (SQLSTATE 42613).
• Array types cannot be specified (SQLSTATE 42815).
• BINARY and VARBINARY data types are invalid with LANGUAGE CLR and OLE (SQLSTATE

42815).

For a user-defined distinct type, the length, precision, or scale attributes for the parameter are
those of the source type of the distinct type (those specified on CREATE TYPE). A distinct type
parameter is passed as the source type of the distinct type. If the name of the distinct type is
unqualified, the database manager resolves the schema name by searching the schemas in the
SQL path.

For a user-defined structured type, the appropriate transform functions must exist in the
associated transform group.

For a reference type, the parameter can be specified as REF(type-name) if the parameter is
unscoped.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The special registers that can be specified as

Chapter 1. Structured Query Language (SQL) 1147

the default are that same as those that can be specified for a column default (see default-clause in
the CREATE TABLE statement). Other special registers can be specified as the default by using an
expression.

The expression can be any expression of the type described in "Expressions". If a default value is
not specified, the parameter has no default and the corresponding argument cannot be omitted on
invocation of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or SQLSTATE 429BL). The
expression must be assignment compatible to the parameter data type (SQLSTATE 42821).

A default cannot be specified in the following situations:

• For INOUT or OUT parameters (SQLSTATE 42601)
• For a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE 429BB)
• For a parameter to a function definition that also specified a PREDICATES clause (SQLSTATE

42613)

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the function instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB data type or a distinct type
based on a LOB data type (SQLSTATE 42601). Passing locators instead of values can result in
fewer bytes being passed to the function, especially when the value of the parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types can be promoted, nor
does it affect the function signature, which is used in function resolution.

If the function is FENCED and has the NO SQL option, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

RETURNS
This mandatory clause identifies the output of the function.
data-type2

Specifies the data type of the output.

In this case, exactly the same considerations apply as for the parameters of external functions
described previously in data-type1 for function parameters.

AS LOCATOR
For LOB types or distinct types which are based on LOB types, the AS LOCATOR clause can be
added. This indicates that a LOB locator is to be passed from the UDF instead of the actual
value.

data-type3 CAST FROM data-type4
Specifies the data type of the output.

This form of the RETURNS clause is used to return a different data type to the invoking statement
from the data type that was returned by the function code. For example, in

 CREATE FUNCTION GET_HIRE_DATE(CHAR(6))
 RETURNS DATE CAST FROM CHAR(10)
 ...

the function code returns a CHAR(10) value to the database manager, which, in turn, converts it to
a DATE and passes that value to the invoking statement. The data-type4 must be castable to the
data-type3 parameter. If it is not castable, an error (SQLSTATE 42880) is raised.

Since the length, precision or scale for data-type3 can be inferred from data-type4, it not
necessary (but still permitted) to specify the length, precision, or scale for parameterized types
specified for data-type3. Instead empty parentheses may be used (for example VARCHAR() may
be used). FLOAT() cannot be used (SQLSTATE 42601) since parameter value indicates different
data types (REAL or DOUBLE).

1148 IBM Db2 V11.5: SQL Reference

Distinct types, array types, and structured types are not valid as the type specified in data-type4
(SQLSTATE 42815).

The cast operation is also subject to runtime checks that might result in conversion errors being
raised.

AS LOCATOR
For data-type4 specifications that are LOB types or distinct types which are based on LOB
types, the AS LOCATOR clause can be added. This indicates that a LOB locator is to be passed
back from the UDF instead of the actual value.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined. This specific name can
be used when sourcing on this function, dropping the function, or commenting on the function. It can
never be used to invoke the function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier. The name, including the
implicit or explicit qualifier, must not identify another function instance or method specification that
exists at the application server; otherwise an error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used. If a qualifier is
specified, it must be the same as the explicit or implicit qualifier of function-name or an error
(SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database manager. The unique
name is SQL followed by a character timestamp, SQLyymmddhhmmssxxx.

EXTERNAL
This clause indicates that the CREATE FUNCTION statement is being used to register a new function
based on code written in an external programming language and adhering to the documented linkage
conventions and interface.

If NAME clause is not specified "NAME function-name" is assumed.

NAME 'string'
This clause identifies the name of the user-written code which implements the function being
defined.

The 'string' option is a string constant with a maximum of 254 bytes. The format used for the string
is dependent on the LANGUAGE specified.

• For LANGUAGE C:

The string specified is the library name and function within the library, which the database
manager invokes to execute the user-defined function being created. The library (and the
function within the library) do not need to exist when the CREATE FUNCTION statement is
executed. However, when the function is used in an SQL statement, the library and function
within the library must exist and be accessible from the database server machine; otherwise, an
error is returned (SQLSTATE 42724).

The string can be specified as follows:
' library_id

absolute_path_id ! func_id

'

Extraneous blanks are not permitted within the single quotation marks.

library_id
Identifies the library name containing the function. The database manager will look for the
library as follows:

Chapter 1. Structured Query Language (SQL) 1149

Operating system Library name location

Linux
AIX

If myfunc was given as the library_id, and
the database manager is being run from /u/
production, the database manager will
look for the function in library /u/
production/sqllib/function/myfunc

Windows The database manager will look for the
function in a directory path that is specified
by the LIBPATH or PATH environment
variable

absolute_path_id
Identifies the full path name of the file containing the function. The format depends on the
operating system, as illustrated in the following table:

Operating system Full path name example

Linux
AIX

A value of '/u/jchui/mylib/myfunc' would
cause the database manager to look in /u/
jchui/mylib for the myfunc shared
library.

Windows A value of 'd:\mylib\myfunc.dll' would
cause the database manager to load the
dynamic link library, myfunc.dll, from the
d:\mylib directory. If an absolute path ID
is being used to identify the routine body, be
sure to append the .dll extension.

! func_id
Identifies the entry point name of the function to be invoked. The ! serves as a delimiter
between the library ID and the function ID. The format depends on the operating system, as
illustrated in the following table:

Operating system Entry point name of the function

Linux
AIX

A value of 'mymod!func8' would direct
the database manager to look for
the library $inst_home_dir/sqllib/
function/mymod and to use entry point
func8 within that library.

Windows A value of 'mymod!func8' would direct the
database manager to load the mymod.dll
file and to call the func8() function in the
dynamic link library (DLL).

If the string is not properly formed, an error is returned (SQLSTATE 42878).

The body of every external function should be in a directory that is available on every database
partition.

• For LANGUAGE JAVA:

The string specified contains the optional jar file identifier, class identifier and method identifier,
which the database manager invokes to execute the user-defined function being created.
The class identifier and method identifier do not need to exist when the CREATE FUNCTION
statement is executed. If a jar_id is specified, it must exist when the CREATE FUNCTION

1150 IBM Db2 V11.5: SQL Reference

statement is executed. However, when the function is used in an SQL statement, the method
identifier must exist and be accessible from the database server machine; otherwise, an error is
returned (SQLSTATE 42724).

The string can be specified as follows:

'

jar_id :

class_id .

!

method_id '

Extraneous blanks are not permitted within the single quotation marks.

jar_id
Identifies the jar identifier given to the jar collection when it was installed in the database. It
can be either a simple identifier, or a schema qualified identifier. Examples are 'myJar' and
'mySchema.myJar'.

class_id
Identifies the class identifier of the Java object. If the class is part of a package, the class
identifier part must include the complete package prefix, for example, 'myPacks.UserFuncs'.
The directory the Java virtual machine will look in for the classes depends on the operating
system, as illustrated in the following table:

Operating system
Directory the Java virtual machine will
look in for the classes

Linux
AIX

'.../myPacks/UserFuncs/'

Windows '...\myPacks\UserFuncs\'

method_id
Identifies the method name of the Java object to be invoked.

• For LANGUAGE CLR:

The string specified represents the .NET assembly (library or executable), the class within that
assembly, and the method within the class that the database manager invokes to execute the
function being created. The module, class, and method do not need to exist when the CREATE
FUNCTION statement is executed. However, when the function is used in an SQL statement,
the module, class, and method must exist and be accessible from the database server machine;
otherwise, an error is returned (SQLSTATE 42724).

C++ routines that are compiled with the '/clr' compiler option to indicate that they include
managed code extensions must be cataloged as 'LANGUAGE CLR' and not 'LANGUAGE C'. The
database server needs to know that the .NET infrastructure is being utilized in a user-defined
function in order to make necessary runtime decisions. All user-defined functions using the .NET
infrastructure must be cataloged as 'LANGUAGE CLR'.

The string can be specified as follows:
' assembly : class_id ! method_id '

The name must be enclosed by single quotation marks. Extraneous blanks are not permitted.

assembly
Identifies the DLL or other assembly file in which the class resides. Any file extensions (such
as .dll) must be specified. If the full path name is not given, the file must reside in the
function directory of the database product's installation path

For example, c:\sqllib\function.

Chapter 1. Structured Query Language (SQL) 1151

If the file resides in a subdirectory of the installation function directory, the subdirectory can
be given before the file name rather than specifying the full path.

For example, if your install directory is c:\sqllib and your assembly file is
c:\sqllib\function\myprocs\mydotnet.dll, it is only necessary to specify
'myprocs\mydotnet.dll' for the assembly.

The case sensitivity of this parameter is the same as the case sensitivity of the file system.

class_id
Specifies the name of the class within the given assembly in which the method that is to
be invoked resides. If the class resides within a namespace, the full namespace must be
given in addition to the class. For example, if the class EmployeeClass is in namespace
MyCompany.ProcedureClasses, then MyCompany.ProcedureClasses.EmployeeClass must be
specified for the class. Note that the compilers for some .NET languages will add the project
name as a namespace for the class, and the behavior may differ depending on whether the
command line compiler or the GUI compiler is used. This parameter is case sensitive.

method_id
Specifies the method within the given class that is to be invoked. This parameter is case
sensitive.

• For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or class identifier (clsid), and
method identifier, which the database manager invokes to execute the user-defined function
being created. The programmatic identifier or class identifier, and method identifier do not need
to exist when the CREATE FUNCTION statement is executed. However, when the function is
used in an SQL statement, the method identifier must exist and be accessible from the database
server machine; otherwise, an error is returned (SQLSTATE 42724).

The string can be specified as follows:
' progid

clsid

! method_id '

Extraneous blanks are not permitted within the single quotation marks.

progid
Identifies the programmatic identifier of the OLE object.

progid is not interpreted by the database manager but only forwarded to the OLE APIs at
run time. The specified OLE object must be creatable and support late binding (also called
IDispatch-based binding).

clsid
Identifies the class identifier of the OLE object to create. It can be used as an alternative for
specifying a progid in the case that an OLE object is not registered with a progid. The clsid
has the form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. clsid is not interpreted by the database manager but
only forwarded to the OLE APIs at run time.

method_id
Identifies the method name of the OLE object to be invoked.

• For LANGUAGE CPP:

The string specified is the library identifier and class identifier within the library, which contains
the evaluate method the database manager invokes to execute the user-defined function that is
being created. If the string is not properly formed, an error is returned (SQLSTATE 42878).

It is not necessary that the library (or the class within the library) exist when the CREATE
FUNCTION statement is executed. However, when the function is used in an SQL statement,

1152 IBM Db2 V11.5: SQL Reference

the library and class within the library must exist and be accessible from the database server
machine; otherwise, an error is returned (SQLSTATE 42724).

The body of every external function should be in a directory that is available on every database
partition.

The string can be specified as follows:
' library_id

absolute_path_id

! class_id '

Extraneous blanks are not permitted within the single quotation marks.
library_id

The name of the library that contains the function:

– On a UNIX system, if the specified library ID is myfunc, and if the database manager
is being run from /u/production, the database manager looks for the function in the
following library:

/u/production/sqllib/function/myfunc

– On a Windows operating system, the database manager looks for the function in the
directory path specified by the LIBPATH or PATH environment variable.

absolute_path_id
The full path of the file that contains the function. For example:

– On a UNIX system, the following specification causes the database manager to look
in /u/jchui/mylib for the myfunc shared library:

'/u/jchui/mylib/myfunc'

– On a Windows operating system, the following specification causes the database manager
to load the dynamic link library myfunc.dll from the d:\mylib directory:

'd:\mylib\myfunc.dll'

If an absolute path ID is being used to identify the routine body, be sure to append the .dll
extension.

class_id
The name of the class that contains the methods that are to be invoked.

For example, if you specify 'mymod!myclass':

– On a UNIX system, the database manager looks for the library $inst_home_dir/sqllib/
function/mymod and invokes the evaluate method of the myclass class in that library.

– On a Windows operating system, the database manager loads the mymod.dll file and calls the
evaluate method of the myclass class in the dynamic link library (DLL).

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used as the library-id in the string.
Unless it is a delimited identifier, the identifier is folded to upper case. If the identifier is qualified
with a schema name, the schema name portion is ignored. This form of NAME can only be used
with LANGUAGE C.

LANGUAGE
This mandatory clause specifies the language interface convention to which the body of the user-
defined function is written.
C

The database manager calls the user-defined function as if it were a C function. The user-defined
function must conform to the C language calling and linkage convention as defined by the
standard ANSI C prototype.

Chapter 1. Structured Query Language (SQL) 1153

JAVA
The database manager calls the user-defined function as a method in a Java class.

CLR
The database manager calls the user-defined function as a method in a .NET class. LANGUAGE
CLR is supported only for user-defined functions running on Windows operating systems. NOT
FENCED cannot be specified for a CLR routine (SQLSTATE 42601).

OLE
The database manager calls the user-defined function as if it were a method exposed by an OLE
automation object. The user-defined function must conform with the OLE automation data types
and invocation mechanism, as described in the OLE Automation Programmer's Reference.

LANGUAGE OLE is supported for user-defined functions for this database product only in Windows
operating systems. THREADSAFE may not be specified for UDFs defined with LANGUAGE OLE
(SQLSTATE 42613).

CPP
The database manager calls the user-defined function by invoking the evaluate method of a C++
class.

PYTHON
The database manager calls the user-defined function as a method in a Python class.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to and returning the value
from functions.
DB2GENERAL

Used to specify the conventions for passing parameters to and returning the value from external
functions that are defined as a method in a Java class. This can only specified when LANGUAGE
JAVA is used.

The value DB2GENRL may be used as a synonym for DB2GENERAL.

JAVA
This means that the function will use a parameter passing convention that conforms to the Java
language and SQLJ Routines specification. This can only be specified when LANGUAGE JAVA is
used, no structured data types are specified as parameters, and no CLOB, BLOB, or DBCLOB data
types are specified as return types (SQLSTATE 429B8). PARAMETER STYLE JAVA functions do not
support the FINAL CALL, SCRATCHPAD, or DBINFO clause.

SQL
Used to specify the conventions for passing parameters to and returning the value from external
functions that conform to C language calling and linkage conventions, methods exposed by OLE
automation objects, or public static methods of a .NET object. This must be specified when
LANGUAGE C, LANGUAGE CLR, or LANGUAGE OLE is used.

NPSGENERIC

Used to specify the conventions for passing parameters to and returning the value from external
functions that are defined as a method in a C++ class. This can specified only when the
LANGUAGE option is set to CPP or PYTHON.

When NPSGENERIC is specified as the parameter style, the UDF is written in C++ as a derived
class of the nz.udx_ver2.Udf class. The class must implement the following two methods in
addition to its constructor and destructor:
static Udf* Udf::instantiate(UdxInit *pInit)

Static member method instantiate(), which must instantiate a new instance of the UDF derived
class and return a pointer to the new instance as a class Udf pointer. The engine uses this
method to create an instance of a UDF object.

virtual ReturnValue Udf::evaluate()
Member method evaluate(), which is called by the engine to evaluate the user function and
return a value to the caller.

1154 IBM Db2 V11.5: SQL Reference

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of the function. If the
PARAMETER CCSID clause is not specified, the default is PARAMETER CCSID UNICODE for Unicode
databases, and PARAMETER CCSID ASCII for all other databases.
ASCII

Specifies that string data is encoded in the database code page. If the database is a Unicode
database, PARAMETER CCSID ASCII cannot be specified (SQLSTATE 56031). When the function is
invoked, the application code page for the function is the database code page.

UNICODE
Specifies that string data is encoded in Unicode. If the database is a Unicode database, character
data is in UTF-8, and graphic data is in UCS-2. If the database is not a Unicode database,
character data is in UTF-8. In either case, when the function is invoked, the application code page
for the function is 1208.

If the database is not a Unicode database, and a function with PARAMETER CCSID UNICODE
is created, the function cannot have any graphic types, the XML type, or user-defined types
(SQLSTATE 560C1).

If the database is not a Unicode database, and the alternate collating sequence has been specified
in the database configuration, functions can be created with either PARAMETER CCSID ASCII or
PARAMETER CCSID UNICODE. All string data passed into and out of the function will be converted to
the appropriate code page.

This clause cannot be specified with LANGUAGE CPP, LANGUAGE OLE, LANGUAGE JAVA, or
LANGUAGE CLR (SQLSTATE 42613).

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the same results for given
argument values (DETERMINISTIC) or whether the function depends on some state values that
affect the results (NOT DETERMINISTIC). That is, a DETERMINISTIC function must always return
the same result from successive invocations with identical inputs. Optimizations taking advantage
of the fact that identical inputs always produce the same results are prevented by specifying
NOT DETERMINISTIC. An example of a NOT DETERMINISTIC function would be a random-number
generator. An example of a DETERMINISTIC function would be a function that determines the square
root of the input.

FENCED or NOT FENCED
This clause specifies whether or not the function is considered "safe" to run in the database manager
operating environment's process or address space.

If a function is registered as FENCED, the database manager protects its internal resources (for
example, data buffers) from access by the function. Most functions will have the option of running
as FENCED or NOT FENCED. In general, a function running as FENCED will not perform as well as a
similar one running as NOT FENCED.

CAUTION: Use of NOT FENCED for functions not adequately coded, reviewed, and tested can
compromise the integrity of your database. This database product safeguards against many
of the common types of inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED user-defined functions are used.

Only FENCED can be specified for a function with LANGUAGE OLE or NOT THREADSAFE (SQLSTATE
42613).

If the function is FENCED and has the NO SQL option, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

Either SYSADM authority, DBADM authority, or a special authority (CREATE_NOT_FENCED_ROUTINE)
is required to register a user-defined function as NOT FENCED.

LANGUAGE CLR user-defined functions cannot be created when specifying the NOT FENCED clause
(SQLSTATE 42601).

Chapter 1. Structured Query Language (SQL) 1155

THREADSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same process as other routines
(THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE:

• If the function is defined as THREADSAFE, the database manager can invoke the function in the
same process as other routines. In general, to be threadsafe, a function should not use any global or
static data areas. Most programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED functions can be THREADSAFE.

• If the function is defined as NOT THREADSAFE, the database manager will never simultaneously
invoke the function in the same process as another routine.

For FENCED functions, THREADSAFE is the default if the LANGUAGE is JAVA or CLR. For all
other languages, NOT THREADSAFE is the default. If the function is defined with LANGUAGE OLE,
THREADSAFE may not be specified (SQLSTATE 42613).

For NOT FENCED functions, THREADSAFE is the default. NOT THREADSAFE cannot be specified
(SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause can be used to avoid a call to the external function if any of the arguments is
null. If the user-defined function is defined to have no parameters, then this null argument condition
cannot arise, and it does not matter how this specification is coded. If this clause is not specified,
the default is RETURNS NULL ON NULL INPUT, except when PARAMETER STYLE JAVA is specified, in
which case the default is CALLED ON NULL INPUT.

If RETURNS NULL ON NULL INPUT is specified, and if, at execution time, any one of the function's
arguments is null, then the user-defined function is not called and the result is the null value.

If CALLED ON NULL INPUT is specified, then regardless of whether any arguments are null, the user-
defined function is called. It can return a null value or a normal (non-null) value. But responsibility for
testing for null argument values lies with the UDF.

The value NULL CALL may be used as a synonym for CALLED ON NULL INPUT for backwards and
family compatibility. Similarly, NOT NULL CALL may be used as a synonym for RETURNS NULL ON
NULL INPUT.

READS SQL DATA, NO SQL, or CONTAINS SQL
Specifies the classification of SQL statements that the function can run. The database manager
verifies that the SQL statements that the function issues are consistent with this specification.

For the classification of each statement, see "SQL statements that can be executed in routines and
triggers" in Developing User-defined Routines (SQL and External).

The default is READS SQL DATA.

READS SQL DATA
Specifies that the function can run statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL (SQLSTATE 38002 or 42985). The function cannot run SQL
statements that modify data. (SQLSTATE 38003 or 42985).

NO SQL
Specifies that the function can run only SQL statements with a data access classification of NO
SQL (SQLSTATE 38001).

CONTAINS SQL
Specifies that the function can run only SQL statements with a data access classification of
CONTAINS SQL or NO SQL (SQLSTATE 38004 or 42985). The function cannot run any SQL
statements that read or modify data (SQLSTATE 38003 or 42985).

STATIC DISPATCH
This optional clause indicates that at function resolution time, a function is chosen by the database
server based on the static types (declared types) of the parameters of the function.

1156 IBM Db2 V11.5: SQL Reference

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that the database
manager does not manage. An example of an external action is sending a message or writing a record
to a file. The default is EXTERNAL ACTION.
EXTERNAL ACTION

Specifies that the function takes an action that changes the state of an object that the database
manager does not manage.

A function with external actions might return incorrect results if the function is executed by
parallel tasks. For example, if the function sends a note for each initial call to it, one note is sent
for each parallel task instead of once for the function. Specify the DISALLOW PARALLEL clause for
functions that do not work correctly with parallelism.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state of an object that
the database manager does not manage. The database manager uses this information during
optimization of SQL statements.

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be provided for an external
function. (It is strongly recommended that user-defined functions be re-entrant, so a scratchpad
provides a means for the function to "save state" from one call to the next.)

• If SCRATCHPAD is specified, then at first invocation of the user-defined function, memory is
allocated for a scratchpad to be used by the external function. On each invocation of the user-
defined function, an additional argument is passed to the external function which addresses the
scratchpad. This scratchpad has the following characteristics:

– length, if specified, sets the size of the scratchpad in bytes; this value must be between 1 and
32 767 (SQLSTATE 42820). The default size is 100 bytes.

– It is initialized to all X'00''s.
– Its scope is the SQL statement. There is one scratchpad per reference to the external function

in the SQL statement. So if the UDFX function in the following statement is defined with the
SCRATCHPAD keyword, three scratchpads would be assigned.

 SELECT A, UDFX(A) FROM TABLEB
 WHERE UDFX(A) > 103 OR UDFX(A) < 19

If ALLOW PARALLEL is specified or defaulted to, then the scope is different from the one shown
previously. If the function is executed in multiple database partitions, a scratchpad would be
assigned in each database partition where the function is processed, for each reference to the
function in the SQL statement. Similarly, if the query is executed with intrapartition parallelism
enabled, more than three scratchpads may be assigned.

– It is persistent. Its content is preserved from one external function call to the next. Any changes
made to the scratchpad by the external function on one call will be there on the next call. The
database manager initializes scratchpads at the beginning of execution of each SQL statement.
The database manager may reset scratchpads at the beginning of execution of each subquery.
The system issues a final call before resetting a scratchpad if the FINAL CALL option is specified.

– It can be used as a central point for system resources (for example, memory) which the external
function might acquire. The function could acquire the memory on the first call, keep its address
in the scratchpad, and refer to it in subsequent calls.

(In such a case where system resource is acquired, the FINAL CALL keyword should also be
specified; this causes a special call to be made at end-of-statement to allow the external function
to free any system resources acquired.)

• If NO SCRATCHPAD is specified then no scratchpad is allocated or passed to the external function.

SCRATCHPAD cannot be specified in combination with a PARAMETER STYLE JAVA function.

Chapter 1. Structured Query Language (SQL) 1157

FINAL CALL or NO FINAL CALL
This optional clause specifies whether a final call is to be made to an external function. The purpose
of such a final call is to enable the external function to free any system resources it has acquired. It
can be useful in conjunction with the SCRATCHPAD keyword in situations where the external function
acquires system resources such as memory and anchors them in the scratchpad.

• If FINAL CALL is specified, then at execution time an additional argument is passed to the external
function which specifies the type of call. The types of calls are:
Normal call

SQL arguments are passed and a result is expected to be returned.
First call

The first call to the external function for this reference to the user-defined function in this SQL
statement. The first call is a normal call.

Final call
A final call to the external function to enable the function to free up resources. The final call is
not a normal call. This final call occurs at the following times:
End-of-statement

This case occurs when the cursor is closed for cursor-oriented statements, or when the
statement is through executing otherwise.

End-of-parallel-task
This case occurs when the function is executed by parallel tasks.

End-of-transaction or interrupt
This case occurs when the normal end-of-statement does not occur. For example, the logic
of an application may for some reason bypass the close of the cursor. During this type of final
call, no SQL statements may be issued except for CLOSE cursor (SQLSTATE 38505). This
type of final call is indicated with a special value in the "call type" argument.

If a commit operation occurs while a cursor defined as WITH HOLD is open, a final call is made
at the subsequent close of the cursor or at the end of the application.

• If NO FINAL CALL is specified, no "call type" argument is passed to the external function, and no
final call is made.

FINAL CALL cannot be specified in combination with the following parameter settings:

• PARAMETER STYLE JAVA
• LANGUAGE CPP

ALLOW PARALLEL or DISALLOW PARALLEL
This optional clause specifies whether, for a single reference to the function, the invocation of
the function can be parallelized. In general, the invocations of most scalar functions should be
parallelizable, but there may be functions (such as those depending on a single copy of a scratchpad)
that cannot. If either ALLOW PARALLEL or DISALLOW PARALLEL are specified for a scalar function,
then this specification is accepted. The following questions should be considered in determining
which keyword is appropriate for the function.

• Are all the UDF invocations completely independent of each other? If YES, then specify ALLOW
PARALLEL.

• Does each UDF invocation update the scratchpad, providing value(s) that are of interest to the next
invocation? (For example, the incrementing of a counter.) If YES, then specify DISALLOW PARALLEL
or accept the default.

• Is there some external action performed by the UDF which should happen only on one database
partition? If YES, then specify DISALLOW PARALLEL or accept the default.

• Is the scratchpad used, but only so that some expensive initialization processing can be performed
a minimal number of times? If YES, then specify ALLOW PARALLEL.

• Is the function going to be invoked in a query that accesses a column-organized table? If YES, then
specifying ALLOW PARALLEL might improve performance.

1158 IBM Db2 V11.5: SQL Reference

In any case, the body of every external function should be in a directory that is available on every
database partition.

The default value is ALLOW PARALLEL, except if one or more of the following options is specified in
the statement.

• NOT DETERMINISTIC
• EXTERNAL ACTION
• SCRATCHPAD
• FINAL CALL

If any of these options is specified or implied, the default value is DISALLOW PARALLEL.

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the function will inherit their initial
values from the environment of the invoking statement. For a function invoked in the select-statement
of a cursor, the initial values are inherited from the environment when the cursor is opened. For a
routine invoked in a nested object (for example a trigger or view), the initial values are inherited from
the runtime environment (not inherited from the object definition).

No changes to the special registers are passed back to the invoker of the function.

Non-updatable special registers, such as the datetime special registers, reflect a property of the
statement currently executing, and are therefore set to their default values.

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known by the database server will
be passed to the UDF as an additional invocation-time argument (DBINFO) or not (NO DBINFO). NO
DBINFO is the default. DBINFO is not supported for the following clauses (SQLSTATE 42613):

• LANGUAGE OLE
• PARAMETER STYLE JAVA

If DBINFO is specified, then a structure is passed to the UDF which contains the following information:

• Data base name - the name of the currently connected database.
• Application ID - unique application ID which is established for each connection to the database.
• Application Authorization ID - the application runtime authorization ID, regardless of the nested

UDFs in between this UDF and the application.
• Code page - identifies the database code page.
• Schema name - under the exact same conditions as for Table name, contains the name of the

schema; otherwise blank.
• Table name - if and only if the UDF reference is either the right side of a SET clause in an UPDATE

statement or an item in the VALUES list of an INSERT statement, contains the unqualified name of
the table being updated or inserted; otherwise blank.

• Column name - under the exact same conditions as for Table name, contains the name of the
column being updated or inserted; otherwise blank.

• Database version/release - identifies the version, release and modification level of the database
server invoking the UDF.

• Platform - contains the server's platform type.
• Table function result column numbers - not applicable to external scalar functions.

TRANSFORM GROUP group-name
Indicates the transform group to be used for user-defined structured type transformations when
invoking the function. A transform is required if the function definition includes a user-defined
structured type as either a parameter or returns data type. If this clause is not specified, the default
group name DB2_FUNCTION is used. If the specified (or default) group-name is not defined for a
referenced structured type, an error is raised (SQLSTATE 42741). If a required FROM SQL or TO SQL

Chapter 1. Structured Query Language (SQL) 1159

transform function is not defined for the given group-name and structured type, an error is raised
(SQLSTATE 42744).

The transform functions, both FROM SQL and TO SQL, whether designated or implied, must be SQL
functions which properly transform between the structured type and its built in type attributes.

PREDICATES
Defines the filtering or index extension exploitation performed when this function is used in a
predicate. A predicate-specification allows the optional SELECTIVITY clause of a search-condition to
be specified. If the PREDICATES clause is specified, the function must be defined as DETERMINISTIC
with NO EXTERNAL ACTION (SQLSTATE 42613). If the PREDICATES clause is specified, and the
database is not a Unicode database, PARAMETER CCSID UNICODE must not be specified (SQLSTATE
42613).
WHEN comparison-operator

Introduces a specific use of the function in a predicate with a comparison operator ("=", "<", ">",
">=", "<=", "<>").
constant

Specifies a constant value with a data type comparable to the RETURNS type of the function
(SQLSTATE 42818). When a predicate uses this function with the same comparison operator
and this constant, the specified filtering and index exploitation will be considered by the
optimizer.

EXPRESSION AS expression-name
Provides a name for an expression. When a predicate uses this function with the same
comparison operator and an expression, filtering and index exploitation may be used. The
expression is assigned an expression name so that it can be used as a search function
argument. The expression-name cannot be the same as any parameter-name of the function
being created (SQLSTATE 42711). When an expression is specified, the type of the expression
is identified.

FILTER USING
Allows specification of an external function or a case expression to be used for additional filtering
of the result table.
function-invocation

Specifies a filter function that can be used to perform additional filtering of the result table.
This is a version of the defined function (used in the predicate) that reduces the number of
rows on which the user-defined predicate must be executed, to determine if rows qualify.
If the results produced by the index are close to the results expected for the user-defined
predicate, applying the filtering function may be redundant. If not specified, data filtering is
not performed.

This function can use any parameter-name, the expression-name, or constants as arguments
(SQLSTATE 42703), and returns an integer (SQLSTATE 428E4). A return value of 1 means the
row is kept, otherwise it is discarded.

This function must also:

• Not be defined with LANGUAGE SQL (SQLSTATE 429B4)
• Not be defined with NOT DETERMINISTIC or EXTERNAL ACTION (SQLSTATE 42845)
• Not have a structured data type as the data type of any of the parameters (SQLSTATE 428E3)
• Not include a subquery (SQLSTATE 428E4)
• Not include an XMLQUERY or XMLEXISTS expression (SQLSTATE 428E4)

If an argument invokes another function or method, these rules are also enforced for this
nested function or method. However, system-generated observer methods are allowed as
arguments to the filter function (or any function or method used as an argument), as long as
the argument evaluates to a built-in data type.

The definer of the function must have EXECUTE privilege on the specified filter function.

1160 IBM Db2 V11.5: SQL Reference

The function-invocation clause must not exceed 65 536 bytes in length in the database code
page (SQLSTATE 22001).

case-expression
Specifies a case expression for additional filtering of the result table. The searched-when-
clause and simple-when-clause can use parameter-name, expression-name, or a constant
(SQLSTATE 42703). An external function with the rules specified in FILTER USING function-
invocation may be used as a result-expression. Any function or method referenced in the
case-expression must also conform to the four rules listed under function-invocation.

Subqueries and XMLQUERY or XMLEXISTS expressions cannot be used anywhere in the case-
expression (SQLSTATE 428E4).

The case expression must return an integer (SQLSTATE 428E4). A return value of 1 in the
result-expression means that the row is kept; otherwise it is discarded.

The case-invocation clause must not exceed 65 536 bytes in length in the database code page
(SQLSTATE 22001).

index-exploitation
Defines a set of rules in terms of the search method of an index extension that can be used to
exploit the index.
SEARCH BY INDEX EXTENSION index-extension-name

Identifies the index extension. The index-extension-name must identify an existing index
extension.

EXACT
Indicates that the index lookup is exact in terms of the predicate evaluation. Use EXACT
indicate that neither the original user-defined predicate function or the filter need to be
applied after the index lookup. The EXACT predicate is useful when the index lookup returns
the same results as the predicate.

If EXACT is not specified, then the original user-defined predicate is applied after index
lookup. If the index is expected to provide only an approximation of the predicate, do not
specify the EXACT option.

If the index lookup is not used, then the filter function and the original predicate have to be
applied.

exploitation-rule
Describes the search targets and search arguments and how they can be used to perform the
index search through a search method defined in the index extension.
WHEN KEY (parameter-name1)

This defines the search target. Only one search target can be specified for a key. The
parameter-name1 value identifies parameter names of the defined function (SQLSTATE 42703
or 428E8).

The data type of parameter-name1 must match that of the source key specified in the index
extension (SQLSTATE 428EY). The match must be exact for built-in and distinct data types and
within the same structured type hierarchy for structured types.

This clause is true when the values of the named parameter are columns that are covered by
an index based on the index extension specified.

USE search-method-name(parameter-name2,...)
This defines the search argument. It identifies which search method to use from those defined
in the index extension. The search-method-name must match a search method defined in the
index extension (SQLSTATE 42743). The parameter-name2 values identify parameter names
of the defined function or the expression-name in the EXPRESSION AS clause (SQLSTATE
42703). It must be different from any parameter name specified in the search target
(SQLSTATE 428E9). The number of parameters and the data type of each parameter-name2
must match the parameters defined for the search method in the index extension (SQLSTATE

Chapter 1. Structured Query Language (SQL) 1161

42816). The match must be exact for built-in and distinct data types and within the same
structured type hierarchy for structured types.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row and column access control. The default is
NOT SECURED.
NOT SECURED

Indicates that the function is not considered secure. When the function is invoked, the arguments
of the function must not reference a column for which a column mask is enabled and column level
access control is activated for its table (SQLSTATE 428HA). This rule applies to the non secure
user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure. The function must be secure when it is
referenced in a row permission or a column mask (SQLSTATE 428H8).

STAY RESIDENT NO
Specifies that the library that is loaded for the function is not to remain resident in memory after the
function ends. This clause is ignored when:

• The NOT FENCED clause is specified.
• The LANGUAGE option is set to JAVA or CLR.

Notes
• Determining whether one data type is castable to another data type does not consider length or

precision and scale for parameterized data types such as CHAR and DECIMAL. Therefore, errors may
occur when using a function as a result of attempting to cast a value of the source data type to a value
of the target data type. For example, VARCHAR is castable to DATE but if the source type is actually
defined as VARCHAR(5), an error will occur when using the function.

• When choosing the data types for the parameters of a user-defined function, consider the rules for
promotion that will affect its input values (see "Promotion of data types"). For example, a constant
which may be used as an input value could have a built-in data type different from the one expected
and, more significantly, may not be promoted to the data type expected. Based on the rules for
promotion, it is generally recommended to use the following data types for parameters:

– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

• For portability of UDFs across platforms the following data types should not be used:

– FLOAT- use DOUBLE or REAL instead.
– NUMERIC- use DECIMAL instead.
– LONG VARCHAR- use CLOB (or BLOB) instead.

• A function and a method may not be in an overriding relationship (SQLSTATE 42745). For more
information about overriding, see "CREATE TYPE (Structured)".

• A function may not have the same signature as a method (comparing the first parameter-type of the
function with the subject-type of the method) (SQLSTATE 42723).

• Creating a function with a schema name that does not already exist will result in the implicit creation
of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• In a partitioned database environment, the use of SQL in external user-defined functions or methods is
not supported (SQLSTATE 42997).

• Only routines defined as NO SQL can be used to define an index extension (SQLSTATE 428F8).

1162 IBM Db2 V11.5: SQL Reference

• If the function allows SQL, the external program must not attempt to access any federated objects
(SQLSTATE 55047).

• A Java routine defined as NOT FENCED will be invoked as if it had been defined as FENCED
THREADSAFE.

• XML parameters are only supported in LANGUAGE JAVA external functions when the PARAMETER
STYLE DB2GENERAL clause is specified.

• Table access restrictions

If a function is defined as READS SQL DATA, no statement in the function can access a table that is
being modified by the statement which invoked the function (SQLSTATE 57053). For example, suppose
the user-defined function BONUS() is defined as READS SQL DATA. If the statement UPDATE EMPLOYEE
SET SALARY = SALARY + BONUS(EMPNO) is invoked, no SQL statement in the BONUS function can read
from the EMPLOYEE table.

• Setting of the default value: Parameters of a function that are defined with a default value are
set to their default value when the functions is invoked, but only if a value is not supplied for the
corresponding argument, or is specified as DEFAULT, when the function is invoked.

• Privileges: The definer of a function always receives the EXECUTE privilege WITH GRANT OPTION on
the function, as well as the right to drop the function.

When the function is used in an SQL statement, the function definer must have the EXECUTE privilege
on any packages used by the function or EXECUTEIN privilege or DATAACCESS authority on the schema
containing the packages.

• EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked in other than the outermost
select list, the results are unpredictable since the number of times the function is invoked will vary
depending on the access plan used.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of this database product and with other database products. These alternatives are non-
standard and should not be used.

– PARAMETER STYLE DB2SQL can be specified in place of PARAMETER STYLE SQL
– NOT VARIANT can be specified in place of DETERMINISTIC, and VARIANT can be specified in place of

NOT DETERMINISTIC
– NULL CALL can be specified in place of CALLED ON NULL INPUT, and NOT NULL CALL can be specified

in place of RETURNS NULL ON NULL INPUT

The following syntax is accepted as the default behavior:

– ASUTIME NO LIMIT
– NO COLLID
– PROGRAM TYPE SUB
– STAY RESIDENT NO
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database if PARAMETER CCSID UNICODE is not specified

• Creating a secure function: Normally users with SECADM authority do not have privileges to create
database objects such as triggers and functions. Typically; they will examine the data accessed by
the function, ensure it is secure, then grant the CREATE_SECURE_OBJECT authority to someone who
currently has required privileges to create a secure user-defined function. After the function is created,
they will revoke the CREATE_SECURE_OBJECT authority from the function owner.

The SECURED attribute is considered to be an assertion that declares the user has established a change
control audit procedure for all changes to the user-defined function. The database manager assumes
that such a control audit procedure is in place for all subsequent ALTER FUNCTION statements or
changes to external packages.

• Invoking other user-defined functions in a secure function: If a secure user-defined function invokes
other user-defined functions, the database manager does not validate whether those nested user-

Chapter 1. Structured Query Language (SQL) 1163

defined functions have the SECURED attribute. If those nested functions can access sensitive data, the
user with SECADM authority needs to ensure those functions are allowed to access those data and a
change control audit procedure has been established for all changes to those functions.

• Replacing an existing function such that the secure attribute is changed (from SECURED to NOT
SECURED and vice versa): Packages and dynamically cached SQL statements that depend on the
function may be invalidated because the secure attribute affects the access path selection for
statements involving tables for which row or column level access control is activated.

Examples
1. Pellow is registering the CENTER function in his PELLOW schema. Let those keywords that will default

do so, and let the system provide a function specific name:

 CREATE FUNCTION CENTER (INT,FLOAT)
 RETURNS FLOAT
 EXTERNAL NAME 'mod!middle'
 LANGUAGE C
 PARAMETER STYLE SQL
 DETERMINISTIC
 NO SQL
 NO EXTERNAL ACTION

2. Now, McBride (who has DBADM authority) is registering another CENTER function in the PELLOW
schema, giving it an explicit specific name for subsequent data definition language use, and explicitly
providing all keyword values. Note also that this function uses a scratchpad and presumably is
accumulating data there that affects subsequent results. Since DISALLOW PARALLEL is specified, any
reference to the function is not parallelized and therefore a single scratchpad is used to perform some
one-time only initialization and save the results.

 CREATE FUNCTION PELLOW.CENTER (FLOAT, FLOAT, FLOAT)
 RETURNS DECIMAL(8,4) CAST FROM FLOAT
 SPECIFIC FOCUS92
 EXTERNAL NAME 'effects!focalpt'
 LANGUAGE C PARAMETER STYLE SQL
 DETERMINISTIC FENCED NOT NULL CALL NO SQL NO EXTERNAL ACTION
 SCRATCHPAD NO FINAL CALL
 DISALLOW PARALLEL

3. The following example is the C language user-defined function program written to implement the rule
output = 2 * input - 4 returning NULL if and only if the input is null. It could be written even
more simply (that is, without null checking), if the CREATE FUNCTION statement had used NOT NULL
CALL. The CREATE FUNCTION statement:

 CREATE FUNCTION ntest1 (SMALLINT)
 RETURNS SMALLINT
 EXTERNAL NAME 'ntest1!nudft1'
 LANGUAGE C PARAMETER STYLE SQL
 DETERMINISTIC NOT FENCED NULL CALL
 NO SQL NO EXTERNAL ACTION

The program code:

#include "sqlsystm.h"
/* NUDFT1 IS A USER_DEFINED SCALAR FUNCTION */
/* udft1 accepts smallint input
and produces smallint output
implementing the rule:
if (input is null)
set output = null;
else
set output = 2 * input - 4;
*/
void SQL_API_FN nudft1
(short *input, /* ptr to input arg */
short *output, /* ptr to where result goes */
short *input_ind, /* ptr to input indicator var */
short *output_ind, /* ptr to output indicator var */
char sqlstate[6], /* sqlstate, allows for null-term */
char fname[28], /* fully qual func name, nul-term */
char finst[19], /* func specific name, null-term */

1164 IBM Db2 V11.5: SQL Reference

char msgtext[71]) /* msg text buffer, null-term */
{
/* first test for null input */
if (*input_ind == -1)
{
/* input is null, likewise output */
*output_ind = -1;
}
else
{
/* input is not null. set output to 2*input-4 */
*output = 2 * (*input) - 4;
/* and set out null indicator to zero */
*output_ind = 0;
}
/* signal successful completion by leaving sqlstate as is */
/* and exit */
return;
}
/* end of UDF: NUDFT1 */

4. The following example registers a Java UDF which returns the position of the first vowel in a string. The
UDF is written in Java, is to be run fenced, and is the findvwl method of class javaUDFs.

 CREATE FUNCTION findv (CLOB(100K))
 RETURNS INTEGER
 FENCED
 LANGUAGE JAVA
 PARAMETER STYLE JAVA
 EXTERNAL NAME 'javaUDFs.findvwl'
 NO EXTERNAL ACTION
 CALLED ON NULL INPUT
 DETERMINISTIC
 NO SQL

5. This example outlines a user-defined predicate WITHIN that takes two parameters, g1 and g2, of type
SHAPE as input:

CREATE FUNCTION within (g1 SHAPE, g2 SHAPE)
RETURNS INTEGER
LANGUAGE C
PARAMETER STYLE SQL
DETERMINISTIC
NOT FENCED
NO SQL
NO EXTERNAL ACTION
EXTERNAL NAME 'db2sefn!SDESpatilRelations'
PREDICATES
WHEN = 1
FILTER USING mbrOverlap(g1..xmin, g1..ymin, g1..xmax, g1..max,
g2..xmin, g2..ymin, g2..xmax, g2..ymax)
SEARCH BY INDEX EXTENSION gridIndex
WHEN KEY(g1) USE withinExplRule(g2)
WHEN KEY(g2) USE withinExplRule(g1)

The description of the WITHIN function is similar to that of any user-defined function, but the following
additions indicate that this function can be used in a user-defined predicate.

• PREDICATES WHEN = 1 indicates that when this function appears as

 within(g1, g2) = 1

in the WHERE clause of a DML statement, the predicate is to be treated as a user-defined predicate
and the index defined by the index extension gridIndex should be used to retrieve rows that satisfy
this predicate. If a constant is specified, the constant specified during the DML statement has
to match exactly the constant specified in the create index statement. This condition is provided
mainly to cover Boolean expression where the result type is either a 1 or a 0. For other cases, the
EXPRESSION clause is a better choice.

• FILTER USING mbrOverlap refers to a filtering function mbrOverlap, which is a cheaper version
of the WITHIN predicate. In this example, the mbrOverlap function takes the minimum bounding
rectangles as input and quickly determines if they overlap or not. If the minimum bounding

Chapter 1. Structured Query Language (SQL) 1165

rectangles of the two input shapes do not overlap, then g1 will not be contained with g2. Therefore
the tuple can be safely discarded, avoiding the application of the expensive WITHIN predicate.

• The SEARCH BY INDEX EXTENSION clause indicates that combinations of index extension and
search target can be used for this user-defined predicate.

6. This example outlines a user-defined predicate DISTANCE that takes two parameters, P1 and P2, of
type POINT as input:

 CREATE FUNCTION distance (P1 POINT, P2 POINT)
 RETURNS INTEGER
 LANGUAGE C
 PARAMETER STYLE SQL
 DETERMINISTIC
 NOT FENCED
 NO SQL
 NO EXTERNAL ACTION
 EXTERNAL NAME 'db2sefn!SDEDistances'
 PREDICATES
 WHEN > EXPRESSION AS distExpr
 SEARCH BY INDEX EXTENSION gridIndex
 WHEN KEY(P1) USE distanceGrRule(P2, distExpr)
 WHEN KEY(P2) USE distanceGrRule(P1, distExpr)

The description of the DISTANCE function is similar to that of any user-defined function, but the
following additions indicate that when this function is used in a predicate, that predicate is a user-
defined predicate.

• PREDICATES WHEN > EXPRESSION AS distExpr is another valid predicate specification. When an
expression is specified in the WHEN clause, the result type of that expression is used for determining
if the predicate is a user-defined predicate in the DML statement. For example:

 SELECT T1.C1
 FROM T1, T2
 WHERE distance (T1.P1, T2.P1) > T2.C2

The predicate specification distance takes two parameters as input and compares the results with
T2.C2, which is of type INTEGER. Since only the data type of the right side expression matters, (as
opposed to using a specific constant), it is better to choose the EXPRESSION clause in the CREATE
FUNCTION DDL for specifying a wildcard as the comparison value.

Alternatively, the following statement is also a valid user-defined predicate:

 SELECT T1.C1
 FROM T1, T2
 WHERE distance(T1.P1, T2.P1) > distance (T1.P2, T2.P2)

There is currently a restriction that only the right side is treated as the expression; the term on the
left side is the user-defined function for the user-defined predicate.

• The SEARCH BY INDEX EXTENSION clause indicates that combinations of index extension and
search target can be used for this user-defined-predicate. In the case of the distance function,
the expression identified as distExpr is also one of the search arguments that is passed to the
range-producer function (defined as part of the index extension). The expression identifier is used to
define a name for the expression so that it is passed to the range-producer function as an argument.

CREATE FUNCTION (external table)
The CREATE FUNCTION (External Table) statement is used to register a user-defined external table
function at the current server.

A table function can be used in the FROM clause of a SELECT, and returns a table to the SELECT by
returning one row at a time.

1166 IBM Db2 V11.5: SQL Reference

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CREATE_EXTERNAL_ROUTINE authority on the database and at least one of the following authorities:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the function
does not exist

– CREATEIN privilege on the schema, if the schema name of the function exists
– SCHEMAADM authority on the schema, if the schema name of the function exists

• DBADM authority

Group privileges are not considered for any table or view specified in the CREATE FUNCTION statement.

To create a not-fenced function, the privileges held by the authorization ID of the statement must also
include at least one of the following authorities:

• CREATE_NOT_FENCED_ROUTINE authority on the database
• DBADM authority

To create a fenced function, no additional authorities or privileges are required.

To replace an existing function, the authorization ID of the statement must be the owner of the existing
function (SQLSTATE 42501).

If the SECURED option is specified, the authorization ID of the statement must include SECADM or
CREATE_SECURE_OBJECT authority (SQLSTATE 42501).

Syntax
CREATE

OR REPLACE

FUNCTION function-name (

,

parameter-declaration

) ● RETURNS

TABLE (

,

column-name data-type2

AS LOCATOR

)

GENERIC TABLE

option-list

parameter-declaration

parameter-name

data-type1

default-clause AS LOCATOR

data-type1, data-type2

Chapter 1. Structured Query Language (SQL) 1167

built-in-type

distinct-type-name

structured-type-name

REF (type-name)

built-in-type

1168 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

SYSPROC.
DB2SECURITYLABEL

2 3

default-clause

Chapter 1. Structured Query Language (SQL) 1169

DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list

1170 IBM Db2 V11.5: SQL Reference

● LANGUAGE C

JAVA

CLR

OLE

CPP

4
●

SPECIFIC specific-name

●

EXTERNAL

NAME 'string'

identifier

● PARAMETER STYLE

DB2GENERAL

SQL

NPSGENERIC

●

PARAMETER CCSID ASCII

UNICODE

●

NOT DETERMINISTIC

DETERMINISTIC

●
FENCED

FENCED ● THREADSAFE

NOT THREADSAFE

NOT FENCED ●
THREADSAFE

●
RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

●

READS SQL DATA

NO SQL

CONTAINS SQL

●

STATIC DISPATCH
●

EXTERNAL ACTION

NO EXTERNAL ACTION

●

NO SCRATCHPAD

SCRATCHPAD
100

length

●
NO FINAL CALL

FINAL CALL

●

DISALLOW PARALLEL

ALLOW PARALLEL EXECUTE ON ALL
DATABASE PARTITIONS

RESULT TABLE DISTRIBUTED

●
NO DBINFO

DBINFO

●

CARDINALITY integer

●

TRANSFORM GROUP group-name

●
INHERIT SPECIAL REGISTERS

●
NOT SECURED

SECURED

●

STAY RESIDENT NO

●

Notes:
1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).

Chapter 1. Structured Query Language (SQL) 1171

2 DB2SECURITYLABEL is the built-in distinct type that must be used to define the row security label
column of a protected table.
3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is implicit and cannot be
explicitly specified (SQLSTATE 42842). The default value for a column of type DB2SECURITYLABEL is
the session authorization ID's security label for write access.
4 For information about creating LANGUAGE OLE DB external table functions, see "CREATE FUNCTION
(OLE DB External Table)". For information about creating LANGUAGE SQL table functions, see "CREATE
FUNCTION (SQL Scalar, Table, or Row)".

Description
OR REPLACE

Specifies to replace the definition for the function if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the function are not affected. This option can be
specified only by the owner of the object. This option is ignored if a definition for the function does
not exist at the current server. To replace an existing function, the specific name and function name
of the new definition must be the same as the specific name and function name of the old definition,
or the signature of the new definition must match the signature of the old definition. Otherwise, a new
function is created.

If the function is referenced in the definition of a row permission or a column mask, the function
cannot be replaced (SQLSTATE 42893).

function-name
Names the function being defined. It is a qualified or unqualified name that designates a function. The
unqualified form of function-name is an SQL identifier. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period and an SQL identifier. The
qualified name must not be the same as the data type of the first parameter, if that first parameter is a
structured type.

The name, including the implicit or explicit qualifiers, together with the number of parameters and the
data type of each parameter (without regard for any length, precision or scale attributes of the data
type) must not identify a function described in the catalog (SQLSTATE 42723). The unqualified name,
together with the number and data types of the parameters, while of course unique within its schema,
need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with "SYS" (SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system use, and cannot be used
as a function-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,
NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

The same name can be used for more than one function if there is some difference in the signature
of the functions. Although there is no prohibition against it, an external user-defined table function
should not be given the same name as a built-in function.

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the data type and optional
default value of each parameter. One entry in the list must be specified for each parameter that the
function will expect to receive. No more than 90 parameters are allowed (SQLSTATE 54023).

It is possible to register a function that has no parameters. In this case, the parentheses must still be
coded, with no intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have exactly the same
type for all corresponding parameters. Lengths, precisions, and scales are not considered in this
type comparison. Therefore, CHAR(8) and CHAR(35) are considered to be the same type, as are

1172 IBM Db2 V11.5: SQL Reference

DECIMAL(11,2) and DECIMAL (4,3). A weakly typed distinct type specified for a parameter is
considered to be the same data type as the source type of the distinct type. For a Unicode database,
CHAR(13) and GRAPHIC(8) are considered to be the same type. There is some further bundling of
types that causes them to be treated as the same type for this purpose, such as DECIMAL and
NUMERIC. A duplicate signature returns an error (SQLSTATE 42723).

parameter-name
Specifies an optional name for the input parameter. The name cannot be the same as any other
parameter-name in the parameter list (SQLSTATE 42734).

data-type1
Specifies the data type of the input parameter. The data type can be a built-in data type, a distinct
type, a structured type, or a reference type. For a more complete description of each built-in data
type, see "CREATE TABLE". Some data types are not supported in all languages. For details on the
mapping between SQL data types and host language data types, see "Data types that map to SQL
data types in embedded SQL applications".

• A datetime type parameter is passed as a character data type, and the data is passed in the ISO
format.

• DECIMAL (and NUMERIC) are invalid with LANGUAGE C and OLE (SQLSTATE 42815).
• XML is invalid with LANGUAGE OLE.
• Because the XML value that is seen inside a function is a serialized version of the XML value that

is passed as a parameter in the function call, parameters of type XML must be declared using
the syntax XML AS CLOB(n).

• CLR does not support DECIMAL scale greater than 28 (SQLSTATE 42613).
• Array types cannot be specified (SQLSTATE 42815).
• BINARY and VARBINARY data types are invalid with LANGUAGE CLR and OLE (SQLSTATE

42815).

For a user-defined distinct type, the length, precision, or scale attributes for the parameter are
those of the source type of the distinct type (those specified on CREATE TYPE). A distinct type
parameter is passed as the source type of the distinct type. If the name of the distinct type is
unqualified, the database manager resolves the schema name by searching the schemas in the
SQL path.

For a user-defined structured type, the appropriate transform functions must exist in the
associated transform group.

For a reference type, the parameter can be specified as REF(type-name) if the parameter is
unscoped.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The special registers that can be specified as
the default are that same as those that can be specified for a column default (see default-clause in
the CREATE TABLE statement). Other special registers can be specified as the default by using an
expression.

The expression can be any expression of the type described in "Expressions". If a default value is
not specified, the parameter has no default and the corresponding argument cannot be omitted on
invocation of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or SQLSTATE 429BL). The
expression must be assignment compatible to the parameter data type (SQLSTATE 42821).

A default cannot be specified for a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE
429BB).

AS LOCATOR
Specifies that a locator to the value of the parameter is passed to the function instead of the
actual value. Specify AS LOCATOR only for parameters with a LOB data type or a distinct type

Chapter 1. Structured Query Language (SQL) 1173

based on a LOB data type (SQLSTATE 42601). Passing locators instead of values can result in
fewer bytes being passed to the function, especially when the value of the parameter is very large.

The AS LOCATOR clause has no effect on determining whether data types can be promoted, nor
does it affect the function signature, which is used in function resolution.

If the function is FENCED and has the NO SQL option, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

RETURNS
Specifies the output of the function.
TABLE

Specifies that the output of the function is a table. The parentheses that follow this keyword
delimit a list of the names and types of the columns of the table. The list style resembles the
style of a simple CREATE TABLE statement which has no additional specifications (constraints, for
example). No more than 255 columns are allowed (SQLSTATE 54011).
column-name

Specifies the name of this column. The name cannot be qualified and the same name cannot
be used for more than one column of the table.

data-type2
Specifies the data type of the column, and can be any data type supported for a parameter of a
UDF written in the particular language, except for structured types (SQLSTATE 42997).
AS LOCATOR

When data-type2 is a LOB type or distinct type based on a LOB type, the use of this option
indicates that the function is returning a locator for the LOB value that is instantiated in the
result table.

The valid types for use with this clause are discussed in the "CREATE FUNCTION (external
scalar)" statement topic.

GENERIC TABLE
Specifies that the output of the function is a generic table. This clause is allowed only if you
specify the LANGUAGE JAVA clause and the PARAMETER STYLE DB2GENERAL clause (SQLSTATE
42613).

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined. This specific name can
be used when sourcing on this function, dropping the function, or commenting on the function. It can
never be used to invoke the function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier. The name, including the
implicit or explicit qualifier, must not identify another function instance that exists at the application
server; otherwise an error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used. If a qualifier is
specified, it must be the same as the explicit or implicit qualifier of function-name or an error
(SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database manager. The unique
name is SQL followed by a character timestamp, SQLyymmddhhmmssxxx.

EXTERNAL
This clause indicates that the CREATE FUNCTION statement is being used to register a new function
based on code written in an external programming language and adhering to the documented linkage
conventions and interface.

If NAME clause is not specified "NAME function-name" is assumed.

1174 IBM Db2 V11.5: SQL Reference

NAME 'string'
This clause identifies the user-written code that implements the function being defined.

The 'string' option is a string constant with a maximum of 254 bytes. The format used for the string
is dependent on the LANGUAGE specified.

• For LANGUAGE C:

The string specified is the library name and function within the library, which the database
manager invokes to execute the user-defined function being created. The library (and the
function within the library) do not need to exist when the CREATE FUNCTION statement is
executed. However, when the function is used in an SQL statement, the library and function
within the library must exist and be accessible from the database server machine.

The string can be specified as follows:
' library_id

absolute_path_id ! func_id

'

Extraneous blanks are not permitted within the single quotation marks.

library_id
Identifies the library name containing the function. The database manager will look for the
library as follows:

Operating system Library name location

Linux
AIX

If myfunc was given as the library_id, and
the database manager is being run from /u/
production, the database manager will
look for the function in library /u/
production/sqllib/function/myfunc

Windows The database manager will look for the
function in a directory path that is specified
by the LIBPATH or PATH environment
variable

absolute_path_id
Identifies the full path name of the file containing the function. The format depends on the
operating system, as illustrated in the following table:

Operating system Full path name example

Linux
AIX

A value of '/u/jchui/mylib/myfunc' would
cause the database manager to look in /u/
jchui/mylib for the myfunc shared
library.

Windows A value of 'd:\mylib\myfunc.dll' would
cause the database manager to load the
dynamic link library, myfunc.dll, from the
d:\mylib directory. If an absolute path ID
is being used to identify the routine body, be
sure to append the .dll extension.

! func_id
Identifies the entry point name of the function to be invoked. The ! serves as a delimiter
between the library ID and the function ID. The format depends on the operating system, as
illustrated in the following table:

Chapter 1. Structured Query Language (SQL) 1175

Operating system Entry point name of the function

Linux
AIX

A value of 'mymod!func8' would direct
the database manager to look for
the library $inst_home_dir/sqllib/
function/mymod and to use entry point
func8 within that library.

Windows A value of 'mymod!func8' would direct the
database manager to load the mymod.dll
file and to call the func8() function in the
dynamic link library (DLL).

If the string is not properly formed, an error is returned (SQLSTATE 42878).

In any case, the body of every external function should be in a directory that is available on
every database partition.

• For LANGUAGE JAVA:

The string specified contains the optional jar file identifier, class identifier and method identifier,
which the database manager invokes to execute the user-defined function being created.
The class identifier and method identifier do not need to exist when the CREATE FUNCTION
statement is executed. If a jar_id is specified, it must exist when the CREATE FUNCTION
statement is executed. However, when the function is used in an SQL statement, the method
identifier must exist and be accessible from the database server machine.

The string can be specified as follows:
'

jar_id :

class_id .

!

method_id '

Extraneous blanks are not permitted within the single quotation marks.

jar_id
Identifies the jar identifier given to the jar collection when it was installed in the database. It
can be either a simple identifier, or a schema qualified identifier. Examples are 'myJar' and
'mySchema.myJar'

class_id
Identifies the class identifier of the Java object. If the class is part of a package, the class
identifier part must include the complete package prefix, for example, 'myPacks.UserFuncs'.
The directory the Java virtual machine will look in for the classes depends on the operating
system, as illustrated in the following table:

Operating system
Directory the Java virtual machine will
look in for the classes

Linux
AIX

'.../myPacks/UserFuncs/'

Windows '...\myPacks\UserFuncs\'

method_id
Identifies the method name of the Java object to be invoked.

• For LANGUAGE CLR:

The string specified represents the .NET assembly (library or executable), the class within that
assembly, and the method within the class that the database manager invokes to execute the

1176 IBM Db2 V11.5: SQL Reference

function being created. The module, class, and method do not need to exist when the CREATE
FUNCTION statement is executed. However, when the function is used in an SQL statement,
the module, class, and method must exist and be accessible from the database server machine;
otherwise, an error is returned (SQLSTATE 42724).

C++ routines that are compiled with the '/clr' compiler option to indicate that they include
managed code extensions must be cataloged as 'LANGUAGE CLR' and not 'LANGUAGE C'. The
database server needs to know that the .NET infrastructure is being utilized in a user-defined
function in order to make necessary runtime decisions. All user-defined functions using the .NET
infrastructure must be cataloged as 'LANGUAGE CLR'.

The string can be specified as follows:
' assembly : class_id ! method_id '

The name must be enclosed by single quotation marks. Extraneous blanks are not permitted.

assembly
Identifies the DLL or other assembly file in which the class resides. Any file extensions (such
as .dll) must be specified. If the full path name is not given, the file must reside in the
function directory of the database product's installation path

For example, c:\sqllib\function.

If the file resides in a subdirectory of the install function directory, the subdirectory can be
given before the file name rather than specifying the full path.

For example, if your install directory is c:\sqllib and your assembly file is
c:\sqllib\function\myprocs\mydotnet.dll, it is only necessary to specify
'myprocs\mydotnet.dll' for the assembly.

The case sensitivity of this parameter is the same as the case sensitivity of the file system.

class_id
Specifies the name of the class within the given assembly in which the method that is to
be invoked resides. If the class resides within a namespace, the full namespace must be
given in addition to the class. For example, if the class EmployeeClass is in namespace
MyCompany.ProcedureClasses, then MyCompany.ProcedureClasses.EmployeeClass must be
specified for the class. Note that the compilers for some .NET languages will add the project
name as a namespace for the class, and the behavior may differ depending on whether the
command line compiler or the GUI compiler is used. This parameter is case sensitive.

method_id
Specifies the method within the given class that is to be invoked. This parameter is case
sensitive.

• For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or class identifier (clsid), and
method identifier, which the database manager invokes to execute the user-defined function
being created. The programmatic identifier or class identifier, and method identifier do not need
to exist when the CREATE FUNCTION statement is executed. However, when the function is
used in an SQL statement, the method identifier must exist and be accessible from the database
server machine; otherwise, an error is returned (SQLSTATE 42724).

The string can be specified as follows:
' progid

clsid

! method_id '

Extraneous blanks are not permitted within the single quotation marks.

progid
Identifies the programmatic identifier of the OLE object.

Chapter 1. Structured Query Language (SQL) 1177

progid is not interpreted by the database manager but only forwarded to the OLE APIs at
run time. The specified OLE object must be creatable and support late binding (also called
IDispatch-based binding).

clsid
Identifies the class identifier of the OLE object to create. It can be used as an alternative for
specifying a progid in the case that an OLE object is not registered with a progid. The clsid
has the form:

{nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. clsid is not interpreted by the database manager but
only forwarded to the OLE APIs at run time.

method_id
Identifies the method name of the OLE object to be invoked.

• For LANGUAGE CPP:

The string specified is the library identifier and class identifier within the library, which contains
the evaluate method the database manager invokes to execute the user-defined function that is
being created. If the string is not properly formed, an error is returned (SQLSTATE 42878).

It is not necessary that the library (or the class within the library) exist when the CREATE
FUNCTION statement is executed. However, when the function is used in an SQL statement,
the library and class within the library must exist and be accessible from the database server
machine; otherwise, an error is returned (SQLSTATE 42724).

The body of every external function should be in a directory that is available on every database
partition.

The string can be specified as follows:
' library_id

absolute_path_id

! class_id '

Extraneous blanks are not permitted within the single quotation marks.
library_id

The name of the library that contains the function:

– On a UNIX system, if the specified library ID is myfunc, and if the database manager
is being run from /u/production, the database manager looks for the function in the
following library:

/u/production/sqllib/function/myfunc

– On a Windows operating system, the database manager looks for the function in the
directory path specified by the LIBPATH or PATH environment variable.

absolute_path_id
The full path of the file that contains the function. For example:

– On a UNIX system, the following specification causes the database manager to look
in /u/jchui/mylib for the myfunc shared library:

'/u/jchui/mylib/myfunc'

– On a Windows operating system, the following specification causes the database manager
to load the dynamic link library myfunc.dll from the d:\mylib directory:

'd:\mylib\myfunc.dll'

If an absolute path ID is being used to identify the routine body, be sure to append the .dll
extension.

1178 IBM Db2 V11.5: SQL Reference

class_id
The name of the class that contains the methods that are to be invoked.

For example, if you specify 'mymod!myclass':

– On a UNIX system, the database manager looks for the library $inst_home_dir/sqllib/
function/mymod and invokes the evaluate method of the myclass class in that library.

– On a Windows operating system, the database manager loads the mymod.dll file and calls the
evaluate method of the myclass class in the dynamic link library (DLL).

NAME identifier
This clause identifies the name of the user-written code which implements the function being
defined. The identifier specified is an SQL identifier. The SQL identifier is used as the library-id in
the string. Unless it is a delimited identifier, the identifier is folded to upper case. If the identifier
is qualified with a schema name, the schema name portion is ignored. This form of NAME can only
be used with LANGUAGE C.

LANGUAGE
This mandatory clause is used to specify the language interface convention to which the user-defined
function body is written.
C

This means the database manager will call the user-defined function as if it were a C function. The
user-defined function must conform to the C language calling and linkage convention as defined
by the standard ANSI C prototype.

JAVA
This means the database manager will call the user-defined function as a method in a Java class.

CLR
The database manager calls the user-defined function as a method in a .NET class. LANGUAGE
CLR is supported only for user-defined functions running on Windows operating systems. NOT
FENCED cannot be specified for a CLR routine (SQLSTATE 42601).

OLE
The database manager calls the user-defined function as if it were a method exposed by an OLE
automation object. The user-defined function must conform with the OLE automation data types
and invocation mechanism, as described in the OLE Automation Programmer's Reference.

LANGUAGE OLE is supported for user-defined functions for this database product only in Windows
32-bit operating systems.

For information about creating LANGUAGE OLE DB external table functions, see "CREATE
FUNCTION (OLE DB External Table)".

CPP
The database manager calls the user-defined function by invoking the evaluate method of a C++
class.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to and returning the value
from functions.
DB2GENERAL

Used to specify the conventions for passing parameters to and returning the value from external
functions that are defined as a method in a Java class. This can only be specified when LANGUAGE
JAVA is used.

SQL
Used to specify the conventions for passing parameters to and returning the value from external
functions that conform to C language calling and linkage conventions, methods exposed by OLE
automation objects, or public static methods of a .NET object. This must be specified when
LANGUAGE C, LANGUAGE CLR, or LANGUAGE OLE is used.

Chapter 1. Structured Query Language (SQL) 1179

NPSGENERIC

Used to specify the conventions for passing parameters to and returning the value from external
functions that are defined as a method in a C++ class. This can specified only when the
LANGUAGE option is set to CPP.

When NPSGENERIC is specified as the parameter style, the UDF is written in C++ as a derived
class of the nz.udx_ver2.Udf class. The class must implement the following two methods in
addition to its constructor and destructor:
static Udf* Udf::instantiate(UdxInit *pInit)

Static member method instantiate(), which must instantiate a new instance of the UDF derived
class and return a pointer to the new instance as a class Udf pointer. The engine uses this
method to create an instance of a UDF object.

virtual ReturnValue Udf::evaluate()
Member method evaluate(), which is called by the engine to evaluate the user function and
return a value to the caller.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of the function. If the
PARAMETER CCSID clause is not specified, the default is PARAMETER CCSID UNICODE for Unicode
databases, and PARAMETER CCSID ASCII for all other databases.
ASCII

Specifies that string data is encoded in the database code page. If the database is a Unicode
database, PARAMETER CCSID ASCII cannot be specified (SQLSTATE 56031). When the function is
invoked, the application code page for the function is the database code page.

UNICODE
Specifies that string data is encoded in Unicode. If the database is a Unicode database, character
data is in UTF-8, and graphic data is in UCS-2. If the database is not a Unicode database,
character data is in UTF-8. In either case, when the function is invoked, the application code page
for the function is 1208.

If the database is not a Unicode database, and a function with PARAMETER CCSID UNICODE is
created, the function cannot have any graphic types or user-defined types (SQLSTATE 560C1).

If the database is not a Unicode database, table functions can be created with PARAMETER CCSID
UNICODE, but the following rules apply:

• The alternate collating sequence must be specified in the database configuration before creating
the table function (SQLSTATE 56031). PARAMETER CCSID UNICODE table functions collate with
the alternate collating sequence specified in the database configuration.

• Tables or table functions created with CCSID ASCII, and tables or table functions created with
CCSID UNICODE, cannot both be used in a single SQL statement (SQLSTATE 53090). This
applies to tables and table functions referenced directly in the statement, as well as to tables
and table functions referenced indirectly (such as, for example, through referential integrity
constraints, triggers, materialized query tables, and tables in the body of views).

• Table functions created with PARAMETER CCSID UNICODE cannot be referenced in SQL
functions or SQL methods (SQLSTATE 560C0).

• An SQL statement that references a table function created with PARAMETER CCSID UNICODE
cannot invoke an SQL function or SQL method (SQLSTATE 53090).

• Graphic types, the XML type, and user-defined types cannot be used as parameters to
PARAMETER CCSID UNICODE table functions (SQLSTATE 560C1).

• SQL statements are always interpreted in the database code page. In particular, this means
that every character in literals, hex literals, and delimited identifiers must have a representation
in the database code page; otherwise, the character will be replaced with the substitution
character.

If the database is not a Unicode database, and the alternate collating sequence has been specified
in the database configuration, functions can be created with either PARAMETER CCSID ASCII or

1180 IBM Db2 V11.5: SQL Reference

PARAMETER CCSID UNICODE. All string data passed into and out of the function will be converted to
the appropriate code page.

This clause cannot be specified with LANGUAGE CPP, LANGUAGE OLE, LANGUAGE JAVA, or
LANGUAGE CLR (SQLSTATE 42613).

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the same results for given
argument values (DETERMINISTIC) or whether the function depends on some state values that
affect the results (NOT DETERMINISTIC). That is, a DETERMINISTIC function must always return
the same table from successive invocations with identical inputs. Optimizations taking advantage
of the fact that identical inputs always produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a table function that is non-deterministic is one that references
special registers, global variables, non-deterministic functions, or sequences in a way that affects the
table function result table.

FENCED or NOT FENCED
This clause specifies whether the function is considered "safe" to run in the database manager
operating environment's process or address space (NOT FENCED), or not (FENCED).

If a function is registered as FENCED, the database manager protects its internal resources (for
example, data buffers) from access by the function. Most functions will have the option of running
as FENCED or NOT FENCED. In general, a function running as FENCED will not perform as well as a
similar one running as NOT FENCED.

CAUTION: Use of NOT FENCED for functions not adequately coded, reviewed and tested can
compromise the integrity of your database. This database product safeguards against many
of the common types of inadvertent failures that might occur, but cannot guarantee complete
integrity when NOT FENCED user defined functions are used.

Only FENCED can be specified for a function with LANGUAGE OLE or NOT THREADSAFE (SQLSTATE
42613).

If the function is FENCED and has the NO SQL option, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

Either SYSADM authority, DBADM authority, or a special authority (CREATE_NOT_FENCED_ROUTINE)
is required to register a user-defined function as NOT FENCED.

LANGUAGE CLR user-defined functions cannot be created when specifying the NOT FENCED clause
(SQLSTATE 42601).

THREADSAFE or NOT THREADSAFE
Specifies whether the function is considered safe to run in the same process as other routines
(THREADSAFE), or not (NOT THREADSAFE).

If the function is defined with LANGUAGE other than OLE:

• If the function is defined as THREADSAFE, the database manager can invoke the function in the
same process as other routines. In general, to be threadsafe, a function should not use any global or
static data areas. Most programming references include a discussion of writing threadsafe routines.
Both FENCED and NOT FENCED functions can be THREADSAFE.

• If the function is defined as NOT THREADSAFE, the database manager will never simultaneously
invoke the function in the same process as another routine.

For FENCED functions, THREADSAFE is the default if the LANGUAGE is JAVA or CLR. For all
other languages, NOT THREADSAFE is the default. If the function is defined with LANGUAGE OLE,
THREADSAFE may not be specified (SQLSTATE 42613).

For NOT FENCED functions, THREADSAFE is the default. NOT THREADSAFE cannot be specified
(SQLSTATE 42613).

Chapter 1. Structured Query Language (SQL) 1181

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if any of the arguments is
null. If the user-defined function is defined to have no parameters, then of course this null argument
condition cannot arise, and it does not matter how this specification is coded.

If RETURNS NULL ON NULL INPUT is specified, and if, at table function OPEN time, any of the
function's arguments are null, then the user-defined function is not called. The result of the attempted
table function scan is the empty table (a table with no rows).

If CALLED ON NULL INPUT is specified, then regardless of whether any arguments are null, the user-
defined function is called. It can return a null value or a normal (non-null) value. But responsibility for
testing for null argument values lies with the UDF.

The value NULL CALL may be used as a synonym for CALLED ON NULL INPUT for backwards and
family compatibility. Similarly, NOT NULL CALL may be used as a synonym for RETURNS NULL ON
NULL INPUT.

READS SQL DATA, NO SQL, CONTAINS SQL
Specifies the classification of SQL statements that the function can run. The database manager
verifies that the SQL statements that the function issues are consistent with this specification.

For the classification of each statement, see "SQL statements that can be executed in routines and
triggers" in Developing User-defined Routines (SQL and External).

The default is READS SQL DATA.

READS SQL DATA
Specifies that the function can run statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL (SQLSTATE 38002 or 42985). The function cannot run SQL
statements that modify data (SQLSTATE 38003 or 42985).

NO SQL
Specifies that the function can run only SQL statements with a data access classification of NO
SQL. If the ALLOW PARALLEL, EXECUTE ON ALL DATABASE PARTITIONS, and RESULT TABLE
DISTRIBUTED clauses are all specified, NO SQL is the only option allowed.

CONTAINS SQL
Specifies that the function can run only SQL statements with a data access classification of
CONTAINS SQL or NO SQL (SQLSTATE 38004 or 42985). The function cannot run any SQL
statements that read or modify data (SQLSTATE 38003 or 42985).

STATIC DISPATCH
This optional clause indicates that at function resolution time, a function is chosen by the database
server based on the static types (declared types) of the parameters of the function.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that the database
manager does not manage. An example of an external action is sending a message or writing a record
to a file. The default is EXTERNAL ACTION.
EXTERNAL ACTION

Specifies that the function takes an action that changes the state of an object that the database
manager does not manage.

A function with external actions might return incorrect results if the function is executed by
parallel tasks. For example, if the function sends a note for each initial call to it, one note is sent
for each parallel task instead of once for the function. Specify the DISALLOW PARALLEL clause for
functions that do not work correctly with parallelism.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state of an object that
the database manager does not manage. The database manager uses this information during
optimization of SQL statements.

1182 IBM Db2 V11.5: SQL Reference

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be provided for an external
function. (It is strongly recommended that user-defined functions be re-entrant, so a scratchpad
provides a means for the function to "save state" from one call to the next.)

• If SCRATCHPAD is specified, then at first invocation of the user-defined function, memory is
allocated for a scratchpad to be used by the external function. On each invocation of the user-
defined function, an additional argument is passed to the external function which addresses the
scratchpad. The scratchpad has the following characteristics:

– length, if specified, sets the size of the scratchpad in bytes and must be between 1 and 32,767
(SQLSTATE 42820). The default value is 100.

– It is initialized to all X'00''s.
– Its scope is the SQL statement. There is one scratchpad per reference to the external function

in the SQL statement. So if the UDFX function in the following statement is defined with the
SCRATCHPAD keyword, two scratchpads would be assigned.

 SELECT A.C1, B.C2
 FROM TABLE (UDFX(:hv1)) AS A,
 TABLE (UDFX(:hv1)) AS B
 WHERE ...

– It is persistent. It is initialized at the beginning of the execution of the statement, and can be used
by the external table function to preserve the state of the scratchpad from one call to the next.
If the FINAL CALL keyword is also specified for the UDF, then the scratchpad is NEVER altered,
and any resources anchored in the scratchpad should be released when the special FINAL call is
made.

If NO FINAL CALL is specified or defaulted, then the external table function should clean up any
such resources on the CLOSE call, as the database server will re-initialize the scratchpad on each
OPEN call. This determination of FINAL CALL or NO FINAL CALL and the associated behavior of
the scratchpad could be an important consideration, particularly if the table function will be used
in a subquery or join, since that is when multiple OPEN calls can occur during the execution of a
statement.

– It can be used as a central point for system resources (for example, memory) which the external
function might acquire. The function could acquire the memory on the first call, keep its address
in the scratchpad, and refer to it in subsequent calls.

(As previously outlined, the FINAL CALL/NO FINAL CALL keyword is used to control the re-
initialization of the scratchpad, and also dictates when the external table function should release
resources anchored in the scratchpad.)

• If NO SCRATCHPAD is specified then no scratchpad is allocated or passed to the external function.

FINAL CALL or NO FINAL CALL
This optional clause specifies whether a final call (and a separate first call) is to be made to an
external function. It also controls when the scratchpad is re-initialized. If NO FINAL CALL is specified,
then the database server can only make three types of calls to the table function: open, fetch and
close. However, if FINAL CALL is specified, then in addition to open, fetch and close, a first call and a
final call can be made to the table function.

For external table functions, the call-type argument is ALWAYS present, regardless of which option is
chosen.

If the final call is being made because of an interrupt or end-of-transaction, the UDF may not issue
any SQL statements except for CLOSE cursor (SQLSTATE 38505). A special value is passed in the "call
type" argument for these special final call situations.

FINAL CALL cannot be specified in combination with LANGUAGE CPP.

Chapter 1. Structured Query Language (SQL) 1183

DISALLOW PARALLEL or ALLOW PARALLEL EXECUTE ON ALL DATABASE PARTITIONS RESULT TABLE
DISTRIBUTED

Specifies whether or not, for a single reference to the function, the invocation of the function is to be
parallelized.
DISALLOW PARALLEL

Specifies that on each invocation of the function, the function is invoked on a single database
partition.

ALLOW PARALLEL EXECUTE ON ALL DATABASE PARTITIONS RESULT TABLE DISTRIBUTED
Specifies that on each invocation of the function, the function is invoked on all database partitions.
The union of the result sets obtained on each database partition is returned. The function cannot
execute SQL statements (the NO SQL clause must also be specified).

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known to the database server
is to be passed to the function as an additional invocation-time argument (DBINFO) or not (NO
DBINFO). NO DBINFO is the default. DBINFO is not supported for LANGUAGE OLE or PARAMETER
TYLE NPSGENERIC (SQLSTATE 42613).

If DBINFO is specified, a structure containing the following information is passed to the function:

• Database name - the name of the currently connected database
• Application ID - the unique application ID that is established for each connection to the database
• Application authorization ID - the application runtime authorization ID, regardless of any nested

functions between this function and the application
• Code page - the database code page
• Schema name - not applicable to external table functions
• Table name - not applicable to external table functions
• Column name - not applicable to external table functions
• Database version or release - the version, release, and modification level of the database server that

is invoking the function
• Platform - the server's platform type
• Table function result column numbers - an array of result column numbers that is used by the

statement referencing the function; this information enables the function to return only required
column values instead of all column values

• Database partition number - the number of the database partition on which the external table
function is invoked; in a single database partition environment, this value is 0

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows to be returned by the
function for optimization purposes. Valid values range from 0 to 9,223,372,036,854,775,807.

If the CARDINALITY clause is not specified for a table function, assume a finite value is assumed as a
default; the same value assumed for tables for which the RUNSTATS utility has not gathered statistics.

Warning: If a function has infinite cardinality (that is, if it returns a row every time it is called to do so,
and never returns the "end-of-table" condition), then queries that require the end-of-table condition
to correctly function will never terminate and will have to be interrupted. Examples of such queries
are those that contain a GROUP BY or an ORDER BY clause. For that reason, writing UDFs that have
infinite cardinality is not recommended.

TRANSFORM GROUP group-name
Indicates the transform group to be used for user-defined structured type transformations when
invoking the function. A transform is required if the function definition includes a user-defined
structured type as a parameter data type. If this clause is not specified, the default group name
DB2_FUNCTION is used. If the specified (or default) group-name is not defined for a referenced
structured type, an error results (SQLSTATE 42741). If a required FROM SQL transform function is not
defined for the given group-name and structured type, an error results (SQLSTATE 42744).

1184 IBM Db2 V11.5: SQL Reference

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the function will inherit their initial
values from the environment of the invoking statement. For a function invoked in the select-statement
of a cursor, the initial values are inherited from the environment when the cursor is opened. For a
routine invoked in a nested object (for example a trigger or view), the initial values are inherited from
the runtime environment (not inherited from the object definition).

No changes to the special registers are passed back to the invoker of the function.

Non-updatable special registers, such as the datetime special registers, reflect a property of the
statement currently executing, and are therefore set to their default values.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row and column access control. The default is
NOT SECURED.
NOT SECURED

Indicates that the function is not considered secure. When the function is invoked, the arguments
of the function must not reference a column for which a column mask is enabled and column level
access control is activated for its table (SQLSTATE 428HA). This rule applies to the non secure
user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure. The function must be secure when it is
referenced in a row permission or a column mask (SQLSTATE 428H8, SQLCODE -20470).

STAY RESIDENT NO
Specifies that the library that is loaded for the function is not to remain resident in memory after the
function ends. This clause is ignored when:

• The NOT FENCED clause is specified.
• The LANGUAGE option is set to JAVA or CLR.

Rules
• In a partitioned database environment, the use of SQL in external user-defined functions or methods is

not supported (SQLSTATE 42997).
• Only routines defined as NO SQL can be used to define an index extension (SQLSTATE 428F8).
• If the function allows SQL, the external program must not attempt to access any federated objects

(SQLSTATE 55047).
• Table access restrictions If a function is defined as READS SQL DATA, no statement in the function

can access a table that is being modified by the statement which invoked the function (SQLSTATE
57053). For example, suppose the user-defined function BONUS() is defined as READS SQL DATA. If the
statement UPDATE EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is invoked, no SQL statement
in the BONUS function can read from the EMPLOYEE table.

Notes
• When choosing the data types for the parameters of a user-defined function, consider the rules for

promotion that will affect its input values. For example, a constant which may be used as an input value
could have a built-in data type that is different from the one expected and, more significantly, may not
be promoted to the data type expected. Based on the rules for promotion, it is generally recommended
to use the following data types for parameters:

– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

• For portability of UDFs across platforms, it is recommended to use the following data types:

Chapter 1. Structured Query Language (SQL) 1185

– DOUBLE or REAL instead of FLOAT
– DECIMAL instead of NUMERIC
– CLOB (or BLOB) instead of LONG VARCHAR

• Creating a function with a schema name that does not already exist will result in the implicit creation
of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• A Java routine defined as NOT FENCED will be invoked as if it had been defined as FENCED
THREADSAFE.

• Privileges: The definer of a function always receives the EXECUTE privilege WITH GRANT OPTION
on the function, as well as the right to drop the function. When the function is used in an SQL
statement, the function definer must have the EXECUTE privilege on any packages used by the function
or EXECUTEIN privilege or DATAACCESS authority on the schema containing the packages. .

• Setting of the default value: Parameters of a function that are defined with a default value are
set to their default value when the functions is invoked, but only if a value is not supplied for the
corresponding argument, or is specified as DEFAULT, when the function is invoked.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of this database product and with other database products. These alternatives are non-
standard and should not be used.

– PARAMETER STYLE DB2SQL can be specified in place of PARAMETER STYLE SQL
– NOT VARIANT can be specified in place of DETERMINISTIC
– VARIANT can be specified in place of NOT DETERMINISTIC
– NULL CALL can be specified in place of CALLED ON NULL INPUT
– NOT NULL CALL can be specified in place of RETURNS NULL ON NULL INPUT
– DB2GENRL can be specified in place of DB2GENERAL

The following syntax is accepted as the default behavior:

– ASUTIME NO LIMIT
– NO COLLID
– PROGRAM TYPE SUB
– STAY RESIDENT NO
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database if PARAMETER CCSID UNICODE is not specified

• Creating a secure function: Normally users with SECADM authority do not have privileges to create
database objects such as triggers and functions. Typically they will examine the data accessed by
the function, ensure it is secure, then grant the CREATE_SECURE_OBJECT authority to someone who
currently has required privileges to create a secure user-defined function. After the function is created,
they will revoke the CREATE_SECURE_OBJECT authority from the function owner.

The SECURED attribute is considered to be an assertion that declares the user has established a change
control audit procedure for all changes to the user-defined function. The database manager assumes
that such a control audit procedure is in place for all subsequent ALTER FUNCTION statements or
changes to external packages.

• Invoking other user-defined functions in a secure function: If a secure user-defined function invokes
other user-defined functions, the database manager does not validate whether those nested user-
defined functions have the SECURED attribute. If those nested functions can access sensitive data, the
user with SECADM authority needs to ensure those functions are allowed to access those data and a
change control audit procedure has been established for all changes to those functions.

• Replacing an existing function such that the secure attribute is changed (from SECURED to NOT
SECURED and vice versa): Packages and dynamically cached SQL statements that depend on the
function may be invalidated because the secure attribute affects the access path selection for
statements involving tables for which row or column level access control is activated.

1186 IBM Db2 V11.5: SQL Reference

• EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked in other than the outermost
select list, the results are unpredictable since the number of times the function is invoked will vary
depending on the access plan used.

Examples
• Example 1: The following example registers a table function written to return a row consisting of a

single document identifier column for each known document in a text management system. The first
parameter matches a given subject area and the second parameter contains a given string.

Within the context of a single session, the UDF will always return the same table, and therefore it
is defined as DETERMINISTIC. Note the RETURNS clause which defines the output from DOCMATCH.
FINAL CALL must be specified for each table function. In addition, the DISALLOW PARALLEL keyword
is added as table functions cannot operate in parallel. Although the size of the output for DOCMATCH
is highly variable, CARDINALITY 20 is a representative value, and is specified to help the database
optimizer.

 CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))
 RETURNS TABLE (DOC_ID CHAR(16))
 EXTERNAL NAME '/common/docfuncs/rajiv/udfmatch'
 LANGUAGE C
 PARAMETER STYLE SQL
 NO SQL
 DETERMINISTIC
 NO EXTERNAL ACTION
 NOT FENCED
 SCRATCHPAD
 FINAL CALL
 DISALLOW PARALLEL
 CARDINALITY 20

• Example 2: The following example registers an OLE table function that is used to retrieve message
header information and the partial message text of messages in Microsoft Exchange.

 CREATE FUNCTION MAIL()
 RETURNS TABLE (TIMERECEIVED DATE,
 SUBJECT VARCHAR(15),
 SIZE INTEGER,
 TEXT VARCHAR(30))
 EXTERNAL NAME 'tfmail.header!list'
 LANGUAGE OLE
 PARAMETER STYLE SQL
 NOT DETERMINISTIC
 FENCED
 CALLED ON NULL INPUT
 SCRATCHPAD
 FINAL CALL
 NO SQL
 EXTERNAL ACTION
 DISALLOW PARALLEL

CREATE FUNCTION (OLE DB external table)
The CREATE FUNCTION (OLE DB External Table) statement is used to register a user-defined OLE DB
external table function to access data from an OLE DB provider.

A table function can be used in the FROM clause of a SELECT.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Chapter 1. Structured Query Language (SQL) 1187

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CREATE_EXTERNAL_ROUTINE authority on the database and at least one of the following authorities:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the function
does not exist

– CREATEIN privilege on the schema, if the schema name of the function exists
– SCHEMAADM authority on the schema, if the schema name of the function exists

• DBADM authority

Group privileges are not considered for any table or view specified in the CREATE FUNCTION statement.

If the SECURED option is specified, the authorization ID of the statement must include SECADM authority
or CREATE_SECURE_OBJECT authority (SQLSTATE 42501).

Syntax
CREATE FUNCTION function-name (parameter-declaration) ●

RETURNS TABLE (

,

column-name data-type2) option-list

parameter-declaration

parameter-name

data-type1

default-clause

data-type1, data-type2
built-in-type

distinct-type-name

structured-type-name

REF (type-name)

built-in-type

1188 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

SYSPROC.
DB2SECURITYLABEL

2 3

default-clause

Chapter 1. Structured Query Language (SQL) 1189

DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list
● LANGUAGE OLEDB ●

SPECIFIC specific-name

● EXTERNAL

NAME 'string' ●
NOT DETERMINISTIC

DETERMINISTIC

●
STATIC DISPATCH

●
RETURNS NULL ON NULL INPUT

CALLED ON NULL INPUT

●
NO EXTERNAL ACTION

EXTERNAL ACTION

●

CARDINALITY integer

●
NOT SECURED

SECURED

Notes:
1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).
2 DB2SECURITYLABEL is the built-in distinct type that must be used to define the row security label
column of a protected table.
3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is implicit and cannot be
explicitly specified (SQLSTATE 42842). The default value for a column of type DB2SECURITYLABEL is
the session authorization ID's security label for write access.

Description
function-name

Names the function being defined. It is a qualified or unqualified name that designates a function. The
unqualified form of function-name is an SQL identifier. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the number of parameters and the
data type of each parameter (without regard for any length, precision or scale attributes of the data
type) must not identify a function described in the catalog (SQLSTATE 42723). The unqualified name,
together with the number and data types of the parameters, while of course unique within its schema,
need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS' (SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system use, and cannot be used
as a function-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,
NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

The same name can be used for more than one function if there is some difference in the signature
of the functions. Although there is no prohibition against it, an external user-defined table function
should not be given the same name as a built-in function.

1190 IBM Db2 V11.5: SQL Reference

(parameter-declaration,...)
Identifies the number of input parameters of the function, and specifies the data type and optional
default value of each parameter. If no input parameter is specified, data is retrieved from the external
source possibly subsetted through query optimization. The input parameter passes command text to
an OLE DB provider.

It is possible to register a function that has no parameters. In this case, the parentheses must still be
coded, with no intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have exactly the same type
for all corresponding parameters. Lengths, precisions, and scales are not considered in this type
comparison. Therefore, CHAR(8) and CHAR(35) are considered to be the same type. A weakly typed
distinct type specified for a parameter is considered to be the same data type as the source type of
the distinct type. For a Unicode database, CHAR(13) and GRAPHIC(8) are considered to be the same
type. A duplicate signature returns an error (SQLSTATE 42723).

parameter-name
Specifies an optional name for the input parameter.

data-type1
Specifies the data type of the input parameter. The data type can be any character or graphic
string data type or a distinct type based on a character or graphic string data type. Parameters of
type BINARY, VARBINARY, and XML are not supported (SQLSTATE 42815).
For a more complete description of each built-in data type, see "CREATE TABLE".

For a user-defined distinct type, the length, precision, or scale attributes for the parameter are
those of the source type of the distinct type (those specified on CREATE TYPE). A distinct type
parameter is passed as the source type of the distinct type. If the name of the distinct type is
unqualified, the database manager resolves the schema name by searching the schemas in the
SQL path.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The special registers that can be specified as
the default are that same as those that can be specified for a column default (see default-clause in
the CREATE TABLE statement). Other special registers can be specified as the default by using an
expression.

The expression can be any expression of the type described in "Expressions". If a default value is
not specified, the parameter has no default and the corresponding argument cannot be omitted on
invocation of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or SQLSTATE 429BL). The
expression must be assignment compatible to the parameter data type (SQLSTATE 42821).

A default cannot be specified for a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE
429BB).

RETURNS TABLE
Specifies that the output of the function is a table. The parentheses that follow this keyword delimit
a list of the names and types of the columns of the table, resembling the style of a simple CREATE
TABLE statement which has no additional specifications (constraints, for example).
column-name

Specifies the name of the column which must be the same as the corresponding rowset column
name. The name cannot be qualified and the same name cannot be used for more than one
column of the table.

data-type2
Specifies the data type of the column. BINARY, VARBINARY, and XML are not supported
(SQLSTATE 42815).

Chapter 1. Structured Query Language (SQL) 1191

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined. This specific name can
be used when sourcing on this function, dropping the function, or commenting on the function. It can
never be used to invoke the function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier. The name, including the
implicit or explicit qualifier, must not identify another function instance that exists at the application
server; otherwise an error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used. If a qualifier is
specified, it must be the same as the explicit or implicit qualifier of function-name or an error
(SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database manager. The unique
name is SQL followed by a character timestamp, SQLyymmddhhmmssxxx.

EXTERNAL NAME 'string'
This clause identifies the external table and an OLE DB provider.

The 'string' option is a string constant with a maximum of 254 bytes.

The string specified is used to establish a connection and session with an OLE DB provider, and
retrieve data from a rowset. The OLE DB provider and data source do not need to exist when the
CREATE FUNCTION statement is executed.

The string can be specified as follows:
'

server !

rowset

!

rowset

! connectstring

! COLLATING_SEQUENCE = N

Y

'

server
Identifies the local name of a data source as defined by "CREATE SERVER".

rowset
Identifies the rowset (table) exposed by the OLE DB provider. Fully qualified table names must be
provided for OLE DB providers that support catalog or schema names.

connectstring
String version of the initialization properties needed to connect to a data source. The basic format
of a connection string is based on the ODBC connection string. The string contains a series of
keyword/value pairs separated by semicolons. The equal sign (=) separates each keyword and
its value. Keywords are the descriptions of the OLE DB initialization properties (property set
DBPROPSET_DBINIT) or provider-specific keywords.

COLLATING_SEQUENCE
Specifies whether the data source uses the same collating sequence as Db2. For details, see
"CREATE SERVER". Valid values are as follows:

• Y = Same collating sequence
• N = Different collating sequence

If COLLATING_SEQUENCE is not specified, the data source is assumed to have a different collating
sequence than Db2.

1192 IBM Db2 V11.5: SQL Reference

If server is provided, connectstring or COLLATING_SEQUENCE are not allowed in the external name.
They are defined as server options CONNECTSTRING and COLLATING_SEQUENCE. If no server is
provided, a connectstring must be provided. If rowset is not provided, the table function must have an
input parameter to pass through command text to the OLE DB provider.

LANGUAGE OLEDB
This means the database manager will deploy a built-in generic OLE DB consumer to retrieve data
from the OLE DB provider. No table function implementation is required by the developer.

LANGUAGE OLEDB table functions can be created on any platform, but only executed on platforms
supported by Microsoft OLE DB.

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the same results for given
argument values (DETERMINISTIC) or whether the function depends on some state values that
affect the results (NOT DETERMINISTIC). That is, a DETERMINISTIC function must always return
the same table from successive invocations with identical inputs. Optimizations taking advantage
of the fact that identical inputs always produce the same results are prevented by specifying NOT
DETERMINISTIC.

STATIC DISPATCH
This optional clause indicates that at function resolution time, the database manager chooses a
function based on the static types (declared types) of the parameters of the function.

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external function if any of the arguments is
null. If the user-defined function is defined to have no parameters, then of course this null argument
condition cannot arise.

If RETURNS NULL ON NULL INPUT is specified and if at execution time any one of the function's
arguments is null, the user-defined function is not called and the result is the empty table; that is, a
table with no rows.

If CALLED ON NULL INPUT is specified, then at execution time regardless of whether any arguments
are null, the user-defined function is called. It can return an empty table or not, depending on its logic.
But responsibility for testing for null argument values lies with the UDF.

The value NULL CALL may be used as a synonym for CALLED ON NULL INPUT for backwards and
family compatibility. Similarly, NOT NULL CALL may be used as a synonym for RETURNS NULL ON
NULL INPUT.

NO EXTERNAL ACTION or EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that the database
manager does not manage. An example of an external action is sending a message or writing a record
to a file. The default is NO EXTERNAL ACTION.
NO EXTERNAL ACTION

Specifies that the function does not take any action that changes the state of an object that
the database manager does not manage. The database manager uses this information during
optimization of SQL statements.

EXTERNAL ACTION
Specifies that the function takes an action that changes the state of an object that the database
manager does not manage.

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows to be returned by the
function for optimization purposes. Valid values for integer range from 0 to 2 147 483 647 inclusive.

If the CARDINALITY clause is not specified for a table function, a finite value is assumed as the
default. The finite value is the same value that is assumed for tables for which the RUNSTATS utility
has not gathered statistics.

Warning: If a function does, in fact, have infinite cardinality - that is, it returns a row every time
it is called to do so, and never returns the "end-of-table" condition - then queries that require the

Chapter 1. Structured Query Language (SQL) 1193

end-of-table condition to correctly function will be infinite, and will have to be interrupted. Examples
of such queries are those that contain a GROUP BY or an ORDER BY clause. Writing such UDFs is not
recommended.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row and column access control. The default is
NOT SECURED.
NOT SECURED

Indicates that the function is not considered secure. When the function is invoked, the arguments
of the function must not reference a column for which a column mask is enabled and column level
access control is activated for its table (SQLSTATE 428HA). This rule applies to the non secure
user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure. The function must be secure when it is
referenced in a row permission or a column mask (SQLSTATE 428H8).

Notes
• FENCED, FINAL CALL, SCRATCHPAD, PARAMETER STYLE SQL, DISALLOW PARALLEL, NO DBINFO, NOT

THREADSAFE, and NO SQL are implicit in the statement and can be specified.
• When choosing the data types for the parameters of a user-defined function, consider the rules for

promotion that will affect its input values. For example, a constant which may be used as an input value
could have a built-in data type that is different from the one expected and, more significantly, may not
be promoted to the data type expected. Based on the rules for promotion, it is generally recommended
to use the following data types for parameters:

– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

• For portability of UDFs across platforms, it is recommended to use the following data types:

– DOUBLE or REAL instead of FLOAT
– DECIMAL instead of NUMERIC
– CLOB (or BLOB) instead of LONG VARCHAR

• Creating a function with a schema name that does not already exist will result in the implicit creation
of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• Privileges: The definer of a function always receives the EXECUTE privilege WITH GRANT OPTION on
the function, as well as the right to drop the function.

• Setting of the default value: Parameters of a function that are defined with a default value are
set to their default value when the functions is invoked, but only if a value is not supplied for the
corresponding argument, or is specified as DEFAULT, when the function is invoked.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– NOT VARIANT can be specified in place of DETERMINISTIC
– VARIANT can be specified in place of NOT DETERMINISTIC
– NULL CALL can be specified in place of CALLED ON NULL INPUT
– NOT NULL CALL can be specified in place of RETURNS NULL ON NULL INPUT

• Creating a secure function: Normally users with SECADM authority do not have privileges to create
database objects such as triggers or functions. Typically they will examine the data accessed by the
function, ensure it is secure, then grant the CREATE_SECURE_OBJECT authority to someone who
currently has required privileges to create a secure user-defined function. After the function is created,
they will revoke the CREATE_SECURE_OBJECT authority from the function owner.

1194 IBM Db2 V11.5: SQL Reference

The SECURED attribute is considered to be an assertion that declares the user has established a change
control audit procedure for all changes to the user-defined function. The database manager assumes
that such a control audit procedure is in place for all subsequent ALTER FUNCTION statements or
changes to external packages.

• Invoking other user-defined functions in a secure function: If a secure user-defined function invokes
other user-defined functions, the database manager does not validate whether those nested user-
defined functions have the SECURED attribute. If those nested functions can access sensitive data, the
user with SECADM authority needs to ensure those functions are allowed to access those data and a
change control audit procedure has been established for all changes to those functions.

• EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked in other than the outermost
select list, the results are unpredictable since the number of times the function is invoked will vary
depending on the access plan used.

Examples
1. Register an OLE DB table function, which retrieves order information from a Microsoft Access

database. The connection string is defined in the external name.

 CREATE FUNCTION orders ()
 RETURNS TABLE (orderid INTEGER,
 customerid CHAR(5),
 employeeid INTEGER,
 orderdate TIMESTAMP,
 requireddate TIMESTAMP,
 shippeddate TIMESTAMP,
 shipvia INTEGER,
 freight dec(19,4))
 LANGUAGE OLEDB
 EXTERNAL NAME '!orders!Provider=Microsoft.Jet.OLEDB.3.51;
 Data Source=c:\sqllib\samples\oledb\nwind.mdb
 !COLLATING_SEQUENCE=Y';

2. Register an OLE DB table function, which retrieves customer information from an Oracle database.
The connection string is provided through a server definition. The table name is fully qualified in the
external name. The local user john is mapped to the remote user dave. Other users will use the guest
user ID in the connection string.

 CREATE SERVER spirit
 WRAPPER OLEDB
 OPTIONS (CONNECTSTRING 'Provider=MSDAORA;Persist Security Info=False;
 User ID=guest;password=pwd;Locale Identifier=1033;
 OLE DB Services=CLIENTCURSOR;Data Source=spirit');

 CREATE USER MAPPING FOR john
 SERVER spirit
 OPTIONS (REMOTE_AUTHID 'dave', REMOTE_PASSWORD 'mypwd');

 CREATE FUNCTION customers ()
 RETURNS TABLE (customer_id INTEGER,
 name VARCHAR(20),
 address VARCHAR(20),
 city VARCHAR(20),
 state VARCHAR(5),
 zip_code INTEGER)
 LANGUAGE OLEDB
 EXTERNAL NAME 'spirit!demo.customer';

3. Register an OLE DB table function, which retrieves information about stores from a MS SQL Server
7.0 database. The connection string is provided in the external name. The table function has an input
parameter to pass through command text to the OLE DB provider. The rowset name does not need to
be specified in the external name. The query example passes in SQL statement text to retrieve the top
three stores.

 CREATE FUNCTION favorites (varchar(600))
 RETURNS TABLE (store_id CHAR (4),
 name VARCHAR (41),
 sales INTEGER)
 SPECIFIC favorites
 LANGUAGE OLEDB

Chapter 1. Structured Query Language (SQL) 1195

 EXTERNAL NAME '!!Provider=SQLOLEDB.1;Persist Security Info=False;
 User ID=sa;Initial Catalog=pubs;Data Source=WALTZ;
 Locale Identifier=1033;Use Procedure for Prepare=1;
 Auto Translate=False;Packet Size=4096;Workstation ID=WALTZ;
 OLE DB Services=CLIENTCURSOR;';

 SELECT *
 FROM TABLE (favorites
 (' select top 3 sales.stor_id as store_id, ' CONCAT
 ' stores.stor_name as name, ' CONCAT
 ' sum(sales. qty) as sales ' CONCAT
 ' from sales, stores ' CONCAT
 ' where sales.stor_id = stores.stor_id ' CONCAT
 ' group by sales.stor_id, stores.stor_name ' CONCAT
 ' order by sum(sales.qty) desc ')) as f;

CREATE FUNCTION (sourced or template)
The CREATE FUNCTION (Sourced or Template) statement is used to register a function or function
template with a server.

This statement can register the following objects:

• A user-defined function, based on another existing scalar or aggregate function, at the current server.
• A function template with an application server that is designated as a federated server. A function

template is a partial function that contains no executable code. The user creates it for the purpose of
mapping it to a data source function. After the mapping is created, the user can specify the function
template in queries submitted to the federated server. When such a query is processed, the federated
server will invoke the data source function to which the template is mapped, and return values whose
data types correspond to those in the RETURNS portion of the template's definition.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the function
does not exist

• CREATEIN privilege on the schema, if the schema name of the function exists
• SCHEMAADM authority on the schema, if the schema name of the function exists
• DBADM authority

The privileges held by the authorization ID of the statement must also include EXECUTE privilege on the
source function or EXECUTEIN privilege on the schema containing the source function if the authorization
ID of the statement does not have DATAACCESS authority on the database or DATAACCESS authority on
the schema containing the source function and the SOURCE clause is specified.

Group privileges are not considered for any table or view specified in the CREATE FUNCTION statement.

1196 IBM Db2 V11.5: SQL Reference

Syntax
CREATE FUNCTION function-name (

,

parameter-declaration

) ●

RETURNS data-type2 ●

SPECIFIC specific-name

●

SOURCE function-name

SPECIFIC specific-name

function-name (
,

data-type

)

PARAMETER CCSID ASCII

UNICODE

AS TEMPLATE ●
NOT DETERMINISTIC

DETERMINISTIC

●
EXTERNAL ACTION

NO EXTERNAL ACTION

●

parameter-declaration

parameter-name

data-type1

default-clause

data-type1, data-type2
built-in-type

distinct-type-name

structured-type-name

built-in-type

Chapter 1. Structured Query Language (SQL) 1197

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

SYSPROC.
DB2SECURITYLABEL

2 3

default-clause

1198 IBM Db2 V11.5: SQL Reference

DEFAULT NULL

constant

special-register

global-variable

(expression)

Notes:
1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).
2 DB2SECURITYLABEL is the built-in distinct type that must be used to define the row security label
column of a protected table.
3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is implicit and cannot be
explicitly specified (SQLSTATE 42842). The default value for a column of type DB2SECURITYLABEL is
the session authorization ID's security label for write access.

Description
function-name

Names the function or function template being defined. It is a qualified or unqualified name that
designates a function. The unqualified form of function-name is an SQL identifier. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier for an unqualified object
name. In static SQL statements the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names. The qualified form is a schema-name followed by a period
and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the number of parameters and the
data type of each parameter (without regard for any length, precision or scale attributes of the data
type) must not identify a function or function template described in the catalog (SQLSTATE 42723).
The unqualified name, together with the number and data types of the parameters, while of course
unique within its schema, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS' (SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system use, and cannot be used
as a function-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,
NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

When naming a user-defined function that is sourced on an existing function with the purpose of
supporting the same function with a user-defined distinct type, the same name as the sourced
function may be used. This allows users to use the same function with a user-defined distinct type
without realizing that an additional definition was required. In general, the same name can be used for
more than one function if there is some difference in the signature of the functions.

(parameter-declaration,...)
Identifies the number of input parameters of the function or function template, and specifies the data
type and optional default value of each parameter. One entry in the list must be specified for each
parameter that the function or function template will expect to receive. No more than 90 parameters
are allowed (SQLSTATE 54023).

It is possible to register a function that has no parameters. In this case, the parentheses must still be
coded, with no intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have exactly the same type
for all corresponding parameters. This restriction also applies to a function and function template
with the same name within the same schema. Lengths, precisions, and scales are not considered
in this type comparison. Therefore, CHAR(8) and CHAR(35) are considered to be the same type, as

Chapter 1. Structured Query Language (SQL) 1199

are DECIMAL(11,2) and DECIMAL (4,3). A weakly typed distinct type specified for a parameter is
considered to be the same data type as the source type of the distinct type. For a Unicode database,
CHAR(13) and GRAPHIC(8) are considered to be the same type. There is some further bundling of
types that causes them to be treated as the same type for this purpose, such as DECIMAL and
NUMERIC. A duplicate signature returns an error (SQLSTATE 42723).

parameter-name
Specifies an optional name for the input parameter. The name cannot be the same as any other
parameter-name in the parameter list (SQLSTATE 42734).

data-type1
Specifies the data type of the input parameter. The data type can be a built-in data type, a distinct
type, or a structured type.

Any valid SQL data type can be used if it is castable to the type of the corresponding parameter of
the function identified in the SOURCE clause (for information, see "Casting between data types").
However, this checking does not guarantee that an error will not occur when the function is
invoked.

For a more complete description of each built-in data type, see "CREATE TABLE".

• A datetime type parameter is passed as a character data type, and the data is passed in the ISO
format.

• Array types cannot be specified (SQLSTATE 42879).
• A reference type specified as REF(type-name) cannot be specified (SQLSTATE 42879).

For a user-defined distinct type, the length, precision, or scale attributes for the parameter are
those of the source type of the distinct type (those specified on CREATE TYPE). A distinct type
parameter is passed as the source type of the distinct type. If the name of the distinct type is
unqualified, the database manager resolves the schema name by searching the schemas in the
SQL path.

For a user-defined structured type, the appropriate transform functions must exist in the
associated transform group.

Because the function is sourced, it is not necessary (but still permitted) to specify length,
precision, or scale for the parameterized data types. Empty parentheses can be used instead;
for example, CHAR(). A parameterized data type is any one of the data types that can be defined
with a specific length, scale, or precision. The parameterized data types are the string data types,
the decimal data types, and the TIMESTAMP data type.

With a function template, empty parentheses can also be used instead of specifying length,
precision, or scale for the parameterized data types. It is recommended to use empty parentheses
for the parameterized data types. If you use empty parentheses, the length, precision, or scale
is the same as that of the remote function, which is determined when the function template is
mapped to a remote function by creating a function mapping. If you omit parentheses altogether,
the default length for the data type is used (see "CREATE TABLE").

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The special registers that can be specified as
the default are that same as those that can be specified for a column default (see default-clause in
the CREATE TABLE statement). Other special registers can be specified as the default by using an
expression.

The expression can be any expression of the type described in "Expressions". If a default value is
not specified, the parameter has no default and the corresponding argument cannot be omitted on
invocation of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or SQLSTATE 429BL). The
expression must be assignment compatible to the parameter data type (SQLSTATE 42821).

A default cannot be specified for a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE
429BB).

1200 IBM Db2 V11.5: SQL Reference

RETURNS
This mandatory clause identifies the output of the function or function template.
data-type2

Specifies the data type of the output.

With a sourced scalar function, any valid SQL data type is acceptable, as is a distinct type,
provided it is castable from the result type of the source function. An array type cannot be
specified as the data type of a parameter (SQLSTATE 42879).

The parameter of a parameterized type need not be specified for parameters of a sourced
function. Instead, empty parentheses can be used; for example, VARCHAR().

For additional considerations and rules that apply to the specification of the data type in the
RETURNS clause when the function is sourced on another, see the "Rules" section of this
statement.

With a function template, empty parentheses are not allowed (SQLSTATE 42611). Length,
precision, or scale must be specified for the parameterized data types. It is recommended to
specify the same length, precision, or scale as that of the remote function.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined. This specific name can
be used when sourcing on this function, dropping the function, or commenting on the function. It can
never be used to invoke the function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier. The name, including the
implicit or explicit qualifier, must not identify another function instance that exists at the application
server; otherwise an error (SQLSTATE 42710) is returned.

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used. If a qualifier is
specified, it must be the same as the explicit or implicit qualifier of function-name or an error
(SQLSTATE 42882) is returned.

If specific-name is not specified, a unique name is generated by the database manager. The unique
name is SQL followed by a character timestamp, SQLyymmddhhmmssxxx.

SOURCE
Specifies that the new function is being defined as a sourced function. A sourced function is
implemented by another function (the source function). The function must be a scalar or aggregate
function that exists at the current server, and it must be one of the following types of functions:

• A function that was defined with a CREATE FUNCTION statement
• A cast function that was generated by a CREATE TYPE statement
• A built-in function

If the source function is not a built-in function, the particular function can be identified by its name,
function signature, or specific name.

If the source function is a built-in function, the SOURCE clause must include a function signature
for the built-in function. The source function must not be any of the following built-in functions (If a
particular syntax is indicated, only the indicated form cannot be specified.):

• CARDINALITY
• CHAR when more than one parameter is specified and the first parameter is a datetime data type
• CHARACTER_LENGTH with the string units parameter
• COALESCE
• CONTAINS
• CURSOR_ROWCOUNT

Chapter 1. Structured Query Language (SQL) 1201

• DATAPARTITIONNUM
• DBPARTITIONNUM
• DEREF
• EXTRACT
• GRAPHIC when more than one parameter is specified and the first parameter is a datetime data

type
• GREATEST
• HASHEDVALUE
• INSERT with the string units parameter
• INSTR with the string units parameter
• LCASE with the string units parameter
• LEAST
• LEFT with the string units parameter
• LENGTH with the string units parameter
• LOCATE with the string units parameter
• LOCATE_IN_STRING with the string units parameter
• LOWER with the string units parameter
• MAX
• MAX_CARDINALITY
• MIN
• NODENUMBER
• NULLIF
• NVL
• OVERLAY with the string units parameter
• PARAMETER
• POSITION with the string units parameter
• RAISE_ERROR
• REC2XML
• RID
• RID_BIT
• RIGHT with the string units parameter
• SCORE
• STRIP
• SUBSTRING with the string units parameter
• TRIM
• TRIM_ARRAY
• TYPE_ID
• TYPE_NAME
• TYPE_SCHEMA
• UCASE with the string units parameter
• UPPER with the string units parameter
• VALUE
• VARCHAR when more than one parameter is specified and the first parameter is a datetime data

type

1202 IBM Db2 V11.5: SQL Reference

• VARGRAPHIC when more than one parameter is specified and the first parameter is a datetime data
type

• XMLATTRIBUTES
• XMLCOMMENT
• XMLCONCAT
• XMLDOCUMENT
• XMLELEMENT
• XMLFOREST
• XMLNAMESPACES
• XMLPARSE
• XMLPI
• XMLQUERY
• XMLROW
• XMLSERIALIZE
• XMLTEXT
• XMLVALIDATE
• XMLXSROBJECTID
• XSLTRANSFORM

function-name

Identifies the function to use as the source. Valid only if this name is unique within the schema
and the authorization ID has DATAACCESS authority on the schema, EXECUTEIN privilege on the
schema, or EXECUTE privilege on the function. This syntax variant is not valid for a source function
that is a built-in function.

If you provide an unqualified name, the SQL path will be used to locate the function. This is
the value of the CURRENT PATH special register. The first schema in the SQL path that has
this function name and whose authorization ID has DATAACCESS authority on the schema,
EXECUTEIN privilege on the schema, or EXECUTE privilege on the function is selected.

The database will return error SQLSTATE 42704 for each of the following cases:

• no function by this name exists in the named schema
• the name is not valid
• there is no function with this name in the SQL path

The database will return error SQLSTATE 42725 if there is more than one authorized instance of
the function in the named or located schema.

The database will return error SQLSTATE 42501 if a function with this name exists but the
authorization ID of the statement does not have EXECUTE privilege, or EXECUTEIN privilege, or
DATAACCESS authority on the schema of the function.

SPECIFIC specific-name
Identifies the particular user-defined function that is to be used as the source, by the specific-
name either specified or defaulted to at function creation time. This syntax variant is not valid for a
source function that is a built-in function.

If an unqualified name is provided, the current SQL path is used to locate the function. The first
schema in the SQL path that has a function with this specific name for which the authorization ID
of the statement has EXECUTE privilege or EXECUTEIN privilege or DATAACCESS authority on the
schema is selected.

If no function by this specific-name exists in the named schema or if the name is not qualified
and there is no function with this specific-name in the SQL path, an error (SQLSTATE 42704) is
returned. If a function by this specific-name exists, and the authorization ID of the statement does

Chapter 1. Structured Query Language (SQL) 1203

not have EXECUTE privilege on this function or EXECUTEIN privilege or DATAACCESS authority on
the schema, an error (SQLSTATE 42501) is returned.

function-name (data-type,...)
Provides the function signature, which uniquely identifies the source function. This is the only valid
syntax variant for a source function that is a built-in function.

The rules for function resolution are applied to select one function from the functions with the
same function name, given the data types specified in the SOURCE clause. However, the data type
of each parameter in the function selected must have the exact same type as the corresponding
data type specified in the source function.

function-name
Gives the function name of the source function. If an unqualified name is provided, then the
schemas of the user's SQL path are considered.

data-type
Must match the data type that was specified on the CREATE FUNCTION statement in the
corresponding position (comma separated).

It is not necessary to specify the length, precision or scale for the parameterized data types.
Instead an empty set of parentheses may be coded to indicate that these attributes are to be
ignored when looking for a data type match. For example, DECIMAL() will match a parameter
whose data type was defined as DECIMAL(7,2)).

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value indicates different
data types (REAL or DOUBLE).

However, if length, precision, or scale is coded, the value must exactly match that specified in
the CREATE FUNCTION statement. This can be useful in assuring that the intended function
will be used. Note also that synonyms for data types will be considered a match (for example
DEC and NUMERIC will match).

A type of FLOAT(n) does not need to match the defined value for n, because 0<n<25 means
REAL and 24<n<54 means DOUBLE. Matching occurs based on whether the type is REAL or
DOUBLE.

If no function with the specified signature exists in the named or implied schema, an error
(SQLSTATE 42883) is returned.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of the function. If
the PARAMETER CCSID clause is not specified, the default is PARAMETER CCSID UNICODE for
Unicode databases, and PARAMETER CCSID ASCII for all other databases.
ASCII

Specifies that string data is encoded in the database code page. If the database is a
Unicode database, PARAMETER CCSID ASCII cannot be specified (SQLSTATE 56031). When
the function is invoked, the application code page for the function is the database code page.

UNICODE
Specifies that string data is encoded in Unicode. If the database is a Unicode database,
character data is in UTF-8, and graphic data is in UCS-2. If the database is not a Unicode
database, character data is in UTF-8. In either case, when the function is invoked, the
application code page for the function is 1208.

The PARAMETER CCSID clause must specify the same encoding scheme as the source function
(SQLSTATE 53090).

AS TEMPLATE
Indicates that this statement will be used to create a function template, not a function with
executable code.
NOT DETERMINISTIC or DETERMINISTIC

Specifies whether the function returns the same results for identical input arguments. The default
is NOT DETERMINISTIC.

1204 IBM Db2 V11.5: SQL Reference

NOT DETERMINISTIC
Specifies that the function might not return the same result each time that the function is
invoked with the same input arguments. The function depends on some state values that
affect the results. The database manager uses this information during optimization of SQL
statements. An example of a function that is not deterministic is one that generates random
numbers.

A function that is not deterministic might receive incorrect results if it is executed by parallel
tasks.

DETERMINISTIC
Specifies that the function always returns the same result each time that the function is
invoked with the same input arguments. The database manager uses this information during
optimization of SQL statements. An example of a function that is deterministic is one that
calculates the square root of the input argument.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that the
database manager does not manage. An example of an external action is sending a message or
writing a record to a file. The default is EXTERNAL ACTION.
EXTERNAL ACTION

Specifies that the function takes an action that changes the state of an object that the
database manager does not manage. EXTERNAL ACTION must be implicitly or explicitly
specified if the SQL routine body invokes a function that is defined with EXTERNAL ACTION
(SQLSTATE 428C2).

A function with external actions might return incorrect results if the function is executed by
parallel tasks. For example, if the function sends a note for each initial call to it, one note is
sent for each parallel task instead of once for the function.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state of an object that
the database manager does not manage. The database manager uses this information during
optimization of SQL statements.

Rules
• For convenience, in this section the function being created will be called CF and the function identified

in the SOURCE clause will be called SF, no matter which of the three allowable syntaxes was used to
identify SF.

– The unqualified name of CF and the unqualified name of SF can be different.
– A function named as the source of another function can, itself, use another function as its source.

Extreme care should be exercised when exploiting this facility, because it could be very difficult to
debug an application if an indirectly invoked function returns an error.

– The following clauses are invalid if specified in conjunction with the SOURCE clause (because CF will
inherit these attributes from SF):

- CAST FROM ...,
- EXTERNAL ...,
- LANGUAGE ...,
- PARAMETER STYLE ...,
- DETERMINISTIC / NOT DETERMINISTIC,
- FENCED / NOT FENCED,
- RETURNS NULL ON NULL INPUT / CALLED ON NULL INPUT
- EXTERNAL ACTION / NO EXTERNAL ACTION
- NO SQL / CONTAINS SQL / READS SQL DATA

Chapter 1. Structured Query Language (SQL) 1205

- SCRATCHPAD / NO SCRATCHPAD
- FINAL CALL / NO FINAL CALL
- RETURNS TABLE (...)
- CARDINALITY ...
- ALLOW PARALLEL / DISALLOW PARALLEL
- DBINFO / NO DBINFO
- THREADSAFE / NOT THREADSAFE
- INHERIT SPECIAL REGISTERS

An error (SQLSTATE 42613) will result from violation of these rules.
• The number of input parameters in CF must be the same as those in SF; otherwise an error (SQLSTATE

42624) is returned.
• It is not necessary for CF to specify length, precision, or scale for a parameterized data type in the case

of:

– The function's input parameters,
– Its RETURNS parameter

Instead, empty parentheses may be specified as part of the data type (for example: VARCHAR()) in
order to indicate that the length/precision/scale will be the same as those of the source function, or
determined by the casting.

However, if length, precision, or scale is specified then the value in CF is checked against the
corresponding value in SF as outlined in the remaining rules for input parameters and returns value.

• The specification of the input parameters of CF are checked against those of SF. The data type of each
parameter of CF must either be the same as or be castable to the data type of the corresponding
parameter of SF. If any parameter is not the same type or castable, an error (SQLSTATE 42879) is
returned.

Note that this rule provides no guarantee against an error occurring when CF is used. An argument that
matches the data type and length or precision attributes of a CF parameter may not be assignable if
the corresponding SF parameter has a shorter length or less precision. In general, parameters of CF
should not have length or precision attributes that are greater than the attributes of the corresponding
SF parameters.

• The specifications for the RETURNS data type of CF are checked against that of SF. The final RETURNS
data type of SF, after any casting, must either be the same as or castable to the RETURNS data type of
CF. Otherwise an error (SQLSTATE 42866) is returned.

Note that this rule provides no guarantee against an error occurring when CF is used. A result value
that matches the data type and length or precision attributes of the SF RETURNS data type may not be
assignable if the CF RETURNS data type has a shorter length or less precision. Caution should be used
when choosing to specify the RETURNS data type of CF as having length or precision attributes that are
less than the attributes of the SF RETURNS data type.

• Revalidation of CF that does not have a parameter with a default expression is not supported (SQLSTATE
42997).

Notes
• Determining whether one data type is castable to another data type does not consider length or

precision and scale for parameterized data types such as CHAR and DECIMAL. Therefore, errors may
occur when using a function as a result of attempting to cast a value of the source data type to a value
of the target data type. For example, VARCHAR is castable to DATE but if the source type is actually
defined as VARCHAR(5), an error will occur when using the function.

• When choosing the data types for the parameters of a user-defined function, consider the rules for
promotion that will affect its input values (see "Promotion of data types"). For example, a constant
which may be used as an input value could have a built-in data type different from the one expected

1206 IBM Db2 V11.5: SQL Reference

and, more significantly, may not be promoted to the data type expected. Based on the rules for
promotion, it is generally recommended to use the following data types for parameters:

– INTEGER instead of SMALLINT
– DOUBLE instead of REAL
– VARCHAR instead of CHAR
– VARGRAPHIC instead of GRAPHIC

• Creating a function with a schema name that does not already exist will result in the implicit creation
of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• For a federated server to recognize a data source function, the function must map to a counterpart at
the federated database. If the database contains no counterpart, the user must create the counterpart
and then the mapping.

The counterpart can be a function (scalar or source) or a function template. If the user creates a
function and the required mapping, then, each time a query that specifies the function is processed, the
database manager (1) compares strategies for invoking it with strategies for invoking the data source
function, and (2) invokes the function that is expected to require less overhead.

If the user creates a function template and the mapping, then each time a query that specifies the
template is processed, the database manager invokes the data source function that it maps to, provided
that an access plan for invoking this function exists.

• Privileges: The definer of a function always receives the EXECUTE privilege on the function, as well as
the right to drop the function. The definer of the function is also given the WITH GRANT OPTION if any
of the following conditions apply:

– The source function is a built-in function.
– The definer of the function has EXECUTE WITH GRANT OPTION on the source function.
– The definer of the function has EXECUTEIN WITH GRANT OPTION on the schema containing the

source function.
– The function is a template.

• EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked in other than the outermost
select list, the results are unpredictable since the number of times the function is invoked will vary
depending on the access plan used.

• Setting of the default value: Parameters of a function that are defined with a default value are
set to their default value when the functions is invoked, but only if a value is not supplied for the
corresponding argument, or is specified as DEFAULT, when the function is invoked.

• Create function mapping to table or row functions: A create function mapping to remote functions
that returns a table or a row is not supported in a federated database.

• Inheriting SECURED or NOT SECURED attributes from the source function: The sourced user-defined
function inherits the SECURED or NOT SECURED attribute from the source function in which only the
topmost user-defined function is considered. If the topmost user-defined function is secure, any nested
user-defined functions are considered secure. The database manager does not validate whether those
nested user-defined functions are secure. If those nested functions can access sensitive data, the user
with SECADM authority needs to ensure those functions are allowed to access those data and that a
change control audit procedure has been established for all changes to those functions.

Examples
• Example 1: Some time after the creation of Pellow's original CENTER external scalar function, another

user wants to create a function based on it, except this function is intended to accept only integer
arguments.

 CREATE FUNCTION MYCENTER (INTEGER, INTEGER)
 RETURNS FLOAT
 SOURCE PELLOW.CENTER (INTEGER, FLOAT)

Chapter 1. Structured Query Language (SQL) 1207

• Example 2: A distinct type, HATSIZE, has been created based on the built-in INTEGER data type. It
would be useful to have an AVG function to compute the average hat size of different departments. This
is easily done as follows:

 CREATE FUNCTION AVG (HATSIZE) RETURNS HATSIZE
 SOURCE SYSIBM.AVG (INTEGER)

The creation of the distinct type has generated the required cast function, allowing the cast from
HATSIZE to INTEGER for the argument and from INTEGER to HATSIZE for the result of the function.

• Example 3: In a federated system, a user wants to invoke an Oracle UDF that returns table statistics
in the form of values with double-precision floating points. The federated server can recognize this
function only if there is a mapping between the function and a federated database counterpart. But
no such counterpart exists. The user decides to provide one in the form of a function template, and to
assign this template to a schema called NOVA. The user uses the following code to register the template
with the federated server.

 CREATE FUNCTION NOVA.STATS (DOUBLE, DOUBLE)
 RETURNS DOUBLE
 AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

• Example 4: In a federated system, a user wants to invoke an Oracle UDF that returns the dollar
amounts that employees of a particular organization earn as bonuses. The federated server can
recognize this function only if there is a mapping between the function and a federated database
counterpart. No such counterpart exists; thus, the user creates one in the form of a function template.
The user uses the following code to register this template with the federated server.

 CREATE FUNCTION BONUS ()
 RETURNS DECIMAL (8,2)
 AS TEMPLATE DETERMINISTIC NO EXTERNAL ACTION

CREATE FUNCTION (SQL scalar, table, or row)
The CREATE FUNCTION (SQL scalar, table, or row) statement is used to define a user-defined SQL scalar,
table, or row function.

A scalar function returns a single value each time it is invoked, and is generally valid wherever an SQL
expression is valid. A table function can be used in a FROM clause and returns a table. A row function can
be used as a transform function and returns a row.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the function
does not exist

• CREATEIN privilege on the schema, if the schema name of the function refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the function exists
• DBADM authority

and at least one of the following authorities on each table, view, or nickname identified in any fullselect:

• CONTROL privilege on that table, view, or nickname
• SELECT privilege on that table, view, or nickname

1208 IBM Db2 V11.5: SQL Reference

• SELECTIN privilege on the schema containing the table, view, or nickname
• DATAACCESS authority on the schema containing the table, view, or nickname
• DATAACCESS authority on the database

Group privileges other than PUBLIC are not considered for any table or view specified in the CREATE
FUNCTION statement.

Authorization requirements of the data source for the table or view referenced by the nickname are
applied when the function is invoked. The authorization ID of the connection can be mapped to a different
remote authorization ID.

The privileges held by the authorization ID of the statement must also include all of the privileges
necessary to invoke the SQL statements that are specified in the function body.

To replace an existing function, the authorization ID of the statement must be the owner of the existing
function (SQLSTATE 42501).

If the SECURED option is specified, the authorization ID of the statement must include SECADM or
CREATE_SECURE_OBJECT authority (SQLSTATE 42501).

Syntax
CREATE

OR REPLACE

FUNCTION function-name (

,

parameter-declaration

) ● RETURNS

data-type2

ROW column-list

TABLE column-list

row-type-name

anchored-row-data-type

ELEMENT OF array-type-name

option-list

SQL-function-body

parameter-declaration
IN

OUT
1

INOUT

parameter-name data-type1

default-clause

data-type1, data-type2

Chapter 1. Structured Query Language (SQL) 1209

built-in-type

anchored-data-type

array-type-name

cursor-type-name

distinct-type-name

REF (type-name)

row-type-name

structured-type-name

built-in-type

1210 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
2

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

BOOLEAN

CURSOR

SYSPROC.
DB2SECURITYLABEL

3

anchored-data-type

Chapter 1. Structured Query Language (SQL) 1211

ANCHOR
DATA TYPE TO

variable-name1

table-name.column-name

ROW
OF

table-name

view-name

cursor-variable-name

anchored-row-data-type

ANCHOR
DATA TYPE TO

variable-name

ROW
OF

table-name

view-name

cursor-variable-name

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

column-list

(

,

column-name data-type3)

data-type3
built-in type

distinct-type-name

REF (type-name)

structured-type-name

option-list

1212 IBM Db2 V11.5: SQL Reference

●

LANGUAGE SQL

●

PARAMETER CCSID ASCII

UNICODE

●

SPECIFIC specific-name

●
NOT DETERMINISTIC

DETERMINISTIC

●

EXTERNAL ACTION

NO EXTERNAL ACTION

●

READS SQL DATA

CONTAINS SQL

MODIFIES SQL DATA
4

●

DISALLOW PARALLEL

ALLOW PARALLEL

●
STATIC DISPATCH

●

CALLED ON NULL INPUT
●

INHERIT SPECIAL REGISTERS
●

PREDICATES (predicate-specification)
5

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

INHERIT ISOLATION LEVEL WITH LOCK REQUEST

NOT SECURED

SECURED

SQL-function-body
RETURN

Compound SQL (compiled)
6

Compound SQL (inlined)

Notes:
1 OUT and INOUT are valid only if RETURNS specifies a scalar result and the SQL-function-body is a
compound SQL (compiled) statement.
2 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).
3 DB2SECURITYLABEL is the built-in distinct type that must be used to define the row security label
column of a protected table.
4 Valid only for compiled scalar function definition and an inlined table function definition. A compiled
scalar function defined as MODIFIES SQL DATA can only be used as the only element on the right side
of an assignment statement that is within a compound SQL (compiled) statement.
5 Valid only if RETURNS specifies a scalar result (data-type2)
6 The following apply to the specification of a compound SQL (compiled) statement: a) Must be used
if the parameter data types or returned data types include a row type, array type, or cursor type;
b) Must be used if the RETURNS TABLE clause specifies any syntax other than a column-list; c)
Not supported if RETURNS ROW is specified; d) Not supported when defining a table function in a
partitioned database environment.

Chapter 1. Structured Query Language (SQL) 1213

Description
OR REPLACE

Specifies to replace the definition for the function if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the function are not affected. This option can be
specified only by the owner of the object. This option is ignored if a definition for the function does
not exist at the current server. To replace an existing function, the specific name and function name
of the new definition must be the same as the specific name and function name of the old definition,
or the signature of the new definition must match the signature of the old definition. Otherwise, a new
function is created.

If the function is referenced in the definition of a row permission or a column mask, the function
cannot be replaced (SQLSTATE 42893).

function-name
Names the function being defined. It is a qualified or unqualified name that designates a function. The
unqualified form of function-name is an SQL identifier. In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the number of parameters and the
data type of each parameter (without regard for any length, precision or scale attributes of the data
type) must not identify a function described in the catalog (SQLSTATE 42723). The unqualified name,
together with the number and data types of the parameters, while of course unique within its schema,
need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS' (SQLSTATE 42939).

A number of names used as keywords in predicates are reserved for system use, and cannot be used
as a function-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,
NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

The same name can be used for more than one function if there is some difference in the signature
of the functions. Although there is no prohibition against it, an external user-defined table function
should not be given the same name as a built-in function.

(parameter-declaration, ...)
Identifies the number of input parameters of the function, and specifies the mode, name, data
type, and optional default value of each parameter. One entry in the list must be specified for
each parameter that the function will expect to receive. No more than 90 parameters are allowed
(SQLSTATE 54023).

It is possible to register a function that has no parameters. In this case, the parentheses must still be
coded, with no intervening data types. For example:

 CREATE FUNCTION WOOFER() ...

No two identically-named functions within a schema are permitted to have exactly the same
type for all corresponding parameters. Lengths, precisions, and scales are not considered in this
type comparison. Therefore, CHAR(8) and CHAR(35) are considered to be the same type, as are
DECIMAL(11,2) and DECIMAL (4,3), as well as DECFLOAT(16) and DECFLOAT(34). A weakly typed
distinct type specified for a parameter is considered to be the same data type as the source type of
the distinct type. For a Unicode database, CHAR(13) and GRAPHIC(8) are considered to be the same
type. There is some further bundling of types that causes them to be treated as the same type for this
purpose, such as DECIMAL and NUMERIC. A duplicate signature returns an error (SQLSTATE 42723).

If the data type for a parameter is a Boolean data type, array type, cursor type, or row type, the
SQL function body can only reference the parameter within a compound SQL (compiled) statement
(SQLSTATE 428H2).

1214 IBM Db2 V11.5: SQL Reference

IN | OUT | INOUT
Specifies the mode of the parameter. If an error is returned by the function, OUT parameters are
undefined and INOUT parameters are unchanged. The default is IN.
IN

Identifies the parameter as an input parameter to the function. Any changes made to the
parameter within the function are not available to the invoking context when control is
returned.

OUT
Identifies the parameter as an output parameter for the function.
The function must be a scalar function that is defined with a compound SQL (compiled)
statement (SQLSTATE 42613).
The function can be referenced only on the right side of an assignment statement that is
in a compound SQL (compiled) statement, and the function reference cannot be part of an
expression (SQLSTATE 42887).

INOUT
Identifies the parameter as both an input and output parameter for the function.
The function must be a scalar function that is defined with a compound SQL (compiled)
statement (SQLSTATE 42613).
The function can be referenced only on the right side of an assignment statement that is
in a compound SQL (compiled) statement, and the function reference cannot be part of an
expression (SQLSTATE 42887).

parameter-name
Specifies a name for the parameter. The name cannot be the same as any other parameter-name
in the parameter list (SQLSTATE 42734).

data-type1
Specifies the data type of the parameter.
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type
except BOOLEAN and CURSOR, which cannot be specified for a table, see "CREATE TABLE".
BOOLEAN

For a Boolean.
CURSOR

For a reference to an underlying cursor.
anchored-data-type

Identifies another object used to define the parameter data type. The data type of the anchor
object can be any of the data types explicitly allowed as data-type1. The data type of the
anchor object has the same limitations that apply to specifying the data type directly, or in the
case of a row, to creating a row type.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.
variable-name1

Identifies a global variable. The data type of the global variable is used as the data type
for parameter-name.

table-name.column-name
Identifies a column name of an existing table or view. The data type of the column is
used as the data type for parameter-name.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based on the column
names and column data types of the table identified by table-name or the view
identified by view-name. The data type of parameter-name is an unnamed row type.

Chapter 1. Structured Query Language (SQL) 1215

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on the field names
and field data types of the cursor variable identified by cursor-variable-name. The
specified cursor variable must be one of the following elements (SQLSTATE 428HS):

• A global variable with a strongly typed cursor data type
• A global variable with a weakly typed cursor data type that was created or declared

with a CONSTANT clause specifying a select-statement where all the result columns
are named.

If the cursor type of the cursor variable is not strongly typed using a named row type,
the data type of parameter-name is an unnamed row type.

array-type-name
Specifies the name of a user-defined array type. If array-type-name is specified without a
schema name, the array type is resolved by searching the schemas in the SQL path.

cursor-type-name
Specifies the name of a cursor type. If cursor-type-name is specified without a schema name,
the cursor type is resolved by searching the schemas in the SQL path.

distinct-type-name
Specifies the name of a distinct type. The length, precision, and scale of the parameter are,
respectively, the length, precision, and scale of the source type of the distinct type. A distinct
type parameter is passed as the source type of the distinct type. If distinct-type-name is
specified without a schema name, the distinct type is resolved by searching the schemas in
the SQL path.

REF (type-name)
Specifies a reference type without a scope. The specified type-name must identify a user-
defined structured type (SQLSTATE 428DP). The system does not attempt to infer the scope
of the parameter or result. Inside the body of the function, a reference type can be used in a
dereference operation only by first casting it to have a scope. Similarly, a reference returned by
an SQL function can be used in a dereference operation only by first casting it to have a scope.
If a type name is specified without a schema name, the type-name is resolved by searching the
schemas in the SQL path.

row-type-name
Specifies the name of a user-defined row type. The fields of the parameter are the fields of the
row type. If row-type-name is specified without a schema name, the row type is resolved by
searching the schemas in the SQL path.

structured-type-name
Specifies the name of a user-defined structured type. If structured-type-name is specified
without a schema name, the structured type is resolved by searching the schemas in the SQL
path.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression, or the keyword NULL. The special registers that can be specified as
the default are that same as those that can be specified for a column default (see default-clause in
the CREATE TABLE statement). Other special registers can be specified as the default by using an
expression.

The expression can be any expression of the type described in "Expressions". If a default value is
not specified, the parameter has no default and the corresponding argument cannot be omitted on
invocation of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or SQLSTATE 429BL). The
expression must be assignment compatible to the parameter data type (SQLSTATE 42821).

A default cannot be specified in the following situations:

• For INOUT or OUT parameters (SQLSTATE 42601)

1216 IBM Db2 V11.5: SQL Reference

• For a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE 429BB)
• For a parameter to a function definition that also specified RETURNS ROW or a PREDICATES

clause (SQLSTATE 42613)

RETURNS
This mandatory clause identifies the type of output of the function.

If the data type of the output of the function is a Boolean data type, array type, cursor type, or row
type, the SQL function body must be a compound SQL (compiled) statement (SQLSTATE 428H2).

data-type2
Specifies the data type of the output.

In this statement, exactly the same considerations apply as for the parameters of SQL functions
described previously in data-type1 for function parameters.

ROW
Specifies that the output of the function is a single row. If the function returns more than one row,
an error is returned (SQLSTATE 21505).

This form of a row function can be used only as a transform function for a structured type (having
one structured type as its parameter and returning only built-in data types).
column-list

The list of column names and data types returned for a ROW function. The column-list must
include at least two columns (SQLSTATE 428F0).
column-name

Specifies the name of this column. The name cannot be qualified and the same name
cannot be used for more than one column in the list.

data-type3
Specifies the data type of the column, and can be any data type supported by a parameter
of the SQL function.

The same considerations apply as for the parameters of SQL functions described
previously in data-type1 for function parameters. However, data-type3 does not support
anchored-data-type, array-type-name, cursor-type-name, and row-type-name.

TABLE
Specifies that the output of the function is a table.
column-list

The list of column names and data types returned for a TABLE function
column-name

Specifies the name of this column. The name cannot be qualified and the same name
cannot be used for more than one column in the list.

data-type3
Specifies the data type of the column, and can be any data type supported by a parameter
of the SQL function.

The same considerations apply as for the parameters of SQL functions described
previously in data-type1 for function parameters. However, data-type3 does not support
anchored-data-type, array-type-name, cursor-type-name, and row-type-name.

row-type-name
Specifies a row type from which the fields are used to derive the column list. The field names
of the row type are used as the column names.

anchored-row-data-type
Identifies row information from another object to use as the columns of the returned table.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.

Chapter 1. Structured Query Language (SQL) 1217

variable-name
Identifies a global variable. The data type of the referenced variable must be a row type.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based on the column names
and column data types of the table identified by table-name or the view identified by
view-name. The data types of the anchor object columns have the same limitations that
apply to data-type3.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on the field names and
field data types of the cursor variable identified by cursor-variable-name. The specified
cursor variable must be one of the following objects (SQLSTATE 428HS):

• A global variable with a strongly typed cursor data type.
• A global variable with a weakly typed cursor data type that was created or declared

with a CONSTANT clause specifying a select-statement where all the result columns are
named.

ELEMENT OF array-type-name
Specifies an array type from which the element data type is used to derive the column list. If
array-type-name identifies an array type with elements that are a row type, the field names of
the row type are used as the column names. If the array-type-name identifies an array type
with elements that are not row types, the single result column name is COLUMN_VALUE.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SPECIFIC specific-name
Provides a unique name for the instance of the function that is being defined. This specific name can
be used when sourcing on this function, dropping the function, or commenting on the function. It can
never be used to invoke the function. The unqualified form of specific-name is an SQL identifier. The
qualified form is a schema-name followed by a period and an SQL identifier. The name, including the
implicit or explicit qualifier, must not identify another function instance that exists at the application
server; otherwise an error is raised (SQLSTATE 42710).

The specific-name may be the same as an existing function-name.

If no qualifier is specified, the qualifier that was used for function-name is used. If a qualifier is
specified, it must be the same as the explicit or implicit qualifier of function-name or an error is raised
(SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the database manager. The unique
name is SQL followed by a character timestamp, SQLyymmddhhmmssxxx.

LANGUAGE SQL
Specifies that the function is written using SQL.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of the function. If the
PARAMETER CCSID clause is not specified, the default is PARAMETER CCSID UNICODE for Unicode
databases, and PARAMETER CCSID ASCII for all other databases.
ASCII

Specifies that string data is encoded in the database code page. If the database is a Unicode
database, PARAMETER CCSID ASCII cannot be specified (SQLSTATE 56031).

UNICODE
Specifies that character data is in UTF-8, and that graphic data is in UCS-2. If the database is not a
Unicode database, PARAMETER CCSID UNICODE cannot be specified (SQLSTATE 56031).

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the function always returns the same results for given
argument values (DETERMINISTIC) or whether the function depends on some state values that
affect the results (NOT DETERMINISTIC). That is, a DETERMINISTIC function must always return

1218 IBM Db2 V11.5: SQL Reference

the same table from successive invocations with identical inputs. Optimizations taking advantage
of the fact that identical inputs always produce the same results are prevented by specifying NOT
DETERMINISTIC.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function takes an action that changes the state of an object that the database
manager does not manage. An example of an external action is sending a message or writing a record
to a file. The default is EXTERNAL ACTION.
EXTERNAL ACTION

Specifies that the function takes an action that changes the state of an object that the database
manager does not manage.

NO EXTERNAL ACTION
Specifies that the function does not take any action that changes the state of an object that
the database manager does not manage. The database manager uses this information during
optimization of SQL statements.

READS SQL DATA, CONTAINS SQL, or MODIFIES SQL DATA
Specifies the classification of SQL statements that the function can run. The database manager
verifies that the SQL statements that the function issues are consistent with this specification.

For the classification of each statement, see "SQL statements that can be executed in routines and
triggers" in Developing User-defined Routines (SQL and External).

READS SQL DATA
Specifies that the function can run statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL. The function cannot run SQL statements that modify data
(SQLSTATE 42985). This is the default.

CONTAINS SQL
Specifies that the function can run only SQL statements with a data access classification of
CONTAINS SQL. The function cannot run any SQL statements that read or modify data (SQLSTATE
42985).

MODIFIES SQL DATA
Specifies that the function can run any SQL statement except those statements that are not
supported in any function.

ALLOW PARALLEL or DISALLOW PARALLEL
This clause specifies whether a UDF can be parallelized, that is, whether a single invocation of the
UDF can cause several instances of the UDF (usually one instance per partition) to run in parallel.
Parallelization usually improves overall performance, but is allowed only when all the following
conditions are met:

• The CONTAINS SQL clause is specified.
• All invocations of the UDF are completely independent of each other.

DISALLOW PARALLEL is the default.

STATIC DISPATCH
This optional clause indicates that at function resolution time, a function is chosen based on the static
types (declared types) of the parameters of the function.

CALLED ON NULL INPUT
This clause indicates that the function is called regardless of whether any of its arguments are null. It
can return a null value or a non-null value. Responsibility for testing null argument values lies with the
user-defined function.

The phrase NULL CALL may be used in place of CALLED ON NULL INPUT.

INHERIT SPECIAL REGISTERS
This optional clause indicates that updatable special registers in the function will inherit their initial
values from the environment of the invoking statement. For a function that is invoked in the select-
statement of a cursor, the initial values are inherited from the environment when the cursor is opened.

Chapter 1. Structured Query Language (SQL) 1219

For a routine that is invoked in a nested object (for example, a trigger or a view), the initial values are
inherited from the runtime environment (not the object definition).

No changes to the special registers are passed back to the caller of the function.

Some special registers, such as the datetime special registers, reflect a property of the statement
currently executing, and are therefore never inherited from the caller.

PREDICATES
For predicates using this function, this clause identifies those that can exploit the index extensions,
and can use the optional SELECTIVITY clause for the predicate's search condition. If the PREDICATES
clause is specified, the function must be defined as DETERMINISTIC with NO EXTERNAL ACTION
(SQLSTATE 42613). If the PREDICATES clause is specified, and the database is not a Unicode
database, PARAMETER CCSID UNICODE must not be specified (SQLSTATE 42613). PREDICATES
cannot be specified if SQL-function-body is a compound SQL (compiled) statement (SQLSTATE
42613).
predicate-specification

For details on predicate specification, see "CREATE FUNCTION (External Scalar)".
INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST or INHERIT ISOLATION LEVEL WITH LOCK
REQUEST

Specifies whether or not a lock request can be associated with the isolation-clause of the statement
when the function inherits the isolation level of the statement that invokes the function. The default is
INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST.
INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

Specifies that, as the function inherits the isolation level of the invoking statement, it cannot be
invoked in the context of an SQL statement which includes a lock-request-clause as part of a
specified isolation-clause (SQLSTATE 42601).

INHERIT ISOLATION LEVEL WITH LOCK REQUEST
Specifies that, as the function inherits the isolation level of the invoking statement, it also inherits
the specified lock-request-clause.

SQL-function-body
Specifies the body of the function. Parameter names can be referenced in the SQL-function-body.
Parameter names may be qualified with the function name to avoid ambiguous references.

For RETURN statement, see: RETURN statement.

For Compound SQL (compiled), see: Compound SQL (compiled) statement.

For Compound SQL (inlined), see: Compound SQL (inlined) statement.

NOT SECURED or SECURED
Specifies whether the function is considered secure for row and column access control. The default is
NOT SECURED.
NOT SECURED

Indicates that the function is not considered secure. When the function is invoked, the arguments
of the function must not reference a column for which a column mask is enabled and column level
access control is activated for its table (SQLSTATE 428HA). This rule applies to the non secure
user-defined functions that are invoked anywhere in the statement.

SECURED
Indicates that the function is considered secure. The function must be secure when it is
referenced in a row permission or a column mask (SQLSTATE 428H8).

Rules
• Use of anchored data types: An anchored data type cannot refer to the following objects (SQLSTATE

428HS): a nickname, typed table, typed view, statistical view that is associated with an expression-
based index, declared temporary table, row definition that is associated with a weakly typed cursor,
object with a code page or collation that is different from the database code page or database collation.

1220 IBM Db2 V11.5: SQL Reference

• Use of cursor and row types: A function that uses a cursor type or row type for a parameter or returns
a cursor type or row type can only be invoked from within a compound SQL (compiled) statement
(SQLSTATE 428H2).

• Table access restrictions: If a function is defined as READS SQL DATA, no statement in the function can
access a table that is being modified by the statement that invoked the function (SQLSTATE 57053). For
example, suppose the user-defined function BONUS() is defined as READS SQL DATA. If the statement
UPDATE EMPLOYEE SET SALARY = SALARY + BONUS(EMPNO) is invoked, no SQL statement in the
BONUS function can read from the EMPLOYEE table.

If a function defined with MODIFIES SQL DATA contains nested CALL statements, read access to the
tables being modified by the function (by either the function definition or the statement that invoked the
function) is not allowed (SQLSTATE 57053).

• Use in a partitioned database environment:

– In a partitioned database environment, a scalar function defined using a compound SQL (compiled)
statement defined as MODIFIES SQL can be referenced only on the right side of an assignment
statement and the function reference cannot be part of an expression. Such an assignment statement
cannot be in a Compound SQL (inlined) statement.

– In a partitioned database environment, a scalar function defined using a compound SQL (compiled)
statement which is defined as CONTAINS SQL is subject to additional restrictions: no explicit
statement execution and all procedural logic must be supported without the need for executing a
SQL statement.

– In a partitioned database environment, a scalar function defined using a compound SQL (compiled)
statement which is defined as READS SQL is always forced to run in the coordinator agent. It can also
not be used in context of an UPDATE or DELETE statement.

Notes
• Resolution of function calls inside the function body is done according to the SQL path that is effective

for the CREATE FUNCTION statement and does not change after the function is created.
• If an SQL function contains multiple references to any of the date or time special registers, all

references return the same value, and it will be the same value returned by the register invocation
in the statement that called the function.

• The body of an SQL function cannot contain a recursive call to itself or to another function or method
that calls it, since such a function could not exist to be called.

• If an object referenced in the SQL function body does not exist or is marked invalid, or the definer
temporarily doesn't have privileges to access the object, and if the database configuration parameter
auto_reval is not set to DISABLED, then the SQL function will still be created successfully. The SQL
function will be marked invalid and will be revalidated the next time it is invoked.

• The following rules are enforced by all statements that create functions or methods:

– A function may not have the same signature as a method (comparing the first parameter-type of the
function with the subject-type of the method).

– A function and a method may not be in an overriding relationship. That is, if the function were a
method with its first parameter as subject, it must not override, or be overridden by, another method.
For more information about overriding methods, see the "CREATE TYPE (Structured)" statement.

– Because overriding does not apply to functions, it is permissible for two functions to exist such that, if
they were methods, one would override the other.

For the purpose of comparing parameter-types in the preceding rules:

– Parameter-names, lengths, AS LOCATOR, and FOR BIT DATA are ignored.
– A subtype is considered to be different from its supertype.

• Privileges: The definer of a function always receives the EXECUTE privilege on the function, as well as
the right to drop the function. The definer of a function is also given the WITH GRANT OPTION on the

Chapter 1. Structured Query Language (SQL) 1221

function if the definer has WITH GRANT OPTION on all privileges required to define the function, or if
the definer has SYSADM or DBADM authority.

The definer of a function only acquires privileges if the privileges from which they are derived exist
at the time the function is created. The definer must have these privileges either directly, or because
PUBLIC has the privileges. Privileges held by groups of which the function definer is a member are
not considered. When using the function, the connected user's authorization ID must have the valid
privileges on the table or view that the nickname references at the data source.

• Setting of the default value: Parameters of a function that are defined with a default value are
set to their default value when the functions is invoked, but only if a value is not supplied for the
corresponding argument, or is specified as DEFAULT, when the function is invoked.

• EXTERNAL ACTION functions: If an EXTERNAL ACTION function is invoked in other than the outermost
select list, the results are unpredictable since the number of times the function is invoked will vary
depending on the access plan used.

• Creating a secure function: Normally users with SECADM authority do not have privileges to create
database objects such as triggers or functions. Typically they will examine the data accessed by the
function, ensure it is secure, then grant the CREATE_SECURE_OBJECT authority to someone who
currently has required privileges to create a secure user-defined function. After the function is created,
they will revoke the CREATE_SECURE_OBJECT authority from the function owner.

The SECURED attribute is considered to be an assertion that declares the user has established a change
control audit procedure for all changes to the user-defined function. The database manager assumes
that such a control audit procedure is in place for all subsequent ALTER FUNCTION statements or
changes to external packages.

• Invoking other user-defined functions in a secure function: If a secure user-defined function invokes
other user-defined functions, the database manager does not validate whether those nested user-
defined functions have the SECURED attribute. If those nested functions can access sensitive data, the
user with SECADM authority needs to ensure those functions are allowed to access those data and a
change control audit procedure has been established for all changes to those functions.

• Replacing an existing function such that the secure attribute is changed (from SECURED to NOT
SECURED and vice versa): Packages and dynamically cached SQL statements that depend on the
function may be invalidated because the secure attribute affects the access path selection for
statements involving tables for which row or column level access control is activated.

• Rebinding dependent packages: Every compiled SQL function has a dependent package. The package
can be rebound at any time by using the REBIND_ROUTINE_PACKAGE procedure. Explicitly rebinding
the dependent package does not revalidate an invalid function. Revalidate an invalid function
with automatic revalidation or explicitly by using the ADMIN_REVALIDATE_DB_OBJECTS procedure.
Function revalidation automatically rebinds the dependent package.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used:

– NULL CALL can be specified in place of CALLED ON NULL INPUT

The following syntax is accepted as the default behavior:

– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database

Examples
• Example 1: Define a scalar function that returns the tangent of a value using the existing sine and cosine

functions.

 CREATE FUNCTION TAN (X DOUBLE)
 RETURNS DOUBLE
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION

1222 IBM Db2 V11.5: SQL Reference

 DETERMINISTIC
 RETURN SIN(X)/COS(X)

• Example 2: Define a transform function for the structured type PERSON.

 CREATE FUNCTION FROMPERSON (P PERSON)
 RETURNS ROW (NAME VARCHAR(10), FIRSTNAME VARCHAR(10))
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN VALUES (P..NAME, P..FIRSTNAME)

• Example 3: Define a table function that returns the employees in a specified department number.

 CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
 RETURNS TABLE (EMPNO CHAR(6),
 LASTNAME VARCHAR(15),
 FIRSTNAME VARCHAR(12))
 LANGUAGE SQL
 READS SQL DATA
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN
 SELECT EMPNO, LASTNAME, FIRSTNME
 FROM EMPLOYEE
 WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

• Example 4: Define the table function from Example 3 with auditing.

 CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))
 RETURNS TABLE (EMPNO CHAR(6),
 LASTNAME VARCHAR(15),
 FIRSTNAME VARCHAR(12))
 LANGUAGE SQL
 MODIFIES SQL DATA
 NO EXTERNAL ACTION
 DETERMINISTIC
 BEGIN ATOMIC
 INSERT INTO AUDIT
 VALUES (USER,
 'Table: EMPLOYEE Prd: DEPTNO = ' CONCAT DEPTNO);
 RETURN
 SELECT EMPNO, LASTNAME, FIRSTNME
 FROM EMPLOYEE
 WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO
 END

• Example 5: Define a scalar function that reverses a string.

 CREATE FUNCTION REVERSE(INSTR VARCHAR(4000))
 RETURNS VARCHAR(4000)
 DETERMINISTIC NO EXTERNAL ACTION CONTAINS SQL
 BEGIN ATOMIC
 DECLARE REVSTR, RESTSTR VARCHAR(4000) DEFAULT '';
 DECLARE LEN INT;
 IF INSTR IS NULL THEN
 RETURN NULL;
 END IF;
 SET (RESTSTR, LEN) = (INSTR, LENGTH(INSTR));
 WHILE LEN > 0 DO
 SET (REVSTR, RESTSTR, LEN)
 = (SUBSTR(RESTSTR, 1, 1) CONCAT REVSTR,
 SUBSTR(RESTSTR, 2, LEN - 1),
 LEN - 1);
 END WHILE;
 RETURN REVSTR;
 END

• Example 6: Create a function that increments a variable passed as an INOUT parameter and return any
error as the return code.

 CREATE FUNCTION increment(INOUT result INTEGER, IN delta INTEGER)
 RETURNS INTEGER
 BEGIN

Chapter 1. Structured Query Language (SQL) 1223

 DECLARE code INTEGER DEFAULT 0;
 DECLARE SQLCODE INTEGER;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION BEGIN
 SET code = SQLCODE;
 RETURN code;
 END;
 SET result = result + delta;
 RETURN code;
 END@

• Example 7: Create a compiled SQL function that takes an XML document as input and returns the
customer name.

 CREATE FUNCTION get_customer_name_compiled(doc XML)
 RETURNS VARCHAR(25)
 BEGIN
 RETURN XMLCAST(XMLQUERY
 ('$d/customerinfo/name' PASSING doc AS "d")AS VARCHAR(25));
 END

• Example 8: Create a compiled SQL function that takes a phone number and a region number passed as
IN parameters and returns the complete number in an OUT XML parameter.

 CREATE FUNCTION construct_xml_phone
 (IN phoneNo VARCHAR(20),
 IN regionNo VARCHAR(8),
 OUT full_phone_xml XML)
 RETURNS VARCHAR(28)
 LANGUAGE SQL
 NO EXTERNAL ACTION
 BEGIN
 SET full_phone_xml = XMLELEMENT (NAME "phone", regionNo || phoneNo);
 RETURN regionNo || phoneNo;
 END

CREATE FUNCTION MAPPING
The CREATE FUNCTION MAPPING statement can define a mapping between a federated database
function or function template and a data source function, or disable a default mapping between a
federated database function and a data source function.

When defining a mapping, the CREATE FUNCTION MAPPING statement can associate the federated
database function or template with a function at the following sources:

• A specified data source
• A range of data sources; for example, all data sources of a particular type and version

If multiple function mappings are applicable to a function, the most recent one is applied.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include DBADM authority.

1224 IBM Db2 V11.5: SQL Reference

Syntax
CREATE FUNCTION MAPPING

function-mapping-name

FOR

function-name (

,

data-type

)

SPECIFIC specific-name

SERVER server-name

SERVER TYPE server-type

VERSION server-version

WRAPPER wrapper-name

function-options WITH INFIX

server-version
version

. release

. mod

version-string-constant

function-options

OPTIONS (

,

function-option-name string-constant)

Description
function-mapping-name

Names the function mapping. The name must not identify a function mapping that is already
described in the catalog (SQLSTATE 42710).

If the function-mapping-name is omitted, a system-generated unique name is assigned.

function-name
Specifies the qualified or unqualified name of the federated database function or federated database
function template from which to map.

data-type
For a function or function template that has input parameters, data-type specifies the data type of
each parameter. The data type cannot be an XML or a user-defined type.

Empty parentheses can be used instead of specifying length, precision, or scale for the parameterized
data types. It is recommended to use empty parentheses for the parameterized data types; for
example, CHAR(). A parameterized data type is any one of the data types that can be defined with
a specific length, scale, or precision. The parameterized data types are the string data types and
the decimal data types. If you specify length, precision, or scale, it must be the same as that of the
function template. If you omit parentheses altogether, the default length for the data type is used (see
the description of the CREATE TABLE statement).

SPECIFIC specific-name
Identifies the function or function template from which to map. Specify specific-name to create a
convenient function name.

Chapter 1. Structured Query Language (SQL) 1225

SERVER server-name
Names the data source containing the function that is being mapped.

SERVER TYPE server-type
Identifies the type of data source containing the function that is being mapped.

VERSION
Identifies the version of the data source denoted by server-type.
version

Specifies the version number. The value must be an integer.
release

Specifies the number of the release of the version denoted by version. The value must be an
integer.

mod
Specifies the number of the modification of the release denoted by release. The value must be an
integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant can be a single
value (for example, '8i'); or it can be the concatenated values of version, release and, if applicable,
mod (for example, '8.0.3').

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to interact with data sources of the
type and version denoted by server-type and server-version.

OPTIONS
Specify configuration options for the function mapping to be created. Which options you can specify
depends on the data source of the object for which a function mapping is being created. For a list
of data sources and the function mapping options that apply to each, see Data source options. Each
option value is a character string constant that must be enclosed in single quotation marks.

WITH INFIX
Specifies that the data source function be generated in infix format. The federated database system
converts prefix notation to the infix notation that is used by the remote data source.

Notes
• A federated database function or function template can map to a data source function if:

– The federated database function or template has the same number of input parameters as the data
source function.

– The data types that are defined for the federated function or template are compatible with the
corresponding data types defined for the data source function.

• If a distributed request references a built-in database function that maps to a data source function, the
optimizer develops strategies for invoking either function when the request is processed. The built-in
database function is invoked if doing so requires less overhead than invoking the data source function.
Otherwise, if invoking the built-in database function requires more overhead, the data source function is
invoked.

• If a distributed request references a built-in database function template that maps to a data source
function, only the data source function can be invoked when the request is processed. The template
cannot be invoked because it has no executable code.

• Default function mappings can be rendered inoperable by disabling them (they cannot be dropped).
To disable a default function mapping, code the CREATE FUNCTION MAPPING statement so that it
specifies the name of the built-in database function within the mapping and sets the DISABLE option to
'Y'.

• Functions in the SYSIBM schema do not have a specific name. To override the default function mapping
for a function in the SYSIBM schema, specify function-name using the explicit qualifier SYSIBM; for
example, SYSIBM.LENGTH().

1226 IBM Db2 V11.5: SQL Reference

• A CREATE FUNCTION MAPPING statement within a given unit of work (UOW) cannot be processed
(SQLSTATE 55007) under either of the following conditions:

– The statement references a single data source, and the UOW already includes one of the following:

- A SELECT statement that references a nickname for a table or view within this data source
- An open cursor on a nickname for a table or view within this data source
- Either an INSERT, DELETE, or UPDATE statement issued against a nickname for a table or view

within this data source
– The statement references a category of data sources (for example, all data sources of a specific type

and version), and the UOW already includes one of the following:

- A SELECT statement that references a nickname for a table or view within one of these data sources
- An open cursor on a nickname for a table or view within one of these data sources
- Either an INSERT, DELETE, or UPDATE statement issued against a nickname for a table or view

within one of these data sources
• Create function mapping to table or row functions: A create function mapping to remote functions

that returns a table or a row is not supported in a federated database.
• Syntax alternatives: The following syntax is supported for compatibility with previous versions of Db2:

– ADD can be specified before function-option-name string-constant.

Examples
• Example 1: Map a function template to a UDF that all Oracle data sources can access. The template is

called STATS and belongs to a schema called NOVA. The Oracle UDF is called STATISTICS and belongs
to a schema called STAR.

 CREATE FUNCTION MAPPING MY_ORACLE_FUN1
 FOR NOVA.STATS (DOUBLE, DOUBLE)
 SERVER TYPE ORACLE
 OPTIONS (REMOTE_NAME 'STAR.STATISTICS')

• Example 2: Map a function template called BONUS to a UDF, also called BONUS, that is used at an
Oracle data source called ORACLE1.

 CREATE FUNCTION MAPPING MY_ORACLE_FUN2
 FOR BONUS()
 SERVER ORACLE1
 OPTIONS (REMOTE_NAME 'BONUS')

• Example 3: Assume that there is a default function mapping between the WEEK system function that is
defined to the federated database and a similar function that is defined to Oracle data sources. When
a query that requests Oracle data and that references WEEK is processed, either WEEK or its Oracle
counterpart will be invoked, depending on which one is estimated by the optimizer to require less
overhead. The DBA wants to find out how performance would be affected if only WEEK were invoked for
such queries. To ensure that WEEK is invoked each time, the DBA must disable the mapping.

 CREATE FUNCTION MAPPING
 FOR SYSFUN.WEEK(INT)
 SERVER TYPE ORACLE
 OPTIONS (DISABLE 'Y')

• Example 4: Map the federated function UCASE(CHAR) to a UDF that is used at an Oracle data source
called ORACLE2. Include the estimated number of instructions per invocation of the Oracle UDF.

 CREATE FUNCTION MAPPING MY_ORACLE_FUN4
 FOR SYSFUN.UCASE(CHAR)
 SERVER ORACLE2
 OPTIONS
 (REMOTE_NAME 'UPPERCASE',
 INSTS_PER_INVOC '1000')

Chapter 1. Structured Query Language (SQL) 1227

CREATE GLOBAL TEMPORARY TABLE
The CREATE GLOBAL TEMPORARY TABLE statement creates a description of a temporary table at the
current server. Each session that selects from a created temporary table retrieves only rows that the same
session has inserted. When the session terminates, the rows of the table associated with the session are
deleted.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include either DBADM authority, or
CREATETAB authority in combination with further authorization, as described here:

• One of the following privileges and authorities:

– USE privilege on the table space
– SYSADM
– SYSCTRL

• Plus one of these privileges and authorities:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the table
does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to an existing schema
– SCHEMAADM authority on the schema, if the schema name of the table refers to an existing schema

When defining a table using LIKE or a fullselect, the privileges held by the authorization ID of the
statement must also include at least one of the following on each identified table or view:

• SELECT privilege on the table or view
• CONTROL privilege on the table or view
• SELECTIN privilege on the schema containing the table or view
• DATAACCESS authority on the schema containing the table or view
• DATAACCESS authority

1228 IBM Db2 V11.5: SQL Reference

Syntax
CREATE GLOBAL TEMPORARY TABLE table-name

(

,

column-definition)

LIKE table-name1

view-name copy-options

AS (fullselect) WITH NO DATA

copy-options

●

ON COMMIT DELETE ROWS

ON COMMIT PRESERVE ROWS

●

NOT LOGGED
ON ROLLBACK DELETE ROWS

NOT LOGGED ON ROLLBACK PRESERVE ROWS

LOGGED

●

IN tablespace-name

●

distribution-clause

●

column-definition
column-name data-type

column-options

data-type
built-in-type

distinct-type-name
1

built-in-type

Chapter 1. Structured Query Language (SQL) 1229

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

2
FOR BIT DATA

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

BOOLEAN

column-options

1230 IBM Db2 V11.5: SQL Reference

●

NOT NULL

●

default-clause

GENERATED ALWAYS

BY DEFAULT

AS IDENTITY

identity-options

●

default-clause
WITH

DEFAULT

default-values

default-values
constant

datetime-special-register

user-special-register

CURRENT SCHEMA

NULL

cast-function (constant

datetime-special-register

user-special-register

CURRENT SCHEMA

)

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_NCLOB()

EMPTY_BLOB()

copy-options
●

INCLUDING

EXCLUDING

COLUMN
DEFAULTS

●

EXCLUDING IDENTITY
COLUMN ATTRIBUTES

INCLUDING IDENTITY
COLUMN ATTRIBUTES

●

distribution-clause

DISTRIBUTE BY
HASH

(

,

column-name)

RANDOM

Notes:

Chapter 1. Structured Query Language (SQL) 1231

1 The specified distinct type cannot have any data type constraints and the source type cannot be an
anchored data type.
2 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).

Description
table-name

Names the table. The name, including the implicit or explicit qualifier, must not identify a table, view,
nickname, or alias described in the catalog. If a two-part name is specified, the schema name cannot
begin with 'SYS' (SQLSTATE 42939).

column-definition
Defines the attributes of a column of the temporary table.
column-name

Names a column of the table. The name cannot be qualified, and the same name cannot be used
for more than one column of the table (SQLSTATE 42711).

A table can have the following:

• A 4K page size with a maximum of 500 columns, where the byte counts of the columns must not
be greater than 4 005.

• An 8K page size with a maximum of 1 012 columns, where the byte counts of the columns must
not be greater than 8 101.

• A 16K page size with a maximum of 1 012 columns, where the byte counts of the columns must
not be greater than 16 293.

• A 32K page size with a maximum of 1 012 columns, where the byte counts of the columns must
not be greater than 32 677.

A created temporary table cannot have a row-begin column, row-end column, or a transaction-
start-ID column.

For more details, see "Row Size" in “CREATE TABLE ” on page 1351.

data-type
Specifies the data type of the column
built-in-type

Specifies a built-in data type. See "CREATE TABLE" for a description of built-in-type.

An XML and SYSPROC.DB2SECURITYLABEL data type cannot be specified for a created
temporary table.

distinct-type-name
For a user-defined type that is a distinct type. If a distinct type name is specified without a
schema name, the distinct type name is resolved by searching the schemas on the SQL path
(defined by the FUNCPATH preprocessing option for static SQL and by the CURRENT PATH
register for dynamic SQL).

If a column is defined using a distinct type, then the data type of the column is the distinct
type. The length and the scale of the column are respectively the length and the scale of the
source type of the distinct type. The distinct type for a column cannot have any data type
constraints and the source type cannot be an anchored data type (SQLSTATE 428H2).

column-options
Defines additional options related to the columns of the table.

NOT NULL
Prevents the column from containing null values. For specification of null values, see NOT NULL in
"CREATE TABLE".

default-clause
Specifies a default value for the column.

1232 IBM Db2 V11.5: SQL Reference

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not supplied on INSERT or is specified as
DEFAULT on INSERT or UPDATE. If a default value is not specified following the DEFAULT
keyword, the default value depends on the data type of the column as shown in "ALTER
TABLE".

If the column is based on a column of a typed table, a specific default value must be specified
when defining a default. A default value cannot be specified for the object identifier column of
a typed table (SQLSTATE 42997).

If a column is defined using a distinct type, then the default value of the column is the default
value of the source data type cast to the distinct type.

If a column is defined using a structured type, the default-clause cannot be specified
(SQLSTATE 42842).

Omission of DEFAULT from a column-definition results in the use of the null value as the
default for the column. If such a column is defined NOT NULL, then the column does not have
a valid default.

default-values
Specific types of default values that can be specified are as follows.
constant

Specifies the constant as the default value for the column. The specified constant must:

• represent a value that could be assigned to the column in accordance with the rules of
assignment

• not be a floating-point constant unless the column is defined with a floating-point data
type

• be a numeric constant or a decimal floating-point special value if the data type of
the column is a decimal floating-point. Floating-point constants are first interpreted as
DOUBLE and then converted to decimal floating-point if the target column is DECFLOAT.
For DECFLOAT(16) columns, decimal constants having precision greater than 16 digits
will be rounded using the rounding modes specified by the CURRENT DECFLOAT
ROUNDING MODE special register.

• not have nonzero digits beyond the scale of the column data type if the constant is a
decimal constant (for example, 1.234 cannot be the default for a DECIMAL(5,2) column)

• be expressed with no more than 254 bytes including the quote characters, any
introducer character such as the X for a hexadecimal constant, and characters from
the fully qualified function name and parentheses when the constant is the argument of
a cast-function

datetime-special-register
Specifies the value of the datetime special register (CURRENT DATE, CURRENT TIME, or
CURRENT TIMESTAMP) at the time of INSERT, UPDATE, or LOAD as the default for the
column. The data type of the column must be the data type that corresponds to the
special register specified (for example, data type must be DATE when CURRENT DATE is
specified).

user-special-register
Specifies the value of the user special register (CURRENT USER, SESSION_USER,
SYSTEM_USER) at the time of INSERT, UPDATE, or LOAD as the default for the column.
The data type of the column must be a character string with a length not less than the
length attribute of a user special register. Note that USER can be specified in place of
SESSION_USER and CURRENT_USER can be specified in place of CURRENT USER.

Chapter 1. Structured Query Language (SQL) 1233

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register at the time of INSERT,
UPDATE, or LOAD as the default for the column. If CURRENT SCHEMA is specified, the data
type of the column must be a character string with a length greater than or equal to the
length attribute of the CURRENT SCHEMA special register.

NULL
Specifies NULL as the default for the column. If NOT NULL was specified, DEFAULT NULL
may be specified within the same column definition but will result in an error on any
attempt to set the column to the default value.

cast-function
This form of a default value can only be used with columns defined as a distinct type, BLOB
or datetime (DATE, TIME or TIMESTAMP) data type. For distinct type, with the exception
of distinct types based on BLOB or datetime types, the name of the function must match
the name of the distinct type for the column. If qualified with a schema name, it must
be the same as the schema name for the distinct type. If not qualified, the schema name
from function resolution must be the same as the schema name for the distinct type. For
a distinct type based on a datetime type, where the default value is a constant, a function
must be used and the name of the function must match the name of the source type of
the distinct type with an implicit or explicit schema name of SYSIBM. For other datetime
columns, the corresponding datetime function may also be used. For a BLOB or a distinct
type based on BLOB, a function must be used and the name of the function must be BLOB
with an implicit or explicit schema name of SYSIBM.
constant

Specifies a constant as the argument. The constant must conform to the rules of a
constant for the source type of the distinct type or for the data type if not a distinct
type. If the cast-function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP. The source type
of the distinct type of the column must be the data type that corresponds to the
specified special register.

user-special-register
Specifies CURRENT USER, SESSION_USER, or SYSTEM_USER. The data type of the
source type of the distinct type of the column must be a string data type with a length
of at least 8 bytes. If the cast-function is BLOB, the length attribute must be at least 8
bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register. The data type of the
source type of the distinct type of the column must be a character string with a length
greater than or equal to the length attribute of the CURRENT SCHEMA special register.
If the cast-function is BLOB, the length attribute must be at least 8 bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()
Specifies a zero-length string as the default for the column. The column must have the
data type that corresponds to the result data type of the function.

If the value specified is not valid, an error is returned (SQLSTATE 42894).

IDENTITY and identity-options
For specification of identity columns, see IDENTITY and identity-options in "CREATE TABLE".

LIKE table-name1 or view-name or nickname
Specifies that the columns of the table have exactly the same name and description as the columns
of the identified table (table-name1), view (view-name), or nickname (nickname). The name specified
after LIKE must identify a table, view, or nickname that exists in the catalog, or a declared temporary
table. A typed table or typed view cannot be specified (SQLSTATE 428EC). A protected table cannot
be specified (SQLSTATE 42962). A table that has a column defined as IMPLICITLY HIDDEN cannot be
specified (SQLSTATE 560AE).

1234 IBM Db2 V11.5: SQL Reference

The use of LIKE is an implicit definition of n columns, where n is the number of columns in the
identified table (including implicitly hidden columns), view, or nickname. The implicit definition
depends on what is identified after LIKE.

• If a table is identified, then the implicit definition includes the column name, data type and
nullability characteristic of each of the columns of table-name1. If EXCLUDING COLUMN DEFAULTS
is not specified, then the column default is also included.

• If a view is identified, then the implicit definition includes the column name, data type, and
nullability characteristic of each of the result columns of the fullselect defined in view-name. The
data types of the view columns must be data types that are valid for columns of a table.

• If a nickname is identified, then the implicit definition includes the column name, data type, and
nullability characteristic of each column of nickname.

• If a random distribution table using the random by generation method is identified, then the
RANDOM_DISTRIBUTION_KEY column used for generation of random distribution values is not
included. Unless the new table being created shares the same table distribution.

Column default and identity column attributes may be included or excluded, based on the copy-
attributes clauses. The implicit definition does not include any other attributes of the identified table,
view, or nickname. Thus the new table does not have any unique constraints, foreign key constraints,
triggers, indexes, table partitioning keys, or distribution keys. The table is created in the table space
implicitly or explicitly specified by the IN clause, and the table has any other optional clause only if the
optional clause is specified.

When a table is identified in the LIKE clause and that table contains a ROW CHANGE TIMESTAMP
column, the corresponding column of the new table inherits only the data type of the ROW CHANGE
TIMESTAMP column. The new column is not considered to be a generated column.

If row or column level access control (RCAC) is enforced for table-name1, RCAC is not inherited by the
new table.

AS (fullselect) WITH NO DATA
Specifies that the columns of the table have the same name and description as the columns that
would appear in the derived result table of the fullselect if the fullselect were to be executed. The use
of AS (fullselect) is an implicit definition of n columns for the created temporary table, where n is the
number of columns that would result from the fullselect.

The implicit definition includes the following attributes of the n columns (if applicable to the data
type):

• Column name
• Data type, length, precision, and scale
• Nullability

The following attributes are not included (the default value and identity attributes can be included by
using the copy-options):

• Default value
• Identity attributes
• Hidden attribute
• ROW CHANGE TIMESTAMP

The implicit definition does not include any other optional attributes of the tables or views referenced
in the fullselect.

Every select list element must have a unique name (SQLSTATE 42711). The AS clause can be used in
the select clause to provide unique names. The fullselect must not refer to host variables or include
parameter markers. The data types of the result columns of the fullselect must be data types that are
valid for columns of a table.

If row or column level access control (RCAC) is enforced for any table that is specified in fullselect,
RCAC is not cascaded to the new table.

Chapter 1. Structured Query Language (SQL) 1235

copy-options
These options specify whether to copy additional attributes of the source result table definition (table,
view, or fullselect).
INCLUDING COLUMN DEFAULTS

Column defaults for each updatable column of the source result table definition are copied.
Columns that are not updatable will not have a default defined in the corresponding column of the
created table.

If LIKE table-name1 is specified, and table-name1 identifies a base table, created temporary
table, or declared temporary table, then INCLUDING COLUMN DEFAULTS is the default.

EXCLUDING COLUMN DEFAULTS
Column defaults are not copied from the source result table definition.

This clause is the default, except when LIKE table-name is specified and table-name identifies a
base table, created temporary table, or declared temporary table.

INCLUDING IDENTITY COLUMN ATTRIBUTES
If available, identity column attributes (START WITH, INCREMENT BY, and CACHE values) are
copied from the source's result table definition. It is possible to copy these attributes if the
element of the corresponding column in the table, view, or fullselect is the name of a column of a
table, or the name of a column of a view which directly or indirectly maps to the column name of a
base table or created temporary table with the identity property. In all other cases, the columns of
the new temporary table will not get the identity property. For example:

• The select list of the fullselect includes multiple instances of the name of an identity column
(that is, selecting the same column more than once)

• The select list of the fullselect includes multiple identity columns (that is, it involves a join)
• The identity column is included in an expression in the select list
• The fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are not copied from the source result table definition.

ON COMMIT
Specifies the action taken on the created temporary table when a COMMIT operation is performed.
The default is DELETE ROWS.
DELETE ROWS

All rows of the table will be deleted if no WITH HOLD cursor is open on the table.
PRESERVE ROWS

Rows of the table will be preserved.
LOGGED or NOT LOGGED

Specifies whether operations for the table are logged. The default is NOT LOGGED ON ROLLBACK
DELETE ROWS.
NOT LOGGED

Specifies that insert, update, or delete operations against the table are not to be logged, but
that the creation or dropping of the table is to be logged. During a ROLLBACK (or ROLLBACK TO
SAVEPOINT) operation:

• If the table had been created within a unit of work (or savepoint), the table is dropped
• If the table had been dropped within a unit of work (or savepoint), the table is recreated, but

without any data

ON ROLLBACK
Specifies the action that is to be taken on the not logged created temporary table when a
ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is performed. The default is DELETE ROWS.
DELETE ROWS

If the table data has been changed, all the rows will be deleted.

1236 IBM Db2 V11.5: SQL Reference

PRESERVE ROWS
Rows of the table will be preserved.

LOGGED
Specifies that insert, update, or delete operations against the table as well as the creation or
dropping of the table are to be logged.

IN tablespace-name
Identifies the table space in which the created temporary table will be instantiated. The table space
must exist and be a USER TEMPORARY table space (SQLSTATE 42838), over which the authorization
ID of the statement has USE privilege (SQLSTATE 42501). If this clause is not specified, a table space
for the table is determined by choosing the USER TEMPORARY table space with the smallest sufficient
page size over which the authorization ID of the statement has USE privilege. When more than one
table space qualifies, preference is given according to who was granted the USE privilege:

1. The authorization ID
2. A group to which the authorization ID belongs
3. PUBLIC

If more than one table space still qualifies, the final choice is made by the database manager. When
no USER TEMPORARY table space qualifies, an error is raised (SQLSTATE 42727).

Determination of the table space can change when:

• Table spaces are dropped or created
• USE privileges are granted or revoked

The sufficient page size of a table is determined by either the byte count of the row or the number of
columns. For more details, see "Row Size" in “CREATE TABLE ” on page 1351.

distribution-clause
Specifies the database partitioning or the way the data is distributed across multiple database
partitions.
DISTRIBUTE BY HASH (column-name, ...)

Specifies the use of the default hashing function on the specified columns, called a distribution
key, as the distribution method across database partitions. The column-name must be an
unqualified name that identifies a column of the table (SQLSTATE 42703). The same column must
not be identified more than once (SQLSTATE 42709). No column whose data type is BLOB, CLOB,
DBCLOB, XML, distinct type based on any of these types, or structured type can be used as part of
a distribution key (SQLSTATE 42962).

If this clause is not specified, and the table resides in a multiple partition database partition group
with multiple database partitions, a default distribution key is automatically defined.

If none of the columns satisfies the requirements for a default distribution key, the table is created
without one. Such tables are allowed only in table spaces that are defined on single-partition
database partition groups.

For tables in table spaces that are defined on single-partition database partition groups, any
collection of columns with data types that are valid for a distribution key can be used to define the
distribution key. If this clause is not specified, no distribution key is created.

DISTRIBUTE BY RANDOM
Specifies that the database manager will select a distribution key to spread data evenly across all
database partitions of the database partitioning group. Data distribution is accomplished by using
a random by generation method. In this method, the database manager will include a column in
the table to generate and store a generated value to use in the hashing function. The column will
be created with the IMPLICITLY HIDDEN clause so that it does not appear in queries unless
explicitly included. The value of the column will be automatically generated as new rows are
added to the table. By default, the column name is RANDOM_DISTRIBUTION_KEY. If it collides
with the existing column, a non-conflicting name will be generated by the database manager.

Chapter 1. Structured Query Language (SQL) 1237

Notes
• A user temporary table space must exist before a created temporary table can be created (SQLSTATE

42727).
• Data row compression is enabled for a created temporary table. When the database manager

determines that there is a performance gain, table row data with XML documents stored inline in the
base table object is compressed. However, data compression of the XML storage object of a created
temporary table is not supported.

• Index compression is enabled by default for indexes that are created on created temporary tables.
Compression will be shown as on, but indexes will not be compressed if the correct license (IBM Db2
Storage Optimization Feature) is not applied.

• Instantiation and termination: For the explanations that follow, P denotes a session and T is a created
temporary table in the session P:

– An empty instance of T is created as a result of the first reference to T that is executed in P.
– Any SQL statement in P can make reference to T and any reference to T in P is a reference to that

same instance of T.
– Assuming that the ON COMMIT DELETE ROWS clause was specified implicitly or explicitly, then when

a commit operation terminates a unit of work in P, and there is no open WITH HOLD cursor in P that is
dependent on T, the commit includes the operation DELETE FROM T.

– When a rollback operation terminates a unit of work or a savepoint in P, and that unit of work or
savepoint includes a modification to T:

- If NOT LOGGED was specified, all rows from T are deleted unless ON ROLLBACK PRESERVE ROWS
was also specified

- If NOT LOGGED was not specified, the changes to T are undone
– If NOT LOGGED was specified and an INSERT, UPDATE or DELETE statement fails during execution

(as opposed to a compilation error), all rows from T are deleted.
– When a rollback operation terminates a unit of work or a savepoint in P, and that unit of work or

savepoint includes the creation of T, then the rollback includes the operation DROP TABLE T.
– If a rollback operation terminates a unit of work or a savepoint in P, and that unit of work or savepoint

includes the drop of a created temporary table T, then the rollback will undo the drop of the table. If
NOT LOGGED was specified, then the table will also have been emptied.

– When the application process that referenced T terminates or disconnects from the database, the
private instance of T is dropped and its instantiated rows are destroyed.

– When the connection to the server at which T was referenced terminates, the private instance of T is
dropped and its instantiated rows are destroyed.

• Restrictions on the use of created temporary tables: Created temporary tables cannot:

– Be specified in an ALTER, LOCK, or RENAME statement (SQLSTATE 42995)
– Be specified in referential constraints (SQLSTATE 42995)

• Syntax alternatives: The following alternatives are non-standard. They are supported for compatibility
with earlier product versions or with other database products.

– DEFINITION ONLY can be specified in place of WITH NO DATA
– The PARTITIONING KEY clause or DISTRIBUTE ON clause can be specified in place of the

DISTRIBUTE BY clause.
– When specifying the value of the datetime special register, NOW() can be specified in place of

CURRENT_TIMESTAMP.
– In a CHAR or VARCHAR column definition, you do not need to specify the CCSID explicitly; the correct

CCSID will be used automatically. However, if you do specify the CCSID explicitly, it must correspond
to the type of database being used:

- CCSID ASCII for a non-unicode database

1238 IBM Db2 V11.5: SQL Reference

- CCSID UNICODE for a unicode database

Examples
• Example 1: Create a temporary table, CURRENTMAP. Name two columns, CODE and MEANING, both of

which cannot contain nulls. CODE contains numeric data and MEANING has character data.

 CREATE GLOBAL TEMPORARY TABLE CURRENTMAP
 (CODE INTEGER NOT NULL,
 MEANING VARCHAR(254) NOT NULL)

• Example 2: Create a temporary table, TMPDEPT.

 CREATE GLOBAL TEMPORARY TABLE TMPDEPT
 (TMPDEPTNO CHAR(3) NOT NULL,
 TMPDEPTNAME VARCHAR(36) NOT NULL,
 TMPMGRNO CHAR(6),
 TMPLOCATION CHAR(16))

CREATE HISTOGRAM TEMPLATE
The CREATE HISTOGRAM TEMPLATE statement defines a template describing the type of histogram that
can be used to override one or more of the default histograms of a service class or a work class.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include WLMADM or DBADM authority.

Syntax
CREATE HISTOGRAM TEMPLATE template-name HIGH BIN VALUE bigint-constant

Description
template-name

Names the histogram template. This is a one-part name. It is an SQL identifier (either ordinary
or delimited). The name must not identify an existing histogram template at the current server
(SQLSTATE 42710). The name must not begin with the characters 'SYS' (SQLSTATE 42939).

HIGH BIN VALUE bigint-constant
Specifies the top value of the second to last bin (the last bin has an unbounded top value). The units
depend on how the histogram is used. The maximum value is 268 435 456.

Rules
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK CLASS SET)

Chapter 1. Structured Query Language (SQL) 1239

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an

uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• Changes are written to the system catalog, but do not take effect until they are committed, even for the
connection that issues the statement.

Example
Create a histogram template named LIFETIMETEMP on service class PAYROLL in service superclass
ADMIN that will override the default activity lifetime histogram template with a new high bin value
of 90 000, which represents 90 000 milliseconds. This will produce a histogram with exponentially
increasing bin ranges, ending with a bin whose range is 90 000 to infinity.

 CREATE HISTOGRAM TEMPLATE LIFETIMETEMP
 HIGH BIN VALUE 90000

 CREATE SERVICE CLASS PAYROLL
 UNDER ADMIN ACTIVITY LIFETIME HISTOGRAM TEMPLATE LIFETIMETEMP

CREATE INDEX
The CREATE INDEX statement is used to define an index on a database table.

An index can be defined on XML data, or on relational data. The CREATE INDEX statement is also used
to create an index specification (metadata that indicates to the optimizer that a data source table has an
index).

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• One of:

– CONTROL privilege on the table or nickname on which the index is defined
– INDEX privilege on the table or nickname on which the index is defined
– SCHEMAADM authority on the schema containing the table or nickname on which the index is defined

and one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the index
does not exist

– CREATEIN privilege on the schema, if the schema name of the index refers to an existing schema
– SCHEMAADM authority on the schema, if the schema name of the index refers to an existing schema

• DBADM authority

1240 IBM Db2 V11.5: SQL Reference

No explicit privilege is required to create an index on a declared temporary table.

Syntax
CREATE

UNIQUE

INDEX index-name

ON table-name
1

nickname
2

(

,

column-name

key-expression

ASC

DESC

RANDOM

BUSINESS_TIME WITHOUT OVERLAPS
3

)

PARTITIONED

NOT PARTITIONED

●

IN tablespace-name
4

●

SPECIFICATION ONLY

●

INCLUDE
5

(

,

column-name

key-expression

)

●

xml-index-specification
6

CLUSTER

EXTEND USING index-extension-name

(

,

constant-expression)

●

PCTFREE 10

PCTFREE integer

●

LEVEL2 PCTFREE integer

●

MINPCTUSED integer

●
ALLOW REVERSE SCANS

DISALLOW REVERSE SCANS

●

PAGE SPLIT SYMMETRIC

PAGE SPLIT HIGH

LOW

●

Chapter 1. Structured Query Language (SQL) 1241

COLLECT

SAMPLED

UNSAMPLED

DETAILED

STATISTICS

●

COMPRESS NO

YES

●

INCLUDE NULL KEYS

EXCLUDE NULL KEYS

●

Notes:
1 In a federated system, table-name must identify a table in the federated database. It cannot identify
a data source table.
2 If nickname is specified, the CREATE INDEX statement creates an index specification. In this case,
INCLUDE, xml-index-specification, CLUSTER, EXTEND USING, PCTFREE, MINPCTUSED, DISALLOW
REVERSE SCANS, ALLOW REVERSE SCANS, PAGE SPLIT, or COLLECT STATISTICS cannot be specified.
3 The BUSINESS_TIME WITHOUT OVERLAPS clause can be specified only if UNIQUE is specified.
4 The IN tablespace-name clause can be specified only for a nonpartitioned index on a partitioned
table.
5 The INCLUDE clause can be specified only if UNIQUE is specified.
6 If xml-index-specification is specified, column-name DESC, INCLUDE, or CLUSTER cannot be
specified.

xml-index-specification

GENERATE KEY USING XMLPATTERN
1

xmlpattern-clause xmltype-clause

Notes:
1 The alternative syntax GENERATE KEYS USING XMLPATTERN can be used.

xmlpattern-clause
'

namespace-declaration

pattern-expression '

namespace-declaration

DECLARE NAMESPACE namespace-prefix = namespace-uri

DECLARE DEFAULT ELEMENT NAMESPACE namespace-uri

;

pattern-expression

1242 IBM Db2 V11.5: SQL Reference

/

//

forward-axis xmlname-test

xmlkind-test

/

//

forward-axis xmlname-test function-step

forward-axis
child::

@

attribute::

descendant::

self::

descendant-or-self::

xmlname-test
xml-qname

xml-wildcard

xml-wildcard
*

xml-nsprefix:*

*:xml-ncname

xmlkind-test
node()

text()

comment()

processing instruction()

function-step
fn:upper-case (

, locale-name

)

fn:exists (xmlname-test)

xmltype-clause

AS data-type
IGNORE INVALID VALUES

REJECT INVALID VALUES

data-type
sql-data-type

sql-data-type

Chapter 1. Structured Query Language (SQL) 1243

SQL
1

VARCHAR (integer

OCTETS

)

HASHED

DOUBLE

INTEGER

INT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

DATE

TIMESTAMP

Notes:
1 If you specify a function name, such as fn:upper-case, at the end of the XML pattern, the supported
index data types might be a subset of the index data types shown here. You can check for valid index
data types in the description for xmlpattern-clause.

Description
UNIQUE

If ON table-name is specified, UNIQUE prevents the table from containing two or more rows with the
same value of the index key. The uniqueness is enforced at the end of the SQL statement that updates
rows or inserts new rows.

The uniqueness is also checked during the execution of the CREATE INDEX statement. If the table
already contains rows with duplicate key values, the index is not created.

If the index is on an XML column (the index is an index over XML data), the uniqueness applies to
values with the specified pattern-expression for all rows of the table. Uniqueness is enforced on each
value after the value has been converted to the specified sql-data-type. Because converting to the
specified sql-data-type might result in a loss of precision or range, or different values might be hashed
to the same key value, multiple values that appear to be unique in the XML document might result in
duplicate key errors. The uniqueness of character strings depends on XQuery semantics where trailing
blanks are significant. Therefore, values that would be duplicates in SQL but differ in trailing blanks
are considered unique values in an index over XML data.

When UNIQUE is used, null values are treated as any other values. For example, if the key is a single
column that may contain null values, that column may contain no more than one null value.

If the UNIQUE option is specified, and the table has a distribution key, the columns in the index key
must be a superset of the distribution key. That is, the columns specified for a unique index key must
include all the columns of the distribution key (SQLSTATE 42997).

Primary or unique keys cannot be subsets of dimensions (SQLSTATE 429BE).

If ON nickname is specified, UNIQUE should be specified only if the data for the index key contains
unique values for every row of the data source table. The uniqueness will not be checked.

For an index over XML data, UNIQUE can be included only if the context step of the pattern-expression
specifies a single complete path and does not contain a descendant or descendant-or-self axis, "//",
an xml-wildcard, node(), or processing-instruction() (SQLSTATE 429BS).

In a partitioned database environment, the following rules apply to a table with one or more XML
columns:

1244 IBM Db2 V11.5: SQL Reference

• A distributed table cannot have a unique index over XML data.
• A unique index over XML data is supported only on a table that does not have a distribution key and

that is on a single node multi-partition database.
• If a unique index over XML data exists on a table, the table cannot be altered to add a distribution

key.

INDEX index-name
Names the index or index specification. The name, including the implicit or explicit qualifier, must
not identify an index or index specification that is described in the catalog, or an existing index on a
declared temporary table (SQLSTATE 42704). The qualifier must not be SYSIBM, SYSCAT, SYSFUN, or
SYSSTAT (SQLSTATE 42939).

The implicit or explicit qualifier for indexes on declared temporary tables must be SESSION
(SQLSTATE 428EK).

ON table-name or nickname
The table-name identifies a table on which an index is to be created. The table must be a base table
(not a view), a created temporary table, a declared temporary table, a materialized query table that
exists at the current server, or a declared temporary table. The name of a declared temporary table
must be qualified with SESSION.

The table-name must not identify a catalog table (SQLSTATE 42832).

If UNIQUE is specified and table-name is a typed table, it must not be a subtable (SQLSTATE 429B3).

nickname is the nickname on which an index specification is to be created. The nickname references
either a data source table whose index is described by the index specification, or a data source view
that is based on such a table. The nickname must be listed in the catalog.

If the index key contains at least one key-expression, the table-name cannot be any of the following
objects:

• A materialized query table (MQT) (SQLSTATE 429BX)
• A staging table (SQLSTATE 429BX)
• A typed table (SQLSTATE 429BX)
• A declared or created user temporary table (SQLSTATE 42995)
• A column-organized table (SQLSTATE 42858)
• A table that is an event monitor target (SQLSTATE 429BX)
• A nickname (SQLSTATE 42601)

column-name
For an index, column-name identifies a column that is to be part of the index key. For an index
specification, column-name is the name by which the federated server references a column of a data
source table.

The number of columns plus twice the number of identified periods cannot exceed 64 (SQLSTATE
54008). If table-name is a typed table, the number of columns cannot exceed 63 (SQLSTATE 54008).
If table-name is a subtable, at least one column-name must be introduced in the subtable; that is,
not inherited from a supertable (SQLSTATE 428DS). No column-name can be repeated (SQLSTATE
42711). The maximum number of columns in an index with random ordering is reduced by one for
each column that is specified with random ordering

The sum of the stored lengths of the specified columns must not be greater than the index key length
limit for the page size. For key length limits, see "SQL limits". If table-name is a typed table, the index
key length limit is further reduced by 4 bytes. If the index has random ordering, the index key length is
further reduced by 2 bytes.

Note that this length can be reduced by system overhead, which varies according to the data type of
the column and whether it is nullable. For more information on overhead affecting this limit, see "Byte
Counts" in "CREATE TABLE".

Chapter 1. Structured Query Language (SQL) 1245

No LOB column or distinct type column based on a LOB can be used as part of an index, even if the
length attribute of the column is small enough to fit within the index key length limit for the page size
(SQLSTATE 54008). A structured type column can only be specified if the EXTEND USING clause is
also specified (SQLSTATE 42962). If the EXTEND USING clause is specified, only one column can be
specified, and the type of the column must be a structured type or a distinct type that is not based on
a LOB (SQLSTATE 42997).

If an index has only one column, and that column has the XML data type, and the GENERATE KEY
USING XMLPATTERN clause is also specified, the index is an index over XML data. A column with
the XML data type can be specified only if the GENERATE KEY USING XMLPATTERN clause is also
specified (SQLSTATE 42962). If the GENERATE KEY USING XMLPATTERN clause is specified, only one
column can be specified, and the type of the column must be XML.

key-expression
Specifies an expression that must evaluate to a scalar value with the following restrictions:

• The expression must return a scalar value which can be indexed (no LOBs, XMLs, LONG VARCHAR or
LONG VARGRAPHIC) (SQLSTATE 429BX)

• The following data types are not supported as input to the expression-based index key:

– LONG VARCHAR and LONG VARGRAPHIC (deprecated data types)
– XML
– User defined distinct types on any of the types listed previously
– User-defined weakly typed distinct types that include a data type constraint
– User-defined structured types and reference types
– Array, cursor, and row types

• The expression must contain at least one column reference (SQLSTATE 429BX)
• The expression cannot contain any of the following (SQLSTATE 429BX):

– Subqueries
– Aggregate functions
– Non-deterministic functions
– Functions with external actions
– User-defined functions
– Text search functions, such as SCORE, CONTAINS
– Partitioning scalar functions, such as HASHEDVALUE
– Dynamic data type scalar functions, such TYPE_ID, TYPE_NAME, TYPE_SCHEMA
– Host Variables
– Parameter markers
– Sequence references
– Special registers and built-in functions that depend on the value of a special register
– Global variables and built-in functions that depend on the value of a global variable
– A TYPE predicate
– Regular expression functions or the REGEXP_LIKE predicate
– A LIKE predicate
– String scalar functions INSTR, INSTRB, LOCATE, LOCATE_IN_STRING, POSITION or POSSTR
– OLAP specifications
– Dereference operations or DEREF functions where the scoped reference argument is other than

the object identifier (OID) column
– CAST specifications with a SCOPE clause
– Error tolerant nested-table-expressions

1246 IBM Db2 V11.5: SQL Reference

If an index key includes at least one key-expression, the index key is referred to as an expression-
based index key.

ASC
Specifies that index entries are to be kept in ascending order of the column values; this is the default
setting. ASC cannot be specified for indexes that are defined with EXTEND USING (SQLSTATE 42601).

DESC
Specifies that index entries are to be kept in descending order of the column values. DESC cannot be
specified for indexes that are defined with EXTEND USING, or if the index is an index over XML data
(SQLSTATE 42601).

RANDOM
Specifies that index entries are to be kept in random order of the column values. RANDOM cannot be
specified in the following cases:

• With the EXTENDED USING clause (SQLSTATE 42613).
• With the SPECIFICATION ONLY clause (SQLSTATE 42613).
• For an index that is created on a declared or created globally temporary table (DGTT or CGTT)

(SQLSTATE 42995).
• For an index that is created on a column-organized table (SQLSTATE 42858).
• If the CLUSTER option is specified (SQLSTATE 42613).
• On an indexed column that is of type CHAR or VARCHAR with ICU collations, except when the

columns are declared as FOR BIT DATA (SQLSTATE 42997).
• On an indexed column that is of type GRAPHIC or VARGRAPHIC with ICU collations (SQLSTATE

42997).
• On an indexed column that is of type XML (SQLSTATE 42613).
• On an index which includes a key-expression (SQLSTATE 42997).

BUSINESS_TIME WITHOUT OVERLAPS
BUSINESS_TIME WITHOUT OVERLAPS can only be specified for an index defined as UNIQUE
(SQLSTATE 428HW) to indicate that for the rest of the specified keys, the values are unique with
respect to any period of time. BUSINESS_TIME WITHOUT OVERLAPS can only be specified as the
last item in the list. When BUSINESS_TIME WITHOUT OVERLAPS is specified, the end column and
begin column of the period BUSINESS_TIME are automatically added to the index key in ascending
order and enforce that there are no overlaps in time. When BUSINESS_TIME WITHOUT OVERLAPS
is specified, the columns of the BUSINESS_TIME period must not be specified as key columns, as
columns in the partitioning key, or as columns in the distribution key (SQLSTATE 428HW).

PARTITIONED
Indicates that a partitioned index should be created. The table-name must identify a table defined
with data partitions (SQLSTATE 42601).

If the table is partitioned and neither PARTITIONED nor NOT PARTITIONED is specified, the index
is created as partitioned (with a few exceptions). A nonpartitioned index is created instead of a
partitioned index if any of the following situations apply:

• UNIQUE is specified and the index key does not include all the table partitioning key columns.
• A spatial index is created.

A partitioned index with a definition that duplicates the definition of a nonpartitioned index is not
considered to be a duplicate index. For more details, see the “Rules” on page 1257 section in this
topic.

The PARTITIONED keyword cannot be specified for the following indexes:

• An index on a nonpartitioned table (SQLSTATE 42601)
• A unique index where the index key does not explicitly include all the table partitioning key columns

(SQLSTATE 42990)
• A spatial index (SQLSTATE 42997)

Chapter 1. Structured Query Language (SQL) 1247

A partitioned index cannot be created on a partitioned table that has detached dependent tables, for
example, MQTs (SQLSTATE 55019).

The table space placement for an index partition of the partitioned index is determined by the
following rules:

• If the table being indexed was created using the partition-tablespace-options INDEX IN clause of
the CREATE TABLE statement, the index partition is created in the table space specified in that
INDEX IN clause.

• If the CREATE TABLE statement for the table being indexed did not specify the partition-tablespace-
options INDEX IN clause, the index partition partitioned index is created in the same table space as
the corresponding data partition that it indexes.

The IN clause of the CREATE INDEX statement is not supported for partitioned indexes (SQLSTATE
42601). The tablespace-clauses INDEX IN clause of the CREATE TABLE statement is ignored for
partitioned indexes. If BUSINESS_TIME WITHOUT OVERLAPS is specified for the index key, the
partitioning key columns must not include the begin or end column of the BUSINESS_TIME period
(SQLSTATE 428HW).

NOT PARTITIONED
Indicates that a nonpartitioned index should be created that spans all of the data partitions defined
for the table. The table-name must identify a table defined with data partitions (SQLSTATE 42601).

A nonpartitioned index with a definition that duplicates the definition of a partitioned index is not
considered to be a duplicate index. For more details, see the “Rules” on page 1257 section in this
topic.

The table space placement for a the nonpartitioned index is determined by the following rules:

• If you specify the IN clause of the CREATE INDEX statement, the nonpartitioned index is placed in
the table space specified in that IN clause.

• If you do not specify the IN clause of the CREATE INDEX statement, the following rules determine
the table space placement of the nonpartitioned index:

– If the table being indexed was created using the tablespace-clauses INDEX IN clause of the
CREATE TABLE statement, the nonpartitioned index is placed in the table space specified in that
INDEX IN clause.

– If the table being indexed was created without using the tablespace-clauses INDEX IN clause
of the CREATE TABLE statement, the nonpartitioned index is created in the table space of the
first visible or attached data partition of the table. The first visible or attached data partition
of the table is the first partition in the list of data partitions that are sorted on the basis of
range specifications. Also, the authorization ID of the statement is not required to have the USE
privilege on the default table space.

IN tablespace-name
Specifies the table space in which the nonpartitioned index on a partitioned table is created. This
clause cannot be specified for a partitioned index or an index on a nonpartitioned table (SQLSTATE
42601). The specification of a table space specifically for the index overrides a specification made
using the INDEX IN clause when the table was created.

The table space specified by tablespace-name must be in the same database partition group as the
data table spaces for the table and manage space in the same way as the other table spaces of the
partitioned table (SQLSTATE 42838); it must be a table space on which the authorization ID of the
statement holds the USE privilege.

If the IN clause is not specified, the index is created in the table space that was specified by the
INDEX IN clause on the CREATE TABLE statement. If no INDEX IN clause was specified, the table
space of the first visible or attached data partition of the table is used. This is the first partition in
the list of data partitions that are sorted on the basis of range specifications. If the IN clause is
not specified, the authorization ID of the statement is not required to have the USE privilege on the
default table space.

1248 IBM Db2 V11.5: SQL Reference

SPECIFICATION ONLY
Indicates that this statement will be used to create an index specification that applies to the
data source table referenced by nickname. SPECIFICATION ONLY must be specified if nickname is
specified (SQLSTATE 42601). It cannot be specified if table-name is specified (SQLSTATE 42601).

If the index specification applies to an index that is unique, the database manager does not verify that
the column values in the remote table are unique. If the remote column values are not unique, queries
against the nickname that include the index column might return incorrect data or errors.

This clause cannot be used when creating an index on a created temporary table or declared
temporary table (SQLSTATE 42995).

INCLUDE
This keyword introduces a clause that specifies additional columns to be appended to the set of
index key columns. Any columns included with this clause are not used to enforce uniqueness.
These included columns might improve the performance of some queries through index only access.
The columns must be distinct from the columns used to enforce uniqueness (SQLSTATE 42711).
UNIQUE must be specified when INCLUDE is specified (SQLSTATE 42613). The limits for the number
of columns and sum of the length attributes apply to all of the columns in the unique key and in the
index.

This clause cannot be used with created temporary tables or declared temporary tables (SQLSTATE
42995).

This clause cannot be used with column-organized tables (SQLSTATE 42858).

column-name
Identifies a column that is included in the index but not part of the unique index key. The same
rules apply as defined for columns of the unique index key. The keywords ASC, DESC, or RANDOM
can be specified following column-name but have no effect on the order.

key-expression
Specifies an expression that is included in the index but not part of the unique index key. The
same rules apply as defined for expressions of the unique index key. The keywords ASC, DESC, or
RANDOM can be specified after key-expression but have no effect on the order.

INCLUDE cannot be specified for indexes that are defined with EXTEND USING, if nickname is
specified, or if the index is defined on an XML column (SQLSTATE 42601).

xml-index-specification
Specifies how index keys are generated from XML documents that are stored in an XML column.
xml-index-specification cannot be specified if there is more than one index column, or if the column
does not have the XML data type.

This clause only applies to XML columns (SQLSTATE 429BS).

GENERATE KEY USING XMLPATTERN xmlpattern-clause
Specifies the parts of an XML document that are to be indexed. XML pattern values are the
indexed values generated by the xmlpattern-clause. List data type nodes are not supported in the
index. If a node is qualified by the xmlpattern-clause and an XML schema exists that specifies that
the node is a list data type, then the list data type node cannot be indexed (SQLSTATE 23526 for
CREATE INDEX statements, or SQLSTATE 23525 for INSERT and UPDATE statements).
xmlpattern-clause

Contains a pattern expression that identifies the nodes that are to be indexed. It consists of an
optional namespace-declaration and a required pattern-expression.
namespace-declaration

If the pattern expression contains qualified names, a namespace-declaration must
be specified to define namespace prefixes. A default namespace can be defined for
unqualified names.
DECLARE NAMESPACE namespace-prefix=namespace-uri

Maps namespace-prefix, which is an NCName, to namespace-uri, which is a
string literal. The namespace-declaration can contain multiple namespace-prefix-to-

Chapter 1. Structured Query Language (SQL) 1249

namespace-uri mappings. The namespace-prefix must be unique within the list of
namespace-declaration (SQLSTATE 10503).

DECLARE DEFAULT ELEMENT NAMESPACE namespace-uri
Declares the default namespace URI for unqualified element names or types. If no
default namespace is declared, unqualified names of elements and types are in no
namespace. Only one default namespace can be declared (SQLSTATE 10502).

pattern-expression
Specifies the nodes in an XML document that are indexed. The pattern-expression can
contain pattern-matching characters (*). It is similar to a path expression in XQuery, but
represents a subset of the XQuery language that this database supports.
/ (forward slash)

Separates path expression steps.
// (double forward slash)

This is the abbreviated syntax for /descendant-or-self::node()/. You cannot use //
(double forward slash) if you also specify UNIQUE.

forward-axis
child::

Specifies children of the context node. This is the default, if no other forward axis is
specified.

@
Specifies attributes of the context node. This is the abbreviated syntax for
attribute::.

attribute::
Specifies attributes of the context node.

descendant::
Specifies the descendants of the context node. You cannot use descendant:: if you
also specify UNIQUE.

self::
Specifies just the context node itself.

descendant-or-self::
Specifies the context node and the descendants of the context node. You cannot
use descendant-or-self:: if you also specify UNIQUE.

xmlname-test
Specifies the node name for the step in the path using a qualified XML name (xml-
qname) or a wildcard (xml-wildcard).
xml-ncname

An XML name as defined by XML 1.0. It cannot include a colon character.
xml-qname

Specifies a qualified XML name (also known as a QName) that can have two
possible forms:

• xml-nsprefix:xml-ncname, where the xml-nsprefix is an xml-ncname that
identifies an in-scope namespace

• xml-ncname, which indicates that the default namespace should be applied as
the implicit xml-nsprefix

xml-wildcard
Specifies an xml-qname as a wildcard that can have three possible forms:

• * (a single asterisk character) indicates any xml-qname
• xml-nsprefix:* indicates any xml-ncname within the specified namespace
• *:xml-ncname indicates a specific XML name in any in-scope namespace

1250 IBM Db2 V11.5: SQL Reference

You cannot use xml-wildcard in the context step of a pattern expression if you also
specify UNIQUE.

xmlkind-test
Use these options to specify what types of nodes you pattern match. The following
options are available to you:
node()

Matches any node. You cannot use node() if you also specify UNIQUE.
text()

Matches any text node.
comment()

Matches any comment node.
processing-instruction()

Matches any processing instruction node. You cannot use processing-instruction()
if you also specify UNIQUE.

function-step
Use these function calls to specify indexes with special properties, such as case
insensitivity. Only one function step is allowed per XMLPATTERN clause. Function
steps can be applied only on elements or attributes. No xmlkind-test option can be
placed immediately before the function step. The function cannot be used in the
middle of the XMLPATTERN, and must appear only in the final step. Currently, only the
fn:upper-case and fn:exists functions are supported.

Note that instead of specifying the prefix fn: for the function name, you can specify
another valid namespace, or you can omit fn: entirely.

fn:upper-case
Force the index values to be stored in the uppercase form. The first parameter
of fn:upper-case is mandatory, and must be a context item expression (' . '); the
second parameter is optional, and is the locale. If fn:upper-case appears in the
pattern, VARCHAR and VARCHAR HASHED are the only index types supported.

fn:exists
Check for the existence of an element or attribute item in the XML document. If the
item exists, this predicate returns true. The parameter of fn:exists is mandatory,
and must be an element or attribute. If this function is used in the index path, the
index type must be defined as VARCHAR(1).

xmltype-clause
AS data-type

Specifies the data type to which indexed values are converted before they are stored.
Values are converted to the index XML data type that corresponds to the specified index
SQL data type.

Table 134. Corresponding index data types

Index XML data type Index SQL data type

xs:string VARCHAR(integer), VARCHAR HASHED

xs:double DOUBLE

xs:int INTEGER

xs:decimal DECIMAL

xs:date DATE

xs:dateTime TIMESTAMP

Chapter 1. Structured Query Language (SQL) 1251

For VARCHAR(integer) and VARCHAR HASHED, the value is converted to an xs:string value
using the XQuery function fn:string. The length attribute of VARCHAR(integer) is applied as
a constraint to the resulting xs:string value. An index SQL data type of VARCHAR HASHED
applies a hash algorithm to the resulting xs:string value to generate a hash code that is
inserted into the index.

For indexes using the data types DOUBLE, DATE, INTEGER, DECIMAL, and TIMESTAMP,
the value is converted to the index XML data type using the XQuery cast expression.

If the index is unique, the uniqueness of the value is enforced after the value is converted
to the indexed type.

data-type
The following data type is supported:
sql-data-type

Supported SQL data types are:
VARCHAR(integer[OCTETS])

If this form of VARCHAR is specified, integer is used as a constraint. If
document nodes that are to be indexed have values that are longer than
integer, the documents are not inserted into the table if the index already
exists. If the index does not exist, the index is not created. integer is a value
between 1 and a page size-dependent maximum. Table 135 on page 1252
shows the maximum value for each page size.

Table 135. Maximum length of document nodes by page size

Page size Maximum length of document node
(bytes)

4KB 817

8KB 1841

16KB 3889

32KB 7985

XQuery semantics are used for string comparisons, where trailing blanks
are significant. This differs from SQL semantics, where trailing blanks are
insignificant during comparisons.
OCTETS

Specifies that the units of the length attribute is bytes.
When no string units are specified for a character string data type in a Unicode
database, the string units are implicit and determined by the value of the
NLS_STRING_UNITS global variable or string_units database configuration
parameter. When the implicit string units are CODEUNITS32, the OCTETS
keyword must be specified (SQLSTATE 42601).

In a non-Unicode database, the string units for character string data types are
OCTETS.

VARCHAR HASHED
Specify VARCHAR HASHED to handle indexing of arbitrary length character
strings. The length of an indexed string has no limit. An eight-byte hash
code is generated over the entire string. Indexes that use these hashed
character strings can be used only for equality lookups. XQuery semantics
are used for string equality comparisons, where trailing blanks are significant.
This differs from SQL semantics, where trailing blanks are insignificant during
comparisons. The hash on the string preserves XQuery semantics for equality
and not SQL semantics.

1252 IBM Db2 V11.5: SQL Reference

DOUBLE
Specifies that the data type DOUBLE is used for indexing numeric values.
Unbounded decimal types and 64 bit integers may lose precision when they
are stored as a DOUBLE value. The values for DOUBLE may include the special
numeric values NaN, INF, -INF, +0, and -0, even though the SQL data type
DOUBLE itself does not support these values.

INTEGER
Specifies that the data type INTEGER is used for indexing XML values. Note
that the XML schema data type xs:integer allows a greater range of values than
does the integer SQL data type. If an out-of-range value is encountered, an
error is returned. If a value conforms to the lexical format of xs:double but
does not conform to the lexical format of xs:int, such as 3.5, 3.0, or 3E1, an
error is also returned.

DECIMAL(integer, integer)
Specifies that the data type DECIMAL is used for indexing XML values. The
DECIMAL type takes two parameters, precision and scale. The first parameter,
precision, is an integer constant with a value in the range of 1 to 31 that
specifies the total number of digits. The second parameter, scale, is an
integer constant that is greater than or equal to zero, and less than or equal
to precision. The scale specifies the number of digits to the right of the decimal
point.

Digits are not truncated from the end of a decimal number. An error is returned
if the number of digits to the right of the decimal separator character is greater
than the scale. Also, an error is returned if the number of significant digits to
the left of the decimal character (the whole part of the number) is greater than
precision.

DATE
Specifies that the data type DATE is used for indexing XML values. Note that
the XML schema data type for xs:date allows greater range of values than
the pureXML® xs:date data type that corresponds to the SQL data type. If an
out-of-range value is encountered, an error is returned.

TIMESTAMP
Specifies that the data type TIMESTAMP is used for indexing XML values. Note
that the XML schema data type for xs:dateTime allows greater range of values
and fractional seconds precision than the pureXML xs:dateTime data type that
corresponds to the SQL data type. If an out-of range value is encountered, an
error is returned.

IGNORE INVALID VALUES
Specifies that XML pattern values that are invalid lexical forms for the target index XML
data type are ignored and that the corresponding values in the stored XML documents
are not indexed by the CREATE INDEX statement. By default, invalid values are ignored.
During insert and update operations, the invalid XML pattern values are not indexed, but
XML documents are still inserted into the table. No error or warning is raised, because
specifying these data types is not a constraint on the XML pattern values (XQuery
expressions that search for the specific XML index data type will not consider these
values).

The rules for what XML pattern values can be ignored are determined by the specified SQL
data type.

• If the SQL data type is VARCHAR(integer) or VARCHAR HASHED, XML pattern values are
never ignored since any sequence of characters is valid.

• If the SQL data type is DOUBLE, DECIMAL, or INTEGER, any XML pattern value that does
not conform to the lexical format of the XML data type xs:double is ignored. If the SQL
data type is DECIMAL or INTEGER and the XML pattern value conforms to the lexical
format of the XML data type xs:double but not to the lexical format of xs:decimal or

Chapter 1. Structured Query Language (SQL) 1253

xs:int, respectively, an error is returned. For example, if the SQL data type is INTEGER,
the XML pattern values of 3.5, 3.0, and 3e0 conform to the lexical format of xs:double
but return an error (SQLSTATE 23525) because they do not conform to the lexical format
of xs:int. XML pattern values such as 'A123' or 'hello' are ignored for the same index.

• If the SQL data type is a datetime data type, any XML pattern value that does
not conform to the lexical format of the corresponding XML data type (xs:date or
xs:dateTime) is ignored.

If an XML pattern value does conform to the appropriate lexical format, an error is
returned if the value is outside the value space for the data type or exceeds the maximum
length or precision and scale of the specified SQL data type. If the index does not exist, the
index is not created (SQLSTATE 23526).

REJECT INVALID VALUES
All XML pattern values must be valid in the context of the lexical definition of the index
XML data type. In addition the value must be in the range of the value space of the index
XML data type. See the Related reference section, later, for links to details on the lexical
definition and value space for each data type. For example, when you specify the REJECT
INVALID VALUES clause, if you create an index of INTEGER type, XML pattern values such
as 3.5, 3.0, 3e0, 'A123' and 'hello' will return an error (SQLSTATE 23525). XML data is not
inserted or updated in the table if the index already exists (SQLSTATE 23525). If the index
does not exist, the index is not created (SQLSTATE 23526).

CLUSTER
Specifies that the index is the clustering index of the table. The cluster factor of a clustering index
is maintained or improved dynamically as data is inserted into the associated table, by attempting to
insert new rows physically close to the rows for which the key values of this index are in the same
range. Only one clustering index may exist for a table so CLUSTER may not be specified if it was used
in the definition of any existing index on the table (SQLSTATE 55012). A clustering index may not be
created on a table that is defined to use append mode (SQLSTATE 428D8).

CLUSTER is disallowed if nickname is specified, or if the index is an index over XML data (SQLSTATE
42601).

This clause cannot be used with the following types of tables:

• Created temporary tables or declared temporary tables (SQLSTATE 42995)
• Range-clustered tables (SQLSTATE 429BG)
• Column-organized tables (SQLSTATE 42858)

EXTEND USING index-extension-name
Names the index-extension used to manage this index. If this clause is specified, then there must
be only one column-name specified and that column must be a structured type or a distinct type
(SQLSTATE 42997). The index-extension-name must name an index extension described in the
catalog (SQLSTATE 42704). For a distinct type, the column must exactly match the type of the
corresponding source key parameter in the index extension. For a structured type column, the type of
the corresponding source key parameter must be the same type or a supertype of the column type
(SQLSTATE 428E0).

This clause cannot be used with created temporary tables or declared temporary tables (SQLSTATE
42995).

This clause cannot be used with column-organized tables (SQLSTATE 42858).

Starting with IBM Db2 10.5, this clause is also supported in Db2 pureScale environments. For
version 10.5 Fix Pack 3 and earlier fix pack releases, this clause is not supported in Db2 pureScale
environments (SQLSTATE 56038).

This clause cannot be used if the index key contains at least one key-expression (SQLSTATE 42601).

constant-expression
Identifies values for any required arguments for the index extension. Each expression must be a
constant value with a data type that exactly matches the defined data type of the corresponding

1254 IBM Db2 V11.5: SQL Reference

index extension parameters, including length or precision, and scale (SQLSTATE 428E0). This
clause must not exceed 32␠768 bytes in length in the database code page (SQLSTATE 22001).

PCTFREE integer
Specifies what percentage of each index page to leave as free space when building the index. The first
entry in a page is added without restriction. When additional entries are placed in an index page at
least integer percent of free space is left on each page. The value of integer can range from 0 to 99. If a
value greater than 10 is specified, only 10 percent free space will be left in non-leaf pages.

If an explicit value for PCTFREE is not provided, and if DB2_INDEX_PCTFREE_DEFAULT is not set,
then PCTFREE will have a default value of 10.

PCTFREE is disallowed if nickname is specified (SQLSTATE 42601). This clause cannot be used with
created temporary tables or declared temporary tables (SQLSTATE 42995).

LEVEL2 PCTFREE integer
Specifies what percentage of each index level 2 page to leave as free space when building the index.
The value of integer can range from 0 to 99. If LEVEL2 PCTFREE is not set, a minimum of 10 or
PCTFREE percent of free space is left on all non-leaf pages. If LEVEL2 PCTFREE is set, integer percent
of free space is left on level 2 intermediate pages, and a minimum of 10 or integer percent of free
space is left on level 3 and higher intermediate pages.

LEVEL2 PCTFREE is disallowed if nickname is specified (SQLSTATE 42601). This clause cannot be
used with created temporary tables or declared temporary tables (SQLSTATE 42995).

MINPCTUSED integer
Indicates whether index leaf pages are merged online, and the threshold for the minimum percentage
of space used on an index leaf page. If, after a key is removed from an index leaf page, the percentage
of space used on the page is at or below integer percent, an attempt is made to merge the remaining
keys on this page with those of a neighboring page. If there is sufficient space on one of these pages,
the merge is performed and one of the pages is deleted. The value of integer can be from 0 to 99.
A value of 50 or below is recommended for performance reasons. Specifying this option will have an
impact on update and delete performance. Merging is only done during update and delete operations
when an exclusive table lock is held. If an exclusive table lock does not exist, keys are marked as
pseudo deleted during update and delete operations, and no merging is done. Consider using the
CLEANUP ONLY ALL option of REORG INDEXES to merge leaf pages instead of using the MINPCTUSED
option of CREATE INDEX.

MINPCTUSED is disallowed if nickname is specified (SQLSTATE 42601). This clause cannot be used
with created temporary tables or declared temporary tables (SQLSTATE 42995).

DISALLOW REVERSE SCANS
Specifies that an index only supports forward scans or scanning of the index in the order that was
defined at index creation time.

DISALLOW REVERSE SCANS cannot be specified together with nickname (SQLSTATE 42601).

ALLOW REVERSE SCANS
Specifies that an index can support both forward and reverse scans; that is, scanning of the index in
the order that was defined at index creation time, and scanning in the opposite order.

ALLOW REVERSE SCANS cannot be specified together with nickname (SQLSTATE 42601).

PAGE SPLIT
Specifies the page split behavior when values are inserted into an index. The default is SYMMETRIC.
SYMMETRIC

Specifies that pages are to be split roughly in the middle. Use this option in the following
situations:

• When the insertion into an index is random
• When the insertion into an index does not follow the patterns that are addressed by the PAGE

SPLIT HIGH and PAGE SPLIT LOW options

Chapter 1. Structured Query Language (SQL) 1255

HIGH
Specifies an index page split behavior that uses the space on index pages efficiently when there
are ever-increasing values in the index. Increasing values in the index might occur when the
following conditions are met:

• There is an index with multiple key parts and there are multiple index pages of values where all
except the last key part has the same value.

• All insert operations into the table consist of a new value, which has the same value as existing
keys for all but the last key part.

• The last key part of the inserted value is larger than the values of the existing keys.

For example, assume that an index has the following key values:

 (1,1),(1,2),(1,3), ... (1,n),
 (2,1),(2,2),(2,3), ... (2,n),
 ...
 (m,1),(m,2),(m,3), ... (m,n)

The next key to be inserted would have the value (x,y) where 1 <= x <= m and y > n.

In such cases, use the PAGE SPLIT HIGH clause so that page splits do not result in many pages
that are 50 percent empty.

LOW
Specifies an index page split behavior that uses the space on index pages efficiently when there
are ever-decreasing values in the index. Decreasing values in the index might occur when the
following conditions are met:

• There is an index with multiple key parts and there are multiple index pages of values where all
except the last key part has the same value.

• All insert operations into the table consist of a new value, which has the same value as existing
keys for all but the last key part.

• The last key part of the inserted value is smaller than the values of the existing keys.

In such cases, use the PAGE SPLIT LOW clause so that page splits do not result in many pages
that are 50 percent empty.

COLLECT STATISTICS
Specifies that basic index statistics are to be collected during index creation.
SAMPLED

Specifies that a sampling technique is to be used when processing index entries to collect
extended index statistics. This option is used to balance performance considerations with the
need for accuracy of the statistics. This option is the default when DETAILED is specified
immediately following the keyword COLLECT.

UNSAMPLED
Specifies that sampling is not to be used when processing index entries to collect extended index
statistics. Instead, each index entry is examined individually. This option can significantly increase
CPU and memory consumption.

DETAILED
Specifies that extended index statistics (CLUSTERFACTOR and PAGE_FETCH_PAIRS) are also to
be collected during index creation.

COMPRESS
Specifies whether index compression is enabled. By default, index compression will be enabled if
data row compression is enabled or if the table is a declared global temporary table (DGTT) or
created global temporary table (CGTT); index compression will be disabled if data row compression
is disabled. This option can be used to override the default behavior. COMPRESS is disallowed if
nickname is specified (SQLSTATE 42601).

1256 IBM Db2 V11.5: SQL Reference

YES
Specifies that index compression is enabled. Insert and update operations on the index will be
subject to compression.

NO
Specifies that index compression is disabled.

INCLUDE NULL KEYS
Specifies that an index entry is created when all parts of the index key contain the null value. This is
the default setting.

EXCLUDE NULL KEYS
Specifies that an index entry is not created when all parts of the index key contain the null value.
When any part of the index key is not a null value, an index entry is created. You cannot specify
EXCLUDE NULL KEYS with the following syntax elements:

• A nickname
• The GENERATE KEY USING XMLPATTERN clause
• The EXTEND USING clause.

If an index is defined as unique, rows with null keys are not considered when enforcing uniqueness.

This clause cannot be used with column-organized tables (SQLSTATE 42858).

Rules
• The CREATE INDEX statement fails (SQLSTATE 01550) when attempting to create an index that

matches an existing index.

A number of factors are used to determine if two indexes match. These factors are combined in various
different ways into the rules that determine if two indexes match. The following factors are used to
determine if two indexes match:

1. The sets of index columns and key expressions, including any INCLUDE columns and key
expressions, are the same in both indexes.

2. The ordering of index key columns and key expressions, including any INCLUDE columns, is the same
in both indexes.

3. The key columns and key expressions of the new index are the same or a superset of the key
columns and key expressions in the existing index.

4. The ordering attributes of the columns and key expressions are the same in both indexes.
5. The existing index is unique.
6. Both indexes are non-unique.

The following combinations of these factors form the rules that determine when two indexes are
considered duplicates:

– “1” on page 1257 + “2” on page 1257 + “4” on page 1257 + “5” on page 1257
– “1” on page 1257 + “2” on page 1257 + “4” on page 1257 + “6” on page 1257
– “1” on page 1257 + “2” on page 1257 + “3” on page 1257 + “5” on page 1257

Exceptions:

– If one of the compared indexes is partitioned and the other of the compared indexes is
nonpartitioned, the indexes are not considered duplicates if the indexes have different names, even if
other matching index conditions are met.

– For indexes over XML data, the index descriptions are not considered duplicates if the index names
are different, even if the indexed XML column, the XML patterns, and the data type, including its
options, are identical.

• Unique indexes on system-maintained MQTs are not supported (SQLSTATE 42809).
• The COLLECT STATISTICS options are not supported if a nickname is specified (SQLSTATE 42601).

Chapter 1. Structured Query Language (SQL) 1257

• The creation of an index with an expression-based key in a partitioned database environment is
supported only from the catalog database partition (SQLSTATE 42997).

• Restrictions for indexes on column-organized tables:

– The following clauses are not supported when creating an index on a column-organized table
(SQLSTATE 42858):

- RANDOM
- CLUSTER
- EXTEND USING
- INCLUDE
- EXCLUDE NULL KEYS
- key-expression

• Indexes cannot be created on column-organized temporary tables.

Notes
• Concurrent read/write access during index creation, and default index creation behavior differs for

indexes on nonpartitioned tables, nonpartitioned indexes, partitioned indexes, and indexes in a Db2
pureScale environment:

– For nonpartitioned indexes, concurrent read/write access to the table is permitted while an index is
being created, except when the EXTEND USING clause is specified. Once the index has been built,
changes that were made to the table during index creation time are forward-fitted to the new index.
Write access to the table is then blocked while index creation completes, after which the new index
becomes available.

– For partitioned indexes, concurrent read/write access to the table is permitted while an index is being
created, except when the EXTEND USING clause is specified. Once the index partition has been built,
changes that were made to the partition during creation time of that index partition are forward-fitted
to the new index partition. Write access to the data partition is then blocked while index creation
completes on the remaining data partitions. After the index partition for the last data partition is built
and the transaction is committed, all data partitions are available for read and write.

– Prior to Version 11.5, in a Db2 pureScale environment, concurrent read access during
index creation is the default behavior. You can enable concurrent write access by setting
the registry variable DB2_INDEX_CREATE_ALLOW_WRITE to ON. For more information, see
DB2_INDEX_CREATE_ALLOW_WRITE. Starting in Version 11.5, in a Db2 pureScale environment,
concurrent write access is enabled by default.

CREATE INDEX tries to forward-fit the concurrent changes before blocking writers. However, if there is
a lot of concurrent database activity such that CREATE INDEX is not able to keep up with the changes
coming in, it will block new writers sooner so it can complete the forward-fit. CREATE INDEX does
as much of the create completion work as it can before writers are blocked, to keep the period of
unavailability as short as possible. The size of the index and the amount of current activity impact this
period of time.

To circumvent this default behavior, use the LOCK TABLE statement to explicitly lock the table before
issuing a CREATE INDEX statement. (The table can be locked in either SHARE or EXCLUSIVE mode,
depending on whether read access is to be allowed.)

• If the named table already contains data, CREATE INDEX creates the index entries for it. If the table
does not yet contain data, CREATE INDEX creates a description of the index; the index entries are
created when data is inserted into the table.

• Once the index is created and data is loaded into the table, it is advisable to issue the RUNSTATS
command. The RUNSTATS command updates statistics collected on the database tables, columns, and
indexes. These statistics are used to determine the optimal access path to the tables. By issuing the
RUNSTATS command, the database manager can determine the characteristics of the new index. If data
has been loaded before the CREATE INDEX statement is issued, it is recommended that the COLLECT

1258 IBM Db2 V11.5: SQL Reference

STATISTICS option on the CREATE INDEX statement be used as an alternative to the RUNSTATS
command.

• If you collect statistics during index creation, the resulting statistics might be inconsistent. If the table
has been modified since you last collected statistics on the table and its existing indexes, you should
subsequently run the RUNSTATS command to provide a set of consistent statistics across the table and
all of its indexes.

• Creating an index with a schema name that does not already exist will result in the implicit creation
of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• The optimizer can recommend indexes before creating the actual index.
• If an index specification is being defined for a data source table that has an index, the name of the index
specification does not have to match the name of the index.

• The explain facility, the Design Advisor, or the EXPLAIN option in Data Server Manager can be used to
recommend indexes before creating the actual index. However, none of these methods will recommend
indexes containing expression-based keys.

• Collecting index statistics: The UNSAMPLED DETAILED option is available to change the way index
statistics are collected. However, it should be used only in cases where it is clear that DETAILED does
not yield accurate statistics.

• Generated Objects: If an index is created with expression-based keys, a system-generated statistical
view and a system-generated package will also be created and associated with the index.

• Syntax alternatives: The following syntax is tolerated and ignored:

– CLOSE
– DEFINE
– FREEPAGE
– GBPCACHE
– PIECESIZE
– TYPE 2
– using-block

The following syntax is accepted as the default behavior:

– COPY NO
– DEFER NO

Examples
• Example 1: Create an index named UNIQUE_NAM on the PROJECT table. The purpose of the index is

to ensure that there are not two entries in the table with the same value for project name (PROJNAME).
The index entries are to be in ascending order.

 CREATE UNIQUE INDEX UNIQUE_NAM
 ON PROJECT(PROJNAME)

• Example 2: Create an index named JOB_BY_DPT on the EMPLOYEE table. Arrange the index entries in
ascending order by job title (JOB) within each department (WORKDEPT).

 CREATE INDEX JOB_BY_DPT
 ON EMPLOYEE (WORKDEPT, JOB)

• Example 3: The nickname EMPLOYEE references a data source table called CURRENT_EMP. After this
nickname was created, an index was defined on CURRENT_EMP. The columns chosen for the index
key were WORKDEBT and JOB. Create an index specification that describes this index. Through this

Chapter 1. Structured Query Language (SQL) 1259

https://www.ibm.com/support/knowledgecenter/SS5Q8A_2.1.x/com.ibm.datatools.dsweb.ots.admin.doc/topics/tun_explain_and_tuning_options.html

specification, the optimizer will know that the index exists and what its key is. With this information, the
optimizer can improve its strategy to access the table.

 CREATE UNIQUE INDEX JOB_BY_DEPT
 ON EMPLOYEE (WORKDEPT, JOB)
 SPECIFICATION ONLY

• Example 4: Create an extended index type named SPATIAL_INDEX on a structured type column
location. The description in index extension GRID_EXTENSION is used to maintain SPATIAL_INDEX. The
literal is given to GRID_EXTENSION to create the index grid size.

 CREATE INDEX SPATIAL_INDEX ON CUSTOMER (LOCATION)
 EXTEND USING (GRID_EXTENSION (x'000100100010001000400010'))

• Example 5: Create an index named IDX1 on a table named TAB1, and collect basic index statistics on
index IDX1.

 CREATE INDEX IDX1 ON TAB1 (col1) COLLECT STATISTICS

• Example 6: Create an index named IDX2 on a table named TAB1, and collect detailed index statistics on
index IDX2.

 CREATE INDEX IDX2 ON TAB1 (col2) COLLECT DETAILED STATISTICS

• Example 7: Create an index named IDX3 on a table named TAB1, and collect detailed index statistics on
index IDX3 using sampling.

 CREATE INDEX IDX3 ON TAB1 (col3) COLLECT SAMPLED DETAILED STATISTICS

• Example 8: Create a unique index named A_IDX on a partitioned table named MYNUMBERDATA in table
space IDX_TBSP.

 CREATE UNIQUE INDEX A_IDX ON MYNUMBERDATA (A) IN IDX_TBSP

• Example 9: Create a non-unique index named B_IDX on a partitioned table named MYNUMBERDATA in
table space IDX_TBSP.

 CREATE INDEX B_IDX ON MYNUMBERDATA (B)
 NOT PARTITIONED IN IDX_TBSP

• Example 10: Create an index over XML data on a table named COMPANYINFO, which contains an XML
column named COMPANYDOCS. The XML column COMPANYDOCS contains a large number of XML
documents similar to the one below:

<company name="Company1">
 <emp id="31201" salary="60000" gender="Female">
 <name>
 <first>Laura</first>
 <last>Brown</last>
 </name>
 <dept id="M25">
 Finance
 </dept>
 </emp>
</company>

Users of the COMPANYINFO table often need to retrieve employee information using the employee ID.
An index like the following one can make that retrieval more efficient.

 CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)
 GENERATE KEY USING XMLPATTERN '/company/emp/@id'
 AS SQL DOUBLE

1260 IBM Db2 V11.5: SQL Reference

• Example 11: The following index is logically equivalent to the index created in the previous example,
except that it uses unabbreviated syntax.

 CREATE INDEX EMPINDEX ON COMPANYINFO(COMPANYDOCS)
 GENERATE KEY USING XMLPATTERN '/child::company/child::emp/attribute::id'
 AS SQL DOUBLE

• Example 12: Create an index on a column named DOC, indexing only the book title as a VARCHAR(100).
Because the book title should be unique across all books, the index must be unique.

 CREATE UNIQUE INDEX MYDOCSIDX ON MYDOCS(DOC)
 GENERATE KEY USING XMLPATTERN '/book/title'
 AS SQL VARCHAR(100)

• Example 13: Create an index on a column named DOC, indexing the chapter number as a DOUBLE. This
example includes namespace declarations.

 CREATE INDEX MYDOCSIDX ON MYDOCS(DOC)
 GENERATE KEY USING XMLPATTERN
 'declare namespace b="http://www.example.com/book/";
 declare namespace c="http://acme.org/chapters";
 /b:book/c:chapter/@number'
 AS SQL DOUBLE

• Example 14: Create a unique index named IDXPROJEST on table PROJECT and include column
PRSTAFF to allow index-only access of the estimated mean staffing information.

 CREATE UNIQUE INDEX IDXPROJEST ON PROJECT (PROJNO) INCLUDE (PRSTAFF)

• Example 15: Create a unique index on a column named USER_ID and exclude null keys from that index.

 CREATE UNIQUE INDEX IDXUSERID ON CUSTOMER (USER_ID) EXCLUDE NULL KEYS

• Example 16: Create an index with an expression-based key using upper case of employee's name and
ID:

 CREATE INDEX EMP_UPPERNAME ON EMPLOYEE (UPPER(NAME), ID)

CREATE INDEX EXTENSION
The CREATE INDEX EXTENSION statement defines an extension object for use with indexes on tables that
have structured type or distinct type columns.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the schema name of the index extension does not refer
to an existing schema

• CREATEIN privilege on the schema, if the schema name of the index extension refers to an existing
schema

• SCHEMAADM authority on the schema, if the schema name of the index extension refers to an existing
schema

• DBADM authority

Chapter 1. Structured Query Language (SQL) 1261

Syntax
CREATE INDEX EXTENSION index-extension-name

(

,

parameter-name1 data-type1)

index-maintenance

index-search

index-maintenance
FROM SOURCE KEY (parameter-name2 data-type2) GENERATE KEY USING

table-function-invocation

index-search

WITH TARGET KEY (

,

parameter-name3 data-type3) SEARCH METHODS

,

search-method-definition

search-method-definition

WHEN method-name (

,

parameter-name4 data-type4)

RANGE THROUGH range-producing-function-invocation

FILTER USING index-filtering-function-invocation

case-expression

Description
index-extension-name

Names the index extension. The name, including the implicit or explicit qualifier, must not identify an
index extension described in the catalog. If a two-part index-extension-name is specified, the schema
name cannot begin with 'SYS'; otherwise, an error is returned (SQLSTATE 42939).
parameter-name1

Identifies a parameter that is passed to the index extension at CREATE INDEX time to define the
actual behavior of this index extension. The parameter that is passed to the index extension is
called an instance parameter, because that value defines a new instance of an index extension.

parameter-name1 must be unique within the definition of the index extension. No more than 90
parameters are allowed. If this limit is exceeded, an error (SQLSTATE 54023) is returned.

data-type1
Specifies the data type of each parameter. One entry in the list must be specified for each
parameter that the index extension will expect to receive. The only SQL data types that can
be specified are those that can be used as constants, such as VARCHAR, INTEGER, DECIMAL,
DOUBLE, or VARGRAPHIC (SQLSTATE 429B5). The decimal floating-point data type cannot be
specified (SQLSTATE 429B5). The parameter value that is received by the index extension at

1262 IBM Db2 V11.5: SQL Reference

CREATE INDEX must match data-type1 exactly, including length, precision, and scale (SQLSTATE
428E0).

Character and graphic string data types cannot specify string units of CODEUNITS32.

index-maintenance
Specifies how the index keys of a structured or distinct type column are maintained. Index
maintenance is the process of transforming the source column to a target key. The transformation
process is defined using a table function that has previously been defined in the database.
FROM SOURCE KEY (parameter-name2 data-type2)

Specifies a structured data type or distinct type for the source key column that is supported by
this index extension.
parameter-name2

Identifies the parameter that is associated with the source key column. A source key column
is the index key column (defined in the CREATE INDEX statement) with the same data type as
data-type2.

data-type2
Specifies the data type for parameter-name2; data-type2 must be a user-defined structured
type or a distinct type that is not sourced on LOB, XML, or DECFLOAT (SQLSTATE 42997).
When the index extension is associated with the index at CREATE INDEX time, the data type of
the index key column must:

• Exactly match data-type2 if it is a distinct type; or
• Be the same type or a subtype of data-type2 if it is a structured type

Otherwise, an error is returned (SQLSTATE 428E0).
GENERATE KEY USING table-function-invocation

Specifies how the index key is generated using a user-defined table function. Multiple index
entries may be generated for a single source key data value. An index entry cannot be duplicated
from a single source key data value (SQLSTATE 22526). The function can use parameter-name1,
parameter-name2, or a constant as arguments. If the data type of parameter-name2 is a
structured data type, only the observer methods of that structured type can be used in its
arguments (SQLSTATE 428E3). The output of the GENERATE KEY function must be specified in
the TARGET KEY specification. The output of the function can also be used as input for the index
filtering function specified on the FILTER USING clause.

The function used in table-function-invocation must:

• Resolve to a table function (SQLSTATE 428E4)
• Not be defined with PARAMETER CCSID UNICODE if this database is not a Unicode database

(SQLSTATE 428E4)
• Not be defined with LANGUAGE SQL (SQLSTATE 428E4)
• Not be defined with NOT DETERMINISTIC (SQLSTATE 428E4) or EXTERNAL ACTION (SQLSTATE

428E4)
• Be defined with NO SQL (SQLSTATE 428E4)
• Not have a structured data type, LOB or XML (SQLSTATE 428E3) in the data type of the

parameters, with the exception of system-generated observer methods
• Not include a subquery (SQLSTATE 428E3)
• Not include an XMLQUERY or XMLEXISTS expression (SQLSTATE 428E3)
• Return columns with data types that follow the restrictions for data types of columns of an index
defined without the EXTEND USING clause

If an argument invokes another operation or routine, it must be an observer method (SQLSTATE
428E3).

Chapter 1. Structured Query Language (SQL) 1263

The definer of the index extension must have EXECUTE privilege on the function, EXECUTEIN
privilege on the schema containing this function, or DATAACCESS authority on the schema
containing this function.

index-search
Specifies how searching is performed by providing a mapping of the search arguments to search
ranges.
WITH TARGET KEY

Specifies the target key parameters that are the output of the key generation function specified on
the GENERATE KEY USING clause.

parameter-name3
Identifies the parameter associated with a given target key. parameter-name3 corresponds to the
columns of the RETURNS table as specified in the table function of the GENERATE KEY USING
clause. The number of parameters specified must match the number of columns returned by that
table function (SQLSTATE 428E2).

data-type3
Specifies the data type for each corresponding parameter-name3. data-type3 must exactly match
the data type of each corresponding output column of the RETURNS table, as specified in the table
function of the GENERATE KEY USING clause (SQLSTATE 428E2), including the length, precision,
and type.

SEARCH METHODS
Introduces the search methods that are defined for the index.

search-method-definition
Specifies the method details of the index search. It consists of a method name, the search arguments,
a range producing function, and an optional index filter function.
WHEN method-name

The name of a search method. This is an SQL identifier that relates to the method name specified
in the index exploitation rule (found in the PREDICATES clause of a user-defined function). A
search-method-name can be referenced by only one WHEN clause in the search method definition
(SQLSTATE 42713).

parameter-name4
Identifies the parameter of a search argument. These names are for use in the RANGE THROUGH
and FILTER USING clauses.

data-type4
The data type associated with a search parameter.

RANGE THROUGH range-producing-function-invocation
Specifies an external table function that produces search ranges. This function uses parameter-
name1, parameter-name4, or a constant as arguments and returns a set of search ranges.

The table function used in range-producing-function-invocation must:

• Resolve to a table function (SQLSTATE 428E4)
• Not include a subquery (SQLSTATE 428E3) or SQL function (SQLSTATE 428E4) in its arguments
• Not include an XMLQUERY or XMLEXISTS expression in its arguments (SQLSTATE 428E3)
• Not be defined with PARAMETER CCSID UNICODE if this database is not a Unicode database

(SQLSTATE 428E4)
• Not be defined with LANGUAGE SQL (SQLSTATE 428E4)
• Not be defined with NOT DETERMINISTIC or EXTERNAL ACTION (SQLSTATE 428E4)
• Be defined with NO SQL (SQLSTATE 428E4)

The number and types of this function's results must relate to the results of the table function
specified in the GENERATE KEY USING clause (SQLSTATE 428E1) by:

• Returning up to twice as many columns as returned by the key transformation function

1264 IBM Db2 V11.5: SQL Reference

• Having an even number of columns, in which the first half of the return columns defines the start
of the range (start key values), and the second half of the return columns defines the end of the
range (stop key values)

• Having each start key column with the same type as the corresponding stop key column
• Having the type of each start key column be the same as the corresponding key transformation

function column

More precisely, let a1:t1, ..., an:tn be the function result columns and data types of the key
transformation function. The function result columns of the range-producing-function-invocation
must be b1:t1, ..., bm:tm, c1:t1, ..., cm:tm, where m <= n and the "b" columns are the start key
columns and the "c" columns are the stop key columns.

When the range-producing-function-invocation returns a null value as the start or stop key value,
the semantics are undefined.

The definer of the index extension must have EXECUTE privilege on the function, EXECUTEIN
privilege on the schema containing this function, or DATAACCESS authority on the schema
containing this function.

FILTER USING
Allows specification of an external function or a case expression to be used for filtering index entries
that were returned after applying the range-producing function.
index-filtering-function-invocation

Specifies an external function to be used for filtering index entries. This function uses the
parameter-name1, parameter-name3, parameter-name4, or a constant as arguments (SQLSTATE
42703) and returns an integer (SQLSTATE 428E4). If the value returned is 1, the row
corresponding to the index entry is retrieved from the table. Otherwise, the index entry is not
considered for further processing.

If not specified, index filtering is not performed.

The function used in the index-filtering-function-invocation must:

• Not be defined with PARAMETER CCSID UNICODE if this database is not a Unicode database
(SQLSTATE 428E4)

• Not be defined with LANGUAGE SQL (SQLSTATE 429B4)
• Not be defined with NOT DETERMINISTIC or EXTERNAL ACTION (SQLSTATE 42845)
• Be defined with NO SQL (SQLSTATE 428E4)
• Not have a structured data type in the data type of any of the parameters (SQLSTATE 428E3)
• Not include a subquery (SQLSTATE 428E3)
• Not include an XMLQUERY or XMLEXISTS expression (SQLSTATE 428E3)

If an argument invokes another function or method, these rules are also enforced for this nested
function or method. However, system-generated observer methods are allowed as arguments to
the filter function (or any function or method used as an argument), as long as the argument
results in a built-in data type.

The definer of the index extension must have EXECUTE privilege on the function, EXECUTEIN
privilege on the schema containing this function, or DATAACCESS authority on the schema
containing this function..

case-expression
Specifies a case expression for filtering index entries. Either parameter-name1, parameter-name3,
parameter-name4, or a constant (SQLSTATE 42703) can be used in the searched-when-clause
and simple-when-clause. An external function with the rules specified in FILTER USING index-
filtering-function-invocation may be used in result-expression. Any function referenced in the
case-expression must also conform to the rules listed under index-filtering-function-invocation.
In addition, subqueries and XMLQUERY or XMLEXISTS expressions cannot be used anywhere else
in the case-expression (SQLSTATE 428E4). The case expression must return an integer (SQLSTATE

Chapter 1. Structured Query Language (SQL) 1265

428E4). A return value of 1 in the result-expression means that the index entry is kept; otherwise,
the index entry is discarded.

Notes
• Creating an index extension with a schema name that does not already exist will result in the implicit

creation of that schema, provided the authorization ID of the statement has IMPLICIT_SCHEMA
authority. The schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

Example
The following example creates an index extension called grid_extension that uses a structured type
SHAPE column in a table function called gridEntry to generate seven index target keys. This index
extension also provides two index search methods to produce search ranges when given a search
argument.

 CREATE INDEX EXTENSION GRID_EXTENSION (LEVELS VARCHAR(20) FOR BIT DATA)
 FROM SOURCE KEY (SHAPECOL SHAPE)
 GENERATE KEY USING GRIDENTRY(SHAPECOL..MBR..XMIN,
 SHAPECOL..MBR..YMIN,
 SHAPECOL..MBR..XMAX,
 SHAPECOL..MBR..YMAX,
 LEVELS)
 WITH TARGET KEY (LEVEL INT, GX INT, GY INT,
 XMIN INT, YMIN INT, XMAX INT, YMAX INT)
 SEARCH METHODS
 WHEN SEARCHFIRSTBYSECOND (SEARCHARG SHAPE)
 RANGE THROUGH GRIDRANGE(SEARCHARG..MBR..XMIN,
 SEARCHARG..MBR..YMIN,
 SEARCHARG..MBR..XMAX,
 SEARCHARG..MBR..YMAX,
 LEVELS)
 FILTER USING
 CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR
 SEARCHARG..MBR..YMAX < YMIN) THEN 0
 ELSE CHECKDUPLICATE(LEVEL, GX, GY,
 XMIN, YMIN, XMAX, YMAX,
 SEARCHARG..MBR..XMIN,
 SEARCHARG..MBR..YMIN,
 SEARCHARG..MBR..XMAX,
 SEARCHARG..MBR..YMAX,
 LEVELS)
 END
 WHEN SEARCHSECONDBYFIRST (SEARCHARG SHAPE)
 RANGE THROUGH GRIDRANGE(SEARCHARG..MBR..XMIN,
 SEARCHARG..MBR..YMIN,
 SEARCHARG..MBR..XMAX,
 SEARCHARG..MBR..YMAX,
 LEVELS)
 FILTER USING
 CASE WHEN (SEARCHARG..MBR..YMIN > YMAX) OR
 SEARCHARG..MBR..YMAX < YMIN) THEN 0
 ELSE MBROVERLAP(XMIN, YMIN, XMAX, YMAX,
 SEARCHARG..MBR..XMIN,
 SEARCHARG..MBR..YMIN,
 SEARCHARG..MBR..XMAX,
 SEARCHARG..MBR..YMAX)
 END

CREATE MASK
The CREATE MASK statement creates a column mask at the current server. A column mask specifies the
value to be returned for a specified column.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly
specified.

1266 IBM Db2 V11.5: SQL Reference

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority. SECADM
authority can create a column mask in any schema. Additional privileges are not needed to reference
other objects in the mask definition. For example, the SELECT privilege is not needed to retrieve from a
table, and the EXECUTE privilege is not needed to call a user-defined function.

Syntax
CREATE

OR REPLACE

MASK mask-name ON table-name

AS
correlation-name

FOR COLUMN column-name RETURN

case-expression
DISABLE

ENABLE

Description
OR REPLACE

Specifies to replace the definition for the column mask if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog.

mask-name
Names the column mask. The name, including the implicit or explicit qualifier, must not identify a
column mask or a row permission that already exists at the current server (SQLSTATE 42710).

table-name
Identifies the table on which the column mask is created. The name must identify a table that
exists at the current server (SQLSTATE 42704). It must not identify a nickname, created or declared
temporary table, view, synonym, typed table, alias (SQLSTATE 42809), shadow table or base table
of a shadow table (SQLSTATE 428HZ), external table (SQLSTATE 42858), or catalog table (SQLSTATE
42832).

correlation-name
Specifies a correlation name that can be used within case-expression to designate the table.

FOR COLUMN column-name
Identifies the column to which the mask applies. column-name must be an unqualified name that
identifies a column of the table (SQLSTATE 42703). A mask must not already exist for the column
(SQLSTATE 428HC). The column must not be any of the following columns:

• A LOB column or a distinct type column that is based on a LOB (SQLSTATE 42962).
• An XML column (SQLSTATE 42962).
• A column referenced in an expression that defines a generated column (SQLSTATE 428HB).

RETURN case-expression
Specifies a CASE expression to be evaluated to determine the value to return for the column
(SQLSTATE 42601). The result of the CASE expression is returned in place of the column value in
a row. The result data type, null attribute, and length attribute of the CASE expression must be
identical or promotable to those of column-name (SQLSTATE 428HB). If the data type of column-name
is a user-defined data type, the result data type of the CASE expression must be the same user-
defined data type. The CASE expression must not reference any of the following objects or elements
(SQLSTATE 428HB):

• A created global temporary table or a declared global temporary table.
• A shadow table.

Chapter 1. Structured Query Language (SQL) 1267

• An external table.
• A nickname.
• A table function.
• A method.
• A parameter marker (SQLSTATE 42601).
• A user-defined function that is defined as not secure.
• A function or expression (such as row change expression, sequence expression) that is non-

deterministic or has an external action.
• An XMLQUERY scalar function.
• An XMLEXISTS predicate.
• An OLAP specification.
• A * or name.* in a SELECT clause.
• A pseudo-column.
• An aggregate function without specifying the SELECT clause.
• A view that includes any of the previously listed restrictions in its definition.

If the CASE expression references tables for which row or column access control is currently
activated, access control from those tables are not cascaded. See the Notes section for details.

ENABLE or DISABLE
Specifies that the column mask is to be enabled or disabled for column access control. The default is
DISABLE.
DISABLE

Specifies that the column mask is to be disabled for column access control. If column access
control is not currently activated for the table, the column mask will remain ineffective when
column access control is activated for the table.

ENABLE
Specifies that the column mask is to be enabled for column access control. If column access
control is not currently activated for the table, the column mask will become effective when
column access control is activated for the table. If column access control is currently activated for
the table, the column mask becomes effective immediately and all packages and dynamic cached
statements that reference the table are invalidated.

The application of enabled column masks does not interfere with the operations of other clauses
within the statement such as the WHERE, GROUP BY, HAVING, SELECT DISTINCT, and ORDER BY. The
rows returned in the final result table remain the same, except that the values in the resulting rows
might be masked by the column masks. As such, if the masked column also appears in an ORDER
BY sort-key, the order is based on the original column values and the masked values in the final
result table might not reflect that order. Similarly, the masked values might not reflect the uniqueness
enforced by SELECT DISTINCT. If the masked column is embedded in an expression, the result of the
expression might become different because the column mask is applied on the column before the
expression evaluation can take place. For example, applying a column mask on column SSN might
change the result of aggregate function COUNT(DISTINCT SSN) because the DISTINCT operation is
performed on the masked values. On the other hand, if the expression in the query is the same as the
expression used to mask the column value in the column mask definition, the result of the expression
might remain unchanged. For example, the expression in the query is 'XXX-XX-' || SUBSTR(SSN, 8, 4)
and the same expression appears in the column mask definition. In this particular example, you can
replace the expression in the query with column SSN to avoid the same expression getting evaluated
twice.

A column mask is created as a stand alone object without knowing all of the contexts in which
it might be used. To mask a column value in the final result table, the column mask definition is
merged into a query by the database manager. When the column mask definition is brought into the
context of the statement, it might conflict with certain SQL semantics in the statement. Therefore,
in some situations, the combination of the statement and the application of the column mask might

1268 IBM Db2 V11.5: SQL Reference

return an error (SQLSTATE 428HD). When this happens, either the statement needs to be modified
or the column mask must be dropped or recreated with a different definition. See the ALTER TABLE
statement description for those situations where a bind time error might be issued for the statement.

If the column is not nullable, its column mask definition will not consider a null value for the column.
After column access control is activated for the target table, if the target table is the null-padded table
in an outer join operation, the column value in the final result table might be a null. To ensure the
column mask has the ability to mask a null value, when the database manager merges the column
mask definition into the query, if the target table is the null-padded table in an outer join operation,
"WHEN target-column IS NULL THEN NULL" will be added as the first WHEN clause to the column
mask definition. This forces a null value to be always masked to a null. For a nullable column, this
takes away the ability to mask a null value to something else but it is an acceptable restriction from
security and usability standpoints.

When a column is used to derive the new value for an INSERT, UPDATE, MERGE, or a SET transition-
variable assignment statement, the original column value, not the masked value, is used to derive the
new value. If the column has a column mask, that column mask is applied to ensure the evaluation
of the access control rules at run time masks the column to itself, not to a constant or an expression.
This is to ensure the masked values are the same as the original column values. If a column mask
does not mask the column to itself, the existing row is not updated or the new row is not inserted
and an error is returned at run time (SQLSTATE 428HD). If there is a requirement for masked data
to be inserted into a table, the default behavior can be changed by setting the registry variable
DB2_ALLOW_WRITE_OF_MASKED_DATA=YES. The rules that are used to apply column masks in order
to derive the new values follow the same rules described previously for the final result table of a
query.

See the ALTER TABLE statement with the ACTIVATE COLUMN ACCESS CONTROL clause for
information about how to activate column access control for the table and how a column mask is
applied.

Notes
• Column masks that are created before column access control is activated for a table: The CREATE

MASK statement is an independent statement that can be used to create a column access control mask
before column access control is activated for a table. The only requirement is that the table and the
columns exist before the mask is created. Multiple column masks can be created for a table but a
column can have one mask only.

The definition of a mask is stored in the database catalog. Dependency on the table for which the
mask is being created and dependencies on other objects referenced in the definition are recorded.
No package or dynamic cached statement is invalidated. A column mask can be created as enabled
or disabled for column access control. An enabled column mask does not take effect until the ALTER
TABLE statement with the ACTIVATE COLUMN ACCESS CONTROL clause is used to activate column
access control for the table. SECADM authority is required to issue such an ALTER TABLE statement. A
disabled column mask remains ineffective even when column access control is activated for the table.
The ALTER MASK statement can be used to alter between ENABLE and DISABLE.

After column access control is activated for a table, when the table is referenced in a data manipulation
statement, all enabled column masks that have been created for the table are implicitly applied by the
database manager to mask the values returned for the columns referenced in the final result table of
the queries or to determine the new values used in the data change statements.

Creating column masks before activating column access control for a table is the recommended
sequence to avoid multiple invalidations of packages and dynamic cached statements that reference
the table.

• Column masks that are created after column access control is activated for a table: The enabled
column masks become effective as soon as they are committed. All the packages and dynamic cached
statements that reference the table are invalidated. Thereafter, when the table is referenced in a data
manipulation statement, all enabled column masks are implicitly applied by the database manager to

Chapter 1. Structured Query Language (SQL) 1269

the statement. Any disabled column masks remain ineffective even when column access control is
activated for the table.

• No cascaded effect when column or row access control enforced tables are referenced in column
mask definitions: A column mask definition can reference tables and columns that are currently
enforced by row or column access control. Access control from those tables and columns are ignored
when the table for which the column mask is being created is referenced in a data manipulation
statement.

• Consideration for database limits: If the data manipulation statement already approaches some
database limits in the statement, the more enabled column masks and enabled row permissions are
created, the more likely they might affect some limits. This is because the enabled column mask
and enabled row permission definitions are implicitly merged into the statement when the table is
referenced in a data manipulation statement.

• Column masks that are enabled but in the invalid state: If a column mask is enabled for column
access control but its state is set to invalid, access to the table on which the column mask is defined is
blocked until this situation is resolved (SQLSTATE 560D0).

• Column masks that return data which is not assignable to the column the mask is defined on: A
column mask can be defined so it can return data which is not assignable to the data type of the column
the mask is defined on. When this occurs, the CREATE MASK statement is successful but a cast error
will be reported when the mask is applied in a user query.

Examples
• Example 1: After column access control is activated for table EMPLOYEE, Paul from the payroll

department can see the social security number of the employee whose employee number is 123456.
Mary who is a manager can see only the last four characters of the social security number. Peter who is
neither role cannot see the social security number.

CREATE MASK SSN_MASK ON EMPLOYEE
 FOR COLUMN SSN RETURN
 CASE WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,'PAYROLL') = 1)
 THEN SSN
 WHEN (VERIFY_GROUP_FOR_USER(SESSION_USER,'MGR') = 1)
 THEN 'XXX-XX-' || SUBSTR(SSN,8,4)
 ELSE NULL
 END
 ENABLE;
ALTER TABLE EMPLOYEE ACTIVATE COLUMN ACCESS CONTROL;
SELECT SSN FROM EMPLOYEE WHERE EMPNO = 123456;

• Example 2: In the SELECT statement, column SSN is embedded in an expression that is the same as
the expression used in the column mask SSN_MASK. After column access control is activated for table
EMPLOYEE, the column mask SSN_MASK is applied to column SSN in the SELECT statement. For this
particular expression, the SELECT statement produces the same result as before column access control
is activated for all users. The user can replace the expression in the SELECT statement with column SSN
to avoid the same expression getting evaluated twice.

CREATE MASK SSN_MASK ON EMPLOYEE
 FOR COLUMN SSN RETURN
 CASE WHEN (1 = 1) THEN 'XXX-XX-' || SUBSTR(SSN,8,4)
 ELSE NULL
 END
 ENABLE;
ALTER TABLE EMPLOYEE ACTIVATE COLUMN ACCESS CONTROL;
SELECT 'XXX-XX-' || SUBSTR(SSN,8,4) FROM EMPLOYEE WHERE EMPNO = 123456;

• Example 3: The California state government conducted a survey for the library usage of the households
in each city. Fifty households in each city were sampled in the survey. Each household was given an
option, opt-in or opt-out, to show whether their usage in any reports generated from the result of the
survey.

A SELECT statement is used to generate a report to show the average hours used by households in
each city. Column mask CITY_MASK is created to mask the city name based on the opt-in or opt-out
information chosen by the sampled households. However, after column access control is activated for

1270 IBM Db2 V11.5: SQL Reference

table LIBRARY_USAGE, the SELECT statement receives a bind time error. This is because column mask
CITY_MASK references another column LIBRARY_OPT and LIBRARY_OPT does not identify a grouping
column.

CREATE MASK CITY_MASK ON LIBRARY_USAGE
 FOR COLUMN CITY RETURN
 CASE WHEN (LIBRARY_OPT = 'OPT-IN') THEN CITY
 ELSE ' '
 END
 ENABLE;
ALTER TABLE LIBRARY_USAGE ACTIVATE COLUMN ACCESS CONTROL;
SELECT CITY, AVG(LIBRARY_TIME) FROM LIBRARY_USAGE GROUP BY CITY;

• Example 4: Employee with EMPNO 123456 earns bonus $8000 and salary $80000 in May. When the
manager retrieves his salary, the manager receives his salary, not the null value. This is because of no
cascaded effect when column mask SALARY_MASK references column BONUS for which column mask
BONUS_MASK is defined.

CREATE MASK SALARY_MASK ON EMPLOYEE
 FOR COLUMN SALARY RETURN
 CASE WHEN (BONUS < 10000) THEN SALARY
 ELSE NULL
 END
 ENABLE;
CREATE MASK BONUS_MASK ON EMPLOYEE
 FOR COLUMN BONUS RETURN
 CASE WHEN (BONUS > 5000) THEN NULL
 ELSE BONUS
 END
 ENABLE;
ALTER TABLE EMPLOYEE ACTIVATE COLUMN ACCESS CONTROL;
SELECT SALARY FROM EMPLOYEE WHERE EMPNO = 123456;

CREATE METHOD
The CREATE METHOD statement is used to associate a method body with a method specification that is
already part of the definition of a user-defined structured type.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CREATEIN privilege on the schema of the structured type referred to in the CREATE METHOD statement
• The owner of the structured type referred to in the CREATE METHOD statement
• SCHEMAADM authority on the schema of the structured type referred to in the CREATE METHOD

statement
• DBADM authority

To associate an external method body with its method specification, the privileges held by the
authorization ID of the statement must also include at least one of the following authorities:

• CREATE_EXTERNAL_ROUTINE authority on the database
• DBADM authority

When creating an SQL method, the privileges held by the authorization ID of the statement must also
include at least one of the following authorities for each table, view, or nickname identified in any
fullselect:

Chapter 1. Structured Query Language (SQL) 1271

• CONTROL privilege on that table, view, or nickname
• SELECT privilege on that table, view, or nickname
• SELECTIN privilege on the schema containing the table, view, or nickname
• DATAACCESS authority on the schema containing the table, view, or nickname
• DATAACCESS authority on the database

Group privileges other than PUBLIC are not considered for any table or view specified in the CREATE
METHOD statement.

Authorization requirements of the data source for the table or view referenced by the nickname are
applied when the method is invoked. The authorization ID of the connection can be mapped to a different
remote authorization ID.

Syntax
CREATE METHOD method-name

method-signature

FOR type-name

SPECIFIC METHOD specific-name

● EXTERNAL

NAME 'string'

identifier

●

TRANSFORM GROUP group-name

●

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

INHERIT ISOLATION LEVEL WITH LOCK REQUEST

SQL-method-body

method-signature
method-name

(
,

parameter-name

data-type1

AS LOCATOR

)

RETURNS data-type2

AS LOCATOR

data-type3 CAST FROM data-type4

AS LOCATOR

SQL-method-body
RETURN

Compound SQL (inlined)
1

Notes:
1 The compound SQL (inlined) statement is only supported for an SQL-method-body in an SQL method
definition in a non-partitioned database.

Description
METHOD

Identifies an existing method specification that is associated with a user-defined structured type. The
method-specification can be identified through one of the following means:

1272 IBM Db2 V11.5: SQL Reference

method-name
Names the method specification for which a method body is being defined. The implicit schema
is the schema of the subject type (type-name). There must be only one method specification for
type-name that has this method-name (SQLSTATE 42725).

method-signature
Provides the method signature which uniquely identifies the method to be defined. The method
signature must match the method specification that was provided on the CREATE TYPE or ALTER
TYPE statement (SQLSTATE 42883).
method-name

Names the method specification for which a method body is being defined. The implicit
schema is the schema of the subject type (type-name).
parameter-name

Identifies the parameter name. If parameter names are provided in the method signature,
they must be exactly the same as the corresponding parts of the matching method
specification. Parameter names are supported in this statement solely for documentation
purposes.

data-type1
Specifies the data type of each parameter. Array types are not supported (SQLSTATE
42815).

For a more complete description of each built-in data type, see "CREATE TABLE".

Character and graphic string data types cannot specify string units of CODEUNITS32.

AS LOCATOR
For the LOB types or distinct types which are based on a LOB type, the AS LOCATOR clause
can be added.

RETURNS
This clause identifies the output of the method. If a RETURNS clause is provided in the method
signature, it must be exactly the same as the corresponding part of the matching method
specification on CREATE TYPE. The RETURNS clause is supported in this statement solely for
documentation purposes.
data-type2

Specifies the data type of the output. Array types are not supported (SQLSTATE 42815).
AS LOCATOR

For LOB types or distinct types which are based on LOB types, the AS LOCATOR clause
can be added. This indicates that a LOB locator is to be returned by the method instead
of the actual value.

data-type3 CAST FROM data-type4
This form of the RETURNS clause is used to return a different data type to the invoking
statement from the data type that was returned by the function code.
AS LOCATOR

For LOB types or distinct types which are based on LOB types, the AS LOCATOR clause
can be used to indicate that a LOB locator is to be returned from the method instead of
the actual value.

FOR type-name
Names the type for which the specified method is to be associated. The name must identify a type
already described in the catalog (SQLSTATE 42704). In dynamic SQL statements, the CURRENT
SCHEMA special register is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified
object names.

SPECIFIC METHOD specific-name
Identifies the particular method, using the specific name either specified or defaulted to at CREATE
TYPE time. The specific-name must identify a method specification in the named or implicit schema;
otherwise, an error is raised (SQLSTATE 42704).

Chapter 1. Structured Query Language (SQL) 1273

EXTERNAL
This clause indicates that the CREATE METHOD statement is being used to register a method, based
on code written in an external programming language, and adhering to the documented linkage
conventions and interface. The matching method-specification in CREATE TYPE must specify a
LANGUAGE other than SQL. When the method is invoked, the subject of the method is passed to
the implementation as an implicit first parameter.

If the NAME clause is not specified, "NAME method-name" is assumed.

NAME
This clause identifies the name of the user-written code which implements the method being
defined.
'string'

The string option is a string constant with a maximum of 254 bytes. The format used for
the string is dependent on the LANGUAGE specified. For more information about the specific
language conventions, see "CREATE FUNCTION (External Scalar) statement".

identifier
This identifier specified is an SQL identifier. The SQL identifier is used as the library-id in the
string. Unless it is a delimited identifier, the identifier is folded to upper case. If the identifier
is qualified with a schema name, the schema name portion is ignored. This form of NAME can
only be used with LANGUAGE C (as defined in the method-specification on CREATE TYPE).

TRANSFORM GROUP group-name
Indicates the transform group that is used for user-defined structured type transformations when
invoking the method. A transform is required since the method definition includes a user-defined
structured type.

It is strongly recommended that a transform group name be specified; if this clause is not specified,
the default group-name used is DB2_FUNCTION. If the specified (or default) group-name is not
defined for a referenced structured type, an error results (SQLSTATE 42741). Likewise, if a required
FROM SQL or TO SQL transform function is not defined for the given group-name and structured type,
an error results (SQLSTATE 42744).

INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST or INHERIT ISOLATION LEVEL WITH LOCK
REQUEST

Specifies whether or not a lock request can be associated with the isolation-clause of the statement
when the method inherits the isolation level of the statement that invokes the method. The default is
INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST.
INHERIT ISOLATION LEVEL WITHOUT LOCK REQUEST

Specifies that, as the method inherits the isolation level of the invoking statement, it cannot be
invoked in the context of an SQL statement which includes a lock-request-clause as part of a
specified isolation-clause (SQLSTATE 42601).

INHERIT ISOLATION LEVEL WITH LOCK REQUEST
Specifies that, as the method inherits the isolation level of the invoking statement, it also inherits
the specified lock-request-clause.

SQL-method-body
The SQL-method-body defines how the method is implemented if the method specification in CREATE
TYPE is LANGUAGE SQL.

The SQL-method-body must comply with the following parts of method specification:

• DETERMINISTIC or NOT DETERMINISTIC (SQLSTATE 428C2)
• EXTERNAL ACTION or NO EXTERNAL ACTION (SQLSTATE 428C2)
• CONTAINS SQL or READS SQL DATA (SQLSTATE 42985)

Parameter names can be referenced in the SQL-method-body. The subject of the method is passed to
the method implementation as an implicit first parameter named SELF.

For additional details, see "Compound SQL (inlined) statement" and "RETURN statement".

1274 IBM Db2 V11.5: SQL Reference

Rules
• The method specification must be previously defined using the CREATE TYPE or ALTER TYPE statement

before CREATE METHOD can be used (SQLSTATE 42723).
• If the method being created is an overriding method, those packages that are dependent on the

following methods are invalidated:

– The original method
– Other overriding methods that have as their subject a supertype of the method being created

• The XML data type cannot be used in a method.

Notes
• If the method allows SQL, the external program must not attempt to access any federated objects

(SQLSTATE 55047).
• Privileges: The definer of a method always receives the EXECUTE privilege on the method, as well as the

right to drop the method.

If an EXTERNAL method is created, the definer of the method always receives the EXECUTE privilege
WITH GRANT OPTION.

If an SQL method is created, the definer of the method will only be given the EXECUTE privilege WITH
GRANT OPTION on the method when the definer has WITH GRANT OPTION on all privileges required
to define the method, or if the definer has SYSADM or DBADM authority. The definer of an SQL method
only acquires privileges if the privileges from which they are derived exist at the time the method is
created. The definer must have these privileges either directly, or because PUBLIC has the privileges.
Privileges held by groups of which the method definer is a member are not considered. When using the
method, the connected user's authorization ID must have the valid privileges on the table or view that
the nickname references at the data source.

• Table access restrictions: If a method is defined as READS SQL DATA, no statement in the method can
access a table that is being modified by the statement which invoked the method (SQLSTATE 57053).

Examples
• Example 1:

 CREATE METHOD BONUS (RATE DOUBLE)
 FOR EMP
 RETURN SELF..SALARY * RATE

• Example 2:

 CREATE METHOD SAMEZIP (addr address_t)
 RETURNS INTEGER
 FOR address_t
 RETURN
 (CASE
 WHEN (self..zip = addr..zip)
 THEN 1
 ELSE 0
 END)

• Example 3:

 CREATE METHOD DISTANCE (address_t)
 FOR address_t
 EXTERNAL NAME 'addresslib!distance'
 TRANSFORM GROUP func_group

Chapter 1. Structured Query Language (SQL) 1275

CREATE MODULE
The CREATE MODULE statement creates a module at the application server.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the module
does not exist.

• CREATEIN privilege on the schema, if the schema name of the module refers to an existing schema.
• SCHEMAADM authority on the schema, if the schema name of the module refers to an existing schema.
• DBADM authority

To replace an existing module, the authorization ID of the statement must be the owner of the existing
module (SQLSTATE 42501).

Syntax
CREATE

OR REPLACE

MODULE module-name

Description
OR REPLACE

Specifies replacing the definition for the module if one exists at the current server. The existing
module definition is effectively dropped, including all the objects in the module, before the new
definition is replaced in the catalog, with the exception that privileges that were granted on the
module are not affected. This option is ignored if a definition for the module does not exist at the
current server. This option can be specified only by the owner of the object.

module-name
Names the module. The name, including the implicit or explicit qualifier, must not identify an existing
module at the current server. The module name and the schema name must not begin with the
characters 'SYS' (SQLSTATE 42939) and use of SESSION is not recommended.

Notes
• A module is intended to be a collection of other database objects. Once a module is created, objects

in the module are managed using the ALTER MODULE statement. A module can include functions,
procedures, types, global variables and conditions. The objects in a module can be published to make
them available for reference from outside the module. If an object is not published, it can only be
referenced from within the module. A module can be considered to consist of 2 parts:

– The module specification consists of all the published objects excluding the bodies of any routines.
– The module body which consists of all objects that are not published and the bodies of any published

routines.

The module management actions include

– ADD to add an object to the module without publishing it or to replace a routine prototype with the
implemented routine definition.

1276 IBM Db2 V11.5: SQL Reference

– PUBLISH to add an object to the module and publish it.
– COMMENT on objects in the module.
– DROP to drop an object within the module or drop the module body.

At least one published object should exist in a module in order to have some way to reference the
module.

Example
Create a module named salesModule

 CREATE MODULE salesModule

CREATE NICKNAME
The CREATE NICKNAME statement defines a nickname for a data source object.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CREATETAB authority on the federated database, as well as one of:

– IMPLICIT_SCHEMA authority on the federated database, if the implicit or explicit schema name of the
nickname does not exist

– CREATEIN privilege on the schema, if the schema name of the nickname refers to an existing schema
– SCHEMAADM authority on the schema, if the schema name of the nickname refers to an existing

schema
• DBADM authority

For data sources that require a user mapping, the privileges held by the authorization ID at the data
source must include the privilege to select data from the object that the nickname represents.

To replace an existing nickname, the authorization ID of the statement must be the owner of the existing
nickname (SQLSTATE 42501).

Syntax
CREATE

OR REPLACE

NICKNAME nickname

FOR remote-object-name

non-relational-data-definition

OPTIONS (

,

nickname-option-name string-constant)

non-relational-data-definition

Chapter 1. Structured Query Language (SQL) 1277

nickname-column-list FOR SERVER server-name

nickname-column-list

(

,

nickname-column-definition

unique-constraint

referential-constraint

check-constraint

)

nickname-column-definition
column-name local-data-type nickname-column-options

local-data-type
built-in-type

distinct-type-name
1

built-in-type

1278 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

CHARACTER

CHAR

(1)

( integer
OCTETS

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

)

2
FOR BIT DATA

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

)

GRAPHIC

(1)

( integer
CODEUNITS16

)

VARGRAPHIC ( integer
CODEUNITS16

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

BOOLEAN

nickname-column-options

Chapter 1. Structured Query Language (SQL) 1279

NOT NULL

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

constraint-attributes

references-clause

CHECK (check-condition) constraint-attributes

federated-column-options

federated-column-options

OPTIONS (

,

column-option-name string-constant)

unique-constraint

CONSTRAINT constraint-name

UNIQUE

PRIMARY KEY

(

,

column-name

) constraint-attributes

referential-constraint

CONSTRAINT constraint-name

FOREIGN KEY (

,

column-name)

references-clause

references-clause
REFERENCES table-name

nickname

(

,

column-name)

constraint-attributes

check-constraint

CONSTRAINT constraint-name

CHECK (check-condition)

constraint-attributes

check-condition
search-condition

functional-dependency

functional-dependency

1280 IBM Db2 V11.5: SQL Reference

column-name

(

,

column-name)

DETERMINED BY

column-name

(

,

column-name)

constraint-attributes

● NOT ENFORCED
TRUSTED

NOT TRUSTED

●

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION
3

●

Notes:
1 The specified distinct type cannot have any data type constraints and the source type cannot be an
anchored data type (SQLSTATE 428H2).
2 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
3 DISABLE QUERY OPTIMIZATION is not supported for a unique or primary key constraint.

Description
OR REPLACE

Specifies to replace the definition for the nickname if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the nickname are not affected. This option is ignored if
a definition for the nickname does not exist at the current server. This option can be specified only by
the owner of the object.

nickname
Specifies a nickname, the identifier used by the federated server for the data source object. The
nickname, including the implicit or explicit qualifier, must not identify a table, view, nickname, or alias
described in the catalog. The schema name must not begin with 'SYS' (SQLSTATE 42939).

FOR remote-object-name
Specifies an identifier. For data sources that support schema names, this is a three-part identifier with
the format data-source-name.remote-schema-name.remote-table-name. For data sources that do not
support schema names, this is a two-part identifier with the format data-source-name.remote-table-
name.
data-source-name

Names the data source that contains the table or view for which the nickname is being created.
The data-source-name is the same name that was assigned to the server-name in the CREATE
SERVER statement.

remote-schema-name
Names the schema to which the table or view belongs. If the remote schema name contains any
special or lowercase characters, it must be enclosed by double quotation marks.

remote-table-name
Names the specific data source object (such as a table, alias of a table, or view) for which the
nickname is being created. The table cannot be a declared temporary table (SQLSTATE 42995).
If the remote table name contains any special or lowercase characters, it must be enclosed by
double quotation marks.

Chapter 1. Structured Query Language (SQL) 1281

For Db2 you can also specify the alias of a table, view, or nickname. For Db2 for z/OS or Db2 for
IBM i, you can specify the alias of a table or view.

non-relational-data-definition
Defines the data that is to be accessed through a nonrelational wrapper.
nickname-column-definition

Defines the local attributes of the column for the nickname. Some wrappers require these
attributes to be specified, while other wrappers allow the attributes to be determined from the
data source.
column-name

Specifies the local name for the column. The name might be different than the corresponding
column of the remote-object-name.

local-data-type
Specifies the local data type for the column. Some wrappers only support a subset of the SQL
data types. For descriptions of specific data types, see "CREATE TABLE" .

built-in-type
See "CREATE TABLE" for the description of built-in data types.

nickname-column-options
Specifies additional options related to columns of the nickname.
NOT NULL

Specifies that the column does not allow null values.
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that was already
specified within the same CREATE NICKNAME statement (SQLSTATE 42710).

If this clause is omitted, an 18 byte long identifier that is unique among the identifiers of
existing constraints defined on the nickname is generated by the system. (The identifier
consists of 'SQL' followed by a sequence of 15 numeric characters generated by a
timestamp-based function.)

When used with a PRIMARY KEY or UNIQUE constraint, the constraint-name can be used
as the name of an index specification that is created to support the constraint.

PRIMARY KEY
This provides a shorthand method of defining a primary key composed of a single column.
Thus, if PRIMARY KEY is specified in the definition of column C, the effect is the same as if
the PRIMARY KEY(C) clause is specified as a separate clause.

See PRIMARY KEY within the description of unique-constraint.

UNIQUE
This provides a shorthand method of defining a unique key composed of a single column.
Thus, if UNIQUE is specified in the definition of column C, the effect is the same as if the
UNIQUE(C) clause is specified as a separate clause.

See UNIQUE within the description of unique-constraint.

references-clause
This provides a shorthand method of defining a foreign key composed of a single column.
Thus, if a references-clause is specified in the definition of column C, the effect is the same
as if that references-clause were specified as part of a FOREIGN KEY clause in which C is
the only identified column.

See references-clause within the description of referential-constraint.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint that applies to a single
column. See description for CHECK (check-condition).

1282 IBM Db2 V11.5: SQL Reference

OPTIONS
Indicates the column options that are added when the nickname is created. Some
wrappers require that certain column options be specified.
column-option-name

Specifies the name of the option.
string-constant

Specifies the setting for column-option-name as a character string constant.
unique-constraint

Defines a unique or primary key constraint.
CONSTRAINT constraint-name

Names the primary key or unique constraint.
UNIQUE (column-name,...)

Defines a unique key composed of the identified columns. The identified columns must be defined
as NOT NULL. Each column-name must identify a column of the nickname and the same column
must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of their stored lengths must
not exceed the index key length limit for the page size. For column stored lengths, see "Byte
Counts" in "CREATE TABLE". For key length limits, see "SQL and XQuery limits". No LOB column,
distinct type column based on a LOB, or structured type column can be used as part of a unique
key, even if the length attribute of the column is small enough to fit within the index key length
limit for the page size (SQLSTATE 54008).

The set of columns in the unique key cannot be the same as the set of columns in the primary key
or another unique key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or MIA, an error is returned,
SQLSTATE 42891.)

The description of the nickname as recorded in the catalog includes the unique key and its index
specification. An index specification will automatically be created for the columns in the sequence
specified with ascending order for each column. The name of the index specification will be the
same as the constraint-name if this does not conflict with an existing index or index specification
in the schema where the nickname is created. If the name of the index specification conflicts, the
name will be 'SQL' followed by a character timestamp (yymmddhhmmssxxx), with SYSIBM as the
schema name.

PRIMARY KEY (column-name,...)
Defines a primary key composed of the identified columns. The clause must not be specified more
than once, and the identified columns must be defined as NOT NULL. Each column-name must
identify a column of the nickname, and the same column must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of their stored lengths must
not exceed the index key length limit for the page size. For column stored lengths, see "Byte
Counts" in "CREATE TABLE". For key length limits, see "SQL and XQuery limits". No LOB column,
distinct type column based on a LOB, or structured type column can be used as part of a primary
key, even if the length attribute of the column is small enough to fit within the index key length
limit for the page size (SQLSTATE 54008).

The set of columns in the primary key cannot be the same as the set of columns in a unique key
(SQLSTATE 01543). (If LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891.)

Only one primary key can be defined on a nickname.

The description of the nickname as recorded in the catalog includes the primary key and its index
specification. An index specification will automatically be created for the columns in the sequence
specified with ascending order for each column. The name of the index specification will be the
same as the constraint-name if this does not conflict with an existing index or index specification
in the schema where the nickname is created. If the name of the index specification conflicts, the
name will be 'SQL', followed by a character timestamp (yymmddhhmmssxxx), with SYSIBM as the
schema name.

Chapter 1. Structured Query Language (SQL) 1283

referential-constraint
Defines a referential constraint.
CONSTRAINT constraint-name

Names the referential constraint.
FOREIGN KEY (column-name,...)

Defines a referential constraint with the specified constraint-name.

Let N1 denote the object nickname of the statement. The foreign key of the referential constraint
is composed of the identified columns. Each name in the list of column names must identify a
column of N1, and the same column must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of their stored lengths
must not exceed the index key length limit for the page size. For column stored lengths, see
"Byte Counts" in "CREATE TABLE". For key length limits, see "SQL and XQuery limits". Foreign
keys can be defined on variable length columns whose length is greater than 255 bytes. No LOB
column, distinct type column based on a LOB, or structured type column can be used as part
of a foreign key (SQLSTATE 42962). There must be the same number of foreign key columns as
there are in the parent key, and the data types of the corresponding columns must be compatible
(SQLSTATE 42830). Two column descriptions are compatible if they have compatible data types
(both columns are numeric, character string, graphic, datetime, or have the same distinct type).

references-clause
Specifies the parent table or the parent nickname, and the parent key for the referential
constraint.
REFERENCES table-name or nickname

The table or nickname specified in a REFERENCES clause must identify a base table or a
nickname that is described in the catalog, but must not identify a catalog table.

A referential constraint is a duplicate if its foreign key, parent key, and parent table or parent
nickname are the same as the foreign key, parent key, and parent table or parent nickname of
a previously specified referential constraint. Duplicate referential constraints are ignored, and
a warning is returned (SQLSTATE 01543).

In the following discussion, let N2 denote the identified parent table or parent nickname, and
let N1 denote the nickname being created (or altered). N1 and N2 may be the same nickname.

The specified foreign key must have the same number of columns as the parent key of N2, and
the description of the nth column of the foreign key must be comparable to the description of
the nth column of that parent key. Datetime columns are not considered to be comparable to
string columns for the purposes of this rule.

The referential constraint specified by a FOREIGN KEY clause defines a relationship in which
N2 is the parent and N1 is the dependent.

(column-name,...)
The parent key of a referential constraint is composed of the identified columns. Each column-
name must be an unqualified name that identifies a column of N2. The same column must not
be identified more than once.

The list of column names must match the set of columns (in any order) of the primary key or a
unique constraint that exists on N2 (SQLSTATE 42890). If a column name list is not specified,
N2 must have a primary key (SQLSTATE 42888). Omission of the column name list is an
implicit specification of the columns of that primary key in the sequence originally specified.

constraint-attributes
Defines attributes associated with referential integrity or check constraints.
NOT ENFORCED

The constraint is not enforced by the database manager during normal operations, such as
insert, update, or delete.

1284 IBM Db2 V11.5: SQL Reference

TRUSTED
The data can be trusted to conform to the constraint. TRUSTED must be used only
if the data in the table is independently known to conform to the constraint. Query
results might be unpredictable if the data does not actually conform to the constraint.
This is the default option.

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT TRUSTED is intended
for cases where the data conforms to the constraint for most rows, but it is not
independently known that all the rows or future additions will conform to the
constraint. If a constraint is NOT TRUSTED and enabled for query optimization, then
it will not be used to perform optimizations that depend on the data conforming
completely to the constraint. NOT TRUSTED can be specified only for referential
integrity constraints (SQLSTATE 42613).

ENABLE QUERY OPTIMIZATION
The constraint is assumed to be true and can be used for query optimization under
appropriate circumstances.

DISABLE QUERY OPTIMIZATION
The constraint cannot be used for query optimization.

check-constraint
Defines a check constraint. A check-constraint is a search-condition that must evaluate to not false or
that defines a functional dependency between columns.
CONSTRAINT constraint-name

Names the check constraint.
CHECK (check-condition)

Defines a check constraint. The check-condition must be true or unknown for every row of the
nickname.
search-condition

The search-condition has the following restrictions:

• A column reference must be to a column of the nickname being created.
• The search-condition cannot contain a TYPE predicate.
• It cannot contain any of the following elements (SQLSTATE 42621):

– Subqueries
– Dereference operations or DEREF functions where the scoped reference argument is

other than the object identifier (OID) column
– CAST specifications with a SCOPE clause
– Column functions
– Functions that are not deterministic
– Functions defined to have an external action
– User-defined functions defined with either CONTAINS SQL or READS SQL DATA
– Host variables
– Parameter markers
– Special registers and built-in functions that depend on the value of a special register
– Global variables
– References to generated columns other than the identity column

functional-dependency
Defines a functional dependency between columns.

The parent set of columns contains the identified columns that immediately precede the
DETERMINED BY clause. The child set of columns contains the identified columns that
immediately follow the DETERMINED BY clause. All of the restrictions on the search-condition

Chapter 1. Structured Query Language (SQL) 1285

apply to parent set and child set columns, and only simple column references are allowed in
the set of columns (SQLSTATE 42621). The same column must not be identified more than
once in the functional dependency (SQLSTATE 42709). The data type of the column must not
be a LOB data type, a distinct type based on a LOB data type, or a structured type (SQLSTATE
42962). No column in the child set of columns can be a nullable column (SQLSTATE 42621).

If a check constraint is specified as part of a column-definition, a column reference can only
be made to the same column. Check constraints specified as part of a nickname definition
can have column references identifying columns previously defined in the CREATE NICKNAME
statement. Check constraints are not checked for inconsistencies, duplicate conditions, or
equivalent conditions. Therefore, contradictory or redundant check constraints can be defined,
resulting in possible errors at execution time.

FOR SERVER server-name
Specifies a server that was registered using the CREATE SERVER statement. This server will be used
to access the data for the nickname.

OPTIONS
Specify configuration options for the nickname to be created. Which options you can specify depends
on the data source of the object for which a nickname is being created. For a list of data sources and
the nickname options that apply to each, see Data source options. Each option value is a character
string constant that must be enclosed in single quotation marks.

Notes
• Examples of relational data source objects are: tables and views. Examples of nonrelational data source

objects are: Documentum objects or registered tables, text files (.txt), and Microsoft Excel files (.xls).
• The data source object that the nickname references must already exist at the data source denoted by

the first qualifier in remote-object-name.
• The list of supported data source data types varies from wrapper to wrapper. XML and REF data source

data types are not supported by any of the wrappers. DECFLOAT data source data type is supported only
by the Db2 wrapper for IBM Db2 Version 9.5 or later. When the CREATE NICKNAME statement specifies
a remote-object-name that has columns with unsupported data types, an error is returned.

LONG VARCHAR and LONG VARGRAPHIC data source data types are mapped to CLOB and DBCLOB data
types, respectively. LONG VARCHAR FOR BIT DATA is mapped to BLOB.

• The maximum allowable length for index names is 128 bytes. If a nickname is being created for a
relational table that has an index whose name exceeds this length, the entire name is not cataloged.
Rather, it is truncated to 128 bytes. If the string formed by these characters is not unique within
the schema to which the index belongs, an attempt is made to make it unique by replacing the
last character with 0. If the result is still not unique, the last character is changed to 1. This
process is repeated with numbers 2 through 9 and, if necessary, with numbers 0 through 9 for
the name's 127th character, 126th character, and so on, until a unique name is generated. To
illustrate: The 130-byte name of an index on a data source table is AREALLY...REALLYLONGNAME.
The names AREALLY...REALLYLONGNA and AREALLY...REALLYLONGN0 already exist in the schema
to which this index belongs. The new name is over 128 bytes; therefore, it is truncated to
AREALLY...REALLYLONGNA. Because this name already exists in the schema, the truncated version is
changed to AREALLY...REALLYLONGN0. Because this name also exists, the truncated version is changed
to AREALLY...REALLYLONGN1. This name does not already exist in the schema, so it is accepted as a
new name.

• When a nickname is created for a data source object, the names of the nickname columns are stored in
the catalog. When the data source object is a table or a view, the nickname column names are created
to be the same as the table or view column names. If a name exceeds the maximum allowable length
for a database column name, the name is truncated to this length. If the truncated version is not unique
among the other column names in the table or view, it is made unique by following the procedure
described in the preceding paragraph.

• If the data source object has indexes defined, index specifications for each index are created when the
nickname is created. Index specifications are not created at the data source for indexes that have:

1286 IBM Db2 V11.5: SQL Reference

– Duplicate column names
– More than 64 columns
– More than 1024 bytes in the sum of the length of the index key parts

• If the definition of a remote data source object is changed (for example, a column is deleted or a data
type is changed), the nickname should be dropped and recreated; otherwise, errors might occur when
the nickname is used in an SQL statement.

• Caching and protected objects: When a nickname is created, if the data source object is not protected,
ALLOW CACHING is in effect for the nickname. If the federated server can detect that the data source
object is protected, DISALLOW CACHING is in effect for the nickname. The DISALLOW CACHING option
ensures that each time the nickname is used, data for the appropriate authorization ID is returned from
the data source at query execution time. This is done by restricting the nickname from being used in the
definition of a materialized query table at the federated server, which might be being used to cache the
nickname data. The ALTER NICKNAME statement can be used to change between ALLOW CACHING and
DISALLOW CACHING.

• BINARY and VARBINARY types are not supported in a Federated system.
• If the remote data source is Hive, Spark, or Impala, and if the remote data source object contains a

column with a large-value character type such as STRING or VARCHAR(65535), the remote column is
mapped to local column of type VARCHAR(32672), and any data in excess of 32672 bytes is truncated.

• Syntax alternatives: The following syntax is supported for compatibility with previous versions of Db2:

– ADD can be specified before nickname-option-name string-constant.
– ADD can be specified before column-option-name string-constant.

Examples
1. Create a nickname for a view, DEPARTMENT, that is in a schema called HEDGES. This view is stored in

a Db2 for z/OS data source called OS390A.

 CREATE NICKNAME DEPT
 FOR OS390A.HEDGES.DEPARTMENT

2. Select all records from the view for which a nickname was created in Example 1. The view must be
referenced by its nickname. The remote view can be referenced using the name by which it is known at
the data source only in pass-through sessions.

The following statement is valid after nickname DEPT is created:

 SELECT * FROM DEPT

The following statement is invalid:

 SELECT * FROM OS390A.HEDGES.DEPARTMENT

3. Create a nickname for the remote table JAPAN that is in a schema called salesdata. Because the
schema name and table name on the data source are stored in lowercase, specify the remote schema
name and table name with double quotation marks:

 CREATE NICKNAME JPSALES
 FOR asia."salesdata"."japan"

4. Create a nickname for the table-structured file DRUGDATA1.TXT. Include the FILE_PATH, COLUMN
DELIMITER, KEY_COLUMN, and VALIDATE_DATA_FILE nickname options in the statement.

 CREATE NICKNAME DRUGDATA1
 (Dcode INTEGER,
 DRUG CHAR(20),
 MANUFACTURER CHAR(20))
 FOR SERVER biochem_lab
 OPTIONS
 (FILE_PATH '/usr/pat/DRUGDATA1.TXT',
 COLUMN_DELIMITER ',',

Chapter 1. Structured Query Language (SQL) 1287

 KEY_COLUMN 'DCODE',
 SORTED 'Y',
 VALIDATE_DATA_FILE 'Y')

5. Create the parent nickname CUSTOMERS over multiple XML files under the specified directory path /
home/dbuser. Include the following options:

• Column options:

– XPATH column option for the VARCHAR(5) column named ID, indicating the element or attribute in
the XML file(s) from which the column data is extracted

– XPATH column option for the VARCHAR(16) column named NAME, indicating the element or
attribute in the XML file(s) from which the column data is extracted

– XPATH column option for the VARCHAR(30) column named ADDRESS, indicating the element or
attribute in the XML file(s) from which the column data is extracted

– PRIMARY_KEY column option for the VARCHAR(16) column named CID, which identifies the
customers nickname as a parent nickname in a hierarchy of nicknames

• Nickname options:

– DIRECTORY_PATH nickname option to indicate the location of the XML files that provide the data
– XPATH nickname option to indicate the element in the XML files where the data begins
– STREAMING nickname option to indicate that the XML source data is separated and processed

element by element. In this example, the element is a customer record.

 CREATE NICKNAME customers
 (id VARCHAR(5) OPTIONS(XPATH './@id'),
 name VARCHAR(16) OPTIONS(XPATH './/name'),
 address VARCHAR(30) OPTIONS(XPATH './/address/@street'),
 cid VARCHAR(16) OPTIONS(PRIMARY_KEY 'YES'))
 FOR SERVER xml_server
 OPTIONS
 (DIRECTORY_PATH '/home/dbuser',
 XPATH '//customer',
 STREAMING 'YES')

6. A Hive table with the name STR_TAB contains a column with the name COL5. COL5 has the type
STRING and a column length of 2 GB. When you create a nickname for STR_TAB, the column length of
COL5 is reduced to 32672 bytes.

 CREATE NICKNAME "STRING_NCK" FOR "SERVER10"."STR_TAB"
 SQL1812W Remote column COL5 with length 2147483647 was reduced to 32672. SQLSTATE=0169E

CREATE PERMISSION
The CREATE PERMISSION statement creates a row permission at the current server.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is implicitly or explicitly
specified.

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority. SECADM
authority can create a row permission in any schema. Additional privileges are not needed to reference
other objects in the permission definition. For example, the SELECT privilege is not needed to retrieve
from a table, and the EXECUTE privilege is not needed to call a user-defined function.

1288 IBM Db2 V11.5: SQL Reference

Syntax
CREATE

OR REPLACE

PERMISSION permission-name ON table-name

AS
correlation-name

FOR ROWS WHERE search-condition

ENFORCED FOR ALL ACCESS
DISABLE

ENABLE

Description
OR REPLACE

Specifies to replace the definition for the row permission if one exists at the current server. The
existing definition is effectively dropped before the new definition is replaced in the catalog.

permission-name
Names the row permission. The name, including the implicit or explicit qualifier, must not identify a
row permission or a column mask that already exists at the current server (SQLSTATE 42710).

table-name
Identifies the table on which the row permission is created. The name must identify a table that
exists at the current server (SQLSTATE 42704). It must not identify a nickname, created or declared
temporary table, view, synonym, typed table, external table (SQLSTATE 42858), or alias (SQLSTATE
42809). It must not identify a shadow table or a base table of a shadow table (SQLSTATE 428HZ). In
releases before Db2 10.5.0.5, table-name must not identify a catalog table (SQLSTATE 42832).

correlation-name
Specifies a correlation name that can be used within search-condition to designate the table.

FOR ROWS WHERE
Indicates that a row permission is created. A row permission specifies a search condition under which
rows of the table can be accessed.
search-condition

Specifies a condition that can be true or false for a row of the table. This follows the same rules
used by the search condition in a WHERE clause of a subselect query. In addition, the search
condition must not reference any of the following objects or elements (SQLSTATE 428HB):

• A created global temporary table or a declared global temporary table.
• A shadow table.
• An external table.
• A nickname.
• A table function.
• A method.
• A parameter marker (SQLSTATE 42601).
• A user-defined function that is defined as not secure.
• A function or expression (such as row change expression, sequence expression) that is non

deterministic or has an external action
• An XMLQUERY scalar function.
• An XMLEXISTS predicate.
• An OLAP specification.
• A * or name.* in a SELECT clause.

Chapter 1. Structured Query Language (SQL) 1289

• A pseudocolumn.
• An aggregate function without specifying the SELECT clause.
• A view that includes any of the previously listed restrictions in its definition.

If search-condition references tables with currently activated row or column access control,
access control from those tables are not cascaded. See "Notes" for details.

ENFORCED FOR ALL ACCESS
Specifies that the row permission applies to all references of the table. If row access control is
activated for the table, when the table is referenced in a data manipulation statement, the database
manager implicitly applies the row permission to control the access of the table. If the reference of
the table is for a fetch operation such as SELECT, the application of the row permission determines
what set of rows can be retrieved by the user who requested the fetch operation. If the reference
of the table is for a data change operation such as INSERT, the application of the row permission
determines whether all rows to be changed can be inserted or updated by the user who requested the
data change operation.

ENABLE or DISABLE
Specifies that the row permission is to be enabled or disabled. The default is DISABLE.
DISABLE

Specifies that the row permission is to be disabled. If row access control is not currently activated
for the table, the row permission will remain ineffective when row access control is activated for
the table.

ENABLE
Specifies that the row permission is to be enabled for row access control. If row access control is
not currently activated for the table, the row permission will become effective when row access
control is activated for the table. If row access control is currently activated for the table, the row
permission becomes effective immediately and all packages and dynamically cached statements
that reference the table are invalidated.

See the ACTIVATE ROW ACCESS CONTROL clause in the ALTER TABLE statement for more information
about how to activate row access control and how row permissions are applied.

Notes
• Row permissions that are created before row access control is activated for a table: The CREATE

PERMISSION statement is an independent statement that can be used to create a row permission
before row access control is activated for a table. The only requirement is that the table and the
columns exist before the permission is created. Multiple row permissions can be created for a table.

The definition of the row permission is stored in the database catalog. Dependency on the table for
which the permission is being created and dependencies on other objects referenced in the definition
are recorded. No package or dynamic cached statement is invalidated. A row permission can be created
as enabled or disabled for row access control. An enabled row permission does not take effect until
the ALTER TABLE statement with the ACTIVATE ROW ACCESS CONTROL clause is used to activate
row access control for the table. A disabled row permission remains ineffective even when row access
control is activated for the table. The ALTER PERMISSION statement can be used to alter between
ENABLE and DISABLE.

After row access control is activated for a table, when the table is referenced in a data manipulation
statement, all enabled row permissions that are defined for the table are implicitly applied by the
database manager to control access to the table.

Creating row permissions before activating row access control for a table is the recommended sequence
to avoid multiple invalidations of packages and dynamic cached statements that reference the table.

• Row permissions that are created after row access control is activated for a table: An enabled
row permission becomes effective as soon as it is committed. All the packages and dynamic cached
statements that reference the table are invalidated. Thereafter, when the table is referenced in a
data manipulation statement, all enabled row permissions are implicitly applied to the statement. Any
disabled row permissions remain ineffective even when row access control is activated for the table.

1290 IBM Db2 V11.5: SQL Reference

• No cascaded effect when row or column access control enforced tables are referenced in row
permission definitions: A row permission definition might reference tables and columns that are
currently enforced by row or column access control. Access control from those tables are ignored when
the table for which the row permission is being created is referenced in a data manipulation statement.

• Consideration for database limits: If the data manipulation statement already approaches some
database limits in the statement, the more enabled row permissions and enabled column masks are
created, the more likely they might affect some limits. This is because the enabled column mask
and enabled row permission definitions are implicitly merged into the statement when the table is
referenced in a data manipulation statement. See "SQL and XML Limits" for the limits of a statement.

• Permissions that are enabled but in the invalid state: If a permission is enabled for row access
control but its state is set to invalid, access to the table on which the permission is defined is blocked
until this situation is resolved (SQLSTATE 560D0).

Example
The tellers in a bank can only access customers from their own branch. All tellers are members in
role TELLER. The customer service representatives are allowed to access all customers of the bank. All
customer service representatives are members in role CSR. A row permission is created accordingly for
each group of personnel in the bank by a user with SECADM authority. After row level access control is
activated for table CUSTOMER, in the SELECT statement the search conditions of both row permissions
are merged into the statement and they are combined with the logical OR operator to control the set of
rows accessible by each group.

CREATE PERMISSION TELLER_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_ROLE_FOR_USER
 (SESSION_USER,'TELLER') = 1 AND
 BRANCH = (SELECT HOME_BRANCH FROM INTERNAL_INFO
 WHERE EMP_ID = SESSION_USER)
ENFORCED FOR ALL ACCESS
ENABLE;

CREATE PERMISSION CSR_ROW_ACCESS ON CUSTOMER
 FOR ROWS WHERE VERIFY_ROLE_FOR_USER(SESSION_USER,'CSR') = 1
 ENFORCED FOR ALL ACCESS
 ENABLE;

CREATE PROCEDURE
The CREATE PROCEDURE statement defines a procedure at the current server.

Three different types of procedures can be created using this statement. Each of these types is described
separately.

• External. The procedure body is written in a programming language. The external executable is
referenced by a procedure defined at the current server, along with various attributes of the procedure.

• Sourced. The procedure body is part of the source procedure, which is referenced by the sourced
procedure that is defined at the current server, along with various attributes of the procedure. A sourced
procedure whose source procedure is at a data source is also called a federated procedure.

• SQL. The procedure body is written in SQL and defined at the current server, along with various
attributes of the procedure.

The CREATE PROCEDURE statement can be submitted in obfuscated form. In an obfuscated statement,
only the procedure name and its parameters are readable. The rest of the statement is encoded in such
a way that is not readable but can be decoded by the database server. Obfuscated statements can be
produced by calling the DBMS_DDL.WRAP function.

Chapter 1. Structured Query Language (SQL) 1291

CREATE PROCEDURE (external)
The CREATE PROCEDURE (external) statement defines an external procedure at the current server.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CREATE_EXTERNAL_ROUTINE authority on the database and at least one of the following authorities:

– IMPLICIT_SCHEMA authority on the database, if the schema name of the procedure does not refer to
an existing schema

– CREATEIN privilege on the schema, if the schema name of the procedure refers to an existing schema
– SCHEMAADM authority on the schema, if the schema name of the procedure refers to an existing

schema
• DBADM authority

To create a not-fenced procedure, the privileges held by the authorization ID of the statement must also
include at least one of the following authorities:

• CREATE_NOT_FENCED_ROUTINE authority on the database
• DBADM authority

To create a fenced procedure, no additional authorities or privileges are required.

To replace an existing procedure, the authorization ID of the statement must be the owner of the existing
procedure (SQLSTATE 42501).

Syntax
CREATE

OR REPLACE

PROCEDURE procedure-name

(
,

IN

OUT

INOUT

parameter-name

data-type

default-clause

)

option-list

data-type
built-in-type

array-type-name

built-in-type

1292 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

XML

SYSPROC.
DB2SECURITYLABEL

2 3

default-clause

Chapter 1. Structured Query Language (SQL) 1293

DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list

1294 IBM Db2 V11.5: SQL Reference

● LANGUAGE C

JAVA

COBOL

CLR

OLE

●

SPECIFIC specific-name

●

DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer

●

MODIFIES SQL DATA

NO SQL

CONTAINS SQL

READS SQL DATA

●

NOT DETERMINISTIC

DETERMINISTIC

●
CALLED ON NULL INPUT

●

OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

● EXTERNAL

NAME 'string'

identifier

●
FENCED

FENCED ● THREADSAFE

NOT THREADSAFE

NOT FENCED ●
THREADSAFE

●

COMMIT ON RETURN NO

COMMIT ON RETURN YES

AUTONOMOUS

●
EXTERNAL ACTION

NO EXTERNAL ACTION

INHERIT SPECIAL REGISTERS
● PARAMETER STYLE

DB2GENERAL

DB2SQL

GENERAL

GENERAL WITH NULLS

JAVA

SQL

●

PARAMETER CCSID ASCII

UNICODE

●

PROGRAM TYPE SUB

MAIN

●
NO DBINFO

DBINFO

●

STAY RESIDENT NO

●

Notes:
1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).

Chapter 1. Structured Query Language (SQL) 1295

2 DB2SECURITYLABEL is the built-in distinct type that must be used to define the row security label
column of a protected table.
3 For a column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is implicit and cannot be
explicitly specified (SQLSTATE 42842). The default value for a column of type DB2SECURITYLABEL is
the session authorization ID's security label for write access.

Description
OR REPLACE

Specifies to replace the definition for the procedure if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the procedure are not affected. This option can be
specified only by the owner of the object. This option is ignored if a definition for the procedure does
not exist at the current server. To replace an existing procedure, the specific name and procedure
name of the new definition must be the same as the specific name and procedure name of the
old definition, or the signature of the new definition must match the signature of the old definition.
Otherwise, a new procedure is created.

procedure-name
Names the procedure being defined. It is a qualified or unqualified name that designates a procedure.
The unqualified form of procedure-name is an SQL identifier. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an unqualified object name. In static SQL
statements the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the number of parameters must
not identify a procedure described in the catalog (SQLSTATE 42723). The unqualified name, together
with the number of the parameters, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS' (SQLSTATE 42939).

(IN | OUT | INOUT parameter-name data-type default-clause,...)
Identifies the parameters of the procedure, and specifies the mode, optional parameter name, data
type, and optional default value of each parameter. One entry in the list must be specified for each
parameter that the procedure will expect.

No two identically-named procedures within a schema are permitted to have exactly the same
number of parameters. A duplicate signature returns an SQL error (SQLSTATE 42723).

For example, given the statements:

 CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...
 CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail, because the number of parameters in the procedure is the same, even
if the data types are not.

If an error is returned by the procedure, OUT parameters are undefined and INOUT parameters are
unchanged.

IN
Identifies the parameter as an input parameter to the procedure. Any changes made to the
parameter within the procedure are not available to the calling SQL application when control is
returned. The default is IN.

OUT
Identifies the parameter as an output parameter for the procedure.

INOUT
Identifies the parameter as both an input and output parameter for the procedure.

parameter-name
Optionally specifies the name of the parameter. The parameter name must be unique for the
procedure (SQLSTATE 42734).

1296 IBM Db2 V11.5: SQL Reference

data-type
Specifies the data type of the parameter. A structured type cannot be specified (SQLSTATE
429BB).
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type, see
"CREATE TABLE". Only built-in data types that have a correspondence in the language that is
being used to write the procedure may be specified.

• A datetime type parameter is passed as a character data type, and the data is passed in the
ISO format.

• XML is invalid with LANGUAGE OLE.
• Because the XML value that is seen inside a procedure is a serialized version of the XML

value that is passed as a parameter in the procedure call, parameters of type XML must be
declared using the syntax XML AS CLOB(n).

• CLR does not support DECIMAL scale greater than 28 (SQLSTATE 42613).
• Decimal floating-point is not supported with languages C, Java COBOL, CLR, and OLE

(SQLSTATE 42613).
• BINARY and VARBINARY data types are invalid with LANGUAGE CLR and OLE (SQLSTATE

42815).

array-type-name
Specifies the name of a user-defined array type. If array-type-name is specified without a schema
name, the array type is resolved by searching the schemas in the SQL path. The array must be an
ordinary array and the procedure must be a Java procedure defined with the PARAMETER STYLE
JAVA clause (SQLSTATE 428H2).

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression or the keyword NULL. The special registers that can be specified as
the default are that same as those that can be specified for a column default (see "default-clause"
in the "CREATE TABLE" statement). Other special registers can be specified as the default by using
an expression.

The expression can be any expression of the type described in "Expressions". If a default value is
not specified, the parameter has no default and the corresponding argument cannot be omitted on
invocation of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or SQLSTATE 429BL). The
expression must be assignment compatible to the parameter data type (SQLSTATE 42821).

A default cannot be specified in the following situations:

• For INOUT or OUT parameters (SQLSTATE 42601)
• For a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE 429BB)

SPECIFIC specific-name
Provides a unique name for the instance of the procedure that is being defined. This specific name
can be used when altering, dropping, or commenting on the procedure. It can never be used to invoke
the procedure. The unqualified form of specific-name is an SQL identifier. The qualified form is a
schema-name followed by a period and an SQL identifier. The name, including the implicit or explicit
qualifier, must not identify another routine instance that exists at the application server; otherwise an
error (SQLSTATE 42710) is raised.

The specific-name may be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is used. If a qualifier is
specified, it must be the same as the explicit or implicit qualifier of procedure-name or an error
(SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database manager. The unique
name is 'SQL' followed by a character timestamp: 'SQLyymmddhhmmssxxx'.

Chapter 1. Structured Query Language (SQL) 1297

DYNAMIC RESULT SETS integer
Indicates the estimated upper bound of returned result sets for the procedure.

MODIFIES SQL DATA, NO SQL, CONTAINS SQL, READS SQL DATA
Specifies the classification of SQL statements that can be run by this procedure, or any routine that
is called by this procedure. The database manager verifies that the SQL statements issued by the
procedure and all routines that are called by the procedure are consistent with this specification.

For the classification of each statement, see "SQL statements that can be executed in routines and
triggers" in Developing User-defined Routines (SQL and External).

The default is MODIFIES SQL DATA.

MODIFIES SQL DATA
Specifies that the procedure can run any SQL statement except statements that are not supported
in procedures (SQLSTATE 38003).

NO SQL
Specifies that the procedure can run only SQL statements with a data access classification of NO
SQL (SQLSTATE 38001).

CONTAINS SQL
Specifies that the procedure can run only statements with a data access classification of
CONTAINS SQL or NO SQL (SQLSTATE 38003 or 38004).

READS SQL DATA
Specifies that the procedure can run statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL (SQLSTATE 38002 or 38003 or 42985).

DETERMINISTIC or NOT DETERMINISTIC
This clause specifies whether the procedure always returns the same results for given argument
values (DETERMINISTIC) or whether the procedure depends on some state values that affect the
results (NOT DETERMINISTIC). That is, a DETERMINISTIC procedure must always return the same
result from successive invocations with identical inputs.

This clause currently does not impact processing of the procedure.

CALLED ON NULL INPUT
CALLED ON NULL INPUT always applies to procedures. This means that the procedure is called
regardless of whether any arguments are null. Any OUT or INOUT parameter can return a null value or
a normal (non-null) value. Responsibility for testing for null argument values lies with the procedure.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL
Specifies whether or not this procedure establishes a new savepoint level for savepoint names and
effects. OLD SAVEPOINT LEVEL is the default behavior. For more information about savepoint levels,
see the "Rules" section in the description of the SAVEPOINT statement.

LANGUAGE
This mandatory clause is used to specify the language interface convention to which the procedure
body is written.
C

This means the database manager will call the procedure as if it were a C procedure. The
procedure must conform to the C language calling and linkage convention as defined by the
standard ANSI C prototype.

JAVA
This means the database manager will call the procedure as a method in a Java class.

COBOL
This means the database manager will call the procedure as if it were a COBOL procedure.
For Micro Focus COBOL, NOT THREADSAFE should be specified for procedures defined

CLR
This means the database manager will call the procedure as a method in a .NET class. At this time,
LANGUAGE CLR is only supported for procedures running on Windows operating systems. NOT
FENCED cannot be specified for a CLR routine (SQLSTATE 42601).

1298 IBM Db2 V11.5: SQL Reference

OLE
This means the database manager will call the procedure as if it were a method exposed by
an OLE automation object. The stored-procedure must conform with the OLE automation data
types and invocation mechanism. Also, the OLE automation object needs to be implemented as
an in-process server (DLL). These restrictions are outlined in the OLE Automation Programmer's
Reference.

LANGUAGE OLE is only supported for procedures stored in databases running on Windows
operating systems. THREADSAFE may not be specified for procedures defined with LANGUAGE
OLE (SQLSTATE 42613).

EXTERNAL
This clause indicates that the CREATE PROCEDURE statement is being used to register a new
procedure based on code written in an external programming language and adhering to the
documented linkage conventions and interface.

If the NAME clause is not specified, "NAME procedure-name" is assumed. If the NAME clause is not
formatted correctly, an error is returned (SQLSTATE 42878).

NAME 'string'
This clause identifies the name of the user-written code which implements the procedure being
defined.

The 'string' option is a string constant with a maximum of 254 bytes. The format used for the
string is dependent on the LANGUAGE specified.

• For LANGUAGE C:

The string specified is the library name and procedure within the library, which the database
manager invokes to execute the procedure being CREATEd. The library (and the procedure
within the library) do not need to exist when the CREATE PROCEDURE statement is performed.
However, when the procedure is called, the library and procedure within the library must exist
and be accessible from the database server machine.

' library_id

absolute_path_id ! proc_id

'

The name must be enclosed by single quotation marks. Extraneous blanks are not permitted.

library_id
Identifies the library name containing the procedure. The database manager will look for the
library as follows:

Operating system Library name location

Linux
AIX

If 'myfunc' was given as the library_id, and
the database manager is being run from /u/
production, the database manager will
look for the procedure in library /u/
production/sqllib/function/myproc
if FENCED is specified, or /u/production/
sqllib/function/unfenced/myproc if
NOT FENCED is specified.

Windows The database manager will look for the
function in a directory path that is specified
by the LIBPATH or PATH environment
variable.

Stored procedures located in any of these directories do not use any of the registered
attributes.

Chapter 1. Structured Query Language (SQL) 1299

absolute_path_id
Identifies the full path name of the procedure. The format depends on the operating system,
as illustrated in the following table:

Operating system Full path name example

Linux
AIX

A value of '/u/jchui/mylib/myproc' would
cause the database manager to look in /u/
jchui/mylib for the myproc procedure.

Windows A value of 'd:\mylib\myproc.dll' would cause
the database manager to load the file
myproc.dll from the d:\mylib directory.
If an absolute path ID is being used to
identify the routine body, be sure to append
the .dll extension.

! proc_id
Identifies the entry point name of the procedure to be invoked. The exclamation point (!)
serves as a delimiter between the library ID and the procedure ID. '!proc8' would direct the
database manager to look for the library in the location specified by absolute_path_id, and
to use entry point proc8 within that library.

If the string is not properly formed, an error is returned (SQLSTATE 42878).

The body of every procedure should be in a directory that is mounted and available on every
database partition.

• For LANGUAGE JAVA:

The string specified contains the optional jar file identifier, class identifier and method identifier,
which the database manager invokes to execute the procedure being created. The class
identifier and method identifier do not need to exist when the CREATE PROCEDURE statement
is performed. If a jar_id is specified, it must exist when the CREATE PROCEDURE statement is
performed. However, when the procedure is called, the class identifier and the method identifier
must exist and be accessible from the database server machine, otherwise an error is returned
(SQLSTATE 42884).

'

jar_id :

class_id .

!

method_id '

The name must be enclosed by single quotation marks. Extraneous blanks are not permitted.

jar_id
Identifies the jar identifier given to the jar collection when it was installed in the database.
It can be either a simple identifier or a schema qualified identifier. Examples are 'myJar' and
'mySchema.myJar'.

class_id
Identifies the class identifier of the Java object. If the class is part of a package,
the class identifier part must include the complete package prefix, for example,
'myPacks.StoredProcs'. The directory the Java virtual machine will look in for the classes
depends on the operating system, as illustrated in the following table:

Operating system
Directory the Java virtual machine will
look in for the classes

Linux
AIX

'.../myPacks/UserProcs/'

Windows '...\myPacks\UserProcs\'

1300 IBM Db2 V11.5: SQL Reference

method_id
Identifies the method name with the Java class to be invoked.

• For LANGUAGE CLR:

The string specified represents the .NET assembly (library or executable), the class within that
assembly, and the method within the class that the database manager invokes to execute the
procedure being created. The module, class, and method do not need to exist when the CREATE
PROCEDURE statement is executed. However, when the procedure is called, the module, class,
and method must exist and be accessible from the database server machine, otherwise an error
is returned (SQLSTATE 42284).

C++ routines that are compiled with the '/clr' compiler option to indicate that they include
managed code extensions must be cataloged as 'LANGUAGE CLR' and not 'LANGUAGE C'. The
database manager needs to know that the .NET infrastructure is being utilized in a procedure in
order to make necessary runtime decisions. All procedures using the .NET infrastructure must
be cataloged as 'LANGUAGE CLR'.

' assembly : class_id ! method_id '

The name must be enclosed by single quotation marks. Extraneous blanks are not permitted.

assembly
Identifies the DLL or other assembly file in which the class is located. Any file
extensions (such as .dll) must be specified. If the full path name is not given, the
file must be in the function directory of the database instance path (for example,
C:\Program Data\IBM\Db2\Copy Name). If the file is in a subdirectory of the
instance function directory, the subdirectory can be given before the file name
rather than specifying the full path. For example, if your instance directory is
C:\Program Data\IBM\Db2\Copy Name and your assembly file is C:\Program
Data\IBM\Db2\Copy Name\function\myprocs\mydotnet.dll, it is only necessary
to specify 'myprocs\mydotnet.dll' for the assembly. The case sensitivity of this
parameter is the same as the case sensitivity of the file system.

class_id
Specifies the name of the class within the given assembly in which the method that is to
be invoked resides. If the class resides within a namespace, the full namespace must be
given in addition to the class. For example, if the class EmployeeClass is in namespace
MyCompany.ProcedureClasses, then MyCompany.ProcedureClasses.EmployeeClass must be
specified for the class. Note that the compilers for some .NET languages will add the project
name as a namespace for the class, and the behavior may differ depending on whether the
command line compiler or the GUI compiler is used. This parameter is case sensitive.

method_id
Specifies the method within the given class that is to be invoked. This parameter is case
sensitive.

• For LANGUAGE OLE:

The string specified is the OLE programmatic identifier (progid) or class identifier (clsid), and
method identifier (method_id), which the database manager invokes to execute the procedure
being created by the statement. The programmatic identifier or class identifier, and the method
identifier do not need to exist when the CREATE PROCEDURE statement is executed. However,
when the procedure is used in the CALL statement, the method identifier must exist and be
accessible from the database server machine, otherwise an error results (SQLSTATE 42724).

' progid

clsid

! method_id '

The name must be enclosed by single quotation marks. Extraneous blanks are not permitted.

Chapter 1. Structured Query Language (SQL) 1301

progid
Identifies the programmatic identifier of the OLE object.

A progid is not interpreted by the database manager, but only forwarded to the OLE
automation controller at run time. The specified OLE object must be creatable and support
late binding (also known as IDispatch-based binding). By convention, progids have the
following format:

 <program_name>.<component_name>.<version>

Because this is only a convention, and not a rule, progids may in fact have a different format.

clsid
Identifies the class identifier of the OLE object to create. It can be used as an alternative for
specifying a progid in the case that an OLE object is not registered with a progid. The clsid
has the form:

 {nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn}

where 'n' is an alphanumeric character. A clsid is not interpreted by the database manager,
but only forwarded to the OLE APIs at run time.

method_id
Identifies the method name of the OLE object to be invoked.

NAME identifier
This identifier specified is an SQL identifier. The SQL identifier is used as the library-id in the string.
Unless it is a delimited identifier, the identifier is folded to upper case. If the identifier is qualified
with a schema name, the schema name portion is ignored. This form of NAME can only be used
with LANGUAGE C.

FENCED or NOT FENCED
This clause specifies whether the procedure is considered "safe" to run in the database manager
operating environment's process or address space (NOT FENCED), or not (FENCED).

If a procedure is registered as FENCED, the database manager protects its internal resources (for
example, data buffers) from access by the procedure. All procedures have the option of running as
FENCED or NOT FENCED. In general, a procedure running as FENCED will not perform as well as a
similar one running as NOT FENCED.

CAUTION: Use of NOT FENCED for procedures that were not adequately coded, reviewed,
and tested can compromise the integrity of a Db2 database. Db2 databases take some
precautions against many of the common types of inadvertent failures that might occur, but
cannot guarantee complete integrity when NOT FENCED stored procedures are used.

Either SYSADM authority, DBADM authority, or a special authority (CREATE_NOT_FENCED) is required
to register a procedure as NOT FENCED. Only FENCED can be specified for a procedure with
LANGUAGE OLE or NOT THREADSAFE.

LANGUAGE CLR procedures cannot be created when specifying the NOT FENCED clause (SQLSTATE
42601).

THREADSAFE or NOT THREADSAFE
Specifies whether the procedure is considered safe to run in the same process as other routines
(THREADSAFE), or not (NOT THREADSAFE).

If the procedure is defined with LANGUAGE other than OLE:

• If the procedure is defined as THREADSAFE, the database manager can invoke the procedure in
the same process as other routines. In general, to be threadsafe, a procedure should not use any
global or static data areas. Most programming references include a discussion of writing threadsafe
routines. Both FENCED and NOT FENCED procedures can be THREADSAFE.

• If the procedure is defined as NOT THREADSAFE, the database manager will never invoke the
procedure in the same process as another routine.

1302 IBM Db2 V11.5: SQL Reference

For FENCED procedures, THREADSAFE is the default if the LANGUAGE is JAVA or CLR. For all
other languages, NOT THREADSAFE is the default. If the procedure is defined with LANGUAGE OLE,
THREADSAFE may not be specified (SQLSTATE 42613).

For NOT FENCED procedures, THREADSAFE is the default. NOT THREADSAFE cannot be specified
(SQLSTATE 42613).

COMMIT ON RETURN
Indicates whether a commit is to be issued on return from the procedure. The default is NO.
NO

A commit is not issued when the procedure returns.
YES

A commit is issued when the procedure returns if a positive SQLCODE is returned by the CALL
statement

The commit operation includes the work that is performed by the calling application process and the
procedure.

If the procedure returns result sets, the cursors that are associated with the result sets must have
been defined as WITH HOLD to be usable after the commit.

AUTONOMOUS
Indicates the procedure should execute in its own autonomous transaction scope.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an object not managed
by the database manager (EXTERNAL ACTION), or not (NO EXTERNAL ACTION). The default is
EXTERNAL ACTION. If NO EXTERNAL ACTION is specified, the system can use certain optimizations
that assume the procedure has no external impact.

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the procedure will inherit their initial
values from the environment of the invoking statement.

No changes to the special registers are passed back to the caller of the procedure.

Non-updatable special registers, such as the datetime special registers, reflect a property of the
statement currently executing, and are therefore set to their default values.

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to and returning the value
from procedures.
DB2GENERAL

This means that the procedure will use a parameter passing convention that is defined for use
with Java methods. This can only be specified when LANGUAGE JAVA is used.

DB2SQL
In addition to the parameters on the CALL statement, the following arguments are passed to the
procedure:

• A vector containing a null indicator for each parameter on the CALL statement
• The SQLSTATE to be returned to the database manager
• The qualified name of the procedure
• The specific name of the procedure
• The SQL diagnostic string to be returned to the database manager

This can only be specified when LANGUAGE C, COBOL, CLR, or OLE is used.

GENERAL
This means that the procedure will use a parameter passing mechanism by which the procedure
receives the parameters specified on the CALL. The parameters are passed directly, as expected
by the language; the SQLDA structure is not used. This can only be specified when LANGUAGE C,
COBOL, or CLR is used.

Chapter 1. Structured Query Language (SQL) 1303

Null indicators are not directly passed to the program.

GENERAL WITH NULLS
In addition to the parameters on the CALL statement specified under GENERAL, another argument
is passed to the procedure. This additional argument is a vector of null indicators, one for each of
the parameters on the CALL statement. In C, this would be an array of short integers. This can only
be specified when LANGUAGE C, COBOL, or CLR is used.

JAVA
This means that the procedure will use a parameter passing convention that conforms to the Java
language and SQLJ Routines specification. IN/OUT and OUT parameters will be passed as single
entry arrays to facilitate returning values. This can only be specified when LANGUAGE JAVA is
used.

PARAMETER STYLE JAVA procedures do not support the DBINFO or PROGRAM TYPE clauses.

SQL
In addition to the parameters on the CALL statement, the following arguments are passed to the
procedure:

• A null indicator for each parameter on the CALL statement
• The SQLSTATE to be returned to the database manager
• The qualified name of the procedure
• The specific name of the procedure
• The SQL diagnostic string to be returned to the database manager

This can only be specified when LANGUAGE C, COBOL, CLR, or OLE is used.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of the procedure. If the
PARAMETER CCSID clause is not specified, the default is PARAMETER CCSID UNICODE for Unicode
databases, and PARAMETER CCSID ASCII for all other databases.
ASCII

Specifies that string data is encoded in the database code page. If the database is a Unicode
database, PARAMETER CCSID ASCII cannot be specified (SQLSTATE 56031). When the procedure
is invoked, the application code page for the procedure is the database code page.

UNICODE
Specifies that string data is encoded in Unicode. If the database is a Unicode database, character
data is in UTF-8, and graphic data is in UCS-2. If the database is not a Unicode database,
character data is in UTF-8. In either case, when the procedure is invoked, the application code
page for the procedure is 1208.

If the database is not a Unicode database, and a procedure with PARAMETER CCSID UNICODE
is created, the procedure cannot have any graphic types, the XML type, or user-defined types
(SQLSTATE 560C1).

If the database is not a Unicode database, and the alternate collating sequence has been specified
in the database configuration, procedures can be created with either PARAMETER CCSID ASCII or
PARAMETER CCSID UNICODE. All data passed into and out of the procedure will be converted to the
appropriate code page.

This clause cannot be specified with LANGUAGE OLE, LANGUAGE JAVA, or LANGUAGE CLR
(SQLSTATE 42613).

PROGRAM TYPE
Specifies whether the procedure expects parameters in the style of a main routine or a subroutine.
The default is SUB.
SUB

The procedure expects the parameters to be passed as separate arguments.

1304 IBM Db2 V11.5: SQL Reference

MAIN
The procedure expects the parameters to be passed as an argument counter, and a vector of
arguments (argc, argv). The name of the procedure to be invoked must also be "main". Stored
procedures of this type must still be built in the same fashion as a shared library, rather than a
stand-alone executable. PROGRAM TYPE MAIN is only valid when the LANGUAGE clause specifies
one of: C, COBOL, or CLR.

DBINFO or NO DBINFO
Specifies whether specific information known by the database manager is passed to the procedure
when it is invoked as an additional invocation-time argument (DBINFO) or not (NO DBINFO). NO
DBINFO is the default. DBINFO is not supported for LANGUAGE OLE (SQLSTATE 42613). It is also not
supported for PARAMETER STYLE JAVA or DB2GENERAL.

If DBINFO is specified, a structure containing the following information is passed to the procedure:

• Data base name - the name of the currently connected database.
• Application ID - unique application ID which is established for each connection to the database.
• Application Authorization ID - the authorization ID of the user that connected to the database (the

SYSTEM_USER special register).
• Code page - identifies the database code page.
• Database version/release - identifies the version, release and modification level of the database

server invoking the procedure.
• Platform - contains the server's platform type.

The DBINFO structure is common for all external routines and contains additional fields that are not
relevant to procedures.

If you change session authorization ID (the SESSION_USER special register) using the SET
SESSION AUTHORIZATION statement, the Application Authorization ID still returns the value of the
SYSTEM_USER special register.

STAY RESIDENT NO
Specifies that the library that is loaded for the function is not to remain resident in memory after the
function ends. This clause is ignored when:

• The NOT FENCED clause is specified.
• The LANGUAGE option is set to JAVA or CLR.

Rules
• Autonomous routine restrictions: Autonomous routines cannot return result sets and do not support

the following parameter data types (SQLSTATE 428H2):

– Cursor types
– Structured types
– XML

Global variables of cursor types cannot be referenced within the autonomous scope.

Notes
• Creating a procedure with a schema name that does not already exist results in the implicit creation

of that schema, provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• A Java routine defined as NOT FENCED will be invoked as if it had been defined as FENCED
THREADSAFE.

• A procedure that is called from within a compound SQL (inlined) statement will execute as if it were
created specifying NEW SAVEPOINT LEVEL, even if OLD SAVEPOINT LEVEL was specified or defaulted
to when the procedure was created.

Chapter 1. Structured Query Language (SQL) 1305

• XML parameters are only supported in LANGUAGE JAVA external procedures when the PARAMETER
STYLE DB2GENERAL clause is specified.

• Setting of the default value: Parameters of a procedure that are defined with a default value are
set to their default value when the procedure is invoked, but only if a value is not supplied for the
corresponding argument, or is specified as DEFAULT, when the procedure is invoked.

• Privileges: The definer of a procedure always receives the EXECUTE privilege WITH GRANT OPTION
on the procedure, as well as the right to drop the procedure. When the procedure is used in an SQL
statement, the procedure definer must have the EXECUTE privilege on any packages used by the
procedure or EXECUTEIN privilege on the schema containing the packages used by the procedure.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– RESULT SETS can be specified in place of DYNAMIC RESULT SETS.
– NULL CALL can be specified in place of CALLED ON NULL INPUT.
– DB2GENRL can be specified in place of DB2GENERAL.
– SIMPLE CALL can be specified in place of GENERAL.
– SIMPLE CALL WITH NULLS can be specified in place of GENERAL WITH NULLS.
– PARAMETER STYLE DB2DARI is supported.

The following syntax is accepted as the default behavior:

– ASUTIME NO LIMIT
– NO COLLID
– STAY RESIDENT NO
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database if PARAMETER CCSID UNICODE is not specified

Examples
• Example 1: Create the procedure definition for a procedure, written in Java, that is passed a part

number and that returns the cost of the part and the quantity that is currently available.

 CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,
 OUT COST DECIMAL(7,2),
 OUT QUANTITY INTEGER)
 EXTERNAL NAME 'parts.onhand'
 LANGUAGE JAVA PARAMETER STYLE JAVA

• Example 2: Create the procedure definition for a procedure, written in C, that is passed an assembly
number and returns the number of parts that make up the assembly, total part cost, and a result set that
lists the part numbers, quantity, and unit cost of each part.

 CREATE PROCEDURE ASSEMBLY_PARTS (IN ASSEMBLY_NUM INTEGER,
 OUT NUM_PARTS INTEGER,
 OUT COST DOUBLE)
 EXTERNAL NAME 'parts!assembly'
 DYNAMIC RESULT SETS 1 NOT FENCED
 LANGUAGE C PARAMETER STYLE GENERAL

1306 IBM Db2 V11.5: SQL Reference

CREATE PROCEDURE (sourced)
The CREATE PROCEDURE (sourced) statement defines a procedure (the sourced procedure) that is based
on another procedure (the source procedure). In a federated system, a federated procedure is a sourced
procedure whose source procedure is at a supported data source.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the schema name of the procedure does not refer to an
existing schema

• CREATEIN privilege on the schema, if the schema name of the procedure refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the procedure refers to an existing

schema
• DBADM authority

For data sources that require a user mapping, the privileges held at the data source by the authorization
ID of the statement must include the privilege to select the procedure's description from the remote
catalog tables.

To replace an existing procedure, the authorization ID of the statement must be the owner of the existing
procedure (SQLSTATE 42501).

Syntax
CREATE

OR REPLACE

PROCEDURE procedure-name source-procedure-clause

option-list

source-procedure-clause
SOURCE source-object-name

()

NUMBER OF PARAMETERS integer

UNIQUE ID unique-id

FOR SERVER server-name

source-object-name

source-schema-name .

source-package-name .

source-procedure-name

option-list

Chapter 1. Structured Query Language (SQL) 1307

●

SPECIFIC specific-name

●

WITH RETURN TO CALLER ALL

WITH RETURN TO CLIENT (

,

result-set-element-number)

ALL

●

NO SQL

CONTAINS SQL

MODIFIES SQL DATA

READS SQL DATA

●

NOT DETERMINISTIC

DETERMINISTIC

●

EXTERNAL ACTION

NO EXTERNAL ACTION

●

Description
OR REPLACE

Specifies to replace the definition for the procedure if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the procedure are not affected. This option can be
specified only by the owner of the object. This option is ignored if a definition for the procedure does
not exist at the current server. To replace an existing procedure, the specific name and procedure
name of the new definition must be the same as the specific name and procedure name of the
old definition, or the signature of the new definition must match the signature of the old definition.
Otherwise, a new procedure is created.

procedure-name
Names the sourced procedure being defined. It is a qualified or unqualified name that designates a
procedure. The unqualified form of procedure-name is an SQL identifier. In dynamic SQL statements,
the CURRENT SCHEMA special register is used as a qualifier for an unqualified object name. In
static SQL statements, the QUALIFIER precompile or bind option implicitly specifies the qualifier for
unqualified object names. The qualified form is a schema-name followed by a period and an SQL
identifier.

The name, including the implicit or explicit qualifiers, together with the number of parameters, must
not identify a procedure that is described in the catalog (SQLSTATE 42723). The unqualified name,
together with the number of parameters, need not be unique across schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS' (SQLSTATE 42939).

In a federated system, procedure-name is the name of the procedure on the federated server.

SOURCE source-object-name
Specifies the source procedure that is used by the procedure being defined. In a federated system,
the source procedure is a procedure that is located at a supported data source.
source-schema-name

Identifies the schema name of the source procedure. If a schema name is used to identify
the source procedure, the source-schema-name must be specified in the CREATE PROCEDURE
(Sourced) statement. If the source-schema-name contains any special or lowercase characters, it
must be enclosed by double quotation marks.

1308 IBM Db2 V11.5: SQL Reference

source-package-name
Identifies the package name of the source procedure. The source-package-name applies only
to Oracle data sources. If a package name is used to identify the source procedure, the source-
package-name must be specified in the CREATE PROCEDURE (Sourced) statement. If the source-
package-name contains any special or lowercase characters, it must be enclosed by double
quotation marks.

source-procedure-name
Identifies the procedure name of the source procedure. If the source-procedure-name contains
any special or lowercase characters, it must be enclosed by double quotation marks.

()
Indicates that the number of parameters is zero.

NUMBER OF PARAMETERS integer
Specifies the number of parameters for the source procedure. The minimum value for integer is 0, and
the maximum value is 32 767.

UNIQUE ID string-constant
Provides a way to uniquely identify the source procedure when there are multiple procedures at the
data source with the identical name, schema, and number of parameters. The string-constant value,
which has a maximum length of 128, is interpreted uniquely by each data source.

FOR SERVER server-name
Specifies a server definition that was registered using the CREATE SERVER statement.

SPECIFIC specific-name
Provides a unique name for the instance of the sourced procedure that is being defined. This specific
name can be used when altering, dropping, or commenting on the sourced procedure. This name
can never be used to invoke the sourced procedure. The unqualified form of specific-name is an SQL
identifier. The qualified form of specific-name is a schema-name followed by a period and an SQL
identifier. The specific-name value, including the implicit or explicit qualifier, must not identify another
procedure instance that exists at the application server; otherwise an error is returned (SQLSTATE
42710).

The specific-name can be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is used. If a qualifier is
specified, it must be the same as the explicit or implicit qualifier for procedure-name, or an error is
returned (SQLSTATE 42882).

If specific-name is not specified, a unique name is generated by the database manager. The unique
name is 'SQL' followed by a character timestamp: 'SQLyymmddhhmmssxxx'.

WITH RETURN TO CALLER or WITH RETURN TO CLIENT
Indicates where the result sets from the source procedure are handled. If the source procedure is not
from an Oracle data source, the only one result set is returned to the caller or client; and if the source
procedure is coded to return more than one result set, only the first result set is returned to the caller
or client. The default is WITH RETURN TO CALLER.
WITH RETURN TO CALLER ALL

Specifies that all result sets from the source procedure are returned to the caller.
WITH RETURN TO CLIENT

Indicates which result sets from the source procedure are returned directly to the client
application. The dynamic result set value at the data source must be greater than 0 for a result set
to be returned.
(result-set-element-number, ...)

Specifies a non-empty list of result sets to return to the client application (SQLSTATE 42601).
A result-set-element-number identifies a result set based on the order the result sets are
returned, where 1 identifies the first result set, 2 the second result set, and so on. A result-
set-element-number greater than the total number of result sets returned is ignored. Each
result-set-element-number must be an integer value greater than zero (SQLSTATE 42815), and
must not exceed the value of a small integer constant (SQLSTATE 42820). The list of result

Chapter 1. Structured Query Language (SQL) 1309

sets to return to the client application must not contain duplicate values and must be specified
in ascending order (SQLSTATE 42815). Result sets are always processed in the order they are
returned from the source procedure.

Result sets that are not identified in the list to return to client application are returned to the
caller.

Note: This list of result sets to return to the client application must only be used with source
procedures that are known to consistently return result sets that are intended for the client
in the same position in the list of result sets each time they are executed. It is possible for a
source procedure to return different sets of result sets each time it is executed, depending on
the internal logic of the procedure. If this is the case, then specify either WITH RETURN TO
CALLER ALL or WITH RETURN TO CLIENT ALL instead, and code the application to handle this
case.

ALL
Specifies all result sets from the source procedure are returned to the client.

NO SQL, CONTAINS SQL, MODIFIES SQL DATA, READS SQL DATA
Specifies the classification of SQL statements that can be run by this procedure, or any routine that
is called by this procedure. The database manager verifies that the SQL statements issued by the
procedure and all routines that are called by the procedure are consistent with this specification.

For the classification of each statement, see "SQL statements that can be executed in routines and
triggers" in Developing User-defined Routines (SQL and External).

Because the source procedure for the sourced procedure is not on the federated server, the specified
level is not enforced during execution of the source procedure at the data source. If there is
discrepancy between what is specified for the sourced procedure and what the source procedure
actually does at the data source, data inconsistency might occur.

If this option is not explicitly specified, the value for the source procedure is used.

If this option is explicitly specified but does not match the value for the source procedure, an error is
returned (SQLSTATE 428GS).

If this option is not available at the data source, the default is MODIFIES SQL DATA.

NO SQL
Specifies that the procedure can run only SQL statements with a data access classification of NO
SQL. (SQLSTATE 38001).

CONTAINS SQL
Specifies that the procedure can run only statements with a data access classification of
CONTAINS SQL or NO SQL (SQLSTATE 38003 or 38004).

MODIFIES SQL DATA
Specifies that the procedure can run any SQL statement except statements that are not supported
in procedures (SQLSTATE 38003).

READS SQL DATA
Specifies that the procedure can run statements with a data access classification of READS SQL
DATA, CONTAINS SQL, or NO SQL (SQLSTATE 38002 or 38003 or 42985).

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the sourced procedure always returns the same results for given argument
values (DETERMINISTIC), or whether the sourced procedure depends on some stated values that
affect the results (NOT DETERMINISTIC). A DETERMINISTIC sourced procedure must always return
the same result from successive invocations with identical inputs. This clause currently does not
impact the processing of the procedure. If this option is not explicitly specified, the value for the
source procedure is used. If this option is not available at the data source, the default is NOT
DETERMINISTIC. If this option is explicitly specified, but does not match the value for the source
procedure, an error is returned (SQLSTATE 428GS).

1310 IBM Db2 V11.5: SQL Reference

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the sourced procedure takes some action that changes the state of an object that
is not managed by the database manager (EXTERNAL ACTION), or does not (NO EXTERNAL ACTION).
If the NO EXTERNAL ACTION clause is specified, the federated database uses optimization that
assumes that the sourced procedure has no external impact. If this option is not explicitly specified,
the value for the source procedure is used. If this option is not available at the data source, the default
is EXTERNAL ACTION. If this option is explicitly specified but does not match the value for the source
procedure, an error is returned (SQLSTATE 428GS).

Rules
• If the source-object-name, along with the NUMBER OF PARAMETERS and UNIQUE ID clauses do not

identify a procedure at the data source, an error is returned (SQLSTATE 42883); if more than one
procedure is identified, an error is returned (SQLSTATE 42725).

• If the UNIQUE ID clause is specified and the data source does not support unique IDs, an error is
returned (SQLSTATE 42883).

Notes
• Before a federated procedure can be registered for a data source, the federated server must be
configured to access that data source. This configuration includes: registering the wrapper for the data
source, creating the server definition for the data source, and creating the user mappings between the
federated server and the data source server for the data sources that require user mapping.

• Creating procedures that are initially invalid: If an object referenced in the procedure body does not
exist or is marked invalid, or the definer temporarily doesn't have privileges to access the object, and if
the database configuration parameter auto_reval is not set to DISABLED, then the procedure will still
be created successfully. The procedure will be marked invalid and will be revalidated the next time it is
invoked.

• Unlike SQL and external procedures defined at the federated server, federated procedures do not inherit
the special registers of the caller, even those whose remote-object-name refers to a procedure on a Db2
data source.

• If the definition of the source procedure is changed (for example, a parameter data type is changed),
the federated procedure should be dropped and recreated; otherwise, errors might occur when the
federated procedure is invoked.

• If the length of the source procedure parameter is longer than 128, the parameter name of the
federated procedure is truncated to 128 bytes.

• Compatibilities: The DataJoiner syntax for Create Stored Procedure Nickname is not supported.
Parameter type mapping is handled similarly to nicknames: A catalog look-up determines the remote
data type. The local parameter type is determined through forward type mapping.

Examples
• Example 1: Create a federated procedure named FEDEMPLOYEE for an Oracle procedure named

EMPLOYEE, using the remote schema name USER1, the remote package name P1 at the federated
server S1, and returning the result set to the client.

 CREATE PROCEDURE FEDEMPLOYEE SOURCE USER1.P1.EMPLOYEE
 FOR SERVER S1 WITH RETURN TO CLIENT ALL

• Example 2: Create a federated procedure named FEDSALARYSTAT for an Oracle procedure named
SALARYSTAT, using the remote schema name USER1, the remote package name P1 at the federated
server S1, and returning the first and the third result set to the client, and remaining result sets to the
caller.

 CREATE OR REPLACE PROCEDURE FEDSALARYSTAT SOURCE USER1.P1.SALARYSTAT
 FOR SERVER S1 WITH RETURN TO CLIENT(1,3)

Chapter 1. Structured Query Language (SQL) 1311

CREATE PROCEDURE (SQL)
The CREATE PROCEDURE (SQL) statement defines an SQL procedure at the current server.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• If the implicit or explicit schema name of the procedure does not exist, IMPLICIT_SCHEMA authority on
the database.

• If the schema name of the procedure refers to an existing schema, CREATEIN privilege on the schema.
• If the schema name of the procedure refers to an existing schema, SCHEMAADM authority on the

schema.
• DBADM authority

The privileges held by the authorization ID of the statement must also include all of the privileges
necessary to invoke the SQL statements that are specified in the procedure body.

To replace an existing procedure, the authorization ID of the statement must be the owner of the existing
procedure (SQLSTATE 42501).

Group privileges are not considered for any table or view specified in the CREATE PROCEDURE (SQL)
statement.

Syntax
CREATE

OR REPLACE

PROCEDURE procedure-name

(
,

IN

OUT

INOUT

parameter-name data-type

default-clause

)

option-list SQL-procedure-body

data-type
built-in-type

anchored-variable-data-type

array-type-name

cursor-type-name

distinct-type-name

row-type-name

built-in-type

1312 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

BOOLEAN

CURSOR

anchored-data-type

Chapter 1. Structured Query Language (SQL) 1313

ANCHOR
DATA TYPE TO

variable-name

table-name.column-name

ROW
OF

table-name

view-name

cursor-variable-name

default-clause
DEFAULT NULL

constant

special-register

global-variable

(expression)

option-list

●

LANGUAGE SQL

●

SPECIFIC specific-name

●

DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer

●

MODIFIES SQL DATA

CONTAINS SQL

READS SQL DATA

●

NOT DETERMINISTIC

DETERMINISTIC

●
CALLED ON NULL INPUT

●

COMMIT ON RETURN NO

COMMIT ON RETURN YES

AUTONOMOUS

●
INHERIT SPECIAL REGISTERS

●
OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

●
EXTERNAL ACTION

NO EXTERNAL ACTION

●

PARAMETER CCSID ASCII

UNICODE

●

SQL-procedure-body
SQL-procedure-statement

Notes:
1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).

1314 IBM Db2 V11.5: SQL Reference

Description
OR REPLACE

Specifies to replace the definition for the procedure if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the procedure are not affected. This option can be
specified only by the owner of the object. This option is ignored if a definition for the procedure does
not exist at the current server. To replace an existing procedure, the specific name and procedure
name of the new definition must be the same as the specific name and procedure name of the
old definition, or the signature of the new definition must match the signature of the old definition.
Otherwise, a new procedure is created.

procedure-name
Names the procedure being defined. It is a qualified or unqualified name that designates a procedure.
The unqualified form of procedure-name is an SQL identifier. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified
object names. The qualified form is a schema-name followed by a period and an SQL identifier.

The name, including the implicit or explicit qualifiers, together with the number of parameters, must
not identify a procedure described in the catalog (SQLSTATE 42723). The unqualified name, together
with the number of parameters, is unique within its schema, but does not need to be unique across
schemas.

If a two-part name is specified, the schema-name cannot begin with 'SYS'; otherwise, an error is
returned (SQLSTATE 42939).

(IN | OUT | INOUT parameter-name data-type default-clause,...)
Identifies the parameters of the procedure, and specifies the mode, name, data type, and optional
default value of each parameter. One entry in the list must be specified for each parameter that the
procedure will expect.

It is possible to register a procedure that has no parameters. In this case, the parentheses must still
be coded, with no intervening data types. For example:

 CREATE PROCEDURE SUBWOOFER() ...

No two identically-named procedures within a schema are permitted to have exactly the same
number of parameters. A duplicate signature raises an SQL error (SQLSTATE 42723).

For example, given the statements:

 CREATE PROCEDURE PART (IN NUMBER INT, OUT PART_NAME CHAR(35)) ...
 CREATE PROCEDURE PART (IN COST DECIMAL(5,3), OUT COUNT INT) ...

the second statement will fail because the number of parameters in the procedure is the same, even if
the data types are not.

IN | OUT | INOUT
Specifies the mode of the parameter.

If an error is returned by the procedure, OUT parameters are undefined and INOUT parameters
are unchanged.

IN
Identifies the parameter as an input parameter to the procedure. Any changes made to the
parameter within the procedure are not available to the calling SQL application when control is
returned. The default is IN.

OUT
Identifies the parameter as an output parameter for the procedure.

INOUT
Identifies the parameter as both an input and output parameter for the procedure.

Chapter 1. Structured Query Language (SQL) 1315

parameter-name
Specifies the name of the parameter. The parameter name must be unique for the procedure
(SQLSTATE 42734).

data-type
Specifies the data type of the parameter. A structured type or reference type cannot be specified
(SQLSTATE 429BB).
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type
except BOOLEAN and CURSOR, which cannot be specified for a table, see "CREATE TABLE".
BOOLEAN

For a Boolean.
CURSOR

For a reference to an underlying cursor.
anchored-data-type

Identifies another object used to define the data type. The data type of the anchor object has
the same limitations that apply to specifying the data type directly, or in the case of a row, to
creating a row type.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.
variable-name

Identifies a global variable. The data type of the global variable is used as the data type
for parameter-name.

table-name.column-name
Identifies a column name of an existing table or view. The data type of the column is
used as the data type for parameter-name.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based on the column
names and column data types of the table identified by table-name or the view
identified by view-name. The data type of parameter-name is an unnamed row type.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on the field names
and field data types of the cursor variable identified by cursor-variable-name. The
specified cursor variable must be one of the following elements (SQLSTATE 428HS):

• A global variable with a strongly typed cursor data type
• A global variable with a weakly typed cursor data type that was created or declared

with a CONSTANT clause specifying a select-statement where all the result columns
are named.

If the cursor type of the cursor variable is not strongly-typed using a named row type,
the data type of parameter-name is an unnamed row type.

array-type-name
Specifies the name of a user-defined array type. If array-type-name is specified without a
schema name, the array type is resolved by searching the schemas in the SQL path.

cursor-type-name
Specifies the name of a cursor type. If cursor-type-name is specified without a schema name,
the cursor type is resolved by searching the schemas in the SQL path.

distinct-type-name
Specifies the name of a distinct type. The length, precision, and scale of the parameter are,
respectively, the length, precision, and scale of the source type of the distinct type. A distinct
type parameter is passed as the source type of the distinct type. If distinct-type-name is
specified without a schema name, the distinct type is resolved by searching the schemas in
the SQL path.

1316 IBM Db2 V11.5: SQL Reference

row-type-name
Specifies the name of a user-defined row type. The fields of the parameter are the fields of the
row type. If row-type-name is specified without a schema name, the row type is resolved by
searching the schemas in the SQL path.

DEFAULT
Specifies a default value for the parameter. The default can be a constant, a special register, a
global variable, an expression or the keyword NULL. The special registers that can be specified as
the default are that same as those that can be specified for a column default (see default-clause in
the CREATE TABLE statement). Other special registers can be specified as the default by using an
expression.

The expression can be any expression of the type described in "Expressions". If a default value is
not specified, the parameter has no default and the corresponding argument cannot be omitted on
invocation of the procedure. The maximum size of the expression is 64K bytes.

The default expression must not modify SQL data (SQLSTATE 428FL or SQLSTATE 429BL). The
expression must be assignment compatible to the parameter data type (SQLSTATE 42821).

A default cannot be specified in the following situations:

• For INOUT or OUT parameters (SQLSTATE 42601)
• For a parameter of type ARRAY, ROW, or CURSOR (SQLSTATE 429BB)

SPECIFIC specific-name
Provides a unique name for the instance of the procedure that is being defined. This specific name
can be used when altering, dropping, or commenting on the procedure. It can never be used to invoke
the procedure. The unqualified form of specific-name is an SQL identifier. The qualified form is a
schema-name followed by a period and an SQL identifier. The name, including the implicit or explicit
qualifier, must not identify another procedure instance that exists at the application server; otherwise
an error (SQLSTATE 42710) is raised.

The specific-name can be the same as an existing procedure-name.

If no qualifier is specified, the qualifier that was used for procedure-name is used. If a qualifier is
specified, it must be the same as the explicit or implicit qualifier for procedure-name, or an error
(SQLSTATE 42882) is raised.

If specific-name is not specified, a unique name is generated by the database manager. The unique
name is 'SQL' followed by a character timestamp: 'SQLyymmddhhmmssxxx'.

If you intend to archive the procedure by using the GET ROUTINE command, ensure the specific-
name has a maximum length of 18 characters.

DYNAMIC RESULT SETS integer
Indicates the estimated upper bound of returned result sets for the procedure.

MODIFIES SQL DATA, CONTAINS SQL, READS SQL DATA
Specifies the classification of SQL statements that can be run by this procedure or any routine that
is called by this procedure. The database manager verifies that the SQL statements issued by the
procedure and all routines that are called by the procedure are consistent with this specification.

For the classification of each statement, see "SQL statements that can be executed in routines and
triggers" in Developing User-defined Routines (SQL and External).

The default is MODIFIES SQL DATA.

MODIFIES SQL DATA
Specifies that the procedure can run any SQL statement except statements that are not supported
in procedures (SQLSTATE 38003 or 42985).

CONTAINS SQL
Specifies that the procedure can run only statements with a data access classification of
CONTAINS SQL (SQLSTATE 38003 or 38004 or 42985).

Chapter 1. Structured Query Language (SQL) 1317

READS SQL DATA
Specifies that the procedure can run statements with a data access classification of READS SQL
DATA or CONTAINS SQL (SQLSTATE 38002 or 38003 or 42985).

If the BEGIN ATOMIC clause is used in a compound SQL procedure, the procedure can be created only
if it is defined as MODIFIES SQL DATA.

DETERMINISTIC or NOT DETERMINISTIC
This clause specifies whether the procedure always returns the same results for given argument
values (DETERMINISTIC) or whether the procedure depends on some state values that affect the
results (NOT DETERMINISTIC). That is, a DETERMINISTIC procedure must always return the same
result from successive invocations with identical inputs.

This clause currently does not impact processing of the procedure.

CALLED ON NULL INPUT
CALLED ON NULL INPUT always applies to procedures. This means that the procedure is called
regardless of whether any arguments are null. Any OUT or INOUT parameter can return a null value or
a normal (non-null) value. Responsibility for testing for null argument values lies with the procedure.

COMMIT ON RETURN
Indicates whether a commit is to be issued on return from the procedure. The default is NO.
NO

A commit is not issued when the procedure returns.
YES

A commit is issued when the procedure returns if a positive SQLCODE is returned by the CALL
statement

The commit operation includes the work that is performed by the calling application process and the
procedure.

If the procedure returns result sets, the cursors that are associated with the result sets must have
been defined as WITH HOLD to be usable after the commit.

AUTONOMOUS
Indicates the procedure should execute in its own autonomous transaction scope.

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the procedure will inherit their initial
values from the environment of the invoking statement. For a routine invoked in a nested object (for
example a trigger or view), the initial values are inherited from the runtime environment (not inherited
from the object definition).

No changes to the special registers are passed back to the caller of the procedure.

Non-updatable special registers, such as the datetime special registers, reflect a property of the
statement currently executing, and are therefore set to their default values.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL
Specifies whether or not this procedure establishes a new savepoint level for savepoint names and
effects. OLD SAVEPOINT LEVEL is the default behavior. For more information about savepoint levels,
see "Rules" in "SAVEPOINT".

LANGUAGE SQL
This clause is used to specify that the procedure body is written in the SQL language.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the procedure takes some action that changes the state of an object not managed
by the database manager (EXTERNAL ACTION), or not (NO EXTERNAL ACTION). The default is
EXTERNAL ACTION. If NO EXTERNAL ACTION is specified, the system can use certain optimizations
that assume the procedure has no external impact.

1318 IBM Db2 V11.5: SQL Reference

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of the procedure. If the
PARAMETER CCSID clause is not specified, the default is PARAMETER CCSID UNICODE for Unicode
databases, and PARAMETER CCSID ASCII for all other databases.
ASCII

Specifies that string data is encoded in the database code page. If the database is a Unicode
database, PARAMETER CCSID ASCII cannot be specified (SQLSTATE 56031).

UNICODE
Specifies that character data is in UTF-8, and that graphic data is in UCS-2. If the database is not a
Unicode database, PARAMETER CCSID UNICODE cannot be specified (SQLSTATE 56031).

SQL-procedure-body
Specifies the SQL statement that is the body of the SQL procedure.

See SQL-procedure-statement in "Compound SQL (Compiled)" statement.

Rules
• Autonomous routine restrictions: Autonomous routines cannot return result sets and do not support

the following data types (SQLSTATE 428H2):

– User-defined cursor types
– User-defined structured types
– XML as IN, OUT, and INOUT parameters

Session variables of cursor types cannot be referenced within the autonomous scope.
• Use of anchored data types: An anchored data type cannot refer to the following objects (SQLSTATE

428HS): a nickname, typed table, typed view, statistical view that is associated with an expression-
based index, declared temporary table, row definition that is associated with a weakly typed cursor,
object with a code page or collation that is different from the database code page or database collation.

• Use of cursor and row types: A procedure that uses a cursor type or row type for a parameter can be
invoked only from within a compound SQL (compiled) statement (SQLSTATE 428H2), except for Java
applications using JDBC, which can invoke a procedure with OUT parameters that have a cursor type.
Invocation from Java external procedures is not supported.

Notes
• Creating a procedure with a schema name that does not already exist will result in the implicit creation

of that schema, provided that the authorization ID of the statement has IMPLICIT_SCHEMA authority.
The schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• A procedure that is called from within a compound SQL (inlined) statement will execute as if it were
created specifying NEW SAVEPOINT LEVEL, even if OLD SAVEPOINT LEVEL was specified or defaulted
to when the procedure was created.

• Creating procedures that are initially invalid: If an object referenced in the procedure body does not
exist or is marked invalid, or the definer temporarily doesn't have privileges to access the object, and if
the database configuration parameter auto_reval is not set to DISABLED, then the procedure will still
be created successfully. The procedure will be marked invalid and will be revalidated the next time it is
invoked.

• Setting of the default value: Parameters of a procedure that are defined with a default value are
set to their default value when the procedure is invoked, but only if a value is not supplied for the
corresponding argument, or is specified as DEFAULT, when the procedure is invoked.

• Privileges: The definer of a procedure always receives the EXECUTE privilege WITH GRANT OPTION on
the procedure, as well as the right to drop the procedure.

• Rebinding dependent packages: Every SQL procedure has a dependent package. The package can
be rebound at any time by running the REBIND_ROUTINE_PACKAGE procedure. Explicitly rebinding
the dependent package does not revalidate an invalid procedure. An invalid procedure should be

Chapter 1. Structured Query Language (SQL) 1319

revalidated with automatic revalidation or by explicitly running the ADMIN_REVALIDATE_DB_OBJECTS
procedure. Procedure revalidation automatically rebinds the dependent package.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– RESULT SETS can be specified in place of DYNAMIC RESULT SETS.
– NULL CALL can be specified in place of CALLED ON NULL INPUT.

The following syntax is accepted as the default behavior:

– ASUTIME NO LIMIT
– NO COLLID
– STAY RESIDENT NO

Example
Create an SQL procedure that returns the median staff salary. Return a result set containing the name,
position, and salary of all employees who earn more than the median salary.

 CREATE PROCEDURE MEDIAN_RESULT_SET (OUT medianSalary DOUBLE)
 RESULT SETS 1
 LANGUAGE SQL
 BEGIN
 DECLARE v_numRecords INT DEFAULT 1;
 DECLARE v_counter INT DEFAULT 0;

 DECLARE c1 CURSOR FOR
 SELECT CAST(salary AS DOUBLE)
 FROM staff
 ORDER BY salary;
 DECLARE c2 CURSOR WITH RETURN FOR
 SELECT name, job, CAST(salary AS INTEGER)
 FROM staff
 WHERE salary > medianSalary
 ORDER BY salary;

 DECLARE EXIT HANDLER FOR NOT FOUND
 SET medianSalary = 6666;

 SET medianSalary = 0;
 SELECT COUNT(*) INTO v_numRecords
 FROM STAFF;
 OPEN c1;
 WHILE v_counter < (v_numRecords / 2 + 1)
 DO
 FETCH c1 INTO medianSalary;
 SET v_counter = v_counter + 1;
 END WHILE;
 CLOSE c1;
 OPEN c2;
 END

CREATE ROLE
The CREATE ROLE statement defines a role at the current server.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

1320 IBM Db2 V11.5: SQL Reference

Syntax
CREATE ROLE role-name

Description
role-name

Names the role. This is a one-part name. It is an SQL identifier (either ordinary or delimited). The
name must not identify an existing role at the current server (SQLSTATE 42710). The name must
not begin with the characters 'SYS' and must not be 'ACCESSCTRL', 'DATAACCESS', 'DBADM', 'NONE',
'NULL', 'PUBLIC', 'SECADM', 'SQLADM', 'SCHEMAADM', or 'WLMADM' (SQLSTATE 42939).

Example
Create a role named DOCTOR.

 CREATE ROLE DOCTOR

CREATE SCHEMA
The CREATE SCHEMA statement defines a schema. It is also possible to create some objects and grant
privileges on objects within the statement.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
An authorization ID that holds DBADM authority can create a schema with any valid schema-name or
authorization-name.

An authorization ID that does not hold DBADM authority can only create a schema with a schema-name or
authorization-name that matches the authorization ID of the statement.

If the statement includes a schema-SQL-statement, the privileges held by the authorization-name (which,
if not specified, defaults to the authorization ID of the statement) must include at least one of the
following authorities:

• The privileges required to perform each schema-SQL-statement
• DBADM authority

Syntax
CREATE SCHEMA schema-name

AUTHORIZATION authorization-name

schema-name AUTHORIZATION authorization-name

DATA CAPTURE NONE

CHANGES
schema-SQL-statement

ENABLE ROW MODIFICATION TRACKING

Chapter 1. Structured Query Language (SQL) 1321

Description
schema-name

An identifier that names the schema. The name must not identify a schema already described in the
catalog (SQLSTATE 42710). The name cannot begin with 'SYS' (SQLSTATE 42939). The owner of the
schema is the authorization ID that issued the statement.

AUTHORIZATION authorization-name
Identifies the user who is the owner of the schema. The value of authorization-name is also used
to name the schema. The authorization-name must not identify a schema already described in the
catalog (SQLSTATE 42710).

schema-name AUTHORIZATION authorization-name
Identifies a schema called schema-name, whose owner is authorization-name. The schema-name
must not identify a schema already described in the catalog (SQLSTATE 42710). The schema-name
cannot begin with 'SYS' (SQLSTATE 42939).

DATA CAPTURE
Indicates whether extra information for data replication is to be written to the log. The default is
determined based on the value of database configuration parameter dft_schemas_dcc. If the value
is "Yes" the default is CHANGES, otherwise the default is NONE.
NONE

Indicates that no extra information for data replication will be logged.
CHANGES

Indicates that extra information regarding SQL changes to this schema will be written to the log.
This option is required if this schema will be replicated and a replication capture program is used
to capture changes for this schema from the log.

schema-SQL-statement
SQL statements that can be included as part of the CREATE SCHEMA statement are:

• CREATE TABLE statement, excluding typed tables and materialized query tables
• CREATE VIEW statement, excluding typed views
• CREATE INDEX statement
• COMMENT statement
• GRANT statement

ENABLE ROW MODIFICATION TRACKING
Indicates tables created in the schema are to be enabled for logical backup. Applies only to columnar
organized tables. For a list of restrictions, see Schema enabled for row modification tracking.

Notes
• The owner of the schema is determined as follows:

– If an AUTHORIZATION clause is specified, the specified authorization-name is the schema owner
– If an AUTHORIZATION clause is not specified, the authorization ID that issued the CREATE SCHEMA

statement is the schema owner.
• The schema owner is assumed to be a user (not a group).
• When the schema is explicitly created with the CREATE SCHEMA statement, the schema owner is

granted CREATEIN, DROPIN, and ALTERIN privileges on the schema with the ability to grant these
privileges to other users.

• The definer of any object created as part of the CREATE SCHEMA statement is the schema owner. The
schema owner is also the grantor for any privileges granted as part of the CREATE SCHEMA statement.

• Unqualified object names in any SQL statement within the CREATE SCHEMA statement are implicitly
qualified by the name of the created schema.

• Schema names that are shorter than 8-bytes are padded with blanks and stored in the catalog as 8-byte
names.

1322 IBM Db2 V11.5: SQL Reference

https://www.ibm.com/docs/en/db2/11.5?topic=databases-schema-enabled-row-modification-tracking

• If the CREATE statement contains a qualified name for the object being created, the schema name
specified in the qualified name must be the same as the name of the schema being created (SQLSTATE
42875). Any other objects referenced within the statements may be qualified with any valid schema
name.

• It is recommended not to use "SESSION" as a schema name. Since declared temporary tables must
be qualified by "SESSION", it is possible to have an application declare a temporary table with a name
identical to that of a persistent table. An SQL statement that references a table with the schema
name "SESSION" will resolve (at statement compile time) to the declared temporary table rather than
a persistent table with the same name. Since an SQL statement is compiled at different times for
static embedded and dynamic embedded SQL statements, the results depend on when the declared
temporary table is defined. If persistent tables, views or aliases are not defined with a schema name of
"SESSION", these issues do not require consideration.

• Setting the DATA CAPTURE attribute at the schema level causes newly created tables to inherit the
DATA CAPTURE attribute from the schema if one is not specified at the table level.

Examples
• Example 1: As a user with DBADM authority, create a schema called RICK with the user RICK as the

owner.

 CREATE SCHEMA RICK AUTHORIZATION RICK

• Example 2: Create a schema that has an inventory part table and an index over the part number. Give
authority on the table to user JONES.

 CREATE SCHEMA INVENTRY

 CREATE TABLE PART (PARTNO SMALLINT NOT NULL,
 DESCR VARCHAR(24),
 QUANTITY INTEGER)

 CREATE INDEX PARTIND ON PART (PARTNO)

 GRANT ALL ON PART TO JONES

• Example 3: Create a schema called PERS with two tables that each have a foreign key that references
the other table. This is an example of a feature of the CREATE SCHEMA statement that allows such a
pair of tables to be created without the use of the ALTER TABLE statement.

 CREATE SCHEMA PERS

 CREATE TABLE ORG (DEPTNUMB SMALLINT NOT NULL,
 DEPTNAME VARCHAR(14),
 MANAGER SMALLINT,
 DIVISION VARCHAR(10),
 LOCATION VARCHAR(13),
 CONSTRAINT PKEYDNO
 PRIMARY KEY (DEPTNUMB),
 CONSTRAINT FKEYMGR
 FOREIGN KEY (MANAGER)
 REFERENCES STAFF (ID))

 CREATE TABLE STAFF (ID SMALLINT NOT NULL,
 NAME VARCHAR(9),
 DEPT SMALLINT,
 JOB VARCHAR(5),
 YEARS SMALLINT,
 SALARY DECIMAL(7,2),
 COMM DECIMAL(7,2),
 CONSTRAINT PKEYID
 PRIMARY KEY (ID),
 CONSTRAINT FKEYDNO
 FOREIGN KEY (DEPT)
 REFERENCES ORG (DEPTNUMB))

Related information
Schema enabled for row modification tracking

Chapter 1. Structured Query Language (SQL) 1323

CREATE SECURITY LABEL COMPONENT
The CREATE SECURITY LABEL COMPONENT statement defines a component that is to be used as part of
a security policy.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
CREATE SECURITY LABEL COMPONENT component-name array-clause

set-clause

tree-clause

array-clause

ARRAY [

,

string-constant]

set-clause

SET {

,

string-constant }

tree-clause
TREE (string-constant ROOT

, string-constant UNDER string-constant

)

Description
component-name

Names the security label component. This is a one-part name. The name must not identify an existing
security label component at the current server (SQLSTATE 42710).

ARRAY
Specifies an ordered set of elements.
string-constant,...

One or more string constant values that make up the set of valid values for this security label
component. The order in which the array elements appear is important. The first element ranks
higher than the second element. The second element ranks higher than the third element and so
on.

SET
Specifies an unordered set of elements.

1324 IBM Db2 V11.5: SQL Reference

string-constant,...
One or more string constant values that make up the set of valid values for this security label
component. The order of the elements is not important.

TREE
Specifies a tree structure of node elements.
string-constant

One or more string constant values that make up the set of valid values for this security label
component.

ROOT
Specifies that the string-constant that follows the keyword is the root node element of the tree.

UNDER
Specifies that the string-constant before the UNDER keyword is a child of the string-constant that
follows the UNDER keyword. An element must be defined as either being the root element or
as being the child of another element before it can be used as a parent, otherwise an error
(SQLSTATE 42704) is returned.

Rules
These rules apply to all three types of component (ARRAY, SET, and TREE):

• Element names cannot contain any of these characters:

– Opening parenthesis - (
– Closing parenthesis -)
– Comma - ,
– Colon - :

• An element name can have no more than 32 bytes (SQLSTATE 42622).
• If a security label component is a set or a tree, no more than 64 elements can be part of that

component.
• A CREATE SECURITY LABEL COMPONENT statement can specify at most 65 535 elements for a security

label component of type array.
• No element name can be used more than once in the same component (SQLSTATE 42713).

Examples
• Example 1: Create an ARRAY type security label component named LEVEL. The component has

the following four elements, listed in order of decreasing rank: Top Secret, Secret, Classified, and
Unclassified.

 CREATE SECURITY LABEL COMPONENT LEVEL
 ARRAY ['Top Secret', 'Secret', 'Classified', 'Unclassified']

• Example 2: Create a SET type security label component named COMPARTMENTS. The component has
the following three elements: Research, Analysis, and Collection.

 CREATE SECURITY LABEL COMPONENT COMPARTMENTS
 SET {'Collection', 'Research', 'Analysis'}

• Example 3: Create a TREE type security label component named GROUPS. GROUPS has five elements:
PROJECT, TEST, DEVELOPMENT, CURRENT, AND FIELD. The following diagram shows the relationship of
these elements to one another:

 PROJECT
 ________|________
 | |
 TEST DEVELOPMENT
 ______|______
 | |
 CURRENT FIELD

Chapter 1. Structured Query Language (SQL) 1325

 CREATE SECURITY LABEL COMPONENT GROUPS
 TREE (
 'PROJECT' ROOT,
 'TEST' UNDER 'PROJECT',
 'DEVELOPMENT' UNDER 'PROJECT',
 'CURRENT' UNDER 'DEVELOPMENT',
 'FIELD' UNDER 'DEVELOPMENT'
)

CREATE SECURITY LABEL
The CREATE SECURITY LABEL statement defines a security label.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
CREATE SECURITY LABEL security-label-name

,

COMPONENT component-name

,

string-constant

Description
security-label-name

Names the security label. The name must be qualified with a security policy (SQLSTATE 42704), and
must not identify an existing security label for this security policy (SQLSTATE 42710).

COMPONENT component-name
Specifies the name of a security label component. If the component is not part of the security policy
security-policy-name, an error is returned (SQLSTATE 4274G). If a component is specified twice in the
same statement, an error is returned (SQLSTATE 42713).

string-constant,...
Specifies a valid element for the security component. A valid element is one that was specified when
the security component was created. If the element is invalid, an error is returned (SQLSTATE 4274F).

Examples
• Example 1: Create a security label named EMPLOYEESECLABEL that is part of the DATA_ACCESS

security policy, and that has the element Top Secret for the LEVEL component and the elements
Research and Analysis for the COMPARTMENTS component.

 CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL
 COMPONENT LEVEL 'Top Secret',
 COMPONENT COMPARTMENTS 'Research', 'Analysis'

1326 IBM Db2 V11.5: SQL Reference

• Example 2: Create a security label named EMPLOYEESECLABELREAD that has the element Top Secret
for the LEVEL component and the element Research for the COMPARTMENTS component.

 CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELREAD
 COMPONENT LEVEL 'Top Secret',
 COMPONENT COMPARTMENTS 'Research'

• Example 3: Create a security label named EMPLOYEESECLABELWRITE that has the element Analysis for
the COMPARTMENTS component and a null value for the LEVEL component. Assume that the security
policy named DATA_ACCESS is the same security policy that is used in examples 1 and 2.

 CREATE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELWRITE
 COMPONENT COMPARTMENTS 'Analysis'

• Example 4: Create a security label named BEGINNER that is part of an existing CLASSPOLICY security
policy, and that has the element Trainee for the TRUST component and the element Morning for the
SECTIONS component.

 CREATE SECURITY LABEL CLASSPOLICY.BEGINNER
 COMPONENT TRUST 'Trainee',
 COMPONENT SECTIONS 'Morning'

CREATE SECURITY POLICY
The CREATE SECURITY POLICY statement defines a security policy.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax

CREATE SECURITY POLICY security-policy-name COMPONENTS

,

component-name

WITH DB2LBACRULES
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Description
security-policy-name

Names the security policy. This is a one-part name. The name must not identify an existing security
policy at the current server (SQLSTATE 42710).

COMPONENTS component-name,...
Identifies a security label component. The name must identify a security label component that
already exists at the current server (SQLSTATE 42704). The same security component must not be
specified more than once for the security policy (SQLSTATE 42713). No more than 16 security label
components can be specified for a security policy (SQLSTATE 54062).

WITH DB2LBACRULES
Indicates what rule set that will be used when comparing security labels that are part of this security
policy. There is currently only one rule set: DB2LBACRULES.

Chapter 1. Structured Query Language (SQL) 1327

OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL or RESTRICT NOT AUTHORIZED WRITE
SECURITY LABEL

Specifies the action that is to be taken when a user is not authorized to write the explicitly specified
security label that is provided in the INSERT or UPDATE statement issued against a table that is
protected with this security policy. A user's security label and exemption credentials determine the
user's authorization to write an explicitly provided security label. The default is OVERRIDE NOT
AUTHORIZED WRITE SECURITY LABEL.
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL

Indicates that the value of the user's security label, rather than the explicitly specified security
label, is to be used for write access during an insert or update operation.

RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
Indicates that the insert or update operation will fail if the user is not authorized to write the
explicitly specified security label that is provided in the INSERT or UPDATE statement (SQLSTATE
42519).

Notes
• DB2LBACRULES rule set: DB2LBACRULES is a predefined set of rules that includes the following

rules: DB2LBACREADARRAY, DB2LBACREADSET, DB2LBACREADTREE, DB2LBACWRITEARRAY,
DB2LBACWRITESET, DB2LBACWRITETREE.

• Group and role authorizations are not considered by default when a security policy is created. Use the
ALTER SECURITY POLICY statement to change this behavior and have them considered.

Examples
• Example 1: Create a security policy named DATA_ACCESS that uses the DB2LBACRULES rule set and

has two components: LEVEL and COMPARTMENTS, in that order. Assume that both components already
exist.

 CREATE SECURITY POLICY DATA_ACCESS
 COMPONENTS LEVEL, COMPARTMENTS
 WITH DB2LBACRULES

• Example 2: Create a security policy named CONTRIBUTIONS that has the components MEMBER and
BADGE, which are assumed to already exist.

 CREATE SECURITY POLICY CONTRIBUTIONS
 COMPONENTS MEMBER, BADGE
 WITH DB2LBACRULES

CREATE SEQUENCE
The CREATE SEQUENCE statement defines a sequence at the application server.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the sequence
does not exist

• CREATEIN privilege on the schema, if the schema name of the sequence refers to an existing schema

1328 IBM Db2 V11.5: SQL Reference

• SCHEMAADM authority on the schema, if the schema name of the sequence refers to an existing
schema

• DBADM authority

To replace an existing sequence, the authorization ID of the statement must be the owner of the existing
sequence (SQLSTATE 42501).

Syntax
CREATE

OR REPLACE

SEQUENCE sequence-name ●

AS INTEGER

AS data-type

●

START WITH numeric-constant

●

INCREMENT BY 1

INCREMENT BY numeric-constant

●

NO MINVALUE

MINVALUE numeric-constant

●
NO MAXVALUE

MAXVALUE numeric-constant

●
NO CYCLE

CYCLE

●
CACHE 20

CACHE integer-constant

NO CACHE

●

NO ORDER

ORDER

●

data-type
built-in-type

distinct-type-name
1

built-in-type
SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

Notes:
1 The specified distinct type cannot have any data type constraints and the source type cannot be an
anchored data type.

Chapter 1. Structured Query Language (SQL) 1329

Description
OR REPLACE

Specifies to replace the definition for the sequence if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the sequence are not affected. This option is ignored if
a definition for the sequence does not exist at the current server. This option can be specified only by
the owner of the object.

sequence-name
Names the sequence. The combination of name, and the implicit or explicit schema name must not
identify an existing sequence at the current server (SQLSTATE 42710).

The unqualified form of sequence-name is an SQL identifier. The qualified form is a qualifier followed
by a period and an SQL identifier. The qualifier is a schema name.

If the sequence name is explicitly qualified with a schema name, the schema name cannot begin with
'SYS' or an error (SQLSTATE 42939) is raised.

AS data-type
Specifies the data type to be used for the sequence value. The data type can be any exact numeric
type (SMALLINT, INTEGER, BIGINT or DECIMAL) with a scale of zero, or a user-defined distinct type
or reference type for which the source type is an exact numeric type with a scale of zero (SQLSTATE
42815). The specified distinct type cannot have any data type constraints and the source type cannot
be an anchored data type (SQLSTATE 428H2). The default is INTEGER.

START WITH numeric-constant
Specifies the first value for the sequence. This value can be any positive or negative value that could
be assigned to a column of the data type associated with the sequence (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point (SQLSTATE 428FA). The default is MINVALUE
for ascending sequences and MAXVALUE for descending sequences.

This value is not necessarily the value that a sequence would cycle to after reaching the maximum or
minimum value of the sequence. The START WITH clause can be used to start a sequence outside the
range that is used for cycles. The range used for cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the sequence. This value can be any positive
or negative value that could be assigned to a column of the data type associated with the sequence
(SQLSTATE 42815). The value must not exceed the value of a large integer constant (SQLSTATE
42820) and must not contain nonzero digits to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, this is a descending sequence. If this value is 0 or positive, this is an
ascending sequence. The default is 1.

MINVALUE or NO MINVALUE
Specifies the minimum value at which a descending sequence either cycles or stops generating
values, or an ascending sequence cycles to after reaching the maximum value.
MINVALUE numeric-constant

Specifies the numeric constant that is the minimum value. This value can be any positive or
negative value that could be assigned to a column of the data type associated with the sequence
(SQLSTATE 42815), without nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be less than or equal to the maximum value (SQLSTATE 42815).

NO MINVALUE
For an ascending sequence, the value is the START WITH value, or 1 if START WITH is not
specified. For a descending sequence, the value is the minimum value of the data type associated
with the sequence. This is the default.

MAXVALUE or NO MAXVALUE
Specifies the maximum value at which an ascending sequence either cycles or stops generating
values, or a descending sequence cycles to after reaching the minimum value.

1330 IBM Db2 V11.5: SQL Reference

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value can be any positive or
negative value that could be assigned to a column of the data type associated with the sequence
(SQLSTATE 42815), without nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be greater than or equal to the minimum value (SQLSTATE 42815).

NO MAXVALUE
For an ascending sequence, the value is the maximum value of the data type associated with the
sequence. For a descending sequence, the value is the START WITH value, or -1 if START WITH is
not specified.

CYCLE or NO CYCLE
Specifies whether the sequence should continue to generate values after reaching either its maximum
or minimum value. The boundary of the sequence can be reached either with the next value landing
exactly on the boundary condition, or by overshooting it.
CYCLE

Specifies that values continue to be generated for this sequence after the maximum or minimum
value has been reached. If this option is used, after an ascending sequence reaches its maximum
value it generates its minimum value; after a descending sequence reaches its minimum value it
generates its maximum value. The maximum and minimum values for the sequence determine the
range that is used for cycling.

When CYCLE is in effect, then duplicate values can be generated for the sequence.

NO CYCLE
Specifies that values will not be generated for the sequence once the maximum or minimum value
for the sequence has been reached. This is the default.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory for faster access. This is a
performance and tuning option.
CACHE integer-constant

Specifies the maximum number of sequence values that are preallocated and kept in memory.
Preallocating and storing values in the cache reduces synchronous I/O to the log when values are
generated for the sequence.

In the event of a system failure, all cached sequence values that have not been used in committed
statements are lost (that is, they will never be used). The value specified for the CACHE option is
the maximum number of sequence values that could be lost in case of system failure.

The minimum value is 2 (SQLSTATE 42815). The default value is CACHE 20.

Use the CACHE and NO ORDER options to allow multiple caches of sequence values
simultaneously. In a multi-partition or Db2 pureScale environment, multiple members can cache
them.

In a Db2 pureScale environment, if both CACHE and ORDER are specified, the specification of
ORDER overrides the specification of CACHE and instead NO CACHE will be in effect.

NO CACHE
Specifies that values of the sequence are not to be preallocated. It ensures that there is not a loss
of values in the case of a system failure, shutdown or database deactivation. When this option is
specified, the values of the sequence are not stored in the cache. In this case, every request for a
new value for the sequence results in synchronous I/O to the log.

NO ORDER or ORDER
Specifies whether the sequence numbers must be generated in order of request.
ORDER

Specifies that the sequence numbers are generated in order of request.
NO ORDER

Specifies that the sequence numbers do not need to be generated in order of request. This is the
default.

Chapter 1. Structured Query Language (SQL) 1331

Notes
• It is possible to define a constant sequence, that is, one that would always return a constant value. This

could be done by specifying an INCREMENT value of zero and a START WITH value that does not exceed
MAXVALUE, or by specifying the same value for START WITH, MINVALUE and MAXVALUE. For a constant
sequence, each time NEXT VALUE is invoked for the sequence, the same value is returned. A constant
sequence can be used as a numeric global variable. ALTER SEQUENCE can be used to adjust the values
that will be generated for a constant sequence.

• A sequence can be cycled manually by using the ALTER SEQUENCE statement. If NO CYCLE is
implicitly or explicitly specified, the sequence can be restarted or extended using the ALTER SEQUENCE
statement to cause values to continue to be generated once the maximum or minimum value for the
sequence has been reached.

• A sequence can be explicitly defined to cycle by specifying the CYCLE keyword. Use the CYCLE option
when defining a sequence to indicate that the generated values should cycle once the boundary is
reached. When a sequence is defined to automatically cycle (that is, CYCLE was explicitly specified), the
maximum or minimum value generated for a sequence might not be the actual MAXVALUE or MINVALUE
specified, if the increment is a value other than 1 or -1. For example, the sequence defined with START
WITH=1, INCREMENT=2, MAXVALUE=10 will generate a maximum value of 9, and will not generate
the value 10. When defining a sequence with CYCLE, carefully consider the impact of the values for
MINVALUE, MAXVALUE and START WITH.

• Caching sequence numbers implies that a range of sequence numbers can be kept in memory for fast
access. When an application accesses a sequence that can allocate the next sequence number from
the cache, the sequence number allocation can happen quickly. However, if an application accesses
a sequence that cannot allocate the next sequence number from the cache, the sequence number
allocation may require having to wait for I/O operations to persistent storage. The choice of the value for
CACHE should be done keeping in mind the performance and application requirements tradeoffs.

• Gaps in a sequence: Consecutive values in a sequence differ by the constant INCREMENT BY value
specified for the sequence. However, gaps can occur in the values that are assigned to a sequence
object by Db2.

The following situations are some examples of how gaps can be introduced in the sequence values:

– A transaction has advanced the sequence and then rolls back.
– The SQL statement leading to the generation of the next value fails after the value was generated.
– The NEXT VALUE expression is used in the SELECT statement of a cursor in a DRDA environment

where the client uses block-fetch and not all retrieved rows are fetched by the application.
– The sequence is altered and then the alteration is rolled back.
– The sequence (or an identity column table) is dropped and then the drop is rolled back.
– The SYSIBM.SYSSEQ table space is stopped or closed for any reason (including when DSMAX is

reached).
– The Db2 subsystem is stopped or goes down.

Values of such gaps are not available for the current cycle, unless the sequence is altered and restarted
in a specific way to make them available.

A sequence is incremented independently of a transaction. Thus, a given transaction increments
the sequence two times might see a gap in the two numbers that it receives if other transactions
concurrently increment the same sequence. Most applications can tolerate these instances as these are
not really gaps.

• The definer of a sequences is granted ALTER and USAGE privileges with the grant option. The owner of
the sequence can drop the sequence.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– A comma can be used to separate multiple sequence options

1332 IBM Db2 V11.5: SQL Reference

– NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER can be specified in place of NO
MINVALUE, NO MAXVALUE, NO CYCLE, NO CACHE, and NO ORDER, respectively

• Considerations for a multi-partition or Db2 pureScale environment:

– If the CACHE and NO ORDER options are in effect, multiple caches can be active simultaneously.
This can happen at each member in a multi-partition or Db2 pureScale environment. The requests
for next value assignments from different members might not result in the assignment of values in
strict numeric order. Assume, for example, in a multi-partition or Db2 pureScale environment, that
members DB1A and DB1B are using the same sequence, and DB1A gets the cache values 1 to 20
and DB1B gets the cache values 21 to 40. In this scenario, if DB1A requested the next value first,
then DB1B requested, and then DB1A requested again, the actual order of values assigned would be
1,21,2. Therefore, to guarantee that sequence numbers are generated in strict numeric order among
multiple members using the same sequence concurrently, specify the ORDER option.

– In a Db2 pureScale environment, using the ORDER or NO CACHE option ensures that the values
assigned to a sequence which is shared by applications across multiple members are in strict
numeric order. If ORDER is specified, then NO CACHE is implied even if CACHE n is specified.

Example
Create a sequence called ORG_SEQ that starts at 1, increments by 1, does not cycle, and caches 24
values at a time:

 CREATE SEQUENCE ORG_SEQ
 START WITH 1
 INCREMENT BY 1
 NO MAXVALUE
 NO CYCLE
 CACHE 24

CREATE SERVICE CLASS
The CREATE SERVICE CLASS statement defines a service class.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include WLMADM or DBADM authority.

Chapter 1. Structured Query Language (SQL) 1333

Syntax
CREATE SERVICE CLASS service-class-name

UNDER service-superclass-name

FOR WORKLOAD TYPE CUSTOM
1

FOR WORKLOAD TYPE
2

BATCH

INTERACTIVE

MIXED

SOFT RESOURCE SHARES 1000

SOFT

HARD

RESOURCE SHARES integer-constant

HARD CPU SHARES 1000

HARD

SOFT

CPU SHARES integer-constant

CPU LIMIT integer-constant

NONE

ACTIVITY SORTMEM LIMIT NONE

ACTIVITY SORTMEM LIMIT integer-constant

MINIMUM RESOURCE SHARE 0 PERCENT

MINIMUM RESOURCE SHARE integer-constant PERCENT

ADMISSION QUEUE ORDER FIFO
3

ADMISSION QUEUE ORDER LATENCY
4

DEGREE SCALEBACK DEFAULT
5

DEGREE SCALEBACK ON

OFF

MAXIMUM DEGREE DEFAULT
6

MAXIMUM DEGREE NONE

degree

PREFETCH PRIORITY DEFAULT

PREFETCH PRIORITY HIGH

MEDIUM

LOW

OUTBOUND CORRELATOR NONE

OUTBOUND CORRELATOR string-constant

BUFFERPOOL PRIORITY DEFAULT

BUFFERPOOL PRIORITY HIGH

MEDIUM

LOW

COLLECT AGGREGATE ACTIVITY DATA NONE

COLLECT AGGREGATE ACTIVITY DATA
BASE

EXTENDED

COLLECT AGGREGATE REQUEST DATA NONE
7

COLLECT AGGREGATE REQUEST DATA
BASE

COLLECT AGGREGATE UNIT OF WORK DATA
8

NONE

COLLECT AGGREGATE UNIT OF WORK DATA
BASE

COLLECT REQUEST METRICS NONE

9
COLLECT REQUEST METRICS

BASE

EXTENDED

10

histogram-template-clause
ENABLE

DISABLE

collect-activity-clause

1334 IBM Db2 V11.5: SQL Reference

COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA collect-activity-data-clause

collect-activity-data-clause

ON COORDINATOR
MEMBER

ON ALL
MEMBERS

WITHOUT DETAILS

WITH

,

DETAILS
11

SECTION

INCLUDE ACTUALS BASE

AND VALUES

histogram-template-clause

●
ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

●

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

●

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

●

REQUEST EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name

●

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

●

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

●

UOW LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

UOW LIFETIME HISTOGRAM TEMPLATE template-name

●

Notes:
1 The FOR WORKLOAD TYPE clause is valid only for a service superclass (SQLSTATE 5U044).
2 The FOR WORKLOAD TYPE clause is valid only for a service superclass (SQLSTATE 5U044).
3 The ADMISSION QUEUE ORDER clause is valid only for a service subclass (SQLSTATE 5U043).

Chapter 1. Structured Query Language (SQL) 1335

4 The ADMISSION QUEUE ORDER clause is valid only for a service subclass (SQLSTATE 5U043).
5 The DEGREE SCALEBACK DEFAULT option is valid only for a service subclass (SQLSTATE 5U043).
6 The MAXIMUM DEGREE DEFAULT option is valid only for a service subclass (SQLSTATE 5U043).
7 The COLLECT AGGREGATE REQUEST DATA clause is valid only for service subclasses.
8 The COLLECT AGGREGATE UNIT OF WORK DATA clause is valid only for service subclasses.
9 The COLLECT REQUEST METRICS clause is valid only for a service superclass.
10 The REQUEST EXECUTETIME AND UOW LIFETIME HISTOGRAM TEMPLATE clauses are valid only for
a service subclass.
11 The DETAILS keyword is the minimum to be specified, followed by the option separated by a
comma.

Description
service-class-name

Name of the service class to be created. This is a one-part name that is also an SQL identifier (either
ordinary or delimited). The following restrictions apply:

• If the service class is a service superclass, the service class name must not identify a service
superclass that already exists in the catalog (SQLSTATE 42710).

• If the service class is a service subclass, the service class name must not be the same as its service
superclass, and must not identify a service subclass that already exists under the service superclass
(SQLSTATE 42710).

• The name must not begin with the characters 'SYS' (SQLSTATE 42939).

UNDER service-superclass-name
Specifies that the service class is a subclass of service superclass service-superclass-name. If UNDER
is not specified, the service class is a service superclass. The service-superclass-name must identify a
service superclass that exists for the database (SQLSTATE 42704). The service superclass cannot be a
default service class (SQLSTATE 5U029).

FOR WORKLOAD TYPE
Specifies the type of workload that is expected to run in the service superclass. This dictates how the
service superclass is configured.
CUSTOM

The service superclass attributes are set to their default values. This is the default.
BATCH

The service superclass is configured to optimize it for large, batch-oriented activities.
INTERACTIVE

The service superclass is configured to optimize its response time for short activities.
MIXED

The service superclass is configured to handle a mixed set of activities of varying types and
complexity.

RESOURCE SHARES
Specifies the number of shares of resources to which this service class is entitled, and whether the
service class is allowed to exceed this number when other service classes in the same scope are
not using their full entitlements. This value affects the amount of work the workload manager (WLM)
adaptive admission control allows into the system.
HARD

The service class is not allowed to exceed its resource share entitlement.
SOFT

The service class is allowed to exceed its resource share entitlement when other service classes
are not using their full entitlements.

Valid values are integers 1 - 65535. The default is SOFT RESOURCE SHARES 1000.

1336 IBM Db2 V11.5: SQL Reference

Note: To use resource shares with WLM, you must enable the wlm_admission_ctrl configuration
parameter.

CPU SHARES
Specifies the number of CPU shares that the workload manager (WLM) dispatcher allocates to this
service class when work is executing within this service class, and whether the service class is
allowed to exceed this number when other service classes in the same scope are not using their full
entitlement.
HARD

The service class is not allowed to exceed its CPU share entitlement.
SOFT

The service class is allowed to exceed its CPU share entitlement when other service classes are
not using their full entitlements.

Valid values are integers 1 - 65535. The default is HARD CPU SHARES 1000.

Note: To use CPU shares with WLM dispatcher, you must enable the wlm_disp_cpu_shares
database manager configuration parameter.

CPU LIMIT
Specifies the maximum percentage of the CPU resources that the WLM dispatcher can assign to this
service class. Valid values for the integer-constant are integers between 1 and 100. You can also
specify CPU LIMIT NONE to indicate that there is no CPU limit.

ACTIVITY SORTMEM LIMIT

Specifies the maximum percentage of the configured shared sort memory (SHEAPTHRES_SHR) that
individual queries executing in the service class are allowed to consume. Queries requiring more
memory than the configured limit will have their individual per-operator SORTHEAP values reduced
at runtime and memory requests will be throttled if they exceed the limit. Valid values for the integer-
constant are integers between 10 and 100. You can also specify NONE to indicate there is no activity
sort memory limit. The default is NONE.

The effective sort memory limit for a query will be the most restrictive of the limit defined at the
subclass, superclass and database via the ACT_SORTMEM_LIMIT database configuration parameter.
The sort memory limit applied to an activity is determined when the activity is first admitted for
execution. The applied sort memory limit will not change if a query is remapped at runtime to a
different service subclass.

The activity sort memory limit will only be enforced for queries that are managed by the adaptive
workload manager. If the adaptive workload manager is disabled (WLM_ADMISSION_CTRL database
config parameter is set to NO) or a query bypasses the adaptive workload manager, no sort memory
limit will be applied to the query regardless of the service class it runs in.

Note: Setting an activity sort memory limit too low may result in reduced performance for queries.

MINIMUM RESOURCE SHARE integer-constant PERCENT
Specifies the percentage of entitled resources used by WLM adaptive admission control that is to
be held in reserve for the service class when other service classes exceed their admission resource
entitlement. Valid values for integer-constant are integers 0 - 100. The default is 0.

ADMISSION QUEUE ORDER
Specifies the queue order for activities queued by WLM adaptive admission control.
FIFO

Requests are queued in a first-in first-out order. This is the default.
LATENCY

The position of a request in the queue is based on its estimated execution time (that is, its latency)
relative to the amount of time that has elapsed since it joined the queue.

Chapter 1. Structured Query Language (SQL) 1337

DEGREE SCALEBACK
Specifies whether work running in this service class may have its degree scaled back. Queries set to
DEGREE ANY may have their actual runtime degree scaled back by the database manager based on
current CPU loads.

Scaling back the degree for service classes running simple queries may result in less contention
and improved throughput. Disabling degree scale back for service classes with complex queries can
help ensure more consistent and predictable response times. A setting of DEFAULT means a service
subclass inherits its DEGREE SCALEBACK setting from the parent superclass. The DEFAULT setting is
only applicable to service subclasses. The default setting for a service superclass is ON. The default
value for a service subclass is DEFAULT.

MAXIMUM DEGREE
Specifies the maximum runtime degree of parallelism for activities that are running in this service
class.
DEFAULT

This service subclass inherits its maximum degree value from its parent superclass. This value is
the default for a service subclass. This setting is applicable only to service subclasses.

NONE
This service class does not specify a maximum runtime degree for assigned applications. The
actual runtime degree is determined as the lower of the value of max_querydegree configuration
parameter, the value set by SET RUNTIME DEGREE command, the SQL statement compilation
degree and the MAXIMUM DEGREE value set on the Workload. This is the default for a service
superclass.

degree
Specifies the maximum degree of parallelism for this service class. Valid values are 1 to
32767. The actual runtime degree is determined as the lower of this degree, the value of
max_querydegree configuration parameter, the value set by SET RUNTIME DEGREE command,
the SQL statement compilation degree and the MAXIMUM DEGREE set on the Workload.

PREFETCH PRIORITY
This parameter controls the priority with which agents in the service class can submit their prefetch
requests. Valid values are HIGH, MEDIUM, LOW, or DEFAULT (SQLSTATE 42615). HIGH, MEDIUM, and
LOW mean that prefetch requests will be submitted to the high, medium, and low priority queues.
Prefetchers empty the priority queue in order from high to low. Agents in the service class submit their
prefetch requests at the prefetch priority level when the next activity begins. If the prefetch priority is
altered after a prefetch request is submitted, the request priority does not change. The default value
is DEFAULT, which is internally mapped to MEDIUM for service superclasses. If DEFAULT is specified
for a service subclass, it inherits the prefetch priority of its parent superclass.

The prefetch priority cannot be altered for a default subclass (SQLSTATE 5U032).

OUTBOUND CORRELATOR
Specifies whether or not to associate threads from this service class to an external workload manager
service class.

If OUTBOUND CORRELATOR is set to a string-constant for the service superclass and OUTBOUND
CORRELATOR NONE is set for a service subclass, the service subclass inherits the OUTBOUND
CORRELATOR of its parent.
OUTBOUND CORRELATOR NONE

For a service superclass, specifies that there is no external workload manager service class
association with this service class, and for a service subclass, specifies that the external workload
manager service class association is the same as its parent. This is the default.

OUTBOUND CORRELATOR string-constant
Specifies the string-constant that is to be used as a correlator to associate threads from this
service class to an external workload manager service class. The external workload manager must
be active (SQLSTATE 5U030). The external workload manager should be set up to recognize the
value of the specified string constant.

1338 IBM Db2 V11.5: SQL Reference

BUFFERPOOL PRIORITY
This parameter controls the bufferpool priority of pages fetched by activities in this service class.
Valid values are HIGH, MEDIUM, LOW or DEFAULT (SQLSTATE 42615). Pages fetched by activities in
a service class with higher bufferpool priority are less likely to be swapped out than pages fetched
by activities in a service class with lower bufferpool priority. The default value is DEFAULT, which is
internally mapped to LOW for service superclasses. If DEFAULT is specified for a service subclass, it
inherits the bufferpool priority from its parent superclass.

The bufferpool priority cannot be altered for a default subclass (SQLSTATE 5U032).

COLLECT ACTIVITY DATA
Specifies that information about each activity that executes in this service class is to be sent to any
active activities event monitor when the activity completes.
NONE

Specifies that activity data should not be collected for each activity that executes in this service
class. This is the default.

ON COORDINATOR MEMBER
Specifies that activity data is to be collected only at the coordinator member of the activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the activity is processed. On
remote members, a record for the activity may be captured multiple times as the activity comes
and goes on those members. If the AND VALUES clause is specified, activity input values will be
collected only for the members of the coordinator.

WITHOUT DETAILS
Specifies that data about each activity that executes in the service class is to be sent to any
active activities event monitor, when the activity completes execution. Details about statement,
compilation environment, and section environment data are not sent.

WITH DETAILS
Specifies that statement and compilation environment data is to be sent to any active
activities event monitor, for those activities that have them. Section environment data is not
sent.

SECTION
Specifies that statement, compilation environment, section environment data, and section
actuals are to be sent to any active activities event monitor for those activities that have them.
DETAILS must be specified if SECTION is specified. Section actuals will be collected on any
member where the activity data is collected.
INCLUDE ACTUALS BASE

Specifies that section actuals should also be collected on any partition where the activity
data is collected. For section actuals to be collected, either INCLUDE ACTUALS clause
must be specified or the section_actuals database configuration parameter must be
set.

The effective setting for the collection of section actuals is the combination of the
INCLUDE ACTUALS clause, the section_actuals database configuration parameter, and
the <collectsectionactuals> setting specified on the WLM_SET_CONN_ENV routine. For
example, if INCLUDE ACTUALS BASE is specified, yet the section_actuals database
configuration parameter value is NONE and <collectsectionactuals> is set to NONE, then
the effective setting for the collection of section actuals is BASE.

BASE specifies that the following should be enabled and collected during the activity's
execution:

• Basic operator cardinality counts
• Statistics for each object referenced (DML statements only)

Chapter 1. Structured Query Language (SQL) 1339

AND VALUES
Specifies that input data values are to be sent to any active activities event monitor, for those
activities that have them. This data does not include SQL statements that are compiled by
using the REOPT ALWAYS bind option.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data should be captured for this service class and sent to the
statistics event monitor, if one is active. This information is collected periodically on an interval that is
specified by the wlm_collect_int database configuration parameter.
BASE

Specifies that basic aggregate activity data should be captured for this service class and sent to
the statistics event monitor, if one is active. Basic aggregate activity data includes:

• Estimated activity cost high watermark
• Rows returned high watermark
• Temporary table space usage high watermark

Note: Only activities that have an SQLTEMPSPACE threshold applied to them participate in this
high watermark.

• Activity life time histogram
• Activity queue time histogram
• Activity execution time histogram

This is the default when COLLECT AGGREGATE ACTIVITY DATA is specified, but without a value.
EXTENDED

Specifies that all aggregate activity data should be captured for this service class and sent to the
statistics event monitor, if one is active. This includes all basic aggregate activity data plus:

• Activity data manipulation language (DML) estimated cost histogram
• Activity DML inter-arrival time histogram

NONE
Specifies that no aggregate activity data should be captured for this service class. This is the
default when COLLECT AGGREGATE ACTIVITY DATA is not specified.

COLLECT AGGREGATE REQUEST DATA
Specifies that aggregate request data should be captured for this service class and sent to the
statistics event monitor, if one is active. This information is collected periodically on an interval
specified by the wlm_collect_int database configuration parameter. The COLLECT AGGREGATE
REQUEST DATA clause is valid only for a service subclass.
BASE

Specifies that basic aggregate request data should be captured for this service class and sent to
the statistics event monitor, if one is active.

NONE
Specifies that no aggregate request data should be captured for this service class. This is the
default.

COLLECT AGGREGATE UNIT OF WORK DATA
Specifies that aggregate unit of work data is to be captured for this service class and sent to the
statistics event monitor, if one is active. This information is collected periodically on an interval
specified by the wlm_collect_int database configuration parameter. The COLLECT AGGREGATE
UNIT OF WORK DATA clause is valid only for a service subclass.
BASE

Specifies that basic aggregate unit of work data is to be captured for this service class and sent to
the statistics event monitor, if one is active. Basic aggregate unit of work includes:

• Unit of work lifetime histogram

1340 IBM Db2 V11.5: SQL Reference

NONE
Specifies that no aggregate unit of work data is to be collected for this service class. This is the
default.

COLLECT REQUEST METRICS
Specifies that monitor metrics should be collected for any request submitted by a connection that
is associated with the specified service superclass and sent to the statistics and unit of work event
monitors, if active. The COLLECT REQUEST METRICS clause is valid only for a service superclass
(SQLSTATE 50U44).

Note: The effective request metrics collection setting is the combination of the attribute specified
by the COLLECT REQUEST METRICS clause on the service superclass associated with the connection
submitting the request, and the mon_req_metrics database configuration parameter. If either the
service superclass attribute or the configuration parameter has a value other than NONE, metrics will
be collected for the request.

NONE
Specifies that no metrics will be collected for any request submitted by a connection associated
with the service superclass. This is the default.

BASE
Specifies that basic metrics will be collected for any request submitted by a connection associated
with the service superclass.

EXTENDED
Specifies that basic aggregate request data should be captured for this service class and sent to
the statistics event monitor, if one is active. In addition, specifies that the values for the following
monitor elements should be determined with additional granularity:

• total_section_time
• total_section_proc_time
• total_routine_user_code_time
• total_routine_user_code_proc_time
• total_routine_time

histogram-template-clause
Specifies the histogram templates to use when collecting aggregate activity data for activities
executing in the service class.
ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical data about
the duration, in milliseconds, of database activities running in the service class during a
specific interval. This time includes both time queued and time executing. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database activities running in the service class are queued
during a specific interval. The default is SYSDEFAULTHISTOGRAM. This information is collected
only when the COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or
EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database activities running in the service class are executing
during a specific interval. This time does not include the time spent queued. Activity execution
time is collected in this histogram at the coordinator member only. The time does not include
idle time. Idle time is the time between the execution of requests belonging to the same activity
when no work is being done. An example of idle time is the time between the end of opening
a cursor and the start of fetching from that cursor. The default is SYSDEFAULTHISTOGRAM. This
information is collected only when the COLLECT AGGREGATE ACTIVITY DATA clause is specified,

Chapter 1. Structured Query Language (SQL) 1341

with either the BASE or EXTENDED option. Only activities at nesting level 0 are considered for
inclusion in the histogram.

REQUEST EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database requests running in the service class are executing
during a specific interval. This time does not include the time spent queued. Request execution
time is collected in this histogram on each member where the request executes. The default
is SYSDEFAULTHISTOGRAM. This information is collected only when the COLLECT AGGREGATE
REQUEST DATA clause is specified with the BASE option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
estimated cost, in timerons, of DML activities running in the service class. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified with the EXTENDED option. Only activities at nesting level
0 are considered for inclusion in the histogram.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, between the arrival of one DML activity and the arrival of the next
DML activity. The default is SYSDEFAULTHISTOGRAM. This information is collected only when the
COLLECT AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED option.

UOW LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
duration, in milliseconds, of units of work running in the service class during a specific interval.
The default is SYSDEFAULTHISTOGRAM. This information is collected only when the COLLECT
AGGREGATE UNIT OF WORK DATA clause is specified with the BASE option.

ENABLE or DISABLE
Specifies whether or not connections and activities can be mapped to the service class.
ENABLE

Connections and activities can be mapped to the service class. This is the default.
DISABLE

Connections and activities cannot be mapped to the service class. New connections or activities
that are mapped to a disabled service class will be rejected (SQLSTATE 5U028). When a service
superclass is disabled, its service subclasses are also disabled. When the service superclass is
re-enabled, its service subclasses return to states that are defined in the system catalog. A default
service class cannot be disabled (SQLSTATE 5U032).

Rules
• The maximum number of service subclasses that can be created under a service superclass is 61

(SQLSTATE 5U027).
• The maximum number of service superclasses that can be created for a database is 64 (SQLSTATE

5U027).
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U027). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (histogram template)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (service class)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (threshold)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (work action set)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (work class set)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (workload)
– GRANT (workload privileges) or REVOKE (workload privileges)

1342 IBM Db2 V11.5: SQL Reference

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• A default subclass, SYSDEFAULTSUBCLASS, is automatically created for every service superclass.
• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all members. If an

uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• Changes are written to the system catalog, but do not take effect until after a COMMIT statement, even
for the connection that issues the statement.

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– DATABASE PARTITION can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– DATABASE PARTITIONS can be specified in place of MEMBERS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
• Example 1: Create a service superclass named PETSALES. The default subclass for PETSALES is

automatically created.

 CREATE SERVICE CLASS PETSALES

• Example 2: Create a service subclass named DOGSALES under service superclass PETSALES. Set
service class DOGSALES as disabled.

 CREATE SERVICE CLASS DOGSALES UNDER PETSALES DISABLE

• Example 3: Create a service superclass named BARNSALES with a prefetcher priority of LOW. The
default subclass for BARNSALES is automatically created. Prefetch requests submitted by agents in the
BARNSALES service class will go to the low priority prefetch queue.

 CREATE SERVICE CLASS BARNSALES PREFETCH PRIORITY LOW

CREATE SERVER
The CREATE SERVER statement defines a data source to a federated database.

In this statement, the term SERVER and the parameter names that start with server- refer only to data
sources in a federated system. They do not refer to the federated server in such a system, or to DRDA
application servers.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include DBADM authority.

Chapter 1. Structured Query Language (SQL) 1343

Syntax
CREATE SERVER server-name

TYPE server-type

VERSION server-version

WRAPPER wrapper-name

AUTHORIZATION remote-authorization-name PASSWORD password

OPTIONS (

,

server-option-name string-constant)

server-version
version

. release

. mod

version-string-constant

Description
server-name

Specifies the name of the data source that is being defined to the federated database. The name must
not identify a data source that is described in the catalog. The server name must not be the same as
the name of any of the table spaces in the federated database.

A server definition for relational data sources usually represents a remote database. Some relational
database management systems, such as Oracle, do not allow multiple databases within each
instance. Instead, each instance represents a server within a federated system.

For non-relational data sources, the purpose of a server definition varies from data source to data
source. Some server definitions map to a search type and daemon, a website, or a web server. For
other non-relational data sources, a server definition is created because the hierarchy of federated
objects requires that data source files (identified by nicknames) are associated with a specific server
object.

TYPE server-type
Specifies the type of the data source that is being defined to the federated database, and determines
the default wrapper that is used.

Table 136. Server types and default wrappers

Data source Type Default Wrapper

Amazon Redshift REDSHIFT ODBC

Apache Hive HIVE ODBC

Apache Spark SPARK JDBC

Apache Spark SQL SPARK_ODBC ODBC

Cloudera Impala IMPALA ODBC

CouchDB COUCHDB NoSQL

database.com DATABASE.COM ODBC

1344 IBM Db2 V11.5: SQL Reference

Table 136. Server types and default wrappers (continued)

Data source Type Default Wrapper

force.com FORCE.COM ODBC

HDFS parquet HDFSPARQUET NoSQL

IBM BigInsights BIGSQL DRDA

IBM Db2 Warehouse on Cloud DASHDB DRDA

IBM Db2 on Cloud DASHDB DRDA

IBM Db2 Warehouse DASHDB DRDA

IBM Db2 DB2/LUW DRDA

Db2 for z/OS DB2/ZOS DRDA

Db2 for IBM i DB2/ISERIES DRDA

IBM Db2 Hosted DB2/LUW DRDA

IBM Db2 Server for VSE and VM DB2/VM DRDA

IBM PureData System for Analytics
(formerly Netezza)

PDA (the type NETEZZA
can also be used but is
deprecated)

ODBC

IBM PureData System for Operational
Analytics

DB2/LUW DRDA

IBM PureData System for Transactions DB2/LUW DRDA

Informix® (with INFORMIX wrapper) INFORMIX INFORMIX

Informix (with ODBC wrapper) INFORMIX_ODBC ODBC

JDBC JDBC JDBC

MariaDB MARIADB ODBC

Microsoft Azure AZURE ODBC

Microsoft SQL Server (with
MSSQLODBC3 wrapper)

MSSQLSERVER MSSQLODBC3

Microsoft SQL Server (with ODBC
wrapper)

MSSQL_ODBC ODBC

MongoDB MONGODBREST1,
MONGODRIVER2,
RESTHEART3

NoSQL

ODBC ODBC ODBC

Oracle (with NET8 wrapper) ORACLE NET8

Oracle (with ODBC wrapper) ORACLE_ODBC ODBC

Oracle Cloud ORACLE_CLOUD ODBC

Oracle MySQL MYSQL ODBC

Pivotal Greenplum GREENPLUM ODBC

Pivotal HAWQ HAWQ ODBC

PostgreSQL POSTGRESQL ODBC

Chapter 1. Structured Query Language (SQL) 1345

Table 136. Server types and default wrappers (continued)

Data source Type Default Wrapper

Progress OpenEdge OPENEDGE ODBC

Salesforce SALESFORCE ODBC

SAP HANA HANA ODBC

SAP Sybase SYBASE CTLIB

SAP Sybase IQ SYBASEIQ ODBC

SAP Sybase ASE SYBASE_ODBC ODBC

Teradata (with TERADATA wrapper) TERADATA TERADATA

Teradata (with ODBC wrapper) TERADATA_ODBC ODBC

This parameter is required by some wrappers. For example, it is required by an ODBC wrapper that is
operating in DSN-less connection mode.
1 Server type MONGODBREST uses RESTAPI to connect to MongoDB. The MONGODBREST option
depends on an HTTP interface being configured correctly and running on MongoDB version 3.4, and
earlier versions have a built-in HTTP interface.
2 Server type MONGODRIVER uses the native MongoDB driver to connect to MongoDB. This approach
has less dependency compared to other approaches and provides more performance advantages
because this method leverages MongoDB full native API.
3 Server type RESTHEART uses RESTAPI to get data. However, RestHeart is a third-party tool that
must be installed separately. RestHeart supports more features than the MongoDB HTTP interface,
and provides better performance than using MONGODBREST server type because it supports more
filter functionality.

VERSION
Specifies the version of the data source denoted by server-name. This parameter is required by some
wrappers.
version

Specifies the version number. The value must be an integer.
release

Specifies the number of the release of the version denoted by version. The value must be an
integer.

mod
Specifies the number of the modification of the release denoted by release. The value must be an
integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant can be a single
value (for example, '8i'); or it can be the concatenated values of version, release and, if applicable,
mod (for example, '8.0.3').

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server is to use to interact with the newly
created server object. The default depends on the type of the remote server (see Table 136 on page
1344.

If the default wrapper does not already exist, it is created with the SET DB2_FENCED 'Y' option. A
default wrapper is created only once. For example, if a wrapper with the name DRDA does not already
exist, and if you issue two CREATE SERVER statements (one to create a BIGSQL server and another
to create a DB2/ZOS server), and if you do not specify a wrapper name for either server explicitly, the
first statement causes a default wrapper with the name DRDA to be created and both new servers use
that wrapper.

1346 IBM Db2 V11.5: SQL Reference

Note: If a wrapper with the same name as a not-yet-created default wrapper already exists (for
example, because it was created by a CREATE WRAPPER statement), that wrapper is not used as
a default for a CREATE SERVER statement. In this situation, no default is available and the CREATE
SERVER statement must specify a wrapper name explicitly.

AUTHORIZATION remote-authorization-name
Required only for Db2 family data sources. Specifies the authorization ID under which any necessary
actions are performed at the data source when the CREATE SERVER statement is processed. This
authorization ID is not used when establishing subsequent connections to the server.

This ID must hold the authority (BINDADD or its equivalent) that the necessary actions require. If
the remote-authorization-name is specified in mixed or lowercase characters (and the remote data
source has case sensitive authorization names), the remote-authorization-name should be enclosed
by double quotation marks.

PASSWORD password
Required only for Db2 family data sources. Specifies the password associated with the authorization
ID represented by remote-authorization-name. If the password is specified in mixed or lowercase
characters (and the remote data source has case sensitive passwords), the password should be
enclosed by double quotation marks.

OPTIONS
Specify configuration options for the for the server to be created. Which options you can specify
depends on the data source of the object for which a server is being created. For a list of data sources
and the server options that apply to each, see Data source options. Each option value is a character
string constant that must be enclosed in single quotation marks.

Notes
• The password should be specified when the data source requires a password. If any letters in password

must be in lowercase, enclose password in quotation marks.
• If the CREATE SERVER statement is used to define a Db2 family instance as a data source, Db2 may

need to bind certain packages to that instance. If binding is required, the remote-authorization-name
in the statement must have BIND authority. The time required for the bind operation to complete is
dependent on data source speed and network connection speed.

• No verification occurs to ensure that the specified server version matches the remote server version.
Specifying an incorrect server version can result in SQL errors when you access nicknames that belong
to the database server definition. This is most likely when you specify a server version that is later than
the remote server version. In that case, when you access nicknames that belong to the server definition,
the database server might send SQL that the remote server does not recognize.

• The AUTHORIZATION keyword and PASSWORD keyword in the CREATE SERVER statement become
optional if following conditions are true:

– Db2 family data source.
– Native wrapper or Db2 JDBC wrapper.
– Server option SSO_AUTH value set to 'Y'.

• Syntax alternatives: The following syntax is supported for compatibility with previous product versions:

– ADD can be specified before server-option-name string-constant.
• The TYPE server-type is optional for DSN connection mode but mandatory for DSN-less connection

mode.

Examples
1. Register a server definition to access a Db2 for z/OS and OS/390®, Version 7.1 data source. CRANDALL

is the name assigned to the Db2 for z/OS and OS/390 server definition. DRDA is the name of the
wrapper used to access this data source. In addition, specify that:

Chapter 1. Structured Query Language (SQL) 1347

• GERALD and drowssap are the authorization ID and password under which packages are bound at
CRANDALL when this statement is processed.

• The alias for the Db2 for z/OS and OS/390 database that was specified with the CATALOG DATABASE
statement is CLIENTS390.

• The authorization IDs and passwords under which CRANDALL can be accessed are to be sent to
CRANDALL in uppercase.

• CLIENTS390 and the federated database use the same collating sequence.

 CREATE SERVER CRANDALL
 TYPE DB2/ZOS
 VERSION 7.1
 WRAPPER DRDA
 AUTHORIZATION "GERALD"
 PASSWORD drowssap
 OPTIONS
 (DBNAME 'CLIENTS390',
 FOLD_ID 'U',
 FOLD_PW 'U',
 COLLATING_SEQUENCE 'Y')

2. Register a server definition to access an Oracle 9 data source. CUSTOMERS is the name assigned to the
Oracle server definition. NET8 is the name of the wrapper used to access this data source. In addition,
specify that:

• ABC is the name of the node where the Oracle database server resides.
• The CPU for the federated server runs twice as fast as the CPU that supports CUSTOMERS.
• The I/O devices at the federated server process data one and a half times as fast as the I/O devices

at CUSTOMERS.

 CREATE SERVER CUSTOMERS
 TYPE ORACLE
 VERSION 9
 WRAPPER NET8
 OPTIONS
 (NODE 'ABC',
 CPU_RATIO '2.0',
 IO_RATIO '1.5')

3. Register a server definition for the Excel wrapper. The server definition is required to preserve the
hierarchy of federated objects. BIOCHEM_LAB is the name assigned to the Excel server definition.
EXCEL_2000_WRAPPER is the name of the wrapper used to access this data source.

 CREATE SERVER BIOCHEM_DATA
 WRAPPER EXCEL_2000_WRAPPER

4. Register a server definition for the ODBC wrapper. To access Apache Hive within DSN-less mode, the
server type must be specified. HOST is the Hive server address. PORT is the connection port number
that is used to access this data source. PORT is an optional parameter. If PORT is not defined, the
default number is 10000.

 CREATE SERVER HIVE_SERV TYPE HIVE
 WRAPPER ODBC AUTHORIZATION ‘root’ PASSWORD ‘hadoop’
 OPTIONS (HOST ‘hives.cn.ibm.com’, PORT ‘10000’,
 DBNAME ‘default’, PASSWORD ‘Y’, PUSHDOWN ‘Y’)

5. Register a server definition to access to the Db2 data source, which uses the default DRDA wrapper.
The server option SSO_AUTH indicates that remote data sources uses a single sign-on (SSO)
authentication mechanism, so the AUTHORIZATION keyword and PASSWORD keyword can be removed.

CREATE SERVER server1 TYPE DB2/LUW VERSION 11 OPTIONS(HOST, PORT 50000, DBNAME sample,
SSO_AUTH 'Y')

1348 IBM Db2 V11.5: SQL Reference

CREATE STOGROUP
The CREATE STOGROUP statement defines a new storage group within the database, assigns storage
paths to the storage group, and records the storage group definition and attributes in the catalog.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges that are held by the authorization ID of the statement must include SYSCTRL or SYSADM
authority.

Syntax

CREATE STOGROUP storagegroup-name ON

,

'storage-path' ●

OVERHEAD number-of-milliseconds

●

DEVICE READ RATE number-megabytes-per-second

●

DATA TAG integer-constant

NONE

●

SET AS DEFAULT

●

Description
storagegroup-name

Names the storage group. This is a one-part name. It is an SQL identifier (either ordinary or delimited).
The storagegroup-name must not identify a storage group that exists at the current server (SQLSTATE
42710). The storagegroup-name must not begin with the characters 'SYS' (SQLSTATE 42939).

ON
Specifies storage paths to be added for the named storage group. For partitioned database
environments, the same storage paths are defined on all database partitions unless database partition
expressions are used.
storage-path

A string constant that specifies containers the location where automatic storage table spaces are
to be created. The format of the string depends on the operating system, as illustrated in the
following table:

Operating system Format of storage path string

Linux
AIX

An absolute path

Windows The letter name of a drive

The string can include database partition expressions to specify database partition number
information in the storage path.

Chapter 1. Structured Query Language (SQL) 1349

The maximum length of a path is 175 characters (SQLSTATE 54036).

A storage path that is added must be valid according to the naming rules for paths, and must be
accessible (SQLSTATE 57019). Similarly, in a partitioned database environment, the storage path
must exist and be accessible on every database partition (SQLSTATE 57019).

OVERHEAD number-of-milliseconds
Specifies the I/O controller usage and disk seek and latency time. This value is used to determine
the cost of I/O during query optimization. The value of number-of-milliseconds is any numeric literal
(integer, decimal, or floating point). If this value is not the same for all storage paths, set the value to a
numeric literal that represents the average for all storage paths that belong to the storage group.

If the OVERHEAD clause is not specified, the OVERHEAD is set to 6.725 milliseconds.

DEVICE READ RATE number-megabytes-per-second
Specifies the device specification for the read transfer rate in megabytes per second. This value
is used to determine the cost of I/O during query optimization. The value of number-megabytes-per-
second is any numeric literal (integer, decimal, or floating point). If this value is not the same for all
storage paths, set the value to a numeric literal that represents the average for all storage paths that
belong to the storage group.

If the DEVICE READ RATE clause is not specified, the DEVICE READ RATE is set to the built-in default
of 100 megabytes per second.

DATA TAG integer-constant or DATA TAG NONE
Specifies a tag for the data for table spaces that use this storage group unless explicitly overridden
by the table space definition. This value can be used as part of a WLM configuration in a work class
definition or referenced within a threshold definition. For more information, see the CREATE WORK
CLASS SET and CREATE THRESHOLD statements.
integer-constant

Valid values for integer-constant are integers 1 - 9.
NONE

If NONE is specified, there is no data tag.
SET AS DEFAULT

Specifies the storage group that is created is designated as the default storage group. If no default
storage group exists, the first one created is designated the default even if this clause is not specified.
Since there can only be one storage group that is designated as the default storage group, specifying
this clause removes the default attribute from the existing default storage group. Specifying a new
default storage group has no effect to the storage group used by existing table spaces.

Rules
• The CREATE STOGROUP statement cannot be run while a database partition server is being added

(SQLSTATE 55071).
• A storage group can have up to 128 defined storage paths (SQLSTATE 5U009).
• A database instance can have up to 256 defined storage groups (SQLSTATE 54035).

Notes
• Calculation of free space: When free space is calculated for a storage path on a database partition,

the database manager checks for the existence of the following directories or mount points within the
storage path. The database manager uses the first one that is found.

<storage path>/<instance name>/NODE####/<database name>
<storage path>/<instance name>/NODE####
<storage path>/<instance name>
<storage path>

Where:

– <storage path> is a storage path that is associated with the database.

1350 IBM Db2 V11.5: SQL Reference

– <instance name> is the instance under which the database resides.
– NODE#### corresponds to the database partition number (for example, NODE0000 or NODE0001).
– <database name> is the name of the database.

• Isolating multiple database partitions under one storage path: The file systems can be mounted at a
point beneath the storage path, and the database manager recognizes that the actual amount of free
space available for table space containers might not be the same amount that is associated with the
storage path directory itself.

Consider an example in which two logical database partitions exist on one physical computer, and a
single storage path exists (/dbdata). Each database partition uses this storage path, but you might
want to isolate the data from each partition within its own file system. In this case, a separate file
system can be created for each partition and it can be mounted at /dbdata/<instance>/NODE####.
When creating containers on the storage path and determining free space, the database manager
does not retrieve free space information for /dbdata, but instead retrieves it for the corresponding /
dbdata/<instance>/NODE#### directory.

• Multiple storage paths: A storage path can be added to different storage groups, or to the same storage
group multiple times.

• Similar media characteristics: Ensure that the storage paths added to a storage group share similar
media characteristics. If the media characteristics are dissimilar, specify a value that represents an
average for OVERHEAD and DEVICE READ RATE.

Examples
1. Create a storage group that is named HIGHEND with two paths under the /db directory (/db/
filesystem1 and /db/filesystem2) which are attached to Solid State Disks.

CREATE STOGROUP HIGHEND ON '/db/filesystem1', '/db/filesystem2'
 OVERHEAD 0.75 DEVICE READ RATE 500

2. Create a storage group that is named MIDRANGE with two drives D and E and designate it as the
default storage group.

CREATE STOGROUP MIDRANGE ON 'D:\', 'E:\' SET AS DEFAULT

3. Create a storage group that is named MIDRANGE with two paths under the /db directory, and
designate it as the default storage group.

CREATE STOGROUP MIDRANGE ON '/db/filesystem1', '/db/filesystem2' SET AS DEFAULT

CREATE SYNONYM
The CREATE SYNONYM statement defines a synonym for a module, nickname, sequence, table, view, or
another synonym.

Description
SYNONYM is a synonym for ALIAS.

CREATE TABLE
The CREATE TABLE statement defines a table. The definition must include its name and the names and
attributes of its columns. The definition can include other attributes of the table, such as its primary key or
check constraints.

To create a created temporary table, use the CREATE GLOBAL TEMPORARY TABLE statement. To declare
a declared temporary table, use the DECLARE GLOBAL TEMPORARY TABLE statement.

Chapter 1. Structured Query Language (SQL) 1351

Invocation
This statement can be embedded in an application program or issued by using dynamic SQL statements.
It is an executable statement that can be dynamically prepared only if DYNAMICRULES run behavior is in
effect for the package (SQLSTATE 42509).

Authorization
The authorization ID of the statement must have either DBADM authority, or must have CREATETAB
authority in combination with the following additional authorization:

• One of the following privileges or authorities:

– USE privilege on the table space
– SYSADM authority
– SYSCTRL authority

• Plus one of these privileges or authorities:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the table
does not exist.

– CREATEIN privilege on the schema, if the schema name of the table refers to an existing schema.
– SCHEMAADM authority on the schema, if the schema name of the table refers to an existing schema.

If a subtable is being defined, at least one of the following conditions must be met:

• The authorization ID must be the same as the owner of the root table of the table hierarchy.
• The privileges that are held by the authorization ID must include SCHEMAADM authority on the schema

that contains the root table of the table hierarchy.
• The privileges that are held by the authorization ID must include DBADM authority.

To define a foreign key, the authorization ID of the statement must have one of the following privileges for
the parent table:

• REFERENCES privilege on the table
• REFERENCES privilege on each column of the specified parent key
• CONTROL privilege on the table
• SCHEMAADM authority on the schema, if the schema name of the parent table refers to an existing

schema.
• DBADM authority

To define a materialized query table, the following conditions must be met:

• The authorization ID of the statement must have at least one of the following privileges on each table or
view that is identified in the fullselect (privileges that are held through groups are not considered):

– SELECT privilege on the table or view
– CONTROL privilege on the table or view
– SELECTIN privilege on the schema that contains the table or view
– DATAACCESS authority on the schema that contains the table or view
– DATAACCESS authority

• The authorization ID of the statement must have at least one of the following privileges on each table
that is identified in the fullselect (this is required for altering the base table to associate it with the
materialized query table):

– ALTER privilege on the table or view
– CONTROL privilege on the table or view
– SCHEMAADM authority on the schema that contains the table or view

1352 IBM Db2 V11.5: SQL Reference

– DBADM authority

To define a staging table that is associated with a materialized query table, the authorization ID of the
statement must hold the following privileges:

• At least one of the following privileges for the materialized query table:

– ALTER privilege on the materialized query table
– CONTROL privilege on the materialized query table
– SCHEMAADM authority on the schema that contains the materialized query table
– DBADM authority

• At least one of the following privileges for each table or view that is identified in the fullselect of the
materialized query table:

– SELECT privilege on the table or view
– CONTROL privilege on the table or view
– SELECTIN privilege on the schema that contains the table or view
– DATAACCESS authority on the schema that contains the table or view
– DATAACCESS authority on the database

In addition, at least one of the following privileges for each table or view identified in the fullselect of
the materialized query table:

– ALTER privilege on the table or view
– CONTROL privilege on the table or view
– SCHEMAADM authority on the schema that contains the table or view
– DBADM authority

Chapter 1. Structured Query Language (SQL) 1353

Syntax
CREATE TABLE

IF NOT EXISTS

table-name

Element-list

OF type-name1

typed-table-options

LIKE table-name1

view-name

nickname

copy-options

as-result-table

copy-options

materialized-query-definition

staging-table-definition

●

ORGANIZE BY ROW

COLUMN

ROW USING
1

Dimensions-clause

KEY SEQUENCE sequence-key-spec

INSERT TIME

●

DATA CAPTURE NONE

CHANGES

●

tablespace-clauses

●

distribution-clause

●

partitioning-clause

●

COMPRESS YES
ADAPTIVE

COMPRESS YES STATIC

COMPRESS NO

●

VALUE COMPRESSION

●

WITH RESTRICT ON DROP

●

NOT LOGGED INITIALLY

●

CCSID ASCII

UNICODE

●

SECURITY POLICY policy name

●

OPTIONS (

,

table-option-name string-constant)

Element-list

1354 IBM Db2 V11.5: SQL Reference

(

,

column-definition

period-definition

unique-constraint

referential-constraint

check-constraint

)

Column-definition
column-name

Data-type
2 Column-options

Data-type
Built-in-type

distinct-type-name
3

structured-type-name

REF ( type-name2)

Built-in-type

Chapter 1. Structured Query Language (SQL) 1355

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( precision-integer
,0

, scale-integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
4

CCSID ASCII

CCSID UNICODE

CCSID 1208

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

) CCSID ASCII

CCSID UNICODE

CCSID 1208

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

) CCSID ASCII

CCSID UNICODE

CCSID 1208

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

BOOLEAN

SYSPROC.
DB2SECURITYLABEL

5 6

Column-options

1356 IBM Db2 V11.5: SQL Reference

NOT NULL

Lob-options
7

SCOPE typed-table-name

typed-view-name

8

CONSTRAINT constraint-name

PRIMARY KEY

UNIQUE

References-clause

CHECK (check-condition)

constraint-attributes

9

Default-clause

generated-clause

INLINE LENGTH integer
10

COMPRESS SYSTEM DEFAULT

COLUMN
SECURED WITH security-label-name

NOT HIDDEN

IMPLICITLY HIDDEN

Lob-options

●
LOGGED

NOT LOGGED

●
NOT COMPACT

COMPACT

●

References-clause
REFERENCES table-name

nickname

(

,

column-name)

rule-clause

constraint-attributes

Rule-clause

●
ON DELETE NO ACTION

ON DELETE RESTRICT

CASCADE

SET NULL

●
ON UPDATE NO ACTION

ON UPDATE RESTRICT

●

Constraint-attributes

Chapter 1. Structured Query Language (SQL) 1357

●

ENFORCED

NOT ENFORCED
TRUSTED

NOT TRUSTED

●

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

●

Default-clause
WITH

DEFAULT

Default-values

Default-values
constant

datetime-special-register

user-special-register

CURRENT SCHEMA

CURRENT MEMBER

NULL

cast-function (constant

datetime-special-register

user-special-register

CURRENT SCHEMA

)

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_NCLOB()

EMPTY_BLOB()

Generated-clause

GENERATED
ALWAYS

BY DEFAULT

Identity-options

as-row-change-timestamp-clause

GENERATED
ALWAYS

as-generated-expression-clause

as-row-transaction-timestamp-clause

as-row-transaction-start-id-clause

Identity-options

1358 IBM Db2 V11.5: SQL Reference

AS IDENTITY

(
11

START WITH

1

numeric-constant

INCREMENT BY

1

numeric-constant

NO MINVALUE

MINVALUE numeric-constant

NO MAXVALUE

MAXVALUE numeric-constant

NO CYCLE

CYCLE

CACHE 20

NO CACHE

CACHE integer-constant

NO ORDER

ORDER

)

As-row-change-timestamp-clause
12

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

As-generated-expression-clause
AS (generation-expression)

As-row-transaction-timestamp-clause
13

AS ROW BEGIN

END

As-row-transaction-start-id-clause
14

AS TRANSACTION START ID

Period-definition
PERIOD SYSTEM_TIME

BUSINESS_TIME

(begin-column-name , end-column-name)

Unique-constraint

CONSTRAINT constraint-name

UNIQUE

PRIMARY KEY

(

,

column-name

, BUSINESS_TIME WITHOUT OVERLAPS

) constraint-attributes

Referential-constraint

Chapter 1. Structured Query Language (SQL) 1359

CONSTRAINT constraint-name

FOREIGN KEY (

,

column-name)

references-clause

Check-constraint

CONSTRAINT constraint-name

CHECK (Check-condition)

constraint-attributes

Check-condition
search-condition

Functional-dependency

Functional-dependency
column-name

(

,

column-name)

DETERMINED BY

column-name

(

,

column-name)

Typed-table-options

HIERARCHY hierarchy-name

Under-clause

typed-element-list

Under-clause
UNDER supertable-name INHERIT SELECT PRIVILEGES

Typed-element-list

(

,

OID-column-definition

with-options

unique-constraint

check-constraint

)

OID-column-definition
REF IS OID-column-name USER GENERATED

With-options
column-name WITH OPTIONS Column-options

As-result-table

1360 IBM Db2 V11.5: SQL Reference

(

,

column-name)

AS (fullselect) WITH NO DATA

WITH DATA

Materialized-query-definition

(

,

column-name)

AS (fullselect) refreshable-table-options

Copy-options
●

INCLUDING

EXCLUDING

COLUMN
DEFAULTS

●

EXCLUDING IDENTITY
COLUMN ATTRIBUTES

INCLUDING IDENTITY
COLUMN ATTRIBUTES

●

Refreshable-table-options
DATA INITIALLY DEFERRED REFRESH DEFERRED

IMMEDIATE

●

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

●

MAINTAINED BY SYSTEM

MAINTAINED BY USER

REPLICATION

FEDERATED_TOOL

●

Staging-table-definition

(

,

staging-column-name)

FOR table-name2 PROPAGATE IMMEDIATE

Dimensions-clause

DIMENSIONS
(

,

column-name

(

,

column-name)

)

Sequence-key-spec

Chapter 1. Structured Query Language (SQL) 1361

(

,

column-name

STARTING
FROM

constant

ENDING
AT

constant

) ALLOW OVERFLOW

DISALLOW OVERFLOW PCTFREE integer

Tablespace-clauses

IN

,

tablespace-name
CYCLE

NO CYCLE

●

INDEX IN tablespace-name
15

LONG IN

,

tablespace-name

Distribution-clause

DISTRIBUTE BY
HASH

(

,

column-name)

REPLICATION

RANDOM

Partitioning-clause

PARTITION BY
RANGE

Range-partition-spec

Range-partition-spec

(

,

partition-expression) (

,

partition-element)

Partition-expression

column-name
NULLS LAST

NULLS FIRST

Partition-element

PARTITION partition-name

Boundary-spec partition-tablespace-options

boundary-spec EVERY (constant

duration-label
16

)

constant

duration-label
16

Boundary-spec

1362 IBM Db2 V11.5: SQL Reference

Starting-clause
17

Ending-clause

Starting-clause

STARTING
FROM

(

,

constant

MINVALUE

MAXVALUE

)

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

Ending-clause

ENDING
AT

(

,

constant

MINVALUE

MAXVALUE

)

constant

MINVALUE

MAXVALUE

INCLUSIVE

EXCLUSIVE

Partition-tablespace-options

IN tablespace-name INDEX IN tablespace-name

LONG IN tablespace-name

Duration-label
YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

Notes:
1 If you specify a dimensions clause, key sequence, or insert time, specifying ROW USING is optional
unless the default table organization for the database is COLUMN, in which case specifying ROW
USING is mandatory.

Chapter 1. Structured Query Language (SQL) 1363

2 If the first column-option chosen is a generated-clause with a generation-expression, then the data-
type can be omitted. It will be determined from the resulting data-type of the generation-expression.
3 The specified distinct type cannot have any data type constraints and the source type cannot be an
anchored data type.
4 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).
5 DB2SECURITYLABEL is the built-in distinct type that must be used to define the row security label
column of a protected table.
6 A column of type DB2SECURITYLABEL, NOT NULL WITH DEFAULT is implicit and cannot be explicitly
specified (SQLSTATE 42842). The default value for a column of type DB2SECURITYLABEL is the
session authorization ID's security label for write access.
7 The lob-options clause only applies to large object types (BLOB, CLOB, and DBCLOB) and distinct
types based on large object types.
8 The SCOPE clause only applies to the REF type.
9 The default-clause and generated-clause cannot both be specified for the same column definition
(SQLSTATE 42614).
10 INLINE LENGTH applies only to columns defined as structured, XML, or LOB types.
11 The same clause must not be specified more than once.
12 Data type is optional for a row change timestamp column if the first column-option specified is a
generated-clause. The data type default is TIMESTAMP(6).
13 Data type is optional for row-begin and row-end timestamp columns if the first column-option
specified is a generated-clause. The data type default is TIMESTAMP(12).
14 Data type is optional for a transaction-start-ID timestamp columns if the first column-option
specified is a generated-clause. The data type default is TIMESTAMP(12).
15 Specifying which table space contains a table's indexes can be done when the table is created. If
the table is a partitioned table, the index table space for a nonpartitioned index can be specified with
the IN clause of the CREATE INDEX statement.
16 This syntax for a partition-element is valid if only one partition-expression exists with a numeric or
datetime data type.
17 The first partition-element must include a starting-clause and the last partition-element must
include an ending-clause.

Description
System-maintained, user-maintained, federated_tool-maintained, and replication-maintained
materialized query tables (shadow tables) are referred to by the common term materialized query table,
unless a need exists to identify each one separately.

IF NOT EXISTS
Specifies that no error message is shown when the table cannot be created because a table with the
specified name already exists in the current database and schema. Typically, you use this option for
scripted applications that are running SQL commands. When you suppress the Table not found
error message, the scripted application is not impacted or halted.
The following conditions apply when you use this option:

• You cannot use the IF NOT EXISTS option with the AS SELECT clause. Using the IF NOT EXISTS
option with the AS SELECT clause causes a syntax error.

• Unless other errors prevent the creation of the table, a CREATE TABLE message is returned although
no table is created. The reason is that the failure is ignored if a table with the specified name already
exists.

• The existing table and the specified table in the command are not compared, that is, the tables
might have different sizes. The exisiting table remains as is with its current size. The content of the
rows is not changed. The application must ensure that the target table and rows are as expected.

1364 IBM Db2 V11.5: SQL Reference

table-name
Names the table. The name, including the implicit or explicit qualifier, must not identify a table, view,
nickname, or alias described in the catalog. The schema name must not be SYSIBM, SYSCAT, SYSFUN,
or SYSSTAT (SQLSTATE 42939).

element-list
Defines the elements of a table, including the definition of columns and constraints on the table.

column-definition
Defines the attributes of a column.
column-name

Names a column of the table. The name cannot be qualified, and the same name cannot be used
for more than one column of the table (SQLSTATE 42711).

A row-organized table can have the following:

• A 4K page size with a maximum of 500 columns, where the row size must not be greater than
4005.

• An 8K page size with a maximum of 1012 columns, where the row size must not be greater than
8101.

• A 16K page size with a maximum of 1012 columns, where the row size must not be greater than
16,293.

• A 32K page size with a maximum of 1012 columns, where the row size must not be greater than
32,677.

A column-organized table can have a maximum of 1012 columns, regardless of page size, where
the byte counts of the columns must not be greater than 32,677. Extended row size support does
not apply to column-organized tables.

For more information, see Row Size Limit.

data-type
Specifies the data type of the column.
built-in-type

One of the following built-in data types:
SMALLINT

A small integer.
[INTEGER | INT]

A large integer.
BIGINT

A big integer.
[DECIMAL | DEC | NUMERIC | NUM](precision-integer, scale-integer)

A decimal number.

• The precision integer specifies the total number of digits. It must be in the range 1 - 31.
The default is 5.

• The scale integer specifies the number of digits to the right of the decimal point. It
cannot be negative and cannot exceed the precision. The default is 0.

FLOAT(integer)
A single or double-precision floating-point number. If the specified length is in the range:

• 1 - 24, the number uses single precision.
• 25 - 53, the number uses double-precision.

Instead of FLOAT, you can specify:
REAL

For single precision floating-point.

Chapter 1. Structured Query Language (SQL) 1365

DOUBLE
For double-precision floating-point.

DOUBLE PRECISION
For double-precision floating-point.

FLOAT
For double-precision floating-point.

DECFLOAT(precision-integer)
A decimal floating-point number. The precision integer specifies the total number of digits,
which can be either 16 or 34. The default is 34.

[CHARACTER | CHAR](integer [OCTETS | CODEUNITS32])
A fixed-length character string of the specified number of code units. This number can
range from 1 - 255 OCTETS or from 1 - 63 CODEUNITS32. The default is 1.

[VARCHAR | CHARACTER VARYING | CHAR VARYING](integer [OCTETS | CODEUNITS32])
A varying-length character string with a maximum length of the specified number of code
units. This number can range from 1 - 32672 OCTETS or from 1 - 8168 CODEUNITS32.

FOR BIT DATA
Specifies that the contents of the column are to be treated as bit (binary) data. During data
exchange with other systems, code page conversions are not performed. Comparisons are
done in binary, irrespective of the database collating sequence.

CCSID
Specifies the encoding scheme for string data that is stored in the column. If the CCSID
clause is not specified, the default is the CCSID of the table.
ASCII

Specifies that string data is encoded in the database code page. If the table is a
Unicode table, CCSID ASCII cannot be specified (SQLSTATE 56031).

UNICODE, 1208, 1200
Specifies that string data is encoded in Unicode. Character data is in UTF-8; graphic
data is in UTF-16 BE. CCSID 1208 and 1200 are synonyms for CCSID UNICODE. CCSID
UNICODE cannot be specified for an SBCS database (SQLSTATE 560AA).

If the table is not a Unicode table, columns can be created with CCSID UNICODE, but
the following rules apply:

• The alternative collating sequence must be specified in the database configuration
before creating the table (SQLSTATE 56031). CCSID UNICODE columns collate with
the alternative collating sequence that is specified in the database configuration.

The only supported alternative collating sequence is IDENTITY_16BIT.
• The column cannot be a graphic data type.
• Anchored data types cannot anchor to a column that is created with CCSID UNICODE

(SQLSTATE 428HS).
• Tables cannot have both the CCSID UNICODE clause and the DATA CAPTURE

CHANGES clause specified (SQLSTATE 42613).
• Created temporary tables and declared temporary tables cannot have columns

declared with CCSID UNICODE (SQLSTATE 56031).
• CCSID UNICODE columns cannot be specified in a CREATE SCHEMA statement

(SQLSTATE 53090).
• A column of the exception table for a load operation must have the same CCSID as

the corresponding target table column for the operation (SQLSTATE 428A5).
• A column of the exception table for a SET INTEGRITY statement must have the

same CCSID as the corresponding target table column for the statement (SQLSTATE
53090).

1366 IBM Db2 V11.5: SQL Reference

• Columns of the target table for event monitor data must not be declared as CCSID
UNICODE (SQLSTATE 55049).

[CLOB | CHARACTER LARGE OBJECT | CHAR LARGE OBJECT](integer [K | M | G] [OCTETS |
CODEUNITS32])

A character large object string with a maximum length of the specified number of code
units. The default is 1,048,576 (1M) code units.

If you want to multiply the length integer by 1024 (kilo), 1,048,576 (mega), or
1,073,741,824 (giga), specify a K (kilo), M (mega), or G (giga) multiplier.

• Regardless of which multiplier, if any, you use, the resulting length is limited by
the maximum length of a CLOB column, which is 2,147,483,646 (for OCTETS) or
536,870,911 (for CODEUNITS32). If a multiple of K, M, or G slightly exceeds this
maximum length (for example, 2G = 2,147,483,648), the maximum length is used
instead.

• Any number of spaces (including zero spaces) is allowed between data type and the
length specification or between the length integer and the K, M, or G multiplier. For
example, the following specifications are all equivalent and valid:

CLOB(50K)
CLOB(50 K)
CLOB (50 K)

• The K, M, or G multiplier can be specified in either uppercase or lowercase.

In a Unicode database, the default string units for a character string data type are
determined by the value of the NLS_STRING_UNITS global variable or string_units
database configuration parameter. In a non-Unicode database, the default string units
for character string data types are OCTETS.

OCTETS
Specifies that the units of the length attribute are bytes.

CODEUNITS32
Specifies that the units of the length attribute are Unicode UTF-32 code units, which
approximate counting in characters. This does not affect the underlying code page of
the data type. The actual length of a data value is determined by counting the UTF-32
code units as if the data were converted to UTF-32. CODEUNITS32 can be specified
only in a Unicode database (SQLSTATE 560AA).

GRAPHIC(integer [CODEUNITS16 | CODEUNITS32])
A fixed-length graphic string of the specified length, which can range from 1 - 127 double
bytes, 1 - 127 CODEUNITS16, or 1 - 63 CODEUNITS32. The default length is 1.

VARGRAPHIC(integer [CODEUNITS16 | CODEUNITS32])
A varying-length graphic string of the specified maximum length, which can range from 1 -
16336 double bytes, 1 - 16336 CODEUNITS16, or 1 - 8168 CODEUNITS32.

DBCLOB(integer [K | M | G] [CODEUNITS16 | CODEUNITS32])
A character large object string of the specified maximum length in double bytes, Unicode
UTF-16 code units, or Unicode UTF-32 code units. The default is 1,048,576 (1M) code
units.

If you want to multiply the length integer by 1024 (kilo), 1,048,576 (mega), or
1,073,741,824 (giga), specify a K (kilo), M (mega), or G (giga) multiplier.

• Regardless of which multiplier, if any, you use, the resulting length is limited by the
maximum length of a DBCLOB column, which is which is 1,073,741,823 (for double
bytes or CODEUNITS16) or 536,870,911 (for CODEUNITS32). If a multiple of K, M, or G
slightly exceeds this maximum length (for example, 1G = 1,073,741,824), the maximum
length is used instead.

Chapter 1. Structured Query Language (SQL) 1367

• Any number of spaces (including zero spaces) is allowed between data type and the
length specification or between the length integer and the K, M, or G multiplier. For
example, the following specifications are all equivalent and valid:

DBCLOB(50K)
DBCLOB(50 K)
DBCLOB (50 K)

• The K, M, or G multiplier can be specified in either uppercase or lowercase.

In a Unicode database, the default string units for a character string data type are
determined by the value of the NLS_STRING_UNITS global variable or string_units
database configuration parameter. In a non-Unicode database, the default string units
for character string data types is CODEUNITS16.

CODEUNITS16
Specifies that the units of the length attribute are Unicode UTF-16 code units, which
are the same as counting in double bytes. CODEUNITS16 can be specified only in a
Unicode database (SQLSTATE 560AA).

CODEUNITS32
Specifies that the units of the length attribute are Unicode UTF-32 code units. This
does not affect the underlying code page of the data type. The actual length of a data
value is determined by counting the UTF-32 code units as if the data were converted
to UTF-32. CODEUNITS32 can be specified only in a Unicode database (SQLSTATE
560AA).

[NATIONAL CHARACTER | NATIONAL CHAR | NCHAR](integer)
A fixed-length string of the specified length. The default length is 1.

The NATIONAL CHARACTER type maps to either a fixed-length character or a fixed-length
graphic string, depending on the value of the nchar_mapping database configuration
parameter, which also defines the string units.

[NATIONAL CHARACTER VARYING | NATIONAL CHAR VARYING | NCHAR VARYING |
NVARCHAR](integer)

A varying-length string of the specified maximum length.

The NATIONAL CHARACTER VARYING type maps to either a varying-length character or
a varying-length graphic string, depending on the value of the nchar_mapping database
configuration parameter, which also defines the string units.

[NATIONAL CHARACTER LARGE OBJECT | NCHAR LARGE OBJECT | NCLOB](integer [K | M
| G])

A large object string of the specified maximum length.

This data type maps to either a character large object (CLOB) or a double-byte character
large object (DBCLOB), depending on the current value of the nchar_mapping database
configuration parameter, which also defines the string units. See the description of the
CLOB or DBCLOB parameter (whichever applies) for information about possible values for
the length integer and how to use a K (kilo), M (mega), or G (giga) multiplier.

BINARY(integer)
A fixed-length binary string of the specified length, which must be in the range 1 - 255
bytes. The default length is 1.

[VARBINARY | BINARY VARYING](integer)
A varying-length binary string of the specified maximum length, which must be in the
range 1 - 32672 bytes.

[BLOB | BINARY LARGE OBJECT](integer [K | M | G])
A binary large object string of the specified maximum length. The default is 1,048,576
(1M) bytes.

If you want to multiply the length integer by 1024 (kilo), 1,048,576 (mega), or
1,073,741,824 (giga), specify a K (kilo), M (mega), or G (giga) multiplier.

1368 IBM Db2 V11.5: SQL Reference

• Regardless of which multiplier, if any, you use, the resulting length is limited by the
maximum length of a BLOB column, which is 2,147,483,647 bytes. If a multiple of K,
M, or G slightly exceeds this maximum length (for example, 2G = 2,147,483,648), the
maximum length is used instead.

• Any number of spaces (including zero spaces) is allowed between data type and the
length specification or between the length integer and the K, M, or G multiplier. For
example, the following specifications are all equivalent and valid:

BLOB(50K)
BLOB(50 K)
BLOB (50 K)

• The K, M, or G multiplier can be specified in either uppercase or lowercase.

DATE
A date.

TIME
A time.

TIMESTAMP(integer) or TIMESTAMP
A time stamp. The integer specifies the precision of fractional seconds from 0 (seconds) to
12 (picoseconds). The default is 6 (microseconds).

XML
An XML document. Only well-formed XML documents can be inserted into an XML column.

An XML column has the following restrictions:

• The column cannot be part of any index except an index over XML data. Therefore,
it cannot be included as a column of a primary key or unique constraint (SQLSTATE
42962).

• The column cannot be a foreign key of a referential constraint (SQLSTATE 42962).
• A default value (WITH DEFAULT) cannot be specified for the column (SQLSTATE 42613).

If the column is nullable, the default for the column is the null value.
• The column cannot be used as the distribution key (SQLSTATE 42997).
• The column cannot be used as a data partitioning key (SQLSTATE 42962).
• The column cannot be used to organize a multidimensional clustering (MDC) table

(SQLSTATE 42962).
• The column cannot be used in a range-clustered table (SQLSTATE 429BG).
• The column cannot be referenced in a check constraint except in a VALIDATED predicate

(SQLSTATE 42621).

When a column of type XML is created, an XML path index is created on that column.
A table-level XML region index is also created when the first column of type XML
is created. The name of these indexes is "SQL" followed by a character time stamp
(yymmddhhmmssxxx). The schema name is SYSIBM.

BOOLEAN
A Boolean value.

SYSPROC.DB2SECURITYLABEL
A built-in distinct type that must be used to define the row security label column of
a protected table. The underlying data type of a column of the built-in distinct type
DB2SECURITYLABEL is VARCHAR(128) FOR BIT DATA. A table can have at most one
column of type DB2SECURITYLABEL (SQLSTATE 428C1).

distinct-type-name
For a user-defined type that is a distinct type. If a distinct type name is specified without a
schema name, the distinct type name is resolved by searching the schemas on the SQL path
(defined by the FUNCPATH preprocessing option for static SQL and by the CURRENT PATH
register for dynamic SQL).

Chapter 1. Structured Query Language (SQL) 1369

If a column is defined by using a distinct type, then the data type of the column is the distinct
type. The length and the scale of the column are the length and the scale of the source type
of the distinct type. The specified distinct type cannot have any data type constraints and the
source type cannot be an anchored data type (SQLSTATE 428H2).

If a column defined by using a distinct type is a foreign key of a referential constraint, then the
data type of the corresponding column of the primary key must have the same distinct type.

structured-type-name
For a user-defined type that is a structured type. If a structured type name is specified without
a schema name, the structured type name is resolved by searching the schemas on the SQL
path (defined by the FUNCPATH preprocessing option for static SQL, and by the CURRENT
PATH register for dynamic SQL).

If a column is defined by using a structured type, then the static data type of the column is
the structured type. The column can include values with a dynamic type that is a subtype of
structured-type-name.

A column that is defined by using a structured type cannot be used in a primary key, unique
constraint, foreign key, index key, or distribution key (SQLSTATE 42962).

If a column is defined by using a structured type, and contains a reference-type attribute at
any level of nesting, that reference-type attribute is unscoped. To use such an attribute in a
dereference operation, it is necessary to specify a SCOPE explicitly, using a CAST specification.

REF (type-name2)
For a reference to a typed table. If type-name2 is specified without a schema name, the
type name is resolved by searching the schemas on the SQL path (defined by the FUNCPATH
preprocessing option for static SQL and by the CURRENT PATH register for dynamic SQL). The
underlying data type of the column is based on the representation data type specified in the
REF USING clause of the CREATE TYPE statement for type-name2 or the root type of the data
type hierarchy that includes type-name2.

column-options
Defines additional options that are related to columns of the table.
NOT NULL

Prevents the column from containing null values.

If NOT NULL is not specified, the column can contain null values, and its default value is either
the null value or the value that is provided by the WITH DEFAULT clause.

NOT HIDDEN or IMPLICITLY HIDDEN
Specifies whether the column is to be defined as hidden. The hidden attribute determines
whether the column is included in an implicit reference to the table, or whether it can be
explicitly referenced in SQL statements. The default is NOT HIDDEN.
NOT HIDDEN

Specifies that the column is included in implicit references to the table, and that the
column can be explicitly referenced.

IMPLICITLY HIDDEN
Specifies that the column is not visible in SQL statements unless the column is explicitly
referenced by name. For example, assuming that a table includes a column that is defined
with the IMPLICITLY HIDDEN clause, the result of a SELECT * does not include the
implicitly hidden column. However, the result of a SELECT that explicitly refers to the name
of an implicitly hidden column includes that column in the result table.

IMPLICITLY HIDDEN must not be specified for all columns of the table (SQLSTATE 428GU).

lob-options
Specifies options for LOB data types.

1370 IBM Db2 V11.5: SQL Reference

LOGGED
Specifies that changes that are made to the column are to be written to the log. The data
in such columns is then recoverable with database utilities (such as RESTORE DATABASE).
LOGGED is the default.

NOT LOGGED
Specifies that changes that are made to the column are not to be logged. This only applies
to LOB data that is not inlined.

NOT LOGGED has no effect on a commit or rollback operation; that is, the database's
consistency is maintained even if a transaction is rolled back, regardless of whether the
LOB value is logged. The implication of not logging is that during a rollforward operation,
after a backup or load operation, the LOB data will be replaced by zeros for those LOB
values that would have had log records replayed during the rollforward. During crash
recovery, all committed changes and changes rolled back reflect the expected results.

COMPACT
Specifies that the values in the LOB column should take up minimal disk space (free
any extra disk pages in the last group that is used by the LOB value), rather than leave
any leftover space at the end of the LOB storage area that might facilitate subsequent
append operations. Storing data in this way might reduce the performance of append
(length-increasing) operations on the column.

NOT COMPACT
Specifies some space for insertions to assist in future changes to the LOB values in the
column. This is the default.

SCOPE
Identifies the scope of the reference type column.

A scope must be specified for any column that is intended to be used as the left operand of
a dereference operator or as the argument of the DEREF function. Specifying the scope for a
reference type column can be deferred to a subsequent ALTER TABLE statement to allow the
target table to be defined, usually when mutually referencing tables.

typed-table-name
The name of a typed table. The table must already exist or be the same as the name of
the table that is being created (SQLSTATE 42704). The data type of column-name must be
REF(S), where S is the type of typed-table-name (SQLSTATE 428DM). No checking is done
of values that are assigned to column-name to ensure that the values actually reference
existing rows in typed-table-name.

typed-view-name
The name of a typed view. The view must already exist or be the same as the name of
the view being created (SQLSTATE 42704). The data type of column-name must be REF(S),
where S is the type of typed-view-name (SQLSTATE 428DM). No checking is done of values
that are assigned to column-name to ensure that the values actually reference existing
rows in typed-view-name.

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint that was already
specified within the same CREATE TABLE statement. (SQLSTATE 42710).

If this clause is omitted, an 18 byte long identifier that is unique among the identifiers of
existing constraints defined on the table is generated by the system. (The identifier consists
of "SQL" followed by a sequence of 15 numeric characters that are generated by a timestamp-
based function).

When used with a PRIMARY KEY or UNIQUE constraint, the constraint-name can be used as
the name of an index that is created to support the constraint.

Chapter 1. Structured Query Language (SQL) 1371

PRIMARY KEY
This provides a shorthand method of defining a primary key that is composed of a single
column. Thus, if PRIMARY KEY is specified in the definition of column C, the effect is the same
as if the PRIMARY KEY(C) clause is specified as a separate clause.

A primary key cannot be specified if the table is a subtable (SQLSTATE 429B3) because the
primary key is inherited from the supertable.

A ROW CHANGE TIMESTAMP column cannot be used as part of a primary key (SQLSTATE
429BV).

Row-begin, row-end, and transaction-start-ID columns cannot be used as part of a primary
key (SQLSTATE 429BV).

See PRIMARY KEY within the unique-constraint description.

UNIQUE
This provides a shorthand method of defining a unique key that is composed of a single
column. Thus, if UNIQUE is specified in the definition of column C, the effect is the same as if
the UNIQUE(C) clause is specified as a separate clause.

A unique constraint cannot be specified if the table is a subtable (SQLSTATE 429B3) since
unique constraints are inherited from the supertable.

See UNIQUE within the unique-constraint description.

references-clause
This provides a shorthand method of defining a foreign key that is composed of a single
column. Thus, if a references-clause is specified in the definition of column C, the effect is the
same as if that references-clause were specified as part of a FOREIGN KEY clause in which C
is the only identified column.

See references-clause under referential-constraint description.

CHECK (check-condition)
This provides a shorthand method of defining a check constraint that applies to a single
column. See description for CHECK (check-condition).

default-clause
Specifies a default value for the column.
WITH

An optional keyword.
DEFAULT

Provides a default value if a value is not supplied on insert or is specified as DEFAULT
on INSERT or UPDATE. If a default value is not specified following the DEFAULT keyword,
the default value depends on the data type of the column as shown in "ALTER TABLE".
This clause must not be specified with generated-clause in a column definition (SQLSTATE
42614).

If a column is defined as XML, a default value cannot be specified (SQLSTATE 42613). The
only possible default is NULL.

If the column is based on a column of a typed table, a specific default value must be
specified when defining a default. A default value cannot be specified for the object
identifier column of a typed table (SQLSTATE 42997).

If a column is defined by using a distinct type, then the default value of the column is the
default value of the source data type cast to the distinct type.

If a column is defined by using a structured type, the default-clause cannot be specified
(SQLSTATE 42842).

1372 IBM Db2 V11.5: SQL Reference

Omission of DEFAULT from a column-definition results in the use of the null value as the
default for the column. If such a column is defined NOT NULL, then the column does not
have a valid default.

default-values
Specific types of default values that can be specified are as follows.
constant

Specifies the constant as the default value for the column. The specified constant
must:

• Represent a value that might be assigned to the column in accordance with the rules
of assignment.

• Not be a floating-point constant unless the column is defined with a floating-point
data type.

• Be a numeric constant or a decimal floating-point special value if the data type of
the column is a decimal floating-point. Floating-point constants are first interpreted
as DOUBLE and then converted to decimal floating-point if the target column is
DECFLOAT. For DECFLOAT(16) columns, decimal constants having precision greater
than 16 digits are rounded by using the rounding modes specified by the CURRENT
DECFLOAT ROUNDING MODE special register.

• Not have nonzero digits beyond the scale of the column data type if the constant is
a decimal constant (for example, 1.234 cannot be the default for a DECIMAL(5,2)
column).

• Be expressed with no more than 254 bytes including the quotation mark characters,
any introducer character such as the X for a hexadecimal constant, and characters
from the fully qualified function name and parentheses when the constant is the
argument of a cast-function

datetime-special-register
Specifies the value of the datetime special register (CURRENT DATE, CURRENT TIME,
or CURRENT TIMESTAMP) at the time of INSERT, UPDATE, or LOAD as the default for
the column. The data type of the column must be the data type that corresponds to the
special register specified (for example, data type must be DATE when CURRENT DATE
is specified).

user-special-register
Specifies the value of the user special register (CURRENT USER, SESSION_USER,
SYSTEM_USER) at the time of INSERT, UPDATE, or LOAD as the default for the column.
The data type of the column must be a character string with a length not less than
the length attribute of a user special register. USER can be specified in place of
SESSION_USER and CURRENT_USER can be specified in place of CURRENT USER.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register at the time of INSERT,
UPDATE, or LOAD as the default for the column. If CURRENT SCHEMA is specified, the
data type of the column must be a character string with a length greater than or equal
to the length attribute of the CURRENT SCHEMA special register.

CURRENT MEMBER
Specifies the value of the CURRENT MEMBER special register at the time of INSERT,
UPDATE, or LOAD as the default for the column. If CURRENT MEMBER is specified, the
data type of the column must allow assignment from an integer.

NULL
Specifies NULL as the default for the column. If NOT NULL was specified, DEFAULT
NULL can be specified within the same column definition but results in an error on any
attempt to set the column to the default value.

cast-function
This form of a default value can only be used with columns defined as a distinct type,
BLOB, or datetime (DATE, TIME, or TIMESTAMP) data type. For distinct type, except

Chapter 1. Structured Query Language (SQL) 1373

for distinct types based on BLOB or datetime types, the name of the function must
match the name of the distinct type for the column. If qualified with a schema name,
it must be the same as the schema name for the distinct type. If not qualified, the
schema name from function resolution must be the same as the schema name for the
distinct type. For a distinct type based on a datetime type, where the default value
is a constant, a function must be used and the name of the function must match the
name of the source type of the distinct type with an implicit or explicit schema name
of SYSIBM. For other datetime columns, the corresponding datetime function can also
be used. For a BLOB or a distinct type based on BLOB, a function must be used and
the name of the function must be BLOB with an implicit or explicit schema name of
SYSIBM.
constant

Specifies a constant as the argument. The constant must conform to the rules of a
constant for the source type of the distinct type or for the data type if not a distinct
type. If the cast-function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP. The source
type of the distinct type of the column must be the data type that corresponds to
the specified special register.

user-special-register
Specifies CURRENT USER, SESSION_USER, or SYSTEM_USER. The data type of the
source type of the distinct type of the column must be a string data type with a
length of at least 8 bytes. If the cast-function is BLOB, the length attribute must be
at least 8 bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register. The data type of
the source type of the distinct type of the column must be a character string with
a length greater than or equal to the length attribute of the CURRENT SCHEMA
special register. If the cast-function is BLOB, the length attribute must be at least 8
bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()
Specifies a zero-length string as the default for the column. The column must have the
data type that corresponds to the result data type of the function.

If the value specified is not valid, an error is returned (SQLSTATE 42894).

generated-clause
Specifies a generated value for the column.
GENERATED

Specifies that the database generates values for the column. GENERATED must be
specified if the column is to be considered an identity column or a row change time stamp
column, row-begin column, row-end column, transaction-start-ID column, or generated
expression column. A default clause must not be specified for a column that is defined as
GENERATED (SQLSTATE 42623).

ALWAYS
Specifies that a value is always generated for the column when a row is inserted
into the table, or whenever the result value of the generation-expression changes.
The result of the expression is stored in the table. GENERATED ALWAYS is the
recommended value unless data propagation or unload and reload operations are
being done. GENERATED ALWAYS is the required value for generated columns.

BY DEFAULT
Specifies that the database generates a value for the column when a row is inserted,
or updated specifying the DEFAULT clause, unless an explicit value is specified. BY
DEFAULT is the recommended value when using data propagation or performing an
unload and reload operation.

1374 IBM Db2 V11.5: SQL Reference

Although not explicitly required, to ensure uniqueness of the values, define a unique
single-column index on generated IDENTITY columns.

AS IDENTITY
Specifies that the column is to be the identity column for this table. A table can only have a
single identity column (SQLSTATE 428C1). The IDENTITY keyword can only be specified if
the data type associated with the column is an exact numeric type with a scale of zero, or
a user-defined distinct type for which the source type is an exact numeric type with a scale
of zero (SQLSTATE 42815). SMALLINT, INTEGER, BIGINT, or DECIMAL with a scale of zero,
or a distinct type based on one of these types, are considered exact numeric types. By
contrast, single- and double-precision floating points are considered approximate numeric
data types. Reference types, even if represented by an exact numeric type, cannot be
defined as identity columns.

An identity column is implicitly NOT NULL. An identity column cannot have a DEFAULT
clause (SQLSTATE 42623).

START WITH numeric-constant
Specifies the first value for the identity column. This value can be any positive or
negative value that might be assigned to this column (SQLSTATE 42815), without
nonzero digits existing to the right of the decimal point (SQLSTATE 428FA). The default
is MINVALUE for ascending sequences, and MAXVALUE for descending sequences.
This value is not necessarily the value that would be cycled to after reaching the
maximum or minimum value for the identity column. The START WITH clause can be
used to start the generation of values outside the range that is used for cycles. The
range that is used for cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column. This value
can be any positive or negative value that might be assigned to this column (SQLSTATE
42815), and does not exceed the value of a large integer constant (SQLSTATE 42820),
without nonzero digits existing to the right of the decimal point (SQLSTATE 428FA).

If this value is negative, this is a descending sequence. If this value is 0, or positive,
this is an ascending sequence. The default is 1.

NO MINVALUE or MINVALUE
Specifies the minimum value at which a descending identity column either cycles or
stops generating values, or an ascending identity column cycles to after reaching the
maximum value.
NO MINVALUE

For an ascending sequence, the value is the START WITH value, or 1 if START WITH
was not specified. For a descending sequence, the value is the minimum value of
the data type of the column. This is the default.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value. This value can be
any positive or negative value that might be assigned to this column (SQLSTATE
42815), without nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be less than or equal to the maximum value (SQLSTATE
42815).

NO MAXVALUE or MAXVALUE
Specifies the maximum value at which an ascending identity column either cycles or
stops generating values, or a descending identity column cycles to after reaching the
minimum value.
NO MAXVALUE

For an ascending sequence, the value is the maximum value of the data type of the
column. For a descending sequence, the value is the START WITH value, or -1 if
START WITH was not specified. This is the default.

Chapter 1. Structured Query Language (SQL) 1375

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value. This value can be
any positive or negative value that might be assigned to this column (SQLSTATE
42815), without nonzero digits existing to the right of the decimal point (SQLSTATE
428FA), but the value must be greater than or equal to the minimum value
(SQLSTATE 42815).

NO CYCLE or CYCLE
Specifies whether this identity column should continue to generate values after
generating either its maximum or minimum value.
NO CYCLE

Specifies that values are not generated for the identity column after the maximum
or minimum value is reached. This is the default.

CYCLE
Specifies that values continue to be generated for this column after the maximum
or minimum value is reached. If this option is used, after an ascending identity
column reaches the maximum value, it generates its minimum value; or after a
descending sequence reaches the minimum value, it generates its maximum value.
The maximum and minimum values for the identity column determine the range
that is used for cycling.

When CYCLE is in effect, duplicate values might be generated for an identity
column. Although not explicitly required, a unique, single-column index should
be defined on the generated column to ensure uniqueness of the values, if unique
values are required. If a unique index exists on such an identity column and a
non-unique value is generated, an error occurs (SQLSTATE 23505).

NO CACHE or CACHE
Specifies whether to keep some pre-allocated values in memory for faster access. If a
new value is needed for the identity column, and none is available in the cache, then
the end of the new cache block must be logged. However, when a new value is needed
for the identity column, and an unused value exists in the cache, then the allocation of
that identity value is faster, because no logging is necessary. This is a performance and
tuning option.
NO CACHE

Specifies that values for the identity column are not to be pre-allocated.

When this option is specified, the values of the identity column are not stored
in the cache. In this case, every request for a new identity value results in
synchronous I/O to the log.

CACHE integer-constant
Specifies how many values of the identity sequence are to be pre-allocated and
kept in memory. When values are generated for the identity column, pre-allocating
and storing values in the cache reduces synchronous I/O to the log.

If a new value is needed for the identity column and no unused values are available
in the cache, the allocation of the value involves waiting for I/O to the log. However,
when a new value is needed for the identity column and an unused value exists in
the cache, the allocation of that identity value can happen more quickly by avoiding
the I/O to the log.

The minimum value is 2 (SQLSTATE 42815). The default value is CACHE 20.

Use the CACHE and NO ORDER options to allow multiple caches of identity
values simultaneously. In a multi-partition or Db2 pureScale environment, multiple
members can cache them.

1376 IBM Db2 V11.5: SQL Reference

In a Db2 pureScale environment, if both CACHE and ORDER are specified, the
specification of ORDER overrides the specification of CACHE and instead NO
CACHE will be in effect.

NO ORDER or ORDER
Specifies whether the identity values must be generated in order of request.
NO ORDER

Specifies that the values do not need to be generated in order of request. This is
the default.

ORDER
Specifies that the values must be generated in order of request.

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
Specifies that the column is a time stamp column for the table. A value is generated for
the column in each row that is inserted, and for any row in which any column is updated.
The value that is generated for a ROW CHANGE TIMESTAMP column is a time stamp
that corresponds to the insert or update time for that row. If multiple rows are inserted
or updated with a single statement, the value of the ROW CHANGE TIMESTAMP column
might be different for each row.

A table can only have one ROW CHANGE TIMESTAMP column (SQLSTATE 428C1). If
data-type is specified, it must be TIMESTAMP or TIMESTAMP(6) (SQLSTATE 42842). A
ROW CHANGE TIMESTAMP column cannot have a DEFAULT clause (SQLSTATE 42623).
NOT NULL must be specified for a ROW CHANGE TIMESTAMP column (SQLSTATE 42831).

AS (generation-expression)
Specifies that the definition of the column is based on an expression. (If the expression
for a GENERATED ALWAYS column includes a user-defined external function, changing the
executable for the function (such that the results change for given arguments) can result in
inconsistent data. This can be avoided by using the SET INTEGRITY statement to force the
generation of new values). The generation-expression cannot contain any of the following
(SQLSTATE 42621):

• Subqueries
• XMLQUERY or XMLEXISTS expressions
• Column functions
• Dereference operations or DEREF functions
• User-defined or built-in functions that are non-deterministic
• User-defined functions that use the EXTERNAL ACTION option
• User-defined functions that are not defined with NO SQL
• Host variables or parameter markers
• Special registers and built-in functions that depend on the value of a special register
• Global variables
• References to columns defined later in the column list
• References to other generated columns
• References to columns of type XML

The data type for the column is based on the result data type of the generation-expression.
A CAST specification can be used to force a particular data type and to provide a scope
(for a reference type only). If data-type is specified, values are assigned to the column
according to the appropriate assignment rules. A generated column is considered to be
nullable unless the NOT NULL column option is specified. The data type of a generated
column and the result data type of the generation-expression must have equality defined
(see "Assignments and comparisons"). This excludes columns and generation expressions
of type LOB data types, XML, structured types, and distinct types based on any of these
types (SQLSTATE 42962).

Chapter 1. Structured Query Language (SQL) 1377

AS ROW BEGIN

Specifies that the generated value is assigned by the database manager whenever a row
is inserted into the table or any column in the row is updated. The value is generated
by using a reading from the time-of-day clock during execution of the first data change
statement in the transaction that requires a value to be assigned to the row-begin column
or transaction-start-ID column in the table, or a row in a system-period temporal table is
deleted.

For a system-period temporal table, the database manager ensures uniqueness of the
generated values for a row-begin column across transactions. The time stamp value might
be adjusted to ensure that rows that are inserted into an associated history table have
the end time stamp value greater than the begin time stamp value. This can happen
when a conflicting transaction is updating the same row in the system-period temporal
table. The database configuration parameter systime_period_adj must be set to Yes
for this adjustment to the time stamp value to occur. If multiple rows are inserted or
updated within a single SQL transaction and an adjustment is not needed, the values for
the row-begin column are the same for all the rows and are unique from the values that
are generated for the column for another transaction. A row-begin column is required as
the begin column of a SYSTEM_TIME period, which is the intended use for this type of
generated column.

A table can have only one row-begin column (SQLSTATE 428C1). If data-type is not
specified the column is defined as a TIMESTAMP(12). If data-type is specified, it must
be TIMESTAMP(12) (SQLSTATE 42842). The column cannot have a DEFAULT clause
(SQLSTATE 42623), and must be defined as NOT NULL (SQLSTATE 42831). A row-begin
column is not updatable.

AS ROW END

Specifies that a value for the data type of the column is assigned by the database manager
whenever a row is inserted or any column in the row is updated. The assigned value is
TIMESTAMP "9999-12-30-00.00.00.000000000000".

A row-end column is required as the second column of a SYSTEM_TIME period, which is
the intended use for this type of generated column.

A table can have only one row-end column (SQLSTATE 428C1). If data-type is not
specified, the column is defined as TIMESTAMP(12). If data-type is specified, it must
be TIMESTAMP(12) (SQLSTATE 42842). The column cannot have a DEFAULT clause
(SQLSTATE 42623), and must be defined as NOT NULL (SQLSTATE 42831). A row-end
column is not updatable.

AS TRANSACTION START ID

Specifies that the value is assigned by the database manager whenever a row is inserted
into the table or any column in the row is updated. The database manager assigns a
unique time stamp value per transaction or the null value. The null value is assigned
to the transaction-start-ID column if the column is nullable and if there is a row-begin
column in the table for which the value did not need to be adjusted. Otherwise, the value
is generated by using a reading of the time-of-day clock during execution of the first data
change statement in the transaction that requires a value to be assigned to a row-begin
column or transaction-start-ID column in the table, or a row in a system-period temporal
table is deleted. If multiple rows are inserted or updated within a single SQL transaction,
the values for the transaction-start-ID column are the same for all the rows and are unique
from the values that are generated for the column for another transaction.

A transaction-start-ID column is required for a system-period temporal table, which is the
intended use for this type of generated column.

A table can have only one transaction-start-ID column (SQLSTATE 428C1). If data-type
is not specified, the column is defined as TIMESTAMP(12). If data-type is specified, it

1378 IBM Db2 V11.5: SQL Reference

must be TIMESTAMP(12). A transaction-start-ID column cannot have a DEFAULT clause
(SQLSTATE 42623). A transaction-start-ID column is not updatable.

INLINE LENGTH integer
This option is valid only for a column that is defined using a structured type, XML, or LOB data
type (SQLSTATE 42842).

For a column of data type XML or LOB, integer indicates the maximum byte size of the
internal representation of an XML document or LOB data to store in the base table row. XML
documents that have a larger internal representation are stored separately from the base table
row in an auxiliary storage object. This takes place automatically. There is no default inline
length for XML type columns. If the XML document or LOB data is stored inlined in the base
table row, there is an additional overhead. For LOB data, the overhead is 4 bytes.

For a column of data type LOB, the default inline length is set to be the maximum size of the
LOB descriptor if the clause is not specified. Any explicit INLINE LENGTH must be at least the
maximum LOB descriptor size. The following table summarizes the LOB descriptor sizes.

Table 137. Sizes of the LOB descriptor for various LOB lengths.

Maximum LOB length in bytes Minimum explicit INLINE LENGTH

1,024 68

8,192 92

65,536 116

524,000 140

4,190,000 164

134,000,000 196

536,000,000 220

1,070,000,000 252

1,470,000,000 276

2,147,483,647 312

For a structured type column, integer indicates the maximum size in bytes of an instance of a
structured type to store inline with the rest of the values in the row. Instances of structured
types that cannot be stored inline are stored separately from the base table row, similar to the
way that LOB values are stored. This takes place automatically. The default INLINE LENGTH
for a structured-type column is the inline length of its type (specified explicitly or by default in
the CREATE TYPE statement). If INLINE LENGTH of the structured type is less than 292, the
value 292 is used for the INLINE LENGTH of the column.

Note: The inline lengths of subtypes are not counted in the default inline length, meaning that
instances of subtypes might not fit inline unless an explicit INLINE LENGTH is specified at
CREATE TABLE time to account for existing and future subtypes.

The explicit INLINE LENGTH value cannot exceed 32 673. For a structured type or XML data
type, it must be at least 292 (SQLSTATE 54010).

COMPRESS SYSTEM DEFAULT
Specifies that system default values are to be stored using minimal space. If the VALUE
COMPRESSION clause is not specified, a warning is returned (SQLSTATE 01648), and system
default values are not stored using minimal space.

Allowing system default values to be stored in this manner causes a slight performance
penalty during insert and update operations on the column because of extra checking that is
done.

Chapter 1. Structured Query Language (SQL) 1379

The base data type must not be a DATE, TIME, TIMESTAMP, XML, or structured data type
(SQLSTATE 42842). If the base data type is a varying-length string, this clause is ignored.
String values of length 0 are automatically compressed if a table has been set with VALUE
COMPRESSION.

COLUMN SECURED WITH security-label-name
Identifies a security label that exists for the security policy that is associated with the table.
The name must not be qualified (SQLSTATE 42601). The table must have a security policy
associated with it (SQLSTATE 55064). The table must not be a system-period temporal table.

Generally, you are not allowed to protect data in such a way that your current LBAC credentials
do not allow you to write to that data. To protect a column with a particular security label, you
must have LBAC credentials that allow you to write to data protected by that security label.
You do not have to have SECADM authority.

period-definition
PERIOD

Defines a period for the table.
SYSTEM_TIME (begin-column-name, end-column-name)

Defines a system period with the name SYSTEM_TIME. There must not be a column in
the table with the name SYSTEM_TIME (SQLSTATE 42711). A table can have only one
SYSTEM_TIME period (SQLSTATE 42711). begin-column-name must be defined as ROW
BEGIN and end-column-name must be defined as ROW END (SQLSTATE 428HN).

BUSINESS_TIME (begin-column-name, end-column-name)

Defines an application period with the name BUSINESS_TIME. There must not be a column
in the table with the name BUSINESS_TIME (SQLSTATE 42711). A table can have only one
BUSINESS_TIME period (SQLSTATE 42711). begin-column-name and end-column-name must
both be defined as DATE or TIMESTAMP(p) where p is in the range 0 - 12 (SQLSTATE 42842),
and the columns must be defined as NOT NULL (SQLSTATE 42831). begin-column-name
and end-column-name must not identify a column that is defined with a GENERATED clause
(SQLSTATE 428HZ).

An implicit check constraint is generated to ensure that the value of end-column-name is
greater than the value of begin-column-name. The name of the implicitly created check
constraint is DB2_GENERATED_CHECK_CONSTRAINT_FOR_BUSINESS_TIME and must not be
the name of any other check constraint that is specified in the statement (SQLSTATE 42710).

unique-constraint
Defines a unique or primary key constraint. If the table has a distribution key, any unique or primary
key must be a superset of the distribution key. A unique or primary key constraint cannot be specified
for a table that is a subtable (SQLSTATE 429B3). Primary or unique keys cannot be subsets of
dimensions (SQLSTATE 429BE). If the table is a root table, the constraint applies to the table and all
its subtables.
CONSTRAINT constraint-name

Names the primary key or unique constraint.
UNIQUE (column-name, ...)

Defines a unique key that is composed of the identified columns. The identified columns must
be defined as NOT NULL. Each column-name must identify a column of the table and the same
column must not be identified more than once.

If the table has a BUSINESS_TIME period defined, BUSINESS_TIME WITHOUT OVERLAPS
can be specified as the last item in the key expression list. If BUSINESS_TIME WITHOUT
OVERLAPS is specified, the list must include at least one column-name. WITHOUT OVERLAPS
means that for the other specified keys, the values are unique with respect to time for the
BUSINESS_TIME period. When BUSINESS_TIME WITHOUT OVERLAPS is specified, the columns of
the BUSINESS_TIME period must not be specified as part of the constraint (SQLSTATE 428HW).

1380 IBM Db2 V11.5: SQL Reference

The specification of BUSINESS_TIME WITHOUT OVERLAPS adds the following attributes to the
constraint:

• The end column of the BUSINESS_TIME period in ascending order
• The begin column of the BUSINESS_TIME period in ascending order

The number of identified columns must not exceed 64, and the sum of their stored lengths must
not exceed the index key length limit for the page size. For column stored lengths, see Byte
Counts. For key length limits, see "SQL limits". No LOB, XML, distinct type based on one of these
types, or structured type can be used as part of a unique key, even if the length attribute of the
column is small enough to fit within the index key length limit for the page size (SQLSTATE 54008).

The set of columns in the unique key cannot be the same as the set of columns in the primary key
or another unique key (SQLSTATE 01543). (If LANGLEVEL is SQL92E or MIA, an error is returned,
SQLSTATE 42891).

A unique constraint cannot be specified if the table is a subtable (SQLSTATE 429B3)because
unique constraints are inherited from the supertable.

The description of the table as recorded in the catalog includes the unique key and, if enforced, its
unique index. If enforced, a unique bidirectional index, which allows forward and reverse scans, is
automatically created for the columns in the sequence that are specified with ascending order for
each column. The name of the index is the same as the constraint-name if this does not conflict
with an existing index in the schema where the table is created. If the index name conflicts,
the name is SQL, followed by a character time stamp (yymmddhhmmssxxx), with SYSIBM as the
schema name.

PRIMARY KEY (column-name,...)
Defines a primary key that is composed of the identified columns. The clause must not be
specified more than once, and the identified columns must be defined as NOT NULL. Each column-
name must identify a column of the table, and the same column must not be identified more than
once.

If the table has a BUSINESS_TIME period defined, BUSINESS_TIME WITHOUT OVERLAPS can be
specified as the last item in the key expression list. If BUSINESS_TIME WITHOUT OVERLAPS
is specified, the list must include at least one column-name. WITHOUT OVERLAPS means
that for the rest of the specified keys, the values are unique with respect to time for the
BUSINESS_TIME period. When BUSINESS_TIME WITHOUT OVERLAPS is specified, the columns
of the BUSINESS_TIME period must not be specified as part of the constraint (SQLSTATE 428HW).
The specification of BUSINESS_TIME WITHOUT OVERLAPS adds the following attributes to the
constraint:

• The end column of the BUSINESS_TIME period in ascending order
• The begin column of the BUSINESS_TIME period in ascending order

The number of identified columns must not exceed 64, and the sum of their stored lengths must
not exceed the index key length limit for the page size. For column stored lengths, see Byte
Counts. For key length limits, see "SQL limits". No LOB, XML, distinct type based on one of these
types, or structured type can be used as part of a primary key, even if the length attribute of the
column is small enough to fit within the index key length limit for the page size (SQLSTATE 54008).

The set of columns in the primary key cannot be the same as the set of columns in a unique key
(SQLSTATE 01543). (If LANGLEVEL is SQL92E or MIA, an error is returned, SQLSTATE 42891).

Only one primary key can be defined on a table.

A primary key cannot be specified if the table is a subtable (SQLSTATE 429B3) because the
primary key is inherited from the supertable.

The description of the table as recorded in the catalog includes the primary key and, if enforced,
its primary index. If enforced, a unique bidirectional index, which allows forward and reverse
scans, will automatically be created for the columns in the sequence specified with ascending
order for each column. The name of the index is the same as the constraint-name if this does

Chapter 1. Structured Query Language (SQL) 1381

not conflict with an existing index in the schema where the table is created. If the index name
conflicts, the name is SQL, followed by a character time stamp (yymmddhhmmssxxx), with
SYSIBM as the schema name.

When explicitly defining distribution keys using the DISTRIBUTE BY HASH clause, the columns of a
unique-constraint must be a superset of the distribution key columns; column order is unimportant.
When distribution keys are implicitly defined, they are selected based on the definition of the unique
constraint. Implicit selection of distribution keys occurs in the following cases:

• Omit DISTRIBUTE BY HASH clause and the table is defined in a database partition group with
multiple partitions.

• DISTRIBUTE BY RANDOM clause is used.

referential-constraint
Defines a referential constraint.
CONSTRAINT constraint-name

Names the referential constraint.
FOREIGN KEY (column-name,...)

Defines a referential constraint with the specified constraint-name.

Let T1 denote the object table of the statement. The foreign key of the referential constraint
is composed of the identified columns. Each name in the list of column names must identify a
column of T1 and the same column must not be identified more than once.

The number of identified columns must not exceed 64, and the sum of their stored lengths must
not exceed the index key length limit for the page size. For column stored lengths, see Byte
Counts. For key length limits, see "SQL limits". No LOB, XML, distinct type based on one of these
types, or structured type column can be used as part of a foreign key (SQLSTATE 42962). There
must be the same number of foreign key columns as there are in the parent key and the data types
of the corresponding columns must be compatible (SQLSTATE 42830). Two-column descriptions
are compatible if they have compatible data types (both columns are numeric, character strings,
graphic, date/time, or have the same distinct type).

references-clause
Specifies the parent table or the parent nickname, and the parent key for the referential
constraint.
REFERENCES table-name or nickname

The table or nickname that is specified in a REFERENCES clause must identify a base table or
nickname that is described in the catalog, but must not identify a catalog table.

A referential constraint is a duplicate if its foreign key, parent key, and parent table or parent
nickname are the same as the foreign key, parent key, and parent table or parent nickname of
a previously specified referential constraint. Duplicate referential constraints are ignored, and
a warning is returned (SQLSTATE 01543).

In the following discussion, let T2 denote the identified parent table, and let T1 denote the
table that is being created (or altered). (T1 and T2 can be the same table).

The specified foreign key must have the same number of columns as the parent key of T2 and
the description of the nth column of the foreign key must be comparable to the description of
the nth column of that parent key. Datetime columns are not considered to be comparable to
string columns for the purposes of this rule.
(column-name,...)

The parent key of a referential constraint is composed of the identified columns. Each
column-name must be an unqualified name that identifies a column of T2. The same
column must not be identified more than once.

The list of column names must match the set of columns (in any order) of the primary key
or a unique constraint that exists on T2 (SQLSTATE 42890). If a column name list is not
specified, then T2 must have a primary key (SQLSTATE 42888). Omission of the column

1382 IBM Db2 V11.5: SQL Reference

name list is an implicit specification of the columns of that primary key in the sequence
originally specified.

The referential constraint that is specified by a FOREIGN KEY clause defines a relationship in
which T2 is the parent and T1 is the dependent.

rule-clause
Specifies what action to take on dependent tables.
ON DELETE

Specifies what action is to take place on the dependent tables when a row of the parent
table is deleted. There are four possible actions:

• NO ACTION (default)
• RESTRICT
• CASCADE
• SET NULL

The delete rule applies when a row of T2 is the object of a DELETE or propagated delete
operation and that row has dependents in T1. Let p denote such a row of T2.

• If RESTRICT or NO ACTION is specified, an error occurs and no rows are deleted.
• If CASCADE is specified, the delete operation is propagated to the dependents of p in T1.
• If SET NULL is specified, each nullable column of the foreign key of each dependent of p

in T1 is set to null.

SET NULL must not be specified unless some column of the foreign key allows null values.
Omission of the clause is an implicit specification of ON DELETE NO ACTION.

If T1 is delete-connected to T2 through multiple paths, defining two SET NULL rules with
overlapping foreign key definitions is not allowed. For example: T1 (i1, i2, i3). Rule1 with
foreign key (i1, i2) and Rule2 with foreign key (i2, i3) is not allowed.

The firing order of the rules is:

1. RESTRICT
2. SET NULL OR CASCADE
3. NO ACTION

If any row in T1 is affected by two different rules, error occurs and no rows are deleted.

A referential constraint cannot be defined if it would cause a table to be delete-connected
to itself by a cycle involving two or more tables, and where one of the delete rules is
RESTRICT or SET NULL (SQLSTATE 42915).

A referential constraint that would cause a table to be delete-connected to either itself or
another table by multiple paths can be defined, except in the following cases (SQLSTATE
42915):

• A table must not be both a dependent table in a CASCADE relationship (self-referencing,
or referencing another table), and have a self-referencing relationship in which the
delete rule is RESTRICT or SET NULL.

• A key overlaps another key when at least one column in one key is the same as a column
in the other key. When a table is delete-connected to another table through multiple
relationships with overlapping foreign keys, those relationships must have the same
delete rule, and none of the delete rules can be SET NULL.

• When a table is delete-connected to another table through multiple relationships, and
at least one of those relationships is specified with a delete rule of SET NULL, the
foreign key definitions of these relationships must not contain any distribution key or
multidimensional clustering (MDC) key column.

Chapter 1. Structured Query Language (SQL) 1383

• When two tables are delete-connected to the same table through CASCADE
relationships, the two tables must not be delete-connected to each other if the delete
rule of the last relationship in each delete-connected path is RESTRICT or SET NULL.

If any row in T1 is affected by different delete rules, the result would be the effect of all
the actions that are specified by these rules. AFTER triggers and CHECK constraints on T1
will also see the effect of all the actions. An example of this is a row that is targeted to
be set null through one delete-connected path to an ancestor table, and targeted to be
deleted by a second delete-connected path to the same ancestor table. The result would
be the deletion of the row. AFTER DELETE triggers on this descendant table would be
activated, but AFTER UPDATE triggers would not.

In applying the previously mentioned rules to referential constraints, in which either
the parent table or the dependent table is a member of a typed table hierarchy, all the
referential constraints that apply to any table in the respective hierarchies are considered.

ON UPDATE
Specifies what action is to take place on the dependent tables when a row of the parent
table is updated. The clause is optional. ON UPDATE NO ACTION is the default and ON
UPDATE RESTRICT is the only alternative.

The difference between NO ACTION and RESTRICT is described in the "Notes" section.

check-constraint
Defines a check constraint. A check-constraint is a search-condition that must evaluate to not false or
a functional dependency that is defined between columns.
CONSTRAINT constraint-name

Names the check constraint.
CHECK (check-condition)

Defines a check constraint. The search-condition must be true or unknown for every row of the
table.
search-condition

The search-condition has the following restrictions:

• A column reference must be to a column of the table that is being created.
• The search-condition cannot contain a TYPE predicate.
• The search-condition cannot contain any of the following (SQLSTATE 42621):

– Subqueries
– XMLQUERY or XMLEXISTS expressions
– Dereference operations or DEREF functions where the scoped reference argument is

other than the object identifier (OID) column
– CAST specifications with a SCOPE clause
– Column functions
– Functions that are not deterministic
– Functions that are defined to have an external action
– User-defined functions that are defined with either MODIFIES SQL or READS SQL DATA
– Host variables
– Parameter markers
– sequence-references
– OLAP specifications
– Special registers and built-in functions that depend on the value of a special register
– Global variables
– References to generated columns other than the identity column

1384 IBM Db2 V11.5: SQL Reference

– References to columns of type XML (except in a VALIDATED predicate)
– An error tolerant nested-table-expression

functional-dependency
Defines a functional dependency between columns.
column-name DETERMINED BY column-name or (column-name,...) DETERMINED BY
(column-name,...)

The parent set of columns contains the identified columns that immediately precede
the DETERMINED BY clause. The child set of columns contains the identified columns
that immediately follow the DETERMINED BY clause. All of the restrictions on the search-
condition apply to parent set and child set columns, and only simple column references
are allowed in the set of columns (SQLSTATE 42621). The same column must not be
identified more than once in the functional dependency (SQLSTATE 42709). The data type
of the column must not be a LOB data type, a distinct type based on a LOB data type,
an XML data type, or a structured type (SQLSTATE 42962). A ROW CHANGE TIMESTAMP
column cannot be used as part of a primary key (SQLSTATE 429BV). No column in the child
set of columns can be a nullable column (SQLSTATE 42621).

If a check constraint is specified as part of a column-definition, a column reference can only
be made to the same column. Check constraints that are specified as part of a table definition
can have column references identifying columns that are previously defined in the CREATE
TABLE statement. Check constraints are not checked for inconsistencies, duplicate conditions,
or equivalent conditions. Therefore, contradictory or redundant check constraints can be defined,
resulting in possible errors at execution time.

The search-condition "IS NOT NULL" can be specified; however, it is recommended that nullability
is enforced directly, by using the NOT NULL attribute of a column. For example, CHECK (salary
+ bonus > 30000) is accepted if salary is set to NULL, because CHECK constraints must be
either satisfied or unknown, and in this case, salary is unknown. However, CHECK (salary IS
NOT NULL) would be considered false and a violation of the constraint if salary is set to NULL.

Check constraints with search-condition are enforced when rows in the table are inserted or
updated. A check constraint that is defined on a table automatically applies to all subtables of that
table.

A functional dependency is not enforced by the database manager during normal operations such
as insert, update, delete, or set integrity. The functional dependency might be used during query
rewrite to optimize queries. Incorrect results might be returned if the integrity of a functional
dependency is not maintained.

constraint-attributes
Defines attributes that are associated with primary key, unique, referential integrity, or check
constraints.
ENFORCED or NOT ENFORCED

Specifies whether the constraint is enforced by the database manager during normal
operations such as insert, update, or delete. The default is determined by the setting of
the ddl_constraint_def configuration parameter. You can override the default behavior by
specifying either ENFORCED or NOT ENFORCED explicitly.
ENFORCED

The constraint is enforced by the database manager. ENFORCED cannot be specified in the
following situations:

• For a functional dependency (SQLSTATE 42621)
• When a referential constraint refers to a nickname (SQLSTATE 428G7)

NOT ENFORCED
The constraint is not enforced by the database manager. A primary key constraint or unique
constraint cannot be NOT ENFORCED if a dependent ENFORCED referential constraint exists.

Chapter 1. Structured Query Language (SQL) 1385

TRUSTED
The data can be trusted to conform to the constraint. TRUSTED must be used only if the
data in the table is independently known to conform to the constraint. Query results might
be unpredictable if the data does not conform to the constraint. This is the default option.
Informational constraints must not be violated at any time. Informational constraints are
used in query optimization, as well as the incremental processing of REFRESH IMMEDIATE
MQT and staging tables. These processes might produce unpredictable results or incorrect
MQT and staging table content if the constraints are violated. For example, the order in
which parent-child tables are maintained is important. When you want to add rows to a
parent-child table, you must insert rows into the parent table first. To remove rows from
a parent-child table, you must delete rows from the child table first. This ensures that no
orphan rows exist in the child table at any time. If informational constraints are violated,
the incremental maintenance of dependent MQT data and staging table data might be
optimized based on the violated informational constraints, producing incorrect data.

NOT TRUSTED
The data cannot be trusted to conform to the constraint. NOT TRUSTED is intended for
cases where the data conforms to the constraint for most rows, but it is not independently
known that all the rows or future additions will conform to the constraint. If a constraint
is NOT TRUSTED and enabled for query optimization, then it will not be used to perform
optimizations that depend on the data conforming completely to the constraint. NOT
TRUSTED can be specified only for referential integrity constraints (SQLSTATE 42613).

ENABLE QUERY OPTIMIZATION or DISABLE QUERY OPTIMIZATION
Specifies whether the constraint or functional dependency can be used for query optimization
under appropriate circumstances. The default is ENABLE QUERY OPTIMIZATION.
ENABLE QUERY OPTIMIZATION

The constraint is assumed to be true and can be used for query optimization.
DISABLE QUERY OPTIMIZATION

The constraint cannot be used for query optimization. DISABLE QUERY OPTIMIZATION cannot
be specified for primary key and unique constraints (SQLSTATE 42613).

OF type-name1
Specifies that the columns of the table are based on the attributes of the structured type that is
identified by type-name1. If type-name1 is specified without a schema name, the type name is
resolved by searching the schemas on the SQL path (defined by the FUNCPATH preprocessing option
for static SQL and by the CURRENT PATH register for dynamic SQL). The type name must be the name
of an existing user-defined type (SQLSTATE 42704) and it must be an instantiable structured type
(SQLSTATE 428DP) with at least one attribute (SQLSTATE 42997).

If UNDER is not specified, an object identifier column must be specified (refer to the OID-column-
definition). This object identifier column is the first column of the table. The object ID column is
followed by columns based on the attributes of type-name1.

HIERARCHY hierarchy-name
Names the hierarchy table that is associated with the table hierarchy. It is created at the same time as
the root table of the hierarchy. The data for all subtables in the typed table hierarchy is stored in the
hierarchy table. A hierarchy table cannot be directly referenced in SQL statements. A hierarchy-name
is a table-name. The hierarchy-name, including the implicit or explicit schema name, must not identify
a table, nickname, view, or alias described in the catalog. If the schema name is specified, it must be
the same as the schema name of the table that is being created (SQLSTATE 428DQ). If this clause is
omitted when defining the root table, a name is generated by the system. This name consists of the
name of the table that is being created, followed by a unique suffix, such that the identifier is unique
among the identifiers of existing tables, views, and nicknames.

UNDER supertable-name
Indicates that the table is a subtable of supertable-name. The supertable must be an existing table
(SQLSTATE 42704) and the table must be defined by using a structured type that is the immediate
supertype of type-name1 (SQLSTATE 428DB). The schema name of table-name and supertable-name

1386 IBM Db2 V11.5: SQL Reference

must be the same (SQLSTATE 428DQ). The table that is identified by supertable-name must not have
any existing subtable already defined that uses type-name1 (SQLSTATE 42742).

The columns of the table include the object identifier column of the supertable with its type modified
to be REF(type-name1), followed by columns based on the attributes of type-name1 (remember that
the type includes the attributes of its supertype). The attribute names cannot be the same as the OID
column name (SQLSTATE 42711).

Other table options, including table space, data capture, not logged initially, and distribution key
options cannot be specified. These options are inherited from the supertable (SQLSTATE 42613).

INHERIT SELECT PRIVILEGES
Any user or group holding a SELECT privilege on the supertable is granted an equivalent privilege on
the newly created subtable. The subtable definer is considered to be the grantor of this privilege.

typed-element-list
Defines the additional elements of a typed table. This includes the additional options for the columns,
the addition of an object identifier column (root table only), and constraints on the table.
OID-column-definition

Defines the object identifier column for the typed table.
REF IS OID-column-name USER GENERATED

Specifies that an object identifier (OID) column is defined in the table as the first column. An
OID is required for the root table of a table hierarchy (SQLSTATE 428DX). The table must be
a typed table (the OF clause must be present) that is not a subtable (SQLSTATE 42613). The
name for the column is defined as OID-column-name and cannot be the same as the name
of any attribute of the structured type type-name1 (SQLSTATE 42711). The column is defined
with type REF(type-name1), NOT NULL, and a system required unique index (with a default
index name) is generated. This column is referred to as the object identifier column or OID
column. The keywords USER GENERATED indicate that the initial value for the OID column
must be provided by the user when inserting a row. Once a row is inserted, the OID column
cannot be updated (SQLSTATE 42808).

with-options
Defines additional options that apply to columns of a typed table.
column-name

Specifies the name of the column for which additional options are specified. The column-name
must correspond to the name of a column of the table that is not also a column of a supertable
(SQLSTATE 428DJ). A column name can only appear in one WITH OPTIONS clause in the
statement (SQLSTATE 42613).

If an option is already specified as part of the type definition (in CREATE TYPE), the options
specified here override the options in CREATE TYPE.

WITH OPTIONS column-options
Defines options for the specified column. See column-options described earlier. If the table is
a subtable, primary key or unique constraints cannot be specified (SQLSTATE 429B3).

LIKE table-name1 or view-name or nickname
Specifies that the columns of the table have the same name and description as the columns of the
specified table (table-name1), view (view-name), or nickname (nickname). The specified table, view,
or nickname must either exist in the catalog or must be a declared temporary table. A typed table or
typed view cannot be specified (SQLSTATE 428EC).

The use of LIKE is an implicit definition of n columns, where n is the number of columns in the
identified table (including implicitly hidden columns), view, or nickname. A column of the new table
that corresponds to an implicitly hidden column in the existing table will also be defined as implicitly
hidden. The implicit definition depends on what is specified after LIKE:

• If a table is specified, then the implicit definition includes the column name, data type, hidden
attribute, and nullability characteristic of each of the columns of that table. If EXCLUDING COLUMN
DEFAULTS is not specified, then the column default is also included.

Chapter 1. Structured Query Language (SQL) 1387

• If a view is specified, then the implicit definition includes the column name, data type, and
nullability characteristic of each of the result columns of the fullselect defined in that view. The
data types of the view columns must be data types that are valid for columns of a table.

• If a nickname is specified, then the implicit definition includes the column name, data type, and
nullability characteristic of each column of that nickname.

• If a protected table is specified, the new table inherits the same security policy and protected
columns as the identified table.

• If a table is specified and if that table contains a row-begin column, row-end column, or transaction-
start-ID column, the corresponding column of the new table inherits only the data type of the source
column. The new column is not considered a generated column.

• If a table that includes a period is specified, the new table does not inherit the period definition.
• If a system-period temporal table is specified, the new table is not a system-period temporal table.
• If a random distribution table that uses the random by generation method is specified,

and if the new table that is being created does not share the same table distribution, the
RANDOM_DISTRIBUTION_KEY column that is used to generate the random distribution values is
not included.

Column default and identity column attributes can be included or excluded, based on the copy-
attributes clauses. The implicit definition does not include any other attributes of the identified table,
view, or nickname. Consequently, the new table does not have any primary key, unique constraints,
foreign key constraints, referential integrity constraints, triggers, indexes, ORGANIZE BY specification,
or PARTITIONING KEY specification. The table is created in the table space implicitly or explicitly
specified by the IN clause, and the table has any other optional clause only if the optional clause is
specified.

When a table is identified in the LIKE clause and that table contains a ROW CHANGE TIMESTAMP
column, the corresponding column of the new table inherits only the data type of the ROW CHANGE
TIMESTAMP column. The new column is not considered to be a generated column.

If a table is specified, and if row or column level access control is activated for that table, it is not
inherited by the new table.

copy-options
These options specify whether to copy additional attributes of the source result table definition (table,
view, or fullselect).
INCLUDING COLUMN DEFAULTS

Column defaults for each updatable column of the source result table definition are copied.
Columns that are not updatable will not have a default defined in the corresponding column of the
created table.

If LIKE table-name is specified and table-name identifies a base table, created temporary table, or
declared temporary table, then INCLUDING COLUMN DEFAULTS is the default. If LIKE table-name
is specified and table-name identifies a nickname, then INCLUDING COLUMN DEFAULTS has no
effect and column defaults are not copied.

EXCLUDING COLUMN DEFAULTS
Columns defaults are not copied from the source result table definition.

This clause is the default, except when LIKE table-name is specified and table-name identifies a
base table, created temporary table, or declared temporary table.

INCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are copied from the source result table definition, if possible. It is
possible to copy the identity column attributes, if the element of the corresponding column in
the table, view, or fullselect is the name of a table column, or the name of a view column that
directly or indirectly maps to the name of a base table column with the identity property. In all
other cases, the columns of the new table will not get the identity property. For example:

• The select list of the fullselect includes multiple instances of the name of an identity column
(that is, selecting the same column more than once).

1388 IBM Db2 V11.5: SQL Reference

• The select list of the fullselect includes multiple identity columns (that is, it involves a join).
• The identity column is included in an expression in the select list
• The fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are not copied from the source result table definition.

as-result-table
column-name

Names the columns in the table. If a list of column names is specified, it must consist of as
many names as there are columns in the result table of the fullselect. Each column-name must be
unique and unqualified. If a list of column names is not specified, the columns of the table inherit
the names of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has duplicate column
names of an unnamed column (SQLSTATE 42908). An unnamed column is a column that is derived
from a constant, function, expression, or set operation that is not named using the AS clause of
the select list.

AS (fullselect)
Specifies that, for each column in the derived result table of the fullselect, a corresponding column
is to be defined for the table. Each defined column adopts the following attributes from its
corresponding column of the result table (if applicable to the data type):

• Column name
• Column description
• Data type, length, precision, and scale
• Nullability

The following attributes are not included (although the default value and identity attributes can be
included by using the copy-options):

• Default value
• Identity attributes
• Hidden attribute
• ROW CHANGE TIMESTAMP
• Any other optional attributes of the tables or views that are referenced in the fullselect

The following restrictions apply:

• Every select list element must have a unique name (SQLSTATE 42711). The AS clause can be
used in the select clause to provide unique names.

• The fullselect cannot refer to host variables or include parameter markers.
• The data types of the result columns of the fullselect must be data types that are valid for

columns of a table.
• If row or column level access control (RCAC) is activated for any table that is specified in the

fullselect, RCAC is not cascaded to the new table.
• The fullselect cannot include a data-change-table-reference clause (SQLSTATE 428FL).
• Any valid fullselect that does not reference a typed table or a typed view can be specified.

WITH NO DATA | WITH DATA
Determines whether to fill the columns of the table with data:
WITH NO DATA

Do not run the fullselect. It is used only to define the table, which is not populated with the
results of the query.

WITH DATA
Run the fullselect and populate the table with the results of the query.

Chapter 1. Structured Query Language (SQL) 1389

materialized-query-definition
column-name

Names the columns in the table. If a list of column names is specified, it must consist of as
many names as there are columns in the result table of the fullselect. Each column-name must be
unique and unqualified. If a list of column names is not specified, the columns of the table inherit
the names of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has duplicate column
names of an unnamed column (SQLSTATE 42908). An unnamed column is a column that is derived
from a constant, function, expression, or set operation that is not named using the AS clause of
the select list.

If MAINTAINED BY REPLICATION is specified, the column names in the column list must match
the names of the columns from the table that is specified in the fullselect.

AS
Introduces the query that is used for the definition of the table and that determines the data to be
included in the table.

fullselect
Defines the query on which the table is based. The resulting column definitions are the same as
those for a view that is defined with the same query. A column of the new table that corresponds
to an implicitly hidden column of a base table that is referenced in the fullselect is not considered
hidden in the new table.

Every select list element must have a name (use the AS clause for expressions). The materialized-
query-definition defines attributes of the materialized query table. The option that is chosen also
defines the contents of the fullselect as follows:

The fullselect cannot include a data-change-table-reference clause (SQLSTATE 428FL), the fetch-
clause, or the ORDER BY clause (SQLSTATE 428FJ).

When REFRESH DEFERRED or REFRESH IMMEDIATE is specified, the fullselect cannot include
(SQLSTATE 428EC):

• References to a materialized query table, created temporary table, declared temporary table, or
typed table in any FROM clause

• References to a view where the fullselect of the view violates any of the listed restrictions on the
fullselect of the materialized query table

• Expressions that are a reference type (or distinct type based on this type)
• Functions that have any of the following attributes:

– EXTERNAL ACTION
– LANGUAGE SQL
– CONTAINS SQL
– READS SQL DATA
– MODIFIES SQL DATA

• NOT SECURED functions if the functions reference a materialized query table, which then
references a table that has row or column access control activated.

• Functions that depend on physical characteristics (for example, DBPARTITIONNUM,
HASHEDVALUE, RID_BIT, RID)

• A ROW CHANGE expression or reference to a ROW CHANGE TIMESTAMP column of the row
• Table or view references to system objects (Explain tables also should not be specified)
• Expressions that are a structured type, LOB type (or a distinct type based on a LOB type), or XML

type
• References to a protected table or protected nickname

When DISTRIBUTE BY REPLICATION is specified, the following restrictions apply:

1390 IBM Db2 V11.5: SQL Reference

• The GROUP BY clause is not allowed.
• The materialized query table must only reference a single table; that is, it cannot include a join.

When MAINTAINED BY REPLICATION is specified, the following restrictions apply:

• The query must be a subselect consisting of only a SELECT clause and a FROM clause.
• The FROM clause must reference a single table that is organized by row and that is not specified

in an existing shadow table definition.
• The referenced table cannot be a range-partitioned table, a multidimensional clustering table,

a range-clustered table, a temporal table, or a table that contains a LONG VARCHAR or LONG
VARGRAPHIC column.

• The referenced table cannot be protected by row and column access control (RCAC) or label-
based access control (LBAC).

• The select list can include only direct references to the columns of the table whose data types
are supported in a column-organized table. No expressions can be used.

• The columns that are specified in the select list cannot be renamed by using the column name
list or the AS clause in the select list.

• The referenced table must have at least one enforced primary key constraint or unique
constraint, and the columns that are specified in the select list must include all the key columns
from at least one of these constraints.

When REFRESH IMMEDIATE is specified:

• The query must be a subselect, with the exception that UNION ALL is supported in the input
table expression of a GROUP BY.

• The query cannot be recursive.
• The query cannot include:

– References to a nickname
– Functions that are not deterministic
– Scalar fullselects
– Predicates with fullselects
– Special registers and built-in functions that depend on the value of a special register
– Global variables
– SELECT DISTINCT
– An error tolerant nested-table-expression

• If the FROM clause references more than one table or view, it can only define an inner join
without using the explicit INNER JOIN syntax.

• When a GROUP BY clause is specified, the following considerations apply:

– The supported column functions are SUM, COUNT, COUNT_BIG, and GROUPING (without
DISTINCT). The select list must contain a COUNT(*) or COUNT_BIG(*) column. If the
materialized query table select list contains SUM(X), where X is a nullable argument, the
materialized query table must also have COUNT(X) in its select list. These column functions
cannot be part of any expressions.

– A HAVING clause is not allowed.
– If in a multiple partition database partition group, the distribution key must be a subset of the

GROUP BY items.
• The materialized query table must not contain duplicate rows, and the following restrictions
specific to this uniqueness requirement apply, depending upon whether a GROUP BY clause is
specified.

– When a GROUP BY clause is specified, the following uniqueness-related restrictions apply:

- All GROUP BY items must be included in the select list.

Chapter 1. Structured Query Language (SQL) 1391

- When the GROUP BY contains GROUPING SETS, CUBE, or ROLLUP, the GROUP BY items
and associated GROUPING column functions in the select list must form a unique key of the
result set. Thus, the following restrictions must be satisfied:

• No grouping sets can be repeated. For example, ROLLUP(X,Y),X is not allowed, because
it is equivalent to GROUPING SETS((X,Y),(X),(X)).

• If X is a nullable GROUP BY item that appears within GROUPING SETS, CUBE, or ROLLUP,
then GROUPING(X) must appear in the select list.

– When a GROUP BY clause is not specified, the following uniqueness-related restrictions
apply:

- The materialized query table's uniqueness requirement is achieved by deriving a unique
key for the materialized view from one of the unique key constraints defined in each of
the underlying tables. Therefore, the underlying tables must have at least one unique key
constraint that is defined on them, and the columns of these keys must appear in the select
list of the materialized query table definition.

When REFRESH DEFERRED is specified:

• If the materialized query table is created with the intention of providing it with an associated
staging table in a later statement, the fullselect of the materialized query table must follow the
same restrictions and rules as a fullselect used to create a materialized query table with the
REFRESH IMMEDIATE option.

• If the query is recursive, the materialized query table is not used to optimize the processing of
queries.

• The materialized query table is not used to optimize the processing of static queries.

A materialized query table whose fullselect contains a GROUP BY clause is summarizing data from
the tables that are referenced in the fullselect. Such a materialized query table is also known as a
summary table. A summary table is a specialized type of materialized query table.

If the fullselect references a table or a view that depends on a table for which row or column level
access control has been activated, those row or column level access controls are ignored when
populating the materialized query table. The materialized query table is automatically created
with row level access control activated. Direct access by users to this table does not see any
content unless appropriate permissions are created or a user with SECADM authority chooses to
deactivate row level access control on this materialized query table. Row and column level access
control on the materialized query table does not affect internal routing by the SQL compiler to the
materialized query table.

refreshable-table-options
Define the refreshable options of the materialized query table attributes.
DATA INITIALLY DEFERRED

Data is not inserted into the table as part of the CREATE TABLE statement. A REFRESH TABLE
statement specifying the table-name is used to insert data into the table.

REFRESH
Indicates how the data in the table is maintained.
DEFERRED

The data in the table can be refreshed at any time by using the REFRESH TABLE statement.
The data in the table only reflects the result of the query as a snapshot at the time the
REFRESH TABLE statement is processed. System-maintained materialized query tables
that are defined with this attribute do not allow INSERT, UPDATE, or DELETE statements
(SQLSTATE 42807). User-maintained materialized query tables that are defined with this
attribute do allow INSERT, UPDATE, or DELETE statements.

IMMEDIATE
The changes that are made to the underlying tables as part of a DELETE, INSERT,
or UPDATE are cascaded to the materialized query table. In this case, the content of
the table, at any point-in-time, is the same as if the specified subselect is processed.

1392 IBM Db2 V11.5: SQL Reference

Materialized query tables (MQTs) defined with this attribute do not allow INSERT, UPDATE,
or DELETE statements (SQLSTATE 42807). Column-organized MQTs using the REFRESH
IMMEDIATE option are not supported when the MAINTAINED BY SYSTEM clause is
specified (SQL20058N).

ENABLE QUERY OPTIMIZATION
The materialized query table can be used for query optimization under appropriate
circumstances.

DISABLE QUERY OPTIMIZATION
The materialized query table will not be used for query optimization. The table can still be
queried directly.

MAINTAINED BY
Specifies whether the data in the materialized query table is maintained by the system, user,
or replication tool. The default is SYSTEM.
SYSTEM

Specifies that the data in the materialized query table is maintained by the system. A
system-maintained materialized query table that is defined as ORGANIZE BY COLUMN
must use the REFRESH DEFERRED and DISTRIBUTE BY REPLICATION options.

USER
Specifies that the data in the materialized query table is maintained by the user.
The user is allowed to perform update, delete, or insert operations against user-
maintained materialized query tables. The REFRESH TABLE statement, which is used for
system-maintained materialized query tables, cannot be invoked against user-maintained
materialized query tables. Only a REFRESH DEFERRED materialized query table can be
defined as MAINTAINED BY USER.

REPLICATION
Specifies that the data in the materialized query table is maintained by an external
replication technology. MAINTAINED BY REPLICATION cannot be specified in a partitioned
database environment or in a Db2 pureScale environment (SQLSTATE 56038). The
REFRESH TABLE statement, which is used for system-maintained materialized query
tables, cannot be issued against replication-maintained materialized query tables, which
are referred to as shadow tables. Only a REFRESH DEFERRED materialized query table can
be defined as MAINTAINED BY REPLICATION, and the definition must include ORGANIZE
BY COLUMN.

FEDERATED_TOOL
Specifies that the data in the materialized query table is maintained by a federated
replication tool. The REFRESH TABLE statement, which is used for system-maintained
materialized query tables, cannot be invoked against federated_tool-maintained
materialized query tables. Only a REFRESH DEFERRED materialized query table can be
defined as MAINTAINED BY FEDERATED_TOOL.

When specifying this option, the select clause in the CREATE TABLE statement cannot
contain a reference to a base table (SQLSTATE 428EC).

staging-table-definition
Defines the query that is supported by the staging table indirectly through an associated materialized
query table. The underlying tables of the materialized query table are also the underlying tables
for its associated staging table. The staging table collects changes that need to be applied to the
materialized query table to synchronize it with the contents of the underlying tables.

If the fullselect references a table or a view that depends on a table for which row or column level
access control has been activated, those row or column level access controls are ignored when
populating the staging table. However, the staging table is automatically created with row level
access control activated. Direct access by users to this staging table does not see any content unless
appropriate permissions are created or a user with SECADM authority chooses to deactivate row level
access control on this staging table. Row and column level access control on the staging table does
not affect the internal process of applying the changes that are captured by the staging table to the
associated materialized query table.

Chapter 1. Structured Query Language (SQL) 1393

staging-column-name
Names the columns in the staging table. If a list of column names is specified, it must consist of
two more names than exist columns in the materialized query table for which the staging table
is defined. If the materialized query table is a replicated materialized query table, or the query
defining the materialized query table does not contain a GROUP BY clause, the list of column
names must consist of three more names than there are columns in the materialized query table
for which the staging table is defined. Each column name must be unique and unqualified. If a list
of column names is not specified, the columns of the table inherit the names of the columns of
the associated materialized query table. The additional columns are named GLOBALTRANSID and
GLOBALTRANSTIME, and if a third column is necessary, it is named OPERATIONTYPE.

Table 138. Extra Columns Appended in Staging Tables

Column Name Data Type Column Description

GLOBALTRANSID CHAR(8) FOR BIT DATA The global transaction ID for
each propagated row

GLOBALTRANSTIME CHAR(13) FOR BIT DATA The time stamp of the
transaction

OPERATIONTYPE INTEGER Operation for the propagated
row, either insert, update, or
delete.

A list of column names must be specified if any of the columns of the associated materialized
query table duplicate any of the generated column names (SQLSTATE 42711).

FOR table-name2
Specifies the materialized query table that is used for the definition of the staging table. The
name, including the implicit or explicit schema, must identify a materialized query table that
exists at the current server defined with REFRESH DEFERRED. The fullselect of the associated
materialized query table must follow the same restrictions and rules as a fullselect used to create
a materialized query table with the REFRESH IMMEDIATE option.

The contents of the staging table can be used to refresh the materialized query table, by invoking
the REFRESH TABLE statement, if the contents of the staging table are consistent with the
associated materialized query table and the underlying source tables.

PROPAGATE IMMEDIATE
The changes that are made to the underlying tables as part of a delete, insert, or update operation
are cascaded to the staging table in the same delete, insert, or update operation. If the staging
table is not marked inconsistent, its content, at any point-in-time, is the delta changes to the
underlying table since the last refresh materialized query table.

ORGANIZE BY
Specifies how the data is organized in the data pages of the table.

The following restrictions apply to a column-organized MQT:

• MQTs other than shadow tables must reference tables with the same organization as the MQT.
• The ORGANIZE BY COLUMN clause must be specified when creating a column-organized MQT, even

if the dft_table_org database configuration parameter is set to COLUMN.
• For a column-organized MQT, the following types of tables can be used:

– Shadow tables
– User-maintained MQTs
– System-maintained MQTs that are defined with the REFRESH DEFERRED and DISTRIBUTE BY
REPLICATION clauses.

The default organization is determined by the value of the dft_table_org database configuration
parameter. If dft_table_org is not specified, the default is ROW.

1394 IBM Db2 V11.5: SQL Reference

ROW
The data is stored by row in the data pages of the table. A given data page stores the data for one
or more rows of the table.

COLUMN
The data is stored by column in the data pages of the table. Each data page stores data for one
column of the table.

ROW USING
The data is stored by row in the data pages of the table and is further organized by using
a dimensions clause, key sequence, or insert time. If you specify a dimensions clause, key
sequence, or insert time, specifying ROW USING is optional unless the default table organization
for the database is COLUMN, in which case specifying ROW USING is mandatory.
DIMENSIONS (column-name,...)

Specifies a dimension for each column or group of columns used to cluster the table data. A
table whose definition specifies this clause is known as a multidimensional clustering (MDC)
table. Use parentheses within the dimension list to specify that a group of columns is to be
treated as a single dimension. The DIMENSIONS keyword is optional.

A clustering block index is automatically maintained for each specified dimension, and a block
index, consisting of all columns used in the clause, is maintained if none of the clustering block
indexes include them all. The set of columns that are used in the ORGANIZE BY clause must
follow the rules for the CREATE INDEX statement that specifies CLUSTER.

Each column name that is specified in the ORGANIZE BY clause must be defined for the
table (SQLSTATE 42703). A dimension cannot occur more than once in the dimension list
(SQLSTATE 42709). The dimensions cannot contain a ROW CHANGE TIMESTAMP column,
row-begin column, row-end column, transaction-start-ID column (SQLSTATE 429BV), or an
XML column (SQLSTATE 42962). If the table uses extended row size, each dimension column
with a data type of VARCHAR or VARGRAPHIC cannot have a length attribute that is greater
than 24 bytes (SQLSTATE 54010).

Pages of the table are arranged in blocks of equal size, which is the extent size of the table
space, and all rows of each block contain the same combination of dimension values.

A table can be both a multidimensional clustering (MDC) table and a partitioned table.
Columns in such a table can be used in both the range-partition-spec and in the MDC key.
Table partitioning is multi-column, not multidimensional.

For a partitioned MDC table created by Db2 Version 9.7 Fix Pack 1 or later releases, the block
indexes are partitioned. The partitioned block index placement follows the general partitioned
index storage placement rule. All index partitions for a given data partition, including MDC
block indexes, share a single index object. By default, the index partitions for each specific
data partition reside in the same table space as the data partition. This can be overridden with
the partition level INDEX IN clause.

For MDC tables that were created using Db2 V9.7 or earlier, the block indexes are
nonpartitioned and remain nonpartitioned if they are rebuilt. MDC tables with partitioned
block indexes can co-exist in the same database as MDC tables with nonpartitioned block
indexes. To change nonpartitioned block indexes to partitioned block indexes, use an online
table move to migrate the MDC table.

KEY SEQUENCE sequence-key-spec
Specifies that the table is organized in ascending key sequence with a fixed size based on the
specified range of key sequence values. A table that is organized in this way is referred to
as a range-clustered table. Each possible key value in the defined range has a predetermined
location in the physical table. The storage that is required for a range-clustered table must
be available when the table is created, and must be sufficient to contain the number of
rows in the specified range multiplied by the row size (for details on determining the space
requirement, see Row Size Limit and Byte Counts).

Chapter 1. Structured Query Language (SQL) 1395

column-name
Specifies a column of the table that is included in the unique key that determines the
sequence of the range-clustered table. The data type of the column must be SMALLINT,
INTEGER, or BIGINT (SQLSTATE 42611), and the columns must be defined as NOT NULL
(SQLSTATE 42831). The same column must not be identified more than once in the
sequence key. The number of identified columns must not exceed 64 (SQLSTATE 54008).

A unique index entry will automatically be created in the catalog for the columns in the
key sequence specified with ascending order for each column. The name of the index
will be SQL, followed by a character time stamp (yymmddhhmmssxxx), with SYSIBM as
the schema name. An actual index object is not created in storage because the table
organization is ordered by this key. If a primary key or a unique constraint is defined on the
same columns as the range-clustered table sequence key, this same index entry is used
for the constraint.

For the key sequence specification, a check constraint exists to reflect the column
constraints. If the DISALLOW OVERFLOW clause is specified, the name of the check
constraint is RCT, and the check constraint is enforced. If the ALLOW OVERFLOW clause is
specified, the name of the check constraint is RCT_OFLOW, and the check constraint is not
enforced.

STARTING FROM constant
Specifies the constant value at the low end of the range for column-name. Values less
than the specified constant are only allowed if the ALLOW OVERFLOW option is specified.
If column-name is a SMALLINT or INTEGER column, the constant must be an INTEGER
constant. If column-name is a BIGINT column, the constant must be an INTEGER or
BIGINT constant (SQLSTATE 42821). If a starting constant is not specified, the default
value is 1.

ENDING AT constant
Specifies the constant value at the high end of the range for column-name. Values greater
than the specified constant are only allowed if the ALLOW OVERFLOW option is specified.
The value of the ending constant must be greater than the starting constant. If column-
name is a SMALLINT or INTEGER column, the constant must be an INTEGER constant. If
column-name is a BIGINT column, the constant must be an INTEGER or BIGINT constant
(SQLSTATE 42821).

ALLOW OVERFLOW
Specifies that the range-clustered table allows rows with key values that are outside of
the defined range of values. When a range-clustered table is created to allow overflows,
the rows with key values outside of the range are placed at the end of the defined
range without any predetermined order. Operations involving these overflow rows are less
efficient than operations on rows having key values within the defined range.

DISALLOW OVERFLOW
Specifies that the range-clustered table does not allow rows with key values that are
not within the defined range of values (SQLSTATE 23513). Range-clustered tables that
disallow overflows will always maintain all rows in ascending key sequence.

The DISALLOW OVERFLOW clause cannot be specified if the table is a range-clustered
materialized query table (SQLSTATE 429BG).

PCTFREE integer
Specifies the percentage of each page that is to be left as free space. The first row on
each page is added without restriction. When additional rows are added to a page, at least
integer percent of the page is left as free space. The value of integer can range from 0 to
99. A PCTFREE value of -1 in the system catalog (SYSCAT.TABLES) is interpreted as the
default value. The default PCTFREE value for a table page is 0.

INSERT TIME
Specifies that rows are clustered in the table relative to the time they are inserted. Rows are
inserted at the logical end of the table object instead of searching for available space.

1396 IBM Db2 V11.5: SQL Reference

A table that is organized by insert time is known as an insert time clustering (ITC) table. This
type of table can use REORG TABLE RECLAIM EXTENTS to reclaim free extents for immediate
use by other objects in the table space.

Data is clustered by using an implicitly created virtual dimension. A clustering block index
is automatically maintained for this virtual dimension. The virtual dimension cannot be
manipulated and it uses no space for each row that exists in the table. Pages of the table
are arranged in blocks of equal size, which is the extent size of the table space.

The ORGANIZE BY INSERT TIME clause cannot be specified if the table is a typed table
(SQLSTATE 428DH).

DATA CAPTURE
Indicates whether extra information for inter-database data replication is to be written to the log. This
clause cannot be specified when creating a subtable (SQLSTATE 428DR).

If the clause is not specified and that table is not a typed table, then the default is determined by the
DATA CAPTURE setting of the schema at the time the table is created.

NONE
Indicates that no extra information will be logged.

CHANGES
Indicates that extra information regarding SQL changes to this table will be written to the log.
This option is required if this table will be replicated and the Capture program is used to capture
changes for this table from the log.

If the table is a typed table that is not a subtable, then this option is not supported (SQLSTATE
428DH).

IN tablespace-name,...
Identifies the table spaces in which the table will be created. The table spaces must exist, they must
be in the same database partition group, and they must be all regular DMS or all large DMS or all
SMS table spaces (SQLSTATE 42838) on which the authorization ID of the statement holds the USE
privilege.

A maximum of one IN clause is allowed at the table level. All data table spaces that are used by a
table must have the same page size and extent size.

If only one table space is specified, all table parts are stored in this table space. This clause cannot be
specified when creating a subtable (SQLSTATE 42613) because the table space is inherited from the
root table of the table hierarchy.

If this clause is not specified, the database manager chooses a table space (from the set of existing
table spaces in the database) with the smallest sufficient page size and where the row size is within
the row size limit of the page size on which the authorization ID of the statement has USE privilege.

If more than one table space qualifies, choose the table space in the following order of preference,
depending how the authorization ID of the statement was granted USE privilege on the table space:

1. The authorization ID
2. A role to which the authorization ID is granted
3. A group to which the authorization ID belongs
4. A role to which a group the authorization ID belongs is granted
5. PUBLIC
6. A role to which PUBLIC is granted

If more than one table space still qualifies, the final choice is made by the database manager.

Table space determination can change if:

• Table spaces are dropped or created
• USE privileges are granted or revoked

Chapter 1. Structured Query Language (SQL) 1397

Partitioned tables can have their data partitions spread across multiple table spaces. When multiple
table spaces are specified, all of the table spaces must exist, and they must all be either SMS or
regular DMS or large DMS table spaces (SQLSTATE 42838). The authorization ID of the statement
must hold the USE privilege on all of the specified table spaces.

The sufficient page size of a table is determined by either the byte count of the row or the number of
columns. For more information, see Row Size Limits.

When a table is placed in a large table space:

• The table can be larger than a table in a regular table space. For more information on table and table
space limits, see "SQL limits".

• The table can support more than 255 rows per data page, which can improve space usage on data
pages.

• Indexes that are defined on the table will require an extra 2 bytes per row entry, compared to
indexes defined on a table that resides in a regular table space.

CYCLE or NO CYCLE
Specifies whether the number of data partitions with no explicit table space can exceed the
number of specified table spaces.
CYCLE

Specifies that if the number of data partitions with no explicit table space exceeds the number
of specified table spaces, the table spaces are assigned to data partitions in a round-robin
fashion.

NO CYCLE
Specifies that the number of data partitions with no explicit table space must not exceed the
number of specified tables spaces (SQLSTATE 428G1). This option prevents the round-robin
assignment of table spaces to data partitions.

tablespace-options
Specifies the table space in which indexes or long column values are to be stored. For details on
types of table spaces, see "CREATE TABLESPACE".
INDEX IN tablespace-name

Identifies the table space in which any indexes on a nonpartitioned table or nonpartitioned
indexes on a partitioned table are to be created. The specified table space must exist; it must
be a DMS table space if the table has data in DMS table spaces, or an SMS table space if
the partitioned table has data in SMS table spaces; it must be a table space on which the
authorization ID of the statement holds the USE privilege; and it must be in the same database
partition group as tablespace-name (SQLSTATE 42838).

Specifying which table space will contain indexes can be done when a table is created, or in
the case of partitioned tables, it can be done by specifying the IN clause of the CREATE INDEX
statement for a nonpartitioned index. Checking for the USE privilege on the table space is done
at table creation time, not when an index is created later.

For a nonpartitioned index on a partitioned table, storage of the index is as follows:

• The table space by the IN clause of the CREATE INDEX statement
• The table-level table space that is specified for the INDEX IN clause of the CREATE TABLE

statement
• If neither of the preceding are specified, the index is stored in the table space of the first

attached or visible data partition

For more information about partitioned indexes on partitioned tables, see the description of
the partition-element INDEX IN clause.

LONG IN tablespace-name
Identifies the table spaces in which the values of any long columns are to be stored. Long
columns include those with LOB data types, XML type, distinct types with any of these as
source types, or any columns that are defined with user-defined structured types whose

1398 IBM Db2 V11.5: SQL Reference

values cannot be stored inline. This option is allowed only if the IN clause identifies a DMS
table space.

Note: An automatic storage table space is also a DMS table space.

The specified table space must exist. It can be a regular table space if it is the same table
space in which the data is stored; otherwise, it must be a large DMS table space on which
the authorization ID of the statement holds the USE privilege. It must also be in the same
database partition group as tablespace-name (SQLSTATE 42838).

Specifying which table space will contain long, LOB, or XML columns can only be done when a
table is created. Checking for the USE privilege is done at table creation time, not when a long
or LOB column is added later.

For rules governing the use of the LONG IN clause with partitioned tables, see "Large object
behavior in partitioned tables".

distribution-clause
Specifies the database partitioning or the way the data is distributed across multiple database
partitions.
DISTRIBUTE BY HASH (column-name,...)

Specifies the use of the default hashing function on the specified columns as the distribution
method across database partitions. The specified columns are called a distribution key.

• Each column name must be an unqualified name that identifies a column of the table (SQLSTATE
42703).

• The same column must not be identified more than once (SQLSTATE 42709).
• A column cannot be used as part of a distribution key if its data type is BLOB, CLOB, DBCLOB,

XML, a distinct type based on any of these types, or a structured type (SQLSTATE 42962).
• The distribution key cannot contain a ROW CHANGE TIMESTAMP column (SQLSTATE 429BV).
• A distribution key cannot be specified for a table that is a subtable, because the distribution key

is inherited from the root table in the table hierarchy (SQLSTATE 42613).
• A distribution key cannot contain row begin, row end, or transaction start ID columns.
• If a DISTRIBUTE BY HASH clause is not specified, and if the table resides in a multiple

partition database partition group with multiple database partitions, a default distribution key is
automatically defined.

• The columns of the distribution key must be a subset of the columns that make up any enforced
unique constraints.

If none of the columns satisfy the requirements for a default distribution key, the table is created
without one. Such tables are allowed only in table spaces that are defined on single-partition
database partition groups.

For tables in table spaces that are defined on single-partition database partition groups, any
collection of columns with data types that are valid for a distribution key can be used to define the
distribution key. If you do not specify this clause, no distribution key is created.

For restrictions related to the distribution key, see Rules.

DISTRIBUTE BY RANDOM
Specifies that the database manager will select a distribution key to spread data evenly across all
database partitions of the database partitioning group. There are two methods that the database
manager uses to achieve this:

• Random by unique: If the table includes a unique or primary key, it uses the unique
characteristics of the key columns to create a random spread of the data. The columns of the
unique or primary key are used as the distribution keys.

• Random by generation: If the table does not have a unique or primary key, the database
manager will include a column in the table to generate and store a generated value to use
in the hashing function. The column will be created with the IMPLICITLY HIDDEN clause

Chapter 1. Structured Query Language (SQL) 1399

so that it does not appear in queries unless explicitly included. The value of the column is
automatically generated as new rows are added to the table. By default, the column name is
RANDOM_DISTRIBUTION_KEY. If it collides with the existing column, a non-conflicting name is
generated by the database manager.

DISTRIBUTE BY REPLICATION
Specifies that the data that is stored in the table is physically replicated on each database
partition of the database partition group for the table spaces in which the table is defined. This
means that a copy of all of the data in the table exists on each database partition. This option can
only be specified for a materialized query table (SQLSTATE 42997).

partitioning-clause
Specifies how the data is partitioned within a database partition.
PARTITION BY RANGE range-partition-spec

Specifies the table partitioning scheme for the table.
partition-expression

Specifies the key data over which the range is defined to determine the target data partition of
the data.
column-name

Identifies a column of the table-partitioning key. The column-name must be an unqualified
name that identifies a column of the table (SQLSTATE 42703). The same column must not
be identified more than once (SQLSTATE 42709). No column with a data type that is a
BLOB, CLOB, DBCLOB, XML, distinct type based on any of these types, or structured type
can be used as part of a table-partitioning key (SQLSTATE 42962).

The numeric literals that are used in the range specification are governed by the rules
for numeric literals. All of the numeric literals (except the decimal floating-point special
values) used in ranges corresponding to numeric columns are interpreted as integer,
floating-point or decimal constants, in accordance with the rules specified for numeric
constants. As a result, for decimal floating-point columns, the minimum and maximum
numeric constant value that can be used in the range specification of a data partition is the
smallest DOUBLE value and the largest DOUBLE value, respectively. Decimal floating-point
special values can be used in the range specification. All decimal floating-point special
values are interpreted as greater than MINVALUE and less than MAXVALUE.

The table partitioning columns cannot contain a ROW CHANGE TIMESTAMP column
(SQLSTATE 429BV). The number of identified columns must not exceed 16 (SQLSTATE
54008).

NULLS LAST or NULLS FIRST
Indicates the partition placement of rows that have null values in the table partitioning key
columns. These clauses do not affect the order of rows that are returned in an ORDER BY
clause.
NULLS LAST

Indicates that null values are compared as the highest possible value, and are placed
in a range ending at MAXVALUE.

NULLS FIRST
Indicates that null values are compared as the lowest possible value, and are placed in
a range starting at MINVALUE.

partition-element
Specifies ranges for a data partitioning key and the table space where rows of the table in the
range will be stored.
PARTITION partition-name

Names the data partition. The name must not be the same as any other data partition
for the table (SQLSTATE 42710). If this clause is not specified, the name will be "PART"
followed by the character form of an integer value to make the name unique for the table.

1400 IBM Db2 V11.5: SQL Reference

boundary-spec
Specifies the boundaries of a data partition. The lowest data partition must include a
starting-clause, and the highest data partition must include an ending-clause (SQLSTATE
56016). Data partitions between the lowest and the highest can include either a starting-
clause, ending-clause, or both clauses. If only the ending-clause is specified, the previous
data partition must also have included an ending-clause (SQLSTATE 56016).
starting-clause

Specifies the low end of the range for a data partition. There must be at least one
starting value specified and no more values than the number of columns in the data
partitioning key (SQLSTATE 53038). If fewer values are specified than the number of
columns, the remaining values are implicitly MINVALUE.
STARTING FROM

Introduces the starting-clause.
constant

Specifies a constant value with a data type that is assignable to the data type
of the column-name to which it corresponds (SQLSTATE 53045). The value
must not be in the range of any other boundary-spec for the table (SQLSTATE
56016).

MINVALUE
Specifies a value that is lower than the lowest possible value for the data type
of the column-name to which it corresponds.

MAXVALUE
Specifies a value that is greater than the greatest possible value for the data
type of the column-name to which it corresponds.

INCLUSIVE
Indicates that the specified range values are to be included in the data partition.

EXCLUSIVE
Indicates that the specified constant values are to be excluded from the data
partition. This specification is ignored when MINVALUE or MAXVALUE is specified.

ending-clause
Specifies the high end of the range for a data partition. There must be at least one
starting value specified and no more values than the number of columns in the data
partitioning key (SQLSTATE 53038). If fewer values are specified than the number of
columns, the remaining values are implicitly MAXVALUE.
ENDING AT

Introduces the ending-clause.
constant

Specifies a constant value with a data type that is assignable to the data type
of the column-name to which it corresponds (SQLSTATE 53045). The value
must not be in the range of any other boundary-spec for the table (SQLSTATE
56016).

MINVALUE
Specifies a value that is lower than the lowest possible value for the data type
of the column-name to which it corresponds.

MAXVALUE
Specifies a value that is greater than the greatest possible value for the data
type of the column-name to which it corresponds.

INCLUSIVE
Indicates that the specified range values are to be included in the data partition.

EXCLUSIVE
Indicates that the specified constant values are to be excluded from the data
partition. This specification is ignored when MINVALUE or MAXVALUE is specified.

Chapter 1. Structured Query Language (SQL) 1401

IN tablespace-name
Specifies the table space where the data partition is to be stored. The named table space
must have the same page size, be in the same database partition group, and manage
space in the same way as the other table spaces of the partitioned table (SQLSTATE
42838); it must be a table space on which the authorization ID of the statement holds
the USE privilege. If this clause is not specified, a table space is assigned by default in
a round-robin fashion from the list of table spaces that are specified for the table. If a
table space was not specified for large objects by using the LONG IN clause, large objects
are placed in the same table space as are the rest of the rows for the data partition.
For partitioned tables, the LONG IN clause can be used to provide a list of table spaces.
This list is used in round robin-fashion to place large objects for each data partition. For
rules governing the use of the LONG IN clause with partitioned tables, see "Large object
behavior in partitioned tables".

If the INDEX IN clause is not specified on the CREATE TABLE or the CREATE INDEX
statement, the index is placed in the same table space as the first visible or attached
partition of the table.

INDEX IN tablespace-name
Specifies the table space where the partitioned index on the partitioned table is to be
stored.

The partition-element level INDEX IN clause only affects the storage of partitioned
indexes. Storage of the index is as follows:

• If the INDEX IN clause is specified at the partition level when the table is created, the
partitioned index is stored in the specified table space.

• If the INDEX IN clause is not specified at the partition level when the table is created,
the partitioned index is stored in the table space of the corresponding data partition.

The INDEX IN clause can only be specified if the data table spaces are DMS table spaces
and the table space specified by the INDEX IN clause is a DMS table space. If the data
table space is an SMS table space, an error is returned (SQLSTATE 42839).

LONG IN tablespace-name
Identifies the table spaces in which the values of any long columns are to be stored. Long
columns include those with LOB data types, XML type, distinct types with any of these
as source types, or any columns defined with user-defined structured types whose values
cannot be stored inline. This option is allowed only if the IN clause identifies a DMS table
space.

Note: An automatic storage table space is also a DMS table space.

The specified table space must exist. It can be a regular table space if it is the same table
space in which the data is stored; otherwise, it must be a large DMS table space on which
the authorization ID of the statement holds the USE privilege. It must also be in the same
database partition group as tablespace-name (SQLSTATE 42838).

Specifying which table space will contain long, LOB, or XML columns can only be done
when a table is created. Checking for the USE privilege is done at table creation time, not
when a long or LOB column is added later.

For rules governing the use of the LONG IN clause with partitioned tables, see "Large
object behavior in partitioned tables".

EVERY (constant)
Specifies the width of each data partition range when using the automatically generated
form of the syntax. Data partitions will be created starting at the STARTING FROM
value and containing this number of values in the range. This form of the syntax is
only supported for tables that are partitioned by a single numeric or datetime column
(SQLSTATE 53038).

1402 IBM Db2 V11.5: SQL Reference

If the partitioning key column is a numeric type, the starting value of the first partition
is the value that is specified in the starting-clause. The ending value for the first and all
other partitions is calculated by adding the starting value of the partition to the increment
value specified as constant in the EVERY clause. The starting value for all other partitions is
calculated by taking the starting value for the previous partition and adding the increment
value that is specified as constant in the EVERY clause.

If the partitioning key column is a DATE or a TIMESTAMP, the starting value of the first
partition is the value that is specified in the starting-clause. The ending value for the first
and all other partitions is calculated by adding the starting value of the partition to the
increment value specified as a labeled duration in the EVERY clause. The starting value for
all other partitions is calculated by taking the starting value for the previous partition and
adding the increment value that is specified as a labeled duration in the EVERY clause.

For a numeric column, the EVERY value must be a positive numeric constant, and for a
datetime column, the EVERY value must be a labeled duration (SQLSTATE 53045).

COMPRESS
Specifies whether row compression is to be used for the table.The ddl_compression_def
configuration parameter determines the default value of the COMPRESS keyword.
NO

Row compression is disabled.
YES

Row compression is enabled. Insert and update operations on the table use row compression.
Any XML storage objects that exist are also compressed. For both adaptive and classic row
compression, a table-level compression dictionary is automatically created after the table is
sufficiently populated with data. This also applies to the data in the XML storage object; if there
is sufficient data in the XML storage object, a compression dictionary is automatically created and
XML documents are subject to compression.

Note: The compression that is applied to the XML storage object is the same, regardless of
whether you use adaptive or classic row compression.

For adaptive row compression, page-level compression dictionaries are created or updated as
soon as data is inserted or changed in the table.

ADAPTIVE
Enables adaptive compression, and records are subject to being compressed with a table-level
and a page-level compression dictionary. The functionality of COMPRESS YES ADAPTIVE is a
superset of the functionality of COMPRESS YES STATIC. This is the default when COMPRESS
YES is explicitly specified.

STATIC
Enables classic row compression using a table-level compression dictionary. This is the same
row compression functionality that existed in previous Db2 versions. This is the default when
row compression is used by default but COMPRESS YES is not explicitly specified.

VALUE COMPRESSION
This determines the row format that is to be used. Each data type has a different byte count
depending on the row format that is used. For more information, see Byte Counts. If the table is
a typed table, this option is only supported on the root table of the typed table hierarchy (SQLSTATE
428DR).

The null value is stored using 3 bytes. This is the same or less space than when VALUE COMPRESSION
is not active for columns of all data types, except for CHAR(1). Whether a column is defined as
nullable has no effect on the row size calculation. The zero-length data values for columns whose data
type is VARCHAR, VARGRAPHIC, LONG VARCHAR, LONG VARGRAPHIC, CLOB, DBCLOB, VARBINARY,
BLOB, or XML are to be stored using 2 bytes only, which is less than the storage required when
VALUE COMPRESSION is not active. When a column is defined using the COMPRESS SYSTEM DEFAULT
option, this also allows the system default value for the column to be stored using 3 bytes of total
storage. The row format that is used to support this determines the byte counts for each data type,

Chapter 1. Structured Query Language (SQL) 1403

and tends to cause data fragmentation when updating to or from the null value, a zero-length value, or
the system default value.

WITH RESTRICT ON DROP
Indicates that the table cannot be dropped, and that the table space that contains the table cannot be
dropped.

NOT LOGGED INITIALLY
Any changes that are made to the table by an Insert, Delete, Update, Create Index, Drop Index, or
Alter Table operation in the same unit of work in which the table is created are not logged. For other
considerations when using this option, see the "Notes" section of this statement.

All catalog changes and storage-related information are logged, as are all operations that are done on
the table in subsequent units of work.

Note: If non-logged activity occurs against a table that has the NOT LOGGED INITIALLY attribute
activated, and if a statement fails (causing a rollback), or a ROLLBACK TO SAVEPOINT is executed,
the entire unit of work is rolled back (SQL1476N). Furthermore, the table for which the NOT LOGGED
INITIALLY attribute was activated is marked inaccessible after the rollback has occurred, and can only
be dropped. Therefore, the opportunity for errors within the unit of work in which the NOT LOGGED
INITIALLY attribute is activated should be minimized.

CCSID
Specifies the encoding scheme for string data that is stored in the table. If the CCSID clause is
not specified, the default is CCSID UNICODE for Unicode databases, and CCSID ASCII for all other
databases.
ASCII

Specifies that string data is encoded in the database code page. If the database is a Unicode
database, CCSID ASCII cannot be specified (SQLSTATE 56031).

UNICODE
Specifies that string data is encoded in Unicode. Character data is in UTF-8. Graphic data is not
allowed.

If the database is not a Unicode database, tables can be created with CCSID UNICODE, but the
following rules apply:

• The alternative collating sequence must be specified in the database configuration before
creating the table (SQLSTATE 56031). CCSID UNICODE tables collate with the alternative
collating sequence that is specified in the database configuration.

The only supported alternative collating sequence is IDENTITY_16BIT.
• Graphic types, the XML type, and user-defined types cannot be used in CCSID UNICODE tables

(SQLSTATE 560C1).
• Anchored data types cannot anchor to columns of a table that is created with CCSID UNICODE

(SQLSTATE 428HS).
• Tables cannot have both the CCSID UNICODE clause and the DATA CAPTURE CHANGES clause
specified (SQLSTATE 42613).

• The Explain tables cannot be created with CCSID UNICODE (SQLSTATE 55002).
• Created temporary tables and declared temporary tables cannot be created with CCSID

UNICODE (SQLSTATE 56031).
• CCSID UNICODE tables cannot be created in a CREATE SCHEMA statement (SQLSTATE 53090).
• The exception table for a load operation must have the same CCSID as the target table for the

operation (SQLSTATE 428A5).
• The exception table for a SET INTEGRITY statement must have the same CCSID as the target

table for the statement (SQLSTATE 53090).
• The target table for event monitor data must not be declared as CCSID UNICODE (SQLSTATE

55049).

1404 IBM Db2 V11.5: SQL Reference

• SQL statements are always interpreted in the database code page. In particular, this means
that every character in literals, hex literals, and delimited identifiers must have a representation
in the database code page; otherwise, the character will be replaced with the substitution
character.

Host variables in the application are always in the application code page, regardless of the CCSID of
any tables in the SQL statements that are invoked. The database manager will perform code page
conversions as necessary to convert data between the application code page and the section code
page. The registry variable DB2CODEPAGE can be set at the client to change the application code
page.

SECURITY POLICY
Names the security policy to be associated with the table.
policy-name

Identifies a security policy that already exists at the current server (SQLSTATE 42704).
OPTIONS (table-option-name string-constant, ...)

Table options are used to identify the remote base table. The table-option-name is the name of the
option. The string-constant specifies the setting for the table option. The string-constant must be
enclosed in single quotation marks.

The remote server (the server name that was specified in the CREATE SERVER statement) must be
specified in the OPTIONS clause. The OPTIONS clause can also be used to override the schema or the
unqualified name of the remote base table that is being created.

It is recommended that a schema name is specified. If a remote schema name is not specified, the
qualifier for the table name is used. If the table name has no qualifier, the authorization ID of the
statement is used.

If an unqualified name for the remote base table is not specified, table-name is used.

Rules
• The sum of the byte counts of the columns, including the inline lengths of all structured or XML type

columns, must not be greater than the row size limit that is based on the page size of the table space
(SQLSTATE 54010). For more information, see Byte Counts. For typed tables, the byte count is applied
to the columns of the root table of the table hierarchy, and every additional column introduced by every
subtable in the table hierarchy (extra subtable columns must be considered nullable for byte count
purposes, even if defined as not nullable). There is also an additional 4 bytes of overhead to identify the
subtable to which each row belongs.

• The number of columns in a table cannot exceed 1,012 (SQLSTATE 54011). For typed tables, the total
number of attributes of the types of all of the subtables in the table hierarchy cannot exceed 1010.
For random distribution tables using the random by generation method, the number of columns cannot
exceed 1,011 because of the inclusion of the RANDOM_DISTRIBUTION_KEY column.

• An object identifier column of a typed table cannot be updated (SQLSTATE 42808).
• Any enforced unique or primary key constraint that is defined on the table must be a superset of the

distribution key (SQLSTATE 42997).
• The following rules only apply to multiple database partition databases.

– Tables that are composed only of columns with types LOB, XML, a distinct type based on one of these
types, or a structured type can only be created in table spaces that are defined on single-partition
database partition groups.

– The distribution key definition of a table in a table space that is defined on a multiple partition
database partition group cannot be altered.

– The distribution key column of a typed table must be the OID column.
– Partitioned staging tables are not supported.

• For databases running in a Db2 pureScale environment, the ORGANIZE BY clause cannot be specified
(SQLSTATE 42997).

Chapter 1. Structured Query Language (SQL) 1405

• The following restrictions apply to range-clustered tables:

– A range-clustered table cannot be specified in a Db2 pureScale environment (SQLSTATE 42997).
– A clustering index cannot be created.
– Altering the table to add a column is not supported.
– Altering the table to change the data type of a column is not supported.
– Altering the table to change PCTFREE is not supported.
– Altering the table to set APPEND ON is not supported.
– DETAILED statistics are not available.
– The load utility cannot be used to populate the table.
– Columns cannot be of type XML.
– Cannot be created as a random distribution table.

• The following restrictions apply to random distribution tables:

– Cannot be defined as a typed table
– Cannot be defined as a range-clustered table
– Cannot be defined as a materialized-query-table
– Cannot be defined as a staging table
– For random distribution tables that use the "random by" generation method (this happens when

a random distribution table is created without a unique or primary key), the following additional
restrictions apply:

- Cannot be used as exception tables when constraints are checked in bulk, such as during load
operations or during execution of the SET INTEGRITY statement

- Cannot be used as an explain table
• A table is not protected unless it has a security policy associated with it and it includes either a column

of type DB2SECURITYLABEL or a column defined with the SECURED WITH clause. The former indicates
that the table is a protected table with row level granularity and the latter indicates that the table a
protected table with column level granularity.

• Declaring a column of type DB2SECURITYLABEL fails if the table does not have a security policy
associated with it (SQLSTATE 55064).

• A security policy cannot be added to a typed table (SQLSTATE 428DH), materialized query table, or
staging table (SQLSTATE 428FG).

• An error tolerant nested-table-expression cannot be specified in the fullselect of a materialized-query-
definition (SQLSTATE 428GG).

• When creating a materialized query table and any of the base tables it depends upon are protected with
label-based access control, the following rules apply:

– Row level security

- Only one table in the materialized query table's fullselect can have a column type of
DB2SECURITYLABEL (SQLSTATE 428FG).

- The row security label column must be selected and referenced as a stand-alone column in
the outermost SELECT list in the materialized query table definition (SQLSTATE 428FG). The
corresponding column in the materialized query table will be marked as the row security label
column.

– Column level security

- If a table involved in the materialized query table definition has a column that is protected with
a security label, and that column appears in the materialized query table definition, that column's
security label is inherited by the corresponding column in the materialized query table. See the
examples in this topic for more details.

1406 IBM Db2 V11.5: SQL Reference

– When creating a materialized query table that depends on one or more tables that are protected by
label-based access control, all base tables must have the same security policy object (SQLSTATE,
428FG). The materialized query table is automatically protected with that security policy object.

– The security label that is associated with a materialized query table column is computed as the
aggregate of one or more security labels. This aggregate consists of the security labels that are
associated with the base tables' columns that participate in the definition of that materialized query
table column. The aggregate also consists of the security labels that are associated with any base
table columns that appear in other parts of the materialized query table definition, such as the
WHERE, ORDER BY, and HAVING clauses. The ALTER SECURITY POLICY has a description of how
two security labels are aggregated. See the examples in this topic for more details.

– When a staging table is created for a materialized query table that is protected with label-based
access control, that staging table carries automatic protection like the materialized query table. See
the examples in this topic for more details.

– Label-based access control is enforced for direct access to a materialized query table just as it is
enforced for a regular table. There are no differences from this perspective. When the SQL compiler
services a query through a materialized query table, the label-based access control defined on the
materialized query table itself does not need to be enforced. The SQL compiler uses the materialized
query table which factors in the label-based access control rules from the appropriate base tables.

• The isolation-clause cannot be specified in the full-select of the materialized-query-definition (SQLSTATE
42601).

• Subselect statements that contain a lock-request-clause are not eligible for MQT routing.
• National character data types can be specified only in an MBCS database (SQLSTATE 560AA).
• The following restrictions apply to insert time clustering (ITC) tables:

– ITC tables are not supported in an SMS table space (SQLSTATE 42838).
– Indexes that are defined on ITC tables are not supported in an SMS table space (SQLSTATE 42838).

Notes
• Creating a table with a schema name that does not already exist will result in the implicit creation

of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• If a foreign key is specified:

– All packages with a delete usage on the parent table are invalidated.
– All packages with an update usage on at least one column in the parent key are invalidated.

• Creating a subtable causes invalidation of all packages that depend on any table in table hierarchy.
• VARCHAR and VARGRAPHIC columns that are greater than 4,000 and 2,000 respectively should not be

used as input parameters in functions in SYSFUN schema. Errors will occur when the function is invoked
with an argument value that exceeds these lengths (SQLSTATE 22001).

• The use of NO ACTION or RESTRICT as delete or update rules for referential constraints determines
when the constraint is enforced:
RESTRICT

The delete or update rule is enforced before all other constraints, including those referential
constraints with modifying rules such as CASCADE or SET NULL.

NO ACTION
The delete or update rule is enforced after other referential constraints.

One example where different behavior is evident involves the deletion of rows from a view that is
defined as a UNION ALL of related tables.

 Table T1 is a parent of table T3; delete rule as noted below.
 Table T2 is a parent of table T3; delete rule CASCADE.

 CREATE VIEW V1 AS SELECT * FROM T1 UNION ALL SELECT * FROM T2

Chapter 1. Structured Query Language (SQL) 1407

 DELETE FROM V1

If table T1 is a parent of table T3:

– With a delete rule of RESTRICT, a restrict violation (SQLSTATE 23001) is raised if t3 contains any child
rows for parent keys of T1.

– With a delete rule of NO ACTION, the child rows might be deleted by the delete rule of CASCADE
when deleting rows from T2 before the NO ACTION delete rule is enforced for the deletions from T1.
If deletions from T2 did not result in the deletion of all child rows for parent keys of T1 in T3, then a
constraint violation is raised (SQLSTATE 23504).

Note that the SQLSTATE returned is different depending on whether the delete or update rule is
RESTRICT or NO ACTION.

• For tables in table spaces that are defined on multiple partition database partition groups, consider
table collocation when choosing the distribution keys:

– The tables must be in the same database partition group for collocation. The table spaces can be
different, but must be defined in the same database partition group.

– The distribution keys of the tables must have the same number of columns, and the corresponding
key columns must be database partition-compatible for collocation.

– The choice of distribution key also has an impact on performance of joins. If a table is frequently
joined with another table, consider the joining columns as a distribution key for both tables.

• The NOT LOGGED INITIALLY option is useful for situations where a large result set needs to be created
with data from an alternative source (another table or a file) and recovery of the table is not necessary.
Using this option will save the overhead of logging the data. The following considerations apply when
this option is specified:

– When the unit of work is committed, all changes that were made to the table during the unit of work
are flushed to disk.

– When you run the rollforward utility and it encounters a log record that indicates that a table in the
database was either populated by the Load utility or created with the NOT LOGGED INITIALLY option,
the table will be marked as unavailable. The table will be dropped by the rollforward utility if it later
encounters a DROP TABLE log. Otherwise, after the database is recovered, an error will be issued if
any attempt is made to access the table (SQLSTATE 55019). The only operation that is permitted is to
drop the table.

– Once such a table is backed up as part of a database or table space backup, recovery of the table
becomes possible.

• Use of materialized query tables to optimize query processing: The various types of materialized query
tables use different controls to optimize the processing of queries.

– A REFRESH DEFERRED materialized query table that is defined with ENABLE QUERY OPTIMIZATION
can be used to optimize the processing of queries if each of the following conditions is true:

- CURRENT REFRESH AGE is set to ANY.
- CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION is set such that it includes the

materialized query table type.
- CURRENT QUERY OPTIMIZATION is set to 2 or a value greater than or equal to 5.

Note: CURRENT REFRESH AGE does not affect query routing to MAINTAINED BY FEDERATED_TOOL
materialized query tables.

– A shadow table that is defined with ENABLE QUERY OPTIMIZATION can be used to optimize the
processing of queries based on a replication latency threshold if each of the following conditions is
true:

- CURRENT REFRESH AGE is set to a duration other than zero or ANY.
- CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION is set to contain only REPLICATION or

ALL.

1408 IBM Db2 V11.5: SQL Reference

- CURRENT QUERY OPTIMIZATION is set to 2 or a value greater than or equal to 5.

For a description of the nonzero duration values that can be specified, see "SET CURRENT REFRESH
AGE statement".

– A REFRESH IMMEDIATE materialized query table that is defined with ENABLE QUERY OPTIMIZATION
is always considered for optimization if CURRENT QUERY OPTIMIZATION is set to 2 or a value greater
than or equal to 5.

– For this optimization to be able to use a REFRESH DEFERRED materialized query table that is not
maintained by replication or a REFRESH IMMEDIATE materialized query table, the fullselect must
conform to certain rules in addition to those already described:

- The fullselect must not include any special registers or built-in functions that depend on the value
of a special register.

- The fullselect must not include any global variables.
- The fullselect must not include functions that are not deterministic.

If the query that is specified when creating a materialized query table does not conform to these
rules, a warning is returned (SQLSTATE 01633).

• If a materialized query table is defined with REFRESH IMMEDIATE, or a staging table is defined with
PROPAGATE IMMEDIATE, it is possible for an error to occur when attempting to apply the change
resulting from an insert, update, or delete operation on an underlying table. The error will cause the
failure of the insert, update, or delete operation on the underlying table.

• Materialized query tables or staging tables cannot be used as exception tables when constraints are
checked in bulk, such as during load operations or during execution of the SET INTEGRITY statement.

• Certain operations cannot be performed on a table that is referenced by a materialized query table that
is defined with REFRESH IMMEDIATE, or defined with REFRESH DEFERRED with an associated staging
table:

– IMPORT REPLACE cannot be used.
– ALTER TABLE NOT LOGGED INITIALLY WITH EMPTY TABLE cannot be done.

• In a federated system, nicknames for relational data sources or local tables can be used as the
underlying tables to create a materialized query table. Nicknames for non-relational data sources are
not supported. When a nickname is one of the underlying tables, the REFRESH DEFERRED option must
be used. System-maintained materialized query tables that reference nicknames are not supported in a
partitioned database environment.

• Considerations for transaction-start-ID columns: A transaction-start-ID column contains a null value if
the column allows null values, and there is a row-begin column and the value of the column is unique
from values for row-begin columns that are generated for other transactions. Because the column might
contain null values, it is recommended that you use one of the following methods when retrieving a
value from the column:

COALESCE (transaction_start_id_col, row_begin_col)

CASE WHEN transaction_start_id_col IS NOT NULL
 THEN transaction_start_id_col
 ELSE row_begin_col END

• Defining a system-period temporal table: A system-period temporal table definition includes the
following:

– A system period that is named SYSTEM_TIME, which is defined by using a row-begin column and a
row-end column. See the descriptions of AS ROW BEGIN, AS ROW END, and period-definition.

– A transaction-start-ID column. See the description of AS TRANSACTION START ID.
– A system-period data versioning definition that is specified on a subsequent ALTER TABLE statement

that specifies the ADD VERSIONING action, which includes the name of the associated history table.
See the description of the ADD VERSIONING clause under ALTER TABLE.

Chapter 1. Structured Query Language (SQL) 1409

To ensure that the history table cannot be implicitly dropped when a system-period temporal table is
dropped, use the WITH RESTRICT ON DROP clause in the definition of the history table. A history table
can manually be dropped only when the RESTRICT ON DROP attribute is removed by an ALTER TABLE
statement.

• Defining an application-period temporal table: An application-period temporal table definition includes
an application period named BUSINESS_TIME. The application period is defined using a begin time
stamp column and an end column. See the description of period-definition.

Data change operations on an application-period temporal table might result in an automatic insert of
one or two extra rows when a row is updated or deleted. When an update or delete of a row in an
application-period temporal table is specified for a portion of the period represented by that row, the
row is updated or deleted and one or two rows are automatically inserted to represent the portion of the
row that is not changed. New values are generated for each generated column in an application-period
temporal table for each row that is automatically inserted as a result of an update or delete operation on
the table. If a generated column is defined as part of a unique or primary key, parent key in a referential
constraint, or unique index, it is possible that an automatic insert will violate a constraint or index in
which case an error is returned.

• Considerations for implicitly hidden columns: Creating a table with implicitly hidden columns can
impact the behavior of data movement utilities that are working with the table. When a table contains
implicitly hidden columns, utilities like IMPORT, INGEST, and LOAD require that you specify whether
data for the hidden columns is included in the operation. For example, this might mean that a load
operation runs successfully against a table without any hidden columns, but fails when run against a
table that contains implicitly hidden columns (SQLCODE SQL2437N). Similarly, EXPORT requires that
you specify whether data for the hidden columns is included in the operation.

Data movement utilities must use the DB2_DMU_DEFAULT registry variable, or the
implicitlyhiddeninclude or implicitlyhiddenmissing file type modifiers when working with
tables that contain implicitly hidden columns.

• Transparent DDL: In a federated system, a remote base table can be created, altered, or dropped using
Db2 SQL. This capability is known as transparent DDL. Before a remote base table can be created on
a data source, the federated server must be configured to access that data source. This configuration
includes creating the wrapper for the data source, supplying the server definition for the server where
the remote base table will be located, and creating the user mappings between the federated server
and the data source.

Transparent DDL does impose some limitations on what can be included in the CREATE TABLE
statement:

– Only columns and a primary key can be created on the remote base table.
– Specific clauses that are supported by transparent DDL include:

- column-definition and unique-constraint in the element-list clause
- NOT NULL and PRIMARY KEY in the column-options clause
- OPTIONS

– The remote data source must support:

- The remote column data types to which the database column data types are mapped
- The primary key option in the CREATE TABLE statement

Depending on how the data source responds to requests it does not support, an error might be
returned or the request might be ignored.

When a remote base table is created using transparent DDL, a nickname is automatically created for
that remote base table.

• A referential constraint can be defined in such a way that either the parent table or the dependent table
is a part of a table hierarchy. In such a situation, the effect of the referential constraint depends on the
type of statement:

1410 IBM Db2 V11.5: SQL Reference

1. For an INSERT, UPDATE, or DELETE statement, the constraint ensures that, for each row of the
dependent table (or any of its subtables) that has a non-null foreign key, a row exists in the parent
table (or one of its subtables) with a matching parent key. This rule is enforced against any action
that affects a row of either table, regardless of how that action is initiated.

2. For a DROP TABLE statement:

– If the dropped table is the parent table or dependent table, the constraint is dropped.
– If a supertable of the dropped table is the parent table, the rows of the dropped table are

considered to be deleted from the supertable. The referential constraint is checked and its delete
rule is invoked for each of the deleted rows.

– If a supertable of the dropped table is the dependent table, the constraint is not checked. Deletion
of a row from a dependent table cannot result in violation of a referential constraint.

• Privileges: When any table is created, the definer of the table is granted CONTROL privilege. When a
subtable is created, the SELECT privilege that each user or group has on the immediate supertable is
automatically granted on the subtable with the table definer as the grantor.

• Row size limit: The maximum number of bytes allowed in the row of a row-organized table is dependent
on the page size of the table space in which the table is created (tablspace-name1). The following table
shows the row size limit and number of columns limit associated with each table space page size.

Table 139. Limits for Number of Columns and Row Size in Each Table Space Page Size (row-organized
tables)

Page Size Row Size Limit Column Count Limit

4K 4005 500

8K 8101 1012

16K 16,293 1012

32K 32,677 1012

The actual number of columns for a row-organized table can be further limited by the following formula:

 Total Columns * 8 + Number of LOB Columns * 12 <=
 Row Size Limit for Page Size

A column-organized table can have a maximum of 1012 columns, regardless of page size, where the
byte counts of the columns must not be greater than 32,677.

• Byte counts: The following table contains the byte counts of columns by data type. This is used to
calculate the row size. The byte counts depend on whether VALUE COMPRESSION is active. When
VALUE COMPRESSION is not active, the byte counts also depend on whether the column is nullable. The
byte counts shown apply when row compression is not enabled. If row compression is active, the total
number of bytes used by a row will generally be smaller than for an uncompressed version of the row; it
will never be larger.

If a table is based on a structured type, an additional 4 bytes of overhead is reserved to identify
rows of subtables, regardless of whether subtables are defined. Additional subtable columns must be
considered nullable for byte count purposes, even if defined as not nullable.

Table 140. Byte Counts of Columns by Data Type

Data type VALUE COMPRESSION is
active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable

SMALLINT 4 3 2

INTEGER 6 5 4

BIGINT 10 9 8

Chapter 1. Structured Query Language (SQL) 1411

Table 140. Byte Counts of Columns by Data Type (continued)

Data type VALUE COMPRESSION is
active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable

REAL 6 5 4

DOUBLE 10 9 8

DECIMAL The integral part of (p/
2)+3, where p is the

precision

The integral part of (p/
2)+2, where p is the

precision

The integral part of (p/
2)+1, where p is the

precision

DECFLOAT(16) 10 9 8

DECFLOAT(34) 18 17 16

CHAR(n) n+2 n+1 n

VARCHAR(n) n+2 n+5 (within a table) n+4 (within a table)

LONG VARCHAR2 22 25 24

BINARY n+2 n+1 n

VARBINARY n+2 n+5 (within a table) n+4 (within a table)

GRAPHIC(n) n*2+2 n*2+1 n*2

VARGRAPHIC(n) n*2+2 n*2+5 (within a table) n*2+4 (within a table)

LONG VARGRAPHIC2 22 25 24

DATE 6 5 4

TIME 5 4 3

TIMESTAMP(p) The integral part of (p+1)/
2+9, where p is the

precision of fractional
seconds

The integral part of
(p+1)/2+8, where pis the

precision of fractional
seconds

The integral part of
(p+1)/2+7, where pis the

precision of fractional
seconds

BOOLEAN 3 2 1

XML (without INLINE
LENGTH specified)

82 85 84

XML (with INLINE LENGTH
specified)

INLINE LENGTH +2 INLINE LENGTH +4 INLINE LENGTH +3

Maximum LOB3 length
1024 (without INLINE
LENGTH specified)

70 73 72

Maximum LOB length
8192 (without INLINE
LENGTH specified)

94 97 96

Maximum LOB length
65,536 (without INLINE
LENGTH specified)

118 121 120

Maximum LOB length
524,000 (without INLINE
LENGTH specified)

142 145 144

1412 IBM Db2 V11.5: SQL Reference

Table 140. Byte Counts of Columns by Data Type (continued)

Data type VALUE COMPRESSION is
active1

VALUE COMPRESSION is not active

Column is nullable Column is not nullable

Maximum LOB length
4,190,000 (without
INLINE LENGTH specified)

166 169 168

Maximum LOB length
134,000,000 (without
INLINE LENGTH specified)

198 201 200

Maximum LOB length
536,000,000 (without
INLINE LENGTH specified)

222 225 224

Maximum LOB length
1,070,000,000 (without
INLINE LENGTH specified)

254 257 256

Maximum LOB length
1,470,000,000 (without
INLINE LENGTH specified)

278 281 280

Maximum LOB length
2,147,483,647 (without
INLINE LENGTH specified)

314 317 316

LOB with INLINE LENGTH
specified

INLINE LENGTH + 2 INLINE LENGTH + 5 INLINE LENGTH + 4

1 There is an additional 2 bytes of storage used by each row when VALUE COMPRESSION is active for that row.
2The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated and might be removed in a future
release.
3 Each LOB value has a LOB descriptor in the base record that points to the location of the actual value. The size
of the descriptor varies according to the maximum length defined for the column. When INLINE LENGTH is not
specified for a LOB column, the size of the descriptor is used as the default inline length value.

When determining the byte counts for LOB columns, there are extra bytes to consider when a LOB column is
part of a system temporary table that might get generated for insensitive cursors, scrollable cursors, and other
queries that require temporary space or sorting of data. The number of extra bytes required might go as high
as 70 bytes, depending on the specific query. If the base table is close to the maximum row length for the
pagesize, an error might be returned when processing a query if the system temporary table cannot fit in the
largest available system temporary table space. If an existing system temporary table space is available that
has a 32K page size, then extended row size support is used where possible.

For a distinct type, the byte count is equivalent to the length of the source type of the distinct type. For a
reference type, the byte count is equivalent to the length of the built-in data type on which the reference type is
based. For a structured type, the byte count is equivalent to the INLINE LENGTH + 4. The INLINE LENGTH is the
value specified (or implicitly calculated) for the column in the column-options clause.

The row sizes for the following sample tables assume that VALUE COMPRESSION is not specified:

DEPARTMENT 63 (0 + 3 + 33 + 7 + 3 + 17)
ORG 57 (0 + 3 + 19 + 2 + 15 + 18)

If VALUE COMPRESSION were to be specified, the row sizes would change to:

DEPARTMENT 69 (2 + 5 + 31 + 8 + 5 + 18)
ORG 53 (2 + 4 + 16 + 4 + 12 + 15)

Chapter 1. Structured Query Language (SQL) 1413

Minimum page size requirements for a table with extended row size : When a data row is inserted
or updated in a table with extended row size support and the physical data row length exceeds the
maximum record length for the table space, a subset of the varying length string columns (VARCHAR
or VARGRAPHIC) is stored as large object (LOB) data outside of the data row. The table column in the
base row is replaced by a descriptor that is 24 bytes in size. In order to accommodate the extreme
case where all VARCHAR or VARGRAPHIC data is stored outside of the data row, the database manager
computes the minimum row size using the following method:

– Handles every VARCHAR(n) column where n > 24 as if it were VARCHAR(24)
– Handles every VARGRAPHIC(m) column where m > 12 as if it were VARGRAPHIC(12

The value is computed using the Byte Counts of Columns by Data Type table. The computed result is
then used to find the lower bound of the page size where the table with extended row size can be
created.

• Storage byte counts: The following tables describe the storage byte counts of columns by data type for
data values.

The first table defines the sets of attributes. Those attributes are referenced in the second table, which
contains the details for the byte counts for each data type.

The byte counts depend on whether VALUE COMPRESSION is active. When VALUE COMPRESSION is not
active, the byte counts also depend on whether the column is nullable. The values in the table represent
the amount of storage (in bytes) that is used to store the value. The byte counts shown apply when row
compression is not enabled. If row compression is active, the total number of bytes used by a row will
generally be smaller than for an uncompressed version of the row; it will never be larger.

Table 141. Definitions of the criteria referenced in the related table

Case Data value VALUE COMPRESSION Column nullability

A NULL Not active Nullable

B NULL Active 2 Nullable

C Zero-length Active 2 Not applicable

D System default1 Active 2 Not applicable

E All other data values Not active Nullable

F All other data values Not active Not nullable

G All other data values Active 2 Not applicable

1 When COMPRESS SYSTEM DEFAULT is specified for the column.
2 There is an additional 2 bytes of storage used by each row when VALUE COMPRESSION is active for
that row.

Table 142. Storage Byte Counts Based on Row Format, Data Type, and Data Value

Data type Case A Case B Case C Case D Case E Case F Case G

SMALLINT 3 3 - 3 3 2 4

INTEGER 5 3 - 3 5 4 6

BIGINT 9 3 - 3 9 8 10

REAL 5 3 - 3 5 4 6

DOUBLE 9 3 - 3 9 8 10

DECIMAL The integral part of
(p/2)+2, where p is

the precision

3 - 3 The integral part
of (p/2)+2,

where p is the
precision

The integral part
of (p/2)+1,

where p is the
precision

The integral part
of (p/2)+3,

where p is the
precision

1414 IBM Db2 V11.5: SQL Reference

Table 142. Storage Byte Counts Based on Row Format, Data Type, and Data Value (continued)

Data type Case A Case B Case C Case D Case E Case F Case G

DECFLOAT(16) 9 3 - 3 9 8 10

DECFLOAT(34) 17 3 - 3 17 16 18

CHAR(n) n+1 3 - 3 n+1 n n+2

VARCHAR(n) 5 3 2 2 N+5, where N is
the number of

bytes in the data

N+4, where N is
the number of

bytes in the data

N+2, where N is
the number of

bytes in the data

LONG VARCHAR2 5 3 2 2 25 24 22

BINARY n+1 3 - 3 n+1 n n+2

VARBINARY 5 3 2 2 N+5, where N is
the number of

bytes in the data

N+4, where N is
the number of

bytes in the data

N+2, where N is
the number of

bytes in the data

GRAPHIC(n) n*2+1 3 - 3 n*2+1 n*2 n*2+2

VARGRAPHIC(n) 5 3 2 2 N*2+5, where N
is the number of
bytes in the data

N*2+4, where N
is the number of
bytes in the data

N*2+2, where N
is the number of
bytes in the data

LONG
VARGRAPHIC2

5 3 2 2 25 24 22

DATE 5 3 - - 5 4 6

TIME 4 3 - - 4 3 5

TIMESTAMP(p) The integral part of
(p+1)/2+8, where p
is the precision of
fractional seconds

3 - - The integral part
of (p+1)/2+8,
where p is the

precision of
fractional
seconds

The integral part
of (p+1)/2+7,
where p is the

precision of
fractional
seconds

The integral part
of (p+1)/2+9,
where p is the

precision of
fractional
seconds

BOOLEAN 2 2 - 2 2 1 3

Maximum LOB1
length 1024

5 3 2 2 (60 to 68)+5 (60 to 68)+4 (60 to 68)+2

Maximum LOB
length 8192

5 3 2 2 (60 to 92)+5 (60 to 92)+4 (60 to 92)+2

Maximum LOB
length 65,536

5 3 2 2 (60 to 116)+5 (60 to 116)+4 (60 to 116)+2

Maximum LOB
length 524,000

5 3 2 2 (60 to 140)+5 (60 to 140)+4 (60 to 140)+2

Maximum LOB
length 4,190,000

5 3 2 2 (60 to 164)+5 (60 to 164)+4 (60 to 164)+2

Maximum
LOB length
134,000,000

5 3 2 2 (60 to 196)+5 (60 to 196)+4 (60 to 196)+2

Maximum
LOB length
536,000,000

5 3 2 2 (60 to 220)+5 (60 to 220)+4 (60 to 220)+2

Maximum
LOB length
1,070,000,000

5 3 2 2 (60 to 252)+5 (60 to 252)+4 (60 to 252)+2

Maximum
LOB length
1,470,000,000

5 3 2 2 (60 to 276)+5 (60 to 276)+4 (60 to 276)+2

Maximum
LOB length
2,147,483,647

5 3 2 2 (60 to 312)+5 (60 to 312)+4 (60 to 312)+2

Chapter 1. Structured Query Language (SQL) 1415

Table 142. Storage Byte Counts Based on Row Format, Data Type, and Data Value (continued)

Data type Case A Case B Case C Case D Case E Case F Case G

XML 5 3 - - 85 84 82

1 When COMPRESS SYSTEM DEFAULT is specified for the column.
2 The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated and might be removed in a future release.

• Dimension columns: Because each distinct value of a dimension column is assigned to a different block
of the table, clustering on an expression might be desirable, such as "INTEGER(ORDER_DATE)/100". In
this case, a generated column can be defined for the table, and this generated column can then be used
in the ORGANIZE BY DIMENSIONS clause. If the expression is monotonic with respect to a column of
the table, the database might use the dimension index to satisfy range predicates on that column. For
example, if the expression is simply column-name + some-positive-constant, it is monotonic increasing.
User-defined functions, certain built-in functions, and using more than one column in an expression,
prevent monotonicity or its detection.

Dimensions involving generated columns whose expressions are non-monotonic, or whose
monotonicity cannot be determined, can still be created, but range queries along slice or cell
boundaries of these dimensions are not supported. Equality and IN predicates can be processed by
slices or cells.

A generated column is monotonic if the following is true with respect to the generating function, fn:

– Monotonic increasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)>fn(x1). For example:

 SALARY - 10000

– Monotonic decreasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)<fn(x1). For example:

 -SALARY

– Monotonic non-decreasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)>=fn(x1). For example:

 SALARY/1000

– Monotonic non-increasing.

For every possible pair of values x1 and x2, if x2>x1, then fn(x2)<=fn(x1). For example:

 -SALARY/1000

The expression "PRICE*DISCOUNT" is not monotonic, because it involves more than one column of the
table.

• Range-clustered tables: Organizing a table by key sequence is effective for certain types of tables. The
table should have an integer key that is tightly clustered (dense) over the range of possible values. The
columns of this integer key must not be nullable, and the key should logically be the primary key of
the table. The organization of a range-clustered table precludes the need for a separate unique index
object, providing direct access to the row for a specified key value, or a range of rows for a specified
range of key values. The allocation of all the space for the complete set of rows in the defined key
sequence range is done during table creation, and must be considered when defining a range-clustered
table. The storage space is not available for any other use, even though the rows are initially marked
deleted. If the full key sequence range will be populated with data only over a long period of time, this
table organization might not be appropriate.

• A table can have at most one security policy.
• Referential integrity constraints that are defined on protected tables are enforced. Constraints

violations in this case can be difficult to debug, because the database manager will not allow you

1416 IBM Db2 V11.5: SQL Reference

to see what row has caused a violation if you do not have the appropriate security label or exemptions
credentials.

• When defining the order of columns in a table, frequently updated columns should be placed at the
end of the definition to minimize the amount of data logged for updates. This includes ROW CHANGE
TIMESTAMP columns. ROW CHANGE TIMESTAMP columns are guaranteed to be updated on each row
update.

• Security and replication: Replication can cause data rows from a protected table to be replicated
outside of the database. Care must be taken when setting up replication for a protected table, because
data that is outside of the database cannot be protected.

• Considerations for a multi-partition or Db2 pureScale environment:

– If the CACHE and NO ORDER options are in effect, multiple caches can be active simultaneously.
This can happen at each member in a multi-partition or Db2 pureScale environment. The requests
for next value assignments from different members might not result in the assignment of values in
strict numeric order. Assume, for example, in a multi-partition or Db2 pureScale environment, that
members DB1A and DB1B are using the same sequence, and DB1A gets the cache values in the
range 1 - 20 and DB1B gets the cache values in the range 21 - 40. In this scenario, if DB1A requested
the next value first, then DB1B requested, and then DB1A requested again, the actual order of values
assigned would be 1,21,2. Therefore, to guarantee that sequence numbers are generated in strict
numeric order among multiple members using the same sequence concurrently, specify the ORDER
option.

– In a Db2 pureScale environment, using the ORDER or NO CACHE option ensures that the values
assigned to a sequence which is shared by applications across multiple members are in strict
numeric order. In a Db2 pureScale environment, if ORDER is specified, then NO CACHE is implied
even if CACHE n is specified

• Considerations for row and column access control (RCAC): The ACTIVATE ROW ACCESS CONTROL,
ACTIVATE COLUMN ACCESS CONTROL, DEACTIVATE ROW ACCESS CONTROL, and DEACTIVATE
COLUMN ACCESS CONTROL clauses are not supported. Use the ALTER TABLE statement to activate
or deactivate row or column level access control on a table.

• Considerations for column-organized tables: Create column-organized tables in automatic storage
table spaces only.

The following options are not supported for column-organized tables (underlined options are defaults).
They can, however, be specified for row-organized tables that will be used in the same database and
workloads as column-organized tables.

– ORGANIZE BY {DIMENSIONS | KEY SEQUENCE | INSERT TIME}
– DATA CAPTURE CHANGES
– VALUE COMPRESSION
– COMPRESS YES [ADAPTIVE | STATIC]
– COMPRESS NO
– PARTITION BY RANGE
– FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
– CREATE TABLE OF <type-name1> (to create a typed table)
– PROPAGATE IMMEDIATE
– CHECK
– DETERMINED BY

Structured type columns are not supported.

The columns of a column-organized table must have one of the following data types:

– SMALLINT
– INTEGER
– BIGINT

Chapter 1. Structured Query Language (SQL) 1417

– DECIMAL
– REAL
– DOUBLE
– DECFLOAT
– CHAR (including FOR BIT DATA)
– VARCHAR (including FOR BIT DATA)
– BINARY
– VARBINARY
– GRAPHIC
– VARGRAPHIC
– DATE
– TIME
– TIMESTAMP (n)
– BOOLEAN
– CLOB
– BLOB
– DBCLOB
– NCLOB
– Distinct types of a supported data type

Syntax alternatives
The following alternatives are non-standard. They are supported for compatibility with earlier product
versions or with other database products.

• The following syntax is accepted as the default behavior:

– IN database-name.tablespace-name
– IN DATABASE database-name
– FOR MIXED DATA
– FOR SBCS DATA

• PART can be specified in place of PARTITION.
• PARTITION partition-number can be specified instead of PARTITION partition-name. A partition-number

must not identify a partition that was previously specified in the CREATE TABLE statement. If a
partition-number is not specified, a unique partition number is generated by the database manager.

• VALUES can be specified in place of ENDING AT.
• The CONSTRAINT keyword can be omitted from a column-definition defining a references-clause.
• constraint-name can be specified following FOREIGN KEY (without the CONSTRAINT keyword).
• SUMMARY can optionally be specified after CREATE.
• DEFINITION ONLY can be specified in place of WITH NO DATA.
• PARTITIONING KEY can be specified in place of DISTRIBUTE BY.
• DISTRIBUTE ON can be specified in place of DISTRIBUTE BY when it is followed by the HASH option,

but not when it is followed by the REPLICATION option.
• REPLICATED can be specified in place of DISTRIBUTE BY REPLICATION
• A comma can be used to separate multiple options in the identity-options clause.
• NOMINVALUE, NOMAXVALUE, NOCYCLE, NOCACHE, and NOORDER can be specified in place of NO

MINVALUE, NO MAXVALUE, NO CYCLE, NO CACHE, and NO ORDER, respectively.

1418 IBM Db2 V11.5: SQL Reference

• ADD can be specified before table-option-name string-constant.
• When specifying the value of the datetime special register, NOW() can be specified in place of

CURRENT_TIMESTAMP.

Examples

1. Create table TDEPT in the DEPARTX table space. DEPTNO, DEPTNAME, MGRNO, and ADMRDEPT
are column names. CHAR means the column will contain character data. NOT NULL means that
the column cannot contain a null value. VARCHAR means the column will contain varying-length
character data. The primary key consists of the column DEPTNO.

 CREATE TABLE TDEPT
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6),
 ADMRDEPT CHAR(3) NOT NULL,
 PRIMARY KEY(DEPTNO))
 IN DEPARTX

2. Create table PROJ in the SCHED table space. PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTAFF,
PRSTDATE, PRENDATE, and MAJPROJ are column names. CHAR means the column will contain
character data. DECIMAL means the column will contain packed decimal data. 5,2 means the
following: 5 indicates the number of decimal digits, and 2 indicates the number of digits to the
right of the decimal point. NOT NULL means that the column cannot contain a null value. VARCHAR
means the column will contain varying-length character data. DATE means the column will contain
date information in a three-part format (year, month, and day).

 CREATE TABLE PROJ
 (PROJNO CHAR(6) NOT NULL,
 PROJNAME VARCHAR(24) NOT NULL,
 DEPTNO CHAR(3) NOT NULL,
 RESPEMP CHAR(6) NOT NULL,
 PRSTAFF DECIMAL(5,2) ,
 PRSTDATE DATE ,
 PRENDATE DATE ,
 MAJPROJ CHAR(6) NOT NULL)
 IN SCHED

3. Create a table called EMPLOYEE_SALARY where any unknown salary is considered 0. No table space
is specified, so that the table will be created in a table space selected by the system based on the
rules described for the IN tablespace-name clause.

 CREATE TABLE EMPLOYEE_SALARY
 (DEPTNO CHAR(3) NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 EMPNO CHAR(6) NOT NULL,
 SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT)

4. Create distinct types for total salary and miles and use them for columns of a table created in the
default table space. In a dynamic SQL statement assume the CURRENT SCHEMA special register is
JOHNDOE and the CURRENT PATH is the default ("SYSIBM", "SYSFUN", "JOHNDOE").

If a value for SALARY is not specified it must be set to 0 and if a value for LIVING_DIST is not
specified it must to set to 1 mile.

 CREATE TYPE JOHNDOE.T_SALARY AS INTEGER

 CREATE TYPE JOHNDOE.MILES AS FLOAT

 CREATE TABLE EMPLOYEE
 (ID INTEGER NOT NULL,
 NAME CHAR (30),
 SALARY T_SALARY NOT NULL WITH DEFAULT,
 LIVING_DIST MILES DEFAULT MILES(1))

Chapter 1. Structured Query Language (SQL) 1419

5. Create distinct types for image and audio and use them for columns of a table. No table space is
specified, so that the table will be created in a table space selected by the system based on the rules
described for the IN tablespace-name clause. Assume the CURRENT PATH is the default.

 CREATE TYPE IMAGE AS BLOB (10M)

 CREATE TYPE AUDIO AS BLOB (1G)

 CREATE TABLE PERSON
 (SSN INTEGER NOT NULL,
 NAME CHAR (30),
 VOICE AUDIO,
 PHOTO IMAGE)

6. Create table EMPLOYEE in the HUMRES table space. The constraints defined on the table are the
following:

• The values of department number must lie in the range 10 to 100.
• The job of an employee can only be either "Sales", "Mgr", or "Clerk".
• Every employee that has been with the company since 1986 must make more than $40,500.

Note: If the columns included in the check constraints are nullable they could also be NULL.

 CREATE TABLE EMPLOYEE
 (ID SMALLINT NOT NULL,
 NAME VARCHAR(9),
 DEPT SMALLINT CHECK (DEPT BETWEEN 10 AND 100),
 JOB CHAR(5) CHECK (JOB IN ('Sales','Mgr','Clerk')),
 HIREDATE DATE,
 SALARY DECIMAL(7,2),
 COMM DECIMAL(7,2),
 PRIMARY KEY (ID),
 CONSTRAINT YEARSAL CHECK (YEAR(HIREDATE) > 1986
 OR SALARY > 40500)
)
 IN HUMRES

7. Create a table that is wholly contained in the PAYROLL table space.

 CREATE TABLE EMPLOYEE
 IN PAYROLL

8. Create a table with its data part in ACCOUNTING and its index part in ACCOUNT_IDX.

 CREATE TABLE SALARY.....
 IN ACCOUNTING INDEX IN ACCOUNT_IDX

9. Create a table and log SQL changes in the default format.

 CREATE TABLE SALARY1

or

 CREATE TABLE SALARY1
 DATA CAPTURE NONE

10. Create a table and log SQL changes in an expanded format.

 CREATE TABLE SALARY2
 DATA CAPTURE CHANGES

11. Create a table EMP_ACT in the SCHED table space. EMPNO, PROJNO, ACTNO, EMPTIME, EMSTDATE,
and EMENDATE are column names. Constraints defined on the table are:

• The value for the set of columns, EMPNO, PROJNO, and ACTNO, in any row must be unique.

1420 IBM Db2 V11.5: SQL Reference

• The value of PROJNO must match an existing value for the PROJNO column in the PROJECT table
and if the project is deleted all rows referring to the project in EMP_ACT should also be deleted.

 CREATE TABLE EMP_ACT
 (EMPNO CHAR(6) NOT NULL,
 PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 EMPTIME DECIMAL(5,2),
 EMSTDATE DATE,
 EMENDATE DATE,
 CONSTRAINT EMP_ACT_UNIQ UNIQUE (EMPNO,PROJNO,ACTNO),
 CONSTRAINT FK_ACT_PROJ FOREIGN KEY (PROJNO)
 REFERENCES PROJECT (PROJNO) ON DELETE CASCADE
)
 IN SCHED

A unique index called EMP_ACT_UNIQ is automatically created in the same schema to enforce the
unique constraint.

12. Create a table that is to hold information about famous goals for the ice hockey hall of fame. The
table will list information about the player who scored the goal, the goaltender against who it was
scored, the date, and a description. The description column is nullable.

 CREATE TABLE HOCKEY_GOALS
 (BY_PLAYER VARCHAR(30) NOT NULL,
 BY_TEAM VARCHAR(30) NOT NULL,
 AGAINST_PLAYER VARCHAR(30) NOT NULL,
 AGAINST_TEAM VARCHAR(30) NOT NULL,
 DATE_OF_GOAL DATE NOT NULL,
 DESCRIPTION CLOB(5000))

13. Suppose an exception table is needed for the EMPLOYEE table. One can be created using the
following statement.

 CREATE TABLE EXCEPTION_EMPLOYEE AS
 (SELECT EMPLOYEE.*,
 CURRENT TIMESTAMP AS TIMESTAMP,
 CAST ('' AS CLOB(32K)) AS MSG
 FROM EMPLOYEE
) WITH NO DATA

14. Given the following table spaces with the indicated attributes:

 TBSPACE PAGESIZE USER USERAUTH
 ------------------ ----------- ------ --------
 DEPT4K 4096 BOBBY Y
 PUBLIC4K 4096 PUBLIC Y
 DEPT8K 8192 BOBBY Y
 DEPT8K 8192 RICK Y
 PUBLIC8K 8192 PUBLIC Y

• If RICK creates the following table, it is placed in table space PUBLIC4K since the byte count is less
than 4005; but if BOBBY creates the same table, it is placed in table space DEPT4K, since BOBBY
has USE privilege because of an explicit grant:

 CREATE TABLE DOCUMENTS
 (SUMMARY VARCHAR(1000),
 REPORT VARCHAR(2000))

• If BOBBY creates the following table, it is placed in table space DEPT8K since the byte count is
greater than 4005, and BOBBY has USE privilege because of an explicit grant. However, if DUNCAN
creates the same table, it is placed in table space PUBLIC8K, since DUNCAN has no specific
privileges:

 CREATE TABLE CURRICULUM
 (SUMMARY VARCHAR(1000),
 REPORT VARCHAR(2000),
 EXERCISES VARCHAR(1500))

15. Create a table with a LEAD column defined with the structured type EMP. Specify an INLINE LENGTH
of 300 bytes for the LEAD column, indicating that any instances of LEAD that cannot fit within the 300

Chapter 1. Structured Query Language (SQL) 1421

bytes are stored outside the table (separately from the base table row, similar to the way LOB values
are handled).

 CREATE TABLE PROJECTS (PID INTEGER,
 LEAD EMP INLINE LENGTH 300,
 STARTDATE DATE,
 ...)

16. Create a table DEPT with five columns named DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, and
LOCATION. Column DEPT is to be defined as an IDENTITY column so that a value will always be
generated for it. The values for the DEPT column should begin with 500 and increment by 1.

 CREATE TABLE DEPT
 (DEPTNO SMALLINT NOT NULL
 GENERATED ALWAYS AS IDENTITY
 (START WITH 500, INCREMENT BY 1),
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6),
 ADMRDEPT SMALLINT NOT NULL,
 LOCATION CHAR(30))

17. Create a SALES table that is distributed on the YEAR column, and that has dimensions on the REGION
and YEAR columns. Data will be distributed across database partitions according to hashed values of
the YEAR column. On each database partition, data will be organized into extents based on unique
combinations of values of the REGION and YEAR columns on those database partitions.

 CREATE TABLE SALES
 (CUSTOMER VARCHAR(80),
 REGION CHAR(5),
 YEAR INTEGER)
 DISTRIBUTE BY HASH (YEAR)
 ORGANIZE BY DIMENSIONS (REGION, YEAR)

18. Create a SALES table with a PURCHASEYEARMONTH column that is generated from the
PURCHASEDATE column. Use an expression to create a column that is monotonic with respect to
the original PURCHASEDATE column, and is therefore suitable for use as a dimension. The table
is distributed on the REGION column, and organized within each database partition into extents
according to the PURCHASEYEARMONTH column; that is, different regions will be on different
database partitions, and different purchase months will belong to different cells (or sets of extents)
within those database partitions.

 CREATE TABLE SALES
 (CUSTOMER VARCHAR(80),
 REGION CHAR(5),
 PURCHASEDATE DATE,
 PURCHASEYEARMONTH INTEGER
 GENERATED ALWAYS AS (INTEGER(PURCHASEDATE)/100))
 DISTRIBUTE BY HASH (REGION)
 ORGANIZE BY DIMENSIONS (PURCHASEYEARMONTH)

19. Create a CUSTOMER table with a CUSTOMERNUMDIM column that is generated from the
CUSTOMERNUM column. Use an expression to create a column that is monotonic with respect to
the original CUSTOMERNUM column, and is therefore suitable for use as a dimension. The table is
organized into cells according to the CUSTOMERNUMDIM column, so that there is a different cell
in the table for every 50 customers. If a unique index were created on CUSTOMERNUM, customer
numbers would be clustered in such a way that each set of 50 values would be found in a particular
set of extents in the table.

 CREATE TABLE CUSTOMER
 (CUSTOMERNUM INTEGER,
 CUSTOMERNAME VARCHAR(80),
 ADDRESS VARCHAR(200),
 CITY VARCHAR(50),
 COUNTRY VARCHAR(50),
 CODE VARCHAR(15),
 CUSTOMERNUMDIM INTEGER
 GENERATED ALWAYS AS (CUSTOMERNUM/50))
 ORGANIZE BY DIMENSIONS (CUSTOMERNUMDIM)

1422 IBM Db2 V11.5: SQL Reference

20. Create a remote base table called EMPLOYEE on the Oracle server, ORASERVER. A nickname, named
EMPLOYEE, which refers to this newly created remote base table, will also automatically be created.

 CREATE TABLE EMPLOYEE
 (EMP_NO CHAR(6) NOT NULL,
 FIRST_NAME VARCHAR(12) NOT NULL,
 MID_INT CHAR(1) NOT NULL,
 LAST_NAME VARCHAR(15) NOT NULL,
 HIRE_DATE DATE,
 JOB CHAR(8),
 SALARY DECIMAL(9,2),
 PRIMARY KEY (EMP_NO))
 OPTIONS
 (REMOTE_SERVER 'ORASERVER',
 REMOTE_SCHEMA 'J15USER1',
 REMOTE_TABNAME 'EMPLOYEE')

The following CREATE TABLE statements show how to specify the table name, or the table name and
the explicit remote base table name, to get the required case. The lowercase identifier, employee, is
used to illustrate the implicit folding of identifiers.

Create a remote base table called EMPLOYEE (uppercase characters) on an Informix server, and
create a nickname named EMPLOYEE (uppercase characters) on that table:

 CREATE TABLE employee
 (EMP_NO CHAR(6) NOT NULL,
 ...)
 OPTIONS
 (REMOTE_SERVER 'INFX_SERVER')

If the REMOTE_TABNAME option is not specified, and table-name is not delimited, the remote base
table name will be in uppercase characters, even if the remote data source normally stores names in
lowercase characters.

Create a remote base table called employee (lowercase characters) on an Informix server, and create
a nickname named EMPLOYEE (uppercase characters) on that table:

 CREATE TABLE employee
 (EMP_NO CHAR(6) NOT NULL,
 ...)
 OPTIONS
 (REMOTE_SERVER 'INFX_SERVER',
 REMOTE_TABNAME 'employee')

When creating a table at a remote data source that supports delimited identifiers, use the
REMOTE_TABNAME option and a character string constant that specifies the table name in the
required case.

Create a remote base table called employee (lowercase characters) on an Informix server, and create
a nickname named employee (lowercase characters) on that table:

 CREATE TABLE "employee"
 (EMP_NO CHAR(6) NOT NULL,
 ...)
 OPTIONS
 (REMOTE_SERVER 'INFX_SERVER')

If the REMOTE_TABNAME option is not specified, and table-name is delimited, the remote base table
name will be identical to table-name.

21. Create a range-clustered table that can be used to locate a student using a student ID. For each
student record, include the school ID, program ID, student number, student ID, student first name,
student last name, and student grade point average (GPA).

 CREATE TABLE STUDENTS
 (SCHOOL_ID INTEGER NOT NULL,
 PROGRAM_ID INTEGER NOT NULL,
 STUDENT_NUM INTEGER NOT NULL,
 STUDENT_ID INTEGER NOT NULL,
 FIRST_NAME CHAR(30),
 LAST_NAME CHAR(30),

Chapter 1. Structured Query Language (SQL) 1423

 GPA DOUBLE)
 ORGANIZE BY KEY SEQUENCE
 (STUDENT_ID
 STARTING FROM 1
 ENDING AT 1000000)
 DISALLOW OVERFLOW

The size of each record is the sum of the columns, plus alignment, plus the range-clustered table row
header. In this case, the row size is 98 bytes: 4 + 4 + 4 + 4 + 30 + 30 + 8 + 3 (for nullable columns)
+ 1 (for alignment) + 10 (for the header). With a 4-KB page size (or 4096 bytes), after accounting for
page overhead, there are 4038 bytes available, enough room for 41 records per page. Allowing for 1
million student records, there is a need for (1 million divided by 41 records per page) 24,391 pages.
With two additional pages for table overhead, the final number of 4-KB pages that are allocated when
the table is created is 24,393.

22. Create a table named DEPARTMENT with a functional dependency that has no specified constraint
name.

 CREATE TABLE DEPARTMENT
 (DEPTNO SMALLINT NOT NULL,
 DEPTNAME VARCHAR(36) NOT NULL,
 MGRNO CHAR(6),
 ADMRDEPT SMALLINT NOT NULL,
 LOCATION CHAR(30),
 CHECK (DEPTNAME DETERMINED BY DEPTNO) NOT ENFORCED)

23. Create a table with protected rows.

 CREATE TABLE TOASTMASTERS
 (PERFORMANCE DB2SECURITYLABEL,
 POINTS INTEGER,
 NAME VARCHAR(50))
 SECURITY POLICY CONTRIBUTIONS

24. Create a table with protected columns.

 CREATE TABLE TOASTMASTERS
 (PERFORMANCE CHAR(8),
 POINTS INTEGER COLUMN SECURED WITH CLUBPOSITION,
 NAME VARCHAR(50))
 SECURITY POLICY CONTRIBUTIONS

25. Create a table with protected rows and columns.

 CREATE TABLE TOASTMASTERS
 (PERFORMANCE DB2SECURITYLABEL,
 POINTS INTEGER COLUMN SECURED WITH CLUBPOSITION,
 NAME VARCHAR(50))
 SECURITY POLICY CONTRIBUTIONS

26. Large objects for a partitioned table reside, by default, in the same table space as the data. This
default behavior can be overridden by using the LONG IN clause to specify one or more table spaces
for the large objects. Create a table named DOCUMENTS whose large object data is to be stored (in a
round-robin fashion for each data partition) in table spaces TBSP1 and TBSP2.

 CREATE TABLE DOCUMENTS
 (ID INTEGER,
 CONTENTS CLOB)
 LONG IN TBSP1, TBSP2
 PARTITION BY RANGE (ID)
 (STARTING 1 ENDING 1000
 EVERY 100)

Alternatively, use the long form of the syntax to explicitly identify a large table space for each data
partition. In this example, the CLOB data for the first data partition is placed in LARGE_TBSP3, and
the CLOB data for the remaining data partitions is spread across LARGE_TBSP1 and LARGE_TBSP2 in
a round-robin fashion.

 CREATE TABLE DOCUMENTS
 (ID INTEGER,
 CONTENTS CLOB)

1424 IBM Db2 V11.5: SQL Reference

 LONG IN LARGE_TBSP1, LARGE_TBSP2
 PARTITION BY RANGE (ID)
 (STARTING 1 ENDING 100
 IN TBSP1 LONG IN LARGE_TBSP3,
 STARTING 101 ENDING 1000
 EVERY 100)

27. Create a partitioned table named ACCESSNUMBERS having two data partitions. The row (10, NULL)
is to be placed in the first partition, and the row (NULL, 100) is to be placed in the second (last) data
partition.

 CREATE TABLE ACCESSNUMBERS
 (AREA INTEGER,
 EXCHANGE INTEGER)
 PARTITION BY RANGE (AREA NULLS LAST, EXCHANGE NULLS FIRST)
 (STARTING (1,1) ENDING (10,100),
 STARTING (11,1) ENDING (MAXVALUE,MAXVALUE))

Because null values in the second column are sorted first, the row (11, NULL) would sort below the
low boundary of the last data partition (11, 1); attempting to insert this row returns an error. The row
(12, NULL) would fall within the last data partition.

28. Create a table named RATIO having a single data partition and partitioning column PERCENT.

 CREATE TABLE RATIO
 (PERCENT INTEGER)
 PARTITION BY RANGE (PERCENT)
 (STARTING (MINVALUE) ENDING (MAXVALUE))

This table definition allows any integer value for column PERCENT to be inserted. The following
definition for the RATIO table allows any integer value between 1 and 100 inclusive to be inserted
into column PERCENT.

 CREATE TABLE RATIO
 (PERCENT INTEGER)
 PARTITION BY RANGE (PERCENT)
 (STARTING 0 EXCLUSIVE ENDING 100 INCLUSIVE)

29. Create a table named MYDOCS with two columns: one is an identifier, and the other stores XML
documents.

 CREATE TABLE MYDOCS
 (ID INTEGER,
 DOC XML)
 IN HLTBSPACE

30. Create a table named NOTES with four columns, including one for storing XML-based notes.

 CREATE TABLE NOTES
 (ID INTEGER,
 DESCRIPTION VARCHAR(255),
 CREATED TIMESTAMP,
 NOTE XML)

31. Create a table, EMP_INFO, that contains a phone number and address for each employee. Include a
ROW CHANGE TIMESTAMP column in the table to track the modification of employee information.

CREATE TABLE EMP_INFO
 (EMPNO CHAR(6) NOT NULL,
 EMP_INFOCHANGE TIMESTAMP NOT NULL GENERATED ALWAYS
 FOR EACH ROW ON UPDATE
 AS ROW CHANGE TIMESTAMP,
 EMP_ADDRESS VARCHAR(300),
 EMP_PHONENO CHAR(4),
 PRIMARY KEY (EMPNO))

32. Create a partitioned table named DOCUMENTS having two data partitions:

• The data object in the first partition resides in table space TBSP11. The partitioned index partition
on the partition resides in table space TBSP21. The XML data object resides in table space TBSP31.

Chapter 1. Structured Query Language (SQL) 1425

• The data object in the second partition resides in table space TBSP12. The partitioned index
partition on the partition resides in table space TBSP22. The XML data object resides in table space
TBSP32.

The table level INDEX IN clause has no impact on table space selection for partitioned indexes.

 CREATE TABLE DOCUMENTS
 (ID INTEGER,
 CONTENTS XML) INDEX IN TBSPX
 PARTITION BY (ID NULLS LAST)
 (STARTING FROM 1 INCLUSIVE ENDING AT 100 INCLUSIVE
 IN TBSP11 INDEX IN TBSP21 LONG IN TBSP31,
 STARTING FROM 101 INCLUSIVE ENDING AT 200 INCLUSIVE
 IN TBSP21 INDEX IN TBSP22 LONG IN TBSP32)

33. Create a partitioned table named SALES having two data partitions:

• The data object in the first partition resides in table space TBSP11. The partitioned index partition
on the partition resides in table space TBSP21.

• The data object in the second partition resides in table space TBSP12. The partitioned index object
resides in table space TBSP22.

The table level INDEX IN clause has no impact on table space selection for partitioned indexes.

 CREATE TABLE SALES
 (SID INTEGER,
 AMOUNT INTEGER) INDEX IN TBSPX
 PARTITION BY RANGE (SID NULLS LAST)
 (STARTING FROM 1 INCLUSIVE ENDING AT 100 INCLUSIVE
 IN TBSP11 INDEX IN TBSP21,
 STARTING FROM 101 INCLUSIVE ENDING AT 200 INCLUSIVE
 IN TBSP12 INDEX IN TBSP22)

34. Create a table named BOOKS with four columns, including one named DATE_ADDED, which inserts
the current TIMESTAMP by default.

 CREATE TABLE BOOKS
 (ISBN_NUM INTEGER,
 TITLE VARCHAR(255),
 AUTHOR VARCHAR(255),
 DATE_ADDED TIMESTAMP WITH DEFAULT CURRENT TIMESTAMP)

35. Create a Unicode table called STUDENTS in a non-Unicode database. Assume that the database
was created using code set 1252 and territory CA and the ALT_COLLATE database configuration
parameter was updated to IDENTITY_16BIT.

 CREATE TABLE STUDENTS (
 STUDENTID INT NOT NULL,
 FAMILY_NAME VARCHAR(36) NOT NULL,
 GIVEN_NAME VARCHAR(36) NOT NULL,
 PRIMARY KEY(STUDENTID))
 CCSID UNICODE

36. Create a table called TDEPT_TEMP, based on the TDEPT table that is created in Example 1.

 CREATE TABLE TDEPT_TEMP LIKE TDEPT

The TDEPT_TEMP table will have the same definition as TDEPT except that the primary key will not be
defined and a default table space will be implicitly chosen.

37. Create a column-organized user-maintained materialized query table on column-organized table
CDE.TDEPT.

 CREATE TABLE mqt_tdept AS
 (SELECT *
 FROM cde.tdept
 WHERE deptno BETWEEN 10 AND 20)
 DATA INITIALLY DEFERRED
 REFRESH DEFERRED
 MAINTAINED BY USER
 ORGANIZE BY COLUMN

1426 IBM Db2 V11.5: SQL Reference

38. Column security labels inherited by a materialized query table.

 CREATE SECURITY LABEL COMPONENT level_array ARRAY ['A', 'B', 'C']

 CREATE SECURITY POLICY P COMPONENTS level_array WITH DB2LBACRULES

 CREATE SECURITY LABEL P.A COMPONENT level_array 'A'

 CREATE SECURITY LABEL P.B COMPONENT level_array 'B'

 CREATE SECURITY LABEL P.C COMPONENT level_array 'C'

 CREATE TABLE t1 (c1 INT, c2 INT SECURED WITH B, c3 REAL SECURED WITH A)
 SECURITY POLICY P

 CREATE TABLE t2 (c4 REAL, c5 INT SECURED WITH C, c6 DB2SECURITYLABEL)
 SECURITY POLICY P

Generate a materialized query table

CREATE TABLE m1 AS
 (SELECT c1, c3, c5, c6 FROM t1,t2 WHERE c2 !=100)
 DATA INITALLY DEFERRED REFRESH DEFERRED

The security label of t1.c2 is used to compute security labels of all columns of m1 because it appears
in the predicates of the query. The label-based access control properties of the materialized query
table m1 are:

• Security policy = P
• Security label of column m1.c1 = P.B
• Security label of column m1.c3 = P.A
• Security label of column m1.c5 = P.B
• Security label of column m1.c6 = P.B and it is also DB2SECURITYLABEL.

A staging table for a materialized query table is protected with label-based access control. Staging
table st1 is defined as:

 CREATE TABLE st1 FOR m1 PROPAGATE IMMEDIATE

The label-based access control properties of the staging table st1 are:

• Security policy = P
• Security label of column st1.c1 = P.B
• Security label of column st1.c3 = P.A
• Security label of column st1.c5 = P.B
• Security label of column st1.c6 = P.B and it is also DB2SECURITYLABEL.

39. The following example shows you how to create a shadow table called T1_SHADOW that is based on
the row-organized table T1.

a. Create the base table and define a primary key. The primary key on the base table must be
included in the select list of the shadow table. The primary key on the shadow table is required
to provide a one-to-one mapping for each row in the base table to the corresponding row in the
shadow table. The primary key also facilitates maintenance of the shadow table.

CREATE TABLE t1 (
 c1 INTEGER NOT NULL,
 c2 INTEGER
) ORGANIZE BY ROW;

ALTER TABLE t1
 ADD CONSTRAINT t1_pk PRIMARY KEY(c1);

b. Create the shadow table:

CREATE TABLE t1_shadow AS
 (SELECT c1, c2 FROM t1)

Chapter 1. Structured Query Language (SQL) 1427

 DATA INITIALLY DEFERRED
 REFRESH DEFERRED
 MAINTAINED BY REPLICATION
 ORGANIZE BY COLUMN;

SET INTEGRITY FOR t1_shadow ALL IMMEDIATE UNCHECKED;

ALTER TABLE t1_shadow
 ADD CONSTRAINT t1_shadow_pk PRIMARY KEY (c1);

40. Create a table that is named STRING_UNITS, which demonstrates each possible string unit
specification.

CREATE TABLE string_units
 (c1 VARCHAR(10),
 c2 VARCHAR(10 OCTETS),
 c3 VARCHAR(10 CODEUNITS32),
 c4 VARGRAPHIC(10),
 c5 VARGRAPHIC(10 CODEUNITS16),
 c6 VARGRAPHIC(10 CODEUNITS32))

The columns have the following string units:

• c1 = OCTETS, if the environment string units is SYSTEM; CODEUNITS32 if the environment string
units is CODEUNITS32

• c2 = OCTETS
• c3 = CODEUNITS32
• c4 = CODEUNITS16, if the environment string units is SYSTEM; CODEUNITS32 if the environment

string units is CODEUNITS32
• c5 = CODEUNITS16
• c6 = CODEUNITS32

Environment string units can be set with the NLS_STRING_UNITS session level global variable. If the
NLS_STRING_UNITS session level global variable is not set or is null, the environment string units are
determined by the value of the string_units database configuration parameter.

41. Create a random distribution table using the random by unique method. The distribution keys are
automatically set to both keys of the index: ID and NAME.

CREATE TABLE RAND_BY_UNIQUE (ID BIGINT NOT NULL,
 NAME CHAR(25) NOT NULL,
 DESCRIPTION VARCHAR(1000),
 PRIMARY KEY(ID, NAME)) DISTRIBUTE BY RANDOM

42. Create a random distribution table using the random by generation method. The distribution key is
set to an internal column RANDOM_DISTRIBUTION_KEY, which is hidden from SQL unless explicitly
specified.

CREATE TABLE RAND_BY_GENERATION (C1 BIGINT) DISTRIBUTE BY RANDOM

CREATE TABLESPACE
The CREATE TABLESPACE statement defines a new table space within the database, assigns containers to
the table space, and records the table space definition and attributes in the catalog.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

1428 IBM Db2 V11.5: SQL Reference

Authorization
The privileges that are held by the authorization ID of the statement must include SYSCTRL or SYSADM
authority.

Chapter 1. Structured Query Language (SQL) 1429

Syntax
CREATE

LARGE

REGULAR

SYSTEM

USER

TEMPORARY

TABLESPACE tablespace-name

IN
DATABASE PARTITION GROUP

db-partition-group-name

PAGESIZE integer

K

MANAGED BY AUTOMATIC STORAGE storage-group size-attributes

MANAGED BY SYSTEM system-containers

DATABASE database-containers size-attributes

EXTENTSIZE number-of-pages

integer K

M

PREFETCHSIZE AUTOMATIC

number-of-pages

integer K

M

BUFFERPOOL bufferpool-name

OVERHEAD number-of-milliseconds

INHERIT

NO FILE SYSTEM CACHING

FILE SYSTEM CACHING

TRANSFERRATE number-of-milliseconds

INHERIT

DATA TAG integer-constant

INHERIT

NONE

DROPPED TABLE RECOVERY ON

OFF

Storage-group

USING STOGROUP storagegroup-name

1430 IBM Db2 V11.5: SQL Reference

Size-attributes

AUTORESIZE NO

YES

INITIALSIZE integer K

M

G

INCREASESIZE integer PERCENT

K

M

G

MAXSIZE integer K

M

G

NONE

System-containers

USING (

,

'container-string')

on-db-partitions-clause

Database-containers

USING container-clause

on-db-partitions-clause

Container-clause

(

,

FILE

DEVICE

'container-string' number-of-pages

integer K

M

G

)

On-db-partitions-clause
ON DBPARTITIONNUM

DBPARTITIONNUMS

(

,

db-partition-number1

TO db-partition-number2

)

Chapter 1. Structured Query Language (SQL) 1431

Description
LARGE, REGULAR, SYSTEM TEMPORARY, or USER TEMPORARY

Specifies the type of table space that is to be created. If no type is specified, the default is determined
by the MANAGED BY clause.
LARGE

Stores all permanent data. This type is only allowed on database-managed space (DMS) table
spaces. It is also the default type for DMS table spaces when no type is specified. When a table is
placed in a large table space:

• The table can be larger than a table in a regular table space. For more information on table and
table space limits, see SQL and XML limits.

• The table can support more than 255 rows per data page, which can improve space utilization
on data pages.

• Indexes that are defined on the table will require an extra 2 bytes per row entry, compared to
indexes defined on a table that resides in a regular table space.

REGULAR
Stores all permanent data. This type applies to both DMS and SMS table spaces. This is the only
type that is allowed for SMS table spaces, and it is also the default type for SMS table spaces
when no type is specified.

SYSTEM TEMPORARY
Stores temporary tables, work areas that are used by the database manager to perform operations
such as sorts or joins. A database must always have at least one SYSTEM TEMPORARY table
space, because temporary tables can only be stored in such a table space. A temporary table
space is created automatically when a database is created.

USER TEMPORARY
Stores created temporary tables and declared temporary tables. No user temporary table spaces
exist when a database is created. To allow the definition of created temporary tables or declared
temporary tables, at least one user temporary table space should be created with appropriate USE
privileges.

tablespace-name
Names the table space. This is a one-part name. It is an SQL identifier (either ordinary or delimited).
The tablespace-name must not identify a table space that already exists in the catalog (SQLSTATE
42710). The tablespace-name must not begin with the characters 'SYS' (SQLSTATE 42939).

IN DATABASE PARTITION GROUP db-partition-group-name
Specifies the database partition group for the table space. The database partition group must exist.
The only database partition group that can be specified when creating a SYSTEM TEMPORARY table
space is IBMTEMPGROUP. The DATABASE PARTITION GROUP keywords are optional.

If the database partition group is not specified, the default database partition group
(IBMDEFAULTGROUP) is used for REGULAR, LARGE, and USER TEMPORARY table spaces. For SYSTEM
TEMPORARY table spaces, the default database partition group IBMTEMPGROUP is used.

PAGESIZE integer [K]
Defines the size of pages that are used for the table space. The valid values for integer without the
suffix K are 4096, 8192, 16384, or 32768. The valid values for integer with the suffix K are 4, 8, 16, or
32. Any number of spaces is allowed between integer and K, including no space. An error occurs if the
page size is not one of these values (SQLSTATE 428DE), or if the page size is not the same as the page
size of the buffer pool that is associated with the table space (SQLSTATE 428CB).

The default value is provided by the pagesize database configuration parameter, which is set when
the database is created.

MANAGED BY AUTOMATIC STORAGE
Specifies that the table space is to be an automatic storage table space. If no storage groups are
defined, an error is returned (SQLSTATE 55060).

1432 IBM Db2 V11.5: SQL Reference

The database manager automatically decides how the automatic storage table space is initially
created. Temporary table spaces are initialized as system-managed space (SMS) table space and
permanent table spaces are initialized as database-managed space (DMS) table space. When creating
a permanent table space and the type of table space is not specified, the default behavior is to create
a large table space. With an automatic storage table space, the database manager determines which
containers are to be assigned to the table space, based on the storage paths that are associated with
the storage group the table space uses.

storage-group
Specify the storage group for an automatic storage table space.
USING STOGROUP

For an automatic storage table space, identifies the storage group for the table space in which
the table space data will be stored. If a storagegroup-name is not specified, then the currently
designated default storage group is used. This clause only applies to automatic storage table
spaces (SQLSTATE 42613).

storagegroup-name
Identifies the storage group in which table space data will be stored. storagegroup-name must
identify a storage group that exists at the current server (SQLSTATE 42704). This is a one-part
name.

size-attributes
Specify the size attributes for an automatic storage table space or a DMS table space that is not an
automatic storage table space. SMS table spaces are not auto-resizable.
AUTORESIZE

Specifies whether the auto-resize capability of a DMS table space or an automatic storage table
space is to be enabled. Auto-resizable table spaces automatically increase in size when they
become full. The default is NO for DMS table spaces and YES for automatic storage table spaces.
NO

Specifies that the auto-resize capability of a DMS table space or an automatic storage table
space is to be disabled.

YES
Specifies that the auto-resize capability of a DMS table space or an automatic storage table
space is to be enabled.

INITIALSIZE integer K | M | G
Specifies the initial size, per database partition, of an automatic storage table space. This option
is only valid for automatic storage table spaces. The integer value must be followed by K (for
kilobytes), M (for megabytes), or G (for gigabytes). The actual value that is used might be slightly
smaller than what was specified, because the database manager strives to maintain a consistent
size across containers in the table space. Moreover, if the table space is auto-resizable and the
initial size is not large enough to contain metadata that must be added to the new table space,
the database manager will continue to extend the table space by the value of INCREASESIZE
until enough space exists. If the INITIALSIZE clause is not specified, the database manager
determines an appropriate value. The value for integer must be at least 48 K.

INCREASESIZE integer PERCENT or INCREASESIZE integer K | M | G
Specifies the amount, per database partition, by which a table space that is enabled for auto-
resize will automatically be increased when the table space is full, and a request for space has
been made. The integer value must be followed by:

• PERCENT to specify the amount as a percentage of the table space size at the time that a
request for space is made. When PERCENT is specified, the integer value must be between 0
and 100 (SQLSTATE 42615).

• K (for kilobytes), M (for megabytes), or G (for gigabytes) to specify the amount in bytes.

The actual value that is used might be slightly smaller or larger than what was specified, because
the database manager strives to maintain consistent growth across containers in the table space.
If the table space is auto-resizable, but the INCREASESIZE clause is not specified, the database
manager determines an appropriate value.

Chapter 1. Structured Query Language (SQL) 1433

MAXSIZE integer K | M | G or MAXSIZE NONE
Specifies the maximum size to which a table space that is enabled for auto-resize can
automatically be increased. If the table space is auto-resizable, but the MAXSIZE clause is not
specified, the default is NONE.
integer

Specifies a hard limit on the size, per database partition, to which a DMS table space or an
automatic storage table space can automatically be increased. The integer value must be
followed by K (for kilobytes), M (for megabytes), or G (for gigabytes). The actual value that is
used might be slightly smaller than what was specified, because the database manager strives
to maintain consistent growth across containers in the table space.

NONE
Specifies that the table space is to be allowed to grow to file system capacity, or to the
maximum table space size (described in "SQL and XML limits").

MANAGED BY SYSTEM
Specifies that the table space is to be an SMS table space.

MANAGED BY SYSTEM cannot be specified in a Db2 pureScale environment (SQLSTATE 42997).

Important: The SMS table space type is deprecated for user-defined permanent table spaces
and might be removed in a future release. The SMS table space type is not deprecated
for catalog and temporary table spaces. For more information, see "SMS permanent table
spaces have been deprecated" at http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/
com.ibm.db2.luw.wn.doc/doc/i0058748.html.

system-containers
Specify the containers for an SMS table space.
USING ('container-string', ...)

For an SMS table space, identifies one or more containers that will belong to the table space and
in which the table space data will be stored. The container-string cannot exceed 240 bytes in
length.

Each container-string can be an absolute or relative directory name.

The directory name, if not absolute, is relative to the database directory, and can be a path name
alias (or symbolic link) to storage that is not physically associated with the database directory. For
example, dbdir/work/c1 might be a symbolic link to a separate file system.

If any component of the directory name does not exist, it is created by the database manager.
When a table space is dropped, all components created by the database manager are deleted. If
the directory identified by container-string exists, it must not contain any files or subdirectories
(SQLSTATE 428B2).

The format of container-string depends on the operating system.

Operating system Format of absolute path name

Linux
AIX

An absolute path name begins with a forward
slash (/)

Windows An absolute directory path name begins with a
drive letter and a colon (:)

A relative path name on any platform does not begin with an operating system-dependent
character.

For file-level protocols, such as NAS and CIFS, remote resources (such as LAN-redirected drives
or NFS-mounted file systems) are currently supported only when the following technologies are
used:

• Network Appliance Filers
• IBM Network Attached Storage

1434 IBM Db2 V11.5: SQL Reference

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0058748.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0058748.html

• NEC iStorage S2100, S2200, or S4100
• NEC Storage NS Series with a database server on Windows

Note: NEC Storage NS Series is supported only with the use of an uninterrupted power supply
(UPS); continuous UPS (rather than standby) is recommended.

An NFS-mounted file system on AIX must be mounted in uninterruptible mode using the -o
nointr option.

Block-level protocols, such as iSCSI and FCP, are supported by any backend storage that has
non-volatile RAM or battery backup. The storage technology must guarantee that successful
writes are not lost in the event of failure, such as a power outage.

on-db-partitions-clause
Specifies the database partition or partitions on which the containers are created in a partitioned
database. If this clause is not specified, then the containers are created on the database
partitions in the database partition group that are not explicitly specified in any other on-db-
partitions-clauses. For a SYSTEM TEMPORARY table space defined on database partition group
IBMTEMPGROUP, when the on-db-partitions-clause is not specified, the containers will also be
created on all new database partitions added to the database.

MANAGED BY DATABASE
Specifies that the table space is to be a DMS table space. When the type of table space is not
specified, the default behavior is to create a large table space.

MANAGED BY DATABASE cannot be specified in a Db2 pureScale environment (SQLSTATE 42997).

Important: The DMS table space type is deprecated for user-defined permanent table spaces
and might be removed in a future release. The DMS table space type is not deprecated
for catalog and temporary table spaces. For more information, see "DMS permanent table
spaces have been deprecated" at http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/
com.ibm.db2.luw.wn.doc/doc/i0060577.html.

database-containers
Specify the containers for a DMS table space.
USING

Introduces a container-clause.
container-clause

Specifies the containers for a DMS table space.
(FILE|DEVICE 'container-string' number-of-pages, ...)

For a DMS table space, identifies one or more containers that will belong to the table space
and in which the table space data will be stored. The type of the container (either FILE or
DEVICE) and its size (in PAGESIZE pages) are specified. The size can also be specified as an
integer value followed by K (for kilobytes), M (for megabytes), or G (for gigabytes). If specified
in this way, the floor of the number of bytes divided by the pagesize is used to determine the
number of pages for the container. A mixture of FILE and DEVICE containers can be specified.
The container-string cannot exceed 254 bytes in length.

For a FILE container, container-string must be an absolute or relative file name. The file name,
if not absolute, is relative to the database directory. If any component of the directory name
does not exist, it is created by the database manager. If the file does not exist, it will be
created and initialized to the specified size by the database manager. When a table space is
dropped, all components that are created by the database manager are deleted.

Note: If the file exists, it is overwritten, and if it is smaller than specified, it is extended. The
file will not be truncated if it is larger than specified.

For a DEVICE container, container-string must be a device name. The device must already
exist.

All containers must be unique across all databases. A container can belong to only one table
space. The size of the containers can differ; however, optimal performance is achieved when

Chapter 1. Structured Query Language (SQL) 1435

http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060577.html
http://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/i0060577.html

all containers are the same size. The exact format of container-string depends on the operating
system.

For file-level protocols, such as NAS and CIFS, remote resources (such as LAN-redirected
drives or NFS-mounted file systems) are currently supported only when the following
technologies are used:

• Network Appliance Filers
• IBM Network Attached Storage
• NEC iStorage S2100, S2200, or S4100
• NEC Storage NS Series with a database server on Windows

Note: NEC Storage NS Series is supported only with the use of an uninterrupted power
supply (UPS); continuous UPS (rather than standby) is recommended.

Block-level protocols, such as iSCSI and FCP, are supported by any backend storage that has
non-volatile RAM or battery backup. The storage technology must guarantee that successful
writes are not lost in the event of failure, such as a power outage.

on-db-partitions-clause
Specifies the database partition or partitions on which the containers are created in a
partitioned database. If this clause is not specified, then the containers are created on the
database partitions in the database partition group that are not explicitly specified in any other
on-db-partitions-clause. For a SYSTEM TEMPORARY table space defined on database partition
group IBMTEMPGROUP, when the on-db-partitions-clause is not specified, the containers will
also be created on all new database partitions added to the database.

on-db-partitions-clause
Specifies the database partitions on which containers are created in a partitioned database.
ON DBPARTITIONNUMS

Keywords indicating that individual database partitions are specified. DBPARTITIONNUM is a
synonym for DBPARTITIONNUMS.
db-partition-number1

Specify a database partition number.
TO db-partition-number2

Specify a range of database partition numbers. The value of db-partition-number2 must be
greater than or equal to the value of db-partition-number1 (SQLSTATE 428A9). Containers
are to be created on each database partition between and including the specified values. A
specified database partition must be in the database partition group for the table space.

The database partition specified by number, and every database partition within the specified
range of database partitions must exist in the database partition group for the table space
(SQLSTATE 42729). A database partition number can only appear explicitly or within a range in
exactly one on-db-partitions-clause for the statement (SQLSTATE 42613).

EXTENTSIZE number-of-pages
Specifies the number of PAGESIZE pages that will be written to a container before skipping to the
next container. The extent size value can also be specified as an integer value followed by K (for
kilobytes) or M (for megabytes). If specified in this way, the floor of the number of bytes divided
by the page size is used to determine the value for the extent size. The database manager cycles
repeatedly through the containers as data is stored.

In a Db2 pureScale environment, you should use an extent size of at least 32 pages. This minimum
extent size reduces the amount of internal message traffic within the Db2 pureScale environment
when extents are added for a table or index.

The default value is provided by the dft_extent_sz database configuration parameter, which
has a valid range of 2-256 pages.

1436 IBM Db2 V11.5: SQL Reference

PREFETCHSIZE
Specifies to read in data that is needed by a query before it is referenced by the query, so that the
query does not need to wait for I/O to be performed.

The default value is provided by the dft_prefetch_sz database configuration parameter.

AUTOMATIC
Specifies that the prefetch size of a table space is to be updated automatically; that is, the
prefetch size will be managed by the database manager.

The prefetch size will be updated automatically whenever the number of containers in a table
space changes (following successful execution of an ALTER TABLESPACE statement that adds
or drops one or more containers). The prefetch size is also automatically updated at database
startup.

number-of-pages
Specifies the number of PAGESIZE pages that will be read from the table space when data
prefetching is being performed. The maximum value is 32767.

integer K | M
Specifies the prefetch size value as an integer value followed by K (for kilobytes) or M (for
megabytes). If specified in this way, the floor of the number of bytes divided by the page size is
used to determine the number of pages value for prefetch size.

BUFFERPOOL bufferpool-name
The name of the buffer pool that is used for tables in this table space. The buffer pool must
exist (SQLSTATE 42704). Furthermore, it must exist prior to the start of the transaction containing
the CREATE TABLESPACE statement. If the buffer pool is created in the same UOW as the table
space, it is not available to use. Instead, the table space will use the small system buffer pool
with the matching page size. If not specified, the default buffer pool (IBMDEFAULTBP) is used. The
page size of the buffer pool must match the page size specified (or defaulted) for the table space
(SQLSTATE 428CB). The database partition group of the table space must be defined for the buffer
pool (SQLSTATE 42735).

OVERHEAD number-of-milliseconds or OVERHEAD INHERIT
Specifies the I/O controller overhead and disk seek and latency time. This value is used to
determine the cost of I/O during query optimization. If OVERHEAD is not specified for a non-
automatic storage table space, the value defaults to the database creation default described later
in the description for this keyword. If OVERHEAD is not specified for an automatic storage table
space, the default is to INHERIT the value from the storage group it is using. If the OVERHEAD
value at the storage group is undefined, the OVERHEAD defaults to the database creation default.
For more information on tuning, refer to Table space impact on query optimization.
number-of-milliseconds

The value of number-of-milliseconds is any numeric literal (integer, decimal, or floating point).
If this value is not the same for all containers, the number should be the average for all
containers that belong to the table space.

INHERIT
If INHERIT is specified, the table space must be defined by using automatic storage and the
OVERHEAD is dynamically inherited from the storage group. INHERIT cannot be specified if
the table space is not defined by using automatic storage (SQLSTATE 42613).

For a database that was created in Db2 version 10.1 or later, the default I/O controller overhead
and disk seek and latency time for 4 KB PAGESIZE table space is 6.725 milliseconds.

For a database that was upgraded from a previous version of Db2 to Db2 version 10.1 or later, the
default I/O controller overhead and disk seek and latency time is as follows:

• 7.5 milliseconds for a database that is created in Db2 version 9.7 or higher

FILE SYSTEM CACHING or NO FILE SYSTEM CACHING
Specifies whether I/O operations are to be cached at the file system level or non-cached by using
direct I/O. If neither option is specified, the I/O mode is determined based on operating system,
file system, and in the case of SMS table spaces, data object type. For more information, see File

Chapter 1. Structured Query Language (SQL) 1437

https://www.ibm.com/docs/en/db2/11.5?topic=caching-file-system-configurations

system caching configurations. Note that once a non-default file system caching option is chosen,
it is not possible to return to the default (unspecified) behavior. Instead, the file system caching
mode must be selected explicitly.
FILE SYSTEM CACHING

Specifies that all I/O operations in the target table space are to be cached at the file system
level.

NO FILE SYSTEM CACHING
Specifies that all I/O operations are to bypass the file system-level cache. LOB and Long field
data in SMS table spaces are excepted.

Note:

Db2 supports disk devices with physical sector sizes of 512 bytes or 4096 bytes.

Support for 4096 byte sector sizes is not enabled by default, and can be enabled using the
DB2_4K_DEVICE_SUPPORT registry variable.

TRANSFERRATE number-of-milliseconds or TRANSFERRATE INHERIT
Specifies the time to read one page into memory. If TRANSFERRATE is not specified for a non-
automatic storage table space, the value defaults to the database creation default described
later in the description for this keyword. If TRANSFERRATE is not specified for an automatic
storage table space, the default is to INHERIT the value from the storage group it is using. If the
DEVICE READ RATE value at the storage group is undefined, the TRANSFERRATE defaults to the
database creation default. For more information on tuning, refer to Table space impact on query
optimization.
number-of-milliseconds

This value is used to determine the cost of I/O during query optimization. The value of number-
of-milliseconds is any numeric literal (integer, decimal, or floating point). If this value is not the
same for all containers, the number should be the average for all containers that belong to the
table space.

INHERIT
If INHERIT is specified, the table space must be defined by using automatic storage and the
TRANSFERRATE is dynamically inherited from the DEVICE READ RATE of the storage group.
INHERIT cannot be specified if the table space is not defined by using automatic storage
(SQLSTATE 42613).

When an automatic storage table space inherits the TRANSFERRATE setting from the storage
group it is using, the DEVICE READ RATE of the storage group, which is in megabytes per
second, is converted into milliseconds per page read accounting for the PAGESIZE setting of
the table space. The conversion formula follows:

TRANSFERRATE = (1 / DEVICE READ RATE) * 1000 / 1024000 * PAGESIZE

For a database that was created in Db2 version 10.1 or later, the default time to read one page
into memory for 4 KB PAGESIZE table space is 0.04 milliseconds.

For a database that was upgraded from a previous version of Db2 to Db2version 10.1 or later, the
default time to read one page into memory is as follows:

• 0.06 milliseconds for a database that is created in Db2 version 9.7 or higher

DATA TAG integer-constant, DATA TAG INHERIT or DATA TAG NONE
Specifies a tag for the data in the table space. If the DATA TAG is not specified, the default
for automatic storage table spaces is to INHERIT from the storage group it is using and for
non-automatic table spaces it will be set to NONE. This value can be used as part of a WLM
configuration in a work class definition (see “CREATE WORK CLASS SET ” on page 1560) or
referenced within a threshold definition (see “CREATE THRESHOLD ” on page 1443). This clause
cannot be specified if TEMPORARY is also specified (SQLSTATE 42613).

1438 IBM Db2 V11.5: SQL Reference

https://www.ibm.com/docs/en/db2/11.5?topic=caching-file-system-configurations

integer-constant
Valid values for integer-constant are integers in the range 1 - 9. If an integer-constant is
specified and an associated storage group exists, the data tag that is specified for the table
space will override any data tag value that is specified for the associated storage group.

INHERIT
If INHERIT is specified, the table space must be defined by using automatic storage and the
data tag is dynamically inherited from the storage group. INHERIT cannot be specified if the
table space is not defined by using automatic storage (SQLSTATE 42613).

NONE
If NONE is specified, there is no data tag.

DROPPED TABLE RECOVERY
Indicates whether dropped tables in the specified table space can be recovered by using the
RECOVER DROPPED TABLE option of the ROLLFORWARD DATABASE command. This clause can
only be specified for a regular or large table space (SQLSTATE 42613).
ON

Specifies that dropped tables can be recovered. This is the default.
OFF

Specifies that dropped tables cannot be recovered.

Rules
• If automatic storage is not defined for the database, an error is returned (SQLSTATE 55060).
• The INITIALSIZE clause cannot be specified with the MANAGED BY SYSTEM or MANAGED BY

DATABASE clause (SQLSTATE 42601).
• The AUTORESIZE, INCREASESIZE, or MAXSIZE clause cannot be specified with the MANAGED BY

SYSTEM clause (SQLSTATE 42601).
• The AUTORESIZE, INITIALSIZE, INCREASESIZE, or MAXSIZE clause cannot be specified for the

creation of a temporary automatic storage table space (SQLSTATE 42601).
• The INCREASESIZE or MAXSIZE clause cannot be specified if the tables space is not auto-resizable

(SQLSTATE 42601).
• AUTORESIZE cannot be enabled for DMS table spaces that are defined to use raw device containers

(SQLSTATE 42601).
• A table space must initially be large enough to hold five extents (SQLSTATE 57011).
• The maximum size of a table space must be larger than its initial size (SQLSTATE 560B0).
• Container operations (ADD, EXTEND, RESIZE, DROP, or BEGIN NEW STRIPE SET) cannot be performed

on automatic storage table spaces because the database manager is controlling the space management
of such table spaces (SQLSTATE 42858).

• Each container definition requires 53 bytes plus the number of bytes necessary to store the container
name. The combined length of all container definitions for the table space cannot exceed 208 kilobytes
(SQLSTATE 54034).

• For a partitioned database, if more than one database partition resides on the same physical node, the
same device or path cannot be specified for more than one database partition (SQLSTATE 42730). In
this environment, either specify a unique container-string for each database partition, or use a relative
path name.

• Only automatic storage table spaces can be created in a Db2 pureScale environment(SQLSTATE 42997).
• Container size limits: In DMS table spaces, a container must be at least two times the extent size pages

in length (SQLSTATE 54039). The maximum size of a container is operating system dependent.

Notes
• Choosing between a database-managed space or a system-managed space for a table space is a

fundamental choice involving tradeoffs.

Chapter 1. Structured Query Language (SQL) 1439

• When more than one TEMPORARY table space exists in the database, they are used in round-robin
fashion to balance their usage.

• The owner of the table space is granted USE privilege with the WITH GRANT OPTION on the table space
when it is created.

• An automatic storage table space is created as either an SMS table space or a DMS table space. DMS is
chosen for large and regular table spaces, and SMS is chosen for temporary table spaces. This behavior
cannot be depended upon because it might change in a future release. When DMS is chosen and the
type of table space is not specified, the default behavior is to create a large table space.

• The creation of an automatic storage table space does not include container definitions. The database
manager automatically determines the location and size, if applicable, of the containers based on the
storage paths that are associated with the specified storage group or the default storage group. The
database manager will attempt to grow large and regular table spaces, as necessary, if the maximum
size has not been reached. This might involve extending existing containers or adding containers
to a new stripe set. Every time that the database is activated, the database manager automatically
reconfigures the number and location of the containers for temporary table spaces that are not in an
abnormal state.

• A large or regular automatic storage table space will not use new storage paths (see the description of
the ALTER STOGROUP statement) until there is no more space in one of the existing storage paths that
the table space is using. Temporary automatic storage table spaces can only use the new storage paths
once the database has been deactivated and then reactivated.

• Media attributes: The following table shows how the media attributes of newly created table spaces are
treated in upgraded and newly created Db2 version 10.1 databases.

Table 143. Media attributes across different versions of Db2

Media attributes Upgraded Database Newly Created Database

New automatic storage table
spaces / storage group DEVICE
READ RATE set to undefined

Defaults based on version
database was created (no
change)

Not applicable

New automatic storage
table spaces / storage group
OVERHEAD set to undefined

Defaults based on version
database was created (no
change)

Not applicable

New automatic storage table
spaces / storage group DEVICE
READ RATE is set

Inherit from storage group
factoring in PAGESIZE

Inherit from storage group
factoring in PAGESIZE

New automatic storage
table spaces / storage group
OVERHEAD is set

Inherit from storage group Inherit from storage group

New non-automatic storage
table spaces

Defaults based on version
database was created (no
change)

Db2 version 10.1 media defaults
taking PAGESIZE into account

• Default TRANSFERRATE: The following table shows how the default TRANSFERRATE value differs for
newly created table spaces.

Table 144. Default TRANSFERRATE

PAGESIZE TRANSFERRATE

4 KB 0.04 ms per page read

8 KB 0.08 ms per page read

16 KB 0.16 ms per page read

32 KB 0.32 ms per page read

1440 IBM Db2 V11.5: SQL Reference

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– NODE can be specified in place of DBPARTITIONNUM.
– NODES can be specified in place of DBPARTITIONNUMS.
– NODEGROUP can be specified in place of DATABASE PARTITION GROUP.
– LONG can be specified in place of LARGE.

• For the Db2 Developer-C Edition:

– Altering an auto-resize table space without specifying MAXSIZE will implicitly set MAXSIZE to the
remaining capacity, up to the defined storage size.

– An attempt to resize, add, or extend the container size of all table spaces larger than the defined
storage size results in a fail.

– Altering a table space fails if there exists a subsequent CREATE TABLESPACE that hasn’t been
committed.

Examples
1. Create a large DMS table space on a Linux system using three devices of 10 000 4K pages each.

Specify their I/O characteristics.

 CREATE TABLESPACE PAYROLL
 MANAGED BY DATABASE
 USING (DEVICE'/dev/rhdisk6' 10000,
 DEVICE '/dev/rhdisk7' 10000,
 DEVICE '/dev/rhdisk8' 10000)
 OVERHEAD 12.67
 TRANSFERRATE 0.18

2. Create a regular SMS table space on Windows using three directories on three separate drives, with a
64-page extent size, and a 32-page prefetch size.

 CREATE TABLESPACE ACCOUNTING
 MANAGED BY SYSTEM
 USING ('/tbsp/acc1', '/tbsp/acc2', '/tbsp/acc3')
 EXTENTSIZE 64
 PREFETCHSIZE 32

3. Create a system temporary DMS table space on a Linux system by using two files of 50 000 pages
each, and a 256-page extent size.

 CREATE TEMPORARY TABLESPACE TEMPSPACE2
 MANAGED BY DATABASE
 USING (FILE 'dbtmp/tempspace2.f1' 50000,
 FILE 'dbtmp/tempspace2.f2' 50000)
 EXTENTSIZE 256

4. Create a large DMS table space in database partition group ODDNODEGROUP (database partitions 1,
3, and 5) on a Linux system. Use the device /dev/rhdisk0 for 10 000 4K pages on each database
partition. Specify a database partition-specific device with 40 000 4K pages for each database
partition.

 CREATE TABLESPACE PLANS
 MANAGED BY DATABASE
 USING (DEVICE '/dev/rhdisk0' 10000, DEVICE '/dev/rn1hd01' 40000)
 ON DBPARTITIONNUM (1)
 USING (DEVICE '/dev/rhdisk0' 10000, DEVICE '/dev/rn3hd03' 40000)
 ON DBPARTITIONNUM (3)
 USING (DEVICE '/dev/rhdisk0' 10000, DEVICE '/dev/rn5hd05' 40000)
 ON DBPARTITIONNUM (5)

5. Create a large automatic storage table space that is named DATATS, allowing the system to make all
decisions concerning table space size and growth.

 CREATE TABLESPACE DATATS

Chapter 1. Structured Query Language (SQL) 1441

or

 CREATE TABLESPACE DATATS
 MANAGED BY AUTOMATIC STORAGE

6. Create a system temporary automatic storage table space named TEMPDATA.

 CREATE TEMPORARY TABLESPACE TEMPDATA

or

 CREATE TEMPORARY TABLESPACE TEMPDATA
 MANAGED BY AUTOMATIC STORAGE

7. Create a large automatic storage table space that is named USERSPACE3 with an initial size of 100
megabytes and a maximum size of 1 gigabyte.

 CREATE TABLESPACE USERSPACE3
 INITIALSIZE 100 M
 MAXSIZE 1 G

8. Create a large automatic storage table space that is named LARGEDATA with a growth rate of 10
percent (that is, its total size increases by 10 percent each time that it is automatically resized) and
a maximum size of 512 megabytes. Instead of specifying the INITIALSIZE clause, let the database
manager determine an appropriate initial size for the table space.

 CREATE LARGE TABLESPACE LARGEDATA
 INCREASESIZE 10 PERCENT
 MAXSIZE 512 M

9. Create a large DMS table space that is named USERSPACE4 with two file containers (each container
being 1 megabyte in size), a growth rate of 2 megabytes, and a maximum size of 100 megabytes.

 CREATE TABLESPACE USERSPACE4
 MANAGED BY DATABASE USING (FILE '/db/file1' 1 M, FILE '/db/file2' 1 M)
 AUTORESIZE YES
 INCREASESIZE 2 M
 MAXSIZE 100 M

10. Create large DMS table spaces, using RAW devices on a Windows operating system.

• To specify entire physical drives, use the \\.\physical-drive format:

 CREATE TABLESPACE TS1
 MANAGED BY DATABASE USING (DEVICE '\\.\PhysicalDrive5' 10000,
 DEVICE '\\.\PhysicalDrive6' 10000)

• To specify logical partitions by using drive letters:

 CREATE TABLESPACE TS2
 MANAGED BY DATABASE USING (DEVICE '\\.\G:' 10000,
 DEVICE '\\.\H:' 10000)

• To specify logical partitions by using volume global unique identifiers (GUIDs), use the
db2listvolumes utility to retrieve the volume GUID for each local partition, then copy the GUID
for the logical partition that you want into the table space container clause:

 CREATE TABLESPACE TS3
 MANAGED BY DATABASE USING (
 DEVICE '\\?\Volume{2ca6a0c1-8542-11d8-9734-00096b5322d2}\' 20000M)

You might prefer to use volume GUIDs over the drive letter format if you have more partitions than
available drive letters on the machine.

• To specify logical partitions by using junction points (or volume mount points), mount the RAW
partition to another NTFS-formatted volume as a junction point, then specify the path to the
junction point on the NTFS volume as the container path. For example:

1442 IBM Db2 V11.5: SQL Reference

 CREATE TABLESPACE TS4
 MANAGED BY DATABASE USING (DEVICE 'C:\JUNCTION\DISK_1' 10000,
 DEVICE 'C:\JUNCTION\DISK_2' 10000)

The partition is queried first to see whether there is a file system on it; if yes, the partition is not
treated as a RAW device, and normal file system I/O operations are performed on the partition.

Related information
Best practices: Database storage

CREATE THRESHOLD
The CREATE THRESHOLD statement defines a threshold.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include WLMADM or DBADM authority.

Syntax

CREATE THRESHOLD threshold-name FOR threshold-domain
ACTIVITIES

ENFORCEMENT DEFAULT

ENFORCEMENT enforcement-scope

ENABLE

DISABLE

WHEN

threshold-predicate threshold-exceeded-actions

threshold-domain
DATABASE

SERVICE CLASS service-class-name

UNDER service-class-name

STATEMENT TEXT statement-text

REFERENCE executable-id

WORKLOAD workload-name

enforcement-scope
DATABASE

MEMBER

WORKLOAD OCCURRENCE

threshold-predicate

Chapter 1. Structured Query Language (SQL) 1443

https://ibm.biz/BdqLrw

TOTALMEMBERCONNECTIONS > integer-value

TOTALSCMEMBERCONNECTIONS > integer-value

AND QUEUEDCONNECTIONS > 0

AND QUEUEDCONNECTIONS > integer-value

AND QUEUEDCONNECTIONS UNBOUNDED

CONNECTIONIDLETIME > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

CONCURRENTWORKLOADOCCURRENCES > integer-value

CONCURRENTWORKLOADACTIVITIES > integer-value

CONCURRENTDBCOORDACTIVITIES > integer-value

AND QUEUEDACTIVITIES > 0

AND QUEUEDACTIVITIES > integer-value

AND QUEUEDACTIVITIES UNBOUNDED

ESTIMATEDSQLCOST > bigint-value

SQLROWSRETURNED > integer-value

ACTIVITYTOTALTIME > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

UOWTOTALTIME > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

SQLTEMPSPACE > integer-value K

M

G

AGGSQLTEMPSPACE > integer-value K

M

G

SQLROWSREAD > bigint-value
CHECKING EVERY 60 SECONDS

CHECKING EVERY integer-value SECOND

SECONDS

SQLROWSREADINSC > bigint-value
CHECKING EVERY 60 SECONDS

CHECKING EVERY integer-value SECOND

SECONDS

CPUTIME > integer-value HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

CHECKING EVERY 60 SECONDS

CHECKING EVERY integer-value SECOND

SECONDS

CPUTIMEINSC > integer-value HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

CHECKING EVERY 60 SECONDS

CHECKING EVERY integer-value SECOND

SECONDS

ACTIVITYTOTALRUNTIME > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

ACTIVITYTOTALRUNTIMEINALLSC > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

SORTSHRHEAPUTIL
1

> integer-value PERCENT

AND BLOCKING ADMISSION FOR > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

2
DATATAGINSC IN

NOT IN

(

,

integer-constant)

threshold-exceeded-actions

1444 IBM Db2 V11.5: SQL Reference

COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA
ON COORDINATOR

MEMBER

ON ALL
MEMBERS

WITHOUT DETAILS

WITH

,

DETAILS
3

SECTION AND VALUES

STOP EXECUTION

CONTINUE

FORCE APPLICATION

remap-activity-action

remap-activity-action

REMAP ACTIVITY TO service-subclass-name
NO EVENT MONITOR RECORD

LOG EVENT MONITOR RECORD

Notes:
1 This feature is available in Db2 Version 11.5 Mod Pack 2 and later versions.
2 Each data tag value can be specified only once.
3 The DETAILS keyword is the minimum to be specified, followed by the option separated by a comma.

Description
threshold-name

Names the threshold. This is a one-part name. It is an SQL identifier (either ordinary or delimited).
The threshold-name must not identify a threshold that already exists at the current server (SQLSTATE
42710). The name must not begin with the characters 'SYS' (SQLSTATE 42939).

FOR threshold-domain ACTIVITIES
Specifies the definition domain of the threshold.
DATABASE

This threshold applies to any activity in the database.
SERVICE CLASS service-class-name

This threshold applies to activities executing in service class service-class-name. If UNDER is not
specified, service-class-name must identify an existing service superclass (SQLSTATE 42704). If
UNDER is specified, service-class-name must identify an existing service subclass of the service
superclass specified after the UNDER keyword (SQLSTATE 42704). The service-class-name cannot
be the SYSDEFAULTSYSTEMCLASS service class or the SYSDEFAULTMAINTENANCECLASS service
class (SQLSTATE 5U032).
UNDER service-class-name

Specifies a service superclass. The service-class-name must identify an existing service
superclass (SQLSTATE 42704).

Chapter 1. Structured Query Language (SQL) 1445

STATEMENT
This threshold applies to activities for a specific SQL statement. You identify the statement to use
for the threshold by specifying the statement text or the statement's executable ID .
TEXT statement-text

This threshold applies to statements matching the text specified in statement-text. Both
static and dynamic SQL statements are considered when the condition for the threshold is
evaluated. At run time, the text specified for statement-text must be an exact match of the text
of a statement in the package cache for the threshold to be violated. Differences in letter case
or use of white space prevent a match from occurring between statement-text and any running
SQL statement. The text for statement-text must be specified as a string constant. As such, the
maximum length for the text of a statement for a statement threshold is 32 672 bytes, and not
the usual 2 MB upper limit for statements.

Access plan differences do not affect statement matching. It is possible for multiple cached
statements with same text but different access plans to match the threshold text defined by
statement-text.

If a statement that otherwise matches the statement supplied for statement-text is altered
or transformed during compilation in such a way that it differs from statement-text, the
statements will not match. For example, if the statement concentrator is enabled, literal
values might be replaced by parameter markers. No such transformation is applied to text
supplied for the statement-text in the CREATE THRESHOLD statement. The text supplied to
CREATE THRESHOLD must match exactly the transformed text of any statement of interest.
You can determine the exact text of statements as they are executed using monitoring table
functions such as MON_GET_PKG_CACHE_STMT and MON_GET_ACTIVITY_DETAILS.

The following predicates can be used with a statement threshold:

• ACTIVITYTOTALRUNTIME
• ACTIVITYTOTALTIME
• CPUTIME
• ESTIMATEDSQLCOST
• SQLROWSREAD
• SQLROWSRETURNED
• SQLTEMPSPACE

REFERENCE executable-id
This threshold applies to statements with text that matches the text of the statement with the
specified executable ID. The database manager uses the executable ID to locate text of the
statement from its section in the package cache. The text of the statement that is used for the
threshold is that which was cached for the section at the time the threshold was created. For
dynamic SQL, the statement referenced by the executable ID must be in the package cache.
For static SQL, if the statement is not in the cache, the database manager retrieves it from the
system catalogs.
Once the statement text is retrieved from the package cache, there is no direct relationship
between the threshold and the specified executable ID; the cached section can even be
evicted from the cache without impact on any threshold that was derived from it. Once the text
associated with the executable ID is determined, the threshold created by this clause behaves
in exactly the same way as one created by the STATEMENT TEXT clause.

WORKLOAD workload-name
This threshold applies to the specified workload. The workload-name must identify an existing
workload (SQLSTATE 42704).

ENFORCEMENT enforcement-scope
The enforcement scope of the threshold.
DEFAULT

The default enforcement scope of the threshold will be used.

1446 IBM Db2 V11.5: SQL Reference

DATABASE
The threshold is enforced across all members within the definition domain; that is, all members of
the database, and all members of the service class.

MEMBER
The threshold is enforced on a per member basis. There is no coordination across all members to
enforce the threshold.

WORKLOAD OCCURRENCE
The threshold is enforced only within a workload occurrence. Two workload occurrences running
concurrently on the same member will each have their own running count for this threshold.

ENABLE or DISABLE
Specifies whether or not the threshold is enabled for use by the database manager.
ENABLE

The threshold is used by the database manager to restrict the execution of database activities.
DISABLE

The threshold is not used by the database manager to restrict the execution of database activities.
WHEN threshold-predicate

Specifies the condition of the threshold.
TOTALMEMBERCONNECTIONS > integer-value

This condition defines an upper bound on the number of coordinator connections that can run
concurrently on a member. This value can be zero or any positive integer (SQLSTATE 42820). A
value of zero means that any new coordinator connection will be prevented from connecting. All
currently running or queued connections will continue. The definition domain for this condition
must be DATABASE, and the enforcement scope must be MEMBER (SQLSTATE 5U037). This
threshold is not enforced for users with DBADM or WLMADM authority.

TOTALSCMEMBERCONNECTIONS > integer-value
This condition defines an upper bound on the number of coordinator connections that can run
concurrently on a member in a specific service superclass. This value can be zero or any positive
integer (SQLSTATE 42820). A value of zero means that any new connection will be prevented from
joining the service class. All currently running or queued connections will continue. The definition
domain for this condition must be SERVICE SUPERCLASS, and the enforcement scope must be
MEMBER (SQLSTATE 5U037).
AND QUEUEDCONNECTIONS > integer-value or AND QUEUEDCONNECTIONS UNBOUNDED

Specifies a queue size for when the maximum number of coordinator connections is exceeded.
This value can be any positive integer, including zero (SQLSTATE 42820). A value of zero
means that no coordinator connections are queued. Specifying UNBOUNDED will queue every
connection that exceeds the specified maximum number of coordinator connections, and the
threshold-exceeded-actions will never be executed. The default is zero.

CONNECTIONIDLETIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES
This condition defines an upper bound for the amount of time the database manager will allow
a connection to remain idle. This value can be any positive integer (not zero) (SQLSTATE 42820).
Use a valid duration keyword to specify an appropriate unit of time for integer-value. The definition
domain for this condition must be DATABASE or SERVICE SUPERCLASS, and the enforcement
scope must be DATABASE (SQLSTATE 5U037). This condition is enforced at the coordinator
member.

If you specify the STOP EXECUTION action with CONNECTIONIDLETIME thresholds, the
connection for the application is dropped when the threshold is exceeded. Any subsequent
attempt by the application to access the data server will receive SQLSTATE 5U026.

The maximum value for this threshold is 2 147 483 640 seconds. Any value specified that has a
seconds equivalent larger than 2 147 483 640 seconds will be set to this number of seconds.

CONCURRENTWORKLOADOCCURRENCES > integer-value
This condition defines an upper bound on the number of concurrent occurrences for the workload
on each member. This value can be any positive integer (not zero) (SQLSTATE 42820). The

Chapter 1. Structured Query Language (SQL) 1447

definition domain for this condition must be WORKLOAD and the enforcement scope must be
MEMBER (SQLSTATE 5U037).

CONCURRENTWORKLOADACTIVITIES > integer-value
This condition defines an upper bound on the number of concurrent coordinator activities and
nested activities for the workload on each member. This value can be any positive integer (not
zero) (SQLSTATE 42820). The definition domain for this condition must be WORKLOAD and the
enforcement scope for this condition must be WORKLOAD OCCURRENCE (SQLSTATE 5U037).

Each nested activity must satisfy the following conditions:

• It must be a recognized coordinator activity. Any nested coordinator activity that does not
fall within the recognized types of activities will not be counted. Similarly, nested subagent
activities, such as remote node requests, are not counted.

• It must be directly invoked from user logic, such as a user-written procedure issuing SQL
statements.

Internal SQL activities, such as those initiated by the setting of a constraint or the refreshing of a
materialized query table, are also not counted by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

CONCURRENTDBCOORDACTIVITIES > integer-value
This condition defines an upper bound on the number of recognized database coordinator
activities that can run concurrently on all members in the specified domain. This value can be
zero or any positive integer (SQLSTATE 42820). A value of zero means that any new database
coordinator activities will be prevented from executing. All currently running or queued database
coordinator activities will continue. The definition domain for this condition must be DATABASE,
work action (a threshold for a work action definition domain is created using a CREATE WORK
ACTION SET or ALTER WORK ACTION SET statement, and the work action set must be applied to
a workload or a database), SERVICE SUPERCLASS, or SERVICE SUBCLASS. Also, the enforcement
scope must be DATABASE (SQLSTATE 5U037) in environments other than Db2 pureScale, where
the condition is enforced across the entire database, and MEMBER (SQLSTATE 5U037) in Db2
pureScale where the condition is enforced at each coordinator member. All activities are tracked
by this condition, except for the following items:

• CALL statements are not controlled by this threshold, but all nested child activities started
within the called routine are under this threshold's control. Anonymous blocks and autonomous
routines are classified as CALL statements.

• User-defined functions are controlled by this threshold, but child activities nested in a user-
defined function are not controlled. If an autonomous routine is called from within a user
defined function, neither the autonomous routine nor any child activities of the autonomous
routine are under threshold control.

• Trigger actions that invoke CALL statements and the child activities of these CALL statements
are not controlled by this threshold. INSERT, UPDATE, or DELETE statements that can cause a
trigger to activate continue to be under threshold control.

• To manage concurrency with a CALL statement, you may be able to use
the TOTALSCPARTITIONCONNECTIONS threshold. The TOTALSCPARTITIONCONNECTIONS
threshold is effective for controlling concurrency of CALL statements when your workload
consists of transient connections. Transient connections are connections that are established
only during the procedure invocation. The TOTALSCPARTITIONCONNECTIONS threshold is not
appropriate if your workload consists of long-lived connections.

When a threshold is defined as part of a work action set, the enforcement scope is determined
automatically based on the current environment (MEMBER, if the current environment is Db2
pureScale; DATABASE, if it is otherwise).

Important: Before using CONCURRENTDBCOORDACTIVITIES thresholds, be sure to become
familiar with the effects that they can have on the database system.

For more information, refer to "CONCURRENTDBCOORDACTIVITIES threshold" in Db2 Workload
Management Guide and Reference.

1448 IBM Db2 V11.5: SQL Reference

AND QUEUEDACTIVITIES > integer-value or AND QUEUEDACTIVITIES UNBOUNDED
Specifies a queue size for when the maximum number of database coordinator activities is
exceeded. This value can be zero or any positive integer (SQLSTATE 42820). A value of zero
means that no database coordinator activities are queued. Specifying UNBOUNDED will queue
every database coordinator activity that exceeds the specified maximum number of database
coordinator activities, and the threshold-exceeded-actions will never be executed. The default
is zero.

Note: If a threshold action of CONTINUE is specified for a queuing threshold, it effectively
makes the size of the queue unbounded, regardless of any hard value specified for the queue
size.

ESTIMATEDSQLCOST > bigint-value
This condition defines an upper bound for the optimizer-assigned cost (in timerons) of an activity.
This value can be any positive big integer (not zero) (SQLSTATE 42820). The definition domain for
this condition must be DATABASE, work action (a threshold for a work action definition domain
is created using a CREATE WORK ACTION SET or ALTER WORK ACTION SET statement, and the
work action set must be applied to a workload or a database), SERVICE SUPERCLASS, SERVICE
SUBCLASS, or WORKLOAD, and the enforcement scope must be DATABASE (SQLSTATE 5U037).
This condition is enforced at the coordinator member. Activities tracked by this condition are:

• Coordinator activities of type data manipulation language (DML).
• Nested DML activities that are invoked from user logic. Consequently, DML activities that can be

initiated by the database manager through internal SQL are not tracked by this condition (unless
their cost is included in the parent's estimate, in which case they are indirectly tracked).

SQLROWSRETURNED > integer-value
This condition defines an upper bound for the number of rows returned to a client application
from the application server. This value can be any positive integer (not zero) (SQLSTATE 42820).
The definition domain for this condition must be DATABASE, work action (a threshold for a
work action definition domain is created using a CREATE WORK ACTION SET or ALTER WORK
ACTION SET statement, and the work action set must be applied to a workload or a database),
SERVICE SUPERCLASS, SERVICE SUBCLASS, or WORKLOAD, and the enforcement scope must be
DATABASE (SQLSTATE 5U037). This condition is enforced at the coordinator member. Activities
tracked by this condition are:

• Coordinator activities of type DML.
• Nested DML activities that are derived from user logic. Activities that are initiated by the

database manager through internal SQL are not affected by this condition.

Result sets returned from within a procedure are treated separately as individual activities. There
is no aggregation of the rows that are returned by the procedure itself.

ACTIVITYTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES |
SECONDS

This condition defines an upper bound for the amount of time the database manager will allow
an activity to execute, including the time the activity was queued. The definition domain for this
condition must be DATABASE, work action (a threshold for a work action definition domain is
created using a CREATE WORK ACTION SET or ALTER WORK ACTION SET statement, and the
work action set must be applied to a workload or a database), SERVICE SUPERCLASS, SERVICE
SUBCLASS, or WORKLOAD, and the enforcement scope must be DATABASE (SQLSTATE 5U037).
This condition is logically enforced at the coordinator member.

The specified integer-value must be an integer that is greater than zero (SQLSTATE 42820). Use
a valid duration keyword to specify an appropriate unit of time for integer-value. If the specified
time unit is SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). The maximum value
that can be specified for this threshold is 2 147 483 640 seconds. If any value (using the DAY,
HOUR, MINUTE, or SECONDS time unit) has a seconds equivalent larger than the maximum value,
an error is returned (SQLSTATE 42615).

Chapter 1. Structured Query Language (SQL) 1449

UOWTOTALTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES | SECONDS
This condition defines an upper bound for the amount of time the database manager will allow a
unit of work to execute. This value can be any non-zero positive integer (SQLSTATE 42820). Use
a valid duration keyword to specify an appropriate unit of time for integer-value. If the specified
time unit is SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). The definition
domain for this condition must be DATABASE, SERVICE SUPERCLASS, or WORKLOAD, and the
enforcement scope must be DATABASE (SQLSTATE 5U037). This condition is enforced at the
coordinator member.

The maximum value that can be specified for this threshold is 2 147 483 640 seconds. If any
value (using the DAY, HOUR, MINUTE, or SECONDS time unit) has a seconds equivalent larger than
the maximum value, an error is returned (SQLSTATE 42615).

SQLTEMPSPACE > integer-value K | M | G
This condition defines the maximum amount of system temporary space that can be consumed
by an SQL statement on a member. This value can be any positive integer (not zero) (SQLSTATE
42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum size is 1024 times
integer-value. If integer-value M is specified, the maximum size is 1 048 576 times integer-value. If
integer-value G is specified, the maximum size is 1 073 741 824 times integer-value.

The definition domain for this condition must be DATABASE, work action (a threshold for a work
action definition domain is created using a CREATE WORK ACTION SET or ALTER WORK ACTION
SET statement, and the work action set must be applied to a workload or a database), SERVICE
SUPERCLASS, SERVICE SUBCLASS, or WORKLOAD, and the enforcement scope must be MEMBER
(SQLSTATE 5U037). Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (subsection execution).
• Nested DML activities that are derived from user logic and their corresponding subagent work

(subsection execution). Activities that are initiated by the database manager through an internal
SQL are not affected by this condition.

AGGSQLTEMPSPACE > integer-value K | M | G

This condition defines the maximum amount of system temporary space that can be consumed
by a set of statements in a service class on a member. This value can be any positive integer (not
zero) (SQLSTATE 42820).

If integer-value K (in either upper- or lowercase) is specified, the maximum size is 1024 times
integer-value. If integer-value M is specified, the maximum size is 1 048 576 times integer-value. If
integer-value G is specified, the maximum size is 1 073 741 824 times integer-value.

The definition domain for this condition must be SERVICE SUBCLASS and the enforcement scope
must be MEMBER (SQLSTATE 5U037).

Activities contributing to the aggregate that is tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work like subsection execution.
• Nested DML activities that are derived from user logic and their corresponding subagent work

like subsection execution. Activities initiated by the database manager through an internal SQL
statement are not affected by this condition.

SQLROWSREAD > bigint-value
This condition defines an upper bound on the number of rows that may be read by an activity
during its lifetime on a particular member. This value can be any positive big integer (not zero)
(SQLSTATE 42820). Note that the number of rows read is different from the number of rows
returned, which is controlled by the SQLROWSRETURNED condition.

The definition domain for this condition must be DATABASE, SERVICE CLASS, a service subclass
(SERVICE CLASS specifying the UNDER clause), WORKLOAD or a work action (a threshold for a
work action definition domain is created using a CREATE WORK ACTION SET or ALTER WORK
ACTION SET statement, and the work action set must be applied to a workload or a database),

1450 IBM Db2 V11.5: SQL Reference

and the enforcement scope must be MEMBER (SQLSTATE 5U037). This condition is enforced
independently at each member.

Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (like subsection execution).
• Internal SQL activities like those initiated by the setting of a constraint, or the refreshing of a

materialized query table, are also not tracked by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an activity. The threshold is
checked at the end of each request (like a fetch operation, for example) and on the interval
defined by the CHECKING clause. The CHECKING clause defines an upper bound on how
long a threshold violation may go undetected. The default is 60 seconds. The value can be
any positive integer (not zero) with a maximum value of 86400 seconds (SQLSTATE 42820).
Setting a low value may impact system performance negatively.

SQLROWSREADINSC > bigint-value
This condition defines an upper bound on the number of rows that may be read by an activity
on a particular member while it is executing in a service subclass. Rows read before executing
in the service subclass specified are not counted. This value can be any positive big integer (not
zero) (SQLSTATE 42820). Note that the number of rows read is different from the number of rows
returned, which is controlled by the SQLROWSRETURNED condition.

The definition domain for this condition must be a service subclass (SERVICE CLASS specifying
the UNDER clause) and the enforcement scope must be MEMBER (SQLSTATE 5U037). This
condition is enforced independently at each member.

Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (like subsection execution).
• Internal SQL activities like those initiated by the setting of a constraint, or the refreshing of a

materialized query table, are also not tracked by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an activity. The threshold is
checked at the end of each request (like a fetch operation, for example) and on the interval
defined by the CHECKING clause. The CHECKING clause defines an upper bound on how long
a threshold violation may go undetected. The default is 60 seconds. The value can be any
positive integer (not zero) with a maximum value of 86400 seconds (SQLSTATE 42820).Setting
a low value may impact system performance negatively.

CPUTIME > integer-value HOUR | HOURS | MINUTE | MINUTES | SECOND | SECONDS
This condition defines an upper bound for the amount of processor time that an activity may
consume during its lifetime on a particular member. The processor time tracked by this threshold
is measured from the time that the activity starts executing. This value can be any positive integer
(not zero) (SQLSTATE 42820).

The definition domain for this condition must be DATABASE, a service superclass (SERVICE
CLASS), a service subclass (SERVICE CLASS specifying the UNDER clause), WORKLOAD or work
action (a threshold for a work action definition domain is created using a CREATE WORK ACTION
SET or ALTER WORK ACTION SET statement, and the work action set must be applied to a
workload or a database), and the enforcement scope must be MEMBER (SQLSTATE 5U037). This
condition is enforced independently at each member.

Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (like subsection execution).
• Internal SQL activities, like those initiated by the setting of a constraint or the refreshing of a

materialized query table, are also not tracked by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

Chapter 1. Structured Query Language (SQL) 1451

• Activities of type CALL. For CALL activities, the processor time tracked for the procedure does
not include the processor time used by any child activities or by any fenced mode processes.
The threshold condition will be checked only upon return from user logic to the database engine.
For example: During the execution of a trusted routine, the threshold condition will be checked
only when the routine issues a request to the database engine).

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an activity. The granularity of
the CPUTIME threshold is approximately this number multiplied by the degree of parallelism
for the activity. For example: If the threshold is checked every 60 seconds and the degree
of parallelism is 2, the activity might use an extra 2 minutes of processor time instead of 1
minute before the threshold violation is detected. The default is 60 seconds. The value can be
any positive integer (not zero) with a maximum value of 86400 seconds (SQLSTATE 42820).
Setting a low value may impact system performance negatively.

CPUTIMEINSC > integer-value HOUR | HOURS | MINUTE | MINUTES | SECOND | SECONDS
This condition defines an upper bound for the amount of processor time that an activity may
consume on a particular member while it is executing in a particular service subclass. The
processor time tracked by this threshold is measured from the time that the activity starts
executing in the service subclass identified in the threshold domain. Any processor time used
before that point is not counted toward the limit imposed by this threshold. This value can be any
positive integer (not zero) (SQLSTATE 42820).

The definition domain for this condition must be a service subclass (SERVICE CLASS specifying
the UNDER clause), and the enforcement scope must be MEMBER (SQLSTATE 5U037). This
condition is enforced independently at each member.

Activities tracked by this condition are:

• Coordinator activities of type DML and corresponding subagent work (like subsection execution).
• Internal SQL activities, like those initiated by the setting of a constraint or the refreshing of a

materialized query table, are also not tracked by this threshold, because they are initiated by the
database manager and not directly invoked by user logic.

• Activities of type CALL. For CALL activities, the processor time tracked for the procedure does
not include the processor time used by any child activities or by any fenced mode processes.
The threshold condition will be checked only upon return from user logic to the database engine.
For example: During the execution of a trusted routine, the threshold condition will be checked
only when the routine issues a request to the database engine).

CHECKING EVERY integer-value SECOND | SECONDS
Specifies how frequently the threshold condition is checked for an activity. The granularity
of the CPUTIMEINSC threshold is approximately this number multiplied by the degree of
parallelism for the activity. For example: If the threshold is checked every 60 seconds and the
degree of parallelism is 2, the activity might use an extra 2 minutes of processor time instead
of 1 minute before the threshold violation is detected. The default is 60 seconds. The value
can be any positive integer (not zero) with a maximum value of 86400 seconds (SQLSTATE
42820). Setting a low value may impact system performance negatively.

ACTIVITYTOTALRUNTIME > integer-value DAY | DAYS | HOUR | HOURS | MINUTE | MINUTES |
SECONDS

This condition is used to define an upper bound for the amount of time the database manager
allows an activity to run. The amount of time does not include the time that the activity was
queued by a WLM concurrency threshold. The definition domain for this condition must be one of
the following thresholds (SQLSTATE 5U037):

• Database
• Service superclass
• Service subclass
• Statement
• Workload

1452 IBM Db2 V11.5: SQL Reference

• Work action 1

1. A threshold for a work action definition domain is created by using a CREATE WORK ACTION
SET or ALTER WORK ACTION SET statement. The work action set must be applied to a
workload or a database.

The enforcement scope must be DATABASE (SQLSTATE 5U037).

The specified integer-value must be an integer that is greater than zero (SQLSTATE 42820). Use
a valid duration keyword to specify an appropriate unit of time for integer-value. If the specified
time unit is SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). The maximum value
that can be specified for this threshold is 2 147 483 640 seconds. If any value for the DAY, HOUR,
MINUTE, or SECONDS time unit has a seconds equivalent larger than the maximum value, an error
is returned (SQLSTATE 42615).

ACTIVITYTOTALRUNTIMEINALLSC > integer-value DAY | DAYS | HOUR | HOURS | MINUTE |
MINUTES | SECONDS

This condition is used to define an upper bound for the amount of time the database manager
allows an activity to run. The amount of time does not include the time that the activity was
queued by a WLM concurrency threshold. The execution time that is tracked by this threshold is
measured from the time that the activity starts running.

The definition domain for this condition must be service subclass (SERVICE CLASS specifying the
UNDER clause), and the enforcement scope must be DATABASE (SQLSTATE 5U037).

The specified integer-value must be an integer that is greater than zero (SQLSTATE 42820). Use
a valid duration keyword to specify an appropriate unit of time for integer-value. If the specified
time unit is SECONDS, the value must be a multiple of 10 (SQLSTATE 42615). The maximum value
that can be specified for this threshold is 2 147 483 640 seconds. If any value for the DAY, HOUR,
MINUTE, or SECONDS time unit has a seconds equivalent larger than the maximum value, an error
is returned (SQLSTATE 42615).

SORTSHRHEAPUTIL > integer-value PERCENT

Attention: This feature is available in Db2 Version 11.5 Mod Pack 2 and later versions.

This condition defines the maximum shared sort memory that may be requested by a query as
a percentage of the total database shared sort memory (sheapthres_shr). When the adaptive
workload manager is enabled, the threshold considers both estimated and actual memory
requirements for a query. Any positive integer between 1 to 100 can be specified as a percent
value. The execution time that is tracked by this threshold is measured from the time that the
activity starts running.

The definition domain for this condition must be DATABASE, work action (a threshold for a work
action definition domain is created using a CREATE WORK ACTION SET or ALTER WORK ACTION
SET statement, and the work action set must be applied to a workload or a database), SERVICE
SUPERCLASS, SERVICE SUBCLASS, STATEMENT or WORKLOAD, and the enforcement scope must
be MEMBER (SQLSTATE 5U037).

Activities tracked by this condition are:

• Coordinator activities of type data manipulation language (DML).
• Nested DML activities that are directly invoked from user logic.

AND BLOCKING ADMISSION FOR integer-value
Specifies that action will only be taken if the sort memory requirements are exceeded, work
is currently queued behind the violating activity, the queued work is blocking on sort memory
and WLM admission control has not admitted any requests for the specified amount of time.
For work inside the WLM admission queue, this condition will only be evaluated once a request
reaches the front of the admission queue. Every time a request is allowed by admission
control, the queue time will be resset. If multiple requests violate this threshold a cascading
effect will be observed until something that doesn't violate this threshold is found or the last
request is reached (as in, no other requests behind).

Chapter 1. Structured Query Language (SQL) 1453

The maximum value for this threshold is 2147483640 seconds. Any value specified that
has a seconds equivalent larger than 2147483640 seconds will be set to this number of
seconds. The time specified has a minimum accuracy of 10 seconds, so any value specified is
subject to accuracy of this amount. A value of zero is equivalent to not specifying a BLOCKING
ADMISSION FOR clause.

DATATAGINSC IN (integer-constant, ...)
This condition defines one or more data tag values specified on a table space that the activity
touches. The data tag on a table space, or its underlying storage group (where applicable), can be
either not be set or set to a value from 1 to 9. If the activity touches a table space that has no data
tag set (at either the table space or the storage group level), this threshold will not have any affect
on that activity. The definition domain for this condition must be a service subclass (SERVICE
CLASS specifying the UNDER clause), and the enforcement scope must be DATABASE PARTITION
(SQLSTATE 5U037). This condition is enforced independently at each database partition.

Activities tracked by this condition are:

• Coordinator activities of type data manipulation language (DML).
• Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager through internal SQL are not tracked
by this condition.

This threshold is checked only when a scan is opened on a table or when an insert is performed
into a table. Fetching data from a table after a scan has been opened will not violate the threshold.

DATATAGINSC NOT IN (integer-constant, ...)
This condition defines one or more data tag values not specified on a table space that the activity
touches. The data tag on a table space, or its underlying storage group (where applicable), can be
either not be set or set to a value from 1 to 9. If the activity touches a table space that has no data
tag set (either at the table space or the storage group level), this threshold will not have any affect
on that activity. The definition domain for this condition must be a service subclass (SERVICE
CLASS specifying the UNDER clause) and the enforcement scope must be DATABASE PARTITION
(SQLSTATE 5U037). This condition is enforced independently at each database partition.

Activities tracked by this condition are:

• Coordinator activities of type data manipulation language (DML).
• Nested DML activities that are directly invoked from user logic.

DML activities that can be initiated by the database manager through internal SQL are not tracked
by this condition.

This threshold is checked only when a scan is opened on a table or when an insert is performed
into a table. Fetching data from a table after a scan has been opened will not violate the threshold.

threshold-exceeded-actions
Specifies what action is to be taken when a condition is exceeded. Each time that a condition is
exceeded, an event is recorded in the threshold violations event monitor, if one is active.
COLLECT ACTIVITY DATA

Specifies that data about each activity that exceeded the threshold is to be sent
to any active activities event monitor, when the activity completes. The default is
COLLECT ACTIVITY DATA NONE. If COLLECT ACTIVITY DATA is specified, the default is
WITHOUT DETAILS. The COLLECT ACTIVITY DATA setting does not apply to non-activity
thresholds, such as the following: CONNECTIONIDLETIME, TOTALDBPARTITIONCONNECTIONS,
TOTALSCPARTITIONCONNECTIONS, CONCURRENTWORKLOADOCCURRENCES, UOWTOTALTIME.
NONE

Specifies that activity data should not be collected for each activity that exceeds the
threshold.

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected only at the coordinator member of the activity.

1454 IBM Db2 V11.5: SQL Reference

ON ALL MEMBERS
Specifies that the activity data is to be collected at all members on which the activity is
processed. On remote members, a record for the activity may be captured multiple times as
the activity comes and goes on those members. For predictive thresholds, activity information
is collected at all members only if you also specify the CONTINUE action for exceeded
thresholds. For reactive thresholds, the ON ALL MEMBERS clause has no effect and activity
information is always collected only at the coordinator member. For both predictive and
reactive thresholds, any activity details, section information, or values will be collected only at
the coordinator member.

WITHOUT DETAILS
Specifies that data about each activity associated with the work class for which this
work action is defined is to be sent to any active activities event monitor, when the
activity completes execution. Details about statement, compilation environment, and section
environment data are not sent.

WITH
DETAILS

Specifies that statement and compilation environment data is to be sent to any active
activities event monitor, for those activities that have them. Section environment data is
not sent.

SECTION
Specifies that statement, compilation environment, section environment data, and section
actuals are to be sent to any active activities event monitor for those activities that
have them. DETAILS must be specified if SECTION is specified. For predictive thresholds,
section actuals will be collected on any member where the activity data is collected. For
reactive thresholds, section actuals will be collected only on the coordinator member.

AND VALUES
Specifies that input data values are to be sent to any active activities event monitor,
for those activities that have them. This data does not include SQL statements that are
compiled by using the REOPT ALWAYS bind option.

STOP EXECUTION
The execution of the activity is stopped and an error is returned (SQLSTATE 5U026). In the case of
the UOWTOTALTIME threshold, the unit of work is rolled back.

CONTINUE
The execution of the activity is not stopped.

FORCE APPLICATION
The application is forced off the system (SQLSTATE 55032). This action can only be specified for
the UOWTOTALTIME threshold.

remap-activity-action
REMAP ACTIVITY TO service-subclass-name

The activity is mapped to service-subclass-name. The execution of the activity is not
stopped. This action is valid only for in-service-class and in-all-service-class thresholds
like CPUTIMEINSC, SQLROWSREADINSC, DATATAGINSC IN and DATATAGINSC NOT IN
and ACTIVITYTOTALRUNTIMEINALLSC thresholds (SQLSTATE 5U037). The service-subclass-
name must identify an existing service subclass under the same superclass associated with
the threshold (SQLSTATE 5U037). The service-subclass-name cannot be the same as the
associated service subclass of the threshold (SQLSTATE 5U037).

NO EVENT MONITOR RECORD
Specifies that no threshold violation record will be written.

LOG EVENT MONITOR RECORD
Specifies that if a THRESHOLD VIOLATIONS event monitor exists and is active, a threshold
violation record is written to it.

Chapter 1. Structured Query Language (SQL) 1455

Notes
• Thresholds can be defined on different aspects of database behavior to monitor and control that

behavior. When a threshold is defined on activities, unless otherwise specified, it will be enforced only
during the actual execution of SQL statements, not including compilation time, and the load utility.

• The CONCURRENTWORKLOADOCCURRENCES threshold and the CONCURRENTWORKLOADACTIVITIES
threshold differ in scope. CONCURRENTWORKLOADOCCURRENCES controls how many connections can
map to a workload definition simultaneously, and CONCURRENTWORKLOADACTIVITIES controls how
many activities each connection that is mapped to the workload definition can submit concurrently.

• Changes are written to the system catalog, but do not take effect until after a COMMIT statement, even
for the connection that issues the statement.

• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an
uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• Threshold exceeded action of CONTINUE and event monitor data: Event monitor data is collected only
once per member when a threshold condition has been exceeded. If the threshold exceeded action
is CONTINUE, the activity continues executing and no further event monitor data is collected for that
threshold at the affected member. For example, consider a time threshold of 10 minutes with an action
of CONTINUE. After an activity exceeds the 10-minute upper bound, event monitor data is collected for
the threshold at the affected member.

• Quiescing a service class: The TOTALSCPARTITIONCONNECTIONS threshold condition can be used to
simulate quiescing service classes that cannot normally be quiesced (for example, the default user
class, or the default system class). This is useful, because thresholds do not apply to users with
DBADM authority running in the SYSDEFAULTADMWORKLOAD, whereas a quiesced service class is not
available to anyone. Consequently, default service classes cannot be quiesced directly but only through
a threshold that allows users with DBADM authority to join them when connected to the database using
the SYSDEFAULTADMWORKLOAD.

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– DATABASE PARTITION can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– DATABASE PARTITIONS can be specified in place of MEMBERS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– TOTALDBPARTITIONCONNECTIONS can be specified in place of TOTALMEMBERCONNECTIONS,
except when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– TOTALSCPARTITIONCONNECTIONS can be specified in place of TOTALSCMEMBERCONNECTIONS,
except when the DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

Examples
• Example 1: Create a threshold that enforces a maximum temporary table space usage of 50M (per

database partition) to any activity in the database. Any activity that violates this threshold is to be
stopped.

 CREATE THRESHOLD DBMAX50MEGTEMPSPACE
 FOR DATABASE ACTIVITIES
 ENFORCEMENT MEMBER
 WHEN SQLTEMPSPACE > 50 M
 STOP EXECUTION

• Example 2: Create a second threshold to limit the default runtime of any activity in the database to a
maximum of 1 hour. Any activity that violates this threshold is to be stopped.

 CREATE THRESHOLD DBMAX1HOURRUNTIME
 FOR DATABASE
 WHEN ACTIVITYTOTALTIME > 1 HOUR
 STOP EXECUTION

1456 IBM Db2 V11.5: SQL Reference

• Example 3: Assume that a service superclass named BIGQUERIES was created to host queries using
more temporary space than average and running longer than 1 hour. The thresholds defined inside this
service class will override the values that were set in the previous example at the database level. Note
how activities violating the thresholds inside this superclass are allowed to continue executing, but
detailed information is collected for further analysis.

 CREATE THRESHOLD BIGQUERIESMAX500MEGTEMPSPACE
 FOR SERVICE CLASS BIGQUERIES ACTIVITIES
 ENFORCEMENT DATABASE MEMBER
 WHEN SQLTEMPSPACE > 500 M
 COLLECT ACTIVITY DATA WITH DETAILS AND VALUES
 CONTINUE

 CREATE THRESHOLD BIGQUERIESLONGRUNNINGTIME
 FOR SERVICE CLASS BIGQUERIES ACTIVITIES
 ENFORCEMENT DATABASE
 WHEN ACTIVITYTOTALTIME > 10 HOURS
 COLLECT ACTIVITY DATA WITH DETAILS AND VALUES
 CONTINUE

• Example 4: Assuming the existence of a workload named PAYROLL, create a threshold that enforces the
maximum number of activities within the workload to be less than or equal to 10.

 CREATE THRESHOLD MAXACTIVITIESINPAYROLL
 FOR WORKLOAD PAYROLL ACTIVITIES
 ENFORCEMENT WORKLOAD OCCURRENCE
 WHEN CONCURRENTWORKLOADACTIVITIES > 10
 STOP EXECUTION

• Example 5: Create a threshold that enforces a maximum concurrency of 2 activities in the service class
BIGQUERIES.

 CREATE THRESHOLD MAXBIGQUERIESCONCURRENCY
 FOR SERVICE CLASS BIGQUERIES ACTIVITIES
 ENFORCEMENT DATABASE
 WHEN CONCURRENTDBCOORDACTIVITIES > 2
 STOP EXECUTION

• Example 6: Create a threshold that captures activity information for a specific statement that runs for
longer than one minute, but do not cease statement execution.

 CREATE THRESHOLD TH1
 FOR STATEMENT
 TEXT 'SELECT DISTINCT PARTS_BIN FROM STOCK WHERE PART_NUMBER = ?'
 ACTIVITIES ENFORCEMENT DATABASE
 WHEN ACTIVITYTOTALTIME > 1 MINUTE
 COLLECT ACTIVITY DATA WITH DETAILS, SECTION AND VALUES
 CONTINUE

CREATE TRANSFORM
The CREATE TRANSFORM statement defines transformation functions, identified by a group name, that
are used to exchange structured type values with host language programs and with external functions.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• Owner of the type identified by type-name, and EXECUTE privilege on every specified function

Chapter 1. Structured Query Language (SQL) 1457

• Owner of the type identified by type-name, and EXECUTEIN privilege on the schema containing all the
specified functions

• Owner of the type identified by type-name, and DATAACCESS authority on the schema containing all the
specified functions

• SCHEMAADM on the schema containing the type-name
• DBADM authority

Syntax
CREATE TRANSFORM

TRANSFORMS

FOR type-name

group-name (

,

TO SQL

FROM SQL

WITH function-designator
1

)

function-designator
FUNCTION function-name

(
,

data-type

)

SPECIFIC FUNCTION specific-name

Notes:
1 The same clause must not be specified more than once.

Description
TRANSFORM or TRANSFORMS

Indicates that one or more transform groups is being defined. Either version of the keyword can be
specified.

FOR type-name
Specifies a name for the user-defined structured type for which the transform group is being defined.

In dynamic SQL statements, the CURRENT SCHEMA special register is used as a qualifier for an
unqualified type-name. In static SQL statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for an unqualified type-name. The type-name must be the name of an existing
user-defined type (SQLSTATE 42704), and it must be a structured type (SQLSTATE 42809). The
structured type or any other structured type in the same type hierarchy must not have transforms
already defined with the given group-name (SQLSTATE 42739).

group-name
Names the transform group. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The group-name must not identify a transform group that already exists in the catalog for
the specified type-name (SQLSTATE 42739). The group-name must not begin with the characters 'SYS'
(SQLSTATE 42939). At most, one of each of the FROM SQL and TO SQL function designations can be
specified for any given group (SQLSTATE 42628).

TO SQL
Defines the specific function used to transform a value to the SQL user-defined structured type
format. The function must have all its parameters as built-in data types and the returned type is
type-name.

1458 IBM Db2 V11.5: SQL Reference

FROM SQL
Defines the specific function used to transform a value to a built in data type value representing the
SQL user-defined structured type. The function must have one parameter of data type type-name, and
return a built-in data type (or set of built-in data types).

WITH function-designator
Uniquely identifies the transform function.

If FROM SQL is specified, function-designator must identify a function that meets the following
requirements:

• There is one parameter of type type-name.
• The return type is a built-in type, or a row whose columns all have built-in types.
• The signature specifies either LANGUAGE SQL or the use of another FROM SQL transform function

that has LANGUAGE SQL.

If TO SQL is specified, function-designator must identify a function that meets the following
requirements:

• All parameters have built-in types.
• The return type is type-name.
• The signature specifies either LANGUAGE SQL or the use of another TO SQL transform function that

has LANGUAGE SQL.

If function-designator identifies a function that does not meet these requirements (according to its
use as a FROM SQL or a TO SQL transform function), an error is raised (SQLSTATE 428DC).

Methods (even if specified with FUNCTION ACCESS) cannot be specified as transforms through
function-designator. Instead, only functions that are defined by the CREATE FUNCTION statement
can act as transforms (SQLSTATE 42704 or 42883).

For more information, see “Function, method, and procedure designators” on page 745.

Rules
• The one or more built-in types that are returned from the FROM SQL function should directly correspond

to the one or more built-in types that are parameters of the TO SQL function. This is a logical
consequence of the inverse relationship between these two functions.

Notes
• When a transform group is not specified in an application program (using the TRANSFORM GROUP

precompile or bind option for static SQL, or the SET CURRENT DEFAULT TRANSFORM GROUP statement
for dynamic SQL), the transform functions in the transform group 'DB2_PROGRAM' are used (if defined)
when the application program is retrieving or sending host variables that are based on the user-defined
structured type identified by type-name. When retrieving a value of data type type-name, the FROM SQL
transform is invoked to transform the structured type to the built-in data type returned by the transform
function. Similarly, when sending a host variable that will be assigned to a value of data type type-name,
the TO SQL transform is invoked to transform the built-in data type value to the structured type value. If
a user-defined transform group is not specified, or a 'DB2_PROGRAM' group is not defined (for the given
structured type), an error is raised (SQLSTATE 42741).

• The built-in data type representation for a structured type host variable must be assignable:

– from the result of the FROM SQL transform function for the structured type as defined by the
specified TRANSFORM GROUP option of the precompile command (using retrieval assignment rules)
and

– to the parameter of the TO SQL transform function for the structured type as defined by the specified
TRANSFORM GROUP option of the precompile command (using storage assignment rules).

Chapter 1. Structured Query Language (SQL) 1459

If a host variable is not assignment compatible with the type required by the applicable transform
function, an error is raised (for bind-in: SQLSTATE 42821; for bind-out: SQLSTATE 42806). For errors
that result from string assignments, see "String Assignments".

• The transform functions identified in the default transform group named 'DB2_FUNCTION' are used
whenever a user-defined function not written in SQL is invoked using the data type type-name as a
parameter or returns type. This applies when the function does not specify the TRANSFORM GROUP
clause. When invoking the function with an argument of data type type-name, the FROM SQL transform
is executed to transform the structured type to the built-in data type returned by the transform function.
Similarly, when the returns data type of the function is of data type type-name, the TO SQL transform is
invoked to transform the built-in data type value returned from the external function program into the
structured type value.

• If a structured type contains an attribute that is also a structured type, the associated transform
functions must recursively expand (or assemble) all nested structured types. This means that the
results or parameters of the transform functions consist only of the set of built-in types representing
all base attributes of the subject structured type (including all its nested structured types). There is no
"cascading" of transform functions for handling nested structured types.

• The functions identified in this statement are resolved according to the rules outlined previously at the
execution of this statement. When these functions are used (implicitly) in subsequent SQL statements,
they do not undergo another resolution process. The transform functions defined in this statement are
recorded exactly as they are resolved in this statement.

• When attributes or subtypes of a given type are created or dropped, the transform functions for the
user-defined structured type must also be changed.

• For a given transform group, the FROM SQL and TO SQL transforms can be specified in either the same
group-name clause, in separate group-name clauses, or in separate CREATE TRANSFORM statements.
The only restriction is that a given FROM SQL or TO SQL transform designation may not be redefined
without first dropping the existing group definition. This allows you to define, for example, a FROM SQL
transform for a given group first, and the corresponding TO SQL transform for the same group at a later
time.

Example
Create two transform groups that associate the user-defined structured type polygon with transform
functions customized for C and Java, respectively.

 CREATE TRANSFORM FOR POLYGON
 mystruct1 (FROM SQL WITH FUNCTION myxform_sqlstruct,
 TO SQL WITH FUNCTION myxform_structsql)
 myjava1 (FROM SQL WITH FUNCTION myxform_sqljava,
 TO SQL WITH FUNCTION myxform_javasql)

CREATE TRIGGER
The CREATE TRIGGER statement defines a trigger in the database. Triggers can be created to support
general forms of integrity or business rules. A trigger defines a set of actions that are executed with, or
triggered by, an INSERT, UPDATE, or DELETE statement.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• ALTER privilege on the table on which the BEFORE or AFTER trigger is defined

1460 IBM Db2 V11.5: SQL Reference

• CONTROL privilege on the view on which the INSTEAD OF trigger is defined
• Owner of the view on which the INSTEAD OF trigger is defined
• ALTERIN privilege on the schema of the table or view on which the trigger is defined
• SCHEMAADM authority on the schema containing the table or view on which the trigger is defined
• DBADM authority

and one of:

• IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the trigger does
not exist

• CREATEIN privilege on the schema, if the schema name of the trigger refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the trigger refers to an existing schema
• DBADM authority

If the authorization ID of the statement does not have DATAACCESS authority, the privileges (excluding
group privileges) held by the authorization ID of the statement must include all of the following
authorities, as long as the trigger exists:

• On the table on which the trigger is defined, if any transition variables or tables are specified:

– SELECT privilege on the table on which the trigger is defined, if any transition variables or tables are
specified

– SELECTIN privilege on the schema containing the table on which the trigger is defined, if any
transition variables or tables are specified

– CONTROL privilege on the table on which the trigger is defined, if any transition variables or tables are
specified

– DATAACCESS authority on the schema containing the table on which the trigger is defined, if any
transition variables or tables are specified

– DATAACCESS authority
• On any table or view referenced in the triggered action condition:

– SELECT privilege on any table or view referenced in the triggered action condition
– SELECTIN privilege on the schema containing any table or view referenced in the triggered action

condition
– CONTROL privilege on any table or view referenced in the triggered action condition
– DATAACCESS authority on the schema containing any table or view referenced in the triggered action

condition
– DATAACCESS authority

• Necessary privileges to invoke the triggered SQL statements specified.

Group privileges are not considered for any table or view specified in the CREATE TRIGGER statement.

To replace an existing trigger, the authorization ID of the statement must be the owner of the existing
trigger (SQLSTATE 42501).

If the SECURED option is specified, the privileges held by the authorization ID of the statement must
additionally include SECADM or CREATE_SECURE_OBJECT authority (SQLSTATE 42501).

Chapter 1. Structured Query Language (SQL) 1461

Syntax
CREATE

OR REPLACE

TRIGGER trigger-name

NO CASCADE
BEFORE

AFTER

INSTEAD OF

trigger-event ON table-name

view-name

REFERENCING
1 2

OLD
AS

correlation-name

NEW
AS

correlation-name

OLD TABLE
AS

identifier

NEW TABLE
AS

identifier

FOR EACH ROW
3

FOR EACH STATEMENT

NOT SECURED

SECURED

triggered-action

trigger-event
OR

INSERT

DELETE

UPDATE

OF

,

column-name

4

triggered-action

5
WHEN (search-condition) label:

SQL-procedure-statement

SQL-procedure-statement

1462 IBM Db2 V11.5: SQL Reference

CALL

Compound SQL (compiled)
6

Compound SQL (inlined)

FOR

WITH

,

common-table-expression

fullselect

GET DIAGNOSTICS

IF

INSERT

ITERATE

LEAVE

MERGE

searched-delete

searched-update

SET Variable

SIGNAL

WHILE

Notes:
1 OLD and NEW can only be specified once each.
2 OLD TABLE and NEW TABLE can only be specified once each, and only for AFTER triggers or INSTEAD
OF triggers.
3 FOR EACH STATEMENT may not be specified for BEFORE triggers or INSTEAD OF triggers.
4 A trigger event must not be specified more than once for the same operation. For example, INSERT
OR DELETE is allowed, but INSERT OR INSERT is not allowed.
5 WHEN condition may not be specified for INSTEAD OF triggers.
6 A compound SQL (compiled) statement cannot be specified if the trigger definition includes a
REFERENCING OLD TABLE clause or a REFERENCING NEW TABLE clause. A compound SQL (compiled)
statement also cannot be specified for a trigger definition in a partitioned database environment.

Description
OR REPLACE

Specifies to replace the definition for the trigger if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog. This option is
ignored if a definition for the trigger does not exist at the current server. This option can be specified
only by the owner of the object.

trigger-name
Names the trigger. The name, including the implicit or explicit schema name, must not identify a
trigger already described in the catalog (SQLSTATE 42710). If a two-part name is specified, the
schema name cannot begin with "SYS" (SQLSTATE 42939).

NO CASCADE BEFORE
Specifies that the associated triggered action is to be applied before any changes caused by the actual
update of the subject table are applied to the database. It also specifies that the triggered action of
the trigger will not cause other triggers to be activated.

Chapter 1. Structured Query Language (SQL) 1463

AFTER
Specifies that the associated triggered action is to be applied after the changes caused by the actual
update of the subject table are applied to the database.

INSTEAD OF
Specifies that the associated triggered action replaces the action against the subject view. Only one
INSTEAD OF trigger is allowed for each kind of operation on a given subject view (SQLSTATE 428FP).

trigger-event
Specifies that the triggered action associated with the trigger is to be executed whenever one of the
events is applied to the subject table or subject view. Any combination of the events can be specified,
but each event (INSERT, DELETE, and UPDATE) can only be specified once (SQLSTATE.42613). If
multiple events are specified, the triggered action must be a compound SQL (compiled) statement
(SQLSTATE 42601).
INSERT

Specifies that the triggered action associated with the trigger is to be executed whenever an
INSERT operation is applied to the subject table or subject view.

DELETE
Specifies that the triggered action associated with the trigger is to be executed whenever a
DELETE operation is applied to the subject table or subject view.

UPDATE
Specifies that the triggered action associated with the trigger is to be executed whenever an
UPDATE operation is applied to the subject table or subject view, subject to the columns specified
or implied.

If the optional column-name list is not specified, every column of the table or view is implied.
Therefore, omission of the column-name list implies that the trigger will be activated by the
update of any column of the table or view.
OF column-name,...

Each column-name specified must be a column of the base table (SQLSTATE 42703). If the
trigger is a BEFORE trigger, the column-name specified cannot be a generated column other
than the identity column (SQLSTATE 42989). No column-name can appear more than once
in the column-name list (SQLSTATE 42711). The trigger will only be activated by the update
of a column that is identified in the column-name list. This clause cannot be specified for an
INSTEAD OF trigger (SQLSTATE 42613).

ON
table-name

Designates the subject table of the BEFORE trigger or AFTER trigger definition. The name must
specify a base table or an alias that resolves to a base table (SQLSTATE 42704 or 42809). The
name must not specify a catalog table (SQLSTATE 42832), a materialized query table (SQLSTATE
42997), a created temporary table, a declared temporary table (SQLSTATE 42995), or a nickname
(SQLSTATE 42809).

view-name
Designates the subject view of the INSTEAD OF trigger definition. The name must specify an
untyped view or an alias that resolves to an untyped view with no columns of type XML (SQLSTATE
42704 or 42809). The name must not specify a catalog view (SQLSTATE 42832). The name must
not specify a view that is defined using WITH CHECK OPTION (a symmetric view), or a view on
which a symmetric view has been defined, directly or indirectly (SQLSTATE 428FQ).

NOT SECURED or SECURED
Specifies whether the trigger is considered secure. The default is NOT SECURED.
NOT SECURED

Specifies the trigger is considered not secure.
SECURED

Specifies the trigger is considered secure. SECURED must be specified for a trigger whose subject
table is a table on which row level or column level access control has been activated (SQLSTATE

1464 IBM Db2 V11.5: SQL Reference

428H8). Similarly, SECURED must be specified for a trigger that is created on a view and one or
more of the underlying tables in that view definition has row level or column level access control
activated (SQLSTATE 428H8).

REFERENCING
Specifies the correlation names for the transition variables and the table names for the transition
tables. Correlation names identify a specific row in the set of rows affected by the triggering SQL
operation. Table names identify the complete set of affected rows. Each row affected by the triggering
SQL operation is available to the triggered action by qualifying columns with correlation-names
specified as follows.
OLD AS correlation-name

Specifies a correlation name which identifies the row state before the triggering SQL operation.
NEW AS correlation-name

Specifies a correlation name which identifies the row state as modified by the triggering SQL
operation and by any SET statement in a BEFORE trigger that has already executed.

The complete set of rows affected by the triggering SQL operation is available to the triggered action
by using a temporary table name specified as follows.

OLD TABLE AS identifier
Specifies the name of a temporary table that identifies the values in the complete set of affected
rows prior to the triggering SQL operation. If the trigger event is INSERT, the temporary table is
empty.

NEW TABLE AS identifier
Specifies the name of a temporary table that identifies the state of the complete set of affected
rows as modified by the triggering SQL operation and by any SET statement in a before trigger that
has already been executed. If the trigger event is DELETE, the temporary table is empty.

The following rules apply to the REFERENCING clause:

• None of the OLD and NEW correlation names and the OLD TABLE and NEW TABLE names can be
identical (SQLSTATE 42712).

• Only one OLD and one NEW correlation-name may be specified for a trigger (SQLSTATE 42613).
• Only one OLD TABLE and one NEW TABLE identifier may be specified for a trigger (SQLSTATE

42613).
• OLD TABLE or NEW TABLE identifiers cannot be defined in a BEFORE trigger (SQLSTATE 42898).
• A NEW transition variable can only be the target of an assignment in a BEFORE trigger. Otherwise,

transition variables cannot be the target of an assignment (SQLSTATE 42703 or 42987).
• OLD or NEW correlation names cannot be defined in a FOR EACH STATEMENT trigger (SQLSTATE

42899).
• Transition tables cannot be modified (SQLSTATE 42807).
• The total of the references to the transition table columns and transition variables in the triggered-

action cannot exceed the limit for the number of columns in a table or the sum of their lengths
cannot exceed the maximum length of a row in a table (SQLSTATE 54040).

• The scope of each correlation-name and each identifier is the entire trigger definition.
• If the triggered-action includes a compound SQL (compiled) statement:

– OLD TABLE or NEW TABLE identifiers cannot be defined.
– If the operation is a DELETE operation, OLD correlation-name captures the value of the deleted

row. If it is an UPDATE operation, it captures the value of the row before the UPDATE operation.
For an insert operation, OLD correlation-name captures null values for each column of a row.

– For an insert operation or an update operation, the value of NEW captures the new state of
the row as provided by the original operation and as modified by any BEFORE trigger that has
executed to this point. For a delete operation, NEW correlation-name captures null values for
each column of a row. In a BEFORE DELETE trigger, any non-null values assigned to the new
transition variables persist only within the trigger where the assignment occurred.

Chapter 1. Structured Query Language (SQL) 1465

• If the triggered-action does not include a compound SQL (compiled) statement:

– The OLD correlation-name and the OLD TABLE identifier can only be used if the trigger event
is either a DELETE operation or an UPDATE operation (SQLSTATE 42898). If the operation is a
DELETE operation, OLD correlation-name captures the value of the deleted row. If it is an UPDATE
operation, it captures the value of the row before the UPDATE operation. The same applies to the
OLD TABLE identifier and the set of affected rows.

– The NEW correlation-name and the NEW TABLE identifier can only be used if the trigger event
is either an INSERT operation or an UPDATE operation (SQLSTATE 42898). In both operations,
the value of NEW captures the new state of the row as provided by the original operation and as
modified by any BEFORE trigger that has executed to this point. The same applies to the NEW
TABLE identifier and the set of affected rows.

FOR EACH ROW
Specifies that the triggered action is to be applied once for each row of the subject table or subject
view that is affected by the triggering SQL operation.

FOR EACH STATEMENT
Specifies that the triggered action is to be applied only once for the whole statement. This type of
trigger granularity cannot be specified for a BEFORE trigger or an INSTEAD OF trigger (SQLSTATE
42613). If specified, an UPDATE or DELETE trigger is activated, even if no rows are affected by the
triggering UPDATE or DELETE statement.

triggered-action
Specifies the action to be performed when a trigger is activated. A triggered action is composed
of an SQL-procedure-statement and by an optional condition for the execution of the SQL-procedure-
statement.

Trigger event predicates can be used anywhere in the triggered action of a CREATE TRIGGER
statement that uses a compound SQL (compiled) statement as the SQL-procedure-statement.

WHEN
(search-condition)

Specifies a condition that is true, false, or unknown. The search-condition provides a capability
to determine whether or not a certain triggered action should be executed. The associated
action is performed only if the specified search condition evaluates as true. If the WHEN
clause is omitted, the associated SQL-procedure-statement is always performed.

The WHEN clause cannot be specified for INSTEAD OF triggers (SQLSTATE 42613).

A reference to a transition variable with an XML data type can be used only in a VALIDATED
predicate.

label:
Specifies the label for an SQL procedure statement. The label must be unique within a list of
SQL procedure statements, including any compound statements nested within the list. Note that
compound statements that are not nested can use the same label. A list of SQL procedure
statements is possible in a number of SQL control statements.

Only the FOR statement, WHILE statement, and the compound SQL statement can include a label.

SQL-procedure-statement
Specifies the SQL statement that is to be part of the triggered action. A searched update, searched
delete, insert, or merge operation on nicknames inside compound SQL is not supported.

The triggered action of a BEFORE trigger on a column of type XML can invoke the XMLVALIDATE
function through a SET statement, leave values of type XML unchanged, or assign them to NULL
using a SET statement.

The SQL-procedure-statement must not contain a statement that is not supported (SQLSTATE
42987).

1466 IBM Db2 V11.5: SQL Reference

The SQL-procedure-statement cannot reference an undefined transition variable (SQLSTATE
42703), a federated object (SQLSTATE 42997), or a declared temporary table (SQLSTATE 42995).
or the start and end columns of the BUSINESS_TIME period (SQLSTATE 42808).

The SQL-procedure-statement in a BEFORE trigger cannot:

• Contain any INSERT, DELETE, or UPDATE operations, nor invoke any routine defined with
MODIFIES SQL DATA, if it is not a compound SQL (compiled).

• Contain any DELETE or UPDATE operations on the trigger subject table, nor invoke any routine
containing such operations, if it is a compound SQL (compiled).

• Reference a materialized query table defined with REFRESH IMMEDIATE (SQLSTATE 42997)
• Reference a generated column other than the identity column in the NEW transition variable

(SQLSTATE 42989).

Notes
• Adding a trigger to a table that already has rows in it will not cause any triggered actions to be activated.

Thus, if the trigger is designed to enforce constraints on the data in the table, those constraints may not
be satisfied by the existing rows.

• If the events for two triggers occur simultaneously (for example, if they have the same event, activation
time, and subject tables), then the first trigger created is the first to execute. If the OR REPLACE option
is used to replace a previously created trigger, the create time is changed and therefore could affect the
order of trigger execution.

• If a column is added to the subject table after triggers have been defined, the following rules apply:

– If the trigger is an UPDATE trigger that was specified without an explicit column list, then an update to
the new column will cause the activation of the trigger.

– The column will not be visible in the triggered action of any previously defined trigger.
– The OLD TABLE and NEW TABLE transition tables will not contain this column. Thus, the result of

performing a "SELECT *" on a transition table will not contain the added column.
• If a column is added to any table referenced in a triggered action, the new column will not be visible to

the triggered action.
• If an object referenced in the trigger body does not exist or is marked invalid, or the definer temporarily

doesn't have privileges to access the object, and if the database configuration parameter auto_reval
is set to DEFERRED_FORCE, then the trigger will still be created successfully. The trigger will be marked
invalid and will be revalidated the next time it is invoked.

• The result of a fullselect specified in a SQL-procedure-statement is not available inside or outside of the
trigger.

• A procedure called within a triggered compound statement must not issue a COMMIT or a ROLLBACK
statement (SQLSTATE 42985).

• A procedure that contains a reference to a nickname in a searched UPDATE statement, a searched
DELETE statement, or an INSERT statement is not supported (SQLSTATE 25000).

• Table access restrictions:: If a procedure is defined as READS SQL DATA or MODIFIES SQL DATA, no
statement in the procedure can access a table that is being modified by the compound statement
that invoked the procedure (SQLSTATE 57053). If the procedure is defined as MODIFIES SQL DATA,
no statement in the procedure can modify a table that is being read or modified by the compound
statement that invoked the procedure (SQLSTATE 57053).

• A BEFORE DELETE trigger defined on a table involved in a cycle of cascaded referential constraints
should not include references to the table on which it is defined or any other table modified by
cascading during the evaluation of the cycle of referential integrity constraints. The results of such a
trigger are data dependent and therefore may not produce consistent results.

In its simplest form, this means that a BEFORE DELETE trigger on a table with a self-referencing
referential constraint and a delete rule of CASCADE should not include any references to the table in the
triggered-action.

Chapter 1. Structured Query Language (SQL) 1467

• The creation of a trigger causes certain packages to be marked invalid:

– If an UPDATE trigger without an explicit column list is created, then packages with an update usage
on the target table or view are invalidated.

– If an UPDATE trigger with a column list is created, then packages with update usage on the target
table are only invalidated if the package also has an update usage on at least one column in the
column-name list of the CREATE TRIGGER statement.

– If an INSERT trigger is created, packages that have an insert usage on the target table or view are
invalidated.

– If a delete trigger is created, packages that have a delete usage on the target table or view are
invalidated.

• A package remains invalid until the application program is explicitly bound or rebound, or it is executed
and the database manager automatically rebinds it.

• Inoperative triggers: An inoperative trigger is a trigger that is no longer available and is therefore never
activated. A trigger becomes inoperative if:

– a privilege that the creator of the trigger is required to have for the trigger to execute is revoked
– an object such as a table, view or alias, upon which the triggered action is dependent, is dropped
– a view, upon which the triggered action is dependent, becomes inoperative
– an alias that is the subject table of the trigger is dropped.

In practical terms, an inoperative trigger is one in which a trigger definition has been dropped as a result
of cascading rules for DROP or REVOKE statements. For example, when a view is dropped, any trigger
with an SQL-procedure-statement that contains a reference to that view is made inoperative.

When a trigger is made inoperative, all packages with statements performing operations that were
activating the trigger will be marked invalid. When the package is rebound (explicitly or implicitly)
the inoperative trigger is completely ignored. Similarly, applications with dynamic SQL statements
performing operations that were activating the trigger will also completely ignore any inoperative
triggers.

The trigger name can still be specified in the DROP TRIGGER and COMMENT ON TRIGGER statements.

An inoperative trigger may be re-created by issuing a CREATE TRIGGER statement using the definition
text of the inoperative trigger. This trigger definition text is stored in the TEXT column of the
SYSCAT.TRIGGERS catalog view. Note that there is no need to explicitly drop the inoperative trigger
in order to re-create it. Issuing a CREATE TRIGGER statement with the same trigger-name as an
inoperative trigger will cause that inoperative trigger to be replaced with a warning (SQLSTATE 01595).

Inoperative triggers are indicated by an X in the VALID column of the SYSCAT.TRIGGERS catalog view.
• Errors executing triggers: Errors that occur during the execution of triggered SQL statements are

returned using SQLSTATE 09000 unless the error is considered severe. If the error is severe, the severe
error SQLSTATE is returned. The SQLERRMC field of the SQLCA for non-severe error will include the
trigger name, SQLCODE, SQLSTATE and as many tokens as will fit from the tokens of the failure.

The SQL-procedure-statement could include a SIGNAL SQLSTATE statement or a RAISE_ERROR
function. In both these cases, the SQLSTATE returned is the one specified in the SIGNAL SQLSTATE
statement or the RAISE_ERROR condition.

• Creating a trigger with a schema name that does not already exist will result in the implicit creation
of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The
schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• DB2SECURITYLABEL column: A DB2SECURITYLABEL column can be referenced in the trigger body of a
BEFORE TRIGGER but it cannot be changed in the body of a BEFORE trigger (SQLSTATE 42989).

• BUSINESS_TIME period columns: The start and end columns of a BUSINESS_TIME period cannot be
changed in the body of BEFORE UPDATE trigger (SQLSTATE 42808).

• Read-only views: The addition of an INSTEAD OF trigger for a view affects the read only characteristic
of the view. If a read-only view has a dependency relationship with an INSTEAD OF trigger, the type of

1468 IBM Db2 V11.5: SQL Reference

operation that is defined for the INSTEAD OF trigger defines whether the view is deletable, insertable, or
updatable.

• Transition variable values and INSTEAD OF triggers: The initial values for new transition variables or
new transition table columns that are visible in an INSTEAD OF INSERT trigger are set as follows:

– If a value is explicitly specified for a column in the insert operation, the corresponding new transition
variable is that explicitly specified value.

– If a value is not explicitly specified for a column in the insert operation or the DEFAULT clause is
specified, the corresponding new transition variable is:

- the default value of the underlying table column if the view column is updatable (without the
INSTEAD OF trigger)

- otherwise, the null value

The initial values for new transition variables that are visible in an INSTEAD OF UPDATE trigger are set
as follows:

– If a value is explicitly specified for a column in the update operation, the corresponding new
transition variable is that explicitly specified value.

– If the DEFAULT clause is explicitly specified for a column in the update operation, the corresponding
new transition variable is:

- the default value of the underlying table column if the view column is updatable (without the
INSTEAD OF trigger)

- otherwise, the null value
– Otherwise, the corresponding new transition variable is the existing value of the column in the row.

• Triggers and typed tables: A BEFORE or AFTER trigger can be attached to a typed table at any level of
a table hierarchy. If an SQL statement activates multiple triggers, the triggers will be executed in their
creation order, even if they are attached to different tables in the typed table hierarchy.

When a trigger is activated, its transition variables (OLD, NEW, OLD TABLE and NEW TABLE) may contain
rows of subtables. However, they will contain only columns defined on the table to which they are
attached.

Effects of INSERT, UPDATE, and DELETE statements:

– Row triggers: When an SQL statement is used to INSERT, UPDATE, or DELETE a table row, it activates
row-triggers attached to the most specific table containing the row, and all supertables of that table.
This rule is always true, regardless of how the SQL statement accesses the table. For example, when
issuing an UPDATE EMP command, some of the updated rows may be in the subtable MGR. For
EMP rows, the row-triggers attached to EMP and its supertables are activated. For MGR rows, the
row-triggers attached to MGR and its supertables are activated.

– Statement triggers: An INSERT, UPDATE, or DELETE statement activates statement-triggers attached
to tables (and their supertables) that could be affected by the statement. This rule is always true,
regardless of whether any actual rows in these tables were affected. For example, on an INSERT
INTO EMP command, statement-triggers for EMP and its supertables are activated. As another
example, on either an UPDATE EMP or DELETE EMP command, statement triggers for EMP and its
supertables and subtables are activated, even if no subtable rows were updated or deleted. Likewise,
a UPDATE ONLY (EMP) or DELETE ONLY (EMP) command will activate statement-triggers for EMP and
its supertables, but not statement-triggers for subtables.

Effects of DROP TABLE statements: A DROP TABLE statement does not activate any triggers that are
attached to the table being dropped. However, if the dropped table is a subtable, all the rows of the
dropped table are considered to be deleted from its supertables. Therefore, for a table T:

– Row triggers: DROP TABLE T activates row-type delete-triggers that are attached to all supertables of
T, for each row of T.

– Statement triggers: DROP TABLE T activates statement-type delete-triggers that are attached to all
supertables of T, regardless of whether T contains any rows.

Chapter 1. Structured Query Language (SQL) 1469

Actions on Views: To predict what triggers are activated by an action on a view, use the view definition
to translate that action into an action on base tables. For example:

1. An SQL statement performs UPDATE V1, where V1 is a typed view with a subview V2. Suppose
V1 has underlying table T1, and V2 has underlying table T2. The statement could potentially affect
rows in T1, T2, and their subtables, so statement triggers are activated for T1 and T2 and all their
subtables and supertables.

2. An SQL statement performs UPDATE V1, where V1 is a typed view with a subview V2. Suppose V1
is defined as SELECT ... FROM ONLY(T1) and V2 is defined as SELECT ... FROM ONLY(T2). Since the
statement cannot affect rows in subtables of T1 and T2, statement triggers are activated for T1 and
T2 and their supertables, but not their subtables.

3. An SQL statement performs UPDATE ONLY(V1), where V1 is a typed view defined as SELECT ... FROM
T1. The statement can potentially affect T1 and its subtables. Therefore, statement triggers are
activated for T1 and all its subtables and supertables.

4. An SQL statement performs UPDATE ONLY(V1), where V1 is a typed view defined as SELECT ...
FROM ONLY(T1). In this case, T1 is the only table that can be affected by the statement, even if V1
has subviews and T1 has subtables. Therefore, statement triggers are activated only for T1 and its
supertables.

• MERGE statement and triggers: The MERGE statement can execute update, delete, and insert
operations. The applicable UPDATE, DELETE, or INSERT triggers are activated for the MERGE statement
when an update, delete, or insert operation is executed.

• Obfuscation: The CREATE TRIGGER statement can be submitted in obfuscated form. In an obfuscated
statement, only the trigger name is readable. The rest of the statement is encoded in such a way that
is not readable but can be decoded by the database server. Obfuscated statements can be produced by
calling the DBMS_DDL.WRAP function.

• Creating a trigger with the SECURED option: Normally users with SECADM authority do not have
privileges to create database objects such as triggers or user-defined functions. Typically, they will
examine the data accessed by a trigger, ensure it is secure, then grant the CREATE_SECURE_OBJECT
authority to someone who has the required privileges to create the secure trigger. After the trigger is
created, they will revoke the CREATE_SECURE_OBJECT authority from the trigger owner.

The trigger is considered secure. The database manager treats the SECURED attribute as an assertion
that declares the user has established an audit procedure for all activities in the trigger body. If a secure
trigger references user-defined functions, the database manager assumes those functions are secure
without validation. If those functions can access sensitive data, the user with SECADM authority needs
to ensure those functions are allowed to access those data and that all subsequent ALTER FUNCTION
statements or changes to external packages are being reviewed by this audit process.

A trigger must be secure if its subject table has row level or column level access control activated.
Similarly, a trigger must be secure if its subject table is a view and one or more of the underlying tables
in the view definition has row level or column level access control activated.

• Creating a trigger with the NOT SECURED option: The CREATE TRIGGER statement returns an error if
the trigger's subject table has row level or column level access control activated. Similarly, the CREATE
TRIGGER statement fails if the trigger is defined on a view and one or more of the underlying tables in
that view definition has row level or column level access control activated.

• Row and column access control that is not enforced for transition variables and transition tables:
Triggers are used for database integrity, and as such a balance between security and database integrity
is needed. If row level or column level access control is activated on the subject table or an underlying
table of the subject view, row permissions and column masks are not applied to the initial values of
transition variables and transition tables. Row level and column level access control that is enforced
for the subject table or an underlying table of the subject view is also ignored for transition variables
and transition tables that are referenced in the trigger body or are passed as arguments to user-defined
functions invoked in the trigger body. To ensure there is no security concern for SQL statements in the
trigger action to access sensitive data in transition variables and transition tables, the trigger must be
created with the SECURED option. If a trigger is not secure, the CREATE TRIGGER statement returns an
error.

1470 IBM Db2 V11.5: SQL Reference

• Considerations for implicitly hidden columns: A transition variable exists for any column defined as
implicitly hidden. In the body of a trigger, a transition variable that corresponds to an implicitly hidden
column can be referenced.

• Rebinding dependent packages: Every compiled trigger has a dependent package. The package can
be rebound at any time by using the REBIND_ROUTINE_PACKAGE procedure. Explicitly rebinding
the dependent package does not revalidate an invalid trigger. Revalidate an invalid trigger by using
automatic revalidation or explicitly by using the ADMIN_REVALIDATE_DB_OBJECTS procedure. Trigger
revalidation automatically rebinds the dependent package.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– OLD_TABLE can be specified in place of OLD TABLE, and NEW_TABLE can be specified in place of
NEW TABLE

– MODE DB2SQL can be specified following FOR EACH ROW or FOR EACH STATEMENT

Examples
• Example 1: Create two triggers that will result in the automatic tracking of the number of employees a

company manages. The triggers will interact with the following tables:

– EMPLOYEE table with these columns: ID, NAME, ADDRESS, and POSITION.
– COMPANY_STATS table with these columns: NBEMP, NBPRODUCT, and REVENUE.

The first trigger increments the number of employees each time a new person is hired; that is, each time
a new row is inserted into the EMPLOYEE table:

 CREATE TRIGGER NEW_HIRED
 AFTER INSERT ON EMPLOYEE
 FOR EACH ROW
 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The second trigger decrements the number of employees each time an employee leaves the company;
that is, each time a row is deleted from the table EMPLOYEE:

 CREATE TRIGGER FORMER_EMP
 AFTER DELETE ON EMPLOYEE
 FOR EACH ROW
 UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1

• Example 2: Create a trigger that ensures that whenever a parts record is updated, the following check
and (if necessary) action is taken:

– If the on-hand quantity is less than 10% of the maximum stocked quantity, then issue a shipping
request ordering the number of items for the affected part to be equal to the maximum stocked
quantity minus the on-hand quantity.

The trigger will interact with the PARTS table with these columns: PARTNO, DESCRIPTION, ON_HAND,
MAX_STOCKED, and PRICE.

ISSUE_SHIP_REQUEST is a user-defined function that sends an order form for additional parts to the
appropriate company.

 CREATE TRIGGER REORDER
 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
 REFERENCING NEW AS N
 FOR EACH ROW
 WHEN (N.ON_HAND < 0.10 * N.MAX_STOCKED)
 BEGIN ATOMIC
 VALUES(ISSUE_SHIP_REQUEST(N.MAX_STOCKED - N.ON_HAND, N.PARTNO));
 END

• Example 3: Repeat the scenario in Example 2 except use a fullselect instead of a VALUES statement
to invoke the user-defined function. This example also shows how to define the trigger as a statement

Chapter 1. Structured Query Language (SQL) 1471

trigger instead of a row trigger. For each row in the transition table that evaluates to true for the WHERE
clause, a shipping request is issued for the part.

 CREATE TRIGGER REORDER
 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
 REFERENCING NEW TABLE AS NTABLE
 FOR EACH STATEMENT
 BEGIN ATOMIC
 SELECT ISSUE_SHIP_REQUEST(MAX_STOCKED - ON_HAND, PARTNO)
 FROM NTABLE
 WHERE (ON_HAND < 0.10 * MAX_STOCKED);
 END

• Example 4: Create a trigger that will cause an error when an update occurs that would result in a salary
increase greater than ten percent of the current salary.

 CREATE TRIGGER RAISE_LIMIT
 AFTER UPDATE OF SALARY ON EMPLOYEE
 REFERENCING NEW AS N OLD AS O
 FOR EACH ROW
 WHEN (N.SALARY > 1.1 * O.SALARY)
 SIGNAL SQLSTATE '75000' SET MESSAGE_TEXT='Salary increase>10%'

• Example 5: Consider an application which records and tracks changes to stock prices. The database
contains two tables, CURRENTQUOTE and QUOTEHISTORY.

 Tables: CURRENTQUOTE (SYMBOL, QUOTE, STATUS)
 QUOTEHISTORY (SYMBOL, QUOTE, QUOTE_TIMESTAMP)

When the QUOTE column of CURRENTQUOTE is updated, the new quote should be copied, with a
timestamp, to the QUOTEHISTORY table. Also, the STATUS column of CURRENTQUOTE should be
updated to reflect whether the stock is:

1. rising in value;
2. at a new high for the year;
3. dropping in value;
4. at a new low for the year;
5. steady in value.

CREATE TRIGGER statements that accomplish this are as follows.

– Trigger Definition to set the status:

 CREATE TRIGGER STOCK_STATUS
 NO CASCADE BEFORE UPDATE OF QUOTE ON CURRENTQUOTE
 REFERENCING NEW AS NEWQUOTE OLD AS OLDQUOTE
 FOR EACH ROW
 BEGIN ATOMIC
 SET NEWQUOTE.STATUS =
 CASE
 WHEN NEWQUOTE.QUOTE >
 (SELECT MAX(QUOTE) FROM QUOTEHISTORY
 WHERE SYMBOL = NEWQUOTE.SYMBOL
 AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))
 THEN 'High'
 WHEN NEWQUOTE.QUOTE <
(SELECT MIN(QUOTE) FROM QUOTEHISTORY
 WHERE SYMBOL = NEWQUOTE.SYMBOL
 AND YEAR(QUOTE_TIMESTAMP) = YEAR(CURRENT DATE))
 THEN 'Low'
 WHEN NEWQUOTE.QUOTE > OLDQUOTE.QUOTE
 THEN 'Rising'
 WHEN NEWQUOTE.QUOTE < OLDQUOTE.QUOTE
 THEN 'Dropping'
 WHEN NEWQUOTE.QUOTE = OLDQUOTE.QUOTE
 THEN 'Steady'
 END;
 END

– Trigger Definition to record change in QUOTEHISTORY table:

1472 IBM Db2 V11.5: SQL Reference

 CREATE TRIGGER RECORD_HISTORY
 AFTER UPDATE OF QUOTE ON CURRENTQUOTE
 REFERENCING NEW AS NEWQUOTE
 FOR EACH ROW
 BEGIN ATOMIC
 INSERT INTO QUOTEHISTORY
 VALUES (NEWQUOTE.SYMBOL, NEWQUOTE.QUOTE, CURRENT TIMESTAMP);
 END

• Example 6:Create a trigger that overrides any changes to the location field in the employee record in the
org table. This trigger would be useful if new employee records acquired when a smaller company was
purchased are processed and the target location allocated to the employee is "Toronto" and the new
target location is "Los Angeles". The before trigger will ensure that regardless what value the application
allocates for this field, that the final resultant value is "Los Angeles".

 CREATE TRIGGER LOCATION_TRIGGER
 NO CASCADE
 BEFORE UPDATE ON ORG
 REFERENCING
 OLD AS PRE
 NEW AS POST
 FOR EACH ROW
 WHEN (POST.LOCATION = 'Toronto')
 SET POST.LOCATION = 'Los Angeles';
 END

• Example 7: Create a BEFORE trigger that automatically validates XML documents containing new
product descriptions before they are inserted into the PRODUCT table of the SAMPLE database:

 CREATE TRIGGER NEWPROD NO CASCADE BEFORE INSERT ON PRODUCT
 REFERENCING NEW AS N
 FOR EACH ROW
 BEGIN ATOMIC
 SET (N.DESCRIPTION) = XMLVALIDATE(N.DESCRIPTION
 ACCORDING TO XMLSCHEMA ID product);
 END

• Example 8: Create a multiple-event trigger that tracks of the number and salary of employees a
company manages. The triggers will interact with the following columns and tables:

– ID, NAME, ADDRESS, SALARY, and POSITION columns in the EMPLOYEE table
– NBEMP, NBPRODUCT, and REVENUE columns in the COMPANY_STATS table

The trigger increments the number of employees each time a new employee is hired; decrements the
number of employees each time an employee leaves the company, and raises an error when an update
occurs that would result in a salary increase greater than ten percent of the current salary:

CREATE OR REPLACE TRIGGER HIRED
 AFTER INSERT OR DELETE OR UPDATE OF SALARY ON EMPLOYEE
 REFERENCING NEW AS N OLD AS O FOR EACH ROW
 BEGIN
 IF INSERTING THEN UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
 ELSEIF DELETING THEN UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;
 ELSEIF (UPDATING AND (N.SALARY > 1.1 * O.SALARY))
 THEN SIGNAL SQLSTATE '75000' SET MESSAGE_TEXT='Salary increase>10%';
 END IF;
 END;

• Example 9: Create a trigger that ensures that the following check and (if necessary) action is taken,
before a parts record is updated:

– If the on-hand quantity is less than 10% of the maximum stocked quantity, then place a new order
record into the ORDER table and issue a shipping request ordering the number of items for the
affected part to be equal to the maximum stocked quantity minus the on-hand quantity.

The trigger interacts with the following columns and tables:

– PARTNO, DESCRIPTION, ON_HAND, MAX_STOCKED, and PRICE columns in the PARTS table
– PARTNO and PRICE columns in the ORDER table

Chapter 1. Structured Query Language (SQL) 1473

ISSUE_SHIP_REQUEST is a user-defined SQL data modification stored procedure that sends an order
form for additional parts to the supply company, and deletes the corresponding row from the ORDER
table after the order form is confirmed by the supply company.

CREATE TRIGGER REORDER
 BEFORE UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
 REFERENCING NEW AS N
 FOR EACH ROW
 WHEN (N.ON_HAND < 0.10 * N.MAX_STOCKED)
 BEGIN
 INSERT INTO ORDERS VALUES (N.MAX_STOCKED - N.ON_HAND, N.PARTNO);
 CALL ISSUE_SHIP_REQUEST(N.MAX_STOCKED - N.ON_HAND, N.PARTNO);
 END;

CREATE TRUSTED CONTEXT
The CREATE TRUSTED CONTEXT statement defines a trusted context at the current server.

Important: The DATA_ENCRYPT authentication type is deprecated and might be removed in a future
release. To encrypt data in-transit between clients and Db2 databases, we recommend that you use the
Db2 database system support of Transport Layer Security (TLS). For more information, see Encryption of
data in transit

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
CREATE TRUSTED CONTEXT context-name BASED UPON CONNECTION USING

SYSTEM AUTHID authorization-name ● ATTRIBUTES (

,
1

ADDRESS address-value

WITH ENCRYPTION encryption-value

2
ENCRYPTION encryption-value

) ●
NO DEFAULT ROLE

DEFAULT ROLE role-name

●
DISABLE

ENABLE

●

WITH USE FOR

,

authorization-name

ROLE role-name

PUBLIC

WITHOUT AUTHENTICATION

WITH AUTHENTICATION

●

Notes:
1 Each combination of an attribute name and its corresponding value, as a pair, must be unique
(SQLSTATE 4274D).

1474 IBM Db2 V11.5: SQL Reference

https://www.ibm.com/docs/en/db2/11.5?topic=encryption-data-in-transit
https://www.ibm.com/docs/en/db2/11.5?topic=encryption-data-in-transit

2 ENCRYPTION cannot be specified more than once (SQLSTATE 42614); however, WITH ENCRYPTION
can be specified for each ADDRESS that is specified.

Description
context-name

Names the trusted context. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The name must not identify a trusted context that already exists at the current server
(SQLSTATE 42710). The name must not begin with the characters 'SYS' (SQLSTATE 42939).

BASED UPON CONNECTION USING SYSTEM AUTHID authorization-name
Specifies that the context is a connection established by system authorization ID authorization-name,
which must not be associated with an existing trusted context (SQLSTATE 428GL). It cannot be the
authorization ID of the statement (SQLSTATE 42502).

ATTRIBUTES (...)
Specifies a list of one or more connection trust attributes upon which the trusted context is defined.
ADDRESS address-value

Specifies the actual communication address used by the client to communicate with the database
server. The only protocol supported is TCP/IP. The ADDRESS attribute can be specified multiple
times, but each address-value pair must be unique for the set of attributes (SQLSTATE 4274D).

When establishing a trusted connection, if multiple values are defined for the ADDRESS attribute
of a trusted context, a candidate connection is considered to match this attribute if the address
used by the connection matches any of the defined values for the ADDRESS attribute of the
trusted context.

address-value
Specifies a string constant that contains the value to be associated with the ADDRESS trust
attribute. The address-value must be an IPv4 address, an IPv6 address, or a secure domain
name.

• An IPv4 address must not contain leading spaces and is represented as a dotted decimal
address. An example of an IPv4 address is 9.112.46.111. The value 'localhost' or its
equivalent representation '127.0.0.1' will not result in a match; the real IPv4 address of
the host must be specified instead.

• An IPv6 address must not contain leading spaces and is represented as a colon hexadecimal
address. An example of an IPv6 address is 2001:0DB8:0000:0000:0008:0800:200C:417A.
IPv4-mapped IPv6 addresses (for example, ::ffff:192.0.2.128) will not result in a match.
Similarly, 'localhost' or its IPv6 short representation '::1' will not result in a match.

• A domain name is converted to an IP address by the domain name server where
a resulting IPv4 or IPv6 address is determined. An example of a domain name is
corona.torolab.ibm.com. When a domain name is converted to an IP address, the result
of this conversion could be a set of one or more IP addresses. In this case, an incoming
connection is said to match the ADDRESS attribute of a trusted context object if the IP
address from which the connection originates matches any of the IP addresses to which
the domain name was converted. When creating a trusted context object, it is advantageous
to provide domain name values for the ADDRESS attribute instead of static IP addresses,
particularly in Dynamic Host Configuration Protocol (DHCP) environments. With DHCP, a
device can have a different IP address each time it connects to the network. So, if a
static IP address is provided for the ADDRESS attribute of a trusted context object, some
device might acquire a trusted connection unintentionally. Providing domain names for the
ADDRESS attribute of a trusted context object avoids this problem in DHCP environments.

WITH ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or network encryption
for this specific address-value. This encryption-value overrides the global ENCRYPTION
attribute setting for this specific address-value.

Chapter 1. Structured Query Language (SQL) 1475

encryption-value
Specifies a string constant that contains the value to be associated with the
ENCRYPTION trust attribute for this specific address-value. The encryption-value must
be one of the following values (SQLSTATE 42615):

• NONE, no specific level of encryption is required
• LOW, a minimum of light encryption is required; the authentication type on the

database manager must be DATA_ENCRYPT if an incoming connection is to match
the encryption setting for this specific address

• HIGH, Secure Sockets Layer (SSL) encryption, or equivalent, must be used for data
communication between the database client and the database server if an incoming
connection is to match the encryption setting for this specific address

ENCRYPTION encryption-value
Specifies the minimum level of encryption of the data stream or network encryption. The default is
NONE.
encryption-value

Specifies a string constant that contains the value to be associated with the ENCRYPTION
trust attribute for this specific address-value. The encryption-value must be one of the
following values (SQLSTATE 42615):

• NONE, no specific level of encryption is required for an incoming connection to match the
ENCRYPTION attribute of this trusted context object

• LOW, a minimum of light encryption is required; the authentication type on the database
manager must be DATA_ENCRYPT if an incoming connection is to match the ENCRYPTION
attribute of this trusted context object

• HIGH, Secure Sockets Layer (SSL) encryption, or equivalent, must be used for data
communication between the database client and the database server if an incoming
connection is to match the ENCRYPTION attribute of this trusted context object

The following table summarizes when a trusted context can be used, depending on the
encryption used by the existing connection. If the trusted context cannot be used for the
connection, a warning is returned (SQLSTATE 01679) and the SQLWARN8 field of the SQLCA is
set to 'Y', indicating that the connection is a regular (non-trusted) connection.

Table 145. Encryption and trusted contexts

Encryption used by existing
connection

ENCRYPTION value for
trusted context

Can the trusted context be
used for the connection?

No encryption 'NONE' Yes

No encryption 'LOW' No

No encryption 'HIGH' No

Low encryption
(DATA_ENCRYPT)

'NONE' Yes

Low encryption
(DATA_ENCRYPT)

'LOW' Yes

Low encryption
(DATA_ENCRYPT)

'HIGH' No

High encryption (SSL) 'NONE' Yes

High encryption (SSL) 'LOW' Yes

High encryption (SSL) 'HIGH' Yes

1476 IBM Db2 V11.5: SQL Reference

NO DEFAULT ROLE or DEFAULT ROLE role-name
Specifies whether or not a default role is associated with a trusted connection that is based on this
trusted context. The default is NO DEFAULT ROLE.
NO DEFAULT ROLE

Specifies that the trusted context does not have a default role.
DEFAULT ROLE role-name

Specifies that role-name is the default role for the trusted context. The role-name must identify
a role that exists at the current server (SQLSTATE 42704). This role is used with the user in a
trusted connection, based on this trusted context, when the user does not have a user-specific
role defined as part of the definition of the trusted context.

DISABLE or ENABLE
Specifies whether the trusted context is created in the enabled or disabled state. The default is
DISABLE.
DISABLE

Specifies that the trusted context is created in the disabled state. A trusted context that is
disabled is not considered when a trusted connection is established.

ENABLE
Specifies that the trusted context is created in the enabled state.

WITH USE FOR
Specifies who can use a trusted connection that is based on this trusted context.
authorization-name

Specifies that the trusted connection can be used by the specified authorization-name. The
authorization-name must not be specified more than once in the WITH USE FOR clause
(SQLSTATE 428GM). It must also not be the authorization ID of the statement (SQLSTATE 42502).
If the definition of a trusted context allows access by both PUBLIC and a list of users, the
specifications for a user override the specifications for PUBLIC. For example, assume that a
trusted context is defined that allows access by both PUBLIC WITH AUTHENTICATION and JOE
WITHOUT AUTHENTICATION. If the trusted context is used by JOE, authentication is not required.
However, if the trusted context is used by GEORGE, authentication is required.
ROLE role-name

Specifies that role-name is the role to be used for the user when a trusted connection
is using the trusted context. The role-name must identify a role that exists at the current
server (SQLSTATE 42704). The role explicitly specified for the user overrides any default role
associated with the trusted context.

PUBLIC
Specifies that a trusted connection that is based on this trusted context can be used by any user.
PUBLIC must not be specified more than once (SQLSTATE 428GM). All users using such a trusted
connection make use of the privileges associated with the default role for the associated trusted
context. If a default role is not defined for the trusted context, there is no role associated with the
users that use a trusted connection based on this trusted context.

WITHOUT AUTHENTICATION or WITH AUTHENTICATION
Specifies whether or not switching the user on a trusted connection requires authentication of the
user. The default is WITHOUT AUTHENTICATION.
WITHOUT AUTHENTICATION

Specifies that switching the current user on a trusted connection to this user does not require
authentication.

WITH AUTHENTICATION
Specifies that switching the current user on a trusted connection to this user requires
authentication.

Chapter 1. Structured Query Language (SQL) 1477

Rules
• A trusted context-exclusive SQL statement must be followed by a COMMIT or a ROLLBACK statement

(SQLSTATE 5U021). Trusted context-exclusive SQL statements are:

– CREATE TRUSTED CONTEXT, ALTER TRUSTED CONTEXT, or DROP (TRUSTED CONTEXT)
• A trusted context-exclusive SQL statement cannot be issued within a global transaction; for example,

an XA transaction or a global transaction that is initiated as part of two-phase commit for federated
transactions (SQLSTATE 51041).

Notes
• When providing an IP address as part of a trusted context definition, the address must be in the format

that is in effect for the network. For example, providing an address in an IPv6 format when the network
is IPv4 will not result in a match. In a mixed environment, it is advantageous to specify both the
IPv4 and the IPv6 representations of the address, or better yet, to specify a secure domain name (for
example, corona.torolab.ibm.com), which hides the address format details.

• Specifying a role in the definition of a trusted context: The definition of a trusted context can designate
a role for a specific authorization ID, and a default role to be used for authorization IDs for which a
specific role has not been specified in the definition of the trusted context. This role can be used with
a trusted connection based on the trusted context, but it does not make the role available outside of a
trusted connection based on the trusted context.

• When issuing a data manipulation language (DML) SQL statement using a trusted connection, the
privileges held by a context-assigned role in effect for the authorization ID within the definition of
the associated trusted context are considered in addition to other privileges directly held by the
authorization ID of the statement, or indirectly by other roles held by the authorization ID of the
statement.

• The privileges held by a context-assigned role in effect for the authorization ID within the definition of
the associated trusted context are not considered for data definition language (DDL) SQL statements.
For example, to create an object, the authorization ID of the statement must be able to do so without
including the privileges held by the context-assigned role.

• When installing a new application that authenticates to the database server using the same credentials
as an existing application on the same machine, and which takes advantage of a trusted context,
the new application might also take advantage of the same trusted context object (inheriting the
trusted context role, for example). This might not be the security administrator's intention. The security
administrator might want to turn on the database audit facility to find out what applications are taking
advantage of trusted context objects.

• Only one uncommitted trusted context-exclusive SQL statement is allowed at a time across all database
partitions. If an uncommitted trusted context-exclusive SQL statement is executing, subsequent trusted
context-exclusive SQL statements will wait until the current trusted context-exclusive SQL statement
commits or rolls back.

• Changes are written to the system catalog, but do not take effect until they are committed, even for the
connection that issues the statement.

Examples
• Example 1: Create a trusted context such that the current user on a trusted connection based on this

trusted context can be switched to two different user IDs. When the current user of the connection is
switched to user ID JOE, authentication is not required. However, authentication is required when the
current user of the connection is switched to user ID BOB. Note that the trusted context has a default
role called context-role. This implies that users working within the confines of this trusted context
inherit the privileges associated with role context-role.

 CREATE TRUSTED CONTEXT APPSERVER
 BASED UPON CONNECTION USING SYSTEM AUTHID WRJAIBI
 DEFAULT ROLE CONTEXT_ROLE
 ENABLE
 ATTRIBUTES (ADDRESS '9.26.113.204')

1478 IBM Db2 V11.5: SQL Reference

 WITH USE FOR JOE WITHOUT AUTHENTICATION
 BOB WITH AUTHENTICATION

• Example 2: Create a trusted context such that the current user of a trusted connection based on this
trusted context can be switched to any user ID without authentication.

 CREATE TRUSTED CONTEXT SECUREROLE
 BASED UPON CONNECTION USING SYSTEM AUTHID PBIRD
 ENABLE
 ATTRIBUTES (ADDRESS '9.26.113.204')
 WITH USE FOR PUBLIC WITHOUT AUTHENTICATION

• Example 3: Create a trusted context such that the current user of a trusted connection based on
this trusted context can be switched to any user ID without authentication. The difference between
this trusted context and the trusted context created in example 2, is that this trusted context has
an additional attribute called ENCRYPTION. The ENCRYPTION attribute setting for trusted context
SECUREROLEENCRYPT states that the encryption setting used by a connection must be at least "low
encryption" (see Table 145 on page 1476) to match this trusted context attribute.

 CREATE TRUSTED CONTEXT SECUREROLEENCRYPT
 BASED UPON CONNECTION USING SYSTEM AUTHID SHARPER
 ENABLE
 ATTRIBUTES (ADDRESS '9.26.113.204'
 ENCRYPTION 'LOW')
 WITH USE FOR PUBLIC WITHOUT AUTHENTICATION

• Example 4: Create a trusted context, such that connections made by user WRJAIBI from addresses
9.26.146.201 and 9.26.146.203 are trusted when no encryption is used, but a connection made by user
WRJAIBI from address 9.26.146.202 requires a LOW level of encryption to be trusted.

 CREATE TRUSTED CONTEXT WALIDLOCSENSITIVE
 BASED UPON CONNECTION USING SYSTEM AUTHID WRJAIBI
 ENABLE
 ATTRIBUTES (ADDRESS '9.26.146.201',
 ADDRESS '9.26.146.202' WITH ENCRYPTION 'LOW',
 ADDRESS '9.26.146.203'
 ENCRYPTION 'NONE')

CREATE TYPE
The CREATE TYPE statement defines a user-defined data type at the current server.

Five different kinds of user-defined data types can be created using this statement. Each of these types is
described separately.

• Array. A user-defined data type that is an ordinary array or an associative array. The elements of an
array type are based on one of the built-in data types or a user-defined type other than a cursor type or
structured type.

• Cursor. A user-defined data type that is a cursor type.
• Distinct. A user-defined data type that is sourced on one of the built-in data types and can be defined

to use strong type rules or weak type rules.. Functions that cast between the user-defined distinct
type and the source built-in data type are generated when a strongly typed distinct type is created.
Optionally, support for comparison operations to use with the strongly typed distinct type can be
generated when the user-defined distinct type is created.

• Row. A user-defined data type that represents a row. It includes one or more fields with associated data
types that make up a row of data.

• Structured. A user-defined data type that represents an object and associated methods. It may include
zero or more attributes and may be a subtype allowing attributes to be inherited from a supertype.
Some methods are generated when the user-defined structured type is created and others can be
specified as part of the definition.

Chapter 1. Structured Query Language (SQL) 1479

CREATE TYPE (array)
The CREATE TYPE (array) statement defines an array type. The elements of an array type are based on
one of the built-in data types or a user-defined distinct type.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the schema name of the array type does not refer to an
existing schema

• CREATEIN privilege on the schema, if the schema name of the array type refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the array type refers to an existing

schema
• DBADM authority

Syntax
CREATE

OR REPLACE

TYPE type-name AS data-type ARRAY [

2147483647

integer-constant

data-type2

]

data-type
built-in-type

anchored-data-type

row-type-name

array-type-name

data-type2
INTEGER

INT

VARCHAR

CHARACTER

CHAR

VARYING

(integer

OCTETS

CODEUNITS32

)

anchored-non-row-data-type

anchored-data-type

1480 IBM Db2 V11.5: SQL Reference

ANCHOR
DATA TYPE TO

variable-name

table-name.column-name

ROW
OF

table-name

view-name

cursor-variable-name

built-in-type

Chapter 1. Structured Query Language (SQL) 1481

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

( integer)

BOOLEAN

anchored-non-row-data-type
ANCHOR DATA TYPE TO variable-name

table-name.column-name

Notes:

1482 IBM Db2 V11.5: SQL Reference

1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).

Description
OR REPLACE

Specifies to replace the definition for the data type if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that functions and methods are invalidated instead of dropped when they have parameters
or a return value defined with the data type being replaced. The existing definition must not be a
structured type (SQLSTATE 42809). This option is ignored if a definition for the data type does not
exist at the current server.

type-name
Names the type. The name, including the implicit or explicit qualifier, must not identify any other type
(built-in or user-defined) that already exists at the current server. The unqualified name must not be
the same as the name of a built-in data type or VARBINARY (SQLSTATE 42918).

A number of names used as keywords in predicates are reserved for system use, and cannot be used
as a type-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part type-name is specified, the schema name must not begin with the characters 'SYS'
(SQLSTATE 42939).

data-type
Specifies the data type of the array elements.
built-in-type

Specifies a built-in data type. See "CREATE TABLE" for the description of built-in data types.
Built-in types include the data types described in "CREATE TABLE", other than reference,
SYSPROC.DB2SECURITYLABEL, XML, or user-defined types (SQLSTATE 429C2).

row-type-name
Specifies the name of a user-defined row type. If a row-type-name is specified without a schema
name, the row-type-name is resolved by searching the schemas in the SQL path. Row types can be
nested as elements in other array types with a maximum nesting level of sixteen.

array-type-name
Specifies an array type. If an array-type-name is specified without a schema name, the array-
type-name is resolved by searching the schemas in the SQL path. Array types can be nested as
elements in other array types with a maximum nesting level of sixteen.

anchored-data-type
Identifies another object used to determine the data type. The data type of the anchor object is
bound by the same limitations that apply when specifying the data type directly, or in the case of a
row, to creating a row type.
ANCHOR DATA TYPE TO

Indicates that an anchored data type is used to specify the data type.
variable-name

Identifies a global variable. The data type of the global variable is used as the data type for
the array elements.

table-name.column-name
Identifies a column name of an existing table or view. The data type of the column is used
as the data type for the array elements.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based on the column names
and column data types of the table identified by table-name or the view identified by
view-name.The data type of the array elements is an unnamed row type.

Chapter 1. Structured Query Language (SQL) 1483

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on the field names and
field data types of the cursor variable identified by cursor-variable-name. The specified
cursor variable must be one of the following elements (SQLSTATE 428HS):

• A global variable with a strongly typed cursor data type
• A global variable with a weakly typed cursor data type that was created or declared

with a CONSTANT clause specifying a select-statement where all the result columns are
named.

If the cursor type of the cursor variable is not strongly-typed using a named row type, the
data type of the array elements is an unnamed row type.

anchored-non-row-data-type
Identifies another object used to determine the data type. The data type of the anchor object is bound
by the same limitations that apply when specifying the data type directly.
ANCHOR DATA TYPE TO

Indicates that an anchored data type is used to specify the data type.
variable-name

Identifies a global variable with a data type that is an INTEGER or VARCHAR data type. The
data type of the global variable is used as the data type for the array index.

table-name.column-name
Identifies a column name of an existing table or view with a data type that is an INTEGER or
VARCHAR data type. The data type of the column is used as the data type for the array index.

ARRAY [integer-constant]
Specifies that the type is an array with a maximum cardinality of integer-constant. The value must
be a positive integer (not zero) and less than the largest positive integer value (SQLSTATE 42820).
The default is the largest positive integer value (2 147 483 647). The cardinality of an array value is
determined by the highest element position assigned to the array value.

The maximum cardinality of an array on a given system is limited by the total amount of memory
available to database applications. As such, although arrays of large cardinalities can be created, not
all elements might be available for use.

ARRAY[data-type2]
Specifies that the type is an associative array that is indexed with values of data type data-type2.
The data type must be either the INTEGER or VARCHAR data type (SQLSTATE 429C2). The values
specified as the index when assigning an array element must be assignable to a value of data-type2.
The cardinality of an array value is determined by the number of unique index values used when
assigning array elements.

Rules
• Use of anchored data types: An anchored data type cannot refer to the following objects (SQLSTATE

428HS): a nickname, typed table, typed view, statistical view that is associated with an expression-
based index, declared temporary table, row definition that is associated with a weakly typed cursor,
object with a code page or collation that is different from the database code page or database collation.

Notes
• Array type usage: An array type can only be used as the data type of:

– A local variable in a compound SQL (compiled) statement
– A parameter of an SQL routine
– A parameter of a Java procedure (non-nested ordinary arrays only)
– The returns type of an SQL function
– A global variable

1484 IBM Db2 V11.5: SQL Reference

• A variable or parameter defined with an array type can only be used in compound SQL (compiled)
statements

Examples
Example 1: Create an array type named PHONENUMBERS with a maximum of 50 elements that are of the
DECIMAL(10, 0) data type.

 CREATE TYPE PHONENUMBERS AS DECIMAL(10,0)
 ARRAY[50]

Example 2: Create an array type named NUMBERS with the default number of elements in the schema
GENERIC.

 CREATE TYPE GENERIC.NUMBERS AS DECFLOAT(34)
 ARRAY[]

Example 3: Create an associative array named PERSONAL_PHONENUMBERS with elements that are
DECIMAL(16, 0) that is indexed by strings like 'Home', 'Work', or 'Mom'.

 CREATE TYPE PERSONALPHONENUMBERS AS DECIMAL(16, 0) ARRAY[VARCHAR(8)]

Example 4: Create an associative array type where the indexes are province, territory, or country names
and the elements are capital cities:

 CREATE TYPE CAPITALSARRAY AS VARCHAR(30) ARRAY[VARCHAR(20)]

Example 5: Create an associative array type for product descriptions of up to 40 characters long, where
the indexes are the product numbers, which are a maximum of 12 characters long:

 CREATE TYPE PRODUCTS AS VARCHAR(40) ARRAY[VARCHAR(12)]

CREATE TYPE (cursor)
The CREATE TYPE (cursor) statement defines a user-defined cursor type.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the schema name of the cursor type does not refer to
an existing schema

• CREATEIN privilege on the schema, if the schema name of the cursor type refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the cursor type refers to an existing

schema
• DBADM authority

Chapter 1. Structured Query Language (SQL) 1485

Syntax
CREATE

OR REPLACE

TYPE type-name AS

anchored-row-data-type

row-type-name

CURSOR

anchored-row-data-type

ANCHOR
DATA TYPE TO

variable-name

ROW
OF

table-name

view-name

cursor-variable-name

Description
OR REPLACE

Specifies to replace the definition for the data type if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that functions and methods are invalidated instead of dropped when they have parameters
or a return value defined with the data type being replaced. The existing definition must not be a
structured type (SQLSTATE 42809). This option is ignored if a definition for the data type does not
exist at the current server.

type-name

Names the type. The name, including the implicit or explicit qualifier, must not identify any other type
(built-in or user-defined) that already exists at the current server. The unqualified name must not be
the same as the name of a built-in data type or BOOLEAN, BINARY or VARBINARY (SQLSTATE 42918).

A number of names used as keywords in predicates are reserved for system use, and cannot be used
as a type-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators. If a two-
part type-name is specified, the schema name must not begin with the characters 'SYS' (SQLSTATE
42939).

anchored-row-data-type
Identifies row information from another object used to determine the row type associated with the
cursor type. The data type of the anchor object has the same limitations that apply to creating a row
type.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.
variable-name

Identifies a global variable. The data type of the referenced variable must be a row type and is
used as the row type associated with the cursor type.

ROW OF table-name or view-name
Specifies a row of fields with names and data types that are based on the column names and
column data types of the table identified by table-name or the view identified by view-name.
The data types of the anchor object columns have the same limitations that apply to field data
types. The row type associated with the cursor type is an unnamed row type.

1486 IBM Db2 V11.5: SQL Reference

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on the field names and
field data types of the cursor variable identified by cursor-variable-name. The specified cursor
variable must be one of the following objects (SQLSTATE 428HS):

• A global variable with a strongly typed cursor data type
• A global variable with a weakly typed cursor data type that was created or declared with a

CONSTANT clause specifying a select-statement where all the result columns are named.

If the cursor type of the cursor variable is not strongly-typed using a named row type, the row
type associated with the cursor type is an unnamed row type.

row-type-name
Specifies the row type that will be used to check the row type of the result table of the select-
statement assigned to a variable of the cursor type. The assignment fails if the type check fails
(SQLSTATE 42821). If row-type-name is specified without a schema name, the row type is resolved by
searching the schemas in the SQL path.

Rules
• Use of anchored data types: An anchored data type cannot refer to the following objects (SQLSTATE

428HS): a nickname, typed table, typed view, statistical view that is associated with an expression-
based index, declared temporary table, row definition that is associated with a weakly typed cursor,
object with a code page or collation that is different from the database code page or database collation.

Notes
• Cursor type usage: A cursor type can only be used as the data type of:

– A local variable in a compound SQL (compiled) statement
– A parameter of an SQL routine
– The returns type of an SQL function
– A global variable

• A variable or parameter defined with a cursor type can only be used in compound SQL (compiled)
statements

• A variable or parameter that has a strongly-typed cursor type must not be used to assign cursor values
that are based on a statement-name instead of a select-statement

• A user-defined cursor type with an associated row type is a strongly-typed cursor type; otherwise, it is a
weakly-typed cursor type.

Examples
• Example 1: Create a cursor type that can be used with any cursor.

CREATE TYPE EMPCURSOR AS CURSOR

• Example 2: Create a strongly-typed cursor type that is based on the row data type DEPTROW:

CREATE TYPE DEPTCURSOR AS DEPTROW CURSOR

CREATE TYPE (distinct)
The CREATE TYPE (distinct) statement defines a distinct type. The distinct type is always sourced on one
of the built-in data types and can be defined to use strong type or weak type rules..

Successful execution of the statement that defines a strongly typed distinct type also generates functions
to cast between the distinct type and its source type and, optionally, generates support for the
comparison operators (=, <>, <, <=, >, and >=) for use with the distinct type. Successful execution of
the statement that defines a weakly typed distinct type does not generate any functions.

Chapter 1. Structured Query Language (SQL) 1487

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include as least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the schema name of the distinct type does not refer to
an existing schema

• CREATEIN privilege on the schema, if the schema name of the distinct type refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the distinct type refers to an existing

schema
• DBADM authority

Syntax
CREATE TYPE distinct-type-name AS source-data-type

WITH STRONG TYPE RULES

WITH WEAK TYPE RULES

data-type-constraints

source-data-type
built-in-type

anchored-data-type

built-in-type

1488 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1 BYTE)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

BOOLEAN

anchored-data-type
ANCHOR

DATA TYPE TO

variable-name

table-name.column-name

data-type-constraints

Chapter 1. Structured Query Language (SQL) 1489

NOT NULL CHECK (check-condition)

Notes:
1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).

Description
distinct-type-name

Names the distinct type. The name, including the implicit or explicit qualifier, must not identify any
other type (built-in or user-defined) that already exists at the current server. The unqualified name
cannot be the same as the name of a built-in data type (SQLSTATE 42918), and cannot be ARRAY,
INTERVAL, or ROWID.

In dynamic SQL statements, the CURRENT SCHEMA special register is used as a qualifier for an
unqualified object name. In static SQL statements the QUALIFIER precompile/bind option implicitly
specifies the qualifier for unqualified object names. The qualified form is a schema name followed by
a period and an SQL identifier.

Several names used as keywords in predicates are reserved for system use and cannot be used as a
distinct type name (SQLSTATE 42939). These names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN,
NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part name is specified, the schema name must not begin with the characters SYS (SQLSTATE
42939).

source-data-type
Specifies the data type used as the basis for the internal representation of the distinct type. The data
type must be a built-in data type. For more information on built-in data types, see "CREATE TABLE".
The source data type cannot be of type XML or an ARRAY type (SQLSTATE 42601). For portability of
applications across platforms, use the following recommended data type names:

• DOUBLE or REAL instead of FLOAT
• DECIMAL instead of NUMERIC
• VARCHAR, BLOB, or CLOB instead of LONG VARCHAR
• VARGRAPHIC or DBCLOB instead of LONG VARGRAPHIC

anchored-data-type
Identifies another object used to determine the data type. The data type of the anchor object is bound
by the same limitations that apply when specifying the data type directly.
ANCHOR DATA TYPE TO

Indicates that an anchored data type is used to specify the data type.
variable-name

Identifies a global variable with a data type that is a built-in type other than ROW or CURSOR.
The data type of the global variable is used as the source data type for the distinct type.

table-name.column-name
Identifies a column name of an existing table or view with a data type that must be specified
as a built-in-type. The data type of the column is used as the source data type for the distinct
type.

WITH STRONG TYPE RULES
Specifies that strong typing rules are used for operations where this data type is an operand including
assignments and comparisons. This is the default.

WITH WEAK TYPE RULES
Specifies that weak typing rules are used for operations where this data type is an operand including
assignments, comparisons, and function resolution. When values of a weakly typed distinct type
are used, the data type is effectively treated as the specified source-data-type when processing the
operation.

1490 IBM Db2 V11.5: SQL Reference

data-type-constraints
Defines constraints on the distinct type that are applied when values are assigned or cast to the
distinct type.
NOT NULL

Prevents a value with this distinct type from having a null value. If NOT NULL is not specified, a
value with this distinct type can have the null value.

CHECK (check-condition)
Defines a data type check constraint. At any time, the check-condition must be true or unknown
for every value with this data type. The check-condition is a form of the search-condition that
conforms to the rules of table check constraints (SQLSTATE 426211) with the addition that
the VALUE keyword is used to reference a value that is assigned or cast to the distinct type
in the same way that a column name is referenced in a table check constraint. Note that the
check-condition cannot reference global variables.

built-in-type
See "CREATE TABLE" for the description of built-in data types.

Rules
• Use of anchored data types: An anchored data type cannot refer to the following objects (SQLSTATE

428HS): a nickname, typed table, typed view, statistical view that is associated with an expression-
based index, declared temporary table, row definition that is associated with a weakly typed cursor,
object with a code page or collation that is different from the database code page or database collation.

Notes
• Privileges: The definer of the user-defined type always receives the EXECUTE privilege WITH GRANT

OPTION on all functions automatically generated for the distinct type.

EXECUTE privilege on all functions automatically generated during the CREATE TYPE (Distinct)
statement is granted to PUBLIC.

• Creating a distinct type with a schema name that does not already exist will result in the implicit
creation of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA
authority. The schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• Additional generated functions: When a strongly typed distinct type is created, the following functions
are generated to cast to and from the source type:

– One function to convert from the distinct type to the source type
– One function to convert from the source type to the distinct type
– One function to convert from INTEGER to the distinct type if the source type is SMALLINT
– One function to convert from VARCHAR to the distinct type if the source type is CHAR
– One function to convert from VARCHAR to the distinct type if the source type is BINARY
– One function to convert from VARGRAPHIC to the distinct type if the source type is GRAPHIC.

In general these functions will have the following format:

 CREATE FUNCTION source-type-name (distinct-type-name)
 RETURNS source-type-name ...

 CREATE FUNCTION distinct-type-name (source-type-name)
 RETURNS distinct-type-name ...

In cases in which the source type is a parameterized type, the function to convert from the distinct
type to the source type will have as function name the name of the source type without the parameters
(see Table 146 on page 1492 for details). The type of the return value of this function will include the
parameters given on the CREATE TYPE (Distinct) statement. The function to convert from the source

Chapter 1. Structured Query Language (SQL) 1491

type to the distinct type will have an input parameter whose type is the source type including its
parameters. For example,

 CREATE TYPE T_SHOESIZE AS CHAR(2)

 CREATE TYPE T_MILES AS DOUBLE

will generate the following functions:

 FUNCTION CHAR (T_SHOESIZE) RETURNS CHAR (2)

 FUNCTION T_SHOESIZE (CHAR (2))
 RETURNS T_SHOESIZE

 FUNCTION DOUBLE (T_MILES) RETURNS DOUBLE

 FUNCTION T_MILES (DOUBLE) RETURNS T_MILES

The schema of the generated cast functions is the same as the schema of the distinct type. No other
function with this name and with the same signature may already exist in the database (SQLSTATE
42710).

The following table gives the names of the functions to convert from the distinct type to the source type
and from the source type to the distinct type for all predefined data types.

Table 146. CAST functions on distinct types

Source Type Name Function Name Parameter Return-type

SMALLINT distinct-type-name SMALLINT distinct-type-name

SMALLINT distinct-type-name INTEGER distinct-type-name

SMALLINT SMALLINT distinct-type-name SMALLINT

INTEGER distinct-type-name INTEGER distinct-type-name

INTEGER INTEGER distinct-type-name INTEGER

BIGINT distinct-type-name BIGINT distinct-type-name

BIGINT BIGINT distinct-type-name BIGINT

DECIMAL distinct-type-name DECIMAL (p,s) distinct-type-name

DECIMAL DECIMAL distinct-type-name DECIMAL (p,s)

NUMERIC distinct-type-name DECIMAL (p,s) distinct-type-name

NUMERIC DECIMAL distinct-type-name DECIMAL (p,s)

REAL distinct-type-name REAL distinct-type-name

REAL distinct-type-name DOUBLE distinct-type-name

REAL REAL distinct-type-name REAL

FLOAT(n) where n<=24 distinct-type-name REAL distinct-type-name

FLOAT(n) where n<=24 distinct-type-name DOUBLE distinct-type-name

FLOAT(n) where n<=24 REAL distinct-type-name REAL

FLOAT(n) where n>24 distinct-type-name DOUBLE distinct-type-name

FLOAT(n) where n>24 DOUBLE distinct-type-name DOUBLE

FLOAT distinct-type-name DOUBLE distinct-type-name

FLOAT DOUBLE distinct-type-name DOUBLE

1492 IBM Db2 V11.5: SQL Reference

Table 146. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter Return-type

DOUBLE distinct-type-name DOUBLE distinct-type-name

DOUBLE DOUBLE distinct-type-name DOUBLE

DOUBLE PRECISION distinct-type-name DOUBLE distinct-type-name

DOUBLE PRECISION DOUBLE distinct-type-name DOUBLE

DECFLOAT distinct-type-name DECFLOAT(n) distinct-type-name

DECFLOAT DECFLOAT distinct-type-name DECFLOAT(n)

CHAR distinct-type-name CHAR (n) distinct-type-name

CHAR CHAR distinct-type-name CHAR (n)

CHAR distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR distinct-type-name VARCHAR (n) distinct-type-name

VARCHAR VARCHAR distinct-type-name VARCHAR (n)

CLOB distinct-type-name CLOB (n) distinct-type-name

CLOB CLOB distinct-type-name CLOB (n)

GRAPHIC distinct-type-name GRAPHIC (n) distinct-type-name

GRAPHIC GRAPHIC distinct-type-name GRAPHIC (n)

GRAPHIC distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC (n) distinct-type-name

VARGRAPHIC VARGRAPHIC distinct-type-name VARGRAPHIC (n)

DBCLOB distinct-type-name DBCLOB (n) distinct-type-name

DBCLOB DBCLOB distinct-type-name DBCLOB (n)

BINARY distinct-type-name BINARY (n) distinct-type-name

BINARY BINARY distinct-type-name BINARY (n)

BINARY distinct-type-name VARBINARY (n) distinct-type-name

VARBINARY distinct-type-name VARBINARY (n) distinct-type-name

VARBINARY VARBINARY distinct-type-name VARBINARY (n)

BLOB distinct-type-name BLOB (n) distinct-type-name

BLOB BLOB distinct-type-name BLOB (n)

DATE distinct-type-name DATE distinct-type-name

DATE DATE distinct-type-name DATE

TIME distinct-type-name TIME distinct-type-name

TIME TIME distinct-type-name TIME

TIMESTAMP distinct-type-name TIMESTAMP(p distinct-type-name

TIMESTAMP TIMESTAMP distinct-type-name TIMESTAMP(p)

BOOLEAN distinct-type-name BOOLEAN distinct-type-name

Chapter 1. Structured Query Language (SQL) 1493

Table 146. CAST functions on distinct types (continued)

Source Type Name Function Name Parameter Return-type

BOOLEAN BOOLEAN distinct-type-name BOOLEAN

Note: NUMERIC and FLOAT are not recommended when creating a user-defined type for a portable application.
DECIMAL and DOUBLE should be used instead.

The functions described in the preceding table and the comparison operator functions are the only
functions that are generated automatically when distinct types are defined. Consequently, none of the
built-in functions (AVG, MAX, LENGTH, and so on) are supported for strongly typed distinct types until
the CREATE FUNCTION statement is used to register user-defined functions for the strongly typed
distinct type, and those user-defined functions are sourced on the appropriate built-in functions. In
particular, note that it is possible to register user-defined functions that are sourced on the built-in
column functions.

When a strongly typed distinct type is created, system-generated comparison operators are created
when the source type supports comparisons . Creation of these comparison operators will generate
entries in the SYSCAT.ROUTINES catalog view for the new functions.

The schema name of the distinct type must be included in the SQL path or the FUNCPATH BIND option
for successful use of these operators and cast functions in SQL statements.

• When a weakly typed distinct type is created, no additional functions need to be generated or created
because the weak type rules allow a weakly typed distinct type to be used in the same context where
the source type can be used.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– CREATE DISTINCT TYPE can be specified in place of CREATE TYPE
– The LONG VARCHAR and LONG VARGRAPHIC data types and cast functions are supported but are

deprecated and might be removed in a future release. The WITH COMPARISONS clause continues to
not support the LONG VARCHAR and LONG VARGRAPHIC data types.

– The WITH COMPARISONS clause, which specifies that system-generated comparison operators are
to be created for comparing two instances of the distinct type, can be specified as the last clause
of the statement if WITH WEAK TYPE RULES is not specified. Use WITH COMPARISONS only if it is
required for compatibility with earlier versions of products in the Db2 family. If the source data type is
either BLOB, CLOB, or DBCLOB and WITH COMPARISONS is specified, a warning occurs as in previous
releases.

– ALLOW NULL, or just NULL, can be specified as the opposite of NOT NULL. This is the default
nullability characteristic of the distinct type if neither the ALLOW NULL clause nor the NOT NULL
clause are specified. Specification of ALLOW NULL is not considered to define a data type constraint
for the distinct type.

Examples
• Example 1: Create a strongly typed distinct type named SHOESIZE that is based on an INTEGER data

type.

 CREATE TYPE SHOESIZE AS INTEGER

This will also result in the creation of comparison operators (=, <>, <, <=, >, >=) and cast functions
INTEGER(SHOESIZE) returning INTEGER and SHOESIZE(INTEGER) returning SHOESIZE.

• Example 2: Create a strongly typed distinct type named MILES that is based on a DOUBLE data type.

 CREATE TYPE MILES AS DOUBLE

1494 IBM Db2 V11.5: SQL Reference

This will also result in the creation of comparison operators (=, <>, <, =, >, >=) and cast functions
DOUBLE(MILES) returning DOUBLE and MILES(DOUBLE) returning MILES.

• Example 3: Create a weakly typed distinct type named BONUS that is based on an INTEGER data type
and represents a percentage which cannot exceed 100.

 CREATE TYPE BONUS AS INTEGER WITH WEAK TYPE RULES
 CHECK(VALUE >= 0 AND VALUE <= 100)

Because it is defined with weak type rules, comparison and cast functions are not generated for the
weakly typed distinct type called BONUS.

• Example 4: Create a weakly typed distinct type named SALARY that is based on a DOUBLE data type
which cannot be NULL and where the upper range is limited to less than one hundred thousand.

 CREATE TYPE SALARY AS DOUBLE WITH WEAK TYPE RULES
 NOT NULL CHECK(VALUE < 100000)

CREATE TYPE (row)
The CREATE TYPE (row) statement defines a row type. A row type includes one or more fields with
associated data types that make up a row of data.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the schema name of the row type does not refer to an
existing schema

• CREATEIN privilege on the schema, if the schema name of the row type refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the row type refers to an existing schema
• DBADM authority

Syntax
CREATE

OR REPLACE

TYPE type-name AS ROW

(

,

field-definition)

anchored-row-data-type

field-definition
field-name data-type

data-type

Chapter 1. Structured Query Language (SQL) 1495

built-in-type

anchored-non-row-data-type

anchored-row-data-type

row-type-name

array-type-name

distinct-type-name

built-in-type

1496 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1 BYTE)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
1

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

( integer)

BOOLEAN

anchored-non-row-data-type

Chapter 1. Structured Query Language (SQL) 1497

ANCHOR
DATA TYPE TO

variable-name

table-name.column-name

anchored-row-data-type

ANCHOR
DATA TYPE TO

variable-name

ROW
OF

table-name

view-name

cursor-variable-name

Notes:
1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).

Description
OR REPLACE

Specifies to replace the definition for the data type if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that functions and methods are invalidated instead of dropped when they have parameters
or a return value defined with the data type being replaced. The existing definition must not be a
structured type (SQLSTATE 42809). This option is ignored if a definition for the data type does not
exist at the current server.

type-name
Names the type. The name, including the implicit or explicit qualifier, cannot identify any other type
(built-in, structured, array, row, or distinct) already described in the catalog. The unqualified name
cannot be the same as the name of a built-in data type (SQLSTATE 42918).

Several names used as keywords in predicates are reserved for system use, and cannot be used as
a type name (SQLSTATE 42939). These names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part name is specified, the schema name cannot begin with the characters SYS (SQLSTATE
42939).

field-definition
Defines the fields of the row type.
field-name

Specifies the name of a field within the row type. The name cannot be the same as any other field
of this row type (SQLSTATE 42711).

data-type
Specifies the data type of the field.
built-in-type

Specifies a built-in data type. See "CREATE TABLE" for the description of built-in data types.
Built-in types include the data types described in "CREATE TABLE", other than reference,
SYSPROC.DB2SECURITYLABEL, XML, or user-defined types (SQLSTATE 429C2).

row-type-name
Specifies the name of a user-defined row type. If a row-type-name is specified without a
schema name, the row-type-name is resolved by searching the schemas in the SQL path. Row
types can be nested as field types of a row type with a maximum nesting level of sixteen.

1498 IBM Db2 V11.5: SQL Reference

array-type-name
Specifies an array type. If an array-type-name is specified without a schema name, the array-
type-name is resolved by searching the schemas in the SQL path. Array types can be nested as
field types of a row type with a maximum nesting level of sixteen.

distinct-type-name
Specifies a user-defined distinct data type. The specified distinct type cannot have any data
type constraints (SQLSTATE 429C5).

anchored-non-row-data-type
Identifies another object used to determine the data type. The data type of the anchor object is has
the same limitations that apply when specifying the data type directly.
ANCHOR DATA TYPE TO

Indicates that an anchored data type is used to specify the data type.
variable-name

Identifies a global variable with a data type that is a supported row field data type. The data
type of the global variable is used as the data type for the field.

table-name.column-name
Identifies a column name of an existing table or view with a data type that is a built-in-type or
a distinct type. The data type of the column is used as the data type for the field.

anchored-row-data-type
Identifies row information from another object to use as the fields of the row.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.
variable-name

Identifies a global variable. The data type of the referenced variable must be a row type.
ROW OF table-name or view-name

Specifies a row of fields with names and data types that are based on the column names and
column data types of the table identified by table-name or the view identified by view-name.
The data types of the anchor object columns have the same limitations that apply to field data
types.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on the field names and
field data types of the cursor variable identified by cursor-variable-name. The specified cursor
variable must be one of the following objects (SQLSTATE 428HS):

• A global variable with a strongly typed cursor data type
• A global variable with a weakly typed cursor data type that was created or declared with a

CONSTANT clause specifying a select-statement where all the result columns are named.

Rules
• Use of anchored data types: An anchored data type cannot refer to the following objects (SQLSTATE

428HS): a nickname, typed table, typed view, statistical view that is associated with an expression-
based index, declared temporary table, row definition that is associated with a weakly typed cursor,
object with a code page or collation that is different from the database code page or database collation.

Notes
• Row type usage: A row type can only be used as the data type of:

– A local variable in a compound SQL (compiled) statement
– A parameter of an SQL routine
– The returns type of an SQL function
– The element of an array type

Chapter 1. Structured Query Language (SQL) 1499

– A user-defined cursor type
– A global variable

• A variable or parameter defined with a row type can only be used in compound SQL (compiled)
statements

Example
• Create a row type based on the columns of the DEPARTMENT table.

CREATE TYPE DEPTROW AS ROW (DEPTNO VARCHAR(3),
 DEPTNAME VARCHAR(29),
 MGRNO CHAR(6),
 ADMRDEPT CHAR(3),
 LOCATION CHAR(16))

CREATE TYPE (structured)
The CREATE TYPE statement defines a user-defined structured type.

A user-defined structured type can include zero or more attributes. A structured type can be a subtype
allowing attributes to be inherited from a supertype. Successful execution of the statement generates
methods, for retrieving and updating values of attributes. Successful execution of the statement also
generates functions, for constructing instances of a structured type used in a column, for casting between
the reference type and its representation type, and for supporting the comparison operators (=, <>, <, <=,
>, and >=) on the reference type.

The CREATE TYPE statement also defines any method specifications for user-defined methods to be used
with the user-defined structured type.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the schema name of the type does not refer to an
existing schema

• CREATEIN privilege on the schema, if the schema name of the type refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the type refers to an existing schema
• DBADM authority

If UNDER is specified, and the authorization ID of the statement is not the same as the owner of the root
type of the type hierarchy, SCHEMAADM authority on the schema containing the root type is required or
DBADM authority is required.

1500 IBM Db2 V11.5: SQL Reference

Syntax
CREATE TYPE type-name

UNDER supertype-name

AS (

,

attribute-definition)

●
INSTANTIABLE

NOT INSTANTIABLE

●

INLINE LENGTH integer

●
WITHOUT COMPARISONS

●

NOT FINAL
● MODE DB2SQL ●

WITH FUNCTION ACCESS

●

REF USING rep-type

●

CAST (SOURCE AS REF) WITH funcname1

●

CAST (REF AS SOURCE) WITH funcname2

●

,

method-specification

attribute-definition
attribute-name data-type

lob-options

rep-type

Chapter 1. Structured Query Language (SQL) 1501

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer)

VARCHAR

CHARACTER

CHAR

VARYING

( integer)

FOR BIT DATA

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

( integer)

GRAPHIC

(1)

( integer)

VARGRAPHIC ( integer)

method-specification

1502 IBM Db2 V11.5: SQL Reference

OVERRIDING

METHOD method-name (

,

parameter-name

data-type2

AS LOCATOR

) ●

RETURNS data-type3

AS LOCATOR

data-type4 CAST FROM data-type5

AS LOCATOR

●

SPECIFIC specific-name

●

SELF AS RESULT

●

SQL-routine-characteristics

external-routine-characteristics

●

SQL-routine-characteristics

●

LANGUAGE SQL

●

PARAMETER CCSID ASCII

UNICODE

●

NOT DETERMINISTIC

DETERMINISTIC

●
EXTERNAL ACTION

NO EXTERNAL ACTION

●

READS SQL DATA

CONTAINS SQL

●
CALLED ON NULL INPUT

●

INHERIT SPECIAL REGISTERS
●

external-routine-characteristics

Chapter 1. Structured Query Language (SQL) 1503

● LANGUAGE C

JAVA

OLE

● PARAMETER STYLE DB2GENERAL

SQL

●

PARAMETER CCSID ASCII

UNICODE

●
NOT DETERMINISTIC

DETERMINISTIC

●

FENCED

FENCED ● THREADSAFE

NOT THREADSAFE

NOT FENCED ●
THREADSAFE

●

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

●

READS SQL DATA

NO SQL

CONTAINS SQL

●

EXTERNAL ACTION

NO EXTERNAL ACTION

●
NO SCRATCHPAD

SCRATCHPAD
100

length

●

NO FINAL CALL

FINAL CALL

●
ALLOW PARALLEL

DISALLOW PARALLEL

●
NO DBINFO

DBINFO

●
INHERIT SPECIAL REGISTERS

●

Description
type-name

Names the type. The name, including the implicit or explicit qualifier, must not identify any other
type (built-in, structured, or distinct) that already exists at the current server. The unqualified name
must not be the same as the name of a built-in data type or BOOLEAN (SQLSTATE 42918). The
unqualified name should also not be ARRAY, INTERVAL, or ROWID. In dynamic SQL statements, the
CURRENT SCHEMA special register is used as a qualifier for an unqualified object name. In static SQL
statements, the QUALIFIER precompile or bind option implicitly specifies the qualifier for unqualified
object names.

A number of names used as keywords in predicates are reserved for system use, and cannot be used
as a type-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR, BETWEEN, NULL,
LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison operators.

If a two-part type-name is specified, the schema name must not begin with the characters 'SYS'
(SQLSTATE 42939).

1504 IBM Db2 V11.5: SQL Reference

UNDER supertype-name
Specifies that this structured type is a subtype under the specified supertype-name. The supertype-
name must identify an existing structured type (SQLSTATE 42704). If supertype-name is specified
without a schema name, the type is resolved by searching the schemas on the SQL path. The
structured type includes all the attributes of the supertype followed by the additional attributes given
in the attribute-definition.

attribute-definition
Defines the attributes of the structured type.
attribute-name

The name of an attribute. The attribute-name cannot be the same as any other attribute of this
structured type or any supertype of this structured type (SQLSTATE 42711).

A number of names used as keywords in predicates are reserved for system use, and cannot be
used as an attribute-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR,
BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison
operators.

data-type
The data type of the attribute. It is one of the data types listed under "CREATE TABLE", other
than XML or a weakly typed distinct type (SQLSTATE 42601). The data type must identify an
existing data type (SQLSTATE 42704). If data-type is specified without a schema name, the type is
resolved by searching the schemas on the SQL path. The description of various data types is given
in "CREATE TABLE". If the attribute data type is a reference type, the target type of the reference
must be a structured type that exists, or is created by this statement (SQLSTATE 42704).

To prevent type definitions that would, at run time, permit an instance of the type to directly or
indirectly contain another instance of the same type or one of its subtypes, a type cannot be
defined such that one of its attribute types directly or indirectly uses itself (SQLSTATE 428EP).

Character and graphic string data types cannot specify string units of CODEUNITS32.

lob-options
Specifies the options associated with LOB types (or distinct types based on LOB types). For a
detailed description of lob-options, see "CREATE TABLE".

INSTANTIABLE or NOT INSTANTIABLE
Determines whether an instance of the structured type can be created. Implications of not
instantiable structured types are:

• no constructor function is generated for a non-instantiable type
• a non-instantiable type cannot be used as the type of a table or view (SQLSTATE 428DP)
• a non-instantiable type can be used as the type of a column (only null values or instances of

instantiable subtypes can be inserted into the column.

To create instances of a non-instantiable type, instantiable subtypes must be created. If NOT
INSTANTIABLE is specified, no instance of the new type can be created.

INLINE LENGTH integer
This option indicates the maximum size (in bytes) of a structured type column instance to store inline
with the rest of the values in the row of a table. Instances of a structured type or its subtypes, that
are larger than the specified inline length, are stored separately from the base table row, similar to the
way that LOB values are handled.

If the specified INLINE LENGTH is smaller than the size of the result of the constructor function for
the newly-created type (32 bytes plus 10 bytes per attribute) and smaller than 292 bytes, an error
results (SQLSTATE 429B2). Note that the number of attributes includes all attributes inherited from
the supertype of the type.

The INLINE LENGTH for the type, whether specified or a default value, is the default inline length for
columns that use the structured type. This default can be overridden at CREATE TABLE time.

INLINE LENGTH has no meaning when the structured type is used as the type of a typed table.

Chapter 1. Structured Query Language (SQL) 1505

The default INLINE LENGTH for a structured type is calculated by the system. In the formulae that
follow, the following terms are used:
short attribute

refers to an attribute with any of the following data types: SMALLINT, INTEGER, BIGINT, REAL,
DOUBLE, FLOAT, DATE, or TIME. Also included are distinct types or reference types based on
these types.

non-short attribute
refers to an attribute of any of the remaining data types, or distinct types based on those data
types.

The system calculates the default inline length as follows:

1. Determine the added space requirements for non-short attributes using the following formula:

space_for_non_short_attributes = SUM(attributelength + n)

n is defined as:

• 0 bytes for nested structured type attributes
• 2 bytes for non-LOB attributes
• 9 bytes for LOB attributes

attributelength is based on the data type specified for the attribute as shown in Table 147 on page
1506.

2. Calculate the total default inline length using the following formula:

default_length(structured_type) = (number_of_attributes * 10) + 32 + space_for_non-
short_attributes

number_of_attributes is the total number of attributes for the structured type, including attributes
that are inherited from its supertype. However, number_of_attributes does not include any
attributes defined for any subtype of structured_type.

Table 147. Byte Counts for Attribute Data Types

Attribute Data Type Byte Count

DECIMAL The integral part of (p / 2) + 1, where p is the precision

DECFLOAT(n) If n is 16, the byte count is 8; if n is 34, the byte count is 16

CHAR(n) n

VARCHAR(n) n

GRAPHIC(n) n * 2

VARGRAPHIC(n) n * 2

TIMESTAMP 10

LOB type Each LOB attribute has a LOB descriptor in the structured type
instance that points to the location of the actual value. The size of
the descriptor varies according to the maximum length defined for
the LOB attribute (see Table 148 on page 1507.

Distinct type Length of the source type of the distinct type

Reference type Length of the built-in data type on which the reference type is
based

Structured type inline_length(attribute_type)

1506 IBM Db2 V11.5: SQL Reference

Table 148. LOB Descriptor Size as a Function of the Maximum LOB Length

Maximum LOB Length LOB Descriptor Size

1024 68

8192 92

65 536 116

524 000 140

4 190 000 164

134 000 000 196

536 000 000 220

1 070 000 000 252

1 470 000 000 276

2 147 483 647 312

WITHOUT COMPARISONS
Indicates that there are no comparison functions supported for instances of the structured type.

NOT FINAL
Indicates that the structured type may be used as a supertype.

MODE DB2SQL
This clause is required and allows for direct invocation of the constructor function on this type.

WITH FUNCTION ACCESS
Indicates that all methods of this type and its subtypes, including methods created in the future,
can be accessed using functional notation. This clause can be specified only for the root type of
a structured type hierarchy (the UNDER clause is not specified) (SQLSTATE 42613). This clause is
provided to allow the use of functional notation for those applications that prefer this form of notation
over method invocation notation.

REF USING rep-type
Defines the built-in data type used as the representation (underlying data type) for the reference type
of this structured type and all its subtypes. This clause can only be specified for the root type of a
structured type hierarchy (UNDER clause is not specified) (SQLSTATE 42613). The rep-type cannot
be a REAL, FLOAT, DECFLOAT, BLOB, CLOB, DBCLOB, array type, or structured type, and must have a
length less than or equal to 32 672 bytes (SQLSTATE 42613).

If this clause is not specified for the root type of a structured type hierarchy, then REF USING
VARCHAR(16) FOR BIT DATA is assumed.

CAST (SOURCE AS REF) WITH funcname1
Defines the name of the system-generated function that casts a value with the data type rep-type to
the reference type of this structured type. A schema name must not be specified as part of funcname1
(SQLSTATE 42601). The cast function is created in the same schema as the structured type. If the
clause is not specified, the default value for funcname1 is type-name (the name of the structured
type). A function signature matching funcname1(rep-type) must not already exist in the same schema
(SQLSTATE 42710).

CAST (REF AS SOURCE) WITH funcname2
Defines the name of the system-generated function that casts a reference type value for this
structured type to the data type rep-type. A schema name must not be specified as part of funcname2
(SQLSTATE 42601). The cast function is created in the same schema as the structured type. If the
clause is not specified, the default value for funcname2 is rep-type (the name of the representation
type).

Chapter 1. Structured Query Language (SQL) 1507

method-specification
Defines the methods for this type. A method cannot actually be used until it is given a body with a
CREATE METHOD statement (SQLSTATE 42884).
OVERRIDING

Specifies that the method being defined overrides a method of a supertype of the type being
defined. Overriding enables one to re-implement methods in subtypes, thereby providing more
specific functionality. Overriding is not supported for the following types of methods:

• Table and row methods
• External methods declared with PARAMETER STYLE JAVA
• Methods that can be used as predicates in an index extension
• System-generated mutator or observer methods

Attempting to override such a method will result in an error (SQLSTATE 42745).

If a method is to be a valid overriding method, there must already exist one original method for
one of the proper supertypes of the type being defined, and the following relationships must exist
between the overriding method and the original method:

• The method name of the method being defined and the original method are equivalent.
• The method being defined and the original method have the same number of parameters.
• The data type of each parameter of the method being defined and the data type of the

corresponding parameters of the original method are identical. This requirement excludes the
implicit SELF parameter.

If such an original method does not exist, an error is returned (SQLSTATE 428FV).

The overriding method inherits the following attributes from the original method:

• Language
• Determinism indication
• External action indication
• An indication whether this method should be called if any of its arguments is the null value
• Result cast (if specified in the original method)
• SELF AS RESULT indication
• The SQL-data access or CONTAINS SQL indication
• For external methods:

– Parameter style
– Locator indication of the parameters and of the result (if specified in the original method)
– FENCED, SCRATCHPAD, FINAL CALL, ALLOW PARALLEL, and DBINFO indication
– INHERIT SPECIAL REGISTER and THREADSAFE indication

method-name
Names the method being defined. It must be an unqualified SQL identifier (SQLSTATE 42601). The
method name is implicitly qualified with the schema used for CREATE TYPE.

A number of names used as keywords in predicates are reserved for system use, and cannot
be used as a method-name (SQLSTATE 42939). The names are SOME, ANY, ALL, NOT, AND, OR,
BETWEEN, NULL, LIKE, EXISTS, IN, UNIQUE, OVERLAPS, SIMILAR, MATCH, and the comparison
operators.

In general, the same name can be used for more than one method if there is some difference in
their signatures.

parameter-name
Identifies the parameter name. It cannot be SELF, which is the name for the implicit subject
parameter of a method (SQLSTATE 42734). If the method is an SQL method, all its parameters

1508 IBM Db2 V11.5: SQL Reference

must have names (SQLSTATE 42629). If the method being declared overrides another method,
the parameter name must be exactly the same as the name of the corresponding parameter of
the overridden method; otherwise, an error is returned (SQLSTATE 428FV).

data-type2
Specifies the data type of each parameter. One entry in the list must be specified for each
parameter that the method will expect to receive. No more than 90 parameters are allowed,
including the implicit SELF parameter. If this limit is exceeded, an error is raised (SQLSTATE
54023).

You can specify SQL data types and abbreviations that can be specified as a column type in
the CREATE TABLE statement, and that have equivalents in the language that is being used to
write the method. For details on the mapping between SQL data types and host language data
types, see the topic that pertains to your language from the following list of related topics.

Note: If the SQL data type in question is a structured type, there is no default mapping to a
host language data type. A user-defined transform function must be used to create a mapping
between the structured type and the host language data type.

DECIMAL (or NUMERIC) and decimal floating-point are invalid with LANGUAGE C and OLE
(SQLSTATE 42815).

XML data types cannot be used (SQLSTATE 42815).

REF may be specified, but it does not have a defined scope. Inside the body of the method,
a reference-type can be used in a path-expression only by first casting it to have a scope.
Similarly, a reference returned by a method can be used in a path-expression only by first
casting it to have a scope.

AS LOCATOR
For LOB types or distinct types which are based on a LOB type, the AS LOCATOR clause can be
added. This indicates that a LOB locator is to be passed to the method instead of the actual
value. This saves greatly in the number of bytes passed to the method, and may save as well
in performance, particularly in the case where only a few bytes of the value are actually of
interest to the method.

An error is raised (SQLSTATE 42601) if AS LOCATOR is specified for a type other than a LOB or
a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

If the method being declared overrides another method, the AS LOCATOR indication of the
parameter must match exactly the AS LOCATOR indication of the corresponding parameter of
the overridden method (SQLSTATE 428FV).

If the method being declared overrides another method, the FOR BIT DATA indication of each
parameter must match exactly the FOR BIT DATA indication of the corresponding parameter of
the overridden method. (SQLSTATE 428FV).

RETURNS
This mandatory clause identifies the method's result.
data-type3

Specifies the data type of the method's result. In this case, exactly the same considerations apply
as for the parameters of methods specified in the description for data-type2.
AS LOCATOR

For LOB types or distinct types which are based on LOB types, the AS LOCATOR clause can be
added. This indicates that a LOB locator is to be passed from the method instead of the actual
value.

An error is raised (SQLSTATE 42601) if AS LOCATOR is specified for a type other than a LOB or
a distinct type based on a LOB.

Chapter 1. Structured Query Language (SQL) 1509

If the method is FENCED, or if LANGUAGE is SQL, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

If the method being defined overrides another method, this clause cannot be specified
(SQLSTATE 428FV).

If the method overrides another method, data-type3 must be a subtype of the data type of the
result of the overridden method if this data type is a structured type; otherwise both data types
must be identical (SQLSTATE 428FV).

data-type4 CAST FROM data-type5
Specifies the data type of the method's result.

This clause is used to return a different data type to the invoking statement from the data type
returned by the method code. The data-type5 must be castable to the data-type4 parameter. If it
is not castable, an error is returned (SQLSTATE 42880).

Because the length, precision, or scale for data-type4 can be inferred from data-type5, it is
not necessary (but still permitted) to specify the length, precision, or scale for parameterized
types specified for data-type4. Instead, empty parentheses can be used, such as VARCHAR(),
for example. FLOAT() cannot be used (SQLSTATE 42601), because the parameter value indicates
different data types (REAL or DOUBLE).

A distinct type is not valid as the type specified in data-type5 (SQLSTATE 42815). XML is not valid
as the type specified in data-type4 or data-type5 (SQLSTATE 42815).

The cast operation is also subject to runtime checks that might result in conversion errors being
returned.

AS LOCATOR
For LOB types or distinct types which are based on LOB types, the AS LOCATOR clause can be
added. This indicates that a LOB locator is to be passed from the method instead of the actual
value.

An error is raised (SQLSTATE 42601) if AS LOCATOR is specified for a type other than a LOB or
a distinct type based on a LOB.

If the method is FENCED, or if LANGUAGE is SQL, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

If the method being defined overrides another method, this clause cannot be specified (SQLSTATE
428FV).

If the method being defined overrides another method, the FOR BIT DATA clause cannot be
specified (SQLSTATE 428FV).

SPECIFIC specific-name
Provides a unique name for the instance of the method that is being defined. This specific name can
be used when creating the method body or dropping the method. It can never be used to invoke the
method. The unqualified form of specific-name is an SQL identifier (with a maximum length of 18).
The qualified form is a schema-name followed by a period and an SQL identifier. The name, including
the implicit or explicit qualifier, must not identify another specific method name that exists at the
application server; otherwise an error is raised (SQLSTATE 42710).

The specific-name may be the same as an existing method-name.

If no qualifier is specified, the qualifier that was used for type-name is used. If a qualifier is specified,
it must be the same as the explicit or implicit qualifier of type-name or an error is raised (SQLSTATE
42882).

If specific-name is not specified, a unique name is generated by the database manager. The unique
name is SQL followed by a character timestamp, SQLyymmddhhmmssxxx.

SELF AS RESULT
Identifies this method as a type-preserving method, which is defined as follows:

• The declared return type must be the same as the declared subject-type (SQLSTATE 428EQ).

1510 IBM Db2 V11.5: SQL Reference

• When an SQL statement is compiled and resolves to a type preserving method, the static type of the
result of the method is the same as the static type of the subject argument.

• The method must be implemented in such a way that the dynamic type of the result is the same
as the dynamic type of the subject argument (SQLSTATE 2200G), and the result cannot be NULL
(SQLSTATE 22004).

If the method being defined overrides another method, this clause cannot be specified (SQLSTATE
428FV).

SQL-routine-characteristics
Specifies the characteristics of the method body that will be defined for this type using CREATE
METHOD.
LANGUAGE SQL

This clause is used to indicate that the method is written in SQL with a single RETURN statement.
The method body is specified using the CREATE METHOD statement.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of the SQL method.
If the PARAMETER CCSID clause is not specified, the default is PARAMETER CCSID UNICODE for
Unicode databases, and PARAMETER CCSID ASCII for all other databases.
ASCII

Specifies that string data is encoded in the database code page. If the database is a Unicode
database, PARAMETER CCSID ASCII cannot be specified (SQLSTATE 56031).

UNICODE
Specifies that character data is in UTF-8, and that graphic data is in UCS-2. If the database
is not a Unicode database, PARAMETER CCSID UNICODE cannot be specified (SQLSTATE
56031).

NOT DETERMINISTIC or DETERMINISTIC
This optional clause specifies whether the method always returns the same results for given
argument values (DETERMINISTIC) or whether the method depends on some state values that
affect the results (NOT DETERMINISTIC). That is, a DETERMINISTIC method must always return
the same result from successive invocations with identical inputs. Optimizations taking advantage
of the fact that identical inputs always produce the same results are prevented by specifying NOT
DETERMINISTIC. NOT DETERMINISTIC must be explicitly or implicitly specified if the body of the
method accesses a special register, or calls another non-deterministic routine (SQLSTATE 428C2).

EXTERNAL ACTION or NO EXTERNAL ACTION
This optional clause specifies whether or not the method takes some action that changes the
state of an object not managed by the database manager. Optimizations that assume methods
have no external impacts are prevented by specifying EXTERNAL ACTION. For example: sending a
message, ringing a bell, or writing a record to a file.

READS SQL DATA or CONTAINS SQL
Specifies the classification of SQL statements that the method can run. The database manager
verifies that the SQL statements that the method issues are consistent with this specification.

For the classification of each statement, see "SQL statements that can be executed in routines and
triggers" in Developing User-defined Routines (SQL and External).

Because the SQL statement supported is the RETURN statement, the distinction has to do with
whether the expression is a subquery.

The default is READS SQL DATA.

READS SQL DATA
Specifies that the method can run statements with a data access classification of READS SQL
DATA or CONTAINS SQL. The method cannot run SQL statements that modify data (SQLSTATE
42985). Nicknames cannot be referenced in the SQL statement (SQLSTATE 42997).

Chapter 1. Structured Query Language (SQL) 1511

CONTAINS SQL
Specifies that the method can run only SQL statements with a data access classification
of CONTAINS SQL. The method cannot run any SQL statements that read or modify data
(SQLSTATE 42985).

CALLED ON NULL INPUT
This optional clause indicates that regardless of whether any arguments are null, the user-defined
method is called. It can return a null value or a normal (non-null) value. However, responsibility for
testing for null argument values lies with the method.

If the method being defined overrides another method, this clause cannot be specified (SQLSTATE
428FV).

NULL CALL can be used as a synonym for CALLED ON NULL INPUT.

INHERIT SPECIAL REGISTERS
This optional clause specifies that updatable special registers in the method will inherit their
initial values from the environment of the invoking statement. For a method invoked in the select-
statement of a cursor, the initial values are inherited from the environment in which the cursor is
opened. For a routine invoked in a nested object (for example a trigger or view), the initial values
are inherited from the runtime environment (not inherited from the object definition).

No changes to the special registers are passed back to the invoker of the function.

Non-updatable special registers, such as the datetime special registers, reflect a property of the
statement currently executing, and are therefore set to their default values.

external-routine-characteristics
LANGUAGE

This mandatory clause is used to specify the language interface convention to which the user-
defined method body is written.
C

This means the database manager will call the user-defined method as if it were a C function.
The user-defined method must conform to the C language calling and linkage convention as
defined by the standard ANSI C prototype.

JAVA
This means the database manager will call the user-defined method as a method in a Java
class.

OLE
This means the database manager will call the user-defined method as if it were a method
exposed by an OLE automation object. The method must conform with the OLE automation
data types and invocation mechanism as described in the OLE Automation Programmer's
Reference.

LANGUAGE OLE is only supported for user-defined methods stored in Windows 32-bit
operating systems. THREADSAFE may not be specified for methods defined with LANGUAGE
OLE (SQLSTATE 42613).

PARAMETER STYLE
This clause is used to specify the conventions used for passing parameters to and returning the
value from methods.
DB2GENERAL

Used to specify the conventions for passing parameters to and returning the value from
external methods that are defined as a method in a Java class. This can only be specified
when LANGUAGE JAVA is used.

The value DB2GENRL may be used as a synonym for DB2GENERAL.

SQL
Used to specify the conventions for passing parameters to and returning the value from
external methods that conform to C language calling and linkage conventions or methods

1512 IBM Db2 V11.5: SQL Reference

exposed by OLE automation objects. This must be specified when either LANGUAGE C or
LANGUAGE OLE is used.

PARAMETER CCSID
Specifies the encoding scheme to use for all string data passed into and out of the external
method. If the PARAMETER CCSID clause is not specified, the default is PARAMETER CCSID
UNICODE for Unicode databases, and PARAMETER CCSID ASCII for all other databases.
ASCII

Specifies that string data is encoded in the database code page. If the database is a Unicode
database, PARAMETER CCSID ASCII cannot be specified (SQLSTATE 56031).

UNICODE
Specifies that character data is in UTF-8, and that graphic data is in UCS-2. If the database
is not a Unicode database, PARAMETER CCSID UNICODE cannot be specified (SQLSTATE
56031).

This clause cannot be specified with LANGUAGE OLE (SQLSTATE 42613).

DETERMINISTIC or NOT DETERMINISTIC
This optional clause specifies whether the method always returns the same results for given
argument values (DETERMINISTIC) or whether the method depends on some state values that
affect the results (NOT DETERMINISTIC). That is, a DETERMINISTIC method must always return
the same result from successive invocations with identical inputs. Optimizations taking advantage
of the fact that identical inputs always produce the same results are prevented by specifying NOT
DETERMINISTIC. An example of a type that is non-deterministic is one that references special
registers, global variables, or non-deterministic functions in a way that affects the result type.

FENCED or NOT FENCED
This clause specifies whether the method is considered "safe" to run in the database manager
operating environment's process or address space (NOT FENCED), or not (FENCED).

If a method is registered as FENCED, the database manager protects its internal resources (data
buffers, for example) from access by the method. Most methods will have the option of running as
FENCED or NOT FENCED. In general, a method running as FENCED will not perform as well as a
similar one running as NOT FENCED.

CAUTION: Use of NOT FENCED for methods that were not adequately coded, reviewed,
and tested can compromise the integrity of your database. The database engine takes
some precautions against many of the common types of inadvertent failures that might
occur, but cannot guarantee complete integrity when NOT FENCED methods are used.

Only FENCED can be specified for a method with LANGUAGE OLE or NOT THREADSAFE (SQLSTATE
42613).

If the method is FENCED and has the NO SQL option, the AS LOCATOR clause cannot be specified
(SQLSTATE 42613).

Either SYSADM authority, DBADM authority, or a special authority
(CREATE_NOT_FENCED_ROUTINE) is required to register a method as NOT FENCED.

THREADSAFE or NOT THREADSAFE
Specifies whether the method is considered "safe" to run in the same process as other routines
(THREADSAFE), or not (NOT THREADSAFE).

If the method is defined with LANGUAGE other than OLE:

• If the method is defined as THREADSAFE, the database manager can invoke the method in
the same process as other routines. In general, to be threadsafe, a method should not use
any global or static data areas. Most programming references include a discussion of writing
threadsafe routines. Both FENCED and NOT FENCED methods can be THREADSAFE.

• If the method is defined as NOT THREADSAFE, the database manager will never invoke the
method in the same process as another routine.

Chapter 1. Structured Query Language (SQL) 1513

For FENCED methods, THREADSAFE is the default if the LANGUAGE is JAVA. For all other
languages, NOT THREADSAFE is the default. If the method is defined with LANGUAGE OLE,
THREADSAFE may not be specified (SQLSTATE 42613).

For NOT FENCED methods, THREADSAFE is the default. NOT THREADSAFE cannot be specified
(SQLSTATE 42613).

RETURNS NULL ON NULL INPUT or CALLED ON NULL INPUT
This optional clause may be used to avoid a call to the external method if any of the non-subject
arguments is null.

If RETURNS NULL ON NULL INPUT is specified, and if at execution time any one of the method's
arguments is null, the method is not called and the result is the null value.

If CALLED ON NULL INPUT is specified, then regardless of the number of null arguments, the
method is called. It can return a null value or a normal (non-null) value. However, responsibility for
testing for null argument values lies with the method.

The value NULL CALL may be used as a synonym for CALLED ON NULL INPUT for backwards and
family compatibility. Similarly, NOT NULL CALL may be used as a synonym for RETURNS NULL ON
NULL INPUT.

There are two cases in which this specification is ignored:

• If the subject argument is null, in which case the method is not executed and the result is null
• If the method is defined to have no parameters, in which case this null argument condition

cannot occur.

READS SQL DATA, NO SQL, CONTAINS SQL
Specifies the classification of SQL statements that the method can run. The database manager
verifies that the SQL statements that the method issues are consistent with this specification.

For the classification of each statement, see "SQL statements that can be executed in routines and
triggers" in Developing User-defined Routines (SQL and External).

The default is READS SQL DATA.

READS SQL DATA
Specifies that the method can run statements with a data access classification of READS SQL
DATA or CONTAINS SQL (SQLSTATE 38002 or 42985). The method cannot run SQL statements
that modify data (SQLSTATE 38003 or 42985).

NO SQL
Specifies that the method can run only SQL statements with a data access classification of NO
SQL (SQLSTATE 38001).

CONTAINS SQL
Specifies that the method can run only SQL statements with a data access classification of
CONTAINS SQL (SQLSTATE 38004 or 42985). The method cannot run any SQL statements that
read or modify data (SQLSTATE 38003 or 42985).

EXTERNAL ACTION or NO EXTERNAL ACTION
This optional clause specifies whether or not the method takes some action that changes the state
of an object not managed by the database manager. Optimizations that assume methods have no
external impacts are prevented by specifying EXTERNAL ACTION.

NO SCRATCHPAD or SCRATCHPAD length
This optional clause may be used to specify whether a scratchpad is to be provided for an external
method. It is strongly recommended that methods be re-entrant, so a scratchpad provides a
means for the method to "save state" from one call to the next.

If SCRATCHPAD is specified, then at the first invocation of the user-defined method, memory is
allocated for a scratchpad to be used by the external method. This scratchpad has the following
characteristics:

1514 IBM Db2 V11.5: SQL Reference

• length, if specified, sets the size in bytes of the scratchpad and must be between 1 and 32 767
(SQLSTATE 42820). The default value is 100.

• It is initialized to all X'00''s.
• Its scope is the SQL statement. There is one scratchpad per reference to the external method in

the SQL statement.

So, if method X in the following statement is defined with the SCRATCHPAD keyword, three
scratchpads would be assigned.

 SELECT A, X..(A) FROM TABLEB
 WHERE X..(A) > 103 OR X..(A) < 19

If ALLOW PARALLEL is specified or defaulted to, then the scope is different from the one shown
previously. If the method is executed on multiple database partitions, a scratchpad would be
assigned on each database partition where the method is processed, for each reference to the
method in the SQL statement. Similarly, if the query is executed with intrapartition parallelism
enabled, more than three scratchpads may be assigned.

The scratchpad is persistent. Its content is preserved from one external method call to the next.
Any changes made to the scratchpad by the external method on one call will be present on the
next call. The database manager initializes scratchpads at the beginning of execution of each SQL
statement. The database manager may reset scratchpads at the beginning of execution of each
subquery. The system issues a final call before resetting a scratchpad if the FINAL CALL option is
specified.

The scratchpad can be used as a central point for system resources (memory, for example) which
the external method might acquire. The method could acquire the memory on the first call, keep
its address in the scratchpad, and refer to it in subsequent calls.

In such a case where system resource is acquired, the FINAL CALL keyword should also be
specified; this causes a special call to be made at end-of-statement to allow the external method
to free any system resources acquired.

If SCRATCHPAD is specified, then on each invocation of the user-defined method, an additional
argument is passed to the external method which addresses the scratchpad.

If NO SCRATCHPAD is specified, then no scratchpad is allocated or passed to the external method.

NO FINAL CALL or FINAL CALL
This optional clause specifies whether a final call is to be made to an external method. The
purpose of such a final call is to enable the external method to free any system resources it has
acquired. It can be useful in conjunction with the SCRATCHPAD keyword in situations where the
external method acquires system resources such as memory and anchors them in the scratchpad.

If FINAL CALL is specified, then at execution time, an additional argument is passed to the
external method which specifies the type of call. The types of calls are:

• Normal call: SQL arguments are passed and a result is expected to be returned.
• First call: the first call to the external method for this specific reference to the method in this
specific SQL statement. The first call is a normal call.

• Final call: a final call to the external method to enable the method to free up resources. The final
call is not a normal call. This final call occurs at the following times:

– End-of-statement: this case occurs when the cursor is closed for cursor-oriented statements,
or when the statement is through executing otherwise.

– End-of-transaction: This case occurs when the normal end-of-statement does not occur. For
example, the logic of an application may for some reason bypass the close of the cursor.

If a commit operation occurs while a cursor defined as WITH HOLD is open, a final call is made
at the subsequent close of the cursor or at the end of the application.

If NO FINAL CALL is specified, then no "call type" argument is passed to the external method, and
no final call is made.

Chapter 1. Structured Query Language (SQL) 1515

ALLOW PARALLEL or DISALLOW PARALLEL
This optional clause specifies whether, for a single reference to the method, the invocation of
the method can be parallelized. In general, the invocations of most scalar methods should
be parallelizable, but there may be methods (such as those depending on a single copy of a
scratchpad) that cannot. If either ALLOW PARALLEL or DISALLOW PARALLEL are specified for a
method, then this specification will be accepted.

The following questions should be considered in determining which keyword is appropriate for the
method:

• Are all the method invocations completely independent of each other? If YES, then specify
ALLOW PARALLEL.

• Does each method invocation update the scratchpad, providing value(s) that are of interest to
the next invocation (the incrementing of a counter, for example)? If YES, then specify DISALLOW
PARALLEL or accept the default.

• Is there some external action performed by the method which should happen only on one
database partition? If YES, then specify DISALLOW PARALLEL or accept the default.

• Is the scratchpad used, but only so that some expensive initialization processing can be
performed a minimal number of times? If YES, then specify ALLOW PARALLEL.

In any case, the body of every external method should be in a directory that is available on every
database partition.

The syntax diagram indicates that the default value is ALLOW PARALLEL. However, the default is
DISALLOW PARALLEL if one or more of the following options is specified in the statement:

• NOT DETERMINISTIC
• EXTERNAL ACTION
• SCRATCHPAD
• FINAL CALL

NO DBINFO or DBINFO
This optional clause specifies whether certain specific information known by the database
manager will be passed to the method as an additional invocation-time argument (DBINFO), or not
(NO DBINFO).NO DBINFO is the default. DBINFO is not supported for LANGUAGE OLE (SQLSTATE
42613). If the method being defined overrides another method, this clause cannot be specified
(SQLSTATE 428FV).

If DBINFO is specified, a structure that contains the following information is passed to the
method:

• Database name - the name of the currently connected database.
• Application ID - unique application ID which is established for each connection to the database.
• Application Authorization ID - the application runtime authorization ID, regardless of the nested

methods in between this method and the application.
• Code page - identifies the database code page.
• Schema name - under the exact same conditions as for Table name, contains the name of the

schema; otherwise blank.
• Table name - if and only if the method reference is either the right side of a SET clause in

an UPDATE statement, or an item in the VALUES list of an INSERT statement, contains the
unqualified name of the table being updated or inserted; otherwise blank.

• Column name - under the exact same conditions as for Table name, contains the name of the
column being updated or inserted; otherwise blank.

• Database version/release - identifies the version, release and modification level of the database
server invoking the method.

• Platform - contains the server's platform type.
• Table method result column numbers - not applicable to methods.

1516 IBM Db2 V11.5: SQL Reference

INHERIT SPECIAL REGISTERS
This optional clause specifies that special registers in the method will inherit their initial values
from the calling statement. For cursors, the initial values are inherited from the time that the
cursor is opened.

No changes to the special registers are passed back to the caller of the method.

Some special registers, such as the datetime special registers, reflect a property of the statement
currently executing, and are therefore never inherited from the caller.

Notes
• Creating a structured type with a schema name that does not already exist will result in the implicit

creation of that schema provided the authorization ID of the statement has IMPLICIT_SCHEMA
authority. The schema owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• A structured subtype defined with no attributes defines a subtype that inherits all its attributes from the
supertype. If neither an UNDER clause nor any other attribute is specified, then the type is a root type of
a type hierarchy without any attributes.

• The addition of a new subtype to a type hierarchy may cause packages to be invalidated. A package may
be invalidated if it depends on a supertype of the new type. Such a dependency is the result of the use
of a TYPE predicate or a TREAT specification.

• A structured type may have no more than 4082 attributes (SQLSTATE 54050).
• A method specification is not allowed to have the same signature as a function (comparing the first

parameter-type of the function with the subject-type of the method).
• No original method may override another method, or be overridden by an original method (SQLSTATE

42745). Furthermore, a function and a method cannot be in an overriding relationship. This means that
if the function were considered to be a method with its first parameter as subject S, it must not override
another method in any supertype of S, and it must not be overridden by another method in any subtype
of S (SQLSTATE 42745).

• Creation of a structured type automatically generates a set of functions and methods for use with the
type. All the functions and methods are generated in the same schema as the structured type. If the
signature of the generated function or method conflicts with or overrides the signature of an existing
function in this schema, the statement fails (SQLSTATE 42710). The generated functions or methods
cannot be dropped without dropping the structured type (SQLSTATE 42917). The following functions
and methods are generated:

– Functions

- Reference Comparisons

Six comparison functions with names =, <>, <, <=, >, >= are generated for the reference type
REF(type-name). Each of these functions takes two parameters of type REF(type-name) and returns
true, false, or unknown. The comparison operators for REF(type-name) are defined to have the
same behavior as the comparison operators for the underlying data type of REF(type-name). (All
references in a type hierarchy have the same reference representation type. This enables REF(S)
and REF(T) to be compared, provided that S and T have a common supertype. Because uniqueness
of the OID column is enforced only within a table hierarchy, it is possible that a value of REF(T) in
one table hierarchy may be "equal" to a value of REF(T) in another table hierarchy, even though they
reference different rows.)

The scope of the reference type is not considered in the comparison.
- Cast functions

Two cast functions are generated to cast between the generated reference type REF(type-name)
and the underlying data type of this reference type.

• The name of the function to cast from the underlying type to the reference type is the implicit or
explicit funcname1.

The format of this function is:

Chapter 1. Structured Query Language (SQL) 1517

 CREATE FUNCTION funcname1 (rep-type)
 RETURNS REF(type-name) ...

• The name of the function to cast from the reference type to the underlying type of the reference
type is the implicit or explicit funcname2.

The format of this function is:

 CREATE FUNCTION funcname2 (REF(type-name))
 RETURNS rep-type ...

For some rep-types, there are additional cast functions generated with funcname1 to handle
casting from constants.

• If rep-type is SMALLINT, the additional generated cast function has the format:

 CREATE FUNCTION funcname1 (INTEGER)
 RETURNS REF(type-name)

• If rep-type is CHAR(n), the additional generated cast function has the format:

 CREATE FUNCTION funcname1 (VARCHAR(n))
 RETURNS REF(type-name)

• If rep-type is GRAPHIC(n), the additional generated cast function has the format:

 CREATE FUNCTION funcname1 (VARGRAPHIC(n))
 RETURNS REF(type-name)

The schema name of the structured type must be included in the SQL path for successful use of
these operators and cast functions in SQL statements.

- Constructor function

The constructor function is generated to allow a new instance of the type to be constructed. This
new instance will have null for all attributes of the type, including attributes that are inherited from
a supertype.

The format of the generated constructor function is:

 CREATE FUNCTION type-name ()
 RETURNS type-name
 ...

If NOT INSTANTIABLE is specified, no constructor function is generated.
– Methods

- Observer methods

An observer method is defined for each attribute of the structured type. For each attribute, the
observer method returns the type of the attribute. If the subject is null, the observer method
returns a null value of the attribute type.

For example, the attributes of an instance of the structured type ADDRESS can be observed using
C1..STREET, C1..CITY, C1..COUNTRY, and C1..CODE.

The method signature of the generated observer method is as if the following statement had been
executed:

 CREATE TYPE type-name
 ...
 METHOD attribute-name()
 RETURNS attribute-type

where type-name is the structured type name.
- Mutator methods

1518 IBM Db2 V11.5: SQL Reference

A type-preserving mutator method is defined for each attribute of the structured type. Use mutator
methods to change attributes within an instance of a structured type. For each attribute, the
mutator method returns a copy of the subject modified by assigning the argument to the named
attribute of the copy.

For example, an instance of the structured type ADDRESS can be mutated using
C1..CODE('M3C1H7'). If the subject is null, the mutator method raises an error (SQLSTATE
2202D).

The method signature of the generated mutator method is as if the following statement had been
executed:

CREATE TYPE type-name
 ...
 METHOD attribute-name (attribute-type)
 RETURNS type-name

If the attribute data type is SMALLINT, REAL, CHAR, or GRAPHIC, an additional mutator method is
generated in order to support mutation using constants:

• If attribute-type is SMALLINT, the additional mutator supports an argument of type INTEGER.
• If attribute-type is REAL, the additional mutator supports an argument of type DOUBLE.
• If attribute-type is CHAR, the additional mutator supports an argument of type VARCHAR.
• If attribute-type is GRAPHIC, the additional mutator supports an argument of type VARGRAPHIC.

- If the structured type is used as a column type, the length of an instance of the type can be no more
than 1 GB in length at runtime (SQLSTATE 54049).

• When creating a new subtype for an existing structured type (for use as a column type), any transform
functions already written in support of existing related structured types should be re-examined and
updated as necessary. Whether the new type is in the same hierarchy as a given type, or in the hierarchy
of a nested type, it is likely that the existing transform function associated with this type will need
to be modified to include some or all of the new attributes introduced by the new subtype. Generally
speaking, because it is the set of transform functions associated with a given type (or type hierarchy)
that enables UDF and client application access to the structured type, the transform functions should
be written to support all of the attributes in a given composite hierarchy (that is, including the transitive
closure of all subtypes and their nested structured types).

When a new subtype of an existing type is created, all packages dependent on methods that are defined
in supertypes of the type being created, and that are eligible for overriding, are invalidated.

• Table access restrictions: If a method is defined as READS SQL DATA, no statement in the method can
access a table that is being modified by the statement which invoked the method (SQLSTATE 57053).
For example, suppose the method BONUS() is defined as READS SQL DATA. If the statement UPDATE
DEPTINFO SET SALARY = SALARY + EMP..BONUS() is invoked, no SQL statement in the BONUS method
can read from the EMPLOYEE table.

• Privileges: The definer of the user-defined type always receives the EXECUTE privilege WITH GRANT
OPTION on all methods and functions automatically generated for the structured type. The EXECUTE
privilege is not granted on any methods explicitly specified in the CREATE TYPE statement until a
method body is defined using the CREATE METHOD statement. The definer of the user-defined type
does have the right to drop the method specification using the ALTER TYPE statement. EXECUTE
privilege on all methods and functions automatically generated during the CREATE TYPE (structured)
statement is granted to PUBLIC.

When an external method is used in an SQL statement, the method definer must have the EXECUTE
privilege on any packages used by the method or EXECUTEIN privilege on the schema containing the
packages used by the method.

• In a partitioned database environment, the use of SQL in external user-defined functions or methods is
not supported (SQLSTATE 42997).

• Only routines defined as NO SQL can be used to define an index extension (SQLSTATE 428F8).

Chapter 1. Structured Query Language (SQL) 1519

• A Java routine defined as NOT FENCED will be invoked as if it had been defined as FENCED
THREADSAFE.

• EXTERNAL ACTION methods: If an EXTERNAL ACTION method is invoked in other than the outermost
select list, the results are unpredictable since the number of times the method is invoked will vary
depending on the access plan used.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– NOT VARIANT can be specified in place of DETERMINISTIC
– VARIANT can be specified in place of NOT DETERMINISTIC
– NULL CALL can be specified in place of CALLED ON NULL INPUT
– NOT NULL CALL can be specified in place of RETURNS NULL ON NULL INPUT
– PARAMETER STYLE DB2SQL can be specified in place of PARAMETER STYLE SQL

The following syntax is accepted as the default behavior for external methods:

– ASUTIME NO LIMIT
– NO COLLID
– PROGRAM TYPE SUB
– STAY RESIDENT NO
– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database if PARAMETER CCSID UNICODE is not specified

The following syntax is accepted as the default behavior for SQL methods:

– CCSID UNICODE in a Unicode database
– CCSID ASCII in a non-Unicode database

Examples
• Example 1: Create a type for department.

 CREATE TYPE DEPT AS
 (DEPT_NAME VARCHAR(20),
 MAX_EMPS INT)
 REF USING INT
 MODE DB2SQL

• Example 2: Create a type hierarchy consisting of a type for employees and a subtype for managers.

 CREATE TYPE EMP AS
 (NAME VARCHAR(32),
 SERIALNUM INT,
 DEPT REF(DEPT),
 SALARY DECIMAL(10,2))
 MODE DB2SQL

 CREATE TYPE MGR UNDER EMP AS
 (BONUS DECIMAL(10,2))
 MODE DB2SQL

• Example 3: Create a type hierarchy for addresses. Addresses are intended to be used as types of
columns. The inline length is not specified, so a default length is calculated. Encapsulate within the
address type definition an external method that calculates how close this address is to a given input
address. Create the method body using the CREATE METHOD statement.

 CREATE TYPE address_t AS
 (STREET VARCHAR(30),
 NUMBER CHAR(15),
 CITY VARCHAR(30),
 STATE VARCHAR(10))
 NOT FINAL

1520 IBM Db2 V11.5: SQL Reference

 MODE DB2SQL
 METHOD SAMEZIP (addr address_t)
 RETURNS INTEGER
 LANGUAGE SQL
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION,

 METHOD DISTANCE (address_t)
 RETURNS FLOAT
 LANGUAGE C
 DETERMINISTIC
 PARAMETER STYLE SQL
 NO SQL
 NO EXTERNAL ACTION

 CREATE TYPE germany_addr_t UNDER address_t AS
 (FAMILY_NAME VARCHAR(30))
 NOT FINAL
 MODE DB2SQL

 CREATE TYPE us_addr_t UNDER address_t AS
 (ZIP VARCHAR(10))
 NOT FINAL
 MODE DB2SQL

• Example 4: Create a type that has nested structured type attributes.

 CREATE TYPE PROJECT AS
 (PROJ_NAME VARCHAR(20),
 PROJ_ID INTEGER,
 PROJ_MGR MGR,
 PROJ_LEAD EMP,
 LOCATION ADDR_T,
 AVAIL_DATE DATE)
 MODE DB2SQL

CREATE TYPE MAPPING
The CREATE TYPE MAPPING statement defines a mapping between data types.

The mapping can be defined between the following data types:

• The data type of a column in a data source table or view that is going to be defined to a federated
database

• A corresponding data type that is already defined to the federated database

The mapping can associate the federated database data type with a data type at:

• A specified data source
• A range of data sources; for example, all data sources of a particular type and version

A data type mapping must be created only if an existing one is not adequate.

If multiple type mappings are applicable when creating a nickname or creating a table (transparent DDL),
the most recent one is applied.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include DBADM authority.

Chapter 1. Structured Query Language (SQL) 1521

Syntax
CREATE TYPE MAPPING

type-mapping-name

●
1

FROM

TO

LOCAL TYPE
local-data-type ● TO

FROM

remote-server

REMOTE
TYPE data-source-data-type

FOR BIT DATA

(p

[p..p] ,s

,[s..s]

)

P=S

P>S

P<S

P>=S

P<=S

P<>S

local-data-type
built-in-type

built-in-type

1522 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

CHARACTER

CHAR

(1)

( integer
OCTETS

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

)

FOR BIT DATA

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

)

GRAPHIC

(1)

( integer
CODEUNITS16

)

VARGRAPHIC ( integer
CODEUNITS16

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

BOOLEAN

remote-server

Chapter 1. Structured Query Language (SQL) 1523

SERVER server-name

SERVER TYPE server-type

VERSION server-version

WRAPPER wrapper-name

server-version
version

. release

. mod

version-string-constant

Notes:
1 Both a TO and a FROM keyword must be present in the CREATE TYPE MAPPING statement.

Description
type-mapping-name

Names the data type mapping. The name must not identify a data type mapping that is already
described in the catalog. A unique name is generated if type-mapping-name is not specified.

FROM or TO
Specifies a reverse or forward type mapping.
FROM

Specifies a forward type mapping when followed by local-data-type or a reverse type mapping
when followed by remote-server.

TO
Specifies a forward type mapping when followed by remote-server or a reverse type mapping
when followed by local-data-type.

local-data-type
Identifies a data type that is defined to a federated database. If local-data-type is specified without a
schema name, the type name is resolved by searching the schemas in the SQL path.

Empty parentheses can be used for the parameterized data types. A parameterized data type is
any one of the data types that can be defined with a specific length, scale, or precision. If empty
parentheses are specified in a forward type mapping, such as, for example, CHAR(), the length is
determined from the column length on the remote table. If empty parentheses are specified in a
reverse type mapping, the type mapping is applied to the data type with any length. If you omit
parentheses altogether, the default length for the data type is used.

FLOAT() cannot be used (SQLSTATE 42601), because the parameter value indicates different data
types (REAL or DOUBLE). NUMBER() cannot be used (SQLSTATE 42601), because the parameter value
indicates different data types (DECFLOAT or DECIMAL).

DECFLOAT can be accepted only as the local-data-type by Oracle wrapper, Db2 wrapper for IBM Db2
Version 9.5 or later.

The local-data-type cannot be a user-defined type (SQLSTATE 42611).

built-in-type
See "CREATE TABLE" for the description of built-in data types.

SERVER server-name
Names the data source to which data-source-data-type is defined.

SERVER TYPE server-type
Identifies the type of data source to which data-source-data-type is defined.
VERSION

Identifies the version of the data source to which data-source-data-type is defined.

1524 IBM Db2 V11.5: SQL Reference

version
Specifies the version number. The value must be an integer.

release
Specifies the number of the release of the version denoted by version. The value must be an
integer.

mod
Specifies the number of the modification of the release denoted by release. The value must be
an integer.

version-string-constant
Specifies the complete designation of the version. The version-string-constant can be a single
value (for example, '8i'); or it can be the concatenated values of version, release and, if
applicable, mod (for example, '8.0.3').

WRAPPER wrapper-name
Specifies the name of the wrapper that the federated server uses to interact with data sources
of the type and version denoted by server-type and server-version.

TYPE data-source-data-type
Specifies the data source data type that is being mapped to or from the local data type.

Empty parentheses can be used for the parameterized data types. If empty parentheses are specified
in a forward type mapping, such as, for example, CHAR(), the type mapping is applied to the data
type with any length. If empty parentheses are specified in a reverse type mapping, the length
is determined from the column length specified in the transparent DDL. If you omit parentheses
altogether, the default length for the data type is used.

The data-source-data-type must be a built-in data type. User-defined types are not allowed.

If server-name is specified with a type mapping, or existing servers are affected by the type mapping,
data-source-data-type, p, and s are verified when creating the type mapping (SQLSTATE 42611).

p
If p is specified, only the data type whose length or precision equals p is affected by the type
mapping.

[p1..p2]
For forward type mapping only. For a decimal data type, p1 and p2 specify the minimum and
maximum number of digits that a value can have. For string data types, p1 and p2 specify the
minimum and maximum number of characters that a value can have. In all cases, the maximum must
equal or exceed the minimum; and both numbers must be valid with respect to the data type.

s
If s is specified, only the data type whose scale equals s is affected by the type mapping.

[s1..s2]
For forward type mapping only. For a decimal data type, s1 and s2 specify the minimum and maximum
number of digits allowed to the right of the decimal point. The maximum must equal or exceed the
minimum, and both numbers must be valid with respect to the data type.

P [operand] S
For a decimal data type, P [operand] S specifies a comparison between the precision and the number
of digits allowed to the right of the decimal point. For example, the operand = indicates that the type
mapping is applied if the precision and the number of digits allowed in the decimal fraction are the
same.

FOR BIT DATA
Indicates whether data-source-data-type is for bit data. These keywords are required if the data
source type column contains binary values. The database manager will determine this attribute if it is
not specified for a character data type.

Chapter 1. Structured Query Language (SQL) 1525

Notes
• A CREATE TYPE MAPPING statement within a given unit of work (UOW) cannot be processed (SQLSTATE

55007) under either of the following conditions:

– The statement references a single data source, and the UOW already includes one of the following:

- A SELECT statement that references a nickname for a table or view within this data source
- An open cursor on a nickname for a table or view within this data source
- Either an INSERT, DELETE, or UPDATE statement issued against a nickname for a table or view

within this data source
– The statement references a category of data sources (for example, all data sources of a specific type

and version), and the UOW already includes one of the following:

- A SELECT statement that references a nickname for a table or view within one of these data sources
- An open cursor on a nickname for a table or view within one of these data sources
- Either an INSERT, DELETE, or UPDATE statement issued against a nickname for a table or view

within one of these data sources
• When multiple type mappings are applicable, the most recent one will be used. You can retrieve the

creation time for a type mapping by querying the CREATE_TIME column of the SYSCAT.TYPEMAPPINGS
catalog view.

• BINARY and VARBINARY types are not supported in a Federated system.

Examples
1. Create a forward type mapping between the Oracle data type DATE and the data type SYSIBM.DATE.

For all of the nicknames that are created after this mapping is defined, Oracle columns of data type
DATE will map to Db2 columns of data type DATE.

 CREATE TYPE MAPPING MY_ORACLE_DATE
 FROM LOCAL TYPE SYSIBM.DATE
 TO SERVER TYPE ORACLE
 REMOTE TYPE DATE

2. Create a forward type mapping between data type SYSIBM.DECIMAL(10,2) and the Oracle data type
NUMBER([10..38],2) at data source ORACLE1. If there is a column in the Oracle table of data type
NUMBER(11,2), it will be mapped to a column of data type DECIMAL(10,2), because 11 is between 10
and 38.

 CREATE TYPE MAPPING MY_ORACLE_DEC
 FROM LOCAL TYPE SYSIBM.DECIMAL(10,2)
 TO SERVER ORACLE1
 REMOTE TYPE NUMBER([10..38],2)

3. Create a forward type mapping between data type SYSIBM.VARCHAR(p) and the Oracle data type
CHAR(p) at data source ORACLE1 (p is any length). If there is a column in the Oracle table of data type
CHAR(10), it will be mapped to a column of data type VARCHAR(10).

 CREATE TYPE MAPPING MY_ORACLE_CHAR
 FROM LOCAL TYPE SYSIBM.VARCHAR()
 TO SERVER ORACLE1
 REMOTE TYPE CHAR()

4. Create a reverse type mapping between the Oracle data type NUMBER(10,2) at data source ORACLE2
and data type SYSIBM.DECIMAL(10,2). If you use transparent DDL to create an Oracle table and
specify a column of data type DECIMAL(10,2), the Oracle table will be created with a column of data
type NUMBER(10,2).

 CREATE TYPE MAPPING MY_ORACLE_DEC
 TO LOCAL TYPE SYSIBM.DECIMAL(10,2)
 FROM SERVER ORACLE2
 REMOTE TYPE NUMBER(10,2)

1526 IBM Db2 V11.5: SQL Reference

CREATE USAGE LIST
The CREATE USAGE LIST statement defines a usage list. A usage list is a database object for monitoring
all unique sections (DML statements) that have referenced a particular table or index during their
execution.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include one of the following privileges:

• DBADM authority
• SQLADM authority

Syntax
CREATE USAGE LIST usage-list-name FOR TABLE

INDEX

object-name

LIST SIZE 100

LIST SIZE integer-value

WHEN FULL WRAP

WHEN FULL DEACTIVATE

INACTIVE ON START DATABASE

ACTIVE ON START DATABASE

Description
usage-list-name

Names the usage list. The usage-list-name, including the implicit or explicit qualifier, must not identify
a usage list that is described in the catalog (SQLSTATE 42710). If the usage list is explicitly qualified
with a schema name, the schema name must not begin with the characters 'SYS' (SQLSTATE 42939).

TABLE object-name
Designates the table for which the usage list is defined. The object-name, including the implicit or
explicit qualifier, must specify a table defined in the catalog (SQLSTATE 42704). The name must not
specify an alias, catalog table, created temporary table, hierarchy table, detached table, nickname,
typed table, or view (SQLSTATE 42809). If the table is explicitly qualified with a schema name, the
schema name must not begin with the characters 'SYS' (SQLSTATE 42939).

INDEX object-name
Designates the index for which the usage list is defined. The object-name, including the implicit or
explicit qualifier, must specify an index defined in the catalog (SQLSTATE 42704). Indexes defined on
tables other than untyped tables or materialized query tables are not supported (SQLSTATE 42809).
The name must specify a physical index; Block Indexes (BLOK), Clustering indexes (CLUS), Dimension
block indexes (DIM), Regular indexes (REG), and Physical indexes over XML column (XVIP). All other
index types are not supported (SQLSTATE 42809). If the index is explicitly qualified with a schema
name, the schema name must not begin with the characters 'SYS' (SQLSTATE 42939).

LIST SIZE integer-value
Specifies that the size of this list is integer-value entries. The minimum size that can be specified is 10
and the maximum is 5000 (SQLSTATE 428B7). The default size is 100 entries.

Chapter 1. Structured Query Language (SQL) 1527

WHEN FULL
Specifies what action is performed when an active usage list becomes full. The default is to wrap
when the list becomes full.
WRAP

Specifies that the usage list wraps and replaces the oldest entries.
DEACTIVATE

Specifies that the usage list deactivates.
INACTIVE ON START DATABASE

Specifies that the usage list is not activated for monitoring whenever the database is activated.
Collection must be explicitly started using the SET USAGE LIST statement. This clause is the default.

ACTIVE ON START DATABASE
Specifies that the usage list is automatically activated for monitoring whenever the database is
activated.

Notes
• Tracking sections with unique keys: A usage list keep tracks of all unique sections (DML statements

only) that have referenced a particular object. References are aggregated within the list with the unique
key of executable ID, representing the section doing the reference, and the monitor interval ID at the
time of the reference. Each list entry keeps a count of section executions related to that entry and a set
of statistics outlining the affect that the section had on the object across those executions.

• Usage list release time: A usage list is set to released when the CREATE USAGE LIST statement is
committed.

• Memory allocation: Memory is allocated the first time that the object for which the usage list is defined
is referenced by a section.

• Memory allocation in a partitioned database environment or Db2 pureScale environment: If the state
of a usage list for a partitioned table or index is set to active, memory is allocated for each data
partition when the data partition is first referenced by the section. Similarly, in a partitioned database
environment or Db2 pureScale environment, memory is allocated at each active member. If a member is
unavailable at the time of activation, then the memory is allocated when the member is next activated
(if the state of the usage list is still set to active). This also applies when a member is added to the
cluster.

• State of the usage list when specifying WHEN FULL DEACTIVATE: If the usage list was created with
the clause WHEN FULL DEACTIVATE, then the state of the usage list at each member is set to inactive
independently. Similarly, for partitioned tables and indexes, the state of the usage list for each data
partition is set to inactive independently.

• Implicit reactivation of an active usage list: If the state of an INACTIVE ON START DATABASE usage list
is set to active in a partitioned database environment or Db2 pureScale environment, then its behavior
is similar to the ACTIVE ON START DATABASE clause until the state of the usage list is explicitly set to
inactive or the instance is recycled. That is, if the state of a usage list is active when a database member
is deactivated or offline, and that database member is subsequently reactivated, the usage list for this
member is also implicitly reactivated.

• Inactive usage lists remain inactive upon database member reactivation: If the state of an ACTIVE ON
START DATABASE usage list is set to inactive in a partitioned database environment or Db2 pureScale
environment, then its behavior is similar to the INACTIVE ON START DATABASE clause until the state of
the usage list is explicitly set to active or the instance is recycled. That is, if the state of a usage list is
inactive when a database member is deactivated or offline, and that database member is subsequently
reactivated, the state of the usage list for this member will remain inactive.

• Multiple usage lists: Multiple usage lists can be created for the same table or index, however, it is
recommended that only one of them be activated. Activating all of them affects database performance
and memory usage.

• Activating and deactivating usage lists: See the Notes section for the SET USAGE LIST STATE
statement regarding activation and deactivation of the usage list.

1528 IBM Db2 V11.5: SQL Reference

• Usage list size considerations: When the state of a usage list is set to active, the memory for the usage
list is allocated from the monitor heap. At the maximum list size setting, the usage list is approximately
2MB. For partitioned tables or indexes, memory is allocated for each data partition. For example,
if a partitioned table has three data partitions defined, approximately 6MB of memory is allocated.
Therefore, activating multiple usage lists imposes more memory requirements on the monitor heap.
It is therefore suggested that a reasonable list size is selected, or that you set the mon_heap_sz
configuration parameter to AUTOMATIC so that the database manager manages the monitor heap size.

• Performance considerations: To maintain high performance, create usage lists such that they are
limited to the amount required to gather the information you need. Each usage list requires system
memory; system performance can degrade as additional usage lists are activated.

Examples
• Example 1: Create a usage list USL_ACC for table SAYYID.ACCOUNTS with a default list size of 100

entries.

CREATE USAGE LIST USL_ACC FOR TABLE SAYYID.ACCOUNTS

• Example 2: Create a usage list USL_SHOPPING_IND for index BIRD.SHOPPINGIND with a list of 50
entries that wraps when the list becomes full.

CREATE USAGE LIST USL_SHOPPING_IND FOR INDEX BIRD.SHOPPINGIND
 LISTSIZE 50
 WHEN FULL WRAP

• Example 3: Create a usage list USL_PAYROLL for table MIKE.PAYROLL with a list size of 200 entries
which will deactivate when the list becomes full and will automatically start collecting whenever the
database is activated.

CREATE USAGE LIST USL_PAYROLL FOR TABLE MIKE.PAYROLL
 LISTSIZE 200
 WHEN FULL DEACTIVATE
 ACTIVE ON START DATABASE

• Example 4: Create a usage list USL_EMP for partitioned table JACOBO.EMPLOYEES with a list size of
500 entries which will deactivate when the list becomes full.

CREATE USAGE LIST USL_EMP FOR TABLE JACOBO.EMPLOYEES
 LIST SIZE 500
 WHEN FULL DEACTIVATE

When the usage list is activated for monitoring, then a list of 500 entries will be allocated for each data
partition.

• Example 5: Create a usage list USL_PARTS for table SHAKTI.PARTS with a list size of 20 entries that will
be activated manually on database activation and will wrap when it becomes full.

CREATE USAGE LIST USL_PARTS FOR TABLE SHAKTI.PARTS
 LIST SIZE 20
 INACTIVE ON START DATABASE
 WHEN FULL WRAP

CREATE USER MAPPING
The CREATE USER MAPPING statement defines a mapping between an authorization ID that uses a
federated database and the authorization ID and password to use at a specified data source.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Chapter 1. Structured Query Language (SQL) 1529

Authorization
If the authorization ID of the statement is different from the authorization name that is being mapped
to the data source, the privileges held by the authorization ID of the statement must include DBADM
authority. Otherwise, if the authorization ID and the authorization name match, no authorities or privileges
are required.

When creating a public user mapping, the privileges held by the authorization ID of the statement must
include DBADM authority.

Syntax
CREATE USER MAPPING FOR authorization-name

USER

PUBLIC

SERVER server-name

OPTIONS (

,

user-mapping-option-name string-constant)

Description
authorization-name

Specifies the authorization name under which a user or application connects to a federated database.
The authorization_name is mapped to the REMOTE_AUTHID user mapping option.

USER
The value in the USER special register. When USER is specified, the authorization ID issuing the
CREATE USER MAPPING statement is mapped to the REMOTE_AUTHID user mapping option.

PUBLIC
Specifies that any valid authorization ID for the local federated database will be mapped to the data
source authorization ID that is specified in the REMOTE_AUTHID user option.

SERVER server-name
Names the server object for the data source that the authorization-name can access. The server-name
is the local name for the remote server that is registered with the federated database.

OPTIONS
Specify configuration options for the user mapping to be created. Which options you can specify
depends on the data source of the object for which a user mapping is being created. For a list of data
sources and the user mapping options that apply to each, see Data source options. Each option value
is a character string constant that must be enclosed in single quotation marks.

Notes
• User mappings are required only for the following data sources: the Db2 family of products,

Documentum, Informix, Microsoft SQL Server, ODBC, Oracle, Sybase, and Teradata.
• The REMOTE_PASSWORD option is always required for a user mapping.
• Public user mappings and non-public user mappings cannot coexist on the same federated server. This

means that if you have created public user mappings, you will not be able to create non-public user
mappings on the same federated server. The reverse is also true, if you have created non-public user
mappings, you will not be able to create public user mappings on the same federated server.

• Syntax alternatives: The following syntax is supported for compatibility with previous versions of Db2:

– ADD can be specified before user-mapping-option-name string-constant.

1530 IBM Db2 V11.5: SQL Reference

Example

CREATE USER MAPPING FOR <db2inst1>
 SERVER <server_name>
 OPTIONS (
 REMOTE_AUTHID '<admin>',
 REMOTE_PASSWORD '<password>);

where

• db2inst1 specifies the local authorization ID in the Db2 instance. You should use the keyword USER or
PUBLIC, or the Db2 instance name. USER is for current Db2 user, PUBLIC is for all Db2 users.

• server_name specifies the server definition name that you defined in the CREATE SERVER statement for
the JDBC data source. The user mapping is paired with the server statement.

• admin specifies the remote user ID for the remote data source (for example, MySQL). The value is
case-sensitive unless you set the FOLD_ID server parameter to "U" or "L" in the CREATE SERVER
statement.

• password specifies the remote password for the remote data source (for example, MySQL). The value is
case-sensitive unless you set the FOLD_PW server option to "U" or "L" in the CREATE SERVER statement.

CREATE VARIABLE
The CREATE VARIABLE statement defines a session global variable.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the variable
does not exist

• CREATEIN privilege on the schema, if the schema name of the variable refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the variable refers to an existing schema
• DBADM authority

and any privileges that are necessary to execute the default expression.

To execute this statement with a cursor-value-constructor that uses a select-statement, the privileges
held by the authorization ID of the statement must include the privileges necessary to execute the
select-statement. See the Authorization section in "SQL queries".

Group privileges are not considered when checking authorization for objects referenced in the statement

To replace an existing variable, the authorization ID of the statement must be the owner of the existing
variable (SQLSTATE 42501).

Chapter 1. Structured Query Language (SQL) 1531

Syntax
CREATE

OR REPLACE

VARIABLE variable-name data-type1

DEFAULT NULL

CONSTANT NULL

DEFAULT

CONSTANT

constant

special-register

global-variable

(cursor-value-constructor)

(expression)

1

data-type1
built-in-type

anchored-variable-data-type

array-type-name

cursor-type-name

distinct-type-name

REF ( type-name)

row-type-name

built-in-type

1532 IBM Db2 V11.5: SQL Reference

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
2

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML
3

BOOLEAN

CURSOR

anchored-variable-data-type

Chapter 1. Structured Query Language (SQL) 1533

ANCHOR
DATA TYPE TO

variable-name2

table-name.column-name

ROW
OF

table-name

view-name

cursor-variable-name

cursor-value-constructor
ASENSITIVE

INSENSITIVE

CURSOR

(

,

parameter-declaration)

holdability

FOR select-statement

parameter-declaration
parameter-name data-type2

data-type2
built-in-type

anchored-parameter-data-type

distinct-type-name

anchored-parameter-data-type

ANCHOR
DATA TYPE TO

variable-name

table-name.column-name

holdability
WITHOUT HOLD

WITH HOLD

Notes:
1 If data-type1 specifies a CURSOR built-in type or cursor-type-name, only NULL or cursor-value-
constructor can be specified. Only DEFAULT NULL can be explicitly specified for array-type-name or
row-type-name.
2 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).
3 For version 10.1, you can use the XML data type only as a parameter data type in a cursor value
constructor. For version 10.1 Fix Pack 1 or later fix pack releases, you can also use the XML data type
to create global variables.

Description
OR REPLACE

Specifies to replace the definition for the variable if one exists at the current server. The existing
definition is effectively dropped before the new definition is replaced in the catalog, with the
exception that privileges that were granted on the variable are not affected. This option is ignored

1534 IBM Db2 V11.5: SQL Reference

if a definition for the variable does not exist at the current server. This option can be specified only by
the owner of the object.

variable-name
Names the global variable. The name, including an implicit or explicit qualifier, must not identify
a global variable that already exists at the current server (SQLSTATE 42710). If a qualifier is not
specified, the current schema is implicitly assigned. If the global variable name is explicitly qualified
with a schema name, the schema name must not begin with the characters "SYS" (SQLSTATE 42939).

data-type1
Specifies the data type of the global variable. A structured type cannot be specified (SQLSTATE
42611).
built-in-type

Specifies a built-in data type. BOOLEAN and CURSOR cannot be specified for a table. For version
10.1, an XML data type cannot be specified (SQLSTATE 42611). The XML data type support
starts in version 10.1 Fix Pack 1. For a more complete description of each built-in data type, see
"CREATE TABLE".

FOR BIT DATA can be specified as part of character string data types.

BOOLEAN
For a Boolean.

CURSOR
For a reference to an underlying cursor.

anchored-variable-data-type
Identifies another object used to determine the data type of the global variable. The data type of
the anchor object has the same limitations that apply to specifying the data type directly, or in the
case of a row, to creating a row type.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.
variable-name2

Identifies a global variable. The data type of the referenced variable is used as the data
type for the global variable.

table-name.column-name
Identifies a column name of an existing table or view. The data type of the column is used
as the data type for the global variable.

ROW OF table-name or view-name
Specifies that the global variable is a row of fields with names and data types that are
based on the column names and column data types of the table identified by table-name
or the view identified by view-name. The data type of the global variable is an unnamed
row type.

ROW OF cursor-variable-name
Specifies a row of fields with names and data types that are based on the field names and
field data types of the cursor variable identified by cursor-variable-name. The specified
cursor variable must be one of the following elements (SQLSTATE 428HS):

• A global variable with a strongly typed cursor data type
• A global variable with a weakly typed cursor data type that was created or declared

with a CONSTANT clause specifying a select-statement where all the result columns are
named.

If the cursor type of the cursor variable is not strongly-typed using a named row type, the
data type of the global variable is an unnamed row type.

array-type-name
Specifies the name of a user-defined array type. If array-type-name is specified without a schema
name, the array type is resolved by searching the schemas in the SQL path.

Chapter 1. Structured Query Language (SQL) 1535

cursor-type-name
Specifies the name of a cursor type. If cursor-type-name is specified without a schema name, the
cursor type is resolved by searching the schemas in the SQL path.

distinct-type-name
Specifies the name of a distinct type. The length, precision, and scale of the declared variable
are, respectively, the length, precision, and scale of the source type of the distinct type. If distinct-
type-name is specified without a schema name, the distinct type is resolved by searching the
schemas in the SQL path.

REF (type-name)
Specifies a reference type. If a type name is specified without a schema name, the type-name is
resolved by searching the schemas in the SQL path.

row-type-name
Specifies the name of a user-defined row type. The fields of the variable are the fields of the row
type. If row-type-name is specified without a schema name, the row type is resolved by searching
the schemas in the SQL path.

DEFAULT or CONSTANT
Specifies a value for the global variable when it is first referenced. The DEFAULT or CONSTANT clause
value is determined on this first reference. If neither is specified, the default for the global variable is
the null value. Only DEFAULT NULL can be explicitly specified if array-type-name or row-type-name is
specified.
DEFAULT

Defines the default for the global variable. The default value must be assignment-compatible with
the data type of the variable.

CONSTANT
Specifies that the global variable has a fixed value that cannot be changed. A global variable that
is defined using CONSTANT cannot be used as the target of any assignment operation. The fixed
value must be assignment-compatible with the data type of the variable.

NULL
Specifies NULL as the default for the global variable. If row-type-name is specified, the value for
the global variable is a row where each field has the null value.

constant
Specifies the value of a constant as the default for the global variable. If data-type1 specifies a
CURSOR built-in type or cursor-type-name, constant cannot be specified (SQLSTATE 42601).

special-register
Specifies the value of a special register as the default for the global variable. If data-type1
specifies a CURSOR built-in type or cursor-type-name, special-register cannot be specified
(SQLSTATE 42601).

global-variable
Specifies the value of a global variable as the default for the global variable. If data-type1
specifies a CURSOR built-in type or cursor-type-name, global-variable cannot be specified
(SQLSTATE 42601).

cursor-value-constructor
A cursor-value-constructor specifies the select-statement that is associated with the global
variable. The assignment of a cursor-value-constructor to a cursor variable defines the underlying
cursor of that cursor variable.
ASENSITIVE or INSENSITIVE

Specifies whether the cursor is asensitive or insensitive to changes. See "DECLARE CURSOR"
for more information. The default is ASENSITIVE.
ASENSITIVE

Specifies that the cursor should be as sensitive as possible to insert, update, or delete
operations made to the rows underlying the result table, depending on how the select-
statement is optimized. This option is the default.

1536 IBM Db2 V11.5: SQL Reference

INSENSITIVE
Specifies that the cursor does not have sensitivity to insert, update, or delete operations
that are made to the rows underlying the result table. If INSENSITIVE is specified, the
cursor is read-only and the result table is materialized when the cursor is opened. As a
result, the size of the result table, the order of the rows, and the values for each row do not
change after the cursor is opened. The SELECT statement cannot contain a FOR UPDATE
clause, and the cursor cannot be used for positioned updates or deletes.

(parameter-declaration, ...)
Specifies the input parameters of the cursor, including the name and the data type of each
parameter.
parameter-name

Names the parameter for use as an SQL variable within select-statement. The name cannot
be the same as any other parameter name for the cursor. Names should also be chosen to
avoid any column names that could be used in select-statement, since column names are
resolved before parameter names.

data-type2
Specifies the data type of the cursor parameter used within select-statement.
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data
type, see "CREATE TABLE". The BOOLEAN and CURSOR built-in types cannot be
specified (SQLSTATE 429BB).

anchored-parameter-data-type
Identifies another object used to determine the data type of the cursor parameter.
The data type of the anchor object is bound by the same limitations that apply when
specifying the data type directly.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.
variable-name

Identifies a global variable. The data type of the referenced variable is used as
the data type for the cursor parameter.

table-name.column-name
Identifies a column name of an existing table or view. The data type of the
column is used as the data type for the cursor parameter.

distinct-type-name
Specifies the name of a distinct type. If distinct-type-name is specified without a
schema name, the distinct type is resolved by searching the schemas in the SQL path.

holdability
Specifies whether the cursor is prevented from being closed as a consequence of a commit
operation. See "DECLARE CURSOR" for more information. The default is WITHOUT HOLD.
WITHOUT HOLD

Does not prevent the cursor from being closed as a consequence of a commit operation.
WITH HOLD

Maintains resources across multiple units of work. Prevents the cursor from being closed
as a consequence of a commit operation.

select-statement
Specifies the SELECT statement of the cursor. See "select-statement" for more information.

statement-name
Specifies the prepared select-statement of the cursor. See "PREPARE" for an explanation of
prepared statements. The target cursor variable must not have a data type that is a strongly-
typed user-defined cursor type (SQLSTATE 428HU).

Chapter 1. Structured Query Language (SQL) 1537

expression
Specifies the value of an expression as the default for the global variable. The expression can
be any expression of the type described in "Expressions". The expression must be assignment-
compatible with the data type of the variable. The maximum size of the expression is 64K.
The default expression must not modify SQL data (SQLSTATE 428FL) or perform external
action (SQLSTATE 42845). If data-type1 specifies a CURSOR built-in type or cursor-type-name,
expression cannot be specified (SQLSTATE 42601).

Rules
• Use of anchored data types: An anchored data type cannot refer to the following objects (SQLSTATE

428HS): a nickname, typed table, typed view, statistical view that is associated with an expression-
based index, declared temporary table, row definition that is associated with a weakly typed cursor,
object with a code page or collation that is different from the database code page or database collation.

Notes
• Session global variables have a session scope. This means that, although they are available to all

sessions that are active on the database, their value is private for each session.
• Contexts for array, Boolean, cursor, and row global variables: Global variables that are array variables,

Boolean variables, or row variables can only be used in compound SQL (compiled) statements or SET
variable statements. Global variables that are cursor variables can only be used in compound SQL
(compiled) statements.

• Create with errors: If an object referenced in the default expression does not exist or is marked invalid,
or the definer temporarily doesn't have privileges to access the object, and if the database configuration
parameter auto_reval is not set to DISABLED, then the variable will still be created successfully. The
variable will be marked invalid and will be revalidated the next time it is invoked.

• Scope of global variable values: The values for session global variables persist until they are updated
in the current session, the global variable is dropped or altered, or the application session ends. The
value is unaffected by COMMIT or ROLLBACK statements. The default value for a global variable can
be not deterministic and dependent on when the default value is calculated for the global variable (for
example, a reference to the time of day, or a reference to some data stored in a table).

A technique commonly used, especially for performance, is for an application or product to manage
a set of connections and route transactions to an arbitrary connection. In these situations, the non-
default value of a global variable or the not deterministic initial default value for a global variable should
only be relied on until the end of the transaction. Examples of where this type of situation can occur
include applications that: use XA protocols, use connection pooling, use the connection concentrator,
and use HADR to achieve failover.

• Privileges to use a global variable: An attempt to read from or to write to a global variable created by
this statement requires that the authorization ID attempting this action hold the appropriate privilege on
the global variable. The definer of the variable is implicitly granted all privileges on the variable.

• Setting of the default value: A created global variable is instantiated to its default value when it is
first referenced within its given scope. Note that if a global variable is referenced in a statement, it is
instantiated independently of the control flow for that statement.

• Using a newly created session global variable: If a global variable is created within a session, it cannot
be used by other sessions until the unit of work has committed. However, the new global variable can be
used within the session that created the variable before the unit of work commits.

Examples
• Example 1: Create a session global variable to indicate what printer to use for the session.

 CREATE VARIABLE MYSCHEMA.MYJOB_PRINTER VARCHAR(30)
 DEFAULT 'Default printer'

1538 IBM Db2 V11.5: SQL Reference

• Example 2: Create a session global variable to indicate the department where an employee works.

 CREATE VARIABLE SCHEMA1.GV_DEPTNO INTEGER
 DEFAULT ((SELECT DEPTNO FROM HR.EMPLOYEES
 WHERE EMPUSER = SESSION_USER))

• Example 3: Create a session global variable to indicate the security level of the current user.

 CREATE VARIABLE SCHEMA2.GV_SECURITY_LEVEL INTEGER
 DEFAULT (GET_SECURITY_LEVEL (SESSION_USER))

• Example 4: Create a session global variable as a cursor on the STAFF table that returns the names of
each employee for the specified job type. Order the results by the department number.

 CREATE VARIABLE STAFFJOBS CURSOR
 CONSTANT (CURSOR (WHICHJOB CHAR(5))
 FOR SELECT NAME, DEPT FROM STAFF WHERE JOB = WHICHJOB
 ORDER BY DEPT)

• Example 5: Create a global variable of the XML data type:

 CREATE VARIABLE MYSCHEMA.CUSTOMER_HISTORY_VAR XML

CREATE VIEW
The CREATE VIEW statement defines a view on one or more tables, views or nicknames.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema name of the view does
not exist

• CREATEIN privilege on the schema, if the schema name of the view refers to an existing schema
• SCHEMAADM authority on the schema, if the schema name of the view refers to an existing schema
• DBADM authority

and at least one of the following authorities for each table, view, or nickname identified in any fullselect:

• CONTROL privilege on that table, view, or nickname
• SELECT privilege on that table, view, or nickname
• SELECTIN privilege on the schema containing the table, view, or nickname
• DATAACCESS authority on the schema containing the table, view, or nickname
• DATAACCESS authority

If creating a subview:

• The authorization ID of the statement must be the same as the definer of the root table of the table
hierarchy, or

• The privileges held by the authorization ID must include SCHEMAADM authority on the schema
containing the root table of the table hierarchy

• The privileges held by the authorization ID must include DBADM authority

and

Chapter 1. Structured Query Language (SQL) 1539

• The authorization ID of the statement must have SELECT WITH GRANT privilege on the underlying table
of the subview, or the superview must not have SELECT privilege granted to any user other than the
view definer, or

• ACCESSCTRL authority on the database or ACCESSCTRL authority on the schema containing the
underlying table of the subview, and one of the following authorities:

– SELECT privilege on the underlying table of the subview
– SELECTIN privilege on the schema containing the underlying table of the subview
– DATAACCESS authority on the schema containing the underlying table of the subview
– DATAACCESS authority

If WITH ROW MOVEMENT is specified, the privileges held by the authorization ID of the statement must
include at least one of the following authorities:

• UPDATE privilege on that table or view
• UPDATEIN privilege on the schema containing that table or view
• DATAACCESS authority on the schema containing that table or view
• DATAACCESS authority

Group privileges are not considered for any table or view specified in the CREATE VIEW statement.

Privileges are not considered when defining a view on a federated database nickname. Authorization
requirements of the data source for the table or view referenced by the nickname are applied when
the query is processed. The authorization ID of the statement can be mapped to a different remote
authorization ID.

To replace an existing view, the authorization ID of the statement must be the owner of the existing view
(SQLSTATE 42501).

Syntax
CREATE

OR REPLACE

VIEW view-name

(

,

column-name)

OF type-name root-view-definition

subview-definition

AS

WITH

,

common-table-expression

fullselect ●

WITH
CASCADED

LOCAL

CHECK OPTION

●

WITH NO ROW MOVEMENT

WITH ROW MOVEMENT

●

root-view-definition

1540 IBM Db2 V11.5: SQL Reference

MODE DB2SQL (oid-column

, with-options

)

subview-definition
MODE DB2SQL under-clause

(with-options) EXTEND

oid-column
REF IS oid-column-name USER GENERATED

UNCHECKED

with-options
,

column-name WITH OPTIONS

,

SCOPE typed-table-name

typed-view-name

READ ONLY

under-clause
UNDER superview-name INHERIT SELECT PRIVILEGES

Description
OR REPLACE

Specifies to replace the definition for the view if one exists at the current server. The existing definition
is effectively dropped before the new definition is replaced in the catalog, with the exception that
privileges that were granted on the view are not affected. This option is ignored if a definition for the
view does not exist at the current server. This option can be specified only by the owner of the object.

view-name
Names the view. The name, including the implicit or explicit qualifier, must not identify a table, view,
nickname or alias described in the catalog. The qualifier must not be SYSIBM, SYSCAT, SYSFUN, or
SYSSTAT (SQLSTATE 42939).

The name can be the same as the name of an inoperative view (see Inoperative views). In this case
the new view specified in the CREATE VIEW statement will replace the inoperative view. The user will
get a warning (SQLSTATE 01595) when an inoperative view is replaced. No warning is returned if the
application was bound with the bind option SQLWARN set to NO.

column-name
Names the columns in the view. If a list of column names is specified, it must consist of as many
names as there are columns in the result table of the fullselect. Each column-name must be unique
and unqualified. If a list of column names is not specified, the columns of the view inherit the names
of the columns of the result table of the fullselect.

A list of column names must be specified if the result table of the fullselect has duplicate column
names or an unnamed column (SQLSTATE 42908). An unnamed column is a column derived from a
constant, function, expression, or set operation that is not named using the AS clause of the select
list.

OF type-name
Specifies that the columns of the view are based on the attributes of the structured type identified by
type-name. If type-name is specified without a schema name, the type name is resolved by searching
the schemas on the SQL path (defined by the FUNCPATH preprocessing option for static SQL and
by the CURRENT PATH register for dynamic SQL). The type name must be the name of an existing

Chapter 1. Structured Query Language (SQL) 1541

user-defined type (SQLSTATE 42704) and it must be a structured type that is instantiable (SQLSTATE
428DP).

MODE DB2SQL
This clause is used to specify the mode of the typed view. This is the only valid mode currently
supported.

UNDER superview-name
Indicates that the view is a subview of superview-name. The superview must be an existing view
(SQLSTATE 42704) and the view must be defined using a structured type that is the immediate
supertype of type-name (SQLSTATE 428DB). The schema name of view-name and superview-name
must be the same (SQLSTATE 428DQ). The view identified by superview-name must not have any
existing subview already defined using type-name (SQLSTATE 42742).

The columns of the view include the object identifier column of the superview with its type modified
to be REF(type-name), followed by columns based on the attributes of type-name (remember that the
type includes the attributes of its supertype).

INHERIT SELECT PRIVILEGES
Any user or group holding a SELECT privilege on the superview will be granted an equivalent privilege
on the newly created subview. The subview definer is considered to be the grantor of this privilege.

OID-column
Defines the object identifier column for the typed view.
REF IS OID-column-name USER GENERATED

Specifies that an object identifier (OID) column is defined in the view as the first column. An OID
is required for the root view of a view hierarchy (SQLSTATE 428DX). The view must be a typed
view (the OF clause must be present) that is not a subview (SQLSTATE 42613). The name for the
column is defined as OID-column-name and cannot be the same as the name of any attribute of
the structured type type-name (SQLSTATE 42711). The first column specified in fullselect must
be of type REF(type-name) (you may need to cast it so that it has the appropriate type). If
UNCHECKED is not specified, it must be based on a not nullable column on which uniqueness
is enforced through an index (primary key, unique constraint, unique index, or OID-column). This
column will be referred to as the object identifier column or OID column. The keywords USER
GENERATED indicate that the initial value for the OID column must be provided by the user when
inserting a row. Once a row is inserted, the OID column cannot be updated (SQLSTATE 42808).

UNCHECKED
Defines the object identifier column of the typed view definition to assume uniqueness even
though the system can not prove this uniqueness. This is intended for use with tables or views that
are being defined into a typed view hierarchy where the user knows that the data conforms to this
uniqueness rule but it does not comply with the rules that allow the system to prove uniqueness.
UNCHECKED option is mandatory for view hierarchies that range over multiple hierarchies or
legacy tables or views By specifying UNCHECKED, the user takes responsibility for ensuring that
each row of the view has a unique OID. If the user fails to ensure this property, and a view
contains duplicate OID values, then a path-expression or DEREF operator involving one of the
non-unique OID values may result in an error (SQLSTATE 21000).

with-options
Defines additional options that apply to columns of a typed view.
column-name WITH OPTIONS

Specifies the name of the column for which additional options are specified. The column-name
must correspond to the name of an attribute defined in (not inherited by) the type-name of the
view. The column must be a reference type (SQLSTATE 42842). It cannot correspond to a column
that also exists in the superview (SQLSTATE 428DJ). A column name can only appear in one WITH
OPTIONS SCOPE clause in the statement (SQLSTATE 42613).

SCOPE
Identifies the scope of the reference type column. A scope must be specified for any column that
is intended to be used as the left operand of a dereference operator or as the argument of the
DEREF function.

1542 IBM Db2 V11.5: SQL Reference

Specifying the scope for a reference type column may be deferred to a subsequent ALTER VIEW
statement (if the scope is not inherited) to allow the target table or view to be defined, usually
in the case of mutually referencing views and tables. If no scope is specified for a reference type
column of the view and the underlying table or view column was scoped, then the underlying
column's scope is inherited by the reference type column. The column remains unscoped if the
underlying table or view column did not have a scope. See “Notes” on page 1546 for more
information about scope and reference type columns.

typed-table-name
The name of a typed table. The table must already exist or be the same as the name of
the table being created (SQLSTATE 42704). The data type of column-name must be REF(S),
where S is the type of typed-table-name (SQLSTATE 428DM). No checking is done of any
existing values in column-name to ensure that the values actually reference existing rows in
typed-table-name.

typed-view-name
The name of a typed view. The view must already exist or be the same as the name of the view
being created (SQLSTATE 42704). The data type of column-name must be REF(S), where S is
the type of typed-view-name (SQLSTATE 428DM). No checking is done of any existing values in
column-name to ensure that the values actually reference existing rows in typed-view-name.

READ ONLY
Identifies the column as a read-only column. This option is used to force a column to be read-only
so that subview definitions can specify an expression for the same column that is implicitly
read-only.

AS
Identifies the view definition.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows. A common table
expression cannot be specified when defining a typed view.

fullselect
Defines the view. At any time, the view consists of the rows that would result if the SELECT statement
were executed. The data type of the columns of the view cannot be a distinct type with data type
constraints, array type, cursor type, or row type. The fullselect must not reference host variables,
parameter markers, or declared temporary tables. However, a parameterized view can be created as
an SQL table function.

The fullselect cannot include an SQL data change statement in the FROM clause (SQLSTATE 428FL).

If a view is created by using a 'SELECT *' statement, the view is not updated when a new column is
added to the base table.

For Typed Views and Subviews: The fullselect must conform to the following rules otherwise an error
is returned (SQLSTATE 428EA unless otherwise specified).

• The fullselect must not include references to the DBPARTITIONNUM or HASHEDVALUE functions,
non-deterministic functions, or functions defined to have external action.

• The body of the view must consist of a single subselect, or a UNION ALL of two or more subselects.
Let each of the subselects participating directly in the view body be called a branch of the view. A
view may have one or more branches.

• The FROM-clause of each branch must consist of a single table or view (not necessarily typed),
called the underlying table or view of that branch.

• The underlying table or view of each branch must be in a separate hierarchy (that is, a view cannot
have multiple branches with their underlying tables or views in the same hierarchy).

• None of the branches of a typed view definition may specify GROUP BY or HAVING.
• If the view body contains UNION ALL, the root view in the hierarchy must specify the UNCHECKED

option for its OID column.

Chapter 1. Structured Query Language (SQL) 1543

For a hierarchy of views and subviews: Let BR1 and BR2 be any branches that appear in the definitions
of views in the hierarchy. Let T1 be the underlying table or view of BR1, and let T2 be the underlying
table or view of BR2. Then:

• If T1 and T2 are not in the same hierarchy, then the root view in the view hierarchy must specify the
UNCHECKED option for its OID column.

• If T1 and T2 are in the same hierarchy, then BR1 and BR2 must contain predicates or ONLY-clauses
that are sufficient to guarantee that their row-sets are disjoint.

For typed subviews defined using EXTEND AS: For every branch in the body of the subview:

• The underlying table of each branch must be a (not necessarily proper) subtable of some underlying
table of the immediate superview.

• The expressions in the SELECT list must be assignable to the non-inherited columns of the subview
(SQLSTATE 42854).

For typed subviews defined using AS without EXTEND:

• For every branch in the body of the subview, the expressions in the SELECT-list must be assignable
to the declared types of the inherited and non-inherited columns of the subview (SQLSTATE 42854).

• The OID-expression of each branch over a given hierarchy in the subview must be equivalent
(except for casting) to the OID-expression in the branch over the same hierarchy in the root view.

• The expression for a column not defined (implicitly or explicitly) as READ ONLY in a superview must
be equivalent in all branches over the same underlying hierarchy in its subviews.

WITH CHECK OPTION
Specifies the constraint that every row that is inserted or updated through the view must conform to
the definition of the view. A row that does not conform to the definition of the view is a row that does
not satisfy the search conditions of the view.

WITH CHECK OPTION must not be specified if any of the following conditions is true:

• The view is read-only (SQLSTATE 42813). If WITH CHECK OPTION is specified for an updatable view
that does not allow inserts, the constraint applies to updates only.

• The view references the DBPARTITIONNUM or HASHEDVALUE function, a non-deterministic
function, or a function with external action (SQLSTATE 42997).

• A nickname is the update target of the view.
• A view that has an INSTEAD OF trigger defined on it is the update target of the view (SQLSTATE

428FQ).

If WITH CHECK OPTION is omitted, the definition of the view is not used in the checking of any
insert or update operations that use the view. Some checking might still occur during insert or update
operations if the view is directly or indirectly dependent on another view that includes WITH CHECK
OPTION. Because the definition of the view is not used, rows might be inserted or updated through
the view that do not conform to the definition of the view.
CASCADED

The WITH CASCADED CHECK OPTION constraint on a view V means that V inherits the search
conditions as constraints from any updatable view on which V is dependent. Furthermore, every
updatable view that is dependent on V is also subject to these constraints. Thus, the search
conditions of V and each view on which V is dependent are ANDed together to form a constraint
that is applied for an insert or update of V or of any view dependent on V.

LOCAL
The WITH LOCAL CHECK OPTION constraint on a view V means the search condition of V is
applied as a constraint for an insert or update of V or of any view that is dependent on V.

The difference between CASCADED and LOCAL is shown in the following example. Consider the
following updatable views (substituting for Y from column headings of the table that follows):

 V1 defined on table T
 V2 defined on V1 WITH Y CHECK OPTION

1544 IBM Db2 V11.5: SQL Reference

 V3 defined on V2
 V4 defined on V3 WITH Y CHECK OPTION
 V5 defined on V4

The following table shows the search conditions against which inserted or updated rows are checked:

Y is LOCAL Y is CASCADED

V1 checked against: no view no view

V2 checked against: V2 V2, V1

V3 checked against: V2 V2, V1

V4 checked against: V2, V4 V4, V3, V2, V1

V5 checked against: V2, V4 V4, V3, V2, V1

Consider the following updatable view which shows the impact of the WITH CHECK OPTION using the
default CASCADED option:

 CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

 CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CHECK OPTION

 CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

The following INSERT statement using V1 will succeed because V1 does not have a WITH CHECK
OPTION and V1 is not dependent on any other view that has a WITH CHECK OPTION.

 INSERT INTO V1 VALUES(5)

The following INSERT statement using V2 will result in an error because V2 has a WITH CHECK
OPTION and the insert would produce a row that did not conform to the definition of V2.

 INSERT INTO V2 VALUES(5)

The following INSERT statement using V3 will result in an error even though it does not have WITH
CHECK OPTION because V3 is dependent on V2 which does have a WITH CHECK OPTION (SQLSTATE
44000).

 INSERT INTO V3 VALUES(5)

The following INSERT statement using V3 will succeed even though it does not conform to the
definition of V3 (V3 does not have a WITH CHECK OPTION); it does conform to the definition of V2
which does have a WITH CHECK OPTION.

 INSERT INTO V3 VALUES(200)

WITH NO ROW MOVEMENT or WITH ROW MOVEMENT
Specifies the action to take for an updatable UNION ALL view when a row is updated in a way that
violates a check constraint on the underlying table. The default is WITH NO ROW MOVEMENT.
WITH NO ROW MOVEMENT

Specifies that an error (SQLSTATE 23513) is to be returned if a row is updated in a way that
violates a check constraint on the underlying table.

WITH ROW MOVEMENT
Specifies that an updated row is to be moved to the appropriate underlying table, even if it violates
a check constraint on that table.

Row movement involves deletion of the rows that violate the check constraint, and insertion of
those rows back into the view. The WITH ROW MOVEMENT clause can only be specified for UNION
ALL views whose columns are all updatable (SQLSTATE 429BJ). If a row is inserted (perhaps
after trigger activation) into the same underlying table from which it was deleted, an error is
returned (SQLSTATE 23524). A view defined using the WITH ROW MOVEMENT clause must not

Chapter 1. Structured Query Language (SQL) 1545

contain nested UNION ALL operations, except in the outermost fullselect (SQLSTATE 429BJ).
A view defined using the WITH ROW MOVEMENT clause, cannot contain any references to a
system-period temporal table, application-period temporal table, or bitemporal table.

Notes
• Creating a view with a schema name that does not already exist will result in the implicit creation of that

schema provided the authorization ID of the statement has IMPLICIT_SCHEMA authority. The schema
owner is SYSIBM. The CREATEIN privilege on the schema is granted to PUBLIC.

• View columns inherit the NOT NULL WITH DEFAULT attribute from the base table or view except when
columns are derived from an expression. When a row is inserted or updated into an updatable view, it is
checked against the constraints (primary key, referential integrity, and check) if any are defined on the
base table.

• A new view cannot be created if it uses an inoperative view in its definition. (SQLSTATE 51024).
• If an object referenced in the view body does not exist or is marked invalid, or the definer temporarily

doesn't have privileges to access the object, and if the database configuration parameter auto_reval
is set to DEFERRED_FORCE, then the view will still be created successfully. The view will be marked
invalid and will be revalidated the next time it is referenced.

• This statement does not support declared temporary tables (SQLSTATE 42995).
• Views based on column-organized tables:

– Creating a typed view on column-organized tables is not supported.
– The WITH CHECK OPTION clause cannot be specified if a column-organized table is part of the view

definition.
• Deletable views: A view is deletable if an INSTEAD OF trigger for the delete operation has been defined

for the view, or if all of the following conditions are true:

– Each FROM clause of the outer fullselect identifies only one base table (with no OUTER clause),
deletable view (with no OUTER clause), deletable nested table expression, or deletable common
table expression (cannot identify a nickname). Also, any period-specification specified for the base
table or deletable view does not reference the SYSTEM_TIME period.

– The outer fullselect does not include a VALUES clause
– The outer fullselect does not include a GROUP BY clause or HAVING clause
– The outer fullselect does not include aggregate functions in the select list
– The outer fullselect does not include SET operations (UNION, EXCEPT or INTERSECT) with the

exception of UNION ALL
– The base tables in the operands of a UNION ALL must not be the same table and each operand must

be deletable
– The select list of the outer fullselect does not include DISTINCT

• Updatable views: A column of a view is updatable if an INSTEAD OF trigger for the update operation has
been defined for the view, or if all of the following conditions are true:

– The view is deletable (independent of an INSTEAD OF trigger for delete), the column resolves to
a column of a base table (not using a dereference operation), and the READ ONLY option is not
specified

– All the corresponding columns of the operands of a UNION ALL have exactly matching data types
(including length or precision and scale) and matching default values if the fullselect of the view
includes a UNION ALL

A view is updatable if any column of the view is updatable.
• Insertable views: A view is insertable if an INSTEAD OF trigger for the insert operation has been defined

for the view, or at least one column of the view is updatable (independent of an INSTEAD OF trigger for
update), and the fullselect of the view does not include UNION ALL.

1546 IBM Db2 V11.5: SQL Reference

A given row can be inserted into a view (including a UNION ALL) if, and only if, it fulfills the check
constraints of exactly one of the underlying base tables.

To insert into a view that includes non-updatable columns, those columns must be omitted from the
column list.

• Read-only views: A view is read-only if it is not deletable, updatable, or insertable.

The READONLY column in the SYSCAT.VIEWS catalog view indicates if a view is read-only without
considering period specifications or INSTEAD OF triggers.

• Common table expressions and nested table expressions follow the same set of rules for determining
whether they are deletable, updatable, insertable, or read-only.

• Special registers for temporal support: The values of the CURRENT TEMPORAL SYSTEM_TIME and
CURRENT TEMPORAL BUSINESS_TIME special registers have no impact on the query expression that
defines a view while it is being defined. When a view is used in an SQL statement, the values of the
CURRENT TEMPORAL SYSTEM_TIME and CURRENT TEMPORAL BUSINESS_TIME special registers for
the session processing the SQL statement are applied to the view.

• Inoperative views: An inoperative view is a view that is no longer available for SQL statements. A view
becomes inoperative if:

– A privilege, upon which the view definition is dependent, is revoked.
– An object such as a table, nickname, alias or function, upon which the view definition is dependent, is

dropped.
– A view, upon which the view definition is dependent, becomes inoperative.
– A view that is the superview of the view definition (the subview) becomes inoperative.

In practical terms, an inoperative view is one in which the view definition has been unintentionally
dropped. For example, when an alias is dropped, any view defined using that alias is made inoperative.
All dependent views also become inoperative and packages dependent on the view are no longer valid.

Until the inoperative view is explicitly re-created or dropped, a statement using that inoperative view
cannot be compiled (SQLSTATE 51024) with the exception of the CREATE ALIAS, CREATE VIEW, DROP
VIEW, and COMMENT ON TABLE statements. Until the inoperative view has been explicitly dropped, its
qualified name cannot be used to create another table or alias (SQLSTATE 42710).

An inoperative view may be re-created by issuing a CREATE VIEW statement using the definition text
of the inoperative view. This view definition text is stored in the TEXT column of the SYSCAT.VIEWS
catalog. When recreating an inoperative view, it is necessary to explicitly grant any privileges required
on that view by others, due to the fact that all authorization records on a view are deleted if the view
is marked inoperative. Note that there is no need to explicitly drop the inoperative view in order to
re-create it. Issuing a CREATE VIEW statement with the same view-name as an inoperative view will
cause that inoperative view to be replaced, and the CREATE VIEW statement will return a warning
(SQLSTATE 01595).

Inoperative views are indicated by an X in the VALID column of the SYSCAT.VIEWS catalog view and an X
in the STATUS column of the SYSCAT.TABLES catalog view.

• Privileges: The definer of a view always receives the SELECT privilege on the view as well as the right
to drop the view. The definer of a view will get CONTROL privilege on the view only if the definer has
CONTROL privilege on every base table, view, or nickname identified in the fullselect, or if the definer
has each of the following authorities:

– ACCESSCTRL or SECADM on the database or ACCESSCTRL on the schema containing every base
table, view, or nickname identified in the fullselect

– DATAACCESS on the database or DATAACCESS on the schema containing every base table, view, or
nickname identified in the fullselect

– DBADM or SCHEMAADM on the schema containing every base table, view, or nickname identified in
the fullselect

Chapter 1. Structured Query Language (SQL) 1547

The definer of the view is granted INSERT, UPDATE, column level UPDATE or DELETE privileges on the
view if the view is not read-only and the definer has the corresponding privileges on the underlying
objects.

For a view defined WITH ROW MOVEMENT, the definer acquires the UPDATE privilege on the view only
if the definer has the UPDATE privilege on all columns of the view, as well as INSERT and DELETE
privileges on all underlying tables or views.

The definer of a view only acquires privileges if the privileges from which they are derived exist at the
time the view is created. The definer must have these privileges either directly or because PUBLIC has
these privilege. Privileges are not considered when defining a view on a federated server nickname.
However, when using a view on a nickname, the user's authorization ID must have valid select privileges
on the table or view that the nickname references at the data source. Otherwise, an error is returned.
Privileges held by groups of which the view definer is a member, are not considered.

When a subview is created, the SELECT privileges held on the immediate superview are automatically
granted on the subview.

• Scope and REF columns: When selecting a reference type column in the fullselect of a view definition,
consider the target type and scope that is required.

– If the required target type and scope is the same as the underlying table or view, the column can
simply be selected.

– If the scope needs to be changed, use the WITH OPTIONS SCOPE clause to define the required scope
table or view.

– If the target type of the reference needs to be changed, the column must be cast first to the
representation type of the reference and then to the new reference type. The scope in this case
can be specified in the cast to the reference type or using the WITH OPTIONS SCOPE clause. For
example, assume you select column Y defined as REF(TYP1) SCOPE TAB1. You want this to be
defined as REF(VTYP1) SCOPE VIEW1. The select list item would be as follows:

 CAST(CAST(Y AS VARCHAR(16) FOR BIT DATA) AS REF(VTYP1) SCOPE VIEW1)

• Identity columns: A column of a view is considered an identity column, if the element of the
corresponding column in the fullselect of the view definition is the name of an identity column of a
table, or the name of a column of a view which directly or indirectly maps to the name of an identity
column of a base table.

In all other cases, the columns of a view will not get the identity property. For example:

– the select-list of the view definition includes multiple instances of the name of an identity column
(that is, selecting the same column more than once)

– the view definition involves a join
– a column in the view definition includes an expression that refers to an identity column
– the view definition includes a UNION

When inserting into a view for which the select list of the view definition directly or indirectly includes
the name of an identity column of a base table, the same rules apply as if the INSERT statement directly
referenced the identity column of the base table.

• Federated views: A federated view is a view that includes a reference to a nickname somewhere in the
fullselect. The presence of such a nickname changes the authorization model used for the view when
the view is subsequently referenced in a query.

When the view is created, no privilege checking is done to determine whether the view definer has
access to the underlying data source table or view of a nickname. Privilege checking of references to
tables or views at the federated database are handled as usual, requiring the view definer to have at
least SELECT privilege on such objects.

When a federated view is subsequently referenced in a query, the nicknames result in queries against
the data source, and the authorization ID that issued the query (or the remote authorization ID to which
it maps) must have the necessary privileges to access the data source table or view. The authorization

1548 IBM Db2 V11.5: SQL Reference

ID that issues the query referencing the federated view is not required to have any additional privileges
on tables or views (non-federated) that exist at the federated server.

• ROW MOVEMENT, triggers and constraints: When a view that is defined using the WITH ROW
MOVEMENT clause is updated, the sequence of trigger and constraints operations is as follows:

1. BEFORE UPDATE triggers are activated for all rows being updated, including rows that will
eventually be moved.

2. The update operation is processed.
3. Constraints are processed for all updated rows.
4. AFTER UPDATE triggers (both row-level and statement-level) are activated in creation order, for all

rows that satisfy the constraints after the update operation. Because this is an UPDATE statement,
all UPDATE statement-level triggers are activated for all underlying tables.

5. BEFORE DELETE triggers are activated for all rows that did not satisfy the constraints after the
update operation (these are the rows that are to be moved).

6. The delete operation is processed.
7. Constraints are processed for all deleted rows.
8. AFTER DELETE triggers (both row-level and statement-level) are activated in creation order, for all

deleted rows. Statement-level triggers are activated for only those tables that are involved in the
delete operation.

9. BEFORE INSERT triggers are activated for all rows being inserted (that is, the rows being moved).
The new transition tables for the BEFORE INSERT triggers contain the input data provided by the
user. Such triggers cannot contain an UPDATE, a DELETE, or an INSERT operation, or invoke any
routine containing such operations (SQLSTATE 42987).

10. The insert operation is processed.
11. Constraints are processed for all inserted rows.
12. AFTER INSERT triggers (both row-level and statement-level) are activated in creation order, for all

inserted rows. Statement-level triggers are activated for only those tables that are involved in the
insert operation.

• Nested UNION ALL views: A view defined with UNION ALL and based, either directly or indirectly, on a
view that is also defined with UNION ALL cannot be updated if either view is defined using the WITH
ROW MOVEMENT clause (SQLSTATE 429BK).

• Considerations for implicitly hidden columns: It is possible that the result table of the fullselect will
include a column of the base table that is defined as implicitly hidden. This can occur when the
implicitly hidden column is explicitly referenced in the fullselect of the view definition. However, the
corresponding column of the view does not inherit the implicitly hidden attribute. Columns of a view
cannot be defined as hidden.

• Subselect: The isolation-clause cannot be specified in the fullselect (SQLSTATE 42601).
• Obfuscation: The CREATE VIEW statement can be submitted in obfuscated form. In an obfuscated

statement, only the view name is readable. The rest of the statement is encoded in such a way that is
not readable but can be decoded by the database server. Obfuscated statements can be produced by
calling the DBMS_DDL.WRAP function.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products.

– The FEDERATED keyword can be specified between the keywords CREATE and VIEW. The
FEDERATED keyword is ignored, however, because a warning is no longer returned if federated
objects are used in the view definition.

Chapter 1. Structured Query Language (SQL) 1549

Examples
• Example 1: Create a view named MA_PROJ upon the PROJECT table that contains only those rows with

a project number (PROJNO) starting with the letters 'MA'.

 CREATE VIEW MA_PROJ AS SELECT *
 FROM PROJECT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

• Example 2: Create a view as in example 1, but select only the columns for project number (PROJNO),
project name (PROJNAME) and employee in charge of the project (RESPEMP).

 CREATE VIEW MA_PROJ
 AS SELECTPROJNO, PROJNAME, RESPEMP
 FROM PROJECT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

• Example 3: Create a view as in example 2, but, in the view, call the column for the employee in charge
of the project IN_CHARGE.

 CREATE VIEW MA_PROJ
 (PROJNO, PROJNAME, IN_CHARGE)
 AS SELECTPROJNO, PROJNAME, RESPEMP
 FROM PROJECT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

Note: Even though only one of the column names is being changed, the names of all three columns in
the view must be listed in the parentheses that follow MA_PROJ.

• Example 4: Create a view named PRJ_LEADER that contains the first four columns (PROJNO,
PROJNAME, DEPTNO, RESPEMP) from the PROJECT table together with the last name (LASTNAME)
of the person who is responsible for the project (RESPEMP). Obtain the name from the EMPLOYEE table
by matching EMPNO in EMPLOYEE to RESPEMP in PROJECT.

 CREATE VIEW PRJ_LEADER
 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME
 FROM PROJECT, EMPLOYEE
 WHERE RESPEMP = EMPNO

• Example 5: Create a view as in example 4, but in addition to the columns PROJNO, PROJNAME,
DEPTNO, RESPEMP, and LASTNAME, show the total pay (SALARY + BONUS + COMM) of the employee
who is responsible. Also select only those projects with mean staffing (PRSTAFF) greater than one.

 CREATE VIEW PRJ_LEADER
 (PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY)
 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM
 FROM PROJECT, EMPLOYEE
 WHERE RESPEMP = EMPNO
 AND PRSTAFF > 1

Specifying the column name list could be avoided by naming the expression SALARY+BONUS+COMM as
TOTAL_PAY in the fullselect.

 CREATE VIEW PRJ_LEADER
 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP,
 LASTNAME, SALARY+BONUS+COMM AS TOTAL_PAY
 FROM PROJECT, EMPLOYEE
 WHERE RESPEMP = EMPNO AND PRSTAFF > 1

• Example 6: Given the set of tables and views shown in the following figure:

1550 IBM Db2 V11.5: SQL Reference

Figure 5. Tables and Views for Example 6

User ZORPIE (who does not have ACCESSCTRL, DATAACCESS, or DBADM authority) has the privileges
shown in parentheses for each object:

1. ZORPIE will get CONTROL privilege on the view that she creates with:

 CREATE VIEW VA AS SELECT * FROM S1.V1

because she has CONTROL on S1.V1. (CONTROL on S1.V1 must have been granted to ZORPIE by
someone with ACCESSCTRL or SECADM authority.) It does not matter which, if any, privileges she
has on the underlying base table.

2. ZORPIE will not be allowed to create the view:

 CREATE VIEW VB AS SELECT * FROM S1.V2

because she has neither CONTROL nor SELECT on S1.V2. It does not matter that she has CONTROL
on the underlying base table (S1.T2).

3. ZORPIE will get CONTROL privilege on the view that she creates with:

 CREATE VIEW VC (COLA, COLB, COLC, COLD)
 AS SELECT * FROM S1.V1, S1.T2
 WHERE COLA = COLC

because the fullselect of ZORPIE.VC references view S1.V1 and table S1.T2 and she has CONTROL
on both of these. Note that the view VC is read-only, so ZORPIE does not get INSERT, UPDATE or
DELETE privileges.

4. ZORPIE will get SELECT privilege on the view that she creates with:

 CREATE VIEW VD (COLA,COLB, COLE, COLF)
 AS SELECT * FROM S1.V1, S1.V3
 WHERE COLA = COLE

because the fullselect of ZORPIE.VD references the two views S1.V1 and S1.V3, one on which she
has only SELECT privilege, and one on which she has CONTROL privilege. She is given the lesser of
the two privileges, SELECT, on ZORPIE.VD.

5. ZORPIE will get INSERT, UPDATE and DELETE privilege WITH GRANT OPTION and SELECT privilege
on the view VE in the following view definition.

 CREATE VIEW VE
 AS SELECT * FROM S1.V1
 WHERE COLA > ANY
 (SELECT COLE FROM S1.V3)

ZORPIE's privileges on VE are determined primarily by her privileges on S1.V1. Since S1.V3 is only
referenced in a subquery, she only needs SELECT privilege on S1.V3 to create the view VE. The
definer of a view only gets CONTROL on the view if they have CONTROL on all objects referenced
in the view definition. ZORPIE does not have CONTROL on S1.V3, consequently she does not get
CONTROL on VE.

Chapter 1. Structured Query Language (SQL) 1551

CREATE WORK ACTION SET
The CREATE WORK ACTION SET statement defines a work action set and work actions within the work
action set.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include WLMADM or DBADM authority.

Syntax
CREATE WORK ACTION SET work-action-set-name FOR

DATABASE

SERVICE CLASS service-superclass-name

WORKLOAD workload-name

USING WORK CLASS SET

work-class-set-name

(

,

work-action-definition)

ENABLE

DISABLE

work-action-definition
WORK ACTION work-action-name ON WORK CLASS work-class-name

action-types-clause histogram-template-clause
ENABLE

DISABLE

action-types-clause

MAP ACTIVITY
WITH NESTED

WITHOUT NESTED

TO service-subclass-name

WHEN threshold-types-clause threshold-exceeded-actions

PREVENT EXECUTION

COUNT ACTIVITY

COLLECT ACTIVITY DATA collect-activity-data-clause

COLLECT AGGREGATE ACTIVITY DATA
BASE

EXTENDED

threshold-types-clause

1552 IBM Db2 V11.5: SQL Reference

1

CONCURRENTDBCOORDACTIVITIES > integer

AND QUEUEDACTIVITIES > 0

AND QUEUEDACTIVITIES > integer

AND QUEUEDACTIVITIES UNBOUNDED

SQLTEMPSPACE > integer K

M

G

SQLROWSRETURNED > integer

ESTIMATEDSQLCOST > bigint

CPUTIME > integer-value HOUR

HOURS

MINUTE

MINUTES

CHECKING EVERY 60 SECONDS

CHECKING EVERY integer-value SECOND

SECONDS

SQLROWSREAD > bigint-value
CHECKING EVERY 60 SECONDS

CHECKING EVERY integer-value SECOND

SECONDS

SORTSHRHEAPUTIL
2

> integer-value PERCENT

AND BLOCKING ADMISSION FOR > integer-value DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

ACTIVITYTOTALTIME > integer DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

ACTIVITYTOTALRUNTIME > integer DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECONDS

threshold-exceeded-actions
COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA collect-activity-data-clause

STOP EXECUTION

CONTINUE

collect-activity-data-clause

Chapter 1. Structured Query Language (SQL) 1553

ON COORDINATOR
MEMBER

ON ALL
MEMBERS

WITHOUT DETAILS

WITH

,

DETAILS
3

SECTION

INCLUDE ACTUALS BASE
4

AND VALUES

histogram-template-clause

●
ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

●

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

●

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

●

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

●

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

●

Notes:
1 Only one work action of the same threshold type can be applied to a single work class at a time.
2 This feature is available in Db2 Version 11.5 Mod Pack 2 and later versions.
3 The DETAILS keyword is the minimum to be specified, followed by the option separated by a comma.
4 This clause does not apply to thresholds.

Description
work-action-set-name

Names the work action set. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The work-action-set-name must not identify a work action set that already exists at the
current server (SQLSTATE 42710). The name must not begin with the characters 'SYS' (SQLSTATE
42939).

FOR
Specifies the database manager object to which the actions in this work action set will apply. Each
database manager object can have only one work action set defined for it (SQLSTATE 5U017).

1554 IBM Db2 V11.5: SQL Reference

DATABASE
The actions in this work action set are to apply to the database. If DATABASE is specified, the MAP
ACTIVITY action cannot be specified (SQLSTATE 5U034).

SERVICE CLASS service-superclass-name
The actions in this work action set are to apply to service-superclass-name. If SERVICE CLASS is
specified, threshold actions cannot be specified (SQLSTATE 5U034). The service-superclass-name
must exist at the current server (SQLSTATE 42704). The service-superclass-name must not be a
service subclass and cannot be any of the following classes (SQLSTATE 5U032):

• The system service class (SYSDEFAULTSYSTEMCLASS)
• The maintenance service class (SYSDEFAULTMAINTENANCECLASS)
• The default user service class (SYSDEFAULTUSERCLASS)

WORKLOAD workload-name
The actions in this work action set are to apply to workload workload-name. If WORKLOAD
is specified, the MAP ACTIVITY action cannot be specified (SQLSTATE 5U034). The workload-
name must exist at the current server (SQLSTATE 42704). The workload-name cannot be the
SYSDEFAULTADMWORKLOAD (SQLSTATE 5U032).

USING WORK CLASS SET work-class-set-name
Specifies the work class set containing the work classes that will classify database activities on which
to perform actions. The work-class-set-name must exist at the current server (SQLSTATE 42704).

work-action-definition
Specifies the definition of the work action.
WORK ACTION work-action-name

Names the work action. The work-action-name must not identify a work action that already exists
at the current server under this work action set (SQLSTATE 42710). The work-action-name cannot
begin with 'SYS' (SQLSTATE 42939).

ON WORK CLASS work-class-name
Specifies the work class that identifies the database activities to which this work action will apply.
The work-class-name must exist in the work-class-set-name at the current server (SQLSTATE
42704).

MAP ACTIVITY
Specifies a work action of mapping the activity. This action can only be specified if the object for
which this work action set is defined is a service superclass (SQLSTATE 5U034).
WITH NESTED or WITHOUT NESTED

Specifies whether or not activities that are nested under this activity are mapped to the
service subclass. The default is WITH NESTED.
WITH NESTED

All database activities that have a nesting level of zero that are classified under the work
class, and all database activities nested under this activity, are mapped to the service
subclass; that is, activities with a nesting level greater than zero are run under the same
service class as activities with a nesting level of zero.

WITHOUT NESTED
Only database activities that have a nesting level of zero that are classified under the work
class are mapped to the service subclass. Database activities that are nested under this
activity are handled according to their activity type.

TO service-subclass-name
Specifies the service subclass to which activities are to be mapped. The service-
subclass-name must already exist in the service-superclass-name at the current server
(SQLSTATE 42704). The service-subclass-name cannot be the default service subclass,
SYSDEFAULTSUBCLASS (SQLSTATE 5U018).

WHEN
Specifies the threshold that will be applied to the database activity that is associated with the
work class for which this work action is defined. A threshold can only be specified if the database

Chapter 1. Structured Query Language (SQL) 1555

manager object for which this work action set is defined is a database or a workload (SQLSTATE
5U034). None of these thresholds apply to internal database activities initiated by the database
manager or to database activities generated by administrative SQL routines.
threshold-types-clause

For a description of valid threshold types, see "CREATE THRESHOLD" statement.
threshold-exceeded-actions

For a description of valid threshold-exceeded actions, see "CREATE THRESHOLD" statement.
PREVENT EXECUTION

Specifies that none of the database activities associated with the work class for which this
work action is defined will be allowed to run (SQLSTATE 5U033).

COUNT ACTIVITY
Specifies that all of the database activities associated with the work class for which this work
action is defined are to be run and that each time one is run, the counter for the work class will
be incremented.

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with the work class for which this work
action is defined is to be sent to any active activities event monitor when the activity
completes. The default is COLLECT ACTIVITY DATA WITHOUT DETAILS.
collect-activity-data-clause

ON COORDINATOR MEMBER
Specifies that the activity data is to be collected only at the coordinator member of the
activity.

ON ALL MEMBERS
Specifies that activity data is to be collected at all members where the activity is
processed. On remote members, a record for the activity may be captured multiple
times as the activity comes and goes on those members. If the AND VALUES clause
is specified, activity input values will be collected only for the members of the
coordinator.

WITHOUT DETAILS
Specifies that data about each activity that executes in the service class should be sent
to any active activities event monitor, when the activity completes execution. Details
about statement, compilation environment, and section environment data are not sent.

WITH
DETAILS

Specifies that statement and compilation environment data is to be sent to
any active activities event monitor, for those activities that have them. Section
environment data is not sent.

SECTION
Specifies that statement, compilation environment, section environment data, and
section actuals are to be sent to any active activities event monitor for those
activities that have them. DETAILS must be specified if SECTION is specified.
Section actuals will be collected on any member where the activity data is
collected.
INCLUDE ACTUALS BASE

Specifies that section actuals should also be collected on any partition
where the activity data is collected. For section actuals to be collected,
either INCLUDE ACTUALS clause must be specified or the section_actuals
database configuration parameter must be set.

The effective setting for the collection of section actuals is the combination of
the INCLUDE ACTUALS clause, the section_actuals database configuration
parameter, and the <collectsectionactuals> setting specified on the
WLM_SET_CONN_ENV routine. For example, if INCLUDE ACTUALS BASE is

1556 IBM Db2 V11.5: SQL Reference

specified, yet the section_actuals database configuration parameter value
is NONE and <collectsectionactuals> is set to NONE, then the effective setting
for the collection of section actuals is BASE.

BASE specifies that the following should be enabled and collected during the
activity's execution:

• Basic operator cardinality counts
• Statistics for each object referenced (DML statements only)

AND VALUES
Specifies that input data values are to be sent to any active activities event
monitor, for those activities that have them. This data does not include SQL
statements that are compiled by using the REOPT ALWAYS bind option.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data is to be captured for activities that are associated with
the work class for which this work action is defined and sent to the statistics event monitor, if
one is active. This information is collected periodically on an interval that is specified by the
wlm_collect_int database configuration parameter. The default is COLLECT AGGREGATE
ACTIVITY DATA BASE. This clause cannot be specified for a work action defined in a work
action set that is applied to a database.
BASE

Specifies that basic aggregate activity data should be captured for activities associated
with the work class for which this work action is defined and sent to the statistics event
monitor, if one is active. Basic aggregate activity data includes:

• Estimated activity cost high watermark
• Rows returned high watermark
• Temporary table space usage high watermark. Only activities that have an

SQLTEMPSPACE threshold applied to them participate in this high watermark.
• Activity life time histogram
• Activity queue time histogram
• Activity execution time histogram

EXTENDED
Specifies that all aggregate activity data should be captured for activities associated with
the work class for which this work action is defined and sent to the statistics event
monitor, if one is active. This includes all basic aggregate activity data plus:

• Activity data manipulation language (DML) estimated cost histogram
• Activity DML inter-arrival time histogram

ENABLE or DISABLE
Specifies whether or not the work action is to be considered when database activities are
submitted. The default is ENABLE.
ENABLE

Specifies that the work action is enabled and will be considered when database activities
are submitted.

DISABLE
Specifies that the work action is disabled and will not be considered when database
activities are submitted.

ENABLE or DISABLE
Specifies whether or not the work action set is to be considered when database activities are
submitted. The default is ENABLE.

Chapter 1. Structured Query Language (SQL) 1557

ENABLE
Specifies that the work action set is enabled and will be considered when database activities
are submitted.

DISABLE
Specifies that the work action set is disabled and will not be considered when database
activities are submitted.

histogram-template-clause
Specifies histogram templates to use when collecting aggregate activity data for activities associated
with the work class to which this work action is assigned. Aggregate activity data is only collected for
the work class when the work action type is COLLECT AGGREGATE ACTIVITY DATA.
ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical data about the
duration, in milliseconds, of database activities running during a specific interval. The database
activities are those associated with the work class to which this work action is assigned. This
time includes both time queued and time executing. The default is SYSDEFAULTHISTOGRAM. This
information is only collected when the COLLECT AGGREGATE ACTIVITY DATA clause is specified,
with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database activities are queued during a specific interval. The
database activities are those associated with the work class to which this work action is assigned.
The default is SYSDEFAULTHISTOGRAM. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database activities are executing during a specific interval. The
database activities are those associated with the work class to which this work action is assigned.
This time does not include the time spent queued. Activity execution time is collected in this
histogram at each member where the activity executes. On the activity's coordinator member,
this is the end-to-end execution time (that is, the life time less the time spent queued). On
non-coordinator members, this is the time that these members spend working on behalf of the
activity. During the execution of a given activity, the database manager might present work to a
non-coordinator member more than once, and each time the non-coordinator member will collect
the execution time for that occurrence of the activity. Therefore, the counts in the execution time
histogram might not represent the actual number of unique activities that executed on a member.
The default is SYSDEFAULTHISTOGRAM. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or EXTENDED option.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
estimated cost, in timerons, of DML activities associated with the work class to which this work
action is assigned. The default is SYSDEFAULTHISTOGRAM. This information is only collected
when the COLLECT AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED option.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, between the arrival of one DML activity and the arrival of the next
DML activity, for any activity associated with the work class to which this work action is assigned.
The default is SYSDEFAULTHISTOGRAM. This information is only collected when the COLLECT
AGGREGATE ACTIVITY DATA clause is specified with the EXTENDED option.

Rules
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (histogram template)

1558 IBM Db2 V11.5: SQL Reference

– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (service class)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (threshold)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (work action set)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (work class set)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (workload)
– GRANT (workload privileges) or REVOKE (workload privileges)

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• Changes are written to the system catalog, but do not take effect until they are committed, even for the

connection that issues the statement.
• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an

uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– DATABASE PARTITION can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– DATABASE PARTITIONS can be specified in place of MEMBERS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

• The enforcement scope is determined automatically based on the threshold type. For
CONCURRENTDBCOORDACTIVITIES type thresholds, the environment is also used to determine the
enforcement scope where it defaults to the DATABASE enforcement scope in environments other than
Db2 pureScale, and the MEMBER enforcement scope in Db2 pureScale environments.

Examples
• Example 1: Create a work action set named DATABASE_ACTIONS to apply to all database activities.

Use the LARGE_QUERIES work class set and define the following work actions. Work action
ONE_CONCURRENT_QUERY has a threshold action that allows one concurrent query to run on the
system at a time for queries that fall within the LARGE_ESTIMATED_COST work class. If that threshold
is exceeded, the database manager is to queue the activity, but is not to allow more than one database
activity to be queued at a time. If the queue threshold is exceeded, the database activity is not to
be allowed to run. Work action TWO_CONCURRENT_QUERIES has a threshold action that allows two
concurrent queries to execute at the same time for queries that fall within the LARGE_CARDINALITY
work class, and allows no more than two to be queued. If more than two queries are to be queued, the
database activity is to continue putting the queries in the queue and is to collect the database activity
data in the activities event monitor, if one is active.

 CREATE WORK ACTION SET DATABASE_ACTIONS
 FOR DATABASE USING WORK CLASS SET LARGE_QUERIES
 (WORK ACTION ONE_CONCURRENT_QUERY ON WORK CLASS LARGE_ESTIMATED_COST
 WHEN CONCURRENTDBCOORDACTIVITIES > 1 AND QUEUEDACTIVITIES > 1
 STOP EXECUTION,
 WORK ACTION TWO_CONCURRENT_QUERIES ON WORK CLASS LARGE_CARDINALITY
 WHEN CONCURRENTDBCOORDACTIVITIES > 2 AND QUEUEDACTIVITIES > 2
 COLLECT ACTIVITY DATA CONTINUE)

• Example 2: Create a work action set named ADMIN_APPS_ACTIONS with one work action named
MAP_SELECTS that is to apply to database activities that run under service superclass ADMIN_APPS.
The work action is to map all database activity that falls within the SELECT_CLASS work class to service
subclass SELECTS_SERVICE_CLASS, which is in the DML_SELECTS work class set.

 CREATE WORK ACTION SET ADMIN_APPS_ACTIONS
 FOR SERVICE CLASS ADMIN_APPS USING

Chapter 1. Structured Query Language (SQL) 1559

 WORK CLASS SET DML_SELECTS
 (WORK ACTION MAP_SELECTS ON WORK CLASS SELECT_CLASS
 MAP ACTIVITY TO SELECTS_SERVICE_CLASS)

CREATE WORK CLASS SET
The CREATE WORK CLASS SET statement defines a work class set.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include WLMADM or DBADM authority.

Syntax
CREATE WORK CLASS SET work-class-set-name

(

,

work-class-definition)

work-class-definition
WORK CLASS

work-class-name work-attributes position-clause

work-attributes
WORK TYPE

READ

for-from-to-clause data-tag-clause

WRITE

for-from-to-clause data-tag-clause

CALL

schema-clause

DML

for-from-to-clause data-tag-clause

DDL

LOAD

ALL

for-from-to-clause schema-clause data-tag-clause

for-from-to-clause

FOR TIMERONCOST

CARDINALITY

FROM from-value
TO UNBOUNDED

TO to-value

data-tag-clause
DATA TAG LIST CONTAINS  integer-constant

schema-clause

1560 IBM Db2 V11.5: SQL Reference

ROUTINES IN SCHEMA schema-name

position-clause
POSITION LAST

POSITION BEFORE work-class-name

POSITION AFTER work-class-name

POSITION AT position

Description
work-class-set-name

Names the work class set. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The work-class-set-name must not identify a work class set that already exists at the
current server (SQLSTATE 42710). The name must not begin with the characters 'SYS' (SQLSTATE
42939).

work-class-definition
Specifies the definition of the work class.
WORK CLASS work-class-name

Names the work class. The work-class-name must not identify a work class that already exists
within the work class set at the current server (SQLSTATE 42710). The work-class-name cannot
begin with 'SYS' (SQLSTATE 42939).

work-attributes
The attributes of the database activity must match all of the attributes specified in this work class
if that activity is to be associated with this work class.
WORK TYPE

Specifies the type of database activity.
READ

This activity includes the following statements:

• All SELECT or SELECT INTO statements that do not contain a DELETE, INSERT, MERGE,
or UPDATE statement, and all VALUES INTO statements

• All XQuery statements

WRITE
This activity includes the following statements:

• UPDATE
• DELETE
• INSERT
• MERGE
• All SELECT statements that contain a DELETE, INSERT, or UPDATE statement, and all

VALUES INTO statements

CALL
Includes the CALL statement. A CALL statement is considered for a work class with a work
type of CALL or ALL.

DML
Includes the statements listed under READ and WRITE.

DDL
This activity includes the following statements:

• ALTER

Chapter 1. Structured Query Language (SQL) 1561

• CREATE
• COMMENT
• DECLARE GLOBAL TEMPORARY TABLE
• DROP
• FLUSH PACKAGE CACHE
• GRANT
• REFRESH TABLE
• RENAME
• REVOKE
• SET INTEGRITY

LOAD
Db2 load operations.

ALL
All recognized workload management (WLM) activity that falls under any one of the
keywords previously listed within the description for WORK TYPE.

FOR
Indicates the type of information that is being specified in the FROM from-value TO to-value
clause. The FOR clause is only used for the following work types:

• ALL
• DML
• READ
• WRITE

TIMERONCOST
The estimated cost of the work, in timerons. This value is used to determine whether the
work falls within the range specified in the FROM from-value TO to-value clause.

CARDINALITY
The estimated cardinality of the work. This value is used to determine whether the work
falls within the range specified in the FROM from-value TO to-value clause.

FROM from-value TO UNBOUNDED or FROM from-value TO to-value
Specifies the range of either timeron value (for estimated cost) or cardinality within which the
database activity must fall if it is to be part of this work class. The range is inclusive of from-
value and to-value. If this clause is not specified for the work class, all work that falls within
the specified work type will be included (that is, the default is FROM 0 TO UNBOUNDED). This
range is only used for the following work types:

• ALL
• DML
• READ
• WRITE

FROM from-value TO UNBOUNDED
The from-value must be zero or a positive DOUBLE value (SQLSTATE 5U019). The range
has no upper bound.

FROM from-value TO to-value
The from-value must be zero or a positive DOUBLE value and the to-value must be a
positive DOUBLE value. The from-value must be smaller than or equal to the to-value
(SQLSTATE 5U019).

DATA TAG LIST CONTAINS integer-constant
Specifies the value of the tag given to any data which the database activity might touch if it is
to be part of this work class. If the clause is not specified for the work class, all work that falls

1562 IBM Db2 V11.5: SQL Reference

within the specified work type, regardless of what data it might touch, will be included (that is,
the default is to ignore the data tag). This clause is used only if the work type is READ, WRITE,
DML, or ALL and the database activity is a DML statement. Valid values for integer-constant are
integers from 1 to 9.

schema-clause
ROUTINES IN SCHEMA schema-name

Specifies the schema name of the procedure that the CALL statement will be calling. This
clause is only used if the work type is CALL or ALL and the database activity is a CALL
statement. If no value is specified, all schemas are included.

position-clause
POSITION

Specifies where this work class is to be placed within the work class set, which determines
the order in which work classes are evaluated. When performing work class assignment at run
time, the database manager first determines the work class set that is associated with the
object, either the database or a service superclass. The first matching work class within that
work class set is then selected. If this keyword is not specified, the work class is placed in the
last position.
LAST

Specifies that the work class is to be placed last in the ordered list of work classes within
the work class set. This is the default.

BEFORE work-class-name
Specifies that the work class is to be placed before work class work-class-name in the list.
The work-class-name must identify a work class in the work class set that exists at the
current server (SQLSTATE 42704).

AFTER work-class-name
Specifies that the work class is to be placed after work class work-class-name in the list.
The work-class-name must identify a work class in the work class set that exists at the
current server (SQLSTATE 42704).

AT position
Specifies the absolute position at which the work class is to be placed within the work
class set in the ordered list of work classes. This value can be any positive integer (not
zero) (SQLSTATE 42615). If position is greater than the number of existing work classes
plus one, the work class is placed at the last position within the work class set.

Rules
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• Changes are written to the system catalog, but do not take effect until they are committed, even for the

connection that issues the statement.

Chapter 1. Structured Query Language (SQL) 1563

• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an
uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

Examples
• Example 1: Create a work class set named LARGE_QUERIES that has a set of work classes representing

all DML with an estimated cost greater than 9999 and an estimated cardinality greater than 1000.

 CREATE WORK CLASS SET LARGE_QUERIES
 (WORK CLASS LARGE_ESTIMATED_COST WORK TYPE DML
 FOR TIMERONCOST FROM 9999 TO UNBOUNDED,
 WORK CLASS LARGE_CARDINALITY WORK TYPE DML
 FOR CARDINALITY FROM 1000 TO UNBOUNDED)

• Example 2: Create a work class set named DML_SELECTS that has a work class representing all DML
SELECT statements that do not contain a DELETE, INSERT, MERGE, or UPDATE statement.

 CREATE WORK CLASS SET DML_SELECTS
 (WORK CLASS SELECT_CLASS WORK TYPE READ)

CREATE WORKLOAD
The CREATE WORKLOAD statement defines a workload.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared only if DYNAMICRULES run behavior is in effect for the
package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include WLMADM or DBADM authority.

1564 IBM Db2 V11.5: SQL Reference

Syntax

CREATE WORKLOAD workload-name connection-attributes workload-attributes

POSITION LAST

POSITION BEFORE workload-name

AFTER workload-name

AT position

PRIORITY MEDIUM

PRIORITY CRITICAL

HIGH

MEDIUM

LOW

COLLECT ACTIVITY METRICS NONE

COLLECT ACTIVITY METRICS
BASE

EXTENDED

COLLECT ACTIVITY DATA NONE

COLLECT ACTIVITY DATA collect-on-clause collect-details-clause

COLLECT AGGREGATE ACTIVITY DATA NONE

COLLECT AGGREGATE ACTIVITY DATA
BASE

EXTENDED

COLLECT AGGREGATE UNIT OF WORK DATA NONE

COLLECT AGGREGATE UNIT OF WORK DATA
BASE

COLLECT LOCK TIMEOUT DATA WITHOUT HISTORY

COLLECT LOCK TIMEOUT DATA NONE

WITH HISTORY

AND VALUES

COLLECT DEADLOCK DATA WITHOUT HISTORY

COLLECT DEADLOCK DATA WITH HISTORY

AND VALUES

COLLECT LOCK WAIT DATA NONE

COLLECT LOCK WAIT DATA collect-lock-wait-options

COLLECT UNIT OF WORK DATA NONE

COLLECT UNIT OF WORK DATA
BASE

BASE

INCLUDE

,

PACKAGE LIST

EXECUTABLE LIST

histogram-template-clause

connection-attributes

Chapter 1. Structured Query Language (SQL) 1565

1
ADDRESS ('address-value')

APPLNAME ('application-name')

SYSTEM_USER ('authorization-name')

SESSION_USER ('authorization-name')

SESSION_USER GROUP ('authorization-name')

SESSION_USER ROLE ('authorization-name')

CURRENT CLIENT_USERID ('user-id')

CURRENT CLIENT_APPLNAME ('client-application-name')

CURRENT CLIENT_WRKSTNNAME ('workstation-name')

CURRENT CLIENT_ACCTNG ('accounting-string')

workload-attributes
ENABLE

DISABLE

ALLOW DB ACCESS

DISALLOW DB ACCESS

MAXIMUM DEGREE DEFAULT

MAXIMUM DEGREE degree

SERVICE CLASS SYSDEFAULTUSERCLASS

SERVICE CLASS service-class-name

UNDER service-superclass-name

collect-on-clause

ON COORDINATOR
MEMBER

ON ALL
MEMBERS

collect-details-clause

1566 IBM Db2 V11.5: SQL Reference

WITHOUT DETAILS

WITH

,

DETAILS
2

SECTION

INCLUDE ACTUALS BASE

AND VALUES

collect-lock-wait-options
● FOR LOCKS WAITING MORE THAN wait-time SECONDS

MICROSECONDS

1 SECOND

●

WITHOUT HISTORY

WITH HISTORY

AND VALUES

●

histogram-template-clause
ACTIVITY LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name

UOW LIFETIME HISTOGRAM TEMPLATE SYSDEFAULTHISTOGRAM

UOW LIFETIME HISTOGRAM TEMPLATE template-name

Notes:
1 Each connection attribute clause can only be specified once.
2 The DETAILS keyword is the minimum to be specified, followed by the option separated by a comma.

Chapter 1. Structured Query Language (SQL) 1567

Description
workload-name

Names the workload. This is a one-part name. It is an SQL identifier (either ordinary or delimited).
The workload-name must not identify a workload that already exists at the current server (SQLSTATE
42710). The name must not begin with the characters 'SYS' (SQLSTATE 42939).

connection-attributes
The attributes of the connection must match all attributes specified in this workload definition if it is
to be associated with this workload when the connection is established. If a list of values is specified
for a connection attribute in the workload definition, the corresponding attribute of the connection
must match at least one of the values in the list. If a connection attribute is not specified in the
workload definition, the connection can have any value for the corresponding connection attribute.

Note: All connection attributes are case sensitive, except for ADDRESS.

ADDRESS ('address-value', ...)
Specifies one or more IPv4 addresses, IPv6 addresses, or secure domain names for the ADDRESS
connection attribute. An address value cannot appear more than once in the list (SQLSTATE
42713). The only supported protocol is TCP/IP. Each address value must be an IPv4 address, an
IPv6 address, or a secure domain name.

An IPv4 address must not contain leading spaces and is represented as a dotted
decimal address. An example of an IPv4 address is 192.0.2.1. The value localhost
or its equivalent representation 127.0.0.1 will not result in a match; the real IPv4
address of the host must be specified instead. An IPv6 address must not contain leading
spaces and is represented as a colon hexadecimal address. An example of an IPv6
address is 2001:0DB8:0000:0000:0008:0800:200C:417A. IPv4-mapped IPv6 addresses
(::ffff:192.0.2.1, for example) will not result in a match. Similarly, localhost or its IPv6
short representation ::1 will not result in a match. A domain name is converted to an IP address
by the domain name server where a resulting IPv4 or IPv6 address is determined. An example of
a domain name is corona.example.com. When a domain name is converted to an IP address,
the result of this conversion could be a set of one or more IP addresses. In this case, an incoming
connection is said to match the ADDRESS attribute of a workload object if the IP address from
which the connection originates matches any of the IP addresses to which the domain name was
converted.

When creating a workload object, you should specify domain name values for the ADDRESS
attribute instead of static IP addresses, particularly in Dynamic Host Configuration Protocol
(DHCP) environments where a device can have a different IP address each time it connects to
the network.

APPLNAME ('application-name', ...)
Specifies one or more applications for the APPLNAME connection attribute. An application name
cannot appear more than once in the list (SQLSTATE 42713). If application-name does not contain
a single asterisk character (*), is equivalent to the value shown in the "Application name" field in
system monitor output and in output from the LIST APPLICATIONS command. If application-name
does contain a single asterisk character (*), the value is used as an expression to represent a set
of application names, where the asterisk (*) represents a string of zero or more characters. If the
expression needs to include an asterisk character in the application name, use a sequence of two
asterisk characters (**).

SYSTEM_USER ('authorization-name', ...)
Specifies one or more authorization IDs for the SYSTEM USER connection attribute. An
authorization ID cannot appear more than once in the list (SQLSTATE 42713).

SESSION_USER ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION USER connection attribute. An
authorization ID cannot appear more than once in the list (SQLSTATE 42713).

SESSION_USER GROUP ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION_USER GROUP connection attribute. An
authorization ID cannot appear more than once in the list (SQLSTATE 42713).

1568 IBM Db2 V11.5: SQL Reference

SESSION_USER ROLE ('authorization-name', ...)
Specifies one or more authorization IDs for the SESSION_USER ROLE connection attribute. The
roles of a session authorization ID in this context refer to all the roles that are available to the
session authorization ID, regardless of how the roles were obtained. An authorization ID cannot
appear more than once in the list (SQLSTATE 42713).

CURRENT CLIENT_USERID ('user-id', ...)
Specifies one or more client user IDs for the CURRENT CLIENT_USERID connection attribute. A
client user ID cannot appear more than once in the list (SQLSTATE 42713). If user-id contains a
single asterisk character (*), the value is used as an expression to represent a set of user IDs,
where the asterisk (*) represents a string of zero or more characters. If the expression needs to
include an asterisk character in the user ID, use a sequence of two asterisk characters (**).

CURRENT CLIENT_APPLNAME ('client-application-name', ...)
Specifies one or more applications for the CURRENT CLIENT_APPLNAME connection attribute.
An application name cannot appear more than once in the list (SQLSTATE 42713). If client-
application-name does not contain a single asterisk character (*), is equivalent to the value shown
in the "TP Monitor client application name" field in system monitor output. If client-application-
name does contain a single asterisk character (*), the value is used as an expression to represent
a set of application names, where the asterisk (*) represents a string of zero or more characters. If
the expression needs to include an asterisk character in the application name, use a sequence of
two asterisk characters (**).

CURRENT CLIENT_WRKSTNNAME ('workstation-name', ...)
Specifies one or more client workstation names for the CURRENT CLIENT_WRKSTNNAME
connection attribute. A client workstation name cannot appear more than once in the list
(SQLSTATE 42713). If workstation-name contains a single asterisk character (*), the value is used
as an expression to represent a set of workstation names, where the asterisk (*) represents a
string of zero or more characters. If the expression needs to include an asterisk character in the
workstation name, use a sequence of two asterisk characters (**).

CURRENT CLIENT_ACCTNG ('accounting-string', ...)
Specifies one or more client accounting strings for the CURRENT CLIENT_ACCTNG connection
attribute. A client accounting string cannot appear more than once in the list (SQLSTATE 42713).
If accounting-string contains a single asterisk character (*), the value is used as an expression to
represent a set of accounting strings, where the asterisk (*) represents a string of zero or more
characters. If the expression needs to include an asterisk character in the accounting string, use a
sequence of two asterisk characters (**).

workload-attributes
Specifies attributes of the workload.
ENABLE or DISABLE

Specifies whether or not this workload will be considered when a workload is chosen. The default
is ENABLE.
ENABLE

Specifies that the workload is enabled and will be considered when a workload is chosen.
DISABLE

Specifies that the workload is disabled and will not be considered when a workload is chosen.
ALLOW DB ACCESS or DISALLOW DB ACCESS

Specifies whether or not a workload occurrence associated with this workload is allowed access to
the database. The default is ALLOW DB ACCESS.
ALLOW DB ACCESS

Specifies that workload occurrences associated with this workload are allowed access to the
database.

DISALLOW DB ACCESS
Specifies that workload occurrences associated with this workload are not allowed access to
the database. The next unit of work associated with this workload will be rejected (SQLSTATE
5U020). Workload occurrences that are already running are allowed to complete.

Chapter 1. Structured Query Language (SQL) 1569

MAXIMUM DEGREE
Specifies the maximum runtime degree of parallelism for this workload. The default is DEFAULT.
DEFAULT

If DB2_WORKLOAD=ANALYTICS, this setting enables intrapartition parallelism for this
workload. Otherwise, this setting specifies that this workload inherits the intrapartition
parallelism setting from the database manager configuration parameter intra_parallel.
When intra_parallel is set to NO, this workload runs with intrapartition parallelism
disabled. When intra_parallel is set to YES, this workload runs with intrapartition
parallelism enabled. This workload does not specify a maximum runtime degree for assigned
applications. Therefore, the actual runtime degree is determined as the lower of the value of
max_querydegree configuration parameter, the MAXIMUM DEGREE set on the query service
class, the value set by SET RUNTIME DEGREE command, and the SQL statement compilation
degree.

degree
Specifies the maximum degree of parallelism for this workload. Valid values are 1 to 32,767.
With value 1, the associated requests run with intrapartition parallelism disabled. With value
2 to 32,767, the associated requests run with intrapartition parallelism enabled. The actual
runtime degree is determined as the lower of this degree, the MAXIMUM DEGREE set on the
query service class, the value of max_querydegree configuration parameter, the value set by
SET RUNTIME DEGREE command and the SQL statement compilation degree.

Note: A MAXIMUM DEGREE value greater than 1 will not enable intrapartition parallelism
unless the shared sort heap is available.

SERVICE CLASS service-class-name
Specifies that requests associated with this workload are to be executed in the service class
service-class-name. The service-class-name must identify a service class that exists at the
current server (SQLSTATE 42704). The service-class-name cannot be 'SYSDEFAULTSUBCLASS',
'SYSDEFAULTSYSTEMCLASS', or 'SYSDEFAULTMAINTENANCECLASS' (SQLSTATE 5U032). The
default is SYSDEFAULTUSERCLASS.
UNDER service-superclass-name

This clause is used when specifying a service subclass. The service-superclass-
name identifies the service superclass of service-class-name. The service-superclass-
name must identify a service superclass that exists at the current server
(SQLSTATE 42704). The service-superclass-name cannot be 'SYSDEFAULTSYSTEMCLASS' or
'SYSDEFAULTMAINTENANCECLASS' (SQLSTATE 5U032).

POSITION
Specifies where this workload is to be placed within the ordered list of workloads. At run time, this list
is searched in order for the first workload that matches the required connection attributes. The default
is LAST.
LAST

Specifies that the workload is to be last in the list, before the default workloads
SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD.

BEFORE relative-workload-name
Specifies that the workload is to be placed before workload relative-workload-name in the
list. The relative-workload-name must identify a workload that exists at the current server
(SQLSTATE 42704). The BEFORE option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD' or 'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

AFTER relative-workload-name
Specifies that the workload is to be placed after workload relative-workload-name in the
list. The relative-workload-name must identify a workload that exists at the current server
(SQLSTATE 42704). The AFTER option cannot be specified if relative-workload-name is
'SYSDEFAULTUSERWORKLOAD' or 'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

AT position
Specifies the absolute position at which the workload is to be placed in the list. This value
can be any positive integer (not zero) (SQLSTATE 42615). If position is greater than the

1570 IBM Db2 V11.5: SQL Reference

number of existing workloads plus one, the workload is placed at the last position, just before
SYSDEFAULTUSERWORKLOAD and SYSDEFAULTADMWORKLOAD.

PRIORITY
Specifies the priority of the work from this workload compared to that of the work in other workloads
in the same service superclass. Within a service superclass priority is used to prioritize more
important jobs over less important jobs. Work scheduling across superclasses does not use the
priority for scheduling, but instead uses only resource-based scheduling.

COLLECT ACTIVITY METRICS
Specifies that monitor metrics should be collected for an activity submitted by an occurrence of the
workload. The default is COLLECT ACTIVITY METRICS NONE.

Note: The effective activity metrics collection setting is the combination of the attribute specified
by the COLLECT ACTIVITY METRICS clause on the workload submitting the activity, and the
mon_act_metrics database configuration parameter. If either the workload attribute or the
configuration parameter has a value other than NONE, metrics will be collected for the activity.

NONE
Specifies that no metrics will be collected for any activity submitted by an occurrence of the
workload.

BASE
Specifies that basic metrics will be collected for any activity submitted by an occurrence of the
workload.

EXTENDED
Specifies that basic metrics will be collected for any activity submitted by an occurrence of the
workload. In addition, specifies that the values for the following monitor elements should be
determined with additional granularity:

• total_section_time
• total_section_proc_time
• total_routine_user_code_time
• total_routine_user_code_proc_time
• total_routine_time

COLLECT ACTIVITY DATA
Specifies that data about each activity associated with this workload is to be sent to any active
activities event monitor when the activity completes. The default is COLLECT ACTIVITY DATA NONE.
collect-on-clause

Specifies where the activity data is to be collected. The default is ON COORDINATOR MEMBER.
ON COORDINATOR MEMBER

Specifies that activity data is to be collected only at the coordinator member of the activity.
ON ALL MEMBERS

Specifies that activity data is to be collected at all members where the activity is processed.
On remote members, a record for the activity may be captured multiple times as the activity
comes and goes on those members. If the AND VALUES clause is specified, activity input
values will be collected only for the members of the coordinator.

NONE
Specifies that activity data is not collected for each activity that is associated with this workload.

collect-details-clause
Specifies what type of activity data is to be collected. The default is WITHOUT DETAILS.
WITHOUT DETAILS

Specifies that data about each activity that is associated with this workload is to be sent
to any active activities event monitor, when the activity completes execution. Details about
statement, compilation environment, and section environment data are not sent.

Chapter 1. Structured Query Language (SQL) 1571

WITH
DETAILS

Specifies that statement and compilation environment data is to be sent to any active
activities event monitor, for those activities that have them. Section environment data is
not sent.

SECTION
Specifies that statement, compilation environment, section environment data, and section
actuals are to be sent to any active activities event monitor for those activities that have
them. DETAILS must be specified if SECTION is specified. Section actuals will be collected
on any member where the activity data is collected.
INCLUDE ACTUALS BASE

Specifies that section actuals should also be collected on any partition where the
activity data is collected. For section actuals to be collected, either INCLUDE ACTUALS
clause must be specified or the section_actuals database configuration parameter
must be set.

The effective setting for the collection of section actuals is the combination of the
INCLUDE ACTUALS clause, the section_actuals database configuration parameter,
and the <collectsectionactuals> setting specified on the WLM_SET_CONN_ENV
routine. For example, if INCLUDE ACTUALS BASE is specified, yet the
section_actuals database configuration parameter value is NONE and
<collectsectionactuals> is set to NONE, then the effective setting for the collection
of section actuals is BASE.

BASE specifies that the following should be enabled and collected during the activity's
execution:

• Basic operator cardinality counts
• Statistics for each object referenced (DML statements only)

AND VALUES
Specifies that input data values are to be sent to any active activities event monitor,
for those activities that have them. This data does not include SQL statements that are
compiled by using the REOPT ALWAYS bind option.

COLLECT AGGREGATE ACTIVITY DATA
Specifies that aggregate activity data about the activities associated with this workload is to be
sent to the statistics event monitor, if one is active. This information is collected periodically on an
interval that is specified by the wlm_collect_int database configuration parameter. The default
when COLLECT AGGREGATE ACTIVITY DATA is not specified is COLLECT AGGREGATE ACTIVITY DATA
NONE. The default when COLLECT AGGREGATE ACTIVITY DATA is specified is COLLECT AGGREGATE
ACTIVITY DATA BASE.
BASE

Specifies that basic aggregate activity data about the activities associated with this workload is to
be sent to the statistics event monitor, if one is active. Basic aggregate activity data includes:

• Activity CPU time high watermark
• Activity execution time histogram
• Activity life time histogram
• Activity queue time histogram
• Activity rows read high watermark
• Estimated activity cost high watermark
• Rows returned high watermark
• Temporary table space usage high watermark. Only activities that have an SQLTEMPSPACE

threshold applied to them participate in this high watermark.

1572 IBM Db2 V11.5: SQL Reference

EXTENDED
Specifies that all aggregate activity data about the activities associated with this workload is to be
sent to the statistics event monitor, if one is active. This includes all basic aggregate activity data
plus:

• Activity data manipulation language (DML) estimated cost histogram
• Activity DML inter-arrival time histogram

NONE
Specifies that no aggregate activity data is to be collected for this workload.

COLLECT AGGREGATE UNIT OF WORK DATA
Specifies that aggregate unit of work data about the units of work associated with this workload is to
be sent to the statistics event monitor, if one is active. This information is collected periodically on
an interval that is specified by the wlm_collect_int database configuration parameter. The default
when COLLECT AGGREGATE UNIT OF WORK DATA is not specified is COLLECT AGGREGATE UNIT OF
WORK DATA NONE.
BASE

Specifies that basic aggregate unit of work data about the units of work associated with this
workload is to be sent to the statistics event monitor, if one is active. Basic aggregate unit of work
includes:

• Unit of work lifetime histogram

NONE
Specifies that no aggregate unit of work data is to be collected for this workload.

COLLECT LOCK TIMEOUT DATA
Specifies that data about lock timeout events that occur within this workload is sent to the applicable
event monitor when the lock event occurs. The lock timeout data is collected on all members. The
default is COLLECT LOCK TIMEOUT DATA WITHOUT HISTORY. This setting works in conjunction with
the mon_locktimeout database configuration parameter setting. The setting that produces the most
detailed output is honored.
WITHOUT HISTORY

Specifies that data about lock events that occur within this workload is sent to any active locking
event monitor when the lock event occurs. Past activity history and input values are not sent to the
event monitor.

NONE
Specifies that lock timeout data for the workload is not collected at any member.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for all of this type of lock events.
The activity history buffer will wrap after the maximum size limit is used.

The default limit on the number of past activities to be kept by any one application is 250. If the
number of past activities is greater than the limit, only the newest activities are reported. This
default value can be overridden using the registry variable DB2_MAX_INACT_STMTS to specify a
different value. You can choose a different value for the limit to increase or reduce the amount of
system monitor heap used for past activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking event monitor for those
activities that have them. These data values will not include LOB data, LONG VARCHAR data,
LONG VARGRAPHIC data, structured type data, or XML data. For SQL statements compiled
using the REOPT ALWAYS bind option, there will be no REOPT compilation or statement
execution data values provided in the event information.

COLLECT DEADLOCK DATA
Specifies that data about deadlock events that occur within this workload is sent to any active locking
event monitor when the lock event occurs. The deadlock data is collected on all members. The default

Chapter 1. Structured Query Language (SQL) 1573

is COLLECT DEADLOCK DATA WITHOUT HISTORY. This setting is only honored if the mon_deadlock
database configuration parameter is not set to NONE.
WITHOUT HISTORY

Specifies that data about lock events that occur within this workload is sent to any active locking
event monitor when the lock event occurs. Past activity history and input values are not sent to the
event monitor.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for all of this type of lock events.
The activity history buffer will wrap after the maximum size limit is used.

The default limit on the number of past activities to be kept by any one application is 250. If the
number of past activities is greater than the limit, only the newest activities are reported. This
default value can be overridden using the registry variable DB2_MAX_INACT_STMTS to specify a
different value. You can choose a different value for the limit to increase or reduce the amount of
system monitor heap used for past activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking event monitor for those
activities that have them. These data values will not include LOB data, LONG VARCHAR data,
LONG VARGRAPHIC data, structured type data, or XML data. For SQL statements compiled
using the REOPT ALWAYS bind option, there will be no REOPT compilation or statement
execution data values provided in the event information.

COLLECT LOCK WAIT DATA
Specifies that data about lock wait events that occur within this workload is sent to any active locking
event monitor when the lock has not been acquired within wait-time. The default is COLLECT LOCK
WAIT DATA NONE with a default wait-time value of 0 microseconds. This setting works in conjunction
with the mon_lockwait and mon_lw_thresh database configuration parameters. The setting that
produces the most detailed output is honored.
NONE

Specifies that the lock wait event for the workload is not collected at any member.
FOR LOCKS WAITING MORE THAN wait-time (SECONDS | MICROSECONDS) | 1 SECOND

Specifies that data about lock wait events that occur within this workload is sent to any active
locking event monitor when the lock has not been acquired within wait-time.

This value can be any non-negative integer. Use a valid duration keyword to specify an appropriate
unit of time for wait-time. The minimum valid value for the wait-time parameter is 1000
microseconds.

WITH HISTORY
Specifies to collect past activity history in the current unit of work for all of this type of lock events.
The activity history buffer will wrap after the maximum size limit is used.

The default limit on the number of past activities to be kept by any one application is 250. If the
number of past activities is greater than the limit, only the newest activities are reported. This
default value can be overridden using the registry variable DB2_MAX_INACT_STMTS to specify a
different value. You can choose a different value for the limit to increase or reduce the amount of
system monitor heap used for past activity information.

AND VALUES
Specifies that input data values are to be sent to any active locking event monitor for those
activities that have them. These data values will not include LOB data, LONG VARCHAR data,
LONG VARGRAPHIC data, structured type data, or XML data. For SQL statements compiled
using the REOPT ALWAYS bind option, there will be no REOPT compilation or statement
execution data values provided in the event information.

COLLECT UNIT OF WORK DATA
Specifies that data about each transaction associated with this workload is to be sent to the unit of
work event monitor, if any are active, when the unit of work ends. The default, when COLLECT UNIT
OF WORK DATA is not specified, is COLLECT UNIT OF WORK DATA NONE. The default, when COLLECT

1574 IBM Db2 V11.5: SQL Reference

UNIT OF WORK DATA is specified, is COLLECT UNIT OF WORK DATA BASE. If the mon_uow_data
database configuration parameter is set to BASE, it takes precedence over the COLLECT UNIT OF
WORK DATA parameter. A value of NONE for the mon_uow_data indicates that the COLLECT UNIT OF
WORK DATA parameters of individual workloads is used.
NONE

Specifies that no unit of work data for transactions associated with this workload is sent to the
unit of work event monitor. The default is COLLECT UNIT OF WORK DATA NONE.

BASE
Specifies that base level of data for transactions associated with this workload is sent to the unit
of work event monitors.

Some of the information reported in a unit of work event are system level request metrics. The
collection of these metrics is controlled independently from the collection of the unit of work data.
The request metrics are controlled with the COLLECT REQUEST METRICS clause on superclass,
or using the mon_req_metrics database configuration parameter. The service super class which
the workload is associated with, or the service super class of the service subclass which the
workload is associated with, must have the collection of request metrics enabled in order for the
request metrics to be present in the unit of work event. If the request metrics collection is not
enabled, the value of the request metrics will be zero.

INCLUDE PACKAGE LIST
Specifies that base level of data and the package list for transactions associated with this
workload are sent to the unit of work event monitor.

The size of the collected package list is determined by the value of the mon_pkglist_sz
database configuration parameter. If this value is 0, then the package list is not collected even
if the PACKAGE LIST option is specified.

In a partitioned database environment, the package list is only available on the coordinator
member. The BASE level will be collected on remote members.

Some of the information reported in a unit of work event are system level request metrics. The
collection of these metrics is controlled independently from the collection of the unit of work data.
The request metrics are controlled with the COLLECT REQUEST METRICS clause on superclass,
or using the mon_req_metrics database configuration parameter. The service super class which
the workload is associated with, or the service super class of the service subclass which the
workload is associated with, must have the collection of request metrics enabled in order for the
request metrics to be present in the unit of work event. If the request metrics collection is not
enabled, the value of the request metrics will be zero.

INCLUDE EXECUTABLE LIST
Specifies that executable ID list will be collected for a unit of work together with base level of data
and sent to the unit of work event monitor.

histogram-template-clause
Specifies the histogram templates to use when collecting aggregate activity data for activities
executing in the workload.
ACTIVITY LIFETIME HISTOGRAM TEMPLATE template-name

Specifies the template that describes the histogram used to collect statistical data about the
duration, in milliseconds, of database activities running in the workload during a specific interval.
This time includes both time queued and time executing. The default is SYSDEFAULTHISTOGRAM.
This information is collected only when the COLLECT AGGREGATE ACTIVITY DATA clause is
specified, with either the BASE or EXTENDED option.

ACTIVITY QUEUETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database activities running in the workload are queued during
a specific interval. The default is SYSDEFAULTHISTOGRAM. This information is collected only
when the COLLECT AGGREGATE ACTIVITY DATA clause is specified, with either the BASE or
EXTENDED option.

Chapter 1. Structured Query Language (SQL) 1575

ACTIVITY EXECUTETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, that database activities running in the workload are executing
during a specific interval. This time does not include the time spent queued. Activity execution
time is collected in this histogram at the coordinator member only. The time does not include
idle time. Idle time is the time between the execution of requests belonging to the same activity
when no work is being done. An example of idle time is the time between the end of opening
a cursor and the start of fetching from that cursor. The default is SYSDEFAULTHISTOGRAM. This
information is collected only when the COLLECT AGGREGATE ACTIVITY DATA clause is specified,
with either the BASE or EXTENDED option. Only activities at nesting level 0 are considered for
inclusion in the histogram.

ACTIVITY ESTIMATEDCOST HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about
the estimated cost, in timerons, of DML activities running in the workload. The default is
SYSDEFAULTHISTOGRAM. This information is collected only when the COLLECT AGGREGATE
ACTIVITY DATA clause is specified with the EXTENDED option. Only activities at nesting level
0 are considered for inclusion in the histogram.

ACTIVITY INTERARRIVALTIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
length of time, in milliseconds, between the arrival of one DML activity into this workload and the
arrival of the next DML activity into this workload. The default is SYSDEFAULTHISTOGRAM. This
information is collected only when the COLLECT AGGREGATE ACTIVITY DATA clause is specified
with the EXTENDED option.

UOW LIFETIME HISTOGRAM TEMPLATE template-name
Specifies the template that describes the histogram used to collect statistical data about the
duration, in milliseconds, of units of work running in the workload during a specific interval.
The default is SYSDEFAULTHISTOGRAM. This information is collected only when the COLLECT
AGGREGATE UNIT OF WORK DATA clause is specified with the BASE option.

Rules
• A workload management (WLM)-exclusive SQL statement must be followed by a COMMIT or a

ROLLBACK statement (SQLSTATE 5U021). WLM-exclusive SQL statements are:

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION SET, ALTER WORK ACTION SET, or DROP (WORK ACTION SET)
– CREATE WORK CLASS SET, ALTER WORK CLASS SET, or DROP (WORK CLASS SET)
– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

• A WLM-exclusive SQL statement cannot be issued within a global transaction (SQLSTATE 51041) such
as, for example, an XA transaction.

Notes
• Changes are written to the system catalog, but do not take effect until they are committed, even for the

connection that issues the statement.
• Only one uncommitted WLM-exclusive SQL statement at a time is allowed across all partitions. If an

uncommitted WLM-exclusive SQL statement is executing, subsequent WLM-exclusive SQL statements
will wait until the current WLM-exclusive SQL statement commits or rolls back.

• When a database connection is established, the database manager looks for a matching workload based
on the connection attributes that were specified in the POSITION clause (in order of specification). If a
matching workload is found, the database manager checks whether the current session user has USAGE

1576 IBM Db2 V11.5: SQL Reference

privilege on that workload. If the session user does not have USAGE privilege on the workload, the
database manager looks for the next matching workload. If the session user has USAGE privilege on
this workload, the connection is associated with the workload. If a matching workload is not found, the
connection is associated with the default user workload, SYSDEFAULTUSERWORKLOAD. If the session
user does not have USAGE privilege on SYSDEFAULTUSERWORKLOAD, an error is returned (SQLSTATE
42501).

• The workload association is re-evaluated at the beginning of each new unit of work if the database
manager detects one of the following conditions.

– The connection attributes have changed. This can happen if any of the following events has occurred:

- The set client information API (sqleseti) has been invoked and it changed the connection
attributes that were included in the workload definition. Note that although the client information
can be set by the end user so that it could initiate a workload re-evaluation, the workload
remapping itself cannot happen if the session user does not have the USAGE privilege on the
workload.

- The SET SESSION AUTHORIZATION statement has been invoked and it changed the current
session user.

- The roles that are available to a session user have changed.
– A workload is created.
– A workload is dropped.
– A workload is altered.
– The USAGE privilege on a workload is granted to a user, group, or role.
– The USAGE privilege on a workload is revoked from a user, group, or role.

If the workload re-evaluation results in no workload reassignment, the current workload occurrence
continues to run; that is, a new workload occurrence will not be started.

• A connection cannot be reassigned to a different workload when an activity is still active. Examples
of such activities are a load operation, an executing procedure, or statements that maintain resources
across multiple units of work, such as an open WITH HOLD cursor. The current workload occurrence
continues to run until all executing activities complete. Workload reassignment occurs at the beginning
of the next unit of work.

• After a service class has been referenced by a workload, it cannot be dropped until it is no longer
referenced by any workload. Either of the following actions can be taken to remove a service class
reference from a workload:

– Alter the workload to change the service class name
– Drop the workload

• After a role has been referenced by a workload, it cannot be dropped until it is no longer referenced by
any workload. Either of the following actions can be taken to remove a role reference from a workload:

– Alter the workload to remove the role
– Drop the workload

• Privileges: The USAGE privilege is not granted to any user, group, or role when a workload is created. To
enable use of a workload, grant USAGE privilege on that workload to a user, a group, or a role using the
GRANT USAGE ON WORKLOAD statement.

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– DATABASE PARTITION can be specified in place of MEMBER, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– DATABASE PARTITIONS can be specified in place of MEMBERS, except when the
DB2_ENFORCE_MEMBER_SYNTAX registry variable is set to ON.

– COLLECT UNIT OF WORK DATA PACKAGE LIST can be specified in place of COLLECT UNIT OF WORK
DATA BASE INCLUDE PACKAGE LIST.

Chapter 1. Structured Query Language (SQL) 1577

Examples
• Example 1: Create a workload named CAMPAIGN for requests that are submitted by a session user

belonging to group FINANCE. These requests are to be executed in the default user service class
SYSDEFAULTUSERCLASS.

 CREATE WORKLOAD CAMPAIGN
 SESSION_USER GROUP ('FINANCE')

• Example 2: Create a workload named PAYROLL for a session user with role HR that has the CURRENT
CLIENT_APPLNAME special register set to SALARYSYS. Units of work associated with this workload are
to be executed in service class MEDIUMSC that is under the service superclass HRSC. When a workload
is chosen at run time, this workload should be evaluated only after the workload CAMPAIGN has been
evaluated and determined to not match.

 CREATE WORKLOAD PAYROLL
 SESSION_USER ROLE ('HR')
 CURRENT CLIENT_APPLNAME ('SALARYSYS') SERVICE CLASS MEDIUMSC
 UNDER HRSC POSITION AFTER CAMPAIGN

• Example 3: An occurrence of workload CAMPAIGN (from example 1) is currently running on the
system. Create a workload named NEWCAMPAIGN, also for requests that are submitted by a
session user belonging to group FINANCE, but only those requests submitted through application
DB2BP.EXE. Requests associated with this workload are to be executed in service class MARKETINGSC.
NEWCAMPAIGN should be evaluated before CAMPAIGN.

 CREATE WORKLOAD NEWCAMPAIGN
 SESSION_USER GROUP ('FINANCE')
 APPLNAME ('DB2BP.EXE') SERVICE CLASS MARKETINGSC
 POSITION BEFORE CAMPAIGN

The running workload occurrence of CAMPAIGN continues to run until the current unit of work
completes, at which time a workload re-evaluation takes place, and the connection could then be
remapped to workload NEWCAMPAIGN.

• Example 4: Create a workload named REPORTS for requests that are submitted through application
appl1, appl2, or appl3 by system user BOB or MARY.

 CREATE WORKLOAD REPORTS
 APPLNAME ('appl1', 'appl2', 'appl3')
 SYSTEM_USER ('BOB', 'MARY')

• Example 5: Assuming a lock event monitor called PAYROLL exists and is active, create lock event
records with statement history for lock timeout events that occur within the workload EMPLOYEES.

 CREATE WORKLOAD EMPLOYEES
 APPLNAME ("app1", "app2")
 COLLECT LOCK TIMEOUT DATA WITH HISTORY

• Example 6: Assuming a lock event monitor called PAYROLL exists and is active, create lock event
records for only deadlock and lock timeout events that occur within the workload FINANCE on all
partitions.

 CREATE WORKLOAD FINANCE
 APPLNAME ("app1", "app2")
 COLLECT DEADLOCK DATA
 COLLECT LOCK TIMEOUT DATA

• Example 7: Assuming a lock event monitor called PAYROLL exists and is active, create lock event
records with statement history and values for deadlock events that occur within the workload
MANAGERS.

 CREATE WORKLOAD MANAGERS
 APPLNAME ("app1", "app2")
 COLLECT DEADLOCK DATA WITH HISTORY AND VALUES

1578 IBM Db2 V11.5: SQL Reference

• Example 8: Assuming a lock event monitor called PAYROLL exists and is active, create lock event
records with statement history for locks that are acquired after waiting 5000 milliseconds within the
MANAGERS workload.

 CREATE WORKLOAD MANAGERS
 APPLNAME ("app1", "app2")
 COLLECT LOCK WAIT DATA FOR LOCKS WAITING MORE THAN 5 SECONDS WITH HISTORY

• Example 9: Create a workload named ACCRECS for all accounts receivable applications that share a
similar name (accrec01, accrec02 ... accrec15) and assign them to the service class ACCOUNTNGSC.
Application names are identified through the APPLNAME connection attribute with the help of a wild
card (*) and do not need to be specified individually.

 CREATE WORKLOAD ACCRECS
 SESSION_USER GROUP ('ACCOUNTING')
 APPLNAME ('accrec*')
 SERVICE CLASS ACCOUNTNGSC

• Example 10: Create a workload named CAMPAIGN for requests submitted through the application
appl1, and have unit of work data collected and sent to any active unit of work event monitors.

 CREATE WORKLOAD CAMPAIGN
 APPLNAME ('appl1')
 COLLECT UNIT OF WORK DATA BASE

• Example 11: The following statements show how you can specify the different address value formats
supported by the ADDRESS connection attribute when creating a workload.

– To specify a secure domain name:

 CREATE WORKLOAD DOMAINWORKLOAD
 ADDRESS ('aviator.example.com')

– To specify a IPv4 address value:

 CREATE WORKLOAD IPWORKLOAD1
 ADDRESS ('192.0.2.11')

– To specify a IPv6 address value (long format):

 CREATE WORKLOAD IPWORKLOAD2
 ADDRESS ('2001:db8:519:13:204:acff:fe57:6135')

– To specify a IPv6 address value (short format):

 CREATE WORKLOAD IPWORKLOAD3
 ADDRESS ('2001:db8::202:55ff:fe9a:6eee')

CREATE WRAPPER
The CREATE WRAPPER statement registers a wrapper with a federated server. A wrapper is a mechanism
by which a federated server can interact with certain types of data sources.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization

The privileges held by the authorization ID of the statement must include DBADM authority.

Chapter 1. Structured Query Language (SQL) 1579

Syntax
CREATE WRAPPER wrapper-name

LIBRARY library-name

OPTIONS (

,

wrapper-option-name string-constant)

Description
wrapper-name

Names the wrapper. It can be:

• A predefined name. If a predefined name is specified, the federated server automatically assigns a
default value to library-name.

• A user-supplied name. If a user-supplied name is provided, it is necessary to also specify the
appropriate library-name to be used with that wrapper and operating system.

LIBRARY library-name
The name of the file that contains the wrapper library module. This option is required when a user-
supplied wrapper name is used, and cannot be specified when a predefined wrapper name is used.
The library name must be enclosed in single quotation marks.

The library name can be specified either as an absolute path name or as a base name (without
the path). If a base name is specified, the library must reside in the following subdirectory of your
database's installation path:

Operating system Subdirectory for the wrapper library module

Linux
AIX

lib

Windows bin

OPTIONS
Specify configuration options for the wrapper to be created. Which options you can specify depends
on the data source of the object for which a wrapper is being created. For a list of data sources and the
wrapper options that apply to each, see Data source options. Each option value is a character string
constant that must be enclosed in single quotation marks.

Notes
• Syntax alternatives: The following syntax is supported for compatibility with previous versions of Db2:

– ADD can be specified before wrapper-option-name string-constant.

Examples
1. Register the NET8 wrapper on a federated server to access Oracle data sources. NET8 is the

predefined name for the wrapper that you can use to access Oracle data sources.

 CREATE WRAPPER NET8

2. Register a wrapper on a Db2 federated server that uses the Linux operating system to access ODBC
data sources. Assign the name odbc to the wrapper that is being registered in the federated database.

1580 IBM Db2 V11.5: SQL Reference

The full path of the library that contains the ODBC Driver Manager is defined in the wrapper option
MODULE '/usr/lib/odbc.so'.

 CREATE WRAPPER odbc OPTIONS (MODULE '/usr/lib/odbc.so')

3. Register a wrapper on a Db2 federated server that uses the Windows operating system to access
ODBC data sources. The library name for the ODBC wrapper is 'db2rcodbc.dll'.

 CREATE WRAPPER odbc LIBRARY 'db2rcodbc.dll'

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation
Although an interactive SQL facility might provide an interface that gives the appearance of interactive
execution, this statement can only be embedded within an application program. It is not an executable
statement and cannot be dynamically prepared.

When invoked using the command line processor, additional options can be specified.

For more information, refer to "Using command line SQL statements and XQuery statements" in
Command Reference.

Authorization
The term "SELECT statement of the cursor" is used to specify the authorization rules. The SELECT
statement of the cursor is one of the following statements:

• The prepared select-statement identified by statement-name
• The specified select-statement

The privileges held by the authorization ID of the statement must include the privileges necessary to
execute the select-statement. See the Authorization section in "SQL queries".

If statement-name is specified:

• The authorization ID of the statement is the runtime authorization ID.
• The authorization check is performed when the SELECT-statement is prepared.
• The cursor cannot be opened unless the SELECT-statement is in a prepared state.

If select-statement is specified:

• GROUP privileges are not checked.
• The authorization ID of the statement is the authorization ID specified during program preparation.

Syntax

DECLARE cursor-name
ASENSITIVE

INSENSITIVE
1

CURSOR ● holdability ●

returnability ● FOR select-statement

statement-name

holdability

Chapter 1. Structured Query Language (SQL) 1581

WITHOUT HOLD

WITH HOLD

returnability
WITHOUT RETURN

WITH RETURN
TO CALLER

TO CLIENT

Notes:
1 This option can be used only in the context of a compound SQL (compiled) statement

Description
cursor-name

Specifies the name of the cursor created when the source program is run. The name must not be
the same as the name of another cursor declared in the source program. The cursor must be opened
before use.

ASENSITIVE or INSENSITIVE
Specifies whether the cursor is asensitive or insensitive to changes.
ASENSITIVE

Specifies that the cursor should be as sensitive as possible to insert, update, or delete operations
made to the rows underlying the result table, depending on how the select-statement is optimized.
This option is the default.

INSENSITIVE
Specifies that the cursor does not have sensitivity to insert, update, or delete operations that are
made to the rows underlying the result table. If INSENSITIVE is specified, the cursor is read-only
and the result table is materialized when the cursor is opened. As a result, the size of the result
table, the order of the rows, and the values for each row do not change after the cursor is opened.
The SELECT statement cannot contain a FOR UPDATE clause, and the cursor cannot be used for
positioned updates or deletes.

WITHOUT HOLD or WITH HOLD
Specifies whether or not the cursor should be prevented from being closed as a consequence of a
commit operation.
WITHOUT HOLD

Does not prevent the cursor from being closed as a consequence of a commit operation. This is
the default.

WITH HOLD
Maintains resources across multiple units of work. The effect of the WITH HOLD cursor attribute is
as follows:

• For units of work ending with COMMIT:

– Open cursors defined WITH HOLD remain open. The cursor is positioned before the next
logical row of the results table.

If a DISCONNECT statement is issued after a COMMIT statement for a connection with WITH
HOLD cursors, the held cursors must be explicitly closed or the connection will be assumed
to have performed work (simply by having open WITH HELD cursors even though no SQL
statements were issued) and the DISCONNECT statement will fail.

– All locks are released, except locks protecting the current cursor position of open WITH HOLD
cursors. The locks held include the locks on the table, and for parallel environments, the locks

1582 IBM Db2 V11.5: SQL Reference

on rows where the cursors are currently positioned. Locks on packages and dynamic SQL
sections (if any) are held.

– Valid operations on cursors defined WITH HOLD immediately following a COMMIT request
are:

- FETCH: Fetches the next row of the cursor.
- CLOSE: Closes the cursor.

– UPDATE and DELETE CURRENT OF CURSOR are valid only for rows that are fetched within the
same unit of work.

– LOB locators are freed.
– The set of rows modified by:

- A data change statement
- Routines that modify SQL data embedded within open WITH HOLD cursors

is committed.
• For units of work ending with ROLLBACK:

– All open cursors are closed.
– All locks acquired during the unit of work are released.
– LOB locators are freed.

• For special COMMIT case:

– Packages can be recreated either explicitly, by binding the package, or implicitly, because the
package has been invalidated and then dynamically recreated the first time it is referenced.
All held cursors are closed during package rebind. This might result in errors during
subsequent execution.

WITHOUT RETURN or WITH RETURN
Specifies whether or not the result table of the cursor is intended to be used as a result set that will be
returned from a procedure.
WITHOUT RETURN

Specifies that the result table of the cursor is not intended to be used as a result set that will be
returned from a procedure.

WITH RETURN
Specifies that the result table of the cursor is intended to be used as a result set that will be
returned from a procedure. WITH RETURN is relevant only if the DECLARE CURSOR statement is
contained with the source code for a procedure. In other cases, the precompiler might accept the
clause, but it has no effect.

Within an SQL procedure, cursors declared using the WITH RETURN clause that are still open
when the SQL procedure ends, define the result sets from the SQL procedure. All other open
cursors in an SQL procedure are closed when the SQL procedure ends. Within an external
procedure (one not defined using LANGUAGE SQL), the default for all cursors is WITH RETURN TO
CALLER. Therefore, all cursors that are open when the procedure ends will be considered result
sets. Cursors that are returned from a procedure cannot be declared as scrollable cursors.

TO CALLER
Specifies that the cursor can return a result set to the caller. For example, if the caller
is another procedure, the result set is returned to that procedure. If the caller is a client
application, the result set is returned to the client application.

TO CLIENT
Specifies that the cursor can return a result set to the client application. This cursor is invisible
to any intermediate nested procedures. If a function, method, or trigger called the procedure
either directly or indirectly, result sets cannot be returned to the client and the cursor will be
closed after the procedure finishes.

Chapter 1. Structured Query Language (SQL) 1583

select-statement
Identifies the SELECT statement of the cursor. The select-statement must not include parameter
markers, but can include references to host variables. The declarations of the host variables must
precede the DECLARE CURSOR statement in the source program.

statement-name
The SELECT statement of the cursor is the prepared SELECT statement identified by the statement-
name when the cursor is opened. The statement-name must not be identical to a statement-name
specified in another DECLARE CURSOR statement of the source program.

For an explanation of prepared SELECT statements, see "PREPARE".

Notes
• A program called from another program, or from a different source file within the same program, cannot

use the cursor that was opened by the calling program.
• Unnested procedures, with LANGUAGE other than SQL, will have WITH RETURN TO CALLER as the

default behavior if DECLARE CURSOR is specified without a WITH RETURN clause, and the cursor is
left open in the procedure. This provides compatibility with procedures from previous versions that
allow procedures to return result sets to applicable client applications. To avoid this behavior, close all
cursors opened in the procedure.

• If the SELECT statement of a cursor contains CURRENT DATE, CURRENT TIME, or CURRENT
TIMESTAMP, all references to these special registers will yield the same respective datetime value
on each FETCH. This value is determined when the cursor is opened.

• For more efficient processing of data, the database manager can block data for read-only cursors when
retrieving data from a remote server. The use of the FOR UPDATE clause helps the database manager
decide whether a cursor is updatable or not. Updatability is also used to determine the access path
selection as well. If a cursor is not going to be used in a Positioned UPDATE or DELETE statement, it
should be declared as FOR READ ONLY.

• A cursor in the open state designates a result table and a position relative to the rows of that table. The
table is the result table specified by the SELECT statement of the cursor.

• A cursor is deletable if each of the following conditions is true:

– Each FROM clause of the outer fullselect identifies only one base table or deletable view (cannot
identify a nested or common table expression or a nickname) without use of the OUTER clause

– The outer fullselect does not include a VALUES clause
– The outer fullselect does not include a GROUP BY clause or HAVING clause
– The outer fullselect does not include column functions in the select list
– The outer fullselect does not include SET operations (UNION, EXCEPT, or INTERSECT) with the

exception of UNION ALL
– The outer fullselect does not contain a FOR SYSTEM_TIME period specification.
– The select list of the outer fullselect does not include DISTINCT
– The outer fullselect does not include an ORDER BY clause (even if the ORDER BY clause is nested in a

view), and the FOR UPDATE clause has not been specified
– The select-statement does not include a FOR READ ONLY clause
– The FROM clause of the outer fullselect does not include a data-change-table-reference
– One or more of the following conditions is true:

- The FOR UPDATE clause is specified
- The cursor is statically defined, unless the STATICREADONLY bind option is YES
- The LANGLEVEL bind option is MIA or SQL92E

A column in the select list of the outer fullselect associated with a cursor is updatable if each of the
following conditions is true:

1584 IBM Db2 V11.5: SQL Reference

– The cursor is deletable
– The column resolves to a column of the base table
– The LANGLEVEL bind option is MIA, SQL92E or the select-statement includes the FOR UPDATE

clause (the column must be specified explicitly or implicitly in the FOR UPDATE clause)

A cursor is read-only if it is not deletable.

A cursor is ambiguous if each of the following conditions is true:

– The select-statement is dynamically prepared
– The select-statement does not include either the FOR READ ONLY clause or the FOR UPDATE clause
– The LANGLEVEL bind option is SAA1
– The cursor otherwise satisfies the conditions of a deletable cursor

An ambiguous cursor is considered read-only if the BLOCKING bind option is ALL, otherwise it is
considered updatable.

• Cursors in procedures that are called by application programs written using CLI can be used to define
result sets that are returned directly to the client application. Cursors in SQL procedures can also be
returned to a calling SQL procedure only if they are defined using the WITH RETURN clause.

• Cursors declared in routines that are invoked directly or indirectly from a cursor declared WITH HOLD,
do not inherit the WITH HOLD option. Thus, unless the cursor in the routine is explicitly defined WITH
HOLD, a COMMIT in the application will close it.

Consider the following application and two UDFs:

Application:

 DECLARE APPCUR CURSOR WITH HOLD FOR SELECT UDF1() ...
 OPEN APPCUR
 FETCH APPCUR ...
 COMMIT

UDF1:

 DECLARE UDF1CUR CURSOR FOR SELECT UDF2() ...
 OPEN UDF1CUR
 FETCH UDF1CUR ...

UDF2:

 DECLARE UDF2CUR CURSOR WITH HOLD FOR SELECT UDF2() ...
 OPEN UDF2CUR
 FETCH UDF2CUR ...

After the application fetches cursor APPCUR, all three cursors are open. When the application issues the
COMMIT statement, APPCUR remains open, because it was declared WITH HOLD. In UDF1, however,
the cursor UDF1CUR is closed, because it was not defined with the WITH HOLD option. When the cursor
UDF1CUR is closed, all routine invocations in the corresponding select-statement complete (receiving a
final call, if so defined). UDF2 completes, which causes UDF2CUR to close.

Examples
Example 1: The DECLARE CURSOR statement associates the cursor name C1 with the results of the
SELECT.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DEPARTMENT
 WHERE ADMRDEPT = 'A00';

Chapter 1. Structured Query Language (SQL) 1585

Example 2: Assume that the EMPLOYEE table has been altered to add a generated column, WEEKLYPAY,
that calculates the weekly pay based on the yearly salary. Declare a cursor to retrieve the system-
generated column value from a row to be inserted.

 EXEC SQL DECLARE C2 CURSOR FOR
 SELECT E.WEEKLYPAY
 FROM NEW TABLE
 (INSERT INTO EMPLOYEE
 (EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL, SALARY)
 VALUES('000420', 'Peter', 'U', 'Bender', 16, 31842) AS E;

DECLARE GLOBAL TEMPORARY TABLE
The DECLARE GLOBAL TEMPORARY TABLE statement defines a temporary table for the current session.

The declared temporary table description does not appear in the system catalog. It is not persistent and
cannot be shared with other sessions. Each session that defines a declared global temporary table of the
same name has its own unique description of the temporary table. When the session terminates, the rows
of the table are deleted, and the description of the temporary table is dropped.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• USE privilege on the USER TEMPORARY table space
• DBADM authority
• SYSADM authority
• SYSCTRL authority

When defining a table using LIKE or a fullselect, the privileges held by the authorization ID of the
statement must also include at least one of the following authorities on each identified table or view:

• SELECT privilege on the table or view
• SELECTIN privilege on the schema containing the table or view
• CONTROL privilege on the table or view
• DATAACCESS authority on the schema containing the table or view
• DATAACCESS authority

1586 IBM Db2 V11.5: SQL Reference

Syntax
DECLARE GLOBAL TEMPORARY TABLE table-name

(

,

column-definition)

LIKE table-name1

view-name copy-options

AS (fullselect) WITH NO DATA

WITH DATA copy-options

●

ORGANIZE BY ROW

COLUMN

●
ON COMMIT DELETE ROWS

ON COMMIT PRESERVE ROWS

●
LOGGED

NOT LOGGED
ON ROLLBACK DELETE ROWS

ON ROLLBACK PRESERVE ROWS

●

WITH REPLACE IN tablespace-name

●

distribution-clause

●

column-definition
column-name data-type

column-options

data-type
built-in-type

built-in-type

Chapter 1. Structured Query Language (SQL) 1587

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

1
FOR BIT DATA

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

NCHAR

NATIONAL CHAR

CHARACTER

(1)

( integer)

NVARCHAR

NCHAR VARYING

NATIONAL CHAR

CHARACTER

VARYING

( integer)

NCLOB

NCHAR LARGE OBJECT

NATIONAL CHARACTER LARGE OBJECT

(1M)

( integer
K

M

G

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

BOOLEAN

column-options

1588 IBM Db2 V11.5: SQL Reference

●

NOT NULL

●

default-clause

GENERATED ALWAYS

BY DEFAULT

AS IDENTITY

identity-options

●

default-clause
WITH

DEFAULT

default-values

default-values
constant

datetime-special-register

user-special-register

CURRENT SCHEMA

NULL

cast-function (constant

datetime-special-register

user-special-register

CURRENT SCHEMA

)

EMPTY_CLOB()

EMPTY_DBCLOB()

EMPTY_NCLOB()

EMPTY_BLOB()

copy-options
●

INCLUDING

EXCLUDING

COLUMN
DEFAULTS

●

EXCLUDING IDENTITY
COLUMN ATTRIBUTES

INCLUDING IDENTITY
COLUMN ATTRIBUTES

●

distribution-clause

DISTRIBUTE BY
HASH

(

,

column-name)

RANDOM

Notes:

Chapter 1. Structured Query Language (SQL) 1589

1 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).

Description
table-name

Names the temporary table. The qualifier, if specified explicitly, must be SESSION, otherwise an error
is returned (SQLSTATE 428EK). If the qualifier is not specified, SESSION is implicitly assigned.

Each session that defines a declared temporary table with the same table-name has its own unique
description of that declared temporary table. The WITH REPLACE clause must be specified if table-
name identifies a declared temporary table that already exists in the session (SQLSTATE 42710).

It is possible that a table, view, alias, or nickname already exists in the catalog, with the same name
and the schema name SESSION. In this case:

• A declared temporary table table-name may still be defined without any error or warning
• Any references to SESSION.table-name will resolve to the declared temporary table rather than the

SESSION.table-name already defined in the catalog.

column-definition
Defines the attributes of a column of the temporary table.
column-name

Names a column of the table. The name cannot be qualified, and the same name cannot be used
for more than one column of the table (SQLSTATE 42711).

A row-organized table can have the following attributes:

• A 4K page size with a maximum of 500 columns, where the byte counts of the columns must not
be greater than 4005.

• An 8K page size with a maximum of 1012 columns, where the byte counts of the columns must
not be greater than 8101.

• A 16K page size with a maximum of 1012 columns, where the byte counts of the columns must
not be greater than 16,293.

• A 32K page size with a maximum of 1012 columns, where the byte counts of the columns must
not be greater than 32,677.

A column-organized table can have a maximum of 1012 columns, regardless of its page size. The
byte count of each column must not exceed 32,677. Extended row size support does not apply to
column-organized tables.

A created temporary table cannot have a row-begin column, row-end column, or a transaction-
start-ID column.

For more details, see "Row Size" in “CREATE TABLE ” on page 1351.

data-type
Specifies the data type of the column
built-in-type

Specifies a built-in data type. See "CREATE TABLE" for a description of built-in-type.

A SYSPROC.DB2SECURITYLABEL data type cannot be specified for a declared temporary
table.

column-options
Defines additional options related to the columns of the table.
NOT NULL

Prevents the column from containing null values. For specification of null values, see NOT
NULL in “CREATE TABLE ” on page 1351.

default-clause
Specifies a default value for the column.

1590 IBM Db2 V11.5: SQL Reference

WITH
An optional keyword.

DEFAULT
Provides a default value in the event a value is not supplied on INSERT or is specified as
DEFAULT on INSERT or UPDATE. If a default value is not specified following the DEFAULT
keyword, the default value depends on the data type of the column as shown in "ALTER
TABLE".

If the column is based on a column of a typed table, a specific default value must be
specified when defining a default. A default value cannot be specified for the object
identifier column of a typed table (SQLSTATE 42997).

If a column is defined using a distinct type, then the default value of the column is the
default value of the source data type cast to the distinct type.

If a column is defined using a structured type, the default-clause cannot be specified
(SQLSTATE 42842).

Omission of DEFAULT from a column-definition results in the use of the null value as the
default for the column. If such a column is defined NOT NULL, then the column does not
have a valid default.

default-values
Specific types of default values that can be specified are as follows.
constant

Specifies the constant as the default value for the column. The specified constant
must:

• represent a value that could be assigned to the column in accordance with the rules
of assignment

• not be a floating-point constant unless the column is defined with a floating-point
data type

• be a numeric constant or a decimal floating-point special value if the data type of
the column is a decimal floating-point. Floating-point constants are first interpreted
as DOUBLE and then converted to decimal floating-point if the target column is
DECFLOAT. For DECFLOAT(16) columns, decimal constants having precision greater
than 16 digits will be rounded using the rounding modes specified by the CURRENT
DECFLOAT ROUNDING MODE special register.

• not have nonzero digits beyond the scale of the column data type if the constant is
a decimal constant (for example, 1.234 cannot be the default for a DECIMAL(5,2)
column)

• be expressed with no more than 254 bytes including the quote characters, any
introducer character such as the X for a hexadecimal constant, and characters from
the fully qualified function name and parentheses when the constant is the argument
of a cast-function

datetime-special-register
Specifies the value of the datetime special register (CURRENT DATE, CURRENT TIME,
or CURRENT TIMESTAMP) at the time of INSERT, UPDATE, or LOAD as the default for
the column. The data type of the column must be the data type that corresponds to the
special register specified (for example, data type must be DATE when CURRENT DATE
is specified).

user-special-register
Specifies the value of the user special register (CURRENT USER, SESSION_USER,
SYSTEM_USER) at the time of INSERT, UPDATE, or LOAD as the default for the column.
The data type of the column must be a character string with a length not less than the
length attribute of a user special register. Note that USER can be specified in place of
SESSION_USER and CURRENT_USER can be specified in place of CURRENT USER.

Chapter 1. Structured Query Language (SQL) 1591

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register at the time of INSERT,
UPDATE, or LOAD as the default for the column. If CURRENT SCHEMA is specified, the
data type of the column must be a character string with a length greater than or equal
to the length attribute of the CURRENT SCHEMA special register.

NULL
Specifies NULL as the default for the column. If NOT NULL was specified, DEFAULT
NULL may be specified within the same column definition but will result in an error on
any attempt to set the column to the default value.

cast-function
This form of a default value can only be used with columns defined as a distinct type,
BLOB or datetime (DATE, TIME or TIMESTAMP) data type. For distinct type, with the
exception of distinct types based on BLOB or datetime types, the name of the function
must match the name of the distinct type for the column. If qualified with a schema
name, it must be the same as the schema name for the distinct type. If not qualified,
the schema name from function resolution must be the same as the schema name for
the distinct type. For a distinct type based on a datetime type, where the default value
is a constant, a function must be used and the name of the function must match the
name of the source type of the distinct type with an implicit or explicit schema name
of SYSIBM. For other datetime columns, the corresponding datetime function may also
be used. For a BLOB or a distinct type based on BLOB, a function must be used and
the name of the function must be BLOB with an implicit or explicit schema name of
SYSIBM.
constant

Specifies a constant as the argument. The constant must conform to the rules of a
constant for the source type of the distinct type or for the data type if not a distinct
type. If the cast-function is BLOB, the constant must be a string constant.

datetime-special-register
Specifies CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP. The source
type of the distinct type of the column must be the data type that corresponds to
the specified special register.

user-special-register
Specifies CURRENT USER, SESSION_USER, or SYSTEM_USER. The data type of the
source type of the distinct type of the column must be a string data type with a
length of at least 8 bytes. If the cast-function is BLOB, the length attribute must be
at least 8 bytes.

CURRENT SCHEMA
Specifies the value of the CURRENT SCHEMA special register. The data type of
the source type of the distinct type of the column must be a character string with
a length greater than or equal to the length attribute of the CURRENT SCHEMA
special register. If the cast-function is BLOB, the length attribute must be at least 8
bytes.

EMPTY_CLOB(), EMPTY_DBCLOB(), or EMPTY_BLOB()
Specifies a zero-length string as the default for the column. The column must have the
data type that corresponds to the result data type of the function.

If the value specified is not valid, an error is returned (SQLSTATE 42894).

IDENTITY and identity-options
For specification of identity columns, see IDENTITY and identity-options in "CREATE TABLE".

LIKE table-name1 or view-name or nickname
Specifies that the columns of the table have exactly the same name and description as the columns
of the identified table (table-name1), view (view-name), or nickname (nickname). The name specified
after LIKE must identify a table, view, or nickname that exists in the catalog or a declared temporary
table. A typed table or typed view cannot be specified (SQLSTATE 428EC). A protected table cannot

1592 IBM Db2 V11.5: SQL Reference

be specified (SQLSTATE 42962).A table that has a column defined as IMPLICITLY HIDDEN cannot be
specified (SQLSTATE 560AE).

The use of LIKE is an implicit definition of n columns, where n is the number of columns in the
identified table (including implicitly hidden columns), view, or nickname. The implicit definition
depends on what is identified after LIKE.

• If a table is identified, then the implicit definition includes the column name, data type and
nullability characteristic of each of the columns of table-name1. If EXCLUDING COLUMN DEFAULTS
is not specified, then the column default is also included.

• If a view is identified, then the implicit definition includes the column name, data type, and
nullability characteristic of each of the result columns of the fullselect defined in view-name. The
data types of the view columns must be data types that are valid for columns of a table.

• If a nickname is identified, then the implicit definition includes the column name, data type, and
nullability characteristic of each column of nickname.

• If a random distribution table using the random by generation method is identified, then the
RANDOM_DISTRIBUTION_KEY column used for generation of random distribution values is not
included. Unless the new table being created shares the same table distribution.

Column default and identity column attributes may be included or excluded, based on the copy-
attributes clauses. The implicit definition does not include any other attributes of the identified table,
view, or nickname. Thus the new table does not have any unique constraints, foreign key constraints,
triggers, indexes, table partitioning keys, or distribution keys. The table is created in the table space
implicitly or explicitly specified by the IN clause, and the table has any other optional clause only if the
optional clause is specified.

When a table is identified in the LIKE clause and that table contains a ROW CHANGE TIMESTAMP
column, the corresponding column of the new table inherits only the data type of the ROW CHANGE
TIMESTAMP column. The new column is not considered to be a generated column.

If row or column level access control (RCAC) is enforced for table-name1, RCAC is not inherited by the
new table.

AS (fullselect)
Specifies that, for each column in the derived result table of the fullselect, a corresponding column
is to be defined for the table. Each defined column adopts the following attributes from its
corresponding column of the result table (if applicable to the data type):

• Column name
• Column description
• Data type, length, precision, and scale
• Nullability

The following attributes are not included (although the default value and identity attributes can be
included by using the copy-options):

• Default value
• Identity attributes
• Hidden attribute
• ROW CHANGE TIMESTAMP
• Any other optional attributes of the tables or views referenced in the fullselect

The following restrictions apply:

• Every select list element must have a unique name (SQLSTATE 42711). The AS clause can be used
in the select clause to provide unique names.

• The fullselect cannot refer to host variables or include parameter markers.
• The data types of the result columns of the fullselect must be data types that are valid for columns

of a table.

Chapter 1. Structured Query Language (SQL) 1593

• If row or column level access control (RCAC) is activated for any table that is specified in the
fullselect, RCAC is not cascaded to the new table.

WITH NO DATA | WITH DATA
Determines whether to fill the columns of the table with data:
WITH NO DATA

Do not execute the fullselect. It is used only to define the table, which is not populated with the
results of the query.

WITH DATA
Execute the fullselect and populate the table with the results of the query.

copy-options
These options specify whether to copy additional attributes of the source result table definition (table,
view, or fullselect).
INCLUDING COLUMN DEFAULTS

Column defaults for each updatable column of the source result table definition are copied.
Columns that are not updatable will not have a default defined in the corresponding column of the
created table.

If LIKE table-name1 is specified, and table-name1 identifies a base table, created temporary
table, or declared temporary table, then INCLUDING COLUMN DEFAULTS is the default.

EXCLUDING COLUMN DEFAULTS
Column defaults are not copied from the source result table definition.

This clause is the default, except when LIKE table-name is specified and table-name identifies a
base table, created temporary table, or declared temporary table.

INCLUDING IDENTITY COLUMN ATTRIBUTES
If available, identity column attributes (START WITH, INCREMENT BY, and CACHE values) are
copied from the source's result table definition. It is possible to copy these attributes if the
element of the corresponding column in the table, view, or fullselect is the name of a column of a
table, or the name of a column of a view which directly or indirectly maps to the column name of a
base table or created temporary table with the identity property. In all other cases, the columns of
the new temporary table will not get the identity property. For example:

• The select list of the fullselect includes multiple instances of the name of an identity column
(that is, selecting the same column more than once)

• The select list of the fullselect includes multiple identity columns (that is, it involves a join)
• The identity column is included in an expression in the select list
• The fullselect includes a set operation (union, except, or intersect).

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Identity column attributes are not copied from the source result table definition.

ORGANIZE BY
Specifies how the data is organized in the data pages of the table:
ROW

The data is stored by row in the data pages of the table. Each data page stores the data for one or
more rows of the table.

COLUMN
The data is stored by column in the data pages of the table. Each data page stores data for one
column of the table.

The default is determined by the value of the dft_table_org database configuration parameter.

ON COMMIT
Specifies the action taken on the global temporary table when a COMMIT operation is performed. The
default is DELETE ROWS.

1594 IBM Db2 V11.5: SQL Reference

DELETE ROWS
All rows of the table will be deleted if no WITH HOLD cursor is open on the table.

PRESERVE ROWS
Rows of the table will be preserved.

LOGGED or NOT LOGGED
Specifies whether operations for the table are logged. The default is LOGGED.
LOGGED

Specifies that insert, update, or delete operations against the table as well as the creation or
dropping of the table are to be logged.

NOT LOGGED
Specifies that insert, update, or delete operations against the table are not to be logged, but
that the creation or dropping of the table is to be logged. During a ROLLBACK (or ROLLBACK TO
SAVEPOINT) operation:

• If the table had been created within a unit of work (or savepoint), the table is dropped
• If the table had been dropped within a unit of work (or savepoint), the table is recreated, but

without any data

ON ROLLBACK
Specifies the action that is to be taken on the not logged global temporary table when a
ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is performed. The default is DELETE ROWS.
DELETE ROWS

If the table data has been changed, all the rows will be deleted.
PRESERVE ROWS

Rows of the table will be preserved.

Note: Declared global temporary tables using NOT LOGGED ON ROLLBACK PRESERVE ROWS
cannot be column-organized.

WITH REPLACE
Indicates that, in the case that a declared temporary table already exists with the specified name,
the existing table is replaced with the temporary table defined by this statement (and all rows of the
existing table are deleted).

When WITH REPLACE is not specified, then the name specified must not identify a declared
temporary table that already exists in the current session (SQLSTATE 42710).

IN tablespace-name
Identifies the table space in which the declared temporary table will be instantiated. The table space
must exist and be a USER TEMPORARY table space (SQLSTATE 42838), over which the authorization
ID of the statement has USE privilege (SQLSTATE 42501). If this clause is not specified, a table space
for the table is determined by choosing the USER TEMPORARY table space with the smallest sufficient
page size over which the authorization ID of the statement has USE privilege. When more than one
table space qualifies, preference is given according to who was granted the USE privilege:

1. The authorization ID
2. A group to which the authorization ID belongs
3. PUBLIC

If more than one table space still qualifies, the final choice is made by the database manager. When
no USER TEMPORARY table space qualifies, an error is raised (SQLSTATE 42727).

Determination of the table space can change when:

• Table spaces are dropped or created
• USE privileges are granted or revoked

The sufficient page size of a table is determined by either the byte count of the row or the number of
columns. For more details, see "Row Size" in “CREATE TABLE ” on page 1351.

Chapter 1. Structured Query Language (SQL) 1595

distribution-clause
Specifies the database partitioning or the way the data is distributed across multiple database
partitions.
DISTRIBUTE BY HASH (column-name, ...)

Specifies the use of the default hashing function on the specified columns, called a distribution
key, as the distribution method across database partitions. The column-name must be an
unqualified name that identifies a column of the table (SQLSTATE 42703). The same column must
not be identified more than once (SQLSTATE 42709). No column whose data type is BLOB, CLOB,
DBCLOB, XML, distinct type based on any of these types, or structured type can be used as part of
a distribution key (SQLSTATE 42962).

If this clause is not specified, and the table resides in a multiple partition database partition group
with multiple database partitions, a default distribution key is automatically defined.

If none of the columns satisfies the requirements for a default distribution key, the table is created
without one. Such tables are allowed only in table spaces that are defined on single-partition
database partition groups.

For tables in table spaces that are defined on single-partition database partition groups, any
collection of columns with data types that are valid for a distribution key can be used to define the
distribution key. If this clause is not specified, no distribution key is created.

DISTRIBUTE BY RANDOM
Specifies that the database manager will select a distribution key to spread data evenly across all
database partitions of the database partitioning group. Data distribution is accomplished by using
a random by generation method. In this method, the database manager will include a column in
the table to generate and store a generated value to use in the hashing function. The column will
be created with the IMPLICITLY HIDDEN clause so that it does not appear in queries unless
explicitly included. The value of the column will be automatically generated as new rows are
added to the table. By default, the column name is RANDOM_DISTRIBUTION_KEY. If it collides
with the existing column, a non-conflicting name will be generated by the database manager.

Notes
• A user temporary table space must exist before a declared temporary table can be declared (SQLSTATE

42727).
• Referencing a declared temporary table: The description of a declared temporary table does not appear

in the database catalog (SYSCAT.TABLES); therefore, it is not persistent and is not shareable across
database connections. This means that each session that defines a declared temporary table called
table-name has its own possibly unique description of that declared global temporary table.

In order to reference the declared temporary table in an SQL statement (other than the DECLARE
GLOBAL TEMPORARY TABLE statement), the table must be explicitly or implicitly qualified by the
schema name SESSION. If table-name is not qualified by SESSION, declared temporary tables are not
considered when resolving the reference.

A reference to SESSION.table-name in a connection that has not declared a declared temporary table
by that name will attempt to resolve from persistent objects in the catalog. If no such object exists, an
error occurs (SQLSTATE 42704).

• When binding a package that has static SQL statements that refer to tables implicitly or explicitly
qualified by SESSION, those statements will not be bound statically. When these statements are
invoked, they will be incrementally bound, regardless of the VALIDATE option chosen while binding the
package. At runtime, each table reference will be resolved to a declared temporary table, if it exists, or a
created temporary table, or permanent table. If none exist, an error will be raised (SQLSTATE 42704).

• Privileges: When a declared temporary table is defined, the definer of the table is granted all table
privileges on the table, including the ability to drop the table. Additionally, these privileges are granted
to PUBLIC. (None of the privileges are granted with the GRANT option, and none of the privileges appear
in the catalog table.) This enables any SQL statement in the session to reference a declared temporary
table that has already been defined in that session.

1596 IBM Db2 V11.5: SQL Reference

• Instantiation and termination: For the following explanations, P denotes a session and T is a declared
temporary table in the session P:

– An empty instance of T is created as a result of the DECLARE GLOBAL TEMPORARY TABLE statement
that is executed in P.

– Any SQL statement in P can make reference to T and any reference to T in P is a reference to that
same instance of T.

– If a DECLARE GLOBAL TEMPORARY TABLE statement is specified within the SQL procedure
compound statement (defined by BEGIN and END), the scope of the declared temporary table is
the connection, not just the compound statement, and the table is known outside of the compound
statement. The table is not implicitly dropped at the END of the compound statement. A declared
temporary table cannot be defined multiple times by the same name in other compound statements
in that session, unless the table has been explicitly dropped.

– Assuming that the ON COMMIT DELETE ROWS clause was specified implicitly or explicitly, then when
a commit operation terminates a unit of work in P, and there is no open WITH HOLD cursor in P that is
dependent on T, the commit includes the operation DELETE FROM SESSION.T.

– When a rollback operation terminates a unit of work or a savepoint in P, and that unit of work or
savepoint includes a modification to SESSION.T:

- If NOT LOGGED was specified, all rows from SESSION.T are deleted unless ON ROLLBACK
PRESERVE ROWS was also specified

- If NOT LOGGED was not specified, the changes to T are undone
– If NOT LOGGED was specified and an INSERT, UPDATE or DELETE statement fails during execution

(as opposed to a compilation error), all rows from SESSION.T are deleted.
– When a rollback operation terminates a unit of work or a savepoint in P, and that unit of work or

savepoint includes the declaration of SESSION.T, then the rollback includes the operation DROP
SESSION.T.

– If a rollback operation terminates a unit of work or a savepoint in P, and that unit of work or savepoint
includes the drop of a declared temporary table SESSION.T, then the rollback will undo the drop of
the table. If NOT LOGGED was specified, then the table will also have been emptied.

– When the application process that declared T terminates or disconnects from the database, T is
dropped and its instantiated rows are destroyed.

– When the connection to the server at which T was declared terminates, T is dropped and its
instantiated rows are destroyed.

• Restrictions on the use of declared temporary tables: Declared temporary tables cannot:

– Be specified in an ALTER, COMMENT, GRANT, LOCK, RENAME or REVOKE statement (SQLSTATE
42995).

– Be referenced in an AUDIT, CREATE ALIAS, or CREATE VIEW statement (SQLSTATE 42995).
– Be specified in referential constraints (SQLSTATE 42995).

• Data row compression is enabled for a declared temporary table. When the database manager
determines that there is a performance gain, table row data including XML documents stored inline
in the base table object will be compressed. However, data compression of the XML storage object of a
declared temporary table is not supported.

• Index compression is enabled for indexes that are created on declared temporary tables.
• Index compression is enabled by default for indexes that are created on declared temporary tables.

Compression will be shown as on, but indexes will not be compressed if the correct license (IBM Db2
Storage Optimization Feature) is not applied.

• Syntax alternatives: The following alternatives are non-standard. They are supported for compatibility
with earlier product versions or with other database products.

– DEFINITION ONLY can be specified in place of WITH NO DATA.
– The PARTITIONING KEY clause or DISTRIBUTE ON clause can be specified in place of the

DISTRIBUTE BY clause.

Chapter 1. Structured Query Language (SQL) 1597

– When specifying the value of the datetime special register, NOW() can be specified in place of
CURRENT_TIMESTAMP.

– In a CHAR or VARCHAR column definition, you do not need to specify the CCSID explicitly; the correct
CCSID will be used automatically. However, if you do specify the CCSID explicitly, it must correspond
to the type of database being used:

- CCSID ASCII for a non-unicode database
- CCSID UNICODE for a unicode database

Examples
• Example 1: Define a declared temporary table with column definitions for an employee number, salary,

bonus, and commission.

 DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
 (EMPNO CHAR(6) NOT NULL,
 SALARY DECIMAL(9, 2),
 BONUS DECIMAL(9, 2),
 COMM DECIMAL(9, 2)) ON COMMIT PRESERVE ROWS

• Example 2: Assume that base table USER1.EMPTAB exists and that it contains three columns, one of
which is an identity column. Declare a temporary table that has the same column names and attributes
(including identity attributes) as the base table.

DECLARE GLOBAL TEMPORARY TABLE TEMPTAB1
 LIKE USER1.EMPTAB
 INCLUDING IDENTITY
 ON COMMIT PRESERVE ROWS

In this example, SESSION is used as the implicit qualifier for TEMPTAB1.

Compatibility for Netezza Performance Server (NPS) temporary tables
If you need to declare a temporary table, it is recommended that you use a DECLARE GLOBAL
TEMPORARY TABLE statement. However, to provide compatibility with IBM Netezza SQL, a CREATE
TEMPORARY TABLE statement can be used instead.

Unlike a DECLARE GLOBAL TEMPORARY TABLE statement, the table name specified by a CREATE
TEMPORARY TABLE statement can be qualified with a schema name other than SESSION. The default
schema is the current schema. For a schema other than SESSION:

• In order to be able to reference a declared temporary table within STATIC SQL, the package must be
bound with VALIDATE RUN.

• The session's ability to use the package cache might be impeded as a consequence.
• The schema name cannot begin with SYS (SQLSTATE 42939).

The qualified name of the temporary table must not identify a table, view, nickname, or alias that is
described in the catalog (SQLSTATE 42710).

A CREATE TEMPORARY TABLE statement can include the following additional syntax elements, which
correspond to those of DECLARE GLOBAL TEMPORARY TABLE:

• A list of column definitions.
• A DISTRIBUTE BY HASH clause. For compatibility reasons, DISTRIBUTE ON HASH can be specified as

an alternative.
• A DISTRIBUTE BY HASH clause. For compatibility reasons, DISTRIBUTE BY RANDOM can be specified

as an alternative.
• An AS fullselect clause. Note that the fullselect can be enclosed in parentheses.

The following two statements are equivalent and achieve the same result:

CREATE TEMPORARY TABLE table_name (column_definition) AS fullselect

1598 IBM Db2 V11.5: SQL Reference

DECLARE GLOBAL TEMPORARY TABLE table_name (column_definition) AS (fullselect) WITH DATA
 ON COMMIT PRESERVE ROWS LOGGED

DELETE
The DELETE statement deletes rows from a table, nickname, or view, or the underlying tables, nicknames,
or views of the specified fullselect.

Deleting a row from a nickname deletes the row from the data source object to which the nickname
refers. Deleting a row from a view deletes the row from the table on which the view is based if no
INSTEAD OF trigger is defined for the delete operation on this view. If such a trigger is defined, the trigger
will be executed instead.

There are two forms of this statement:

• The Searched DELETE form is used to delete one or more rows (optionally determined by a search
condition).

• The Positioned DELETE form is used to delete exactly one row (as determined by the current position of
a cursor).

Invocation
A DELETE statement can be embedded in an application program or issued through the use of dynamic
SQL statements. It is an executable statement that can be dynamically prepared.

Authorization
To execute either form of this statement, the privileges held by the authorization ID of the statement must
include at least one of the following authorities:

• DELETE privilege on the table, view, or nickname from which rows are to be deleted
• CONTROL privilege on the table, view, or nickname from which rows are to be deleted
• DELETEIN privilege on the schema containing the table, view or nickname from which rows are to be

deleted
• Schema DATAACCESS authority on the schema containing the table table, view or nickname from which

rows are to be deleted
• DATAACCESS authority

To execute a Searched DELETE statement, the privileges held by the authorization ID of the statement
must also include at least one of the following authorities for each table, view, or nickname referenced by
a subquery:

• SELECT privilege
• CONTROL privilege
• SELECTIN privilege on the schema containing the table, view, or nickname
• Schema DATAACCESS authority on the schema containing the table, view, or nickname
• DATAACCESS authority

If the package used to process the statement is precompiled with SQL92 rules (option LANGLEVEL with a
value of SQL92E or MIA), and the searched form of a DELETE statement includes a reference to a column
of the table or view in the search-condition, the privileges held by the authorization ID of the statement
must also include at least one of the following authorities:

• SELECT privilege
• CONTROL privilege
• SELECTIN privilege on the schema containing the table, view, or nickname
• Schema DATAACCESS authority on the schema containing the table or view
• DATAACCESS authority

Chapter 1. Structured Query Language (SQL) 1599

If the specified table or view is preceded by the ONLY keyword, the privileges held by the authorization
ID of the statement must also include the SELECT privilege for every subtable or subview of the specified
table or view.

Group privileges are not checked for static DELETE statements.

If the target of the delete operation is a nickname, the privileges on the object at the data source are not
considered until the statement is executed at the data source. At this time, the authorization ID that is
used to connect to the data source must have the privileges required for the operation on the object at the
data source. The authorization ID of the statement can be mapped to a different authorization ID at the
data source.

Syntax (searched-delete)
DELETE FROM table-name

view-name period-clause
1

nickname

ONLY (table-name

view-name

)

(

WITH

,

common-table-expression

fullselect)

correlation-clause include-columns assignment-clause

WHERE search-condition order-by-clause
2 offset-clause

fetch-clause WITH RR

RS

CS

UR

SKIP LOCKED

DATA

WAIT FOR OUTCOME

NOWAIT

WAIT <time sec>

Notes:
1 If the period-clause is specified, neither the offset-clause nor the fetch-clause can be specified
(SQLSTATE 42601).
2 If the order-by-clause is specified, either the offset-clause or fetch-clause must also be specified
(SQLSTATE 42601).

period-clause
FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

1600 IBM Db2 V11.5: SQL Reference

include-columns

INCLUDE (

,

column-name data-type)

Syntax (positioned-delete)
DELETE FROM table-name

view-name

nickname

ONLY (table-name

view-name

)

(

WITH

,

common-table-expression

fullselect)

correlation-clause

WHERE CURRENT OF cursor-name

correlation-clause
AS

correlation-name

(column-name)

Description
FROM table-name, view-name, nickname, or (fullselect)

Identifies the object of the delete operation. The name must identify one of the following objects:

• A table or view that exists in the catalog at the current server
• A table or view at a remote server specified using a remote-object-name

The object must not be a catalog table, a catalog view, a system-maintained materialized query table,
or a read-only view.

If table-name is a typed table, rows of the table or any of its proper subtables may get deleted by the
statement.

If view-name is a typed view, rows of the underlying table or underlying tables of the view's proper
subviews may get deleted by the statement. If view-name is a regular view with an underlying table
that is a typed table, rows of the typed table or any of its proper subtables may get deleted by the
statement.

If the object of the delete operation is a fullselect, the fullselect must be deletable, as defined in the
"Deletable views" Notes item in the description of the CREATE VIEW statement.

For additional restrictions related to temporal tables and use of a view or fullselect as the target of the
delete operation, see "Considerations for a system-period temporal table" and "Considerations for an
application-period temporal table" in the Notes section.

Only the columns of the specified table can be referenced in the WHERE clause. For a positioned
DELETE, the associated cursor must also have specified the table or view in the FROM clause without
using ONLY.

Chapter 1. Structured Query Language (SQL) 1601

FROM ONLY (table-name)
Applicable to typed tables, the ONLY keyword specifies that the statement should apply only to
data of the specified table and rows of proper subtables cannot be deleted by the statement. For a
positioned DELETE, the associated cursor must also have specified the table in the FROM clause using
ONLY. If table-name is not a typed table, the ONLY keyword has no effect on the statement.

FROM ONLY (view-name)
Applicable to typed views, the ONLY keyword specifies that the statement should apply only to data of
the specified view and rows of proper subviews cannot be deleted by the statement. For a positioned
DELETE, the associated cursor must also have specified the view in the FROM clause using ONLY. If
view-name is not a typed view, the ONLY keyword has no effect on the statement.

period-clause
Specifies that a period clause applies to the target of the delete operation.

If the target of the delete operation is a view, the following conditions apply to the view:

• The FROM clause of the outer fullselect of the view definition must include a reference, directly or
indirectly, to an application-period temporal table (SQLSTATE 42724M).

• An INSTEAD OF DELETE trigger must not be defined for the view (SQLSTATE 428HY).

FOR PORTION OF BUSINESS_TIME
Specifies that the delete only applies to row values for the portion of the period in the row that
is specified by the period clause. The BUSINESS_TIME period must exist in the table (SQLSTATE
4274M). FOR PORTION OF BUSINESS_TIME must not be specified if the value of the CURRENT
TEMPORAL BUSINESS_TIME special register is not NULL when the BUSTIMESENSITIVE bind
option is set to YES (SQLSTATE 428HY).
FROM value1 TO value2

Specifies that the delete applies to rows for the period specified from value1 up to value2. No
rows are deleted if value1 is greater than or equal to value2, or if value1 or value2 is the null
value (SQLSTATE 02000).

For the period specified with FROM value1 TO value2, the BUSINESS_TIME period in a row in
the target of the delete is in any of the following states:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than value1.

• Overlaps the endof the specified period if the value of the end column is greater than or
equal to value2 and the value of the begin column is less than value2.

• Is fully contained within the specified period if the value for the begin column for
BUSINESS_TIME is greater than or equal to value1 and the value for the corresponding
end column is less than or equal to value2.

• Is partially contained in the specified period if the row overlaps the beginning of the
specified period or the end of the specified period, but not both.

• Fully overlaps the specified period if the period in the row overlaps the beginning and end of
the specified period.

• Is not contained in the period if both columns of BUSINESS_TIME are less than or equal to
value1 or greater than or equal to value2.

If the BUSINESS_TIME period in a row is not contained in the specified period, the row is
not deleted. Otherwise, the delete is applied based on how the values in the columns of the
BUSINESS_TIME period overlap the specified period as follows:

• If the BUSINESS_TIME period in a row is fully contained within the specified period, the row
is deleted.

• If the BUSINESS_TIME period in a row is partially contained in the specified period and
overlaps the beginning of the specified period:

– The row is deleted.

1602 IBM Db2 V11.5: SQL Reference

– A row is inserted using the original values from the row, except that the end column is set
to value1.

• If the BUSINESS_TIME period in a row is partially contained in the specified period and
overlaps the end of the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the begin column is

set to value2.
• If the BUSINESS_TIME period in a row fully overlaps the specified period:

– The row is deleted.
– A row is inserted using the original values from the row, except that the end column is set

to value1.
– An additional row is inserted using the original values from the row, except that the begin

column is set to value2.

value1 and value2
Each expression must return a value that has a date data type, timestamp data type, or
a valid data type for a string representation of a date or timestamp (SQLSTATE 428HY).
The result of each expression must be comparable to the data type of the columns of the
specified period (SQLSTATE 42884). See the comparison rules described in "Assignments
and comparisons".

Each expression can contain any of the following supported operands (SQLSTATE 428HY):

• Constant
• Special register
• Variable. For details, refer to "References to variables" in the "Identifiers" topic, in SQL

Reference Volume 1 .
• Scalar function whose arguments are supported operands (though user-defined

functions and non-deterministic functions cannot be used)
• CAST specification where the cast operand is a supported operand
• Expression using arithmetic operators and operands

correlation-clause
Can be used within the search-condition to designate a table, view, nickname, or fullselect. For a
description of correlation-clause, see "table-reference" in the description of "Subselect".

include-columns
Specifies a set of columns that are included, along with the columns of table-name or view-name,
in the intermediate result table of the DELETE statement when it is nested in the FROM clause of a
fullselect. The include-columns are appended at the end of the list of columns that are specified for
table-name or view-name.
INCLUDE

Specifies a list of columns to be included in the intermediate result table of the DELETE statement.
column-name

Specifies a column of the intermediate result table of the DELETE statement. The name cannot
be the same as the name of another include column or a column in table-name or view-name
(SQLSTATE 42711).

data-type
Specifies the data type of the include column. The data type must be one that is supported by the
CREATE TABLE statement.

assignment-clause
See the description of assignment-clause under the UPDATE statement. The same rules apply.
The include-columns are the only columns that can be set using the assignment-clause (SQLSTATE
42703).

Chapter 1. Structured Query Language (SQL) 1603

WHERE
Specifies a condition that selects the rows to be deleted. The clause can be omitted, a search
condition specified, or a cursor named. If the clause is omitted, all rows of the table or view are
deleted.
search-condition

Each column-name in the search condition, other than in a subquery must identify a column of the
table or view.

The search-condition is applied to each row of the table, view, or nickname, and the deleted rows
are those for which the result of the search-condition is true.

If the search condition contains a subquery, the subquery can be thought of as being executed
each time the search condition is applied to a row, and the results used in applying the search
condition. In actuality, a subquery with no correlated references is executed once, whereas a
subquery with a correlated reference may have to be executed once for each row. If a subquery
refers to the object table of a DELETE statement or a dependent table with a delete rule of
CASCADE or SET NULL, the subquery is completely evaluated before any rows are deleted.

CURRENT OF cursor-name
Identifies a cursor that is defined in a DECLARE CURSOR statement of the program. The DECLARE
CURSOR statement must precede the DELETE statement.

The table, view, or nickname named must also be named in the FROM clause of the SELECT
statement of the cursor, and the result table of the cursor must not be read-only. (For an
explanation of read-only result tables, see "DECLARE CURSOR".)

When the DELETE statement is executed, the cursor must be positioned on a row: that row is the
one deleted. After the deletion, the cursor is positioned before the next row of its result table. If
there is no next row, the cursor is positioned after the last row.

order-by-clause
Specifies the order of the rows for application of the offset-clause and fetch-clause. Specify an order-
by-clause to ensure a predictable order for determining the set of rows to be deleted based on the
offset-clause and fetch-clause. For details on the order-by-clause, see “order-by-clause” on page 703.

offset-clause
Limits the effect of the delete by skipping a subset of the qualifying rows. For details on the offset-
clause, refer to “offset-clause” on page 706.

fetch-clause
Limits the effect of the delete to a subset of the qualifying rows. For details on the fetch-clause, refer
to “fetch-clause” on page 705.

WITH
Specifies the isolation level used when locating the rows to be deleted.
RR

Repeatable Read
RS

Read Stability
CS

Cursor Stability
UR

Uncommitted Read
The default isolation level of the statement is the isolation level of the package in which the statement
is bound. The WITH clause has no effect on nicknames, which always use the default isolation level of
the statement.

SKIP LOCKED DATA
The SKIP LOCKED DATA clause specifies that rows are skipped when incompatible locks that would
block the progress of the statement are held on the rows by other transactions. These rows can
belong to any accessed table addressed in the statement, including tables accessed in a subquery.

1604 IBM Db2 V11.5: SQL Reference

This clause applies when the isolation level is CS or RS and is ignored when an isolation level of UR or
RR is in effect. It applies to row and block level locks.

Invocation

SKIP LOCKED DATA is ignored if it is specified when WITH RR or WITH UR. The default isolation level
of the statement depends on the isolation of the package or plan with which the statement is bound,
and whether the result table is read-only. If the default isolation level of the statement is Repeatable
Read or Uncommitted Read, then SKIP LOCKED DATA is ignored.

NOWAIT / WAIT <time sec>

Attention: The following feature is available in Db2 11.5.6 and later versions.

The NOWAIT and WAIT clauses specify the number of seconds to wait for a lock before
returning an error indicating that a lock cannot be obtained.

When using the WAIT clause, <time sec> is an integer between -1 and 32767.

Note: For NOWAIT and WAIT 0, locks are not waited for. If no lock is available at the time of
the request, a -911 error is returned.

When a WAIT value of -1 is specified, lock timeout detection is turned off. In this situation a
lock is waited for (if one is not available at the time of the request) until either of the following
events occur:

• The lock is granted.
• A deadlock occurs.

Use of the NOWAIT and WAIT clauses overwrites the value of the LOCKTIMEOUT database
configuration variable and the value of the CURRENT LOCK TIMEOUT special register for this
delete statement. This means that adding the NOWAIT/WAIT clause with a wait time value
of t has the same effect as executing the delete statement with a LOCKTIMEOUT value or
CURRENT LOCK TIMEOUT value of t.

While the NOWAIT and WAIT clauses are not allowed for positioned updates and deletes,
you can use them in the declaration of the cursor. When used in the cursor declaration, the
specified wait time value is inherited by the statements that use this cursor.

Rules
• Triggers: DELETE statements may cause triggers to be executed. A trigger may cause other statements

to be executed, or may raise error conditions based on the deleted rows. If a DELETE statement on
a view causes an INSTEAD OF trigger to fire, referential integrity will be checked against the updates
performed in the trigger, and not against the underlying tables of the view that caused the trigger to fire.

• Referential integrity: If the identified table or the base table of the identified view is a parent, the rows
selected for delete must not have any dependents in a relationship with a delete rule of RESTRICT, and
the DELETE must not cascade to descendent rows that have dependents in a relationship with a delete
rule of RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected rows are deleted. Any
rows that are dependents of the selected rows are also affected:

– The nullable columns of the foreign keys of any rows that are their dependents in a relationship with a
delete rule of SET NULL are set to the null value.

– Any rows that are their dependents in a relationship with a delete rule of CASCADE are also deleted,
and the preceding rules apply, in turn, to those rows.

The delete rule of NO ACTION is checked to enforce that any non-null foreign key refers to an existing
parent row after the other referential constraints have been enforced.

• Security policy: If the identified table or the base table of the identified view is protected with a security
policy, the session authorization ID must have the label-based access control (LBAC) credentials that
allow:

Chapter 1. Structured Query Language (SQL) 1605

– Write access to all protected columns (SQLSTATE 42512)
– Read and write access to all of the rows that are selected for deletion (SQLSTATE 42519)

Notes
• If an error occurs during the execution of a multiple row DELETE, no changes are made to the database.
• Unless appropriate locks already exist, one or more exclusive locks are acquired during the execution of

a successful DELETE statement. Issuing a COMMIT or ROLLBACK statement will release the locks. Until
the locks are released by a commit or rollback operation, the effect of the delete operation can only be
perceived by:

– The application process that performed the deletion
– Another application process using isolation level UR.

The locks can prevent other application processes from performing operations on the table.
• If an application process deletes a row on which any of its cursors are positioned, those cursors are

positioned before the next row of their result table. Let C be a cursor that is positioned before row R (as
a result of an OPEN, a DELETE through C, a DELETE through some other cursor, or a searched DELETE).
In the presence of INSERT, UPDATE, and DELETE operations that affect the base table from which R is
derived, the next FETCH operation referencing C does not necessarily position C on R. For example, the
operation can position C on R', where R' is a new row that is now the next row of the result table.

• SQLERRD(3) in the SQLCA shows the number of rows that qualified for the delete operation. In the
context of an SQL procedure statement, the value can be retrieved using the ROW_COUNT variable of
the GET DIAGNOSTICS statement. SQLERRD(5) in the SQLCA shows the number of rows affected by
referential constraints and by triggered statements. It includes rows that were deleted as a result of
a CASCADE delete rule and rows in which foreign keys were set to the null value as the result of a
SET NULL delete rule. With regards to triggered statements, it includes the number of rows that were
inserted, updated, or deleted.

• If an error occurs that prevents deleting all rows matching the search condition and all operations
required by existing referential constraints, no changes are made to the table and the error is returned.

• For nicknames, the external server option iud_app_svpt_enforce poses an additional limitation.
Refer to the Federated documentation for more information.

• For some data sources, the SQLCODE -20190 may be returned on a delete against a nickname because
of potential data inconsistency. Refer to the Federated documentation for more information.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– The FROM keyword can be omitted.
• Considerations for a system-period temporal table: The target of the DELETE statement must not

be a fullselect that references a view in the FROM clause followed by a period specification for
SYSTEM_TIME if the view is defined with the WITH CHECK OPTION and the view definition includes
a WHERE clause containing one of the following syntax elements (SQLSTATE 51046):

– A subquery that references a system-period temporal table (directly or indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than NO SQL

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, an underlying
target of the UPDATE statement must not be a system-period temporal table (SQLSTATE 51046), and
the target of the DELETE statement must not be a view defined with the WITH CHECK OPTION if the
view definition includes a WHERE clause containing one of the following syntax elements (SQLSTATE
51046):

– A subquery that references a system-period temporal table (directly or indirectly)
– An invocation of an SQL routine that has a package associated with it

1606 IBM Db2 V11.5: SQL Reference

– An invocation of an external routine with a data access indication other than NO SQL

If the DELETE statement has a search condition containing a correlated subquery that references
historical rows (explicitly referencing the name of the history table name or implicitly through the use
of a period specification in the FROM clause), the deleted rows that are stored as historical rows are
potentially visible for delete operations for the rows subsequently processed for the statement.

The mass delete algorithm is not used for a DELETE statement for a table defined as a system-period
temporal table that does not contain a search condition.

• Considerations for a history table: When a row of a system-period temporal table is deleted, a
historical copy of the row is inserted into the corresponding history table and the end timestamp
of the historical row is captured in the form of a system determined value that corresponds to the
time of the data change operation. The database manager assigns the value that is generated using a
reading of the time-of-day clock during execution of the first data change statement in the transaction
that requires a value to be assigned to the row begin or transaction start-ID column in a table, or
a row in a system-period temporal table is deleted. The database manager ensures uniqueness of
the generated values for an end column in a history table across transactions. The timestamp value
might be adjusted to ensure that rows inserted into the history table have the end timestamp value
greater than the begin timestamp value which can happen when a conflicting transaction is updating
the same row in the system-period temporal table (SQLSTATE 01695). The database configuration
parameter systime_period_adj must be set to Yes for this adjustment in the timestamp value to
occur otherwise and error is returned (SQLSTATE 57062).

For a delete operation, the adjustment only affects the value for the end column in the history table
that corresponds to the row-end column in the associated system-period temporal table. Take these
adjustments into consideration on subsequent references to the table when there is a search for the
transaction start time in the row-begin column and row-end column for the SYSTEM_TIME period of the
associated system-period temporal table.

• Considerations for an application-period temporal table: The target of the DELETE statement must
not be a fullselect that references a view in the FROM clause followed by a period specification for
BUSINESS_TIME if the view is defined with the WITH CHECK OPTION and the view definition includes a
WHERE clause containing one of the following syntax elements (SQLSTATE 51046):

– A subquery that references an application-period temporal table (directly or indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than NO SQL

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a non-null value, the target of
the DELETE statement must not be a view defined with the WITH CHECK option if the view definition
includes a WHERE clause containing one of the following syntax elements (SQLSTATE 51046):

– A subquery that references an application-period temporal table (directly or indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than NO SQL

A DELETE statement for an application-period temporal table that contains a FOR PORTION OF
BUSINESS_TIME clause indicates between which two points in time that the deletes are effective. When
FOR PORTION OF BUSINESS_TIME is specified and the period value for a row, specified by the values
of the row-begin column and row-end column, is only partially contained in the period specified from
value1 up to value2, the row is deleted and one or two rows are automatically inserted to represent
the portion of the row that is not deleted. New values are generated for each generated column in an
application-period temporal table for each row that is automatically inserted as a result of a delete
operation on the table. If a generated column is defined as part of a unique or primary key, parent key in
a referential constraint, or unique index, it is possible that an automatic insert will violate a constraint or
index in which case an error is returned.

When an application-period temporal table is the target of an DELETE statement, the value in
effect for the CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, and the
BUSTIMESENSITIVE bind option is set to YES, the following additional predicates are implicit:

Chapter 1. Structured Query Language (SQL) 1607

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
 AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

where bt_begin and bt_end are the begin and end columns of the BUSINESS_TIME period of the
target table of the DELETE statement.

• Considerations for application-period temporal tables and triggers: When a row is deleted and the
FOR PORTION OF BUSINESS_TIME clause is specified, additional rows may be implicitly inserted to
reflect any portion of the row that was not deleted. Any existing delete triggers are activated for the
rows deleted, and any existing insert triggers are activated for rows that are implicitly inserted.

Examples
• Example 1: Delete department (DEPTNO) 'D11' from the DEPARTMENT table.

 DELETE FROM DEPARTMENT
 WHERE DEPTNO = 'D11'

• Example 2: Delete all the departments from the DEPARTMENT table (that is, empty the table).

 DELETE FROM DEPARTMENT

• Example 3: Delete from the EMPLOYEE table any sales rep or field rep who didn't make a sale in 1995.

 DELETE FROM EMPLOYEE
 WHERE LASTNAME NOT IN
 (SELECT SALES_PERSON
 FROM SALES
 WHERE YEAR(SALES_DATE)=1995)
 AND JOB IN ('SALESREP','FIELDREP')

•
• Example 4: Delete all the duplicate employee rows from the EMPLOYEE table. An employee row is

considered to be a duplicate if the last names match. Keep the employee row with the smallest first
name in lexical order.

 DELETE FROM
 (SELECT ROWNUMBER() OVER (PARTITION BY LASTNAME ORDER BY FIRSTNME)
 FROM EMPLOYEE) AS E(RN)
 WHERE RN > 1

DESCRIBE
The DESCRIBE statement obtains information about an object.

There are two types of information that can be obtained with this statement. Each of these is described
separately.

• Input parameter markers of a prepared statement. Gets information about the input parameter markers
in a prepared statement. This information is put into a descriptor.

• The output of a prepared statement. Gets information about a prepared statement or information about
the select list columns in a prepared SELECT statement. This information is put into a descriptor.

DESCRIBE INPUT
The DESCRIBE INPUT statement obtains information about the input parameter markers of a prepared
statement.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

1608 IBM Db2 V11.5: SQL Reference

Authorization
None required.

Syntax
DESCRIBE INPUT statement-name INTO descriptor-name

Description
statement-name

Identifies the prepared statement. When the DESCRIBE INPUT statement is executed, the name must
identify a statement that has been prepared by the application process at the current server.

For a CALL statement, the information returned describes the input parameters, defined as IN or
INOUT, of the procedure. Input parameter markers are always considered nullable, regardless of
usage.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). Before the DESCRIBE INPUT statement is executed, the
following variable in the SQLDA must be set:
SQLN

Specifies the number of SQLVAR occurrences provided in the SQLDA. SQLN must be set to a value
greater than or equal to zero before the DESCRIBE INPUT statement is executed.

When the DESCRIBE INPUT statement is executed, the database manager assigns values to the variables
of the SQLDA as follows:
SQLDAID

The first 6 bytes are set to 'SQLDA ' (that is, 5 letters followed by the space character).

The seventh byte, defined as SQLDOUBLED, is set based on the parameter markers described:

• If the SQLDA contains two SQLVAR entries for every input parameter, the seventh byte is set to '2'.
This technique is used to accommodate LOB or structured type input parameters.

• Otherwise, the seventh byte is set to the space character.

The seventh byte is set to the space character if there is not enough room in the SQLDA to contain the
description of all input parameter markers.

The eighth byte is set to the space character.

SQLDABC
Length of the SQLDA in bytes.

SQLD
The number of IN and INOUT parameters of the procedure.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no values are assigned to occurrences of
SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or equal to the value of SQLN, values
are assigned to the first n occurrences of SQLVAR. The values describe parameter markers for the
input parameters of the procedure. The first occurrence of SQLVAR describes the first input parameter
marker, the second occurrence of SQLVAR describes the second input parameter marker, and so on.

Base SQLVAR
SQLTYPE

A code showing the data type of the parameter and whether or not it can contain null values.
SQLLEN

A length value depending on the data type of the parameter. SQLLEN is 0 for LOB data types.

Chapter 1. Structured Query Language (SQL) 1609

SQLNAME
The sqlname is derived as follows:

• If the SQLVAR corresponds to a parameter marker that is in the parameter list of a procedure
and is not part of an expression, sqlname contains the name of the parameter if one was
specified on the CREATE PROCEDURE statement.

• If the SQLVAR corresponds to a named parameter marker, sqlname contains the name of the
parameter marker.

• Otherwise, sqlname contains an ASCII numeric literal value that represents the SQLVAR's
position within the SQLDA.

Secondary SQLVAR
These variables are only used if the number of SQLVAR entries are doubled to accommodate LOB,
distinct type, structured type, or reference type parameters.
SQLLONGLEN

The length attribute of a BLOB, CLOB, or DBCLOB parameter.
SQLDATATYPE_NAME

For any user-defined type (distinct or structured) parameter, the database manager sets this
to the fully qualified user-defined type name. For a reference type parameter, the database
manager sets this to the fully qualified user-defined type name of the target type of the
reference. Otherwise, schema name is SYSIBM and the type name is the name in the
TYPENAME column of the SYSCAT.DATATYPES catalog view.

Notes
• Preparing the SQLDA: Before the DESCRIBE INPUT statement is executed, the SQLDA must be

allocated and the value of SQLN must be set to a value greater than or equal to zero to indicate
how many occurrences of SQLVAR are provided in the SQLDA. Enough storage must be allocated to
contain SQLN occurrences. To obtain the description of the input parameter markers in the prepared
statement, the number of occurrences of SQLVAR must not be less than the number of input parameter
markers. Furthermore, if the input parameter markers include LOBs or structured types, the number of
occurrences of SQLVAR should be two times the number of input parameter markers.

• Code page conversions between extended UNIX code (EUC) code pages and DBCS code pages, or
between Unicode and non-Unicode code pages, can result in expansion or contraction of character
lengths.

• If a structured type is being selected, but no FROM SQL transform is defined (either because no
TRANSFORM GROUP was specified using the CURRENT DEFAULT TRANSFORM GROUP special register
(SQLSTATE 428EM), or because the named group does not have a FROM SQL transform function defined
(SQLSTATE 42744), an error is returned.

• Allocating the SQLDA: Three of the possible ways to allocate the SQLDA are as follows:

First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to accommodate any select
list that the application will have to process. If the table contains any LOB, distinct type, structured
type, or reference type columns, the number of SQLVARs should be double the maximum number of
columns; otherwise the number should be the same as the maximum number of columns. Having done
the allocation, the application can use this SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when most of this storage
is not used for a particular select list.

Second Technique: Repeat the following two steps for every processed select list:

1. Execute a DESCRIBE INPUT statement with an SQLDA that has no occurrences of SQLVAR; that
is, an SQLDA for which SQLN is zero. The value returned for SQLD is the number of columns in
the result table. This is either the required number of occurrences of SQLVAR or half the required
number. Because there were no SQLVAR entries, a warning with SQLSTATE 01005 will be issued.
If the SQLCODE accompanying that warning is equal to one of +237, +238 or +239, the number
of SQLVAR entries should be double the value returned in SQLD. (The return of these positive

1610 IBM Db2 V11.5: SQL Reference

SQLCODEs assumes that the SQLWARN bind option setting was YES (return positive SQLCODEs). If
SQLWARN was set to NO, +238 is still returned to indicate that the number of SQLVAR entries must
be double the value returned in SQLD.)

2. Allocate an SQLDA with enough occurrences of SQLVAR. Then execute the DESCRIBE statement
again, using this new SQLDA.

This technique allows better storage management than the first technique, but it doubles the number of
DESCRIBE INPUT statements.

Third Technique: Allocate an SQLDA that is large enough to handle most, and perhaps all, select lists
but is also reasonably small. Execute DESCRIBE INPUT and check the SQLD value. Use the SQLD value
for the number of occurrences of SQLVAR to allocate a larger SQLDA, if necessary.

This technique is a compromise between the first two techniques. Its effectiveness depends on a good
choice of size for the original SQLDA.

Example
Execute a DESCRIBE INPUT statement with an SQLDA that has enough SQLVAR occurrences to describe
any number of input parameters a prepared statement might have. Assume that five parameter markers
at most will need to be described and that the input data does not contain LOBs.

 /* STMT1_STR contains INSERT statement with VALUES clause */
 EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;
 ... /* code to set SQLN to 5 and to allocate the SQLDA */
 EXEC SQL DESCRIBE INPUT STMT1_NAME INTO :SQLDA;
 .
 .
 .

This example uses the first technique described under "Allocating the SQLDA" in "DESCRIBE OUTPUT".

DESCRIBE OUTPUT
The DESCRIBE OUTPUT statement obtains information about a prepared statement.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization
None required.

Syntax

DESCRIBE
OUTPUT

statement-name INTO descriptor-name

Description
statement-name

Identifies the prepared statement. When the DESCRIBE OUTPUT statement is executed, the name
must identify a statement that has been prepared by the application process at the current server.

If the prepared statement is a SELECT or VALUES INTO statement, the information returned describes
the columns in its result table. If the prepared statement is a CALL statement, the information
returned describes the output parameters, defined as OUT or INOUT, of the procedure.

Chapter 1. Structured Query Language (SQL) 1611

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA). Before the DESCRIBE OUTPUT statement is executed, the
following variable in the SQLDA must be set:
SQLN

Specifies the number of SQLVAR occurrences provided in the SQLDA. SQLN must be set to a value
greater than or equal to zero before the DESCRIBE OUTPUT statement is executed.

When the DESCRIBE OUTPUT statement is executed, the database manager assigns values to the
variables of the SQLDA as follows:
SQLDAID

The first 6 bytes are set to 'SQLDA ' (that is, 5 letters followed by the space character).

The seventh byte, defined as SQLDOUBLED, is set based on the results columns or parameter markers
described:

• If the SQLDA contains two SQLVAR entries for every column or output parameter, the seventh byte
is set to '2'. This technique is used to accommodate LOB, distinct type, structured type, or reference
type columns, or output parameters.

• Otherwise, the seventh byte is set to the space character.

The seventh byte is set to the space character if there is not enough room in the SQLDA to contain the
description of all result columns or output parameter markers.

The eighth byte is set to the space character.

SQLDABC
Length of the SQLDA in bytes.

SQLD
If the prepared statement is a SELECT, SQLD is set to the number of columns in its result table. If the
prepared statement is a CALL statement, SQLD is set to the number of OUT and INOUT parameters of
the procedure. Otherwise, SQLD is set to 0.

SQLVAR
If the value of SQLD is 0, or greater than the value of SQLN, no values are assigned to occurrences of
SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or equal to the value of SQLN,
values are assigned to SQLTYPE, SQLLEN, SQLNAME, SQLLONGLEN, and SQLDATATYPE_NAME for the
first n occurrences of SQLVAR. These values describe either columns of the result table or parameter
markers for the output parameters of the procedure. The first occurrence of SQLVAR describes the
first column or output parameter marker, the second occurrence of SQLVAR describes the second
column or output parameter marker, and so on.

Base SQLVAR
SQLTYPE

A code showing the data type of the column or parameter and whether or not it can contain
null values.

SQLLEN
A length value depending on the data type of the column or parameter. SQLLEN is 0 for LOB
data types.

SQLNAME
The sqlname is derived as follows:

• If the SQLVAR corresponds to a derived column for a simple column reference in the select
list of a select-statement, sqlname is the name of the column.

• If the SQLVAR corresponds to a parameter marker that is in the parameter list of a procedure
and is not part of an expression, sqlname contains the name of the parameter if one was
specified on CREATE PROCEDURE.

1612 IBM Db2 V11.5: SQL Reference

• Otherwise sqlname contains an ASCII numeric literal value that represents the SQLVAR's
position within the SQLDA.

Secondary SQLVAR
These variables are only used if the number of SQLVAR entries is doubled to accommodate LOB,
distinct type, structured type, or reference type columns or parameters.
SQLLONGLEN

The length attribute of a BLOB, CLOB, or DBCLOB column or parameter.
SQLDATATYPE_NAME

For any user-defined type (distinct or structured) column or parameter, the database manager
sets this to the fully qualified user-defined type name. For a reference type column or
parameter, the database manager sets this to the fully qualified user-defined type name of
the target type of the reference. Otherwise, schema name is SYSIBM and the type name is the
name in the TYPENAME column of the SYSCAT.DATATYPES catalog view.

Notes
• Before the DESCRIBE OUTPUT statement is executed, the value of SQLN must be set to indicate how

many occurrences of SQLVAR are provided in the SQLDA and enough storage must be allocated to
contain SQLN occurrences. For example, to obtain the description of the columns of the result table of a
prepared SELECT statement, the number of occurrences of SQLVAR must not be less than the number of
columns.

• If a LOB of a large size is expected, then remember that manipulating this large object will affect
application memory. Given this condition, consider using locators or file reference variables. Modify
the SQLDA after the DESCRIBE OUTPUT statement is executed but before allocating storage so that
an SQLTYPE of SQL_TYP_xLOB is changed to SQL_TYP_xLOB_LOCATOR or SQL_TYP_xLOB_FILE with
corresponding changes to other fields such as SQLLEN. Then allocate storage based on SQLTYPE and
continue.

• Code page conversions between extended UNIX code (EUC) code pages and DBCS code pages, or
between Unicode and non-Unicode code pages, can result in the expansion and contraction of character
lengths.

• If a structured type is being selected, but no FROM SQL transform is defined (either because no
TRANSFORM GROUP was specified using the CURRENT DEFAULT TRANSFORM GROUP special register
(SQLSTATE 428EM), or because the named group does not have a FROM SQL transform function defined
(SQLSTATE 42744), an error is returned.

• Allocating the SQLDA: Three of the possible ways to allocate the SQLDA are as follows:

First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to accommodate any select
list that the application will have to process. If the table contains any LOB, distinct type, structured
type, or reference type columns, the number of SQLVARs should be double the maximum number of
columns; otherwise the number should be the same as the maximum number of columns. Having done
the allocation, the application can use this SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when most of this storage
is not used for a particular select list.

Second Technique: Repeat the following two steps for every processed select list:

1. Execute a DESCRIBE OUTPUT statement with an SQLDA that has no occurrences of SQLVAR; that
is, an SQLDA for which SQLN is zero. The value returned for SQLD is the number of columns in
the result table. This is either the required number of occurrences of SQLVAR or half the required
number. Because there were no SQLVAR entries, a warning with SQLSTATE 01005 will be issued.
If the SQLCODE accompanying that warning is equal to one of +237, +238 or +239, the number
of SQLVAR entries should be double the value returned in SQLD. (The return of these positive
SQLCODEs assumes that the SQLWARN bind option setting was YES (return positive SQLCODEs). If
SQLWARN was set to NO, +238 is still returned to indicate that the number of SQLVAR entries must
be double the value returned in SQLD.)

Chapter 1. Structured Query Language (SQL) 1613

2. Allocate an SQLDA with enough occurrences of SQLVAR. Then execute the DESCRIBE OUTPUT
statement again, using this new SQLDA.

This technique allows better storage management than the first technique, but it doubles the number of
DESCRIBE OUTPUT statements.

Third Technique: Allocate an SQLDA that is large enough to handle most, and perhaps all, select lists
but is also reasonably small. Execute DESCRIBE and check the SQLD value. Use the SQLD value for the
number of occurrences of SQLVAR to allocate a larger SQLDA, if necessary.

This technique is a compromise between the first two techniques. Its effectiveness depends on a good
choice of size for the original SQLDA.

• Considerations for implicitly hidden columns: A DESCRIBE OUTPUT statement returns only information
about an implicitly hidden column if the column is explicitly specified as part of the SELECT list of the
final result table of the query being described. If implicitly hidden columns are not part of the result
table of a query, a DESCRIBE OUTPUT statement that returns information about that query will not
contain information about any implicitly hidden columns.

Example
In a C program, execute a DESCRIBE OUTPUT statement with an SQLDA that has no occurrences of
SQLVAR. If SQLD is greater than zero, use the value to allocate an SQLDA with the necessary number of
occurrences of SQLVAR and then execute a DESCRIBE statement using that SQLDA.

 EXEC SQL BEGIN DECLARE SECTION;
 char stmt1_str[200];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLDA;
 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 ... /* code to prompt user for a query, then to generate */
 /* a select-statement in the stmt1_str */
 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

 ... /* code to set SQLN to zero and to allocate the SQLDA */
 EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

 ... /* code to check that SQLD is greater than zero, to set */
 /* SQLN to SQLD, then to re-allocate the SQLDA */
 EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

 ... /* code to prepare for the use of the SQLDA */
 /* and allocate buffers to receive the data */
 EXEC SQL OPEN DYN_CURSOR;

 ... /* loop to fetch rows from result table */
 EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :sqlda;
 .
 .
 .

DISCONNECT
The DISCONNECT statement destroys one or more connections when there is no active unit of work (that
is, after a commit or rollback operation).

If a single connection is the target of the DISCONNECT statement, the connection is destroyed only if the
database has participated in an existing unit of work, regardless of whether there is an active unit of work.
For example, if several other databases have done work, but the target in question has not, it can still be
disconnected without destroying the connection.

Invocation
Although an interactive SQL facility might provide an interface that gives the appearance of interactive
execution, this statement can only be embedded within an application program. It is an executable
statement that cannot be dynamically prepared.

1614 IBM Db2 V11.5: SQL Reference

Authorization
None required.

Syntax
DISCONNECT server-name

1

host-variable

CURRENT

ALL

SQL

Notes:
1 Note that an application server named CURRENT or ALL can only be identified by a host variable.

Description
server-name or host-variable

Identifies the application server by the specified server-name or a host-variable which contains the
server-name.

If a host-variable is specified, it must be a character string variable with a length attribute that is not
greater than 8, and it must not include an indicator variable. The server-name that is contained within
the host-variable must be left-aligned and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server. It must be listed in the
application requester's local directory.

The specified database-alias or the database-alias contained in the host variable must identify an
existing connection of the application process. If the database-alias does not identify an existing
connection, an error (SQLSTATE 08003) is raised.

CURRENT
Identifies the current connection of the application process. The application process must be in the
connected state. If not, an error (SQLSTATE 08003) is raised.

ALL
Indicates that all existing connections of the application process are to be destroyed. An error or
warning does not occur if no connections exist when the statement is executed. The optional keyword
SQL is included to be consistent with the syntax of the RELEASE statement.

Rules
• Generally, the DISCONNECT statement cannot be executed while within a unit of work. If attempted, an

error (SQLSTATE 25000) is raised. The exception to this rule is if a single connection is specified to be
disconnected and the database has not participated in an existing unit of work. In this case, it does not
matter if there is an active unit of work when the DISCONNECT statement is issued.

• The DISCONNECT statement cannot be executed at all in the Transaction Processing (TP) Monitor
environment (SQLSTATE 25000). It is used when the SYNCPOINT precompiler option is set to
TWOPHASE.

Notes
• If the DISCONNECT statement is successful, each identified connection is destroyed.

If the DISCONNECT statement is unsuccessful, the connection state of the application process and the
states of its connections are unchanged.

• If DISCONNECT is used to destroy the current connection, the next executed SQL statement should be
CONNECT or SET CONNECTION.

Chapter 1. Structured Query Language (SQL) 1615

• Type 1 CONNECT semantics do not preclude the use of DISCONNECT. However, though DISCONNECT
CURRENT and DISCONNECT ALL can be used, they will not result in a commit operation like a CONNECT
RESET statement would do.

If server-name or host-variable is specified in the DISCONNECT statement, it must identify the current
connection because Type 1 CONNECT only supports one connection at a time. Generally, DISCONNECT
will fail if within a unit of work with the exception noted in "Rules".

• Resources are required to create and maintain remote connections. Thus, a remote connection that is
not going to be reused should be destroyed as soon as possible.

• Connections can also be destroyed during a commit operation because the connection option is in
effect. The connection option could be AUTOMATIC, CONDITIONAL, or EXPLICIT, which can be set as a
precompiler option or through the SET CLIENT API at run time. For information about the specification
of the DISCONNECT option, see "Distributed relational databases".

Examples
• Example 1: The SQL connection to IBMSTHDB is no longer needed by the application. The following

statement should be executed after a commit or rollback operation to destroy the connection.

 EXEC SQL DISCONNECT IBMSTHDB;

• Example 2: The current connection is no longer needed by the application. The following statement
should be executed after a commit or rollback operation to destroy the connection.

 EXEC SQL DISCONNECT CURRENT;

• Example 3: The existing connections are no longer needed by the application. The following statement
should be executed after a commit or rollback operation to destroy all the connections.

 EXEC SQL DISCONNECT ALL;

DROP
The DROP statement deletes an object. Any objects that are directly or indirectly dependent on that
object are either deleted or made inoperative. Whenever an object is deleted, its description is deleted
from the catalog, and any packages that reference the object are invalidated.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
When dropping objects that allow two-part names, the privileges held by the authorization ID of the
statement must include at least one of the following authorities:

• DROPIN privilege on the schema for the object
• Owner of the object, as recorded in the OWNER column of the catalog view for the object
• CONTROL privilege on the object (applicable only to indexes, index specifications, nicknames, packages,

tables, and views)
• Owner of the user-defined type, as recorded in the OWNER column of the SYSCAT.DATATYPES catalog

view (applicable only when dropping a method that is associated with a user-defined type)
• SCHEMAADM authority on the schema for the object
• DBADM authority

1616 IBM Db2 V11.5: SQL Reference

When dropping a table or view hierarchy, the privileges held by the authorization ID of the statement must
include one of the previously mentioned privileges for each of the tables or views in the hierarchy.

When dropping an audit policy, the privileges held by the authorization ID of the statement must include
SECADM authority.

When dropping a buffer pool, database partition group, storage group, or table space, the privileges held
by the authorization ID of the statement must include SYSADM or SYSCTRL authority.

When dropping a data type mapping, function mapping, server definition, or wrapper, the privileges held
by the authorization ID of the statement must include DBADM authority.

When dropping an event monitor the privilege held by the authorization ID of the statement must include
SQLADM or DBADM authority.

When dropping a role, the privileges held by the authorization ID of the statement must include SECADM
authority.

When dropping a row permission or a column mask, the privileges held by the authorization ID of the
statement must include SECADM authority.

When dropping a schema, the privileges held by the authorization ID of the statement must include
DBADM authority, or be the schema owner, as recorded in the OWNER column of the SYSCAT.SCHEMATA
catalog view.

When dropping a security label, a security label component, or a security policy, the privileges held by the
authorization ID of the statement must include SECADM authority.

When dropping a service class, work action set, work class set, workload, threshold, or histogram
template, the privileges held by the authorization ID of the statement must include WLMADM or DBADM
authority.

When dropping a system-period temporal table, the privileges held by the authorization ID of the
statement must also include at least one of the following authorities:

• Privileges to drop the associated history table
• Administrative authority

When dropping a transform, the privileges held by the authorization ID of the statement must include
DBADM authority, or must be the owner of type-name.

When dropping a trusted context, the privileges held by the authorization ID of the statement must
include SECADM authority.

When dropping an event monitor or usage list the privilege held by the authorization ID of the statement
must include SQLADM or DBADM authority.

When dropping a user mapping, the privileges held by the authorization ID of the statement must include
DBADM authority, if this authorization ID is different from the federated database authorization name
within the mapping. Otherwise, if the authorization ID and the authorization name match, no authorities
or privileges are required.

Chapter 1. Structured Query Language (SQL) 1617

Syntax
DROP alias-designator

AUDIT POLICY policy-name

BUFFERPOOL bufferpool-name

DATABASE PARTITION GROUP db-partition-group-name

EVENT MONITOR event-monitor-name

function-designator

RESTRICT

FUNCTION MAPPING function-mapping-name

HISTOGRAM TEMPLATE template-name

INDEX index-name
1

INDEX EXTENSION index-extension-name RESTRICT

MASK mask-name

method-designator

RESTRICT

MODULE module-name

NICKNAME nickname

PACKAGE package-name

VERSION
version-id

PERMISSION permission-name

procedure-designator

RESTRICT

ROLE role-name

SCHEMA schema-name RESTRICT

SECURITY LABEL security-label-name
RESTRICT

SECURITY LABEL COMPONENT sec-label-comp-name
RESTRICT

SECURITY POLICY security-policy-name
RESTRICT

SEQUENCE sequence-name

RESTRICT

SERVER server-name

service-class-designator
RESTRICT

STOGROUP storagegroup-name
RESTRICT

TABLE

IF EXISTS

table-name
2

TABLE HIERARCHY root-table-name

TABLESPACE

TABLESPACES

,

tablespace-name

TRANSFORM

TRANSFORMS

ALL

group-name

FOR type-name

THRESHOLD threshold-name

TRIGGER trigger-name

TRUSTED CONTEXT context-name

TYPE type-name

RESTRICT

TYPE MAPPING type-mapping-name

USAGE LIST usage-list-name

USER MAPPING FOR authorization-name

USER

SERVER server-name

VARIABLE variable-name

RESTRICT

VIEW view-name

VIEW HIERARCHY root-view-name

WORK ACTION SET work-action-set-name

WORK CLASS SET work-class-set-name

WORKLOAD workload-name

WRAPPER wrapper-name

XSROBJECT xsrobject-name

alias-designator

1618 IBM Db2 V11.5: SQL Reference

PUBLIC

ALIAS alias-name
FOR TABLE

FOR MODULE

FOR SEQUENCE

function-designator
FUNCTION function-name

(
,

data-type

)

SPECIFIC FUNCTION specific-name

method-designator
METHOD method-name

(
,

data-type

)

FOR type-name

SPECIFIC METHOD specific-name

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

service-class-designator
SERVICE CLASS service-class-name

UNDER service-superclass-name

Notes:
1 Index-name can be the name of either an index or an index specification.
2 For compatibility with Netezza, you can change the order of IF EXISTS and table-name.

Description
alias-designator

ALIAS alias-name
Identifies the alias that is to be dropped. The alias-name must identify an alias that is described in
the catalog (SQLSTATE 42704). The specified alias is deleted.
FOR TABLE, FOR MODULE, or FOR SEQUENCE

Specifies the object type for the alias.
FOR TABLE

The alias is for a table, view, or nickname.
FOR MODULE

The alias is for a module.
FOR SEQUENCE

The alias is for a sequence.

All views and triggers that reference the alias are made inoperative. This includes alias references
in both the ON clause of the CREATE TRIGGER statement and within the triggered SQL
statements. Any materialized query table or staging table that references the alias is dropped.

If PUBLIC is specified, the alias-name must identify a public alias (SQLSTATE 428EK) that exists at
the current server (SQLSTATE 42704).

Chapter 1. Structured Query Language (SQL) 1619

If the alias is referenced in the definition of a row permission or a column mask, the alias cannot
be dropped (SQLSTATE 42893).

AUDIT POLICY policy-name
Identifies the audit policy that is to be dropped. The policy-name must identify an audit policy that
exists at the current server (SQLSTATE 42704). The audit policy must not be associated with any
database objects (SQLSTATE 42893). The specified audit policy is deleted from the catalog.

BUFFERPOOL bufferpool-name
Identifies the buffer pool that is to be dropped. The bufferpool-name must identify a buffer pool that is
described in the catalog (SQLSTATE 42704). There can be no table spaces assigned to the buffer pool
(SQLSTATE 42893). The IBMDEFAULTBP buffer pool cannot be dropped (SQLSTATE 42832).

Buffer pool memory is released immediately. Disk storage may not be released until the next
connection to the database.

DATABASE PARTITION GROUP db-partition-group-name
Identifies the database partition group that is to be dropped. The db-partition-group-name parameter
must identify a database partition group that is described in the catalog (SQLSTATE 42704). This is a
one-part name.

Dropping a database partition group drops all table spaces defined in the database partition group.
All existing database objects with dependencies on the tables in the table spaces (such as packages,
referential constraints, and so on) are dropped or invalidated (as appropriate), and dependent views
and triggers are made inoperative.

IBMCATGROUP, IBMDEFAULTGROUP, and IBMTEMPGROUP database partition groups cannot be
dropped (SQLSTATE 42832).

If a DROP DATABASE PARTITION GROUP statement is issued against a database partition group that
is currently undergoing a data redistribution, the drop database partition group operation fails, and
an error is returned (SQLSTATE 55038). However, a partially redistributed database partition group
can be dropped. A database partition group can become partially redistributed if a REDISTRIBUTE
DATABASE PARTITION GROUP command does not execute to completion. This can happen if it is
interrupted by either an error or a FORCE APPLICATION ALL command. (For a partially redistributed
database partition group, the REDISTRIBUTE_PMAP_ID in the SYSCAT.DBPARTITIONGROUPS catalog
is not -1.)

EVENT MONITOR event-monitor-name
Identifies the event monitor that is to be dropped. The event-monitor-name must identify an event
monitor that is described in the catalog (SQLSTATE 42704).

If the identified event monitor is active, an error is returned (SQLSTATE 55034); otherwise, the event
monitor is deleted. Note that if an event monitor has been previously activated using the SET EVENT
MONITOR STATE statement, and the database has been deactivated and subsequently reactivated,
use the SET EVENT MONITOR STATE statement to deactivate the event monitor before issuing the
DROP statement.

If there are event files in the target path of a WRITE TO FILE event monitor that is being dropped,
the event files are not deleted. However, if a new event monitor that specifies the same target path is
created, the event files are deleted.

When dropping WRITE TO TABLE event monitors, table information is removed from the
SYSCAT.EVENTTABLES catalog view, but the tables themselves are not dropped.

function-designator
Identifies an instance of a user-defined function (either a complete function or a function template)
that is to be dropped. For more information, see “Function, method, and procedure designators” on
page 745.

The function instance specified must be a user-defined function described in the catalog. The
following functions cannot be dropped:

• A function implicitly generated by a CREATE TYPE statement (SQLSTATE 42917)

1620 IBM Db2 V11.5: SQL Reference

• A function that is in the SYSIBM, SYSFUN, SYSIBMADM, or the SYSPROC schema (SQLSTATE 42832)
• A function that is referenced in the definition of a row permission or a column mask (SQLSTATE

42893)
• A function that is referenced in a generated column expression or a check constraint (SQLSTATE

42893)

RESTRICT
The RESTRICT keyword enforces the rule that the function is not to be dropped if any of the
following dependencies exists:

• Another function is sourced on the function.
• Another routine uses the function.
• A view uses the function.
• A trigger uses the function.
• A materialized query table uses the function in its definition.

The restrict rule is enforced by default for the same dependencies as in version 9.5 if the
auto_reval database configuration parameter is set to disabled.

In this case, the following considerations apply:

• Other objects can be dependent upon a function. All such dependencies must be removed before
the function can be dropped, with the exception of packages which are marked inoperative. An
attempt to drop a function with such dependencies will result in an error (SQLSTATE 42893). See
the "Rules" section for a list of these dependencies. If the function can be dropped, it is dropped.

• Any package dependent on the specific function being dropped is marked as inoperative. Such
a package is not implicitly rebound. It must either be rebound by use of the BIND or REBIND
command, or it must be re-prepared by use of the PREP command.

FUNCTION MAPPING function-mapping-name
Identifies the function mapping that is to be dropped. The function-mapping-name must identify
a user-defined function mapping that is described in the catalog (SQLSTATE 42704). The function
mapping is deleted from the database.

Default function mappings cannot be dropped, but can be disabled by using the CREATE FUNCTION
MAPPING statement. Dropping a user-defined function mapping that was created to override a
default function mapping reinstates the default function mapping.

Packages having a dependency on a dropped function mapping are invalidated.

HISTOGRAM TEMPLATE template-name
Identifies the histogram template that is to be dropped. The template-name must identify a
histogram template that exists at the current server (SQLSTATE 42704). The template-name cannot
be SYSDEFAULTHISTOGRAM (SQLSTATE 42832). The histogram template cannot be dropped if a
service class or a work action is dependent on it (SQLSTATE 42893). The specified histogram template
is deleted from the catalog.

INDEX index-name
Identifies the index or index specification that is to be dropped. The index-name must identify an
index or index specification that is described in the catalog (SQLSTATE 42704). It cannot be an index
that is required by the system for a primary key or unique constraint, for a replicated materialized
query table, or for an XML column (SQLSTATE 42917). The specified index or index specification is
deleted.

Modification state indexes (also known as mod state indexes) can be dropped, even though they are
classified as system indexes. Dropping modification state indexes is supported in order to facilitate
rollback to an earlier fix pack level. If a modification state index exists when dropping the last user
index on a table, the modification state index is implicitly dropped.

Packages having a dependency on a dropped index or index specification are invalidated.

Chapter 1. Structured Query Language (SQL) 1621

INDEX EXTENSION index-extension-name RESTRICT
Identifies the index extension that is to be dropped. The index-extension-name must identify an index
extension that is described in the catalog (SQLSTATE 42704). The RESTRICT keyword enforces the
rule that no index can be defined that depends on this index extension definition (SQLSTATE 42893).

MASK mask-name
Identifies the column mask to drop. The name must identify a column mask that exists at the current
server (SQLSTATE 42704).

method-designator
Identifies a method body that is to be dropped. For more information, see “Function, method, and
procedure designators” on page 745. The method body specified must be a method described in
the catalog (SQLSTATE 42704). Method bodies that are implicitly generated by the CREATE TYPE
statement cannot be dropped.

DROP METHOD deletes the body of a method, but the method specification (signature) remains
as a part of the definition of the subject type. After dropping the body of a method, the method
specification can be removed from the subject type definition by ALTER TYPE DROP METHOD.

RESTRICT
The RESTRICT keyword enforces the rule that the method is not to be dropped if any of the
following dependencies exists:

• A function is sourced on the method.
• Another routine uses the method.
• A view uses the method.
• A trigger uses the method.
• A materialized query table uses the method in its definition.

The restrict rule is enforced by default for the same dependencies as in version 9.5 if the
auto_reval database configuration parameter is set to disabled.

In this case, the following considerations apply:

• Other objects can be dependent upon a method. All such dependencies must be removed before
the method can be dropped, with the exception of packages which will be marked inoperative if
the drop is successful. An attempt to drop a method with such dependencies will result in an error
(SQLSTATE 42893). If the method can be dropped, it will be dropped.

• Any package dependent on the specific method being dropped is marked as inoperative. Such
a package is not implicitly re-bound. Either it must be re-bound by use of the BIND or REBIND
command, or it must be re-prepared by use of the PREP command.

If the specific method being dropped overrides another method, all packages dependent on the
overridden method - and on methods that override this method in supertypes of the specific method
being dropped - are invalidated.

MODULE module-name
Identifies the module that is to be dropped. The module-name must identify a module that exists
at the current server (SQLSTATE 42704). The specified name must not be an alias for a module
(SQLSTATE 560CT). The specified module is dropped from the schema, including all module objects.
All privileges on the module are also dropped.

If the module is referenced in the definition of a row permission or a column mask, the module cannot
be dropped (SQLSTATE 42893).

NICKNAME nickname
Identifies the nickname that is to be dropped. The nickname must be listed in the catalog (SQLSTATE
42704). The nickname is deleted from the database.

All information about the columns and indexes associated with the nickname is deleted from the
catalog. Any materialized query tables that are dependent on the nickname are dropped. Any index
specifications that are dependent on the nickname are dropped. Any views that are dependent
on the nickname are marked inoperative. Any packages that are dependent on the dropped

1622 IBM Db2 V11.5: SQL Reference

index specifications or inoperative views are invalidated. The data source table that the nickname
references is not affected.

If an SQL function or method is dependent on a nickname, that nickname cannot be dropped
(SQLSTATE 42893).

PACKAGE package-name
Identifies the package that is to be dropped. The package name must identify a package that is
described in the catalog (SQLSTATE 42704). The specified package is deleted. If the package being
dropped is the only package identified by package-name (that is, there are no other versions), all
privileges on the package are also deleted.
VERSION version-id

Identifies which package version is to be dropped. If a value is not specified, the version defaults
to the empty string. If multiple packages with the same package name but different versions exist,
only one package version can be dropped in one invocation of the DROP statement. Delimit the
version identifier with double quotation marks when it:

• Is generated by the VERSION(AUTO) precompiler option
• Begins with a digit
• Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt, precede each double
quotation mark delimiter with a back slash character to ensure that the operating system does not
strip the delimiters.

PERMISSION permission-name
Identifies the row permission to drop. The name must identify a row permission that exists at the
current server (SQLSTATE 42704). The name must not identify the default row permission that was
created implicitly by the database manager (SQLSTATE 42917).

procedure-designator
Identifies an instance of a procedure that is to be dropped. For more information, see “Function,
method, and procedure designators” on page 745. The procedure instance specified must be a
procedure described in the catalog. It is not possible to drop a procedure that is in the SYSIBM,
SYSFUN, SYSIBMADM, or the SYSPROC schema (SQLSTATE 42832).
RESTRICT

The RESTRICT keyword prevents the procedure from being dropped if a trigger definition or an
SQL routine definition contains a CALL identifying the procedure.

The restrict rule is enforced by default for the same dependencies as in version 9.5 if the following
conditions are met:

• The auto_reval database configuration parameter is set to disabled
• An inlined trigger definition, inlined SQL function definition, or inlined SQL method definition

contains a CALL statement identifying the procedure

It is not possible to drop a procedure that is in the SYSIBM, SYSFUN, or the SYSPROC schema
(SQLSTATE 42832).

ROLE role-name
Identifies the role that is to be dropped. The role-name must identify a role that already exists at
the current server (SQLSTATE 42704). The role-name must not identify a role, or a role that contains
role-name, if the role has either EXECUTE privilege on a routine or USAGE privilege on a sequence, and
an SQL object other than a package is dependent on the routine or sequence (SQLSTATE 42893). The
owner of the SQL object is either authorization-name or any user who is a member of authorization-
name, where authorization-name is a role.

A DROP ROLE statement fails (SQLSTATE 42893) if any of the following conditions are true for the role
to be dropped:

• A workload exists such that one of the values for the connection attribute SESSION_USER ROLE is
role-name

Chapter 1. Structured Query Language (SQL) 1623

• A trusted context using role-name exists

The specified role is deleted from the catalog.

SCHEMA schema-name RESTRICT
Identifies the particular schema to be dropped. The schema-name must identify a schema that is
described in the catalog (SQLSTATE 42704).
RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the specified schema
for the schema to be deleted from the database (SQLSTATE 42893).

SECURITY LABEL security-label-name
Identifies the security label to be dropped. The name must be qualified with a security policy
(SQLSTATE 42704) and must identify a security label that exists at the current server (SQLSTATE
42704).
RESTRICT

This option, which is the default, prevents the security label from being dropped if any of the
following dependencies exist (SQLSTATE 42893):

• One or more authorization IDs currently hold the security label for read access
• One or more authorization IDs currently hold the security label for write access
• The security label is currently being used to protect one or more columns

SECURITY LABEL COMPONENT sec-label-comp-name
Identifies the security label component to be dropped. The sec-label-comp-name must identify a
security label component that is described in the catalog (SQLSTATE 42704).
RESTRICT

This option, which is the default, prevents the security label component from being dropped if any
of the following dependencies exist (SQLSTATE 42893):

• One or more security policies that include the security label component are currently defined

SECURITY POLICY security-policy-name
Identifies the security policy to be dropped. The security-policy-name must identify a security policy
that exists at the current server (SQLSTATE 42704).
RESTRICT

This option, which is the default, prevents the security policy from being dropped if any of the
following dependencies exist (SQLSTATE 42893):

• One or more tables are associated with this security policy
• One or more authorization IDs hold an exemption on one of the rules in this security policy
• One or more security labels are defined for this security policy

SEQUENCE sequence-name
Identifies the particular sequence that is to be dropped. The sequence-name, along with the implicit
or explicit schema name, must identify an existing sequence at the current server. If no sequence
by this name exists in the explicitly or implicitly specified schema, an error is returned (SQLSTATE
42704).
RESTRICT

The RESTRICT keyword prevents the sequence from being dropped if any of the following
dependencies exist:

• A trigger exists such that a NEXT VALUE or PREVIOUS VALUE expression in the trigger body
specifies the sequence (SQLSTATE 42893).

• An SQL routine exists such that a NEXT VALUE expression in the routine body specifies the
sequence (SQLSTATE 42893).

The restrict rule is enforced by default for the same dependencies as in version 9.5 if the following
conditions are met:

1624 IBM Db2 V11.5: SQL Reference

• The auto_reval database configuration parameter is set to disabled
• An inlined trigger definition, inlined SQL function definition, or inlined SQL method definition

references the sequence

SERVER server-name
Identifies the data source whose definition is to be dropped from the catalog. The server-name must
identify a data source that is described in the catalog (SQLSTATE 42704). The definition of the data
source is deleted.

All nicknames for tables and views residing at the data source are dropped. Any index specifications
dependent on these nicknames are dropped. Any user-defined function mappings, user-defined type
mappings, and user mappings that are dependent on the dropped server definition are also dropped.
All packages dependent on the dropped server definition, function mappings, nicknames, and index
specifications are invalidated. All federated procedures that are dependent on the server definition
are also dropped.

service-class-designator
SERVICE CLASS service-class-name

Identifies the service class to be dropped. The service-class-name must identify a service class
that is described in the catalog (SQLSTATE 42704). To drop a service subclass, the service-
superclass-name must be specified using the UNDER clause.
UNDER service-superclass-name

Specifies the service superclass of the service subclass when dropping a service subclass. The
service-superclass-name must identify a service superclass that is described in the catalog
(SQLSTATE 42704).

RESTRICT
This keyword enforces the rule that the service class is not to be dropped if any of the following
dependencies exists:

• The service class is a service subclass and there is a work action mapping to the service class
(SQLSTATE 5U031). The work action must first be dropped.

• The service class is the target of a REMAP ACTIVITY action in a threshold (SQLSTATE 5U031).
Alter the threshold to set a different service subclass as the target of the REMAP ACTIVITY
action or drop the threshold.

• The service class is not disabled (SQLSTATE 5U031). The service class must first be disabled.

RESTRICT is the default behavior.
STOGROUP storagegroup-name

Identifies the storage group that is to be dropped; storagegroup-name must identify a storage group
that exists at the current server (SQLSTATE 42704). This is a one-part name.

RESTRICT
The RESTRICT keyword prevents the storage group from being dropped if a table space exists that
uses the storage group (SQLSTATE 42893). RESTRICT is the default behavior.

The current default storage group cannot be dropped (SQLSTATE 42893). A new default can be
designated using the ALTER STOGROUP statement.

The DROP STOGROUP statement cannot be executed while a database partition server is being added
(SQLSTATE 55071).

TABLE table-name

Identifies the base table, created temporary table, or declared temporary table that is to be dropped.
The table-name must identify a table that is described in the catalog or, if it is a declared temporary
table, the table-name must be qualified by the schema name SESSION and exist in the application
(SQLSTATE 42704). The subtables of a typed table are dependent on their supertables. All subtables
must be dropped before a supertable can be dropped (SQLSTATE 42893). The table-name must

Chapter 1. Structured Query Language (SQL) 1625

not identify a catalog table (SQLSTATE 42832), or a history table associated with a system-period
temporal table (SQLSTATE 42893). The specified table is deleted from the database.

All indexes, primary keys, foreign keys, row permissions (including the default row permission),
column masks, check constraints, materialized query tables, and staging tables that are defined
on the table are dropped. All views and triggers that reference the table are made inoperative,
including both the table referenced in the ON clause of the CREATE TRIGGER statement and all tables
referenced within the triggered SQL statements. All packages which depend on any object dropped or
marked inoperative will be invalidated. This includes packages dependent on any supertables above
the subtable in the hierarchy. Any referenced columns for which the dropped table is defined as the
scope of the reference become unscoped.

Packages are not dependent on declared temporary tables, and therefore are not invalidated when
such a table is dropped. Packages are, however, dependent on created temporary tables, and are
invalidated when such a table is dropped.

In a federated system, a remote table that was created using transparent DDL can be dropped.
Dropping a remote table also drops the nickname associated with that table, and invalidates any
packages that are dependent on that nickname.

When a subtable is dropped from a table hierarchy, the columns associated with the subtable are no
longer accessible although they continue to be considered with respect to limits on the number of
columns and size of the row. Dropping a subtable has the effect of deleting all the rows of the subtable
from the supertables. This may result in activation of triggers or referential integrity constraints
defined on the supertables.

When a created temporary table or declared temporary table is dropped, and its creation preceded
the active unit of work or savepoint, then the table will be functionally dropped and the application
will not be able to access the table. However, the table will still reserve some space in its table
space and will prevent that USER TEMPORARY table space from being dropped or the database
partition group of the USER TEMPORARY table space from being redistributed until the unit of work
is committed or savepoint is ended. Dropping a created temporary table or declared temporary table
causes the data in the table to be destroyed, regardless of whether DROP is committed or rolled back.

If table-name is a system-period temporal table, any associated history table and any indexes defined
on the history table are also dropped. To drop a system-period temporal table, the privilege set must
also contain the authorization required to drop the history table (SQLSTATE 42501).

A history table associated with a system-period temporal table cannot be explicitly dropped using
the DROP statement (SQLSTATE 42893). A history table is implicitly dropped when the associated
system-period temporal table is dropped.

A table cannot be dropped if it has the RESTRICT ON DROP attribute.

A newly detached table is initially inaccessible. This prevents the table from being read, modified, or
dropped until the SET INTEGRITY statement can be run to incrementally refresh MQTs or to complete
any processing for foreign key constraints. After the SET INTEGRITY statement executes against all
dependent tables, the table is fully accessible, its detached attribute is reset, and it can be dropped.

When a table is dropped, all row permissions, including the default row permission, and column
masks that are created for the table are also dropped.

If the table is referenced in the definition of a row permission or a column mask, the table cannot be
dropped (SQLSTATE 42893).

IF EXISTS
Specifies that no error message is shown if the specified table name does not exist in the current
database and schema.
Unless other conditions or dependencies prevent the drop operation, a successful message is
returned even if no table is dropped. The condition for the failure is ignored if the table does not
exist.

1626 IBM Db2 V11.5: SQL Reference

TABLE HIERARCHY root-table-name
Identifies the typed table hierarchy that is to be dropped. The root-table-name must identify a typed
table that is the root table in the typed table hierarchy (SQLSTATE 428DR). The typed table identified
by root-table-name and all of its subtables are deleted from the database.

All indexes, materialized query tables, staging tables, primary keys, foreign keys, and check
constraints referencing the dropped tables are dropped. All views and triggers that reference the
dropped tables are made inoperative. All packages depending on any object dropped or marked
inoperative will be invalidated. Any reference columns for which one of the dropped tables is defined
as the scope of the reference become unscoped.

Unlike dropping a single subtable, dropping the table hierarchy does not result in the activation of
delete triggers of any tables in the hierarchy nor does it log the deleted rows.

TABLESPACE or TABLESPACES tablespace-name
Identifies the table spaces that are to be dropped; tablespace-name must identify a table space that
is described in the catalog (SQLSTATE 42704). This is a one-part name. tablespace-name must not
identify a table space that contains a history table unless the system-period temporal table with
which it is associated is also being dropped (SQLSTATE 42893).

The table spaces will not be dropped (SQLSTATE 55024) if there is any table that stores at least one of
its parts in a table space being dropped, and has one or more of its parts in another table space that
is not being dropped (these tables would need to be dropped first), or if any table that resides in the
table space has the RESTRICT ON DROP attribute.

Objects whose names are prefixed with 'SYS' are built-in objects and, with the exception of the
SYSTOOLSPACE and SYSTOOLSTMPSPACE table spaces, cannot be dropped (SQLSTATE 42832).

A SYSTEM TEMPORARY table space cannot be dropped (SQLSTATE 55026) if it is the only temporary
table space that exists in the database. A USER TEMPORARY table space cannot be dropped if there
is an instance of a created temporary table or a declared temporary table created in it (SQLSTATE
55039). Even if a created temporary table has been dropped, the USER TEMPORARY table space
will still be considered to be in used until all instances of the created temporary table are dropped.
Instances of a created temporary table are dropped when the session terminates or when the created
temporary table is referenced in the session. Even if a declared temporary table has been dropped,
the USER TEMPORARY table space will still be considered to be in use until the unit of work containing
the DROP TABLE statement has been committed.

Dropping a table space drops all objects that are defined in the table space. All existing database
objects with dependencies on the table space, such as packages, referential constraints, and so on,
are dropped or invalidated (as appropriate), and dependent views and triggers are made inoperative.

Containers that were created by a user are not deleted. Any directories in the path of the container
name that were created by the database manager during CREATE TABLESPACE execution are deleted.
All containers that are below the database directory are deleted. When the DROP TABLESPACE
statement is committed, the DMS file containers or SMS containers for the specified table space are
deleted, if possible. If the containers cannot be deleted (because they are being kept open by another
agent, for example), the files are truncated to zero length. After all connections are terminated, or the
DEACTIVATE DATABASE command is issued, these zero-length files are deleted.

THRESHOLD threshold-name
Identifies the threshold that is to be dropped. The threshold-name must identify a threshold that
exists at the current server (SQLSTATE 42704). This is a one-part name. Thresholds with a queue,
for example TOTALSCPARTITIONCONNECTIONS and CONCURRENTDBCOORDACTIVITIES, must be
disabled before they can be dropped (SQLSTATE 5U025). The specified threshold is deleted from the
catalog.

TRIGGER trigger-name
Identifies the trigger that is to be dropped. The trigger-name must identify a trigger that is described in
the catalog (SQLSTATE 42704). The specified trigger is deleted.

Dropping triggers causes certain packages to be marked invalid.

Chapter 1. Structured Query Language (SQL) 1627

If trigger-name specifies an INSTEAD OF trigger on a view, another trigger may depend on that trigger
through an update against the view.

TRANSFORM ALL FOR type-name
Indicates that all transforms groups defined for the user-defined data type type-name are to be
dropped. The transform functions referenced in these groups are not dropped. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier for an unqualified object
name. In static SQL statements, the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names. The type-name must identify a user-defined type described
in the catalog (SQLSTATE 42704).

If there are not transforms defined for type-name, an error is returned (SQLSTATE 42740).

DROP TRANSFORM is the inverse of CREATE TRANSFORM. It causes the transform functions
associated with certain groups, for a given data type, to become undefined. The functions formerly
associated with these groups still exist and can still be called explicitly, but they no longer have the
transform property, and are no longer invoked implicitly for exchanging values with the host language
environment.

The transform group is not dropped if there is a user-defined function (or method) written in a
language other than SQL that has a dependency on one of the group's transform functions defined
for the user-defined type type-name (SQLSTATE 42893). Such a function has a dependency on the
transform function associated with the referenced transform group defined for type type-name.
Packages that depend on a transform function associated with the named transform group are
marked inoperative.

TRANSFORMS group-name FOR type-name
Indicates that the specified transform group for the user-defined data type type-name is to be
dropped. The transform functions referenced in this group are not dropped. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier for an unqualified object
name. In static SQL statements, the QUALIFIER precompile/bind option implicitly specifies the
qualifier for unqualified object names. The type-name must identify a user-defined type described
in the catalog (SQLSTATE 42704), and the group-name must identify an existing transform group for
type-name.

TRIGGER trigger-name
Identifies the trigger that is to be dropped. The trigger-name must identify a trigger that is described in
the catalog (SQLSTATE 42704). The specified trigger is deleted.

Dropping triggers causes certain packages to be marked invalid.

If trigger-name specifies an INSTEAD OF trigger on a view, another trigger may depend on that trigger
through an update against the view.

TRUSTED CONTEXT context-name
Identifies the trusted context that is to be dropped. The context-name must identify a trusted context
that exists at the current server (SQLSTATE 42704). If the trusted context is dropped while trusted
connections for this context are active, those connections remain trusted until they terminate or until
the next reuse attempt. If an attempt is made to switch the user on these trusted connections, an
error is returned (SQLSTATE 42517). The specified trusted context is deleted from the catalog.

TYPE type-name
Identifies the user-defined type to be dropped. In dynamic SQL statements, the CURRENT SCHEMA
special register is used as a qualifier for an unqualified object name. In static SQL statements the
QUALIFIER precompile/bind option implicitly specifies the qualifier for unqualified object names. For
a structured type, the associated reference type is also dropped. The type-name must identify a
user-defined type described in the catalog.
RESTRICT

The type is not dropped (SQLSTATE 42893) if any of the following conditions are true:

• The type is used as the type of a column of a table or view.
• The type has a subtype.

1628 IBM Db2 V11.5: SQL Reference

• The type is a structured type used as the data type of a typed table or a typed view.
• The type is an attribute of another structured type.
• There exists a column of a table whose type might contain an instance of type-name. This can

occur if type-name is the type of the column or is used elsewhere in the column's associated
type hierarchy. More formally, for any type T, T cannot be dropped if there exists a column of a
table whose type directly or indirectly uses type-name.

• The type is the target type of a reference-type column of a table or view, or a reference-type
attribute of another structured type.

• The type, or a reference to the type, is a parameter type or a return value type of a function or
method.

• The type is a parameter type or is used in the body of an SQL procedure.
• The type, or a reference to the type, is used in the body of an SQL function or method, but it is

not a parameter type or a return value type.
• The type is used in a check constraint, trigger, view definition, or index extension.

If RESTRICT is not specified, the behavior is the same as RESTRICT, except for functions and methods
that use the type.

The restrict rule is enforced by default for the same dependencies as in version 9.5 if the
auto_reval database configuration parameter is set to disabled.

Functions that use the type: If the user-defined type can be dropped, then for every function, F (with
specific name SF), that has parameters or a return value of the type being dropped or a reference to
the type being dropped, the following DROP FUNCTION statement is effectively executed:

 DROP SPECIFIC FUNCTION SF

It is possible that this statement also would cascade to drop dependent functions. If all of these
functions are also in the list to be dropped because of a dependency on the user-defined type, the
drop of the user-defined type will succeed (otherwise it fails with SQLSTATE 42893).

Methods that use the type: If the user-defined type can be dropped, then for every method, M of type
T1 (with specific name SM), that has parameters or a return value of the type being dropped or a
reference to the type being dropped, the following statements are effectively executed:

 DROP SPECIFIC METHOD SM
 ALTER TYPE T1 DROP SPECIFIC METHOD SM

The existence of objects that are dependent on these methods may cause the DROP TYPE operation
to fail.

All packages that are dependent on methods defined in supertypes of the type being dropped, and
that are eligible for overriding, are invalidated.

If the type is referenced in the definition of a row permission or a column mask, the type cannot be
dropped (SQLSTATE 42893).

TYPE MAPPING type-mapping-name
Identifies the user-defined data type mapping to be dropped. The type-mapping-name must identify
a data type mapping that is described in the catalog (SQLSTATE 42704). The data type mapping is
deleted from the database.

No additional objects are dropped.

USAGE LIST usage-list-name
Identifies the usage list that is to be dropped. The usage-list-name, including the implicit or explicit
qualifier, must identify a usage list that is described in the catalog (SQLSTATE 42704). Memory
allocated for the usage list is released and is not under transactional control.

USER MAPPING FOR authorization-name | USER SERVER server-name
Identifies the user mapping to be dropped. This mapping associates an authorization name that is
used to access the federated database with an authorization name that is used to access a data

Chapter 1. Structured Query Language (SQL) 1629

source. The first of these two authorization names is either identified by the authorization-name or
referenced by the special register USER. The server-name identifies the data source that the second
authorization name is used to access.

The authorization-name must be listed in the catalog (SQLSTATE 42704). The server-name must
identify a data source that is described in the catalog (SQLSTATE 42704). The user mapping is
deleted.

No additional objects are dropped.

VARIABLE variable-name
Identifies the global variable that is to be dropped. The variable-name must identify a global variable
that exists at the current server (SQLSTATE 42704).

If the variable is referenced in the definition of a row permission or a column mask, the variable
cannot be dropped (SQLSTATE 42893).

RESTRICT
The RESTRICT keyword prevents the global variable from being dropped if it is referenced in an
SQL routine definition, trigger definition, or view definition (SQLSTATE 42893).

The restrict rule is enforced by default for the same dependencies as in version 9.5 if the following
conditions are met:

• The auto_reval database configuration parameter is set to disabled
• An inlined trigger definition, inlined SQL function definition, inlined SQL method definition, or

view references the variable

VIEW view-name
Identifies the view that is to be dropped. The view-name must identify a view that is described in
the catalog (SQLSTATE 42704). The subviews of a typed view are dependent on their superviews. All
subviews must be dropped before a superview can be dropped (SQLSTATE 42893).

The specified view is deleted. The definition of any view or trigger that is directly or indirectly
dependent on that view is marked inoperative. Any materialized query table or staging table that
is dependent on any view that is marked inoperative is dropped. Any packages dependent on a view
that is dropped or marked inoperative will be invalidated. This includes packages dependent on any
superviews above the subview in the hierarchy. Any reference columns for which the dropped view is
defined as the scope of the reference become unscoped.

If the view is referenced in the definition of a row permission or a column mask, the view cannot be
dropped (SQLSTATE 42893).

VIEW HIERARCHY root-view-name
Identifies the typed view hierarchy that is to be dropped. The root-view-name must identify a typed
view that is the root view in the typed view hierarchy (SQLSTATE 428DR). The typed view identified by
root-view-name and all of its subviews are deleted from the database.

The definition of any view or trigger that is directly or indirectly dependent on any of the dropped
views is marked inoperative. Any packages dependent on any view or trigger that is dropped or
marked inoperative will be invalidated. Any reference columns for which a dropped view or view
marked inoperative is defined as the scope of the reference become unscoped.

WORK ACTION SET work-action-set-name
Identifies the work action set that is to be dropped. The work-action-set-name must identify a work
action set that exists at the current server (SQLSTATE 42704). All work actions that are contained by
the work-action-set-name are also dropped.

WORK CLASS SET work-class-set-name
Identifies the work class set that is to be dropped. The work-class-set-name must identify a work
class set that exists at the current server (SQLSTATE 42704). All work classes that are contained by
the work-class-set-name are also dropped.

1630 IBM Db2 V11.5: SQL Reference

WORKLOAD workload-name
Identifies the workload that is to be dropped. This is a one-part name. The workload-name must
identify a workload that exists at the current server (SQLSTATE 42704). SYSDEFAULTUSERWORKLOAD
or SYSDEFAULTADMWORKLOAD cannot be dropped (SQLSTATE 42832). A workload must be disabled
and must not have active workload occurrences associated with it before it can be dropped
(SQLSTATE 5U023). To drop a workload with an associated threshold (SQLSTATE 5U031), you must
drop the threshold first. The specified workload is deleted from the catalog.

WRAPPER wrapper-name
Identifies the wrapper to be dropped. The wrapper-name must identify a wrapper that is described in
the catalog (SQLSTATE 42704). The wrapper is deleted.

All server definitions, user-defined function mappings, and user-defined data type mappings that are
dependent on the wrapper are dropped. All user-defined function mappings, nicknames, user-defined
data type mappings, and user mappings that are dependent on the dropped server definitions are also
dropped. Any index specifications dependent on the dropped nicknames are dropped, and any views
dependent on these nicknames are marked inoperative. All packages dependent on the dropped
objects and inoperative views are invalidated. All federated procedures that are dependent on the
dropped server definitions are also dropped.

XSROBJECT xsrobject-name
Identifies the XSR object to be dropped. The xsrobject-name must identify an XSR object that is
described in the catalog (SQLSTATE 42704).

Check constraints that reference the XSR object are dropped. All triggers and views referencing the
XSR object are marked inoperative. Packages having a dependency on a dropped XSR object are
invalidated.

In a partitioned database environment, you can issue this statement against an XSR object by
connecting to any partition.

Rules
Dependencies: Table 149 on page 1632 shows the dependencies that objects have on each other. Not all
dependencies are explicitly recorded in the catalog. For example, there is no record of the constraints on
which a package has dependencies. Four different types of dependencies are shown:
R

Restrict semantics. The underlying object cannot be dropped as long as the object that depends on it
exists.

C
Cascade semantics. Dropping the underlying object causes the object that depends on it (the
depending object) to be dropped as well. However, if the depending object cannot be dropped
because it has a Restrict dependency on some other object, the drop of the underlying object will
fail.

X
Inoperative semantics. Dropping the underlying object causes the object that depends on it to
become inoperative. It remains inoperative until a user takes some explicit action.

A
Automatic invalidation and revalidation semantics. Dropping the underlying object causes the object
that depends on it to become invalid. The database manager attempts to revalidate the invalid object.

A package used by a function or a method, or by a procedure that is called directly or indirectly from
a function or method, will only be automatically revalidated if the routine is defined as MODIFIES SQL
DATA. If the routine is not MODIFIES SQL DATA, an error is returned (SQLSTATE 56098).

In general, the database manager attempts to revalidate the invalid objects the next time the object
is used. However, in situations when auto_reval is set to IMMEDIATE, the impacted dependent
objects will be revalidated immediately after they become invalid. Those situations are:

• ALTER TABLE ... ALTER COLUMN

Chapter 1. Structured Query Language (SQL) 1631

• ALTER TABLE ... DROP COLUMN
• ALTER TABLE ... RENAME COLUMN
• ALTER TYPE ... ADD ATTRIBUTE
• ALTER TYPE ... DROP ATTRIBUTE
• Any CREATE statement that specifies "OR REPLACE"

Some of the dependencies shown in Table 149 on page 1632 change to "A" (Automatic Invalidation/
Revalidation semantics) when the database configuration parameter auto_reval is set to IMMEDIATE or
DEFERRED. Table 150 on page 1638 summarizes the dependent objects that are impacted. Objects listed
in the "Impacted Dependent Objects" column will be invalidated when the corresponding statement listed
in the "Statement" column is executed.

Some DROP statement parameters and objects are not shown in Table 149 on page 1632 because they
would result in blank rows or columns:

• EVENT MONITOR, PACKAGE, PROCEDURE, SCHEMA, TYPE MAPPING, and USER MAPPING DROP
statements do not have object dependencies.

• Alias, buffer pool, distribution key, privilege, and procedure object types do not have DROP statement
dependencies.

• A DROP SERVER, DROP FUNCTION MAPPING, or DROP TYPE MAPPING statement in a given unit of
work (UOW) cannot be processed under either of the following conditions:

– The statement references a single data source, and the UOW already includes a SELECT statement
that references a nickname for a table or view within this data source (SQLSTATE 55006).

– The statement references a category of data sources (for example, all data sources of a specific type
and version), and the UOW already includes a SELECT statement that references a nickname for a
table or view within one of these data sources (SQLSTATE 55006).

Table 149. Dependencies

Statement Object Type

C
O
N
S
T
R
A
I
N
T

F
U
N
C
T
I
O
N

F
U
N
C
T
I
O
N

M
A
P
P
I
N
G

G
L
O
B
A
L

V
A
R
I
A
B
L
E

I
N
D
E
X

I
N
D
E
X

E
X
T
E
N
S
I
O
N

M
A
S
K

M
E
T
H
O
D

N
I
C
K
N
A
M
E

D
B

P
A
R
T
I
T
I
O
N

G
R
O
U
P

P
A
C
K
A
G
E

31

P
E
R
M
I
S
S
I
O
N

S
E
R
V
E
R

S
E
R
V
I
C
E

C
L
A
S
S

T
A
B
L
E

T
A
B
L
E

S
P
A
C
E

T
H
R
E
S
H
O
L
D

T
R
I
G
G
E
R

T
Y
P
E

T
Y
P
E

M
A
P
P
I
N
G

U
S
A
G
R

L
I
S
T

U
S
E
R

M
A
P
P
I
N
G

V
I
E
W

W
O
R
K

A
C
T
I
O
N

W
O
R
K

A
C
T
I
O
N

S
E
T

W
O
R
K
L
O
A
D

X
S
R
O
B
J
E
C
T

ALTER FUNCTION - - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER METHOD - - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER NICKNAME, altering
the local name or the local
type

R
33

R - - - - - R - - A - - - R - - - - - - - R - - - -

ALTER NICKNAME, altering
a column option or a
nickname option

- - - - - - - - - - A - - - R - - - - - - - - - - - -

ALTER NICKNAME, adding,
altering, or dropping a
constraint

- - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER PROCEDURE - - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER SERVER - - - - - - - - - - A - - - - - - - - - - - - - - - -

1632 IBM Db2 V11.5: SQL Reference

Table 149. Dependencies (continued)

Statement Object Type

C
O
N
S
T
R
A
I
N
T

F
U
N
C
T
I
O
N

F
U
N
C
T
I
O
N

M
A
P
P
I
N
G

G
L
O
B
A
L

V
A
R
I
A
B
L
E

I
N
D
E
X

I
N
D
E
X

E
X
T
E
N
S
I
O
N

M
A
S
K

M
E
T
H
O
D

N
I
C
K
N
A
M
E

D
B

P
A
R
T
I
T
I
O
N

G
R
O
U
P

P
A
C
K
A
G
E

31

P
E
R
M
I
S
S
I
O
N

S
E
R
V
E
R

S
E
R
V
I
C
E

C
L
A
S
S

T
A
B
L
E

T
A
B
L
E

S
P
A
C
E

T
H
R
E
S
H
O
L
D

T
R
I
G
G
E
R

T
Y
P
E

T
Y
P
E

M
A
P
P
I
N
G

U
S
A
G
R

L
I
S
T

U
S
E
R

M
A
P
P
I
N
G

V
I
E
W

W
O
R
K

A
C
T
I
O
N

W
O
R
K

A
C
T
I
O
N

S
E
T

W
O
R
K
L
O
A
D

X
S
R
O
B
J
E
C
T

ALTER TABLE ALTER
COLUMN

- A - A - - R - - - A - - - - - - A - - - - A - - - X
34

ALTER TABLE DROP
COLUMN

C C - C C - R - - - - R - - - - - C - - - - C - - - X
34

ALTER TABLE DROP
CONSTRAINT

C - - - - - - - - - A
1

- - - - - - - - - - - - - - - -

ALTER TABLE DROP
PARTITIONING KEY

- - - - - - - - - R
20

A
1

- - - - - - - - - - - - - - - -

ALTER TYPE ADD
ATTRIBUTE

- - - - - R - - - - A
23

- - - R
24

- - - - - - - R
14

- - - -

ALTER TYPE ALTER
METHOD

- - - - - - - - - - A - - - - - - - - - - - - - - - -

ALTER TYPE DROP
ATTRIBUTE

- - - - - R - - - - A
23

- - - R
24

- - - - - - - R
14

- - - -

ALTER TYPE ADD METHOD -

ALTER TYPE DROP
METHOD

- - - - - - - R
27

- - - - - - - - - - - - - - - - - - -

CREATE METHOD - - - - - - - - - - A
28

- - - - - - - - - - - - - - - -

CREATE TYPE - - - - - - - - - - A
29

- - - - - - - - - - - - - - - -

DROP ALIAS - R - R - - R - - - A
3

R - - C
3

- - X
3

- - - - X
3

- - - -

DROP BUFFERPOOL - - - - - - - - - - - - - - - R - - - - - - - - - - -

DROP DATABASE
PARTITION GROUP

- - - - - - - - - - - - - - - C - - - - - - - - - - -

DROP FUNCTION R R
7

R R - R R R
7

- - X R - - R - - R - - - - R - - - -

DROP FUNCTION
MAPPING

- - - - - - - - - - A - - - - - - - - - - - - - - - -

DROP INDEX R - - - - - - - - - A - - - - - - - - - C
37

- R
17

- - - -

DROP INDEX EXTENSION - R - R R -

DROP MASK - - - - - - - - - - A
39

- - - - - - - - - - - - - - - -

DROP METHOD R R
7

R R - R - R - - X,
A

30

- - - R - - R - - - - R - - - -

DROP NICKNAME - R - R C - - R - - A - - - C
11

- - - - - - - X
16

- - - -

Chapter 1. Structured Query Language (SQL) 1633

Table 149. Dependencies (continued)

Statement Object Type

C
O
N
S
T
R
A
I
N
T

F
U
N
C
T
I
O
N

F
U
N
C
T
I
O
N

M
A
P
P
I
N
G

G
L
O
B
A
L

V
A
R
I
A
B
L
E

I
N
D
E
X

I
N
D
E
X

E
X
T
E
N
S
I
O
N

M
A
S
K

M
E
T
H
O
D

N
I
C
K
N
A
M
E

D
B

P
A
R
T
I
T
I
O
N

G
R
O
U
P

P
A
C
K
A
G
E

31

P
E
R
M
I
S
S
I
O
N

S
E
R
V
E
R

S
E
R
V
I
C
E

C
L
A
S
S

T
A
B
L
E

T
A
B
L
E

S
P
A
C
E

T
H
R
E
S
H
O
L
D

T
R
I
G
G
E
R

T
Y
P
E

T
Y
P
E

M
A
P
P
I
N
G

U
S
A
G
R

L
I
S
T

U
S
E
R

M
A
P
P
I
N
G

V
I
E
W

W
O
R
K

A
C
T
I
O
N

W
O
R
K

A
C
T
I
O
N

S
E
T

W
O
R
K
L
O
A
D

X
S
R
O
B
J
E
C
T

DROP PERMISSION - - - - - - - - - - A
40

- - - - - - - - - - - - - - - -

DROP PROCEDURE - R
7

- R - - - R
7

- - A - - - - - - R - - - - - - - - -

DROP SEQUENCE - R - - - - - R - - A - - - - - - R - - - - - - - - -

DROP SERVER - C
21

C
19

- - - - - C - A - - - - - - - - C
19

- C - - - - -

DROP SERVICE CLASS - - - - - - - - - - - - - - - - R
35

- - - - - - R
35

- R
35

-

DROP STOGROUP - - - - - - - - - - - - - - - R - - - - - - - - - - -

DROP TABLE32 C R - R C - R - - - A
9

R - - R,
C

11

- - X
16

- - C
37

- X
16

- - - X
34

DROP TABLE HIERARCHY C R - R C - - - - - A
9

- - - R,
C

11

- - X
16

- - - - X
16

- - - -

DROP TABLESPACE - - - - C
6

- - - - - - - - - C,
R
6

- - - - - - - - - - - -

DROP TRANSFORM - R - - - - - - - - X - - - - - - - - - - - - - - - -

DROP TRIGGER - - - - - - - - - - A
1

- - - - - - X
26

- - - - - - - - -

DROP TYPE R
13

R
5

- R - R - - - - A
12

- - - R
18

- - R
13

R
4

- - - R
14

- - - -

DROP VARIABLE - - R R - - R R - - A R - - - - - R - - - - R - - - -

DROP VIEW - R - R - - R - - - A
2

R - - - - - X
16

- - - - X
15

- - - -

DROP VIEW HIERARCHY - R - R - - - - - - A
2

- - - - - - X
16

- - - - X
16

- - - -

DROP WORK CLASS SET - R
36

- -

DROP WRAPPER - - C - - - - - - - - - C - - - - - - C - - - - - - -

DROP XSROBJECT C - - - - - - - - - A - - - - - - X - - - - X - - - -

REVOKE a privilege10 - C,
R

25

- - - - R
38

C,
R

25

- - A
1

R
38

- - C,
X
8

- - X - - - - X
8

- - - -

1

This dependency is implicit in depending on a table with these constraints, triggers, or a distribution
key.

1634 IBM Db2 V11.5: SQL Reference

2

If a package has an INSERT, UPDATE, or DELETE statement acting upon a view, then the package has
an insert, update or delete usage on the underlying base table of the view. In the case of UPDATE,
the package has an update usage on each column of the underlying base table that is modified by the
UPDATE.

If a package has a statement acting on a typed view, creating or dropping any view in the same view
hierarchy will invalidate the package.

3

If a package, materialized query table, staging table, view, or trigger uses an alias, it becomes
dependent both on the alias and the object that the alias references. If the alias is in a chain, a
dependency is created on each alias in the chain.

Aliases themselves are not dependent on anything. It is possible for an alias to be defined on an
object that does not exist.

4

A user-defined type T can depend on another user-defined type B, if T:

• names B as the data type of an attribute
• has an attribute of REF(B)
• has B as a supertype.

5

If the user-defined type is referenced as a function parameter type or return type, then the type
will be dropped and its catalog data will be maintained due to the routine parameter dependency. A
value 'X' in the VALID column of the SYSCAT.DATATYPES catalog view indicates this dropped type. Its
catalog data will be deleted by a DROP FUNCTION statement if the DROP FUNCTION statement also
dropped the last routine parameter dependency on this type, or will be deleted by a CREATE TYPE
statement with the same schema name, module name, and type name. If the user-defined type is a
structured type, any methods that are associated with the type are also dropped.

6

Dropping a table space or a list of table spaces causes all the tables that are completely contained
within the given table space or list to be dropped. However, if a table spans table spaces (indexes,
long columns, or data partitions in different table spaces) and those table spaces are not in the list
being dropped, the table spaces cannot be dropped as long as the table exists.

7

A function can depend on another specific function if the depending function names the base function
in a SOURCE clause. A function or method can also depend on another specific function or method if
the depending routine is written in SQL and uses the base routine in its body. An external method, or
an external function with a structured type parameter or returns type will also depend on one or more
transform functions.

8

Only loss of SELECT privilege will cause a materialized query table to be dropped or a view to become
inoperative. If the view that is made inoperative is included in a typed view hierarchy, all of its
subviews also become inoperative.

9

If a package has an INSERT, UPDATE, or DELETE statement acting on table T, then the package has an
insert, update or delete usage on T. In the case of UPDATE, the package has an update usage on each
column of T that is modified by the UPDATE.

If a package has a statement acting on a typed table, creating or dropping any table in the same table
hierarchy will invalidate the package.

10

Dependencies do not exist at the column level because privileges on columns cannot be revoked
individually.

Chapter 1. Structured Query Language (SQL) 1635

If a package, trigger or view includes the use of OUTER(Z) in the FROM clause, there is a dependency
on the SELECT privilege on every subtable or subview of Z. Similarly, if a package, trigger, or view
includes the use of DEREF(Y) where Y is a reference type with a target table or view Z, there is a
dependency on the SELECT privilege on every subtable or subview of Z.

11

A materialized query table is dependent on the underlying tables or nicknames specified in the
fullselect of the table definition.

Cascade semantics apply to dependent materialized query tables.

A subtable is dependent on its supertables up to the root table. A supertable cannot be dropped until
all of its subtables are dropped.

A history table is dependent on the system-period temporal table with which it is associated. Cascade
semantics apply to the history table when the system-period temporary table on which depends is
dropped.

12

A package can depend on structured types as a result of using the TYPE predicate or the subtype-
treatment expression (TREAT expression AS data-type). The package has a dependency on the
subtypes of each structured type specified in the right side of the TYPE predicate, or the right side of
the TREAT expression. Dropping or creating a structured type that alters the subtypes on which the
package is dependent causes invalidation.

All packages that are dependent on methods defined in supertypes of the type being dropped, and
that are eligible for overriding, are invalidated.

13

A check constraint or trigger is dependent on a type if the type is used anywhere in the constraint or
trigger. There is no dependency on the subtypes of a structured type used in a TYPE predicate within a
check constraint or trigger.

14

A view is dependent on a type if the type is used anywhere in the view definition (this includes the
type of typed view). There is no dependency on the subtypes of a structured type used in a TYPE
predicate within a view definition.

15

A subview is dependent on its superview up to the root view. A superview cannot be dropped until all
its subviews are dropped. Refer to 16 for additional view dependencies.

16

A trigger or view is also dependent on the target table or target view of a dereference operation or
DEREF function. A trigger or view with a FROM clause that includes OUTER(Z) is dependent on all the
subtables or subviews of Z that existed at the time the trigger or view was created.

17

A typed view can depend on the existence of a unique index to ensure the uniqueness of the object
identifier column.

18

A table may depend on a user defined data type (distinct or structured) because the type is:

• used as the type of a column
• used as the type of the table
• used as an attribute of the type of the table
• used as the target type of a reference type that is the type of a column of the table or an attribute of

the type of the table
• directly or indirectly used by a type that is the column of the table.

19

Dropping a server cascades to drop the function mappings and type mappings created for that named
server.

1636 IBM Db2 V11.5: SQL Reference

20

If the distribution key is defined on a table in a multiple partition database partition group, the
distribution key is required.

21

If a dependent OLE DB table function has "R" dependent objects (see DROP FUNCTION), then the
server cannot be dropped.

22

An SQL function or method can depend on the objects referenced by its body.
23

When an attribute A of type TA of type-name T is dropped, the following DROP statements are
effectively executed:

 Mutator method: DROP METHOD A (TA) FOR T
 Observer method: DROP METHOD A () FOR T
 ALTER TYPE T
 DROP METHOD A(TA)
 DROP METHOD A()

24

A table may depend on an attribute of a user-defined structured data type in the following cases:

1. The table is a typed table that is based on type-name or any of its subtypes.
2. The table has an existing column of a type that directly or indirectly refers to type-name.

25

A REVOKE of SELECT privilege on a table or view that is used in the body of an SQL function or method
body causes an attempt to drop the function or method body, if the function or method body defined
no longer has the SELECT privilege. If such a function or method body is used in a view, trigger,
function, or method body, it cannot be dropped, and the REVOKE is restricted as a result. Otherwise,
the REVOKE cascades and drops such functions.

26

A trigger depends on an INSTEAD OF trigger when it modifies the view on which the INSTEAD OF
trigger is defined, and the INSTEAD OF trigger fires.

27

A method declaration of an original method that is overridden by other methods cannot be dropped
(SQLSTATE 42893).

28

If the method of the method body being created is declared to override another method, all packages
dependent on the overridden method, and on methods that override this method in supertypes of the
method being created, are invalidated.

29

When a new subtype of an existing type is created, all packages dependent on methods that are
defined in supertypes of the type being created, and that are eligible for overriding (for example, no
mutators or observers), are invalidated.

30

If the specific method of the method body being dropped is declared to override another method,
all packages dependent on the overridden method, and on methods that override this method in
supertypes of the specific method being dropped, are invalidated.

31

Cached dynamic SQL has the same semantics as packages.
32

When a remote base table is dropped using the DROP TABLE statement, both the nickname and the
remote base table are dropped.

33

A primary key or unique keys that are not referenced by a foreign key do not restrict the altering of a
nickname local name or local type.

Chapter 1. Structured Query Language (SQL) 1637

34

An XSROBJECT can become inoperative for decomposition as a result of changes to a table that
is associated with the XML schema for decomposition. Changes that could impact decomposition
are: dropping the table or dropping a column of the table, or changing a column of the table. The
decomposition status of the XML schema can be reset by issuing an ALTER XSROBJECT statement to
enable or disable decomposition for the XML schema.

35

• A service class cannot be dropped if any workload is mapped to it (SQLSTATE 5U031).
• A service subclass cannot be dropped if any work action is mapped to it (SQLSTATE 5U031).
• A service subclass cannot be explicitly dropped if it is the target of a threshold REMAP action

(SQLSTATE 5U031).

Dropping a service superclass cascades to drop any thresholds, work action sets and service
subclasses defined for the service class.

36

A work class set cannot be dropped until the work action set that is defined on it has been dropped.
37

Once the index or table is dropped, its usage list will be invalidated in the catalog. Revalidation will
take place on the next activation of the list or it can be explicitly revalidated using the procedure
ADMIN_REVALIDATE_DB_OBJECTS.

38

Revoking a privilege is restricted if it causes an object to be dropped or invalidated, and a permission
or mask depends on it. For example, if you have a view which depends on a table, and a permission or
mask that references the view, REVOKE SELECT on the table invalidates the view, but causes an error.

39

Packages are invalidated when a table on which the enabled permission is defined has row level
access control activated on the table. Packages are not affected when dropping a permission that is
disabled or is defined on a table with row access control deactivated.

40

Packages are invalidated when a table on which the enabled permission is defined has row level
access control activated on the table. Packages are not affected when dropping a permission that is
disabled or is defined on a table with row access control deactivated.

Table 150. Dependent Objects Impacted by auto_reval

Statement Impacted Dependent Objects

ALTER NICKNAME (altering the local name or the local
type)

Anchor Type, Function, Method, Procedure, User
Defined Type, Variable, View

ALTER TABLE ALTER COLUMN Anchor Type, Function, Method, Procedure, Trigger4,
User Defined Type, Variable, View, XSROBJECT

ALTER TABLE DROP COLUMN2 Anchor Type, Function, Method, Index, Procedure,
Trigger4, User Defined Type, Variable, View,
XSROBJECT

ALTER TABLE RENAME COLUMN1, 3 Anchor Type, Function, Method, Index, Procedure,
Trigger4, User Defined Type, Variable, View,
XSROBJECT

ALTER TYPE ADD ATTRIBUTE View

ALTER TYPE DROP ATTRIBUTE View

DROP ALIAS Anchor Type, Function, Method, Procedure, Trigger,
User Defined Type, Variable, View

1638 IBM Db2 V11.5: SQL Reference

Table 150. Dependent Objects Impacted by auto_reval (continued)

Statement Impacted Dependent Objects

DROP FUNCTION (ALTER MODULE DROP FUNCTION) Function, Function Mapping, Index Extension, Method,
Procedure, Trigger, Variable, View

DROP METHOD Function, Function Mapping, Index Extension, Method,
Procedure, Trigger, Variable, View

DROP NICKNAME Anchor Type, Function, Method, Procedure, Trigger,
User Defined Type, Variable, View

DROP PROCEDURE (ALTER MODULE DROP
PROCEDURE)

Function, Method, Procedure, Trigger

DROP SEQUENCE Function, Method, Procedure, Trigger, Variable, View

DROP TABLE Anchor Type, Function, Method, Procedure, Trigger4,
User Defined Type, Variable, View, XSROBJECT

DROP TABLE HIERARCHY Function, Method, Procedure, Trigger, Variable, View

DROP TRIGGER Trigger

DROP TYPE (ALTER MODULE DROP TYPE) Anchor Type, Cursor Type, Function, Method,
Procedure, Index Extension, Trigger, User Defined
Type, Variable, View

DROP VARIABLE (ALTER MODULE DROP VARIABLE) Anchor Type, Function, Function Mapping, Method,
Procedure, Trigger, User Defined Type, Variable, View

DROP VIEW Anchor Type, Function, Method, Procedure, Trigger4,
User Defined Type, Variable, View

DROP VIEW HIERARCHY Function, Procedure, Trigger, Variable, View

DROP XSROBJECT Trigger, View

RENAME TABLE Anchor Type, Function, Method, Procedure, Trigger4,
User Defined Type, Variable, View, XSROBJECT

REVOKE a privilege Function, Method, Procedure, Trigger, Variable, View

CREATE OR REPLACE ALIAS1 Function, Trigger, Procedure, Variable, View

CREATE OR REPLACE VIEW1 Anchor Type, Function, Method, Procedure, Trigger4,
User Defined Type, Variable, View

CREATE OR REPLACE FUNCTION1 Function, Function Mapping, Index Extension, method,
Procedure, Variable, View

CREATE OR REPLACE PROCEDURE1 Function, Method, Procedure, Trigger

CREATE OR REPLACE NICKNAME1 Function, method, Procedure, Variable, View

CREATE OR REPLACE SEQUENCE1 Function, Method, Procedure, Trigger, Variable, View

CREATE OR REPLACE VARIABLE1 Function, Method, Procedure, Trigger, User Defined
Type, Variable, View

CREATE OR REPLACE TRIGGER1 Trigger

1

Immediate revalidation semantics apply for these statements (for the CREATE statements, only if OR
REPLACE is specified) regardless of the setting of the auto_reval database configuration parameter.

Chapter 1. Structured Query Language (SQL) 1639

2

The dependent objects listed will be revalidated the next time the object is used, except for the
following objects, which will be revalidated immediately as part of the statement:

• ANCHOR TYPE
• CURSOR TYPE
• VIEW (where the select list consists only of SELECT *, and does not contain any explicitly defined

view columns).

For an immediate view revalidation, the list of column names for the select list will be re-established
during revalidation.

3

The dependent objects listed will be revalidated the next time the object is used except for the
following objects, which will be revalidated immediately as part of the statement:

• User Defined Type
• VIEW (where the select list consists only of SELECT *, and does not contain any explicitly defined

view columns).

For an immediate view revalidation, the list of column names for the select list will be re-established
during revalidation.

4
If the dependency is because the trigger is defined on the table or view, then the inoperative
semantics from Table 1 continue to apply. If the dependency is because the trigger body references
the table or view, then automatic invalidation and revalidation semantics apply.

The DROP DATABASE PARTITION GROUP statement might fail (SQLSTATE 55071) if an add database
partition server request is either pending or in progress. This statement might also fail (SQLSTATE 55077)
if a new database partition server is added online to the instance and not all applications are aware of the
new database partition server.

Notes
• It is valid to drop a user-defined function while it is in use. Also, a cursor can be open over a statement

which contains a reference to a user-defined function, and while this cursor is open the function can be
dropped without causing the cursor fetches to fail.

• If a package which depends on a user-defined function is executing, it is not possible for another
authorization ID to drop the function until the package completes its current unit of work. At that point,
the function is dropped and the package becomes inoperative. The next request for this package results
in an error indicating that the package must be explicitly rebound.

• The removal of a function body (this is very different from dropping the function) can occur while an
application which needs the function body is executing. This may or may not cause the statement to fail,
depending on whether the function body still needs to be loaded into storage by the database manager
on behalf of the statement.

• In addition to the dependencies recorded for any explicitly specified UDF, the following dependencies
are recorded when transforms are implicitly required:

1. When the structured type parameter or result of a function or method requires a transform, a
dependency is recorded for the function or method on the required TO SQL or FROM SQL transform
function.

2. When an SQL statement included in a package requires a transform function, a dependency is
recorded for the package on the designated TO SQL or FROM SQL transform function.

Since these describe the only circumstances under which dependencies are recorded due to implicit
invocation of transforms, no objects other than functions, methods, or packages can have a dependency
on implicitly invoked transform functions. On the other hand, explicit calls to transform functions (in
views and triggers, for example) do result in the usual dependencies of these other types of objects on

1640 IBM Db2 V11.5: SQL Reference

transform functions. As a result, a DROP TRANSFORM statement may also fail due to these "explicit"
type dependencies of objects on the transform(s) being dropped (SQLSTATE 42893).

• Since the dependency catalogs do not distinguish between depending on a function as a transform
versus depending on a function by explicit function call, it is suggested that explicit calls to transform
functions are not written. In such an instance, the transform property on the function cannot be
dropped, or packages will be marked inoperative, simply because they contain explicit invocations in an
SQL expression.

• System created sequences for IDENTITY columns cannot be dropped using the DROP SEQUENCE
statement.

• When a sequence is dropped, all privileges on the sequence are also dropped and any packages that
refer to the sequence are invalidated.

• For relational nicknames, the DROP NICKNAME statement within a given unit of work (UOW) cannot be
processed under either of the following conditions (SQLSTATE 55007):

– A nickname referenced in this statement has a cursor open on it in the same UOW
– Either an INSERT, DELETE, or UPDATE statement is already issued in the same UOW against the

nickname that is referenced in this statement
• For non-relational nicknames, the DROP NICKNAME statement within a given unit of work (UOW)

cannot be processed under any of the following conditions (SQLSTATE 55007):

– A nickname referenced in this statement has a cursor open on it in the same UOW
– A nickname referenced in this statement is already referenced by a SELECT statement in the same

UOW
– Either an INSERT, DELETE, or UPDATE statement has already been issued in the same UOW against

the nickname that is referenced in this statement
• A DROP SERVER statement (SQLSTATE 55006), or a DROP FUNCTION MAPPING or DROP TYPE

MAPPING statement (SQLSTATE 55007) within a given unit of work (UOW) cannot be processed under
either of the following conditions:

– The statement references a single data source, and the UOW already includes one of the following
items:

- A SELECT statement that references a nickname for a table or view within this data source
- An open cursor on a nickname for a table or view within this data source
- Either an INSERT, DELETE, or UPDATE statement issued against a nickname for a table or view

within this data source
– The statement references a category of data sources (for example, all data sources of a specific type

and version), and the UOW already includes one of the following items:

- A SELECT statement that references a nickname for a table or view within one of these data sources
- An open cursor on a nickname for a table or view within one of these data sources
- Either an INSERT, DELETE, or UPDATE statement issued against a nickname for a table or view

within one of these data sources
• The DROP WORKLOAD statement does not take effect until it is committed, even for the connection that

issues the statement.
• Only one of these statements can be issued by any application at a time, and only one of these

statements is allowed within any one unit of work. Each statement must be followed by a COMMIT or a
ROLLBACK statement before another one of these statements can be issued (SQLSTATE 5U021).

– CREATE HISTOGRAM TEMPLATE, ALTER HISTOGRAM TEMPLATE, or DROP (HISTOGRAM TEMPLATE)
– CREATE SERVICE CLASS, ALTER SERVICE CLASS, or DROP (SERVICE CLASS)
– CREATE THRESHOLD, ALTER THRESHOLD, or DROP (THRESHOLD)
– CREATE WORK ACTION, ALTER WORK ACTION, or DROP (WORK ACTION)
– CREATE WORK CLASS, ALTER WORK CLASS, or DROP (WORK CLASS)

Chapter 1. Structured Query Language (SQL) 1641

– CREATE WORKLOAD, ALTER WORKLOAD, or DROP (WORKLOAD)
– GRANT (Workload Privileges) or REVOKE (Workload Privileges)

• Soft invalidation: After the drop or change of a database object done by the following statements,
active access to the dropped or changed object continues until the access is complete.

– ALTER FUNCTION
– ALTER MODULE ... DROP FUNCTION
– ALTER MODULE ... DROP VARIABLE
– ALTER TABLE ... DETACH PARTITION
– ALTER VIEW
– DROP ALIAS
– DROP FUNCTION
– DROP TRIGGER
– DROP VARIABLE
– DROP VIEW
– All of the CREATE OR REPLACE statements except CREATE OR REPLACE SEQUENCE.

This is the case when the database registry variable DB2_DLL_SOFT_INVALID is set to ON. When it is set
to OFF, the drop or change of these objects will only complete after all active access to the object to be
dropped or changed is complete.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP
– DISTINCT TYPE type-name can be specified in place of TYPE type-name
– DATA TYPE type-name can be specified in place of TYPE type-name
– SYNONYM can be specified in place of ALIAS
– PROGRAM can be specified in place of PACKAGE

• Invalidation of packages and dynamically cached statements after dropping row permissions
or column masks: If row level access control is activated on the table, dropping an enabled row
permission defined for that table invalidates all packages and dynamically cached statements that
reference that same table. If column level access control is activated on the table, dropping an enabled
column mask defined for that table invalidates all packages and dynamically cached statements that
reference that same table. There is no invalidation for dropping disabled masks or permissions.

• Circular dependency: Circular dependency exists in the following example:

CREATE PERMISSION RP1 ON T1 FOR ROWS
 WHERE C1>(SELECT MAX(C1) FROM T2)
ENFORCED FOR ALL ACCESS
ENABLE;

CREATE PERMISSION RP2 ON T2 FOR ROWS
 WHERE C1>(SELECT MAX(C1) FROM T1)
ENFORCED FOR ALL ACCESS
ENABLE

The DROP TABLE T1 and DROP TABLE T2 statements fail because RP1 depends on T2 and RP2
depends on T1. The user with the SECADM authority should drop one of the row permissions first then
issue the DROP TABLE statement.

Examples
1. Drop table TDEPT.

1642 IBM Db2 V11.5: SQL Reference

 DROP TABLE TDEPT

2. Drop the view VDEPT.

 DROP VIEW VDEPT

3. The authorization ID HEDGES attempts to drop an alias.

 DROP ALIAS A1

The alias HEDGES.A1 is removed from the catalogs.
4. Hedges attempts to drop an alias, but specifies T1 as the alias-name, where T1 is the name of an

existing table (not the name of an alias).

 DROP ALIAS T1

This statement fails (SQLSTATE 42809).
5. Drop the BUSINESS_OPS database partition group. To drop the database partition group, the two

table spaces (ACCOUNTING and PLANS) in the database partition group must first be dropped.

 DROP TABLESPACE ACCOUNTING
 DROP TABLESPACE PLANS
 DROP DATABASE PARTITION GROUP BUSINESS_OPS

6. Pellow wants to drop the CENTER function, which he created in his PELLOW schema, using the
signature to identify the function instance to be dropped.

 DROP FUNCTION CENTER (INT,FLOAT)

7. McBride wants to drop the FOCUS92 function, which she created in the PELLOW schema, using the
specific name to identify the function instance to be dropped.

 DROP SPECIFIC FUNCTION PELLOW.FOCUS92

8. Drop the function ATOMIC_WEIGHT from the CHEM schema, where it is known that there is only one
function with that name.

 DROP FUNCTION CHEM.ATOMIC_WEIGHT

9. Drop the trigger SALARY_BONUS, which caused employees under a specified condition to receive a
bonus to their salary.

 DROP TRIGGER SALARY_BONUS

10. Drop the distinct data type named shoesize, if it is not currently in use.

 DROP TYPE SHOESIZE

11. Drop the SMITHPAY event monitor.

 DROP EVENT MONITOR SMITHPAY

12. Drop the schema from Example 2 under CREATE SCHEMA using RESTRICT. Notice that the table
called PART must be dropped first.

 DROP TABLE PART
 DROP SCHEMA INVENTRY RESTRICT

13. Macdonald wants to drop the DESTROY procedure, which he created in the EIGLER schema, using the
specific name found in the system catalog to identify the procedure to be dropped.

 DROP SPECIFIC PROCEDURE EIGLER.SQL100506102825100

Chapter 1. Structured Query Language (SQL) 1643

14. Drop the procedure OSMOSIS from the BIOLOGY schema, where it is known that there is only one
procedure with that name.

 DROP PROCEDURE BIOLOGY.OSMOSIS

15. User SHAWN used one authorization ID to access the federated database and another to access
the database at an Oracle data source called ORACLE1. A mapping was created between the two
authorizations, but SHAWN no longer needs to access the data source. Drop the mapping.

 DROP USER MAPPING FOR SHAWN SERVER ORACLE1

16. An index of a data source table that a nickname references has been deleted. Drop the index
specification that was created to let the optimizer know about this index.

 DROP INDEX INDEXSPEC

17. Drop the MYSTRUCT1 transform group.

 DROP TRANSFORM MYSTRUCT1 FOR POLYGON

18. Drop the method BONUS for the EMP data type in the PERSONNEL schema.

 DROP METHOD BONUS (SALARY DECIMAL(10,2)) FOR PERSONNEL.EMP

19. Drop the sequence ORG_SEQ, with restrictions.

 DROP SEQUENCE ORG_SEQ

20. A remote table EMPLOYEE was created in a federated system using transparent DDL. Access to the
table is no longer needed. Drop the remote table EMPLOYEE.

 DROP TABLE EMPLOYEE

21. Drop the function mapping BONUS_CALC and reinstate the default function mapping (if one exists).

 DROP FUNCTION MAPPING BONUS_CALC

22. Drop the security label component LEVEL.

 DROP SECURITY LABEL COMPONENT LEVEL

23. Drop the security label EMPLOYEESECLABEL of the security policy DATA_ACCESS.

 DROP SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL

24. Drop the security policy DATA_ACCESS.

 DROP SECURITY POLICY DATA_ACCESS

25. Drop the security label component GROUPS.

 DROP SECURITY LABEL COMPONENT GROUPS

26. Drop the XML schema EMPLOYEE located in the SQL schema HR.

 DROP XSROBJECT HR.EMPLOYEE

27. Drop service subclass DOGSALES under service superclass PETSALES.

 DROP SERVICE CLASS DOGSALES UNDER PETSALES

28. Drop service superclass PETSALES, which has no user-defined service subclasses. The default
subclass for service class PETSALES is automatically dropped.

 DROP SERVICE CLASS PETSALES

1644 IBM Db2 V11.5: SQL Reference

29. DROP permission P1.

 DROP PERMISSION P1

30. DROP mask M1.

 DROP MASK M1

31. Drop a storage group named TEST_SG.

 DROP STOGROUP TEST_SG

32. Drop the usage list MON_PAYROLL

 DROP USAGE LIST MON_PAYROLL

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of a host variable declare section.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. It
must not be specified in REXX.

Authorization
None required.

Syntax
END DECLARE SECTION

Description
The END DECLARE SECTION statement can be coded in the application program wherever declarations
can appear according to the rules of the host language. It indicates the end of a host variable declaration
section. A host variable section starts with a BEGIN DECLARE SECTION statement.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements must be paired and may not
be nested.

Host variable declarations can be specified by using the SQL INCLUDE statement. Otherwise, a host
variable declaration section must not contain any statements other than host variable declarations.

Host variables referenced in SQL statements must be declared in a host variable declare section in all
host languages, other than REXX. Furthermore, the declaration of each variable must appear before the
first reference to the variable.

Variables declared outside a declare section should not have the same name as variables declared within
a declare section.

EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Chapter 1. Structured Query Language (SQL) 1645

Authorization
For each global variable used as an expression in the USING clause or in the expression for an array-index,
the privileges held by the authorization ID of the statement must include one of the following authorities:

• READ privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

For each global variable used as an assignment-target, the privileges held by the authorization ID of the
statement must include one of the following authorities:

• WRITE privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

For statements where authorization checking is performed at statement execution time (DDL, GRANT,
and REVOKE statements), the privileges held by the authorization ID of the statement must include those
required to execute the SQL statement specified by the PREPARE statement. The authorization ID of the
statement might be affected by the DYNAMICRULES bind option.

For statements where authorization checking is performed at statement preparation time (DML), no
further authorization checking is performed on the SQL statement specified by the PREPARE statement.

Syntax
EXECUTE statement-name

INTO

,

assignment-target

DESCRIPTOR result-descriptor-name

USING

,

input-host-variable

expression
1

DESCRIPTOR input-descriptor-name

FOR host-variable

integer-constant

ROWS

assignment-target

1646 IBM Db2 V11.5: SQL Reference

global-variable-name

host-variable-name

SQL-parameter-name

SQL-variable-name

transition-variable-name

array-variable-name [array-index]

field-reference

Notes:
1 An expression other than host-variable can only be used when the EXECUTE statement is used within
a compound SQL (compiled) statement.

Description
statement-name

Identifies the prepared statement to be executed. The statement-name must identify a statement that
was previously prepared, and the prepared statement cannot be a SELECT statement.

INTO
Introduces a list of targets which are used to receive values from output parameter markers in the
prepared statement. Each assignment to a target is made in sequence through the list. If an error
occurs on any assignment, the value is not assigned to the target, and no more values are assigned to
targets. Any values that have already been assigned to targets remain assigned.

For a dynamic CALL statement, parameter markers appearing in OUT and INOUT arguments to the
procedure are output parameter markers. If any output parameter markers appear in the statement,
the INTO clause must be specified (SQLSTATE 07007).

assignment-target
Identifies one or more targets for the assignment of output values. The first value in the result row
is assigned to the first target in the list, the second value to the second target, and so on.

If the data type of an assignment-target is a row type, then there must be exactly one assignment-
target specified (SQLSTATE 428HR), the number of columns must match the number of fields in
the row type, and the data types of the columns of the fetched row must be assignable to the
corresponding fields of the row type (SQLSTATE 42821).

If the data type of an assignment-target is an array element, then there must be exactly one
assignment-target specified.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output values, the target can
be a regular host variable (if it is large enough), a LOB locator variable, or a LOB file reference
variable.

SQL-parameter-name
Identifies the routine parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables must be declared
before they are used.

transition-variable-name
Identifies the column to be updated in the transition row. A transition-variable-name must
identify a column in the subject table of a trigger, optionally qualified by a correlation name
that identifies the new value.

Chapter 1. Structured Query Language (SQL) 1647

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array type.
array-index

An expression that specifies which element in the array will be the target of the
assignment. For an ordinary array, the array-index expression must be assignable to
INTEGER (SQLSTATE 428H1) and cannot be the null value. Its value must be between
1 and the maximum cardinality defined for the array (SQLSTATE 2202E). For an associative
array, the array-index expression must be assignable to the index data type of the
associative array (SQLSTATE 428H1) and cannot be the null value.

field-reference
Identifies the field within a row type value that is the assignment target. The field-reference
must be specified as a qualified field-name where the qualifier identifies the row value in
which the field is defined.

DESCRIPTOR result-descriptor-name
Identifies an output SQLDA that must contain a valid description of host variables.

Before the EXECUTE statement is processed, the user must set the following fields in the input
SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA
• SQLDABC to indicate the number of bytes of storage allocated for the SQLDA
• SQLD to indicate the number of variables used in the SQLDA when processing the statement
• SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences. Therefore, the value in
SQLDABC must be greater than or equal to 16 + SQLN*(N), where N is the length of an SQLVAR
occurrence.

If LOB or structured data type output data must be accommodated, there must be two SQLVAR
entries for every output parameter marker.

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN.

USING
Introduces a list of variables or expressions for which values are substituted for the input parameter
markers in the prepared statement.

For a dynamic CALL statement, parameter markers appearing in IN and INOUT arguments to the
procedure are input parameter markers. For all other dynamic statements, all the parameter markers
are input parameter markers. If any input parameter markers appear in the statement, the USING
clause must be specified (SQLSTATE 07004).
input-host-variable, ...

Identifies a host variable that is declared in the program in accordance with the rules for declaring
host variables. The number of variables must be the same as the number of input parameter
markers in the prepared statement. The nth variable corresponds to the nth parameter marker in
the prepared statement. Locator variables and file reference variables, where appropriate, can be
provided as the source of values for parameter markers.

expression
Identifies an expression to be used as the input for the corresponding input parameter marker in
the prepared statement. An expression other than a host-variable can only be specified when the
EXECUTE statement is issued within a compound SQL (compiled) statement.

DESCRIPTOR input-descriptor-name
Identifies an input SQLDA that must contain a valid description of host variables.

Before the EXECUTE statement is processed, the user must set the following fields in the input
SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA

1648 IBM Db2 V11.5: SQL Reference

• SQLDABC to indicate the number of bytes of storage allocated for the SQLDA
• SQLD to indicate the number of variables used in the SQLDA when processing the statement
• SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences. Therefore, the value in
SQLDABC must be greater than or equal to 16 + SQLN*(N), where N is the length of an SQLVAR
occurrence.

If LOB or structured data type input data must be accommodated, there must be two SQLVAR
entries for every parameter marker.

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN.

FOR host-variable or integer-constant ROWS

Specifies the number of rows of source data. The values for the insert or merge operation are
specified in the USING clause.

host-variable or integer-constant is assigned to an integral value k. If host-variable is specified, it
must be of type integer or short and must not include an indicator variable. k must be in the range 2 to
32767. If FOR host-variable or integer-constant ROWS is not provided, the SQL will be executed with
array of size 1.

Notes
• Before the prepared statement is executed, each input parameter marker is effectively replaced by the

value of its corresponding variable or expression. For a typed parameter marker, the attributes of the
target variable or expression are those specified by the CAST specification. For an untyped parameter
marker, the attributes of the target variable or expression are determined according to the context of the
parameter marker.

Let V denote an input variable or expression that corresponds to parameter marker P. The value of V is
assigned to the target variable for P in accordance with the rules for assigning a value to a column. Thus:

– V must be compatible with the target.
– If V is a string, its length must not be greater than the length attribute of the target.
– If V is a number, the absolute value of its integral part must not be greater than the maximum

absolute value of the integral part of the target.
– If the attributes of V are not identical to the attributes of the target, the value is converted to conform

to the attributes of the target.

When the prepared statement is executed, the value used in place of P is the value of the target variable
for P or the result of the target expression for P. For example, if V is CHAR(6) and the target is CHAR(8),
the value used in place of P is the value of V padded with two blanks.

• For a dynamic CALL statement, after the prepared statement is executed, the returned value of each
OUT and INOUT argument is assigned to the assignment target corresponding to the output parameter
marker used for the argument. For a typed parameter marker, the attributes of the target variable are
those specified by the CAST specification. For an untyped parameter marker, the attributes of the target
variable are those specified by the definition of the parameter of the procedure.

Let V denote an output assignment target that corresponds to parameter marker P, which is used for
argument A of a procedure. The value of A is assigned to V in accordance with the rules for retrieving a
value from a column. Thus:

– V must be compatible with A.
– If V is a string, its length must not be less than the length of A, or the value of A will be truncated.
– If V is a number, the maximum absolute value of its integral part must not be less than the absolute

value of the integral part of A.
– If the attributes of V are not identical to the attributes of A, the value of A is converted to conform to

the attributes of V.

Chapter 1. Structured Query Language (SQL) 1649

• Dynamic SQL statement caching: The information required to execute dynamic and static SQL
statements is placed in the database package cache when static SQL statements are first referenced or
when dynamic SQL statements are first prepared. This information stays in the package cache until it
becomes invalid, the cache space is required for another statement, or the database is shut down.

When an SQL statement is executed or prepared, the package information relevant to the application
issuing the request is loaded from the system catalog into the package cache. The actual executable
section for the individual SQL statement is also placed into the cache: static SQL sections are read
in from the system catalog and placed in the package cache when the statement is first referenced;
dynamic SQL sections are placed directly in the cache after they have been created. Dynamic SQL
sections can be created by an explicit statement, such as PREPARE or EXECUTE IMMEDIATE. Once
created, sections for dynamic SQL statements may be recreated by an implicit prepare of the statement
by the system if the original section has been deleted for space management reasons, or has become
invalid due to changes in the environment.

Each SQL statement is cached at the database level and can be shared among applications. Static
SQL statements are shared among applications using the same package; dynamic SQL statements are
shared among applications using the same compilation environment, and the exact same statement
text. The text of each SQL statement issued by an application is cached locally within the application
for use if an implicit prepare is required. Each PREPARE statement in the application program can cache
one statement. All EXECUTE IMMEDIATE statements in an application program share the same space,
and only one cached statement exists for all these EXECUTE IMMEDIATE statements at a time. If the
same PREPARE or any EXECUTE IMMEDIATE statement is issued multiple times with a different SQL
statement each time, only the last statement will be cached for reuse. The optimal use of the cache is to
issue a number of different PREPARE statements once at the start of the application, and then to issue
an EXECUTE or OPEN statement as required.

When dynamic SQL statements are cached, a statement can be reused over multiple units of work
without needing to prepare the statement again, unless the SQL statements prepared in a package are
bound with the KEEPDYNAMIC NO option. The system recompiles the statement if necessary when
environment changes occur.

The following events are examples of environment or data object changes that can cause cached
dynamic statements to be implicitly prepared on the next PREPARE, EXECUTE, EXECUTE IMMEDIATE,
or OPEN request:

– ALTER FUNCTION
– ALTER METHOD
– ALTER NICKNAME
– ALTER PROCEDURE
– ALTER SERVER
– ALTER TABLE
– ALTER TABLESPACE
– ALTER TYPE
– CREATE FUNCTION
– CREATE FUNCTION MAPPING
– CREATE INDEX
– CREATE METHOD
– CREATE PROCEDURE
– CREATE TABLE
– CREATE TEMPORARY TABLESPACE
– CREATE TRIGGER
– CREATE TYPE
– DROP (all objects)

1650 IBM Db2 V11.5: SQL Reference

– RUNSTATS on any table or index
– Any action that causes a view to become inoperative
– UPDATE of statistics in any system catalog table
– SET CURRENT DEGREE
– SET PATH
– SET QUERY OPTIMIZATION
– SET SCHEMA
– SET SERVER OPTION

The following list outlines the behavior that can be expected from cached dynamic SQL statements:

– PREPARE Requests: Subsequent preparations of the same statement do not incur the cost of
compiling the statement if the section is still valid. The cost and cardinality estimates for the current
cached section are returned. These values might differ from the values returned from any previous
PREPARE for the same SQL statement. You do not need to issue a PREPARE statement subsequent
to a COMMIT or ROLLBACK statement, unless the statement is associated with a package that was
bound with KEEPDYNAMIC NO.

– EXECUTE Requests: EXECUTE statements may occasionally incur the cost of implicitly preparing the
statement if it has become invalid since the original PREPARE. If a section is implicitly prepared, it
will use the current environment and not the environment of the original PREPARE statement.

– EXECUTE IMMEDIATE Requests: Subsequent EXECUTE IMMEDIATE statements for the same
statement will not incur the cost of compiling the statement if the section is still valid.

– OPEN Requests: OPEN requests for dynamically defined cursors may occasionally incur the cost of
implicitly preparing the statement if it has become invalid since the original PREPARE statement. If
a section is implicitly prepared, it will use the current environment and not the environment of the
original PREPARE statement.

– FETCH Requests: No behavior changes should be expected.
– ROLLBACK: Only those dynamic SQL statements prepared or implicitly prepared during the unit of

work affected by the rollback operation are invalidated. Inactive dynamic SQL statements associated
with a package bound with KEEPDYNAMIC NO are removed from the application SQL context after a
ROLLBACK opeation and must be explicitly prepared again before the application can execute them.
Dynamic SQL statements are still cached at the database level, so a subsequent PREPARE request
does not incur the cost of compiling the statement if the section is still valid.

– COMMIT: Dynamic SQL statements are not be invalidated, but any acquired locks are be freed.
Cursors not defined with the WITH HOLD option are closed and their locks freed. Open cusors
defined with the WITH HOLD option hold onto their package and section locks to protect the
active section both during and after commit processing. Dynamic SQL statements bound with the
KEEPDYNAMIC NO option are not in a prepared state after a transaction boundary and must be
explicitly prepared again before the application can execute them. SELECT statements prepared for
an open cursor defined with the WITH HOLD option remain in a prepared state until a transaction
boundary is hit where the cursor is closed. Inactive dynamic SQL statements associated with a
package bound with KEEPDYNAMIC NO are removed from the application SQL context after a commit
operation and must be explicitly prepared again before the application can execute them.

If an error occurs during an implicit prepare, an error will be returned for the request causing the
implicit prepare (SQLSTATE 56098).

• For Embedded SQL applications, the db2dsdriver.cfg keyword Anonyblksqlexec and Db2 registry
variable DB2_ANONYMOUS_ESQL_EXECUTION_BLOCK allow you to use INPUT and OUTPUT parameters
in both the USING and INTO clauses, to get correct values in output.

For example, when the variable is set to TRUE or 1 (or the keyword set to 1), you can specify INPUT and
OUTPUT parameters in both the USING and INTO clauses:

EXEC SQL EXECUTE db2strm1 INTO
:h_name_in INDICATOR:h_name_in_ind,

Chapter 1. Structured Query Language (SQL) 1651

:h_name_out INDICATOR:h_name_out_ind USING
:h_name_in, :h_name_out;

If the DB2_ANONYMOUS_ESQL_EXECUTION_BLOCK variable is not set, or set to FALSE or 0 (or the
keyword set to 0), you can specify only INPUT parameters in the USING clause and only OUTPUT
parameters in the INTO clause.

Attention: The Anonyblksqlexec keyword and DB2_ANONYMOUS_ESQL_EXECUTION_BLOCK
registry variable are available in Db2 11.5.6 and later versions.

Examples
Example 1: In this C example, an INSERT statement with parameter markers is prepared and executed.
Host variables h1 - h4 correspond to the format of TDEPT.

 strcpy (s,"INSERT INTO TDEPT VALUES(?,?,?,?)");
 EXEC SQL PREPARE DEPT_INSERT FROM :s;
 .
 .
 (Check for successful execution and put values into :h1, :h2, :h3, :h4)
 .
 .
 EXEC SQL EXECUTE DEPT_INSERT USING :h1, :h2,
 :h3, :h4;

Example 2: This EXECUTE statement uses an SQLDA.

 EXECUTE S3 USING DESCRIPTOR :sqlda3

Example 3: Given a procedure to award an employee a bonus:

 CREATE PROCEDURE GIVE_BONUS (IN EMPNO INTEGER,
 IN DEPTNO INTEGER,
 OUT CHECK INTEGER,
 INOUT BONUS DEC(6,0))
 ...

Dynamically call the procedure from a C application. The procedure takes the following host variables as
input:

• employee, the ID number of the employee
• dept, the department number
• bonus, the bonus to be awarded to the employee

The procedure returns the following values to the host variables:

• check_no, the ID number from the check
• bonus, the actual bonus amount (after any adjustments)

 strcpy (s, "CALL GIVE_BONUS(?, ?, ?, ?)");
 EXEC SQL PREPARE DO_BONUS FROM :s;
 .
 .
 /* Check for successful execution and put values into
 :employee, :dept, and :bonus */
 .
 .
 EXEC SQL EXECUTE DO_BONUS INTO :check_no, :bonus
 USING :employee, :dept, :bonus;
 .
 .
 /* Check for successful execution and process the
 values returned in :check_no and :bonus */

1652 IBM Db2 V11.5: SQL Reference

EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement prepares an executable form of an SQL statement from a character
string form of the statement, and executes the SQL statement.

EXECUTE IMMEDIATE combines the basic functions of the PREPARE and EXECUTE statements. It can be
used to prepare and execute SQL statements that contain neither host variables nor parameter markers.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization
The authorization rules are those defined for the specified SQL statement.

The authorization ID of the statement might be affected by the DYNAMICRULES bind option.

Syntax
EXECUTE IMMEDIATE expression

Description
expression

An expression returning the statement string to be executed. The expression must return a character-
string type that is less than the maximum statement size of 2 097 152 bytes. Note that a
CLOB(2097152) can contain a maximum size statement, but a VARCHAR cannot.

The statement string must be one of the following SQL statements:

• ALTER
• CALL
• COMMENT
• COMMIT
• Compound SQL (compiled)
• Compound SQL (inlined)
• CREATE
• DECLARE GLOBAL TEMPORARY TABLE
• DELETE
• DROP
• EXPLAIN
• FLUSH EVENT MONITOR
• FLUSH PACKAGE CACHE
• GRANT
• INSERT
• LOCK TABLE
• MERGE
• REFRESH TABLE
• RELEASE SAVEPOINT
• RENAME
• REVOKE

Chapter 1. Structured Query Language (SQL) 1653

• ROLLBACK
• SAVEPOINT
• SET COMPILATION ENVIRONMENT
• SET CURRENT DECFLOAT ROUNDING MODE
• SET CURRENT DEFAULT TRANSFORM GROUP
• SET CURRENT DEGREE
• SET CURRENT EXPLAIN MODE
• SET CURRENT EXPLAIN SNAPSHOT
• SET CURRENT FEDERATED ASYNCHRONY
• SET CURRENT IMPLICIT XMLPARSE OPTION
• SET CURRENT ISOLATION
• SET CURRENT LOCALE LC_MESSAGES
• SET CURRENT LOCALE LC_TIME
• SET CURRENT LOCK TIMEOUT
• SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
• SET CURRENT MDC ROLLOUT MODE
• SET CURRENT OPTIMIZATION PROFILE
• SET CURRENT QUERY OPTIMIZATION
• SET CURRENT REFRESH AGE
• SET CURRENT TEMPORAL BUSINESS_TIME
• SET CURRENT TEMPORAL SYSTEM_TIME
• SET ENCRYPTION PASSWORD
• SET EVENT MONITOR STATE (only if DYNAMICRULES run behavior is in effect for the package)
• SET INTEGRITY
• SET PASSTHRU
• SET PATH
• SET ROLE (only if DYNAMICRULES run behavior is in effect for the package)
• SET SCHEMA
• SET SERVER OPTION
• SET SESSION AUTHORIZATION
• SET SQL_CCFLAGS
• SET USAGE LIST STATE (only if DYNAMICRULES run behavior is in effect for the package)
• SET variable
• TRANSFER OWNERSHIP (only if DYNAMICRULES run behavior is in effect for the package)
• TRUNCATE (only if DYNAMICRULES run behavior is in effect for the package)
• UPDATE

The statement string must not include parameter markers or references to host variables, and must
not begin with EXEC SQL. It must not contain a statement terminator, with the exception of compound
SQL statements which can contain semi-colons (;) to separate statements within the compound block.
A compound SQL statement is used within some CREATE and ALTER statements which, therefore, can
also contain semi-colons.

When an EXECUTE IMMEDIATE statement is executed, the specified statement string is parsed and
checked for errors. If the SQL statement is invalid, it is not executed, and the error condition that
prevents its execution is reported in the SQLCA. If the SQL statement is valid, but an error occurs
during its execution, that error condition is reported in the SQLCA.

1654 IBM Db2 V11.5: SQL Reference

Notes
• Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.

Example
Use C program statements to move an SQL statement to the host variable qstring (char[80]), and prepare
and execute whatever SQL statement is in the host variable qstring.

 if (strcmp(accounts,"BIG") == 0)
 strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *
 FROM EMP_ACT WHERE ACTNO < 100");
 else
 strcpy (qstring,"INSERT INTO WORK_TABLE SELECT *
 FROM EMP_ACT WHERE ACTNO >= 100");
 .
 .
 .
 EXEC SQL EXECUTE IMMEDIATE :qstring;

EXPLAIN
The EXPLAIN statement captures information about the access plan chosen for the supplied explainable
statement and places this information into the explain tables.

An explainable statement can either be a valid XQuery statement or one of the following SQL statements:
CALL, Compound SQL (Dynamic), DELETE, INSERT, MERGE, REFRESH, SELECT, SELECT INTO, SET
INTEGRITY, UPDATE, VALUES, or VALUES INTO.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

The statement to be explained is not executed.

Authorization
The authorization ID of the statement must hold at least one of the following authorizations:

• DATAACCESS authority which allows an INSERT, UPDATE, DELETE, or SELECT statement.
• DATAACCESS authority on the schema containing the explain tables
• INSERT privilege on the explain tables and at least one of the following authorizations:

– All the privileges that are necessary to execute the explainable statement that is specified in the
EXPLAIN statement (for example, if a DELETE statement is used as the explainable statement, the
authorization rules for the DELETE statement are applied when the DELETE statement is explained)

– EXPLAIN authority
– SQLADM authority
– DBADM authority

Chapter 1. Structured Query Language (SQL) 1655

Syntax
EXPLAIN PLAN SELECTION

ALL

PLAN
1

FOR

WITH

SNAPSHOT

WITH REOPT ONCE SET QUERYNO = integer

SET QUERYTAG = string-constant

FOR

explainable-sql-statement

XQUERY 'explainable-xquery-statement'

Notes:
1 The PLAN option is supported only for syntax toleration of existing Db2 for z/OS EXPLAIN
statements. There is no PLAN table. Specifying PLAN is equivalent to specifying PLAN SELECTION.

Description
PLAN SELECTION

Indicates that the information from the plan selection phase of query compilation is to be inserted
into the explain tables.

ALL
Specifying ALL is equivalent to specifying PLAN SELECTION.

PLAN
The PLAN option provides syntax toleration for existing database applications from other systems.
Specifying PLAN is equivalent to specifying PLAN SELECTION.

FOR SNAPSHOT
This clause indicates that only an explain snapshot is to be taken and placed into the SNAPSHOT
column of the EXPLAIN_STATEMENT table. No other explain information is captured other than that
present in the EXPLAIN_INSTANCE and EXPLAIN_STATEMENT tables.

WITH SNAPSHOT
This clause indicates that, in addition to the regular explain information, an explain snapshot is to be
taken.

The default behavior of the EXPLAIN statement is to only gather regular explain information and not
the explain snapshot.

default (neither FOR SNAPSHOT nor WITH SNAPSHOT specified)
Puts explain information into the explain tables.

WITH REOPT ONCE
This clause indicates that the specified explainable statement is to be reoptimized using the
values for host variables, parameter markers, special registers, or global variables that were
previously used to reoptimize this statement with REOPT ONCE. The explain tables will be populated
with the new access plan. If the user has DBADM authority, or the database registry variable
DB2_VIEW_REOPT_VALUES is set to YES, the EXPLAIN_PREDICATE table will also be populated with
the values if they are used to reoptimize the statement.

SET QUERYNO = integer
Associates integer, via the QUERYNO column in the EXPLAIN_STATEMENT table, with the explainable
statement. The integer value supplied must be a positive value.

If this clause is not specified for a dynamic EXPLAIN statement, a default value of one (1) is assigned.
For a static EXPLAIN statement, the default value assigned is the statement number assigned by the
precompiler.

1656 IBM Db2 V11.5: SQL Reference

SET QUERYTAG = string-constant
Associates string-constant, via the QUERYTAG column in the EXPLAIN_STATEMENT table, with the
explainable statement. string-constant can be any character string up to 20 bytes in length. If the
value supplied is less than 20 bytes in length, the value is padded on the right with blanks to the
required length.

If this clause is not specified for an EXPLAIN statement, blanks are used as the default value.

FOR explainable-sql-statement
Specifies the SQL statement to be explained. This statement can be any valid CALL, Compound SQL
(Dynamic), DELETE, INSERT, MERGE, REFRESH, SELECT, SELECT INTO, SET INTEGRITY, UPDATE,
VALUES, or VALUES INTO SQL statement. If the EXPLAIN statement is embedded in a program, the
explainable-sql-statement can contain references to host variables (these variables must be defined in
the program). Similarly, if EXPLAIN is being dynamically prepared, the explainable-sql-statement can
contain parameter markers.

The explainable-sql-statement must be a valid SQL statement that could be prepared and executed
independently of the EXPLAIN statement. It cannot be a statement name or host variable. SQL
statements referring to cursors defined through CLP are not valid for use with this statement.

To explain dynamic SQL within an application, the entire EXPLAIN statement must be dynamically
prepared.

FOR XQUERY 'explainable-xquery-statement'
Specifies the XQUERY statement to be explained. This statement can be any valid XQUERY statement.

If the EXPLAIN statement is embedded in a program, the 'explainable-xquery-statement' can contain
references to host variables, provided that the host variables are not used in the top level XQUERY
statement, but are passed in through an XMLQUERY function, by an XMLEXISTS predicate, or by an
XMLTABLE function. The host variables must be defined in the program.

Similarly, if EXPLAIN is being dynamically prepared, the 'explainable-xquery-statement' can contain
parameter markers, provided that the same restrictions as for passing host variables are followed.

Alternatively, the Db2 XQUERY function db2-fn:sqlquery can be used to embed SQL statements with
references to host variables and parameter markers.

The 'explainable-xquery-statement' must be a valid XQUERY statement that could be prepared and
executed independently of the EXPLAIN statement. Query statements referring to cursors defined
through CLP are not valid for use with this statement.

Notes
• The Explain facility uses the following IDs as the schema when qualifying explain tables that it is

populating:

– The session authorization ID for dynamic SQL
– The statement authorization ID for static SQL

The schema can be associated with a set of explain tables, or aliases that point to a set of explain tables
under a different schema. If no explain tables are found under the schema, the Explain facility checks
for explain tables under the SYSTOOLS schema and attempts to use those tables.

• The following table shows the interaction of the snapshot keywords and the explain information.

Keyword Specified Capture Explain Information?

none Yes

FOR SNAPSHOT No

WITH SNAPSHOT Yes

If neither the FOR SNAPSHOT nor the WITH SNAPSHOT clause is specified, an explain snapshot is not
taken.

Chapter 1. Structured Query Language (SQL) 1657

• The explain tables must be created by the user before invocation of the EXPLAIN statement. The
information generated by this statement is stored in the explain tables, in the schema that is designated
at the time the statement is compiled.

• If any errors occur during the compilation of the explainable statement supplied, then no information is
stored in the explain tables.

• The access plan generated for the explainable statement is not saved and thus, cannot be invoked
at a later time. The explain information for the explainable statement is inserted when the EXPLAIN
statement itself is compiled.

• For a static EXPLAIN query statement, the information is inserted into the explain tables at bind time
and during an explicit rebind. During precompilation, the static EXPLAIN statements are commented
out in the modified application source file. At bind time, the EXPLAIN statements are stored in the
SYSCAT.STATEMENTS catalog. When the package is run, the EXPLAIN statement is not executed. Note
that the section numbers for all statements in the application will be sequential and will include the
EXPLAIN statements. An alternative to using a static EXPLAIN statement is to use a combination of
the EXPLAIN and EXPLSNAP BIND or PREP options. Static EXPLAIN statements can be used to cause
the explain tables to be populated for one specific static query statement out of many; simply prefix
the target statement with the appropriate EXPLAIN statement syntax and bind the application without
using either of the explain BIND or PREP options. The EXPLAIN statement can also be used when it is
advantageous to set the QUERYNO or QUERYTAG field at the time of the actual explain invocation.

• Static EXPLAIN statements in an SQL procedure are evaluated when the procedure is compiled.
• For an incremental bind EXPLAIN query statement, the explain tables are populated when the EXPLAIN

statement is submitted for compilation. When the package is run, the EXPLAIN statement performs no
processing (though the statement will be successful). When populating the explain tables, the explain
table qualifier and authorization ID used during population will be those of the package owner. The
EXPLAIN statement can also be used when it is advantageous to set the QUERYNO or QUERYTAG field
at the time of the actual explain invocation.

• For dynamic EXPLAIN statements, the explain tables are populated at the time the EXPLAIN statement
is submitted for compilation. An EXPLAIN statement can be prepared with the PREPARE statement
but, if executed, will perform no processing (though the statement will be successful). An alternative
to issuing dynamic EXPLAIN statements is to use a combination of the CURRENT EXPLAIN MODE and
CURRENT EXPLAIN SNAPSHOT special registers to explain dynamic query statements. The EXPLAIN
statement should be used when it is advantageous to set the QUERYNO or QUERYTAG field at the time
of the actual EXPLAIN invocation.

• If the REOPT bind option is set to ONCE, and either the CURRENT EXPLAIN MODE or the CURRENT
EXPLAIN SNAPSHOT special register is set to REOPT, the execution of static and dynamic query
statements containing host variables, special registers, parameter markers, or global variables will
cause explain information to be captured for the statement only when the statement is reoptimized.
Alternatively, if the REOPT bind option is set to ALWAYS, explain information will be captured every time
these statements are executed.

Examples
• Example 1: Explain a simple SELECT statement and tag with QUERYNO = 13.

 EXPLAIN PLAN SET QUERYNO = 13
 FOR SELECT C1
 FROM T1

• Example 2: Explain a simple SELECT statement and tag with QUERYTAG = 'TEST13'.

 EXPLAIN PLAN SELECTION SET QUERYTAG = 'TEST13'
 FOR SELECT C1
 FROM T1

1658 IBM Db2 V11.5: SQL Reference

• Example 3: Explain a simple SELECT statement and tag with QUERYNO = 13 and QUERYTAG = 'TEST13'.

 EXPLAIN PLAN SELECTION SET QUERYNO = 13 SET QUERYTAG = 'TEST13'
 FOR SELECT C1
 FROM T1

• Example 4: Attempt to get explain information when explain tables do not exist.

 EXPLAIN ALL FOR SELECT C1
 FROM T1

This statement will fail because the explain tables have not been defined (SQLSTATE 42704).
• Example 5: The following statement will succeed if it is found in the package cache and has already

been compiled using REOPT ONCE.

 EXPLAIN ALL WITH REOPT ONCE FOR SELECT C1
 FROM T1
 WHERE C1 = :<host variable>

• Example 6: The following example uses the db2-fn:xmlcolumn function, which takes the case- sensitive
name of an XML column as an argument and returns an XML sequence that is the concatenation of XML
column values.

Consider a table called BUSINESS.CUSTOMER with an XML column called INFO. A simple XQuery that
returns all documents from the INFO column is :

 EXPLAIN PLAN SELECTION
 FOR XQUERY 'db2-fn:xmlcolumn ("BUSINESS.CUSTOMER.INFO")'

If a column value is null, then the resulting return sequence for that row will be empty.

FETCH
The FETCH statement positions a cursor on the next row of its result table and assigns the values of that
row to target variables.

Invocation
Although an interactive SQL facility might provide an interface that gives the appearance of interactive
execution, this statement can only be embedded within an application program. It is an executable
statement that cannot be dynamically prepared. When invoked using the command line processor, the
syntax following cursor-name is optional and different from the SQL syntax.

For more information, refer to "Using command line SQL statements and XQuery statements" in
Command Reference.

Authorization
For each global variable used as a cursor-variable-name or in the expression for an array-index, the
privileges held by the authorization ID of the statement must include one of the following:

• READ privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

For each global variable used as an assignment-target, the privileges held by the authorization ID of the
statement must include one of the following:

• WRITE privilege on the global variable that is not defined in a module

Chapter 1. Structured Query Language (SQL) 1659

• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

For the authorization required to use a cursor, see "DECLARE CURSOR".

Syntax
FETCH

FROM

cursor-name

cursor-variable-name

INTO

,

assignment-target

USING DESCRIPTOR descriptor-name

assignment-target
global-variable-name

host-variable-name

SQL-parameter-name

SQL-variable-name

transition-variable-name

array-variable-name [array-index]

field-reference

Description
cursor-variable-name

Identifies the cursor to be used in the fetch operation. The cursor-variable-name must identify a
cursor variable that is in scope. When the FETCH statement is executed, the underlying cursor of the
cursor-variable-name must be in the open state. A FETCH statement using a cursor-variable-name
can only be used within a compound SQL (compiled) statement.

INTO assignment-target

Identifies one or more targets for the assignment of output values. The first value in the result row
is assigned to the first target in the list, the second value to the second target, and so on. Each
assignment to an assignment-target is made in sequence through the list. If an error occurs on any
assignment, the value is not assigned to the target, and no more values are assigned to targets. Any
values that have already been assigned to targets remain assigned.

When the data type of every assignment-target is not a row type, then the value 'W' is assigned to the
SQLWARN3 field of the SQLCA if the number of assignment-targets is less than the number of result
column values.

If the data type of an assignment-target is a row type, then there must be exactly one assignment-
target specified (SQLSTATE 428HR), the number of columns must match the number of fields in
the row type, and the data types of the columns of the fetched row must be assignable to the
corresponding fields of the row type (SQLSTATE 42821).

If the data type of an assignment-target is an array element, then there must be exactly one
assignment-target specified.

1660 IBM Db2 V11.5: SQL Reference

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output values, the target can
be a regular host variable (if it is large enough), a LOB locator variable, or a LOB file reference
variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables must be declared before
they are used.

transition-variable-name
Identifies the column to be updated in the transition row. A transition-variable-name must identify
a column in the subject table of a trigger, optionally qualified by a correlation name that identifies
the new value.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array type.
[array-index]

An expression that specifies which element in the array will be the target of the assignment.
For an ordinary array, the array-index expression must be assignable to INTEGER (SQLSTATE
428H1) and cannot be the null value. Its value must be between 1 and the maximum
cardinality defined for the array (SQLSTATE 2202E). For an associative array, the array-index
expression must be assignable to the index data type of the associative array (SQLSTATE
428H1) and cannot be the null value.

field-reference
Identifies the field within a row type value that is the assignment target. The field-reference must
be specified as a qualified field-name where the qualifier identifies the row value in which the field
is defined.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more host variables.

Before the FETCH statement is processed, the user must set the following fields in the SQLDA:

• SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA.
• SQLDABC to indicate the number of bytes of storage allocated for the SQLDA.
• SQLD to indicate the number of variables used in the SQLDA when processing the statement.
• SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences. Therefore, the value in
SQLDABC must be greater than or equal to 16 + SQLN*(N), where N is the length of an SQLVAR
occurrence.

If LOB or structured type result columns need to be accommodated, there must be two SQLVAR
entries for every select-list item (or column of the result table).

SQLD must be set to a value greater than or equal to zero and less than or equal to SQLN.

The nth variable described in the SQLDA corresponds to the nth column of the result table of the cursor.
The data type of each variable must be compatible with its corresponding column.

Each assignment to a variable is made according to specific rules. If the number of variables is less than
the number of values in the row, the SQLWARN3 field of the SQLDA is set to 'W'. Note that there is no
warning if there are more variables than the number of result columns. If an assignment error occurs, the
value is not assigned to the variable, and no more values are assigned to variables. Any values that have
already been assigned to variables remain assigned.

Chapter 1. Structured Query Language (SQL) 1661

Notes
• Cursor position: An open cursor has three possible positions:

– Before a row
– On a row
– After the last row.

A cursor can only be on a row as a result of a FETCH statement. If the cursor is currently positioned on
or after the last row of the result table:

– SQLCODE is set to +100, and SQLSTATE is set to '02000'.
– The cursor is positioned after the last row.
– Values are not assigned to assignment targets.

If the cursor is currently positioned before a row, it will be repositioned on that row, and values will be
assigned to targets as specified by the INTO or USING clause.

If the cursor is currently positioned on a row other than the last row, it will be repositioned on the next
row and values of that row will be assigned to targets as specified by the INTO or USING clause.

If a cursor is on a row, that row is called the current row of the cursor. A cursor referenced in an UPDATE
or DELETE statement must be positioned on a row.

It is possible for an error to occur that makes the state of the cursor unpredictable.
• When retrieving into LOB locators in situations where it is not necessary to retain the locator across

FETCH statements, it is good practice to issue a FREE LOCATOR statement before issuing the next
FETCH statement, as locator resources are limited.

• It is possible that a warning may not be returned on a FETCH. It is also possible that the returned
warning applies to a previously fetched row. This occurs as a result of optimizations such as the use of
system temporary tables or pushdown operators.

• Statement caching affects the behavior of an EXECUTE IMMEDIATE statement.
• Db2 CLI supports additional fetching capabilities. For instance, when a cursor's result table is read-only,

the SQLFetchScroll() function can be used to position the cursor at any spot within that result table.
• For an updatable cursor, a lock is obtained on a row when it is fetched.
• If the cursor definition contains an SQL data change statement or invokes a routine that modifies SQL

data, an error during the fetch operation does not cause the modified rows to be rolled back, even if the
error results in the cursor being closed.

Examples
• Example 1: In this C example, the FETCH statement fetches the results of the SELECT statement into

the program variables dnum, dname, and mnum. When no more rows remain to be fetched, the not found
condition is returned.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT
 WHERE ADMRDEPT = 'A00';

 EXEC SQL OPEN C1;

 while (SQLCODE==0) {
 EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;
 }

 EXEC SQL CLOSE C1;

• Example 2: This FETCH statement uses an SQLDA.

 FETCH CURS USING DESCRIPTOR :sqlda3

1662 IBM Db2 V11.5: SQL Reference

FLUSH BUFFERPOOLS
The FLUSH BUFFERPOOLS statement writes the dirty pages from all the local buffer pools for a particular
database synchronously to disk.

In Db2 pureScale environments, the dirty pages in the group buffer pool are also written synchronously to
disk.

This statement is not under transaction control.

The FLUSH BUFFERPOOLS statement can be used in the following ways:

• To reduce the recovery window of a database in the event of a failure
• To reduce the size of logs written to a backup image before database operations such as online backups
• To minimize the recovery time of a split-mirror database

Invocation
The statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include SQLADM, DBADM, SYSMAINT,
SYSCTRL, or SYSADM authority.

Syntax
FLUSH BUFFERPOOL

BUFFERPOOLS

ALL

Description
ALL

Flushes the dirty pages from all the buffer pools (local and group).

Notes
• Dirty pages processing: Only the dirty pages that are in the buffer pools when the statement begins

processing are written to disk. Any dirty pages that are added to the buffer pools before the statement
finishes processing are not written to disk.

• Syntax alternatives: BUFFERPOOL can be specified in place of BUFFERPOOLS.

FLUSH EVENT MONITOR
The FLUSH EVENT MONITOR statement writes current database monitor values for all active monitor
types associated with event monitor event-monitor-name to the event monitor I/O target.

A partial event record is available at any time for event monitors that have low record generation
frequency (such as a database event monitor). Such records are noted in the event monitor log with a
partial record identifier.

When an event monitor is flushed, its active internal buffers are written to the event monitor output
object.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Chapter 1. Structured Query Language (SQL) 1663

Authorization
The privileges held by the authorization ID of the statement must include SQLADM or DBADM authority.

Syntax
FLUSH EVENT MONITOR event-monitor-name

BUFFER

Description
event-monitor-name

Name of the event monitor. This is a one-part name. It is an ordinary identifier.
BUFFER

Indicates that the event monitor buffers are to be written out. If BUFFER is specified, then a partial
record is not generated. Only the data already present in the event monitor buffers are written out.

Notes
• Flushing out the event monitor will not cause the event monitor values to be reset. This means that the

event monitor record that would have been generated if no flush was performed, will still be generated
when the normal monitor event is triggered.

• The FLUSH EVENT MONITOR statement does not cause events to be generated and written for the UNIT
OF WORK event monitor.

FLUSH FEDERATED CACHE
The FLUSH FEDERATED CACHE statement flushes the federated cache, allowing fresh metadata to be
obtained the next time an SQL statement is issued against the remote table or view using a federated
three part name.

When an SQL statement is issued against a remote table or view using a federated three part name, if
the remote table or view is being referenced for the first time, the metadata and statistics for the remote
object are retrieved and stored in a federated cache.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include either SQLADM or DBADM
authority.

Syntax

FLUSH FEDERATED CACHE
FOR ALL

FOR remote-object-name

data-source-name.schema-name.*

data-source-name.*.*

SERVER data-source-name

1664 IBM Db2 V11.5: SQL Reference

Description
FOR ALL

Flushes the federated cache information for all objects from all data sources. This is the default.
FOR remote-object-name

Flushes the federated cache information for a specific remote table or view.
FOR data-source-name.schema-name.*

Flushes the federated cache information for all objects in the schema identified by schema-name from
the specific data source identified by data-source-name.

FOR data-source-name.*.*
Flushes the federated cache information for all objects from the specific data source identified by
data-source-name.

FOR SERVER data-source-name
Flushes the federated cache information for all objects from the specific data source identified by
data-source-name.

Notes
• Package invalidation: Flushing the federated cache causes packages with a dependency on the

three-part name to be invalidated. This action could have a performance impact since the invalidated
packages need to be recompiled whenever statements from the package are executed.

• View invalidation: Flushing the federated cache will not cause the views depending on the three part
name to be invalidated. The next time the view is used, it will implicitly revalidate the view. If there are
changes to the remote object, it is possible that the statement using the view could return an error.

Examples
• Example 1: Flush the federated cache information for the remote-table-name t1 in the remote-schema-

name rschema on the data source rudb.

FLUSH FEDERATED CACHE FOR rudb.rschema.t1

• Example 2: Flush the federated cache information for all objects in the remote-schema-name rschema
on the data source rudb.

FLUSH FEDERATED CACHE FOR rudb.rschema.*

• Example 3: Flush the federated cache information for all objects from the data source rudb.

FLUSH FEDERATED CACHE FOR rudb.*.*

An alternative to this syntax is as follows:

FLUSH FEDERATED CACHE FOR SERVER rudb

FLUSH OPTIMIZATION PROFILE CACHE
Multiple statements can be compiled using the same optimization profile.

To make optimization profile processing more efficient, the optimization profile is processed the first time
it is used to optimize a statement, and the output is stored in the optimization profile cache. Subsequent
references to the optimization profile use the processed version in the optimization profile cache.

An optimization profile should be removed from the optimization profile cache when the version stored
in SYSTOOLS.OPT_PROFILE has been updated. When the old version is removed from the cache, the new
version will be used upon optimization of subsequent statements that use the optimization profile.

Chapter 1. Structured Query Language (SQL) 1665

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include either SQLADM or DBADM
authority (SQLSTATE 42502).

Syntax

FLUSH OPTIMIZATION PROFILE CACHE
ALL

optimization-profile-name

Description
optimization-profile-name

Specifies the name of the optimization profile to be flushed from the optimization profile cache. If the
name specified is unqualified, the value of the CURRENT DEFAULT SCHEMA register is used as the
implicit qualifier.

ALL
Specifies that all profiles on all active database partitions be flushed from the optimization profile
cache.

Notes
• The FLUSH OPTIMIZATION PROFILE CACHE statement removes all or a single optimization profile

from the optimization profile cache. It also causes the logical invalidation of any cached dynamic SQL
statements that were prepared with that optimization profile.

• New access plans for any invalidated dynamic plans are regenerated when the next request for the
same SQL statement is made.

• Packages that reference an optimization profile removed from the optimization profile cache by this
statement must be explicitly bound again to allow new access plans to be generated.

Examples
• Example 1: The optimization profile "Rick"."Foo" is flushed from the optimization profile cache.

 SET CURRENT SCHEMA = '"Rick"'
 FLUSH OPTIMIZATION PROFILE CACHE "Foo"

• Example 2: The optimization profile JOHN.ALL is removed from the optimization profile cache.

 SET CURRENT SCHEMA = '"Rick"'
 FLUSH OPTIMIZATION PROFILE CACHE JOHN.ALL

Messages
• No errors are issued if the optimization profile cache is empty or if the specified optimization profiles
(specified explicitly or implicitly) do not exist in the optimization profile cache.

1666 IBM Db2 V11.5: SQL Reference

FLUSH PACKAGE CACHE
The FLUSH PACKAGE CACHE statement invalidates cached dynamic SQL statements in the package
cache. This invalidation causes the next request for any SQL statement that matches an invalidated
cached dynamic SQL statement to be compiled instead of reused from the package cache.

Invocation
This statement can be embedded in an application program or issued by using dynamic SQL statements.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges that are held by the authorization ID of the statement must include SQLADM or DBADM
authority.

Syntax
FLUSH PACKAGE CACHE DYNAMIC

FOR EXECUTABLE ID executable id USING HARD INVALIDATION

FOR EXECUTABLE ID executable id
An input argument of type VARCHAR(32) FOR BIT DATA that contains the executable ID used to
identify the section to be removed from the package cache. The executable ID cannot represent a
static section (4274L). If the executable ID does not map to a currently cached entry, no action will be
taken and an error will be returned (4274L).

USING HARD INVALIDATION
Specifies that, if the identified package cache entries to be invalidated are currently being used, the
FLUSH PACKAGE CACHE statement will wait until the entry is no longer being used before completing
the invalidation.

Notes
• This statement affects all cached dynamic SQL entries in the package cache on all active database

partitions.
• As cached dynamic SQL statements are invalidated, the package cache memory that is used for the

cached entry is freed if the entry is not in use when the FLUSH PACKAGE CACHE statement runs. Entries
are not evicted during the FLUSH PACKAGE CACHE statement if the FOR EXECUTABLE ID clause is used.
If the entry still remains in the cache after the statement is executed, the VALID element for that entry
will indicate that it is invalid and subsequent requests for that statement will cause a new compilation.

• Any cached dynamic SQL statement currently in use is allowed to continue to exist in the package cache
until it is no longer needed by the current user. The next new user of the same statement will force an
implicit prepare of the statement, and the new user will run the new version of the cached dynamic SQL
statement.

Examples
To mark all cached dynamic SQL entries invalid to force them to be prepared again:

FLUSH PACKAGE CACHE DYNAMIC

To force a specific cached entry out of the cache, find the target executable ID:

select section_type, executable_id, substr(stmt_text, 1, 30) as stmt_text from table
(mon_get_pkg_cache_stmt(null, null, null, -1)) where stmt_text like 'VALUES (17+30)%'

SECTION_TYPE EXECUTABLE_ID

Chapter 1. Structured Query Language (SQL) 1667

STMT_TEXT
------------ ---

D x'0000000100000000000000000000000100000000000220190220155112678301' VALUES
(17+30)

 1 record(s) selected.

And then issue the command to force it out:

flush package cache dynamic for executable id
x'0000000100000000000000000000000100000000000220190220155112678301' using hard invalidation
DB20000I The SQL command completed successfully.

FLUSH AUTHENTICATION CACHE
The FLUSH AUTHENTICATION CACHE statement flushes the Db2 authentication cache of all entries,
allowing fresh entries to be cached. Running this statement will perform the flush on all database
members in which the cache is present.
When the Db2 authentication cache is active, each new authentication request made with a username
and password is compared against existing, valid entries in the cache. If a match is found, the
authentication request is deemed to be successful and processing continues. If a match is not found,
the authentication request is processed and, if successful, the result is placed as a new entry in the cache.

Invocation
This statement can be issued through the use of dynamic SQL statements. It is an executable statement
that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include either SECADM or DBADM
authority.

Syntax

FLUSH AUTHENTICATION CACHE
FOR ALL

Description
FOR ALL

Flushes the authentication cache information for all users. This is the default.

Example
• Flush the authentication cache information for all entries with the following command:

FLUSH AUTHENTICATION CACHE

FOR
The FOR statement executes a statement or group of statements for each row of a table.

Invocation
This statement can be embedded in an:

• SQL procedure definition
• Compound SQL (compiled) statement

1668 IBM Db2 V11.5: SQL Reference

• Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL function definition, or
SQL trigger definition. It is not an executable statement and cannot be dynamically prepared.

Authorization
No privileges are required to invoke the FOR statement. However, the authorization ID of the statement
must hold the necessary privileges to invoke the SQL statements that are embedded in the FOR
statement. For the authorization required to use a cursor, see "DECLARE CURSOR".

Syntax

label:

FOR for-loop-name AS

cursor-name
ASENSITIVE

INSENSITIVE

CURSOR
WITHOUT HOLD

WITH HOLD

FOR
1

select-statement DO SQL-routine-statement END FOR

label

SQL-routine-statement

SQL-procedure-statement ;

SQL-function-statement ;

SQL-function-statement
CALL

FOR

WITH

,

common-table-expression

fullselect

GET DIAGNOSTICS

IF

INSERT

ITERATE

LEAVE

MERGE

searched-delete

searched-update

SET Variable

SIGNAL

WHILE

Notes:

Chapter 1. Structured Query Language (SQL) 1669

1 This option can only be used in the context of an SQL procedure or a compound SQL (compiled)
statement.

Description
label

Specifies the label for the FOR statement. If the beginning label is specified, that label can be used in
LEAVE and ITERATE statements. If the ending label is specified, it must be the same as the beginning
label.

for-loop-name
Specifies a label for the implicit compound statement generated to implement the FOR statement.
It follows the rules for the label of a compound statement except that it cannot be used with an
ITERATE or LEAVE statement within the FOR statement. The for-loop-name is used to qualify the
column names returned by the specified select-statement.

cursor-name
Names the cursor that is used to select rows from the result table of the SELECT statement. If not
specified, the database manager generates a unique cursor name. For a description of ASENSITIVE,
INSENSITIVE, WITHOUT HOLD, or WITH HOLD, see "DECLARE CURSOR".

select-statement
Specifies the SELECT statement of the cursor. All columns in the select list must have a name and
there cannot be two columns with the same name.

In a trigger, function, method, or compound SQL (inlined) statement, the select-statement must
consist of only a fullselect with optional common table expressions.

SQL-procedure-statement
Specifies one or more statements to be invoked for each row of the table. SQL-procedure-statement
is only applicable when in the context of an SQL procedure or within a compound SQL (compiled)
statement. See SQL-procedure-statement in "Compound SQL (compiled)" statement.

SQL-function-statement
Specifies one or more statements to be invoked for each row of the table. A searched-update,
searched-delete, or INSERT operation on nicknames is not supported. SQL-function-statement is only
applicable when in the context of an SQL function or SQL method.

Rules
• The select list must consist of unique column names and the objects specified in the select-statement

must exist when the procedure is created, or the object must be created in a previous SQL procedure
statement.

• The cursor specified in a for-statement cannot be referenced outside the for-statement and cannot be
specified in an OPEN, FETCH, or CLOSE statement.

Example
In the following example, the for-statement is used to iterate over the entire employee table. For each
row in the table, the SQL variable fullname is set to the last name of the employee, followed by a
comma, the first name, a blank space, and the middle initial. Each value for fullname is inserted into
table tnames.

 BEGIN ATOMIC
 DECLARE fullname CHAR(40);
 FOR vl AS
 SELECT firstnme, midinit, lastname FROM employee
 DO
 SET fullname = lastname CONCAT ','
 CONCAT firstnme CONCAT ' ' CONCAT midinit;
 INSERT INTO tnames VALUES (fullname);
 END FOR;
 END

1670 IBM Db2 V11.5: SQL Reference

FREE LOCATOR
The FREE LOCATOR statement removes the association between a large object locator variable and its
value.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

FREE LOCATOR

,

variable-name

Description
LOCATOR variable-name, ...

Identifies one or more large object locator variables that must be declared in accordance with the
rules for declaring locator variables.

The locator-variable must currently have a locator assigned to it. That is, a locator must have been
assigned during this unit of work (by a CALL, FETCH, SELECT INTO, or VALUES INTO statement)
and must not subsequently have been freed (by a FREE LOCATOR statement); otherwise, an error is
returned (SQLSTATE 0F001).

If more than one locator is specified, all locators that can be freed will be freed, regardless of errors
detected in other locators in the list.

Example
In a COBOL program, free the BLOB locator variables TKN-VIDEO and TKN-BUF and the CLOB locator
variable LIFE-STORY-LOCATOR.

 EXEC SQL
 FREE LOCATOR :TKN-VIDEO, :TKN-BUF, :LIFE-STORY-LOCATOR
 END-EXEC.

GET DIAGNOSTICS
The GET DIAGNOSTICS statement is used to obtain current execution environment information including
information about the previous SQL statement (other than a GET DIAGNOSTICS statement) that was
executed. Some of the information available through the GET DIAGNOSTICS statement is also available in
the SQLCA.

Invocation
This statement can be embedded in an:

• SQL procedure definition
• Compound SQL (compiled) statement
• Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL function definition, or
SQL trigger definition. It is not an executable statement and cannot be dynamically prepared.

Chapter 1. Structured Query Language (SQL) 1671

Authorization
None required.

Syntax
GET DIAGNOSTICS statement-information

condition-information

statement-information
SQL-variable-1 = DB2_RETURN_STATUS

DB2_SQL_NESTING_LEVEL

ROW_COUNT

condition-information

EXCEPTION 1

,

SQL-variable-2 = DB2_TOKEN_STRING

MESSAGE_TEXT

Description
statement-information

Returns information about the last SQL statement executed.
SQL-variable-1

Identifies the variable that is the assignment target. The variable must not be a global variable.
SQL variables can be defined in a compound statement. The data type of the variable must be
compatible with the data type as specified in Table 151 on page 1673.

DB2_RETURN_STATUS
Identifies the status value returned from the procedure associated with the previously executed
SQL statement, provided that the statement was a CALL statement invoking a procedure that
returns a status. If the previous statement is not such a statement, then the value returned has no
meaning and could be any integer.

DB2_SQL_NESTING_LEVEL
Identifies the current level of nesting or recursion in effect when the GET DIAGNOSTICS
statement was executed. Each level of nesting corresponds to a nested or recursive invocation
of a compiled SQL function, compiled SQL procedure, compiled trigger, or dynamically prepared
compound SQL (compiled) statement. If the GET DIAGNOSTICS statement is executed outside of
a level of nesting, the value zero is returned. This option can be specified only in the context of a
compiled SQL function, compiled SQL procedure, compiled trigger, or compound SQL (compiled)
statement (SQLSTATE 42601).

ROW_COUNT
Identifies the number of rows associated with the previous SQL statement. If the previous SQL
statement is a DELETE, INSERT, or UPDATE statement, ROW_COUNT identifies the number of rows
that qualified for the operation. If the previous statement is a PREPARE statement, ROW_COUNT
identifies the estimated number of result rows in the prepared statement.

condition-information
Specifies that the error or warning information for the previously executed SQL statement is to be
returned. If information about an error is needed, the GET DIAGNOSTICS statement must be the
first statement specified in the handler that will handle the error. If information about a warning is
needed, and if the handler will get control of the warning condition, the GET DIAGNOSTICS statement
must be the first statement specified in that handler. If the handler will not get control of the warning
condition, the GET DIAGNOSTICS statement must be the next statement executed. This option can
only be specified in the context of an SQL Procedure (SQLSTATE 42601).

1672 IBM Db2 V11.5: SQL Reference

SQL-variable-2
Identifies the variable that is the assignment target. The variable must not be a global variable.
SQL variables can be defined in a compound statement. The data type of the variable must be
compatible with the data type as specified in Table 151 on page 1673.

DB2_TOKEN_STRING
Identifies any error or warning message tokens returned from the previously executed SQL
statement. If the statement completed with an SQLCODE of zero, or if the SQLCODE had no
tokens, an empty string is returned for a VARCHAR variable or blanks are returned for a CHAR
variable.

MESSAGE_TEXT
Identifies any error or warning message text returned from the previously executed SQL
statement. The message text is returned in the language of the database server where the
statement is processed. If the statement completed with an SQLCODE of zero, an empty string
is returned for a VARCHAR variable or blanks are returned for a CHAR variable.

Notes
• The GET DIAGNOSTICS statement does not change the contents of the diagnostics area (SQLCA). If an

SQLSTATE or SQLCODE special variable is declared in the SQL procedure, these are set to the SQLSTATE
or SQLCODE returned from issuing the GET DIAGNOSTICS statement.

• Data types for items: The following table shows the SQL data type for each diagnostic item. When a
diagnostic item is assigned to a variable, the data type of the variable must be compatible with the data
type of the requested diagnostic item.

Table 151. Data types for GET DIAGNOSTICS items

Type of information Item Data type

Statement information DB2_RETURN_STATUS INTEGER

Statement information DB2_SQL_NESTING_LEVEL INTEGER

Statement information ROW_COUNT DECIMAL(31,0)

Condition information DB2_TOKEN_STRING VARCHAR(1000)

Condition information MESSAGE_TEXT VARCHAR(32672)

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– RETURN_STATUS can be specified in place of DB2_RETURN_STATUS.

Examples
• Example 1: In an SQL procedure, execute a GET DIAGNOSTICS statement to determine how many rows

were updated.

CREATE PROCEDURE sqlprocg (IN deptnbr VARCHAR(3))
 LANGUAGE SQL
 BEGIN
 DECLARE SQLSTATE CHAR(5);
 DECLARE rcount INTEGER;
 UPDATE CORPDATA.PROJECT
 SET PRSTAFF = PRSTAFF + 1.5
 WHERE DEPTNO = deptnbr;
 GET DIAGNOSTICS rcount = ROW_COUNT;
-- At this point, rcount contains the number of rows that were updated.
...
 END

• Example 2: Within an SQL procedure, handle the returned status value from the invocation of a
procedure called TRYIT that could either explicitly RETURN a positive value indicating a user failure, or

Chapter 1. Structured Query Language (SQL) 1673

encounter SQL errors that would result in a negative return status value. If the procedure is successful,
it returns a value of zero.

CREATE PROCEDURE TESTIT ()
 LANGUAGE SQL
 A1:BEGIN
 DECLARE RETVAL INTEGER DEFAULT 0;
 ...
 CALL TRYIT;
 GET DIAGNOSTICS RETVAL = DB2_RETURN_STATUS;
 IF RETVAL <> 0 THEN
 ...
 LEAVE A1;
 ELSE
 ...
 END IF;
 END A1

GOTO
The GOTO statement is used to branch to a user-defined label within an SQL procedure.

Invocation
This statement can only be embedded in an SQL procedure. It is not an executable statement and cannot
be dynamically prepared.

Authorization
None required.

Syntax
GOTO label

Description
label

Specifies a labelled statement where processing is to continue. The labelled statement and the GOTO
statement must be in the same scope:

• If the GOTO statement is defined in a FOR statement, label must be defined inside the same FOR
statement, excluding a nested FOR statement or nested compound statement

• If the GOTO statement is defined in a compound statement, label must be defined inside the same
compound statement, excluding a nested FOR statement or nested compound statement

• If the GOTO statement is defined in a handler, label must be defined in the same handler, following
the other scope rules

• If the GOTO statement is defined outside of a handler, label must not be defined within a handler.

If label is not defined within a scope that the GOTO statement can reach, an error is returned
(SQLSTATE 42736).

Notes
• It is recommended that the GOTO statement be used sparingly. This statement interferes with normal

processing sequences, thus making a routine more difficult to read and maintain. Before using a GOTO
statement, determine whether another statement, such as IF or LEAVE, can be used in place, to
eliminate the need for a GOTO statement.

1674 IBM Db2 V11.5: SQL Reference

Example
In the following compound statement, the parameters rating and v_empno are passed into the procedure,
which then returns the output parameter return_parm as a date duration. If the employee's time in
service with the company is less than 6 months, the GOTO statement transfers control to the end of the
procedure, and new_salary is left unchanged.

 CREATE PROCEDURE adjust_salary
 (IN v_empno CHAR(6),
 IN rating INTEGER,
 OUT return_parm DECIMAL (8,2))
 MODIFIES SQL DATA
 LANGUAGE SQL
 BEGIN
 DECLARE new_salary DECIMAL (9,2);
 DECLARE service DECIMAL (8,2);
 SELECT SALARY, CURRENT_DATE - HIREDATE
 INTO new_salary, service
 FROM EMPLOYEE
 WHERE EMPNO = v_empno;
 IF service < 600
 THEN GOTO EXIT;
 END IF;
 IF rating = 1
 THEN SET new_salary = new_salary + (new_salary * .10);
 ELSEIF rating = 2
 THEN SET new_salary = new_salary + (new_salary * .05);
 END IF;
 UPDATE EMPLOYEE
 SET SALARY = new_salary
 WHERE EMPNO = v_empno;
 EXIT: SET return_parm = service;
 END

GRANT (database authorities)
This form of the GRANT statement grants authorities that apply to the entire database (rather than
privileges that apply to specific objects within the database).

Invocation
This statement can be embedded in an application program or issued by using dynamic SQL statements.
It is an executable statement that can be dynamically prepared only if DYNAMICRULES run behavior is in
effect for the package (SQLSTATE 42509).

Authorization
To grant ACCESSCTRL, CREATE_SECURE_OBJECT, DATAACCESS, DBADM, or SECADM authority, SECADM
authority is needed.

Note: In Db2 11.5.7 and later, to grant CREATE_EXTERNAL_ROUTINE authority, SYSADM authority is
needed. If the DB2_ALTERNATE_AUTHZ_BEHAVIOUR registry variable is set and contains the value
EXTERNAL_ROUTINE_DBAUTH, then SYSADM, SECADM, or ACCESSCTRL authority is needed.
Also, in Db2 11.5.7 and later, to grant CREATE_NOT_FENCED_ROUTINE authority, SYSADM authority
is needed. If the DB2_ALTERNATE_AUTHZ_BEHAVIOUR registry variable is set and contains the value
NOT_FENCED_ROUTINE_DBAUTH, then SYSADM, SECADM, or ACCESSCTRL authority is needed.

To grant other authorities ACCESSCTRL or SECADM authority is needed.

Chapter 1. Structured Query Language (SQL) 1675

Syntax
GRANT

,

ACCESSCTRL

BINDADD

CONNECT

CREATETAB

CREATE_EXTERNAL_ROUTINE

CREATE_NOT_FENCED_ROUTINE

CREATE_SECURE_OBJECT

DATAACCESS

DBADM •
WITH DATAACCESS

WITHOUT DATAACCESS

•
WITH ACCESSCTRL

WITHOUT ACCESSCTRL

•

EXPLAIN

IMPLICIT_SCHEMA

LOAD

QUIESCE_CONNECT

SECADM

SQLADM

WLMADM

ON DATABASE TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

Description
ACCESSCTRL

Grants the access control authority. The ACCESSCTRL authority allows the holder to:

• Grant and revoke the following database authorities: BINDADD, CONNECT, CREATETAB,
CREATE_EXTERNAL_ROUTINE, CREATE_NOT_FENCED_ROUTINE, EXPLAIN, IMPLICIT_SCHEMA,
LOAD, QUIESCE_CONNECT, SQLADM, WLMADM

• Grant and revoke all object level privileges.

The ACCESSCTRL authority cannot be granted to PUBLIC (SQLSTATE 42508).
BINDADD

Grants the authority to create packages. The creator of a package automatically has the CONTROL
privilege on that package and retains this privilege even if the BINDADD authority is later revoked.

CONNECT
Grants the authority to access the database.

1676 IBM Db2 V11.5: SQL Reference

CREATETAB
Grants the authority to create base tables. The creator of a base table automatically has the CONTROL
privilege on that table. The creator retains this privilege even if the CREATETAB authority is later
revoked.

No explicit authority is needed for view creation. A view can be created at any time if the authorization
ID of the statement that is used to create the view has either CONTROL or SELECT privilege on each
base table of the view.

CREATE_EXTERNAL_ROUTINE
Grants the authority to register external routines. Care must be taken that routines so registered do
not have adverse side effects. (For more information, see the description of the THREADSAFE clause
in “CREATE PROCEDURE (external) ” on page 1292).

After an external routine has been registered, it continues to exist, even if
CREATE_EXTERNAL_ROUTINE is later revoked.

CREATE_NOT_FENCED_ROUTINE
Grants the authority to register routines that run in the database manager's process. Care must be
taken that routines so registered do not have adverse side effects. (For more information, see the
description of the FENCED clause on the “CREATE PROCEDURE (external) ” on page 1292).

After a routine is registered as not fenced, it continues to run in this manner, even if
CREATE_NOT_FENCED_ROUTINE is later revoked.

CREATE_EXTERNAL_ROUTINE is automatically granted to an authorization-name that is granted
CREATE_NOT_FENCED_ROUTINE authority.

CREATE_SECURE_OBJECT
Grants the authority to create secure triggers and secure functions. Grants the authority to alter the
secure attribute of such objects as well.

DATAACCESS
Grants the authority to access data. The DATAACCESS authority allows the holder to:

• Select, insert, update, delete, and load data.
• Run any package.
• Run any routine (except audit routines).

The DATAACCESS authority cannot be granted to PUBLIC (SQLSTATE 42508).
DBADM

Grants the database administrator authority. A database administrator holds nearly all privileges on
nearly all objects in the database. The only exceptions are those privileges that are part of the access
control, data access, and security administrator authorities. DBADM cannot be granted to PUBLIC.

EXPLAIN
Grants the authority to explain statements. The EXPLAIN authority allows the holder to explain,
prepare, and describe dynamic and static SQL statements without requiring access to data.

IMPLICIT_SCHEMA
Grants the authority to implicitly create a schema.

LOAD
Grants the authority to load in this database. This authority gives a user the right to use the LOAD
utility in this database. DATAACCESS and DBADM also have this authority by default. However, if a
user only has LOAD authority (not DATAACCESS), the user is also needs to have table-level privileges.
In addition to LOAD privilege, the user needs to have:

• INSERT privilege on the table for LOAD with mode INSERT, TERMINATE (to terminate a previous
LOAD INSERT), or RESTART (to restart a previous LOAD INSERT).

• INSERT and DELETE privilege on the table for LOAD with mode REPLACE, TERMINATE (to terminate
a previous LOAD REPLACE), or RESTART (to restart a previous LOAD REPLACE).

• INSERT privilege on the exception table, if such a table is used as part of LOAD.

Chapter 1. Structured Query Language (SQL) 1677

QUIESCE_CONNECT
Grants the authority to access the database while it is quiesced.

SECADM
Grants the security administrator authority. The authority allows the holder to:

• Create and drop security objects such as audit policies, roles, security labels, security label
components, security policies, and trusted contexts.

• Grant and revoke authorities, exemptions, privileges, roles, and security labels.
• Grant and revoke the SETSESSIONUSER privilege.
• Run TRANSFER OWNERSHIP on objects that are owned by others.

The SECADM authority cannot be granted to PUBLIC (SQLSTATE 42508).
SQLADM

Grants the authority to manage SQL statement execution. The SQLADM authority allows the holder to:

• Create, drop, flush, and set event monitors.
• Explain, prepare, and describe dynamic and static SQL statements without requiring access to data.
• Flush optimization profile cache
• Flush package cache
• Execute the runstats utility.
• Create, alter, drop, and set usage lists.

WLMADM
Grants the authority to manage workloads. The WLMADM authority allows the holder to:

• Create, drop, and alter service classes, thresholds, work action sets, work class sets, or workloads.

TO
Specifies to whom the authorities are granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Grants the authorities to a set of users (authorization IDs).

Rules
• For each authorization-name specified, if neither USER, GROUP, or ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

1678 IBM Db2 V11.5: SQL Reference

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.

Notes
• ACCESSCTRL, CREATE_SECURE_OBJECT, DATAACCESS, DBADM, or SECADM authorities cannot be

granted to the special group PUBLIC. Therefore, granting ACCESSCTRL, CREATE_SECURE_OBJECT,
DBADM, DATAACCESS, or SECADM authority to a role role-name fails if role-name is granted to PUBLIC
either directly or indirectly (SQLSTATE 42508).

– Role role-name is granted directly to PUBLIC if the following statement has been issued:

 GRANT ROLE role-name TO PUBLIC

– Role role-name is granted indirectly to PUBLIC if the following statements have been issued:

 GRANT ROLE role-name TO ROLE role-name2
 GRANT ROLE role-name2 TO PUBLIC

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products.

– CREATE_NOT_FENCED can be specified in place of CREATE_NOT_FENCED_ROUTINE.
– SYSTEM can be specified in place of DATABASE.

• Privileges granted to a group: A privilege that is granted to a group is not used for authorization
checking on:

– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized query table
– Create SQL routine
– Create trigger

• WITH GRANT OPTION is ignored when granting database authorities.

Examples
• Example 1: Give the users WINKEN, BLINKEN, and NOD the authority to connect to the database.

 GRANT CONNECT ON DATABASE TO USER WINKEN, USER BLINKEN, USER NOD

• Example 2: Grant BINDADD authority on the database to a group named D024. Both a group and a user
called D024 exist in the system.

 GRANT BINDADD ON DATABASE TO GROUP D024

Observe that, the GROUP keyword must be specified; otherwise, an error will occur since both a user
and a group named D024 exist. Any member of the D024 group will be allowed to bind packages in the
database, but the D024 user will not be allowed (unless this user is also a member of the group D024,
had been granted BINDADD authority previously, or BINDADD authority had been granted to another
group of which D024 was a member).

• Example 3: Give user Walid security administrator authority.

 GRANT SECADM ON DATABASE TO USER Walid

Chapter 1. Structured Query Language (SQL) 1679

• Example 4: A user with SECADM authority grants the CREATE_SECURE_OBJECT authority to user
Haytham.

 GRANT CREATE_SECURE_OBJECT ON DATABASE TO USER HAYTHAM

GRANT (exemption)
This form of the GRANT statement grants to a user, group, or role an exemption on an access rule for a
specified label-based access control (LBAC) security policy.

When the user holding the exemption accesses data in a table protected by that security policy the
indicated rule will not be enforced when deciding if they can access the data.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
GRANT EXEMPTION ON RULE DB2LBACREADARRAY

DB2LBACREADSET

DB2LBACREADTREE

DB2LBACWRITEARRAY WRITEDOWN

WRITEUP

DB2LBACWRITESET

DB2LBACWRITETREE

ALL

FOR

policy-name TO

,

USER

GROUP

ROLE

authorization-name

Description
EXEMPTION ON RULE

Grants an exemption on an access rule.
DB2LBACREADARRAY

Grants an exemption on the predefined DB2LBACREADARRAY rule.
DB2LBACREADSET

Grants an exemption on the predefined DB2LBACREADSET rule.
DB2LBACREADTREE

Grants an exemption on the predefined DB2LBACREADTREE rule.
DB2LBACWRITEARRAY

Grants an exemption on the predefined DB2LBACWRITEARRAY rule.

1680 IBM Db2 V11.5: SQL Reference

WRITEDOWN
Specifies that the exemption only applies to write down.

WRITEUP
Specifies that the exemption only applies to write up.

DB2LBACWRITESET
Grants an exemption on the predefined DB2LBACWRITESET rule.

DB2LBACWRITETREE
Grants an exemption on the predefined DB2LBACWRITETREE rule.

ALL
Grants an exemption on all of the predefined rules.

FOR policy-name
Identifies the security policy for which the exemption is being granted. The exemption will only be
effective for tables that are protected by this security policy. The name must identify a security policy
already described in the catalog (SQLSTATE 42704).

TO
Specifies to whom the exemption is granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.
• If the security policy is not defined to consider access through groups or roles, any exemption granted

to a group or role is ignored when access is attempted.

Notes
• By default when a security policy is created, only exemptions granted to an individual user are

considered. To have groups or roles considered for the security policy, you must issue the ALTER
SECURITY POLICY statement and specify USE GROUP AUTHORIZATION or USE ROLE AUTHORIZATION
as applicable.

Chapter 1. Structured Query Language (SQL) 1681

Examples
• Example 1: Grant an exemption on access rule DB2LBACREADSET for security policy DATA_ACCESS to

user WALID.

 GRANT EXEMPTION ON RULE DB2LBACREADSET FOR DATA_ACCESS TO USER WALID

• Example 2: Grant an exemption on access rule DB2LBACWRITEARRAY with the WRITEDOWN option for
security policy DATA_ACCESS to user BOBBY.

 GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN
 FOR DATA_ACCESS TO USER BOBBY

• Example 3: Grant an exemption on access rule DB2LBACWRITEARRAY with the WRITEUP option for
security policy DATA_ACCESS to user BOBBY.

 GRANT EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEUP
 FOR DATA_ACCESS TO USER BOBBY

GRANT (global variable privileges)
This form of the GRANT statement grants one or more privileges on a created global variable.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• The WITH GRANT OPTION for each identified privilege on the global variable
• ACCESSCTRL authority on the schema containing the global variable
• ACCESSCTRL or SECADM authority

Syntax

GRANT ALL
PRIVILEGES

,

READ

WRITE

ON VARIABLE variable-name TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

WITH GRANT OPTION

1682 IBM Db2 V11.5: SQL Reference

Description
ALL PRIVILEGES

Grants all privileges on the specified global variable.
READ

Grants the privilege to read the value of the specified global variable.
WRITE

Grants the privilege to assign a value to the specified global variable.
ON VARIABLE variable-name

Identifies the global variable on which one or more privileges are to be granted. The variable-name,
including an implicit or explicit qualifier, must identify a global variable that exists at the current server
and is not a module variable (SQLSTATE 42704).

TO
Specifies to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group.
ROLE

Specifies that the authorization-name identifies an existing role at the current server (SQLSTATE
42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list of authorization IDs
cannot include the authorization ID of the user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the specified privileges to a set of users (authorization IDs).

WITH GRANT OPTION
Allows the specified authorization-name to grant the privileges to others. If the WITH GRANT OPTION
clause is omitted, the specified authorization-name cannot grant the privileges to others unless that
authority has been received from some other source.

Rules
• For each authorization-name specified, if none of the keywords USER, GROUP, or ROLE is specified:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database and as either GROUP or USER in the
operating system, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as both USER and GROUP according to the security plug-in in
effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security plug-in in effect, or if it is
undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security plug-in in effect, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.

Notes
• Privileges granted to a group: A privilege that is granted to a group is not used for authorization

checking on:

– Static DML statements in a package

Chapter 1. Structured Query Language (SQL) 1683

– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized query table
– Create SQL routine
– Create trigger

Example
Grant the READ and WRITE privilege on global variable MYSCHEMA.MYJOB_PRINTER to user ZUBIRI.

 GRANT READ, WRITE ON VARIABLE MYSCHEMA.MYJOB_PRINTER TO ZUBIRI

GRANT (index privileges)
This form of the GRANT statement grants the CONTROL privilege on indexes.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The authorization ID privileges of the statement on the schema containing the index must include one of
the following:

• ACCESSCTRL authority
• SECADM authority
• Schema ACCESSCTRL authority

Syntax
GRANT CONTROL ON INDEX index-name TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

Description
CONTROL

Grants the privilege to drop the index. This is the CONTROL authority for indexes, which is
automatically granted to creators of indexes.

ON INDEX index-name
Identifies the index for which the CONTROL privilege is to be granted.

TO
Specifies to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user.

1684 IBM Db2 V11.5: SQL Reference

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
"Authorization, privileges and object ownership".

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.

Notes
• Privileges granted to a group: A privilege that is granted to a group is not used for authorization

checking on:

– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized query table
– Create SQL routine
– Create trigger

• WITH GRANT OPTION is ignored when granting index privileges

Example
Grant CONTROL privilege on the DEPTIDX index to the user whose ID is KIESLER:

 GRANT CONTROL ON INDEX DEPTIDX TO USER KIESLER

Chapter 1. Structured Query Language (SQL) 1685

GRANT (module privileges)
This form of the GRANT statement grants privileges on a module.

Invocation
This statement can be embedded in an application program or issued by using dynamic SQL statements.
It is an executable statement that can be dynamically prepared only if DYNAMICRULES run behavior is in
effect for the package (SQLSTATE 42509).

Authorization
The privileges that are held by the authorization ID of the statement must include at least one of the
following authorities:

• The WITH GRANT OPTION for EXECUTE on the module.
• ACCESSCTRL authority on the schema that contains the module.
• ACCESSCTRL or SECADM authority.

Note: In Db2 11.5.7 and later, the needed authorities are different if the module is SYSIBMADM.UTL_DIR.
In this case, the authorities that are held by the authorization ID of the statement must include at least
one of the following options:

• The WITH GRANT OPTION for EXECUTE on the module.
• SYSADM authority.

If the module on which the privilege is granted is SYSIBMADM.UTL_DIR, and the
DB2_ALTERNATE_AUTHZ_BEHAVIOUR registry variable is set to UTL_DIR_DBAUTH, then the privileges
that are held by the authorization ID of the statement are different. In this case, the needed privileges
must include at least one of the following options:

• The WITH GRANT OPTION for EXECUTE on the module
• ACCESSCTRL authority on the schema that contains the module.
• SYSADM, ACCESSCTRL, or SECADM authority

Syntax
GRANT EXECUTE ON MODULE module-name TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

WITH GRANT OPTION

Description
EXECUTE

Grants the privilege to reference published module objects and run the following operations:

• Run any published routines defined in the module.
• Read from and write to any published global variables defined in the module.
• Reference any published user-defined types defined in the module.
• Reference any published conditions defined in the module.

1686 IBM Db2 V11.5: SQL Reference

ON MODULE module-name
Identifies the module on which the privilege is granted. The module-name must identify a module that
exists at the current server (SQLSTATE 42704).

TO
Indicates to whom the privilege is granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists one or more authorization IDs.

PUBLIC
Grants the privilege to a set of users (authorization IDs). For more information, see "Authorization,
privileges and object ownership".

WITH GRANT OPTION
Allows the specified authorization-names to grant the EXECUTE privilege to other users. If WITH
GRANT OPTION is omitted, the specified authorization-names cannot grant the EXECUTE privilege to
others unless they receive that authority from some other source.

Notes
Privileges that are granted to a group

• A privilege that is granted to a group is not used for authorization checking on any of the following items:

– Static DML statements in a package.
– A base table that is actively processing a CREATE VIEW statement.
– A base table that is actively processing a CREATE TABLE statement for a materialized query table.
– Create SQL routine.
– Create trigger.

Example
Grant the EXECUTE privilege on module MYMODA to user JONES:

 GRANT EXECUTE
 ON MODULE MYMODA
 TO JONES

GRANT (package privileges)
This form of the GRANT statement grants privileges on a package.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

Chapter 1. Structured Query Language (SQL) 1687

• CONTROL privilege on the referenced package
• The WITH GRANT OPTION for each identified privilege on package-name
• ACCESSCTRL on the schema containing the package
• ACCESSCTRL or SECADM authority

One of the following authorities is required to grant the CONTROL privilege:

• ACCESSCTRL
• SECADM
• ACCESSCTRL authority on the schema containing the package

Syntax

GRANT

,

BIND

CONTROL

EXECUTE
1

ON PACKAGE
2

package-name TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

WITH GRANT OPTION

Notes:
1 RUN can be used as a synonym for EXECUTE.
2 PROGRAM can be used as a synonym for PACKAGE.

Description
BIND

Grants the privilege to bind a package. The BIND privilege allows a user to re-issue the BIND
command against that package, or to issue the REBIND command. It also allows a user to create
a new version of an existing package.

In addition to the BIND privilege, a user must hold the necessary privileges on each table referenced
by static DML statements contained in a program. This is necessary, because authorization on static
DML statements is checked at bind time.

CONTROL
Grants the privilege to rebind, drop, or execute the package, and extend package privileges to other
users. The CONTROL privilege for packages is automatically granted to creators of packages. A
package owner is the package binder, or the ID specified with the OWNER option at bind/precompile
time.

BIND and EXECUTE are automatically granted to an authorization-name that is granted CONTROL
privilege.

CONTROL grants the ability to grant the previously mentioned privileges (except for CONTROL) to
others.

EXECUTE
Grants the privilege to execute the package.

1688 IBM Db2 V11.5: SQL Reference

ON PACKAGE package-name
Specifies the name of the package on which privileges are to be granted. The granting of a package
privilege applies to all versions of the package (that is, to all packages that share the same package
name and package schema).

TO
Specifies to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
"Authorization, privileges and object ownership".

WITH GRANT OPTION
Allows the specified authorization-name to GRANT the privileges to others.

If the specified privileges include CONTROL, the WITH GRANT OPTION applies to all of the
applicable privileges except for CONTROL (SQLSTATE 01516).

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.

Notes
• Package privileges apply to all versions of a package (that is, all packages that share the same package

ID and package schema). It is not possible to restrict access to only one version. Because CONTROL
privilege is implicitly granted to the binder of a package, if two different users bind two versions of a
package, then both users will implicitly be granted access to each other's package.

• Privileges granted to a group: A privilege that is granted to a group is not used for authorization
checking on:

– Static DML statements in a package
– A base table while processing a CREATE VIEW statement

Chapter 1. Structured Query Language (SQL) 1689

– A base table while processing a CREATE TABLE statement for a materialized query table
– Create SQL routine
– Create trigger

Examples
• Example 1: Grant the EXECUTE privilege on PACKAGE CORPDATA.PKGA to PUBLIC.

 GRANT EXECUTE
 ON PACKAGE CORPDATA.PKGA
 TO PUBLIC

• Example 2: GRANT EXECUTE privilege on package CORPDATA.PKGA to a user named EMPLOYEE. There
is neither a group nor a user called EMPLOYEE.

 GRANT EXECUTE ON PACKAGE
 CORPDATA.PKGA TO EMPLOYEE

or

 GRANT EXECUTE ON PACKAGE
 CORPDATA.PKGA TO USER EMPLOYEE

GRANT (role)
This form of the GRANT statement grants roles to users, groups, or to other roles.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• The WITH ADMIN OPTION on the role
• SECADM authority

SECADM authority is required to grant the WITH ADMIN OPTION to an authorization-name.

Syntax

GRANT
ROLE

,

role-name TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

WITH ADMIN OPTION

1690 IBM Db2 V11.5: SQL Reference

Description
ROLE role-name,...

Identifies one or more roles to be granted. Each role-name must identify an existing role at the current
server (SQLSTATE 42704).

TO
Specifies to whom the role is granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group.
ROLE

Specifies that the authorization-name identifies an existing role at the current server (SQLSTATE
42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list of authorization IDs
cannot include the authorization ID of the user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the specified roles to a set of users (authorization IDs).

WITH ADMIN OPTION
Allows the specified authorization-name to grant or revoke the role-name to or from others, or to
associate a comment with the role. It does not allow the specified authorization-name to drop the
role.

Rules
• For each authorization-name specified, if none of the keywords USER, GROUP, or ROLE is specified:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database and as either GROUP or USER in the
operating system, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as both USER and GROUP according to the security plug-in in
effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security plug-in in effect, or if it is
undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security plug-in in effect, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.
• Hierarchies of roles can be built by granting one role to another role. However, cycles are not allowed

(SQLSTATE 428GF). For example, if role R1 is granted to another role R2, then role R2 (or some other
role Rn that contains R2) cannot be granted back to R1, because this would produce a cycle.

• The USER, GROUP, or ROLE names must not begin with the characters 'SYS' and must not be
'ACCESSCTRL', 'DATAACCESS', 'DBADM', 'NONE', 'NULL', 'PUBLIC', 'SECADM', 'SQLADM', 'SCHEMAADM',
or 'WLMADM' (SQLSTATE 42939).

Notes
• When role R1 is granted to another role R2, then R2 contains R1.
• DBADM authority cannot be granted to PUBLIC. Therefore:

– Granting role R1 to PUBLIC fails (SQLSTATE 42508) if role R1 holds DBADM authority either directly
or indirectly.

Chapter 1. Structured Query Language (SQL) 1691

- Role R1 holds DBADM authority directly if the following statement has been issued:

GRANT DBADM ON DATABASE TO ROLE R1

- Role R1 holds DBADM authority indirectly if the following statements have been issued:

GRANT DBADM ON DATABASE TO ROLE R2

GRANT ROLE R2 TO ROLE R1

– Granting role R1, which holds DBADM authority, to role R2 fails (SQLSTATE 42508) if role R2 is
granted to PUBLIC either directly or indirectly.

- Role R2 is granted to PUBLIC directly if the following statement has been issued:

GRANT ROLE R2 TO PUBLIC

- Role R2 is granted to PUBLIC indirectly if the following statements have been issued:

GRANT ROLE R2 TO ROLE R3

GRANT ROLE R3 TO PUBLIC

• No schema-level authority (SCHEMAADM, schema ACCESSCTRL, schema DATAACCESS, schema LOAD)
can be granted to PUBLIC.

• Privileges granted to a group: A privilege that is granted to a group is not used for authorization
checking on:

– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized query table
– Create SQL routine
– Create trigger

Examples
• Example 1: Grant role INTERN to role DOCTOR and role DOCTOR to role SPECIALIST.

 GRANT ROLE INTERN TO ROLE DOCTOR

 GRANT ROLE DOCTOR TO ROLE SPECIALIST

• Example 2: Grant role INTERN to PUBLIC.

 GRANT ROLE INTERN TO PUBLIC

• Example 3: Grant role SPECIALIST to user BOB and group TORONTO.

 GRANT ROLE SPECIALIST TO USER BOB, GROUP TORONTO

GRANT (routine privileges)
This form of the GRANT statement grants privileges on a routine (function, method, or procedure) that is
not defined in a module.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

1692 IBM Db2 V11.5: SQL Reference

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• The WITH GRANT OPTION for EXECUTE on the routine
• ACCESSCTRL authority on the schema containing the routine
• ACCESSCTRL or SECADM authority

To grant all routine EXECUTE privileges in the schema or type, the privileges held by the authorization ID
of the statement must include at least one of the following authorities:

• The WITH GRANT OPTION for EXECUTE on all existing and future routines (of the specified type) in the
specified schema

• ACCESSCTRL authority on the schema containing all the routines
• ACCESSCTRL or SECADM authority

SECADM authority is required to grant EXECUTE privilege on audit routines and the
SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY procedure. EXECUTE privilege WITH GRANT
OPTION cannot be granted for these routines (SQLSTATE 42501). EXECUTE privilege cannot be granted to
PUBLIC on the SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY procedure (SQLSTATE 42501).

Syntax
GRANT EXECUTE ON function-designator

FUNCTION

schema.

*

method-designator

METHOD * FOR type-name

schema.

*

procedure-designator

PROCEDURE

schema.

*

TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

WITH GRANT OPTION

function-designator
FUNCTION function-name

(
,

data-type

)

SPECIFIC FUNCTION specific-name

method-designator

Chapter 1. Structured Query Language (SQL) 1693

METHOD method-name

(
,

data-type

)

FOR type-name

SPECIFIC METHOD specific-name

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

Description
EXECUTE

Grants the privilege to run the identified user-defined function, method, or procedure.
function-designator

Uniquely identifies the function on which the privilege is granted. For more information, see “Function,
method, and procedure designators” on page 745.

FUNCTION schema.*
Identifies all the functions in the schema, including any functions that may be created in the future.
In dynamic SQL statements, if a schema is not specified, the schema in the CURRENT SCHEMA
special register will be used. In static SQL statements, if a schema is not specified, the schema in the
QUALIFIER precompile/bind option will be used.

method-designator
Uniquely identifies the method on which the privilege is granted. For more information, see “Function,
method, and procedure designators” on page 745.

METHOD *
Identifies all the methods for the type type-name, including any methods that may be created in the
future.
FOR type-name

Names the type in which the specified method is found. The name must identify a type already
described in the catalog (SQLSTATE 42704). In dynamic SQL statements, the value of the
CURRENT SCHEMA special register is used as a qualifier for an unqualified type name. In
static SQL statements, the QUALIFIER precompile/bind option implicitly specifies the qualifier
for unqualified type names. An asterisk (*) can be used in place of type-name to identify all types
in the schema, including any types that may be created in the future.

procedure-designator
Uniquely identifies the procedure on which the privilege is granted. For more information, see
“Function, method, and procedure designators” on page 745.

PROCEDURE schema.*
Identifies all the procedures in the schema, including any procedures that may be created in the
future. In dynamic SQL statements, if a schema is not specified, the schema in the CURRENT SCHEMA
special register will be used. In static SQL statements, if a schema is not specified, the schema in the
QUALIFIER precompile/bind option will be used.

TO
Specifies to whom the EXECUTE privilege is granted.

1694 IBM Db2 V11.5: SQL Reference

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

PUBLIC
Grants the EXECUTE privilege to a set of users (authorization IDs).

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the EXECUTE privilege to others.

If the WITH GRANT OPTION is omitted, the specified authorization-name can only grant the EXECUTE
privilege to others if they:

• have SYSADM or DBADM authority or
• received the ability to grant the EXECUTE privilege from some other source.

Rules
• It is not possible to grant the EXECUTE privilege on a function or method defined with schema 'SYSIBM'

or 'SYSFUN' (SQLSTATE 42832).
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.
• In general, the GRANT statement will process the granting of privileges that the authorization ID of the

statement is allowed to grant, returning a warning (SQLSTATE 01007) if one or more privileges was not
granted. If the package used for processing the statement was precompiled with LANGLEVEL set to
SQL92E or MIA, and no privileges were granted, a warning is returned (SQLSTATE 01007). If the grantor
has no privileges on the object of the grant operation, an error is returned (SQLSTATE 42501).

Notes
• Privileges for a routine defined in a module are granted at the module level using the GRANT (module

privileges) statement. The EXECUTE privilege on the module allows access to all objects in the module.
• Privileges granted to a group: A privilege that is granted to a group is not used for authorization

checking on:

– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized query table
– Create SQL routine

Chapter 1. Structured Query Language (SQL) 1695

– Create trigger

Examples
• Example 1: Grant the EXECUTE privilege on function CALC_SALARY to user JONES. Assume that there is

only one function in the schema with function name CALC_SALARY.

 GRANT EXECUTE ON FUNCTION CALC_SALARY TO JONES

• Example 2: Grant the EXECUTE privilege on procedure VACATION_ACCR to all users at the current
server.

 GRANT EXECUTE ON PROCEDURE VACATION_ACCR TO PUBLIC

• Example 3: Grant the EXECUTE privilege on function DEPT_TOTALS to the administrative assistant and
give the assistant the ability to grant the EXECUTE privilege on this function to others. The function
has the specific name DEPT85_TOT. Assume that the schema has more than one function named
DEPT_TOTALS.

 GRANT EXECUTE ON SPECIFIC FUNCTION DEPT85_TOT
 TO ADMIN_A WITH GRANT OPTION

• Example 4: Grant the EXECUTE privilege on function NEW_DEPT_HIRES to HR (Human Resources).
The function has two input parameters of type INTEGER and CHAR(10), respectively. Assume that the
schema has more than one function named NEW_DEPT_HIRES.

 GRANT EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10)) TO HR

• Example 5: Grant the EXECUTE privilege on method SET_SALARY of type EMPLOYEE to user JONES.

 GRANT EXECUTE ON METHOD SET_SALARY FOR EMPLOYEE TO JONES

GRANT (schema privileges and authorities)
This form of the GRANT statement grants privileges and authorities on a schema.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• The WITH GRANT OPTION for each identified privilege on schema-name
• ACCESSCTRL authority on schema-name
• ACCESSCTRL or SECADM authority

Exceptions:

• Only an authorization ID with ACCESSCTRL or SECADM can grant the following privileges on schema
names starting with SYS:

– SELECTIN privilege on SYSCAT, SYSFUN, SYSSTAT or any schema names starting with SYSIBM
(SQLSTATE 42501).

– SELECTIN, CREATEIN and DROPIN privileges on SYSPROC, SYSPUBLIC or SYSTOOLS schemas.
Granting CREATEIN privilege allows the user to create a public alias. Granting DROPIN privilege
allows the user to drop any public alias.

1696 IBM Db2 V11.5: SQL Reference

• No user can grant any other privileges or authorities on schema names starting with SYS (SQLSTATE
42501).

• Only a user with SECADM or database ACCESSCTRL authority can grant schema ACCESSCTRL authority.
• No schema authorities (SCHEMAADM, ACCESSCTRL, DATAACCESS, and LOAD) can be granted to

PUBLIC directly or indirectly

Syntax
GRANT ALL

PRIVILEGES
,

ACCESSCTRL

ALTERIN

CREATEIN

DATAACCESS

DELETEIN

DROPIN

EXECUTEIN

INSERTIN

LOAD

SCHEMAADM

SELECTIN

UPDATEIN

LOGICAL BACKUP AND RESTORE OF RCAC PROTECTED DATA

ON SCHEMA schema-name

CURRENT SCHEMA

TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

WITH GRANT OPTION

Description
ALL or ALL PRIVILEGES

Grants all of the following schema privileges on the schema that is named in the ON clause:

• ALTERIN
• CREATEIN
• DELETEIN
• DROPIN
• EXECUTEIN
• INSERTIN
• SELECTIN

Chapter 1. Structured Query Language (SQL) 1697

• UPDATEIN

If ALL is not specified, one or more of the keywords in the list of privileges must be specified.

ACCESSCTRL
Grants the access control authority on the schema. The schema ACCESSCTRL authority allows the
holder to:

• Grant and revoke the following privileges:

– READ, WRITE on global variables defined in the schema
– BIND privileges on packages defined in the schema
– CONTROL privileges on packages and modules defined in the schema
– USAGE privilege on XSR objects defined in the schema

• Grant and revoke all schema level privileges and authorities except for schema ACCESSCTRL itself.

The schema ACCESSCTRL authority cannot be granted to PUBLIC (SQLSTATE 42508).
For more information, see Schema access control authority (ACCESSCTRL).

ALTERIN
Grants the privilege to alter or comment on all objects in the schema. The owner of an explicitly
created schema automatically receives ALTERIN privilege.

CREATEIN
Grants the privilege to create objects in the schema. Other authorities or privileges required to
create the object (such as CREATETAB) are still required. The owner of an explicitly created schema
automatically receives CREATEIN privilege. An implicitly created schema has CREATEIN privilege
automatically granted to PUBLIC.

DATAACCESS
Grants the authority to access data in the schema. The schema DATAACCESS authority allows the
holder to do the following:

• Select, insert, update, delete, and load data from tables or views defined in the schema
• Execute any package defined in the schema
• Execute any routine, except audit routines, defined in the schema

The schema DATAACCESS authority cannot be granted to PUBLIC (SQLSTATE 42508).

For more information, see Schema data access authority (DATAACCESS).
DELETEIN

Grants the privilege to delete data in the table objects in the schema. The owner of the schema
(explicitly or implicitly created) does not automatically receive DELETEIN privilege.

DROPIN
Grants the privilege to drop all objects in the schema. The owner of an explicitly created schema
automatically receives DROPIN privilege.

EXECUTEIN
Grants the privilege to execute all existing and future user-defined functions, methods, procedures,
packages, or modules defined in the schema. The owner of the schema (explicitly or implicitly
created) does not automatically receive EXECUTEIN privilege.

INSERTIN

Grants the privilege to insert rows and to run the IMPORT utility on all existing and future tables
or views defined in the schema. The owner of the schema (explicitly or implicitly created) does not
automatically receive INSERTIN privilege.

LOAD
Grants the authority to load in this schema. This authority gives a user the right to use the LOAD
utility in this schema. SCHEMAADM has this authority by default. However, if a user only has schema

1698 IBM Db2 V11.5: SQL Reference

LOAD authority (not schema DATAACCESS), the user is also required to have table-level privileges. In
addition to schema LOAD privilege, the user is required to have:

• INSERT privilege on the table or INSERTIN privilege on the schema of the table for LOAD with mode
INSERT, TERMINATE (to terminate a previous LOAD INSERT), or RESTART (to restart a previous
LOAD INSERT)

• INSERT and DELETE privilege on the table or INSERTIN and DELETEIN privilege on the schema of
the table for LOAD with mode REPLACE, TERMINATE (to terminate a previous LOAD REPLACE), or
RESTART (to restart a previous LOAD REPLACE)

• INSERT privilege on the exception table or INSERTIN privilege on the schema of the exception table,
if such a table is used as part of LOAD

Schema LOAD authority cannot be granted to PUBLIC (SQLSTATE 42508).
For more information, see Schema load authority (LOAD).

SCHEMAADM

Grants the schema administrator authority. A schema administrator holds nearly all privileges on
nearly all objects in the schema. The only exceptions are those privileges that are part of the access
control, and schema data access.

SCHEMAADM authority cannot be granted to PUBLIC (SQLSTATE 42508).

For more information, see Schema administration authority (SCHEMAADM).
SELECTIN

Grants the privilege to select from all existing and future tables or views defined in the schema.
The owner of the schema (explicitly or implicitly created) does not automatically receive SELECTIN
privilege.

UPDATEIN
Grants the privilege to use the UPDATE statement on all existing and future tables or updatable
views defined in the schema. The owner of the schema (explicitly or implicitly created) does not
automatically receive UPDATEIN privilege.

LOGICAL BACKUP AND RESTORE OF RCAC PROTECTED DATA
Grants users the privilege to allow a schema-level db_backup and db_restore scripts to access
RCAC protected data.
The schema LOGICAL BACKUP AND RESTORE OF RCAC PROTECTED DATA authority cannot be
granted to PUBLIC (SQLSTATE 42508).

ON
SCHEMA schema-name

Specifies the name of the schema on which the authorities are to be granted. Authorities cannot
be granted on any schema beginning with the SYS prefix (SQLSTATE 42501).

CURRENT SCHEMA
Specifies that the authorities will be granted on the schema described by the DB2® special register
CURRENT SCHEMA. Authorities cannot be granted on any schema beginning with the SYS prefix
(SQLSTATE 42501).

TO
Specifies to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

Chapter 1. Structured Query Language (SQL) 1699

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
"Authorization, privileges and object ownership".

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the privileges to others.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.
• In general, the GRANT statement will process the granting of privileges that the authorization ID of the

statement is allowed to grant, returning a warning (SQLSTATE 01007) if one or more privileges was not
granted. If no privileges were granted, an error is returned (SQLSTATE 42501). (If the package used
for processing the statement was precompiled with LANGLEVEL set to SQL92E for MIA, a warning is
returned (SQLSTATE 01007), unless the grantor has no privileges on the object of the grant operation.)

Notes
• Grant on SYSPUBLIC: You can grant privileges on the reserved schema SYSPUBLIC. Granting

CREATEIN privilege allows you to create a public alias, and granting DROPIN privilege allows you to
drop a public alias. Granting SELECTIN allows you to select from tables defined in the schema.

• The following authorities cannot be granted to the special group PUBLIC:

– SCHEMAADM on the schema
– ACCESSCTRL on the schema
– DATAACCESS on the schema
– LOAD on the schema

Granting any of these authorities to a role that is granted to PUBLIC, either directly or indirectly, will fail
(SQLSTATE 42508).

– Role role-name is granted directly to PUBLIC if the following statement has been issued:

GRANT ROLE role-name TO PUBLIC

– Role role-name is granted indirectly to PUBLIC if the following statements have been issued:

GRANT ROLE role-name TO ROLE role-name2

GRANT ROLE role-name2 TO PUBLIC

1700 IBM Db2 V11.5: SQL Reference

• Privileges granted to a group: An authority that is granted to a group is not used for authorization
checking on:

– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized query table
– Create SQL routine
– Create trigger

• WITH GRANT OPTION is ignored when granting schema authorities (SCHEMAADM, ACCESSCTRL,
DATAACCESS, LOAD)

Examples
• Example 1: Grant user JSINGLETON to the ability to create objects in schema CORPDATA.

 GRANT CREATEIN ON SCHEMA CORPDATA TO JSINGLETON

• Example 2: Grant user IHAKES the ability to create and drop objects in schema CORPDATA.

 GRANT CREATEIN, DROPIN ON SCHEMA CORPDATA TO IHAKES

GRANT (security label)
This form of the GRANT statement grants a label-based access control (LBAC) security label to a user,
group, or role for read access, write access, or for both read and write access.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
GRANT SECURITY LABEL security-label-name TO

,

USER

GROUP

ROLE

authorization-name
FOR ALL ACCESS

FOR READ ACCESS

FOR WRITE ACCESS

Description
SECURITY LABEL security-label-name

Grants the security label security-label-name. The name must be qualified with a security policy
(SQLSTATE 42704) and must identify a security label that exists at the current server (SQLSTATE
42704).

TO
Specifies to whom the specified security label is granted.

Chapter 1. Structured Query Language (SQL) 1701

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

FOR ALL ACCESS
Indicates that the security label is to be granted for both read access and write access.

FOR READ ACCESS
Indicates that the security label is to be granted for read access only.

FOR WRITE ACCESS
Indicates that the security label is to be granted for write access only.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.
• For any given security policy, an authorization-name can be granted at most one security label from

that policy for read access and one for write access. If the grantee already holds a security label
for the type of access (read or write) indicated and that is part of the security policy that qualifies
security-label-name, an error is returned (SQLSTATE 428GR).

• If the security policy is not defined to consider access through groups or roles, any security label
granted to a group or role is ignored when access is attempted.

• If an authorization-name holds different security labels for read access and write access, the security
labels must meet the following criteria (SQLSTATE 428GQ):

– If any component in the security labels is of type ARRAY then the value for that component must be
the same in both security labels.

– If any component in the security labels is of type SET then every element in the value for that
component in the write security label must also be part of the value for that component in the read
security label.

– If any component in the security labels is of type TREE then every element in the value for that
component in the write security label must be the same as or a descendent of one of the elements in
the value for that same component in the read security label.

Notes
• By default when a security policy is created, only security labels granted to an individual user are

considered. To have groups or roles considered for the security policy, you must issue the ALTER

1702 IBM Db2 V11.5: SQL Reference

SECURITY POLICY statement and specify USE GROUP AUTHORIZATION or USE ROLE AUTHORIZATION
as applicable.

Example
The following statement grants two security labels to user GUYLAINE. The security label
EMPLOYEESECLABELREAD is granted for read access and the security label EMPLOYEESECLABELWRITE
is granted for write access. Both security labels are part of the security policy DATA_ACCESS.

 GRANT SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELREAD
 TO USER GUYLAINE FOR READ ACCESS

 GRANT SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABELWRITE
 TO USER GUYLAINE FOR WRITE ACCESS

The same user is now granted the security label BEGINNER for both read and write access. This does not
cause an error, because BEGINNER is part of the security policy CLASSPOLICY, and the security labels
already held are part of the security policy DATA_ACCESS.

 GRANT SECURITY LABEL CLASSPOLICY.BEGINNER
 TO USER GUYLAINE FOR ALL ACCESS

GRANT (sequence privileges)
This form of the GRANT statement grants privileges on a sequence.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• The WITH GRANT OPTION for each identified privilege on sequence-name
• ACCESSCTRL authority on the schema containing the sequence-name
• ACCESSCTRL or SECADM authority

Syntax

GRANT

,

USAGE

ALTER

ON SEQUENCE sequence-name TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

WITH GRANT OPTION

Chapter 1. Structured Query Language (SQL) 1703

Description
USAGE

Grants the privilege to reference a sequence using nextval-expression or prevval-expression.
ALTER

Grants the privilege to alter sequence properties using the ALTER SEQUENCE statement.
ON SEQUENCE sequence-name

Identifies the sequence on which the specified privileges are to be granted. The sequence name,
including an implicit or explicit schema qualifier, must uniquely identify an existing sequence at the
current server. If no sequence by this name exists, an error (SQLSTATE 42704) is returned.

TO
Specifies to whom the specified privileges are granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

PUBLIC
Grants the specified privileges to a set of users (authorization IDs).

WITH GRANT OPTION
Allows the specified authorization-name to grant the specified privileges to others.

If the WITH GRANT OPTION is omitted, the specified authorization-name can only grant the specified
privileges to others if they:

• have SYSADM or DBADM authority or
• received the ability to grant the specified privileges from some other source.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.
• In general, the GRANT statement will process the granting of privileges that the authorization ID of

the statement is allowed to grant, returning a warning (SQLSTATE 01007) if one or more privileges is
not granted. If no privileges are granted, an error is returned (SQLSTATE 42501). (If the package used
for processing the statement was precompiled with LANGLEVEL set to SQL92E or MIA, a warning is
returned (SQLSTATE 01007), unless the grantor has no privileges on the object of the grant operation.)

1704 IBM Db2 V11.5: SQL Reference

Notes
• Privileges granted to a group: A privilege that is granted to a group is not used for authorization

checking on:

– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized query table
– Create SQL routine
– Create trigger

Examples
• Example 1: Grant any user the USAGE privilege on a sequence called ORG_SEQ.

 GRANT USAGE ON SEQUENCE ORG_SEQ TO PUBLIC

• Example 2: Grant user BOBBY the ability to alter a sequence called GENERATE_ID, and to grant this
privilege to others.

 GRANT ALTER ON SEQUENCE GENERATE_ID TO BOBBY WITH GRANT OPTION

GRANT (server privileges)
This form of the GRANT statement grants the privilege to access and use a specified data source in
pass-through mode.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include ACCESSCTRL or SECADM
authority.

Syntax
GRANT PASSTHRU ON SERVER server-name TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

Description
server-name

Names the data source for which the privilege to use in pass-through mode is being granted. server-
name must identify a data source that is described in the catalog.

Chapter 1. Structured Query Language (SQL) 1705

TO
Specifies to whom the privilege is granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Grants to a set of users (authorization IDs) the privilege to pass through to server-name. For more
information, see "Authorization, privileges and object ownership".

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.

Examples
• Example 1: Give R. Smith and J. Jones the privilege to pass through to data source SERVALL. Their

authorization IDs are RSMITH and JJONES.

 GRANT PASSTHRU ON SERVER SERVALL
 TO USER RSMITH,
 USER JJONES

• Example 2: Grant the privilege to pass through to data source EASTWING to a group whose
authorization ID is D024. There is a user whose authorization ID is also D024.

 GRANT PASSTHRU ON SERVER EASTWING TO GROUP D024

The GROUP keyword must be specified; otherwise, an error will occur because D024 is a user's ID
as well as the specified group's ID (SQLSTATE 56092). Any member of group D024 will be allowed to
pass through to EASTWING. Therefore, if user D024 belongs to the group, this user will be able to pass
through to EASTWING.

1706 IBM Db2 V11.5: SQL Reference

GRANT (SETSESSIONUSER privilege)
This form of the GRANT statement grants the SETSESSIONUSER privilege to one or more authorization
IDs. The privilege allows the holder to use the SET SESSION AUTHORIZATION statement to set the
session authorization to one of a set of specified authorization IDs.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax

GRANT SETSESSIONUSER ON

,

USER session-authorization-name

PUBLIC

TO

,

USER

GROUP

authorization-name

Description
SETSESSIONUSER ON

Grants the privilege to assume the identity of a new authorization ID.
USER session-authorization-name

Specifies the authorization ID that the authorization-name will be able to assume, using the SET
SESSION AUTHORIZATION statement. The session-authorization-name must identify a user, not a
group.

PUBLIC
Specifies that the grantee will be able to assume any valid authorization ID, using the SET SESSION
AUTHORIZATION statement.

TO
Specifies to whom the privilege is granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group.
authorization-name,...

Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

Rules
• For each authorization-name specified, if neither USER nor GROUP is specified, then:

Chapter 1. Structured Query Language (SQL) 1707

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

Notes
• Privileges granted to a group: A privilege that is granted to a group is not used for authorization

checking on:

– Static DML statements in a package
– A base table while processing a CREATE VIEW statement
– A base table while processing a CREATE TABLE statement for a materialized query table
– Create SQL routine
– Create trigger

Examples
• Example 1: The following statement grants user PAUL the ability to set the session authorization to user

WALID and therefore to execute statements as WALID.

 GRANT SETSESSIONUSER ON USER WALID
 TO USER PAUL

• Example 2: The following statement grants user GUYLAINE the ability to set the session authorization to
user BOBBY. It also grants her the ability to set the session authorization to users RICK and KEVIN.

 GRANT SETSESSIONUSER ON USER BOBBY, USER RICK, USER KEVIN
 TO USER GUYLAINE

• Example 3: The following statement grants user WALID and everyone in the groups ADMINS and ACCTG
the ability to set the session authorization to any user.

 GRANT SETSESSIONUSER ON PUBLIC TO USER WALID, GROUP ADMINS, ACCTG

GRANT (table space privileges)
This form of the GRANT statement grants privileges on a table space.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• The WITH GRANT OPTION for use of the table space
• ACCESSCTRL, SECADM, SYSADM, or SYSCTRL authority

1708 IBM Db2 V11.5: SQL Reference

Syntax
GRANT USE OF TABLESPACE tablespace-name TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

WITH GRANT OPTION

Description
USE

Grants the privilege to specify or default to the table space when creating a table. The creator of a
table space automatically receives USE privilege with grant option.

OF TABLESPACE tablespace-name
Identifies the table space on which the USE privilege is to be granted. The table space cannot be
SYSCATSPACE (SQLSTATE 42838) or a system temporary table space (SQLSTATE 42809).

TO
Specifies to whom the USE privilege is granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Grants the USE privilege to a set of users (authorization IDs).

WITH GRANT OPTION
Allows the specified authorization-name to GRANT the USE privilege to others.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

Chapter 1. Structured Query Language (SQL) 1709

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.

Example
Grant user BOBBY the ability to create tables in table space PLANS and to grant this privilege to others.

 GRANT USE OF TABLESPACE PLANS TO BOBBY WITH GRANT OPTION

GRANT (table, view, or nickname privileges)
This form of the GRANT statement grants privileges on a table, view, or nickname.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CONTROL privilege on the referenced table, view, or nickname
• The WITH GRANT OPTION for each identified privilege. If ALL is specified, the authorization ID must

have some grantable privilege on the identified table, view, or nickname
• ACCESSCTRL authority on the schema containing the identified table, view, or nickname
• ACCESSCTRL or SECADM authority

ACCESSCTRL authority on the schema, ACCESSCTRL authority on the database, or SECADM authority is
required to grant the CONTROL privilege. ACCESSCTRL authority on the database or SECADM authority is
required to grant privileges on catalog tables and views.

1710 IBM Db2 V11.5: SQL Reference

Syntax

GRANT ALL
PRIVILEGES

,

ALTER

CONTROL

DELETE

INDEX

INSERT

REFERENCES

(

,

column-name)

SELECT

UPDATE

(

,

column-name)

ON

TABLE
table-name

view-name
1

nickname

TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

WITH GRANT OPTION

Notes:
1 ALTER, INDEX, and REFERENCES privileges are not applicable to views.

Description
ALL or ALL PRIVILEGES

Grants all the appropriate privileges, except CONTROL, on the base table, view, or nickname named in
the ON clause.

If the authorization ID of the statement has CONTROL privilege on the table, view, or nickname, or
ACCESSCTRL or SECADM authority, then all the privileges applicable to the object (except CONTROL)
are granted. Otherwise, the privileges granted are all those grantable privileges that the authorization
ID of the statement has on the identified table, view, or nickname.

If ALL is not specified, one or more of the keywords in the list of privileges must be specified.

ALTER
Grants the privilege to:

• Add columns to a base table definition.

Chapter 1. Structured Query Language (SQL) 1711

• Create or drop a primary key or unique constraint on a base table.
• Create or drop a foreign key on a base table.

The REFERENCES privilege on each column of the parent table is also required.
• Create or drop a check constraint on a base table.
• Create a trigger on a base table.
• Add, reset, or drop a column option for a nickname.
• Change a nickname column name or data type.
• Add or change a comment on a base table or a nickname.

CONTROL
Grants:

• All of the appropriate privileges in the list, that is:

– ALTER, CONTROL, DELETE, INSERT, INDEX, REFERENCES, SELECT, and UPDATE to base tables
– CONTROL, DELETE, INSERT, SELECT, and UPDATE to views
– ALTER, CONTROL, INDEX, and REFERENCES to nicknames

• The ability to grant the previously mentioned privileges (except for CONTROL) to others.
• The ability to drop the base table, view, or nickname.

This ability cannot be extended to others on the basis of holding CONTROL privilege. The only way
that it can be extended is by granting the CONTROL privilege itself and that can only be done by an
authorization ID with ACCESSCTRL or SECADM authority.

• The ability to execute the RUNSTATS utility on the table and indexes.
• The ability to execute the REORG utility on the table.
• The ability to issue the SET INTEGRITY statement against a base table, materialized query table, or

staging table.

The definer of a base table, materialized query table, staging table, or nickname automatically
receives the CONTROL privilege.

The definer of a view automatically receives the CONTROL privilege if the definer holds the CONTROL
privilege on all tables, views, and nicknames identified in the fullselect.

DELETE
Grants the privilege to delete rows from the table or updatable view.

INDEX
Grants the privilege to create an index on a table, or an index specification on a nickname. This
privilege cannot be granted on a view. The creator of an index or index specification automatically has
the CONTROL privilege on the index or index specification (authorizing the creator to drop the index or
index specification). In addition, the creator retains the CONTROL privilege even if the INDEX privilege
is revoked.

INSERT
Grants the privilege to insert rows into the table or updatable view and to run the IMPORT utility.

REFERENCES
Grants the privilege to create and drop a foreign key referencing the table as the parent.

If the authorization ID of the statement has one of:

• ACCESSCTRL or SECADM authority
• CONTROL privilege on the table
• REFERENCES WITH GRANT OPTION on the table

then the grantee(s) can create referential constraints using all columns of the table as parent key,
even those added later using the ALTER TABLE statement. Otherwise, the privileges granted are all

1712 IBM Db2 V11.5: SQL Reference

those grantable column REFERENCES privileges that the authorization ID of the statement has on the
identified table.

The privilege can be granted on a nickname, although foreign keys cannot be defined to reference
nicknames.

REFERENCES (column-name,...)
Grants the privilege to create and drop a foreign key using only those columns specified in the column
list as a parent key. Each column-name must be an unqualified name that identifies a column of the
table identified in the ON clause. Column level REFERENCES privilege cannot be granted on typed
tables, typed views, or nicknames (SQLSTATE 42997).

SELECT
Grants the privilege to:

• Retrieve rows from the table or view.
• Create views on the table.
• Run the EXPORT utility against the table or view.

UPDATE
Grants the privilege to use the UPDATE statement on the table or updatable view identified in the ON
clause.

If the authorization ID of the statement has one of:

• ACCESSCTRL or SECADM authority
• CONTROL privilege on the table or view
• UPDATE WITH GRANT OPTION on the table or view

then the grantee(s) can update all updatable columns of the table or view on which the grantor
has with grant privilege as well as those columns added later using the ALTER TABLE statement.
Otherwise, the privileges granted are all those grantable column UPDATE privileges that the
authorization ID of the statement has on the identified table or view.

UPDATE (column-name,...)
Grants the privilege to use the UPDATE statement to update only those columns specified in the
column list. Each column-name must be an unqualified name that identifies a column of the table or
view identified in the ON clause. Column level UPDATE privilege cannot be granted on typed tables,
typed views, or nicknames (SQLSTATE 42997).

ON TABLE table-name or view-name or nickname
Specifies the table, view, or nickname on which privileges are to be granted.

No privileges may be granted on an inoperative view or an inoperative materialized query table
(SQLSTATE 51024). No privileges may be granted on a declared temporary table (SQLSTATE 42995).

TO
Specifies to whom the privileges are granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

A privilege that is granted to a group is not used for authorization checking:

• On static DML statements in a package
• On a base table while processing a CREATE VIEW statement

Chapter 1. Structured Query Language (SQL) 1713

• On a base table while processing a CREATE TABLE statement for a materialized query table

Table privileges granted to groups only apply to statements that are dynamically prepared. For
example, if the INSERT privilege on the PROJECT table has been granted to group D204 but not
UBIQUITY (a member of D204) UBIQUITY could issue the statement:

 EXEC SQL EXECUTE IMMEDIATE :INSERT_STRING;

where the content of the string is:

 INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)
 VALUES ('AD3114', 'TOOL PROGRAMMING', 'D21', '000260');

but could not precompile or bind a program with the statement:

 EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP)
 VALUES ('AD3114', 'TOOL PROGRAMMING', 'D21', '000260');

PUBLIC
Grants the privileges to a set of users (authorization IDs). For more information, see
"Authorization, privileges and object ownership". (Previous restrictions on the use of privileges
granted to PUBLIC for static SQL statements and the CREATE VIEW statement have been
removed.)

WITH GRANT OPTION
Allows the specified authorization-names to GRANT the privileges to others.

If the specified privileges include CONTROL, the WITH GRANT OPTION applies to all the applicable
privileges except for CONTROL (SQLSTATE 01516).

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.
• In general, the GRANT statement will process the granting of privileges that the authorization ID of the

statement is allowed to grant, returning a warning (SQLSTATE 01007) if one or more privileges was not
granted. If no privileges were granted, an error is returned (SQLSTATE 42501). (If the package used
for processing the statement was precompiled with LANGLEVEL set to SQL92E or MIA, a warning is
returned (SQLSTATE 01007), unless the grantor has no privileges on the object of the grant operation.)
If CONTROL privilege is specified, privileges will only be granted if the authorization ID of the statement
has ACCESSCTRL or SECADM authority (SQLSTATE 42501).

Notes
• Privileges may be granted independently at every level of a table hierarchy. A user with a privilege on

a supertable may affect the subtables. For example, an update specifying the supertable T may show
up as a change to a row in the subtable S of T done by a user with UPDATE privilege on T but without
UPDATE privilege on S. A user can only operate directly on the subtable if the necessary privilege is held
on the subtable.

1714 IBM Db2 V11.5: SQL Reference

• Granting nickname privileges has no effect on data source object (table or view) privileges. Typically,
data source privileges are required for the table or view that a nickname references when attempting to
retrieve data.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. The following syntax is tolerated and ignored:

– PUBLIC AT ALL LOCATIONS
• WITH GRANT OPTION is ignored when granting table or view (CONTROL) privilege

Examples
1. Grant all privileges on the table WESTERN_CR to PUBLIC.

 GRANT ALL ON WESTERN_CR
 TO PUBLIC

2. Grant the appropriate privileges on the CALENDAR table so that users PHIL and CLAIRE can read it and
insert new entries into it. Do not allow them to change or remove any existing entries.

 GRANT SELECT, INSERT ON CALENDAR
 TO USER PHIL, USER CLAIRE

3. Grant all privileges on the COUNCIL table to user FRANK and the ability to extend all privileges to
others.

 GRANT ALL ON COUNCIL
 TO USER FRANK WITH GRANT OPTION

4. GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a user named JOHN. There is a user called
JOHN and no group called JOHN.

 GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or

 GRANT SELECT
 ON CORPDATA.EMPLOYEE TO USER JOHN

5. GRANT SELECT privilege on table CORPDATA.EMPLOYEE to a group named JOHN. There is a group
called JOHN and no user called JOHN.

 GRANT SELECT ON CORPDATA.EMPLOYEE TO JOHN

or

 GRANT SELECT ON CORPDATA.EMPLOYEE TO GROUP JOHN

6. GRANT INSERT and SELECT on table T1 to both a group named D024 and a user named D024.

 GRANT INSERT, SELECT ON TABLE T1
 TO GROUP D024, USER D024

In this case, both the members of the D024 group and the user D024 would be allowed to INSERT into
and SELECT from the table T1. Also, there would be two rows added to the SYSCAT.TABAUTH catalog
view.

7. GRANT INSERT, SELECT, and CONTROL on the CALENDAR table to user FRANK. FRANK must be able
to pass the privileges on to others.

 GRANT CONTROL ON TABLE CALENDAR
 TO FRANK WITH GRANT OPTION

The result of this statement is a warning (SQLSTATE 01516) that CONTROL was not given the WITH
GRANT OPTION. Frank now has the ability to grant any privilege on CALENDAR including INSERT

Chapter 1. Structured Query Language (SQL) 1715

and SELECT as required. FRANK cannot grant CONTROL on CALENDAR to other users unless he has
ACCESSCTRL or SECADM authority.

8. User JON created a nickname for an Oracle table that had no index. The nickname is ORAREM1.
Later, the Oracle DBA defined an index for this table. User SHAWN now wants Db2 to know that this
index exists, so that the optimizer can devise strategies to access the table more efficiently. SHAWN
can inform Db2 of the index by creating an index specification for ORAREM1. Give SHAWN the index
privilege on this nickname, so that he can create the index specification.

 GRANT INDEX ON NICKNAME ORAREM1
 TO USER SHAWN

GRANT (workload privileges)
This form of the GRANT statement grants the USAGE privilege on a workload.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include ACCESSCTRL, SECADM, or
WLMADM authority.

Syntax
GRANT USAGE ON WORKLOAD workload-name TO

,

USER

GROUP

ROLE

authorization-name

PUBLIC

Description
USAGE

Grants the privilege to use a workload. Units of work that are submitted by a user will only be mapped
to a workload on which the user has USAGE privilege. A user with SYSADM or DBADM authority
automatically has USAGE privilege on any workload that exists at the current server.

ON WORKLOAD workload-name
Identifies the workload on which the USAGE privilege is to be granted. This is a one-part name. The
workload-name must identify a workload that exists at the current server (SQLSTATE 42704). The
name cannot be 'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

TO
Specifies to whom the USAGE privilege is granted.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group.

1716 IBM Db2 V11.5: SQL Reference

ROLE
Specifies that the authorization-name identifies an existing role at the current server (SQLSTATE
42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list of authorization IDs
cannot include the authorization ID of the user issuing the statement (SQLSTATE 42502).

PUBLIC
Grants the USAGE privilege to a set of users (authorization IDs).

Rules
• For each authorization-name specified, if none of the keywords USER, GROUP, or ROLE is specified:

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database and as either GROUP or USER in the
operating system, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as both USER and GROUP according to the security plug-in in
effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as USER only according to the security plug-in in effect, or if it is
undefined, USER is assumed.

– If the authorization-name is defined as GROUP only according to the security plug-in in effect, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.

Notes
• The GRANT statement does not take effect until it is committed, even for the connection that issues the

statement.
• If the database is created with the RESTRICT option, the USAGE privilege of the default user workload,

SYSDEFAULTUSERWORKLOAD, must be granted explicitly by a user that has DBADM authority. If the
database is created without the RESTRICT option, the USAGE privilege of SYSDEFAULTUSERWORKLOAD
is granted to PUBLIC at database creation time.

Example
Grant user LISA the ability to use the workload CAMPAIGN.

 GRANT USAGE ON WORKLOAD CAMPAIGN TO USER LISA

GRANT (XSR object privileges)
This form of the GRANT statement grants USAGE privilege on an XSR object.

Invocation
The GRANT statement can be embedded in an application program or issued through the use of
dynamic SQL statements. It is an executable statement that can be dynamically prepared only if the
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization
One of the following authorities is required:

• ACCESSCTRL or SECADM authority
• ACCESSCTRL authority on the schema containing the XSR object

Chapter 1. Structured Query Language (SQL) 1717

• Owner of the XSR object, as recorded in the OWNER column of the SYSCAT.XSROBJECTS catalog view

Syntax
GRANT USAGE ON XSROBJECT xsrobject-name TO PUBLIC

Description
ON XSROBJECT xsrobject-name

This name identifies the XSR object for which the USAGE privilege is granted. The xsrobject-name,
including the implicit or explicit schema qualifier, must uniquely identify an existing XSR object at the
current server. If no XSR object by this name exists, an error is returned (SQLSTATE 42704).

TO PUBLIC
Grants the USAGE privilege to a set of users (authorization IDs).

Example
Grant every user the usage privilege on the XML schema MYSCHEMA:

 GRANT USAGE ON XSROBJECT MYSCHEMA TO PUBLIC

IF
The IF statement selects an execution path based on the evaluation of a condition.

Invocation
This statement can be embedded in an:

• SQL procedure definition
• Compound SQL (compiled) statement
• Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL function definition, or
SQL trigger definition. It is not an executable statement and cannot be dynamically prepared.

Authorization
Group privileges are not considered because this statement cannot be dynamically prepared.

Syntax
IF search-condition THEN SQL-routine-statement

ELSEIF search-condition THEN SQL-routine-statement

ELSE SQL-routine-statement

END IF

SQL-routine-statement

1718 IBM Db2 V11.5: SQL Reference

SQL-procedure-statement ;

SQL-function-statement ;

Description
search-condition

Specifies the condition for which an SQL statement should be invoked. If the condition is unknown or
false, processing continues to the next search condition, until either a condition is true or processing
reaches the ELSE clause.

SQL-procedure-statement
Specifies the statement to be invoked if the preceding search-condition is true. SQL-procedure-
statement is only applicable when in the context of an SQL procedure or a compound SQL (compiled)
statement. See SQL-procedure-statement in "Compound SQL (compiled)" statement.

SQL-function-statement
Specifies the statement to be invoked if the preceding search-condition is true. SQL-function-
statement is only applicable when in the context of a compound SQL (inlined) statement, an SQL
trigger, an SQL function, or an SQL method. See SQL-function-statement in "FOR".

Example
The following SQL procedure accepts two IN parameters: an employee number employee_number and an
employee rating rating. Depending on the value of rating, the employee table is updated with new values
in the salary and bonus columns.

 CREATE PROCEDURE UPDATE_SALARY_IF
 (IN employee_number CHAR(6), INOUT rating SMALLINT)
 LANGUAGE SQL
 BEGIN
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE EXIT HANDLER FOR not_found
 SET rating = -1;
 IF rating = 1
 THEN UPDATE employee
 SET salary = salary * 1.10, bonus = 1000
 WHERE empno = employee_number;
 ELSEIF rating = 2
 THEN UPDATE employee
 SET salary = salary * 1.05, bonus = 500
 WHERE empno = employee_number;
 ELSE UPDATE employee
 SET salary = salary * 1.03, bonus = 0
 WHERE empno = employee_number;
 END IF;
 END

INCLUDE
The INCLUDE statement inserts declarations into a source program.

Invocation
This statement can only be embedded in an application program. It is not an executable statement.

Authorization
None required.

Chapter 1. Structured Query Language (SQL) 1719

Syntax
INCLUDE SQLCA

SQLDA

name

Description
SQLCA

Indicates the description of an SQL communication area (SQLCA) is to be included.
SQLDA

Indicates the description of an SQL descriptor area (SQLDA) is to be included.
name

Identifies an external file containing text that is to be included in the source program being
precompiled. It can be an SQL identifier without a file name extension or a literal enclosed by single
quotation marks (' '). An SQL identifier assumes the filename extension of the source file being
precompiled. If a file name extension is not provided by a literal enclosed by quotation marks, none is
assumed.

Notes
• When a program is precompiled, the INCLUDE statement is replaced by source statements. Thus,

the INCLUDE statement should be specified at a point in the program such that the resulting source
statements are acceptable to the compiler.

• The external source file must be written in the host language specified by name. If it is greater than
18 bytes or contains characters that are not allowed in an SQL identifier, it must be enclosed by single
quotation marks. INCLUDE name statements may be nested though not cyclical (for example, if A and B
are modules and A contains an INCLUDE name statement, then it is not valid for A to call B and then B to
call A).

• When the LANGLEVEL precompile option is specified with the SQL92E value, INCLUDE SQLCA should
not be specified. SQLSTATE and SQLCODE variables may be defined within the host variable declare
section.

Example
Include an SQLCA in a C program.

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO FROM TDEPT
 WHERE ADMRDEPT = 'A00';

 EXEC SQL OPEN C1;

 while (SQLCODE==0) {
 EXEC SQL FETCH C1 INTO :dnum, :dname, :mnum;

 (Print results)

 }

 EXEC SQL CLOSE C1;

1720 IBM Db2 V11.5: SQL Reference

INSERT
The INSERT statement inserts rows into a table, nickname, or view, or the underlying tables, nicknames,
or views of the specified fullselect.

Inserting a row into a nickname inserts the row into the data source object to which the nickname refers.
Inserting a row into a view also inserts the row into the table on which the view is based, if no INSTEAD
OF trigger is defined for the insert operation on this view. If such a trigger is defined, the trigger will be
executed instead.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• INSERT privilege on the target table, view, or nickname
• CONTROL privilege on the target table, view, or nickname
• INSERTIN privilege on the schema containing the target table, view, or nickname
• DATAACCESS authority on the schema containing the target table, view, or nickname
• DATAACCESS authority

In addition, for each table, view, or nickname referenced in any fullselect used in the INSERT statement,
the privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• SELECT privilege
• CONTROL privilege
• SELECTIN privilege on the schema containing the table, view or nickname
• DATAACCESS authority on the schema containing the table, view, or nickname
• DATAACCESS authority

GROUP privileges are not checked for static INSERT statements.

If the target of the insert operation is a nickname, the privileges on the object at the data source are not
considered until the statement is executed at the data source. At this time, the authorization ID that is
used to connect to the data source must have the privileges required for the operation on the object at the
data source. The authorization ID of the statement can be mapped to a different authorization ID at the
data source.

Chapter 1. Structured Query Language (SQL) 1721

Syntax
INSERT INTO table-name

view-name

nickname

(

WITH

,

common-table-expression

fullselect)

(

,

column-name)

include-columns

VALUES

,

expression

NULL

DEFAULT

(

,

expression

NULL

DEFAULT

)

row-expression

WITH

,

common-table-expression

fullselect

WITH RR

RS

CS

UR

include-columns

INCLUDE (

,

column-name data-type)

Description
INTO table-name, view-name, nickname, or (fullselect)

Identifies the object of the insert operation. The name must identify one of the following objects:

• A table, view or nickname that exists at the application server
• A table or view at a remote server specified using a remote-object-name

The object must not be a catalog table, a system-maintained materialized query table, a view of a
catalog table, or a read-only view, unless an INSTEAD OF trigger is defined for the insert operation

1722 IBM Db2 V11.5: SQL Reference

on the subject view. Rows inserted into a nickname are placed in the data source object to which the
nickname refers.

If the object of the insert operation is a fullselect, the fullselect must be insertable, as defined in the
"Insertable views" Notes item in the description of the CREATE VIEW statement.

If the object of the insert operation is a nickname, the extended indicator variable values of DEFAULT
and UNASSIGNED must not be used (SQLSTATE 22539).

If no INSTEAD OF trigger exists for the insert operation on this view, a value cannot be inserted into a
view column that is derived from the following elements:

• A constant, expression, or scalar function
• The same base table column as some other column of the view

If the object of the insert operation is a view with such columns, a list of column names must be
specified, and the list must not identify these columns.

A row can be inserted into a view or a fullselect that is defined using a UNION ALL if the row
satisfies the check constraints of exactly one of the underlying base tables. If a row satisfies the check
constraints of more than one table, or no table at all, an error is returned (SQLSTATE 23513).

A row cannot be inserted into a view or a fullselect that is defined using a UNION ALL if any base
table of the view contains a before trigger and the before trigger contains an UPDATE, a DELETE, or an
INSERT operation, or invokes any routine containing such operations (SQLSTATE 42987).

(column-name,...)
Specifies the columns for which insert values are provided. Each name must identify a column of
the specified table, view, or nickname, or a column in the fullselect. The same column must not be
identified more than once. If extended indicator variables are not enabled, a column that cannot
accept inserted values (for example, a column based on an expression) must not be identified.

Omission of the column list is an implicit specification of a list in which every column of the table
(that is not implicitly hidden) or view, or every item in the select-list of the fullselect is identified in
left-to-right order. This list is established when the statement is prepared and, therefore, does not
include columns that were added to a table after the statement was prepared.

include-columns
Specifies a set of columns that are included, along with the columns of table-name or view-name,
in the intermediate result table of the INSERT statement when it is nested in the FROM clause of a
fullselect. The include-columns are appended at the end of the list of columns that are specified for
table-name or view-name.
INCLUDE

Specifies a list of columns to be included in the intermediate result table of the INSERT statement.
This clause can only be specified if the INSERT statement is nested in the FROM clause of a
fullselect.

column-name
Specifies a column of the intermediate result table of the INSERT statement. The name cannot
be the same as the name of another include column or a column in table-name or view-name
(SQLSTATE 42711).

data-type
Specifies the data type of the include column. The data type must be one that is supported by the
CREATE TABLE statement.

VALUES
Introduces one or more rows of values to be inserted.

Each row specified in the VALUES clause must be assignable to the implicit or explicit column list and
the columns identified in the INCLUDE clause, unless a row variable is used. When a row value list in
parentheses is specified, the first value is inserted into the first column in the list, the second value
into the second column, and so on. When a row expression is specified, the number of fields in the row
type must match the number of names in the implicit or explicit column list.

Chapter 1. Structured Query Language (SQL) 1723

expression
An expression can be any expression defined in the "Expressions" topic. If expression is a row
type, it must not appear in parentheses. If expression is a variable, the host variable can include
an indicator variable or in the case of a host structure, an indicator array, enabled for extended
indicator variables. If extended indicator variables are enabled, the extended indicator variable
values of default (-5) or unassigned (-7) must not be used (SQLSTATE 22539) if either of the
following statements is true:

• The expression is more complex than a single host variable with explicit casts
• The target column has data type of structured type

NULL
Specifies the null value and should only be specified for nullable columns.

DEFAULT
Specifies that the default value is to be used. The result of specifying DEFAULT depends on how
the column was defined, as follows:

• If the column was defined as a generated column based on an expression, the column value is
generated by the system, based on that expression.

• If the IDENTITY clause is used, the value is generated by the database manager.
• If the ROW CHANGE TIMESTAMP clause is used, the value for each inserted row is generated by

the database manager as a timestamp that is unique for the table partition within the database
partition.

• If the WITH DEFAULT clause is used, the value inserted is as defined for the column (see
default-clause in "CREATE TABLE").

• If the NOT NULL clause is used and the GENERATED clause is not used, or the WITH DEFAULT
clause is not used or DEFAULT NULL is used, the DEFAULT keyword cannot be specified for that
column (SQLSTATE 23502).

• When inserting into a nickname, the DEFAULT keyword will be passed through the INSERT
statement to the data source only if the data source supports the DEFAULT keyword in its query
language syntax.

row-expression
Specifies any row expression of the type described in "Row expressions" that does not include a
column name. The number of fields in the row must match the target of the insert and each field
must be assignable to the corresponding column.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows.

fullselect
Specifies a set of new rows in the form of the result table of a fullselect. There may be one, more than
one, or none. If the result table is empty, SQLCODE is set to +100 and SQLSTATE is set to '02000'.

When the base object of the INSERT and the base object of the fullselect or any subquery of the
fullselect, are the same table, the fullselect is completely evaluated before any rows are inserted.

The number of columns in the result table must equal the number of names in the column list. The
value of the first column of the result is inserted in the first column in the list, the second value in the
second column, and so on.

If the expression that specifies the value of a result column is a variable, the host variable can include
an indicator variable enabled for extended indicator variables. If extended indicator variables are
enabled, and the expression is more than a single host variable, or a host variable being explicitly cast,
then the extended indicator variable values of default or unassigned must not be used (SQLSTATE
22539). The effects of default or unassigned values apply to the corresponding target columns of the
fullselect.

WITH
Specifies the isolation level at which the statement is executed.

1724 IBM Db2 V11.5: SQL Reference

RR
Repeatable Read

RS
Read Stability

CS
Cursor Stability

UR
Uncommitted Read

The default isolation level of the statement is the isolation level of the package in which the statement
is bound. The WITH clause has no effect on nicknames, which always use the default isolation level of
the statement.

Rules
• Triggers: INSERT statements may cause triggers to be executed. A trigger may cause other statements

to be executed, or may raise error conditions based on the inserted values. If an insert operation into a
view causes an INSTEAD OF trigger to fire, validity, referential integrity, and constraints will be checked
against the updates that are performed in the trigger, and not against the view that caused the trigger to
fire, or its underlying tables.

• Default values: The value inserted in any column that is not in the column list is either the default value
of the column or null. Columns that do not allow null values and are not defined with NOT NULL WITH
DEFAULT must be included in the column list. Similarly, if you insert into a view, the value inserted into
any column of the base table that is not in the view is either the default value of the column or null.
Hence, all columns of the base table that are not in the view must have either a default value or allow
null values. The only value that can be inserted into a generated column defined with the GENERATED
ALWAYS clause is DEFAULT (SQLSTATE 428C9).

• Length: If the insert value of a column is a number, the column must be a numeric column with the
capacity to represent the integral part of the number. If the insert value of a column is a string, the
column must either be a string column with a length attribute at least as great as the length of the
string, or a datetime column if the string represents a date, time, or timestamp.

• Assignment: Insert values are assigned to columns in accordance with specific assignment rules.
• Validity: If the table named, or the base table of the view named, has one or more unique indexes, each

row inserted into the table must conform to the constraints imposed by those indexes. If a view whose
definition includes WITH CHECK OPTION is named, each row inserted into the view must conform to the
definition of the view. For an explanation of the rules governing this situation, see "CREATE VIEW".

• Referential integrity: For each constraint defined on a table, each non-null insert value of the foreign
key must be equal to a primary key value of the parent table.

• Check constraint: Insert values must satisfy the check conditions of the check constraints defined on
the table. An INSERT to a table with check constraints defined has the constraint conditions evaluated
once for each row that is inserted.

• XML values: A value that is inserted into an XML column must be a well-formed XML document
(SQLSTATE 2200M).

• Security policy: If the identified table or the base table of the identified view is protected with a security
policy, the session authorization ID must have the label-based access control (LBAC) credentials that
allow:

– Write access to all protected columns for which a data value is explicitly provided (SQLSTATE 42512)
– Write access for any explicit value provided for a DB2SECURITYLABEL column for security policies

that were created with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE
23523)

The session authorization ID must also have been granted a security label for write access for the
security policy if an implicit value is used for a DB2SECURITYLABEL column (SQLSTATE 23523), which
can happen when:

Chapter 1. Structured Query Language (SQL) 1725

– A value for the DB2SECURITYLABEL column is not explicitly provided
– A value for the DB2SECURITYLABEL column is explicitly provided but the session authorization ID

does not have write access for that value, and the security policy is created with the OVERRIDE NOT
AUTHORIZED WRITE SECURITY LABEL option

• Extended indicator variable usage: If enabled, negative indicator variable values outside the range
of -1 through -7 must not be input (SQLSTATE 22010). Also, if enabled, the default and unassigned
extended indicator variable values must not appear in contexts in which they are not supported
(SQLSTATE 22539).

• Extended indicator variables: In an INSERT statement, a value of unassigned has the effect of setting
the column to its default value.

If the target column is a column defined as GENERATED ALWAYS, then it must be assigned the DEFAULT
keyword, or the extended indicator variable-based values of default or unassigned (SQLSTATE 428C9).

Notes
• After execution of an INSERT statement, the value of the third variable of the SQLERRD(3) portion of

the SQLCA indicates the number of rows that were passed to the insert operation. In the context of
an SQL procedure statement, the value can be retrieved using the ROW_COUNT variable of the GET
DIAGNOSTICS statement. SQLERRD(5) contains the count of all triggered insert, update and delete
operations.

• Unless appropriate locks already exist, one or more exclusive locks are acquired at the execution of a
successful INSERT statement. Until the locks are released, an inserted row can only be accessed by:

– The application process that performed the insert.
– Another application process using isolation level UR through a read-only cursor, SELECT INTO

statement, or subselect used in a subquery.
• For further information about locking, see the description of the COMMIT, ROLLBACK, and LOCK TABLE

statements.
• If an application is running against a partitioned database, and it is bound with option INSERT BUF, then

INSERT with VALUES statements which are not processed using EXECUTE IMMEDIATE may be buffered.
It is assumed that such an INSERT statement is being processed inside a loop in the application's
logic. Rather than execute the statement to completion, it attempts to buffer the new row values in
one or more buffers. As a result the actual insertions of the rows into the table are performed later,
asynchronous with the application's INSERT logic. Be aware that this asynchronous insertion may cause
an error related to an INSERT to be returned on some other SQL statement that follows the INSERT in
the application.

This has the potential to dramatically improve INSERT performance, but is best used with clean data,
due to the asynchronous nature of the error handling.

• When a row is inserted into a table that has an identity column, a value is generated for the identity
column.

– For a GENERATED ALWAYS identity column, the value is always generated.
– For a GENERATED BY DEFAULT column, if a value is not explicitly specified (with a VALUES clause, or

subselect), a value is generated.

The first value generated is the value of the START WITH specification for the identity column.
• When a value is inserted for a user-defined distinct type identity column, the entire computation is done

in the source type, and the result is cast to the distinct type before the value is actually assigned to the
column. (There is no casting of the previous value to the source type before the computation.)

• When inserting into a GENERATED ALWAYS identity column, a value is always generated for the column,
and users must not specify a value at insertion time. If a GENERATED ALWAYS identity column is listed
in the column-list of the INSERT statement, with a non-DEFAULT value in the VALUES clause, an error
occurs (SQLSTATE 428C9).

1726 IBM Db2 V11.5: SQL Reference

For example, assuming that EMPID is defined as an identity column that is GENERATED ALWAYS, then
the command:

 INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)
 VALUES (:hv_valid_emp_id, :hv_name, :hv_addr)

will result in an error.
• When inserting into a GENERATED ALWAYS ROW CHANGE TIMESTAMP column, a value is always

generated for the column, and users must not specify a value at insertion time (SQLSTATE 428C9) . The
value generated is unique for each row inserted on the database partition.

• When inserting into a GENERATED BY DEFAULT column, you can specify an actual value for the column
within the VALUES clause, or from a subselect. However, when a value is specified in the VALUES
clause, the database manager does not perform any verification of the value. To guarantee uniqueness
of IDENTITY column values, a unique index on the identity column must be created.

When inserting into a table with a GENERATED BY DEFAULT identity column, without specifying a
column list, the VALUES clause can specify the DEFAULT keyword to represent the value for the identity
column. In such cases, the value for the identity column will be generated.

 INSERT INTO T2 (EMPID, EMPNAME, EMPADDR)
 VALUES (DEFAULT, :hv_name, :hv_addr)

In this example, EMPID is defined as an identity column, and thus the value inserted into this column is
generated by the database manager.

• The rules for inserting into an identity column with a subselect are similar to those for an insert with a
VALUES clause. A value for an identity column may only be specified if the identity column is defined as
GENERATED BY DEFAULT.

For example, assume T1 and T2 are tables with the same definition, both containing columns intcol1
and identcol2 (both are type INTEGER and the second column has the identity attribute). Consider the
following insert:

 INSERT INTO T2
 SELECT *
 FROM T1

This example is logically equivalent to:

 INSERT INTO T2 (intcol1,identcol2)
 SELECT intcol1, identcol2
 FROM T1

In both cases, the INSERT statement is providing an explicit value for the identity column of T2. This
explicit specification can be given a value for the identity column, but the identity column in T2 must be
defined as GENERATED BY DEFAULT. Otherwise, an error will result (SQLSTATE 428C9).

If there is a table with a column defined as a GENERATED ALWAYS identity, it is still possible to
propagate all other columns from a table with the same definition. For example, given the example
tables T1 and T2 described previously, the intcol1 values from T1 to T2 can be propagated with the
following SQL:

 INSERT INTO T2 (intcol1)
 SELECT intcol1
 FROM T1

Note that, because identcol2 is not specified in the column-list, it will be filled in with its default
(generated) value.

• When inserting a row into a single column table where the column is defined as a GENERATED ALWAYS
identity column or a ROW CHANGE TIMESTAMP column, it is possible to specify a VALUES clause with
the DEFAULT keyword. In this case, the application does not provide any value for the table, and the
database manager generates the value for the identity or ROW CHANGE TIMESTAMP column.

Chapter 1. Structured Query Language (SQL) 1727

 INSERT INTO IDTABLE
 VALUES(DEFAULT)

Assuming the same single column table for which the column has the identity attribute, to insert
multiple rows with a single INSERT statement, the following INSERT statement could be used:

 INSERT INTO IDTABLE
 VALUES (DEFAULT), (DEFAULT), (DEFAULT), (DEFAULT)

• When a value for an identity column is generated, that generated value is consumed; the next time that
a value is needed, a new value is generated. This is true even when an INSERT statement involving an
identity column fails or is rolled back.

For example, assume that a unique index has been created on the identity column. If a duplicate key
violation is detected in generating a value for an identity column, an error occurs (SQLSTATE 23505)
and the value generated for the identity column is considered to be consumed. This can occur when the
identity column is defined as GENERATED BY DEFAULT and the system tries to generate a new value,
but the user has explicitly specified values for the identity column in previous INSERT statements.
Reissuing the same INSERT statement in this case can lead to success. The next value for the identity
column will be generated, and it is possible that this next value will be unique, and that this INSERT
statement will be successful.

• If the maximum value for the identity column is exceeded (or minimum value for a descending
sequence) in generating a value for an identity column, an error occurs (SQLSTATE 23522). In this
situation, the user would have to DROP and CREATE a new table with an identity column having a larger
range (that is, change the data type or increment value for the column to allow for a larger range of
values).

For example, an identity column may have been defined with a data type of SMALLINT, and eventually
the column runs out of assignable values. To redefine the identity column as INTEGER, the data would
need to be unloaded, the table would have to be dropped and recreated with a new definition for the
column, and then the data would be reloaded. When the table is redefined, it needs to specify a START
WITH value for the identity column such that the next value generated will be the next value in the
original sequence. To determine the end value, issue a query using MAX of the identity column (for an
ascending sequence), or MIN of the identity column (for a descending sequence), before unloading the
data.

• Extended indicator variables and insert triggers: No change in the activation of insert triggers results
from use of extended indicator variables. If all columns in the implicit or explicit column list have
been assigned to an extended indicator variable-based value of unassigned or default, an insert where
all columns have their respective default values is attempted, and if successful, the insert trigger is
activated.

• Extended indicator variables and deferred error checks: When extended indicator variables are
enabled, validation that would otherwise be done in statement preparation, to recognize an insert into a
non-updatable column, is deferred until statement execution. Whether an error should be reported can
be determined only during execution.

• Inserting into tables with row-begin, row-end, or transaction start-ID columns: When a row is
inserted into a table with these generated columns (for instance, a system-period temporal table), the
database manager assigns values to the following columns:

– A row-begin column is assigned a value that is generated using a reading of the time-of-day clock
during execution of the first data change statement in the transaction that requires a value to be
assigned to the row-begin or transaction start-ID column in a table, or a row in a system-period
temporal table is deleted. The database manager ensures uniqueness of the generated values for a
row-begin column across transactions. If multiple rows are inserted within a single SQL transaction,
the values for the row-begin column are the same for all the rows and are unique from the values
generated for the column for another transaction.

– A row-end column is assigned the maximum value for the data type of the column
(9999-12-30-00.00.00.000000000000).

1728 IBM Db2 V11.5: SQL Reference

– A transaction start-ID column is assigned a unique timestamp value per transaction or the null value.
The null value is assigned to the transaction start-ID column if the column is nullable. Otherwise, the
value is generated using a reading of the time-of-day clock during execution of the first data change
statement in the transaction that requires a value to be assigned to the row-begin or transaction
start-ID column in a table, or a row in a system-period temporal table is deleted. If multiple rows are
inserted within a single SQL transaction, the values for the transaction start-ID column are the same
for all the rows and are unique from the values generated for the column for another transaction.

• Inserting into a system-period temporal table: When a row is inserted into a system-period temporal
table, the database manager assigns values to columns as indicated for tables with row-begin, row-end,
or transaction start-ID columns. Also, when a row is inserted, no rows are added to the history table
associated with the system-period temporal table.

• Inserting into application-period temporal tables: An error is returned when a row is inserted into an
application-period temporal table and the following conditions are met:

– The application-period temporal table has either a primary key or unique constraint with the
BUSINESS_TIME WITHOUT OVERLAPS clause defined, or a unique index with the BUSINESS_TIME
WITHOUT OVERLAPS clause defined.

– The period defined by the begin and end columns of the BUSINESS_TIME period overlap the period
defined by the begin and end columns of the BUSINESS_TIME period for another row that matches
the other columns of the same unique constraint or unique index.

• Considerations for an INSERT without a column list: An INSERT statement without a column list does
not include implicitly hidden columns. Columns that are defined as implicitly hidden and not null must
have a defined default value.

Examples
• Example 1: Insert a new department with the following specifications into the DEPARTMENT table:

– Department number (DEPTNO) is 'E31'
– Department name (DEPTNAME) is 'ARCHITECTURE'
– Managed by (MGRNO) a person with number '00390'
– Reports to (ADMRDEPT) department 'E01'.

 INSERT INTO DEPARTMENT
 VALUES ('E31', 'ARCHITECTURE', '00390', 'E01')

• Example 2: Insert a new department into the DEPARTMENT table as in example 1, but do not assign a
manager to the new department.

 INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('E31', 'ARCHITECTURE', 'E01')

• Example 3: Insert two new departments using one statement into the DEPARTMENT table as in
example 2, but do not assign a manager to the new department.

 INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
 VALUES ('B11', 'PURCHASING', 'B01'),
 ('E41', 'DATABASE ADMINISTRATION', 'E01')

• Example 4: Create a temporary table MA_EMP_ACT with the same columns as the EMP_ACT table. Load
MA_EMP_ACT with the rows from the EMP_ACT table with a project number (PROJNO) starting with the
letters 'MA'.

 CREATE TABLE MA_EMP_ACT
 (EMPNO CHAR(6) NOT NULL,
 PROJNO CHAR(6) NOT NULL,
 ACTNO SMALLINT NOT NULL,
 EMPTIME DEC(5,2),
 EMSTDATE DATE,
 EMENDATE DATE)
 INSERT INTO MA_EMP_ACT

Chapter 1. Structured Query Language (SQL) 1729

 SELECT * FROM EMP_ACT
 WHERE SUBSTR(PROJNO, 1, 2) = 'MA'

• Example 5: Use a C program statement to add a skeleton project to the PROJECT table. Obtain the
project number (PROJNO), project name (PROJNAME), department number (DEPTNO), and responsible
employee (RESPEMP) from host variables. Use the current date as the project start date (PRSTDATE).
Assign a null value to the remaining columns in the table.

 EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)
 VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE);

• Example 6: Specify an INSERT statement as the data-change-table-reference within a SELECT
statement. Define an extra include column whose values are specified in the VALUES clause, which
is then used as an ordering column for the inserted rows.

 SELECT INORDER.ORDERNUM
 FROM NEW TABLE (INSERT INTO ORDERS(CUSTNO)INCLUDE (INSERTNUM INTEGER)
 VALUES(:CNUM1, 1), (:CNUM2, 2)) InsertedOrders
 ORDER BY INSERTNUM;

• Example 7: Use a C program statement to add a document to the DOCUMENTS table. Obtain values for
the document ID (DOCID) column and the document data (XMLDOC) column from a host variable that
binds to an SQL TYPE IS XML AS BLOB_FILE.

 EXEC SQL INSERT INTO DOCUMENTS
 (DOCID, XMLDOC) VALUES (:docid, :xmldoc)

• Example 8: For the following INSERT statements, assume that table SALARY_INFO is defined with three
columns, and that the last column is an implicitly hidden ROW CHANGE TIMESTAMP column. In the
following statement, the implicitly hidden column is explicitly referenced in the column list and a value
is provided for it in the VALUES clause.

 INSERT INTO SALARY_INFO (LEVEL, SALARY, UPDATE_TIME)
 VALUES (2, 30000, CURRENT TIMESTAMP)

The following INSERT statement uses an implicit column list. An implicit column list does not include
implicitly hidden columns, so the VALUES clause only contains values for the other two columns.

 INSERT INTO SALARY_INFO VALUES (2, 30000)

In this case, the UPDATE_TIME column must be defined to have a default value, and that default value is
used for the row that is inserted.

ITERATE
The ITERATE statement causes the flow of control to return to the beginning of a labelled loop.

Invocation
This statement can be embedded in an:

• SQL procedure definition
• Compound SQL (compiled) statement
• Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL function definition, or
SQL trigger definition. It is not an executable statement and cannot be dynamically prepared.

Authorization
None required.

1730 IBM Db2 V11.5: SQL Reference

Syntax
ITERATE label

Description
label

Specifies the label of the FOR, LOOP, REPEAT, or WHILE statement to which the database server
passes the flow of control.

Example
This example uses a cursor to return information for a new department. If the not_found condition
handler was invoked, the flow of control passes out of the loop. If the value of v_dept is 'D11', an ITERATE
statement passes the flow of control back to the top of the LOOP statement. Otherwise, a new row is
inserted into the DEPARTMENT table.

 CREATE PROCEDURE ITERATOR()
 LANGUAGE SQL
 BEGIN
 DECLARE v_dept CHAR(3);
 DECLARE v_deptname VARCHAR(29);
 DECLARE v_admdept CHAR(3);
 DECLARE at_end INTEGER DEFAULT 0;
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE c1 CURSOR FOR
 SELECT deptno, deptname, admrdept
 FROM department
 ORDER BY deptno;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 OPEN c1;
 ins_loop:
 LOOP
 FETCH c1 INTO v_dept, v_deptname, v_admdept;
 IF at_end = 1 THEN
 LEAVE ins_loop;
 ELSEIF v_dept = 'D11' THEN
 ITERATE ins_loop;
 END IF;
 INSERT INTO department (deptno, deptname, admrdept)
 VALUES ('NEW', v_deptname, v_admdept);
 END LOOP;
 CLOSE c1;
 END

LEAVE
The LEAVE statement transfers program control out of a loop or a compound statement.

Invocation
This statement can be embedded in an:

• SQL procedure definition
• Compound SQL (compiled) statement
• Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL function definition, or
SQL trigger definition. It is not an executable statement and cannot be dynamically prepared.

Authorization
None required.

Chapter 1. Structured Query Language (SQL) 1731

Syntax
LEAVE label

Description
label

Specifies the label of the compound, FOR, LOOP, REPEAT, or WHILE statement to exit.

Notes
• When a LEAVE statement transfers control out of a compound statement, all open cursors in the

compound statement, except cursors that are used to return result sets, are closed.

Example
This example contains a loop that fetches data for cursor c1. If the value of SQL variable at_end is not
zero, the LEAVE statement transfers control out of the loop.

 CREATE PROCEDURE LEAVE_LOOP(OUT counter INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE v_counter INTEGER;
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE at_end SMALLINT DEFAULT 0;
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE c1 CURSOR FOR
 SELECT firstnme, midinit, lastname
 FROM employee;
 DECLARE CONTINUE HANDLER for not_found
 SET at_end = 1;
 SET v_counter = 0;
 OPEN c1;
 fetch_loop:
 LOOP
 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
 IF at_end <> 0 THEN LEAVE fetch_loop;
 END IF;
 SET v_counter = v_counter + 1;
 END LOOP fetch_loop;
 SET counter = v_counter;
 CLOSE c1;
 END

LOCK TABLE
The LOCK TABLE statement prevents concurrent application processes from using or changing a table.
The lock is released when the unit of work issuing the LOCK TABLE statement either commits or
terminates.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• SELECT privilege on the table
• SELECTIN privilege on the schema containing the table
• CONTROL privilege on the table

1732 IBM Db2 V11.5: SQL Reference

• DATAACCESS authority on the schema containing the table
• DATAACCESS authority

Syntax
LOCK TABLE table-name

nickname

IN SHARE

EXCLUSIVE

MODE

Description
table-name or nickname

Identifies the table or nickname. The table-name must identify a table that exists at the application
server, but it must not identify a catalog table, a created temporary table, or a declared temporary
table (SQLSTATE 42995). If the table-name is a typed table, it must be the root table of the table
hierarchy (SQLSTATE 428DR). When a nickname is specified, the database manager will lock the
underlying object (that is, a table or view) of the data source to which the nickname refers.

IN SHARE MODE
Prevents concurrent application processes from executing any but read-only operations on the table.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations on the table. Note that
EXCLUSIVE MODE does not prevent concurrent application processes that are running at isolation
level Uncommitted Read (UR) from executing read-only operations on the table.

Notes
• Locking is used to prevent concurrent operations. A lock is not necessarily acquired during execution

of the LOCK TABLE statement if a suitable lock already exists. The lock that prevents concurrent
operations is held at least until termination of the unit of work.

• In a partitioned database, if the LOCK TABLE statement is interrupted, the table may be locked on some
database partitions but not on others. If this occurs, either issue another LOCK TABLE statement to
complete the locking on all database partitions, or issue a COMMIT or ROLLBACK statement to release
the current locks.

• This statement affects all database partitions in the database partition group.
• For partitioned tables, the only lock acquired for the LOCK TABLE statement is at the table level; no data

partition locks are acquired.

Example
Obtain a lock on the table EMP. Do not allow other programs to read or update the table.

 LOCK TABLE EMP IN EXCLUSIVE MODE

LOOP
The LOOP statement repeats the execution of a statement or a group of statements.

Invocation
This statement can be embedded in an:

• SQL procedure definition
• Compound SQL (compiled) statement
• Compound SQL (inlined) statement

Chapter 1. Structured Query Language (SQL) 1733

The compound statements can be embedded in an SQL procedure definition, SQL function definition, or
SQL trigger definition. It is not an executable statement and cannot be dynamically prepared.

Authorization
No privileges are required to invoke the LOOP statement. However, the authorization ID of the statement
must hold the necessary privileges to invoke the SQL statements that are embedded in the LOOP
statement.

Syntax

label:

LOOP SQL-routine-statement END LOOP

label

SQL-routine-statement

SQL-procedure-statement ;

SQL-function-statement ;

Description
label

Specifies the label for the LOOP statement. If the beginning label is specified, that label can be
specified on LEAVE and ITERATE statements. If the ending label is specified, a matching beginning
label must be specified.

SQL-procedure-statement
Specifies the SQL statements that are to be invoked in the loop. SQL-procedure-statement is only
applicable when in the context of an SQL procedure or Compound SQL (compiled) statement. See
SQL-procedure-statement in "Compound SQL (compiled)" statement.

SQL-function-statement
Specifies the SQL statements that are to be invoked in the loop. SQL-function-statement is only
applicable when in the context of an SQL function, SQL method, or Compound SQL (inlined)
statement. See SQL-function-statement in "FOR".

Example
This procedure uses a LOOP statement to fetch values from the employee table. Each time the loop
iterates, the OUT parameter counter is incremented and the value of v_midinit is checked to ensure that
the value is not a single space (' '). If v_midinit is a single space, the LEAVE statement passes the flow of
control outside of the loop.

 CREATE PROCEDURE LOOP_UNTIL_SPACE(OUT counter INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE c1 CURSOR FOR
 SELECT firstnme, midinit, lastname
 FROM employee;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET counter = -1;
 OPEN c1;
 fetch_loop:
 LOOP
 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
 IF v_midinit = ' ' THEN

1734 IBM Db2 V11.5: SQL Reference

 LEAVE fetch_loop;
 END IF;
 SET v_counter = v_counter + 1;
 END LOOP fetch_loop;
 SET counter = v_counter;
 CLOSE c1;
 END

MERGE
The MERGE statement updates a target (a table or view, or the underlying tables or views of a fullselect)
using data from a source (result of a table reference).

Rows in the target that match the source can be deleted or updated as specified, and rows that do not
exist in the target can be inserted. Updating, deleting or inserting a row in a view updates, deletes or
inserts the row in the tables on which the view is based.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• If an insert operation is specified, INSERT privilege on the table or view or INSERTIN privilege on the
schema containing the table or view; if a delete operation is specified, DELETE privilege on the table or
view or DELETEIN privilege on the schema containing the table or view; and if an update operation is
specified, either:

– UPDATE privilege on the table or view
– UPDATE privilege on each column that is to be updated
– UPDATEIN privilege on the schema containing the table or view

• CONTROL privilege on the table
• DATAACCESS authority on the schema containing the table or view
• DATAACCESS authority

The privileges held by the authorization ID of the statement must also include at least one of the following
authorities:

• SELECT privilege on every table or view identified in the table-reference
• SELECTIN privilege on the schema containing the tables or views identified in the table-reference
• CONTROL privilege on the tables or views identified in the table-reference
• DATAACCESS authority on the schema containing the tables or views identified in the table-reference
• DATAACCESS authority

If search-condition, insert-operation, or assignment-clause includes a subquery, the privileges held by the
authorization ID of the statement must also include at least one of the following authorities:

• SELECT privilege on every table or view identified in the subquery
• SELECTIN privilege on the schema containing the table or view identified in the subquery
• CONTROL privilege on the tables or views identified in the subquery
• DATAACCESS authority on the schema containing the table or view identified in the subquery
• DATAACCESS authority

Chapter 1. Structured Query Language (SQL) 1735

If a row-fullselect is included in the assignment, the privileges held by the authorization ID of the
statement must include at least one of the following authorities for each referenced table, view, or
nickname:

• SELECT privilege
• SELECTIN privilege on the schema containing the table, view or nickname referenced
• CONTROL privilege
• DATAACCESS authority on the schema containing the table, view or nickname referenced
• DATAACCESS authority

If an expression that refers to a function is specified, the privilege set must include any authority that is
necessary to execute the function.

Syntax
MERGE INTO table-name

view-name

(

WITH

,

common-table-expression

fullselect)

correlation-clause

USING table-reference ON search-condition

WHEN matching-condition THEN modification-operation

signal-statement

ELSE IGNORE

WITH RR

RS

CS

UR

correlation-clause
AS

correlation-name

(

,

column-name)

matching-condition

NOT

MATCHED

AND search-condition

modification-operation
update-operation

delete-operation

insert-operation

1736 IBM Db2 V11.5: SQL Reference

update-operation
UPDATE

period-clause

SET assignment-clause

assignment-clause
,

column-name = expression

DEFAULT

NULL

(

,

column-name) = (

,

expression
1

DEFAULT

NULL

row-fullselect
2

)

delete-operation
DELETE

period-clause

insert-operation
INSERT

(

,

column-name)

VALUES

expression

DEFAULT

NULL

(

,

expression

DEFAULT

NULL

)

period-clause
FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

Notes:
1 The number of expressions, NULLs, and DEFAULTs must match the number of column names.
2 The number of columns in the select list must match the number of column names.

Description
table-name, view-name, or (fullselect)

Identifies the target of the update, delete, or insert operations of the merge. The name must identify
a table or view that exists at the current server, but it must not identify a catalog table, a system-
maintained materialized query table, a view of a catalog table, a read-only view, or a view that directly
or indirectly contains a WHERE clause that references a subquery or a routine defined with NOT
DETERMINISTIC or EXTERNAL ACTION (SQLSTATE 42807).

Chapter 1. Structured Query Language (SQL) 1737

If the target of the merge operation is a fullselect, the fullselect must be updatable, deletable, or
insertable as defined in the "Updatable views", "Deletable views", or "Insertable views" Notes items
in the description of the CREATE VIEW statement.

You cannot use a period-clause in an update-operation or a delete-operation if the target of the merge
operation is a union-all view or a fullselect.

You cannot use a nickname (a reference to a remote, federated table) as the target table.

correlation-clause
Can be used within search-condition or on the right side of an assignment-clause to designate a table,
view, or fullselect. For a description of correlation-clause, see "table-reference" in the description of
"Subselect".

USING table-reference
Specifies a set of rows as a result table to be merged into the target. If the result table is empty, a
warning is returned (SQLSTATE 02000).

ON search-condition
Logically, a right join is performed between the target table and the table-reference using the ON
search-condition. For those rows of the join result table where the search condition is true, the
specified update or delete operation is performed. For those rows of the join result table where the
result of the search condition is not true, the specified insert operation is performed.

The search-condition has the following restrictions (SQLSTATE 42972 unless otherwise noted):

• It cannot contain any subqueries, scalar or otherwise
• It cannot include any dereference operations or the DEREF function where the reference value is

other than the object identifier column
• It cannot include an SQL function
• It cannot include an XMLQUERY or XMLEXISTS expression
• Any column that is referenced in an expression of the search-condition must be a column of the

target table, view, or table-reference
• Any function that is referenced in an expression of the join-condition of a full outer join must be

deterministic and have no external action
• It cannot be include an aggregate function (SQLSTATE 42903)

If the search-condition is false or unknown for every row in table-reference, a warning is returned
(SQLSTATE 02000).

WHEN matching-condition
Specifies the condition under which the modification-operation or the signal-statement is executed.
Each matching-condition is evaluated in order of specification. Rows for which the matching-condition
evaluates to true are not considered in subsequent matching conditions.
MATCHED

Indicates the operation to be performed on the rows where the ON search condition is true. Only
UPDATE, DELETE, or signal-statement can be specified after THEN.
AND search-condition

Specifies a further search condition to be applied against the rows that matched the ON
search condition for the operation to be performed after THEN.

NOT MATCHED
Indicates the operation to be performed on the rows where the ON search condition is false or
unknown. Only INSERT or signal-statement can be specified after THEN.
AND search-condition

Specifies a further search condition to be applied against the rows that did not match the ON
search condition for the operation to be performed after THEN. This search condition applies
only to rows that did not match ON search condition; if AND search condition references
columns from the target table a syntax error might be returned (SQL0206N).

1738 IBM Db2 V11.5: SQL Reference

THEN modification-operation
Specifies the operation to execute when the matching-condition evaluates to true.
update-operation

Specifies the update operation to be executed for the rows where the matching-condition
evaluates to true.
UPDATE

Introduces the update operation.
period-clause

Specifies that a period clause is applied to the update operation in the MERGE statement.
For more information about the effects of a period clause specified in the context of an
update operation, see the UPDATE statement topic.

SET
Introduces the assignment of values to column names.
assignment-clause

Specifies a list of column updates.
column-name

Identifies a column to be updated. The column-name must identify a column
of the specified table or view, but not a view column derived from a scalar
function, constant, or expression. A column must not be specified more than once
(SQLSTATE 42701).

A view column derived from the same column as another column of the view can
be updated, but both columns cannot be updated in the same MERGE statement
(SQLSTATE 42701).

expression
Indicates the new value of the column. The expression must not include an
aggregate function except when it occurs within a scalar fullselect (SQLSTATE
42903).

An expression can contain references to columns of the table-name or view-name.
For each row that is updated, the value of such a column in an expression is the
value of the column in the row before the row is updated.

If expression is a reference to a single column of the source table, the source table
column value may have been specified with an extended indicator variable value.
The effects of such indicator variables apply to the corresponding target columns
of the assignment-clause.

If expression is a single host variable, or a host variable being explicitly cast,
the host variable can include an indicator variable that is enabled for extended
indicator variables.

When extended indicator variables are enabled, the extended indicator variable
values of default (-5) or unassigned (-7) must not be used (SQLSTATE 22539) if
either of the following statements is true:

• The expression is more complex than a single host variable with explicit casts
• The target column has data type of structured type

DEFAULT
The default value assigned to the column. DEFAULT can be specified only for
columns that have a default value. For information about default values of
data types, see the description of the DEFAULT clause in the "CREATE TABLE"
statement.

DEFAULT must be specified for a column that was defined as GENERATED ALWAYS.
A valid value can be specified for a column that was defined as GENERATED BY
DEFAULT.

Chapter 1. Structured Query Language (SQL) 1739

NULL
Specifies the null value as the new value of the column. Specify NULL only for
nullable columns (SQLSTATE 23502).

row-fullselect
Specifies a fullselect that returns a single row. The result column values are
assigned to each corresponding column-name. If the fullselect returns no rows,
the null value is assigned to each column; an error occurs if any column to be
updated is not nullable. An error also occurs if there is more than one row in the
result.

A row-fullselect can contain references to columns of the target table of the
MERGE statement. For each row that is updated, the value of such a column in
an expression is the value of the column in the row before the row is updated. An
error is returned if there is more than one row in the result (SQLSTATE 21000).

delete-operation
Specifies the delete operation to be executed for the rows where the matching-condition
evaluates to true.
DELETE

Introduces the delete operation.
period-clause

Specifies that a period clause is applied to the delete operation in the MERGE statement.
For more information about the effects of a period clause specified in the context of a
delete operation, see the DELETE statement topic.

insert-operation
Specifies the insert operation to be executed for the rows where the matching-condition evaluates
to true.
INSERT

Introduces a list of column names and row value expressions to be used for the insert
operation.

The number of values for the row in the row value expression must equal the number of names
in the insert column list. The first value is inserted in the first column in the list, the second
value in the second column, and so on.

(column-name,...)
Specifies the columns for which the insert values are provided. Each name must identify
a column of the table or view. The same column must not be identified more than once
(SQLSTATE 42701). A view column that cannot accept insert values must not be identified.
A value cannot be inserted into a view column that is derived from:

• A constant, expression, or scalar function
• The same base table column as some other column of the view

If the object of the operation is a view with such columns, a list of column names must be
specified, and the list must not identify these columns.

Omission of the column list is an implicit specification of a list in which every column of
the table (that is not defined as implicitly hidden) or view is identified in left-to-right order.
This list is established when the statement is prepared, and therefore does not include
columns that were added to a table after the statement was prepared.

VALUES
Introduces one or more rows of values to be inserted.
expression

Any expression that does not include a column name (SQLSTATE 42703).

1740 IBM Db2 V11.5: SQL Reference

If expression is a reference to a single column of the source table, the source table column
value may have been specified with an extended indicator variable value. The effects of
such indicator variables apply to the corresponding target columns of the insert-operation.

If expression is a single host variable, or a host variable being explicitly cast, the host
variable can include an indicator variable (or in the case of a host structure, an indicator
array) that is enabled for extended indicator variables.

When extended indicator variables are enabled, the extended indicator variable values
of default (-5) or unassigned (-7) must not be used (SQLSTATE 22539) if either of the
following statements is true:

• The expression is more complex than a single host variable with explicit casts
• The target column has data type of structured type

DEFAULT
The default value assigned to the column. DEFAULT can be specified only for columns
that have a default value. For information about default values of data types, see the
description of the DEFAULT clause in the "CREATE TABLE" statement.

DEFAULT must be specified for a column that was defined as GENERATED ALWAYS. A valid
value can be specified for a column that was defined as GENERATED BY DEFAULT.

NULL
Specifies the null value as the value of the column. Specify NULL only for nullable columns
(SQLSTATE 23502).

signal-statement
Specifies the SIGNAL statement that is to be executed to return an error when the matching-condition
evaluates to true.

ELSE IGNORE
Specifies that no action is to be taken for the rows where no matching-condition evaluates to true. If
all rows of table-reference are ignored, a warning is returned (SQLSTATE 02000).

WITH
Specifies the isolation level at which the MERGE statement is executed.
RR

Repeatable Read
RS

Read Stability
CS

Cursor Stability
UR

Uncommitted Read
The default isolation level of the statement is the isolation level of the package in which the statement
is bound.

Rules
• More than one modification-operation (UPDATE SET, DELETE, or insert-operation), or signal-statement

can be specified in a single MERGE statement.
• Each row in the target can only be operated on once. A row in the target can only be identified as

MATCHED with one row in the result table of the table-reference (SQLSTATE 21506). A nested SQL
operation (RI or trigger except INSTEAD OF trigger) cannot specify the target table (or a table within
the same table hierarchy) as a target of an UPDATE, DELETE, INSERT, or MERGE statement (SQLSTATE
27000).

• Security policy: If the identified target table or the base table of the identified target view is protected
with a security policy, the session authorization ID must have the label-based access control (LBAC)
credentials that allow the following types of access.

Chapter 1. Structured Query Language (SQL) 1741

– For the update operation:

- Write access to all protected columns that are being updated (SQLSTATE 42512)
- Write access for any explicit value provided for a DB2SECURITYLABEL column for security

policies that were created with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option
(SQLSTATE 23523)

- Read and write access to all rows that are being updated (SQLSTATE 42519)

The session authorization ID must also have been granted a security label for write access for the
security policy if an implicit value is used for a DB2SECURITYLABEL column (SQLSTATE 23523),
which can happen when:

- The DB2SECURITYLABEL column is not included in the list of columns that are to be updated (and
so it will be implicitly updated to the security label for write access of the session authorization ID)

- A value for the DB2SECURITYLABEL column is explicitly provided but the session authorization ID
does not have write access for that value, and the security policy is created with the OVERRIDE
NOT AUTHORIZED WRITE SECURITY LABEL option

– For the delete operation:

- Write access to all protected columns (SQLSTATE 42512)
- Read and write access to all of the rows that are selected for deletion (SQLSTATE 42519)

– For the insert operation:

- Write access to all protected columns for which a data value is explicitly provided (SQLSTATE
42512)

- Write access for any explicit value provided for a DB2SECURITYLABEL column for security
policies that were created with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option
(SQLSTATE 23523)

The session authorization ID must also have been granted a security label for write access for the
security policy if an implicit value is used for a DB2SECURITYLABEL column (SQLSTATE 23523),
which can happen when:

- A value for the DB2SECURITYLABEL column is not explicitly provided
- A value for the DB2SECURITYLABEL column is explicitly provided but the session authorization ID

does not have write access for that value, and the security policy is created with the OVERRIDE
NOT AUTHORIZED WRITE SECURITY LABEL option

• INSTEAD OF triggers: If a view is specified as the target of the MERGE statement, either no INSTEAD
OF triggers should be defined for the view, or an INSTEAD OF trigger should be defined for each of the
update, delete, and insert operations (SQLSTATE 428FZ).

• Extended indicator variable usage: If enabled, negative indicator variable values outside the range
of -1 through -7 must not be input (SQLSTATE 22010). Also, if enabled, the default and unassigned
extended indicator variable values must not appear in contexts in which they are not supported
(SQLSTATE 22539).

• Extended indicator variables in the assignment-clause: An expression that is a reference to a single
column of the source table, a single host variable, or a host variable being explicitly cast can result in
assigning an extended indicator variable-based value. Assigning the extended indicator variable-based
value of unassigned has the effect of leaving the target column set to its current value, as if it had
not been specified in the statement. Assigning the extended indicator variable-based value of default
assigns the default value of the column. For information on default values of data types, see the
description of the DEFAULT clause in “CREATE TABLE ” on page 1351.

If a target column is not updatable (for example, a column in a view that is defined as an expression),
then it must be assigned the extended indicator variable-based value of unassigned (SQLSTATE 42808).

If the target column is a column defined as GENERATED ALWAYS, then it must be assigned the DEFAULT
keyword, or the extended indicator variable-based values of default or unassigned (SQLSTATE 428C9).

1742 IBM Db2 V11.5: SQL Reference

The assignment-clause must not assign all target columns to an extended indicator variable-based value
of unassigned (SQLSTATE 22540).

• Extended indicator variables in the insert-operation: An expression that is a reference to a single
column of the source table, a single host variable, or a host variable being explicitly cast can result in
inserting an extended indicator variable-based value. In insert-operation, a value of unassigned has the
effect of setting the column to its default value.

If a target column is not updatable, then it must be assigned the extended indicator variable-based
value of unassigned (SQLSTATE 42808), unless it is a column defined as GENERATED ALWAYS. If the
target column is a column defined as GENERATED ALWAYS, then it must be assigned the DEFAULT
keyword, or the extended indicator variable-based values of default or unassigned (SQLSTATE 428C9).

For other rules that affect the update, insert, or delete operation portion of the MERGE statement, see the
"Rules" section of the corresponding statement description.

Notes
• Order of processing:

1. Determine the set of rows to be processed from the source and target. If CURRENT TIMESTAMP is
used in this statement, only one clock reading is done for the whole statement.

2. Use the ON clause to classify these rows as either MATCHED or NOT MATCHED.
3. Evaluate any matching-condition in the WHEN clauses.
4. Evaluate any expression in any assignment-clause and insert-operation.
5. Execute each signal-statement.
6. Apply each modification-operation to the applicable rows in the order of specification. The

constraints and triggers activated by each modification-operation are executed for the modification-
operation. Statement-level triggers are activated even if no rows satisfy the modification-operation.
Each modification-operation can affect the triggers and referential constraints of each subsequent
modification-operation.

• Statement level atomicity: If an error occurs during execution of the MERGE statement, the whole
statement is rolled back.

• Number of rows updated: When a MERGE statement completes execution, the value of the
ROW_COUNT item for GET DIAGNOSTICS and SQLERRD(3) in the SQLCA is the number of rows operated
on by the MERGE statement, excluding rows identified by the ELSE IGNORE clause. The value in
SQLERRD(3) does not include the number of rows that were operated on as a result of constraints or
triggers. The value in SQLERRD(5) includes the number of these rows.

• Inserted row cannot also be updated: No attempt is made to update a row in the target that did not
already exist before the MERGE statement was executed; that is, there are no updates of rows that were
inserted by the MERGE statement.

• Extended indicator variables and update triggers: If a target column has been assigned with an
extended indicator variable-based value of unassigned, that column is not considered to have been
updated. That column is treated as if it had not been specified in the OF column-name list of any update
trigger defined on the target table.

• Extended indicator variables and insert triggers: No change in the activation of insert triggers results
from the use of extended indicator variables. If all columns in the implicit or explicit column list have
been assigned to an extended indicator variable-based value of unassigned or default, an insert where
all columns have their respective default values is attempted. If the insert is successful, the insert
trigger is activated.

• Extended indicator variables and deferred error checks: When extended indicator variables are
enabled, validation that would otherwise be done in statement preparation to recognize an insert into,
or update of, a non-updatable column, is deferred until statement execution. Whether an error should
be reported can be determined only during execution.

• Considerations for system-period temporal tables: When MERGE is processed for a system-period
temporal table, the rows are impacted in the same way as if the specific data change operations

Chapter 1. Structured Query Language (SQL) 1743

had been invoked. See UPDATE statement, DELETE statement, and INSERT statement topics for more
information.

• Considerations for application-period temporal tables and triggers; When a row is deleted and the
FOR PORTION OF BUSINESS_TIME clause is specified, additional rows may be implicitly inserted to
reflect any portion of the row that was not deleted. Any existing delete triggers are activated for the
rows deleted, and any existing insert triggers are activated for rows that are implicitly inserted. When a
row is updated and the FOR PORTION OF BUSINESS_TIME clause is specified, additional rows may be
implicitly inserted to reflect any portion of the row that was not updated. Any existing update triggers
are activated for the rows updated, and any existing insert triggers are activated for rows that are
implicitly inserted.

• Considerations for a MERGE without a column list in the insert-operation: A MERGE statement
without a column list specified as part of the insert-operation does not include implicitly hidden
columns. Columns that are defined as implicitly hidden and not null must have a defined default value.

Examples
• Example 1: For activities whose description has been changed, update the description in the archive

table. For new activities, insert into the archive table. The archive and activities table both have activity
as a primary key.

 MERGE INTO archive ar
 USING (SELECT activity, description FROM activities) ac
 ON (ar.activity = ac.activity)
 WHEN MATCHED THEN
 UPDATE SET
 description = ac.description
 WHEN NOT MATCHED THEN
 INSERT
 (activity, description)
 VALUES (ac.activity, ac.description)

• Example 2: Using the shipment table, merge rows into the inventory table, increasing the quantity by
part count in the shipment table for rows that match; else insert the new partno into the inventory table.

 MERGE INTO inventory AS in
 USING (SELECT partno, description, count FROM shipment
 WHERE shipment.partno IS NOT NULL) AS sh
 ON (in.partno = sh.partno)
 WHEN MATCHED THEN
 UPDATE SET
 description = sh.description,
 quantity = in.quantity + sh.count
 WHEN NOT MATCHED THEN
 INSERT
 (partno, description, quantity)
 VALUES (sh.partno, sh.description, sh.count)

• Example 3: Using the transaction table, merge rows into the account table, updating the balance
from the set of transactions against an account ID and inserting new accounts from the consolidated
transactions where they do not already exist.

 MERGE INTO account AS a
 USING (SELECT id, sum(amount) sum_amount FROM transaction
 GROUP BY id) AS t
 ON a.id = t.id
 WHEN MATCHED THEN
 UPDATE SET
 balance = a.balance + t.sum_amount
 WHEN NOT MATCHED THEN
 INSERT
 (id, balance)
 VALUES (t.id, t.sum_amount)

1744 IBM Db2 V11.5: SQL Reference

• Example 4: Using the transaction_log table, merge rows into the employee_file table, updating the
phone and office with the latest transaction_log row based on the transaction time, and inserting the
latest new employee_file row where the row does not already exist.

 MERGE INTO employee_file AS e
 USING (SELECT empid, phone, office
 FROM (SELECT empid, phone, office,
 ROW_NUMBER() OVER (PARTITION BY empid
 ORDER BY transaction_time DESC) rn
 FROM transaction_log) AS nt
 WHERE rn = 1) AS t
 ON e.empid = t.empid
 WHEN MATCHED THEN
 UPDATE SET
 (phone, office) =
 (t.phone, t.office)
 WHEN NOT MATCHED THEN
 INSERT
 (empid, phone, office)
 VALUES (t.empid, t.phone, t.office)

• Example 5: Using dynamically supplied values for an employee row, update the master employee table
if the data corresponds to an existing employee, or insert the row if the data is for a new employee. The
following example is a fragment of code from a C program.

 hv1 =
 "MERGE INTO employee AS t
 USING TABLE(VALUES(CAST (? AS CHAR(6)), CAST (? AS VARCHAR(12)),
 CAST (? AS CHAR(1)), CAST (? AS VARCHAR(15)),
 CAST (? AS SMALLINT), CAST (? AS INTEGER)))
 s(empno, firstnme, midinit, lastname, edlevel, salary)
 ON t.empno = s.empno
 WHEN MATCHED THEN
 UPDATE SET
 salary = s.salary
 WHEN NOT MATCHED THEN
 INSERT
 (empno, firstnme, midinit, lastname, edlevel, salary)
 VALUES (s.empno, s.firstnme, s.midinit, s.lastname, s.edlevel,
 s.salary)";
 EXEC SQL PREPARE s1 FROM :hv1;
 EXEC SQL EXECUTE s1 USING '000420', 'SERGE', 'K', 'FIELDING', 18, 39580;

• Example 6: Update the list of activities organized by Group A in the archive table. Delete all outdated
activities and update the activities information (description and date) in the archive table if they have
been changed. For new upcoming activities, insert into the archive. Signal an error if the date of the
activity is not known. The date of the activities in the archive table must be specified. Each group has an
activities table. For example, activities_groupA contains all activities that they organize, and the archive
table contains all upcoming activities organized by different groups in a company. The archive table
has (group, activity) as the primary key, and date is not nullable. All activities tables have activity as
the primary key. The last_modified column in the archive is defined with CURRENT TIMESTAMP as the
default value.

 MERGE INTO archive ar
 USING (SELECT activity, description, date, last_modified
 FROM activities_groupA) ac
 ON (ar.activity = ac.activity) AND ar.group = 'A'
 WHEN MATCHED AND ac.date IS NULL THEN
 SIGNAL SQLSTATE '70001'
 SET MESSAGE_TEXT =
 ac.activity CONCAT ' cannot be modified. Reason: Date is not known'
 WHEN MATCHED AND ac.date < CURRENT DATE THEN
 DELETE
 WHEN MATCHED AND ar.last_modified < ac.last_modified THEN
 UPDATE SET
 (description, date, last_modified) = (ac.description, ac.date, DEFAULT)
 WHEN NOT MATCHED AND ac.date IS NULL THEN
 SIGNAL SQLSTATE '70002'
 SET MESSAGE_TEXT =
 ac.activity CONCAT ' cannot be inserted. Reason: Date is not known'
 WHEN NOT MATCHED AND ac.date >= CURRENT DATE THEN
 INSERT
 (group, activity, description, date)

Chapter 1. Structured Query Language (SQL) 1745

 VALUES ('A', ac.activity, ac.description, ac.date)
 ELSE IGNORE

OPEN
The OPEN statement opens a cursor so that it can be used to fetch rows from its result table.

Invocation
Although an interactive SQL facility might provide an interface that gives the appearance of interactive
execution, this statement can only be embedded within an application program. It is an executable
statement that cannot be dynamically prepared. When invoked using the command line processor, some
options cannot be specified.

For more information, refer to "Using command line SQL statements and XQuery statements" in
Command Reference.

Authorization
If the cursor-variable-name references a global variable, then the privileges held by the authorization ID
of the statement must include one of the following authorities:

• READ privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

Group privileges are not considered because this statement cannot be dynamically prepared.

Syntax
OPEN cursor-name

cursor-variable-name

(

expression

)

USING

,

variable

expression
1

USING DESCRIPTOR descriptor-name

Notes:
1 An expression other than a variable can only be used in compiled compound statements.

Description
cursor-name

Names a cursor that is defined in a DECLARE CURSOR statement that was stated earlier in the
program. If cursor-name identifies a cursor in an SQL procedure declared as WITH RETURN TO
CLIENT that is already in the open state, the existing open cursor becomes a result set cursor that is
no longer accessible using cursor-name and a new cursor is opened that becomes accessible using

1746 IBM Db2 V11.5: SQL Reference

cursor-name. Otherwise, when the OPEN statement is executed, the cursor identified by cursor-name
must be in the closed state.

The DECLARE CURSOR statement must identify a SELECT statement, in one of the following ways:

• Including the SELECT statement in the DECLARE CURSOR statement
• Including a statement-name that names a prepared SELECT statement.

The result table of the cursor is derived by evaluating the SELECT statement. The evaluation uses the
current values of any special registers, global variables, or PREVIOUS VALUE expressions specified in
the SELECT statement, and the current values of any host variables specified in the SELECT statement
or the USING clause of the OPEN statement. The rows of the result table may be derived during the
execution of the OPEN statement, and a temporary table may be created to hold them; or they may be
derived during the execution of subsequent FETCH statements. In either case, the cursor is placed in
the open state and positioned before the first row of its result table. If the table is empty, the state of
the cursor is effectively "after the last row".

cursor-variable-name

Names a cursor variable. The value of the cursor variable must not be null (SQLSTATE 34000). A
cursor variable that is directly or indirectly assigned a cursor value constructor can be used only in an
OPEN statement that is in the same scope as the assignment (SQLSTATE 51044). If the cursor value
constructor assigned to the cursor variable specified a statement-name, the OPEN statement must be
in the same scope where that statement-name was explicitly or implicitly declared (SQLSTATE 51044).

When the OPEN statement is executed, the underlying cursor of the cursor variable must be in the
closed state. The result table of the underlying cursor is derived by evaluating the SELECT statement
or dynamic statement associated with the cursor variable. The evaluation uses the current values
of any special registers, global variables, or PREVIOUS VALUE expressions specified in the SELECT
statement, and the current values of any variables specified in the SELECT statement or the USING
clause of the OPEN statement. The rows of the result table may be derived during the execution of the
OPEN statement, and a temporary table may be created to hold them; or they may be derived during
the execution of subsequent FETCH statements. In either case, the cursor is placed in the open state
and positioned before the first row of its result table. If the table is empty, the state of the cursor is
effectively "after the last row".

An OPEN statement using a cursor-variable-name can only be used within a compound SQL
(compiled) statement.

(expression, ...)
Specifies the arguments associated with the named parameters of a parameterized cursor variable.
The cursor-value-constructor assigned to the cursor variable must include a list of parameters with the
same number of parameters as the number of arguments specified (SQLSTATE 07006 or 07004). The
data type and value of the nth expression must be assignable to the nth parameter (SQLSTATE 07006
or 22018).

USING

Introduces the values that are substituted for the parameter markers or variables in the statement of
the cursor. For an explanation of parameter markers, see "PREPARE".

If a statement-name is specified in the DECLARE CURSOR statement or the cursor value constructor
associated with the cursor variable that includes parameter markers, USING must be used. If the
prepared statement does not include parameter markers, USING is ignored.

If a select-statement is specified in the DECLARE CURSOR statement or the non-parameterized cursor
value constructor associated with the cursor variable, USING may be used to override the variable
values.

variable

Identifies a variable or a host structure declared in the program in accordance with the rules for
declaring variables and host variables. The number of variables must be the same as the number of
parameter markers in the prepared statement. The nth variable corresponds to the nth parameter

Chapter 1. Structured Query Language (SQL) 1747

marker in the prepared statement. Where appropriate, locator variables and file reference variables
can be provided as the source of values for parameter markers.

expression
Specifies values to associate with parameter markers using expressions. An OPEN statement that
specifies expressions in the USING clause can only be used within a compound SQL (compiled)
statement (SQLSTATE 42601). The number of expressions must be the same as the number of
parameter markers in the prepared statement (SQLSTATE 07001). The nth expression corresponds to
the nth parameter marker in the prepared statement. The data type and value of the nth expression
must be assignable to the type associated with the nth parameter marker (SQLSTATE 07006).

Rules
• When the SELECT statement of the cursor is evaluated, each parameter marker in the statement is

effectively replaced by its corresponding host variable. For a typed parameter marker, the attributes of
the target variable are those specified by the CAST specification. For an untyped parameter marker, the
attributes of the target variable are determined according to the context of the parameter marker.

• Let V denote a host variable that corresponds to parameter marker P. The value of V is assigned to the
target variable for P in accordance with the rules for assigning a value to a column. Thus:

– V must be compatible with the target.
– If V is a string, its length (excluding trailing blanks for strings that are not long strings) must not be

greater than the length attribute of the target.
– If V is a number, the absolute value of its integral part must not be greater than the maximum

absolute value of the integral part of the target.
– If the attributes of V are not identical to the attributes of the target, the value is converted to conform

to the attributes of the target.

When the SELECT statement of the cursor is evaluated, the value used in place of P is the value of the
target variable for P. For example, if V is CHAR(6), and the target is CHAR(8), the value used in place of P
is the value of V padded with two blanks.

• The USING clause is intended for a prepared SELECT statement that contains parameter markers.
However, it can also be used when the SELECT statement of the cursor is part of the DECLARE CURSOR
statement or the non-parameterized cursor value constructor associated with the cursor variable. In
this case the OPEN statement is executed as if each host variable in the SELECT statement were a
parameter marker, except that the attributes of the target variables are the same as the attributes of
the host variables in the SELECT statement. The effect is to override the values of the host variables in
the SELECT statement of the cursor with the values of the host variables specified in the USING clause.
A variable value override must not be used when opening a parameterized cursor variable since the
SELECT statement will not include any other variables.

• SQL data change statements and routines that modify SQL data embedded in the cursor definition
are completely executed, and the result set is stored in a temporary table when the cursor opens.
If statement execution is successful, the SQLERRD(3) field contains the sum of the number of rows
that qualified for insert, update, and delete operations. If an error occurs during execution of an OPEN
statement involving a cursor that contains a data change statement within a fullselect, the results of
that data change statement are rolled back.

Explicit rollback of an OPEN statement, or rollback to a savepoint before an OPEN statement, closes the
cursor. If the cursor definition contains a data change statement within the FROM clause of a fullselect,
the results of the data change statement are rolled back.

Changes to rows in a table that is targeted by a data change statement nested within a SELECT
statement or a SELECT INTO statement are processed when the cursor opens, and are not undone if an
error occurs during a fetch operation against that cursor.

1748 IBM Db2 V11.5: SQL Reference

Notes
• Closed state of cursors: All cursors in a program are in the closed state when the program is initiated

and when it initiates a ROLLBACK statement.

All cursors, except open cursors declared WITH HOLD, are in a closed state when a program issues a
COMMIT statement.

A cursor can also be in the closed state because a CLOSE statement was executed or an error was
detected that made the position of the cursor unpredictable.

The underlying cursor of a cursor variable is closed if the cursor variable goes out of scope and there are
no other cursor variables that referenced that underlying cursor.

• To retrieve rows from the result table of a cursor, execute a FETCH statement when the cursor is open.
The only way to change the state of a cursor from closed to open is to execute an OPEN statement.

• Effect of materalized result tables: In some cases, such as when the cursor is not read only, the result
rows of a cursor are derived during the execution of FETCH statements. In other cases, the materialized
result table method is used instead. With the materialized result table method the entire result table is
transferred to a temporary buffer during the execution of the OPEN statement. When a temporary buffer
is used, the results of a program can differ in these ways:

– An error can occur during OPEN that would otherwise not occur until some later FETCH statement.
– INSERT, UPDATE, and DELETE statements executed in the same transaction while the cursor is open

cannot affect the result table.
– Any NEXT VALUE expressions in the SELECT statement are evaluated for every row of the result table

during OPEN.

Conversely, if a temporary buffer is not used, INSERT, UPDATE, and DELETE statements executed while
the cursor is open can affect the result table if issued from the same unit of work, and any NEXT VALUE
expressions in the SELECT statement are evaluated as each row is fetched. This result table can also
be affected by operations executed by the same unit of work, and the effect of such operations is not
always predictable. For example, if cursor C is positioned on a row of its result table defined as SELECT
* FROM T, and a new row is inserted into T, the effect of that insert on the result table is not predictable
because its rows are not ordered. Thus a subsequent FETCH C may or may not retrieve the new row of T.

• Statement caching affects cursors declared open by the OPEN statement.
• Opening the same cursor multiple times: A cursor in an SQL procedure declared as WITH RETURN TO

CLIENT can be opened even when a cursor with the same name is already in the open state. In this
case, the existing open cursor becomes a result set cursor and is no longer accessible by its cursor
name. A new cursor is opened and becomes accessible by the cursor name. Closing the new cursor
does not make the cursor that was previously accessible by that name accessible by the cursor name
again. The cursors that become result set cursors in this way cannot be accessed at the server and can
be processed only at the client.

• When an SQL procedure, or an external stored procedure that uses non-blocking cursors, opens a
cursor with return but does not fetch any rows from it, the access plan of the cursor query might not be
evaluated. The query is evaluated when a row is fetched from the procedure's result set by the caller or
client.

Examples
Example 1: Write the embedded statements in a COBOL program that will:

1. Define a cursor C1 that is to be used to retrieve all rows from the DEPARTMENT table for departments
that are administered by (ADMRDEPT) department 'A00'.

2. Place the cursor C1 before the first row to be fetched.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT DEPTNO, DEPTNAME, MGRNO
 FROM DEPARTMENT
 WHERE ADMRDEPT = 'A00'
 END-EXEC.

Chapter 1. Structured Query Language (SQL) 1749

 EXEC SQL OPEN C1
 END-EXEC.

Example 2: Code an OPEN statement to associate a cursor DYN_CURSOR with a dynamically defined
select-statement in a C program. Assuming two parameter markers are used in the predicate of the
select-statement, two host variable references are supplied with the OPEN statement to pass integer
and varchar(64) values between the application and the database. (The related host variable definitions,
PREPARE statement, and DECLARE CURSOR statement are also shown in this example.)

 EXEC SQL BEGIN DECLARE SECTION;
 static short hv_int;
 char hv_vchar64[65];
 char stmt1_str[200];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;
 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 EXEC SQL OPEN DYN_CURSOR USING :hv_int, :hv_vchar64;

Example 3: Code an OPEN statement as in example 2, but in this case the number and data types of the
parameter markers in the WHERE clause are not known.

 EXEC SQL BEGIN DECLARE SECTION;
 char stmt1_str[200];
 EXEC SQL END DECLARE SECTION;
 EXEC SQL INCLUDE SQLDA;

 EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;
 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :sqlda;

Example 4: Create a procedure that does the following operations:

1. Assigns a cursor to the output cursor variable
2. Opens the cursor

CREATE PROCEDURE PROC1 (OUT P1 CURSOR)LANGUAGE SQL
BEGIN
SET P1=CURSOR FOR SELECT DEPTNO, DEPTNAME, MGRNO FROM DEPARTMENT WHERE
ADMRDEPT='A00'; --
OPEN P1; --
END;

PIPE
The PIPE statement is used to return a row from a compiled table function.

Invocation
This statement can be embedded in a compound SQL (compiled) statement of an SQL table function. It is
not an executable statement and cannot be dynamically prepared.

Authorization
No privileges are required to invoke the PIPE statement. However, the authorization ID of the statement
must hold the necessary privileges to invoke any expression that is embedded in the PIPE statement.

1750 IBM Db2 V11.5: SQL Reference

Syntax

PIPE (

,

expression

NULL

)

(row-fullselect)

row-expression

expression

NULL

Description
(expression, ...)

Specifies a row value is returned from the function. The number of expressions (or NULL keywords) in
the list must match the RETURNS data type of the function and the value of each expression must be
assignable to the corresponding column or field in the RETURNS data type of the function.

row-fullselect
Specifies a fullselect that returns a single row with the number of columns corresponding to the
number of columns or fields in the RETURNS data type of the function. The value in each column
of the row returned by the fullselect must be assignable to the corresponding column or field in the
RETURNS data type of the function. If the result of the row fullselect is no rows, null values are
returned.

row-expression
Specifies the row value is returned from the function. The number of fields in the row must match the
RETURNS data type of the function and each field in the row must be assignable to the corresponding
field in the RETURNS data type of the function. If the row-expression and the RETURNS data type are
user-defined row types, the type names must be the same (SQLSTATE 42821).

expression
Specifies a scalar value is returned from the function. The RETURNS data type of the table function
must have a single column and the expression value must be assignable to that column.

NULL
Specifies that a null value is returned from the function. A null value is returned for each column or
row field.

Notes
• Locally declared procedures: The PIPE statement cannot be used within a procedure that is locally

declared in the compound SQL (compiled) statement of an SQL table function.
• Similar terms: An SQL table function that uses a PIPE statement is sometimes referred to as a

pipelined function.

Example
Create a table function called NEXT52 that returns a week number and date for the same day of the week
for the next 52 weeks, along with the associated ISO week number.

CREATE OR REPLACE FUNCTION NEXT52 (START_TS TIMESTAMP)
 RETURNS TABLE (WEEKNUM SMALLINT, WEEKNUM_DATE DATE, ISO_WEEK SMALLINT)
BEGIN
 DECLARE WN INTEGER DEFAULT 1;
 DECLARE WND DATE;
 SET WND = START_TS;
 WHILE (WN < 53) DO
 SET WND = WND + 7 DAYS;
 PIPE (WN, WND, WEEK_ISO(WND));
 SET WN = WN + 1;

Chapter 1. Structured Query Language (SQL) 1751

 END WHILE;
 RETURN;
END

PREPARE
The PREPARE statement is used by application programs to dynamically prepare an SQL statement for
execution. The PREPARE statement creates an executable SQL statement, called a prepared statement,
from a character string form of the statement, called a statement string.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization
For statements where authorization checking is performed at statement preparation time (DML), the
privileges held by the authorization ID of the statement must include those required to execute the SQL
statement specified by the PREPARE statement. The authorization ID of the statement might be affected
by the DYNAMICRULES bind option.

For statements where authorization checking is performed at statement execution time (DDL, GRANT, and
REVOKE statements), no authorization is required to use this statement; however, the authorization is
checked when the prepared statement is executed.

For statements involving tables that are protected with a security policy, the rules associated with the
security policy are always evaluated at statement execution time.

If the authorization ID of the statement holds EXPLAIN, SQLADM, or DBADM authority, the user may
prepare any statement; however, the ability to execute the statement is re-checked at statement
execution time.

Syntax
PREPARE statement-name

OUTPUT
INTO result-descriptor-name

INPUT INTO input-descriptor-name

FROM host-variable

expression

Description
statement-name

Names the prepared statement. If the name identifies an existing prepared statement, that previously
prepared statement is destroyed. The name must not identify a prepared statement that is the
SELECT statement of an open cursor.

OUTPUT INTO
If OUTPUT INTO is used, and the PREPARE statement executes successfully, information about
the output parameter markers in the prepared statement is placed in the SQLDA specified by result-
descriptor-name.
result-descriptor-name

Specifies the name of an SQLDA. (The DESCRIBE statement may be used as an alternative to this
clause.)

1752 IBM Db2 V11.5: SQL Reference

INPUT INTO
If INPUT INTO is used, and the PREPARE statement executes successfully, information about the
input parameter markers in the prepared statement is placed in the SQLDA specified by input-
descriptor-name. Input parameter markers are always considered nullable, regardless of usage.
input-descriptor-name

Specifies the name of an SQLDA. (The DESCRIBE statement may be used as an alternative to this
clause.)

FROM
Introduces the statement string. The statement string is the value of the specified host variable.
host-variable

Specifies a host variable that is described in the program in accordance with the rules for
declaring character string variables. It must be a fixed-length or varying-length character-string
variable that is less than the maximum statement size of 2 097 152 bytes. Note that a
CLOB(2097152) can contain a maximum size statement, but a VARCHAR cannot.

expression
An expression specifying the statement string. The expression must return a fixed-length or varying-
length character-string type that is less than the maximum statement size of 2 097 152 bytes.

Rules
• Rules for statement strings: The statement string must be an executable statement that can be

dynamically prepared. It must be one of the following SQL statements:

– ALTER
– CALL
– COMMENT
– COMMIT
– Compound SQL (compiled)
– Compound SQL (inlined)
– CREATE
– DECLARE GLOBAL TEMPORARY TABLE
– DELETE
– DROP
– EXPLAIN
– FLUSH EVENT MONITOR
– FLUSH PACKAGE CACHE
– GRANT
– INSERT
– LOCK TABLE
– MERGE
– REFRESH TABLE
– RELEASE SAVEPOINT
– RENAME
– REVOKE
– ROLLBACK
– SAVEPOINT
– select-statement
– SET COMPILATION ENVIRONMENT

Chapter 1. Structured Query Language (SQL) 1753

– SET CURRENT DECFLOAT ROUNDING MODE
– SET CURRENT DEFAULT TRANSFORM GROUP
– SET CURRENT DEGREE
– SET CURRENT EXPLAIN MODE
– SET CURRENT EXPLAIN SNAPSHOT
– SET CURRENT FEDERATED ASYNCHRONY
– SET CURRENT IMPLICIT XMLPARSE OPTION
– SET CURRENT ISOLATION
– SET CURRENT LOCALE LC_MESSAGES
– SET CURRENT LOCALE LC_TIME
– SET CURRENT LOCK TIMEOUT
– SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
– SET CURRENT MDC ROLLOUT MODE
– SET CURRENT OPTIMIZATION PROFILE
– SET CURRENT QUERY OPTIMIZATION
– SET CURRENT REFRESH AGE
– SET CURRENT TEMPORAL BUSINESS_TIME
– SET CURRENT TEMPORAL SYSTEM_TIME
– SET ENCRYPTION PASSWORD
– SET EVENT MONITOR STATE (only if DYNAMICRULES run behavior is in effect for the package)
– SET INTEGRITY
– SET PASSTHRU
– SET PATH
– SET ROLE (only if DYNAMICRULES run behavior is in effect for the package)
– SET SCHEMA
– SET SERVER OPTION
– SET SESSION AUTHORIZATION
– SET SQL_CCFLAGS
– SET USAGE LIST STATE (only if DYNAMICRULES run behavior is in effect for the package)
– SET variable
– TRANSFER OWNERSHIP (only if DYNAMICRULES run behavior is in effect for the package)
– TRUNCATE (only if DYNAMICRULES run behavior is in effect for the package)
– UPDATE

Notes
• Parameter markers: Although a statement string cannot include references to host variables, it can

include parameter markers. These can be replaced by the values of host variables when the prepared
statement is executed. In the case of a CALL statement, a parameter marker can also be used for OUT
and INOUT arguments to the procedure. After the CALL is executed, the returned value for the argument
will be assigned to the host variable corresponding to the parameter marker.

A parameter marker is a question mark (?) or a colon followed by a name (:name) that is used where a
host variable could be used if the statement string were a static SQL statement. For an explanation of
how parameter markers are replaced by values, see "OPEN" and "EXECUTE".

If the parameter marker is named, the name can include letters, numbers, and the symbols @, #, $, and
_. The name is not folded to upper case.

1754 IBM Db2 V11.5: SQL Reference

Named parameter markers have the same syntax as host variables, but the two are not interchangeable.
A host variable has a value and is used directly in a static SQL statement. A named parameter marker is
a placeholder for a value in a dynamic SQL statement and the value is provided when the statement is
executed.

There are two types of parameter markers:
Typed parameter marker

A parameter marker that is specified along with its target data type. It has the general form:

 CAST(? AS data-type)

This notation is not a function call, but a "promise" that the type of the parameter at run time will
be of the data type specified or some data type that can be converted to the specified data type. For
example, in:

 UPDATE EMPLOYEE
SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))
WHERE EMPNO = ?

the value of the argument of the TRANSLATE function will be provided at run time. The data type of
that value will either be VARCHAR(12), or some type that can be converted to VARCHAR(12).

Untyped parameter marker
A parameter marker that is specified without its target data type. It has the form of a single question
mark. The data type of an untyped parameter marker is provided by context. For example, the
untyped parameter marker in the predicate of the previous update statement is the same as the
data type of the EMPNO column.

Typed parameter markers can be used in dynamic SQL statements wherever a host variable is
supported and the data type is based on the promise made in the CAST function.

Untyped parameter markers can be used in dynamic SQL statements as long as the data type of the
parameter marker can be derived based on the context in the SQL statement (SQLSTATE 42610).

The following example results in an error since in the first context, c1 would resolve to a string data
type, but in the second context, c1 would resolve to a numeric data type:

SELECT 'Hello' || c1, 5 + c1 FROM (VALUES(?)) AS T(c1)

However, the following statement is successful since the parameter marker associated with the derived
column, c1, would resolve to a numeric data type for both contexts:

SELECT 7 + c1, 5 + c1 FROM (VALUES(?)) AS T(c1)

See "Determining data types of untyped expressions" for the rules for typing an untyped parameter
marker.

• When a PREPARE statement is executed, the statement string is parsed and checked for errors. If the
statement string is invalid, the error condition is reported in the SQLCA. Any subsequent EXECUTE or
OPEN statement that references this statement will also receive the same error (due to an implicit
prepare done by the system) unless the error has been corrected.

• Prepared statements can be referred to in the following kinds of statements, with the restrictions
shown:
In...

The prepared statement...
DESCRIBE

can be any statement
DECLARE CURSOR

must be SELECT
EXECUTE

must not be SELECT

Chapter 1. Structured Query Language (SQL) 1755

• A prepared statement can be executed many times. Indeed, if a prepared statement is not executed
more than once and does not contain parameter markers, it is more efficient to use the EXECUTE
IMMEDIATE statement rather than the PREPARE and EXECUTE statements.

• All prepared statements created by a unit of work remain in a prepared state until the application
terminates, with the following exceptions:

– A statement that is prepared within a package bound with KEEPDYNAMC NO and which is not used by
an open cursor declared with the WITH HOLD option is no longer in a prepared state when the unit of
work ends.

– A dynamic statement that is bound with KEEPDYNAMIC NO and which is used by an open cursor
declared with the WITH HOLD option is in a prepared state until the next unit of work boundary where
the cursor is closed.

Examples
Example 1: Prepare and execute a non-select-statement in a COBOL program. Assume the statement
is contained in a host variable HOLDER and that the program will place a statement string into the host
variable based on some instructions from the user. The statement to be prepared does not have any
parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :HOLDER
END-EXEC.
EXEC SQL EXECUTE STMT_NAME
END-EXEC.

Example 2: Prepare and execute a non-select-statement as in example 1, except code it for a C program.
Also assume the statement to be prepared can contain any number of parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :holder;
EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR :insert_da;

Assume that the following statement is to be prepared:

INSERT INTO DEPT VALUES(?, ?, ?, ?)

The columns in the DEPT table are defined as follows:

DEPT_NO CHAR(3) NOT NULL, -- department number
DEPTNAME VARCHAR(29), -- department name
MGRNO CHAR(6), -- manager number
ADMRDEPT CHAR(3) -- admin department number

To insert department number G01 named COMPLAINTS, which has no manager and reports to
department A00, the structure INSERT_DA should have the values in Table 152 on page 1756 before
issuing the EXECUTE statement.

Table 152. Required values for the INSERT_DA structure

SQLDA field Value

SQLDAID SQLDA

SQLDABC 192 (See note 1.)

SQLN 4

SQLD 4

SQLTYPE 452

SQLLEN 3

SQLDATA pointer to G01

SQLIND (See note 2.)

1756 IBM Db2 V11.5: SQL Reference

Table 152. Required values for the INSERT_DA structure (continued)

SQLDA field Value

SQLNAME

SQLTYPE 449

SQLLEN 29

SQLDATA pointer to COMPLAINTS

SQLIND pointer to 0

SQLNAME

SQLTYPE 453

SQLLEN 6

SQLDATA (See note 3.)

SQLIND pointer to -1

SQLNAME

SQLTYPE 453

SQLLEN 3

SQLDATA pointer to A00

SQLIND pointer to 0

SQLNAME

Note:

1. This value is for a PREPARE done from a 32-bit application. If the PREPARE was done in a 64-bit
application, then SQLDABC would have the value 240.

2. The value in SQLIND for this SQLVAR is ignored because the SQLTYPE identifies a non-nullable data
type.

3. The value in SQLDATA for this SQLVAR is ignored because the value of SQLIND indicates this is a null
value.

REFRESH TABLE
The REFRESH TABLE statement refreshes the data in a materialized query table.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CONTROL privilege on the table
• DATAACCESS authority on the schema containing the materialized query table
• DATAACCESS authority

Chapter 1. Structured Query Language (SQL) 1757

Syntax

REFRESH TABLE

,

table-name online-options query-optimization-options

INCREMENTAL

NOT INCREMENTAL

online-options
ALLOW NO ACCESS

ALLOW READ ACCESS

ALLOW WRITE ACCESS

query-optimization-options

ALLOW QUERY OPTIMIZATION

USING REFRESH DEFERRED TABLES
WITH REFRESH AGE ANY

Description
table-name

Identifies the table to be refreshed.

The name, including the implicit or explicit schema, must identify a table that already exists at the
current server. The table must allow the REFRESH TABLE statement (SQLSTATE 42809). This includes
materialized query tables defined with:

• REFRESH IMMEDIATE
• REFRESH DEFERRED

online-options
Specifies the accessibility of the table while it is being processed.
ALLOW NO ACCESS

Specifies that no other users can access the table while it is being refreshed, except if they are
using the Uncommitted Read isolation level.

ALLOW READ ACCESS
Specifies that other users have read-only access to the table while it is being refreshed.

ALLOW WRITE ACCESS
Specifies that other users have read and write access to the table while it is being refreshed.

To prevent a rollback of the entire statement because of a lock timeout when using the ALLOW READ
ACCESS or the ALLOW WRITE ACCESS option, it is recommended that you issue a SET CURRENT LOCK
TIMEOUT statement (specifying the WAIT option) before executing the REFRESH TABLE statement,
and to reset the special register to its previous value afterwards. Note, however, that the CURRENT
LOCK TIMEOUT register only impacts a specific set of lock types, not all lock types.

query-optimization-options
Specifies the query optimization options for the refresh of REFRESH DEFERRED materialized query
tables.
ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED TABLES WITH REFRESH AGE ANY

Specifies that when the CURRENT REFRESH AGE special register is set to 'ANY', the refresh of
table-name will allow REFRESH DEFERRED materialized query tables to be used to optimize the
query that is used to refresh table-name. If table-name is not a REFRESH DEFERRED materialized

1758 IBM Db2 V11.5: SQL Reference

query table, an error is returned (SQLSTATE 428FH). REFRESH IMMEDIATE materialized query
tables are always considered for query optimization.

INCREMENTAL
Specifies an incremental refresh for the table by considering only the delta portion (if any) of its
underlying tables or the content of an associated staging table (if one exists and its contents are
consistent). If such a request cannot be satisfied (that is, the system detects that the materialized
query table definition needs to be fully recomputed), an error (SQLSTATE 55019) is returned.

NOT INCREMENTAL
Specifies a full refresh for the table by recomputing the materialized query table definition.

If neither INCREMENTAL nor NOT INCREMENTAL is specified, the system will determine whether
incremental processing is possible; if not, full refresh will be performed. If a staging table is present
for the materialized query table that is to be refreshed, and incremental processing is not possible
because the staging table is in a pending state, an error is returned (SQLSTATE 428A8). Full refresh will
be performed if the staging table or the materialized query table is in an inconsistent state; otherwise, the
contents of the staging table will be used for incremental processing.

Rules
• If REFRESH TABLE is issued on a materialized query table that references one or more nicknames, the

authorization ID of the statement must have authority to select from the tables at the data source or
from all schemas of the tables at the data source (SQLSTATE 42501).

• The NOT INCREMENTAL clause must be used if REFRESH TABLE is issued on a system-maintained
column-organized MQT.

Notes
• When the statement is used to refresh a REFRESH IMMEDIATE materialized query table whose

underlying tables have been loaded, attached, or detached, the system might choose to incrementally
refresh the materialized query table with the delta portions of its underlying tables. When the statement
is used to refresh a REFRESH DEFERRED materialized query table with a supporting staging table, the
system might choose to incrementally refresh the materialized query table with the delta portions of its
underlying tables that have been captured in the staging table. However, there are some situations in
which this optimization is not possible, and a full refresh (that is, a recomputation of the materialized
query table definition) is necessary to ensure data integrity. You can explicitly request incremental
maintenance by specifying the INCREMENTAL option; if this optimization is not possible, the system
returns an error (SQLSTATE 55019).

• If the ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED TABLES WITH REFRESH AGE ANY
option is used, ensure that the refresh order is correct for REFRESH DEFERRED materialized query
tables. For example, consider two materialized query tables, MQT1 and MQT2, whose materialized
queries share the same underlying tables. The materialized query for MQT2 can be calculated
using MQT1, instead of the underlying tables. If separate statements are used to refresh these two
materialized query tables, and MQT2 is refreshed first, the system might choose to use the contents of
MQT1, which have not yet been refreshed, to refresh MQT2. In this case, MQT1 would contain current
data, but MQT2 could still contain stale data, even though both were refreshed at almost the same time.
The correct refresh order, if two REFRESH statements are used instead of one, is to refresh MQT1 first.

• If the materialized query table has an associated staging table, the staging table is pruned when the
refresh is successfully performed.

• Any label-based access control on the base tables or on the materialized query table does not interfere
with the refresh process. The refresh happens as if label-based access control were not present. The
automatic protection that is associated with the materialized query table when it is created ensures that
the data from the base tables remains protected when it is passed into the materialized query table.

• For materialized query table only, SET INTEGRITY FOR mqt_name IMMEDIATE CHECKED is the same as
REFRESH TABLE mqt_name.

Chapter 1. Structured Query Language (SQL) 1759

• Refresh use of materialized query tables: Materialized query tables are not used to evaluate the
select-statement during the processing of the REFRESH TABLE statement.

• Refresh isolation level: The isolation level used to evaluate the select-statement is the isolation level
specified on the isolation-level clause of the select-statement. Or, if the isolation-level clause was not
specified, the isolation level of the materialized query table recorded when CREATE TABLE or ALTER
TABLE was issued is used to evaluate the select-statement.

• Consider the statement:

 SET INTEGRITY FOR T IMMEDIATE CHECKED

In the following scenarios, neither the INCREMENTAL check option for T nor an incremental refresh of
T---if T is a materialized query table (MQT) or a staging table---is supported:

– New constraints have been added to T while it is in set integrity pending state
– When a LOAD REPLACE operation against T, it parents, or its underlying tables has taken place
– When the NOT LOGGED INITIALLY WITH EMPTY TABLE option has been activated after the last

integrity check on T, its parents, or its underlying tables
– The cascading effect of full processing, when any parent of T (or underlying table, if T is a

materialized query table or a staging table) has been checked for integrity non-incrementally
– If the table space containing the table or its parent (or underlying table of a materialized query

table or a staging table) has been rolled forward to a point in time, and the table and its parent (or
underlying table if the table is a materialized query table or a staging table) reside in different table
spaces

– T is an MQT, and a LOAD REPLACE or LOAD INSERT operation directly into T has taken place after the
last refresh

• Incremental processing will be used whenever the situation allows it, because it is more efficient.
The INCREMENTAL option is not needed in most cases. It is needed, however, to ensure that integrity
checks are indeed processed incrementally. If the system detects that full processing is needed to
ensure data integrity, an error is returned (SQLSTATE 55019).

• If the conditions for full processing described in the previous bullet are not satisfied, the system will
perform an incremental refresh (if it is a materialized query table) when the user does not specify the
NOT INCREMENTAL option for the statement SET INTEGRITY FOR T IMMEDIATE CHECKED.

RELEASE (connection)
The RELEASE (Connection) statement places one or more connections in the release-pending state.

Invocation
Although an interactive SQL facility might provide an interface that gives the appearance of interactive
execution, this statement can only be embedded within an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
None required.

Syntax
RELEASE server-name

1

host-variable

CURRENT

ALL

SQL

1760 IBM Db2 V11.5: SQL Reference

Notes:
1 Note that an application server named CURRENT or ALL can only be identified by a host variable or a
delimited identifier.

Description
server-name or host-variable

Identifies the application server by the specified server-name or a host-variable which contains the
server-name.

If a host-variable is specified, it must be a character string variable with a length attribute that is not
greater than 8, and it must not include an indicator variable. The server-name that is contained within
the host-variable must be left-aligned and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server. It must be listed in the
application requester's local directory.

The specified database-alias or the database-alias contained in the host variable must identify an
existing connection of the application process. If the database-alias does not identify an existing
connection, an error (SQLSTATE 08003) is raised.

CURRENT
Identifies the current connection of the application process. The application process must be in the
connected state. If not, an error (SQLSTATE 08003) is raised.

ALL or ALL SQL
Identifies all existing connections of the application process. This form of the RELEASE statement
places all existing connections of the application process in the release-pending state. All connections
will therefore be destroyed during the next commit operation. An error or warning does not occur if no
connections exist when the statement is executed.

Examples
• Example 1: The SQL connection to IBMSTHDB is no longer needed by the application. The following

statement will cause it to be destroyed during the next commit operation:

 EXEC SQL RELEASE IBMSTHDB;

• Example 2: The current connection is no longer needed by the application. The following statement will
cause it to be destroyed during the next commit operation:

 EXEC SQL RELEASE CURRENT;

• Example 3: If an application has no need to access the databases after a commit but will continue to
run for a while, then it is better not to tie up those connections unnecessarily. The following statement
can be executed before the commit to ensure all connections will be destroyed at the commit:

 EXEC SQL RELEASE ALL;

RELEASE SAVEPOINT
The RELEASE SAVEPOINT statement is used to indicate that the application no longer wishes to have
the named savepoint maintained. After this statement has been invoked, rollback to the savepoint is no
longer possible.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Chapter 1. Structured Query Language (SQL) 1761

Authorization
None required.

Syntax

RELEASE
TO

SAVEPOINT savepoint-name

Description
savepoint-name

Specifies the savepoint that is to be released. Any savepoints nested within the named savepoint
are also released. Rollback to that savepoint, or any savepoint nested within it, is no longer possible.
If the named savepoint does not exist in the current savepoint level (see the "Rules" section in the
description of the SAVEPOINT statement), an error is returned (SQLSTATE 3B001). The specified
savepoint-name cannot begin with 'SYS' (SQLSTATE 42939).

Notes
• The name of the savepoint that was released can now be reused in another SAVEPOINT statement,

regardless of whether the UNIQUE keyword was specified on an earlier SAVEPOINT statement
specifying this same savepoint name.

Example
Release a savepoint named SAVEPOINT1.

 RELEASE SAVEPOINT SAVEPOINT1

RENAME
The RENAME statement renames an existing table or index.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CONTROL privilege on the table or index
• Ownership of the table or index, as recorded in the OWNER column of the SYSCAT.TABLES catalog view

for a table, and the SYSCAT.INDEXES catalog view for an index
• ALTERIN privilege on the schema
• SCHEMAADM authority on the schema
• DBADM authority

1762 IBM Db2 V11.5: SQL Reference

Syntax

RENAME
TABLE

source-table-name

INDEX source-index-name

TO target-identifier

Description
TABLE source-table-name

Names the existing table that is to be renamed. The name, including the schema name, must identify
a table that already exists in the database (SQLSTATE 42704). It must not be the name of a catalog
table (SQLSTATE 42832), a materialized query table, a typed table (SQLSTATE 42997), a created
temporary table, a declared global temporary table (SQLSTATE 42995), a nickname, or an object other
than a table or an alias (SQLSTATE 42809). The TABLE keyword is optional.

The name must not identify a table that is referenced in a row permission definition or a column mask
definition (SQLSTATE 42917).

INDEX source-index-name
Names the existing index that is to be renamed. The name, including the schema name, must identify
an index that already exists in the database (SQLSTATE 42704). It must not be the name of an index
on a created temporary table or a declared global temporary table (SQLSTATE 42995). The schema
name must not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT (SQLSTATE 42832).

target-identifier
Specifies the new name for the table or index without a schema name. The schema name of the
source object is used to qualify the new name for the object. The qualified name must not identify a
table, view, alias, or index that already exists in the database (SQLSTATE 42710).

Rules
When renaming a table, the source table must not:

• Be referenced in any existing materialized query table definitions
• Be referenced in any existing statistical view definition. This includes the system-generated statistical

view that is created as part of index creation which includes an expression-based key.

Note: With the release of Db2 11.5.7, renaming of tables with an index having an expression-based key
is possible, if the expression does not contain qualified names.

• Be the subject table of an existing trigger
• Be a parent or dependent table in any referential integrity constraints
• Be the scope of any existing reference column
• Be referenced in a spatial registration with Spatial Extender. Unregister the spatial column or columns,

and then reregister them after the rename is completed.
• Be referenced by an XSR object that has been enabled for decomposition

An error (SQLSTATE 42986) is returned if the source table violates one or more of these conditions.

When renaming an index:

• The source index must not be a system-generated index for an implementation table on which a typed
table is based (SQLSTATE 42858).

Notes
• CHECK constraints with three part names are not supported and will return SQL0750. Use only the

column name instead.
• Catalog entries are updated to reflect the new table or index name.

Chapter 1. Structured Query Language (SQL) 1763

• All authorizations associated with the source table or index name are transferred to the new table or
index name (the authorization catalog tables are updated appropriately).

• Indexes defined over the source table are transferred to the new table (the index catalog tables are
updated appropriately).

• RENAME TABLE invalidates any packages that are dependent on the source table. RENAME INDEX
invalidates any packages that are dependent on the source index.

• If an alias is used for the source-table-name, it must resolve to a table name. The alias is not changed
by the RENAME statement and continues to refer to the old table name. The table is renamed within its
original schema

• A table with primary key or unique constraints can be renamed if none of the primary key or unique
constraints are referenced by any foreign key.

Examples
• Example 1: Change the name of the EMP table to EMPLOYEE.

 RENAME TABLE EMP TO EMPLOYEE
 RENAME TABLE ABC.EMP TO EMPLOYEE

• Example 2: Change the name of the index NEW-IND to IND.

 RENAME INDEX NEW-IND TO IND
 RENAME INDEX ABC.NEW-IND TO IND

RENAME STOGROUP
The RENAME STOGROUP statement renames an existing storage group.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include either SYSCTRL or SYSADM
authority.

Syntax
RENAME STOGROUP source-storagegroup-name TO target-storagegroup-name

Description
source-storagegroup-name

Identifies the storage group to rename; source-storagegroup-name must identify a storage group that
exists at the current server (SQLSTATE 42704). This is a one-part name.

target-storagegroup-name
Names the storage group. This is a one-part name. It is an SQL identifier (either ordinary or
delimited). The target-storagegroup-name must not identify a storage group that already exists in the
catalog (SQLSTATE 42710). The target-storagegroup-name must not begin with the characters 'SYS'
(SQLSTATE 42939).

1764 IBM Db2 V11.5: SQL Reference

Rules
• The RENAME STOGROUP statement cannot be executed while a database partition server is being

added (SQLSTATE 55071).

RENAME TABLESPACE
The RENAME TABLESPACE statement renames an existing table space.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include either SYSCTRL or SYSADM
authority.

Syntax
RENAME TABLESPACE source-tablespace-name TO target-tablespace-name

Description
source-tablespace-name

Specifies the existing table space that is to be renamed, as a one-part name. It is an SQL identifier
(either ordinary or delimited). The table space name must identify a table space that already exists in
the catalog (SQLSTATE 42704).

target-tablespace-name
Specifies the new name for the table space, as a one-part name. It is an SQL identifier (either ordinary
or delimited). The new table space name must not identify a table space that already exists in the
catalog (SQLSTATE 42710), and it cannot start with 'SYS' (SQLSTATE 42939).

Rules
• The SYSCATSPACE table space cannot be renamed (SQLSTATE 42832).
• Any table spaces with "rollforward pending" or "rollforward in progress" states cannot be renamed

(SQLSTATE 55039)

Notes
• Renaming a table space will update the minimum recovery time of a table space to the point in time

when the rename took place. This implies that a roll forward at the table space level must be to at least
this point in time.

• The new table space name must be used when restoring a table space from a backup image, where the
rename was done after the backup was created.

Example
Change the name of the table space USERSPACE1 to DATA2000:

 RENAME TABLESPACE USERSPACE1 TO DATA2000

Chapter 1. Structured Query Language (SQL) 1765

REPEAT
The REPEAT statement executes a statement or group of statements until a search condition is true.

Invocation
This statement can be embedded in an:

• SQL procedure definition
• Compound SQL (compiled) statement
• Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL function definition, or
SQL trigger definition. It is not an executable statement and cannot be dynamically prepared.

Authorization
No privileges are required to invoke the REPEAT statement. However, the authorization ID of the
statement must hold the necessary privileges to invoke the SQL statements and search condition that
are embedded in the REPEAT statement.

Syntax

label:

REPEAT SQL-routine-statement UNTIL search-condition END REPEAT

label

SQL-routine-statement

SQL-procedure-statement ;

SQL-function-statement ;

Description
label

Specifies the label for the REPEAT statement. If the beginning label is specified, that label can be
specified on LEAVE and ITERATE statements. If an ending label is specified, a matching beginning
label also must be specified.

SQL-procedure-statement
Specifies the SQL statements to execute within the loop. SQL-procedure-statement is only applicable
when in the context of an SQL procedure or a compound SQL (compiled) statement. See SQL-
procedure-statement in "Compound SQL (compiled)" statement.

SQL-function-statement
Specifies the SQL statements to execute within the loop. SQL-function-statement is only applicable
when in the context of an SQL trigger, SQL function, or SQL method. See SQL-function-statement in
"FOR".

search-condition
The search-condition is evaluated after each execution of the REPEAT loop. If the condition is true, the
loop will exit. If the condition is unknown or false, the looping continues.

1766 IBM Db2 V11.5: SQL Reference

Example
A REPEAT statement fetches rows from a table until the not_found condition handler is invoked.

 CREATE PROCEDURE REPEAT_STMT(OUT counter INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE v_firstnme VARCHAR(12);
 DECLARE v_midinit CHAR(1);
 DECLARE v_lastname VARCHAR(15);
 DECLARE at_end SMALLINT DEFAULT 0;
 DECLARE not_found CONDITION FOR SQLSTATE '02000';
 DECLARE c1 CURSOR FOR
 SELECT firstnme, midinit, lastname
 FROM employee;
 DECLARE CONTINUE HANDLER FOR not_found
 SET at_end = 1;
 OPEN c1;
 fetch_loop:
 REPEAT
 FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
 SET v_counter = v_counter + 1;
 UNTIL at_end > 0
 END REPEAT fetch_loop;
 SET counter = v_counter;
 CLOSE c1;
 END

RESIGNAL
The RESIGNAL statement is used within a condition handler to resignal the condition that activated the
handler, or to raise an alternate condition so that it can be processed at a higher level. It causes an
exception, warning, or not found condition to be returned, along with optional message text.

Invocation
This statement can only be embedded in a condition handler within a compound SQL (compiled)
statement. The compound SQL (compiled) statement can be embedded in an SQL procedure definition,
SQL function definition, or SQL trigger definition.

Authorization
If a module condition is referenced, the privileges held by the authorization ID of the statement must
include EXECUTE privilege on the module or EXECUTEIN privilege or DATAACCESS on the schema
containing the module.

Syntax
RESIGNAL

SQLSTATE
VALUE

sqlstate-string-constant

sqlstate-string-variable

condition-name

signal-information

signal-information
SET MESSAGE_TEXT = SQL-variable-name

SQL-parameter-name

diagnostic-string-constant

Chapter 1. Structured Query Language (SQL) 1767

Description
SQLSTATE VALUE sqlstate-string-constant

The specified string constant represents an SQLSTATE. It must be a character string constant with
exactly 5 characters that follow the rules for SQLSTATEs:

• Each character must be from the set of digits ("0" through "9") or non-accented upper case letters
("A" through "Z")

• The SQLSTATE class (first two characters) cannot be "00", since this represents successful
completion.

If the SQLSTATE does not conform to these rules, an error is raised (SQLSTATE 428B3).
SQLSTATE VALUE

Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can be used. The specified
value must follow the rules for SQLSTATEs:

• Each character must be from the set of digits ("0" through "9") or upper case letters ("A" through
"Z") without diacritical marks

• The SQLSTATE class (first two characters) cannot be "00", since this represents successful
completion.

If the SQLSTATE does not conform to these rules, an error is returned.
sqlstate-string-constant

The sqlstate-string-constant must be a character string constant with exactly 5 characters.
sqlstate-string-variable

The specified SQL variable or SQL parameter must be of data type CHAR(5) and must not be the
null value.

condition-name
Specifies the name of a condition that will be returned. The condition-name must be declared within
the compound-statement or identify a condition that exists at the current server.

SET MESSAGE_TEXT =
Specifies a string that describes the error or warning. The string is returned in the sqlerrmc field of
the SQLCA. If the actual string is longer than 70 bytes, it is truncated without warning.
SQL-variable-name

Identifies an SQL variable, declared within the compound statement, that contains the message
text.

SQL-parameter-name
Identifies an SQL parameter, defined for the routine, that contains the message text. The SQL
parameter must be defined as a CHAR or VARCHAR data type.

diagnostic-string-constant
Specifies a character string constant that contains the message text.

Notes
• If a RESIGNAL statement is issued without specifying an SQLSTATE clause or a condition-name, the

identical condition that invoked the handler is returned. The SQLSTATE, SQLCODE and the SQLCA
associated with the condition are unchanged.

• If a RESIGNAL statement is issued using a condition-name that has no associated SQLSTATE value and
the condition is not handled, SQLSTATE 45000 is returned and the SQLCODE is set to -438. Note that
such a condition will not be handled by a condition handler for SQLSTATE 45000 that is within the scope
of the routine issuing the RESIGNAL statement.

• If a RESIGNAL statement is issued using an SQLSTATE value or a condition-name with an associated
SQLSTATE value, the SQLCODE returned is based on the SQLSTATE value as follows:

– If the specified SQLSTATE class is either "01" or "02" a warning or not found condition is returned and
the SQLCODE is set to +438.

1768 IBM Db2 V11.5: SQL Reference

– Otherwise, an exception condition is returned and the SQLCODE is set to -438.
• A RESIGNAL statement has the indicated fields of the SQLCA set as follows:

– sqlerrd fields are set to zero
– sqlwarn fields are set to blank
– sqlerrmc is set to the first 70 bytes of MESSAGE_TEXT
– sqlerrml is set to the length of sqlerrmc, or to zero if no SET MESSAGE_TEXT clause is specified
– sqlerrp is set to ROUTINE

• Refer to the "Notes" section under "SIGNAL statement" for further information about SQLSTATE values.

Example
This example detects a division by zero error. The IF statement uses a SIGNAL statement to invoke
the overflow condition handler. The condition handler uses a RESIGNAL statement to return a different
SQLSTATE value to the client application.

 CREATE PROCEDURE divide (IN numerator INTEGER,
 IN denominator INTEGER,
 OUT result INTEGER)
 LANGUAGE SQL
 BEGIN
 DECLARE overflow CONDITION FOR SQLSTATE '22003';
 DECLARE CONTINUE HANDLER FOR overflow
 RESIGNAL SQLSTATE '22375';
 IF denominator = 0 THEN
 SIGNAL overflow;
 ELSE
 SET result = numerator / denominator;
 END IF;
 END

RETURN
The RETURN statement is used to return from a routine. For SQL functions or methods, it returns the
result of the function or method. For an SQL procedure, it optionally returns an integer status value.

Invocation
This statement can be embedded in an SQL function, SQL method, or SQL procedure. It is not an
executable statement and cannot be dynamically prepared.

Authorization
No privileges are required to invoke the RETURN statement. However, the authorization ID of the
statement must hold the necessary privileges to invoke any expression or fullselect that is embedded
in the RETURN statement.

Syntax
RETURN

expression

NULL

WITH

,

common-table-expression

fullselect

Chapter 1. Structured Query Language (SQL) 1769

Description
expression

Specifies a value that is returned from the routine:

• If the routine is a function or method other than a compiled table function, one of expression, NULL,
or fullselect must be specified (SQLSTATE 42631) and the data type of the result must be assignable
to the RETURNS type of the routine (SQLSTATE 42866).

• If the routine is an inlined table function, a scalar expression (other than a scalar fullselect) cannot
be specified (SQLSTATE 428F1). If the routine is a compiled table function, an expression cannot be
specified.

• If the routine is a procedure, the data type of expression must be INTEGER (SQLSTATE 428F2). A
procedure cannot return NULL or a fullselect.

NULL
Specifies that the function or method returns a null value of the data type defined in the RETURNS
clause. NULL cannot be specified for a RETURN from a table function, row function, or procedure.

WITH common-table-expression
Defines a common table expression for use with the fullselect that follows.
fullselect

Specifies the row or rows to be returned for the function. The number of columns in the fullselect
must match the number of columns in the function result (SQLSTATE 42811). In addition, the
static column types of the fullselect must be assignable to the declared column types of the
function result, using the rules for assignment to columns (SQLSTATE 42866).

The fullselect cannot be specified for a RETURN from a procedure or a compiled table function.

If the routine is a scalar function or method, then the fullselect must return one column (SQLSTATE
42823) and, at most, one row (SQLSTATE 21000).

If the routine is a row function, it must return, at most, one row (SQLSTATE 21505). However, one
or more columns can be returned.

If the routine is an inlined table function, it can return zero or more rows with one or more
columns. If the fullselect has zero result rows, no row is returned to the result table by the
RETURN statement.

Rules
• The execution of an SQL function or method must end with a RETURN statement (SQLSTATE 42632).
• In an SQL table function using a compound SQL (compiled) statement, an expression, NULL, or

fullselectcannot be specified. Rows are returned from the function using the PIPE statement and the
RETURN statement is required as the last statement to execute when the function exits (SQLSTATE
2F005).

• In an SQL table or row function using a compound SQL (inlined) statement, the only RETURN statement
allowed is the one at the end of the compound statement. (SQLSTATE 429BD).

Notes
• When a value is returned from a procedure, the caller can access the value:

– using the GET DIAGNOSTICS statement to retrieve the DB2_RETURN_STATUS when the SQL
procedure was called from another SQL procedure

– using the parameter bound for the return value parameter marker in the escape clause CALL syntax
(?=CALL...) in a CLI application

– directly from the sqlerrd[0] field of the SQLCA, after processing the CALL of an SQL procedure.
This field is only valid if the SQLCODE is zero or positive (assume a value of -1 otherwise).

1770 IBM Db2 V11.5: SQL Reference

Example
Use a RETURN statement to return from an SQL procedure with a status value of zero if successful, and
-200 if not.

 BEGIN
 ...
 GOTO FAIL;
 ...
 SUCCESS: RETURN 0;
 FAIL: RETURN -200;
 END

REVOKE (database authorities)
This form of the REVOKE statement revokes authorities that apply to the entire database.

Invocation
This statement can be embedded in an application program or issued by using dynamic SQL statements.
It is an executable statement that can be dynamically prepared only if DYNAMICRULES run behavior is in
effect for the package (SQLSTATE 42509).

Authorization
To revoke ACCESSCTRL, CREATE_SECURE_OBJECT, DATAACCESS, DBADM, or SECADM authority,
SECADM authority is needed.

Note: In Db2 11.5.7 and later, to revoke CREATE_EXTERNAL_ROUTINE or
CREATE_NOT_FENCED_ROUTINE authority, SYSADM, SECADM or ACCESSCTRL authority is needed.

To revoke other authorities, ACCESSCTRL or SECADM authority is needed.

Chapter 1. Structured Query Language (SQL) 1771

Syntax

REVOKE

,

ACCESSCTRL

BINDADD

CONNECT

CREATETAB

CREATE_EXTERNAL_ROUTINE

CREATE_NOT_FENCED_ROUTINE

CREATE_SECURE_OBJECT

DBADM

DATAACCESS

EXPLAIN

IMPLICIT_SCHEMA

LOAD

QUIESCE_CONNECT

SECADM

SQLADM

WLMADM

ON DATABASE FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL

Description
ACCESSCTRL

Revokes the authority to grant and revoke most database authorities and object privileges.
BINDADD

Revokes the authority to create packages. The creator of a package automatically has the CONTROL
privilege on that package and retains this privilege even if the creator's BINDADD authority is later
revoked.

The BINDADD authority cannot be revoked from an authorization-name holding DBADM authority
without also revoking the DBADM authority.

CONNECT
Revokes the authority to access the database.

Revoking the CONNECT authority from a user does not affect any privileges that were granted to that
user on objects in the database. If the user is again granted the CONNECT authority, all previously
held privileges are still valid (assuming they were not explicitly revoked).

The CONNECT authority cannot be revoked from an authorization-name holding DBADM authority
without also revoking the DBADM authority (SQLSTATE 42504).

1772 IBM Db2 V11.5: SQL Reference

CREATETAB
Revokes the authority to create tables. The creator of a table automatically has the CONTROL privilege
on that table, and retains this privilege even if the creator's CREATETAB authority is later revoked.

The CREATETAB authority cannot be revoked from an authorization-name holding DBADM authority
without also revoking the DBADM authority (SQLSTATE 42504).

CREATE_EXTERNAL_ROUTINE
Revokes the authority to register external routines. When an external routine is registered, it continues
to exist, even if CREATE_EXTERNAL_ROUTINE is later revoked from the authorization ID that
registered the routine.

CREATE_EXTERNAL_ROUTINE authority cannot be revoked from an authorization-name holding
DBADM or CREATE_NOT_FENCED_ROUTINE authority without also revoking DBADM or
CREATE_NOT_FENCED_ROUTINE authority (SQLSTATE 42504).

CREATE_NOT_FENCED_ROUTINE
Revokes the authority to register routines that run in the database manager's process.
When a routine is registered as not fenced, it continues to run in this manner, even if
CREATE_NOT_FENCED_ROUTINE is later revoked from the authorization ID that registered the
routine.

CREATE_NOT_FENCED_ROUTINE authority cannot be revoked from an authorization-name holding
DBADM authority without also revoking the DBADM authority (SQLSTATE 42504).

CREATE_SECURE_OBJECT
Revokes the authority to create secure triggers and secure functions. Revokes the authority to alter
the secure attribute of such objects as well.

DATAACCESS
Revokes the authority to access data.

DBADM
Revokes the DBADM authority.

DBADM authority cannot be revoked from PUBLIC (because it cannot be granted to PUBLIC).

CAUTION: Revoking DBADM authority does not automatically revoke any privileges that were
held by the authorization-name on objects in the database.

EXPLAIN
Revokes the authority to explain, prepare, and describe static and dynamic statements without
requiring access to data.

IMPLICIT_SCHEMA
Revokes the authority to implicitly create a schema. It does not affect the ability to create objects in
existing schemas or to process a CREATE SCHEMA statement.

IMPLICIT_SCHEMA authority cannot be revoked from an authorization-name holding DBADM
authority without also revoking the DBADM authority (SQLSTATE 42504).

LOAD
Revokes the authority to LOAD in this database.

QUIESCE_CONNECT
Revokes the authority to access the database while it is quiesced.

SECADM
Revokes the authority to administer database security.

SQLADM
Revokes the authority to monitor and tune SQL statements.

WLMADM
Revokes the authority to manage workload manager objects.

FROM
Indicates from whom the authorities are revoked.

Chapter 1. Structured Query Language (SQL) 1773

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user that is issuing the
statement (SQLSTATE 42502).

PUBLIC
Revokes the authorities from PUBLIC.

BY ALL
Revokes each named privilege from all named users who were explicitly granted those privileges,
regardless of who granted them. This behavior is the default.

Rules
Security administrator mandatory: The database must have at least one authorization ID of type USER
with the SECADM authority. The SECADM authority cannot be revoked from every user authorization ID
(SQLSTATE 42523).

• For each authorization-name specified, if USER, GROUP, or ROLE is not specified, then:

– For all rows for the specified object in the SYSCAT.DBAUTH catalog view where the grantee is
authorization-name:

- USER is assumed if all rows have a GRANTEETYPE of 'U'.
- GROUP is assumed if all rows have a GRANTEETYPE of 'G'.
- ROLE is assumed if all rows have a GRANTEETYPE of 'R'.
- An error is returned (SQLSTATE 56092) if all rows do not have the same value for GRANTEETYPE.

Notes
• Revoking a specific privilege does not necessarily revoke the ability to complete a task. A user can

proceed with a task if other privileges are held by PUBLIC, a group, or a role, or if the user holds a
higher-level authority, such as DBADM.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products.

– CREATE_NOT_FENCED can be specified in place of CREATE_NOT_FENCED_ROUTINE.
– SYSTEM can be specified in place of DATABASE.
– NOT INCLUDING DEPENDENT PRIVILEGES can be specified as a syntax alternative.

Examples
• Example 1: Given that USER6 is only a user and not a group, revoke the privilege to create tables from

the user USER6.

 REVOKE CREATETAB ON DATABASE FROM USER6

• Example 2: Revoke BINDADD authority on the database from a group named D024. Two rows exist
in the SYSCAT.DBAUTH catalog view for this grantee; one with a GRANTEETYPE of U and one with a
GRANTEETYPE of G.

 REVOKE BINDADD ON DATABASE FROM GROUP D024

1774 IBM Db2 V11.5: SQL Reference

In this case, the GROUP keyword must be specified; otherwise, an error occurs (SQLSTATE 56092).
• Example 3: Revoke security administrator authority from user Walid.

 REVOKE SECADM ON DATABASE FROM USER Walid

• Example 4: A user with SECADM authority revokes the CREATE_SECURE_OBJECT authority from user
Haytham.

 REVOKE CREATE_SECURE_OBJECT ON DATABASE FROM USER HAYTHAM

REVOKE (exemption)
This form of the REVOKE statement revokes an exemption to a label-based access control (LBAC) access
rule.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
REVOKE EXEMPTION ON RULE DB2LBACREADARRAY

DB2LBACREADSET

DB2LBACREADTREE

DB2LBACWRITEARRAY WRITEDOWN

WRITEUP

DB2LBACWRITESET

DB2LBACWRITETREE

ALL

FOR

policy-name FROM

,

USER

GROUP

ROLE

authorization-name

Description
EXEMPTION ON RULE

Revokes the exemption on an access rule.
DB2LBACREADARRAY

Revokes an exemption on the predefined DB2LBACREADARRAY rule.
DB2LBACREADSET

Revokes an exemption on the predefined DB2LBACREADSET rule.
DB2LBACREADTREE

Revokes an exemption on the predefined DB2LBACREADTREE rule.

Chapter 1. Structured Query Language (SQL) 1775

DB2LBACWRITEARRAY
Revokes an exemption on the predefined DB2LBACWRITEARRAY rule.
WRITEDOWN

Specifies that the exemption only applies to write down.
WRITEUP

Specifies that the exemption only applies to write up.
DB2LBACWRITESET

Revokes an exemption on the predefined DB2LBACWRITESET rule.
DB2LBACWRITETREE

Revokes an exemption on the predefined DB2LBACWRITETREE rule.
ALL

Revokes the exemptions on all of the predefined rules.
FOR policy-name

Specifies the name of the security policy on which exemptions are to be revoked.
FROM

Specifies from whom the exemption is revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name.
authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– For all rows for the specified object in the SYSCAT.SECURITYPOLICYEXEMPTIONS catalog view
where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is returned (SQLSTATE 56092).

Examples
• Example 1: Revoke the exemption on access rule DB2LBACREADSET for security policy DATA_ACCESS

from user WALID.

 REVOKE EXEMPTION ON RULE DB2LBACREADSET FOR DATA_ACCESS
 FROM USER WALID

• Example 2: Revoke an exemption on access rule DB2LBACWRITEARRAY with the WRITEDOWN option
for security policy DATA_ACCESS from user BOBBY.

 REVOKE EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEDOWN
 FOR DATA_ACCESS FROM USER BOBBY

• Example 3: Revoke an exemption on access rule DB2LBACWRITEARRAY with the WRITEUP option for
security policy DATA_ACCESS from user BOBBY.

 REVOKE EXEMPTION ON RULE DB2LBACWRITEARRAY WRITEUP
 FOR DATA_ACCESS FROM USER BOBBY

1776 IBM Db2 V11.5: SQL Reference

REVOKE (global variable privileges)
This form of the REVOKE statement revokes one or more privileges on a created global variable.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include database ACCESSCTRL or
SECADM authority or ACCESSCTRL authority on the schema containing the global variable.

Syntax

REVOKE ALL
PRIVILEGES

,

READ

WRITE

ON VARIABLE variable-name FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL RESTRICT

Description
ALL PRIVILEGES

Revokes all privileges held by an authorization-name for the specified global variable. If ALL is not
specified, READ or WRITE must be specified. READ or WRITE must not be specified more than once.

READ
Revokes the privilege to read the value of the specified global variable.

WRITE
Revokes the privilege to assign a value to the specified global variable.

ON VARIABLE variable-name
Identifies the global variable on which one or more privileges are to be revoked. The variable-name
must identify a global variable that exists at the current server and is not a module variable (SQLSTATE
42704).

FROM
Specifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group.

Chapter 1. Structured Query Language (SQL) 1777

ROLE
Specifies that the authorization-name identifies an existing role at the current server (SQLSTATE
42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list of authorization IDs
cannot include the authorization ID of the user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes the specified privileges from PUBLIC.

BY ALL
Revokes each specified privilege from all named users who were explicitly granted those privileges,
regardless of who granted them. This is the default behavior.

RESTRICT
Specifies that the statement is to fail if any objects depend on the privileges being revoked. This is the
default behavior.

Rules
• For each authorization-name specified, if none of the keywords USER, GROUP, or ROLE is specified, then

for all rows for the specified object in the SYSCAT.VARIABLEAUTH catalog view where the grantee is
authorization-name:

– If GRANTEETYPE is 'U', USER is assumed.
– If GRANTEETYPE is 'G', GROUP is assumed.
– If GRANTEETYPE is 'R', ROLE is assumed.
– If GRANTEETYPE does not have the same value, an error is returned (SQLSTATE 56092.

• If any SQL function, SQL method, procedure, view, trigger, or another global variable contains a global
variable and depends on the privilege being revoked, the revoke operation will fail (SQLSTATE 42893).

Notes
• If the READ privilege on a global variable is revoked, packages with a dependency to write the value

of the global variable (for example, by the SET statement) are not affected, because writing to a global
variable is controlled by the WRITE privilege on that global variable.

• If the WRITE privilege on a global variable is revoked, packages with a dependency to read the value of
the global variable are not affected, because reading from a global variable is controlled by the READ
privilege on that global variable.

• Revoking a privilege does not necessarily impair the ability to perform the action. A user might be
able to proceed if the required privilege is held through membership in a different group or role, or by
PUBLIC.

Example
Revoke the WRITE privilege on global variable MYSCHEMA.MYJOB_PRINTER from user ZUBIRI.

 REVOKE WRITE ON VARIABLE MYSCHEMA.MYJOB_PRINTER FROM ZUBIRI

REVOKE (index privileges)
This form of the REVOKE statement revokes the CONTROL privilege on an index.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

1778 IBM Db2 V11.5: SQL Reference

Authorization
The privileges held by the authorization ID of the statement must include ACCESSCTRL or SECADM
authority or ACCESSCTRL authority on the schema containing the index.

Syntax
REVOKE CONTROL ON INDEX index-name FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL

Description
CONTROL

Revokes the privilege to drop the index. This is the CONTROL privilege for indexes, which is
automatically granted to creators of indexes.

ON INDEX index-name
Specifies the name of the index on which the CONTROL privilege is to be revoked.

FROM
Indicates from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name.
authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Revokes the privileges from PUBLIC.

BY ALL
Revokes the privilege from all named users who were explicitly granted that privilege, regardless of
who granted it. This is the default behavior.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– For all rows for the specified object in the SYSCAT.INDEXAUTH catalog view where the grantee is
authorization-name:

- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is returned (SQLSTATE 56092).

Chapter 1. Structured Query Language (SQL) 1779

Notes
• Revoking a specific privilege does not necessarily revoke the ability to perform the action. A user can

proceed with a task if other privileges are held by PUBLIC, a group, or a role, or if the user holds
authorities such as ALTERIN on the schema of an index.

Examples
• Example 1: Given that USER4 is only a user and not a group, revoke the privilege to drop an index

DEPTIDX from the user USER4.

 REVOKE CONTROL ON INDEX DEPTIDX FROM KIESLER

• Example 2: Revoke the privilege to drop an index LUNCHITEMS from the user CHEF and the group
WAITERS.

 REVOKE CONTROL ON INDEX LUNCHITEMS
 FROM USER CHEF, GROUP WAITERS

REVOKE (module privileges)
This form of the REVOKE statement revokes the privilege on a module.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include ACCESSCTRL or SECADM
authority or ACCESSCTRL authority on the schema containing the module.

Note: In Db2 11.5.7 and later, the needed authorities are different if the module is SYSIBMADM.UTL_DIR.
In this case, the authorities that are held by the authorization ID of the statement must include at least
one of ACCESSCTRL, SECADM, or SYSADM.

Syntax
REVOKE EXECUTE ON MODULE module-name FROM

USER

GROUP

ROLE

authorization-name

PUBLIC

Description
EXECUTE

Revokes the privilege to reference published module objects. This includes revoking the privilege to:

• Execute any published routine defined in the module.
• Read from and write to any published global variables defined in the module.
• Reference any published user-defined types defined in the module.

1780 IBM Db2 V11.5: SQL Reference

• Reference any published conditions defined in the module.

ON MODULE module-name
Identifies the module on which the privilege is revoked. The module-name must identify a module that
exists at the current server (SQLSTATE 42704).

FROM
Indicates from whom the privilege is revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name
Lists one or more authorization IDs. The same authorization-name must not be specified more
than once

PUBLIC
Grants the privilege to a set of users (authorization IDs). For more information, see "Authorization,
privileges and object ownership".

Example
The following example demonstrate how to revoke the EXECUTE privilege from a module named myModa
from user jones

 REVOKE EXECUTE ON MODULE MYMODA FROM JONES

REVOKE (package privileges)
This form of the REVOKE statement revokes CONTROL, BIND, and EXECUTE privileges against a package.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• CONTROL privilege on the referenced package
• ACCESSCTRL on the schema containing the package
• ACCESSCTRL or SECADM authority

ACCESSCTRL or SECADM authority or ACCESSCTRL authority on the schema containing the package is
required to revoke the CONTROL privilege.

Chapter 1. Structured Query Language (SQL) 1781

Syntax

REVOKE

,

BIND

CONTROL

EXECUTE
1

ON PACKAGE
2

package-name FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL

Notes:
1 RUN can be used as a synonym for EXECUTE.
2 PROGRAM can be used as a synonym for PACKAGE.

Description
BIND

Revokes the privilege to execute BIND or REBIND on-or to add a new version of- the referenced
package.

The BIND privilege cannot be revoked from an authorization-name that holds CONTROL privilege on
the package, without also revoking the CONTROL privilege.

CONTROL
Revokes the privilege to drop the package and to extend package privileges to other users.

Revoking CONTROL does not revoke the other package privileges.

EXECUTE
Revokes the privilege to execute the package.

The EXECUTE privilege cannot be revoked from an authorization-name that holds CONTROL privilege
on the package without also revoking the CONTROL privilege.

ON PACKAGE package-name
Specifies the name of the package on which privileges are to be revoked. The revoking of a package
privilege applies to all versions of the package.

FROM
Indicates from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name.
authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

1782 IBM Db2 V11.5: SQL Reference

PUBLIC
Revokes the privileges from PUBLIC.

BY ALL
Revokes each named privilege from all named users who were explicitly granted those privileges,
regardless of who granted them. This is the default behavior.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– For all rows for the specified object in the SYSCAT.PACKAGEAUTH catalog view where the grantee is
authorization-name:

- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is returned (SQLSTATE 56092).

Notes
• Revoking a specific privilege does not necessarily revoke the ability to perform the action. A user can

proceed with a task if other privileges are held by PUBLIC, a group, or a role, or if the user holds
privileges such as ALTERIN or SCHEMAADM on the schema of a package.

Examples
• Example 1: Revoke the EXECUTE privilege on package CORPDATA.PKGA from PUBLIC.

 REVOKE EXECUTE
 ON PACKAGE CORPDATA.PKGA
 FROM PUBLIC

• Example 2: Revoke CONTROL authority on the RRSP_PKG package for the user FRANK and for PUBLIC.

 REVOKE CONTROL
 ON PACKAGE RRSP_PKG
 FROM USER FRANK, PUBLIC

REVOKE (role)
This form of the REVOKE statement revokes roles from users, groups, or other roles.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• The WITH ADMIN OPTION on the role
• SECADM authority

SECADM authority is required to revoke the ADMIN OPTION FOR role-name from an authorization-name
or to revoke a role-name from an authorization-name that has the WITH ADMIN OPTION on that role.

Chapter 1. Structured Query Language (SQL) 1783

Syntax

REVOKE

ADMIN OPTION FOR

ROLE
,

role-name FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL

Description
ADMIN OPTION FOR

Revokes the WITH ADMIN OPTION on role-name. The WITH ADMIN OPTION on role-name must be
held by authorization-name or by PUBLIC, if PUBLIC is specified (SQLSTATE 42504). If the ADMIN
OPTION FOR clause is specified, only the WITH ADMIN OPTION on ROLE role-name is revoked, not
the role itself.

ROLE role-name
Specifies the role that is to be revoked. The role-name must identify an existing role at the current
server (SQLSTATE 42704) that has been granted to authorization-name or to PUBLIC, if PUBLIC is
specified (SQLSTATE 42504).

FROM
Specifies from whom the role is revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group.
ROLE

Specifies that the authorization-name identifies an existing role at the current server (SQLSTATE
42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list of authorization IDs
cannot include the authorization ID of the user issuing the statement (SQLSTATE 42502).

PUBLIC
Revokes the specified roles from PUBLIC.

BY ALL
Revokes the role-name from each specified authorization-name that was explicitly granted that role,
regardless of who granted it. This is the default behavior.

Rules
• For each authorization-name specified, if none of the keywords USER, GROUP, or ROLE is specified,

then for all rows for the specified object in the SYSCAT.ROLEAUTH catalog view where the grantee is
authorization-name:

– If GRANTEETYPE is 'U', USER is assumed.
– If GRANTEETYPE is 'G', GROUP is assumed.
– If GRANTEETYPE is 'R', ROLE is assumed.

1784 IBM Db2 V11.5: SQL Reference

– If GRANTEETYPE does not have the same value, an error is returned (SQLSTATE 56092.
• The role-name must not identify a role, or a role that contains role-name, if the role has either EXECUTE

privilege on a routine or USAGE privilege on a sequence, and an SQL object other than a package
is dependent on the routine or sequence (SQLSTATE 42893). The owner of the SQL object is either
authorization-name or any user that is a member of authorization-name, where authorization-name is a
role.

Notes
• If a role is revoked from an authorization-name or from PUBLIC, all privileges that the role held are no

longer available to the authorization-name or to PUBLIC through that role.
• Revoking a role does not necessarily revoke the ability to perform a particular action by way of a

privilege that was granted to that role. A user might still be able to proceed if other privileges are held
by PUBLIC, by a group to which the user belongs, by another role granted to the user, or if the user has a
higher level authority, such as DBADM.

Examples
• Example 1: Revoke the role INTERN from the role DOCTOR and the role DOCTOR from the role

SPECIALIST.

 REVOKE ROLE INTERN FROM ROLE DOCTOR

 REVOKE ROLE DOCTOR FROM ROLE SPECIALIST

• Example 2: Revoke the role INTERN from PUBLIC.

 REVOKE ROLE INTERN FROM PUBLIC

• Example 3: Revoke the role SPECIALIST from user BOB and group TORONTO.

 REVOKE ROLE SPECIALIST FROM USER BOB, GROUP TORONTO BY ALL

REVOKE (routine privileges)
This form of the REVOKE statement revokes privileges on a routine (function, method, or procedure) that
is not defined in a module.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include ACCESSCTRL or SECADM
authority or ACCESSCTRL authority on the schema containing the routine.

Chapter 1. Structured Query Language (SQL) 1785

Syntax
REVOKE EXECUTE ON function-designator

FUNCTION

schema.

*

method-designator

METHOD * FOR type-name

schema.

*

procedure-designator

PROCEDURE

schema.

*

FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL
RESTRICT

function-designator
FUNCTION function-name

(
,

data-type

)

SPECIFIC FUNCTION specific-name

method-designator
METHOD method-name

(
,

data-type

)

FOR type-name

SPECIFIC METHOD specific-name

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

Description
EXECUTE

Revokes the privilege to run the identified user-defined function, method, or procedure.

1786 IBM Db2 V11.5: SQL Reference

function-designator
Uniquely identifies the function from which the privilege is revoked. For more information, see
“Function, method, and procedure designators” on page 745.

FUNCTION schema.*
Identifies the explicit grant for all the existing and future functions in the schema. Revoking the
schema.* privilege does not revoke any privileges that were granted on a specific function. In dynamic
SQL statements, if a schema is not specified, the schema in the CURRENT SCHEMA special register
will be used. In static SQL statements, if a schema is not specified, the schema in the QUALIFIER
precompile/bind option will be used.

method-designator
Uniquely identifies the method from which the privilege is revoked. For more information, see
“Function, method, and procedure designators” on page 745.

METHOD *
Identifies the explicit grant for all the existing and future methods for the type type-name. Revoking
the * privilege does not revoke any privileges that were granted on a specific method.
FOR type-name

Names the type in which the specified method is found. The name must identify a type
already described in the catalog (SQLSTATE 42704). In dynamic SQL statements, the value of
the CURRENT SCHEMA special register is used as a qualifier for an unqualified type name. In
static SQL statements, the QUALIFIER precompile/bind option implicitly specifies the qualifier for
unqualified type names. An asterisk (*) can be used in place of type-name to identify the explicit
grant on all existing and future methods for all existing and future types in the schema. Revoking
the privilege using an asterisk for method and type-name does not revoke any privileges that were
granted on a specific method or on all methods for a specific type.

procedure-designator
Uniquely identifies the procedure from which the privilege is revoked. For more information, see
“Function, method, and procedure designators” on page 745.

PROCEDURE schema.*
Identifies the explicit grant for all the existing and future procedures in the schema. Revoking the
schema.* privilege does not revoke any privileges that were granted on a specific procedure. In
dynamic SQL statements, if a schema is not specified, the schema in the CURRENT SCHEMA special
register will be used. In static SQL statements, if a schema is not specified, the schema in the
QUALIFIER precompile/bind option will be used.

FROM
Specifies from whom the EXECUTE privilege is revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name.
authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Revokes the EXECUTE privilege from PUBLIC.

BY ALL
Revokes the EXECUTE privilege from all named users who were explicitly granted the privilege,
regardless of who granted it. This is the default behavior.

Chapter 1. Structured Query Language (SQL) 1787

RESTRICT
Specifies that the EXECUTE privilege cannot be revoked if both of the following conditions are true
(SQLSTATE 42893):

• The specified routine is used in a view, trigger, constraint, index extension, SQL function, SQL
method, aggregate interface function, transform group, or is referenced as the SOURCE of a sourced
function.

• The loss of the EXECUTE privilege would cause the owner of the view, trigger, constraint, index
extension, SQL function, SQL method, aggregate interface function, transform group, or sourced
function to no longer be able to execute the specified routine.

Rules
• It is not possible to revoke the EXECUTE privilege on a function or method defined with schema

'SYSIBM' or 'SYSFUN' (SQLSTATE 42832).
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– For all rows for the specified object in the SYSCAT.ROUTINEAUTH catalog view where the grantee is
authorization-name:

- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is returned (SQLSTATE 56092).

Notes
• If a package depends on a routine (function, method, or procedure), and the EXECUTE privilege on that

routine is revoked from PUBLIC, a user, or a role, the package becomes inoperative if the routine is a
function or a method, and the package becomes invalid if the routine is a procedure, unless the package
owner still holds the EXECUTE privilege on the routine. The package owner can still hold the EXECUTE
privilege if:

– The package owner was explicitly granted the EXECUTE privilege
– The package owner is a member of a role that holds the EXECUTE privilege
– The EXECUTE privilege was granted to PUBLIC
– The EXECUTEIN privilege was granted to PUBLIC

Because group privileges are not considered for static packages, the package becomes inoperative (in
the case of a function or a method) or invalid (in the case of a procedure) even if a group to which the
package owner belongs holds the EXECUTE privilege.

Examples
• Example 1: Revoke the EXECUTE privilege on function CALC_SALARY from user JONES. Assume that

there is only one function in the schema with function name CALC_SALARY.

 REVOKE EXECUTE ON FUNCTION CALC_SALARY FROM JONES RESTRICT

• Example 2: Revoke the EXECUTE privilege on procedure VACATION_ACCR from all users at the current
server.

 REVOKE EXECUTE ON PROCEDURE VACATION_ACCR FROM PUBLIC RESTRICT

1788 IBM Db2 V11.5: SQL Reference

• Example 3: Revoke the EXECUTE privilege on function NEW_DEPT_HIRES from HR (Human Resources).
The function has two input parameters of type INTEGER and CHAR(10), respectively. Assume that the
schema has more than one function named NEW_DEPT_HIRES.

 REVOKE EXECUTE ON FUNCTION NEW_DEPT_HIRES (INTEGER, CHAR(10))
 FROM HR RESTRICT

• Example 4: Revoke the EXECUTE privilege on method SET_SALARY for type EMPLOYEE from user Jones.

 REVOKE EXECUTE ON METHOD SET_SALARY FOR EMPLOYEE FROM JONES RESTRICT

REVOKE (schema privileges and authorities)
This form of the REVOKE statement revokes the privileges and authorities on a schema.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
• The privileges held by the authorization ID of the statement must include ACCESSCTRL or SECADM

authority or ACCESSCTRL authority on the schema-name.
• To revoke schema ACCESSCTRL, the authorization must have SECADM or database ACCESSCTRL

authority.

Chapter 1. Structured Query Language (SQL) 1789

Syntax
REVOKE ALL

PRIVILEGES
,

ACCESSCTRL

ALTERIN

CREATEIN

DATAACCESS

DELETEIN

DROPIN

EXECUTEIN

INSERTIN

LOAD

SCHEMAADM

SELECTIN

UPDATEIN

ON SCHEMA schema-name

CURRENT SCHEMA

FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL

Description
ALL or ALL PRIVILEGES

Revoke all of the following schema privileges on the schema that is named in the ON clause:

• ALTERIN
• CREATEIN
• DELETEIN
• DROPIN
• EXECUTEIN
• INSERTIN
• SELECTIN
• UPDATEIN

If ALL is not specified, one or more of the keywords in the list of privileges must be specified.

ACCESSCTRL
Revokes the authority to grant and revoke schema-level privileges. For more information, see Schema
access control authority (ACCESSCTRL).

ALTERIN
Revokes the privilege to alter or comment on objects in the schema.

CREATEIN
Revokes the privilege to create objects in the schema.

1790 IBM Db2 V11.5: SQL Reference

DATAACCESS
Revokes the authority to access data in the schema. For more information, see Schema data access
authority (DATAACCESS).

DELETEIN
Revokes the privilege to delete all objects in the schema.

DROPIN
Revokes the privilege to drop objects in the schema.

EXECUTEIN
Revokes the privilege to execute user-defined functions, methods, procedures, packages, and
modules defined in the schema.

INSERTIN
Revokes the privilege to insert data in to all objects in the schema.

LOAD
Revokes the authority to load in this schema. For more information, see Schema load authority
(LOAD).

SCHEMAADM
Revokes the schema administrator authority. For more information, see Schema administration
authority (SCHEMAADM).

SELECTIN
Revokes the privilege to select from all objects in the schema.

UPDATEIN
Revokes the privilege to update all objects in the schema.

ON
SCHEMA schema-name

Specifies the name of the schema on which privileges are to be revoked.
CURRENT SCHEMA

Specifies that the privileges will be revoked from the schema described by the DB2® special
register CURRENT SCHEMA.

FROM
Indicates from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name.
authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Revokes the privileges from PUBLIC.

BY ALL
Revokes each named privilege from all named users who were explicitly granted those privileges,
regardless of who granted them. This is the default behavior.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

Chapter 1. Structured Query Language (SQL) 1791

– If the security plug-in in effect for the instance cannot determine the status of the authorization-
name, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined as ROLE in the database, and as either GROUP or USER
according to the security plug-in in effect, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as both USER and
GROUP, an error is returned (SQLSTATE 56092).

– If the authorization-name is defined according to the security plug-in in effect as USER only, or if it is
undefined, USER is assumed.

– If the authorization-name is defined according to the security plug-in in effect as GROUP only, GROUP
is assumed.

– If the authorization-name is defined in the database as ROLE only, ROLE is assumed.

Notes
• Revoking a specific privilege does not necessarily revoke the ability to perform the action. A user can

proceed with a task if other privileges are held by PUBLIC, a group, or a role, or if the user holds a higher
level authority such as DBADM.

Examples
• Example 1: Given that USER4 is only a user and not a group, revoke the privilege to create objects in

schema DEPTIDX from the user USER4.

 REVOKE CREATEIN ON SCHEMA DEPTIDX FROM USER4

• Example 2: Revoke the privilege to drop objects in schema LUNCH from the user CHEF and the group
WAITERS.

 REVOKE DROPIN ON SCHEMA LUNCH
 FROM USER CHEF, GROUP WAITERS

REVOKE (security label)
This form of the REVOKE statement revokes a label-based access control (LBAC) security label.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax
REVOKE SECURITY LABEL security-label-name FROM

,

USER

GROUP

ROLE

authorization-name

1792 IBM Db2 V11.5: SQL Reference

Description
SECURITY LABEL security-label-name

Revokes the security label security-label-name. The name must be qualified with a security policy
(SQLSTATE 42704) and must identify a security label that exists at the current server (SQLSTATE
42704), and that is held by authorization-name (SQLSTATE 42504).

FROM
Specifies from whom the specified security label is revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name. The role name must exist at the
current server (SQLSTATE 42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– For all rows for the specified object in the SYSCAT.SECURITYLABELACCESS catalog view where the
grantee is authorization-name:

- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is returned (SQLSTATE 56092).

Example
Revoke the security label EMPLOYEESECLABEL, which is part of the security policy DATA_ACCESS, from
user WALID.

 REVOKE SECURITY LABEL DATA_ACCESS.EMPLOYEESECLABEL
 FROM USER WALID

REVOKE (sequence privileges)
This form of the REVOKE statement revokes privileges on a sequence.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared. However, if the bind option
DYNAMICRULES BIND applies, the statement cannot be dynamically prepared (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include ACCESSCTRL or SECADM
authority or ACCESSCTRL authority on the schema containing the sequence-name.

Chapter 1. Structured Query Language (SQL) 1793

Syntax

REVOKE

,

ALTER

USAGE

ON SEQUENCE sequence-name FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL RESTRICT

Description
ALTER

Revokes the privilege to change the properties of a sequence or to restart sequence number
generation using the ALTER SEQUENCE statement.

USAGE
Revokes the privilege to reference a sequence using nextval-expression or prevval-expression.

ON SEQUENCE sequence-name
Identifies the sequence on which the specified privileges are to be revoked. The sequence name,
including an implicit or explicit schema qualifier, must uniquely identify an existing sequence at the
current server. If no sequence by this name exists, an error is returned (SQLSTATE 42704).

FROM
Specifies from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name.
authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Revokes the specified privileges from PUBLIC.

BY ALL
Revokes each specified privilege from all named users who were explicitly granted those privileges,
regardless of who granted them. This is the default behavior.

RESTRICT
This optional keyword indicates that the statement will fail if any objects depend on the privilege
being revoked.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

1794 IBM Db2 V11.5: SQL Reference

– For all rows for the specified object in the SYSCAT.SEQUENCEAUTH catalog view where the grantee is
authorization-name:

- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is returned (SQLSTATE 56092).

Notes
• Revoking a privilege on a sequence from the authorization ID under which a package was bound will

cause the package to become invalid if the authorization ID does not continue to hold the privilege
on the sequence through different means; for example, through membership in a role that holds the
privilege.

• Revoking a specific privilege does not necessarily remove the ability to perform an action. A user can
proceed if other privileges are held by PUBLIC or by a group to which the user belongs, or if the user has
a higher level of authority, such as DBADM.

Examples
• Example 1: Revoke the USAGE privilege on a sequence called GENERATE_ID from user ENGLES.

There is one row in the SYSCAT.SEQUENCEAUTH catalog view for this sequence and grantee, and the
GRANTEETYPE value is U.

 REVOKE USAGE ON SEQUENCE GENERATE_ID FROM ENGLES

• Example 2: Revoke alter privileges on sequence GENERATE_ID that were previously granted to all local
users. (Grants to specific users are not affected.)

 REVOKE ALTER ON SEQUENCE GENERATE_ID FROM PUBLIC

• Example 3: Revoke all privileges on sequence GENERATE_ID from users PELLOW and MLI, and from
group PLANNERS.

 REVOKE ALTER, USAGE ON SEQUENCE GENERATE_ID
 FROM USER PELLOW, USER MLI, GROUP PLANNERS

REVOKE (server privileges)
This form of the REVOKE statement revokes the privilege to access and use a specified data source in
pass-through mode.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include ACCESSCTRL or SECADM
authority.

Chapter 1. Structured Query Language (SQL) 1795

Syntax
REVOKE PASSTHRU ON SERVER server-name FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL

Description
SERVER server-name

Names the data source for which the privilege to use in pass-through mode is being revoked. server-
name must identify a data source that is described in the catalog.

FROM
Specifies from whom the privilege is revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name.
authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Revokes from PUBLIC the privilege to pass through to server-name.

BY ALL
Revokes the privilege from all named users who were explicitly granted that privilege, regardless of
who granted it. This is the default behavior.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– For all rows for the specified object in the SYSCAT.PASSTHRUAUTH catalog view where the grantee is
authorization-name:

- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is returned (SQLSTATE 56092).

Examples
• Example 1: Revoke USER6's privilege to pass through to data source MOUNTAIN.

 REVOKE PASSTHRU ON SERVER MOUNTAIN FROM USER USER6

1796 IBM Db2 V11.5: SQL Reference

• Example 2: Revoke group D024's privilege to pass through to data source EASTWING.

 REVOKE PASSTHRU ON SERVER EASTWING FROM GROUP D024

The members of group D024 will no longer be able to use their group ID to pass through to EASTWING.
But if any members have the privilege to pass through to EASTWING under their own user IDs, they will
retain this privilege.

REVOKE (SETSESSIONUSER privilege)
This form of the REVOKE statement revokes one or more SETSESSIONUSER privileges from one or more
authorization IDs.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include SECADM authority.

Syntax

REVOKE SETSESSIONUSER ON

,

USER session-authorization-name

PUBLIC

FROM

,

USER

GROUP

authorization-name

Description
SETSESSIONUSER ON

Revokes the privilege to assume the identity of a new authorization ID.
USER session-authorization-name

Specifies the authorization ID that the authorization-name is able to assume, using the SET
SESSION AUTHORIZATION statement. The session-authorization-name must identify a user that the
authorization-name can assume, not a group (SQLSTATE 42504).

PUBLIC
Specifies that all privileges to set the session authorization will be revoked.

FROM
Specifies from whom the privilege is revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
authorization-name,...

Lists the authorization IDs of one or more users or groups.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

Chapter 1. Structured Query Language (SQL) 1797

Examples
• Example 1: User PAUL holds the privilege to set the session authorization to WALID and therefore to

execute SQL statements as user WALID. The following statement revokes that privilege.

 REVOKE SETSESSIONUSER ON USER WALID
 FROM USER PAUL

• Example 2: User GUYLAINE holds the privilege to set the session authorization to BOBBY, RICK, or
KEVIN and therefore to execute SQL statements as BOBBY, RICK, or KEVIN. The following statement
revokes the privilege to use two of those authorization IDs. After this statement executes, GUYLAINE
will only be able to set the session authorization to KEVIN.

 REVOKE SETSESSIONUSER ON USER BOBBY, USER RICK
 FROM USER GUYLAINE

• Example 3: The group ACCTG and user WALID can set session authorization to any authorization ID. The
following statement revokes that privilege from both ACCTG and WALID.

 REVOKE SETSESSIONUSER ON PUBLIC
 FROM USER WALID, GROUP ACCTG

REVOKE (table space privileges)
This form of the REVOKE statement revokes the USE privilege on a table space.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include ACCESSCTRL, SECADM,
SYSCTRL, or SYSADM authority.

Syntax
REVOKE USE OF TABLESPACE tablespace-name FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL

Description
USE

Revokes the privilege to specify or default to the table space when creating a table.
OF TABLESPACE tablespace-name

Specifies the table space on which the USE privilege is to be revoked. The table space cannot be
SYSCATSPACE (SQLSTATE 42838) or a SYSTEM TEMPORARY table space (SQLSTATE 42809).

FROM
Indicates from whom the USE privilege is revoked.

1798 IBM Db2 V11.5: SQL Reference

USER
Specifies that the authorization-name identifies a user.

GROUP
Specifies that the authorization-name identifies a group name.

ROLE
Specifies that the authorization-name identifies a role name.

authorization-name
Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Revokes the USE privilege from PUBLIC.

BY ALL
Revokes the privilege from all named users who were explicitly granted that privilege, regardless of
who granted it. This is the default behavior.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– For all rows for the specified object in the SYSCAT.TBSPACEAUTH catalog view where the grantee is
authorization-name:

- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is returned (SQLSTATE 56092).

Notes
• Revoking the USE privilege does not necessarily revoke the ability to create tables in that table space.

A user may still be able to create tables in that table space if the USE privilege is held by PUBLIC or a
group, or if the user has a higher level authority, such as DBADM.

Example
Revoke the privilege to create tables in table space PLANS from the user BOBBY.

 REVOKE USE OF TABLESPACE PLANS FROM USER BOBBY

REVOKE (table, view, or nickname privileges)
This form of the REVOKE statement revokes privileges on a table, view, or nickname.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

Chapter 1. Structured Query Language (SQL) 1799

• CONTROL privilege on the referenced table, view, or nickname
• ACCESSCTRL authority on the schema containing the identified table, view, or nickname
• ACCESSCTRL or SECADM authority

Schema ACCESSCTRL, ACCESSCTRL or SECADM authority is required to revoke the CONTROL privilege.
ACCESSCTRL or SECADM authority is required to revoke privileges on catalog tables and views.

Syntax

REVOKE ALL
PRIVILEGES

,

ALTER

CONTROL

DELETE

INDEX

INSERT

REFERENCES

SELECT

UPDATE

ON
TABLE

table-name

view-name

nickname

FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL

Description
ALL or ALL PRIVILEGES

Revokes all privileges (except CONTROL) held by an authorization-name for the specified tables,
views, or nicknames.

If ALL is not used, one or more of the keywords listed in the option stack (ALTER through UPDATE)
must be used. Each keyword revokes the privilege described, but only as it applies to the tables,
views, or nicknames named in the ON clause. The same keyword must not be specified more than
once.

ALTER
Revokes the privilege to add columns to the base table definition; create or drop a primary key or
unique constraint on the table; create or drop a foreign key on the table; add/change a comment on
the table, view, or nickname; create or drop a check constraint; create a trigger; add, reset, or drop a
column option for a nickname; or, change nickname column names or data types.

CONTROL
Revokes the ability to drop the table, view, or nickname, and the ability to execute the RUNSTATS
utility on the table and indexes.

Revoking CONTROL privilege from an authorization-name does not revoke other privileges granted to
the user on that object.

DELETE
Revokes the privilege to delete rows from the table, updatable view, or nickname.

1800 IBM Db2 V11.5: SQL Reference

INDEX
Revokes the privilege to create an index on the table or an index specification on the nickname. The
creator of an index or index specification automatically has the CONTROL privilege over the index or
index specification (authorizing the creator to drop the index or index specification). In addition, the
creator retains this privilege even if the INDEX privilege is revoked.

INSERT
Revokes the privileges to insert rows into the table, updatable view, or nickname, and to run the
IMPORT utility.

REFERENCES
Revokes the privilege to create or drop a foreign key referencing the table as the parent. Any column
level REFERENCES privileges are also revoked.

SELECT
Revokes the privilege to retrieve rows from the table or view, to create a view on a table, and to run
the EXPORT utility against the table or view.

Revoking SELECT privilege may cause some views to be marked inoperative. (For information about
inoperative views, see "CREATE VIEW".)

UPDATE
Revokes the privilege to update rows in the table, updatable view, or nickname. Any column level
UPDATE privileges are also revoked.

ON TABLE table-name or view-name or nickname
Specifies the table, view, or nickname on which privileges are to be revoked. The table-name cannot
be a declared temporary table (SQLSTATE 42995).

FROM
Indicates from whom the privileges are revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group name.
ROLE

Specifies that the authorization-name identifies a role name.
authorization-name,...

Lists the authorization IDs of one or more users, groups, or roles.

The list of authorization IDs cannot include the authorization ID of the user issuing the statement
(SQLSTATE 42502).

PUBLIC
Revokes the privileges from PUBLIC.

BY ALL
Revokes each named privilege from all named users who were explicitly granted those privileges,
regardless of who granted them. This is the default behavior.

Rules
• For each authorization-name specified, if neither USER, GROUP, nor ROLE is specified, then:

– For all rows for the specified object in the SYSCAT.TABAUTH and SYSCAT.COLAUTH catalog views
where the grantee is authorization-name:

- If all rows have a GRANTEETYPE of 'U', USER is assumed.
- If all rows have a GRANTEETYPE of 'G', GROUP is assumed.
- If all rows have a GRANTEETYPE of 'R', ROLE is assumed.
- If all rows do not have the same value for GRANTEETYPE, an error is returned (SQLSTATE 56092).

Chapter 1. Structured Query Language (SQL) 1801

Notes
• If a privilege is revoked from the authorization-name that is the owner of the view (as recorded in the

OWNER column in SYSCAT.VIEWS), that privilege is also revoked from any dependent views.
• If the owner of the view loses a SELECT privilege on some object on which the view definition depends

(or an object upon which the view definition depends is dropped, or made inoperative in the case of
another view), the view will be made inoperative.

However, if a user who holds ACCESSCTRL or SECADM authority explicitly revokes all privileges on the
view from the owner, then the record of the OWNER will not appear in SYSCAT.TABAUTH but nothing will
happen to the view - it remains operative.

• Privileges on inoperative views cannot be revoked.
• A package might become invalid when the authorization ID under which the package was bound loses

a privilege on an object on which the package depends. The privilege can be lost in one of the following
ways:

– The privilege is revoked from the authorization ID
– The privilege is revoked from a role of which the authorization ID is a member
– The privilege is revoked from PUBLIC

A package remains invalid until a bind or rebind operation on the application is successfully executed,
or the application is executed and the database manager successfully rebinds the application (using
information stored in the catalogs). Packages marked invalid due to a revoke may be successfully
rebound without any additional grants.

For example, if a package owned by USER1 contains a SELECT from table T1, and the SELECT privilege
on table T1 is revoked from USER1, the package will be marked invalid. If SELECT authority is granted
again, or if the user holds DBADM authority, the package is successfully rebound when executed.

Another example is a package owned by USER1, who is a member of role R1. The package contains a
SELECT from table T1, and the SELECT privilege on table T1 is revoked from role R1. The package will
be marked invalid, assuming USER1 does not hold the SELECT privilege on table T1 by other means.

• Packages, triggers or views that include the use of OUTER(Z) in the FROM clause, are dependent on
having SELECT privilege on every subtable or subview of Z. Similarly, packages, triggers, or views that
include the use of DEREF(Y) where Y is a reference type with a target table or view Z, are dependent
on having SELECT privilege on every subtable or subview of Z. Such packages might become invalid,
and such triggers or views made inoperative when the authorization ID under which the packages were
bound, or the owner of the triggers or views loses the SELECT privilege. The SELECT privilege can be lost
in one of the following ways:

– SELECT privilege is revoked from the authorization ID
– SELECT privilege is revoked from a role of which the authorization ID is a member
– SELECT privilege is revoked from PUBLIC

• Table, view, or nickname privileges cannot be revoked from an authorization-name with CONTROL on
the object without also revoking the CONTROL privilege (SQLSTATE 42504).

• Revoking a specific privilege does not necessarily revoke the ability to perform the action. A user can
proceed with a task if other privileges are held by PUBLIC, a group, or a role, or if the user holds
privileges such as ALTERIN on the schema of a table or a view.

• If the owner of the materialized query table loses a SELECT privilege on a table on which the
materialized query table definition depends (or a table upon which the materialized query table
definition depends is dropped), the materialized query table will be dropped.

However, if a user who holds SECADM or ACCESSCTRL authority explicitly revokes all privileges on
the materialized query table from the owner, then the record in SYSTABAUTH for the OWNER will be
deleted, but nothing will happen to the materialized query table - it remains operative.

• Revoking nickname privileges has no affect on data source object (table or view) privileges.

1802 IBM Db2 V11.5: SQL Reference

• Revoking the SELECT privilege for a table or view that is directly or indirectly referenced in an SQL
function or method body may fail if the SQL function or method body cannot be dropped because some
other object is dependent on it (SQLSTATE 42893).

• Revoking the SELECT privilege causes an SQL function or method body to be dropped when:

– The owner of the SQL function or method body loses the SELECT privilege on some object on which
the SQL function or method body definition depends; note that the privilege can be lost because of a
revoke from PUBLIC or from a role of which the owner is a member

– An object on which the SQL function or method body definition depends is dropped

However, the revoke fails if another object depends on the function or method (SQLSTATE 42893).
• Revoking WITH GRANT OPTION: The only way to revoke the WITH GRANT OPTION is to revoke the

privilege itself and then grant it again without specifying WITH GRANT OPTION.
• Revoking column privileges: The only way to revoke column privileges is to revoke the privilege from

the entire table itself and then grant it again for each column.

Examples
• Example 1: Revoke SELECT privilege on table EMPLOYEE from user ENGLES. There is one row in the

SYSCAT.TABAUTH catalog view for this table and grantee and the GRANTEETYPE value is U.

 REVOKE SELECT
 ON TABLE EMPLOYEE
 FROM ENGLES

• Example 2: Revoke update privileges on table EMPLOYEE previously granted to all local users. Note that
grants to specific users are not affected.

 REVOKE UPDATE
 ON EMPLOYEE
 FROM PUBLIC

• Example 3: Revoke all privileges on table EMPLOYEE from users PELLOW and MLI and from group
PLANNERS.

 REVOKE ALL
 ON EMPLOYEE
 FROM USER PELLOW, USER MLI, GROUP PLANNERS

• Example 4: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a user named JOHN. There is
one row in the SYSCAT.TABAUTH catalog view for this table and grantee and the GRANTEETYPE value is
U.

 REVOKE SELECT
 ON CORPDATA.EMPLOYEE FROM JOHN

or

 REVOKE SELECT
 ON CORPDATA.EMPLOYEE FROM USER JOHN

Note that an attempt to revoke the privilege from GROUP JOHN would result in an error, since the
privilege was not previously granted to GROUP JOHN.

• Example 5: Revoke SELECT privilege on table CORPDATA.EMPLOYEE from a group named JOHN. There
is one row in the SYSCAT.TABAUTH catalog view for this table and grantee and the GRANTEETYPE value
is G.

 REVOKE SELECT
 ON CORPDATA.EMPLOYEE FROM JOHN

or

Chapter 1. Structured Query Language (SQL) 1803

 REVOKE SELECT
 ON CORPDATA.EMPLOYEE FROM GROUP JOHN

• Example 6: Revoke user SHAWN's privilege to create an index specification on nickname ORAREM1.

 REVOKE INDEX
 ON ORAREM1 FROM USER SHAWN

REVOKE (workload privileges)
This form of the REVOKE statement revokes the USAGE privilege on a workload.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include ACCESSCTRL, SECADM, or
WLMADM authority.

Syntax
REVOKE USAGE ON WORKLOAD workload-name FROM

,

USER

GROUP

ROLE

authorization-name

PUBLIC

BY ALL

Description
USAGE

Revokes the privilege to use a workload.
ON WORKLOAD workload-name

Identifies the workload on which the USAGE privilege is to be revoked. This is a one-part name. The
workload-name must identify a workload that exists at the current server (SQLSTATE 42704). The
name cannot be 'SYSDEFAULTADMWORKLOAD' (SQLSTATE 42832).

FROM
Specifies from whom the USAGE privilege is revoked.
USER

Specifies that the authorization-name identifies a user.
GROUP

Specifies that the authorization-name identifies a group.
ROLE

Specifies that the authorization-name identifies an existing role at the current server (SQLSTATE
42704).

authorization-name,...
Lists the authorization IDs of one or more users, groups, or roles. The list of authorization IDs
cannot include the authorization ID of the user issuing the statement (SQLSTATE 42502).

1804 IBM Db2 V11.5: SQL Reference

PUBLIC
Revokes the USAGE privilege from PUBLIC.

BY ALL
Revokes the USAGE privilege from all named users who were explicitly granted that privilege,
regardless of who granted it. This is the default behavior.

Rules
• For each authorization-name specified, if none of the keywords USER, GROUP, or ROLE is specified, then

for all rows for the specified object in the SYSCAT.WORKLOADAUTH catalog view where the grantee is
authorization-name:

– If GRANTEETYPE is 'U', USER is assumed.
– If GRANTEETYPE is 'G', GROUP is assumed.
– If GRANTEETYPE is 'R', ROLE is assumed.
– If GRANTEETYPE does not have the same value, an error is returned (SQLSTATE 56092.

Notes
• The REVOKE statement does not take effect until it is committed, even for the connection that issues

the statement.

Example
Revoke the privilege to use the workload CAMPAIGN from user LISA.

 REVOKE USAGE ON WORKLOAD CAMPAIGN FROM USER LISA

REVOKE (XSR object privileges)
This form of the REVOKE statement revokes USAGE privilege on an XSR object.

Invocation
The REVOKE statement can be embedded in an application program or issued through the use of
dynamic SQL statements. It is an executable statement that can be dynamically prepared only if the
DYNAMICRULES run behavior is in effect for the package (SQLSTATE 42509).

Authorization
One of the following authorities is required:

• ACCESSCTRL or SECADM authority or ACCESSCTRL authority on the schema containing the XSR object

Syntax

REVOKE USAGE ON XSROBJECT xsrobject-name FROM PUBLIC
BY ALL

Description
ON XSROBJECT xsrobject-name

This name identifies the XSR object for which the USAGE privilege is revoked. The xsrobject-name,
including the implicit or explicit schema qualifier, must uniquely identify an existing XSR object at
the current server. If no XSR object by this name exists in the specified schema, an error is raised
(SQLSTATE 42704).

Chapter 1. Structured Query Language (SQL) 1805

FROM PUBLIC
Revokes the USAGE privilege from PUBLIC.

BY ALL
Revokes each named privilege from all users who were explicitly granted those privileges, regardless
of who granted them. This is the default behavior.

Example
Revoke usage privileges on the XML schema MYSCHEMA from PUBLIC:

 REVOKE USAGE ON XSROBJECT MYSCHEMA FROM PUBLIC

ROLLBACK
The ROLLBACK statement is used to back out of the database changes that were made within a unit of
work or a savepoint.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

ROLLBACK
WORK

TO SAVEPOINT

savepoint-name

Description
The unit of work in which the ROLLBACK statement is executed is terminated and a new unit of work is
initiated. All changes made to the database during the unit of work are backed out.

The following statements, however, are not under transaction control, and changes made by them are
independent of the ROLLBACK statement:

• SET CONNECTION
• SET ENCRYPTION PASSWORD
• SET EVENT MONITOR STATE
• SET PASSTHRU

Note: Although the SET PASSTHRU statement is not under transaction control, the passthru session
initiated by the statement is under transaction control.

• SET SERVER OPTION
• SET variable
• Assignments to updatable special registers

The generation of sequence and identity values is not under transaction control. Values generated and
consumed by the nextval-expression or by inserting rows into a table that has an identity column are
independent of issuing the ROLLBACK statement. Also, issuing the ROLLBACK statement does not affect
the value returned by the prevval-expression, nor the IDENTITY_VAL_LOCAL function.

1806 IBM Db2 V11.5: SQL Reference

Modification of the values of global variables is not under transaction control. ROLLBACK statements do
not affect the values assigned to global variables.

TO SAVEPOINT
Specifies that a partial rollback (ROLLBACK TO SAVEPOINT) is to be performed. If no savepoint is
active in the current savepoint level (see the "Rules" section in the description of the SAVEPOINT
statement), an error is returned (SQLSTATE 3B502). After a successful rollback, the savepoint
continues to exist, but any nested savepoints are released and no longer exist. The nested savepoints,
if any, are considered to have been rolled back and then released as part of the rollback to the current
savepoint. If a savepoint-name is not provided, rollback occurs to the most recently set savepoint
within the current savepoint level.

If this clause is omitted, the ROLLBACK statement rolls back the entire transaction. Furthermore,
savepoints within the transaction are released.

savepoint-name
Specifies the savepoint that is to be used in the rollback operation. The specified savepoint-name
cannot begin with 'SYS' (SQLSTATE 42939). After a successful rollback operation, the named
savepoint continues to exist. If the savepoint name does not exist, an error (SQLSTATE 3B001) is
returned. Data and schema changes made since the savepoint was set are undone.

Notes
• All locks held are released on a ROLLBACK of the unit of work. All open cursors are closed. All LOB

locators are freed.
• Executing a ROLLBACK statement does not affect either the SET statements that change special register

values or the RELEASE statement.
• If the program terminates abnormally, the unit of work is implicitly rolled back.
• Statement caching is affected by the rollback operation.
• The impact on cursors resulting from a ROLLBACK TO SAVEPOINT depends on the statements within

the savepoint

– If the savepoint contains DDL on which a cursor is dependent, the cursor is marked invalid. Attempts
to use such a cursor results in an error (SQLSTATE 57007).

– Otherwise:

- If the cursor is referenced in the savepoint, the cursor remains open and is positioned before the
next logical row of the result table. (A FETCH must be performed before a positioned UPDATE or
DELETE statement is issued.)

- Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it remains open and
positioned).

• Dynamic SQL statements prepared in a package bound with the KEEPDYNAMIC YES option are kept in
the SQL context after a ROLLBACK statement. The statement might be implicitly prepared again, as a
result of DDL operations that are rolled back within the unit of work.

• Inactive dynamic SQL statements prepared in a package bound with KEEPDYNAMIC NO are removed
from the SQL context after a rollback operation. The statement must be prepared again before it can be
executed in a new transaction.

• The following dynamic SQL statements may be active during ROLLBACK:

– ROLLBACK statement
– CALL statements under which the ROLLBACK statement was executed

• A ROLLBACK TO SAVEPOINT operation will drop any created temporary tables created within the
savepoint. If a created temporary table is modified within the savepoint and that table has been defined
as not logged, then all rows in the table are deleted.

• A ROLLBACK TO SAVEPOINT operation will drop any declared temporary tables declared within the
savepoint. If a declared temporary table is modified within the savepoint and that table has been
defined as not logged, then all rows in the table are deleted.

Chapter 1. Structured Query Language (SQL) 1807

• All locks are retained after a ROLLBACK TO SAVEPOINT statement.
• All LOB locators are preserved following a ROLLBACK TO SAVEPOINT operation.

Example
Delete the alterations made since the last commit point or rollback.

 ROLLBACK WORK

SAVEPOINT
Use the SAVEPOINT statement to set a savepoint within a transaction.

Invocation
This statement can be imbedded in an application program (including a procedure) or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax
SAVEPOINT savepoint-name

UNIQUE

ON ROLLBACK RETAIN CURSORS

ON ROLLBACK RETAIN LOCKS

Description
savepoint-name

Specifies the name of a savepoint. The specified savepoint-name cannot begin with 'SYS' (SQLSTATE
42939). If a savepoint by this name has already been defined as UNIQUE within this savepoint level,
an error is returned (SQLSTATE 3B501).

UNIQUE
Specifies that the application does not intend to reuse this savepoint name while the savepoint is
active within the current savepoint level. If savepoint-name already exists within this savepoint level,
an error is returned (SQLSTATE 3B501).

ON ROLLBACK RETAIN CURSORS
Specifies system behavior upon rollback to this savepoint with respect to open cursor statements
processed after the SAVEPOINT statement. This clause indicates that, whenever possible, the cursors
are unaffected by a rollback to savepoint operation. For situations where the cursors are affected by
the rollback to savepoint, see "ROLLBACK".

ON ROLLBACK RETAIN LOCKS
Specifies system behavior upon rollback to this savepoint with respect to locks acquired after the
setting of the savepoint. Locks acquired since the savepoint are not tracked, and are not rolled back
(released) upon rollback to the savepoint.

Rules
• Savepoint-related statements must not be used within trigger definitions (SQLSTATE 42987).
• A new savepoint level starts when one of the following events occurs:

– A new unit of work (UOW) starts.

1808 IBM Db2 V11.5: SQL Reference

– A procedure defined with the NEW SAVEPOINT LEVEL clause is called.
– An atomic compound SQL statement starts.

• A savepoint level ends when the event that caused its creation is finished or removed. When a savepoint
level ends, all savepoints contained within it are released. Any open cursors, DDL actions, or data
modifications are inherited by the parent savepoint level (that is, the savepoint level within which the
one that just ended was created), and are subject to any savepoint-related statements issued against
the parent savepoint level.

• The following rules apply to actions within a savepoint level:

– Savepoints can only be referenced within the savepoint level in which they are established. You
cannot release, destroy, or roll back to a savepoint established outside of the current savepoint level.

– All active savepoints established within the current savepoint level are automatically released when
the savepoint level ends.

– The uniqueness of savepoint names is only enforced within the current savepoint level. The names
of savepoints that are active in other savepoint levels can be reused in the current savepoint level
without affecting those savepoints in other savepoint levels.

Notes
• Once a SAVEPOINT statement has been issued, insert, update, or delete operations on nicknames are

not allowed.
• Omitting the UNIQUE clause specifies that savepoint-name can be reused within the savepoint level

by another savepoint. If a savepoint of the same name already exists within the savepoint level,
the existing savepoint is destroyed and a new savepoint with the same name is created at the
current point in processing. The new savepoint is considered to be the last savepoint established by
the application. Note that the destruction of a savepoint through the reuse of its name by another
savepoint simply destroys that one savepoint and does not release any savepoints established after
the destroyed savepoint. These subsequent savepoints can only be released by means of the RELEASE
SAVEPOINT statement, which releases the named savepoint and all savepoints established after the
named savepoint.

• If the UNIQUE clause is specified, savepoint-name can only be reused after an existing savepoint with
the same name has been released.

• Within a savepoint, if a utility, SQL statement, or database command performs intermittent commits
during processing, the savepoint will be implicitly released.

• If the SET INTEGRITY statement is rolled back within the savepoint, dynamically prepared statement
names are still valid, although the statement might be implicitly prepared again.

• If inserts are buffered (that is, the application was precompiled with the INSERT BUF option), the buffer
will be flushed when SAVEPOINT, ROLLBACK, or RELEASE TO SAVEPOINT statements are issued.

Example
Perform a rollback operation for nested savepoints. First, create a table named DEPARTMENT. Insert a
row before starting SAVEPOINT1; insert another row and start SAVEPOINT2; then, insert a third row and
start SAVEPOINT3.

 CREATE TABLE DEPARTMENT (
 DEPTNO CHAR(6),
 DEPTNAME VARCHAR(20),
 MGRNO INTEGER)

 INSERT INTO DEPARTMENT VALUES ('A20', 'MARKETING', 301)

 SAVEPOINT SAVEPOINT1 ON ROLLBACK RETAIN CURSORS

 INSERT INTO DEPARTMENT VALUES ('B30', 'FINANCE', 520)

 SAVEPOINT SAVEPOINT2 ON ROLLBACK RETAIN CURSORS

 INSERT INTO DEPARTMENT VALUES ('C40', 'IT SUPPORT', 430)

Chapter 1. Structured Query Language (SQL) 1809

 SAVEPOINT SAVEPOINT3 ON ROLLBACK RETAIN CURSORS

 INSERT INTO DEPARTMENT VALUES ('R50', 'RESEARCH', 150)

At this point, the DEPARTMENT table exists with rows A20, B30, C40, and R50. If you now issue:

 ROLLBACK TO SAVEPOINT SAVEPOINT3

row R50 is no longer in the DEPARTMENT table. If you then issue:

 ROLLBACK TO SAVEPOINT SAVEPOINT1

the DEPARTMENT table still exists, but the rows inserted since SAVEPOINT1 was established (B30 and
C40) are no longer in the table.

SELECT
The SELECT statement is a form of query

The SELECT statement can be embedded in an application program or issued interactively.

SELECT INTO
The SELECT INTO statement produces a result table consisting of at most one row, and assigns the values
in that row to host variables.

If the table is empty, the statement assigns +100 to SQLCODE and '02000' to SQLSTATE and does
not assign values to the host variables. If more than one row satisfies the search condition, statement
processing is terminated, and an error occurs (SQLSTATE 21000).

Invocation
This statement can be embedded only in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• SELECT privilege on the table, view, or nickname
• CONTROL privilege on the table, view, or nickname
• SELECTIN privilege on the schema containing the table, view, or nickname
• DATAACCESS authority on the schema containing the table, view, or nickname
• DATAACCESS authority

For each global variable used as an assignment target, the privileges held by the authorization ID of the
statement must include one of the following authorities:

• WRITE privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

GROUP privileges are not checked for static SELECT INTO statements.

If the target of the SELECT INTO statement is a nickname, privileges on the object at the data source
are not considered until the statement is executed at the data source. At this time, the authorization ID

1810 IBM Db2 V11.5: SQL Reference

that is used to connect to the data source must have the privileges that are required for the operation
on the object at the data source. The authorization ID of the statement can be mapped to a different
authorization ID at the data source.

Syntax

WITH

,

common-table-expression

select-clause INTO

,

assignment-target from-clause

where-clause

group-by-clause having-clause order-by-clause

●

offset-clause fetch-clause

●

FOR READ ONLY

FOR UPDATE

OF

,

column-name

●

isolation-clause

●

assignment-target
global-variable-name

host-variable-name

SQL-parameter-name

SQL-variable-name

transition-variable-name

array-variable-name [array-index]

field-reference

Description
For a description of the common-table-expession, select-clause, from-clause, where-clause, group-by-
clause, having-clause, order-by-clause, offset-clause, fetch-clause, and isolation-clause, see "subselect" in
the SQL Reference Volume 1.

INTO assignment-target
Identifies one or more targets for the assignment of output values.

The first value in the result row is assigned to the first target in the list, the second value to the second
target, and so on. Each assignment to an assignment-target is made in sequence through the list. If an
error occurs on any assignment, no value is assigned to any assignment-target.

Chapter 1. Structured Query Language (SQL) 1811

When the data type of every assignment-target is not a row type, then the value 'W' is assigned to the
SQLWARN3 field of the SQLCA if the number of assignment-targets is less than the number of result
column values.

If the data type of an assignment-target is a row type, then there must be exactly one assignment-
target specified (SQLSTATE 428HR), the number of columns must match the number of fields in
the row type, and the data types of the columns of the fetched row must be assignable to the
corresponding fields of the row type (SQLSTATE 42821).

If the data type of an assignment-target is an array element, then there must be exactly one
assignment-target specified.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output values, the target can
be a regular host variable (if it is large enough), a LOB locator variable, or a LOB file reference
variable.

SQL-parameter-name
Identifies the parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables must be declared before
they are used.

transition-variable-name
Identifies the column to be updated in the transition row. A transition-variable-name must identify
a column in the subject table of a trigger, optionally qualified by a correlation name that identifies
the new value.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array type.
[array-index]

An expression that specifies which element in the array will be the target of the assignment.
For an ordinary array, the array-index expression must be assignable to INTEGER (SQLSTATE
428H1) and cannot be the null value. Its value must be between 1 and the maximum
cardinality defined for the array (SQLSTATE 2202E). For an associative array, the array-index
expression must be assignable to the index data type of the associative array (SQLSTATE
428H1) and cannot be the null value.

field-reference
Identifies the field within a row type value that is the assignment target. The field-reference must
be specified as a qualified field-name where the qualifier identifies the row value in which the field
is defined.

FOR READ ONLY or FOR UPDATE
Indicates the intended use for the selected row. The default is FOR READ ONLY.
FOR READ ONLY

Specifies that the selected row will not be locked for update.
FOR UPDATE

Specifies that the selected row from the underlying table will be locked to facilitate updating the
row later on in the transaction, similar to the locking done for the select statement of a cursor
which includes the FOR UPDATE clause.
FOR UPDATE must not be specified if the result table of the SELECT INTO statement is read-only
(SQLSTATE 42829).

If column-name values are listed, these columns must be updatable (SQLSTATE 42829).

Note that listing columns has only documentary effect and does not limit subsequent searched
update statements from modifying other columns.

1812 IBM Db2 V11.5: SQL Reference

Rules
• Global variables cannot be assigned inside triggers that are not defined using a compound SQL

(compiled) statement, functions that are not defined using a compound SQL (compiled) statement,
methods, or compound SQL (inlined) statements (SQLSTATE 428GX).

Notes
• Syntax alternatives: For consistency with SQL queries:

– FOR FETCH ONLY can be specified in place of FOR READ ONLY

Examples
• Example 1: This C example puts the maximum salary in the EMP table into the host variable

MAXSALARY.

 EXEC SQL SELECT MAX(SALARY)
 INTO :MAXSALARY
 FROM EMP;

• Example 2: This C example puts the row for employee 528671 (from the EMP table) into host variables.

 EXEC SQL SELECT * INTO :h1, :h2, :h3, :h4
 FROM EMP
 WHERE EMPNO = '528671';

• Example 3: This SQLJ example puts the row for employee 528671 (from the EMP table) into host
variables. That row will later be updated using a searched update, and should be locked when the query
executes.

 #sql { SELECT * INTO :FIRSTNAME, :LASTNAME, :EMPNO, :SALARY
 FROM EMP
 WHERE EMPNO = '528671'
 FOR UPDATE };

• Example 4: This C example puts the maximum salary in the EMP table into the global variable
GV_MAXSALARY.

 EXEC SQL SELECT MAX(SALARY)
 INTO GV_MAXSALARY
 FROM EMP;

SET COMPILATION ENVIRONMENT
The SET COMPILATION ENVIRONMENT statement changes the current compilation environment in the
connection to match the values contained in the compilation environment provided by an event monitor.

The compilation environment contains information like schema, isolation level, query degree or function
path under which a SQL statement has been compiled (prepared). It allows you to run and explain
SQL statements within a given environment. You can run the db2caem command or the db2support
command with the -compenv parameter to specify a file containing a BLOB data type with the
compilation environment. Follow these steps to create the file:

1. Set the environment (for example, to SET CURRENT SCHEMA, CHANGE ISOLATION, SET CURRENT
DEGREE, or SET PATH.

2. Run a SQL statement
3. Export the compilation environment into the lob file in directory lobs:

EXPORT TO compenv.ixf OF IXF LOBS TO lobs
SELECT COMP_ENV_DESC
FROM TABLE (MON_GET_PKG_CACHE_STMT('d', null, null, -1)) AS tf
WHERE STMT_TEXT = '' ;

Chapter 1. Structured Query Language (SQL) 1813

4. Use compilation environment BLOB file for other SQL statements for db2caem and db2support and
specify:

-compenv lobs/compenv.ixf.001.lob

For more information, see COMPILATION_ENV table function

This statement changes the values of one or more special registers; these changes, in turn, will affect the
compilation of any subsequent dynamic SQL statement.

This statement is not under transaction control.

Invocation
The statement can be embedded in an application program. It is an executable statement that can be
dynamically prepared.

Authorization
None required.

Syntax

SET COMPILATION ENVIRONMENT
=

host-variable

Description
host-variable

A variable of type BLOB containing a compilation environment provided by an event monitor. It cannot
be set to null. If host-variable has an associated indicator variable, the value of that indicator variable
must not indicate a null value (SQLSTATE 42815). If the format of the compilation environment is
incorrect, an error is returned, and the connection settings remain unmodified (SQLSTATE 51040).

Notes
• To reset the compilation environment to the original default values, terminate and then restart the

connection. You can achieve the same effect by issuing this statement within an SQL routine, so that any
special register changes are not reflected in the connection upon return from that routine.

• Use the COMPILATION_ENV table function to look at the individual elements that are contained within
the compilation environment.

Example
Set the current session's compilation environment to the values contained in a compilation environment
that was previously captured by a deadlock event monitor. A deadlock event monitor that is created
specifying the WITH DETAILS HISTORY option will capture the compilation environment for dynamic SQL
statements. This captured environment is what is accepted as input to the statement.

 SET COMPILATION ENVIRONMENT = :hv1

SET CONNECTION
The SET CONNECTION statement changes the state of a connection from dormant to current, making the
specified location the current server.

This statement is not under transaction control.

1814 IBM Db2 V11.5: SQL Reference

https://www.ibm.com/docs/en/db2/11.5?topic=views-compilation-env-compilation-environment-elements

Invocation
Although an interactive SQL facility might provide an interface that gives the appearance of interactive
execution, this statement can only be embedded within an application program. It is an executable
statement that cannot be dynamically prepared.

Authorization
None required.

Syntax
SET CONNECTION server-name

host-variable

Description
server-name or host-variable

Identifies the application server by the specified server-name or a host-variable which contains the
server-name.

If a host-variable is specified, it must be a character string variable with a length attribute that is not
greater than 8, and it must not include an indicator variable. The server-name that is contained within
the host-variable must be left-aligned and must not be delimited by quotation marks.

Note that the server-name is a database alias identifying the application server. It must be listed in the
application requester's local directory.

The server-name or the host-variable must identify an existing connection of the application process.
If they do not identify an existing connection, an error (SQLSTATE 08003) is raised.

If SET CONNECTION is to the current connection, the states of all connections of the application
process are unchanged.

Successful Connection
If the SET CONNECTION statement executes successfully:

• No connection is made. The CURRENT SERVER special register is updated with the specified
server-name.

• The previously current connection, if any, is placed into the dormant state (assuming a different
server-name is specified).

• The CURRENT SERVER special register and the SQLCA are updated in the same way as
documented under "CONNECT (Type 1)".

Unsuccessful Connection
If the SET CONNECTION statement fails:

• No matter what the reason for failure, the connection state of the application process and the
states of its connections are unchanged.

• As with an unsuccessful Type 1 CONNECT, the SQLERRP field of the SQLCA is set to the name of
the module that detected the error.

Notes
• The use of type 1 CONNECT statements does not preclude the use of SET CONNECTION, but the

statement will always fail (SQLSTATE 08003), unless the SET CONNECTION statement specifies the
current connection, because dormant connections cannot exist.

• The SQLRULES(DB2) connection option (see "Options that Govern Distributed Unit of Work Semantics")
does not preclude the use of SET CONNECTION, but the statement is unnecessary, because type 2
CONNECT statements can be used instead.

Chapter 1. Structured Query Language (SQL) 1815

• When a connection is used, made dormant, and then restored to the current state in the same unit of
work, that connection reflects its last use by the application process with regard to the status of locks,
cursors, and prepared statements.

Example
Execute SQL statements at IBMSTHDB, execute SQL statements at IBMTOKDB, and then execute more
SQL statements at IBMSTHDB.

 EXEC SQL CONNECT TO IBMSTHDB;
 /* Execute statements referencing objects at IBMSTHDB */

 EXEC SQL CONNECT TO IBMTOKDB;
 /* Execute statements referencing objects at IBMTOKDB */

 EXEC SQL SET CONNECTION IBMSTHDB;
 /* Execute statements referencing objects at IBMSTHDB */

Note that the first CONNECT statement creates the IBMSTHDB connection, the second CONNECT
statement places it in the dormant state, and the SET CONNECTION statement returns it to the current
state.

SET CURRENT DECFLOAT ROUNDING MODE
The SET CURRENT DECFLOAT ROUNDING MODE statement verifies that the specified rounding mode is
the value that is currently set for the CURRENT DECFLOAT ROUNDING MODE special register.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT DECFLOAT ROUNDING MODE
=

ROUND_CEILING

ROUND_DOWN

ROUND_FLOOR

ROUND_HALF_EVEN

ROUND_HALF_UP

string-constant

host-variable

Description
ROUND_CEILING

Round the value toward positive infinity. If all of the discarded digits are zero or if the sign is
negative, the result is unchanged (except for the removal of the discarded digits). Otherwise, the
result coefficient is incremented by 1.

ROUND_DOWN
Round the value toward 0 (truncation). The discarded digits are ignored.

1816 IBM Db2 V11.5: SQL Reference

ROUND_FLOOR
Round the value toward negative infinity. If all of the discarded digits are zero or if the sign is
positive, the result is unchanged (except for the removal of the discarded digits). Otherwise, the sign is
negative and the result coefficient is incremented by 1.

ROUND_HALF_EVEN
Round the value to the nearest value. If the values are equidistant, round the value so that the final
digit is even. If the discarded digits represent more than half of the value of a number in the next
left position, the result coefficient is incremented by 1. If they represent less than half, the result
coefficient is not adjusted (that is, the discarded digits are ignored). Otherwise, the result coefficient
is unaltered if its rightmost digit is even, or incremented by 1 if its rightmost digit is odd (to make an
even digit).

ROUND_HALF_UP
Round the value to the nearest value. If the values are equidistant, round the value up. If the
discarded digits represent half or more than half of the value of a number in the next left position, the
result coefficient is incremented by 1. Otherwise, the discarded digits are ignored.

string-constant
A character string constant with a maximum length of 15 bytes, after trailing blanks have been
removed. The value must be a left-aligned string that specifies one of the five rounding mode
keywords (case insensitive).

host-variable
A variable of type CHAR or VARCHAR. The value of the host variable must be a left-aligned string that
specifies one of the five rounding mode keywords (case insensitive). The actual length of the contents
of host-variable must not be greater than 15 bytes, after trailing blanks have been removed. The value
must be padded on the right with blanks when using a fixed-length character host variable. The host
variable cannot be set to the null value.

Rules
• The specified rounding mode value must be the same as the value of the CURRENT DECFLOAT

ROUNDING MODE special register (SQLSTATE 42815).

Notes
• This statement does not change the value of the CURRENT DECFLOAT ROUNDING MODE special

register on a Db2 server. However, when the statement is processed by a Db2 for z/OS server or a
Db2 for IBM i server, it can be used to change the value of the CURRENT DECFLOAT ROUNDING MODE
special register on that server.

Example
The following statement verifies whether the specified rounding mode value for the client matches the
rounding mode value that is currently set on the server.

 SET CURRENT DECFLOAT ROUNDING MODE = ROUND_CEILING

SET CURRENT DEFAULT TRANSFORM GROUP
The SET CURRENT DEFAULT TRANSFORM GROUP statement changes the value of the CURRENT DEFAULT
TRANSFORM GROUP special register.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Chapter 1. Structured Query Language (SQL) 1817

Authorization
None required.

Syntax

SET
CURRENT

DEFAULT TRANSFORM GROUP
 =

group-name

Description
group-name

Specifies a one-part name that identifies a transform group defined for all structured types. This name
can be referenced in subsequent statements (or until the special register value is changed again using
another SET CURRENT DEFAULT TRANSFORM GROUP statement).

The name must be an SQL identifier (either ordinary or delimited). No validation that the group-name
is defined for any structured type is made when the special register is set. Only when a structured
type is specifically referenced is the definition of the named transform group checked for validity.

Rules
• If the value specified does not conform to the rules for a group-name, an error is raised (SQLSTATE

42815)
• The TO SQL and FROM SQL functions defined in the group-name transform group are used for

exchanging user-defined structured type data with a host program.

Usage notes
• The initial value of the CURRENT DEFAULT TRANSFORM GROUP special register is the empty string.

Example
Set the default transform group to MYSTRUCT1. The TO SQL and FROM SQL functions defined in the
MYSTRUCT1 transform group will be used for exchanging user-defined structured type variables with the
current host program.

 SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

SET CURRENT DEGREE
The SET CURRENT DEGREE statement assigns a value to the CURRENT DEGREE special register.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

1818 IBM Db2 V11.5: SQL Reference

Syntax

SET CURRENT DEGREE
=

string-constant

host-variable

Description
The value of CURRENT DEGREE is replaced by the value of the string constant or host variable. The
value must be a character string that is not longer than 5 bytes. The value must be the character string
representation of an integer between 1 and 32 767 inclusive or 'ANY'.

If the value of CURRENT DEGREE represented as an integer is 1 when an SQL statement is dynamically
prepared, the execution of that statement will not use intrapartition parallelism.

If the value of CURRENT DEGREE is a number when an SQL statement is dynamically prepared, the
execution of that statement can involve intrapartition parallelism with the specified degree.

If the value of CURRENT DEGREE is 'ANY' when an SQL statement is dynamically prepared, the execution
of that statement can involve intrapartition parallelism using a degree determined by the database
manager.
host-variable

The host-variable must be of data type CHAR or VARCHAR and the length must not exceed 5.
If a longer field is provided, an error will be returned (SQLSTATE 42815). If the actual value
provided is larger than the replacement value specified, the input must be padded on the right with
blanks. Leading blanks are not allowed (SQLSTATE 42815). All input values are treated as being
case-insensitive. If a host-variable has an associated indicator variable, the value of that indicator
variable must not indicate a null value (SQLSTATE 42815).

string-constant
The string-constant length must not exceed 5.

Notes
• The degree of intrapartition parallelism for static SQL statements can be controlled using the DEGREE

option of the PREP or BIND command.
• The actual runtime degree of intrapartition parallelism will be the lower of:

– Maximum query degree (max_querydegree) configuration parameter
– Application runtime degree
– SQL statement compilation degree
– MAXIMUM DEGREE service class option
– MAXIMUM DEGREE workload option

• The intra_parallel database manager configuration parameter must be on to use intrapartition
parallelism. If it is set to off, the value of this register will be ignored and the statement will not use
intrapartition parallelism for the purpose of optimization (SQLSTATE 01623).

• The value in the CURRENT DEGREE special register and the intra_parallel setting can be
overridden in a workload by setting the MAXIMUM DEGREE workload attribute.

• If the DB2_WORKLOAD system environment variables is set to ANALYTICS and MAXIMUM DEGREE
for the workload is set to DEFAULT, the value of the intra_parallel setting for the workload is
overridden to ON.

• Some SQL statements cannot use intrapartition parallelism.

Chapter 1. Structured Query Language (SQL) 1819

Examples
• Example 1: The following statement sets the CURRENT DEGREE to inhibit intrapartition parallelism.

 SET CURRENT DEGREE = '1'

• Example 2: The following statement sets the CURRENT DEGREE to allow intrapartition parallelism.

 SET CURRENT DEGREE = 'ANY'

SET CURRENT EXPLAIN MODE
The SET CURRENT EXPLAIN MODE statement changes the value of the CURRENT EXPLAIN MODE special
register. It is not under transaction control.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT EXPLAIN MODE
=

NO

YES

EXPLAIN

NORCAC

REOPT

RECOMMEND INDEXES

EVALUATE INDEXES

RECOMMEND PARTITIONINGS

EVALUATE PARTITIONINGS

host-variable

Description
NO

Disables the Explain facility. No Explain information is captured. NO is the initial value of the special
register.

YES
Enables the Explain facility and causes Explain information to be inserted into the Explain tables for
eligible dynamic SQL statements. All dynamic SQL statements are compiled and executed normally.

EXPLAIN
Enables the Explain facility and causes Explain information to be captured for any eligible dynamic
SQL statement that is prepared. However, dynamic statements are not executed.

EXPLAIN NORCAC
Enables the Explain facility and causes Explain information to be captured for any eligible dynamic
SQL statement that is prepared as if row or column access control (RCAC) was not activated. Dynamic
statements are not executed. When this explain mode is set, explain facility would explain the plan as
if RCAC was not present.

1820 IBM Db2 V11.5: SQL Reference

REOPT
Enables the Explain facility and causes Explain information to be captured for a static or dynamic SQL
statement during statement reoptimization at execution time; that is, when actual values for the host
variables, special registers, global variables, or parameter markers are available.

RECOMMEND INDEXES
Enables the SQL compiler to recommend indexes. All queries that are executed in this explain mode
will populate the ADVISE_INDEX table with recommended indexes. In addition, Explain information
will be captured in the Explain tables to reveal how the recommended indexes are used, but the
statements are neither compiled nor executed.

EVALUATE INDEXES
Enables the SQL compiler to evaluate virtual recommended indexes for dynamic queries. Queries
executed in this explain mode will be compiled and optimized using fabricated statistics based on
the virtual indexes. The statements are not executed. The indexes to be evaluated are read from the
ADVISE_INDEX table if the USE_INDEX column contains "Y". Existing non-unique indexes can also be
ignored by setting the USE_INDEX column to "I" and the EXISTS column to "Y". If a combination of
USE_INDEX="I" and EXISTS="N" is given then index evaluation for the query will continue normally
but the index in question will not be ignored.

RECOMMEND PARTITIONINGS
Specifies that the compiler is to recommend the best database partition for each table that is
accessed by a specific query. The best database partitions are then written to an ADVISE_PARTITION
table. The query is not executed.

EVALUATE PARTITIONINGS
Specifies that the compiler is to obtain the estimated performance of a query using the virtual
database partitions specified in the ADVISE_PARTITION table.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length must not exceed 254. If a
longer field is provided, an error will be returned (SQLSTATE 42815). The value specified must be NO,
YES, EXPLAIN, RECOMMEND INDEXES, or EVALUATE INDEXES. If the actual value provided is larger
than the replacement value specified, the input must be padded on the right with blanks. Leading
blanks are not allowed (SQLSTATE 42815). All input values are treated as being case-insensitive.
If a host-variable has an associated indicator variable, the value of that indicator variable must not
indicate a null value (SQLSTATE 42815).

Notes
• The Explain facility uses the following IDs as the schema when qualifying Explain tables that it is

populating:

– The session authorization ID for dynamic SQL
– The statement authorization ID for static SQL

The schema can be associated with a set of Explain tables, or aliases that point to a set of Explain tables
under a different schema. If no Explain tables are found under the schema, the Explain facility checks
for Explain tables under the SYSTOOLS schema and attempts to use those tables.

• Explain information for static SQL statements can be captured by using the EXPLAIN option of the PREP
or BIND command. If the ALL value of the EXPLAIN option is specified, and the CURRENT EXPLAIN
MODE register value is NO, explain information will be captured for dynamic SQL statements at run time.
If the value of the CURRENT EXPLAIN MODE register is not NO, the value of the EXPLAIN bind option is
ignored.

• RECOMMEND INDEXES and EVALUATE INDEXES are special modes which can only be set with the SET
CURRENT EXPLAIN MODE statement. These modes cannot be set using PREP or BIND options, and they
do not work with the SET CURRENT EXPLAIN SNAPSHOT statement.

• If the Explain facility is activated, the current authorization ID must have INSERT privilege for the
Explain tables, or an error (SQLSTATE 42501) is raised.

Chapter 1. Structured Query Language (SQL) 1821

• When SQL statements are explained from a routine, the routine must be defined with an SQL data
access indicator of MODIFIES SQL DATA (SQLSTATE 42985).

• If the special register is set to REOPT, and the SQL statement does not qualify for reoptimization at
execution time (that is, if the statement does not have input variables, or if the REOPT bind option is set
to NONE), then no Explain information will be captured. If the REOPT bind option is set to ONCE, Explain
information will be captured only once when the statement is initially reoptimized. After the statement
is cached, no further Explain information will be acquired for this statement on subsequent executions.

• If the Explain facility is enabled, the REOPT bind option is set to ONCE, and you attempt to execute an
SQL statement that is already cached, the statement will be compiled and reoptimized with the current
values of the input variables, and the Explain tables will be populated accordingly. The newly generated
access plan for this statement will not be cached or executed. Other applications that are concurrently
executing this cached statement will continue to execute, and new requests to execute this statement
will pick up the already cached access plan.

• A value of REOPT for the CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special
registers will override the value of the EXPLAIN and EXPLSNAP bind options at bind time if a static
or dynamic SQL statement has input variables, and the REOPT bind option is set to ONCE or ALWAYS.

• Row and column level access control (RCAC) defined on the EXPLAIN tables is enforced for user access
to these tables just like any other regular tables. However, row and column level access control on the
EXPLAIN tables is not enforced when the database itself is populating those EXPLAIN tables. This is
considered internal housekeeping and is not subject to RCAC, much like internal SQL.

Example

The following statement sets the CURRENT EXPLAIN MODE special register, so that Explain information
will be captured for any subsequent eligible dynamic SQL statements and the statement will not be
executed.

 SET CURRENT EXPLAIN MODE = EXPLAIN

SET CURRENT EXPLAIN SNAPSHOT
The SET CURRENT EXPLAIN SNAPSHOT statement changes the value of the CURRENT EXPLAIN
SNAPSHOT special register.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT EXPLAIN SNAPSHOT
=

NO

YES

EXPLAIN

REOPT

host-variable

1822 IBM Db2 V11.5: SQL Reference

Description
NO

Disables the Explain snapshot facility. No snapshot is taken. NO is the initial value of the special
register.

YES
Enables the Explain snapshot facility, creating a snapshot of the internal representation for each
eligible dynamic SQL statement. This information is inserted in the SNAPSHOT column of the
EXPLAIN_STATEMENT table.

EXPLAIN
Enables the Explain snapshot facility, creating a snapshot of the internal representation for each
eligible dynamic SQL statement that is prepared. However, dynamic statements are not executed.

REOPT
Enables the Explain facility and causes Explain information to be captured for a static or dynamic SQL
statement during statement reoptimization at execution time; that is, when actual values for the host
variables, special registers, global variables, or parameter markers are available.

host-variable
The host-variable must be of data type CHAR or VARCHAR and the length of its contents must
not exceed 8. If a longer field is provided, an error will be returned (SQLSTATE 42815). The value
contained in this register must be either NO, YES, or EXPLAIN. If the actual value provided is larger
than the replacement value specified, the input must be padded on the right with blanks. Leading
blanks are not allowed (SQLSTATE 42815). All input values are treated as being case-insensitive.
If host-variable has an associated indicator variable, the value of that indicator variable must not
indicate a null value (SQLSTATE 42815).

Notes
• The Explain facility uses the following IDs as the schema when qualifying Explain tables that it is

populating:

– The session authorization ID for dynamic SQL
– The statement authorization ID for static SQL

The schema can be associated with a set of Explain tables, or aliases that point to a set of Explain tables
under a different schema. If no Explain tables are found under the schema, the Explain facility checks
for Explain tables under the SYSTOOLS schema and attempts to use those tables.

• Explain snapshots for static SQL statements can be captured by using the EXPLSNAP option of the PREP
or BIND command. If the ALL value of the EXPLSNAP option is specified, and the CURRENT EXPLAIN
SNAPSHOT register value is NO, Explain snapshots will be captured for dynamic SQL statements at run
time. If the value of the CURRENT EXPLAIN SNAPSHOT register is not NO, the EXPLSNAP option is
ignored.

• If the Explain snapshot facility is activated, the current authorization ID must have INSERT privilege for
the Explain tables or an error (SQLSTATE 42501) is raised.

• When SQL statements are explained from a routine, the routine must be defined with an SQL data
access indicator of MODIFIES SQL DATA (SQLSTATE 42985).

• If the special register is set to REOPT, and the SQL statement does not qualify for reoptimization at
execution time (that is, if the statement does not have input variables, or if the REOPT bind option is set
to NONE), then no Explain information will be captured. If the REOPT bind option is set to ONCE, Explain
snapshot information will be captured only once when the statement is initially reoptimized. After the
statement is cached, no further Explain information will be acquired for this statement on subsequent
executions.

• If the Explain facility is enabled, the REOPT bind option is set to ONCE, and you attempt to execute a
reoptimizable SQL statement that is already cached, the statement will be compiled and reoptimized
with the current values of the input variables, and the Explain snapshot will be captured accordingly.
The newly generated access plan for this statement will not be cached or executed. Other applications

Chapter 1. Structured Query Language (SQL) 1823

that are concurrently executing this cached statement will continue to execute, and new requests to
execute this statement will pick up the already cached access plan.

• The value REOPT for the CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special
registers will override the value of the EXPLAIN and EXPLSNAP bind options at bind time if a static
or dynamic SQL statement has input variables, and the REOPT bind option is set to ONCE or ALWAYS.

Examples
• Example 1: The following statement sets the CURRENT EXPLAIN SNAPSHOT special register, so that an

Explain snapshot will be taken for any subsequent eligible dynamic SQL statements and the statement
will be executed.

 SET CURRENT EXPLAIN SNAPSHOT = YES

• Example 2: The following example retrieves the current value of the CURRENT EXPLAIN SNAPSHOT
special register into the host variable called SNAP.

 EXEC SQL VALUES (CURRENT EXPLAIN SNAPSHOT) INTO :SNAP;

SET CURRENT FEDERATED ASYNCHRONY
The SET CURRENT FEDERATED ASYNCHRONY statement assigns a value to the CURRENT FEDERATED
ASYNCHRONY special register.

This statement is not under transaction control.

Invocation
The statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT FEDERATED ASYNCHRONY
=

ANY

integer-constant

host-variable

Description
ANY

Specifies a CURRENT FEDERATED ASYNCHRONY value of -1, which means that the execution of
statements can involve asynchrony using a degree that is determined by the database manager.

integer-constant
Specifies an integer value between 0 and 32 767, inclusive. The execution of statements can involve
asynchrony using the specified degree. If the value is 0 when an SQL statement is dynamically
prepared, the execution of that statement will not use asynchrony.

host-variable
A variable of type INTEGER. The value must be between 0 and 32 767, inclusive, or -1 (representing
ANY). If host-variable has an associated indicator variable, the value of that indicator variable must
not indicate a null value (SQLSTATE 42815).

1824 IBM Db2 V11.5: SQL Reference

Notes
• The degree of asynchrony for static SQL statements can be controlled using the

FEDERATED_ASYNCHRONY option of the PREP or BIND command.
• The initial value of the CURRENT FEDERATED ASYNCHRONY special register is determined by

the federated_async database manager configuration parameter if the dynamic statement
is issued through the command line processor (CLP). The initial value is determined by the
FEDERATED_ASYNCHRONY bind option if the dynamic statement is part of an application that is being
bound.

Examples
• Example 1: The following statement disables asynchrony by setting the value of the CURRENT

FEDERATED ASYNCHRONY special register to 0.

 SET CURRENT FEDERATED ASYNCHRONY = 0

• Example 2: The following statement sets the degree of asynchrony to 5.

 SET CURRENT FEDERATED ASYNCHRONY 5

• Example 3: The following statement sets the value of the CURRENT FEDERATED ASYNCHRONY special
register to -1, which specifies that the database manager is to determine the degree of asynchrony.

 SET CURRENT FEDERATED ASYNCHRONY ANY

SET CURRENT IMPLICIT XMLPARSE OPTION
The SET CURRENT IMPLICIT XMLPARSE OPTION statement changes the value of the CURRENT IMPLICIT
XMLPARSE OPTION special register.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT IMPLICIT XMLPARSE OPTION
=

string-constant

host-variable

Description
string-constant

A character string constant. The value must be a left-aligned string that is either 'PRESERVE
WHITESPACE' or 'STRIP WHITESPACE' (case insensitive) with no additional blank characters between
the keywords.

host-variable
A variable of type CHAR or VARCHAR. The value of the host variable must be a left-aligned string that
is either 'PRESERVE WHITESPACE' or 'STRIP WHITESPACE' (case insensitive) with no additional blank

Chapter 1. Structured Query Language (SQL) 1825

characters between the keywords. The value must be padded on the right with blanks when using a
fixed-length character host-variable. The host variable cannot be set to null.

Notes
• The initial value of the CURRENT IMPLICIT XMLPARSE OPTION special register is 'STRIP WHITESPACE'.
• Both dynamic and static SQL statements are affected by this special register.

Example
Set the value of the CURRENT IMPLICIT XMLPARSE OPTION special register to 'PRESERVE WHITESPACE'.

 SET CURRENT IMPLICIT XMLPARSE OPTION = 'PRESERVE WHITESPACE'

SET CURRENT ISOLATION
The SET CURRENT ISOLATION statement assigns a value to the CURRENT ISOLATION special register.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET
CURRENT

ISOLATION
=

UR

CS

RR

RS

RESET

Description
The value of the CURRENT ISOLATION special register is replaced by the specified value or set to blanks if
RESET is specified.

Notes
• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous

versions of Db2 and with other database products.

– TO can be specified in place of the equal sign (=)
– DIRTY READ can be specified in place of UR
– READ UNCOMMITTED can be specified in place of UR
– READ COMMITTED is recognized and upgraded to CS
– CURSOR STABILITY can be specified in place of CS
– REPEATABLE READ can be specified in place of RR
– SERIALIZABLE can be specified in place of RR

1826 IBM Db2 V11.5: SQL Reference

SET CURRENT LOCALE LC_MESSAGES
The SET CURRENT LOCALE LC_MESSAGES statement changes the value of the CURRENT LOCALE
LC_MESSAGES special register.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT LOCALE LC_MESSAGES
=

host-variable

string-constant

Description
The CURRENT LOCALE LC_MESSAGES special register identifies the locale that is used
by EVMON_UPGRADE_TABLES, as well as monitoring routines in the monreport module.
EVMON_UPGRADE_TABLES and the monitoring routines use the value of CURRENT LOCALE
LC_MESSAGES to determine in which language the result set text output should be returned. User-
defined routines that are coded to return messages could also use the value of CURRENT LOCALE
LC_MESSAGES to determine what language to use for message text.

host-variable
A variable of type CHAR or VARCHAR. It cannot be set to null.

string-constant
A character string constant.

Notes
• Initial value: The initial value of the CURRENT LOCALE LC_MESSAGES special register is 'en_US'.
• Language availability: If the language for the locale is not available to the database manager, messages

will be returned in English.
• Code page compatibility: The language for the locale specified must be supported by the code page

of the output parameter or returns type of a routine that uses the special register to determine what
language to return message text information in. If the database is not a Unicode database (and the
routine was not created with PARAMETER CCSID UNICODE) and some characters in the language for
the locale cannot be represented in the database code page, substitution characters will be returned as
a result of code page conversion.

• Potential future use: In a future release, the value of the CURRENT LOCALE LC_MESSAGES special
register might be used for other areas of the database environment that involve messages.

• Valid locales and naming: For information about valid locales and their naming, see "Locale names for
SQL and XQuery" in the Globalization Guide.

Chapter 1. Structured Query Language (SQL) 1827

Examples
• Example 1: The following statement sets the CURRENT LOCALE LC_MESSAGES special register to the

English (Canada) locale using the latest version of Common Locale Data Repository (CLDR) available in
the database manager.

 SET CURRENT LOCALE LC_MESSAGES = 'en_CA'

• Example 2: The following statement sets the CURRENT LOCALE LC_MESSAGES special register to the
French (France) locale using Common Locale Data Repository (CLDR) version 1.5. The CONNECTION
routine in the monreport module is then invoked to have its output returned in French.

 SET CURRENT LOCALE LC_MESSAGES = 'CLDR 1.5:fr_FR'
 CALL MONREPORT.CONNECTION

• Example 3: Assume that the user-defined procedure XYZ.STORELOCATOR takes a zip code or postal
code input. It returns a result set of stores of the XYZ company within a 30 minute drive from the zip
code or postal code given as input. If the zip code or postal code is not in the correct format, an error
message is returned that indicates what the problem is with the format. The procedure is coded to be
able to return the error message in the language determined from the value of the CURRENT LOCALE
LC_MESSAGES special register. The following statement sets the CURRENT LOCALE LC_MESSAGES
special register to the Spanish (Mexico) locale. The store locator user-defined procedure is then invoked
and any error messages will be returned in Spanish.

 SET CURRENT LOCALE LC_MESSAGES = 'es_MX'
 CALL XYZ.STORELOCATOR(:ZIP, :STATUSMSG)

SET CURRENT LOCALE LC_TIME
The SET CURRENT LOCALE LC_TIME statement changes the value of the CURRENT LOCALE LC_TIME
special register. It is not under transaction control.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT LOCALE LC_TIME
=

host-variable

string-constant

Description
The CURRENT LOCALE LC_TIME special register is used by the DAYNAME, MONTHNAME,
NEXT_DAY, ROUND, ROUND_TIMESTAMP, TIMESTAMP_FORMAT, TRUNCATE, TRUNC_TIMESTAMP and
VARCHAR_FORMAT functions when the locale-name argument is not explicitly specified.
host-variable

A variable of type CHAR or VARCHAR. It cannot be set to null.
string-constant

A character string constant.

1828 IBM Db2 V11.5: SQL Reference

Notes
• Initial Value: The initial value of the CURRENT LOCALE LC_TIME special register is 'en_US'.
• Potential future use: In a future release the value of the CURRENT LOCALE LC_TIME special register

might be used by other scalar functions and for other areas of the database environment that involve
datetime values.

• Valid locales and naming: For information on valid locales and their naming,, see "Locale names for SQL
and XQuery" in the Globalization Guide .

Examples
• Example 1: The following statement sets the CURRENT LOCALE LC_TIME special register to the English

(Canada) locale using the latest version of Common Locale Data Repository (CLDR) available in the
database manager.

SET CURRENT LOCALE LC_TIME = 'en_CA'

• Example 2: The following statement sets the CURRENT LOCALE LC_TIME special register to the French
(France) locale using Common Locale Data Repository (CLDR) version 1.8.1. The MONTHNAME scalar
function is then invoked with a single argument of '2008-11-10-00.00.00.000000'.

SET CURRENT LOCALE LC_TIME = 'CLDR181_fr_FR'
VALUES MONTHNAME('2008-11-10-00.00.00.000000')

returns:

'novembre'

SET CURRENT LOCK TIMEOUT
The SET CURRENT LOCK TIMEOUT statement changes the value of the CURRENT LOCK TIMEOUT special
register.

This statement is not under transaction control.

Invocation
The statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET
CURRENT

LOCK TIMEOUT
=

WAIT

NOT WAIT

NULL

WAIT
integer-constant

host-variable

Chapter 1. Structured Query Language (SQL) 1829

Description
The specified value must be an integer between -1 and 32767, inclusive (SQLSTATE 428B7), or the null
value.

WAIT
Specifies a CURRENT LOCK TIMEOUT value of -1, which means that the database manager is to wait
until a lock is released, or a deadlock is detected (SQLSTATE 40001 or 57033).

NOT WAIT
Specifies a CURRENT LOCK TIMEOUT value of 0, which means that the database manager is not to
wait for locks that cannot be obtained, and an error (SQLSTATE 40001 or 57033) will be returned.

NULL
Specifies that the CURRENT LOCK TIMEOUT value is to be unset, and that the value of the
locktimeout database configuration parameter is to be used when waiting for a lock. The value
that is returned for the special register will change as the value of locktimeout changes.

WAIT integer-constant
Specifies an integer value between -1 and 32767. A value of -1 is equivalent to specifying the WAIT
keyword without an integer value. A value of 0 is equivalent to specifying the NOT WAIT clause. If
the value is between 1 and 32767, the database manager will wait that number of seconds (if a lock
cannot be obtained) before an error (SQLSTATE 40001 or 57033) is returned.

host-variable
A variable of type INTEGER. The value must be between -1 and 32767. If host-variable has an
associated indicator variable, and the value of that indicator variable specifies a null value, the
CURRENT LOCK TIMEOUT value is unset. This is equivalent to specifying the NULL keyword.

Notes
• An updated value of the special register takes effect immediately upon successful execution of

this statement. Because the special register value that is to be used during statement execution is
fixed at the beginning of statement execution, an updated value of the CURRENT LOCK TIMEOUT
special register will only be returned by statements that start execution after the SET LOCK TIMEOUT
statement has completed successfully.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with Informix
database products. These alternatives are non-standard and should not be used.

– MODE can be specified in place of TIMEOUT.
– TO can be specified in place of the equals (=) operator.

Examples
• Example 1: Set the lock timeout value to wait for 30 seconds before returning an error.

 SET CURRENT LOCK TIMEOUT 30

• Example 2: Unset the lock timeout value, so that the locktimeout database configuration parameter
value will be used instead.

 SET CURRENT LOCK TIMEOUT NULL

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
The SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION statement changes the value of the
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register.

This statement is not under transaction control.

1830 IBM Db2 V11.5: SQL Reference

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT MAINTAINED
TABLE

TYPES
FOR OPTIMIZATION

=

ALL

NONE

host-variable
,

FEDERATED_TOOL

SYSTEM

USER

REPLICATION

CURRENT MAINTAINED
TABLE

TYPES
FOR OPTIMIZATION

Description
ALL

Specifies that all possible types of maintained tables controlled by this special register, now and in the
future, are to be considered when optimizing the processing of dynamic SQL queries.

NONE
Specifies that none of the object types that are controlled by this special register are to be considered
when optimizing the processing of dynamic SQL queries.

FEDERATED_TOOL
Specifies that refresh-deferred materialized query tables that are maintained by a federated tool can
be considered to optimize the processing of dynamic SQL queries, provided the value of the CURRENT
QUERY OPTIMIZATION special register is 2 or greater than 5.

SYSTEM
Specifies that system-maintained refresh-deferred materialized query tables can be considered to
optimize the processing of dynamic SQL queries. (Immediate materialized query tables are always
available.)

USER
Specifies that user-maintained refresh-deferred materialized query tables can be considered to
optimize the processing of dynamic SQL queries.

REPLICATION
Specifies that shadow tables can be considered to help optimize the processing of dynamic SQL
queries.

Chapter 1. Structured Query Language (SQL) 1831

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
The value of the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register before
this statement executes.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of the host variable must not exceed
254 bytes (SQLSTATE 42815). It cannot be set to null. If host-variable has an associated indicator
variable, the value of that indicator variable must not indicate a null value (SQLSTATE 42815).

The characters of host-variable must be left-aligned. The contents of host-variable must be a string
that is a comma-separated list of keywords matching what can be specified as keywords for the
special register. These keywords must be specified in the exact case intended, because there is no
conversion to uppercase characters. The value must be padded on the right with blanks if its length is
less than that of the host variable.

Notes
• The initial value of the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register is

determined by the dft_mttb_types database configuration parameter, which has a default value of
SYSTEM.

• You must set the CURRENT REFRESH AGE special register to a value other than 0 for the specified table
types to be considered during optimization of the processing of dynamic SQL queries.

• If the value of the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register includes
anything other than REPLICATION or NONE, the value of the CURRENT REFRESH AGE special register
must be either 0 or 99999999999999 (ANY).

Examples
• Example 1: Set the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register.

 SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION = SYSTEM, USER

• Example 2: Retrieve the current value of the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
special register into a host variable called CURMAINTYPES.

 EXEC SQL VALUES (CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION)
 INTO :CURMAINTYPES

• Example 3: Set the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register to have
no value.

 SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION = NONE

SET CURRENT MDC ROLLOUT MODE
The SET CURRENT MDC ROLLOUT MODE statement assigns a value to the CURRENT MDC ROLLOUT MODE
special register. The value specifies the type of rollout cleanup that is to be performed on qualifying
DELETE statements for multidimensional clustering (MDC) tables.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

1832 IBM Db2 V11.5: SQL Reference

Syntax
SET CURRENT MDC ROLLOUT MODE NONE

IMMEDIATE

DEFERRED

host-variable

Description
NONE

Specifies that MDC rollout optimization during delete operations is not to be used. The DELETE
statement is processed in the same way as a DELETE statement that does not qualify for rollout.

IMMEDIATE
Specifies that MDC rollout optimization is to be used if the DELETE statement qualifies. If the table
has RID indexes, the indexes are updated immediately during delete processing. The deleted blocks
are available for reuse after the transaction commits.

DEFERRED
Specifies that MDC rollout optimization is to be used if the DELETE statement qualifies. If the table
has RID indexes, index updates are deferred until after the transactions commits. With this option,
delete processing is faster and uses less log space, but the deleted blocks are not available for reuse
until after the index updates are complete.

host-variable
A variable of type VARCHAR. The length of host-variable must be less than or equal to 17 bytes
(SQLSTATE 42815). The value of the host variable must be a left-aligned string that is one of 'NONE',
'IMMEDIATE', or 'DEFERRED' (case insensitive). If host-variable has an associated indicator variable,
the value of that indicator variable must not indicate a null value (SQLSTATE 42815).

Notes
• Subsequent DELETE statements that are eligible for rollout processing respect the setting of the

CURRENT MDC ROLLOUT MODE special register. Currently executing sections are not affected by a
change to this special register.

• The effects of executing the SET CURRENT MDC ROLLOUT MODE statement are not rolled back if the
unit of work in which the statement is executed is rolled back.

• After you run a SET CURRENT MDC ROLLOUT MODE statement, the behavior of MDC table rollout
changes. The behavior of MDC table rollouts returns to the configuration set by the registry variable
DB2_MDC_ROLLOUT when one of the following situations occur:

– The connection/session to the database is terminated.
– A CONNECT RESET is entered.
– A SET CURRENT MDC ROLLOUT MODE NONE is entered.

• The DEFERRED mode is not supported on a data partitioned MDC table with partitioned RID indexes.
Only the NONE and IMMEDIATE modes are supported. The cleanup rollout type will be IMMEDIATE
if the DB2_MDC_ROLLOUT registry variable is set to DEFER, or if the CURRENT MDC ROLLOUT MODE
special register is set to DEFERRED to override the DB2_MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the MDC table, deferred index cleanup rollout is supported.

Example
Specify deferred cleanup behavior for the next DELETE statement that qualifies for rollout processing.

 SET CURRENT MDC ROLLOUT MODE IMMEDIATE

Chapter 1. Structured Query Language (SQL) 1833

SET CURRENT OPTIMIZATION PROFILE
The SET CURRENT OPTIMIZATION PROFILE statement assigns a value to the CURRENT OPTIMIZATION
PROFILE special register. The value specifies the optimization profile the optimizer should use when
preparing dynamic DML statements.

This statement is not under transaction control.

When the statement is evaluated, the name of the optimization profile is checked for validity, but the
profile is not processed until the optimizer encounters a dynamic DML statement.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT OPTIMIZATION PROFILE
=

optimization-profile-name

host-variable

string-constant

NULL

Description
optimization-profile-name

The two-part name of the optimization profile. The name can be specified with a literal, host variable,
or special register. The name specified is the name entered into the CURRENT OPTIMIZATION
PROFILE special register.

If the specified optimization-profile-name is unqualified, the value of the CURRENT DEFAULT SCHEMA
register is used as the implicit qualifier. The default value of the special register is null.

host-variable
A variable of type CHAR or VARCHAR that includes the name of the optimization profile. A host
variable that includes a null indicator indicates that the value of the OPTPROFILE bind option is to be
used if that value is specified for the current package. A host variable of zero length, or of white space
only, indicates that no optimization profile is to be used.

The host variable must meet the following characteristics:

• The content of the string is a single or two-part identifier (separated by a period), with no leading
blanks.

• The identifier or identifiers can be delimited or non-delimited.
• The content of the string is not folded to upper case.
• Lower case and special characters cannot be used in non-delimited strings.
• If the first character is a double quotation mark, a closing double quotation mark must either

precede a period or be the last non-blank character in the string.
• If the first character following a period is a double quotation mark, then a double quotation mark

must be the last non-blank character in the string.
• If the identifier is delimited, then to include double quotation marks in the identifier, specify the

character twice.

1834 IBM Db2 V11.5: SQL Reference

• Any period that is not inside a delimited identifier is treated as a separator, and only one period
separator can exist in the string.

string-constant
Specifies a constant as a character string that is the name of the optimization profile. The content of a
string constant must meet the same characteristics as a host variable.

NULL
Sets the CURRENT OPTIMIZATION PROFILE register to null.

Table 153 on page 1835 provides examples of string literals and identifiers that might be used to assign
the register as per the optimization profile naming rules. The value in the SCHEMA and NAME column
represent an optimization profile name as it might appear in the OPT_PROFILE table. The valid string
literals column shows string literals that match the optimization profile named by the corresponding
SCHEMA and NAME column values. The valid identifiers column shows identifiers that would identify that
same optimization profile.

Table 153. Examples of string literals and identifiers

SCHEMA NAME Valid string literals Valid identifiers

SIMMEN BIG_PROF 'BIG_PROF'

'SIMMEN.BIG_PROF'

'"BIG_PROF"'

'"SIMMEN"."BIG_PROF"'

BIG_PROF

SIMMEN.BIG_PROF

"BIG_PROF"

"SIMMEN"."BIG_PROF"

SIMMEN low_profile '"low_profile"'

'SIMMEN."low_profile"'

'"SIMMEN"."low_profile"'

"low_profile"

SIMMEN."low_profile"

"SIMMEN"."low_profile"

eliaz DBA3 'DBA3'

'"DBA3"'

'"eliaz".DBA3'

'"eliaz"."DBA3"'

DBA3

"eliaz".DBA3

"eliaz"."DBA3"

SNOW PROFILE1.0 '"PROFILE1.0"'

'SNOW."PROFILE1.0"'

'"SNOW"."PROFILE1.0"'

"PROFILE1.0"

SNOW."PROFILE1.0"

"SNOW"."PROFILE1.0"

Notes
• If the value of the register specifies the name of an existing optimization profile, the specified

optimization profile is used when preparing subsequent dynamic DML statements.
• If the value of the register is null, the optimization profile specified by the OPTPROFILE bind option, if

any, is used when preparing subsequent dynamic DML statements.
• If the value of the register is null, and the OPTPROFILE bind option is not set, no optimization profile is

used when preparing subsequent dynamic DML statements.
• If the value of the register is the empty string, then no optimization profile is used when preparing

subsequent dynamic DML statements, regardless of whether the OPTPROFILE bind option is set.
• Subsequent changes to CURRENT DEFAULT SCHEMA do not have any effect on the optimization profile.

The CURRENT OPTIMIZATION PROFILE register value is set with the two part name that is in effect at
the time SET CURRENT OPTIMIZATION PROFILE statement is evaluated. Only another SET CURRENT
OPTIMIZATION PROFILE statement can change the optimization profile that is used.

Chapter 1. Structured Query Language (SQL) 1835

Examples
• Example 1: The optimization profile RICK.FOO is used for statements 1, 2, and 3. TOM.FOO is used for

statement 4.

 SET CURRENT SCHEMA = 'RICK'
 SET CURRENT OPTIMIZATION PROFILE = 'FOO'
 statement 1
 statement 2
 SET CURRENT SCHEMA = 'TOM'
 statement 3
 SET CURRENT OPTIMIZATION PROFILE = 'FOO'
 statement 4

• Example 2: An application with the following statements was bound with the options
OPTPROFILE("Foo") and QUALIFIER("John"). The optimization profile KAAREL.BAR is used for
statement 1 and optimization profile "John"."Foo" is used for statement 2.

 SET CURRENT SCHEMA = 'KAAREL'
 SET CURRENT OPTIMIZATION PROFILE = 'BAR'
 statement 1
 SET CURRENT SCHEMA = "Tom"
 SET CURRENT OPTIMIZATION PROFILE NULL
 statement 2

• Example 3: The empty string is a special value that indicates that no optimization profile is to be
used. Optimization profile "Hamid"."Foo" is used for statement 1 and no optimization profile is used for
statement 2.

 SET CURRENT OPTIMIZATION PROFILE = '"Hamid"."Foo"'
 statement 1
 SET CURRENT OPTIMIZATION PROFILE = ''
 statement 2

SET CURRENT PACKAGE PATH
The SET CURRENT PACKAGE PATH statement assigns a value to the CURRENT PACKAGE PATH special
register.

This statement is not under transaction control.

Invocation
This statement can only be embedded in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization
None required.

1836 IBM Db2 V11.5: SQL Reference

Syntax

SET CURRENT PACKAGE PATH
=

,

schema-name

CURRENT PACKAGE PATH

CURRENT PATH

CURRENT_PATH

CURRENT USER

CURRENT_USER

SESSION_USER

SYSTEM_USER

USER

host-variable

string-constant

Description
schema-name

Identifies a schema. The name must not be a delimited identifier that is empty or that contains only
blanks (SQLSTATE 42815).

CURRENT PACKAGE PATH
The value of the CURRENT PACKAGE PATH special register before this statement executes.

CURRENT PATH
The value of the CURRENT PATH special register.

CURRENT USER
The value of the CURRENT USER special register.

SESSION_USER
The value of the SESSION_USER special register.

SYSTEM_USER
The value of the SYSTEM_USER special register.

USER
The value of the USER special register.

host-variable
Contains one or more schema names, separated by commas. The host variable must:

• Be a character-string variable (CHAR or VARCHAR). The actual length of the contents of the host
variable must not exceed the length of the CURRENT PACKAGE PATH special register.

• Not be the null value. If an indicator variable is provided, its value must not indicate a null value.
• Contain an empty or blank string, or one or more schema names separated by commas.
• Be padded on the right with blanks if the actual length of the host variable is greater than the

content.
• Not contain CURRENT PACKAGE PATH, CURRENT PATH, CURRENT_PATH, CURRENT USER,

CURRENT_USER, SESSION_USER, SYSTEM_USER, PATH, or USER.
• Not contain a delimited identifier that is empty or that contains only blanks.

string-constant
Specifies a character string constant that contains zero, one, or more schema names that are
separated by commas. The string constant must:

Chapter 1. Structured Query Language (SQL) 1837

• Have a length that does not exceed the maximum length of the CURRENT PACKAGE PATH special
register.

• Not contain CURRENT PACKAGE PATH, CURRENT PATH, CURRENT_PATH, CURRENT USER,
CURRENT_USER, SESSION_USER, SYSTEM_USER, PATH, or USER.

• Not contain a delimited identifier that is empty or that contains only blanks.

Rules
• If the same schema appears more than once in the list, the first occurrence of the schema is used

(SQLSTATE 01625).
• The number of schemas that can be specified is limited by the total length of the CURRENT PACKAGE

PATH special register. The special register string is built by taking each specified schema name and
removing trailing blanks, delimiting the name with double quotation marks, and separating the schema
names with commas. The length of the resulting list cannot exceed the maximum length of the special
register (SQLSTATE 0E000).

• A schema name that does not conform to the rules for an ordinary identifier (for example, a schema
name that contains lowercase characters or characters that cannot be specified in an ordinary
identifier), must be specified as a delimited schema name, and must not be specified within a host
variable or string constant.

• To indicate that the current value of a special register (specified as a single keyword) is to be used in the
package path, specify the name of the special register as a keyword. If the name of the special register
is specified as a delimited identifier instead (for example, "USER"), it is interpreted as a schema name of
that value ('USER').

• The following rules are used to determine whether a value specified in a SET CURRENT PACKAGE PATH
statement is a variable or a schema name:

– If name is the same as a parameter or SQL variable in the SQL procedure, name is interpreted as a
parameter or SQL variable, and the value in name is assigned to the package path.

– If name is not the same as a parameter or SQL variable in the SQL procedure, name is interpreted as a
schema name, and the value in name is assigned to the package path.

Notes
• Transaction considerations: The SET CURRENT PACKAGE PATH statement is not a commitable

operation. ROLLBACK has no effect on the CURRENT PACKAGE PATH special register.
• Existence checking of schemas: No validation that the specified schemas exist is made at the time

that the CURRENT PACKAGE PATH special register is set. For example, a schema that is misspelled
is not detected, which could affect the way subsequent SQL operates. At package execution time,
authorization to a matching package is checked, and if this authorization check fails, an error is returned
(SQLSTATE 42501).

• Contents of host variable or string constant: The contents of a host variable or a string constant are
interpreted as a list of schema names. If multiple schema names are specified, they must be separated
by commas. Each schema name in the list must conform to the rules for forming an ordinary identifier,
or be specified as a delimited identifier. The contents of the host variable or string constant are not
folded to uppercase.

• Restrictions specific to embedded SQL for COBOL applications: A maximum of ten literal (non-host
variable) values can appear on the right side of a SET CURRENT PACKAGE PATH statement. Such values
can have a maximum length of 130 (non-delimited) or 128 (delimited).

Examples
• Example 1: Set the CURRENT PACKAGE PATH special register to the following list of schemas: MYPKGS,

'ABC E', SYSIBM

 SET CURRENT PACKAGE PATH = MYPKGS, 'ABC E', SYSIBM

1838 IBM Db2 V11.5: SQL Reference

The following statement sets a host variable to the value of the resulting list:

 SET :hvpklist = CURRENT PACKAGE PATH

The value of the host variable is: "MYPKGS", "ABC E", "SYSIBM".
• Example 2: Set the CURRENT PACKAGE PATH special register to the following list of schemas:

"SCH4","SCH5", where :hvar1 contains 'SCH4,SCH5'.

 SET CURRENT PACKAGE PATH :hvar1

The value of the CURRENT PACKAGE PATH special register after this statement executes is:
"SCH4","SCH5".

• Example 3: Set the CURRENT PACKAGE PATH special register to the following list of schemas:
"SCH1","SCH#2","SCH3","SCH4","SCH5", where :hvar1 contains 'SCH4,SCH5'.

 SET CURRENT PACKAGE PATH = SCH1,'SCH#2',"SCH3",:hvar1

The value of the CURRENT PACKAGE PATH special register after this statement executes is:
"SCH1","SCH#2","SCH3","SCH4","SCH5".

• Example 4: Clear the CURRENT PACKAGE PATH special register.

 SET CURRENT PACKAGE PATH = ''

• Example 5: Temporarily append the "SCH_PROD" schema (contained in the :prodschema host variable)
and the "SCH_PROD2" schema (contained in the :prod2schema host variable) to the end of the
CURRENT PACKAGE PATH special register for execution of the SUMMARIZE procedure. Then, switch
the CURRENT PACKAGE PATH special register back to its previous value.

 SET :oldCPP = CURRENT PACKAGE PATH

 SET CURRENT PACKAGE PATH = CURRENT PACKAGE PATH,:prodschema,:prod2schema

 CALL SUMMARIZE(:V1,:V2)

 SET CURRENT PACKAGE PATH = :oldCPP

• Example 6: Set the CURRENT PACKAGE PATH special register to a list of delimited schema names:
"MY.SCHEMA" (imbedded period), "OLD SCHEMA" (imbedded blank). Use a single host variable
containing both delimited identifiers:

 hv = '"MY.SCHEMA", "OLD SCHEMA"'

 SET CURRENT PACKAGE PATH = :hv

or use a single string constant containing both delimited identifiers:

 SET CURRENT PACKAGE PATH = '"MY.SCHEMA", "OLD SCHEMA"'

or use a list of delimited schemas:

 SET CURRENT PACKAGE PATH = 'MY.SCHEMA', 'OLD SCHEMA'

SET CURRENT PACKAGESET
The SET CURRENT PACKAGESET statement sets the schema name (collection identifier) that will be used
to select the package to use for subsequent SQL statements.

This statement is not under transaction control.

Invocation
This statement can be embedded only in an application program. It is an executable statement that
cannot be dynamically prepared. This statement is not supported in REXX.

Chapter 1. Structured Query Language (SQL) 1839

Authorization
None required.

Syntax

SET CURRENT PACKAGESET
=

string-constant

host-variable

Description
string-constant

A character string constant. If the value exceeds 128 bytes, only the first 128 bytes are used.
host-variable

A variable of type CHAR or VARCHAR. It cannot be set to null. If the value exceeds 128 bytes, only the
first 128 bytes are used.

Notes
• This statement allows an application to specify the schema name used when selecting a package for an

executable SQL statement. The statement is processed at the client and does not flow to the application
server.

• The COLLECTION bind option can be used to create a package with a specified schema name.
• Unlike Db2 for z/OS, the SET CURRENT PACKAGESET statement is implemented without support for a

special register called CURRENT PACKAGESET.

Examples
• Example 1: Assume an application called TRYIT is precompiled by user ID PRODUSA, making

"PRODUSA" the default schema name in the bind file. The application is then bound twice with different
bind options. The following command line processor commands were used:

 CONNECT TO SAMPLE USER PRODUSA
 BIND TRYIT.BND DATETIME USA
 CONNECT TO SAMPLE USER PRODEUR
 BIND TRYIT.BND DATETIME EUR COLLECTION 'PRODEUR'

This creates two packages called TRYIT. The first bind command created the package in the schema
named "PRODUSA". The second bind command created the package in the schema named "PRODEUR"
based on the COLLECTION option.

• Example 2: Assume the application TRYIT contains the following statements:

 EXEC SQL CONNECT TO SAMPLE;
 .
 .
 EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO='000010'; 1
 .
 .
 EXEC SQL SET CURRENT PACKAGESET 'PRODEUR'; 2
 .
 .
 EXEC SQL SELECT HIREDATE INTO :HD FROM EMPLOYEE WHERE EMPNO='000010'; 3

1
This statement will run using the PRODUSA.TRYIT package because it is the default package for the
application. The date is therefore returned in USA format.

2
This statement sets the schema name to "PRODEUR" for package selection.

1840 IBM Db2 V11.5: SQL Reference

3
This statement will run using the PRODEUR.TRYIT package as a result of the SET CURRENT
PACKAGESET statement. The date is therefore returned in EUR format.

SET CURRENT QUERY OPTIMIZATION
The SET CURRENT QUERY OPTIMIZATION statement assigns a value to the CURRENT QUERY
OPTIMIZATION special register. The value specifies the current class of optimization techniques enabled
when preparing dynamic SQL statements.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT QUERY OPTIMIZATION
=

0

1

2

3

5

7

9

host-variable

Description
optimization-class

optimization-class can be specified either as an integer constant or as the name of a host variable that
will contain the appropriate value at run time. An overview of the classes follows.
0

Specifies that a minimal amount of optimization is performed to generate an access plan. This
class is most suitable for simple dynamic SQL access to well-indexed tables.

1
Specifies that optimization roughly comparable to Db2 Version 1 is performed to generate an
access plan.

2
Specifies a level of optimization higher than that of Db2 Version 1, but at significantly less
optimization cost than levels 3 and higher, especially for very complex queries.

3
Specifies that a moderate amount of optimization is performed to generate an access plan.

5
Specifies a significant amount of optimization is performed to generate an access plan. For
complex dynamic SQL queries, heuristic rules are used to limit the amount of time spent
selecting an access plan. Where possible, queries will use materialized query tables instead of
the underlying base tables.

Chapter 1. Structured Query Language (SQL) 1841

7
Specifies a significant amount of optimization is performed to generate an access plan. Similar to
5 but without the heuristic rules.

9
Specifies a maximal amount of optimization is performed to generate an access plan. This can
greatly expand the number of possible access plans that are evaluated. This class should be used
to determine if a better access plan can be generated for very complex and very long-running
queries using large tables. Explain and performance measurements can be used to verify that a
better plan has been generated.

host-variable
The data type is INTEGER. The value must be in the range 0 to 9 (SQLSTATE 42815) but should be
0, 1, 2, 3, 5, 7, or 9. If host-variable has an associated indicator variable, the value of that indicator
variable must not indicate a null value (SQLSTATE 42815).

Notes
• When the CURRENT QUERY OPTIMIZATION register is set to a particular value, a set of query rewrite

rules are enabled, and certain optimization variables take on particular values. This class of optimization
techniques is then used during preparation of dynamic SQL statements.

• In general, changing the optimization class impacts the execution time of the application, the
compilation time, and resources required. Most statements will be adequately optimized using the
default query optimization class. Lower query optimization classes, especially classes 1 and 2, may be
appropriate for dynamic SQL statements for which the resources consumed by the dynamic PREPARE
are a significant portion of those required to execute the query. Higher optimization classes should be
chosen only after considering the additional resources that may be consumed and verifying that a better
access plan has been generated.

• Query optimization classes must be in the range 0 to 9. Classes outside this range will return an error
(SQLSTATE 42815). Unsupported classes within this range will return a warning (SQLSTATE 01608) and
will be replaced with the next lowest query optimization class. For example, a query optimization class
of 6 will be replaced by 5.

• Dynamically prepared statements use the class of optimization that was set by the most recently
executed SET CURRENT QUERY OPTIMIZATION statement. In cases where a SET CURRENT QUERY
OPTIMIZATION statement has not yet been executed, the query optimization class is determined by the
value of the dft_queryopt database configuration parameter.

• Statically bound statements do not use the CURRENT QUERY OPTIMIZATION special register; therefore
this statement has no effect on them. The QUERYOPT option is used during preprocessing or binding to
specify the required class of optimization for statically bound statements. If QUERYOPT is not specified
then, the default value specified by the dft_queryopt database configuration parameter is used.

• The results of executing the SET CURRENT QUERY OPTIMIZATION statement are not rolled back if the
unit of work in which it is executed is rolled back.

Examples
• Example 1: This example shows how the highest degree of optimization can be selected.

 SET CURRENT QUERY OPTIMIZATION 9

• Example 2: The following example shows how the CURRENT QUERY OPTIMIZATION special register
can be used within a query.

Using the SYSCAT.PACKAGES catalog view, find all plans that were bound with the same setting as the
current value of the CURRENT QUERY OPTIMIZATION special register.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES
 WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

1842 IBM Db2 V11.5: SQL Reference

SET CURRENT REFRESH AGE
The SET CURRENT REFRESH AGE statement changes the value of the CURRENT REFRESH AGE special
register.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT REFRESH AGE
=

numeric-constant

ANY

host-variable

Description
numeric-constant

A DECIMAL(20,6) value that represents a time stamp duration.The value must be 0 -
99999999999999 or a valid time stamp within that range. The valid format for the range is
yyyymmddhhmmss.nnnnnn, where:

• yyyy is the number of years and can have a value of 0 - 9999.
• mm is the number of months and can have a value of 0 - 11.
• dd is the number of days and can have a value of 0 - 30.
• hh is the number of hours and can have a value of 0 - 23.
• mm is the number of minutes and can have a value of 0 - 59.
• ss is the number of seconds and can have a value of 0 - 59.
• nnnnnn is the number of fractional seconds. The fractional seconds portion of the value is ignored

and therefore can be any value.

You do not have to include the leading zeros for the entire value or the trailing fractional seconds.
However, individual elements that have another element to the left must include the zeros. For
example, to represent 1 hour, 7 minutes, and 5 seconds, use 10705.

If materialized query tables that are affected by the CURRENT REFRESH AGE special register
are maintained by USER, SYSTEM, or FEDERATED_TOOL, the only valid numeric values are 0 and
99999999999999. For further details, see the "Notes" section.

ANY
A short form 99999999999999. See the description of the numeric-constant parameter.

host-variable
A variable of type DECIMAL(20,6) or another type that is assignable to DECIMAL(20,6). You cannot
set the host-variable parameter to null. If the host variable has an associated indicator variable, the
value of that indicator variable must not indicate a null value (SQLSTATE 42815). The host-variable
parameter must conform to the same constraints as the numeric-constant parameter.

Chapter 1. Structured Query Language (SQL) 1843

Notes
• The initial value of the CURRENT REFRESH AGE special register is determined by the
dft_refresh_age database configuration parameter, which has a default value of 0.

• Be careful when setting the CURRENT REFRESH AGE special register to a value other than 0. A table
type that you specify for the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register
might not represent the values of the underlying base table. If such a table is used to optimize the
processing of a query, the query result might not accurately represent the data in the underlying table.
This might be reasonable if you know that the underlying data has not changed, or if you are willing to
accept a degree of error in the results, based on your knowledge of the cached data.

• The CURRENT REFRESH AGE special register value of 99999999999999 cannot be used in time stamp
arithmetic operations, because the result would be outside the valid range for dates (SQLSTATE 22008).

• The CURRENT REFRESH AGE special register affects the materialized query tables that you define as
REFRESH DEFERRED MAINTAINED BY USER, REFRESH DEFERRED MAINTAINED BY REPLICATION, and
REFRESH DEFERRED MAINTAINED BY SYSTEM. The CURRENT REFRESH AGE special register affects
these materialized query tables as follows:

– If the value of the CURRENT REFRESH AGE special register is 0, the materialized query tables are not
used to optimize the processing of a query.

– If the value of the CURRENT REFRESH AGE special register is 99999999999999, the materialized
query tables can be used to help optimize the processing of a query if both the following criteria are
met:

- The value of the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register
includes these tables.

- The value of the CURRENT QUERY OPTIMIZATION special register is 2 or a value that is greater
than or equal to 5.

– If the value of the CURRENT REFRESH AGE special register is a value other than 0 or
99999999999999, only shadow tables are affected by this special register setting can be used to
optimize the processing of a query, but only if both the following criteria are met:

- The value of the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register is
REPLICATION.

- The value of the CURRENT QUERY OPTIMIZATION special register is 2 or a value that is greater
than or equal to 5.

• The CURRENT REFRESH AGE special register has no effect on whether REFRESH IMMEDIATE
MAINTAINED BY SYSTEM materialized query tables or REFRESH DEFERRED MAINTAINED BY
FEDERATED_TOOL materialized query tables are used to optimize the processing of a query.

REFRESH IMMEDIATE MAINTAINED BY SYSTEM materialized query tables can always be used to
optimize the processing of a query if the value of the CURRENT QUERY OPTIMIZATION special register
is 2 or a value that is greater than or equal to 5.

REFRESH DEFERRED MAINTAINED BY FEDERATED_TOOL materialized query tables are used for
optimization if both the following criteria are met:

– The value of the CURRENT QUERY OPTIMIZATION special register is 2 or a value that is greater than
or equal to 5.

– The value of the CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special register is ALL or
includes FEDERATED_TOOL.

Examples
• Example 1: The following statement sets the CURRENT REFRESH AGE special register:

 SET CURRENT REFRESH AGE ANY

1844 IBM Db2 V11.5: SQL Reference

• Example 2: The following command retrieves the value of the CURRENT REFRESH AGE special register
into a host variable called CURMAXAGE.

 EXEC SQL VALUES (CURRENT REFRESH AGE) INTO :CURMAXAGE;

SET CURRENT SQL_CCFLAGS
The SET CURRENT SQL_CCFLAGS statement changes the value of the CURRENT SQL_CCFLAGS special
register.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET CURRENT SQL_CCFLAGS
=

variable

string-constant

Description
variable

Specifies a variable that contains one or more name and value pairs that are separated by commas.

The variable must have the following characteristics (SQLSTATE 42815):

• The data type must be CHAR or VARCHAR. The actual length of the contents of the variable must not
exceed the maximum length of the special register.

• It must be a string of blanks, an empty string, or include one or more name and value pairs where
the name is separated from the value by the colon character. The name must be a valid ordinary
identifier. The value associated with a name must be a BOOLEAN constant, an INTEGER constant, or
the keyword NULL.

• It must be padded on the right with blanks if using a fixed-length character variable.
• It can include extra blanks at the beginning or ending of the string, around the comma character, or

around the colon character. The blanks are ignored.
• It must not be the null value.

string-constant
Specifies a character string constant that contains one or more name and value pairs that are
separated by commas.

The string constant must have the following characteristics (SQLSTATE 42815):

• It must be a character string constant. The length of the constant must not exceed the maximum
length of the special register.

• It must be a string of blanks, an empty string or include one or more name and value pairs where
the name is separated from the value by the colon character. The name must be a valid ordinary
identifier. The value associated with a name must be a BOOLEAN constant, an INTEGER constant, or
the keyword NULL.

• It can include extra blanks at the beginning or ending of the string, around the comma character, or
around the colon character. The blanks are ignored.

Chapter 1. Structured Query Language (SQL) 1845

Notes
• If a duplicate name appears in the content for the CURRENT SQL_FLAGS special register, then only the

last (furthest to the right) value is used. The special register value will include only a single occurrence
of the duplicated name with the value that is used. Concatenating a duplicated name with a different
value to the CURRENT SQL_CCFLAGS value can be used to override some conditional compilation
values while retaining other values.

• When the CURRENT SQL_CCFLAGS is retrieved, the returned string includes the unique name and value
pairs in uppercase characters with multiple pairs separated by a comma and a blank. The pairs are
in the order they were specified, with a duplicate name appearing only where it first occurred, but
reflecting the value from where it last occurred.

• The CURRENT SQL_CCFLAGS special register can be set to the default defined for the database by
retrieving the VALUE column from SYSIBMADM.DBCFG where NAME='sql_ccflags' into a variable and
then assigning that variable to the special register.

• Transaction considerations: The SET SQL_CCFLAGS statement is not a committable operation.
ROLLBACK has no effect on CURRENT SQL_CCFLAGS.

Examples
• Example 1: Define a conditional compilation value for the session to indicate that the server is Db2 9.7

and that debug is false.

 SET CURRENT SQL_CCFLAGS 'db2v97:true, debug:false'

• Example 2: Extend the existing CURRENT SQL_CCFLAGS to set debug to true and define the tracing
level.

 BEGIN
 DECLARE LIST VARCHAR(1024);
 SET LIST = CASE WHEN (CURRENT SQL_CCFLAGS = ' ')
 THEN 'tracelvl:3,debug:true'
 ELSE CURRENT SQL_CCFLAGS
 concat ',tracelvl:3,debug:true'
 END;
 SET CURRENT SQL_CCFLAGS = LIST;
 END

A CASE expression is used in the assignment to handle the possibility that the CURRENT SQL_CCFLAGS
special register does not include any conditional compilation values, resulting in a leading comma in the
value of the variable LIST.

A query of the CURRENT SQL_CCFLAGS special register after the execution of the statement in Example
1 and the compound statement in this example would return:

DB2V97:TRUE, DEBUG:TRUE, TRACELVL:3

Even though the conditional compilation value for DEBUG appeared twice in the variable LIST, it
appears only once in the special register value where it would have first appeared.

SET CURRENT TEMPORAL BUSINESS_TIME
The SET CURRENT TEMPORAL BUSINESS_TIME statement changes the value of the CURRENT TEMPORAL
BUSINESS_TIME special register.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

1846 IBM Db2 V11.5: SQL Reference

Authorization
None required.

Syntax

SET CURRENT TEMPORAL BUSINESS_TIME
=

NULL

expression

Description
NULL

Specifies the null value.
expression

Each expression can contain any of the following supported operands (SQLSTATE 428HY):

• Constant
• Special register
• Variable. For details, refer to "References to variables" in the "Identifiers" topic, in SQL Reference

Volume 1 .
• Built-in scalar function whose arguments are supported operands. User-defined functions and non-

deterministic functions are not supported in this context.
• CAST specification where the cast operand is a supported operand
• Expression using arithmetic operator and operands

Notes
• Transaction considerations: The SET CURRENT TEMPORAL BUSINESS_TIME statement is not a

committable operation. ROLLBACK has no effect on CURRENT TEMPORAL BUSINESS_TIME.
• Effects on other special registers: The setting of the CURRENT TEMPORAL BUSINESS_TIME special

register does not have any effect on the values of other special registers, specifically the CURRENT
DATE and CURRENT TIMESTAMP special registers.

Examples
• Example 1: Set the CURRENT TEMPORAL BUSINESS_TIME special register to the previous month.

 SET CURRENT TEMPORAL BUSINESS_TIME = CURRENT TIMESTAMP - 1 MONTH

• Example 2: Set the CURRENT TEMPORAL BUSINESS_TIME special register to the null value.

 SET CURRENT TEMPORAL BUSINESS_TIME = NULL

SET CURRENT TEMPORAL SYSTEM_TIME
The SET CURRENT TEMPORAL SYSTEM_TIME statement changes the value of the CURRENT TEMPORAL
SYSTEM_TIME special register.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared.

Chapter 1. Structured Query Language (SQL) 1847

Authorization
None required.

Syntax

SET CURRENT TEMPORAL SYSTEM_TIME
=

NULL

expression

Description
NULL

Specifies the null value.
expression

Each expression can contain any of the following supported operands (SQLSTATE 428HY):

• Constant
• Special register
• Variable (host variable, SQL variable, SQL parameter, transition variable, global variable)
• Built-in scalar function whose arguments are supported operands. User-defined functions and non-

deterministic functions are not supported in this context.
• CAST specification where the cast operand is a supported operand
• Expression using arithmetic operator and operands

Notes
• Transaction considerations: The SET CURRENT TEMPORAL SYSTEM_TIME statement is not a

committable operation. ROLLBACK has no effect on CURRENT TEMPORAL SYSTEM_TIME.
• Effects on other special registers: The setting of the CURRENT TEMPORAL SYSTEM_TIME special

register does not have any effect on the values of other special registers, specifically the CURRENT
DATE and CURRENT TIMESTAMP special registers.

Examples
• Example 1: Set the CURRENT TEMPORAL SYSTEM_TIME special register to the previous month.

 SET CURRENT TEMPORAL SYSTEM_TIME = CURRENT TIMESTAMP - 1 MONTH

• Example 2: Set the CURRENT TEMPORAL SYSTEM_TIME special register to the null value.

 SET CURRENT TEMPORAL SYSTEM_TIME = NULL

SET ENCRYPTION PASSWORD
The SET ENCRYPTION PASSWORD statement sets the password to be used by the ENCRYPT,
DECRYPT_BIN and DECRYPT_CHAR functions. The password is not tied to database authentication, and is
used for data encryption and decryption only.

This statement is not under transaction control.

Important: The SET ENCRYPTION PASSWORD statement is deprecated and might not appear in future
releases.

1848 IBM Db2 V11.5: SQL Reference

Invocation
The statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET ENCRYPTION PASSWORD
=

host-variable

string-constant

Description
The encryption password can be used by the ENCRYPT, DECRYPT_BIN, and DECRYPT_CHAR built-in
functions for password-based encryption. The length of the password must be between 6 and 127 bytes
and all characters must be specified in the exact case intended, because there is no automatic conversion
to uppercase characters. To maintain the best level of security on your system, it is recommended that
you use a host variable or dynamic parameter markers to specify the password, rather than using a literal
string in your SET ENCRYPTION PASSWORD statement.

host-variable
A variable of type CHAR or VARCHAR. The length of the host-variable must be between 6 and 127
bytes (SQLSTATE 428FC). It cannot be set to null. All characters are specified in the exact case
intended, as there is no conversion to uppercase characters.

string-constant
A character string constant. The length must be between 6 and 127 bytes (SQLSTATE 428FC).

Notes
• The initial value of the ENCRYPTION PASSWORD is the empty string.
• The host-variable or string-constant is transmitted to the database server using normal database

mechanisms.

Example
The following example shows how you can set the ENCRYPTION PASSWORD special register in an
embedded SQL application using parameter markers. It is strongly recommended that this special
register is always set up using parameter markers in your applications.

EXEC SQL BEGIN DECLARE SECTION;
 char hostVarSetEncPassStmt[200];
 char hostVarPassword[128];
EXEC SQL END DECLARE SECTION;

/* prepare the statement with a parameter marker */
strcpy(hostVarSetEncPassStmt, "SET ENCRYPTION PASSWORD = ?");
EXEC SQL PREPARE hostVarSetEncPassStmt FROM :hostVarSetEncPassStmt;

/* execute the statement for hostVarPassword = 'Gre89Ea' */
strcpy(hostVarPassword, "Gre89Ea");
EXEC SQL EXECUTE hostVarSetEncPassStmt USING :hostVarPassword;

Chapter 1. Structured Query Language (SQL) 1849

SET EVENT MONITOR STATE
The SET EVENT MONITOR STATE statement activates or deactivates an event monitor. The current state
of an event monitor (active or inactive) is determined by using the EVENT_MON_STATE built-in function.

The SET EVENT MONITOR STATE statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include DBADM or SQLADM authority.

Syntax

SET EVENT MONITOR event-monitor-name STATE
=

0

1

host-variable

Description
event-monitor-name

Identifies the event monitor to activate or deactivate. The name must identify an event monitor that
exists in the catalog (SQLSTATE 42704).

new-state
new-state can be specified either as an integer constant or as the name of a host variable that will
contain the appropriate value at run time. The following values can be specified:
0

Indicates that the specified event monitor should be deactivated.
1

Indicates that the specified event monitor should be activated. The event monitor should not
already be active; otherwise a warning (SQLSTATE 01598) is issued.

host-variable
The data type is INTEGER. The value specified must be 0 or 1 (SQLSTATE 42815). If host-variable
has an associated indicator variable, the value of that indicator variable must not indicate a null
value (SQLSTATE 42815).

Rules
• Although an unlimited number of event monitors may be defined, a maximum of 128 event monitors

can be active simultaneously on each database partition. In a multiple partition database environment,
a maximum of 32 GLOBAL event monitors can be active simultaneously on each database.

• In order to activate an event monitor, the transaction in which the event monitor was created must have
been committed (SQLSTATE 55033). This rule prevents (in one unit of work) creating an event monitor,
activating the monitor, then rolling back the transaction.

• If the number or size of the event monitor files exceeds the values specified for MAXFILES or
MAXFILESIZE on the CREATE EVENT MONITOR statement, an error (SQLSTATE 54031) is raised.

1850 IBM Db2 V11.5: SQL Reference

• If the target path of the event monitor (that was specified on the CREATE EVENT MONITOR statement)
is already in use by another event monitor, an error (SQLSTATE 51026) is raised.

Notes
• Activating a non-WLM event monitor performs a reset of any counters associated with it. The reset of

counters does not occur when activating WLM, locking, and unit of work event monitors.
• When a WRITE TO TABLE event monitor is started using SET EVENT MONITOR STATE, it updates the

EVMON_ACTIVATES column of the SYSCAT.EVENTMONITORS catalog view. If the unit of work in which
the set operation was performed is rolled back for any reason, that catalog update is lost. When the
event monitor is restarted, it will reuse the EVMON_ACTIVATES value that was rolled back.

• If the database partition on which the event monitor is to run is not active, event monitor activation
occurs when that database partition next activates.

• After an event monitor is activated, it behaves like an autostart event monitor until that event monitor is
explicitly deactivated or the instance is recycled. That is, if an event monitor is active when a database
partition is deactivated, and that database partition is subsequently reactivated, the event monitor is
also explicitly reactivated.

• If an activity event monitor is active when the database deactivates, any backlogged activity records
in the queue are discarded. To ensure that you obtain all activity event monitor records and that none
are discarded, explicitly deactivate the activity event monitor first before deactivating the database.
When an activity event monitor is explicitly deactivated, all backlogged activity records in the queue are
processed before the event monitor deactivates.

Examples
• Example 1: Activate an event monitor named SMITHPAY.

 SET EVENT MONITOR SMITHPAY STATE = 1

• Example 2: Assume that MYSAMPLE is a multiple partition database with two database partitions, 0 and
2. Partition 2 is not yet active.

On database partition 0:

 CONNECT TO MYSAMPLE;
 CREATE EVENT MONITOR MYEVMON ON DBPARTITIONNUM 2;
 SET EVENT MONITOR MYEVMON STATE 1;

MYEVMON automatically activates whenever MYSAMPLE activates on database partition 2. This occurs
until SET EVENT MONITOR MYEVMON STATE 0 is issued, or partition 2 is stopped.

SET INTEGRITY
The SET INTEGRITY statement is used to set the integrity pending state on tables, place tables into full
access state, and prune the contents of one or more staging tables.

The following operations can be performed with the SET INTEGRITY statement:

• Bring one or more tables out of set integrity pending state (previously known as "check pending state")
by performing required integrity processing on those tables.

• Bring one or more tables out of set integrity pending state without performing required integrity
processing on those tables.

• Place one or more tables in set integrity pending state.
• Place one or more tables into full access state.
• Prune the contents of one or more staging tables.

When the statement is used to perform integrity processing for a table after it has been loaded or
attached, the system can incrementally process the table by checking only the appended portion for
constraints violations. If the subject table is a materialized query table or a staging table, and load, attach,

Chapter 1. Structured Query Language (SQL) 1851

or detach operations are performed on its underlying tables, the system can incrementally refresh the
materialized query table or incrementally propagate to the staging table with only the delta portions of
its underlying tables. However, there are some situations in which the system will not be able to perform
such optimizations and will instead perform full integrity processing to ensure data integrity. Full integrity
processing is done by checking the entire table for constraints violations, recomputing a materialized
query table's definition, or marking a staging table as inconsistent. The latter implies that a full refresh of
its associated materialized query table is required. There is also a situation in which you might want to
explicitly request incremental processing by specifying the INCREMENTAL option.

The SET INTEGRITY statement is under transaction control.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges required to execute the SET INTEGRITY statement depend on the purpose, as outlined in
the following list.

• Bringing tables out of set integrity pending state and performing the required integrity processing.

The privileges held by the authorization ID of the statement must include at least one of the following:

– CONTROL privilege on:

- The tables on which integrity processing is performed and, if exception tables are provided for one
or more of those tables, INSERT privilege on the exception tables or INSERTIN privilege on the
schema containing the exception tables

- All descendent foreign key tables, descendent immediate materialized query tables, and
descendent immediate staging tables that will implicitly be placed in set integrity pending state
by the statement

– LOAD authority on the database or LOAD authority on the schema containing the table (with
conditions). The following conditions must all be met before LOAD authority can be considered as
providing valid privileges:

- The required integrity processing does not involve the following actions:

• Refreshing a materialized query table
• Propagating to a staging table
• Updating a generated or identity column

- If exception tables are provided for one or more tables, the required access is granted for the
duration of the integrity processing to the tables on which integrity processing is performed, and to
the associated exception tables. That is:

• SELECT and DELETE privilege on each table on which integrity processing is performed, or
SELECTIN and DELETEIN privilege on the schema containing the table on which integrity
processing is performed and

• INSERT privilege on the exception tables or INSERTIN privilege on the schema containing the
exception tables

– DATAACCESS authority on the relevant schema
– DATAACCESS authority

• Bringing tables out of set integrity pending state without performing the required integrity processing.

The privileges held by the authorization ID of the statement must include at least one of the following:

1852 IBM Db2 V11.5: SQL Reference

– CONTROL privilege on the tables that are being processed; CONTROL privilege on each descendent
foreign key table, descendent immediate materialized query table, and descendent immediate
staging table that will implicitly be placed in set integrity pending state by the statement

– LOAD authority on the database or LOAD authority on the relevant schema
– DATAACCESS authority or DATAACCESS authority on the relevant schema
– DBADM authority or SCHEMAADM authority on the relevant schema

• Placing tables in set integrity pending state.

The privileges held by the authorization ID of the statement must include at least one of the following:

– CONTROL privilege on:

- The specified tables, and
- The descendent foreign key tables that will be placed in set integrity pending state by the

statement, and
- The descendent immediate materialized query tables that will be placed in set integrity pending

state by the statement, and
- The descendent immediate staging tables that will be placed in set integrity pending state by the

statement
– LOAD authority on the database or LOAD authority on the relevant schema
– DATAACCESS authority or DATAACCESS authority on the relevant schema
– DBADM authority or SCHEMAADM authority on the relevant schema

• Place a table into the full access state.

The privileges held by the authorization ID of the statement must include at least one of the following:

– CONTROL privilege on the tables that are placed into the full access state
– LOAD authority on the database or LOAD authority on the relevant schema
– DATAACCESS authority or DATAACCESS authority on the relevant schema
– DBADM authority or SCHEMAADM authority on the relevant schema

• Prune a staging table.

The privileges held by the authorization ID of the statement must include at least one of the following:

– CONTROL privilege on the table being pruned
– DATAACCESS authority or DATAACCESS authority on the relevant schema

Syntax
SET INTEGRITY

FOR

,

table-name OFF access-mode-clause cascade-clause

FULL ACCESS

PRUNE

FOR

,

table-name table-checked-options IMMEDIATE CHECKED

check-options

FOR

,

table-name table-unchecked-options IMMEDIATE UNCHECKED

access-mode-clause

Chapter 1. Structured Query Language (SQL) 1853

NO ACCESS

READ ACCESS

cascade-clause
CASCADE IMMEDIATE to-descendent-types

CASCADE DEFERRED

to-descendent-types
TO ALL TABLES

TO

,

MATERIALIZED QUERY TABLES

FOREIGN KEY TABLES

STAGING TABLES

table-checked-options
,

online-options

GENERATE IDENTITY

query-optimization-options

online-options
ALLOW NO ACCESS

ALLOW READ ACCESS

ALLOW WRITE ACCESS

query-optimization-options

ALLOW QUERY OPTIMIZATION

USING REFRESH DEFERRED TABLES
WITH REFRESH AGE ANY

check-options
● incremental-options ●

FORCE GENERATED

●

PRUNE

●

FULL ACCESS

●

exception-clause

incremental-options

INCREMENTAL

NOT INCREMENTAL

exception-clause

FOR EXCEPTION

,

in-table-use-clause

1854 IBM Db2 V11.5: SQL Reference

in-table-use-clause
IN table-name USE table-name

table-unchecked-options
,

integrity-options

FULL ACCESS

integrity-options
ALL

,

FOREIGN KEY

CHECK

MATERIALIZED QUERY

GENERATED COLUMN

STAGING

Description
FOR table-name

Identifies one or more tables for integrity processing. It must be a table described in the catalog and
must not be a view, catalog table, or typed table.

OFF
Specifies that the tables are placed in set integrity pending state. Only very limited activity is allowed
on a table that is in set integrity pending state.

access-mode-clause
Specifies the readability of the table while it is in set integrity pending state.
NO ACCESS

Specifies that the table is to be put in set integrity pending no access state, which does not allow
read or write access to the table.

READ ACCESS
Specifies that the table is to be put in set integrity pending read access state, which allows read
access to the non-appended portion of the table. This option is not allowed on a table that is in set
integrity pending no access state (SQLSTATE 428FH).

cascade-clause
Specifies whether the set integrity pending state of the table referenced in the SET INTEGRITY
statement is to be immediately cascaded to descendent tables.
CASCADE IMMEDIATE

Specifies that the set integrity pending state is to be immediately extended to descendent tables.
to-descendent-types

Specifies the type of descendent tables to which the set integrity pending state is immediately
cascaded.
TO ALL TABLES

Specifies that the set integrity pending state is to be immediately cascaded to all descendent
tables of the tables in the invocation list. Descendent tables include all descendent foreign
key tables, immediate staging tables, and immediate materialized query tables that are
descendants of the tables in the invocation list, or descendants of descendent foreign key
tables.

Chapter 1. Structured Query Language (SQL) 1855

Specifying TO ALL TABLES is equivalent to specifying TO FOREIGN KEY TABLES, TO
MATERIALIZED QUERY TABLES, and TO STAGING TABLES, all in the same statement.

TO MATERIALIZED QUERY TABLES
If only TO MATERIALIZED QUERY TABLES is specified, the set integrity pending state is to
be immediately cascaded only to descendent immediate materialized query tables. Other
descendent tables might later be put in set integrity pending state, if necessary, when
the table is brought out of set integrity pending state. If both TO FOREIGN KEY TABLES
and TO MATERIALIZED QUERY TABLES are specified, the set integrity pending state will
be immediately cascaded to all descendent foreign key tables, all descendent immediate
materialized query tables of the tables in the invocation list, and to all immediate materialized
query tables that are descendants of the descendent foreign key tables.

TO FOREIGN KEY TABLES
Specifies that the set integrity pending state is to be immediately cascaded to descendent
foreign key tables. Other descendent tables might later be put in set integrity pending state, if
necessary, when the table is brought out of set integrity pending state.

TO STAGING TABLES
Specifies that the set integrity pending state is to be immediately cascaded to descendent
staging tables. Other descendent tables might later be put in set integrity pending state, if
necessary, when the table is brought out of set integrity pending state. If both TO FOREIGN
KEY TABLES and TO STAGING TABLES are specified, the set integrity pending state will
be immediately cascaded to all descendent foreign key tables, all descendent immediate
staging tables of the tables in the invocation list, and to all immediate staging tables that are
descendants of the descendent foreign key tables.

CASCADE DEFERRED
Specifies that only the tables in the invocation list are to be put in set integrity pending state. The
states of the descendent tables will remain unchanged. Descendent foreign key tables might later
be implicitly put in set integrity pending state when their parent tables are checked for constraints
violations. Descendent immediate materialized query tables and descendent immediate staging
tables might be implicitly put in set integrity pending state when one of their underlying tables
is checked for integrity violations. A query of a table that is in the set integrity pending state
might succeed if an eligible materialized query table that is not in the set integrity pending state is
accessed by the query instead of the specified table.

If cascade-clause is not specified, the set integrity pending state is immediately cascaded to all
descendent tables.

IMMEDIATE CHECKED
Specifies that the table is to be taken out of set integrity pending state by performing required
integrity processing on the table. This is done in accordance with the information set in the STATUS
and CONST_CHECKED columns of the SYSCAT.TABLES catalog view. That is:

• The value in the STATUS column must be "C" (the table is in set integrity pending state), or an
error is returned (SQLSTATE 51027), unless the table is a descendent foreign key table, descendent
materialized query table, or descendent staging table of a table that is specified in the list, is in set
integrity pending state, and whose intermediate ancestors are also in the list.

• If the table being checked is in set integrity pending state, the value in CONST_CHECKED indicates
which integrity options are to be checked.

When the table is taken out of set integrity pending state, its descendent tables are, if necessary,
put in set integrity pending state. A warning to indicate that descendent tables have been put in set
integrity pending state is returned (SQLSTATE 01586).

If the table is a system-maintained materialized query table, the data is checked against the query
and refreshed as necessary. (IMMEDIATE CHECKED cannot be used for user-maintained materialized
query tables or shadow tables.) If the table is a staging table, the data is checked against its query
definition and propagated as necessary.

When the integrity of a child table is checked:

1856 IBM Db2 V11.5: SQL Reference

• None of its parents can be in set integrity pending state, or
• Each of its parents must be checked for constraints violations in the same SET INTEGRITY

statement

When an immediate materialized query table is refreshed, or deltas are propagated to a staging table:

• None of its underlying tables can be in set integrity pending state, or
• Each of its underlying tables must be checked in the same SET INTEGRITY statement

Otherwise, an error is returned (SQLSTATE 428A8).

table-checked-options
online-options

Specifies the accessibility of the table while it is being processed.
ALLOW NO ACCESS

Specifies that no other users can access the table while it is being processed, except if
they are using the Uncommitted Read isolation level.

ALLOW READ ACCESS
Specifies that other users have read-only access to the table while it is being processed.

ALLOW WRITE ACCESS
Specifies that other users have read and write access to the table while it is being
processed.

GENERATE IDENTITY
Specifies that if the table includes an identity column, the values are generated by the
SET INTEGRITY statement. By default, when the GENERATE IDENTITY option is specified,
only attached rows will have their identity column values generated by the SET INTEGRITY
statement. The NOT INCREMENTAL option must be specified in conjunction with the
GENERATE IDENTITY option to have the SET INTEGRITY statement generate identity column
values for all rows in the table, including attached rows, loaded rows, and existing rows. If the
GENERATE IDENTITY option is not specified, the current identity column values for all rows
in the table are left unchanged. When the table is a system-period temporal table, GENERATE
IDENTITY with the NOT INCREMENTAL option is allowed only if you first issue an ALTER TABLE
statement with the DROP VERSIONING clause (SQLSTATE 428FH).

query-optimization-options
Specifies the query optimization options for the maintenance of REFRESH DEFERRED
materialized query tables.
ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED TABLES WITH REFRESH AGE
ANY

Specifies that when the CURRENT REFRESH AGE special register is set to "ANY", the
maintenance of table-name will allow REFRESH DEFERRED materialized query tables to
be used to optimize the query that maintains table-name. If table-name is not a REFRESH
DEFERRED materialized query table, an error is returned (SQLSTATE 428FH). REFRESH
IMMEDIATE materialized query tables are always considered during query optimization.

check-options
incremental-options

INCREMENTAL
Specifies the application of integrity processing on the appended portion (if any) of the
table. If such a request cannot be satisfied (that is, the system detects that the whole
table needs to be checked for data integrity), an error is returned (SQLSTATE 55019).

NOT INCREMENTAL
Specifies the application of integrity processing on the whole table. If the table is a
materialized query table, the materialized query table definition is recomputed. If the table
has at least one constraint defined on it, this option causes full processing of descendent
foreign key tables and descendent immediate materialized query tables. If the table is a
staging table, it is set to an inconsistent state.

Chapter 1. Structured Query Language (SQL) 1857

If the incremental-options clause is not specified, the system determines whether incremental
processing is possible; if not, the whole table is checked.

FORCE GENERATED
If the table includes generated by expression columns, the values are computed on the basis
of the expression and stored in the column. If this option is not specified, the current values
are compared to the computed value of the expression, as though an equality check constraint
were in effect. If the table is processed for integrity incrementally, generated columns are
computed only for the appended portion. When the table is a system-period temporal table,
the FORCE GENERATED option is allowed only if you first issue an ALTER TABLE statement
with the DROP VERSIONING clause (SQLSTATE 428FH).

PRUNE
This option can be specified for staging tables only. Specifies that the content of the staging
table is to be pruned, and that the staging table is to be set to an inconsistent state. If any
table in the table-name list is not a staging table, an error is returned (SQLSTATE 428FH). If
the INCREMENTAL check option is also specified, an error is returned (SQLSTATE 428FH).

FULL ACCESS
Specifies that the table is to become fully accessible after the SET INTEGRITY statement
executes.

When an underlying table (that has dependent immediate materialized query tables or
dependent immediate staging tables) in the invocation list is incrementally processed, the
underlying table is put in no data movement state, as required, after the SET INTEGRITY
statement executes. When all incrementally refreshable dependent immediate materialized
query tables and staging tables are taken out of set integrity pending state, the underlying
table is automatically brought out of the no data movement state into the full access
state. If the FULL ACCESS option is specified with the IMMEDIATE CHECKED option, the
underlying table is put directly in full access state (bypassing the no data movement state).
In Db2 Version 9.7. Fix Pack 1 and later, specifying the FULL ACCESS option only removes
the dependency between the dependent tables and underlying table. The underlying table
continues to be unavailable until the data partition detach process is completed by the
asynchronous partition detach task.

Dependent immediate materialized query tables that have not been refreshed might undergo
a full recomputation in the subsequent REFRESH TABLE statement, and dependent immediate
staging tables that have not had the appended portions of the table propagated to them might
be flagged as inconsistent.

When an underlying table in the invocation list requires full processing, or does not have
dependent immediate materialized query tables, or dependent immediate staging tables, the
underlying table is put directly into full access state after the SET INTEGRITY statement
executes, regardless of whether the FULL ACCESS option was specified.

exception-clause
FOR EXCEPTION

Specifies that any row that is in violation of a constraint being checked is to be moved to an
exception table. Even if errors are detected, the table is taken out of set integrity pending
state. A warning to indicate that one or more rows have been moved to the exception
tables is returned (SQLSTATE 01603).

If the FOR EXCEPTION option is not specified and any constraints are violated, only the
first detected violation is returned (SQLSTATE 23514). If there is a violation in any table, all
of the tables are left in set integrity pending state.

It is recommended to always use the FOR EXCEPTION option when checking for
constraints violations to prevent a rollback of the SET INTEGRITY statement if a violation
is found.

When the table specified after the IN keyword is a system-period temporal table, the FOR
EXCEPTION option is allowed only if you first issue an ALTER TABLE statement with the
DROP VERSIONING clause (SQLSTATE 428FH).

1858 IBM Db2 V11.5: SQL Reference

IN table-name
Specifies the table from which rows that violate constraints are to be moved. There must
be one exception table specified for each table being checked. This clause cannot be
specified for a materialized query table or a staging table (SQLSTATE 428A7).

USE table-name
Specifies the exception table into which error rows are to be moved.

FULL ACCESS
If the FULL ACCESS option is specified as the only operation of the statement, the table is placed
into the full access state without being rechecked for integrity violations. However, dependent
immediate materialized query tables that have not been refreshed might require a full recomputation
in subsequent REFRESH TABLE statements, and dependent immediate staging tables that have not
had the delta portions of the table propagated to them might be changed to incomplete state. This
option can only be specified for a table that is in the no data movement state or the no access state,
but not in the set integrity pending state (SQLSTATE 428FH).

PRUNE
This option can be specified for staging tables only. Specifies that the content of the staging table
is to be pruned, and that the staging table is to be set to an inconsistent state. If any table in the
table-name list is not a staging table, an error is returned (SQLSTATE 428FH).

table-unchecked-options
integrity-options

Used to define the types of required integrity processing that are to be bypassed when the table is
taken out of the set integrity pending state.
ALL

The table will be immediately taken out of set integrity pending state without any of its
required integrity processing being performed.

FOREIGN KEY
Required foreign key constraints checking will not be performed when the table is brought out
of set integrity pending state.

CHECK
Required check constraints checking will not be performed when the table is brought out of
set integrity pending state.

MATERIALIZED QUERY
Required refreshing of a materialized query table will not be performed when the table is
brought out of set integrity pending state.

GENERATED COLUMN
Required generated column constraints checking will not be performed when the table is
brought out of set integrity pending state.

STAGING
Required propagation of data to a staging table will not be performed when the table is
brought out of set integrity pending state.

If no other types of integrity processing are required on the table after a specific type of integrity
processing has been marked as bypassed, the table is immediately taken out of set integrity
pending state.

FULL ACCESS
Specifies that the tables are to become fully accessible after the SET INTEGRITY statement
executes.

When an underlying table in the invocation list is incrementally processed, and it has dependent
immediate materialized query tables or dependent immediate staging tables, the underlying
table is placed, as required, in the no data movement state after the SET INTEGRITY statement
executes. When all incrementally refreshable dependent immediate materialized query tables
and staging tables have been taken out of set integrity pending state, the underlying table
is automatically brought out of the no data movement state into the full access state. If the

Chapter 1. Structured Query Language (SQL) 1859

FULL ACCESS option is specified with the IMMEDIATE UNCHECKED option, the underlying table
is placed directly in full access state (it bypasses the no data movement state). Dependent
immediate materialized query tables that have not been refreshed might undergo a full
recomputation in the subsequent REFRESH TABLE statement, and dependent immediate staging
tables that have not had the appended portions of the table propagated to them might be flagged
as inconsistent.

In Db2 V9.7. Fix Pack 1 and later, specifying the FULL ACCESS option only removes the
dependency between the dependent tables and underlying table. The underlying table continues
to be unavailable until the data partition detach process is completed by the asynchronous
partition detach task.

When an underlying table in the invocation list requires full processing, or does not have
dependent immediate materialized query tables, or dependent immediate staging tables, the
underlying table is placed directly in full access state after the SET INTEGRITY statement
executes, regardless of whether the FULL ACCESS option has been specified.

If the FULL ACCESS option has been specified with the IMMEDIATE UNCHECKED option, and
the statement does not bring the table out of set integrity pending state, an error is returned
(SQLSTATE 428FH).

IMMEDIATE UNCHECKED
Specifies one of the following:

• The table is to be brought out of set integrity pending state immediately without any required
integrity processing.

• The table is to have one or more types of required integrity processing bypassed when the table
is brought out of set integrity pending state by a subsequent SET INTEGRITY statement using the
IMMEDIATE CHECKED option.

Consider the data integrity implications of this option before using it. See the "Notes" section.

Notes
• The following restrictions apply to the SMP parallelization of set integrity checking:

– SMP parallelization of set integrity checking is not enabled by default. The
DB2_EXTENDED_OPTIMIZATION registry variable with the PRLSI option must be set in order to
enable it.

– The CURRENT DEGREE special register should be used to ensure an appropriate degree of
parallelism.

– SMP parallelization is not supported in MPP environments.
– SMP parallelization is not supported for INCREMENTAL checking or set integrity after attach.
– SMP parallelization is not supported when any of the following are involved:

- Materialized query tables or staging tables
- Identity or generated columns

– Parallelization will be limited when there are multiple tables referenced or self-references involved.
The constraint and referential checking will be parallelized for one table at the most. The checks for
the table with the most expensive constraint checking will be the one which may be parallelized.
However, if a table has multiple self-references, some or all of its constraint checking may not be
parallelized.

– Exception handling will not be parallelized.
• Effects on tables in one of the restricted set integrity-related states:

– Use of INSERT, UPDATE, or DELETE is disallowed on a table that is in read access state or in no
access state. Furthermore, any statement that requires this type of modification to a table that is
in such a state will be rejected. For example, deletion of a row in a parent table that cascades to a
dependent table that is in the no access state is not allowed.

1860 IBM Db2 V11.5: SQL Reference

– Use of SELECT is disallowed on a table that is in the no access state. Furthermore, any statement that
requires read access to a table that is in the no access state will be rejected.

– New constraints added to a table are normally enforced immediately. However, if the table is in set
integrity pending state, the checking of any new constraints is deferred until the table is taken out of
set integrity pending state. If the table is in set integrity pending state, addition of a new constraint
places the table into set integrity pending no access state, because validity of data is at risk.

– The CREATE INDEX statement cannot reference any table that is in read access state or in no access
state. Similarly, an ALTER TABLE statement to add a primary key or a unique constraint cannot
reference any table that is in read access state or in no access state.

– The import utility is not allowed to operate on a table that is in read access state or in no access state.
– The export utility is not allowed to operate on a table that is in no access state, but is allowed to

operate on a table that is in read access state. If a table is in read access state, the export utility will
only export the data that is in the non-appended portion.

– Operations (like REORG, REDISTRIBUTE, update distribution key, update multidimensional clustering
key, update range clustering key, update table partitioning key, and so on) that might involve data
movement within a table are not allowed on a table that is in any of the following states: read access,
no access, or no data movement.

– The load, backup, restore, update statistics, runstats, reorgchk, list history, and rollforward utilities
are allowed on a table that is in any of the following states: full access, read access, no access, or no
data movement.

– The ALTER TABLE, COMMENT, DROP TABLE, CREATE ALIAS, CREATE TRIGGER, CREATE VIEW,
GRANT, REVOKE, and SET INTEGRITY statements can reference a table that is in any of the following
states: full access, read access, no access, or no data movement. However, they might cause the
table to be put into no access state.

– Packages, views, and any other objects that depend on a table that is in no access state will return an
error when the table is accessed at run time. Packages that depend on a table that is in read access
state will return an error when an insert, update, or delete operation is attempted on the table at run
time.

– The ALL or GENERATED COLUMN option cannot be specified with the IMMEDIATE UNCHECKED
option if the table's database partitioning key, table-partitioning key, multidimensional clustering key,
or range-clustering key references a generated column whose expression was altered through an
ALTER TABLE statement.

The removal of violating rows by the SET INTEGRITY statement is not a delete event. Therefore, triggers
are never activated by a SET INTEGRITY statement. Similarly, updating generated columns using the
FORCE GENERATED option does not activate triggers.

• Warning about the use of the IMMEDIATE UNCHECKED clause:

– This clause is intended to be used by utility programs, and its use by application programs is not
recommended. If there is data in the table that does not meet the integrity specifications that were
defined for the table, and the IMMEDIATE UNCHECKED option is used, incorrect query results might
be returned.

The fact that the table was taken out of the set integrity pending state without performing
the required integrity processing will be recorded in the catalog (the respective byte in the
CONST_CHECKED column in the SYSCAT.TABLES view will be set to "U"). This indicates that the
user has assumed responsibility for data integrity with respect to the specific constraints. This value
remains unchanged until either:

- The table is put back into set integrity pending state (by referencing the table in a SET INTEGRITY
statement with the OFF option), at which time "U" values in the CONST_CHECKED column are
changed to "W" values, indicating that the user had previously assumed responsibility for data
integrity, and the system needs to verify the data.

- All unchecked constraints for the table are dropped.

Chapter 1. Structured Query Language (SQL) 1861

The "W" state differs from the "N" state in that it records the fact that integrity was previously
checked by the user, but not yet by the system. If the user issues the SET INTEGRITY ... IMMEDIATE
CHECKED statement with the NOT INCREMENTAL option, the system rechecks the whole table for
data integrity (or performs a full refresh on a materialized query table), and then changes the "W"
state to the "Y" state. If IMMEDIATE UNCHECKED is specified, or if NOT INCREMENTAL is not
specified, the "W" state is changed back to the "U" state to record the fact that some data has still
not been verified by the system. In the latter case (when the NOT INCREMENTAL is not specified), a
warning is returned (SQLSTATE 01636).

If an underlying table's integrity has been checked using the IMMEDIATE UNCHECKED clause,
the "U" values in the CONST_CHECKED column of the underlying table will be propagated to the
corresponding CONST_CHECKED column of:

- Dependent immediate materialized query tables
- Dependent deferred materialized query tables
- Dependent staging tables

For a dependent immediate materialized query table, this propagation is done whenever the
underlying table is brought out of set integrity pending state, and whenever the materialized query
table is refreshed. For a dependent deferred materialized query table, this propagation is done
whenever the materialized query table is refreshed. For dependent staging tables, this propagation is
done whenever the underlying table is brought out of set integrity pending state. These propagated
"U" values in the CONST_CHECKED columns of dependent materialized query tables and staging
tables record the fact that these materialized query tables and staging tables depend on some
underlying table whose required integrity processing has been bypassed using the IMMEDIATE
UNCHECKED option.

For a materialized query table, the "U" value in the CONST_CHECKED column that was propagated
by the underlying table will remain until the materialized query table is fully refreshed and none of
its underlying tables have a "U" value in their corresponding CONST_CHECKED column. After such
a refresh, the "U" value in the CONST_CHECKED column for the materialized query table will be
changed to "Y".

For a staging table, the "U" value in the CONST_CHECKED column that was propagated by the
underlying table will remain until the corresponding deferred materialized query table of the staging
table is refreshed. After such a refresh, the "U" value in the CONST_CHECKED column for the staging
table will be changed to "Y".

– If a child table and its parent table are checked in the same SET INTEGRITY statement with the
IMMEDIATE CHECKED option, and the parent table requires full checking of its constraints, the child
table will have its foreign key constraints checked, independently of whether or not the child table
has a "U" value in the CONST_CHECKED column for foreign key constraints.

• If the table is data partitioned and there are nonpartitioned indexes (except the XML column path
index) to maintain, IMMEDIATE UNCHECKED behavior when a single target table is specified is the
same as IMMEDIATE CHECKED behavior with the ALLOW WRITE ACCESS option: all integrity processing
is performed and any resulting errors are returned. If the statement references more than one target
table, an error is returned (SQLSTATE 428FH).

• After appending data using LOAD INSERT or ALTER TABLE ATTACH, the SET INTEGRITY statement with
the IMMEDIATE CHECKED option checks the table for constraints violations. The system determines
whether incremental processing on the table is possible. If so, only the appended portion is checked for
integrity violations. If not, the system checks the whole table for integrity violations.

• Consider the statement:

 SET INTEGRITY FOR T IMMEDIATE CHECKED

In the following scenarios, neither the INCREMENTAL check option for T nor an incremental refresh of
T---if T is a materialized query table (MQT) or a staging table---is supported:

– New constraints have been added to T while it is in set integrity pending state
– When a LOAD REPLACE operation against T, it parents, or its underlying tables has taken place

1862 IBM Db2 V11.5: SQL Reference

– When the NOT LOGGED INITIALLY WITH EMPTY TABLE option has been activated after the last
integrity check on T, its parents, or its underlying tables

– The cascading effect of full processing, when any parent of T (or underlying table, if T is a
materialized query table or a staging table) has been checked for integrity non-incrementally

– If the table space containing the table or its parent (or underlying table of a materialized query
table or a staging table) has been rolled forward to a point in time, and the table and its parent (or
underlying table if the table is a materialized query table or a staging table) reside in different table
spaces

– T is an MQT, and a LOAD REPLACE or LOAD INSERT operation directly into T has taken place after the
last refresh

• Incremental processing will be used whenever the situation allows it, because it is more efficient.
The INCREMENTAL option is not needed in most cases. It is needed, however, to ensure that integrity
checks are indeed processed incrementally. If the system detects that full processing is needed to
ensure data integrity, an error is returned (SQLSTATE 55019).

• If the conditions for full processing described in the previous bullet are not satisfied, the system will
attempt to check only the appended portion for integrity, or perform an incremental refresh (if it is
a materialized query table) when the user does not specify the NOT INCREMENTAL option for the
statement SET INTEGRITY FOR T IMMEDIATE CHECKED.

• If an error occurs during integrity processing, all the effects of the processing (including deleting from
the original and inserting into the exception tables) will be rolled back.

• If a SET INTEGRITY statement issued with the FORCE GENERATED option fails because of a lack of log
space, increase available active log space and reissue the SET INTEGRITY statement. Alternatively, use
the SET INTEGRITY statement with the GENERATED COLUMN and IMMEDIATE UNCHECKED options
to bypass generated column checking for the table. Then, issue a SET INTEGRITY statement with the
IMMEDIATE CHECKED option and without the FORCE GENERATED option to check the table for other
integrity violations (if applicable) and to bring it out of set integrity pending state. After the table is out
of the set integrity pending state, the generated columns can be updated to their default (generated)
values by assigning them to the keyword DEFAULT in an UPDATE statement. This is accomplished by
using either multiple searched update statements based on ranges (each followed by a commit), or a
cursor-based approach using intermittent commits. A "with hold" cursor should be used if locks are to
be retained after intermittent commits using the cursor-based approach.

• A table that was put into set integrity pending state using the CASCADE DEFERRED option of the SET
INTEGRITY statement or the LOAD command, or through the ALTER TABLE statement with the ATTACH
clause, and that is checked for integrity violations using the IMMEDIATE CHECKED option of the SET
INTEGRITY statement, will have its descendent foreign key tables, descendent immediate materialized
query tables, and descendent immediate staging tables put in set integrity pending state, as required:

– If the entire table is checked for integrity violations, its descendent foreign key tables, descendent
immediate materialized query tables, and descendent immediate staging tables will be put in set
integrity pending state.

– If the table is checked for integrity violations incrementally, its descendent immediate materialized
query tables and staging tables will be put in set integrity pending state, and its descendent foreign
key tables will remain in their original states.

– If the table requires no checking at all, its descendent immediate materialized query tables,
descendent staging tables, and descendent foreign key tables will remain in their original states.

• A table that was put in set integrity pending state using the CASCADE DEFERRED option (of the SET
INTEGRITY statement or the LOAD command), and that is brought out of set integrity pending state
using the IMMEDIATE UNCHECKED option of the SET INTEGRITY statement, will have its descendent
foreign key tables, descendent immediate materialized query tables, and descendent immediate
staging tables put in set integrity pending state, as required:

– If the table has been loaded using the REPLACE mode, its descendent foreign key tables, descendent
immediate materialized query tables, and descendent immediate staging tables will be put in set
integrity pending state.

Chapter 1. Structured Query Language (SQL) 1863

– If the table has been loaded using the INSERT mode, its descendent immediate materialized query
tables and staging tables will be put in set integrity pending state, and its descendent foreign key
tables will remain in their original states.

– If the table has not been loaded, its descendent immediate materialized query tables, descendent
staging tables, and its descendent foreign key tables will remain in their original states.

• SET INTEGRITY is usually a long running statement. In light of this, to reduce the risk of a rollback
of the entire statement because of a lock timeout, you can issue the SET CURRENT LOCK TIMEOUT
statement with the WAIT option before executing the SET INTEGRITY statement, and then reset the
special register to its previous value after the transaction commits. Note, however, that the CURRENT
LOCK TIMEOUT special register only impacts a specific set of lock types.

• If you use the ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED TABLES WITH REFRESH AGE
ANY option, ensure that the maintenance order is correct for REFRESH DEFERRED materialized query
tables. For example, consider two materialized query tables, MQT1 and MQT2, whose materialized
queries share the same underlying tables. The materialized query for MQT2 can be calculated using
MQT1, instead of the underlying tables. If separate statements are used to maintain these two
materialized query tables, and MQT2 is maintained first, the system might choose to use the contents of
MQT1, which has not yet been maintained, to maintain MQT2. In this case, MQT1 would contain current
data, but MQT2 could still contain stale data, even though both were maintained at almost the same
time. The correct maintenance order, if two SET INTEGRITY statements are used instead of one, is to
maintain MQT1 first.

• When using the SET INTEGRITY statement to perform integrity processing on a base table that has
been loaded or attached, it is recommended that you process its dependent REFRESH IMMEDIATE
materialized query tables and its PROPAGATE IMMEDIATE staging tables in the same SET INTEGRITY
statement to avoid putting these dependent tables in set integrity pending no access state at the end of
SET INTEGRITY processing. Note that for base tables that have a large number of dependent REFRESH
IMMEDIATE materialized query tables and PROPAGATE IMMEDIATE staging tables, memory constraints
might make it impossible to process all of the dependents in the same statement as the base table.

• If the FORCE GENERATED or the GENERATE IDENTITY option is specified, and the column that is
generated is part of a unique index, the SET INTEGRITY statement returns an error (SQLSTATE 23505)
and rolls back if it detects duplicate keys in the unique index. This error is returned even if there is an
exception table for the table being processed.

This scenario can occur under the following circumstances:

– The SET INTEGRITY statement runs after a LOAD command against the table, and the
GENERATEDOVERRIDE or the IDENTITYOVERRIDE file type modifier is specified during the load
operation. To prevent this scenario, it is recommended that you use the GENERATEDIGNORE or
the GENERATEDMISSING file type modifier instead of GENERATEDOVERRIDE, and that you use
the IDENTITYIGNORE or the IDENTITYMISSING modifier instead of IDENTITYOVERRIDE. Using the
recommended modifiers will prevent the need for any generated by expression column or identity
column processing during SET INTEGRITY statement execution.

– The SET INTEGRITY statement is run after an ALTER TABLE statement that alters the expression of a
generated by expression column.

To bring a table out of the set integrity pending state after encountering such a scenario:

– Do not use the FORCE GENERATED or the GENERATE IDENTITY option to regenerate the column
values. Instead, use the IMMEDIATE CHECKED option in conjunction with the FOR EXCEPTION option
to move any rows that violate the generated column expression to an exception table. Then, re-insert
the rows into the table from the exception table, which will generate the correct expression and
perform unique key checking. This prevents having to reprocess the entire table, because only those
rows that violated the generated column expression will need to be processed again.

– If the table being processed has attached partitions, detach those partitions before performing the
actions that are described in the previous bullet. Then, re-attach the partitions and execute a SET
INTEGRITY statement to process integrity on the attached partitions separately.

• If a protected table is specified for the SET INTEGRITY statement along with an exception table, all of
the following table criteria must be met; otherwise, an error is returned (SQLSTATE 428A5):

1864 IBM Db2 V11.5: SQL Reference

– The tables must be protected by the same security policy.
– If a column in the protected table has data type DB2SECURITYLABEL, the corresponding column in

the exception table must also have data type DB2SECURITYLABEL.
– If a column in the protected table is protected by a security label, the corresponding column in the

exception table must also be protected by the same security label.
• Rows that violate the integrity being checked in a system-period temporal table cannot be moved to an

exception table. If the violating rows must be moved to an exception table, the table must be altered to
drop versioning before issuing the SET INTEGRITY statement with the FOR EXCEPTION clause.

• Syntax alternatives: The following are supported for compatibility with previous versions of Db2 and
with other database products. These alternatives are non-standard and should not be used.

– SET CONSTRAINTS can be specified in place of SET INTEGRITY
– SUMMARY can be specified in place of MATERIALIZED QUERY

Examples
• Example 1: The following is an example of a query that provides information about the set integrity

pending state and the set integrity-related access restriction states of tables. SUBSTR is used to
extract individual bytes of the CONST_CHECKED column of SYSCAT.TABLES. The first byte represents
foreign key constraints; the second byte represents check constraints; the fifth byte represents
materialized query table integrity; the sixth byte represents generated column constraints; the seventh
byte represents staging table integrity; and the eighth byte represents data partitioning constraints.
STATUS gives the set integrity pending state, and ACCESS_MODE gives the set integrity-related access
restriction state.

 SELECT TABNAME, STATUS, ACCESS_MODE,
 SUBSTR(CONST_CHECKED,1,1) AS FK_CHECKED,
 SUBSTR(CONST_CHECKED,2,1) AS CC_CHECKED,
 SUBSTR(CONST_CHECKED,5,1) AS MQT_CHECKED,
 SUBSTR(CONST_CHECKED,6,1) AS GC_CHECKED,
 SUBSTR(CONST_CHECKED,7,1) AS STG_CHECKED,
 SUBSTR(CONST_CHECKED,8,1) AS DP_CHECKED
 FROM SYSCAT.TABLES

• Example 2: Put the PARENT table in set integrity pending no access state, and immediately cascade the
set integrity pending state to its descendants.

 SET INTEGRITY FOR PARENT OFF
 NO ACCESS CASCADE IMMEDIATE

• Example 3: Put the PARENT table in set integrity pending read access state without immediately
cascading the set integrity pending state to its descendants.

 SET INTEGRITY FOR PARENT OFF
 READ ACCESS CASCADE DEFERRED

• Example 4: Check integrity for a table named FACT_TABLE. If there are no integrity violations detected,
the table is brought out of set integrity pending state. If any integrity violations are detected, the entire
statement is rolled back, and the table remains in set integrity pending state.

 SET INTEGRITY FOR FACT_TABLE IMMEDIATE CHECKED

• Example 5: Check integrity for the SALES and PRODUCTS tables, and move the rows that violate
integrity into exception tables named SALES_EXCEPTIONS and PRODUCTS_EXCEPTIONS. Both the
SALES and PRODUCTS tables are brought out of set integrity pending state, whether or not there are any
integrity violations.

 SET INTEGRITY FOR SALES, PRODUCTS IMMEDIATE CHECKED
 FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS,
 IN PRODUCTS USE PRODUCTS_EXCEPTIONS

Chapter 1. Structured Query Language (SQL) 1865

• Example 6: Enable FOREIGN KEY constraint checking in the MANAGER table, and CHECK constraint
checking in the EMPLOYEE table, to be bypassed with the IMMEDIATE UNCHECKED option.

 SET INTEGRITY FOR MANAGER FOREIGN KEY,
 EMPLOYEE CHECK IMMEDIATE UNCHECKED

• Example 7: Add a check constraint and a foreign key to the EMP_ACT table, using two ALTER TABLE
statements. The SET INTEGRITY statement with the OFF option is used to put the table in set integrity
pending state, so that the constraints are not checked immediately upon execution of the two ALTER
TABLE statements. The single SET INTEGRITY statement with the IMMEDIATE CHECKED option is used
to check both of the added constraints during a single pass through the table.

 SET INTEGRITY FOR EMP_ACT OFF;
 ALTER TABLE EMP_ACT ADD CHECK
 (EMSTDATE <= EMENDATE);
 ALTER TABLE EMP_ACT ADD FOREIGN KEY
 (EMPNO) REFERENCES EMPLOYEE;
 SET INTEGRITY FOR EMP_ACT IMMEDIATE CHECKED
 FOR EXCEPTION IN EMP_ACT USE EMP_ACT_EXCEPTIONS

• Example 8: Update generated columns with the correct values.

 SET INTEGRITY FOR SALES IMMEDIATE CHECKED
 FORCE GENERATED

• Example 9: Append (using LOAD INSERT) from different sources into an underlying table (SALES)
of a REFRESH IMMEDIATE materialized query table (SALES_SUMMARY). Check SALES incrementally
for data integrity, and refresh SALES_SUMMARY incrementally. In this scenario, integrity checking for
SALES and refreshing of SALES_SUMMARY are incremental, because the system chooses incremental
processing. The ALLOW READ ACCESS option is used on the SALES table to allow concurrent reads of
existing data while integrity checking of the loaded portion of the table is taking place.

 LOAD FROM 2000_DATA.DEL OF DEL
 INSERT INTO SALES ALLOW READ ACCESS;
 LOAD FROM 2001_DATA.DEL OF DEL
 INSERT INTO SALES ALLOW READ ACCESS;
 SET INTEGRITY FOR SALES ALLOW READ ACCESS IMMEDIATE CHECKED
 FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS;
 REFRESH TABLE SALES_SUMMARY;

• Example 10: Attach a new partition to a data partitioned table named SALES. Incrementally check for
constraints violations in the attached data of the SALES table and incrementally refresh the dependent
SALES_SUMMARY table. The ALLOW WRITE ACCESS option is used on both tables to allow concurrent
updates while integrity checking is taking place.

 ALTER TABLE SALES
 ATTACH PARTITION STARTING (100) ENDING (200)
 FROM SOURCE;
 SET INTEGRITY FOR SALES ALLOW WRITE ACCESS, SALES_SUMMARY ALLOW WRITE ACCESS
 IMMEDIATE CHECKED FOR EXCEPTION IN SALES
 USE SALES_EXCEPTIONS;

• Example 11: Detach a partition from a data partitioned table named SALES. Incrementally refresh the
dependent SALES_SUMMARY table.

 ALTER TABLE SALES
 DETACH PARTITION 2000_PART INTO ARCHIVE_TABLE;
 SET INTEGRITY FOR SALES_SUMMARY
 IMMEDIATE CHECKED;

• Example 12: Bring a new user-maintained materialized query table out of set integrity pending state.

 CREATE TABLE YEARLY_SALES
 AS (SELECT YEAR, SUM(SALES)AS SALES
 FROM FACT_TABLE GROUP BY YEAR)
 DATA INITIALLY DEFERRED REFRESH DEFERRED MAINTAINED BY USER

 SET INTEGRITY FOR YEARLY_SALES
 ALL IMMEDIATE UNCHECKED

1866 IBM Db2 V11.5: SQL Reference

• Example 13: Attach a new partition to a data partitioned table named SALES. Assume that this table
has no nonpartitioned user indexes. Assume also that data integrity checking, including range validation
and other constraints checking, has already been done (through application logic that is independent
of the data server). Optimize the data roll-in process by using the SET INTEGRITY ... ALL IMMEDIATE
UNCHECKED statement to skip range and constraints violation checking.

 ALTER TABLE SALES
 ATTACH PARTITION STARTING (300) ENDING (400)
 FROM SOURCE_TABLE;
 SET INTEGRITY FOR SALES ALL IMMEDIATE UNCHECKED;

The SALES table is brought out of SET INTEGRITY pending state, and the new data is available for
applications to use immediately.

• Example 14: Setting the DB2_EXTENDED_OPTIMIZATION registry variable with the option is done by
running:

db2set DB2_EXTENDED_OPTIMIZATION=

SET PASSTHRU
The SET PASSTHRU statement opens and closes a session for submitting a data source's native SQL
directly to that data source.

The statement is not under transaction control.

Invocation
This statement can be issued interactively. It is an executable statement that can be dynamically
prepared.

Authorization
The privileges held by the authorization ID of the statement must provide authorization to:

• Pass through to the data source
• Satisfy security measures at the data source

Syntax
SET PASSTHRU server-name

RESET

Description
server-name

Names the data source for which a pass-through session is to be opened. server-name must identify a
data source that is described in the catalog.

RESET
Closes a pass-through session.

Notes
• The following restrictions apply to Microsoft SQL Server, Sybase, and Oracle data sources:

– User-defined transactions cannot be used for Microsoft SQL Server and Sybase data sources in
pass-through mode, because Microsoft SQL Server and Sybase restrict which SQL statements can
be specified within a user-defined transaction. Because SQL statements that are processed in pass-

Chapter 1. Structured Query Language (SQL) 1867

through mode are not parsed by the database manager, it is not possible to detect whether the user
specified an SQL statement that is permitted within a user-defined transaction.

– The COMPUTE clause is not supported on Microsoft SQL Server and Sybase data sources.
– DDL statements are not subject to transaction semantics on Microsoft SQL Server, Oracle and Sybase

data sources. The operation, when complete, is automatically committed by Microsoft SQL Server,
Oracle or Sybase. If a rollback occurs, the DDL is not rolled back.

Examples
• Example 1: Start a pass-through session to data source BACKEND.

 strcpy (PASS_THRU,"SET PASSTHRU BACKEND");
 EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;

• Example 2: Start a pass-through session with a PREPARE statement.

 strcpy (PASS_THRU,"SET PASSTHRU BACKEND");
 EXEC SQL PREPARE STMT FROM :PASS_THRU;
 EXEC SQL EXECUTE STMT;

• Example 3: End a pass-through session.

 strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");
 EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

• Example 4: Use the PREPARE and EXECUTE statements to end a pass-through session.

 strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");
 EXEC SQL PREPARE STMT FROM :PASS_THRU_RESET;
 EXEC SQL EXECUTE STMT;

• Example 5: Open a session to pass through to a data source, create a clustered index for a table at this
data source, and close the pass-through session.

 strcpy (PASS_THRU,"SET PASSTHRU BACKEND");
 EXEC SQL EXECUTE IMMEDIATE :PASS_THRU;
 EXEC SQL PREPARE STMT pass-through mode
 FROM "CREATE UNIQUE
 CLUSTERED INDEX TABLE_INDEX
 ON USER2.TABLE table is not an
 WITH IGNORE DUP KEY"; alias
 EXEC SQL EXECUTE STMT;
 strcpy (PASS_THRU_RESET,"SET PASSTHRU RESET");
 EXEC SQL EXECUTE IMMEDIATE :PASS_THRU_RESET;

SET PATH
The SET PATH statement changes the value of the CURRENT PATH special register.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

1868 IBM Db2 V11.5: SQL Reference

Syntax

SET
CURRENT

PATH

CURRENT_PATH

=

,

schema-name

SYSTEM PATH

USER

CURRENT PATH

CURRENT_PATH

CURRENT PACKAGE PATH

host-variable

string-constant

Description
schema-name

This one-part name identifies a schema that exists at the application server. No validation that the
schema exists is made at the time that the path is set. If a schema-name is, for example, misspelled,
the error will not be caught, and it could affect the way subsequent SQL operates.

SYSTEM PATH
This value is the same as specifying the schema names "SYSIBM","SYSFUN","SYSPROC","SYSIBMADM".

USER
The value of the USER special register.

CURRENT PATH
The value of the CURRENT PATH special register before this statement executes.

CURRENT PACKAGE PATH
The value of the CURRENT PACKAGE PATH special register.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of the host-variable must not exceed
128 bytes (SQLSTATE 42815). It cannot be set to null. If host-variable has an associated indicator
variable, the value of that indicator variable must not indicate a null value (SQLSTATE 42815).

The characters of the host-variable must be left-aligned. When specifying the schema-name with a
host-variable, all characters must be specified in the exact case intended as there is no conversion to
uppercase characters.

string-constant
A character string constant with a maximum length of 128 bytes.

Rules
• A schema name cannot appear more than once in the SQL path (SQLSTATE 42732).
• The schema name SYSPUBLIC cannot be specified in the SQL path (SQLSTATE 42815).
• The number of schemas that can be specified is limited by the total length of the CURRENT PATH

special register. The special register string is built by taking each schema name specified and removing
trailing blanks, delimiting with double quotation marks, doubling quotation marks within the schema
name as necessary, and then separating each schema name by a comma. The length of the resulting
string cannot exceed 2048 bytes (SQLSTATE 42907).

Chapter 1. Structured Query Language (SQL) 1869

Notes
• The initial value of the CURRENT PATH special register is

"SYSIBM","SYSFUN","SYSPROC","SYSIBMADM","X" where X is the value of the USER special register.
• The schema SYSIBM does not need to be specified. If it is not included in the SQL path, it is implicitly

assumed as the first schema (in this case, it is not included in the CURRENT PATH special register).
• The CURRENT PATH special register specifies the SQL path used to resolve function names, procedure

names, data type names, global variable names, and module object names in dynamic SQL statements.
The FUNCPATH bind option specifies the SQL path to be used for resolving function names, procedure
names, data type names, global variable names, and module object names in static SQL statements.

• Syntax alternatives: The following syntax alternatives are supported for compatibility with previous
versions of Db2 and with other database products. These alternatives are non-standard and should not
be used.

– CURRENT FUNCTION PATH can be specified in place of CURRENT PATH

Examples
• Example 1: The following statement sets the CURRENT PATH special register.

 SET PATH = FERMAT, "McDrw #8", SYSIBM

• Example 2: The following example retrieves the current value of the CURRENT PATH special register
into the host variable called CURPATH.

 EXEC SQL VALUES (CURRENT PATH) INTO :CURPATH;

The value would be "FERMAT","McDrw #8","SYSIBM" if set by the previous example.

SET ROLE
The SET ROLE statement verifies that the authorization ID of the session is a member of a specific role.
An authorization ID acquires membership in a role when the role is granted to the authorization ID, or to a
group or role in which the authorization ID is a member.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
None required.

Syntax

SET ROLE
=

role-name

Description
role-name

Specifies a role in whose membership the authorization ID of the session is to be verified. The
role-name must identify an existing role at the current server (SQLSTATE 42704). If the authorization
ID of the session is not a member of role-name, an error is returned (SQLSTATE 42501).

1870 IBM Db2 V11.5: SQL Reference

Notes
• All roles that have been granted to an authorization ID are used for authorization checking. The SET

ROLE statement does not affect which roles are used for this authorization checking. Use the GRANT
ROLE and REVOKE ROLE statements to change the roles in which an authorization ID has membership.

Examples
• Example 1: User WALID has been granted the role EDITOR, but not the role AUTHOR. Verify that WALID

is a member of the EDITOR role.

 SET ROLE EDITOR

• Example 2: Verify that WALID is not a member of the AUTHOR role. The following statement returns an
error (SQLSTATE 42501).

 SET ROLE AUTHOR

SET SCHEMA
The SET SCHEMA statement changes the value of the CURRENT SCHEMA special register.

This statement is not under transaction control. If the package is bound with the DYNAMICRULES BIND
option, this statement does not affect the qualifier used for unqualified database object references.

Invocation
The statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
None required.

Syntax

SET
CURRENT

SCHEMA
=

schema-name

USER

SESSION_USER

SYSTEM_USER

CURRENT_USER

host-variable

string-constant

Description
schema-name

This one-part name identifies a schema that exists at the application server. The length must not
exceed 128 bytes (SQLSTATE 42815). No validation that the schema exists is made at the time that
the schema is set. If a schema-name is misspelled, the error will not be caught, and that could affect
the way that subsequent SQL statements execute.

USER
The value in the USER special register.

Chapter 1. Structured Query Language (SQL) 1871

SESSION_USER
The value in the SESSION_USER special register.

SYSTEM_USER
The value in the SYSTEM_USER special register.

CURRENT_USER
The value in the CURRENT_USER special register.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of the host-variable must not exceed
128 bytes (SQLSTATE 42815). It cannot be set to null. If host-variable has an associated indicator
variable, the value of that indicator variable must not indicate a null value (SQLSTATE 42815).

The characters of the host-variable must be left-aligned. When specifying the schema-name with a
host-variable, all characters must be specified in the exact case intended as there is no conversion to
uppercase characters.

string-constant
A character string constant with a maximum length of 128 bytes.

Rules
• If the value specified does not conform to the rules for a schema-name, an error (SQLSTATE 3F000) is

raised.
• The value of the CURRENT SCHEMA special register is used as the schema name in all dynamic SQL

statements, with the exception of the CREATE SCHEMA statement, where an unqualified reference to a
database object exists.

• The QUALIFIER bind option specifies the schema name for use as the qualifier for unqualified database
object names in static SQL statements.

Notes
• The initial value of the CURRENT SCHEMA special register is equivalent to USER.
• Setting the CURRENT SCHEMA special register does not affect the CURRENT PATH special register.

Hence, the CURRENT SCHEMA will not be included in the SQL path and functions, procedures and
user-defined type resolution may not find these objects. To include the current schema value in the SQL
path, whenever the SET SCHEMA statement is issued, also issue the SET PATH statement including the
schema name from the SET SCHEMA statement.

• CURRENT SQLID is accepted as a synonym for CURRENT SCHEMA and the effect of a SET CURRENT
SQLID statement will be identical to that of a SET CURRENT SCHEMA statement. No other effects, such
as statement authorization changes, will occur.

Examples
• Example 1: The following statement sets the CURRENT SCHEMA special register.

 SET SCHEMA RICK

• Example 2: The following example retrieves the current value of the CURRENT SCHEMA special register
into the host variable called CURSCHEMA.

• EXEC SQL VALUES (CURRENT SCHEMA) INTO :CURSCHEMA;

The value would be RICK, set by the previous example.

1872 IBM Db2 V11.5: SQL Reference

SET SERVER OPTION
The SET SERVER OPTION statement specifies a server option setting that is to remain in effect while
a user or application is connected to the federated database. When the connection ends, this server
option's previous setting is reinstated.

This statement is not under transaction control.

Invocation
This statement can be issued interactively. It is an executable statement that can be dynamically
prepared.

Authorization
None required.

Syntax
SET SERVER OPTION server-option-name TO string-constant FOR SERVER

server-name

Description
server-option-name

Names the server option that is to be set.
TO string-constant

Specifies the setting for server-option-name as a character string constant.
SERVER server-name

Names the data source to which server-option-name applies. It must be a server described in the
catalog.

Notes
• Server option names can be entered in uppercase or lowercase.
• One or more SET SERVER OPTION statements can be submitted when a user or application connects to

the federated database. The statement (or statements) must be specified at the start of the first unit of
work that is processed after the connection is established.

• SYSCAT.SERVEROPTIONS will not be updated based on a SET SERVER OPTION statement, because this
change only affects the current connection.

• For static SQL, using the SET SERVER OPTION statement affects only the execution of the static SQL
statement. Using the SET SERVER OPTION statement has no effect on the plans that are generated by
the optimizer.

Examples
• Example 1: An Oracle data source called ORASERV is defined to a federated database called DJDB.

ORASERV is configured to disallow plan hints. However, the DBA would like plan hints to be enabled for
a test run of a new application. When the run is over, plan hints will be disallowed again.

 CONNECT TO DJDB;
 strcpy(stmt,"set server option plan_hints to 'Y' for server oraserv");
 EXEC SQL EXECUTE IMMEDIATE :stmt;
 strcpy(stmt,"select c1 from ora_t1 where c1 > 100"); /*Generate plan hints*/
 EXEC SQL PREPARE s1 FROM :stmt;
 EXEC SQL DECLARE c1 CURSOR FOR s1;

Chapter 1. Structured Query Language (SQL) 1873

 EXEC SQL OPEN c1;
 EXEC SQL FETCH c1 INTO :hv;

• Example 2: You have set the server option PASSWORD to 'Y' (validating passwords at the data source)
for all Oracle 8 data sources. However, for a particular session in which an application is connected to
the federated database in order to access a specific Oracle 8 data source-one defined to the federated
database DJDB as ORA8A-passwords will not need to be validated.

 CONNECT TO DJDB;
 strcpy(stmt,"set server option password to 'N' for server ora8a");
 EXEC SQL PREPARE STMT_NAME FROM :stmt;
 EXEC SQL EXECUTE STMT_NAME FROM :stmt;
 strcpy(stmt,"select max(c1) from ora8a_t1");
 EXEC SQL PREPARE STMT_NAME FROM :stmt;
 EXEC SQL DECLARE c1 CURSOR FOR STMT_NAME;
 EXEC SQL OPEN c1; /*Does not validate password at ora8a*/
 EXEC SQL FETCH c1 INTO :hv;

SET SESSION AUTHORIZATION
The SET SESSION AUTHORIZATION statement changes the value of the SESSION_USER special register.

The statement is not under transaction control. The SET SESSION AUTHORIZATION statement is
intended to provide support for a single user assuming different authorization IDs on the same
connection, and should not be used for scenarios in which different users reuse the same connection,
commonly referred to as connection pooling.

Invocation
The statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include SETSESSIONUSER on the
authorization ID value to which the special register is being set.

Syntax

SET SESSION AUTHORIZATION

SESSION_USER

=
authorization-name

USER

CURRENT_USER

SYSTEM_USER

host-variable

string-constant

ALLOW ADMINISTRATION

Description
authorization-name

Specifies the authorization ID that is to be used as the new value for the SESSION_USER special
register.

USER
The value in the USER special register.

1874 IBM Db2 V11.5: SQL Reference

CURRENT_USER
The value in the CURRENT USER special register.

SYSTEM_USER
The value in the SYSTEM_USER special register.

host-variable
A variable of type CHAR or VARCHAR. The length of the contents of host-variable must not exceed 128
bytes (SQLSTATE 28000). It cannot be set to null. If host-variable has an associated indicator variable,
the value of that indicator variable must not indicate a null value (SQLSTATE 28000).

The characters of host-variable must be left-aligned. When specifying authorization-name with a host
variable, all characters must be specified in uppercase, because there is no conversion to uppercase
characters.

string-constant
A character string constant with a maximum length of 128 bytes.

ALLOW ADMINISTRATION
Specifies that SQL schema statements can be specified before this statement in the same unit of
work.

Rules
• The value specified for the SESSION_USER special register must conform to the rules for an

authorization ID of type USER (SQLSTATE 42602).
• The OWNER bind option specifies the authorization ID that is to be used for static SQL statements.
• This statement can only be issued as the first statement (other than a SET special register statement) in

a new unit of work without any open WITH HOLD cursors (SQLSTATE 25001). This restriction includes
any PREPARE request for a statement other than a SET special register statement.

• The value of the SESSION_USER special register is used as the authorization ID for all dynamic SQL
statements in a package bound with the DYNAMICRULES(RUN) bind option. (This includes INVOKERUN
and DEFINERUN when the package is not used by a routine). If a package is using owner, invoker, or
definer authorization based on the DYNAMICRULES option, this statement has no effect on dynamic SQL
statements issued from within that package.

Notes
• The SET SESSION AUTHORIZATION statement lets you change the session authorization ID. The

session authorization ID represents the current user of the connection and is the authorization ID
that the database manager considers for all authorization checking relative to dynamic SQL within a
DYNAMICRULES run package. The SESSION_USER special register can be used to see the current value
of this session authorization ID.

• The initial value of the SESSION_USER special register for a new connection is the same as the value of
the SYSTEM_USER special register.

• The group information for the session authorization ID specified in this statement is acquired at the time
of statement execution.

• Setting the SESSION_USER special register does not effect either the CURRENT SCHEMA or the
CURRENT PATH special register.

• If any error occurs during the setting of the SESSION_USER special register, the register reverts to its
previous value.

• This statement should not be used to allow multiple, different users to reuse the same connection,
because each user will inherit the ability to change the value of the SESSION_USER special register
that the original connection owner had. This statement is dependent upon the value of SYSTEM_USER
for privileges checking, and the initial connection authorization ID is not changed by the SET SESSION
AUTHORIZATION statement. Moreover, the following behaviors impacting connection reuse are not
addressed by this statement:

Chapter 1. Structured Query Language (SQL) 1875

– The CONNECT privilege is not checked for the new authorization ID
– The content of any updatable special register is not reset; in particular, the content of the

ENCRYPTION PASSWORD special register is not modified and is available to the new authorization ID
for encryption or decryption

– The content of any declared global temporary table is not affected, and is accessible to the new
authorization ID

– Any existing links to remote servers are not reset
• If the ALLOW ADMINISTRATION clause is specified, the following types of statements or operations can

precede the SET SESSION AUTHORIZATION statement:

– Data definition language (DDL), including the definition of savepoints and the declaration of global
temporary tables, but not including SET INTEGRITY

– GRANT and REVOKE statements
– LOCK TABLE statement
– COMMIT and ROLLBACK statements
– SET of special registers
– SET of global variables

Examples
• Example 1: The following statement sets the SESSION_USER special register.

 SET SESSION_USER = RAJIV

• Example 2: Set the session authorization ID (the SESSION_USER special register) to be the value of the
system authorization ID, which is the ID that established the connection on which the statement has
been issued.

 SET SESSION AUTHORIZATION SYSTEM_USER

SET USAGE LIST STATE
The SET USAGE LIST STATE statement manages the state of a usage list and the associated data and
memory.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include DBADM or SQLADM authority.

Syntax

SET USAGE LIST usage-list-name STATE
=

ACTIVE

INACTIVE

RELEASED

host-variable

1876 IBM Db2 V11.5: SQL Reference

Description
usage-list-name

Identifies the usage list. The usage-list-name, including the implicit or explicit qualifier, must identify a
usage list that is described in the catalog (SQLSTATE 42704).

ACTIVE
Indicates that the usage list is activated for monitoring. Memory for the usage list is allocated when
the table or index is first referenced by a section. If the usage list is for a partitioned table or index
then the memory is allocated when the data partition is first referenced by a section. In a partitioned
database environment or Db2 pureScale environment, memory is allocated at each member. If the
usage list is already in the ACTIVE state then a warning is returned (SQLSTATE 01598).

On activation, the data in the usage list is removed and collection starts from the beginning of the list.

INACTIVE
Indicates that the usage list is deactivated for monitoring. If the state of a usage list is already set to
INACTIVE then this keyword is ignored. If the state of the usage list for a partitioned table or index is
set to INACTIVE, then the state of the usage list for each data partition is set to INACTIVE. If the state
is already INACTIVE then this keyword is ignored. Similarly, in a partitioned database environment or
Db2 pureScale environment, the state of the usage list for each member is set to INACTIVE. If the
state is already INACTIVE then this keyword is ignored.

Data collected in the list is not removed when the state of the usage list is set to INACTIVE.

RELEASED
Indicates that the memory associated with a usage list is released. If the state of the usage list
for a partitioned table or index is set to RELEASED, then the memory associated with each data
partition is released. In a partitioned database environment or Db2 pureScale environment, the
memory associated with each member is released.

Notes
• Determining current state: The current state of a usage list is determined by using the

MON_GET_USAGE_LIST_STATUS built-in function.
• Considerations for Db2 pureScale or partitioned database environments: If a usage list for a

partitioned table or index is activated, memory is allocated for each data partition. Similarly, in a
partitioned database environment or Db2 pureScale environment, memory is allocated at each active
member.

• Memory allocation for unavailable members: If a member is unavailable at the time of activation, then
the memory associated with the usage list for this member is allocated when the member is next
activated (if the state of the usage list is still active). This also applies when a member is added to the
cluster.

• Memory allocation for data partitions that are being added or attached: For data partitions that are
being added or attached, the memory associated with the usage list for this newly added or attached
data partition is allocated when the next section that references the partitioned table or index is
executed.

• Setting INACTIVE independently: If the usage list was created with the property, WHEN FULL
DEACTIVATE, then the state of the usage list for each data partition or member is set to INACTIVE
independently.

• Implicit reactivation of an active usage list: If the state of an INACTIVE ON START DATABASE usage list
is set to ACTIVE in a partitioned database environment or Db2 pureScale environment, then its behavior
is similar to ACTIVE ON START DATABASE until the usage list is explicitly deactivated or the instance is
recycled. That is, if state of the usage list is active when a database member is deactivated or offline,
and that database member is subsequently reactivated, the usage list for this member is implicitly
reactivated.

• Definition of released state: A usage list is considered to be in the released state if it is defined and has
not been activated (explicitly or automatically) or has been released using the SET USAGE LIST STATE

Chapter 1. Structured Query Language (SQL) 1877

statement. Usage lists in the state released are not returned by the MON_GET_USAGE_LIST_STATUS
table function.

• Activation pending, active, and failed states: If a usage list is activated (explicitly or automatically) then
the state of the usage list is set to activation pending and the memory is allocated when the table or
index is first referenced by the section. At this point the state of the usage list is set to active. If the
memory for the usage list cannot be allocated, then the state of the usage list is set to failed and it must
be explicitly activated using the SET USAGE LIST STATE statement.

• Inactive usage lists remain inactive upon database member reactivation: If the state of an ACTIVE
ON START DATABASE usage list is set to INACTIVE in a partitioned database environment or Db2
pureScale environment, then its behavior is similar to INACTIVE ON START DATABASE until the usage
list is explicitly activated or the instance is recycled. That is, if the state of a usage list is inactive when a
database member is deactivated or offline, and that database member is subsequently reactivated, the
state of the usage list for this member will remain inactive.

• Activating, deactivating, or releasing a usage list for a partitioned table or index: If a usage list for a
partitioned table or index is activated, deactivated, or released then the state change applies to each
data partition. Similarly, in a partitioned database environment or Db2 pureScale environment, the state
change applies to each member.

• Usage list size considerations: When activated, the memory associated with the usage list is allocated
from the monitor heap. At the maximum list size setting, the usage list is approximately 2MB. For
partitioned tables or indexes, memory is allocated for each data partition. For example, if a partitioned
table has three data partitions defined, the total memory allocated is approximately 6MB. Therefore,
activating multiple usage lists imposes more memory requirements on the monitor heap. It is therefore
suggested that a reasonable list size is selected or that you set the mon_heap_sz configuration
parameter to AUTOMATIC so that the database manager manages the monitor heap size.

• Data collection when a usage list is set to INACTIVE: Data collected in the list is not removed when the
state of the usage list is set to INACTIVE.

• Data access and memory: The data in the list is still accessible (using MON_GET_TABLE_USAGE_LIST
and MON_GET_INDEX_USAGE_LIST table functions) provided that the memory for the list is allocated.

• Releasing memory: The memory associated with the usage list is released when one of the following
events occurs:

– The usage list is dropped.
– The table or index on which the usage list is defined is dropped. The memory that is associated with

the usage is released for all data partitions. In a partitioned database environment or Db2 pureScale
environment, the memory that is associated with the usage list is released for all active members.

– When a data partition is detached from a partitioned table or index. Only the memory associated with
the data partition is released.

– When a database member is deactivated. Only the memory associated with the member is released.
– When the entire instance or database is deactivated. Usage list data does not persist when the

database is deactivated and restarted.
– When memory associated with the usage list is explicitly released using the SET USAGE LIST STATE

statement.

SET variable
The SET variable statement assigns values to variables.

This statement is not under transaction control.

Invocation
This statement can be embedded in an application program or issued interactively. It is an executable
statement that can be dynamically prepared.

1878 IBM Db2 V11.5: SQL Reference

Authorization
To reference a transition variable, the privileges held by the authorization ID of the trigger creator must
include at least one of the following authorities:

• UPDATE privilege on any columns referenced on the left side of the assignment or UPDATEIN privilege
on the schema containing the tables having the columns referenced on the left side of the assignment

• SELECT privilege on any columns referenced on the right side or SELECTIN privilege on the schema
containing the tables having the columns referenced on the right side

• CONTROL privilege on the table (subject table of the trigger)
• DATAACCESS authority on the schema containing the table
• DATAACCESS authority

If a global variable is referenced in the right side of the assignment statement, the privileges held by the
authorization ID of the statement must include one of the following authorities:

• READ privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

If a global variable is assigned a value in the left side of the assignment statement, the privileges held by
the authorization ID of the statement must include one of the following authorities:

• WRITE privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

To execute this statement with a row-fullselect as the right side of the assignment, the privileges held by
the authorization ID of the statement must include the privileges necessary to execute the row-fullselect.
See the Authorization section in "SQL queries".

To execute this statement with a cursor-value-constructor that uses a select-statement, the privileges
held by the authorization ID of the statement must include the privileges necessary to execute the
select-statement. See the Authorization section in "SQL queries".

Chapter 1. Structured Query Language (SQL) 1879

Syntax
SET

,

target-variable = expression

NULL

DEFAULT

(

,

target-variable) = (

,

expression

NULL

DEFAULT

)

(row-fullselect)

boolean-variable-name = search-condition

TRUE

FALSE

NULL

array-variable-name [array-index] = expression

NULL

target-cursor-variable = cursor-variable-name

cursor-value-constructor

NULL

target-row-variable = (

,

expression

NULL

)

(row-fullselect)

row-expression

NULL

target-variable
global-variable-name

host-variable

parameter marker

SQL-parameter-name

field-reference

SQL-variable-name

transition-variable-name

..attribute-name

field-reference
row-variable-name.field-name

cursor-value-constructor

1880 IBM Db2 V11.5: SQL Reference

ASENSITIVE

INSENSITIVE

CURSOR

(

,

parameter-declaration)

holdability

FOR select-statement

statement-name
1

parameter-declaration
parameter-name data-type

data-type
built-in-type

anchored-parameter-data-type

distinct-type-name

built-in-type

Chapter 1. Structured Query Language (SQL) 1881

SMALLINT

INTEGER

INT

BIGINT

DECIMAL

DEC

NUMERIC

NUM

(5,0)

( integer
,0

, integer

)

FLOAT

(53)

( integer)

REAL

DOUBLE
PRECISION

DECFLOAT

(34)

(16)

CHARACTER

CHAR

(1)

( integer
OCTETS

CODEUNITS32

)

VARCHAR

CHARACTER

CHAR

VARYING

( integer
OCTETS

CODEUNITS32

)

FOR BIT DATA
2

CLOB

CHARACTER

CHAR

LARGE OBJECT

(1M)

( integer
K

M

G

OCTETS

CODEUNITS32

)

GRAPHIC

(1)

( integer
CODEUNITS16

CODEUNITS32

)

VARGRAPHIC ( integer
CODEUNITS16

CODEUNITS32

)

DBCLOB

(1M)

( integer
K

M

G

CODEUNITS16

CODEUNITS32

)

BINARY

(1)

( integer)

VARBINARY

BINARY VARYING

(integer)

BLOB

BINARY LARGE OBJECT

(1M)

( integer
K

M

G

)

DATE

TIME

TIMESTAMP

(6)

(integer)

XML

anchored-parameter-data-type

1882 IBM Db2 V11.5: SQL Reference

ANCHOR
DATA TYPE TO

variable-name

table-name.column-name

holdability
WITHOUT HOLD

WITH HOLD

target-row-variable

global-variable-name

parameter marker

SQL-parameter-name

SQL-variable-name

row-array-element-specification

row-field-reference

3

Notes:
1 statement-name cannot be specified if parameter-declaration is specified.
2 The FOR BIT DATA clause can be specified in any order with the other column constraints that follow.
The FOR BIT DATA clause cannot be specified with string units CODEUNITS32 (SQLSTATE 42613).
3 The data type must be a row type.

Description
target-variable

Identifies the target variable of the assignment. A target-variable representing the same variable must
not be specified more than once (SQLSTATE 42701).
global-variable-name

Identifies the global variable that is the assignment target. The global-variable-name must
identify a global variable that exists at the current server (SQLSTATE 42704).

host-variable
Identifies the host variable that is the assignment target.

parameter-marker
Identifies the parameter marker that is the assignment target.

SQL-parameter-name
Identifies the parameter that is the assignment target. The parameter must be specified in
parameter-declaration in the CREATE PROCEDURE statement.

field-reference
Identifies the field within a row type value that is the assignment target.
row-variable-name

The name of a variable with a data type that is a row type.
field-name

The name of a field within the row type.
SQL-variable-name

Identifies the SQL variable that is the assignment target. SQL variables must be declared before
they are used.

Chapter 1. Structured Query Language (SQL) 1883

transition-variable-name
Identifies the column to be updated in the transition row. A transition-variable-name must identify
a column in the subject table of a trigger, optionally qualified by a correlation name that identifies
the new value (SQLSTATE 42703).

..attribute-name
Specifies the attribute of a structured type that is set (referred to as an attribute assignment).
The SQL-variable-name or transition-variable-name specified must be defined with a user-defined
structured type (SQLSTATE 428DP). The ..attribute-name must be an attribute of the structured
type (SQLSTATE 42703). An assignment that does not involve the ..attribute-name clause is
referred to as a conventional assignment.

expression
Indicates the new value of the target of the assignment. The expression is any expression of the
type described in "Expressions". The expression cannot include an aggregate function except when it
occurs within a scalar fullselect (SQLSTATE 42903). In the context of a CREATE TRIGGER statement,
an expression can contain references to OLD and NEW transition variables. The transition variables
must be qualified by the correlation-name (SQLSTATE 42702).

NULL
Specifies the null value. If the target of the assignment is a row variable, each field is assigned the null
value. NULL cannot be the value in an attribute assignment unless it was specifically cast to the data
type of the attribute (SQLSTATE 429B9).

DEFAULT
Specifies that the default value should be used.

In SQL procedures, the DEFAULT clause can be specified only for static SQL statements. The
exception is that the DEFAULT clause can be specified when target-variable is a global variable in
a dynamic SQL statement.

If target-variable is a column, the value inserted depends on how the column was defined in the table.

• If the column was defined using the WITH DEFAULT clause, the value is set to the default defined for
the column (see default-clause in "ALTER TABLE").

• If the column was defined using the IDENTITY clause, the value is generated by the database
manager.

• If the column was defined without specifying the WITH DEFAULT clause, the IDENTITY clause, or
the NOT NULL clause, the value is NULL.

• If the column was defined using the NOT NULL clause and:

– The IDENTITY clause is not used or
– The WITH DEFAULT clause was not used or
– DEFAULT NULL was used

the DEFAULT keyword cannot be specified for that column (SQLSTATE 23502).

If target-variable is an SQL variable, the value inserted is the default, as specified or implied in the
variable declaration.

If target-variable is a global variable, the value inserted is the default, as specified in the variable
creation.

If target-variable is an SQL variable or an SQL parameter in an SQL procedure, a host variable, or a
parameter marker, the DEFAULT keyword cannot be specified (SQLSTATE 42608).

row-fullselect
A fullselect that returns a single row with the number of columns corresponding to the number of
target variables or fields in the row variable specified for assignment. The values are assigned to
each corresponding target variable or field. If the result of the row fullselect is no rows, null values
are assigned to the target variables in the list or, in an assignment to a row variable, a single null is
assigned. In the context of a CREATE TRIGGER statement, a row-fullselect can contain references to
OLD and NEW transition variables, which must be qualified by their correlation-name to specify which

1884 IBM Db2 V11.5: SQL Reference

transition variable is to be used (SQLSTATE 42702). An error is returned if there is more than one row
in the result (SQLSTATE 21000).

boolean-variable-name
Identifies an SQL variable or parameter or a global variable. The variable or parameter must be
of Boolean type (SQLSTATE 428H0). The SET statement must be issued within a compound SQL
(compiled) statement (SQLSTATE 428H2).

search-condition
A search condition whose result is true, false, or unknown. A result of unknown is returned as the
Boolean value NULL.

TRUE
Specifies the Boolean value TRUE.

FALSE
Specifies the Boolean value FALSE.

NULL
Specifies the Boolean value NULL.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array type (SQLSTATE 428H0).
[array-index]

An expression that specifies which element in the array will be the target of the assignment. For
an ordinary array, the array-index must be assignable to INTEGER (SQLSTATE 22018 or 428H1).
Its value must be between 1 and the maximum cardinality defined for the array and cannot be the
null value (SQLSTATE 2202E).
For an associative array, the array index expression must be assignable to the index data type
of the associative array (SQLSTATE 22018 or 428H1) and cannot be the null value (SQLSTATE
2202E).

target-cursor-variable
Identifies a cursor variable. The data type of target-cursor-variable must be a cursor type (SQLSTATE
42821).

cursor-variable-name
Identifies a cursor variable of the same cursor type as target-cursor-variable.

cursor-value-constructor
A cursor-value-constructor specifies the select-statement that is associated with the target variable.
The assignment of a cursor-value-constructor to a cursor variable defines the underlying cursor of that
cursor variable.
ASENSITIVE or INSENSITIVE

Specifies whether the cursor is asensitive or insensitive to changes. See "DECLARE CURSOR" for
more information. The default is ASENSITIVE.
ASENSITIVE

Specifies that the cursor should be as sensitive as possible to inserts, updates, or deletes
made to the rows underlying the result table, depending on how the select-statement is
optimized. ASENSITIVE is the default.

INSENSITIVE
Specifies that the cursor does not have sensitivity to inserts, updates, or deletes that are made
to the rows underlying the result table. If INSENSITIVE is specified, the cursor is read-only
and the result table is materialized when the cursor is opened. As a result, the size of the
result table, the order of the rows, and the values for each row do not change after the cursor
is opened. The SELECT statement cannot contain a FOR UPDATE clause, and the cursor cannot
be used for positioned updates or deletes.

(parameter-declaration, ...)
Specifies the input parameters of the cursor, including the name and the data type of each
parameter. Named input parameters can be specified only if select-statement is also specified in
cursor-value-constructor (SQLSTATE 428HU).

Chapter 1. Structured Query Language (SQL) 1885

parameter-name
Names the cursor parameter for use as an SQL variable within select-statement. The name
cannot be the same as any other parameter name for the cursor. Names should also be chosen
to avoid any column names that could be used in select-statement, since column names are
resolved before parameter names.

data-type
Specifies the data type of the cursor parameter used within select-statement. Structured
types, and reference types cannot be specified (SQLSTATE 429BB).
built-in-type

Specifies a built-in data type. For a more complete description of each built-in data type,
see "CREATE TABLE".

anchored-parameter-data-type
Identifies another object used to determine the data type of the cursor parameter. The
data type of the anchor object is bound by the same limitations that apply when specifying
the data type directly.
ANCHOR DATA TYPE TO

Indicates an anchored data type is used to specify the data type.
variable-name

Identifies a local SQL variable, an SQL parameter, or a global variable. The data
type of the referenced variable is used as the data type for the cursor parameter.

table-name.column-name
Identifies a column name of an existing table or view. The data type of the column
is used as the data type for the cursor parameter.

distinct-type-name
Specifies the name of a distinct type. If distinct-type-name is specified without a schema
name, the distinct type is resolved by searching the schemas in the SQL path.

holdability
Specifies whether the cursor is prevented from being closed as a consequence of a commit
operation. See "DECLARE CURSOR" for more information. The default is WITHOUT HOLD.
WITHOUT HOLD

Does not prevent the cursor from being closed as a consequence of a commit operation.
WITH HOLD

Maintains resources across multiple units of work. Prevents the cursor from being closed as a
consequence of a commit operation.

select-statement
Specifies the SELECT statement of the cursor. See "select-statement" for more information. If
parameter-declaration is included in cursor-value-constructor, then select-statement must not
include any local SQL variables or routine SQL parameters (SQLSTATE 42704).

statement-name
Specifies the prepared select-statement of the cursor. See "PREPARE" for an explanation of
prepared statements. The target cursor variable must not have a data type that is a strongly-typed
user-defined cursor type (SQLSTATE 428HU). Named input parameters must not be specified in
cursor-value-constructor if statement-name is specified (SQLSTATE 428HU).

target-row-variable
Identifies the target row variable of the assignment. The data type must be of a row type.

row-expression
Specifies the new row value for the target of the assignment. It can be any row expression of the
type described in "Row expression". The number of fields in the row must match the target of the
assignment and each field in the row must be assignable to the corresponding field in the target of the
assignment. If the source and the target values are a user-defined row type, the type names must be
the same (SQLSTATE 42821).

1886 IBM Db2 V11.5: SQL Reference

Rules
• The number of values to be assigned from expressions, NULLs, DEFAULTs, or the row-fullselect must

match the number of target-variables specified for assignment (SQLSTATE 42802).
• A SET variable statement cannot assign an SQL variable and a transition variable in one statement

(SQLSTATE 42997).
• Global variables cannot be assigned inside triggers that are not defined using a compound SQL

(compiled) statement, functions that are not defined using a compound SQL (compiled) statement,
methods, or compound SQL (inlined) statements (SQLSTATE 428GX).

• If the value being assigned is an array resulting from an array constructor or from ARRAY_AGG, the base
types of the array and of the target variable must be identical (SQLSTATE 42821).

• Use of anchored data types: An anchored data type cannot refer to the following objects (SQLSTATE
428HS): a nickname, typed table, typed view, statistical view that is associated with an expression-
based index, declared temporary table, row definition that is associated with a weakly typed cursor,
object with a code page or collation that is different from the database code page or database collation.

• Assignments involving cursor variables: Assignments that reference a cursor variable that set it to
the value of a cursor value constructor can only be used in compound SQL (compiled) statements.
Any OPEN statement using a cursor variable must occur within the same scope as the assignment
(SQLSTATE 51044).

Notes
• Values are assigned to target variables according to specific assignment rules.
• Assignment statement in SQL procedures: Assignment statements in SQL procedures must conform to

the SQL assignment rules. String assignments use retrieval assignment rules.
• Assignments of array elements: If the assignment is of the form SET A[idx] = rhs, where A is an

array variable name, idx is an expression used as the array-index, and rhs is an expression of the same
type as the array element, then:

1. If array A is the null value, set A to the empty array.
2. Let C be the cardinality of array A.
3. If A is an ordinary array:

– If idx is less than or equal to C, the value in the position identified by idx is replaced by the value
of rhs.

– If idx is greater than C, then:

- The value in position i, for i greater than C and less than idx, is set to the null value.
- The value in position idx is set to the value of rhs.
- The cardinality of A is set to idx.

4. If A is an associative array:

– If idx matches an existing array index value, the element value with array index idx is replaced
by the value of rhs.

– If idx does not match any existing array index value, then:

- The cardinality of A is incremented by 1
- The new element value is set to rhs with associated array index value idx.

5. If idx is less than or equal to C, the value in the position identified by idx is replaced by the value of
rhs.

6. If idx is greater than C, then:

a. The value in position i, for i greater than C and less than idx, is set to the null value.
b. The value in position idx is set to the value of rhs.
c. The cardinality of A is set to idx.

Chapter 1. Structured Query Language (SQL) 1887

• If a variable has been declared with an identifier that matches the name of a special register (such as
PATH), the variable must be delimited to prevent unintentional assignment to the special register (for
example, SET "PATH" = 1; for a variable called PATH that has been declared as an integer).

• If more than one assignment is included, each expression and row-fullselect is evaluated before the
assignments are performed. Thus, references to target variables in an expression or row fullselect are
always the value of the target variable before any assignment in the single SET statement.

• When an identity column defined as a distinct type is updated, the entire computation is done in the
source type, and the result is cast to the distinct type before the value is actually assigned to the
column. (There is no casting of the previous value to the source type before the computation.)

• To have the database manager generate a value on a SET statement for an identity column, use the
DEFAULT keyword:

 SET NEW.EMPNO = DEFAULT

In this example, NEW.EMPNO is defined as an identity column, and the value used to update this
column is generated by the database manager.

• For more information about consuming values of a generated sequence for an identity column, and for
information about exceeding the maximum value for an identity column, see "INSERT".

Examples
• Example 1: Set the salary column of the row for which the trigger action is currently executing to 50000.

 SET NEW_VAR.SALARY = 50000;

Or:

 SET (NEW_VAR.SALARY) = (50000);

• Example 2: Set the salary and the commission column of the row for which the trigger action is currently
executing to 50000 and 8000, respectively.

 SET NEW_VAR.SALARY = 50000, NEW_VAR.COMM = 8000;

Or:

 SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (50000, 8000);

• Example 3: Set the salary and the commission column of the row for which the trigger action is currently
executing to the average salary and commission of employees in the department that is associated with
the updated row.

 SET (NEW_VAR.SALARY, NEW_VAR.COMM)
 = (SELECT AVG(SALARY), AVG(COMM)
 FROM EMPLOYEE E
 WHERE E.WORKDEPT = NEW_VAR.WORKDEPT);

• Example 4: Set the salary and the commission column of the row for which the trigger action is currently
executing to 10000 and the original value of salary (that is, before the SET statement was executed),
respectively.

 SET NEW_VAR.SALARY = 10000, NEW_VAR.COMM = NEW_VAR.SALARY;

Or:

 SET (NEW_VAR.SALARY, NEW_VAR.COMM) = (10000, NEW_VAR.SALARY);

• Example 5: Increase the SQL variable P_SALARY by 10 percent.

 SET P_SALARY = P_SALARY + (P_SALARY * .10)

1888 IBM Db2 V11.5: SQL Reference

• Example 6: Set the SQL variable P_SALARY to the null value.

 SET P_SALARY = NULL

• Example 7: Assign numbers 2.71828183 and 3.1415926 to the first and tenth elements of the array
variable SPECIALNUMBERS. After the first assignment, the cardinality of P_PHONENUMBERS is 1. After
the second assignment, the cardinality is 10, and elements 2 to 9 have been implicitly assigned the null
value.

 SET SPECIALNUMBERS[1] = 2.71828183;

 SET SPECIALNUMBERS[10] = 3.14159265;

• Example 8: Given a table named SECURITY.USERS, which has a row for every user that could
connect to the database, assign the current time and the authorization level to the global variables
USERINFO.GV_CONNECT_TIME and USERINFO.GV_AUTH_LEVEL, respectively.

 SET USERINFO.GV_CONNECT_TIME = CURRENT TIMESTAMP,
 USERINFO.GV_AUTH_LEVEL = (
 SELECT AUTHLEVEL FROM SECURITY.USERS
 WHERE USERID = CURRENT USER)

• Example 9: Assign values to associative array variable, CAPITALS, which has been declared as the array
type CAPITALSARRAY.

 SET CAPITALS['British Columbia'] = 'Victoria';
 SET CAPITALS['Alberta'] = 'Edmonton';
 SET CAPITALS['Manitoba'] = 'Winnipeg';
 SET CAPITALS['Canada'] = 'Ottawa';

When populating the CAPITALS array, the array indexes are province, territory, and country names
specified by strings and the associated array elements are capital cities, also specified by strings.

• Example 10: Assign easy to remember names as indexes for personal phone numbers stored in the
array variable PHONELIST of array type PERSONAL_PHONENUMBERS.

 SET PHONELIST['Home'] = '4163053745';
 SET PHONELIST['Work'] = '4163053746';
 SET PHONELIST['Mom'] = '4164789683';

SIGNAL
The SIGNAL statement is used to signal an error or warning condition. It causes an error or warning to be
returned with the specified SQLSTATE, along with optional message text.

Invocation
This statement can be embedded in an:

• SQL procedure definition
• Compound SQL (compiled) statement
• Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL function definition, or
SQL trigger definition. It is not an executable statement and cannot be dynamically prepared.

Authorization
If a module condition is referenced, the privileges held by the authorization ID of the statement must
include EXECUTE privilege on the module or EXECUTEIN privilege or DATAACCESS authority on the
schema containing the module.

Chapter 1. Structured Query Language (SQL) 1889

Syntax

SIGNAL SQLSTATE
VALUE

sqlstate-string-constant

sqlstate-string-variable

condition-name

signal-information

signal-information
SET MESSAGE_TEXT = diagnostic-string-expression

(diagnostic-string-expression)

Description
SQLSTATE VALUE

Specifies the SQLSTATE that will be returned. Any valid SQLSTATE value can be used. The specified
value must follow the rules for SQLSTATEs:

• Each character must be from the set of digits ("0" through "9") or upper case letters ("A" through
"Z") without diacritical marks

• The SQLSTATE class (first two characters) cannot be "00", since this represents successful
completion.

In the context of a compound SQL (inlined) statement, a MERGE statement, or as the only statement
in a trigger body, the following rules must also be applied:

• The SQLSTATE class (first two characters) cannot be "01" or "02", since these are not error classes.
• If the SQLSTATE class starts with the numbers "0" through "6" or the letters "A" through "H", then

the subclass (the last three characters) must start with a letter in the range of "I" through "Z".
• If the SQLSTATE class starts with the numbers "7", "8", "9", or the letters "I" through "Z", then the

subclass can be any of "0" through "9" or "A" through "Z".

If the SQLSTATE does not conform to these rules, an error is returned.
sqlstate-string-constant

The sqlstate-string-constant must be a character string constant with exactly 5 characters.
sqlstate-string-variable

The specified SQL variable or SQL parameter must be of data type CHAR(5) and must not be the
null value.

condition-name
Specifies the name of a condition that will be returned. The condition-name must be declared within
the compound-statement or identify a condition that exists at the current server (SQLSTATE 42373).

SET MESSAGE_TEXT =
Specifies a string that describes the error or warning. The string is returned in the SQLERRMC field of
the SQLCA. If the actual string is longer than 70 bytes, it is truncated without warning.
diagnostic-string-expression

A literal string, or a local variable or parameter that describes the error condition. If the string is
longer than 70 bytes, it is truncated.

(diagnostic-string-expression)
An expression of type CHAR or VARCHAR that returns a character string of up to 70 bytes to describe
the error condition. If the string is longer than 70 bytes, it is truncated. This option is only provided
within the scope of a CREATE TRIGGER statement for compatibility with previous versions of Db2.
Regular use of this option is not recommended.

1890 IBM Db2 V11.5: SQL Reference

Notes
• If a SIGNAL statement is issued using a condition-name that has no associated SQLSTATE value and the

condition is not handled, SQLSTATE 45000 is returned and the SQLCODE is set to -438. Note that such a
condition will not be handled by a condition handler for SQLSTATE 45000 that is within the scope of the
routine issuing the SIGNAL statement.

• If a SIGNAL statement is issued using an SQLSTATE value or a condition-name with an associated
SQLSTATE value, the SQLCODE returned is based on the SQLSTATE value as follows:

– If the specified SQLSTATE class is either "01" or "02", a warning or not found condition is returned
and the SQLCODE is set to +438.

– Otherwise, an exception condition is returned and the SQLCODE is set to -438.
• A SIGNAL statement has the indicated fields of the SQLCA set as follows:

– sqlerrd fields are set to zero
– sqlwarn fields are set to blank
– sqlerrmc is set to the first 70 bytes of MESSAGE_TEXT
– sqlerrml is set to the length of sqlerrmc, or to zero if no SET MESSAGE_TEXT clause is specified
– sqlerrp is set to ROUTINE

• SQLSTATE values are composed of a two-character class code value, followed by a three-character
subclass code value. Class code values represent classes of successful and unsuccessful execution
conditions.

Any valid SQLSTATE value can be used in the SIGNAL statement. However, it is recommended that
programmers define new SQLSTATEs based on ranges reserved for applications. This prevents the
unintentional use of an SQLSTATE value that might be defined by the database manager in a future
release.

– SQLSTATE classes that begin with the characters "7" through "9", or "I" through "Z" may be defined.
Within these classes, any subclass may be defined.

– SQLSTATE classes that begin with the characters "0" through "6", or "A" through "H" are reserved for
the database manager. Within these classes, subclasses that begin with the characters "0" through
"H" are reserved for the database manager. Subclasses that begin with the characters "I" through "Z"
may be defined.

Example
An SQL procedure for an order system that signals an application error when a customer number is not
known to the application. The ORDERS table includes a foreign key to the CUSTOMER table, requiring that
the CUSTNO exist before an order can be inserted.

 CREATE PROCEDURE SUBMIT_ORDER
 (IN ONUM INTEGER, IN CNUM INTEGER,
 IN PNUM INTEGER, IN QNUM INTEGER)
 SPECIFIC SUBMIT_ORDER
 MODIFIES SQL DATA
 LANGUAGE SQL
 BEGIN
 DECLARE EXIT HANDLER FOR SQLSTATE VALUE '23503'
 SIGNAL SQLSTATE '75002'
 SET MESSAGE_TEXT = 'Customer number is not known';
 INSERT INTO ORDERS (ORDERNO, CUSTNO, PARTNO, QUANTITY)
 VALUES (ONUM, CNUM, PNUM, QNUM);
 END

Chapter 1. Structured Query Language (SQL) 1891

TRANSFER OWNERSHIP
The TRANSFER OWNERSHIP statement transfers ownership of a database object.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• Ownership of the object
• SECADM authority

Syntax

TRANSFER OWNERSHIP OF objects TO new-owner
REVOKE PRIVILEGES

PRESERVE PRIVILEGES

objects

1892 IBM Db2 V11.5: SQL Reference

alias-designator

CONSTRAINT table-name . constraint-name

DATABASE PARTITION GROUP db-partition-group-name

EVENT MONITOR event-monitor-name

function-designator

FUNCTION MAPPING function-mapping-name

INDEX index-name

INDEX EXTENSION index-extension-name

method-designator

NICKNAME nickname

PACKAGE package-name

VERSION
version-id

procedure-designator

SCHEMA schema-name

SEQUENCE sequence-name

TABLE table-name

TABLE HIERARCHY root-table-name

TABLESPACE tablespace-name

TRIGGER trigger-name

DISTINCT

TYPE type-name

TYPE MAPPING type-mapping-name

VARIABLE variable-name

VIEW view-name

VIEW HIERARCHY root-view-name

XSROBJECT xsrobject-name

alias-designator

PUBLIC

ALIAS alias-name
FOR TABLE

FOR SEQUENCE

function-designator
FUNCTION function-name

(
,

data-type

)

SPECIFIC FUNCTION specific-name

method-designator

Chapter 1. Structured Query Language (SQL) 1893

METHOD method-name

(
,

data-type

)

FOR type-name

SPECIFIC METHOD specific-name

procedure-designator
PROCEDURE procedure-name

(
,

data-type

)

SPECIFIC PROCEDURE specific-name

new-owner
USER authorization-name

SESSION_USER

SYSTEM_USER

Description
alias-designator

ALIAS alias-name
Identifies the alias that is to have its ownership transferred. The alias-name must identify an alias
that is described in the catalog (SQLSTATE 42704). If PUBLIC is specified, the alias-name must
identify a public alias that exists at the current server (SQLSTATE 42704).
FOR TABLE, or FOR SEQUENCE

Specifies the object type for the alias.
FOR TABLE

The alias is for a table, view, or nickname. When ownership of the alias is transferred, the
value in the OWNER column for the alias in the SYSCAT.TABLES catalog view is replaced
with the authorization ID of the new owner.

FOR SEQUENCE
The alias is for a sequence. When ownership of the alias is transferred, the value in the
OWNER column for the alias in the SYSCAT.SEQUENCES catalog view is replaced with the
authorization ID of the new owner.

CONSTRAINT table-name.constraint-name
Identifies the constraint that is to have its ownership transferred. The table-name.constraint-name
combination must identify a constraint and the table that it constrains. The constraint-name must
identify a constraint that is described in the catalog (SQLSTATE 42704).

When ownership of the constraint is transferred, the value in the OWNER column for the constraint in
the SYSCAT.TABCONST catalog view is replaced with the authorization ID of the new owner.

• If the constraint is a FOREIGN KEY constraint, the OWNER column in the SYSCAT.REFERENCES
catalog view is replaced with the authorization ID of the new owner.

• If the constraint is a PRIMARY KEY or UNIQUE constraint, the OWNER column in the
SYSCAT.INDEXES catalog view for the index that was created implicitly for this constraint is replaced
with the authorization ID of the new owner. If the index existed, and it is reused in this case, the
owner of the index is not changed.

1894 IBM Db2 V11.5: SQL Reference

DATABASE PARTITION GROUP db-partition-group-name
Identifies the database partition group that is to have its ownership transferred. The db-partition-
group-name must identify a database partition group that is described in the catalog (SQLSTATE
42704).

When ownership of the database partition group is transferred, the value in the OWNER column for
the database partition group in the SYSCAT.DBPARTITIONGROUPS catalog view is replaced with the
authorization ID of the new owner.

EVENT MONITOR event-monitor-name
Identifies the event monitor that is to have its ownership transferred. The event-monitor-name must
identify an event monitor that is described in the catalog (SQLSTATE 42704).

When ownership of the event monitor is transferred, the value in the OWNER column for the event
monitor in the SYSCAT.EVENTMONITORS catalog view is replaced with the authorization ID of the new
owner.

If the identified event monitor is active, an error is returned (SQLSTATE 429BT).

If there are event files in the target path of a WRITE TO FILE event monitor whose ownership is being
transferred, the event files are not deleted.

When ownership of WRITE TO TABLE event monitors is transferred, table information in the
SYSCAT.EVENTTABLES catalog view is retained.

function-designator
Identifies the function that is to have its ownership transferred. For more information, see “Function,
method, and procedure designators” on page 745. The specified function instance must be a user-
defined function or function template that is described in the catalog. Ownership of functions that are
implicitly generated by CREATE TYPE statements cannot be transferred (SQLSTATE 429BT).

When ownership of the function is transferred, the value in the OWNER column for the function in the
SYSCAT.ROUTINES catalog view is replaced with the authorization ID of the new owner. Transferring
ownership of an SQL function that has an associated package also implicitly transfers ownership of
the package to the new owner.

SPECIFIC FUNCTION specific-name
Identifies the particular user-defined function that is to have its ownership transferred, using
the specific name either specified or defaulted to at function creation time. In dynamic SQL
statements, the CURRENT SCHEMA special register is used as a qualifier for an unqualified object
name. In static SQL statements, the QUALIFIER precompile or bind option implicitly specifies the
qualifier for unqualified object names. The specific-name must identify a specific function instance
in the named or implied schema; otherwise, an error is returned (SQLSTATE 42704).

When ownership of the specific function is transferred, the value in the OWNER column for the
specific function in the SYSCAT.ROUTINES catalog view is replaced with the authorization ID of the
new owner.

FUNCTION MAPPING function-mapping-name
Identifies the function mapping that is to have its ownership transferred. The function-mapping-name
must identify a function mapping that is described in the catalog (SQLSTATE 42704).

When ownership of the function mapping is transferred, the value in the OWNER column for the
function mapping in the SYSCAT.FUNCMAPPINGS catalog view is replaced with the authorization ID of
the new owner.

INDEX index-name
Identifies the index or index specification that is to have its ownership transferred. The index-name
must identify an index or index specification that is described in the catalog (SQLSTATE 42704).

When ownership of the index is transferred, the value in the OWNER column for the index in the
SYSCAT.INDEXES catalog view is replaced with the authorization ID of the new owner.

Ownership of an index cannot be transferred if the table on which the index is defined is a global
temporary table (SQLSTATE 429BT).

Chapter 1. Structured Query Language (SQL) 1895

INDEX EXTENSION index-extension-name
Identifies the index extension that is to have its ownership transferred. The index-extension-name
must identify an index extension that is described in the catalog (SQLSTATE 42704).

When ownership of the index extension is transferred, the value in the OWNER column for the index
extension in the SYSCAT.INDEXEXTENSIONS catalog view is replaced with the authorization ID of the
new owner.

method-designator
Identifies the method that is to have its ownership transferred. For more information, see “Function,
method, and procedure designators” on page 745. The method body specified must be a method
that is described in the catalog (SQLSTATE 42704). The ownership of methods that are implicitly
generated by the CREATE TYPE statement cannot be transferred (SQLSTATE 429BT).

When ownership of the method is transferred, the value in the OWNER column for the method in the
SYSCAT.ROUTINES catalog view is replaced with the authorization ID of the new owner.

NICKNAME nickname
Identifies the nickname that is to have its ownership transferred. The nickname must be a nickname
that is described in the catalog (SQLSTATE 42704).

When ownership of the nickname is transferred, the value in the OWNER column for the nickname in
the SYSCAT.TABLES catalog view is replaced with the authorization ID of the new owner.

PACKAGE package-name
Identifies the package that is to have its ownership transferred. The package name must identify a
package that is described in the catalog (SQLSTATE 42704).
VERSION version-id

Identifies which package version is to have its ownership transferred. If a value is not specified,
the version defaults to the empty string, and the ownership of this package is transferred. If
multiple packages with the same package name but different versions exist, only the ownership of
the package whose version-id is specified in the TRANSFER OWNERSHIP statement is transferred.
Delimit the version identifier with double quotation marks when it:

• Is generated by the VERSION(AUTO) precompiler option
• Begins with a digit
• Contains lowercase or mixed-case letters

If the statement is invoked from an operating system command prompt, precede each double
quotation mark delimiter with a back slash character to ensure that the operating system does not
strip the delimiters.

When ownership of the package is transferred, the value in the BOUNDBY column for the package in
the SYSCAT.PACKAGES catalog view is replaced with the authorization ID of the new owner.

The ownership of packages that are associated with SQL procedures, compiled SQL functions or
compiled triggers cannot be transferred (SQLSTATE 429BT).

procedure-designator
Identifies the procedure that is to have its ownership transferred. For more information, see
“Function, method, and procedure designators” on page 745. The procedure instance specified must
be a procedure that is described in the catalog.

When ownership of the procedure is transferred, the value in the OWNER column for the procedure in
the SYSCAT.ROUTINES catalog view is replaced with the authorization ID of the new owner.

Transferring ownership of an SQL procedure that has an associated package also implicitly transfers
ownership of the package to the new owner.

SPECIFIC PROCEDURE specific-name
Identifies the particular procedure that is to have its ownership transferred, using the specific
name either specified or defaulted to at procedure creation time. In dynamic SQL statements,
the CURRENT SCHEMA special register is used as a qualifier for an unqualified object name. In

1896 IBM Db2 V11.5: SQL Reference

static SQL statements, the QUALIFIER precompile or bind option implicitly specifies the qualifier
for unqualified object names. The specific-name must identify a specific procedure instance in the
named or implied schema; otherwise, an error is returned (SQLSTATE 42704).

When ownership of the specific procedure is transferred, the value in the OWNER column for the
specific procedure in the SYSCAT.ROUTINES catalog view is replaced with the authorization ID of
the new owner.

SCHEMA schema-name
Identifies the schema that is to have its ownership transferred. The schema-name must identify a
schema that is described in the catalog (SQLSTATE 42704).

When ownership of the schema is transferred, the value in the OWNER column and the DEFINER
column for the schema in the SYSCAT.SCHEMATA catalog view is replaced with the authorization ID of
the new owner.

Ownership of built-in schemas (where the definer is SYSIBM) cannot be transferred (SQLSTATE
42832).

SEQUENCE sequence-name
Identifies the sequence that is to have its ownership transferred. The sequence-name must identify a
sequence that is described in the catalog (SQLSTATE 42704).

When ownership of the sequence is transferred, the value in the OWNER column for the schema in the
SYSCAT.SEQUENCES catalog view is replaced with the authorization ID of the new owner.

TABLE table-name
Identifies the table that is to have its ownership transferred. The table-name must identify a table
that exists in the database (SQLSTATE 42704) and must not identify a declared temporary table
(SQLSTATE 42995).

When ownership of the table is transferred:

• The value in the OWNER column for the table in the SYSCAT.TABLES catalog view is replaced with
the authorization ID of the new owner.

• The value in the OWNER column for all dependent objects on the table in the SYSCAT.TABDEP
catalog view is replaced with the authorization ID of the new owner.

Ownership of subtables in a table hierarchy cannot be transferred (SQLSTATE 429BT).

In a federated system, ownership of a remote table that was created using transparent DDL can be
transferred. Transferring the ownership of a remote table will not transfer ownership of the nickname
that is associated with the table. Ownership of such a nickname can be transferred explicitly using the
TRANSFER OWNERSHIP statement.

TABLE HIERARCHY root-table-name
Identifies the typed table that is the root table in a typed table hierarchy that is to have its ownership
transferred. The root-table-name must identify a typed table that is the root table in the typed table
hierarchy (SQLSTATE 428DR), and must refer to a typed table that exists in the database (SQLSTATE
42704).

When ownership of the table hierarchy is transferred:

• The value in the OWNER column for the root table and all of its subtables in the SYSCAT.TABLES
catalog view is replaced with the authorization ID of the new owner.

• The value in the OWNER column for all dependent objects on the table and all of its subtables in the
SYSCAT.TABDEP catalog view is replaced with the authorization ID of the new owner.

TABLESPACE tablespace-name
Identifies the table space that is to have its ownership transferred. The tablespace-name must
identify a table space that is described in the catalog (SQLSTATE 42704).

When ownership of the table space is transferred, the value in the OWNER column for the table space
in the SYSCAT.TABLESPACES catalog view is replaced with the authorization ID of the new owner.

Chapter 1. Structured Query Language (SQL) 1897

TRIGGER trigger-name
Identifies the trigger that is to have its ownership transferred. The trigger-name must identify a trigger
that is described in the catalog (SQLSTATE 42704).

When ownership of the trigger is transferred, the value in the OWNER column for the trigger in the
SYSCAT.TRIGGERS catalog view is replaced with the authorization ID of the new owner. Transferring
ownership of a compiled trigger also implicitly transfers ownership of the associated package to the
new owner.

TYPE type-name
Identifies the user-defined type that is to have its ownership transferred. The type-name must identify
a type that is described in the catalog (SQLSTATE 42704). If DISTINCT is specified, type-name must
identify a distinct type that is described in the catalog (SQLSTATE 42704).

In dynamic SQL statements, the CURRENT SCHEMA special register is used as a qualifier for
an unqualified object name. In static SQL statements, the QUALIFIER precompile or bind option
implicitly specifies the qualifier for unqualified object names.

When ownership of the type is transferred, the value in the OWNER column for the type in the
SYSCAT.DATATYPES catalog view is replaced with the authorization ID of the new owner.

TYPE MAPPING type-mapping-name
Identifies the user-defined data type mapping that is to have its ownership transferred. The type-
mapping-name must identify a data type mapping that is described in the catalog (SQLSTATE 42704).

When ownership of the type mapping is transferred, the value in the OWNER column for the type
mapping in the SYSCAT.TYPEMAPPINGS catalog view is replaced with the authorization ID of the new
owner.

VARIABLE variable-name
Indicates that the object whose ownership is to be transferred is a created global variable. The
variable-name must identify a global variable that exists at the current server (SQLSTATE 42704).

When the global variable is transferred, the value in the OWNER column for the global variable in the
SYSCAT.VARIABLES catalog view is replaced with the authorization ID of the new owner.

VIEW view-name
Identifies the view that is to have its ownership transferred. The view-name must identify a view that
exists in the database (SQLSTATE 42704).

When ownership of the view is transferred:

• The value in the OWNER column for the view in the SYSCAT.VIEWS catalog view is replaced with the
authorization ID of the new owner.

• The value in the OWNER column for all dependent objects on the view in the SYSCAT.TABDEP
catalog view is replaced with the authorization ID of the new owner.

The ownership of a subview in a view hierarchy cannot be transferred (SQLSTATE 429BT).

VIEW HIERARCHY root-view-name
Identifies the typed view that is the root view in a typed view hierarchy that is to have its ownership
transferred. The root-view-name must identify a typed view that is the root view in the typed view
hierarchy (SQLSTATE 428DR), and must refer to a typed view that exists in the database (SQLSTATE
42704).

When ownership of the view hierarchy is transferred:

• The value in the OWNER column for the root view and all of its subviews in the SYSCAT.VIEWS
catalog view is replaced with the authorization ID of the new owner.

• The value in the OWNER column for all dependent objects on the view and all of its subviews in the
SYSCAT.TABDEP catalog view is replaced with the authorization ID of the new owner.

XSROBJECT xsrobject-name
Identifies the XSR object that is to have its ownership transferred. The xsrobject-name must identify
an XSR object that is described in the catalog (SQLSTATE 42704).

1898 IBM Db2 V11.5: SQL Reference

When ownership of the XSR object is transferred, the value in the OWNER column for the XSR object
in the SYSCAT.XSROBJECTS catalog view is replaced with the authorization ID of the new owner.

USER authorization-name
Specifies the authorization ID to which ownership of the object is being transferred.

SESSION_USER
Specifies that the value of the SESSION_USER special register is to be used as the authorization ID to
which ownership of the object is being transferred.

SYSTEM_USER
Specifies that the value of the SYSTEM_USER special register is to be used as the authorization ID to
which ownership of the object is being transferred.

REVOKE PRIVILEGES
Indicates that the old owner of an object will lose all privileges on the object being transferred. This is
the default option.

PRESERVE PRIVILEGES
Specifies that the current owner of an object that is to have its ownership transferred will continue
to hold any existing privileges on the object after the transfer. For example, any privileges that were
granted to the creator of a view when that view was created continue to be held by the original owner
even after ownership has been transferred to another user.

Rules
• Ownership of most built-in objects (where the owner is SYSIBM) cannot be transferred (SQLSTATE

42832). However, you can transfer ownership of implicitly created schema objects that have SYSIBM in
the OWNER column and do not have SYSIBM in the DEFINER column.

• Ownership of schemas whose name starts with 'SYS' cannot be transferred (SQLSTATE 42832).
• Ownership of the following objects cannot be explicitly transferred (SQLSTATE 429BT):

– Subtables in a table hierarchy (they are transferred with the root hierarchy table)
– Subviews in a view hierarchy (they are transferred with the root hierarchy view)
– Indexes that are defined on global temporary tables
– Methods or functions that are implicitly generated when a user-defined type is created
– Module aliases and modules
– Packages that depend on SQL procedures (they are transferred with the SQL procedure)
– Event monitors that are active (they can be transferred when they are not active)

• An authorization ID that has SECADM authority cannot transfer the ownership of an object to itself, if it
is not already the owner of the object (SQLSTATE 42502).

• Transfer of ownership on a variable or sequence with REVOKE PRIVILEGES will fail if any objects
depend on the privileges being revoked (SQLSTATE 42893).

• Transfer of ownership on a function with REVOKE PRIVILEGES on a routine will fail if both of the
following conditions are true (SQLSTATE 42893)

– The specified routine is used in a view, trigger, constraint, index extension, SQL function, SQL method,
transform group, or is referenced as the SOURCE of a sourced function.

– The loss of the EXECUTE privilege would cause the owner of the view, trigger, constraint, index
extension, SQL function, SQL method, transform group, or sourced function to no longer be able to
execute the specified routine.

• Transfer of ownership on a module, table, view, nickname, or routine with REVOKE PRIVILEGES will
cause any dependent view, MQT, function, trigger, and package to marked inoperative or invalid unless
the old owner has the revoked privileges through a database authority or schema authority or through a
group, role, or PUBLIC.

Chapter 1. Structured Query Language (SQL) 1899

Notes
• All privileges that the current owner has that were granted as part of the creation of the object are

transferred to the new owner. If the current owner has had a privilege on the object revoked, and that
privilege was subsequently granted back, the privilege is not transferred. For implicitly created schema
objects that have not already been transferred, the new owner is granted CREATEIN, DROPIN, and
ALTERIN on the schema and can also grant only these privileges to other users.

• When the ownership of a database object is transferred, the new owner must have the set of privileges
on the base objects, as indicated by the object's dependencies, that are required to maintain the
object's existence unchanged. The new owner does not need the privileges required to create the object
if those privileges are not required to maintain the object's existence.

For example:

– Consider a view with SELECT and INSERT dependencies on an underlying table. The privileges held
by the new owner of the view must include at least SELECT (with or without the GRANT OPTION)
and INSERT (with or without the GRANT OPTION) for the ownership transfer to be successful. If the
dependencies were SELECT WITH GRANT OPTION and INSERT WITH GRANT OPTION, the privileges
held by the new owner of the view must include at least SELECT WITH GRANT OPTION and INSERT
WITH GRANT OPTION.

– Consider a view with a dependency on a routine. The privileges held by the new owner of the view
must include at least EXECUTE on the dependent routine.

– Consider a trigger with a dependency on a table. The privileges held by the new owner of the trigger
must include the same set of privileges on the table that are indicated by the trigger's dependencies.
ALTER privilege on the table on which the trigger is defined is not required.

The following table lists the catalog views that describe the objects on which other database objects
depend.

Table 154. Catalog Views that Describe Objects on which Other Objects Depend

Database Object Catalog View

CONSTRAINT SYSCAT.CONSTDEP

FUNCTION SYSCAT.ROUTINEDEP; SYSCAT.ROUTINES (for a
sourced function)

INDEX SYSCAT.INDEXDEP

INDEX EXTENSION SYSCAT.INDEXEXTENSIONDEP

METHOD SYSCAT.ROUTINEDEP

PACKAGE SYSCAT.PACKAGEDEP

PROCEDURE SYSCAT.ROUTINEDEP

TABLE SYSCAT.TABDEP

TRIGGER SYSCAT.TRIGDEP

VIEW SYSCAT.TABDEP

XSROBJECT SYSCAT.XSROBJECTDEP

If ownership of a database object that depends on another object is to be transferred successfully,
the new owner of the database object must hold certain privileges on the dependent object of that
dependency:

– If the dependent object is a sequence, the new owner must have the USAGE privilege on that
sequence.

– If the dependent object is a function, method, or procedure, the new owner must have the EXECUTE
privilege on that function, method, or procedure.

1900 IBM Db2 V11.5: SQL Reference

– If the dependent object is a package, the new owner must have the EXECUTE privilege on that
package.

– If the dependent object is an XSR object, the new owner must have the USAGE privilege on that XSR
object.

For any other dependent object of a dependency, use the TABAUTH column in the appropriate catalog
view to determine what privileges the new owner must hold.

• If an attempt is made to transfer ownership of an object to its owner, a warning is returned (SQLSTATE
01676).

• Ownership of the following database objects cannot be transferred, because
these objects have no owner: audit policies, buffer pools, roles, security labels,
security label components, security policies, servers, transformation functions, trusted
contexts, user mappings, and wrappers. Note that there is no OWNER column
in the SYSCAT.AUDITPOLICIES, SYSCAT.BUFFERPOOLS, SYSCAT.CONTEXTS, SYSCAT.ROLES,
SYSCAT.SECURITYLABELS, SYSCAT.SECURITYLABELCOMPONENTS, SYSCAT.SECURITYPOLICIES,
SYSCAT.SERVERS, SYSCAT.TRANSFORMS, SYSCAT.USEROPTIONS, and SYSCAT.WRAPPERS catalog
views.

• The schema name of an object whose ownership was transferred does not automatically change.
• Syntax alternatives: For consistency with other SQL statements:

– NODEGROUP can be specified in place of DATABASE PARTITION GROUP
– SYNONYM can be specified in place of ALIAS

Examples
• Example 1: Transfer ownership of table T1 to PAUL.

 TRANSFER OWNERSHIP OF TABLE WALID.T1
 TO USER PAUL PRESERVE PRIVILEGES

The value in the OWNER column for the table WALID.T1 in the SYSCAT.TABLES catalog view is replaced
with 'PAUL'. Paul is implicitly granted the following privileges on table WALID.T1 (assuming that the
previous owner of the table did not lose any privileges on it): CONTROL and ALTER, DELETE, INDEX,
INSERT, SELECT, UPDATE, REFERENCE (WITH GRANT OPTION).

• Example 2: Assume that JOHN creates tables T1 and T2, and that MIKE holds SELECT privilege on
tables JOHN.T1 and JOHN.T2. MIKE creates view V1 that depends on tables JOHN.T1 and JOHN.T2.
Transfer ownership of view V1 to HENRY, who has DBADM authority.

 TRANSFER OWNERSHIP OF VIEW V1
 TO USER HENRY PRESERVE PRIVILEGES

The value in the OWNER column for the view V1 in the SYSCAT.VIEWS catalog view is replaced with
'HENRY'. A new row is added to SYSCAT.TABAUTH with the following values: GRANTOR = 'SYSIBM',
GRANTEE = 'HENRY', and TABNAME = 'V1'.

• Example 3: Assume that HENRY, who holds DBADM authority, creates a trigger TR1 that depends on
table T1. Transfer ownership of trigger TR1 to WALID, who does not hold DBADM authority.

 TRANSFER OWNERSHIP OF TRIGGER TR1
 TO USER WALID PRESERVE PRIVILEGES

Ownership of the trigger is transferred successfully, even though Walid does not hold DBADM authority.
• Example 4: Assume that JOHN creates tables T1 and T2, and that MIKE holds SELECT privilege on table

JOHN.T1 and CONTROL privilege on table JOHN.T2. PAUL holds SELECT privilege on tables JOHN.T1
and JOHN.T2. MIKE creates view V1 that depends on tables JOHN.T1 and JOHN.T2. The view has an

Chapter 1. Structured Query Language (SQL) 1901

entry for the SELECT privilege in SYSCAT.TABAUTH and two SELECT dependencies in SYSCAT.TABDEP
for tables JOHN.T1 and JOHN.T2. Transfer ownership of view V1 to PAUL, who is a regular user.

 TRANSFER OWNERSHIP OF VIEW V1
 TO USER PAUL PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, even though Paul does not hold CONTROL privilege
on table JOHN.T2. Paul only needs SELECT privilege on tables JOHN.T1 and JOHN.T2 to maintain the
view's existence. (The view only has SELECT privilege because Paul did not hold CONTROL privilege on
both tables when the view was created and, as a result, he was not granted CONTROL on the view.)
The value in the OWNER column for the view V1 in the SYSCAT.VIEWS catalog view is replaced with
'PAUL'. The value in the OWNER column for the view V1 in the SYSCAT.TABDEP catalog view is replaced
with 'PAUL'. A new row is added to SYSCAT.TABAUTH with the following values: GRANTOR = 'SYSIBM',
GRANTEE = 'PAUL', and TABNAME = 'V1'.

• Example 5: Assume that JOHN creates table T1, and that PUBLIC holds SELECT privilege on JOHN.T1.
PAUL holds SELECT privilege on JOHN.T1 explicitly, and creates view V1 that depends on table
JOHN.T1. Transfer ownership of view V1 to MIKE, who is not a DBADM, but who holds the required
privileges to acquire view ownership through the special group PUBLIC.

 TRANSFER OWNERSHIP OF VIEW V1
 TO USER MIKE PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, because Mike holds SELECT privilege on table
JOHN.T1 through PUBLIC. The value in the OWNER column for the view V1 in the SYSCAT.VIEWS catalog
view is replaced with 'MIKE'. The value in the OWNER column for the view V1 in the SYSCAT.TABDEP
catalog view is replaced with 'MIKE'. A new row is added to SYSCAT.TABAUTH with the following values:
GRANTOR = 'SYSIBM', GRANTEE = 'MIKE', and TABNAME = 'V1'.

• Example 6: Similar to example 5, assume that JOHN creates table T1, and that role R1 holds SELECT
privilege on JOHN.T1. PAUL holds SELECT privilege on JOHN.T1 explicitly, and creates view V1 that
depends on table JOHN.T1. Transfer ownership of view V1 to MIKE, who is not a DBADM, but who holds
the required privileges through membership in role R1 to acquire view ownership.

 TRANSFER OWNERSHIP OF VIEW V1
 TO USER MIKE PRESERVE PRIVILEGES

Ownership of the view is transferred successfully, because Mike holds SELECT privilege on table
JOHN.T1 through membership in role R1. The value in the OWNER column for the view V1 in the
SYSCAT.VIEWS catalog view is replaced with 'MIKE'. The value in the OWNER column for the view V1 in
the SYSCAT.TABDEP catalog view is replaced with 'MIKE'. A new row is added to SYSCAT.TABAUTH with
the following values: GRANTOR = 'SYSIBM', GRANTEE = 'MIKE', and TABNAME = 'V1'.

TRUNCATE
The TRUNCATE statement deletes all of the rows from a table.

Invocation
This statement can be embedded in an application program or issued through the use of dynamic SQL
statements. It is an executable statement that can be dynamically prepared only if DYNAMICRULES run
behavior is in effect for the package (SQLSTATE 42509).

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities for the table, and all subtables of a table hierarchy:

• DELETE privilege on the table to be truncated
• DELETEIN privilege on the schema containing the table
• CONTROL privilege on the table to be truncated

1902 IBM Db2 V11.5: SQL Reference

• DATAACCESS authority on the schema containing the table
• DATAACCESS authority

To ignore any DELETE triggers that are defined on the table, the privileges held by the authorization ID of
the statement must include at least one of the following authorities for the table, and all subtables of a
table hierarchy:

• ALTER privilege on the table
• ALTERIN privilege on the schema containing the table and all subtables of a table hierarchy
• CONTROL privilege on the table
• SCHEMAADM authority on the schema containing the table and all subtables of a table hierarchy
• DBADM authority

To truncate a table that is protected by a security policy, the privileges held by the authorization ID of the
statement must include at least one of the following authorities:

• CONTROL privilege on the table
• DBADM authority

To truncate a table that has row access control activated, the authorization ID of the statement must
include at least one of the following authorities:

• CONTROL privilege on the table
• DBADM authority

Syntax

TRUNCATE
TABLE

table-name
DROP STORAGE

REUSE STORAGE

IGNORE DELETE TRIGGERS

RESTRICT WHEN DELETE TRIGGERS

CONTINUE IDENTITY

IMMEDIATE
1

Notes:
1 IMMEDIATE is optional only for column-organized tables.

Description
table-name

Identifies the table to be truncated. The name must identify a table that exists at the current server
(SQLSTATE 42704), but it cannot be a catalog table (SQLSTATE 42832), a nickname (SQLSTATE
42809), a view, a subtable, a staging table, a system-maintained materialized query table, a system-
period temporal table (SQLSTATE 428HZ), or a range-clustered table (SQLSTATE 42807).

If table-name is the root table of a table hierarchy, all tables in the table hierarchy will be truncated.

DROP STORAGE or REUSE STORAGE
Specifies whether to drop or reuse the existing storage that is allocated for the table. The default is
DROP STORAGE.
DROP STORAGE

All storage allocated for the table is released and made available. If this option is specified
(implicitly or explicitly), an online backup would be blocked.

Chapter 1. Structured Query Language (SQL) 1903

REUSE STORAGE
All storage allocated for the table will continue to be allocated for the table, but the storage will
be considered empty. This option is only applicable to tables in DMS table spaces and is ignored
otherwise.

IGNORE DELETE TRIGGERS or RESTRICT WHEN DELETE TRIGGERS
Specifies what to do when delete triggers are defined on the table. The default is IGNORE DELETE
TRIGGERS.
IGNORE DELETE TRIGGERS

Any delete triggers that are defined for the table are not activated by the truncation operation.
RESTRICT WHEN DELETE TRIGGERS

An error is returned if delete triggers are defined on the table (SQLSTATE 428GJ).
CONTINUE IDENTITY

If an identity column exists for the table, the next identity column value generated continues with the
next value that would have been generated if the TRUNCATE statement had not been executed.

IMMEDIATE
Specifies that the truncate operation is processed immediately and cannot be undone. The statement
must be the first statement in a transaction (SQLSTATE 25001).

The truncated table is immediately available for use in the same unit of work. Although a ROLLBACK
statement is allowed to execute after a TRUNCATE statement, the truncate operation is not undone,
and the table remains in a truncated state. For example, if another data change operation is done on
the table after the TRUNCATE IMMEDIATE statement and then the ROLLBACK statement is executed,
the truncate operation will not be undone, but all other data change operations are undone.

The IMMEDIATE clause can be excluded only for column organized tables.
If IMMEDIATE is not specified for column organized tables, the TRUNCATE statement does not need
to be the first statement in the work unit and you can use a ROLLBACK statement to undo the truncate
operation.

Attention: The IMMEDIATE clause is optional only in Db2 Version 11.5 Mod Pack 2 and later
versions.

Rules
• Referential Integrity: The table, and all tables in a table hierarchy, must not be a parent table in an

enforced referential constraint (SQLSTATE 428GJ). A self-referencing RI constraint is permitted.
• Partitioned tables: The table must not be in set integrity pending state due to being altered to attach

a data partition (SQLSTATE 55019). The table needs to be checked for integrity before executing the
TRUNCATE statement. The table must not have any logically detached partitions (SQLSTATE 55057).
The asynchronous partition detach task must complete before executing the TRUNCATE statement.

• Exclusive Access: No other session can have a cursor open on the table, or a lock held on the table
(SQLSTATE 25001).

• WITH HOLD cursors: The current session cannot have a WITH HOLD cursor open on the table
(SQLSTATE 25001).

Notes
• Table statistics: The statistics for the table are not changed by the TRUNCATE statement.
• Number of rows deleted: SQLERRD(3) in the SQLCA is set to -1 for the truncate operation. The number

of rows that were deleted from the table is not returned.
• On column-organized tables, the following rules apply to the IMMEDIATE clause when it is optional:

– If you do not specify the IMMEDIATE option, the TRUNCATE statement is processed and can be
undone.

– The TRUNCATE statement can be anywhere within the transaction scope.

1904 IBM Db2 V11.5: SQL Reference

– The TRUNCATE statement can be undone before the transaction completes.
– The truncated table can be used immediately in the same unit of work.
– A ROLLBACK statement can be executed after a TRUNCATE statement without the IMMEDIATE option

is processed. The TRUNCATE operation is then undone.
– For example, if another data change operation is done on the table after the TRUNCATE statement

without the IMMEDIATE option is processed, and if then the ROLLBACK statement is executed, the
TRUNCATE operation is also undone.

– The storage is automatically asynchronously reclaimed after the transaction completes.
– The truncate operation will perform in a similar way to a mass delete operation. The number of rows

that are deleted from the table is returned at SQLERRD(4).
– The SQLWARN(5) value is ‘W’ because the underlying DELETE statement does not include a WHERE

clause.

Examples
• Example 1: Empty an unused inventory table regardless of any existing triggers and return its allocated

space.

 TRUNCATE TABLE INVENTORY
 IGNORE DELETE TRIGGERS
 DROP STORAGE
 IMMEDIATE

• Example 2: Empty an unused inventory table regardless of any existing delete triggers but preserve its
allocated space for later reuse.

 TRUNCATE TABLE INVENTORY
 REUSE STORAGE
 IGNORE DELETE TRIGGERS
 IMMEDIATE

• Example 3: If IMMEDIATE is not specified for column organized tables, the TRUNCATE statement does
not have to be the first statement in the work unit, and you can use a ROLLBACK statement to undo the
truncate operation.

SELECT COUNT(*) FROM TAB10;
TRUNCATE TABLE TAB10;
SELECT COUNT(*) FROM TAB10;
ROLLBACK;

Note that the truncate statement without IMMEDIATE is not the first statement in the work unit, and
that the truncate statement without IMMEDIATE can be rolled back.

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table, view or nickname, or
the underlying tables, nicknames, or views of the specified fullselect.

Updating a row of a view updates a row of its base table, if no INSTEAD OF trigger is defined for the
update operation on this view. If such a trigger is defined, the trigger will be executed instead. Updating a
row using a nickname updates a row in the data source object to which the nickname refers.

The forms of this statement are:

• The Searched UPDATE form is used to update one or more rows (optionally determined by a search
condition).

• The Positioned UPDATE form is used to update exactly one row (as determined by the current position of
a cursor).

Chapter 1. Structured Query Language (SQL) 1905

Invocation
An UPDATE statement can be embedded in an application program or issued through the use of dynamic
SQL statements. It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least one of the following
authorities:

• UPDATE privilege on the target table, view, or nickname
• UPDATE privilege on each of the columns that are to be updated, including the columns of the

BUSINESS_TIME period if a period-clause is specified
• UPDATEIN privilege on schema of the target table, view or nickname
• CONTROL privilege on the target table, view, or nickname
• DATAACCESS on the schema containing the target table, view, or nickname
• DATAACCESS authority

If a row-fullselect is included in the assignment, the privileges held by the authorization ID of the
statement must include at least one of the following authorities for each referenced table, view, or
nickname:

• SELECT privilege
• SELECTIN privilege on the schema containing the referenced table, view, or nickname
• CONTROL privilege
• DATAACCESS on the schema containing the referenced table, view, or nickname
• DATAACCESS authority

For each table, view, or nickname referenced by a subquery, the privileges held by the authorization ID of
the statement must also include at least one of the following authorities:

• SELECT privilege
• SELECTIN privilege on the schema containing the table, view or nickname
• CONTROL privilege
• DATAACCESS on the schema containing the table, view or nickname
• DATAACCESS authority

If the package used to process the statement is precompiled with SQL92 rules (option LANGLEVEL with
a value of SQL92E or MIA), and the searched form of an UPDATE statement includes a reference to a
column of the table, view, or nickname in the right side of the assignment-clause, or anywhere in the
search-condition, the privileges held by the authorization ID of the statement must also include at least
one of the following authorities:

• SELECT privilege
• CONTROL privilege
• SELECTIN privilege on the schema containing the table, view, or nickname
• DATAACCESS on the schema containing the table, view or nickname
• DATAACCESS authority

If the specified table or view is preceded by the ONLY keyword, the privileges held by the authorization
ID of the statement must also include the SELECT privilege for every subtable or subview of the specified
table or view, or SELECTIN privilege on the schema containing the subtables or subviews of the specified
table or view.

GROUP privileges are not checked for static UPDATE statements.

1906 IBM Db2 V11.5: SQL Reference

If the target of the update operation is a nickname, privileges on the object at the data source are
not considered until the statement is executed at the data source. At this time, the authorization ID
that is used to connect to the data source must have the privileges that are required for the operation
on the object at the data source. The authorization ID of the statement can be mapped to a different
authorization ID at the data source.

Syntax (searched-update)
UPDATE table-name

view-name period-clause
1

nickname

ONLY (table-name

view-name

)

(

WITH

,

common-table-expression

fullselect)

correlation-clause include-columns

SET assignment-clause

FROM

,

table-reference
2

WHERE search-condition

order-by-clause
3 offset-clause fetch-clause

WITH RR

RS

CS

UR

SKIP LOCKED

DATA

WAIT FOR OUTCOME

NOWAIT

WAIT <time sec>

Notes:
1 If the period-clause is specified, neither the offset-clause nor the fetch-clause can be specified
(SQLSTATE 42601).
2 The specified table-reference cannot be an analyze_table-expression (that is, the result of a data
mining model) or a data-change-table-reference (that is, the result of a nested UPDATE, DELETE, or
INSERT statement) (SQLSTATE 42601).
3 If the order-by-clause is specified, either the offset-clause or fetch-clause must also be specified
(SQLSTATE 42601).

period-clause
FOR PORTION OF BUSINESS_TIME FROM value1 TO value2

Chapter 1. Structured Query Language (SQL) 1907

Syntax (positioned-update)
UPDATE table-name

view-name

nickname

ONLY (table-name

view-name

)

(

WITH

,

common-table-expression

fullselect)

correlation-clause

SET assignment-clause WHERE CURRENT OF

cursor-name

correlation-clause
AS

correlation-name

(

,

column-name)

include-columns

INCLUDE (

,

column-name data-type)

assignment-clause
,

column-name

..attribute-name

= expression

NULL

DEFAULT

(

,

column-name

..attribute-name

) = (

,

expression

NULL

DEFAULT

1

row-fullselect
2

)

Notes:
1 The number of expressions, NULLs and DEFAULTs must match the number of column names.
2 The number of columns in the select list must match the number of column names.

Description
table-name, view-name, nickname, or (fullselect)

Identifies the object of the update operation. The name must identify one of the following objects:

• A table, view, or nickname described in the catalog at the current server
• A table or view at a remote server specified using a remote-object-name

1908 IBM Db2 V11.5: SQL Reference

The object must not be a catalog table, a view of a catalog table (unless it is one of the updatable
SYSSTAT views), a system-maintained materialized query table, or a read-only view that has no
INSTEAD OF trigger defined for its update operations.

If table-name is a typed table, rows of the table or any of its proper subtables may get updated by
the statement. Only the columns of the specified table may be set or referenced in the WHERE clause.
For a positioned UPDATE, the associated cursor must also have specified the same table, view or
nickname in the FROM clause without using ONLY.

If the object of the update operation is a fullselect, the fullselect must be updatable, as defined in the
"Updatable views" Notes item in the description of the CREATE VIEW statement.

If the object of the update operation is a nickname, the extended indicator variable values of DEFAULT
and UNASSIGNED must not be used (SQLSTATE 22539).

For additional restrictions related to temporal tables and use of a view or fullselect as the target of the
update operation, see "Considerations for a system-period temporal table" and "Considerations for an
application-period temporal table" in the Notes section of this topic.

ONLY (table-name)
Applicable to typed tables, the ONLY keyword specifies that the statement should apply only to
data of the specified table and rows of proper subtables cannot be updated by the statement. For
a positioned UPDATE, the associated cursor must also have specified the table in the FROM clause
using ONLY. If table-name is not a typed table, the ONLY keyword has no effect on the statement.

ONLY (view-name)
Applicable to typed views, the ONLY keyword specifies that the statement should apply only to data of
the specified view and rows of proper subviews cannot be updated by the statement. For a positioned
UPDATE, the associated cursor must also have specified the view in the FROM clause using ONLY. If
view-name is not a typed view, the ONLY keyword has no effect on the statement.

period-clause
Specifies that a period clause applies to the target of the update operation. If the target of the update
operation is a view, the following conditions apply to the view:

• The FROM clause of the outer fullselect of the view definition must include a reference, directly or
indirectly, to an application-period temporal table (SQLSTATE 42724M).

• An INSTEAD OF UPDATE trigger must not be defined for the view (SQLSTATE 428HY).

FOR PORTION OF BUSINESS_TIME
Specifies that the update only applies to row values for the portion of the period in the row that
is specified by the period clause. The BUSINESS_TIME period must exist in the table (SQLSTATE
4274M).
FROM value1 TO value2

Specifies that the update applies to rows for the period specified from value1 up to value2. No
rows are updated if value1 is greater than or equal to value2, or if value1 or value2 is the null
value (SQLSTATE 02000).

For the period specified with FROM value1 TO value2, the BUSINESS_TIME period in a row in
the target of the update is in any of the following states:

• Overlaps the beginning of the specified period if the value of the begin column is less than
value1 and the value of the end column is greater than value1.

• Overlaps the end of the specified period if the value of the end column is greater than or
equal to value2 and the value of the begin column is less than value2.

• Is fully contained within the specified period if the value for the begin column for
BUSINESS_TIME is greater than or equal to value1 and the value for the corresponding
end column is less than or equal to value2.

• Is partially contained in the specified period if the row overlaps the beginning of the
specified period or the end of the specified period, but not both.

Chapter 1. Structured Query Language (SQL) 1909

• Fully overlaps the specified period if the period in the row overlaps the beginning and end of
the specified period.

• Is not contained in the period if both columns of BUSINESS_TIME are less than or equal to
value1 or greater than or equal to value2.

If the BUSINESS_TIME period in a row is not contained in the specified period, the row is
not updated. Otherwise, the update is applied based on how the values in the columns of the
BUSINESS_TIME period overlap the specified period as follows:

• If the BUSINESS_TIME period in a row is fully contained within the specified period, the
row is updated and the values of the begin column and end column of BUSINESS_TIME are
unchanged.

• If the BUSINESS_TIME period in a row is partially contained in the specified period and
overlaps the beginning of the specified period:

– The row is updated. In the updated row, the value of the begin column is set to value1 and
the value of the end column is the original value of the end column.

– A row is inserted using the original values from the row, except that the end column is set
to value1.

• If the BUSINESS_TIME period in a row is partially contained in the specified period and
overlaps the end of the specified period:

– The row is updated. In the updated row, the value of the begin column is the original value
of the begin column and the end column is set to value2.

– A row is inserted using the original values from the row, except that the begin column is
set to value2.

• If the BUSINESS_TIME period in a row fully overlaps the specified period:

– The row is updated. In the updated row the value of the begin column is set to value1 and
the value of the end column is set to value2.

– A row is inserted using the original values from the row, except that the end column is set
to value1.

– An additional row is inserted using the original values from the row, except that the begin
column is set to value2.

value1 and value2
Each expression must return a value that has a date data type, timestamp data type, or
a valid data type for a string representation of a date or timestamp (SQLSTATE 428HY).
The result of each expression must be comparable to the data type of the columns of the
specified period (SQLSTATE 42884). See the comparison rules described in "Assignments
and comparisons".

Each expression can contain any of the following supported operands (SQLSTATE 428HY):

• Constant
• Special register
• Variable. For details, refer to "References to variables" in the "Identifiers" topic, in SQL

Reference Volume 1 .
• Scalar function whose arguments are supported operands (though user-defined

functions and non-deterministic functions cannot be used)
• CAST specification where the cast operand is a supported operand
• Expression using arithmetic operators and operands

correlation-clause
Can be used within search-condition or assignment-clause to designate a table, view, nickname,
or fullselect. For a description of correlation-clause, see "table-reference" in the description of
"Subselect".

1910 IBM Db2 V11.5: SQL Reference

include-columns
Specifies a set of columns that are included, along with the columns of table-name or view-name,
in the intermediate result table of the UPDATE statement when it is nested in the FROM clause of a
fullselect. The include-columns are appended at the end of the list of columns that are specified for
table-name or view-name.
INCLUDE

Specifies a list of columns to be included in the intermediate result table of the UPDATE
statement.

column-name
Specifies a column of the intermediate result table of the UPDATE statement. The name cannot
be the same as the name of another include column or a column in table-name or view-name
(SQLSTATE 42711).

data-type
Specifies the data type of the include column. The data type must be one that is supported by the
CREATE TABLE statement.

SET
Introduces the assignment of values to column names.

assignment-clause
column-name

Identifies a column to be updated. If extended indicator variables are not enabled, the column-
name must identify an updatable column of the specified table, view, or nickname, or identify an
INCLUDE column. The object ID column of a typed table is not updatable (SQLSTATE 428DZ). A
column must not be specified more than once, unless it is followed by ..attribute-name (SQLSTATE
42701).

If it specifies an INCLUDE column, the column name cannot be qualified.

For a Positioned UPDATE:

• If the update-clause was specified in the select-statement of the cursor, each column name in
the assignment-clause must also appear in the update-clause.

• If the update-clause was not specified in the select-statement of the cursor and LANGLEVEL MIA
or SQL92E was specified when the application was precompiled, the name of any updatable
column may be specified.

• If the update-clause was not specified in the select-statement of the cursor and LANGLEVEL
SAA1 was specified either explicitly or by default when the application was precompiled, no
columns may be updated.

..attribute-name
Specifies the attribute of a structured type that is set (referred to as an attribute assignment. The
column-name specified must be defined with a user-defined structured type (SQLSTATE 428DP).
The attribute-name must be an attribute of the structured type of column-name (SQLSTATE
42703). An assignment that does not involve the ..attribute-name clause is referred to as a
conventional assignment.

expression
Indicates the new value of the column. The expression is any expression of the type described in
"Expressions". The expression cannot include an aggregate function except when it occurs within
a scalar fullselect (SQLSTATE 42903).

An expression may contain references to columns of the target table of the UPDATE statement. For
each row that is updated, the value of such a column in an expression is the value of the column in
the row before the row is updated.

An expression cannot contain references to an INCLUDE column. If expression is a single host
variable, the host variable can include an indicator variable that is enabled for extended indicator
variables. If extended indicator variables are enabled, the extended indicator variable values of

Chapter 1. Structured Query Language (SQL) 1911

default (-5) or unassigned (-7) must not be used (SQLSTATE 22539) if either of the following
statements is true:

• The expression is more complex than a single host variable with explicit casts
• The target column has data type of structured type

NULL
Specifies the null value and can only be specified for nullable columns (SQLSTATE 23502). NULL
cannot be the value in an attribute assignment (SQLSTATE 429B9) unless it is specifically cast to
the data type of the attribute.

DEFAULT
Specifies that the default value should be used based on how the corresponding column is defined
in the table. The value that is inserted depends on how the column was defined.

• If the column was defined as a generated column based on an expression, the column value will
be generated by the system, based on the expression.

• If the column was defined using the IDENTITY clause, the value is generated by the database
manager.

• If the column was defined using the WITH DEFAULT clause, the value is set to the default
defined for the column (see default-clause in "ALTER TABLE").

• If the column was defined using the NOT NULL clause and the GENERATED clause was not used,
or the WITH DEFAULT clause was not used, or DEFAULT NULL was used, the DEFAULT keyword
cannot be specified for that column (SQLSTATE 23502).

• If the column was defined using the ROW CHANGE TIMESTAMP clause, the value is generated
by the database manager.

The only value that a generated column defined with the GENERATED ALWAYS clause can be set
to is DEFAULT (SQLSTATE 428C9).

The DEFAULT keyword cannot be used as the value in an attribute assignment (SQLSTATE 429B9).

The DEFAULT keyword cannot be used as the value in an assignment for update on a nickname
where the data source does not support DEFAULT syntax.

row-fullselect
Specifies a fullselect that returns a single row. The result column values are assigned to each
corresponding column-name. If the fullselect returns no rows, the null value is assigned to each
column; an error occurs if any column to be updated is not nullable. An error also occurs if there is
more than one row in the result.

A row-fullselect may contain references to columns of the target table of the UPDATE statement.
For each row that is updated, the value of such a column in an expression is the value of the
column in the row before the row is updated. An error is returned if there is more than one row in
the result (SQLSTATE 21000).

FROM

Specifies a list of source tables that supply values for assignment to target table columns. The source
tables are implicitly inner joined with the target table with the WHERE clause specifying the join
condition. The rows in the target table that satisfy the WHERE condition are updated with the values
from the source table rows.

When an UPDATE statement specifies a FROM clause:

• The target of the update operation cannot be a nickname.
• The source for the update operation cannot be an analyze_table-expression (that is, the result of

a data mining model) or a data-change-table-reference (that is, the result of a nested UPDATE,
DELETE, or INSERT statement).

For a description of table-reference, see “table-reference” on page 644.

1912 IBM Db2 V11.5: SQL Reference

WHERE
Introduces a condition that indicates what rows are updated. You can omit the clause, give a search
condition, or name a cursor. If the clause is omitted, all rows of the table, view or nickname are
updated.
search-condition

Each column-name in the search condition, other than in a subquery, must name a column of the
table, view or nickname. When the search condition includes a subquery in which the same table
is the base object of both the UPDATE and the subquery, the subquery is completely evaluated
before any rows are updated.

The search-condition is applied to each row of the table, view or nickname and the updated rows
are those for which the result of the search-condition is true.

If the search condition contains a subquery, the subquery can be thought of as being executed
each time the search condition is applied to a row, and the results used in applying the search
condition. In actuality, a subquery with no correlated references is executed only once, whereas a
subquery with a correlated reference may have to be executed once for each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor-name must identify a declared
cursor, explained in "DECLARE CURSOR". The DECLARE CURSOR statement must precede the
UPDATE statement in the program.

The specified table, view, or nickname must also be named in the FROM clause of the SELECT
statement of the cursor, and the result table of the cursor must not be read-only. (For an
explanation of read-only result tables, see "DECLARE CURSOR".)

When the UPDATE statement is executed, the cursor must be positioned on a row; that row is
updated.

This form of UPDATE cannot be used (SQLSTATE 42828) if the cursor references:

• A view on which an INSTEAD OF UPDATE trigger is defined
• A view that includes an OLAP function in the select list of the fullselect that defines the view
• A view that is defined, either directly or indirectly, using the WITH ROW MOVEMENT clause

order-by-clause
Specifies the order of the rows for application of the offset-clause and fetch-clause. Specify an order-
by-clause to ensure a predictable order for determining the set of rows to be updated based on the
offset-clause and fetch-clause. For details on the order-by-clause, see “order-by-clause” on page 703.

offset-clause
Limits the effect of the update by skipping a subset of the qualifying rows. For details on the offset-
clause, refer to “offset-clause” on page 706.

fetch-clause
Limits the effect of the update to a subset of the qualifying rows. For details on the fetch-clause, refer
to “fetch-clause” on page 705.

WITH
Specifies the isolation level at which the UPDATE statement is executed.
RR

Repeatable Read
RS

Read Stability
CS

Cursor Stability
UR

Uncommitted Read

Chapter 1. Structured Query Language (SQL) 1913

The default isolation level of the statement is the isolation level of the package in which the statement
is bound. The WITH clause has no effect on nicknames, which always use the default isolation level of
the statement.

SKIP LOCKED DATA
The SKIP LOCKED DATA clause specifies that rows are skipped when incompatible locks that would
block the progress of the statement are held on the rows by other transactions. These rows can
belong to any accessed table addressed in the statement, including tables accessed in a subquery.
This clause applies when the isolation level is CS or RS and is ignored when an isolation level of UR or
RR is in effect. It applies to row and block level locks.

Invocation

SKIP LOCKED DATA is ignored if it is specified when WITH RR or WITH UR. The default isolation level
of the statement depends on the isolation of the package or plan with which the statement is bound,
and whether the result table is read-only. If the default isolation level of the statement is Repeatable
Read or Uncommitted Read, then SKIP LOCKED DATA is ignored.

NOWAIT / WAIT <time sec>

Attention: The following feature is available in Db2 11.5.6 and later versions.

The NOWAIT and WAIT clauses specify the number of seconds to wait for a lock before
returning an error indicating that a lock cannot be obtained.

When using the WAIT clause, <time sec> is an integer between -1 and 32767.

Note: For NOWAIT and WAIT 0, locks are not waited for. If no lock is available at the time of
the request, a -911 error is returned.

When a WAIT value of -1 is specified, lock timeout detection is turned off. In this situation a
lock is waited for (if one is not available at the time of the request) until either of the following
events occur:

• The lock is granted.
• A deadlock occurs.

Use of the NOWAIT and WAIT clauses overwrites the value of the LOCKTIMEOUT database
configuration variable and the value of the CURRENT LOCK TIMEOUT special register for this
update statement. This means that adding the NOWAIT/WAIT clause with a wait time value
of t has the same effect as executing the update statement with a LOCKTIMEOUT value or
CURRENT LOCK TIMEOUT value of t.

While the NOWAIT and WAIT clauses are not allowed for positioned updates and deletes,
you can use them in the declaration of the cursor. When used in the cursor declaration, the
specified wait time value is inherited by the statements that use this cursor.

Rules
• Triggers: UPDATE statements may cause triggers to be executed. A trigger may cause other statements

to be executed, or may raise error conditions based on the update values. If an update operation on a
view causes an INSTEAD OF trigger to fire, validity, referential integrity, and constraints will be checked
against the updates that are performed in the trigger, and not against the view that caused the trigger to
fire, or its underlying tables.

• Assignment: Update values are assigned to columns according to specific assignment rules.
• Validity: The updated row must conform to any constraints imposed on the table (or on the base table

of the view) by any unique index on an updated column.

If a view is used that is not defined using WITH CHECK OPTION, rows can be changed so that they no
longer conform to the definition of the view. Such rows are updated in the base table of the view and no
longer appear in the view.

If a view is used that is defined using WITH CHECK OPTION, an updated row must conform to the
definition of the view. For an explanation of the rules governing this situation, see "CREATE VIEW".

1914 IBM Db2 V11.5: SQL Reference

• Check constraint: Update value must satisfy the check-conditions of the check constraints defined on
the table.

An UPDATE to a table with check constraints defined has the constraint conditions for each column
updated evaluated once for each row that is updated. When processing an UPDATE statement, only the
check constraints referring to the updated columns are checked.

• Referential integrity: The value of the parent unique keys cannot be changed if the update rule is
RESTRICT and there are one or more dependent rows. However, if the update rule is NO ACTION, parent
unique keys can be updated as long as every child has a parent key by the time the update statement
completes. A non-null update value of a foreign key must be equal to a value of the primary key of the
parent table of the relationship.

• XML values: When an XML column value is updated, the new value must be a well-formed XML
document (SQLSTATE 2200M).

• Security policy: If the identified table or the base table of the identified view is protected with a security
policy, the session authorization ID must have the label-based access control (LBAC) credentials that
allow:

– Write access to all protected columns that are being updated (SQLSTATE 42512)
– Write access for any explicit value provided for a DB2SECURITYLABEL column for security policies

that were created with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option (SQLSTATE
23523)

– Read and write access to all rows that are being updated (SQLSTATE 42519)

The session authorization ID must also have been granted a security label for write access for the
security policy if an implicit value is used for a DB2SECURITYLABEL column (SQLSTATE 23523), which
can happen when:

– The DB2SECURITYLABEL column is not included in the list of columns that are to be updated (and so
it will be implicitly updated to the security label for write access of the session authorization ID)

– A value for the DB2SECURITYLABEL column is explicitly provided but the session authorization ID
does not have write access for that value, and the security policy is created with the OVERRIDE NOT
AUTHORIZED WRITE SECURITY LABEL option

• Extended indicator variable usage: If enabled, indicator variable values other than 0 (zero) through -7
must not be input (SQLSTATE 22010). Also, if enabled, the default and unassigned extended indicator
variable values must not appear in contexts in which they are not supported (SQLSTATE 22539).

• Extended indicator variables: In the assignment-clause of an UPDATE statement, an expression that is
a reference to a single host variable, or a host variable being explicitly cast can result in assigning an
extended indicator variable value. Assigning an extended indicator variable-based value of unassigned
has the effect of leaving the target column set to its current value, as if it had not been specified in the
statement. Assigning an extended indicator variable-based value of default assigns the default value
of the column. For information about default values of data types, see the description of the DEFAULT
clause in “CREATE TABLE ” on page 1351.

If a target column is not updatable (for example, a column in a view that is defined as an expression),
then it must be assigned the extended indicator variable-based value of unassigned (SQLSTATE 42808).

If the target column is a column defined as GENERATED ALWAYS, then it must be assigned the DEFAULT
keyword, or the extended indicator variable-based values of default or unassigned (SQLSTATE 428C9).

The UPDATE statement must not assign all target columns to an extended indicator variable-based
value of unassigned (SQLSTATE 22540).

Notes
• If an update value violates any constraints, or if any other error occurs during the execution of the

UPDATE statement, no rows are updated. The order in which multiple rows are updated is undefined.

Chapter 1. Structured Query Language (SQL) 1915

• An update to a view defined using the WITH ROW MOVEMENT clause could cause a delete operation
and an insert operation against the underlying tables of the view. For details, see the description of the
CREATE VIEW statement.

• When an UPDATE statement completes execution, the value of SQLERRD(3) in the SQLCA is the number
of rows that qualified for the update operation. In the context of an SQL procedure statement, the value
can be retrieved using the ROW_COUNT variable of the GET DIAGNOSTICS statement. The SQLERRD(5)
field contains the number of rows inserted, deleted, or updated by all activated triggers.

• Unless appropriate locks already exist, one or more exclusive locks are acquired by the execution of a
successful UPDATE statement. Until the locks are released, the updated row can only be accessed by
the application process that performed the update (except for applications using the Uncommitted Read
isolation level). For further information on locking, see the descriptions of the COMMIT, ROLLBACK, and
LOCK TABLE statements.

• When updating the column distribution statistics for a typed table, the subtable that first introduced the
column must be specified.

• Multiple attribute assignments on the same structured type column occur in the order specified in the
SET clause and, within a parenthesized set clause, in left-to-right order.

• An attribute assignment invokes the mutator method for the attribute of the user-defined structured
type. For example, the assignment st..a1=x has the same effect as using the mutator method in the
assignment st = st..a1(x).

• While a given column may be a target column in only one conventional assignment, a column may
be a target column in multiple attribute assignments (but only if it is not also a target column in a
conventional assignment).

• When an identity column defined as a distinct type is updated, the entire computation is done in the
source type, and the result is cast to the distinct type before the value is actually assigned to the
column. (There is no casting of the previous value to the source type before the computation.)

• To have a generated value on a SET statement for an identity column, use the DEFAULT keyword:

 SET NEW.EMPNO = DEFAULT

In this example, NEW.EMPNO is defined as an identity column, and the value used to update this
column is generated.

• For more information about consuming values of a generated sequence for an identity column, or about
exceeding the maximum value for an identity column, see "INSERT".

• With partitioned tables, an UPDATE WHERE CURRENT OF cursor-name operation can move a row from
one data partition to another. After this occurs, the cursor is no longer positioned on the row, and no
further UPDATE WHERE CURRENT OF cursor-name modifications to that row are possible. The next row
in the cursor can be fetched, however.

• For a column defined using the ROW CHANGE TIMESTAMP clause, the value is always changed on
update of the row. If the column is not specified in the SET list explicitly, the database manager still
generates a value for that row. The value is unique for each table partition within the database partition
and is set to the approximate timestamp corresponding to the row update.

• Extended indicator variables and update triggers: If a target column has been assigned with an
extended indicator variable-based value of unassigned, that column is not considered to have been
updated. That column is treated as if it had not been specified in the OF column-name list of any update
trigger defined on the target table.

• Extended indicator variables and deferred error checks: When extended indicator variables are
enabled, validation that would otherwise be done in statement preparation, to recognize an update of a
non-updatable column, is deferred until statement execution, except for column level update privilege
checking of static UPDATE statements. Whether an error should be reported can be determined only
during execution based on the indicator value. The checking of column level update privilege for static
UPDATE statements continues to be performed during bind processing even when extended indicator
variables are enabled.

1916 IBM Db2 V11.5: SQL Reference

• Considerations for a system-period temporal table: The target of the UPDATE statement must not
be a fullselect that references a view in the FROM clause followed by a period specification for
SYSTEM_TIME if the view is defined with the WITH CHECK OPTION and the view definition includes
a WHERE clause containing one of the following syntax elements (SQLSTATE 51046):

– A subquery that references a system-period temporal table (directly or indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than NO SQL

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, an underlying
target of the UPDATE statement must not be a system-period temporal table (SQLSTATE 51046), and
the target of the UPDATE statement must not be a view defined with the WITH CHECK OPTION if the
view definition includes a WHERE clause containing one of the following syntax elements (SQLSTATE
51046):

– A subquery that references a system-period temporal table (directly or indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than NO SQL

When a row of a system-period temporal table is updated, the database manager updates the values of
the row-begin and transaction-start-ID columns as follows:

– A row-begin column is assigned a value that is generated using a reading of the time-of-day clock
during execution of the first data change statement in the transaction that requires a value to be
assigned to the row begin or transaction start-ID column in a table, or a row in a system-period
temporal table is deleted. The database manager ensures uniqueness of the generated values for
a row-begin column across transactions. The timestamp value might be adjusted to ensure that
rows inserted into an associated history table have the end timestamp value greater than the begin
timestamp value which can happen when a conflicting transaction is updating the same row in the
system-period temporal table. The database configuration parameter systime_period_adj must
be set to Yes for this adjustment in the timestamp value to occur. If multiple rows are updated
within a single SQL transaction and an adjustment is not needed, the values for the row-begin column
are the same for all the rows and are unique from the values generated for the column for another
transaction.

– A transaction start-ID column is assigned a unique timestamp value per transaction or the null value
The null value is assigned to the transaction start-ID column if the column is nullable and there is
a row-begin column in the table for which the value did not need to be adjusted. Otherwise, the
value is generated using a reading of the time-of-day clock during execution of the first data change
statement in the transaction that requires a value to be assigned to the row begin or transaction
start-ID column in a table, or a row in a system-period temporal table is deleted. If multiple rows are
updated within a single SQL transaction, the values for the transaction start-ID column are the same
for all the rows and are unique from the values generated for the column for another transaction.

If the UPDATE statement has a search condition containing a correlated subquery that references
historical rows (explicitly referencing the name of the history table name or implicitly through the use
of a period specification in the FROM clause), the old version of the updated rows that are inserted as
historical rows (into the history table if any) are potentially visible to update operations for the rows
subsequently processed for the statement.

The target of an UPDATE statement cannot be a fullselect that references a view in the FROM clause
followed by a period specification for SYSTEM_TIME if both of the following conditions are true
(SQLSTATE 51046):

– The view is defined with the WITH CHECK OPTION.
– The view definition includes a WHERE clause containing one of the following syntax elements:

- A subquery that references a system-period temporal table (directly or indirectly).
- An invocation of an SQL routine that has a package associated with it.
- An invocation of an external routine with a data access indication other than NO SQL.

Chapter 1. Structured Query Language (SQL) 1917

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, the underlying
target (direct or indirect) of the UPDATE statement cannot be a system-period temporal table
(SQLSTATE 51046).

If the CURRENT TEMPORAL SYSTEM_TIME special register is set to a non-null value, the target of
an UPDATE statement cannot be a view defined with the WITH CHECK OPTION if the view definition
includes a WHERE clause containing one of the following syntax elements (SQLSTATE 51046):

– A subquery that references a system-period temporal table (directly or indirectly).
– An invocation of an SQL routine that has a package associated with it.
– An invocation of an external routine with a data access indication other than NO SQL.

• Considerations for a history table: When a row of a system-period temporal table is updated, a
historical copy of the row is inserted into the corresponding history table and the end timestamp
of the historical row is captured in the form of a system determined value that corresponds to the
time of the data change operation. The database manager assigns the value that is generated using a
reading of the time-of-day clock during execution of the first data change statement in the transaction
that requires a value to be assigned to the row begin or transaction start-ID column in a table, or a
row in a system-period temporal table is deleted. The database manager ensures uniqueness of the
generated values for an end column in a history table across transactions. The timestamp value might
be adjusted to ensure that rows inserted into the history table have the end timestamp value greater
than the begin timestamp value which can happen when a conflicting transaction is updating the same
row in the system-period temporal table (SQLSTATE 01695). The database configuration parameter
systime_period_adj must be set to Yes for this adjustment in the timestamp value to occur.

For an update operation, the adjustment only affects the value for the end column corresponding to
the row-end column in the history table associated with the system-period temporal table. Take these
adjustments into consideration on subsequent references to the table whether there is a search for
the transaction start time in the values for the columns corresponding to the row-begin and row-end
columns of the period in the associated system-period temporal table.

• Considerations for an application-period temporal table: The target of the UPDATE statement must
not be a fullselect that references a view in the FROM clause followed by a period specification for
BUSINESS_TIME if the view is defined with the WITH CHECK OPTION and the view definition includes a
WHERE clause containing one of the following syntax elements (SQLSTATE 51046):

– A subquery that references an application-period temporal table (directly or indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than NO SQL

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a non-null value, the target of
the UPDATE statement must not be a view defined with the WITH CHECK option if the view definition
includes a WHERE clause containing one of the following syntax elements (SQLSTATE 51046):

– A subquery that references an application-period temporal table (directly or indirectly)
– An invocation of an SQL routine that has a package associated with it
– An invocation of an external routine with a data access indication other than NO SQL

An UPDATE statement for an application-period temporal table that contains a FOR PORTION OF
BUSINESS_TIME clause indicates between which two points in time that the specified updates are
effective. When FOR PORTION OF BUSINESS_TIME is specified and the period value for a row, specified
by the values of the row-begin column and row-end column, is only partially contained in the period
specified from value1 up to value2, the row is updated and one or two rows are automatically inserted
to represent the portion of the row that is not changed. New values are generated for each generated
column in an application-period temporal table for each row that is automatically inserted as a result of
an update operation on the table. If a generated column is defined as part of a unique or primary key,
parent key in a referential constraint, or unique index, it is possible that an automatic insert will violate a
constraint or index in which case an error is returned.

When a row is inserted into an application-period temporal table that has either a primary key or
unique constraint with the BUSINESS_TIME WITHOUT OVERLAPS clause defined, or a unique index with

1918 IBM Db2 V11.5: SQL Reference

the BUSINESS_TIME WITHOUT OVERLAPS clause defined, if the period defined by the begin and end
columns of the BUSINESS_TIME period overlap the period defined by the begin and end columns of the
BUSINESS_TIME period for another row with the same unique constraint or unique index in the table, an
error is returned.

The target of an UPDATE statement cannot be a fullselect that references a view in the FROM clause
followed by a period specification for BUSINESS_TIME if both of the following conditions are true
(SQLSTATE 51046):

– The view is defined with the WITH CHECK OPTION.
– The view definition includes a WHERE clause containing one of the following syntax elements:

- A subquery that references an application-period temporal table (directly or indirectly).
- An invocation of an SQL routine that has a package associated with it.
- An invocation of an external routine with a data access indication other than NO SQL.

If the CURRENT TEMPORAL BUSINESS_TIME special register is set to a non-null value, the target of
an UPDATE statement cannot be a view defined with the WITH CHECK OPTION if the view definition
includes a WHERE clause containing one of the following syntax elements (SQLSTATE 51046):

– A subquery that references an application-period temporal table (directly or indirectly).
– An invocation of an SQL routine that has a package associated with it.
– An invocation of an external routine with a data access indication other than NO SQL.

When an application-period temporal table is the target of an UPDATE statement, the value in
effect for the CURRENT TEMPORAL BUSINESS_TIME special register is not the null value, and the
BUSTIMESENSITIVE bind option is set to YES, the following additional predicates are implicit:

 bt_begin <= CURRENT TEMPORAL BUSINESS_TIME
 AND bt_end > CURRENT TEMPORAL BUSINESS_TIME

where bt_begin and bt_end are the begin and end columns of the BUSINESS_TIME period of the
target table of the UPDATE statement.

• Considerations for application-period temporal tables and triggers: When a row is updated and the
FOR PORTION OF BUSINESS_TIME clause is specified, additional rows may be implicitly inserted to
reflect any portion of the row that was not updated. Any existing update triggers are activated for the
rows updated, and any existing insert triggers are activated for rows that are implicitly inserted.

Examples
• Example 1: Change the job (JOB) of employee number (EMPNO) '000290' in the EMPLOYEE table to

'LABORER'.

 UPDATE EMPLOYEE
 SET JOB = 'LABORER'
 WHERE EMPNO = '000290'

• Example 2: Increase the project staffing (PRSTAFF) by 1.5 for all projects that department (DEPTNO)
'D21' is responsible for in the PROJECT table.

 UPDATE PROJECT
 SET PRSTAFF = PRSTAFF + 1.5
 WHERE DEPTNO = 'D21'

• Example 3: All the employees except the manager of department (WORKDEPT) 'E21' have been
temporarily reassigned. Indicate this by changing their job (JOB) to the null value and their pay
(SALARY, BONUS, COMM) values to zero in the EMPLOYEE table.

 UPDATE EMPLOYEE
 SET JOB=NULL, SALARY=0, BONUS=0, COMM=0
 WHERE WORKDEPT = 'E21' AND JOB <> 'MANAGER'

This statement could also be written as follows.

Chapter 1. Structured Query Language (SQL) 1919

 UPDATE EMPLOYEE
 SET (JOB, SALARY, BONUS, COMM) = (NULL, 0, 0, 0)
 WHERE WORKDEPT = 'E21' AND JOB <> 'MANAGER'

• Example 4: Update the salary and the commission column of the employee with employee number
000120 to the average of the salary and of the commission of the employees of the updated row's
department, respectively.

 UPDATE (SELECT EMPNO, SALARY, COMM,
 AVG(SALARY) OVER (PARTITION BY WORKDEPT),
 AVG(COMM) OVER (PARTITION BY WORKDEPT)
 FROM EMPLOYEE E) AS E(EMPNO, SALARY, COMM, AVGSAL, AVGCOMM)
 SET (SALARY, COMM) = (AVGSAL, AVGCOMM)
 WHERE EMPNO = '000120'

The previous statement is semantically equivalent to the following statement, but requires only one
access to the EMPLOYEE table, whereas the following statement specifies the EMPLOYEE table twice.

 UPDATE EMPLOYEE EU
 SET (EU.SALARY, EU.COMM)
 =
 (SELECT AVG(ES.SALARY), AVG(ES.COMM)
 FROM EMPLOYEE ES
 WHERE ES.WORKDEPT = EU.WORKDEPT)
 WHERE EU.EMPNO = '000120'

• Example 5: In a C program display the rows from the EMPLOYEE table and then, if requested to do so,
change the job (JOB) of certain employees to the new job keyed in.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT *
 FROM EMPLOYEE
 FOR UPDATE OF JOB;

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 INTO ... ;
 if (strcmp (change, "YES") == 0)
 EXEC SQL UPDATE EMPLOYEE
 SET JOB = :newjob
 WHERE CURRENT OF C1;

 EXEC SQL CLOSE C1;

• Example 6: These examples mutate attributes of column objects.

Assume that the following types and tables exist:

 CREATE TYPE POINT AS (X INTEGER, Y INTEGER)
 NOT FINAL WITHOUT COMPARISONS
 MODE DB2SQL

 CREATE TYPE CIRCLE AS (RADIUS INTEGER, CENTER POINT)
 NOT FINAL WITHOUT COMPARISONS
 MODE DB2SQL

 CREATE TABLE CIRCLES (ID INTEGER, OWNER VARCHAR(50), C CIRCLE

The following example updates the CIRCLES table by changing the OWNER column and the RADIUS
attribute of the CIRCLE column where the ID is 999:

 UPDATE CIRCLES
 SET OWNER = 'Bruce'
 C..RADIUS = 5
 WHERE ID = 999

The following example transposes the X and Y coordinates of the center of the circle identified by 999:

 UPDATE CIRCLES
 SET C..CENTER..X = C..CENTER..Y,

1920 IBM Db2 V11.5: SQL Reference

 C..CENTER..Y = C..CENTER..X
 WHERE ID = 999

The following example is another way of writing both of the previous statements. This example
combines the effects of both of the previous examples:

 UPDATE CIRCLES
 SET (OWNER,C..RADIUS,C..CENTER..X,C..CENTER..Y) =
 ('Bruce',5,C..CENTER..Y,C..CENTER..X)
 WHERE ID = 999

• Example 7: Update the XMLDOC column of the DOCUMENTS table with DOCID '001' to the character
string that is selected and parsed from the XMLTEXT table.

 UPDATE DOCUMENTS SET XMLDOC =
 (SELECT XMLPARSE(DOCUMENT C1 STRIP WHITESPACE)
 FROM XMLTEXT WHERE TEXTID = '001')
 WHERE DOCID = '001'

• Example 8: A new location column has been added to the project table. Update the project location with
the location of the department handling the project.

 UPDATE PROJECT P
 SET P.LOCATION = D.LOCATION
 FROM DEPARTMENT D
 WHERE P.DEPTNO = D.DEPTNO;

• Example 9: Update the estimated project staffing to the max staffing required for all activities within the
project.

 UPDATE PROJECT P
 SET P.PRSTAFF = S.ACSTAFF
 FROM (SELECT PROJNO, MAX(ACSTAFF) ACSTAFF FROM PROJACT GROUP BY PROJNO) S
 WHERE P.PROJNO = S.PROJNO AND
 P.PROJNAME = 'PAYROLL PROGRAMMING';

• Example 10: Update an employee's work department to the project department he is assigned to.

 UPDATE EMPLOYEE E
 SET E.WORKDEPT = P.DEPTNO
 FROM PROJECT P JOIN EMPPROJACT EP ON P.PROJNO = EP.PROJNO
 WHERE E.EMPNO = EP.EMPNO AND
 E.FIRSTNME = 'PHILIP' AND E.LASTNAME = 'SMITH';

VALUES
The VALUES statement is a form of query.

The VALUES statement can be embedded in an application program or issued interactively.

VALUES INTO
The VALUES INTO statement produces a result table consisting of at most one row, and assigns the values
in that row to host variables.

Invocation
This statement can be embedded only in an application program. It is an executable statement that
cannot be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include any privileges that are
necessary to execute each expression and row-expression.

For each global variable used as an assignment-target, the privileges held by the authorization ID of the
statement must include one of the following authorities:

Chapter 1. Structured Query Language (SQL) 1921

• WRITE privilege on the global variable that is not defined in a module
• EXECUTE privilege on the module of the global variable that is defined in a module
• EXECUTEIN privilege on the schema containing the module of the global variable that is defined in a

module
• DATAACCESS authority on the schema containing the module of the global variable that is defined in a

module

Syntax

VALUES expression

(

,

expression)

row-expression

INTO

,

assignment-target

assignment-target
global-variable-name

host-variable-name

SQL-parameter-name

SQL-variable-name

transition-variable-name

array-variable-name [array-index]

field-reference

Description
VALUES

Introduces a single row consisting of one or more columns.
expression

An expression that defines a single value of a one column result table.
(expression,...)

One or more expressions that define the values for one or more columns of the result table.
row-expression

Specifies the new row of values. The row-expression is any row expression of the type described in
"Row expressions". The row-expression must not include a column name.

INTO assignment-target
Identifies one or more targets for the assignment of output values.

The first value in the result row is assigned to the first target in the list, the second value to the second
target, and so on. Each assignment to an assignment-target is made in sequence through the list. If an
error occurs on any assignment, no value is assigned to any assignment-target.

When the data type of every assignment-target is not a row type, then the value 'W' is assigned to the
SQLWARN3 field of the SQLCA if the number of assignment-targets is less than the number of result
column values.

If the data type of an assignment-target is a row type, then there must be exactly one assignment-
target specified (SQLSTATE 428HR), the number of columns must match the number of fields in
the row type, and the data types of the columns of the fetched row must be assignable to the
corresponding fields of the row type (SQLSTATE 42821).

1922 IBM Db2 V11.5: SQL Reference

If the data type of an assignment-target is an array element, then there must be exactly one
assignment-target specified.

global-variable-name
Identifies the global variable that is the assignment target.

host-variable-name
Identifies the host variable that is the assignment target. For LOB output values, the target can
be a regular host variable (if it is large enough), a LOB locator variable, or a LOB file reference
variable.

SQL-parameter-name
Identifies the name parameter that is the assignment target.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables must be declared before
they are used.

transition-variable-name
Identifies the column to be updated in the transition row. A transition-variable-name must identify
a column in the subject table of a trigger, optionally qualified by a correlation name that identifies
the new value.

array-variable-name
Identifies an SQL variable, SQL parameter, or global variable of an array type.
[array-index]

An expression that specifies which element in the array will be the target of the assignment.
For an ordinary array, the array-index expression must be assignable to INTEGER (SQLSTATE
428H1) and cannot be the null value. Its value must be between 1 and the maximum
cardinality defined for the array (SQLSTATE 2202E). For an associative array, the array-index
expression must be assignable to the index data type of the associative array (SQLSTATE
428H1) and cannot be the null value.

field-reference
Identifies the field within a row type value that is the assignment target. The field-reference must
be specified as a qualified field-name where the qualifier identifies the row value in which the field
is defined.

Rules
• Global variables cannot be assigned inside triggers that are not defined using a compound SQL

(compiled) statement, functions that are not defined using a compound SQL (compiled) statement,
methods, or compound SQL (inlined) statements (SQLSTATE 428GX).

Examples
• Example 1: This C example retrieves the value of the CURRENT PATH special register into a host

variable.

 EXEC SQL VALUES(CURRENT PATH)
 INTO :hvl;

• Example 2: This C example retrieves a portion of a LOB field into a host variable, exploiting the LOB
locator for deferred retrieval.

 EXEC SQL VALUES (substr(:locator1,35))
 INTO :details;

• Example 3: This C example retrieves the value of the SESSION_USER special register into a global
variable.

 EXEC SQL VALUES(SESSION_USER)
 INTO GV_SESS_USER;

Chapter 1. Structured Query Language (SQL) 1923

WHENEVER
The WHENEVER statement specifies the action to be taken when a specified exception condition occurs.

Invocation
This statement can only be embedded in an application program. It is not an executable statement. The
statement is not supported in REXX.

Authorization
None required.

Syntax
WHENEVER NOT FOUND

SQLERROR

SQLWARNING

CONTINUE

GOTO

GO TO :
host-label

DO function-name()

BREAK

CONTINUE

Description
The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the type of exception condition.
NOT FOUND

Identifies any condition that results in an SQLCODE of +100 or an SQLSTATE of '02000'.
SQLERROR

Identifies any condition that results in a negative SQLCODE.
SQLWARNING

Identifies any condition that results in a warning condition (SQLWARN0 is 'W'), or that results in a
positive SQL return code other than +100.

The CONTINUE or GO TO clause is used to specify what is to happen when the identified type of exception
condition exists.
CONTINUE

Causes the next sequential instruction of the source program to be executed.
GOTO or GO TO host-label

Causes control to pass to the statement identified by host-label. For host-label, substitute a single
token, optionally preceded by a colon. The form of the token depends on the host language.

DO
Causes additional action in the form of a function call, break statement, or continue statement to
take place.
function-name()

Specifies the C function that is to be called. The function must have a void return value and cannot
accept any arguments. The function name must end with set of parentheses "(" and ")". The name
of the function is limited to 255 bytes.

The function name resolution takes place during the compilation of the C and C++ embedded SQL
application. The database precompiler does not resolve the function name.

BREAK
Specifies the C break statement. The C break statement exits thedo, for, switch, or while
statement block.

1924 IBM Db2 V11.5: SQL Reference

CONTINUE
Specifies the C continue statement. The C continue statement passes control to the next
iteration of the do, for, switch, or while statement block.

Notes
There are three types of WHENEVER statements:

• WHENEVER NOT FOUND
• WHENEVER SQLERROR
• WHENEVER SQLWARNING

Every executable SQL statement in a program is within the scope of one implicit or explicit WHENEVER
statement of each type. The scope of a WHENEVER statement is related to the listing sequence of the
statements in the program, not their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each type that is specified
before that SQL statement in the source program. If a WHENEVER statement of some type is not specified
before an SQL statement, that SQL statement is within the scope of an implicit WHENEVER statement of
that type in which CONTINUE is specified.

If the WHENEVER statement is not used, the default action is to continue processing if an error, warning,
or exception condition occurs during execution.

The WHENEVER statement must be used before the SQL statements that you want to affect. Otherwise,
the precompiler does not know that additional error-handling code is required for the executable SQL
statements. You can have any combination of the three basic forms active at any time. The order in which
you declare the three forms is not significant.

To avoid an infinite looping situation, ensure that you undo the WHENEVER handling before any SQL
statements are executed inside the handler. You can undo the WHENEVER handling by using the
WHENEVER SQLERROR CONTINUE statement.

The WHENEVER statement support for use of the DO function-name(), DO BREAK, or DO CONTINUE
syntax is available in Version 9.7 Fix Pack 6 and later.

Example
In the following C example, if an error is produced, go to HANDLERR. If a warning code is produced,
continue with the normal flow of the program. If no data is returned, go to ENDDATA.

 EXEC SQL WHENEVER SQLERROR GOTO HANDLERR;
 EXEC SQL WHENEVER SQLWARNING CONTINUE;
 EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA;

The C example for use of the DO function-name(), DO BREAK, or DO CONTINUE syntax are:

/* DO function_name */
EXEC SQL WHENEVER SQLERROR DO perform_error_action();
EXEC SQL WHENEVER SQLWARNING DO perform_warning_action();
EXEC SQL WHENEVER NOT FOUND DO perform_notfound_action();

/* DO BREAK */
EXEC SQL WHENEVER SQLERROR DO BREAK;
EXEC SQL WHENEVER SQLWARNING DO BREAK;
EXEC SQL WHENEVER NOT FOUND DO BREAK;

/* DO CONTINUE */
EXEC SQL WHENEVER SQLERROR DO CONTINUE;
EXEC SQL WHENEVER SQLWARNING DO CONTINUE;
EXEC SQL WHENEVER NOT FOUND DO CONTINUE;

Chapter 1. Structured Query Language (SQL) 1925

WHILE
The WHILE statement repeats the execution of a statement or group of statements while a specified
condition is true.

Invocation
This statement can be embedded in an:

• SQL procedure definition
• Compound SQL (compiled) statement
• Compound SQL (inlined) statement

The compound statements can be embedded in an SQL procedure definition, SQL function definition, or
SQL trigger definition. It is not an executable statement and cannot be dynamically prepared.

Authorization
No privileges are required to invoke the WHILE statement. However, the authorization ID of the statement
must hold the necessary privileges to invoke the SQL statements and search condition that are embedded
in the WHILE statement.

Syntax

label:

WHILE search-condition DO SQL-routine-statement END WHILE

label

SQL-routine-statement

SQL-procedure-statement ;

SQL-function-statement ;

Description
label

Specifies the label for the WHILE statement. If the beginning label is specified, it can be specified in
LEAVE and ITERATE statements. If the ending label is specified, it must be the same as the beginning
label.

search-condition
Specifies a condition that is evaluated before each execution of the loop. If the condition is true, the
SQL-procedure-statements in the loop are processed.

SQL-procedure-statement
Specifies the SQL statements to execute within the loop. SQL-procedure-statement is only applicable
when in the context of an SQL procedure or compound SQL (compiled) statement. See SQL-procedure-
statement in "Compound SQL (compiled)" statement.

SQL-function-statement
Specifies the SQL statements to execute within the loop. SQL-function-statement is only applicable in
an SQL function or a compound SQL (inlined) statement which can be embedded in an SQL trigger,
SQL function or SQL method. See SQL-function-statement in "FOR".

1926 IBM Db2 V11.5: SQL Reference

Example
This example uses a WHILE statement to iterate through FETCH and SET statements. While the value
of SQL variable v_counter is less than half of number of employees in the department identified by the
IN parameter deptNumber, the WHILE statement continues to perform the FETCH and SET statements.
When the condition is no longer true, the flow of control leaves the WHILE statement and closes the
cursor.

 CREATE PROCEDURE DEPT_MEDIAN
 (IN deptNumber SMALLINT, OUT medianSalary DOUBLE)
 LANGUAGE SQL
 BEGIN
 DECLARE v_numRecords INTEGER DEFAULT 1;
 DECLARE v_counter INTEGER DEFAULT 0;
 DECLARE c1 CURSOR FOR
 SELECT CAST(salary AS DOUBLE)
 FROM staff
 WHERE DEPT = deptNumber
 ORDER BY salary;
 DECLARE EXIT HANDLER FOR NOT FOUND
 SET medianSalary = 6666;
 SET medianSalary = 0;
 SELECT COUNT(*) INTO v_numRecords
 FROM staff
 WHERE DEPT = deptNumber;
 OPEN c1;
 WHILE v_counter < (v_numRecords / 2 + 1) DO
 FETCH c1 INTO medianSalary;
 SET v_counter = v_counter + 1;
 END WHILE;
 CLOSE c1;
 END

Catalog views
The database manager creates and maintains two sets of catalog views that are defined on top of the
base system catalog tables.

• SYSCAT views are read-only catalog views that are found in the SYSCAT schema. The RESTRICT option
on CREATE DATABASE statement determines how SELECT privilege is granted. When the RESTRICT
option is not specified, SELECT privilege is granted to PUBLIC.

• SYSSTAT views are updatable catalog views that are found in the SYSSTAT schema. The updatable
views contain statistical information that is used by the optimizer. The values in some columns in these
views can be changed to test performance. (Before changing any statistics, it is recommended that the
RUNSTATS command be invoked so that all the statistics reflect the current state.)

Applications should be written to the SYSCAT and SYSSTAT views rather than the base catalog tables.

All the catalog views are created at database creation time. The catalog views cannot be explicitly
created or dropped. In a Unicode database, the catalog views are created with IDENTITY collation. In
non-Unicode databases, the catalog views are created with the database collation. The views are updated
during normal operation in response to SQL data definition statements, environment routines, and certain
utilities. Data in the catalog views is available through normal SQL query facilities. The catalog views (with
the exception of some updatable catalog views) cannot be modified using normal SQL data manipulation
statements.

An object table, statistical view, column, or index object appears in a user's updatable SYSSTAT catalog
view only if that user holds explicit CONTROL privilege on the object, or holds explicit DATAACCESS
authority. An object table or statistical view also appears in a user's updatable SYSSTAT.TABLES catalog
view if the user is a direct or indirect member of a role that has CONTROL privilege on the object, or a role
that has DATAACCESS authority. Role privileges and authorities are not considered when determining the
objects that appear in the other SYSSTAT catalog views. A routine object appears in a user's updatable
SYSSTAT.ROUTINES catalog view if that user owns the routine or holds explicit SQLADM authority. Group
privileges and authorities are not considered when determining the objects that appear in a user's
updatable SYSSTAT catalog views.

Chapter 1. Structured Query Language (SQL) 1927

The order of columns in the views may change from release to release. To prevent this from affecting
programming logic, specify the columns in a select list explicitly, and avoid using SELECT *. Columns
have consistent names based on the types of objects that they describe.

Table 155. Samples of consistent column names for objects they describe

Described
Object Column Names

Table TABSCHEMA, TABNAME

Index INDSCHEMA, INDNAME

Index extension IESCHEMA, IENAME

View VIEWSCHEMA, VIEWNAME

Constraint CONSTSCHEMA, CONSTNAME

Control CONTROLSCHEMA, CONTROLNAME, CONTROLID

Trigger TRIGSCHEMA, TRIGNAME

Package PKGSCHEMA, PKGNAME

Type TYPESCHEMA, TYPENAME, TYPEID

Function ROUTINESCHEMA, ROUTINEMODULENAME, ROUTINENAME, ROUTINEID

Method ROUTINESCHEMA, ROUTINEMODULENAME, ROUTINENAME, ROUTINEID

Procedure ROUTINESCHEMA, ROUTINEMODULENAME, ROUTINENAME, ROUTINEID

Column COLNAME

Schema SCHEMANAME

Table Space TBSPACE

Database
partition group

DBPGNAME

Audit policy AUDITPOLICYNAME, AUDITPOLICYID

Buffer pool BPNAME

Event Monitor EVMONNAME

Condition CONDSCHEMA, CONDMODULENAME, CONDNAME, CONDMODULEID

Data source SERVERNAME, SERVERTYPE, SERVERVERSION

Global variable VARSCHEMA, VARMODULENAME, VARNAME, VARMODULEID

Histogram
template

TEMPLATENAME, TEMPLATEID

Module MODULESCHEMA, MODULENAME, MODULEID

Period PERIODNAME

Role ROLENAME, ROLEID

Security label SECLABELNAME, SECLABELID

Security policy SECPOLICYNAME, SECPOLICYID

Sequence SEQSCHEMA, SEQNAME

Threshold THRESHOLDNAME, THRESHOLDID

1928 IBM Db2 V11.5: SQL Reference

Table 155. Samples of consistent column names for objects they describe (continued)

Described
Object Column Names

Trusted context CONTEXTNAME, CONTEXTID

Usage list USAGELISTSCHEMA, USAGELISTNAME, USAGELISTID

Work action ACTIONNAME, ACTIONID

Work action set ACTIONSETNAME, ACTIONSETID

Work class WORKCLASSNAME, WORKCLASSID

Work class set WORKCLASSSETNAME, WORKCLASSSETID

Workload WORKLOADID, WORKLOADNAME

Wrapper WRAPNAME

Alteration
Timestamp

ALTER_TIME

Creation
Timestamp

CREATE_TIME

Road map to the catalog views
This topic lists the catalog views, grouped by object or functionality.

Table 156. Road map to the read-only catalog views

Description Catalog View

attributes of structured data types “SYSCAT.ATTRIBUTES ” on page 1934

audit policies “SYSCAT.AUDITPOLICIES ” on page 1936
“SYSCAT.AUDITUSE ” on page 1938

authorities on database “SYSCAT.DBAUTH ” on page 1967

buffer pool configuration on database
partition group

“SYSCAT.BUFFERPOOLS ” on page 1939

buffer pool size exceptions for
database partitions

“SYSCAT.BUFFERPOOLDBPARTITIONS ” on page 1938

buffer pool size exceptions for
members

“SYSCAT.BUFFERPOOLEXCEPTIONS ” on page 1939

cast functions “SYSCAT.CASTFUNCTIONS ” on page 1940

check constraints “SYSCAT.CHECKS ” on page 1941

column masks “SYSCAT.CONTROLS ” on page 1957

column mask dependences “SYSCAT.CONTROLDEP ” on page 1956

column privileges “SYSCAT.COLAUTH ” on page 1942

columns “SYSCAT.COLUMNS ” on page 1947

columns referenced by check
constraints

“SYSCAT.COLCHECKS ” on page 1943

columns used in dimensions “SYSCAT.COLUSE ” on page 1953

Chapter 1. Structured Query Language (SQL) 1929

Table 156. Road map to the read-only catalog views (continued)

Description Catalog View

columns used in keys “SYSCAT.KEYCOLUSE ” on page 2001

conditions “SYSCAT.CONDITIONS ” on page 1954

constraint dependencies “SYSCAT.CONSTDEP ” on page 1954

controls “SYSCAT.CONTROLS ” on page 1957

database partition group database
partitions

“SYSCAT.DBPARTITIONGROUPDEF ” on page 1969

database partition group definitions “SYSCAT.DBPARTITIONGROUPS ” on page 1970

data partitions “SYSCAT.DATAPARTITIONEXPRESSION ” on page 1959
“SYSCAT.DATAPARTITIONS ” on page 1959

data type dependencies “SYSCAT.DATATYPEDEP ” on page 1962

data types “SYSCAT.DATATYPES ” on page 1963

detailed column group statistics “SYSCAT.COLGROUPCOLS ” on page 1944
“SYSCAT.COLGROUPDIST ” on page 1945
“SYSCAT.COLGROUPDISTCOUNTS ” on page 1945
“SYSCAT.COLGROUPS ” on page 1946

detailed column options “SYSCAT.COLOPTIONS ” on page 1947

detailed column statistics “SYSCAT.COLDIST ” on page 1943

distribution maps “SYSCAT.PARTITIONMAPS ” on page 2020

event monitor definitions “SYSCAT.EVENTMONITORS ” on page 1971

events currently monitored “SYSCAT.EVENTS ” on page 1973
“SYSCAT.EVENTTABLES ” on page 1973

external tables “SYSCAT.EXTERNALTABLEOPTIONS ” on page 1975

fields of row data types “SYSCAT.ROWFIELDS ” on page 2043

function dependencies1 “SYSCAT.ROUTINEDEP ” on page 2025

function mapping “SYSCAT.FUNCMAPPINGS ” on page 1978

function mapping options “SYSCAT.FUNCMAPOPTIONS ” on page 1978

function parameter mapping options “SYSCAT.FUNCMAPPARMOPTIONS ” on page 1978

function parameters1 “SYSCAT.ROUTINEPARMS ” on page 2028

functions1 “SYSCAT.ROUTINES ” on page 2030

global variables “SYSCAT.VARIABLEAUTH ” on page 2092
“SYSCAT.VARIABLEDEP ” on page 2093
“SYSCAT.VARIABLES ” on page 2094

hierarchies (types, tables, views) “SYSCAT.HIERARCHIES ” on page 1979
“SYSCAT.FULLHIERARCHIES ” on page 1977

identity columns “SYSCAT.COLIDENTATTRIBUTES ” on page 1946

index columns “SYSCAT.INDEXCOLUSE ” on page 1982

index data partitions “SYSCAT.INDEXPARTITIONS ” on page 1996

1930 IBM Db2 V11.5: SQL Reference

Table 156. Road map to the read-only catalog views (continued)

Description Catalog View

index dependencies “SYSCAT.INDEXDEP ” on page 1983

index exploitation “SYSCAT.INDEXEXPLOITRULES ” on page 1992

index extension dependencies “SYSCAT.INDEXEXTENSIONDEP ” on page 1993

index extension parameters “SYSCAT.INDEXEXTENSIONPARMS ” on page 1994

index extension search methods “SYSCAT.INDEXEXTENSIONMETHODS ” on page 1994

index extensions “SYSCAT.INDEXEXTENSIONS ” on page 1995

index options “SYSCAT.INDEXOPTIONS ” on page 1996

index privileges “SYSCAT.INDEXAUTH ” on page 1981

indexes “SYSCAT.INDEXES ” on page 1985

invalid objects “SYSCAT.INVALIDOBJECTS ” on page 2000

member susbsets “SYSCAT.MEMBERSUBSETATTRS ” on page 2001
“SYSCAT.MEMBERSUBSETMEMBERS ” on page 2002
“SYSCAT.MEMBERSUBSETS ” on page 2002

method dependencies1 “SYSCAT.ROUTINEDEP ” on page 2025

method parameters1 “SYSCAT.ROUTINES ” on page 2030

methods1 “SYSCAT.ROUTINES ” on page 2030

module objects “SYSCAT.MODULEOBJECTS ” on page 2003

module privileges “SYSCAT.MODULEAUTH ” on page 2003

modules “SYSCAT.MODULES ” on page 2004

nicknames “SYSCAT.NICKNAMES ” on page 2005

object mapping “SYSCAT.NAMEMAPPINGS ” on page 2005

package dependencies “SYSCAT.PACKAGEDEP ” on page 2009

package privileges “SYSCAT.PACKAGEAUTH ” on page 2008

packages “SYSCAT.PACKAGES ” on page 2011

partitioned tables “SYSCAT.TABDETACHEDDEP ” on page 2066

pass-through privileges “SYSCAT.PASSTHRUAUTH ” on page 2021

periods “SYSCAT.PERIODS ” on page 2021

predicate specifications “SYSCAT.PREDICATESPECS ” on page 2021

procedure options “SYSCAT.ROUTINEOPTIONS ” on page 2027

procedure parameter options “SYSCAT.ROUTINEPARMOPTIONS ” on page 2027

procedure parameters1 “SYSCAT.ROUTINEPARMS ” on page 2028

procedures1 “SYSCAT.ROUTINES ” on page 2030

Chapter 1. Structured Query Language (SQL) 1931

Table 156. Road map to the read-only catalog views (continued)

Description Catalog View

protected tables “SYSCAT.SECURITYLABELACCESS ” on page 2048
“SYSCAT.SECURITYLABELCOMPONENTELEMENTS ” on page 2049
“SYSCAT.SECURITYLABELCOMPONENTS ” on page 2049
“SYSCAT.SECURITYLABELS ” on page 2049
“SYSCAT.SECURITYPOLICIES ” on page 2050
“SYSCAT.SECURITYPOLICYCOMPONENTRULES ” on page 2051
“SYSCAT.SECURITYPOLICYEXEMPTIONS ” on page 2051
“SYSCAT.SURROGATEAUTHIDS ” on page 2061

provides Db2 for z/OS compatibility “SYSIBM.SYSDUMMY1 ” on page 2114

referential constraints “SYSCAT.REFERENCES ” on page 2022

remote table options “SYSCAT.TABOPTIONS ” on page 2078

roles “SYSCAT.ROLEAUTH ” on page 2023
“SYSCAT.ROLES ” on page 2023

routine dependencies “SYSCAT.ROUTINEDEP ” on page 2025

routine parameters1 “SYSCAT.ROUTINEPARMS ” on page 2028

routine privileges “SYSCAT.ROUTINEAUTH ” on page 2024

routines1 “SYSCAT.ROUTINES ” on page 2030
“SYSCAT.ROUTINESFEDERATED ” on page 2041

row permisssions “SYSCAT.CONTROLS ” on page 1957

row permission dependeencies “SYSCAT.CONTROLDEP ” on page 1956

schema privileges “SYSCAT.SCHEMAAUTH ” on page 2044

schemas “SYSCAT.SCHEMATA ” on page 2046

sequence privileges “SYSCAT.SEQUENCEAUTH ” on page 2052

sequences “SYSCAT.SEQUENCES ” on page 2052

server options “SYSCAT.SERVEROPTIONS ” on page 2055

server-specific user options “SYSCAT.USEROPTIONS ” on page 2091

statements “SYSCAT.STATEMENTS ” on page 2059
“SYSCAT.STATEMENTTEXTS ” on page 2060

storage groups “SYSCAT.STOGROUPS ” on page 2060

procedures “SYSCAT.ROUTINES ” on page 2030

system servers “SYSCAT.SERVERS ” on page 2055

table constraints “SYSCAT.TABCONST ” on page 2063

table dependencies “SYSCAT.TABDEP ” on page 2064

table privileges “SYSCAT.TABAUTH ” on page 2061

table space use privileges “SYSCAT.TBSPACEAUTH ” on page 2079

table spaces “SYSCAT.TABLESPACES ” on page 2076

tables “SYSCAT.TABLES ” on page 2066

transforms “SYSCAT.TRANSFORMS ” on page 2082

1932 IBM Db2 V11.5: SQL Reference

Table 156. Road map to the read-only catalog views (continued)

Description Catalog View

trigger dependencies “SYSCAT.TRIGDEP ” on page 2083

triggers “SYSCAT.TRIGGERS ” on page 2085

trusted contexts “SYSCAT.CONTEXTATTRIBUTES ” on page 1955
“SYSCAT.CONTEXTS ” on page 1955

type mapping “SYSCAT.TYPEMAPPINGS ” on page 2087

usage lists “SYSCAT.USAGELISTS ” on page 2091

user-defined functions “SYSCAT.ROUTINES ” on page 2030

view dependencies “SYSCAT.TABDEP ” on page 2064

views “SYSCAT.TABLES ” on page 2066
“SYSCAT.VIEWS ” on page 2096

workload management “SYSCAT.HISTOGRAMTEMPLATEBINS ” on page 1980
“SYSCAT.HISTOGRAMTEMPLATES ” on page 1980
“SYSCAT.HISTOGRAMTEMPLATEUSE ” on page 1981
“SYSCAT.SCPREFTBSPACES ” on page 2047
“SYSCAT.SERVICECLASSES ” on page 2055
“SYSCAT.THRESHOLDS ” on page 2079
“SYSCAT.WORKACTIONS ” on page 2097
“SYSCAT.WORKACTIONSETS ” on page 2100
“SYSCAT.WORKCLASSATTRIBUTES ” on page 2101
“SYSCAT.WORKCLASSES ” on page 2103
“SYSCAT.WORKCLASSSETS ” on page 2103
“SYSCAT.WORKLOADAUTH ” on page 2103
“SYSCAT.WORKLOADCONNATTR ” on page 2104
“SYSCAT.WORKLOADS ” on page 2104

wrapper options “SYSCAT.WRAPOPTIONS ” on page 2108

wrappers “SYSCAT.WRAPPERS ” on page 2108

XML strings “SYSCAT.XMLSTRINGS ” on page 2109

Index on XML column “SYSCAT.INDEXXMLPATTERNS ” on page 1999

XSR objects “SYSCAT.XDBMAPGRAPHS ” on page 2109
“SYSCAT.XDBMAPSHREDTREES ” on page 2109
“SYSCAT.XSROBJECTAUTH ” on page 2110
“SYSCAT.XSROBJECTCOMPONENTS ” on page 2110
“SYSCAT.XSROBJECTDEP ” on page 2111
“SYSCAT.XSROBJECTDETAILS ” on page 2112
“SYSCAT.XSROBJECTHIERARCHIES ” on page 2112
“SYSCAT.XSROBJECTS ” on page 2113

1 The following catalog views for functions, methods, and procedures defined in Db2 Version 7.1 and
earlier are still available:

 Functions: SYSCAT.FUNCTIONS, SYSCAT.FUNCDEP, SYSCAT.FUNCPARMS
 Methods: SYSCAT.FUNCTIONS, SYSCAT.FUNCDEP, SYSCAT.FUNCPARMS
 Procedures: SYSCAT.PROCEDURES, SYSCAT.PROCPARMS

However, these views have not been updated since Db2 Version 7.1. Use the SYSCAT.ROUTINES,
SYSCAT.ROUTINEDEP, or SYSCAT.ROUTINEPARMS catalog view instead.

Chapter 1. Structured Query Language (SQL) 1933

Table 157. Road map to the updatable catalog views

Description Catalog View

columns “SYSSTAT.COLUMNS ” on page 2116

detailed column group statistics “SYSSTAT.COLGROUPDIST ” on page 2115
“SYSSTAT.COLGROUPDISTCOUNTS ” on page 2115
“SYSSTAT.COLGROUPS ” on page 2116

detailed column statistics “SYSSTAT.COLDIST ” on page 2114

indexes “SYSSTAT.INDEXES ” on page 2118

routines1 “SYSSTAT.ROUTINES ” on page 2122

tables “SYSSTAT.TABLES ” on page 2123

1 The SYSSTAT.FUNCTIONS catalog view still exists for updating the statistics for functions and methods.
This view, however, does not reflect any changes since Db2 Version 7.1.

SYSCAT.ATTRIBUTES
Each row represents an attribute that is defined for a user-defined structured data type. Includes
inherited attributes of subtypes.

Table 158. SYSCAT.ATTRIBUTES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the structured data type
that includes the attribute.

TYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the structured data type belongs. The null
value if not a module structured data type.

TYPENAME VARCHAR (128) Unqualified name of the structured data
type that includes the attribute.

ATTR_NAME VARCHAR (128) Attribute name.

ATTR_TYPESCHEMA VARCHAR (128) Schema name of the data type of an
attribute.

ATTR_TYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the data type of an attribute belongs. The
null value if not a module attribute.

ATTR_TYPENAME VARCHAR (128) Unqualified name of the data type of an
attribute.

TARGET_TYPESCHEMA VARCHAR (128) Y Schema name of the target row type.
Applies to reference types only; null value
otherwise.

TARGET_TYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the target row type belongs. The null
value if not a module row type. Applies to
reference types only; null value otherwise.

TARGET_TYPENAME VARCHAR (128) Y Unqualified name of the target row type.
Applies to reference types only; null value
otherwise.

1934 IBM Db2 V11.5: SQL Reference

Table 158. SYSCAT.ATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

SOURCE_TYPESCHEMA VARCHAR (128) For inherited attributes, the schema name
of the data type with which the attribute
was first defined. For non-inherited
attributes, this column is the same as
TYPESCHEMA.

SOURCE_TYPEMODULENAME VARCHAR (128) Y For inherited attributes, the unqualified
name of the module to which the data type
with which the attribute was first defined
belongs. For non-inherited attributes, this
column is the same as TYPEMODULEID.
The null value if not a module data type.

SOURCE_TYPENAME VARCHAR (128) For inherited attributes, the unqualified
name of the data type with which
the attribute was first defined. For non-
inherited attributes, this column is the
same as TYPENAME.

ORDINAL SMALLINT Position of the attribute in the definition of
the structured data type, starting with 0.

LENGTH INTEGER Length of the attribute data type. 0 if the
attribute is a user-defined type.

SCALE SMALLINT Scale if the attribute data type is DECIMAL
or distinct type based on DECIMAL; the
number of digits of fractional seconds
if the attribute data type is TIMESTAMP
or distinct type based on TIMESTAMP; 0
otherwise.

TYPESTRINGUNITS VARCHAR (11) Y In a Unicode database, the string units that
apply to a character string or graphic string
data type. Otherwise, the null value.

STRINGUNITSLENGTH INTEGER Y In a Unicode database, the declared
number of string units for a character string
or graphic string data type. Otherwise, the
null value.

CODEPAGE SMALLINT For string types, denotes the code page; 0
indicates FOR BIT DATA; 0 for non-string
types.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the attribute; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of
the collation for the attribute; the null value
otherwise.

LOGGED CHAR (1) Applies to LOB types only; blank otherwise.

• N = Changes are not logged
• Y = Changes are logged

Chapter 1. Structured Query Language (SQL) 1935

Table 158. SYSCAT.ATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

COMPACT CHAR (1) Applies to LOB types only; blank otherwise.

• N = Stored in non-compact format
• Y = Stored in compact format

DL_FEATURES CHAR (10) This column is no longer used and will be
removed in a future release.

JAVA_FIELDNAME VARCHAR (256) Y Reserved for future use.

ENVSTRINGUNITS VARCHAR (11) Default string units when the object was
created.

SYSCAT.AUDITPOLICIES
Each row represents an audit policy.

Table 159. SYSCAT.AUDITPOLICIES Catalog View

Column Name Data Type Nullable Description

AUDITPOLICYNAME VARCHAR (128) Name of the audit policy.

AUDITPOLICYID INTEGER Identifier for the audit policy.

CREATE_TIME TIMESTAMP Time at which the audit policy was created.

ALTER_TIME TIMESTAMP Time at which the audit policy was last
altered.

AUDITSTATUS CHAR (1) Status for the AUDIT category.

• B = Both
• F = Failure
• N = None
• S = Success

CONTEXTSTATUS CHAR (1) Status for the CONTEXT category.

• B = Both
• F = Failure
• N = None
• S = Success

VALIDATESTATUS CHAR (1) Status for the VALIDATE category.

• B = Both
• F = Failure
• N = None
• S = Success

1936 IBM Db2 V11.5: SQL Reference

Table 159. SYSCAT.AUDITPOLICIES Catalog View (continued)

Column Name Data Type Nullable Description

CHECKINGSTATUS CHAR (1) Status for the CHECKING category.

• B = Both
• F = Failure
• N = None
• S = Success

SECMAINTSTATUS CHAR (1) Status for the SECMAINT category.

• B = Both
• F = Failure
• N = None
• S = Success

OBJMAINTSTATUS CHAR (1) Status for the OBJMAINT category.

• B = Both
• F = Failure
• N = None
• S = Success

SYSADMINSTATUS CHAR (1) Status for the SYSADMIN category.

• B = Both
• F = Failure
• N = None
• S = Success

EXECUTESTATUS CHAR (1) Status for the EXECUTE category.

• B = Both
• F = Failure
• N = None
• S = Success

EXECUTEWITHDATA CHAR (1) Host variables and parameter markers
logged with EXECUTE category.

• N = No
• Y = Yes

ERRORTYPE CHAR (1) The audit error type.

• A = Audit
• N = Normal

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Chapter 1. Structured Query Language (SQL) 1937

SYSCAT.AUDITUSE
Each row represents an audit policy that is associated with an object.

Table 160. SYSCAT.AUDITUSE Catalog View

Column Name Data Type Nullable Description

AUDITPOLICYNAME VARCHAR (128) Name of the audit policy.

AUDITPOLICYID INTEGER Identifier for the audit policy.

OBJECTTYPE CHAR (1) The type of object with which this audit
policy is associated.

• S = MQT
• T = Table
• g = Authority
• i = Authorization ID
• x = Trusted context
• Blank = Database

SUBOBJECTTYPE CHAR (1) If OBJECTTYPE is 'i', this is the type that
the authorization ID represents.

• G = Group
• R = Role
• U = User
• Blank = Not applicable

OBJECTSCHEMA VARCHAR (128) Schema name of the object for which the
audit policy is in use. OBJECTSCHEMA is
null if OBJECTTYPE identifies an object to
which a schema does not apply.

OBJECTNAME VARCHAR (128) Unqualified name of the object for which
this audit policy is in use.

AUDITEXCEPTIONENABLED CHAR (1) Reserved for future use.

SYSCAT.BUFFERPOOLDBPARTITIONS
Each row represents a combination of a buffer pool and a member, in which the size of the buffer pool on
that member is different from its default size for other members in the same database partition group (as
represented in SYSCAT.BUFFERPOOLS).

Table 161. SYSCAT.BUFFERPOOLDBPARTITIONS Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier.

DBPARTITIONNUM SMALLINT Member number.

NPAGES INTEGER Number of pages in this buffer pool on this
member.

1938 IBM Db2 V11.5: SQL Reference

SYSCAT.BUFFERPOOLEXCEPTIONS
Each row represents a combination of a buffer pool and a member, in which the size of the buffer pool on
that member is different from its default size for other members in the same database partition group (as
represented in SYSBUFFERPOOLS).

Table 162. SYSCAT.BUFFERPOOLEXCEPTIONS Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier.

MEMBER SMALLINT Member number.

NPAGES INTEGER The number of pages in this buffer pool on
this member.

SYSCAT.BUFFERPOOLS
Each row represents the configuration of a buffer pool on one database partition group of a database, or
on all database partitions of a database.

Table 163. SYSCAT.BUFFERPOOLS Catalog View

Column Name Data Type Nullable Description

BPNAME VARCHAR (128) Name of the buffer pool.

BUFFERPOOLID INTEGER Identifier for the buffer pool.

DBPGNAME VARCHAR (128) Y Name of the database partition group (the
null value if the buffer pool exists on all
database partitions in the database).

NPAGES INTEGER Default number of pages in this buffer
pool on database partitions in this
database partition group. -1(Computed)
and -2(Automatic).

PAGESIZE INTEGER Page size for this buffer pool on database
partitions in this database partition group.

ESTORE INTEGER Always 'N'. Extended storage no longer
applies.

NUMBLOCKPAGES INTEGER Number of pages of the buffer pool that
are to be in a block-based area. A block-
based area of the buffer pool is only used
by prefetchers doing a sequential prefetch.

BLOCKSIZE INTEGER Number of pages in a block.

NGNAME1 VARCHAR (128) Y Name of the database partition group (the
null value if the buffer pool exists on all
database partitions in the database).

Note:

1. The NGNAME column is included for backwards compatibility. See DBPGNAME.

Chapter 1. Structured Query Language (SQL) 1939

SYSCAT.CASTFUNCTIONS
Each row represents a cast function, not including built-in cast functions.

Table 164. SYSCAT.CASTFUNCTIONS Catalog View

Column Name Data Type Nullable Description

FROM_TYPESCHEMA VARCHAR (128) Schema name of the data type of the
parameter.

FROM_TYPEMODULENAME VARCHAR (128) Unqualified name of the module to which
the data type of the parameter belongs.
The null value if not a module data type.

FROM_TYPENAME VARCHAR (128) Name of the data type of the parameter.

FROM_TYPEMODULEID INTEGER Y Identifier for the module to which the data
type of the parameter belongs. The null
value if not a module data type.

TO_TYPESCHEMA VARCHAR (128) Schema name of the data type of the result
after casting.

TO_TYPEMODULENAME VARCHAR (128) Unqualified name of the module to which
the data type of the result after casting
belongs. The null value if not a module data
type.

TO_TYPENAME VARCHAR (128) Name of the data type of the result after
casting.

TO_TYPEMODULEID INTEGER Y Identifier for the module to which the data
type of the result after casting belongs. The
null value if not a module data type.

FUNCSCHEMA VARCHAR (128) Schema name of the function.

FUNCMODULENAME VARCHAR (128) Unqualified name of the module to which
the function belongs. The null value if not a
module function.

FUNCNAME VARCHAR (128) Unqualified name of the function.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

FUNCMODULEID INTEGER Y Identifier for the module to which the
function belongs. The null value if not a
module function.

ASSIGN_FUNCTION CHAR (1) • N = Not an assignment function
• Y = Implicit assignment function

1940 IBM Db2 V11.5: SQL Reference

SYSCAT.CHECKS
Each row represents a check constraint or a derived column in a materialized query table. For table
hierarchies, each check constraint is recorded only at the level of the hierarchy where the constraint was
created.

Table 165. SYSCAT.CHECKS Catalog View

Column Name Data Type Nullabl
e

Description

CONSTNAME VARCHAR (128) Name of the check constraint.

OWNER VARCHAR (128) Authorization ID of the owner of the
constraint.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table to which
this constraint applies.

TABNAME VARCHAR (128) Name of the table to which this
constraint applies.

CREATE_TIME TIMESTAMP Time at which the constraint was
defined. Used in resolving functions
that are part of this constraint.
Functions that were created after
the constraint was defined are not
chosen.

QUALIFIER VARCHAR (128) Value of the default schema at
the time of object definition.
Used to complete any unqualified
references.

TYPE CHAR (1) Type of check constraint:

• C = Check constraint
• F = Functional dependency
• O = Constraint is an object

property
• S = System-generated check

constraint for a GENERATED
ALWAYS column

FUNC_PATH CLOB (2K) SQL path in effect when the
constraint was defined.

TEXT CLOB (2M) Text of the check condition or
definition of the derived column.1

PERCENTVALID SMALLINT Number of rows for which the
informational constraint is valid,
expressed as a percentage of the
total.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the
constraint.

Chapter 1. Structured Query Language (SQL) 1941

Table 165. SYSCAT.CHECKS Catalog View (continued)

Column Name Data Type Nullabl
e

Description

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for
the constraint.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for
ORDER BY clauses in the constraint.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for
ORDER BY clauses in the constraint.

DEFINER2 VARCHAR (128) Authorization ID of the owner of the
constraint.

ENVSTRINGUNITS VARCHAR (11) Default string units when the object
was created.

Note:

1. In the catalog view, the text of the check condition is always shown in the database code page and can
contain substitution characters. The check constraint will always be applied in the code page of the target
table, and will not contain any substitution characters when applied. (The check constraint will be applied
based on the original text in the code page of the target table, which might not include the substitution
characters.)

2. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.COLAUTH
Each row represents a user, group, or role that has been granted one or more privileges on a column.

Table 166. SYSCAT.COLAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or view on which
the privilege is held.

TABNAME VARCHAR (128) Unqualified name of the table or view on
which the privilege is held.

COLNAME VARCHAR (128) Name of the column to which this privilege
applies.

COLNO SMALLINT Column number of this column within the
table (starting with 0).

1942 IBM Db2 V11.5: SQL Reference

Table 166. SYSCAT.COLAUTH Catalog View (continued)

Column Name Data Type Nullable Description

PRIVTYPE CHAR (1) • R = Reference privilege
• U = Update privilege

GRANTABLE CHAR (1) • G = Privilege is grantable
• N = Privilege is not grantable

Note:

1. Privileges can be granted by column, but can be revoked only on a table-wide basis.

SYSCAT.COLCHECKS
Each row represents a column that is referenced by a check constraint or by the definition of a
materialized query table. For table hierarchies, each check constraint is recorded only at the level of
the hierarchy where the constraint was created.

Table 167. SYSCAT.COLCHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the check constraint.

TABSCHEMA VARCHAR (128) Schema name of the table containing the
referenced column.

TABNAME VARCHAR (128) Unqualified name of the table containing
the referenced column.

COLNAME VARCHAR (128) Name of the column.

USAGE CHAR (1) • D = Column is the child in a functional
dependency

• P = Column is the parent in a functional
dependency

• R = Column is referenced in the check
constraint

• S = Column is a source in the system-
generated column check constraint that
supports a materialized query table

• T = Column is a target in the system-
generated column check constraint that
supports a materialized query table

SYSCAT.COLDIST
Each row represents the nth most frequent value of some column, or the nth quantile (cumulative
distribution) value of the column. Applies to columns of real tables only (not views). No statistics are
recorded for inherited columns of typed tables.

Table 168. SYSCAT.COLDIST Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table to which the
statistics apply.

Chapter 1. Structured Query Language (SQL) 1943

Table 168. SYSCAT.COLDIST Catalog View (continued)

Column Name Data Type Nullable Description

TABNAME VARCHAR (128) Unqualified name of the table to which the
statistics apply.

COLNAME VARCHAR (128) Name of the column to which the statistics
apply.

TYPE CHAR (1) • F = Frequency value
• Q = Quantile value

SEQNO SMALLINT If TYPE = "F", n in this column identifies
the nth most frequent value. If TYPE = "Q",
n in this column identifies the nth quantile
value.

COLVALUE1 VARCHAR (254) Y Data value as a character literal or a null
value.

VALCOUNT2 BIGINT If TYPE = "F", VALCOUNT is the number of
occurrences of COLVALUE in the column. If
TYPE = "Q", VALCOUNT is the number of
rows whose value is less than or equal to
COLVALUE.

DISTCOUNT3 BIGINT Y If TYPE = "Q", this column records the
number of distinct values that are less than
or equal to COLVALUE (the null value if
unavailable).

Note:

1. In the catalog view, the value of COLVALUE is always shown in the database code page and can contain
substitution characters. However, the statistics are gathered internally in the code page of the column's
table, and will therefore use actual column values when applied during query optimization.

2. VALCOUNT is estimated, regardless of the sampling method that is used for collecting statistics. VALCOUNT
might not be estimated if the given column is a leading column of an index that is defined on the table.

3. DISTCOUNT is collected only for columns that are the first key column in an index.

SYSCAT.COLGROUPCOLS
Each row represents a column that makes up a column group.

Table 169. SYSCAT.COLGROUPCOLS Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Identifier for the column group.

COLNAME VARCHAR (128) Name of the column in the column group.

TABSCHEMA VARCHAR (128) Schema name of the table for the column in
the column group.

TABNAME VARCHAR (128) Unqualified name of the table for the
column in the column group.

ORDINAL SMALLINT Ordinal number of the column in the
column group.

1944 IBM Db2 V11.5: SQL Reference

SYSCAT.COLGROUPDIST
Each row represents the value of the column in a column group that makes up the nth most frequent
value of the column group or the nth quantile value of the column group.

Table 170. SYSCAT.COLGROUPDIST Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) • F = Frequency value
• Q = Quantile value

ORDINAL SMALLINT Ordinal number of the column in the
column group.

SEQNO SMALLINT If TYPE = 'F', n in this column identifies the
nth most frequent value. If TYPE = 'Q', n
in this column identifies the nth quantile
value.

COLVALUE1 VARCHAR (254) Data value as a character literal or a null
value.

Note:

1. In the catalog view, the value of COLVALUE is always shown in the database code page and can contain
substitution characters. However, the statistics are gathered internally in the code page of the column's
table, and will therefore use actual column values when applied during query optimization.

SYSCAT.COLGROUPDISTCOUNTS
Each row represents the distribution statistics that apply to the nth most frequent value of a column group
or the nth quantile of a column group.

Table 171. SYSCAT.COLGROUPDISTCOUNTS Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) • F = Frequency value
• Q = Quantile value

SEQNO SMALLINT Sequence number n representing the nth
TYPE value.

VALCOUNT BIGINT If TYPE = "F", VALCOUNT is the number of
occurrences of COLVALUE for the column
group with this SEQNO. If TYPE = "Q",
VALCOUNT is the number of rows whose
value is less than or equal to COLVALUE for
the column group with this SEQNO.

DISTCOUNT BIGINT If TYPE = "Q", this column records the
number of distinct values that are less
than or equal to COLVALUE for the column
group with this SEQNO (the null value if
unavailable).

Chapter 1. Structured Query Language (SQL) 1945

SYSCAT.COLGROUPS
Each row represents a column group and statistics that apply to the entire column group.

Table 172. SYSCAT.COLGROUPS Catalog View

Column Name Data Type Nullable Description

COLGROUPSCHEMA VARCHAR (128) Schema name of the column group.

COLGROUPNAME VARCHAR (128) Unqualified name of the column group.

COLGROUPID INTEGER Identifier for the column group.

COLGROUPCARD BIGINT Cardinality of the column group.

NUMFREQ_VALUES SMALLINT Number of frequent values collected for the
column group.

NUMQUANTILES SMALLINT Number of quantiles collected for the
column group.

SYSCAT.COLIDENTATTRIBUTES
Each row represents an identity column that is defined for a table.

Table 173. SYSCAT.COLIDENTATTRIBUTES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table or view that
contains the column.

TABNAME VARCHAR (128) Unqualified name of the table or view that
contains the column.

COLNAME VARCHAR (128) Name of the column.

START DECIMAL (31,0) Y Start value of the sequence. The null value
if the sequence is an alias.

INCREMENT DECIMAL (31,0) Y Increment value. The null value if the
sequence is an alias.

MINVALUE DECIMAL (31,0) Y Minimum value of the sequence. The null
value if the sequence is an alias.

MAXVALUE DECIMAL (31,0) Y Maximum value of the sequence. The null
value if the sequence is an alias.

CYCLE CHAR (1) Indicates whether or not the sequence can
continue to generate values after reaching
its maximum or minimum value.

• N = Sequence cannot cycle
• Y = Sequence can cycle
• Blank = Sequence is an alias.

CACHE INTEGER Number of sequence values to pre-allocate
in memory for faster access. 0 indicates
that values of the sequence are not to
be preallocated. In a partitioned database,
this value applies to each database
partition. -1 if the sequence is an alias.

1946 IBM Db2 V11.5: SQL Reference

Table 173. SYSCAT.COLIDENTATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

ORDER CHAR (1) Indicates whether or not the sequence
numbers must be generated in order of
request.

• N = Sequence numbers are not required
to be generated in order of request

• Y = Sequence numbers must be
generated in order of request

• Blank = Sequence is an alias.

NEXTCACHEFIRSTVALUE DECIMAL (31,0) Y The first value available to be assigned in
the next cache block. If no caching, the
next value available to be assigned.

SEQID INTEGER Identifier for the sequence or alias.

SYSCAT.COLOPTIONS
Each row contains column-specific option values.

Table 174. SYSCAT.COLOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the nickname.

TABNAME VARCHAR (128) Nickname for the column for which options
are set.

COLNAME VARCHAR (128) Local column name.

OPTION VARCHAR (128) Name of the column option.

SETTING CLOB (32K) Value.

SYSCAT.COLUMNS
Each row represents a column defined for a table, view, or nickname.

Table 175. SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table, view, or
nickname that contains the column.

TABNAME VARCHAR (128) Unqualified name of the table, view, or
nickname that contains the column.

COLNAME VARCHAR (128) Name of the column.

COLNO SMALLINT Number of this column in the table (starting
with 0).

TYPESCHEMA VARCHAR (128) Schema name of the data type for the
column.

TYPENAME VARCHAR (128) Unqualified name of the data type for the
column.

Chapter 1. Structured Query Language (SQL) 1947

Table 175. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

LENGTH INTEGER Maximum length of the data; 0 for distinct
types. The LENGTH column indicates
precision for DECIMAL fields, and indicates
the number of bytes of storage required
for decimal floating-point columns; that
is, 8 and 16 for DECFLOAT(16) and
DECFLOAT(34), respectively.

SCALE SMALLINT Scale if the column type is DECIMAL or
number of digits of fractional seconds if the
column type is TIMESTAMP; 0 otherwise.

TYPESTRINGUNITS VARCHAR (11) Y In a Unicode database, the string units that
apply to a character string or graphic string
data type. Otherwise, the null value.

STRINGUNITSLENGTH INTEGER Y In a Unicode database, the declared
number of string units for a character string
or graphic string data type. Otherwise, the
null value.

DEFAULT CLOB (64K) Y Default value for the column of a table
expressed as a constant, special register, or
cast-function appropriate for the data type
of the column. Can also be the keyword
NULL. Values might be converted from
what was specified as a default value.
For example, date and time constants are
shown in ISO format, cast-function names
are qualified with schema names, and
identifiers are delimited. Null value if a
DEFAULT clause was not specified or the
column is a view column.

NULLS CHAR (1) Nullability attribute for the column.

• N = Column is not nullable
• Y = Column is nullable

The value can be "N" for a view column that
is derived from an expression or function.
Nevertheless, such a column allows null
values when the statement using the view
is processed with warnings for arithmetic
errors.

CODEPAGE SMALLINT Code page used for data in this column; 0 if
the column is defined as FOR BIT DATA or
is not a string type.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the column; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of
the collation for the column; the null value
otherwise.

1948 IBM Db2 V11.5: SQL Reference

Table 175. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

LOGGED CHAR (1) Applies only to columns whose type is LOB
or distinct based on LOB; blank otherwise.

• N = Column is not logged
• Y = Column is logged

COMPACT CHAR (1) Applies only to columns whose type is LOB
or distinct based on LOB; blank otherwise.

• N = Column is not compacted
• Y = Column is compacted in storage

COLCARD BIGINT Number of distinct values in the column;
-1 if statistics are not collected; -2
for inherited columns and columns of
hierarchy tables.

HIGH2KEY1 VARCHAR (254) Y Second-highest data value. Representation
of numeric data changed to character
literals. Empty if statistics are not
collected. Empty for inherited columns and
columns of hierarchy tables.

LOW2KEY1 VARCHAR (254) Y Second-lowest data value. Representation
of numeric data changed to character
literals. Empty if statistics are not
collected. Empty for inherited columns and
columns of hierarchy tables.

AVGCOLLEN INTEGER Average space in bytes when the column
is stored in database memory or a
temporary table. For LOB data types that
are not inlined, LONG data types, and XML
documents, the value used to calculate the
average column length is the length of the
data descriptor. An extra byte is required
if the column is nullable; -1 if statistics
have not been collected; -2 for inherited
columns and columns of hierarchy tables.
Note: The average space required to store
the column on disk may be different than
the value represented by this statistic.

KEYSEQ SMALLINT Y The column's numerical position within
the table's primary key. The null value for
columns of subtables and hierarchy tables.

PARTKEYSEQ SMALLINT Y The column's numerical position within the
table's distribution key; 0 or the null value
if the column is not in the distribution key.
The null value for columns of subtables and
hierarchy tables.

NQUANTILES SMALLINT Number of quantile values recorded in
SYSCAT.COLDIST for this column; -1 if
statistics are not gathered; -2 for inherited
columns and columns of hierarchy tables.

Chapter 1. Structured Query Language (SQL) 1949

Table 175. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

NMOSTFREQ SMALLINT Number of most-frequent values recorded
in SYSCAT.COLDIST for this column; -1 if
statistics are not gathered; -2 for inherited
columns and columns of hierarchy tables.

NUMNULLS BIGINT Number of null values in the column; -1 if
statistics are not collected.

TARGET_TYPESCHEMA VARCHAR (128) Y Schema name of the target row type, if
the type of this column is REFERENCE; null
value otherwise.

TARGET_TYPENAME VARCHAR (128) Y Unqualified name of the target row type, if
the type of this column is REFERENCE; null
value otherwise.

SCOPE_TABSCHEMA VARCHAR (128) Y Schema name of the scope (target table), if
the type of this column is REFERENCE; null
value otherwise.

SCOPE_TABNAME VARCHAR (128) Y Unqualified name of the scope (target
table), if the type of this column is
REFERENCE; null value otherwise.

SOURCE_TABSCHEMA VARCHAR (128) Y For columns of typed tables or views, the
schema name of the table or view in which
the column was first introduced. For non-
inherited columns, this is the same as
TABSCHEMA. The null value for columns of
non-typed tables and views.

SOURCE_TABNAME VARCHAR (128) Y For columns of typed tables or views, the
unqualified name of the table or view in
which the column was first introduced. For
non-inherited columns, this is the same as
TABNAME. The null value for columns of
non-typed tables and views.

DL_FEATURES CHAR (10) Y This column is no longer used and will be
removed in a future release.

SPECIAL_PROPS CHAR (8) Y Applies to REFERENCE type columns only;
blanks otherwise. Each byte position is
defined as follows:

• 1 = Object identifier (OID) column ("Y" for
yes; "N" for no)

• 2 = User-generated or system-generated
("U" for user; "S" for system)

Bytes 3 through 8 are reserved for future
use.

1950 IBM Db2 V11.5: SQL Reference

Table 175. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

HIDDEN CHAR (1) Type of hidden column.

• I = Column is defined as IMPLICITLY
HIDDEN

• S = System-managed hidden column
• Blank = Column is not hidden

INLINE_LENGTH INTEGER Maximum size in bytes of the internal
representation of an instance of an XML
document, a structured type, or a LOB data
type, that can be stored in the base table; 0
when not applicable.

PCTINLINED SMALLINT Percentage of inlined data for columns
with VARCHAR, VARGRAPHIC, LOB, or XML
data types. -1 if statistics have not been
collected or the column data type does not
support storing data outside the row. Also
-1 for VARCHAR and VARGRAPHIC column
if the table is organized by column or the
table is organized by row and the row size
of the table does not exceed the maximum
record length for the page size of the table
space.

IDENTITY CHAR (1) • N = Not an identity column
• Y = Identity column

ROWCHANGETIMESTAMP CHAR (1) • N = Not a row change timestamp column
• Y = Row change timestamp column

GENERATED CHAR (1) Type of generated column.

• A = Column value is always generated
• D = Column value is generated by default
• Blank = Column is not generated

TEXT CLOB (2M) Y For columns defined as generated as
expression, this field contains the text of
the generated column expression, starting
with the keyword AS.

COMPRESS CHAR (1) • O = Compress off
• S = Compress system default values

AVGDISTINCTPERPAGE DOUBLE Y For future use.

PAGEVARIANCERATIO DOUBLE Reserved for future use.

SUB_COUNT SMALLINT Average number of sub-elements in the
column. Applicable to character string
columns only.

Chapter 1. Structured Query Language (SQL) 1951

Table 175. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

SUB_DELIM_LENGTH SMALLINT Average length of the delimiters that
separate each sub-element in the column.
Applicable to character string columns
only.

AVGCOLLENCHAR INTEGER Average number of characters (based on
the collation in effect for the column)
required for the column; -1 if the data
type of the column is long, LOB, or XML
or if statistics have not been collected;
-2 for inherited columns and columns of
hierarchy tables.

IMPLICITVALUE2 VARCHAR (254) Y For a column that was added to a table
after the table was created, stores the
default value at the time the column was
added. For a column that was defined when
the table was created, stores the null value.

SECLABELNAME VARCHAR (128) Y Name of the security label that is
associated with the column if it is a
protected column; the null value otherwise.

ROWBEGIN CHAR (1) • N = Not a row begin column
• Y = Row begin column

ROWEND CHAR (1) • N = Not a row end column
• Y = Row end column

TRANSACTIONSTARTID CHAR (1) • N = Not a transaction start ID column
• Transaction start ID column

RANDDISTKEY CHAR (1) • N = Column of a table not using random
distribution with random by generation
method or not the distribution key

• Y = Distribution key of a random
distribution table that uses random by
generation method

PCTENCODED SMALLINT Percentage of values that are encoded as
a result of compression for a column in a
column-organized table; -1 if the table is
not organized by column or if statistics are
not collected; -2 for inherited columns and
columns of hierarchy tables.

AVGENCODEDCOLLEN DOUBLE Average space in bytes when the column
is stored in database memory, taking into
account that some of the column values
might be compressed; -1 if the table is
not organized by column or if statistics are
not collected; -2 for inherited columns and
columns of hierarchy tables.

QUALIFIER VARCHAR (128) Y Reserved for future use.

1952 IBM Db2 V11.5: SQL Reference

Table 175. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

FUNC_PATH CLOB (2K) Y Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. In the catalog view, the values of HIGH2KEY and LOW2KEY are always shown in the database code page
and can contain substitution characters. However, the statistics are gathered internally in the code page of
the column's table, and will therefore use actual column values when applied during query optimization.

2. Attaching a data partition is allowed unless IMPLICITVALUE for a specific column is a non-null value for both
the source column and the target column, and the values do not match. In this case, you must drop the
source table and then re-create it. A column can have a non-null value in the IMPLICITVALUE field if one of
the following conditions is met:

• The column is created as the result of an ALTER TABLE...ADD COLUMN statement
• The IMPLICITVALUE field is propagated from a source table during attach
• The IMPLICITVALUE field is inherited from a source table during detach
• The IMPLICITVALUE field is set during database upgrade from Version 8 to Version 9, where it is

determined to be an added column, or might be an added column. If the database is not certain whether
the column is added or not, it is treated as added. An added column is a column that was created as the
result of an ALTER TABLE...ADD COLUMN statement.

To avoid these inconsistencies during non-migration scenarios, it is recommended that you always create
the tables that you are going to attach with all the columns already defined. That is, never use the ALTER
TABLE statement to add columns to a table before attaching it.

SYSCAT.COLUSE
Each row represents a column that is referenced in the DIMENSIONS clause of a CREATE TABLE
statement.

Table 176. SYSCAT.COLUSE Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table containing the
column.

TABNAME VARCHAR (128) Unqualified name of the table containing
the column.

COLNAME VARCHAR (128) Name of the column.

DIMENSION SMALLINT Dimension number, based on the reverse
order of dimensions specified in the
DIMENSIONS clause (initial position is 1).
For a composite dimension, this value will
be the same for each component of the
dimension.

COLSEQ SMALLINT Numeric position of the column in the
dimension to which it belongs (initial
position is 1). The value is 1 for the single
column in a noncomposite dimension.

Chapter 1. Structured Query Language (SQL) 1953

Table 176. SYSCAT.COLUSE Catalog View (continued)

Column Name Data Type Nullable Description

TYPE CHAR (1) Type of dimension.

• C = Clustering or multidimensional
clustering

• P = Partitioning

SYSCAT.CONDITIONS
Each row represents a condition defined in a module.

Table 177. SYSCAT.CONDITIONS Catalog View

Column Name Data Type Nullable Description

CONDSCHEMA VARCHAR (128) Schema name of the condition.

CONDMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the condition belongs.

CONDNAME VARCHAR (128) Unqualified name of the condition.

CONDID INTEGER Identifier for the condition.

CONDMODULEID INTEGER Y Identifier of the module to which the
condition belongs.

SQLSTATE CHAR (5) Y SQLSTATE value associated with the
condition.

OWNER VARCHAR (128) Authorization ID of the owner of the
condition.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the condition was created.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.CONSTDEP
Each row represents a dependency of a constraint on some other object. The constraint depends on the
object of type BTYPE of name BNAME, so a change to the object affects the constraint.

Table 178. SYSCAT.CONSTDEP Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Unqualified name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the table to which the
constraint applies.

TABNAME VARCHAR (128) Unqualified name of the table to which the
constraint applies.

1954 IBM Db2 V11.5: SQL Reference

Table 178. SYSCAT.CONSTDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which the constraint
depends. Possible values are:

• F = Routine
• I = Index
• R = User-defined structured type
• u = Module alias

BSCHEMA VARCHAR (128) Schema name of the object on which the
constraint depends.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
the constraint depends.

BMODULEID INTEGER Y Identifier for the module of the object on
which the constraint depends.

SYSCAT.CONTEXTATTRIBUTES
Each row represents a trusted context attribute.

Table 179. SYSCAT.CONTEXTATTRIBUTES Catalog View

Column Name Data Type Nullable Description

CONTEXTNAME VARCHAR (128) Name of the trusted context.

ATTR_NAME VARCHAR (128) Name of the attribute. One of:

• ADDRESS
• ENCRYPTION

ATTR_VALUE VARCHAR (128) Value of the attribute.

ATTR_OPTIONS VARCHAR (128) Y If ATTR_NAME is 'ADDRESS', specifies the
level of encryption required for this specific
address. A null value indicates that the
global ENCRYPTION attribute applies.

SYSCAT.CONTEXTS
Each row represents a trusted context.

Table 180. SYSCAT.CONTEXTS Catalog View

Column Name Data Type Nullable Description

CONTEXTNAME VARCHAR (128) Name of the trusted context.

CONTEXTID INTEGER Identifier for the trusted context.

SYSTEMAUTHID VARCHAR (128) The system authorization ID associated
with the trusted context.

DEFAULTCONTEXTROLE VARCHAR (128) Y The default role for the context.

Chapter 1. Structured Query Language (SQL) 1955

Table 180. SYSCAT.CONTEXTS Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Time at which the trusted context was
created.

ALTER_TIME TIMESTAMP Time at which the trusted context was last
altered.

ENABLED CHAR (1) Trusted context state.

• N = Disabled
• Y = Enabled

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

AUDITEXCEPTIONENABLED CHAR (1) Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.CONTROLDEP
Each row represents a dependency of a row permission or column mask on some other object.

Table 181. SYSCAT.CONTROLDEP Catalog View

Column Name Data Type Nullable Description

DSCHEMA VARCHAR (128) Schema name of the row permission or
column mask.

DNAME VARCHAR (128) Unqualified name of the row permission or
column mask.

DTYPE CHAR (1) Type of the depending object.

• y = Row Permission
• 2 = Column Mask

1956 IBM Db2 V11.5: SQL Reference

Table 181. SYSCAT.CONTROLDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a
dependency:

• A = Table alias
• C = Column
• F = Routine
• H = Hierarchy table
• I = Index
• L = Detached table
• S = Materialized query table
• T = Table (not typed)
• U = Typed table
• V = View (not typed)
• W = Typed view
• m = Module
• s = Statistical Table
• u = Module alias
• v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which there
is a dependency.

BMODULENAME VARCHAR (128) Y Unqualified name for the module of the
object on which the control depends. The
null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency.

BMODULEID INTEGER Y Identifier for the module of the object on
which the control depends.

BCOLNAME VARCHAR (128) Y If BTYPE = 'C', the column name on which
there is a dependency; the null value
otherwise.

SYSCAT.CONTROLS
Each row represents a row permission or column mask.

Table 182. SYSCAT.CONTROLS Catalog View

Column Name Data Type Nullabl
e

Description

CONTROLSCHEMA VARCHAR (128) Schema of the row permission or
column mask.

CONTROLNAME VARCHAR (128) Name of the row permission or column
mask.

OWNER VARCHAR (128) Owner of the row permission or
column mask.

Chapter 1. Structured Query Language (SQL) 1957

Table 182. SYSCAT.CONTROLS Catalog View (continued)

Column Name Data Type Nullabl
e

Description

OWNERTYPE CHAR (1) • S = System
• U = User

TABSCHEMA VARCHAR (128) Schema of the table on which the row
permission or column mask is defined.

TABNAME VARCHAR (128) Name of the table on which the row
permission or column mask is defined.

COLNAME VARCHAR (128) Column name on which the column
mask is defined. Blank if this is a row
permission.

CONTROLID INTEGER Identifier of the control.

CONTROLTYPE CHAR (1) • C = Column mask
• R = Row permission

ENFORCED CHAR (1) • A = All access

IMPLICIT CHAR (1) • N = The row permission was
explicitly created or this is a column
mask

• Y = The row permission was
implicitly created

ENABLE CHAR (1) • N = Not enabled
• Y = Enabled

VALID CHAR (1) • N = The control is invalid
• Y = The control is valid

RULETEXT CLOB (2M) The source text of the search
condition or case expression portion of
the CREATE PERMISSION or CREATE
MASK statement.

TABCORRELATION VARCHAR (128) The correlation name of the table on
which the row permission or column
mask is defined. Blank if not specified.

QUALIFIER VARCHAR (128) Value of the default schema at the
time of object definition. Used to
complete any unqualified references.

FUNC_PATH CLOB (2K) SQL path in effect when the control
was defined.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the
control.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for
the control.

1958 IBM Db2 V11.5: SQL Reference

Table 182. SYSCAT.CONTROLS Catalog View (continued)

Column Name Data Type Nullabl
e

Description

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for the
ORDER BY clauses in the control.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for
the ORDER BY clauses in the control.

CREATE_TIME TIMESTAMP Time at which the row permission or
column mask was created.

ALTER_TIME TIMESTAMP Time at which the row permission or
column mask was last altered.

ENVSTRINGUNITS VARCHAR (11) Default string units when the object
was created.

REMARKS VARCHAR (254) Y User-provided comments, or the null
value.

SYSCAT.DATAPARTITIONEXPRESSION
Each row represents an expression for that part of the table partitioning key.

Table 183. SYSCAT.DATAPARTITIONEXPRESSION Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the partitioned table.

TABNAME VARCHAR (128) Unqualified name of the partitioned table.

DATAPARTITIONKEYSEQ INTEGER Expression key part sequence ID, starting
from 1.

DATAPARTITIONEXPRESSION CLOB (32K) Expression for this entry in the sequence, in
SQL syntax.

NULLSFIRST CHAR (1) • N = Null values in this expression
compare high

• Y = Null values in this expression
compare low

SYSCAT.DATAPARTITIONS
Each row represents a data partition. Note that the data partition statistics represent one database
partition if the table is created on multiple database partitions.

Table 184. SYSCAT.DATAPARTITIONS Catalog View

Column Name Data Type Nullable Description

DATAPARTITIONNAME VARCHAR (128) Name of the data partition.

TABSCHEMA VARCHAR (128) Schema name of the table to which this
data partition belongs.

TABNAME VARCHAR (128) Unqualified name of the table to which this
data partition belongs.

DATAPARTITIONID INTEGER Identifier for the data partition.

Chapter 1. Structured Query Language (SQL) 1959

Table 184. SYSCAT.DATAPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

TBSPACEID INTEGER Y Identifier for the table space in which this
data partition is stored. The null value
when STATUS is 'I'.

PARTITIONOBJECTID INTEGER Y Identifier for the data partition within the
table space.

LONG_TBSPACEID INTEGER Y Identifier for the table space in which long
data is stored. The null value when STATUS
is 'I'.

ACCESS_MODE CHAR (1) Access restriction state of the data
partition. These states only apply to objects
that are in set integrity pending state or
to objects that were processed by a SET
INTEGRITY statement. Possible values are:

• D = No data movement
• F = Full access
• N = No access
• R = Read-only access

STATUS VARCHAR (32) • A = Data partition is newly attached
• D = Data partition is detached

and detached dependents are to be
incrementally maintained with respect to
the content of this partition

• I = Detached data partition whose entry
in the catalog is maintained only during
asynchronous index cleanup; rows with a
STATUS value of 'I' are removed when all
index records referring to the detached
partition have been deleted

• L = Data partition is logically detached
• Empty string = Data partition is visible

(normal status)

Bytes 2 through 32 are reserved for future
use.

SEQNO INTEGER Data partition sequence number (starting
from 0).

LOWINCLUSIVE CHAR (1) • N = Low key value is not inclusive
• Y = Low key value is inclusive

LOWVALUE VARCHAR (512) Low key value (a string representation of an
SQL value) for this data partition.

HIGHINCLUSIVE CHAR (1) • N = High key value is not inclusive
• Y = High key value is inclusive

HIGHVALUE VARCHAR (512) High key value (a string representation of
an SQL value) for this data partition.

1960 IBM Db2 V11.5: SQL Reference

Table 184. SYSCAT.DATAPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

CARD BIGINT Total number of rows in the data partition;
-1 if statistics are not collected.

OVERFLOW BIGINT Total number of overflow records in the
data partition; -1 if statistics are not
collected.

NPAGES BIGINT Total number of pages on which the rows of
the data partition exist; -1 if statistics are
not collected.

FPAGES BIGINT Total number of pages in the data partition;
-1 if statistics are not collected.

ACTIVE_BLOCKS BIGINT Total number of active blocks in the data
partition, or -1. Applies to multidimensional
clustering (MDC) tables only.

INDEX_TBSPACEID INTEGER Identifier for the table space which
holds all partitioned indexes for this data
partition.

AVGROWSIZE SMALLINT Average length (in bytes) of both
compressed and uncompressed rows in
this data partition; -1 if statistics are not
collected.

PCTROWSCOMPRESSED REAL Compressed rows as a percentage of the
total number of rows in the data partition;
-1 if statistics are not collected.

PCTPAGESAVED SMALLINT Approximate percentage of pages saved
in the data partition as a result of row
compression. This value includes overhead
bytes for each user data row in the data
partition, but does not include the space
that is consumed by dictionary overhead;
-1 if statistics are not collected.

AVGCOMPRESSEDROWSIZE SMALLINT Average length (in bytes) of compressed
rows in this data partition; -1 if statistics
are not collected.

AVGROWCOMPRESSIONRATIO REAL For compressed rows in the data partition,
this is the average compression ratio by
row; that is, the average uncompressed row
length divided by the average compressed
row length; -1 if statistics are not collected.

STATS_TIME TIMESTAMP Y Time at which any change was last made
to recorded statistics for this object. Null if
statistics are not collected.

Chapter 1. Structured Query Language (SQL) 1961

Table 184. SYSCAT.DATAPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

LASTUSED DATE Date when the data partition was last
used by any DML statement or the
LOAD command. If the table is not
partitioned, only the LASTUSED value in
SYSCAT.TABLES is updated. This column
is not updated when the data partition is
used on an HADR standby database. The
default value is '0001-01-01'. This value
is updated asynchronously not more than
once within a 24 hour period and might not
reflect usage within the last 15 minutes.

COLDICT_EXISTS CHAR(1) Indicates the existence and status of
a column compression dictionary for a
column-organized table. Possible values
are:

• A = Common dictionary exists on
all members of the table's database
partition group

• N = Common dictionary does not exist
• S = Common dictionary exists on

some members of the table's database
partition group

• X = Not applicable

COLDICT_CREATE_TIME TIMESTAMP Y Time at which the column compression
dictionary was created. Null if
COLDICT_EXISTS is 'N' or 'X'.

COLDICT_ALTER_TIME TIMESTAMP Y Time at which the column compression
dictionary was last altered. At the time
of dictionary creation, this value matches
the value of COLDICT_CREATE_TIME. Null if
COLDICT_EXISTS is 'N' or 'X'.

SYSCAT.DATATYPEDEP
Each row represents a dependency of a user-defined data type on some other object.

Table 185. SYSCAT.DATATYPEDEP Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the data type.

TYPEMODULENAME VARCHAR (128) Y Module name of the data type.

TYPENAME VARCHAR (128) Unqualified name of the data type.

TYPEMODULEID INTEGER Y Identifier for the module of the data type.

1962 IBM Db2 V11.5: SQL Reference

Table 185. SYSCAT.DATATYPEDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

• A = Table alias
• F = Routine
• G = Global temporary table
• H = Hierarchy table
• I = Index
• N = Nickname
• R = User-defined data type
• S = Materialized query table
• T = Table (not typed)
• U = Typed table
• V = View (not typed)
• W = Typed view
• m = Module
• q = Sequence alias
• u = Module alias
• v = Global variable
• * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there
is a dependency.

BMODULENAME VARCHAR (128) Y Module name of the object on which there
is a dependency.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = 'S', 'T', 'U', 'V', 'W', or 'v', encodes
the privileges on the table or view that are
required by the dependent data type; the
null value otherwise.

SYSCAT.DATATYPES
Each row represents a built-in or user-defined data type.

Table 186. SYSCAT.DATATYPES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the data type if
TYPEMODULEID is null; otherwise schema
name of the module to which the data type
belongs.

Chapter 1. Structured Query Language (SQL) 1963

Table 186. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

TYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the user-defined type belongs. The null
value if not a module user-defined type.

TYPENAME VARCHAR (128) Unqualified name of the data type.

OWNER VARCHAR (128) Authorization ID of the owner of the type.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

SOURCESCHEMA VARCHAR (128) Y For distinct types or array types, the
schema name of the source data type. For
user-defined structured types, the schema
name of the built-in type of the reference
representation type. Null for other data
types.

SOURCEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the source data type belongs. The null
value if not a module source data type.

SOURCENAME VARCHAR (128) Y For distinct types or array types, the
unqualified name of the source data
type. For user-defined structured types,
the unqualified built-in type name of the
reference representation type. Null for
other data types.

METATYPE CHAR (1) • A = User-defined array type
• C = User-defined cursor type
• F = User-defined row type
• L = User-defined associative array type
• R = User-defined structured type
• S = System predefined type
• T = User-defined distinct type

TYPERULES CHAR(1) Indicates the type rules for the user-
defined type.

• S = Strong typing
• W = Weak typing
• Blank = Not applicable

TYPEID SMALLINT Identifier for the data type.

TYPEMODULEID INTEGER Y Identifier for the module to which the user-
defined type belongs. The null value if not a
module user-defined type.

SOURCETYPEID SMALLINT Y Identifier for the source type (the null
value for built-in types). For user-defined
structured types, this is the identifier of the
reference representation type.

1964 IBM Db2 V11.5: SQL Reference

Table 186. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

SOURCEMODULEID INTEGER Y Identifier for the module to which the
source data type belongs. The null value if
not a module source data type.

PUBLISHED CHAR (1) Indicates whether the module user-defined
type can be referenced outside its module.

• N = The module user-defined type is not
published

• Y = The module user-defined type is
published

• Blank = Not applicable

LENGTH INTEGER Maximum length of the type. 0 for built-
in parameterized types (for example,
DECIMAL and VARCHAR). For user-defined
structured types, this is the length of the
reference representation type.

SCALE SMALLINT Scale for distinct types or reference
representation types based on the built-in
DECIMAL type; the number of digits of
fractional seconds for distinct types based
on the built-in TIMESTAMP type; 6 for the
built-in TIMESTAMP type; 0 for all other
types (including DECIMAL itself).

TYPESTRINGUNITS VARCHAR (11) Y In a Unicode database, the string units that
apply to a character string or graphic string
data type. Otherwise, the null value.

STRINGUNITSLENGTH INTEGER Y In a Unicode database, the declared
number of string units for a character string
or graphic string data type. Otherwise, the
null value.

CODEPAGE SMALLINT Database code page for string types,
distinct types based on string types,
or reference representation types; 0
otherwise.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the data type; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of
the collation for the data type; the null
value otherwise.

ARRAY_LENGTH INTEGER Y Maximum cardinality of the array. The null
value if METATYPE is not 'A'.

ARRAYINDEXTYPESCHEMA VARCHAR (128) Y Schema of the data type of the array index.
The null value if METATYPE is not 'L'.

ARRAYINDEXTYPENAME VARCHAR (128) Y Name of the data type of the array index.
The null value if METATYPE is not 'L'.

Chapter 1. Structured Query Language (SQL) 1965

Table 186. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

ARRAYINDEXTYPEID SMALLINT Y Identifier for the array index type. The null
value if METATYPE is not 'L'.

ARRAYINDEXTYPELENGTH INTEGER Y Maximum length of the array index data
type. The null value if METATYPE is not 'L'.

ARRAYINDEXTYPE_
STRINGUNITS

VARCHAR (11) Y In a Unicode database, the string units that
apply to a character string array index data
type. Otherwise, the null value.

ARRAYINDEXTYPE_
STRINGUNITSLENGTH

INTEGER Y In a Unicode database, the declared
number of string units for a character string
array index data type. Otherwise, the null
value.

CREATE_TIME TIMESTAMP Creation time of the data type.

VALID CHAR (1) • N = The data type is invalid
• Y = The data type is valid

ATTRCOUNT SMALLINT Number of attributes in the data type.

INSTANTIABLE CHAR (1) • N = Type cannot be instantiated
• Y = Type can be instantiated

WITH_FUNC_ACCESS CHAR (1) • N = Methods for this type cannot be
invoked using function notation.

• Y = All the methods for this type can be
invoked using function notation.

FINAL CHAR (1) • N = The user-defined type can have
subtypes.

• Y = The user-defined type cannot have
subtypes.

INLINE_LENGTH INTEGER Maximum length of a structured type that
can be kept with a base table row; 0
otherwise.

NATURAL_
INLINE_LENGTH

INTEGER Y System-generated natural inline length of a
structured type instance. The null value if
this type is not a structured type.

JARSCHEMA VARCHAR (128) Y Schema name of the JAR_ID that identifies
the Jar file containing the Java class that
implements the SQL type. The null value
if the EXTERNAL NAME clause is not
specified.

JAR_ID VARCHAR (128) Y Identifier for the Jar file that contains the
Java class that implements the SQL type.
The null value if the EXTERNAL NAME
clause is not specified.

1966 IBM Db2 V11.5: SQL Reference

Table 186. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

CLASS VARCHAR (384) Y Java class that implements the SQL type.
The null value if the EXTERNAL NAME
clause is not specified.

SQLJ_REPRESENTATION CHAR (1) Y SQLJ "representation_spec" of the Java
class that implements the SQL type.
The null value if the EXTERNAL NAME ...
LANGUAGE JAVA REPRESENTATION SPEC
clause is not specified.

• D = SQL data
• S = Serializable

ALTER_TIME TIMESTAMP Time at which the data type was last
altered.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the type.

NULLS CHAR (1) Nullability attribute for the type.

• N = Type is not nullable
• Y = Type is nullable

FUNC_PATH CLOB (2K) Y SQL path in effect when the type was
created. The null value if no data type
check constraint exists.

CONSTRAINT_TEXT CLOB (64K) Y Predicate text which constrains the values
allowed for the data type. The null value if
no data type check constraint exists.

LAST_REGEN_TIME TIMESTAMP Time at which the data type check
constraint was last regenerated. The same
value as CREATE_TIME if no data type
check constraint exists.

ENVSTRINGUNITS VARCHAR (11) Default string units when the object was
created.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.DBAUTH
Each row represents a user, group, or role that has been granted one or more database-level authorities.

Table 187. SYSCAT.DBAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the authority.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the authority.

Chapter 1. Structured Query Language (SQL) 1967

Table 187. SYSCAT.DBAUTH Catalog View (continued)

Column Name Data Type Nullable Description

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

BINDADDAUTH CHAR (1) Authority to create packages.

• N = Not held
• Y = Held

CONNECTAUTH CHAR (1) Authority to connect to the database.

• N = Not held
• Y = Held

CREATETABAUTH CHAR (1) Authority to create tables.

• N = Not held
• Y = Held

DBADMAUTH CHAR (1) DBADM authority.

• N = Not held
• Y = Held

EXTERNALROUTINEAUTH CHAR (1) Authority to create external routines.

• N = Not held
• Y = Held

IMPLSCHEMAAUTH CHAR (1) Authority to implicitly create schemas by
creating objects in non-existent schemas.

• N = Not held
• Y = Held

LOADAUTH CHAR (1) Authority to use the Db2 load utility.

• N = Not held
• Y = Held

NOFENCEAUTH CHAR (1) Authority to create non-fenced user-
defined functions.

• N = Not held
• Y = Held

QUIESCECONNECTAUTH CHAR (1) Authority to access the database when it is
quiesced.

• N = Not held
• Y = Held

LIBRARYADMAUTH CHAR (1) Reserved for future use.

1968 IBM Db2 V11.5: SQL Reference

Table 187. SYSCAT.DBAUTH Catalog View (continued)

Column Name Data Type Nullable Description

SECURITYADMAUTH CHAR (1) Authority to administer database security.

• N = Not held
• Y = Held

SQLADMAUTH CHAR (1) Authority to monitor and tune SQL
statements.

• N = Not held
• Y = Held

WLMADMAUTH CHAR (1) Authority to manage WLM objects.

• N = Not held
• Y = Held

EXPLAINAUTH CHAR (1) Authority to explain SQL statements
without requiring actual privileges on the
objects in the statement.

• N = Not held
• Y = Held

DATAACCESSAUTH CHAR (1) Authority to access data.

• N = Not held
• Y = Held

ACCESSCTRLAUTH CHAR (1) Authority to grant and revoke database
object privileges.

• N = Not held
• Y = Held

CREATESECUREAUTH CHAR (1) Authority to create secure objects.

• N = Not held
• Y = Held

SYSCAT.DBPARTITIONGROUPDEF
Each row represents a database partition that is contained in a database partition group.

Table 188. SYSCAT.DBPARTITIONGROUPDEF Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR (128) Name of the database partition group that
contains the database partition.

DBPARTITIONNUM SMALLINT Partition number of a database partition
that is contained in the database partition
group. A valid partition number is between
0 and 999, inclusive.

Chapter 1. Structured Query Language (SQL) 1969

Table 188. SYSCAT.DBPARTITIONGROUPDEF Catalog View (continued)

Column Name Data Type Nullable Description

IN_USE CHAR (1) Status of the database partition.

• A = The newly added database partition
is not in the distribution map, but
the containers for the table spaces
in the database partition group have
been created; the database partition is
added to the distribution map when
a redistribute database partition group
operation has completed successfully.

• D = The database partition will be
dropped when a redistribute database
partition group operation has completed
successfully.

• T = The newly added database partition
is not in the distribution map, and it was
added using the WITHOUT TABLESPACES
clause; containers must be added to the
table spaces in the database partition
group.

• Y = The database partition is in the
distribution map.

SYSCAT.DBPARTITIONGROUPS
Each row represents a database partition group.

Table 189. SYSCAT.DBPARTITIONGROUPS Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR (128) Name of the database partition group.

OWNER VARCHAR (128) Authorization ID of the owner of the
database partition group.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

PMAP_ID SMALLINT Identifier for the distribution map in the
SYSCAT.PARTITIONMAPS catalog view.

REDISTRIBUTE_PMAP_ID SMALLINT Identifier for the distribution map currently
being used for redistribution; -1 if
redistribution is currently not in progress.

CREATE_TIME TIMESTAMP Creation time of the database partition
group.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
database partition group.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

1970 IBM Db2 V11.5: SQL Reference

SYSCAT.EVENTMONITORS
Each row represents an event monitor.

Table 190. SYSCAT.EVENTMONITORS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR (128) Name of the event monitor.

OWNER VARCHAR (128) Authorization ID of the owner of the event
monitor.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

TARGET_TYPE CHAR (1) Type of target to which event data is
written.

• F = File
• P = Pipe
• T = Table
• U = Unformatted event table

TARGET VARCHAR (762) Name of the target to which file or pipe
event monitor data is written. For files,
it can be either an absolute path name
or a relative path name (relative to the
database path for the database; this can
be seen using the LIST ACTIVE DATABASES
command). For pipes, it can be an absolute
path name.

MAXFILES INTEGER Y Maximum number of event files that this
event monitor permits in an event path.
The null value if there is no maximum, or
if TARGET_TYPE is not 'F' (file).

MAXFILESIZE INTEGER Y Maximum size (in 4K pages) that each
event file can attain before the event
monitor creates a new file. The null value
if there is no maximum, or if TARGET_TYPE
is not 'F' (file).

BUFFERSIZE INTEGER Y Size of the buffer (in 4K pages) that is used
by event monitors with file targets; null
value otherwise.

IO_MODE CHAR (1) Y Mode of file input/output (I/O).

• B = Blocked
• N = Not blocked
• Null value = TARGET_TYPE is not 'F' (file)

or 'T' (table)

Chapter 1. Structured Query Language (SQL) 1971

Table 190. SYSCAT.EVENTMONITORS Catalog View (continued)

Column Name Data Type Nullable Description

WRITE_MODE CHAR (1) Y Indicates how this event monitor handles
existing event data when the monitor is
activated.

• A = Append
• R = Replace
• Null value = TARGET_TYPE is not 'F' (file)

AUTOSTART CHAR (1) Indicates whether this event monitor is
to be activated automatically when the
database starts.

• N = No
• Y = Yes

DBPARTITIONNUM1 SMALLINT This column is deprecated and will be
removed in a future release. Replaced by
MEMBER.

MONSCOPE CHAR (1) Monitoring scope.

• G = Global
• L = Local
• T = Each database partition on which the

table space exists
• Blank = WRITE TO TABLE event monitor

EVMON_ACTIVATES INTEGER Number of times the event monitor has
been activated.

NODENUM1 SMALLINT This column is deprecated and will be
removed in a future release. Replaced by
MEMBER.

DEFINER2 VARCHAR (128) Authorization ID of the owner of the event
monitor.

VERSIONNUMBER INTEGER Version, release, and modification level in
which the event monitor was created or
last upgraded.

MEMBER SMALLINT Number of the member where the event
monitor runs and logs events.

REMARKS VARCHAR (254) Y Reserved for future use.

Note:

1. The NODENUM column is included for backwards compatibility. See DBPARTITIONNUM.
2. The DEFINER column is included for backwards compatibility. See OWNER.

1972 IBM Db2 V11.5: SQL Reference

SYSCAT.EVENTS
Each row represents an event that is being monitored. An event monitor, in general, monitors multiple
events.

Table 191. SYSCAT.EVENTS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR (128) Name of the event monitor that is
monitoring this event.

TYPE VARCHAR (128) Type of event being monitored. Possible
values are:

• ACTIVITIES
• CHANGEHISTORY
• CONNECTIONS
• DATABASE
• DEADLOCKS
• DETAILDEADLOCKS
• DLOCKWHIST
• DLOCKWHISTAVAL
• LOCKING
• PKGCACHEBASE
• PKGCACHEDETAILED
• STATEMENTS
• TABLES
• TABLESPACES
• THRESHOLDVIOLATIONS
• TRANSACTIONS
• STATISTICS
• UOW

FILTER CLOB (64K) Y Full text of the WHERE clause that applies
to this event.

SYSCAT.EVENTTABLES
Each row represents the target table of an event monitor that writes to SQL tables.

Table 192. SYSCAT.EVENTTABLES Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR (128) Name of the event monitor.

Chapter 1. Structured Query Language (SQL) 1973

Table 192. SYSCAT.EVENTTABLES Catalog View (continued)

Column Name Data Type Nullable Description

LOGICAL_GROUP VARCHAR (128) Name of the logical data group. Possible
values are:

• ACTIVITYHISTORY
• BUFFERPOOL
• CHANGESUMMARY
• CONN
• CONNHEADER
• CONTROL
• DATAVAL
• DB
• DBDBMCFG
• DDLSTMTEXEC
• DEADLOCK
• DLCONN
• DLLOCK
• EVMONSTART
• LOCKING
• PKGCACHEBASE
• PKGCACHEDETAILED
• REGVAR
• SCMETRICS
• SCSTATS
• STMT
• STMTHIST
• STMTVALS
• SUBSECTION
• SUPERCLASSMETRICS
• SUPERCLASSSTATS
• TABLE
• TABLESPACE
• THRESHOLDVIOLATIONS
• TXNCOMPLETION
• UOW
• UTILLOCATION
• UTILPHASE
• UTILSTART
• UTILSTOP
• WCSTATS
• WLMETRICS
• WLSTATS
• XACT

1974 IBM Db2 V11.5: SQL Reference

Table 192. SYSCAT.EVENTTABLES Catalog View (continued)

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the target table.

TABNAME VARCHAR (128) Unqualified name of the target table.

PCTDEACTIVATE SMALLINT A percent value that specifies how full a
DMS table space must be before an event
monitor automatically deactivates. Set to
100 for SMS table spaces.

TABOPTIONS VARCHAR (32) String indicating the logical data group
options for the target table. Each character
in the string represents an option. Possible
values are:

• E = EXCLUDES
• I = INCLUDES
• T = TRUNC
• Blank = Not applicable

SYSCAT.EXTERNALTABLEOPTIONS
Each row represents a named external table.

Table 193. SYSCAT.EXTERNALTABLEOPTIONS Catalog View

Column Name Data Type Nullable Description

TABLENAME VARCHAR(128) No Name of the external table.

FILENAME CLOB(4K) No Fully-qualified name of the file that
contains the data for this external table.

FIELDDELIMITER CHAR(1) Yes Character that indicates the end of a field.

RECORDDELIMITER CHAR(4) Yes Character string that indicates the end of a
record.

DECIMALDELIMITER CHAR(1) No Character to represent the decimal
delimiter.

DATEDELIMITER CHAR(1) No Character to separate date components.

TIMEDELIMITER CHAR(1) No Character to separate time components.

DATESTYLE CHAR(12) No Format that determines how a date is
represented.

TIMESTYLE CHAR(6) No Time format. Possible values are '24HOUR'
and '12HOUR'

BOOLEANSTYLE CHAR(32) No Boolean style. Possible values are '1_0',
'TRUE_FALSE', and 'YES_NO'.

NULLVALUE CHAR(8) No String that is used to indicate a null value.
The default is 'NULL'.

Chapter 1. Structured Query Language (SQL) 1975

Table 193. SYSCAT.EXTERNALTABLEOPTIONS Catalog View (continued)

Column Name Data Type Nullable Description

QUOTEDVALUE CHAR(12) Yes Type of quotation marks that are to be
stripped away from data values that are
enclosed by them. Possible values are 'YES'
or 'SINGLE' (for single quotation marks),
'DOUBLE' (for double quotation marks),
and 'NO' (if no quotation marks are to be
stripped).

REQUIREQUOTES CHAR(5) Yes Whether all data values are enclosed
in quotation marks. Possible values are:
'TRUE' or 'FALSE'. If REQUIREQUOTES is
set to 'TRUE', QUOTEDVALUE must be set
to 'YES', 'SINGLE', or 'DOUBLE'.

RECORDLENGTH INTEGER Yes Length of each record of a fixed-format file.

MAXERRORS BIGINT No Maximum number of errors before an
external table operation is rolled back.

MAXROWS BIGINT No Maximum number of rows to load. If this
value is exceeded, the load operation fails.

Y2BASE SMALLINT No The hundreds component of a year that is
specified as only 2 digits. For example, 19 if
the 2-digit year 15 represents 1915; 20 if it
represents 2015.

FORMAT CHAR(8) No A character string that indicates the
data format. Possible values are 'TEXT',
'INTERNAL', 'FIXED', 'BINARY', 'GENERIC',
'NZ_REPL', 'DB2Z_BRF' and 'DB2Z_RRF'.

ENCODING CHAR(20) Yes Code set of the external data file.

REMOTESOURCE CHAR(10) Yes Remote source type. Possible values
are: 'ODBC', 'JDBC', 'LOCAL', 'OLEDB', or
'NZ_REPLSRV'.

SOCKETBUFFERSIZE BIGINT No Chunk size, in bytes, at which data is read
from the source file.

SKIPROWS DECFLOAT No When reading a table, the number of rows
from the top that are to be skipped.

ISFILLRECORD CHAR(5) Yes Whether all fields must be specified.
Possible values are: 'TRUE' or 'FALSE'.

ISESCAPE CHAR(1) Yes A character in the range ASCII 32 to
ASCII 127 that is interpreted as an escape
character.

ISCRINSTRING CHAR(5) No Whether a carriage return character is to be
regarded as part of string. Possible values
are: 'TRUE' or 'FALSE'.

1976 IBM Db2 V11.5: SQL Reference

Table 193. SYSCAT.EXTERNALTABLEOPTIONS Catalog View (continued)

Column Name Data Type Nullable Description

ISTRUNCSTRING CHAR(5) Yes Whether to truncate a string if it exceeds
the size of the column of the external
table into which it is to be loaded. Possible
values are: 'TRUE' (a string that is too large
to fit in a column is truncated) or 'FALSE' (a
string that is too large terminates and rolls
back the load operation).

ISCONTROLCHARACTERS CHAR(5) No Whether ASCII characters 1 to 31 are to
be allowed in a string. Possible values are:
'TRUE' or 'FALSE'.

ISIGNOREZERO CHAR(5) Yes Whether all occurrences of ASCII character
0 in a string are to be discarded. Possible
values are: 'TRUE' or 'FALSE'.

ISTIMEROUNDNANOS CHAR(5) Yes Whether time values are to be rounded to
the nearest microsecond. Possible values
are: 'TRUE' or 'FALSE'.

ISCOMPRESS CHAR(5) Yes Whether data that is being read from an
external table is compressed, and data
being written to an external table is to be
compressed. Possible values are: 'TRUE' or
'FALSE'.

ISINCLUDEHEADER CHAR(5) No Whether column names are to be included
during an unload operation ('TRUE') or
ignored ('FALSE').

ISINCLUDEZEROSECONDS CHAR(5) Yes During an unload operation, whether values
of 00 seconds are to be unloaded ('TRUE')
or ignored ('FALSE').

LOGFILEPATH CLOB(4K) No Name of the file in which to log external
table operations.

SYSCAT.FULLHIERARCHIES
Each row represents the relationship between a subtable and a supertable, a subtype and a supertype, or
a subview and a superview. All hierarchical relationships, including immediate ones, are included in this
view.

Table 194. SYSCAT.FULLHIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR (1) Relationship type.

• R = Between structured types
• U = Between typed tables
• W = Between typed views

SUB_SCHEMA VARCHAR (128) Schema name of the subtype, subtable, or
subview.

SUB_NAME VARCHAR (128) Unqualified name of the subtype, subtable,
or subview.

Chapter 1. Structured Query Language (SQL) 1977

Table 194. SYSCAT.FULLHIERARCHIES Catalog View (continued)

Column Name Data Type Nullable Description

SUPER_SCHEMA VARCHAR (128) Y Schema name of the supertype, supertable,
or superview.

SUPER_NAME VARCHAR (128) Y Unqualified name of the supertype,
supertable, or superview.

ROOT_SCHEMA VARCHAR (128) Schema name of the table, view, or type
that is at the root of the hierarchy.

ROOT_NAME VARCHAR (128) Unqualified name of the table, view, or type
that is at the root of the hierarchy.

SYSCAT.FUNCMAPOPTIONS
Each row represents a function mapping option value.

Table 195. SYSCAT.FUNCMAPOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR (128) Name of the function mapping.

OPTION VARCHAR (128) Name of the function mapping option.

SETTING VARCHAR (2048) Value of the function mapping option.

SYSCAT.FUNCMAPPARMOPTIONS
Each row represents a function mapping parameter option value.

Table 196. SYSCAT.FUNCMAPPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR (128) Name of the function mapping.

ORDINAL SMALLINT Position of the parameter.

LOCATION CHAR (1) Location of the parameter.

• L = Local parameter
• R = Remote parameter

OPTION VARCHAR (128) Name of the function mapping parameter
option.

SETTING VARCHAR (2048) Value of the function mapping parameter
option.

SYSCAT.FUNCMAPPINGS
Each row represents a function mapping.

Table 197. SYSCAT.FUNCMAPPINGS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR (128) Name of the function mapping (might be
system-generated).

1978 IBM Db2 V11.5: SQL Reference

Table 197. SYSCAT.FUNCMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR (128) Y Schema name of the function. If the null
value, the function is assumed to be a built-
in function.

FUNCNAME VARCHAR (1024) Y Unqualified name of the user-defined or
built-in function.

FUNCID INTEGER Y Identifier for the function.

SPECIFICNAME VARCHAR (128) Y Name of the routine instance (might be
system-generated).

OWNER VARCHAR (128) Authorization ID of the owner of the
mapping. 'SYSIBM' indicates that this is a
built-in function.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

WRAPNAME VARCHAR (128) Y Wrapper to which this mapping applies.

SERVERNAME VARCHAR (128) Y Name of the data source.

SERVERTYPE VARCHAR (30) Y Type of data source to which this mapping
applies.

SERVERVERSION VARCHAR (18) Y Version of the server type to which this
mapping applies.

CREATE_TIME TIMESTAMP Time at which the mapping was created.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
mapping. 'SYSIBM' indicates that this is a
built-in function.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.HIERARCHIES
Each row represents the relationship between a subtable and its immediate supertable, a subtype
and its immediate supertype, or a subview and its immediate superview. Only immediate hierarchical
relationships are included in this view.

Table 198. SYSCAT.HIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR (1) Relationship type.

• R = Between structured types
• U = Between typed tables
• W = Between typed views

SUB_SCHEMA VARCHAR (128) Schema name of the subtype, subtable, or
subview.

Chapter 1. Structured Query Language (SQL) 1979

Table 198. SYSCAT.HIERARCHIES Catalog View (continued)

Column Name Data Type Nullable Description

SUB_NAME VARCHAR (128) Unqualified name of the subtype, subtable,
or subview.

SUPER_SCHEMA VARCHAR (128) Schema name of the supertype, supertable,
or superview.

SUPER_NAME VARCHAR (128) Unqualified name of the supertype,
supertable, or superview.

ROOT_SCHEMA VARCHAR (128) Schema name of the table, view, or type
that is at the root of the hierarchy.

ROOT_NAME VARCHAR (128) Unqualified name of the table, view, or type
that is at the root of the hierarchy.

SYSCAT.HISTOGRAMTEMPLATEBINS
Each row represents a histogram template bin.

Table 199. SYSCAT.HISTOGRAMTEMPLATEBINS Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

TEMPLATEID INTEGER Identifier for the histogram template.

BINID INTEGER Identifier for the histogram template bin.

BINUPPERVALUE BIGINT The upper value for a single bin in the
histogram template.

SYSCAT.HISTOGRAMTEMPLATES
Each row represents a histogram template.

Table 200. SYSCAT.HISTOGRAMTEMPLATES Catalog View

Column Name Data Type Nullable Description

TEMPLATEID INTEGER Identifier for the histogram template.

TEMPLATENAME VARCHAR (128) Name of the histogram template.

CREATE_TIME TIMESTAMP Time at which the histogram template was
created.

ALTER_TIME TIMESTAMP Time at which the histogram template was
last altered.

NUMBINS INTEGER Number of bins in the histogram template,
including the last bin that has an
unbounded top value.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

1980 IBM Db2 V11.5: SQL Reference

SYSCAT.HISTOGRAMTEMPLATEUSE
Each row represents a relationship between a workload management object that can use histogram
templates and a histogram template.

Table 201. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

TEMPLATEID INTEGER Identifier for the histogram template.

HISTOGRAMTYPE CHAR (1) The type of information collected by
histograms based on this template.

• C = Activity estimated cost histogram
• E = Activity execution time histogram
• I = Activity interarrival time histogram
• L = Activity life time histogram
• Q = Activity queue time histogram
• R = Request execution time histogram
• U = Unit of work life time histogram

OBJECTTYPE CHAR (1) The type of WLM object.

• b = Service class
• k = Work action
• w = Workload

OBJECTID INTEGER Identifier of the WLM object.

SERVICECLASSNAME VARCHAR (128) Y Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y The name of the parent service class of the
service subclass that uses the histogram
template.

WORKACTIONNAME VARCHAR (128) Y The name of the work action that uses the
histogram template.

WORKACTIONSETNAME VARCHAR (128) Y The name of the work action set containing
the work action that uses the histogram
template.

WORKLOADNAME VARCHAR (128) Y The name of the workload that uses the
histogram template.

SYSCAT.INDEXAUTH
Each row represents a user, group, or role that has been granted CONTROL privilege on an index.

Table 202. SYSCAT.INDEXAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

Chapter 1. Structured Query Language (SQL) 1981

Table 202. SYSCAT.INDEXAUTH Catalog View (continued)

Column Name Data Type Nullable Description

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

CONTROLAUTH CHAR (1) CONTROL privilege.

• N = Not held
• Y = Held

SYSCAT.INDEXCOLUSE
Each row represents a column that participates in an index.

Table 203. SYSCAT.INDEXCOLUSE Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

COLNAME VARCHAR (128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the index
(initial position is 1).

COLORDER CHAR (1) Order of the values in this index column.
Possible values are:

• A = Ascending
• D = Descending
• I = INCLUDE column (ordering ignored)
• R = Random

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the column; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of
the collation for the column; the null value
otherwise.

1982 IBM Db2 V11.5: SQL Reference

Table 203. SYSCAT.INDEXCOLUSE Catalog View (continued)

Column Name Data Type Nullable Description

VIRTUAL CHAR (1) Y • N = Column exists in the table on which
this index is defined.

• S = Virtual index column found in
statistical view associated with the index.
The expression for this part of the index
key is stored in the TEXT column.

• Y = Virtual index column that does not
exist in the table on which this index is
defined.

TEXT CLOB (64K) Y The expression text for this part of the
index key. The null value if this part of the
index key is not based on an expression.

SYSCAT.INDEXDEP
Each row represents a dependency of an index on some other object. The index depends on an object of
type BTYPE and name BNAME, so a change to the object affects the index.

Table 204. SYSCAT.INDEXDEP Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

Chapter 1. Structured Query Language (SQL) 1983

Table 204. SYSCAT.INDEXDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

• A = Table alias
• B = Trigger
• C = Column
• F = Routine
• G = Global temporary table
• H = Hierachy table
• I = Index
• K = Package
• L = Detached table
• N = Nickname
• O = Privilege dependency on all subtables

or subviews in a table or view hierarchy
• Q = Sequence
• R = User-defined data type
• S = Materialized query table
• T = Table (not typed)
• U = Typed table
• V = View (not typed)
• W = Typed view
• X = Index extension
• Z = XSR object
• m = Module
• q = Sequence alias
• u = Module alias
• v = Global variable
• * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there
is a dependency.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE
= 'F'), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = 'O', 'S', 'T', 'U', 'V', 'W', or 'v',
encodes the privileges on the table or view
that are required by the dependent index;
the null value otherwise.

1984 IBM Db2 V11.5: SQL Reference

SYSCAT.INDEXES
Each row represents an index. Indexes on typed tables are represented by two rows: one for the "logical
index" on the typed table, and one for the "H-index" on the hierarchy table.

Table 205. SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

OWNER VARCHAR (128) Authorization ID of the owner of the index.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or nickname on
which the index is defined.

TABNAME VARCHAR (128) Unqualified name of the table or nickname
on which the index is defined.

COLNAMES VARCHAR (640) This column is no longer used and will
be removed in the next release. Use
SYSCAT.INDEXCOLUSE for this information.

UNIQUERULE CHAR (1) Unique rule.

• D = Permits duplicates
• U = Unique
• P = Implements primary key

MADE_UNIQUE CHAR (1) • N = Index remains as it was created.
• Y = Index was originally non-unique

but was converted to a unique index
to support a unique or primary key
constraint. If the constraint is dropped,
the index reverts to being non-unique.

COLCOUNT SMALLINT Number of columns in the key, plus the
number of include columns, if any.

UNIQUE_COLCOUNT SMALLINT Number of columns required for a unique
key. It is always <= COLCOUNT, and
< COLCOUNT only if there are include
columns; -1 if the index has no unique key
(that is, it permits duplicates).

Chapter 1. Structured Query Language (SQL) 1985

Table 205. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

INDEXTYPE5 CHAR (4) Type of index.

• BLOK = Block index
• CLUS = Clustering index (controls the

physical placement of newly inserted
rows)

• CPMA = Page map index for a column-
organized table

• DIM = Dimension block index
• MDST = Modification state index
• RCT = Key sequence index for a range-

clustered table
• REG = Regular index
• TEXT = Text index
• XPTH = XML path index
• XRGN = XML region index
• XVIL = Index over XML column (logical)
• XVIP = Index over XML column (physical)

ENTRYTYPE CHAR (1) • H = This row represents an index on a
hierarchy table

• L = This row represents a logical index on
a typed table

• Blank = This row represents an index on
an untyped table

PCTFREE SMALLINT Percentage of each index page to be
reserved during the initial building of the
index. This space is available for data
insertions after the index has been built.

IID SMALLINT Identifier for the index.

NLEAF BIGINT Number of leaf pages; -1 if statistics are
not collected.

NLEVELS SMALLINT Number of index levels; -1 if statistics are
not collected.

FIRSTKEYCARD BIGINT Number of distinct first-key values; -1 if
statistics are not collected.

FIRST2KEYCARD BIGINT Number of distinct keys using the first two
columns of the index; -1 if statistics are not
collected, or if not applicable.

FIRST3KEYCARD BIGINT Number of distinct keys using the first three
columns of the index; -1 if statistics are not
collected, or if not applicable.

FIRST4KEYCARD BIGINT Number of distinct keys using the first four
columns of the index; -1 if statistics are not
collected, or if not applicable.

1986 IBM Db2 V11.5: SQL Reference

Table 205. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

FULLKEYCARD BIGINT Number of distinct full-key values; -1 if
statistics are not collected.

CLUSTERRATIO3 SMALLINT Degree of data clustering with the index;
-1 if statistics are not collected or if
detailed index statistics are collected (in
which case, CLUSTERFACTOR will be used
instead).

CLUSTERFACTOR3 DOUBLE Finer measurement of the degree of
clustering; -1 if statistics are not collected
or if the index is defined on a nickname.

SEQUENTIAL_PAGES BIGINT Number of leaf pages located on disk
in index key order with few or no large
gaps between them; -1 if statistics are not
collected.

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by
the index, expressed as a percent (integer
between 0 and 100); -1 if statistics are not
collected.

USER_DEFINED SMALLINT 1 if this index was defined by a user and
has not been dropped; 0 otherwise.

SYSTEM_REQUIRED SMALLINT • 1 if one or the other of the following
conditions is met:

– This index is required for a primary or
unique key constraint, or this index is
a dimension block index or composite
block index for a multidimensional
clustering (MDC) table or an insert time
clustering (ITC) table.

– This is the index on the object
identifier (OID) column of a typed
table.

• 2 if both of the following conditions are
met:

– This index is required for a primary or
unique key constraint, or this index is
a dimension block index or composite
block index for an MDC table or an ITC
table.

– This is the index on the OID column of
a typed table.

• 0 otherwise.

CREATE_TIME TIMESTAMP Time when the index was created.

STATS_TIME TIMESTAMP Y Last time that any change was made to the
recorded statistics for this index. The null
value if no statistics are available.

Chapter 1. Structured Query Language (SQL) 1987

Table 205. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

PAGE_FETCH_PAIRS3 VARCHAR (520) A list of pairs of integers, represented in
character form. Each pair represents the
number of pages in a hypothetical buffer,
and the number of page fetches required
to scan the table with this index using that
hypothetical buffer. Zero-length string if no
data is available.

MINPCTUSED SMALLINT A non-zero integer value indicates
that the index is enabled for online
defragmentation, and represents the
minimum percentage of used space on
a page before a page merge can be
attempted. A zero value indicates that no
page merge is attempted.

REVERSE_SCANS CHAR (1) • N = Index does not support reverse scans
• Y = Index supports reverse scans

INTERNAL_FORMAT SMALLINT Possible values are:

• 1 = Index does not have backward
pointers

• 2 or greater = Index has backward
pointers

• 6 = Index is a composite block index

COMPRESSION CHAR (1) Specifies whether index compression is
activated

• N = Not activated
• Y = Activated

IESCHEMA VARCHAR (128) Y Schema name of the index extension. The
null value for ordinary indexes.

IENAME VARCHAR (128) Y Unqualified name of the index extension.
The null value for ordinary indexes.

IEARGUMENTS CLOB (64K) Y External information of the parameter
specified when the index is created. The
null value for ordinary indexes.

INDEX_OBJECTID INTEGER Identifier for the index object.

NUMRIDS BIGINT Total number of row identifiers (RIDs) or
block identifiers (BIDs) in the index; -1 if
not known.

NUMRIDS_DELETED BIGINT Total number of row identifiers (or block
identifiers) in the index that are marked
deleted, excluding those identifiers on leaf
pages on which all the identifiers are
marked deleted.

1988 IBM Db2 V11.5: SQL Reference

Table 205. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

NUM_EMPTY_LEAFS BIGINT Total number of index leaf pages that
have all of their row identifiers (or block
identifiers) marked deleted.

AVERAGE_RANDOM_FETCH_
PAGES1,2

DOUBLE Average number of random table pages
between sequential page accesses when
fetching using the index; -1 if not known.

AVERAGE_RANDOM_PAGES2 DOUBLE Average number of random table pages
between sequential page accesses; -1 if
not known.

AVERAGE_SEQUENCE_GAP2 DOUBLE Gap between index page sequences.
Detected through a scan of index leaf
pages, each gap represents the average
number of index pages that must be
randomly fetched between sequences of
index pages; -1 if not known.

AVERAGE_SEQUENCE_FETCH_
GAP1,2

DOUBLE Gap between table page sequences when
fetching using the index. Detected through
a scan of index leaf pages, each gap
represents the average number of table
pages that must be randomly fetched
between sequences of table pages; -1 if
not known.

AVERAGE_SEQUENCE_PAGES2 DOUBLE Average number of index pages that are
accessible in sequence (that is, the number
of index pages that the prefetchers would
detect as being in sequence); -1 if not
known.

AVERAGE_SEQUENCE_FETCH_
PAGES1,2

DOUBLE Average number of table pages that are
accessible in sequence (that is, the number
of table pages that the prefetchers would
detect as being in sequence) when fetching
using the index; -1 if not known.

TBSPACEID INTEGER Identifier for the index table space.

LEVEL2PCTFREE SMALLINT Percentage of each index level 2 page to be
reserved during initial building of the index.
This space is available for future inserts
after the index has been built.

PAGESPLIT CHAR (1) Index page split behavior.

• H = High
• L = Low
• S = Symmetric
• Blank = Not applicable

Chapter 1. Structured Query Language (SQL) 1989

Table 205. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

AVGPARTITION_
CLUSTERRATIO3

SMALLINT Degree of data clustering within a single
data partition. -1 if the table is not
partitioned, if statistics are not collected, or
if detailed statistics are collected (in which
case AVGPARTITION_ CLUSTERFACTOR
will be used instead).

AVGPARTITION_
CLUSTERFACTOR3

DOUBLE Finer measurement of the degree of
clustering within a single data partition. -1
if the table is not partitioned, if statistics
are not collected, or if the index is defined
on a nickname.

AVGPARTITION_PAGE_FETCH_
PAIRS3

VARCHAR (520) A list of paired integers in character form.
Each pair represents a potential buffer pool
size and the corresponding page fetches
required to access a single data partition
from the table. Zero-length string if no
data is available, or if the table is not
partitioned.

PCTPAGESSAVED SMALLINT Approximate percentage of pages saved in
the index as a result of index compression.
-1 if statistics are not collected.

DATAPARTITION_
CLUSTERFACTOR

DOUBLE A statistic measuring the "clustering" of the
index keys with regard to data partitions.
It is a number between 0 and 1, with
1 representing perfect clustering and 0
representing no clustering.

INDCARD BIGINT Cardinality of the index. This might be
different from the cardinality of the table
for indexes that do not have a one-to-one
relationship between the table rows and
the index entries.

AVGLEAFKEYSIZE INTEGER Average index key size for keys on leaf
pages in the index.

AVGNLEAFKEYSIZE INTEGER Average index key size for keys on non-leaf
pages in the index.

OS_PTR_SIZE INTEGER Platform word size with which the index
was created.

• 32 = 32-bit
• 64 = 64-bit

COLLECTSTATISTCS CHAR (1) Specifies how statistics were collected at
index creation time.

• D = Collect detailed index statistics
• S = Collect sampled detailed index

statistics
• Y = Collect basic index statistics
• Blank = Do not collect index statistics

1990 IBM Db2 V11.5: SQL Reference

Table 205. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

DEFINER4 VARCHAR (128) Authorization ID of the owner of the index.

LASTUSED DATE Date when the index was last used by any
DML statement to perform a scan, or used
to enforce referential integrity constraints.
This column is not updated when the index
is used on an HADR standby database, nor
is it updated when rows are inserted into
the table on which the index is defined. The
default value is '0001-01-01'. This value
is updated asynchronously not more than
once within a 24 hour period and might not
reflect usage within the last 15 minutes.

PERIODNAME VARCHAR(128) Y Name of the period used to define this
index.

PERIODPOLICY CHAR (1) If a period name was specified, the index
uses this period policy.

• N = Not applicable
• O = Period overlaps not allowed

MADE_WITHOUTOVERLAPS CHAR (1) • N = Index remains as it was created.
• Y = Index was converted to enforce

WITHOUT OVERLAPS on the application
period to support a primary or unique
constraint. If the constraint is dropped,
the index reverts to the original state.

NULLKEYS CHAR (1) • N = Keys that contain all null values are
not indexed (not considering columns or
expressions from the INCLUDE clause)

• Y = Keys that contain all null values
are indexed (not considering columns or
expressions from the INCLUDE clause)

FUNC_PATH CLOB (2K) Y SQL path in effect when the index was
defined with an expression in the key. The
null value if the key does not include any
expressions.

VIEWSCHEMA VARCHAR(128) Y Schema name of the statistical view
associated with the index key, if the key
includes at least one expression. The null
value if there are no expressions in the key.

VIEWNAME VARCHAR(128) Y Unqualified name of the statistical view
associated with the index key, if the key
includes at least one expression. The null
value if there are no expressions in the key.

ENVSTRINGUNITS VARCHAR (11) Default string units when the object was
created.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Chapter 1. Structured Query Language (SQL) 1991

Table 205. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

Note:

1. When using DMS table spaces, this statistic cannot be computed.
2. Prefetch statistics are not gathered during a LOAD...STATISTICS USE PROFILE, or a CREATE

INDEX...COLLECT STATISTICS operation, or when the database configuration parameter seqdetect is turned
off.

3. AVGPARTITION_CLUSTERRATIO, AVGPARTITION_CLUSTERFACTOR, and
AVGPARTITION_PAGE_FETCH_PAIRS measure the degree of clustering within a single data partition (local
clustering). CLUSTERRATIO, CLUSTERFACTOR, and PAGE_FETCH_PAIRS measure the degree of clustering
in the entire table (global clustering). Global clustering and local clustering values can diverge significantly if
the table partitioning key is not a prefix of the index key, or when the table partitioning key and the index key
are logically independent of each other.

4. The DEFINER column is included for backwards compatibility. See OWNER.
5. The XPTH, XRGN, and XVIP indexes are not recognized by any application programming interface that

returns index metadata.

SYSCAT.INDEXEXPLOITRULES
Each row represents an index exploitation rule.

Table 206. SYSCAT.INDEXEXPLOITRULES Catalog View

Column Name Data Type Nullable Description

FUNCID INTEGER Identifier for the function.

SPECID SMALLINT Number of the predicate specification.

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

RULEID SMALLINT Identifier for the exploitation rule.

SEARCHMETHODID SMALLINT Identifier for the search method in the
specific index extension.

SEARCHKEY VARCHAR (640) Key used to exploit the index.

SEARCHARGUMENT VARCHAR (2700) Search arguments used to exploit the
index.

EXACT CHAR (1) • N = Index lookup is not exact in terms of
predicate evaluation

• Y = Index lookup is exact in terms of
predicate evaluation

1992 IBM Db2 V11.5: SQL Reference

SYSCAT.INDEXEXTENSIONDEP
Each row represents a dependency of an index extension on some other object. The index extension
depends on the object of type BTYPE of name BNAME, so a change to the object affects the index
extension.

Table 207. SYSCAT.INDEXEXTENSIONDEP Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

• A = Table alias
• B = Trigger
• C = Column
• F = Routine
• G = Global temporary table
• H = Hierachy table
• I = Index
• K = Package
• L = Detached table
• N = Nickname
• O = Privilege dependency on all subtables

or subviews in a table or view hierarchy
• Q = Sequence
• R = User-defined data type
• S = Materialized query table
• T = Table (not typed)
• U = Typed table
• V = View (not typed)
• W = Typed view
• X = Index extension
• Z = XSR object
• m = Module
• q = Sequence alias
• u = Module alias
• v = Global variable
• * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there
is a dependency.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

Chapter 1. Structured Query Language (SQL) 1993

Table 207. SYSCAT.INDEXEXTENSIONDEP Catalog View (continued)

Column Name Data Type Nullable Description

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE
= 'F'), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = 'O', 'S', 'T', 'U', 'V', 'W', or 'v',
encodes the privileges on the table or view
that are required by the dependent index
extension; the null value otherwise.

SYSCAT.INDEXEXTENSIONMETHODS
Each row represents a search method. An index extension can contain more than one search method.

Table 208. SYSCAT.INDEXEXTENSIONMETHODS Catalog View

Column Name Data Type Nullable Description

METHODNAME VARCHAR (128) Name of the search method.

METHODID SMALLINT Number of the method in the index
extension.

IESCHEMA VARCHAR (128) Schema name of the index extension on
which this method is defined.

IENAME VARCHAR (128) Unqualified name of the index extension on
which this method is defined.

RANGEFUNCSCHEMA VARCHAR (128) Schema name of the range-through
function.

RANGEFUNCNAME VARCHAR (128) Unqualified name of the range-through
function.

RANGESPECIFICNAME VARCHAR (128) Function-specific name of the range-
through function.

FILTERFUNCSCHEMA VARCHAR (128) Y Schema name of the filter function.

FILTERFUNCNAME VARCHAR (128) Y Unqualified name of the filter function.

FILTERSPECIFICNAME VARCHAR (128) Y Function-specific name of the filter
function.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.INDEXEXTENSIONPARMS
Each row represents an index extension instance parameter or source key column.

Table 209. SYSCAT.INDEXEXTENSIONPARMS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

1994 IBM Db2 V11.5: SQL Reference

Table 209. SYSCAT.INDEXEXTENSIONPARMS Catalog View (continued)

Column Name Data Type Nullable Description

ORDINAL SMALLINT Sequence number of the parameter or key
column.

PARMNAME VARCHAR (128) Name of the parameter or key column.

TYPESCHEMA VARCHAR (128) Schema name of the data type of the
parameter or key column.

TYPENAME VARCHAR (128) Unqualified name of the data type of the
parameter or key column.

LENGTH INTEGER Data type length of the parameter or key
column.

SCALE SMALLINT Data type scale of the parameter or key
column; 0 if not applicable.

PARMTYPE CHAR (1) • K = Source key column
• P = Index extension instance parameter

CODEPAGE SMALLINT Code page of the index extension instance
parameter; 0 if not a string type.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the parameter; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of
the collation for the parameter; the null
value otherwise.

SYSCAT.INDEXEXTENSIONS
Each row represents an index extension.

Table 210. SYSCAT.INDEXEXTENSIONS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

OWNER VARCHAR (128) Authorization ID of the owner of the index
extension.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the index extension was
defined.

KEYGENFUNCSCHEMA VARCHAR (128) Schema name of the key generation
function.

KEYGENFUNCNAME VARCHAR (128) Unqualified name of the key generation
function.

KEYGENSPECIFICNAME VARCHAR (128) Name of the key generation function
instance (might be system-generated).

Chapter 1. Structured Query Language (SQL) 1995

Table 210. SYSCAT.INDEXEXTENSIONS Catalog View (continued)

Column Name Data Type Nullable Description

TEXT CLOB (2M) Full text of the CREATE INDEX EXTENSION
statement.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the index
extension.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.INDEXOPTIONS
Each row represents an index-specific option value.

Table 211. SYSCAT.INDEXOPTIONS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

OPTION VARCHAR (128) Name of the index option.

SETTING VARCHAR (2048) Value of the index option.

SYSCAT.INDEXPARTITIONS
Each row represents a partitioned index piece located on one data partition. Note that the index partition
statistics represent one database partition if the table is created on multiple database partitions.

Table 212. SYSCAT.INDEXPARTITIONS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

TABSCHEMA VARCHAR (128) Schema name of the table or nickname on
which the index is defined.

TABNAME VARCHAR (128) Unqualified name of the table or nickname
on which the index is defined.

IID SMALLINT Identifier for the index.

INDPARTITIONTBSPACEID INTEGER Identifier for the index partition table
space.

INDPARTITIONOBJECTID INTEGER Identifier for the index partition object.

DATAPARTITIONID INTEGER This corresponds to the DATAPARTITIONID
found in the SYSCAT.DATAPARTITIONS
view.

1996 IBM Db2 V11.5: SQL Reference

Table 212. SYSCAT.INDEXPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

INDCARD BIGINT Cardinality of the index partition. This might
be different from the cardinality of the
corresponding data partition for partitioned
indexes that do not have a one-to-one
relationship between the data partition
rows and the index entries.

NLEAF BIGINT Number of leaf pages in the index partition;
-1 if statistics are not collected.

NUM_EMPTY_LEAFS BIGINT Total number of index leaf pages in the
index partition that have all of their row
identifiers (RIDs) or block identifiers (BIDs)
marked deleted.

NUMRIDS BIGINT Total number of row identifiers (RIDs)
or block identifiers (BIDs) in the index
partition; -1 if not known.

NUMRIDS_DELETED BIGINT Total number of row identifiers (RIDs)
or block identifiers (BIDs) in the
index partition that are marked deleted,
excluding those identifiers on leaf pages
on which all the identifiers are marked
deleted.

FULLKEYCARD BIGINT Number of distinct full-key values in the
index partition; -1 if statistics are not
collected.

NLEVELS SMALLINT Number of index levels in the index
partition; -1 if statistics are not collected.

CLUSTERRATIO SMALLINT Degree of data clustering with the index
partition; -1 in either of the following
situations:

• Statistics are not collected
• Detailed index statistics are collected. In

this situation, CLUSTERFACTOR will be
used instead.

CLUSTERFACTOR DOUBLE Finer measurement of the degree of
clustering; -1 if statistics are not collected.

FIRSTKEYCARD BIGINT Number of distinct first-key values; -1 if
statistics are not collected.

FIRST2KEYCARD BIGINT Number of distinct keys using the first two
columns of the index key; -1 if statistics are
not collected, or if not applicable.

FIRST3KEYCARD BIGINT Number of distinct keys using the first three
columns of the index key; -1 if statistics are
not collected, or if not applicable.

FIRST4KEYCARD BIGINT Number of distinct keys using the first four
columns of the index key; -1 if statistics are
not collected, or if not applicable.

Chapter 1. Structured Query Language (SQL) 1997

Table 212. SYSCAT.INDEXPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

AVGLEAFKEYSIZE INTEGER Average index key size for keys on leaf
pages in the index partition; -1 if statistics
are not collected.

AVGNLEAFKEYSIZE INTEGER Average index key size for keys on non-leaf
pages in the index partition; -1 if statistics
are not collected.

PCTFREE SMALLINT Percentage of each index page to be
reserved during the initial building of the
index partition. This space is available for
data insertions after the index partition has
been built.

PAGE_FETCH_PAIRS VARCHAR (520) A list of pairs of integers, represented in
character form. Each pair represents the
number of pages in a hypothetical buffer,
and the number of page fetches required to
scan the data partition with this index using
that hypothetical buffer. Zero-length string
if not data is available.

SEQUENTIAL_PAGES BIGINT Number of leaf pages located on disk
in index key order with few or no large
gaps between them; -1 if statistics are not
collected.

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of
pages in the range of pages occupied by
the index partition, expressed as a percent
(integer between 0 and 100); -1 if statistics
are not collected.

AVERAGE_SEQUENCE_GAP DOUBLE Gap between index page sequences within
the index partition. Detected through
a scan of index leaf pages, each gap
represents the average number of index
pages that must be randomly fetched
between sequences of index pages; -1 if
not known.

AVERAGE_SEQUENCE_
FETCH_GAP

DOUBLE Gap between table page sequences when
fetching using the index partition. Detected
through a scan of index leaf pages,
each gap represents the average number
of data partition pages that must be
randomly fetched between sequences of
data partition pages; -1 if not known.

AVERAGE_SEQUENCE_
PAGES

DOUBLE Average number of index pages that are
accessible in sequence (that is, the number
of index pages that the prefetchers would
detect as being in sequence); -1 if not
known.

1998 IBM Db2 V11.5: SQL Reference

Table 212. SYSCAT.INDEXPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

AVERAGE_SEQUENCE_
FETCH_PAGES

DOUBLE Average number of data partition pages
that are accessible in sequence (that is,
the number of data partition pages that
the prefetchers would detect as being in
sequence) when fetching using the index;
-1 if not known.

AVERAGE_RANDOM_PAGES DOUBLE Average number of random data partition
pages between sequential page accesses;
-1 if not known.

AVERAGE_RANDOM_FETCH_
PAGES

DOUBLE Average number of random data partition
pages between sequential page accesses
when fetching using the index partition; -1
if not known.

STATS_TIME TIMESTAMP Y Last time that any change was made to the
recorded statistics for this index partition.
The null value if no statistics are available.

COMPRESSION CHAR (1) Specifies whether index compression is
activated

• N = Not activated
• Y = Activated

PCTPAGESSAVED SMALLINT Approximate percentage of pages saved in
the index as a result of index compression.
-1 if statistics are not collected.

SYSCAT.INDEXXMLPATTERNS
Each row represents a pattern clause in an index over an XML column.

Table 213. SYSCAT.INDEXXMLPATTERNS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the logical index.

INDNAME VARCHAR (128) Unqualified name of the logical index.

PINDNAME VARCHAR (128) Unqualified name of the physical index.

PINDID SMALLINT Identifier for the physical index.

TYPEMODEL CHAR (1) • Q = SQL DATA TYPE (Ignore invalid
values)

• R = SQL DATA TYPE (Reject invalid
values)

DATATYPE VARCHAR (128) Name of the data type.

HASHED CHAR (1) Indicates whether or not the value is
hashed.

• N = Not hashed
• Y = Hashed

Chapter 1. Structured Query Language (SQL) 1999

Table 213. SYSCAT.INDEXXMLPATTERNS Catalog View (continued)

Column Name Data Type Nullable Description

LENGTH SMALLINT Length if DATATYPE = 'VARCHAR' and
HASHED = 'N'; precision if DATATYPE =
'DECIMAL'; 0 otherwise.

SCALE SMALLINT Scale if DATATYPE = 'DECIMAL'; 0
otherwise.

PATTERNID SMALLINT Identifier for the pattern.

PATTERN CLOB (2M) Y Definition of the pattern.

Note:

1. When indexes over XML columns are created, logical indexes that use XML pattern information are created,
resulting in the creation of physical B-tree indexes with key columns generated by the database manager
to support the logical indexes. A physical index is created to support the data type that is specified in the
xmltype-clause of the CREATE INDEX statement.

SYSCAT.INVALIDOBJECTS
Each row represents an invalid object.

Table 214. SYSCAT.INVALIDOBJECTS Catalog View

Column Name Data Type Nullable Description

OBJECTSCHEMA VARCHAR (128) Schema name of the object being created
or revalidated.

OBJECTMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object being created or revalidated
belongs. The null value if the object does
not belong to a module.

OBJECTNAME VARCHAR (128) Unqualified name of the object being
created or revalidated. For routines
(OBJECTTYPE = 'F'), this is the specific
name.

ROUTINENAME VARCHAR (128) Y Unqualified name of the routine.

OBJECTTYPE CHAR (1) Type of the object being created or
revalidated. Possible values are:

• B = Trigger
• F = Routine
• R = User-defined data type
• V = View
• v = Global variable
• y = Row permission
• 2 = Column mask
• 3 = Usage list

SQLCODE INTEGER Y SQLCODE returned in CREATE with errors
or revalidation. The null value if the object
has never been revalidated.

2000 IBM Db2 V11.5: SQL Reference

Table 214. SYSCAT.INVALIDOBJECTS Catalog View (continued)

Column Name Data Type Nullable Description

SQLSTATE CHAR (5) Y SQLSTATE returned in CREATE with errors
or revalidation. The null value if the object
has never been revalidated.

ERRORMESSAGE VARCHAR (4000) Y Short text for the message associated with
SQLCODE. The null value if the object has
never been revalidated.

LINENUMBER INTEGER Y Line number where the error occurred in
compiled objects. The null value if the
object is not a compiled object.

INVALIDATE_TIME TIMESTAMP Time at which the object was last
invalidated.

LAST_REGEN_TIME TIMESTAMP Y Time at which the object was last
revalidated. The null value if the object has
never been revalidated.

SYSCAT.KEYCOLUSE
Each row represents a column that participates in a key defined by a unique, primary key, or foreign key
constraint.

Table 215. SYSCAT.KEYCOLUSE Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the table containing the
column.

TABNAME VARCHAR (128) Unqualified name of the table containing
the column.

COLNAME VARCHAR (128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the key
for the constraint (initial position is 1). If a
constraint uses an existing index, this value
is the numeric position of the column in the
index.

SYSCAT.MEMBERSUBSETATTRS
Each row represents a member subset attribute.

Table 216. SYSCAT.MEMBERSUBSETATTRS Catalog View

Column Name Data Type Nullable Description

SUBSETID INTEGER Subset identifier.

ATTRID SMALLINT Attribute identifier.

• 1 = DBALIAS

ATTRVALUE VARCHAR(1000) Y Value of attribute.

Chapter 1. Structured Query Language (SQL) 2001

SYSCAT.MEMBERSUBSETMEMBERS
Each row represents a member that is associated with a member subset.

Table 217. SYSCAT.MEMBERSUBSETMEMBERS Catalog View

Column Name Data Type Nullable Description

SUBSETID INTEGER Subset identifier.

MEMBER SMALLINT Member ID as defined in db2nodes.cfg.

FAILOVER_PRIORITY SMALLINT Stores the failover priority value of the
members.

SYSCAT.MEMBERSUBSETS
Each row represents a member subset.

Table 218. SYSCAT.MEMBERSUBSETS Catalog View

Column Name Data Type Nullable Description

SUBSETNAME VARCHAR(128) Name of subset.

SUBSETID INTEGER Subset identifier.

CREATE_TIME TIMESTAMP Time at which subset was defined.

ALTER_TIME TIMESTAMP Time at which subset was last altered.

ENABLED CHAR(1) State of the member subset.

• N = subset is currently disabled
• Y = subset is currently enabled

MEMBERPRIORITYBASIS CHAR(1) Basis for member priorities:

• E = Equal priorities
• L = Member load

INCLUSIVESUBSET CHAR(1) Inclusiveness of member subset:

• N = The member subset is not inclusive
• Y = The member subset is inclusive

ALTERNATESERVER CHAR(1) Alternate server's inclusion in the member
subsets server list:

• N = The alternate server is not included in
the member subsets server list

• Y = The alternate server is included in the
member subsets server list

CATALOGDATABASEALIAS CHAR(1) Database alias cataloged for member
subset:

• N = No database alias cataloged explicitly
for this member subset

• Y = Database alias cataloged explicitly for
this member subset

REMARKS VARCHAR(254) Y User provided comments, or the null value.

2002 IBM Db2 V11.5: SQL Reference

SYSCAT.MODULEAUTH
Each row represents a user, group, or role that has been granted a privilege on a module.

Table 219. SYSCAT.MODULEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

MODULEID INTEGER Identifier for the module to which this
privilege applies.

MODULESCHEMA VARCHAR (128) Schema name of the module to which this
privilege applies.

MODULENAME VARCHAR (128) Unqualified name of the module to which
this privilege applies.

EXECUTEAUTH CHAR (1) Privilege to execute objects in the identified
module.

• G = Held and grantable
• N = Not held
• Y = Held

SYSCAT.MODULEOBJECTS
Each row represents a function, procedure, global variable, condition, or user-defined type that belongs to
a module.

Table 220. SYSCAT.MODULEOBJECTS Catalog View

Column Name Data Type Nullable Description

OBJECTSCHEMA VARCHAR (128) N Schema name of the module.

OBJECTMODULENAME VARCHAR (128) N Unqualified name of the module to which
the object belongs.

OBJECTNAME VARCHAR (128) N Unqualified name of the object.

OBJECTTYPE VARCHAR (9) N • CONDITION = The object is a condition
• FUNCTION = The object is a function
• PROCEDURE = The object is a procedure
• TYPE = The object is a data type
• VARIABLE = The object is a variable

Chapter 1. Structured Query Language (SQL) 2003

Table 220. SYSCAT.MODULEOBJECTS Catalog View (continued)

Column Name Data Type Nullable Description

PUBLISHED CHAR (1) N Indicates whether the object can be
referenced outside its module.

• N = The object is not published
• Y = The object is published

SPECIFICNAME VARCHAR (128) N Routine specific name if OBJECTTYPE is
'FUNCTION', 'METHOD' or 'PROCEDURE';
the null value otherwise.

USERDEFINED CHAR (1) N Indicates whether the object is generated
by the system or defined by a user.

• N = The object is system generated
• Y = The object is defined by a user

SYSCAT.MODULES
Each row represents a module.

Table 221. SYSCAT.MODULES Catalog View

Column Name Data Type Nullable Description

MODULESCHEMA VARCHAR (128) Schema name of the module.

MODULENAME VARCHAR (128) Unqualified name of the module.

MODULEID INTEGER Identifier for the module.

DIALECT VARCHAR (10) The source dialect of the SQL module.
Possible values are:

• DB2 SQL PL
• PL/SQL
• Blank = Not applicable for an alias

OWNER VARCHAR (128) Authorization ID of the owner of the
module.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

MODULETYPE CHAR (1) Type of module.

• A = Alias
• M = Module
• P = PL/SQL package

BASE_MODULESCHEMA VARCHAR (128) Y If MODULETYPE is 'A', contains the schema
name of the module or alias that is
referenced by this alias; the null value
otherwise.

2004 IBM Db2 V11.5: SQL Reference

Table 221. SYSCAT.MODULES Catalog View (continued)

Column Name Data Type Nullable Description

BASE_MODULENAME VARCHAR (128) Y If MODULETYPE is 'A', contains the
unqualified name of the module or alias
that is referenced by this alias; the null
value otherwise.

CREATE_TIME TIMESTAMP Time at which the module was created.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.NAMEMAPPINGS
Each row represents the mapping between a "logical" object (typed table or view and its columns and
indexes, including inherited columns) and the corresponding "implementation" object (hierarchy table or
hierarchy view and its columns and indexes) that implements the logical object.

Table 222. SYSCAT.NAMEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE CHAR (1) • C = Column
• I = Index
• U = Typed table

LOGICAL_SCHEMA VARCHAR (128) Schema name of the logical object.

LOGICAL_NAME VARCHAR (128) Unqualified name of the logical object.

LOGICAL_COLNAME VARCHAR (128) Y Name of the logical column if TYPE = 'C';
null value otherwise.

IMPL_SCHEMA VARCHAR (128) Schema name of the implementation
object that implements the logical object.

IMPL_NAME VARCHAR (128) Unqualified name of the implementation
object that implements the logical object.

IMPL_COLNAME VARCHAR (128) Y Name of the implementation column if
TYPE = 'C'; null value otherwise.

SYSCAT.NICKNAMES
Each row represents a nickname.

Table 223. SYSCAT.NICKNAMES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the nickname.

TABNAME VARCHAR (128) Unqualified name of the nickname.

OWNER VARCHAR (128) Authorization ID of the owner of the table,
view, alias, or nickname.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

Chapter 1. Structured Query Language (SQL) 2005

Table 223. SYSCAT.NICKNAMES Catalog View (continued)

Column Name Data Type Nullable Description

STATUS CHAR (1) Status of the object.

• C = Set integrity pending
• N = Normal
• X = Inoperative

CREATE_TIME TIMESTAMP Time at which the object was created.

STATS_TIME TIMESTAMP Y Time at which any change was last made to
recorded statistics for this object. The null
value if statistics are not collected.

COLCOUNT SMALLINT Number of columns, including inherited
columns (if any).

TABLEID SMALLINT Internal logical object identifier.

TBSPACEID SMALLINT Internal logical identifier for the primary
table space for this object.

CARD BIGINT Total number of rows in the table; -1 if
statistics are not collected.

NPAGES BIGINT Total number of pages on which the rows of
the nickname exist; -1 if statistics are not
gathered.

FPAGES BIGINT Total number of pages; -1 if statistics are
not gathered.

OVERFLOW BIGINT Total number of overflow records; -1 if
statistics are not gathered.

PARENTS SMALLINT Y Number of parent tables for this object;
that is, the number of referential
constraints in which this object is a
dependent.

CHILDREN SMALLINT Y Number of dependent tables for this
object; that is, the number of referential
constraints in which this object is a parent.

SELFREFS SMALLINT Y Number of self-referencing referential
constraints for this object; that is, the
number of referential constraints in which
this object is both a parent and a
dependent.

KEYCOLUMNS SMALLINT Y Number of columns in the primary key.

KEYINDEXID SMALLINT Y Index identifier for the primary key index; 0
or the null value if there is no primary key.

KEYUNIQUE SMALLINT Number of unique key constraints (other
than the primary key constraint) defined on
this object.

CHECKCOUNT SMALLINT Number of check constraints defined on
this object.

2006 IBM Db2 V11.5: SQL Reference

Table 223. SYSCAT.NICKNAMES Catalog View (continued)

Column Name Data Type Nullable Description

DATACAPTURE CHAR (1) • L = Nickname participates in data
replication, including replication of LONG
VARCHAR and LONG VARGRAPHIC
columns

• N = Nickname does not participate in
data replication

• Y = Nickname participates in data
replication

CONST_CHECKED CHAR (32) • Byte 1 represents foreign key constraint.
• Byte 2 represents check constraint.
• Byte 5 represents materialized query

table.
• Byte 6 represents generated column.
• Byte 7 represents staging table.
• Byte 8 represents data partitioning

constraint.
• Other bytes are reserved for future use.

Possible values are:

• F = In byte 5, the materialized query
table cannot be refreshed incrementally.
In byte 7, the content of the staging
table is incomplete and cannot be used
for incremental refresh of the associated
materialized query table.

• N = Not checked
• U = Checked by user
• W = Was in 'U' state when the table was

placed in set integrity pending state
• Y = Checked by system

PARTITION_MODE CHAR (1) Reserved for future use.

STATISTICS_PROFILE CLOB (10M) Y RUNSTATS command used to register a
statistical profile for the object.

ACCESS_MODE CHAR (1) Access restriction state of the object. These
states only apply to objects that are in
set integrity pending state or to objects
that were processed by a SET INTEGRITY
statement. Possible values are:

• D = No data movement
• F = Full access
• N = No access
• R = Read-only access

Chapter 1. Structured Query Language (SQL) 2007

Table 223. SYSCAT.NICKNAMES Catalog View (continued)

Column Name Data Type Nullable Description

CODEPAGE SMALLINT Code page of the object. This is the default
code page used for all character columns,
triggers, check constraints, and expression-
generated columns.

REMOTE_TABLE VARCHAR (128) Y Unqualified name of the specific data
source object (such as a table or a view)
for which the nickname was created.

REMOTE_SCHEMA VARCHAR (128) Y Schema name of the specific data source
object (such as a table or a view) for which
the nickname was created.

SERVERNAME VARCHAR (128) Y Name of the data source that contains the
table or view for which the nickname was
created.

REMOTE_TYPE CHAR (1) Y Type of object at the data source.

• A = Alias
• N = Nickname
• S = Materialized query table
• T = Table (untyped)
• V = View (untyped)

CACHINGALLOWED VARCHAR (1) • N = Caching is not allowed
• Y = Caching is allowed

DEFINER1 VARCHAR (128) Authorization ID of the owner of the table,
view, alias, or nickname.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.PACKAGEAUTH
Each row represents a user, group, or role that has been granted one or more privileges on a package.

Table 224. SYSCAT.PACKAGEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

2008 IBM Db2 V11.5: SQL Reference

Table 224. SYSCAT.PACKAGEAUTH Catalog View (continued)

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

CONTROLAUTH CHAR (1) CONTROL privilege.

• N = Not held
• Y = Held

BINDAUTH CHAR (1) Privilege to bind the package.

• G = Held and grantable
• N = Not held
• Y = Held

EXECUTEAUTH CHAR (1) Privilege to execute the package.

• G = Held and grantable
• N = Not held
• Y = Held

SYSCAT.PACKAGEDEP
Each row represents a dependency of a package on some other object. The package depends on the
object of type BTYPE of name BNAME, so a change to the object affects the package.

Table 225. SYSCAT.PACKAGEDEP Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

BINDER VARCHAR (128) Binder of the package.

BINDERTYPE CHAR (1) • U = Binder is an individual user

Chapter 1. Structured Query Language (SQL) 2009

Table 225. SYSCAT.PACKAGEDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

• A = Table alias
• B = Trigger
• D = Server definition
• F = Routine
• G = Global temporary table
• I = Index
• M = Function mapping
• N = Nickname
• O = Privilege dependency on all subtables

or subviews in a table or view hierarchy
• P = Page size
• Q = Sequence object
• R = User-defined data type
• S = Materialized query table
• T = Table (untyped)
• U = Typed table
• V = View (untyped)
• W = Typed view
• Z = XSR object
• m = Module
• n = Database partition group
• q = Sequence alias
• u = Module alias
• v = Global variable
• 4 = Application-period temporal table
• 5 = System-period temporal table

BSCHEMA VARCHAR (128) Schema name of an object on which the
package depends.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of an object on which the
package depends.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE is 'O', 'S', 'T', 'U', 'V', 'W', or 'v',
encodes the privileges that are required by
this package (SELECT, INSERT, UPDATE, or
DELETE).

2010 IBM Db2 V11.5: SQL Reference

Table 225. SYSCAT.PACKAGEDEP Catalog View (continued)

Column Name Data Type Nullable Description

VARAUTH SMALLINT Y If BTYPE is 'v', encodes the privileges that
are required by this package (READ or
WRITE).

UNIQUE_ID CHAR (8) FOR BIT
DATA

Identifier for a specific package when
multiple packages having the same name
exist.

PKGVERSION VARCHAR (64) Y Version identifier for the package.

Note:

1. If a function instance with dependencies is dropped, the package is put into an "inoperative" state, and it
must be explicitly rebound. If any other object with dependencies is dropped, the package is put into an
"invalid" state, and the system will attempt to rebind the package automatically when it is first referenced.

SYSCAT.PACKAGES
Each row represents a package that has been created by binding an application program.

Table 226. SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

BOUNDBY VARCHAR (128) Authorization ID of the binder and owner
of the package.

BOUNDBYTYPE CHAR (1) • U = The binder and owner is an
individual user

OWNER VARCHAR (128) Authorization ID of the binder and owner
of the package.

OWNERTYPE CHAR (1) • U = The binder and owner is an
individual user

DEFAULT_SCHEMA VARCHAR (128) Default schema name used for
unqualified names in static SQL
statements.

VALID1 CHAR (1) • N = Needs rebinding
• V = Validate at run time
• X = Package is inoperative because

some function instance on which it
depends has been dropped; explicit
rebind is needed

• Y = Valid

UNIQUE_ID CHAR (8) FOR BIT
DATA

Identifier for a specific package when
multiple packages having the same
name exist.

TOTAL_SECT SMALLINT Number of sections in the package.

Chapter 1. Structured Query Language (SQL) 2011

Table 226. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

FORMAT CHAR (1) Date and time format associated with
the package.

• 0 = Format associated with the
territory code of the client

• 1 = USA
• 2 = EUR
• 3 = ISO
• 4 = JIS
• 5 = LOCAL

ISOLATION CHAR (2) Y Isolation level.

• CS = Cursor Stability
• RR = Repeatable Read
• RS = Read Stability
• UR = Uncommitted Read

CONCURRENTACCESSRESOLUTION CHAR (1) Y The value of the
CONCURRENTACCESSRESOLUTION bind
option:

• U = USE CURRENTLY COMMITTED
• W = WAIT FOR OUTCOME
• Blank = Not specified

BLOCKING CHAR (1) Y Cursor blocking option.

• B = Block all cursors
• N = No blocking
• U = Block unambiguous cursors

INSERT_BUF CHAR (1) Setting of the INSERT bind option
(applies to partitioned database
systems).

• N = Inserts are not buffered
• Y = Inserts are buffered at the

coordinator member to minimize traffic
among members

LANG_LEVEL CHAR (1) Y Setting of the LANGLEVEL bind option.

• 0 = SAA1
• 1 = MIA
• 2 = SQL92E

FUNC_PATH CLOB (2K) SQL path in effect when the package was
bound.

QUERYOPT INTEGER Optimization class under which this
package was bound. Used for rebind
operations.

2012 IBM Db2 V11.5: SQL Reference

Table 226. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

EXPLAIN_LEVEL CHAR (1) Indicates whether Explain was
requested using the EXPLAIN or
EXPLSNAP bind option.

• P = Package selection level
• Blank = No Explain requested

EXPLAIN_MODE CHAR (1) Value of the EXPLAIN bind option.

• A = ALL
• N = No
• R = REOPT
• Y = Yes

EXPLAIN_SNAPSHOT CHAR (1) Value of the EXPLSNAP bind option.

• A = ALL
• N = No
• R = REOPT
• Y = Yes

SQLWARN CHAR (1) Indicates whether or not positive
SQLCODEs resulting from dynamic
SQL statements are returned to the
application.

• N = No, they are suppressed
• Y = Yes

SQLMATHWARN CHAR (1) Value of the dft_sqlmathwarn database
configuration parameter at bind time.
Indicates whether arithmetic and
retrieval conversion errors return
warnings and null values (indicator -2),
allowing query processing to continue
whenever possible.

• N = No, errors are returned
• Y = Yes, warnings are returned

CREATE_TIME TIMESTAMP Time at which the package was first
bound.

EXPLICIT_BIND_TIME TIMESTAMP Time at which this package was last
changed by:

• BIND
• REBIND (explicit)

Chapter 1. Structured Query Language (SQL) 2013

Table 226. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

LAST_BIND_TIME TIMESTAMP Time at which the package was last
changed by:

• BIND
• REBIND (explicit)
• REBIND (implicit)

ALTER_TIME TIMESTAMP Time at which this package was last
changed by:

• BIND
• REBIND (explicit)
• REBIND (implicit)
• ALTER PACKAGE

CODEPAGE SMALLINT Application code page at bind time; -1 if
not known.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the
package.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the
package.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER
BY clauses in the package.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for
ORDER BY clauses in the package.

DEGREE CHAR (5) Degree of intrapartition parallelism that
was specified when the package was
bound.

• 1 = No parallelism
• 2-32767 = User-specified limit
• ANY = Degree determined by the

system (no limit specified)

MULTINODE_PLANS CHAR (1) • N = Package was not bound in a
partitioned database environment

• Y = Package was bound in a partitioned
database environment

2014 IBM Db2 V11.5: SQL Reference

Table 226. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

INTRA_PARALLEL CHAR (1) Use of intrapartition parallelism by static
SQL statements within the package.

• F = One or more static SQL statements
in this package can use intrapartition
parallelism; this parallelism has been
disabled for use on a system that
is not configured for intrapartition
parallelism

• N = No static SQL statement uses
intrapartition parallelism

• Y = One or more static SQL statements
in the package use intrapartition
parallelism

VALIDATE CHAR (1) Indicates whether validity checking can
be deferred until run time.

• B = All checking must be performed at
bind time

• R = Validation of tables, views, and
privileges that do not exist at bind time
is performed at run time

Chapter 1. Structured Query Language (SQL) 2015

Table 226. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

DYNAMICRULES CHAR (1) • B = BIND; dynamic SQL statements are
executed with DYNAMICRULES BIND
behavior

• D = DEFINERBIND; when the package
is run within a routine context,
dynamic SQL statements in the
package are executed with DEFINE
behavior; when the package is not
run within a routine context, dynamic
SQL statements in the package are
executed with BIND behavior

• E = DEFINERRUN; when the package is
run within a routine context, dynamic
SQL statements in the package are
executed with DEFINE behavior; when
the package is not run within a routine
context, dynamic SQL statements in
the package are executed with RUN
behavior

• H = INVOKEBIND; when the package is
run within a routine context, dynamic
SQL statements in the package are
executed with INVOKE behavior; when
the package is not run within a routine
context, dynamic SQL statements in
the package are executed with BIND
behavior

• I = INVOKERUN; when the package is
run within a routine context, dynamic
SQL statements in the package are
executed with INVOKE behavior; when
the package is not run within a routine
context, dynamic SQL statements in
the package are executed with RUN
behavior

• R = RUN; dynamic SQL statements are
executed with RUN behavior; this is the
default

SQLERROR CHAR (1) SQLERROR option on the most recent
subcommand that bound or rebound the
package.

• C = CONTINUE; creates a package,
even if errors occur while binding SQL
statements

• N = NOPACKAGE; does not create a
package or a bind file if an error occurs

2016 IBM Db2 V11.5: SQL Reference

Table 226. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

REFRESHAGE DECIMAL (20,6) Timestamp duration indicating the
maximum length of time between
execution of a REFRESH TABLE
statement for a materialized query table
(MQT) and when that MQT is used in
place of a base table.

FEDERATED CHAR (1) • N = FEDERATED bind or prep option is
turned off

• U = FEDERATED bind or prep option
was not specified

• Y = FEDERATED bind or prep option is
turned on

TRANSFORMGROUP VARCHAR (1024) Y Value of the TRANSFORM GROUP bind
option; the null value if a transform
group is not specified.

REOPTVAR CHAR (1) Indicates whether the access path is
determined again at execution time
using input variable values.

• A = Access path is reoptimized for
every OPEN or EXECUTE request

• N = Access path is determined at bind
time

• O = Access path is reoptimized only at
the first OPEN or EXECUTE request; it
is subsequently cached

OS_PTR_SIZE INTEGER Word size for the platform on which the
package was created.

• 32 = Package is a 32-bit package
• 64 = Package is a 64-bit package

PKGVERSION VARCHAR (64) Version identifier for the package.

Chapter 1. Structured Query Language (SQL) 2017

Table 226. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

STATICREADONLY CHAR (1) Indicates whether or not static cursors
will be treated as READ ONLY. Possible
values are:

• I = Any static cursor that does
not contain the FOR UPDATE clause
is considered READ ONLY and
INSENSITIVE

• N = Static cursors take on the
attributes that would normally be
generated for the given statement text
and the setting of the LANGLEVEL
precompile option

• Y = Any static cursor that does not
contain the FOR UPDATE or the FOR
READ ONLY clause is considered READ
ONLY

FEDERATED_ASYNCHRONY INTEGER Indicates the limit on asynchrony (the
number of ATQs in the plan) as a bind
option when the package was bound.

• 0 = No asynchrony
• n = User-specified limit (32 767

maximum)
• -1 = Degree of asynchrony determined

by the system
• -2 = Degree of asynchrony not
specified

For a non-federated system, the value is
0.

ANONBLOCK CHAR (1) • N = The package is not associated with
an anonymous block

• Y = The package is associated with an
anonymous block

OPTPROFILESCHEMA VARCHAR (128) Y Value of the optimization profile schema
specified as part of the OPTPROFILE
bind option.

OPTPROFILENAME VARCHAR (128) Y Value of the optimization profile name
specified as part of the OPTPROFILE
bind option.

PKGID BIGINT Identifier for the package.

DBPARTITIONNUM SMALLINT Number of the database partition where
the package was bound.

DEFINER2 VARCHAR (128) Authorization ID of the binder and owner
of the package.

PKG_CREATE_TIME3 TIMESTAMP Time at which the package was first
bound.

2018 IBM Db2 V11.5: SQL Reference

Table 226. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

APREUSE CHAR (1) • N = The query compiler will not
attempt to reuse access plans

• Y = The access plans in this package
should be reused, meaning that at
rebind time the query compiler will
attempt to choose plans like the ones
currently in the package

EXTENDEDINDICATOR CHAR (1) • N = Extended indicator variable values
are not recognized

• Y = Extended indicator variable values
are recognized

LASTUSED DATE Date when any statement in the package
was last executed. This column is
not updated for a package associated
with an anonymous block. This column
is not updated when a statement in
the package is executed on an HADR
standby database. The default value
is '0001-01-01'. This value is updated
asynchronously not more than once
within a 24 hour period and might not
reflect usage within the last 15 minutes.

BUSTIMESENSITIVE CHAR (1) • N = Statements that reference an
application period temporal table
(ATT) will not be affected by the
value of the CURRENT TEMPORAL
BUSINESS_TIME special register

• Y = Statements that reference an ATT
will be affected by the value of the
CURRENT TEMPORAL BUSINESS_TIME
special register

SYSTIMESENSITIVE CHAR (1) • N = Statements that reference a
system period temporal table (STT)
will not be affected by the value of the
CURRENT TEMPORAL SYSTEM_TIME
special register

• Y = Statements that reference an STT
will be affected by the value of the
CURRENT TEMPORAL SYSTEM_TIME
special register

Chapter 1. Structured Query Language (SQL) 2019

Table 226. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

KEEPDYNAMIC CHAR (1) Specifies whether dynamic SQL
statements are kept after commit or
rollback.

• N = Inactive dynamic SQL statements
need to be prepared again after
commit or rollback

• Y = Dynamic SQL statements are kept
across transactions

STATICASDYNAMIC CHAR (1) • N = All static SQL statements in the
package are compiled at bind time,
using static SQL semantics

• Y = All static SQL statements in the
package are compiled at execution
time, using dynamic SQL semantics

MEMBER SMALLINT Number of the member where the
package was bound.

ENVSTRINGUNITS VARCHAR (11) Default string units when the object was
created.

REMARKS VARCHAR (254) Y User-provided comments, or the null
value.

Note:

1. If a function instance with dependencies is dropped, the package is put into an "inoperative" state, and it
must be explicitly rebound. If any other object with dependencies is dropped, the package is put into an
"invalid" state, and the system will attempt to rebind the package automatically when it is first referenced.

2. The DEFINER column is included for backwards compatibility. See OWNER.
3. The PKG_CREATE_TIME column is included for backwards compatibility. See CREATE_TIME.

SYSCAT.PARTITIONMAPS
Each row represents a distribution map that is used to distribute the rows of a table among the database
partitions in a database partition group, based on hashing the table's distribution.

Table 227. SYSCAT.PARTITIONMAPS Catalog View

Column Name Data Type Nullable Description

PMAP_ID SMALLINT Identifier for the distribution map.

PARTITIONMAP BLOB (65536) Distribution map, a vector of 32768 two-
byte integers for a multiple partition
database partition group. For a single
partition database partition group, there is
one entry denoting the partition number of
the single partition.

2020 IBM Db2 V11.5: SQL Reference

SYSCAT.PASSTHRUAUTH
Each row represents a user, group, or role that has been granted pass-through authorization to query a
data source.

Table 228. SYSCAT.PASSTHRUAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

SERVERNAME VARCHAR (128) Name of the data source to which
authorization is being granted.

SYSCAT.PERIODS
Each row represents the definition of a period for use with a temporal table.

Table 229. SYSCAT.PERIODS Catalog View

Column Name Data Type Nullable Description

PERIODNAME VARCHAR (128) Name of the period.

TABSCHEMA VARCHAR (128) Schema name of the table.

TABNAME VARCHAR (128) Unqualified name of the table.

BEGINCOLNAME VARCHAR (128) Period begin column name.

ENDCOLNAME VARCHAR (128) Period end column name.

PERIODTYPE CHAR (1) Type of period.

• A = Application period
• S = System period

HISTORYTABSCHEMA VARCHAR (128) Schema name of the history table.

HISTORYTABNAME VARCHAR (128) Unqualified name of the history table.

SYSCAT.PREDICATESPECS
Each row represents a predicate specification.

Table 230. SYSCAT.PREDICATESPECS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR (128) Schema name of the function.

FUNCNAME VARCHAR (128) Unqualified name of the function.

SPECIFICNAME VARCHAR (128) Name of the function instance.

FUNCID INTEGER Identifier for the function.

Chapter 1. Structured Query Language (SQL) 2021

Table 230. SYSCAT.PREDICATESPECS Catalog View (continued)

Column Name Data Type Nullable Description

SPECID SMALLINT Number of this predicate specification.

CONTEXTOP CHAR (8) Comparison operator, one of the built-in
relational operators (=, <, >, >=, and so on).

CONTEXTEXP CLOB (2M) Constant, or an SQL expression.

FILTERTEXT CLOB (32K) Y Text of the data filter expression.

SYSCAT.REFERENCES
Each row represents a referential integrity (foreign key) constraint.

Table 231. SYSCAT.REFERENCES Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the dependent table.

TABNAME VARCHAR (128) Unqualified name of the dependent table.

OWNER VARCHAR (128) Authorization ID of the owner of the
constraint.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

REFKEYNAME VARCHAR (128) Name of the parent key.

REFTABSCHEMA VARCHAR (128) Schema name of the parent table.

REFTABNAME VARCHAR (128) Unqualified name of the parent table.

COLCOUNT SMALLINT Number of columns in the foreign key.

DELETERULE CHAR (1) Delete rule.

• A = NO ACTION
• C = CASCADE
• N = SET NULL
• R = RESTRICT

UPDATERULE CHAR (1) Update rule.

• A = NO ACTION
• R = RESTRICT

CREATE_TIME TIMESTAMP Time at which the constraint was defined.

FK_COLNAMES VARCHAR (640) This column is no longer used and will
be removed in a future release. Use
SYSCAT.KEYCOLUSE for this information.

PK_COLNAMES VARCHAR (640) This column is no longer used and will
be removed in a future release. Use
SYSCAT.KEYCOLUSE for this information.

2022 IBM Db2 V11.5: SQL Reference

Table 231. SYSCAT.REFERENCES Catalog View (continued)

Column Name Data Type Nullable Description

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
constraint.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.ROLEAUTH
Each row represents a role granted to a user, group, role, or PUBLIC.

Table 232. SYSCAT.ROLEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Authorization ID that granted the role.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Authorization ID to which the role was
granted.

GRANTEETYPE CHAR (1) • G = The grantee is a group
• R = The grantee is a role
• U = The grantee is an individual user

ROLENAME VARCHAR (128) Name of the role.

ROLEID INTEGER Identifier for the role.

ADMIN CHAR (1) Privilege to grant or revoke the role to or
from others, or to comment on the role.

• N = Not held
• Y = Held

SYSCAT.ROLES
Each row represents a role.

Table 233. SYSCAT.ROLES Catalog View

Column Name Data Type Nullable Description

ROLENAME VARCHAR (128) Name of the role.

ROLEID INTEGER Identifier for the role.

CREATE_TIME TIMESTAMP Time when the role was created.

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

AUDITEXCEPTIONENABLED CHAR (1) Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Chapter 1. Structured Query Language (SQL) 2023

SYSCAT.ROUTINEAUTH
Each row represents a user, group, or role that has been granted EXECUTE privilege on either a particular
routine (function, method, or procedure) in the database that is not defined in a module or all routines in a
particular schema in the database that are not defined in a module.

Table 234. SYSCAT.ROUTINEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege. "SYSIBM" if the
privilege was granted by the system.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

SCHEMA VARCHAR (128) Schema name of the routine.

SPECIFICNAME VARCHAR (128) Y Specific name of the routine. If
SPECIFICNAME is the null value and
ROUTINETYPE is not "M", the privilege
applies to all routines of the type specified
in ROUTINETYPE in the schema specified
in SCHEMA. If SPECIFICNAME is the
null value and ROUTINETYPE is "M", the
privilege applies to all methods for the
subject type specified by TYPENAME in
the schema specified by TYPESCHEMA.
If SPECIFICNAME is the null value,
ROUTINETYPE is "M", and both TYPENAME
and TYPESCHEMA are null values, the
privilege applies to all methods for all types
in the schema.

TYPESCHEMA VARCHAR (128) Y Schema name of the type for the method.
The null value if ROUTINETYPE is not "M".

TYPENAME VARCHAR (128) Y Unqualified name of the type for the
method. The null value if ROUTINETYPE is
not "M". If TYPENAME is the null value and
ROUTINETYPE is "M", the privilege applies
to all methods for any subject type if they
are in the schema specified by SCHEMA.

ROUTINETYPE CHAR (1) Type of the routine.

• F = Function
• M = Method
• P = Procedure

2024 IBM Db2 V11.5: SQL Reference

Table 234. SYSCAT.ROUTINEAUTH Catalog View (continued)

Column Name Data Type Nullable Description

EXECUTEAUTH CHAR (1) Privilege to execute the routine.

• G = Held and grantable
• N = Not held
• Y = Held

GRANT_TIME TIMESTAMP Time at which the privilege was granted.

SYSCAT.ROUTINEDEP
Each row represents a dependency of a routine on some other object. The routine depends on the object
of type BTYPE of name BNAME, so a change to the object affects the routine.

Table 235. SYSCAT.ROUTINEDEP Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine that has
dependencies on another object.

ROUTINEMODULENAME VARCHAR (128) Y Unqualified name of the module.

SPECIFICNAME VARCHAR (128) Specific name of the routine that has
dependencies on another object.

ROUTINEMODULEID INTEGER Y Identifier for the module of the object that
has dependencies on another object.

Chapter 1. Structured Query Language (SQL) 2025

Table 235. SYSCAT.ROUTINEDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

• A = Table alias
• B = Trigger
• C = Column
• F = Routine
• G = Global temporary table
• H = Hierachy table
• I = Index
• K = Package
• L = Detached table
• N = Nickname
• O = Privilege dependency on all subtables

or subviews in a table or view hierarchy
• Q = Sequence
• R = User-defined data type
• S = Materialized query table
• T = Table (not typed)
• U = Typed table
• V = View (not typed)
• W = Typed view
• X = Index extension
• Z = XSR object
• m = Module
• q = Sequence alias
• u = Module alias
• v = Global variable
• * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there
is a dependency.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE
= 'F'), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = 'O', 'S', 'T', 'U', 'V', 'W', or 'v',
encodes the privileges on the table or view
that are required by the dependent routine;
the null value otherwise.

2026 IBM Db2 V11.5: SQL Reference

Table 235. SYSCAT.ROUTINEDEP Catalog View (continued)

Column Name Data Type Nullable Description

ROUTINENAME VARCHAR (128) This column is no longer used and will
be removed in a future release. See
SPECIFICNAME.

SYSCAT.ROUTINEOPTIONS
Each row represents a routine-specific option value.

Table 236. SYSCAT.ROUTINEOPTIONS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

ROUTINEMODULENAME VARCHAR (128) Unqualified name of the module to which
the routine belongs. The null value if not a
module routine.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

OPTION VARCHAR (128) Federated routine option name or routine
environment variable name.

SETTING VARCHAR (2048) Federated routine option value or routine
environment variable value.

SYSCAT.ROUTINEPARMOPTIONS
Each row represents a routine parameter-specific option value.

Table 237. SYSCAT.ROUTINEPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

ORDINAL SMALLINT Position of the parameter within the routine
signature.

OPTION VARCHAR (128) Name of the federated routine option.

SETTING VARCHAR (2048) Value of the federated routine option.

Chapter 1. Structured Query Language (SQL) 2027

SYSCAT.ROUTINEPARMS
Each row represents a parameter, an aggregation state variable, or the result of a routine defined in
SYSCAT.ROUTINES.

Table 238. SYSCAT.ROUTINEPARMS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Y Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

ROUTINEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the routine belongs. The null value if not a
module routine.

ROUTINENAME VARCHAR (128) Y Unqualified name of the routine.

ROUTINEMODULEID INTEGER Y Identifier for the module to which the
routine belongs. The null value if not a
module routine.

SPECIFICNAME VARCHAR (128) Y Name of the routine instance (might be
system-generated).

PARMNAME VARCHAR (128) Y Name of the parameter, result column, or
aggregation state variable; the null value if
no name exists.

ROWTYPE CHAR (1) Y • B = Both input and output parameter
• C = Result after casting
• O = Output parameter
• P = Input parameter
• R = Result before casting
• S = Aggregation state variable

ORDINAL SMALLINT Y If ROWTYPE = "B", "O", or "P", numerical
position of the parameter within the routine
signature, starting with 1; if ROWTYPE
= "R" and the routine returns a table,
numerical position of a named column
in the result table, starting with 1; if
ROWTYPE = "S", numerical position of
an aggregation state variable within the
routine definition, starting with 1; 0
otherwise.

TYPESCHEMA VARCHAR (128) Y Schema name of the data type if
TYPEMODULEID is null; otherwise schema
name of the module to which the data type
belongs.

TYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the data type of the parameter or result
belongs. The null value if not a module data
type.

TYPENAME VARCHAR (128) Y Unqualified name of the data type.

2028 IBM Db2 V11.5: SQL Reference

Table 238. SYSCAT.ROUTINEPARMS Catalog View (continued)

Column Name Data Type Nullable Description

LOCATOR CHAR (1) Y • N = Paramater or result is not passed in
the form of a locator

• Y = Paramater or result is passed in the
form of a locator

LENGTH1 INTEGER Y Length of the data type; 0 for a user-
defined data type; -1 if length attribute of
data type is specified as ANY.

SCALE1 SMALLINT Y Scale if the data type is DECIMAL; the
number of digits of fractional seconds if the
data type is TIMESTAMP; 0 otherwise.

TYPESTRINGUNITS VARCHAR (11) Y In a Unicode database, the string units that
apply to a character string or graphic string
data type. Otherwise, the null value.

STRINGUNITSLENGTH INTEGER Y In a Unicode database, the declared
number of string units for a character string
or graphic string data type. Otherwise, the
null value.

CODEPAGE SMALLINT Y Code page associated with the data type;
0 denotes either not applicable, or a
character data type declared with the FOR
BIT DATA attribute.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the
collation for the parameter; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of
the collation for the parameter; the null
value otherwise.

CAST_FUNCSCHEMA VARCHAR (128) Y Schema name of the function used to
cast an argument or a result. Applies to
sourced and external functions; the null
value otherwise.

CAST_FUNCSPECIFIC VARCHAR (128) Y Unqualified name of the function used to
cast an argument or a result. Applies to
sourced and external functions; the null
value otherwise.

TARGET_TYPESCHEMA VARCHAR (128) Y Schema name of the target type if the type
of the parameter or result is REFERENCE.
Null value if the type of the parameter or
result is not REFERENCE.

TARGET_TYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the target type belongs if the type of the
parameter or result is REFERENCE. The null
value if the type of the parameter or result
is not REFERENCE or if the target type is
not a module data type.

Chapter 1. Structured Query Language (SQL) 2029

Table 238. SYSCAT.ROUTINEPARMS Catalog View (continued)

Column Name Data Type Nullable Description

TARGET_TYPENAME VARCHAR (128) Y Unqualified name of the module to which
the target type belongs if the type of the
parameter or result is REFERENCE. The null
value if the type of the parameter or result
is not REFERENCE or if the target type is
not a module data type.

SCOPE_TABSCHEMA VARCHAR (128) Y Schema name of the scope (target table)
if the parameter type is REFERENCE; null
value otherwise.

SCOPE_TABNAME VARCHAR (128) Y Unqualified name of the scope (target
table) if the parameter type is REFERENCE;
null value otherwise.

TRANSFORMGRPNAME VARCHAR (128) Y Name of the transform group for a
structured type parameter or result.

DEFAULT CLOB (64K) Y Expression used to calculate the default
value of the parameter. The null value if
DEFAULT clause was not specified for the
parameter.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note: LENGTH and SCALE are set to 0 for sourced functions (functions defined with a reference to another
function), because they inherit the length and scale of parameters from their source.

SYSCAT.ROUTINES
Each row represents a user-defined routine (scalar function, table function, sourced function, aggregate
interface function, method, or procedure).

Table 239. SYSCAT.ROUTINES Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Y Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which
the routine belongs.

ROUTINEMODULENAME VARCHAR (128) Y Unqualified name of the module to
which the routine belongs. The null
value if not a module routine.

ROUTINENAME VARCHAR (128) Y Unqualified name of the routine.

ROUTINETYPE CHAR (1) Y Type of routine.

• F = Function
• M = Method
• P = Procedure

OWNER VARCHAR (128) Y Authorization ID of the owner of the
routine.

2030 IBM Db2 V11.5: SQL Reference

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

OWNERTYPE CHAR (1) Y • S = The owner is the system
• U = The owner is an individual user

SPECIFICNAME VARCHAR (128) Y Name of the routine instance (might be
system-generated).

ROUTINEID INTEGER Y Identifier for the routine.

ROUTINEMODULEID INTEGER Y Identifier for the module to which the
routine belongs. The null value if not a
module routine.

RETURN_TYPESCHEMA VARCHAR (128) Y Schema name of the return type for a
scalar function or method.

RETURN_TYPEMODULE VARCHAR (128) Y The module name of the return type;
the null value if the return type does
not belong to any module.

RETURN_TYPENAME VARCHAR (128) Y Unqualified name of the return type for
a scalar function or method.

ORIGIN CHAR (1) Y • A = User-defined aggregate interface
function

• B = Built-in
• E = User-defined, external
• M = Template function
• F = Federated procedure
• Q = SQL-bodied1

• R = System-generated SQL-bodied
routine

• S = System-generated
• T = System-generated transform

function (not directly invokable)
• U = User-defined, based on a source

FUNCTIONTYPE CHAR (1) Y • C = Column or aggregate
• R = Row
• S = Scalar
• T = Table
• Blank = Procedure

PARM_COUNT SMALLINT Y Number of routine parameters; -1 if
parameters specified as VARARGS.

LANGUAGE CHAR (8) Y Implementation language for the
routine body (or for the source function
body, if this function is sourced on
another function). Possible values are
"C", "CLR", "COBOL", "JAVA", "OLE",
"OLEDB", "R", or "SQL". Blanks if
ORIGIN is not "E", "Q", or "R".

Chapter 1. Structured Query Language (SQL) 2031

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

DIALECT VARCHAR (10) Y The source dialect of the SQL routine
body:

• Db2 SQL PL
• PL/SQL
• Blank = Not an SQL routine

SOURCESCHEMA VARCHAR (128) Y If ORIGIN = "U" and the source
function is a user-defined function,
contains the schema name of the
specific name of the source function. If
ORIGIN = "U" and the source function
is a built-in function, contains the value
"SYSIBM". The null value if ORIGIN is
not "U".

SOURCEMODULENAME VARCHAR (128) Y Contains the module name of the
specific name of the source function if
ORIGIN = "U" and the source function
is a user-defined function defined in a
module; the null value otherwise.

SOURCESPECIFIC VARCHAR (128) Y If ORIGIN = "U" and the source
function is a user-defined function,
contains the unqualified specific name
of the source function. If ORIGIN = "U"
and the source function is a built-in
function, contains the value "N/A for
built-in". The null value if ORIGIN is not
"U".

PUBLISHED CHAR (1) Y Indicates whether the module routine
can be invoked outside its module.

• N = The module routine is not
published

• Y = The module routine is published
• Blank = Not applicable

DETERMINISTIC CHAR (1) Y • N = Results are not deterministic
(same parameters might give
different results in different routine
calls)

• Y = Results are deterministic
• Blank = ORIGIN is not "A", "E", "F",

"Q", or "R"

EXTERNAL_ACTION CHAR (1) Y • E = Function has external side-
effects (therefore, the number of
invocations is important)

• N = No side-effects
• Blank = ORIGIN is not "A", "E", "F",

"Q", or "R"

2032 IBM Db2 V11.5: SQL Reference

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

NULLCALL CHAR (1) Y • N = RETURNS NULL ON NULL INPUT
(function result is implicitly the null
value if one or more operands are
null)

• Y = CALLED ON NULL INPUT
• Blank = ORIGIN is not "A", "E", "Q", or

"R"

CAST_FUNCTION CHAR (1) Y • N = Not a cast function
• Y = Cast function
• Blank = ROUTINETYPE is not "F"

ASSIGN_FUNCTION CHAR (1) Y • N = Not an assignment function
• Y = Implicit assignment function
• Blank = ROUTINETYPE is not "F"

SCRATCHPAD CHAR (1) Y • N = Routine has no scratchpad
• Y = Routine has a scratchpad
• Blank = ORIGIN is not "A" or "E", or

ROUTINETYPE is "P"

SCRATCHPAD_LENGTH SMALLINT Y Size (in bytes) of the scratchpad for the
routine.

• -1 = LANGUAGE is "OLEDB" and
SCRATCHPAD is "Y"

• 0 = SCRATCHPAD is not "Y"

FINALCALL CHAR (1) Y • N = No final call is made
• Y = Final call is made to this routine

at the runtime end-of-statement
• Blank = ORIGIN is not "A" or "E", or

ROUTINETYPE is "P"

PARALLEL CHAR (1) Y • N = Routine cannot be executed in
parallel

• Y = Routine can be executed in
parallel

• Blank = ORIGIN is not "A" or "E"

Chapter 1. Structured Query Language (SQL) 2033

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

PARAMETER_STYLE CHAR (8) Y Parameter style that was declared
when the routine was created. Possible
values are:

• DB2DARI
• DB2GENRL
• DB2SQL
• GENERAL
• GNRLNULL
• JAVA
• NPSGENRC
• SQL
• Blanks if ORIGIN is not "E"

FENCED CHAR (1) Y • N = Not fenced
• Y = Fenced
• Blank = ORIGIN is not "E"

SQL_DATA_ACCESS CHAR (1) Y Indicates what type of SQL statements,
if any, the database manager should
assume is contained in the routine.

• C = Contains SQL (simple expressions
with no subqueries only)

• M = Contains SQL statements that
modify data

• N = Does not contain SQL statements
• R = Contains read-only SQL

statements
• Blank = ORIGIN is not "E", "F", "Q",

or "R"

DBINFO CHAR (1) Y Indicates whether a DBINFO
parameter is passed to an external
routine.

• N = DBINFO is not passed
• Y = DBINFO is passed
• Blank = ORIGIN is not "E"

PROGRAMTYPE CHAR (1) Y Indicates how the external routine is
invoked.

• M = Main
• S = Subroutine
• Blank = ORIGIN is "A" or "F"

2034 IBM Db2 V11.5: SQL Reference

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

COMMIT_ON_RETURN CHAR (1) Y Indicates whether the transaction is
committed on successful return from
this procedure.

• N = The unit of work is not committed
• Y = The unit of work is committed
• Blank = ROUTINETYPE is not "P"

AUTONOMOUS CHAR (1) Y Indicates whether or not the routine
executes autonomously.

• N = Routine does not execute
autonomously from invoking
transaction

• Y = Routine executes autonomously
from invoking transaction

• Blank = ROUTINETYPE is not "P"

RESULT_SETS SMALLINT Y Estimated maximum number of result
sets.

SPEC_REG CHAR (1) Y Indicates the special registers values
that are used when the routine is
called.

• I = Inherited special registers
• Blank = PARAMETER_STYLE is

"DB2DARI" or ORIGIN is not "E", "Q",
or "R"

FEDERATED CHAR (1) Y Indicates whether or not federated
objects can be accessed from the
routine.

• Y = Federated objects can be
accessed

• Blank = ORIGIN is not "F"

THREADSAFE CHAR (1) Y Indicates whether or not the routine
can run in the same process as other
routines.

• N = Routine is not threadsafe
• Y = Routine is threadsafe
• Blank = ORIGIN is not "E"

Chapter 1. Structured Query Language (SQL) 2035

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

VALID CHAR (1) Y Applies to LANGUAGE = "SQL" and
routines having parameters with
default or ORIGIN = "A"; blank
otherwise.

• N = Routine needs rebinding
• X = Routine is inoperative and must

be recreated
• Y = Routine is valid

MODULEROUTINEIMPLEMENTED CHAR (1) Y • N = Module routine body is not
implemented

• Y = Module routine body is
implemented

• Blank = ROUTINEMODULENAME is
null value

METHODIMPLEMENTED CHAR (1) Y • N = Method body is not implemented
• Y = Method body is implemented
• Blank = ROUTINETYPE is not "M"

or ROUTINEMODULENAME is not the
null value

METHODEFFECT CHAR (2) Y • CN = Constructor method
• MU = Mutator method
• OB = Observer method
• Blanks = Not a system method

TYPE_PRESERVING CHAR (1) Y • N = Return type is the declared return
type of the method

• Y = Return type is governed by
a "type-preserving" parameter; all
system-generated mutator methods
are type-preserving

• Blank = ROUTINETYPE is not "M"

WITH_FUNC_ACCESS CHAR (1) Y • N = This method cannot be invoked
by using functional notation

• Y = This method can be invoked by
using functional notation; that is, the
"WITH FUNCTION ACCESS" attribute
is specified

• Blank = ROUTINETYPE is not "M"

OVERRIDDEN_METHODID INTEGER Y Identifier for the overridden method
when the OVERRIDING option is
specified for a user-defined method.
The null value if ROUTINETYPE is not
"M".

2036 IBM Db2 V11.5: SQL Reference

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

SUBJECT_TYPESCHEMA VARCHAR (128) Y Schema name of the subject type
for the user-defined method. The null
value if ROUTINETYPE is not "M".

SUBJECT_TYPENAME VARCHAR (128) Y Unqualified name of the subject type
for the user-defined method. The null
value if ROUTINETYPE is not "M".

CLASS VARCHAR (384) Y For LANGUAGE JAVA, CLR, or OLE,
this is the class that implements this
routine; null value otherwise.

JAR_ID VARCHAR (128) Y For LANGUAGE JAVA, this is the
JAR_ID of the installed jar file that
implements this routine if a jar file
was specified at routine creation time;
null value otherwise. For LANGUAGE
CLR, this is the assembly file that
implements this routine.

JARSCHEMA VARCHAR (128) Y For LANGUAGE JAVA when a JAR_ID is
present, this is the schema name of the
jar file that implements this routine;
null value otherwise.

JAR_SIGNATURE VARCHAR (2048) Y For LANGUAGE JAVA, this is the
method signature of this routine's
specified Java method. For LANGUAGE
CLR, this is a reference field for this
CLR routine. Null value otherwise.

CREATE_TIME TIMESTAMP Y Time at which the routine was created.

ALTER_TIME TIMESTAMP Y Time at which the routine was last
altered.

FUNC_PATH CLOB (2K) Y SQL path in effect when the routine
was defined. The null value if
LANGUAGE is not "SQL", ORIGIN is not
"A", and no parameters have defaults.

QUALIFIER VARCHAR (128) Y Value of the default schema at the time
of object definition. Used to complete
any unqualified references.

IOS_PER_INVOC DOUBLE Y Estimated number of inputs/outputs
(I/Os) per invocation; 0 is the default;
-1 if not known.

INSTS_PER_INVOC DOUBLE Y Estimated number of instructions per
invocation; 450 is the default; -1 if not
known.

IOS_PER_ARGBYTE DOUBLE Y Estimated number of I/Os per input
argument byte; 0 is the default; -1 if
not known.

Chapter 1. Structured Query Language (SQL) 2037

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

INSTS_PER_ARGBYTE DOUBLE Y Estimated number of instructions per
input argument byte; 0 is the default;
-1 if not known.

PERCENT_ARGBYTES SMALLINT Y Estimated average percent of input
argument bytes that the routine will
actually read; 100 is the default; -1 if
not known.

INITIAL_IOS DOUBLE Y Estimated number of I/Os performed
the first time that the routine is
invoked; 0 is the default; -1 if not
known.

INITIAL_INSTS DOUBLE Y Estimated number of instructions
executed the first time the routine is
invoked; 0 is the default; -1 if not
known.

CARDINALITY BIGINT Y Predicted cardinality of a table
function; -1 if not known, or if the
routine is not a table function.

SELECTIVITY2 DOUBLE Y For user-defined predicates; -1 if there
are no user-defined predicates.

RESULT_COLS SMALLINT Y For a table function (ROUTINETYPE
= "F" and FUNCTIONTYPE = "T"),
contains the number of columns in
the result table; for a procedure
(ROUTINETYPE = "P"), contains 0;
contains 1 otherwise.

IMPLEMENTATION VARCHAR (762) Y The value from the EXTERNAL NAME
clause if ORIGIN="E" (an external
routine); the name and signature of
the source function if ORIGIN = "U"
and the source function is built-in; the
entry point in the library if LIB_ID is not
null and LANGUAGE="SQL" (a compiled
SQL routine); the null value otherwise.

LIB_ID INTEGER Y Internal identifier for compiled SQL
routines. Otherwise the null value.

TEXT_BODY_OFFSET INTEGER Y If LANGUAGE = "SQL", the offset
to the start of the compiled SQL
routine body in the full text of the
CREATE statement; -1 if LANGUAGE is
not "SQL" or the SQL routine is not
compiled.

TEXT CLOB (2M) Y If LANGUAGE = "SQL" or ORIGIN
= "A", the full text of the CREATE
FUNCTION, CREATE METHOD, or
CREATE PROCEDURE statement; null
value otherwise.

2038 IBM Db2 V11.5: SQL Reference

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

NEWSAVEPOINTLEVEL CHAR (1) Y Indicates whether the routine initiates
a new savepoint level when it is
invoked.

• N = A new savepoint level is
not initiated when the routine is
invoked; the routine uses the existing
savepoint level

• Y = A new savepoint level is initiated
when the routine is invoked

• Blank = Not applicable

DEBUG_MODE3 VARCHAR (8) Y Indicates whether the routine can be
debugged using the debugger that is
integrated with the database.

• DISALLOW = Routine is not
debuggable

• ALLOW = Routine is debuggable, and
can participate in a client debug
session with the integrated debugger

• DISABLE = Routine is not
debuggable, and this setting cannot
be altered without dropping and
recreating the routine

• Blank = Routine type is not
currently supported by the integrated
debugger

TRACE_LEVEL VARCHAR (1) Y Reserved for future use.

DIAGNOSTIC_LEVEL VARCHAR (1) Y Reserved for future use.

CHECKOUT_USERID VARCHAR (128) Y ID of the user who performed a
checkout of the object; the null value
if the object is not checked out.

PRECOMPILE_OPTIONS VARCHAR (1024) Y The precompile and bind options that
were in effect when the compiled SQL
routine was created. The null value if
LANGUAGE is not "SQL" or if the SQL
routine is not compiled.

COMPILE_OPTIONS VARCHAR (1024) Y The value of the SQL_CCFLAGS special
register that was in effect when the
compiled SQL routine was created and
inquiry directives were present. An
empty string if no inquiry directives
were present in the compiled SQL
routine. The null value if LANGUAGE is
not "SQL" or if the SQL routine is not
compiled.

Chapter 1. Structured Query Language (SQL) 2039

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

EXECUTION_CONTROL CHAR (1) Y Execution control mode of a common
language runtime (CLR) routine.
Possible values are:

• N = Network
• R = Fileread
• S = Safe
• U = Unsafe
• W = Filewrite
• Blank = LANGUAGE is not "CLR"

CODEPAGE SMALLINT Y Routine code page, which specifies
the default code page used for
all character parameter types, result
types, and local variables within the
routine body.

COLLATIONSCHEMA VARCHAR (128) Y Schema name of the collation for the
routine.

COLLATIONNAME VARCHAR (128) Y Unqualified name of the collation for
the routine.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Y Schema name of the collation for
ORDER BY clauses in the routine.

COLLATIONNAME_ORDERBY VARCHAR (128) Y Unqualified name of the collation for
ORDER BY clauses in the routine.

ENCODING_SCHEME CHAR (1) Y Encoding scheme of the routine, as
specified in the PARAMETER CCSID
clause. Possible values are:

• A = ASCII
• U = UNICODE
• Blank = PARAMETER CCSID clause

was not specified

LAST_REGEN_TIME TIMESTAMP Y Time at which the SQL routine packed
descriptor was last regenerated.

INHERITLOCKREQUEST CHAR (1) Y • N = This function or method cannot
be invoked in the context of an
SQL statement that includes a lock-
request-clause as part of a specified
isolation-clause

• Y = This function or method inherits
the isolation level of the invoking
statement; it also inherits the
specified lock-request-clause

• Blank = LANGUAGE is not "SQL" or
ROUTINETYPE is "P"

DEFINER4 VARCHAR (128) Y Authorization ID of the owner of the
routine.

2040 IBM Db2 V11.5: SQL Reference

Table 239. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

SECURE CHAR (1) Y Indicates whether the function is
secure for row and column access
control

• N = Not secure
• Y = Secure
• Blank = ROUTINETYPE is not "F"

ENVSTRINGUNITS VARCHAR (11) Default string units when the object
was created.

STAYRESIDENT CHAR (1) The STAYRESIDENT option of the
routine, which determines whether the
routine library is to be deleted from
memory when the routine ends

• N = The routine library is to be
deleted from memory after the
routine terminates

• Blank = STAY RESIDENT NO clause
not specified

REMARKS VARCHAR (254) Y User-provided comments, or the null
value.

Note:

1. During database upgrade, the SELECTIVITY column will be set to -1 in the packed descriptor and system
catalogs for all user-defined routines. For a user-defined predicate, the selectivity in the system catalog will
be -1. In this case, the selectivity value used by the optimizer is 0.01.

2. For Java routines, the DEBUG_MODE setting does not indicate whether the Java routine was actually
compiled in debug mode, or whether a debug Jar was installed at the server.

3. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.ROUTINESFEDERATED
Each row represents a federated procedure.

Table 240. SYSCAT.ROUTINESFEDERATED Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

ROUTINETYPE CHAR (1) Type of routine.

• P = Procedure

OWNER VARCHAR (128) Authorization ID of the owner of the
routine.

Chapter 1. Structured Query Language (SQL) 2041

Table 240. SYSCAT.ROUTINESFEDERATED Catalog View (continued)

Column Name Data Type Nullable Description

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

ROUTINEID INTEGER Identifier for the routine.

PARM_COUNT SMALLINT Number of routine parameters; -1 if
parameters specified as VARARGS.

DETERMINISTIC CHAR (1) • N = Results are not deterministic (same
parameters might give different results in
different routine calls)

• Y = Results are deterministic

EXTERNAL_ACTION CHAR (1) • E = Routine has external side-effects
(therefore, the number of invocations is
important)

• N = No side-effects

SQL_DATA_ACCESS CHAR (1) Indicates what type of SQL statements, if
any, the database manager should assume
is contained in the routine.

• C = Contains SQL (simple expressions
with no subqueries only)

• M = Contains SQL statements that modify
data

• N = Does not contain SQL statements
• R = Contains read-only SQL statements

COMMIT_ON_RETURN CHAR (1) Indicates whether the transaction is
committed on successful return from this
procedure.

• N = The unit of work is not committed
• Y = The unit of work is committed
• Blank = ROUTINETYPE is not 'P'

RESULT_SETS SMALLINT Estimated maximum number of result sets.

CREATE_TIME TIMESTAMP Time at which the routine was created.

ALTER_TIME TIMESTAMP Time at which the routine was last altered.

QUALIFIER VARCHAR (128) Value of the default schema at the time
of object definition. Used to complete any
unqualified references.

RESULT_COLS SMALLINT For a procedure (ROUTINETYPE = 'P'),
contains 0; contains 1 otherwise.

2042 IBM Db2 V11.5: SQL Reference

Table 240. SYSCAT.ROUTINESFEDERATED Catalog View (continued)

Column Name Data Type Nullable Description

CODEPAGE SMALLINT Routine code page, which specifies the
default code page used for all character
parameter types, result types, and local
variables within the routine body.

LAST_REGEN_TIME TIMESTAMP Time at which the SQL routine packed
descriptor was last regenerated.

REMOTE_PROCEDURE VARCHAR (128) Y Unqualified name of the source procedure
for which the federated routine was
created.

REMOTE_SCHEMA VARCHAR (128) Y Schema name of the source procedure for
which the federated routine was created.

SERVERNAME VARCHAR (128) Y Name of the data source that contains the
source procedure for which the federated
routine was created.

REMOTE_PACKAGE VARCHAR (128) Y Name of the package to which the
source procedure belongs (applies only to
wrappers for Oracle data sources).

REMOTE_PROCEDURE_
ALTER_TIME

VARCHAR (128) Y Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.ROWFIELDS
Each row represents a field that is defined for a user-defined row data type.

Table 241. SYSCAT.ROWFIELDS Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the row data type that
includes the field.

TYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the row data type belongs. The null value if
not a module row data type.

TYPENAME VARCHAR (128) Unqualified name of the row data type that
includes the field.

FIELDNAME VARCHAR (128) Field name.

FIELDTYPESCHEMA VARCHAR (128) Schema name of the data type of the field.

FIELDTYPEMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the data type of the field belongs. The null
value if the field data type is not a module
user-defined data type.

FIELDTYPENAME VARCHAR (128) Unqualified name of the data type of the
field.

ORDINAL SMALLINT Position of the field in the definition of the
row data type, starting with 0.

Chapter 1. Structured Query Language (SQL) 2043

Table 241. SYSCAT.ROWFIELDS Catalog View (continued)

Column Name Data Type Nullable Description

LENGTH INTEGER Length of the field data type. For decimal
types, contains the precision.

SCALE SMALLINT For decimal types, contains the scale of
the field data type; for timestamp types,
contains the timestamp precision of the
field data type; 0 otherwise.

TYPESTRINGUNITS VARCHAR (11) Y In a Unicode database, the string units that
apply to a character string or graphic string
data type. Otherwise, the null value.

STRINGUNITSLENGTH INTEGER Y In a Unicode database, the declared
number of string units for a character string
or graphic string data type. Otherwise, the
null value.

CODEPAGE SMALLINT For string types, denotes the code page; 0
indicates FOR BIT DATA; 0 for non-string
types.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of
the collation for the field; the null value
otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of
the collation for the field; the null value
otherwise.

NULLS CHAR (1) Reserved for future use.

QUALIFIER VARCHAR (128) Y Reserved for future use.

FUNC_PATH CLOB (2K) Y Reserved for future use.

DEFAULT CLOB (64K) Y Reserved for future use.

ENVSTRINGUNITS VARCHAR (11) Default string units when the object was
created.

SYSCAT.SCHEMAAUTH
Each row represents a user, group, or role that has been granted one or more privileges on a schema.

Table 242. SYSCAT.SCHEMAAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

2044 IBM Db2 V11.5: SQL Reference

Table 242. SYSCAT.SCHEMAAUTH Catalog View (continued)

Column Name Data Type Nullable Description

SCHEMANAME VARCHAR (128) Name of the schema to which this privilege
applies.

ALTERINAUTH CHAR (1) Privilege to alter or comment on objects in
the named schema.

• G = Held and grantable
• N = Not held
• Y = Held

CREATEINAUTH CHAR (1) Privilege to create objects in the named
schema.

• G = Held and grantable
• N = Not held
• Y = Held

DROPINAUTH CHAR (1) Privilege to drop objects from the named
schema.

• G = Held and grantable
• N = Not held
• Y = Held

SELECTINAUTH CHAR (1) Implicit SELECT privilege on all of the
existing and future tables or views defined
in the schema.

• G = Held and grantable
• N = Not held
• Y = Held

INSERTINAUTH CHAR (1) Implicit INSERT privilege on all of the
existing and future tables or updatable
views defined in the schema.

• G = Held and grantable
• N = Not held
• Y = Held

UPDATEINAUTH CHAR (1) Implicit UPDATE privilege on all of the
existing and future tables or updatable
views defined in the schema.

• G = Held and grantable
• N = Not held
• Y = Held

Chapter 1. Structured Query Language (SQL) 2045

Table 242. SYSCAT.SCHEMAAUTH Catalog View (continued)

Column Name Data Type Nullable Description

DELETEINAUTH CHAR (1) Implicit DELETE privilege on all of the
existing and future tables or updatable
views defined in the schema.

• G = Held and grantable
• N = Not held
• Y = Held

EXECUTEINAUTH CHAR (1) Implicit EXECUTE privilege on all of the
existing and future routines, packages and
module objects defined in the schema

• G = Held and grantable
• N = Not held
• Y = Held

SCHEMAADMAUTH CHAR (1) SCHEMAADM authority.

• N = Not held
• Y = Held

ACCESSCTRLAUTH CHAR (1) Schema ACCESSCTRL authority to grant
and revoke schema object privileges.

• N = Not held
• Y = Held

DATAACCESSAUTH CHAR (1) Schema DATAACCESS authority to access
data.

• N = Not held
• Y = Held

LOADAUTH CHAR (1) Schema LOAD authority to use the load
utility.

• N = Not held
• Y = Held

SYSCAT.SCHEMATA
Each row represents a schema.

Table 243. SYSCAT.SCHEMATA Catalog View

Column Name Data Type Nullable Description

SCHEMANAME VARCHAR (128) Name of the schema.

OWNER VARCHAR (128) Authorization ID of the owner of the
schema.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

2046 IBM Db2 V11.5: SQL Reference

Table 243. SYSCAT.SCHEMATA Catalog View (continued)

Column Name Data Type Nullable Description

DEFINER VARCHAR (128) Authorization ID of the definer of the
schema or authorization ID of the owner of
the schema if the ownership of the schema
has been transferred.

DEFINERTYPE CHAR (1) • S = The definer is the system
• U = The definer is an individual user

CREATE_TIME TIMESTAMP Time at which the schema was created.

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Name of the audit policy.

AUDITEXCEPTIONENABLED CHAR (1) Reserved for future use.

DATACAPTURE CHAR (1) Indicates the default data capture setting
for new tables that are created within this
schema.

• N = New tables do not participate in data
capture

• Y = New tables participate in data
capture, including replication of all
columns

ROWMODIFICATIONTRACKING VARCHAR (1) N Indicates tables in schema are enabled for
logical backup

• Y = Indicates the schema is enabled for
row modification tracking

• N = Indicates the schema is not enabled
for row modification tracking

QUIESCED VARCHAR (1) N Indicates the schema is locked by the in-
progress LOGICAL_RESTORE operation

• Y = Indicates the schema is locked by in-
progress LOGICAL_RESTORE operation

• N =Indicates the schema is not locked
by in-progress LOGICAL_RESTORE
operation

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SCPREFTBSPACES
Each row represents a preferred system temporary table space for the service class.

Table 244. SYSCAT.SCPREFTBSPACES Catalog View

Column Name Data Type Nullable Description

SERVICECLASSNAME VARCHAR (128) Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Service class name of the parent service
superclass.

Chapter 1. Structured Query Language (SQL) 2047

Table 244. SYSCAT.SCPREFTBSPACES Catalog View (continued)

Column Name Data Type Nullable Description

TBSPACE VARCHAR (128) Name of the table space.

SERVICECLASSID SMALLINT Identifier for the service class.

PARENTSERVICECLASSID SMALLINT Identifier for the parent service class for
the service class. 0 if the service class is a
super service class.

TBSPACEID INTEGER Identifier for the table space.

DATATYPE CHAR (1) Type of data that can be stored in this table
space.

• A = All types of permanent data; regular
table space

• L = All types of permanent data; large
table space

• T = System temporary tables only
• U = Created temporary tables or declared

temporary tables only

SYSCAT.SECURITYLABELACCESS
Each row represents a security label that was granted to the database authorization ID.

Table 245. SYSCAT.SECURITYLABELACCESS Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the security label.

GRANTEE VARCHAR (128) Holder of the security label.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

SECLABELID INTEGER Identifier for the security label. For
the name of the security label, select
the SECLABELNAME column for the
corresponding SECLABELID value in the
SYSCAT.SECURITYLABELS catalog view.

SECPOLICYID INTEGER Identifier for the security policy that is
associated with the security label. For
the name of the security policy, select
the SECPOLICYNAME column for the
corresponding SECPOLICYID value in the
SYSCAT.SECURITYPOLICIES catalog view.

ACCESSTYPE CHAR (1) • B = Both read and write access
• R = Read access
• W = Write access

GRANT_TIME TIMESTAMP Time at which the security label was
granted.

2048 IBM Db2 V11.5: SQL Reference

SYSCAT.SECURITYLABELCOMPONENTELEMENTS
Each row represents an element value for a security label component.

Table 246. SYSCAT.SECURITYLABELCOMPONENTELEMENTS Catalog View

Column Name Data Type Nullable Description

COMPID INTEGER Identifier for the security label component.

ELEMENTVALUE VARCHAR (32) Element value for the security label
component.

ELEMENTVALUEENCODING CHAR (8) FOR BIT
DATA

Encoded form of the element value.

PARENTELEMENTVALUE VARCHAR (32) Y Name of the parent of an element for tree
components; the null value for set and
array components, and for the ROOT node
of a tree component.

SYSCAT.SECURITYLABELCOMPONENTS
Each row represents a security label component.

Table 247. SYSCAT.SECURITYLABELCOMPONENTS Catalog View

Column Name Data Type Nullable Description

COMPNAME VARCHAR (128) Name of the security label component.

COMPID INTEGER Identifier for the security label component.

COMPTYPE CHAR (1) Security label component type.

• A = Array
• S = Set
• T = Tree

NUMELEMENTS INTEGER Number of elements in the security label
component.

CREATE_TIME TIMESTAMP Time at which the security label component
was created.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SECURITYLABELS
Each row represents a security label.

Table 248. SYSCAT.SECURITYLABELS Catalog View

Column Name Data Type Nullable Description

SECLABELNAME VARCHAR (128) Name of the security label.

SECLABELID INTEGER Identifier for the security label.

SECPOLICYID INTEGER Identifier for the security policy to which
the security label belongs.

SECLABEL SYSPROC.
DB2SECURITYLABE
L

Internal representation of the security
label.

Chapter 1. Structured Query Language (SQL) 2049

Table 248. SYSCAT.SECURITYLABELS Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Time at which the security label was
created.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SECURITYPOLICIES
Each row represents a security policy.

Table 249. SYSCAT.SECURITYPOLICIES Catalog View

Column Name Data Type Nullable Description

SECPOLICYNAME VARCHAR (128) Name of the security policy.

SECPOLICYID INTEGER Identifier for the security policy.

NUMSECLABELCOMP INTEGER Number of security label components in
the security policy.

RWSECLABELREL CHAR (1) Relationship between the security labels
for read and write access granted to the
same authorization ID.

• S = The security label for write access
granted to a user is a subset of the
security label for read access granted to
that same user

NOTAUTHWRITESECLABEL CHAR (1) Action to take when a user is not
authorized to write the security label that
is specified in the INSERT or UPDATE
statement.

• O = Override
• R = Restrict

CREATE_TIME TIMESTAMP Time at which the security policy was
created.

GROUPAUTHS CHAR (1) Indicates if authorizations of security labels
and exemptions granted to an authorization
ID that represents a group will be used or
ignored.

• I = Ignored
• U = Used

ROLEAUTHS CHAR (1) Indicates if authorizations of security labels
and exemptions granted to an authorization
ID that represents a role will be used or
ignored.

• I = Ignored
• U = Used

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

2050 IBM Db2 V11.5: SQL Reference

SYSCAT.SECURITYPOLICYCOMPONENTRULES
Each row represents the read and write access rules for a security label component of the security policy.

Table 250. SYSCAT.SECURITYPOLICYCOMPONENTRULES Catalog View

Column Name Data Type Nullable Description

SECPOLICYID INTEGER Identifier for the security policy.

COMPID INTEGER Identifier for the security label component
of the security policy.

ORDINAL INTEGER Position of the security label component as
it appears in the security policy, starting
with 1.

READACCESSRULENAME VARCHAR (128) Name of the read access rule that
is associated with the security label
component.

READACCESSRULETEXT VARCHAR (512) Text of the read access rule that
is associated with the security label
component.

WRITEACCESSRULENAME VARCHAR (128) Name of the write access rule that
is associated with the security label
component.

WRITEACCESSRULETEXT VARCHAR (512) Text of the write access rule that
is associated with the security label
component.

SYSCAT.SECURITYPOLICYEXEMPTIONS
Each row represents a security policy exemption that was granted to a database authorization ID.

Table 251. SYSCAT.SECURITYPOLICYEXEMPTIONS Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the exemption.

GRANTEE VARCHAR (128) Holder of the exemption.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

SECPOLICYID INTEGER Identifier for the security policy for
which the exemption was granted. For
the name of the security policy, select
the SECPOLICYNAME column for the
corresponding SECPOLICYID value in the
SYSCAT.SECURITYPOLICIES catalog view.

ACCESSRULENAME VARCHAR (128) Name of the access rule for which the
exemption was granted.

ACCESSTYPE CHAR (1) Type of access to which the rule applies.

• R = Read access
• W = Write access

Chapter 1. Structured Query Language (SQL) 2051

Table 251. SYSCAT.SECURITYPOLICYEXEMPTIONS Catalog View (continued)

Column Name Data Type Nullable Description

ORDINAL INTEGER Position of the security label component
in the security policy to which the rule
applies.

ACTIONALLOWED CHAR (1) If the rule is DB2LBACWRITEARRAY, then:

• D = Write down
• U = Write up

Blank otherwise.

GRANT_TIME TIMESTAMP Time at which the exemption was granted.

SYSCAT.SEQUENCEAUTH
Each row represents a user, group, or role that has been granted one or more privileges on a sequence.

Table 252. SYSCAT.SEQUENCEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

SEQSCHEMA VARCHAR (128) Schema name of the sequence.

SEQNAME VARCHAR (128) Unqualified name of the sequence.

ALTERAUTH CHAR (1) Privilege to alter the sequence.

• G = Held and grantable
• N = Not held
• Y = Held

USAGEAUTH CHAR (1) Privilege to reference the sequence.

• G = Held and grantable
• N = Not held
• Y = Held

SYSCAT.SEQUENCES
Each row represents a sequence or alias.

Table 253. SYSCAT.SEQUENCES Catalog View

Column Name Data Type Nullable Description

SEQSCHEMA VARCHAR (128) Schema name of the sequence.

2052 IBM Db2 V11.5: SQL Reference

Table 253. SYSCAT.SEQUENCES Catalog View (continued)

Column Name Data Type Nullable Description

SEQNAME VARCHAR (128) Unqualified name of the sequence.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
sequence.

DEFINERTYPE CHAR (1) • S = The definer is the system
• U = The definer is an individual user

OWNER VARCHAR (128) Authorization ID of the owner of the
sequence.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

SEQID INTEGER Identifier for the sequence or alias.

SEQTYPE CHAR (1) Type of sequence.

• A = Alias
• I = Identity sequence
• S = Sequence

BASE_SEQSCHEMA VARCHAR (128) Y If SEQTYPE is 'A', contains the schema
name of the sequence or alias that is
referenced by this alias; the null value
otherwise.

BASE_SEQNAME VARCHAR (128) Y If SEQTYPE is 'A', contains the unqualified
name of the sequence or alias that is
referenced by this alias; the null value
otherwise.

INCREMENT DECIMAL (31,0) Y Increment value. The null value if the
sequence is an alias.

START DECIMAL (31,0) Y Start value of the sequence. The null value
if the sequence is an alias.

MAXVALUE DECIMAL (31,0) Y Maximum value of the sequence. The null
value if the sequence is an alias.

MINVALUE DECIMAL (31,0) Y Minimum value of the sequence. The null
value if the sequence is an alias.

NEXTCACHEFIRSTVALUE DECIMAL (31,0) Y The first value available to be assigned in
the next cache block. If no caching, the
next value available to be assigned.

CYCLE CHAR (1) Indicates whether or not the sequence can
continue to generate values after reaching
its maximum or minimum value.

• N = Sequence cannot cycle
• Y = Sequence can cycle
• Blank = Sequence is an alias.

Chapter 1. Structured Query Language (SQL) 2053

Table 253. SYSCAT.SEQUENCES Catalog View (continued)

Column Name Data Type Nullable Description

CACHE INTEGER Number of sequence values to pre-allocate
in memory for faster access. 0 indicates
that values of the sequence are not to
be preallocated. In a partitioned database,
this value applies to each database
partition. -1 if the sequence is an alias.

ORDER CHAR (1) Indicates whether or not the sequence
numbers must be generated in order of
request.

• N = Sequence numbers are not required
to be generated in order of request

• Y = Sequence numbers must be
generated in order of request

• Blank = Sequence is an alias.

DATATYPEID INTEGER For built-in types, the internal identifier of
the built-in type. For distinct types, the
internal identifier of the distinct type. 0 if
the sequence is an alias.

SOURCETYPEID INTEGER For a built-in type or if the sequence is an
alias, this has a value of 0. For a distinct
type, this is the internal identifier of the
built-in type that is the source type for the
distinct type.

CREATE_TIME TIMESTAMP Time at which the sequence was created.

ALTER_TIME TIMESTAMP Time at which the sequence was last
altered.

PRECISION SMALLINT Precision of the data type of the sequence.
Possible values are:

• 5 = SMALLINT
• 10 = INTEGER
• 19 = BIGINT

For DECIMAL, it is the precision of the
specified DECIMAL data type. 0 if the
sequence is an alias.

ORIGIN CHAR (1) Origin of the sequence.

• S = System-generated sequence
• U = User-generated sequence

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

2054 IBM Db2 V11.5: SQL Reference

SYSCAT.SERVEROPTIONS
Each row represents a server-specific option value.

Table 254. SYSCAT.SERVEROPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Y Name of the wrapper.

SERVERNAME VARCHAR (128) Y Uppercase name of the server.

SERVERTYPE VARCHAR (30) Y Type of server.

SERVERVERSION VARCHAR (18) Y Server version.

CREATE_TIME TIMESTAMP Time at which the entry was created.

OPTION VARCHAR (128) Name of the server option.

SETTING VARCHAR (2048) Value of the server option.

SERVEROPTIONKEY VARCHAR (18) Uniquely identifies a row.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SERVERS
Each row represents a data source.

Table 255. SYSCAT.SERVERS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Name of the wrapper.

SERVERNAME VARCHAR (128) Uppercase name of the server.

SERVERTYPE VARCHAR (30) Y Type of server.

SERVERVERSION VARCHAR (18) Y Server version.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.SERVICECLASSES
Each row represents a service class.

Table 256. SYSCAT.SERVICECLASSES Catalog View

Column Name Data Type Nullable Description

SERVICECLASSNAME VARCHAR (128) Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y Service class name of the parent service
superclass.

SERVICECLASSID SMALLINT Identifier for the service class.

PARENTID SMALLINT Identifier for the parent service class for
this service class. 0 if this service class is a
super service class.

CREATE_TIME TIMESTAMP Time when the service class was created.

ALTER_TIME TIMESTAMP Time when the service class was last
altered.

Chapter 1. Structured Query Language (SQL) 2055

Table 256. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

ENABLED CHAR (1) State of the service class.

• N = Disabled
• Y = Enabled

AGENTPRIORITY SMALLINT This column is no longer used and will be
removed in a future release.

PREFETCHPRIORITY CHAR (1) Prefetch priority of the agents in the service
class.

• H = High
• L = Low
• M = Medium
• Blank = not set

MAXDEGREE SMALLINT Y Possible values:

• 1 - 32767 = Maximum degree of
parallelism for the service class

• -1 = MAXIMUM DEGREE NONE was
specified for the service class

• -2 = MAXIMUM DEGREE DEFAULT was
specified for the service class

BUFFERPOOLPRIORITY CHAR (1) Bufferpool priority of the agents in the
service class:

• H = High
• L = Low
• M = Medium
• Blank = Not set

INBOUNDCORRELATOR VARCHAR (128) Y For future use.

OUTBOUNDCORRELATOR VARCHAR (128) Y String used to associate the service
class with an operating system workload
manager service class.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data
should be captured for the service class by
the applicable event monitor.

• B = Collect base aggregate activity data
• E = Collect extended aggregate activity

data
• N = None

COLLECTAGGREQDATA CHAR (1) Specifies what aggregate request data
should be captured for the service class by
the applicable event monitor.

• B = Collect base aggregate request data
• N = None

2056 IBM Db2 V11.5: SQL Reference

Table 256. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTACTDATA CHAR (1) Specifies what activity data should be
collected by the applicable event monitor.

• D = Activity data with details
• N = None
• S = Activity data with details and section

environment
• V = Activity data with details and values
• W = Activity data without details
• X = Activity data with details, section

environment, and values

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

• C = Coordinator member of the activity
• D = All members

COLLECTREQMETRICS CHAR (1) Specifies the monitoring level for requests
submitted by a connection that is
associated with the service superclass.

• B = Collect base request metrics
• E = Collect extended request metrics
• N = None

CPUSHARES INTEGER The number of CPU shares allocated to this
service class.

CPUSHARETYPE CHAR (1) Specifies the type of CPU shares.

• S = Soft shares
• H = Hard shares

CPULIMIT SMALLINT The maximum percentage of the CPU
resource that can be allocated to the
service class; -1 if there is no CPU limit.

SORTMEMORYPRIORITY CHAR (1) Reserved for future use.

SECTIONACTUALSOPTIONS VARCHAR (32) Specifies what section actuals are collected
during the execution of a section.
The first position in the string represents
whether the collection of section actuals is
enabled.

• B = Enabled and collect basic operator
cardinality counts and statistics for each
object referenced by the section (DML
statements only).

• N = Not enabled.

The second position is always 'N' and
reserved for future use.

Chapter 1. Structured Query Language (SQL) 2057

Table 256. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTAGGUOWDATA CHAR (1) Specifies what aggregate unit of work data
should be captured for the service class by
the applicable event monitor.

• B = Collect base aggregate unit of work
data

• N = None

RESOURCESHARES INTEGER The number of shares of resources this
service class is entitled to when workload
manager (WLM) adaptive admission control
is enabled. This value is relative to other
service classes in the same scope.

RESOURCESHARETYPE CHAR (1) Specifies the type of admission shares.

• S = Soft shares
• H = Hard shares

MINRESOURCESHAREPCT SMALLINT Specifies the percentage (0 - 100) of
entitled resources reserved by workload
manager (WLM) adaptive admission
control. WLM adaptive admission control
holds these resources in reserve for
the service class when other service
classes exceed their admission resource
entitlement.

ADMISSIONQUEUEORDER CHAR (1) Specifies the order of the service class
admission queue.

• F = First in first out; queued requests are
ordered based on the time in which they
arrived.

• L = Latency; queued requests are ordered
based on their estimated execution time
(latency) relative to the amount of time
they have been queued.

• Blank = Not applicable; this service class
is a service superclass.

DEGREESCALEBACK CHAR (1) Specifies if query degree for queries
running with DEGREE ANY can be scaled
back at runtime when the system is under
high CPU load.

• D = Degree scaleback value is inherited
from the superclass. This is the default
for a service subclass.

• Y = Degree scaleback is enabled. This is
the default for a service superclass.

• N = Degree scaleback is disabled.

2058 IBM Db2 V11.5: SQL Reference

Table 256. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

WORKLOADTYPE SMALLINT Y Specifies the workload type for the service
class.

• NULL = Service class is a subclass
• 1 = Custom
• 2 = Mixed
• 3 = Interactive
• 4 = Batch

COLLECTHISTORY CHAR (1) Y Specifies whether activity data with details
is collected at the coordinator member. If
COLLECT ACTIVITY DATA is independently
modified, this value is NULL.

• Y = Activity data with details is collected
at coordinator member

• N = Activity data is not collected

ACTSORTMEMLIMIT INTEGER The activity sort memory limit for queries
executing in the service class. The default
of 100 is shown if you do not specify a sort
limit.

REMARKS VARCHAR (254) Y User-provided comments, or NULL.

SYSCAT.STATEMENTS
Each row represents an SQL statement in a package.

Table 257. SYSCAT.STATEMENTS Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

STMTNO INTEGER Line number of the SQL statement in the
source module of the application program.

SECTNO SMALLINT Number of the package section containing
the SQL statement.

SEQNO INTEGER Always 1.

TEXT CLOB (2M) Text of the SQL statement.

UNIQUE_ID CHAR (8) FOR BIT
DATA

Identifier for a specific package when
multiple packages having the same name
exist.

VERSION VARCHAR (64) Y Version identifier for the package.

Chapter 1. Structured Query Language (SQL) 2059

SYSCAT.STOGROUPS
Each row represents a storage group object.

Table 258. SYSCAT.STOGROUPS Catalog View

Column Name Data Type Nullable Description

SGNAME VARCHAR (128) Name of the storage group.

SGID INTEGER Identifier for the storage group.

OWNER VARCHAR (128) Authorization ID of the owner of the
storage group.

CREATE_TIME TIMESTAMP Time at which the storage group was
created.

DEFAULTSG CHAR (1) Indicates whether the storage group is the
default storage group.

• N = NO
• Y = YES

OVERHEAD DOUBLE Controller overhead and disk seek and
latency time, in milliseconds (average for
the storage paths in this storage group);
0 indicates value is not defined (assigned
only by upgrade processing).

DEVICEREADRATE DOUBLE Read transfer rate of the device, in
megabytes per second (average for the
storage paths in this storage group); 0
indicates value is not defined (assigned
only by upgrade processing).

WRITEOVERHEAD DOUBLE Y Reserved for future use.

DEVICEWRITERATE DOUBLE Y Reserved for future use.

DATATAG SMALLINT Tag to identify data stored in this storage
group. Valid user-specified range is 1
through 9; 0 indicates no data tag is
specified.

CACHINGTIER SMALLINT Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.STATEMENTTEXTS
Each row represents a user-provided SQL statement for statement thresholds.

Table 259. SYSCAT.STATEMENTTEXTS Catalog View

Column Name Data Type Nullable Description

TEXTID INTEGER Identifier for the SQL statement.

TEXT CLOB (2M) Text of the SQL statement.

2060 IBM Db2 V11.5: SQL Reference

SYSCAT.SURROGATEAUTHIDS
Each row represents a user or a group that has been granted SETSESSIONUSER privilege on a user or
PUBLIC.

Table 260. SYSCAT.SURROGATEAUTHIDS Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Authorization ID that granted TRUSTEDID
the ability to act as a surrogate. When
the TRUSTEDID represents a trusted
context object, this field represents the
authorization ID that created or altered the
trusted context object.

TRUSTEDID VARCHAR (128) Identifier for the entity that is trusted to act
as a surrogate.

TRUSTEDIDTYPE CHAR (1) • C = Trusted context
• G = Group
• U = User

SURROGATEAUTHID VARCHAR (128) Surrogate authorization ID that can
be assumed by TRUSTEDID. 'PUBLIC'
indicates that TRUSTEDID can assume any
authorization ID.

SURROGATEAUTHIDTYPE CHAR (1) • G = Group
• U = User

AUTHENTICATE CHAR (1) • N = No authentication is required
• Y = Authentication token is required with

the authorization ID to authenticate the
user before the authorization ID can be
assumed

• Blank = TRUSTEDIDTYPE is not 'C'

CONTEXTROLE VARCHAR (128) Y A specific role to be assigned to
the assumed authorization ID, which
supercedes the default role, if any, that is
defined for the trusted context. Null value
when TRUSTEDIDTYPE is not 'C'.

GRANT_TIME TIMESTAMP Time at which the grant was made .

SYSCAT.TABAUTH
Each row represents a user, group, or role that has been granted one or more privileges on a table, view or
nickname.

Table 261. SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

Chapter 1. Structured Query Language (SQL) 2061

Table 261. SYSCAT.TABAUTH Catalog View (continued)

Column Name Data Type Nullable Description

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or view.

TABNAME VARCHAR (128) Unqualified name of the table or view.

CONTROLAUTH CHAR (1) CONTROL privilege.

• N = Not held
• Y = Held but not grantable

ALTERAUTH CHAR (1) Privilege to alter the table; allow a parent
table to this table to drop its primary key or
unique constraint; allow a table to become
a materialized query table that references
this table or view in the materialized query;
or allow a table that references this table or
view in its materialized query to no longer
be a materialized query table.

• G = Held and grantable
• N = Not held
• Y = Held

DELETEAUTH CHAR (1) Privilege to delete rows from a table or
updatable view.

• G = Held and grantable
• N = Not held
• Y = Held

INDEXAUTH CHAR (1) Privilege to create an index on a table.

• G = Held and grantable
• N = Not held
• Y = Held

INSERTAUTH CHAR (1) Privilege to insert rows into a table or
updatable view, or to run the import utility
against a table or view.

• G = Held and grantable
• N = Not held
• Y = Held

2062 IBM Db2 V11.5: SQL Reference

Table 261. SYSCAT.TABAUTH Catalog View (continued)

Column Name Data Type Nullable Description

REFAUTH CHAR (1) Privilege to create and drop a foreign key
referencing a table as the parent.

• G = Held and grantable
• N = Not held
• Y = Held

SELECTAUTH CHAR (1) Privilege to retrieve rows from a table or
view, create views on a table, or to run the
export utility against a table or view.

• G = Held and grantable
• N = Not held
• Y = Held

UPDATEAUTH CHAR (1) Privilege to run the UPDATE statement
against a table or updatable view.

• G = Held and grantable
• N = Not held
• Y = Held

SYSCAT.TABCONST
Each row represents a table constraint of type CHECK, UNIQUE, PRIMARY KEY, or FOREIGN KEY. For
table hierarchies, each constraint is recorded only at the level of the hierarchy where the constraint was
created.

Table 262. SYSCAT.TABCONST Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the table to which this
constraint applies.

TABNAME VARCHAR (128) Unqualified name of the table to which this
constraint applies.

OWNER VARCHAR (128) Authorization ID of the owner of the
constraint.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

TYPE CHAR (1) Indicates the constraint type.

• F = Foreign key
• I = Functional dependency
• K = Check
• P = Primary key
• U = Unique

Chapter 1. Structured Query Language (SQL) 2063

Table 262. SYSCAT.TABCONST Catalog View (continued)

Column Name Data Type Nullable Description

ENFORCED CHAR (1) • N = Do not enforce constraint
• Y = Enforce constraint

TRUSTED CHAR (1) If ENFORCED = 'N', specifies whether the
data can be trusted to conform to the
constraint.

• N = Not trusted
• Y = Trusted
• Blank = Not applicable

CHECKEXISTINGDATA CHAR (1) • D = Defer checking any existing data
• I = Immediately check existing data
• N = Never check existing data

ENABLEQUERYOPT CHAR (1) • N = Query optimization is disabled
• Y = Query optimization is enabled

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
constraint.

PERIODNAME VARCHAR (128) Y Name of the period used to define this
constraint.

PERIODPOLICY CHAR (1) If a period name was specified, the
constraint uses this period policy.

• N = Not applicable
• O = Period overlaps not allowed

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABDEP
Each row represents a dependency of a view or a materialized query table on some other object. The
view or materialized query table depends on the object of type BTYPE of name BNAME, so a change to
the object affects the view or materialized query table. Also encodes how privileges on views depend on
privileges on underlying tables and views.

Table 263. SYSCAT.TABDEP Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the view or materialized
query table.

TABNAME VARCHAR (128) Unqualified name of the view or
materialized query table.

2064 IBM Db2 V11.5: SQL Reference

Table 263. SYSCAT.TABDEP Catalog View (continued)

Column Name Data Type Nullable Description

DTYPE CHAR (1) Type of the depending object.

• S = Materialized query table
• T = Table (staging only)
• V = View (untyped)
• W = Typed view
• 7 = Synopsis table

OWNER VARCHAR (128) Authorization ID of the creator of the view
or materialized query table.

OWNERTYPE CHAR (1) • U = The owner is an individual user

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

• A = Table alias
• F = Routine
• I = Index, if recording dependency on a

base table
• G = Global temporary table
• N = Nickname
• O = Privilege dependency on all subtables

or subviews in a table or view hierarchy
• R = User-defined structured type
• S = Materialized query table
• T = Table (untyped)
• U = Typed table
• V = View (untyped)
• W = Typed view
• Z = XSR object
• m = Module
• u = Module alias
• v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which the
view or materialized query table depends.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which there is a dependency
belongs. The null value if not a module
object.

BNAME VARCHAR (128) Unqualified name of the object on which
the view or materialized query table
depends.

BMODULEID INTEGER Y Identifier for the module of the object on
which the view or materialized query table
depends.

Chapter 1. Structured Query Language (SQL) 2065

Table 263. SYSCAT.TABDEP Catalog View (continued)

Column Name Data Type Nullable Description

TABAUTH SMALLINT Y If BTYPE is 'N', 'O', 'S', 'T', 'U', 'V', or 'W',
encodes the privileges on the underlying
table or view on which this view or
materialized query table depends; the null
value otherwise.

VARAUTH SMALLINT Y If BTYPE is 'v', encodes the privileges on
the underlying global variable on which this
view or materialized query table depends;
the null value otherwise.

DEFINER1 VARCHAR (128) Authorization ID of the creator of the view
or materialized query table.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABDETACHEDDEP
Each row represents a detached dependency between a detached dependent table and a detached table.

Table 264. SYSCAT.TABDETACHEDDEP Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the detached table.

TABNAME VARCHAR (128) Unqualified name of the detached table.

DEPTABSCHEMA VARCHAR (128) Schema name of the detached dependent
table.

DEPTABNAME VARCHAR (128) Unqualified name of the detached
dependent table.

SYSCAT.TABLES
Each row represents a table, view, alias, or nickname. Each table or view hierarchy has one additional row
that represents the hierarchy table or hierarchy view that implements the hierarchy. Catalog tables and
views are included.

Table 265. SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the object.

TABNAME VARCHAR (128) Unqualified name of the object.

OWNER VARCHAR (128) Authorization ID of the owner of the
table, view, alias, or nickname.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

2066 IBM Db2 V11.5: SQL Reference

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

TYPE CHAR (1) Type of object.

• A = Alias
• G = Created temporary table
• H = Hierarchy table
• L = Detached table
• N = Nickname
• S = Materialized query table
• T = Table (untyped)
• U = Typed table
• V = View (untyped)
• W = Typed view

STATUS CHAR (1) Status of the object.

• C = Set integrity pending
• N = Normal
• X = Inoperative

BASE_TABSCHEMA VARCHAR (128) Y If TYPE = 'A', contains the schema name
of the table, view, alias, or nickname
that is referenced by this alias; null
value otherwise.

BASE_TABNAME VARCHAR (128) Y If TYPE = 'A', contains the unqualified
name of the table, view, alias, or
nickname that is referenced by this
alias; null value otherwise.

ROWTYPESCHEMA VARCHAR (128) Y Schema name of the row type for
this table, if applicable; null value
otherwise.

ROWTYPENAME VARCHAR (128) Y Unqualified name of the row type for
this table, if applicable; null value
otherwise.

CREATE_TIME TIMESTAMP Time at which the object was created.

ALTER_TIME TIMESTAMP Time at which the object was last
altered.

INVALIDATE_TIME TIMESTAMP Time at which the object was last
invalidated.

STATS_TIME TIMESTAMP Y Time at which any change was last
made to recorded statistics for this
object. The null value if statistics are
not collected.

COLCOUNT SMALLINT Number of columns, including inherited
columns (if any).

TABLEID SMALLINT Internal logical object identifier.

Chapter 1. Structured Query Language (SQL) 2067

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

TBSPACEID SMALLINT Internal logical identifier for the
primary table space for this object.

CARD BIGINT Total number of rows in the table; -1 if
statistics are not collected.

NPAGES BIGINT Total number of pages on which the
rows of the table exist; -1 for a view or
alias, or if statistics are not collected; -2
for a subtable or hierarchy table.

MPAGES BIGINT Total number of pages for table
metadata. Non-zero only for a table that
is organized by column. -1 for a view, an
alias, or if statistics are not collected; -2
for subtables or hierarchy tables.

FPAGES BIGINT Total number of pages; -1 for a view or
alias, or if statistics are not collected; -2
for a subtable or hierarchy table.

NPARTITIONS BIGINT Reserved for future use.

NFILES BIGINT Reserved for future use.

TABLESIZE BIGINT Reserved for future use.

OVERFLOW BIGINT Total number of overflow records in
the table; -1 for a view or alias, or
if statistics are not collected; -2 for a
subtable or hierarchy table.

TBSPACE VARCHAR (128) Y Name of the primary table space for
the table. If no other table space is
specified, all parts of the table are
stored in this table space. The null
value for aliases, views, and partitioned
tables.

INDEX_TBSPACE VARCHAR (128) Y Name of the table space that holds all
indexes created on this table. The null
value for aliases, views, and partitioned
tables, or if the INDEX IN clause was
omitted or specified with the same
value as the IN clause of the CREATE
TABLE statement.

LONG_TBSPACE VARCHAR (128) Y Name of the table space that holds
all long data (LONG or LOB column
types) for this table. The null value for
aliases, views, and partitioned tables,
or if the LONG IN clause was omitted or
specified with the same value as the IN
clause of the CREATE TABLE statement.

PARENTS SMALLINT Y Number of parent tables for this object;
that is, the number of referential
constraints in which this object is a
dependent.

2068 IBM Db2 V11.5: SQL Reference

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

CHILDREN SMALLINT Y Number of dependent tables for this
object; that is, the number of referential
constraints in which this object is a
parent.

SELFREFS SMALLINT Y Number of self-referencing referential
constraints for this object; that is, the
number of referential constraints in
which this object is both a parent and
a dependent.

KEYCOLUMNS SMALLINT Y Number of columns in the primary key.

KEYINDEXID SMALLINT Y Index identifier for the primary key
index: 0 or the null value if there is no
primary key.

KEYUNIQUE SMALLINT Number of unique key constraints
(other than the primary key constraint)
defined on this object.

CHECKCOUNT SMALLINT Number of check constraints that are
defined on this object.

DATACAPTURE CHAR (1) • L = Table participates in data
replication, including replication
of LONG VARCHAR and LONG
VARGRAPHIC columns

• N = Table does not participate in data
replication

• Y = Table participates in data
replication, excluding replication
of LONG VARCHAR and LONG
VARGRAPHIC columns

Chapter 1. Structured Query Language (SQL) 2069

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

CONST_CHECKED CHAR (32) • Byte 1 represents foreign key
constraint.

• Byte 2 represents check constraint.
• Byte 5 represents materialized query

table.
• Byte 6 represents generated column.
• Byte 7 represents staging table.
• Byte 8 represents data partitioning

constraint.
• Other bytes are reserved for future

use.

Possible values are:

• F = In byte 5, the materialized
query table cannot be refreshed
incrementally. In byte 7, the content
of the staging table is incomplete
and cannot be used for incremental
refresh of the associated materialized
query table.

• N = Not checked
• U = Checked by user
• W = Was in 'U' state when the table

was placed in set integrity pending
state

• Y = Checked by system

PMAP_ID SMALLINT Y Identifier for the distribution map that
is currently in use by this table (the null
value for aliases or views).

PARTITION_MODE CHAR (1) Indicates how data is distributed
among database partitions in a
partitioned database system.

• H = Hashing
• R = Replicated across database

partitions
• Blank = No database partitioning

LOG_ATTRIBUTE CHAR (1) • Always 0. This column is no longer
used.

PCTFREE SMALLINT Percentage of each page to be reserved
for future inserts.

2070 IBM Db2 V11.5: SQL Reference

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

APPEND_MODE CHAR (1) For row-organized tables, controls how
rows are inserted into pages.

• N = New rows are inserted into
existing spaces, if available

• Y = New rows are appended to the
end of the data

For column-organized tables, which are
implicitly always in append mode, this
field always has a value of 'N'.

REFRESH CHAR (1) Refresh mode.

• D = Deferred
• I = Immediate
• O = Once
• Blank = Not a materialized query

table

REFRESH_TIME TIMESTAMP Y For REFRESH = 'D' or 'O', time at which
the data was last refreshed (REFRESH
TABLE statement); null value otherwise.

LOCKSIZE CHAR (1) Indicates the preferred lock granularity
for tables that are accessed by
data manipulation language (DML)
statements. Applies to tables only.
Possible values are:

• I = Block insert
• R = Row
• T = Table
• Blank = Not applicable

VOLATILE CHAR (1) • C = Cardinality of the table is volatile
• Blank = Not applicable

ROW_FORMAT CHAR (1) Not used.

Chapter 1. Structured Query Language (SQL) 2071

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

PROPERTY VARCHAR (32) Properties for a table. A single blank
indicates that the table has no
properties. The following is position
within string, value, and meaning:

• 1, Y = User maintained materialized
query table

• 2, Y = Staging table
• 3, Y = Propagate immediate
• 11, Y = Nickname that will not be

cached
• 13, Y = Statistical view
• 19, Y = Statistical view for an index

with an expression-based key
• 20, Y = Column-organized table
• 21, Y = Synopsis table
• 23, Y = Shadow table (materialized

query table maintained by replication)
• 25, Y = Random distribution table
• 27, Y = External table

STATISTICS_PROFILE CLOB (10M) Y RUNSTATS command used to register a
statistical profile for the object.

COMPRESSION CHAR (1) • B = Both value and row compression
are enabled

• N = No compression is enabled; a
row format that does not support
compression is used

• R = Row compression is enabled;
a row format that supports
compression might be used

• V = Value compression is enabled;
a row format that supports
compression is used

• Blank = Not applicable

ROWCOMPMODE CHAR (1) Row compression mode for the table.

• A = ADAPTIVE
• S = STATIC
• Blank = Row compression is not

enabled

2072 IBM Db2 V11.5: SQL Reference

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

ACCESS_MODE CHAR (1) Access restriction state of the object.
These states apply to objects that are
in set integrity pending state or to
objects that were processed by a SET
INTEGRITY statement only. Possible
values are:

• D = No data movement
• F = Full access
• N = No access
• R = Read-only access

CLUSTERED CHAR (1) Y • T = Table is clustered by insert time
• Y = Table is clustered by dimensions

(even if only by one dimension)
• Null value = Table is not clustered by

dimensions or insert time

ACTIVE_BLOCKS BIGINT Total number of active blocks
in the table, or -1. Applies to
multidimensional clustering (MDC)
tables or insert time clustering (ITC)
tables only.

DROPRULE CHAR (1) • N = No rule
• R = Restrict rule applies on drop

MAXFREESPACESEARCH SMALLINT Reserved for future use.

AVGCOMPRESSEDROWSIZE SMALLINT Average length (in bytes) of
compressed rows in this table; -1 if
statistics are not collected.

AVGROWCOMPRESSIONRATIO REAL For compressed rows in the table, this
is the average compression ratio by
row, that is, the average uncompressed
row length divided by the average
compressed row length; -1 if statistics
are not collected.

AVGROWSIZE SMALLINT Average length (in bytes) of both
compressed and uncompressed rows
in this table; -1 if statistics are not
collected.

PCTROWSCOMPRESSED REAL Compressed rows as a percentage of
the total number of rows in the table; -1
if statistics are not collected.

Chapter 1. Structured Query Language (SQL) 2073

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

LOGINDEXBUILD VARCHAR (3) Y Level of logging that is to be performed
during create, re-create, or reorganize
index operations on the table.

• OFF = Index build operations on the
table is logged minimally

• ON = Index build operations on the
table is logged completely

• Null value = Value of the logindexbuild
database configuration parameter is
used to determine whether index
build operations are to be logged
completely

CODEPAGE SMALLINT Code page of the object. This is the
default code page that is used for
all character columns, triggers, check
constraints, and expression-generated
columns.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the
table.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for
the table.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for
ORDER BY clauses in the table.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for
ORDER BY clauses in the table.

ENCODING_SCHEME CHAR (1) • A = CCSID ASCII was specified
• U = CCSID UNICODE was specified
• Blank = CCSID clause was not
specified

PCTPAGESSAVED SMALLINT N The approximate percentage of pages
that are saved in a row-organized table
as a result of row compression. For a
column-organized table, the estimate
is based on the number of data pages
that are needed to store the table in
uncompressed row organization.-1 if
statistics are not collected.

LAST_REGEN_TIME TIMESTAMP Y Time at which any views or check
constraints on the table were last
regenerated.

SECPOLICYID INTEGER Identifier for the security policy that
protects the table; 0 for non-protected
tables.

2074 IBM Db2 V11.5: SQL Reference

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

PROTECTIONGRANULARITY CHAR (1) • B = Both column- and row-level
granularity

• C = Column-level granularity
• R = Row-level granularity
• Blank = Non-protected table

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

AUDITEXCEPTIONENABLED CHAR (1) Reserved for future use.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
table, view, alias, or nickname.

ONCOMMIT CHAR (1) Specifies the action that is taken on
the created temporary table when a
COMMIT operation is performed.

• D = Delete rows
• P = Preserve rows
• Blank = Table is not a created

temporary table

LOGGED CHAR (1) Specifies whether the created
temporary table is logged.

• N = Not logged
• Y = Logged
• Blank = Table is not a created

temporary table

ONROLLBACK CHAR (1) Specifies the action that is taken on
the created temporary table when a
ROLLBACK operation is performed.

• D = Delete rows
• P = Preserve rows
• Blank = Table is not a created

temporary table

LASTUSED DATE Date when the table was last used
by any DML statement or the LOAD
command. This column is not updated
for an alias, created temporary table,
nickname, or view. This column is not
updated when the table is used on an
HADR standby database. The default
value is '0001-01-01'. This value is
updated asynchronously not more than
once within a 24 hour period and might
not reflect usage within the last 15
minutes.

Chapter 1. Structured Query Language (SQL) 2075

Table 265. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

CONTROL CHAR (1) Access control that is enforced for the
table

• B = Both row and column
• C = Column
• R = Row
• Blank = No access control

TEMPORALTYPE CHAR (1) Type of temporal table.

• A = Application-period temporal table
• B = Bitemporal table
• N = Not a temporal table
• S = System-period temporal table

TABLEORG CHAR(1) • C = Column-organized table
• R = Row-organized table
• N = Not a table

EXTENDED_ROW_SIZE CHAR(1) Indicates whether the row size of a
table that is organized by row exceeds
the maximum record length for the
page size of the table space in which
it is defined.

• N = Row size does not exceed the
maximum record length for the page
size

• Y = Row size exceeds the maximum
record length for the page size

• blank = Not applicable

PCTEXTENDEDROWS REAL Extended rows as a percentage of the
total number of rows in the table; -1 if
statistics are not collected.

REMARKS VARCHAR (254) Y User-provided comments, or the null
value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABLESPACES
Each row represents a table space.

Table 266. SYSCAT.TABLESPACES Catalog View

Column Name Data Type Nullable Description

TBSPACE VARCHAR (128) Name of the table space.

OWNER VARCHAR (128) Authorization ID of the owner of the table
space.

2076 IBM Db2 V11.5: SQL Reference

Table 266. SYSCAT.TABLESPACES Catalog View (continued)

Column Name Data Type Nullable Description

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the table space was created.

TBSPACEID INTEGER Identifier for the table space.

TBSPACETYPE CHAR (1) Type of table space.

• D = Database-managed space
• S = System-managed space

DATATYPE CHAR (1) Type of data that can be stored in this table
space.

• A = All types of permanent data; regular
table space

• L = All types of permanent data; large
table space

• T = System temporary tables only
• U = Created temporary tables or declared

temporary tables only

EXTENTSIZE INTEGER Size of each extent, in pages of size
PAGESIZE. This many pages are written to
one container in the table space before
switching to the next container.

PREFETCHSIZE INTEGER Number of pages of size PAGESIZE to be
read when prefetching is performed; -1
when AUTOMATIC.

OVERHEAD DOUBLE Controller overhead and disk seek and
latency time, in milliseconds (average for
the containers in this table space); -1 when
value is inherited from the storage group
that the table space uses.

TRANSFERRATE DOUBLE Time to read one page of size PAGESIZE
into the buffer (average for the containers
in this table space); -1 when value is
inherited from the storage group that the
table space uses.

WRITEOVERHEAD DOUBLE Y Reserved for future use.

WRITETRANSFERRATE DOUBLE Y Reserved for future use.

PAGESIZE INTEGER Size (in bytes) of pages in this table space.

DBPGNAME VARCHAR (128) Name of the database partition group that
is associated with this table space.

BUFFERPOOLID INTEGER Identifier for the buffer pool that is used
by this table space (1 indicates the default
buffer pool).

Chapter 1. Structured Query Language (SQL) 2077

Table 266. SYSCAT.TABLESPACES Catalog View (continued)

Column Name Data Type Nullable Description

DROP_RECOVERY CHAR (1) Indicates whether or not tables in this table
space can be recovered after a drop table
operation.

• N = Tables are not recoverable
• Y = Tables are recoverable

NGNAME1 VARCHAR (128) Name of the database partition group that
is associated with this table space.

DEFINER2 VARCHAR (128) Authorization ID of the owner of the table
space.

DATATAG SMALLINT A tag to identify data stored in this
table space. Valid user-specified range
is 1 through 9; 0 indicates no data tag
specified; -1 indicates value is inherited
from the storage group that the table space
uses.

SGNAME VARCHAR (128) Y Name of the storage group the table space
is using; null value when the table space is
not using automatic storage.

SGID INTEGER Identifier of the storage group the table
space is using; -1 when the table space is
not using automatic storage.

EFFECTIVEPREFETCHSIZE INTEGER Value of the effective prefetch size when
PREFETCHSIZE is set to -1 (AUTOMATIC);
otherwise same as PREFETCHSIZE.

CACHINGTIER SMALLINT Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The NGNAME column is included for backwards compatibility. See DBPGNAME.
2. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABOPTIONS
Each row represents an option that is associated with a remote table.

Table 267. SYSCAT.TABOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of a table, view, alias, or
nickname.

TABNAME VARCHAR (128) Unqualified name of a table, view, alias, or
nickname.

OPTION VARCHAR (128) Name of the table option.

SETTING CLOB (32K) Value of the table option.

2078 IBM Db2 V11.5: SQL Reference

SYSCAT.TBSPACEAUTH
Each row represents a user, group, or role that has been granted the USE privilege on a particular table
space in the database.

Table 268. SYSCAT.TBSPACEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

TBSPACE VARCHAR (128) Name of the table space.

USEAUTH CHAR (1) Privilege to create tables within the table
space.

• G = Held and grantable
• N = Not held
• Y = Held

SYSCAT.THRESHOLDS
Each row represents a threshold.

Table 269. SYSCAT.THRESHOLDS Catalog View

Column Name Data Type Nullable Description

THRESHOLDNAME VARCHAR (128) Name of the threshold.

THRESHOLDID INTEGER Identifier for the threshold.

ORIGIN CHAR (1) Origin of the threshold.

• U = Threshold was created by a user
• W = Threshold was created through a

work action set

THRESHOLDCLASS CHAR (1) Classification of the threshold.

• A = Aggregate threshold
• C = Activity threshold

Chapter 1. Structured Query Language (SQL) 2079

Table 269. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

THRESHOLDPREDICATE VARCHAR (15) Type of the threshold. Possible values are:

• AGGTEMPSPACE
• CONCDBC
• CONCWCN
• CONCWOC
• CONNIDLETIME
• CPUTIME
• CPUTIMEINSC
• DATATAGINSC
• DATATAGNOTINSC
• DBCONN
• ESTSQLCOST
• ROWSREAD
• ROWSREADINSC
• ROWSRET
• RUNTIME
• RUNTIMEINALLSC
• SCCONN
• SORTSHRHEAPUTIL

Attention: This feature is
available in Db2 Version 11.5
Mod Pack 2 and later versions.

• TEMPSPACE
• TOTALTIME
• UOWTOTALTIME

THRESHOLDPREDICATEID SMALLINT Identifier for the threshold predicate.

DOMAIN CHAR (2) Domain of the threshold.

• DB = Database
• SB = Service subclass
• SP = Service superclass
• WA = Work action set
• WD = Workload definition
• SQ = SQL statement

DOMAINID INTEGER Identifier for the object with which the
threshold is associated. This can be a
service class, work action, workload unique
ID, or SQL statement. If this is a database
threshold, this value is 0.

2080 IBM Db2 V11.5: SQL Reference

Table 269. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

ENFORCEMENT CHAR (1) Scope of enforcement for the threshold.

• D = Database
• P = Member
• W = Workload occurrence

QUEUING CHAR (1) • N = The threshold is not queueing
• Y = The threshold is queueing

MAXVALUE BIGINT Upper bound specified by the threshold. If
THRESHOLDPREDICATE is 'DATATAGINSC'
or 'DATATAGNOTINSC', this value encodes
one or more data tags.

DATATAGLIST VARCHAR (256) Y If THRESHOLDPREDICATE is
'DATATAGINSC' or 'DATATAGNOTINSC', this
value represents one or more data tags as
a comma separated list. Otherwise, the null
value.

QUEUESIZE INTEGER If QUEUEING is 'Y', the size of the queue. -1
otherwise.

OVERFLOWPERCENT SMALLINT Reserved for future use.

COLLECTACTDATA CHAR (1) Specifies what activity data should be
collected by the applicable event monitor.

• D = Activity data with details
• N = None
• S = Activity data with details and section

environment
• V = Activity data with details and values
• W = Activity data without details
• X = Activity data with details, section

environment, and values

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

• C = Coordinator member of the activity
• D = All members

EXECUTION CHAR (1) Indicates the execution action taken after a
threshold has been exceeded.

• C = Execution continues
• F = Application is forced off the system
• R = Execution is remapped to a different

service subclass
• S = Execution stops

REMAPSCID SMALLINT Target service subclass ID of the REMAP
ACTIVITY action.

Chapter 1. Structured Query Language (SQL) 2081

Table 269. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

VIOLATIONRECORDLOGGED CHAR (1) Indicates whether a record is written to the
event monitor upon threshold violation.

• N = No
• Y = Yes

CHECKINTERVAL INTEGER The interval, in seconds, in which
the threshold condition is checked if
THRESHOLDPREDICATE is:

• 'CPUTIME'
• 'CPUTIMEINSC'
• 'ROWSREAD'
• 'ROWSREADINSC'

Otherwise, -1.

ENABLED CHAR (1) • N = This threshold is disabled.
• Y = This threshold is enabled.

CREATE_TIME TIMESTAMP Time at which the threshold was created.

ALTER_TIME TIMESTAMP Time at which the threshold was last
altered.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.TRANSFORMS
Each row represents the functions that handle transformations between a user-defined type and a base
SQL type, or the reverse.

Table 270. SYSCAT.TRANSFORMS Catalog View

Column Name Data Type Nullable Description

TYPEID SMALLINT Identifier for the data type.

TYPESCHEMA VARCHAR (128) Schema name of the data type if
TYPEMODULEID is null; otherwise schema
name of the module to which the data type
belongs.

TYPENAME VARCHAR (128) Unqualified name of the data type.

GROUPNAME VARCHAR (128) Name of the transform group.

FUNCID INTEGER Identifier for the routine.

FUNCSCHEMA VARCHAR (128) Schema name of the routine if
ROUTINEMODULEID is null; otherwise
schema name of the module to which the
routine belongs.

FUNCNAME VARCHAR (128) Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

2082 IBM Db2 V11.5: SQL Reference

Table 270. SYSCAT.TRANSFORMS Catalog View (continued)

Column Name Data Type Nullable Description

TRANSFORMTYPE VARCHAR (8) • 'FROM SQL' = Transform function
transforms a structured type from SQL

• 'TO SQL' = Transform function transforms
a structured type to SQL

FORMAT CHAR (1) Format produced by the FROM SQL
transform.

• S = Structured data type
• U = User-defined

MAXLENGTH INTEGER Y Maximum length (in bytes) of output from
the FROM SQL transform; the null value for
TO SQL transforms.

ORIGIN CHAR (1) Source of this group of transforms.

• O = Original transform group
• R = Redefined transform group

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.TRIGDEP
Each row represents a dependency of a trigger on some other object. The trigger depends on the object of
type BTYPE of name BNAME, so a change to the object affects the trigger.

Table 271. SYSCAT.TRIGDEP Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR (128) Schema name of the trigger.

TRIGNAME VARCHAR (128) Unqualified name of the trigger.

Chapter 1. Structured Query Language (SQL) 2083

Table 271. SYSCAT.TRIGDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

• A = Table alias
• B = Trigger
• C = Column
• F = Routine
• G = Global temporary table
• H = Hierachy table
• I = Index
• K = Package
• L = Detached table
• N = Nickname
• O = Privilege dependency on all subtables

or subviews in a table or view hierarchy
• Q = Sequence
• R = User-defined data type
• S = Materialized query table
• T = Table (not typed)
• U = Typed table
• V = View (not typed)
• W = Typed view
• X = Index extension
• Z = XSR object
• m = Module
• q = Sequence alias
• u = Module alias
• v = Global variable
• * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there
is a dependency.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE
= 'F'), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = 'O', 'S', 'T', 'U', 'V', 'W', or 'v',
encodes the privileges on the table or view
that are required by a dependent trigger;
null value otherwise.

2084 IBM Db2 V11.5: SQL Reference

SYSCAT.TRIGGERS
Each row represents a trigger. For table hierarchies, each trigger is recorded only at the level of the
hierarchy where the trigger was created.

Table 272. SYSCAT.TRIGGERS Catalog View

Column Name Data Type Nullabl
e

Description

TRIGSCHEMA VARCHAR (128) Schema name of the trigger.

TRIGNAME VARCHAR (128) Unqualified name of the trigger.

OWNER VARCHAR (128) Authorization ID of the owner of the
trigger.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or view to
which this trigger applies.

TABNAME VARCHAR (128) Unqualified name of the table or view to
which this trigger applies.

TRIGTIME CHAR (1) Time at which triggered actions are
applied to the base table, relative to the
event that fired the trigger.

• A = Trigger is applied after the event
• B = Trigger is applied before the event
• I = Trigger is applied instead of the

event

TRIGEVENT CHAR (1) Event that fires the trigger.

• D = Delete event
• I = Insert event
• M = Multiple events
• U = Update event

EVENTUPDATE CHAR (1) Indicates whether an update event fires
the trigger.

• N = No
• Y = Yes

EVENTDELETE CHAR (1) Indicates whether a delete event fires
the trigger.

• N = No
• Y = Yes

EVENTINSERT CHAR (1) Indicates whether an insert event fires
the trigger.

• N = No
• Y = Yes

Chapter 1. Structured Query Language (SQL) 2085

Table 272. SYSCAT.TRIGGERS Catalog View (continued)

Column Name Data Type Nullabl
e

Description

GRANULARITY CHAR (1) Trigger is executed once per:

• R = Row
• S = Statement

VALID CHAR (1) • N = Trigger is invalid
• X = Trigger is inoperative and must be

re-created
• Y = Trigger is valid

CREATE_TIME TIMESTAMP Time at which the trigger was defined.
Used in resolving functions and types.

QUALIFIER VARCHAR (128) Value of the default schema at the time
of object definition. Used to complete any
unqualified references.

FUNC_PATH CLOB (2K) SQL path in effect when the trigger was
defined.

TEXT CLOB (2M) Full text of the CREATE TRIGGER
statement, exactly as typed.

LAST_REGEN_TIME TIMESTAMP Time at which the packed descriptor for
the trigger was last regenerated.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the
trigger.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the
trigger.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER
BY clauses in the trigger.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for
ORDER BY clauses in the trigger.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the
trigger.

SECURE CHAR (1) Indicates whether the trigger is secure
for row and column access control

• N = Not secure
• Y = Secure

ALTER_TIME TIMESTAMP Time at which the trigger was last
altered.

2086 IBM Db2 V11.5: SQL Reference

Table 272. SYSCAT.TRIGGERS Catalog View (continued)

Column Name Data Type Nullabl
e

Description

DEBUG_MODE VARCHAR (8) Indicates whether the trigger can be
debugged using the Db2 debugger.

• DISALLOW = Trigger is not debuggable
• ALLOW = Trigger is debuggable, and

can participate in a client debug
session with the Db2 debugger

• DISABLE = Trigger is not debuggable,
and this setting cannot be altered
without dropping and re-creating the
trigger

• Blank = Trigger type is not currently
supported by the Db2 debugger

ENABLED CHAR (1) Reserved for future use.

LIB_ID INTEGER Y Internal identifier for compiled SQL
triggers. Otherwise, the null value.

PRECOMPILE_OPTIONS VARCHAR(1024) Y The precompile and bind options that
were in effect when the compiled trigger
was created. The null value if the trigger
is not compiled.

COMPILE_OPTIONS VARCHAR(1024) Y The value of the SQL_CCFLAGS special
register that was in effect when the
compiled trigger was created and inquiry
directives were present. An empty string
if no inquiry directives were present in
the compiled trigger. The null value if the
trigger is not compiled.

ENVSTRINGUNITS VARCHAR (11) Default string units when the object was
created.

REMARKS VARCHAR (254) Y User-provided comments, or the null
value.

Note:

1. The DEFINER column is included for compatibility with earlier versions. See OWNER.

SYSCAT.TYPEMAPPINGS
Each row represents a data type mapping between a locally-defined data type and a data source data
type. There are two mapping types (mapping directions):forward type mappings map a data source data
type to a locally-defined data type; reverse type mappings map a locally-defined data type to a data
source data type.

Table 273. SYSCAT.TYPEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE_MAPPING VARCHAR (18) Name of the type mapping (might be
system-generated).

Chapter 1. Structured Query Language (SQL) 2087

Table 273. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

MAPPINGDIRECTION CHAR (1) Indicates whether this type mapping is a
forward or a reverse type mapping.

• F = Forward type mapping
• R = Reverse type mapping

TYPESCHEMA VARCHAR (128) Y Schema name of the local type in a data
type mapping; the null value for built-in
types.

TYPENAME VARCHAR (128) Unqualified name of the local type in a data
type mapping.

TYPEID SMALLINT Identifier for the data type.

SOURCETYPEID SMALLINT Identifier for the source type.

OWNER VARCHAR (128) Authorization ID of the owner of the type
mapping. 'SYSIBM' indicates a built-in type
mapping.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

LENGTH INTEGER Y Maximum length or precision of the local
data type in this mapping. If the null value,
the system determines the maximum
length or precision. For character types,
represents the maximum number of bytes.

SCALE SMALLINT Y Maximum number of digits in the fractional
part of a local decimal value or the
maximum number of digits of fractional
seconds of a local TIMESTAMP value in
this mapping. If the null value, the system
determines the maximum number.

LOWER_LEN INTEGER Y Minimum length or precision of the local
data type in this mapping. If the null
value, the system determines the minimum
length or precision. For character types,
represents the minimum number of bytes.

UPPER_LEN INTEGER Y Maximum length or precision of the local
data type in this mapping. If the null value,
the system determines the maximum
length or precision. For character types,
represents the maximum number of bytes.

LOWER_SCALE SMALLINT Y Minimum number of digits in the fractional
part of a local decimal value or the
minimum number of digits of fractional
seconds of a local TIMESTAMP value in
this mapping. If the null value, the system
determines the minimum number.

2088 IBM Db2 V11.5: SQL Reference

Table 273. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

UPPER_SCALE SMALLINT Y Maximum number of digits in the fractional
part of a local decimal value or the
maximum number of digits of fractional
seconds of a local TIMESTAMP value in
this mapping. If the null value, the system
determines the maximum number.

S_OPR_P CHAR (2) Y Relationship between the scale and
precision of a local decimal value in this
mapping. Basic comparison operators (=, <,
>, <=, >=, <>) can be used. A null value
indicates that no specific relationship is
required.

BIT_DATA CHAR (1) Y Indicates whether or not this character
type is for bit data. Possible values are:

• N = This type is not for bit data
• Y = This type is for bit data
• Null value = This is not a character data

type, or the system determines the bit
data attribute

WRAPNAME VARCHAR (128) Y Data access protocol (wrapper) to which
this mapping applies.

SERVERNAME VARCHAR (128) Y Uppercase name of the server.

SERVERTYPE VARCHAR (30) Y Type of server.

SERVERVERSION VARCHAR (18) Y Server version.

REMOTE_TYPESCHEMA VARCHAR (128) Y Schema name of the data source data type.

REMOTE_TYPENAME VARCHAR (128) Unqualified name of the data source data
type.

REMOTE_META_TYPE CHAR (1) Y Indicates whether this remote type is a
system built-in type or a distinct type.

• S = System built-in type
• T = Distinct type

REMOTE_LOWER_LEN INTEGER Y Minimum length or precision of the remote
data type in this mapping, or the null
value. For character types, represents the
minimum number of characters (not bytes).
For binary types, represents the minimum
number of bytes. A value of -1 indicates
that the default length or precision is used,
or that the remote type does not have a
length or precision.

Chapter 1. Structured Query Language (SQL) 2089

Table 273. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

REMOTE_UPPER_LEN INTEGER Y Maximum length or precision of the remote
data type in this mapping, or the null
value. For character types, represents
the maximum number of characters (not
bytes). For binary types, represents the
maximum number of bytes. A value of
-1 indicates that the default length or
precision is used, or that the remote type
does not have a length or precision.

REMOTE_LOWER_SCALE SMALLINT Y Minimum number of digits in the fractional
part of a remote decimal value or the
minimum number of digits of fractional
seconds of a remote TIMESTAMP value in
this mapping, or the null value.

REMOTE_UPPER_SCALE SMALLINT Y Maximum number of digits in the fractional
part of a remote decimal value or the
maximum number of digits of fractional
seconds of a remote TIMESTAMP value in
this mapping, or the null value.

REMOTE_S_OPR_P CHAR (2) Y Relationship between the scale and
precision of a remote decimal value in this
mapping. Basic comparison operators (=, <,
>, <=, >=, <>) can be used. A null value
indicates that no specific relationship is
required.

REMOTE_BIT_DATA CHAR (1) Y Indicates whether or not this remote
character type is for bit data. Possible
values are:

• N = This type is not for bit data
• Y = This type is for bit data
• Null value = This is not a character data

type, or the system determines the bit
data attribute

USER_DEFINED CHAR (1) Indicates whether or not the mapping is
user-defined. The value is always 'Y'; that
is, the mapping is always user-defined.

CREATE_TIME TIMESTAMP Time at which this mapping was created.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the type
mapping. 'SYSIBM' indicates a built-in type
mapping.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

2090 IBM Db2 V11.5: SQL Reference

SYSCAT.USAGELISTS
Each row represents a usage list for a table or index object.

Table 274. SYSCAT.USAGELISTS Catalog View

Column Name Data Type Nullable Description

USAGELISTSCHEMA VARCHAR (128) Schema of the usage list.

USAGELISTNAME VARCHAR (128) Name of the usage list.

USAGELISTID INTEGER Identifier for the usage list.

OBJECTSCHEMA VARCHAR (128) Schema name of the object for which the
usage list is defined.

OBJECTNAME VARCHAR (128) Unqualified name of the object for which
the usage list is defined.

OBJECTTYPE CHAR (1) The type of the object for which this usage
list is defined.

• I = Index
• T = Table

STATUS CHAR (1) The status of the usage list.

• I = Invalid
• V = Valid

MAXLISTSIZE INTEGER The maximum number of entries in the
usage list.

WHENFULL CHAR (1) Action to be performed when the usage list
is full.

• D = Deactivate collection
• W = Wrap

AUTOSTART CHAR (1) Indicates whether this usage list is to be
activated automatically when the database
starts.

• N = Manual start
• Y = Autostart

ACTIVEDURATION INTEGER Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.USEROPTIONS
Each row represents a server-specific user option value.

Table 275. SYSCAT.USEROPTIONS Catalog View

Column Name Data Type Nullable Description

AUTHID VARCHAR (128) Local authorization ID, in uppercase
characters.

AUTHIDTYPE CHAR (1) • U = Grantee is an individual user

Chapter 1. Structured Query Language (SQL) 2091

Table 275. SYSCAT.USEROPTIONS Catalog View (continued)

Column Name Data Type Nullable Description

SERVERNAME VARCHAR (128) Name of the server on which the user is
defined.

OPTION VARCHAR (128) Name of the user option.

SETTING VARCHAR (2048) Value of the user option.

SYSCAT.VARIABLEAUTH
Each row represents a user, group, or role that has been granted one or more privileges by a specific
grantor on a global variable in the database that is not defined in a module.

Table 276. SYSCAT.VARIABLEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

VARSCHEMA VARCHAR (128) Schema name of the global variable if
VARMODULEID is null; otherwise schema
name of the module to which the global
variable belongs.

VARNAME VARCHAR (128) Unqualified name of the global variable.

VARID INTEGER Identifier for the global variable.

READAUTH CHAR (1) Privilege to read the global variable.

• G = Held and grantable
• N = Not held
• Y = Held

WRITEAUTH CHAR (1) Privilege to write the global variable.

• G = Held and grantable
• N = Not held
• Y = Held

2092 IBM Db2 V11.5: SQL Reference

SYSCAT.VARIABLEDEP
Each row represents a dependency of a global variable on some other object. The global variable depends
on the object of type BTYPE of name BNAME, so a change to the object affects the global variable.

Table 277. SYSCAT.VARIABLEDEP Catalog View

Column Name Data Type Nullable Description

VARSCHEMA VARCHAR (128) Schema name of the global variable that
has dependencies on another object.

VARMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the global variable belongs. The null value
if not a module variable.

VARNAME VARCHAR (128) Unqualified name of the global variable that
has dependencies on another object.

VARMODULEID INTEGER Y Identifier for the module of the object that
has dependencies on another object.

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

• A = Table alias
• F = Routine
• G = Global temporary table
• H = Hierarchy table
• I = Index
• N = Nickname
• O = Privilege dependency on all subtables

or subviews in a table or view hierarchy
• R = User-defined data type
• S = Materialized query table
• T = Table (not typed)
• U = Typed table
• V = View (not typed)
• W = Typed view
• m = Module
• q = Sequence alias
• u = Module alias
• v = Global variable
• * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there
is a dependency.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE
= 'F'), this is the specific name.

Chapter 1. Structured Query Language (SQL) 2093

Table 277. SYSCAT.VARIABLEDEP Catalog View (continued)

Column Name Data Type Nullable Description

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = 'O', 'S', 'T', 'U', 'V', 'W', or 'v',
encodes the privileges on the table or view
that are required by the dependent global
variable; the null value otherwise.

SYSCAT.VARIABLES
Each row represents a global variable.

Table 278. SYSCAT.VARIABLES Catalog View

Column Name Data Type Nullabl
e

Description

VARSCHEMA VARCHAR (128) Schema name of the global variable
if VARMODULEID is null; otherwise
schema name of the module to which
the global variable belongs.

VARMODULENAME VARCHAR (128) Y Unqualified name of the module to
which the global variable belongs. The
null value if not a module variable.

VARNAME VARCHAR (128) Unqualified name of the global variable.

VARMODULEID INTEGER Y Identifier for the module to which the
global variable belongs. The null value if
not a module variable.

VARID INTEGER Identifier for the global variable.

OWNER VARCHAR (128) Authorization ID of the owner of the
global variable.

OWNERTYPE CHAR (1) • U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the global variable was
created.

LAST_REGEN_TIME TIMESTAMP Time at which the default expression
was last regenerated.

VALID CHAR (1) • N = The global variable is invalid
• Y = The global variable is valid

PUBLISHED CHAR (1) Indicates whether the module variable
can be referenced outside its module.

• N = The module variable is not
published

• Y = The module variable is published
• Blank = Not applicable

2094 IBM Db2 V11.5: SQL Reference

Table 278. SYSCAT.VARIABLES Catalog View (continued)

Column Name Data Type Nullabl
e

Description

TYPESCHEMA VARCHAR (128) Schema name of the data type if
TYPEMODULEID is null; otherwise
schema name of the module to which
the data type belongs.

TYPEMODULENAME VARCHAR (128) Unqualified name of the module to
which the variable data type belongs.
The null value if the variable data type
does not belong to a module.

TYPENAME VARCHAR (128) Unqualified name of the data type.

TYPEMODULEID INTEGER Y Identifier for the module to which the
variable data type belongs. The null
value if the variable data type does not
belong to a module.

LENGTH INTEGER Maximum length of the global variable.

SCALE SMALLINT Scale if the global variable data type
is DECIMAL or distinct type based
on DECIMAL; the number of digits of
fractional seconds if the global variable
data type is TIMESTAMP or distinct type
based on TIMESTAMP; 0 otherwise.

TYPESTRINGUNITS VARCHAR (11) Y In a Unicode database, the string units
that apply to a character string or
graphic string data type. Otherwise, the
null value.

STRINGUNITSLENGTH INTEGER Y In a Unicode database, the declared
number of string units for a character
string or graphic string data type.
Otherwise, the null value.

CODEPAGE SMALLINT Code page of the global variable.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the
variable.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the
variable.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for
ORDER BY clauses in the variable.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for
ORDER BY clauses in the variable.

SCOPE CHAR (1) Scope of the global variable.

• D = Database
• S = Session

DEFAULT CLOB (64K) Y Expression used to calculate the initial
value of the global variable when first
referenced.

Chapter 1. Structured Query Language (SQL) 2095

Table 278. SYSCAT.VARIABLES Catalog View (continued)

Column Name Data Type Nullabl
e

Description

QUALIFIER VARCHAR (128) Y Value of the default schema at the time
the variable was defined.

FUNC_PATH CLOB (2K) Y SQL path in effect when the variable was
defined.

NULLS CHAR (1) Reserved for future use.

READONLY CHAR (1) • C = Read-only because the global
variable is defined with a CONSTANT
clause

• N = Not read-only
• S = Read-only because the global

variable value is maintained by the
database manager

ENVSTRINGUNITS VARCHAR (11) Default string units when the object was
created.

REMARKS VARCHAR (254) Y User-provided comments, or the null
value.

SYSCAT.VIEWS
Each row represents a view or materialized query table.

Table 279. SYSCAT.VIEWS Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA VARCHAR (128) Schema name of the view or materialized
query table.

VIEWNAME VARCHAR (128) Unqualified name of the view or
materialized query table.

OWNER VARCHAR (128) Authorization ID of the owner of the view or
materialized query table.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

SEQNO SMALLINT Always 1.

VIEWCHECK CHAR (1) Type of view checking.

• C = Cascaded check option
• L = Local check option
• N = No check option or is a materialized

query table

2096 IBM Db2 V11.5: SQL Reference

Table 279. SYSCAT.VIEWS Catalog View (continued)

Column Name Data Type Nullable Description

READONLY CHAR (1) • N = View can be updated by users
with appropriate authorization or is a
materialized query table

• Y = View is read-only because of its
definition

VALID CHAR (1) • N = View or materialized query table
definition is invalid

• X = View or materialized query table
definition is inoperative and must be
recreated

• Y = View or materialized query table
definition is valid

QUALIFIER VARCHAR (128) Value of the default schema at the time
of object definition. Used to complete any
unqualified references.

FUNC_PATH CLOB (2K) SQL path in effect when the view or
materialized query table was defined.

TEXT CLOB (2M) Full text of the view or materialized query
table CREATE statement, exactly as typed.

DEFINER1 VARCHAR (128) Authorization ID of the owner of the view or
materialized query table.

ENVSTRINGUNITS VARCHAR (11) Default string units when the object was
created.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.WORKACTIONS
Each row represents a work action that is defined for a work action set.

Table 280. SYSCAT.WORKACTIONS Catalog View

Column Name Data Type Nullabl
e

Description

ACTIONNAME VARCHAR (128) Name of the work action.

ACTIONID INTEGER Identifier for the work action.

ACTIONSETNAME VARCHAR (128) Y Name of the work action set.

ACTIONSETID INTEGER Identifier of the work action set to which
this work action belongs. This column
refers to the ACTIONSETID column in the
SYSCAT.WORKACTIONSETS view.

WORKCLASSNAME VARCHAR (128) Y Name of the work class.

Chapter 1. Structured Query Language (SQL) 2097

Table 280. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullabl
e

Description

WORKCLASSID INTEGER Identifier of the work class. This column
refers to the WORKCLASSID column in the
SYSCAT.WORKCLASSES view.

CREATE_TIME TIMESTAMP Time at which the work action was created.

ALTER_TIME TIMESTAMP Time at which the work action was last altered.

ENABLED CHAR (1) • N = This work action is disabled.
• Y = This work action is enabled.

2098 IBM Db2 V11.5: SQL Reference

Table 280. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullabl
e

Description

ACTIONTYPE CHAR (1) The type of action performed on each Db2 activity
that matches the attributes in the work class
within scope.

• B = Collect basic aggregate activity data,
specifiable only for work action sets that apply
to service classes or workloads.

• C = Allow any Db2 activity under the associated
work class to execute and increment the work
class counter.

• D = Collect activity data with details at the
coordinating member of the activity.

• E = Collect extended aggregate activity data,
specifiable only for work action sets that apply
to service classes or workloads.

• F = Collect activity data with details, section,
and values at the coordinating member of the
activity.

• G = Collect activity details and section at the
coordinating member of the activity and collect
activity data at all members.

• H = Collect activity details, section, and values
at the coordinating member of the activity and
collect activity data at all members.

• M = Map to a service subclass, specifiable
only for work action sets that apply to service
classes.

• P = Prevent the execution of any Db2 activity
under the work class with which this work
action is associated.

• S = Collect activity data with details and section
at the coordinating member of the activity.

• T = The action represents a threshold,
specifiable only for work action sets that are
associated with a database or a workload.

• U = Map all activities with a nesting level of zero
and all activities nested under these activities
to a service subclass, specifiable only for work
action sets that apply to service classes.

• V = Collect activity data with details and values
at the coordinating member.

• W = Collect activity data without details at the
coordinating member.

• X = Collect activity data with details at the
coordinating member and collect activity data
at all members.

• Y = Collect activity data with details and values
at the coordinating member and collect activity
data at all members.

• Z = Collect activity data without details at all
members.Chapter 1. Structured Query Language (SQL) 2099

Table 280. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullabl
e

Description

REFOBJECTID INTEGER Y If ACTIONTYPE is 'M' (map) or 'N' (map nested),
this value is set to the ID of the service
subclass to which the Db2 activity is mapped. If
ACTIONTYPE is 'T' (threshold), this value is set to
the ID of the threshold to be used. For all other
actions, this value is NULL.

REFOBJECTTYPE VARCHAR (30) If the ACTIONTYPE is 'M' or 'N', this value is set
to 'SERVICE CLASS'; if the ACTIONTYPE is 'T', this
value is 'THRESHOLD'; the null value otherwise.

SECTIONACTUALSOPTIONS VARCHAR (32) Specifies what section actuals are collected
during the execution of a section.
The first position in the string represents whether
the collection of section actuals is enabled.

• B = Enabled and collect basic operator
cardinality counts and statistics for each object
referenced by the section (DML statements
only).

• N = Not enabled.

The second position is always 'N' and reserved for
for future use.

SYSCAT.WORKACTIONSETS
Each row represents a work action set.

Table 281. SYSCAT.WORKACTIONSETS Catalog View

Column Name Data Type Nullable Description

ACTIONSETNAME VARCHAR (128) Name of the work action set.

ACTIONSETID INTEGER Identifier for the work action set.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSSETID INTEGER The identifier of the work class set
that is to be mapped to the object
specified by the OBJECTID. This column
refers to WORKCLASSSETID in the
SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work action set was
created.

ALTER_TIME TIMESTAMP Time at which the work action set was last
altered.

ENABLED CHAR (1) • N = This work action set is disabled.
• Y = This work action set is enabled.

2100 IBM Db2 V11.5: SQL Reference

Table 281. SYSCAT.WORKACTIONSETS Catalog View (continued)

Column Name Data Type Nullable Description

OBJECTTYPE CHAR (1) • b = Service superclass
• w = Workload
• Blank = Database

OBJECTNAME VARCHAR (128) Y Name of the service class or workload.

OBJECTID INTEGER The identifier of the object to which
the work class set (specified by the
WORKCLASSSETID) is mapped. If the
OBJECTTYPE is 'b', the OBJECTID is
the ID of the service superclass. If the
OBJECTTYPE is 'w', the OBJECTID is the
ID of the workload. If the OBJECTTYPE is
blank, the OBJECTID is -1.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.WORKCLASSATTRIBUTES
Each row represents an attribute in the definition of a work class.

Table 282. SYSCAT.WORKCLASSATTRIBUTES Catalog View

Column Name Data Type Nullable Description

WORKCLASSNAME VARCHAR (128) Name of the work class.

WORKCLASSSETNAME VARCHAR (128) Name of the work class set.

WORKCLASSID INTEGER Identifier for the work class.

WORKCLASSSETID INTEGER Identifier for the work class set.

TYPE VARCHAR (30) The type of work class attribute. Possible
values are:

• WORK TYPE
• TIMERONCOST
• CARDINALITY
• DATA TAG
• ROUTINE SCHEMA
• RUNTIME

Chapter 1. Structured Query Language (SQL) 2101

Table 282. SYSCAT.WORKCLASSATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

VALUE1 DOUBLE Y The meaning of this value depends on the
value in the TYPE column:
TYPE='WORK TYPE'

A number that indicates the type of
database activity:

• 1 = ALL
• 2 = READ
• 3 = WRITE
• 4 = CALL
• 5 = DML
• 6 = DDL
• 7 = LOAD

TYPE='TIMERONCOST'
The low value in the range.

TYPE='CARDINALITY'
The low value in the range.

TYPE='DATA TAG'
The tag that the estimated data tag list
must contain.

TYPE='ROUTINE SCHEMA'
The null value.

VALUE2 DOUBLE Y The meaning of this value depends on the
value in the TYPE column:
TYPE='WORK TYPE'

The null value.
TYPE='TIMERONCOST'

The high value in the range. The value
-1 indicates that there is no upper
bound.

TYPE='CARDINALITY'
The high value in the range. The value
-1 indicates that there is no upper
bound.

TYPE='DATA TAG'
The null value.

TYPE='ROUTINE SCHEMA'
The null value.

VALUE3 VARCHAR (128) Y The meaning of this value depends
on the value in the TYPE column. If
TYPE='ROUTINE SCHEMA', it specifies the
schema name of the procedures that are
called by the CALL statement. Otherwise, it
is the null value.

2102 IBM Db2 V11.5: SQL Reference

SYSCAT.WORKCLASSES
Each row represents a work class defined for a work class set.

Table 283. SYSCAT.WORKCLASSES Catalog View

Column Name Data Type Nullable Description

WORKCLASSNAME VARCHAR (128) Name of the work class.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSID INTEGER Identifier for the work class.

WORKCLASSSETID INTEGER Identifier for the work class set to which
this work class belongs. This column refers
to the WORKCLASSSETID column in the
SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work class was created.

ALTER_TIME TIMESTAMP Time at which the work class was last
altered.

EVALUATIONORDER SMALLINT Uniquely identifies the evaluation order
used for choosing a work class within a
work class set.

SYSCAT.WORKCLASSSETS
Each row represents a work class set.

Table 284. SYSCAT.WORKCLASSSETS Catalog View

Column Name Data Type Nullable Description

WORKCLASSSETNAME VARCHAR (128) Name of the work class set.

WORKCLASSSETID INTEGER Identifier for the work class set.

CREATE_TIME TIMESTAMP Time at which the work class set was
created.

ALTER_TIME TIMESTAMP Time at which the work class set was last
altered.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.WORKLOADAUTH
Each row represents a user, group, or role that has been granted USAGE privilege on a workload.

Table 285. SYSCAT.WORKLOADAUTH Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantee is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

Chapter 1. Structured Query Language (SQL) 2103

Table 285. SYSCAT.WORKLOADAUTH Catalog View (continued)

Column Name Data Type Nullable Description

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

USAGEAUTH CHAR (1) Indicates whether grantee holds USAGE
privilege on the workload.

• N = Not held
• Y = Held

SYSCAT.WORKLOADCONNATTR
Each row represents a connection attribute in the definition of a workload.

Table 286. SYSCAT.WORKLOADCONNATTR Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

CONNATTRTYPE VARCHAR (30) Type of the connection attribute.

• 1 = APPLNAME
• 2 = SYSTEM_USER
• 3 = SESSION_USER
• 4 = SESSION_USER GROUP
• 5 = SESSION_USER ROLE
• 6 = CURRENT CLIENT_USERID
• 7 = CURRENT CLIENT_APPLNAME
• 8 = CURRENT CLIENT_WRKSTNNAME
• 9 = CURRENT CLIENT_ACCTNG
• 10 = ADDRESS

CONNATTRVALUE VARCHAR (1000) Value of the connection attribute.

SYSCAT.WORKLOADS
Each row represents a workload.

Table 287. SYSCAT.WORKLOADS Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

EVALUATIONORDER SMALLINT Evaluation order used for choosing a
workload.

CREATE_TIME TIMESTAMP Time at which the workload was created.

2104 IBM Db2 V11.5: SQL Reference

Table 287. SYSCAT.WORKLOADS Catalog View (continued)

Column Name Data Type Nullable Description

ALTER_TIME TIMESTAMP Time at which the workload was last
altered.

ENABLED CHAR (1) • N = This workload is disabled.
• Y = This workload is enabled.

ALLOWACCESS CHAR (1) • N = A UOW associated with this workload
will be rejected.

• Y = A unit of work (UOW) associated with
this workload can access the database.

MAXDEGREE SMALLINT Maximum degree of parallelism for the
workload. The valid values are: 1 to 32767,
and -1. If MAXIMUM DEGREE is DEFAULT,
the value is -1.

SERVICECLASSNAME VARCHAR (128) Name of the service subclass to which a
unit of work (associated with this workload)
is assigned.

PARENTSERVICECLASSNAME VARCHAR (128) Y Name of the service superclass to which a
unit of work (associated with this workload)
is assigned.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data
should be captured for the workload by the
applicable event monitor.

• B = Collect base aggregate activity data
• E = Collect extended aggregate activity

data
• N = None

COLLECTACTDATA CHAR (1) Specifies what activity data should be
collected by the applicable event monitor.

• D = Activity data with details
• N = None
• S = Activity data with details and section

environment
• V = Activity data with details and values.

Applies when the COLLECT column is set
to 'C'

• W = Activity data without details
• X = Activity data with details, section

environment, and values

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

• C = Coordinator member of the activity
• D = All members

Chapter 1. Structured Query Language (SQL) 2105

Table 287. SYSCAT.WORKLOADS Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTDEADLOCK CHAR (1) Specifies that deadlock events should be
collect by the applicable event monitor.

• H = Collect deadlock data with past
activities only

• V = Collect deadlock data with past
activities and values

• W = Collect deadlock data without past
activities and values

COLLECTLOCKTIMEOUT CHAR (1) Specifies that lock timeout events should
be collect by the applicable event monitor.

• H = Collect lock timeout data with past
activities only

• N = Do not not collect lock timeout data
• V = Collect lock timeout data with past

activities and values
• W = Collect lock timeout data without

past activities and values

COLLECTLOCKWAIT CHAR (1) Specifies that lock wait events should be
collect by the applicable event monitor.

• H = Collect lock wait data with past
activities only

• N = Do not not collect lock wait data
• V = Collect lock wait data with past

activities and values
• W = Collect lock wait data without past

activities and values

LOCKWAITVALUE INTEGER Specifies the time in milliseconds a lock
should wait before a lock event is collected
by the applicable event monitor; 0 when
COLLECTLOCKWAIT = 'N'

COLLECTACTMETRICS CHAR (1) Specifies the monitoring level for activities
submitted by an occurrence of the
workload.

• B = Collect base activity metrics
• E = Collect extended activity metrics
• N = None

2106 IBM Db2 V11.5: SQL Reference

Table 287. SYSCAT.WORKLOADS Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTUOWDATAOPTIONS VARCHAR (32) Specifies what unit of work data is
collected by the applicable event monitor.
The first position in the string represents
whether the collection of unit of work data
is enabled.

• B = Enabled and collect base unit of work
data

• N = Not enabled

Starting from second position, each
position in the string represents a specific
extended option:

• 2 = Package Reference List
• 3 = Executable ID list

Each position representing an extended
option is then set to one of the following
values:

• Y = Extended option is included
• N = Extended option is not included

COLLECTUOWDATA CHAR (1) Specifies what unit of work data should be
collected by the applicable event monitor.

• B = Collect base unit of work data
• N = None
• P = Collect base unit of work data and the

package list

This column is deprecated. Information
for the column is available from
COLLECTUOWDATAOPTIONS.

EXTERNALNAME VARCHAR (128) Y Reserved for future use.

SECTIONACTUALSOPTIONS VARCHAR (32) Specifies what section actuals are collected
during the execution of a section.
The first position in the string represents
the whether the collection of section
actuals is enabled.

• B = Enabled and collect basic operator
cardinality counts and statistics for each
object referenced by the section (DML
statements only).

• N = Not enabled.

The second position is always 'N' and
reserved for for future use.

Chapter 1. Structured Query Language (SQL) 2107

Table 287. SYSCAT.WORKLOADS Catalog View (continued)

Column Name Data Type Nullable Description

COLLECTAGGUOWDATA CHAR (1) Specifies what aggregate unit of work data
should be captured for the workload by the
applicable event monitor.

• B = Collect base aggregate unit of work
data

• N = None

PRIORITY

Attention: This property
is available to users of
Db2 v11.5.5 and later
versions.

CHAR(8) N Specifies the WLM priority for the workload.
The priority can be set to one of the
following values:

• CRITICAL
• HIGH
• MEDIUM
• LOW

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

SYSCAT.WRAPOPTIONS
Each row represents a wrapper-specific option.

Table 288. SYSCAT.WRAPOPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Name of the wrapper.

OPTION VARCHAR (128) Name of the wrapper option.

SETTING VARCHAR (2048) Value of the wrapper option.

SYSCAT.WRAPPERS
Each row represents a registered wrapper.

Table 289. SYSCAT.WRAPPERS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Name of the wrapper.

WRAPTYPE CHAR (1) Type of wrapper.

• N = Non-relational
• R = Relational

WRAPVERSION INTEGER Version of the wrapper.

LIBRARY VARCHAR (255) Name of the file that contains the code
used to communicate with the data sources
that are associated with this wrapper.

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

2108 IBM Db2 V11.5: SQL Reference

SYSCAT.XDBMAPGRAPHS
Each row represents a schema graph for an XDB map (XSR object).

Table 290. SYSCAT.XDBMAPGRAPHS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

SCHEMAGRAPHID INTEGER Schema graph identifier, which is unique
within an XDB map identifier.

NAMESPACE VARCHAR (1001) Y String identifier for the namespace URI of
the root element.

ROOTELEMENT VARCHAR (1001) Y String identifier for the element name of
the root element.

SYSCAT.XDBMAPSHREDTREES
Each row represents one shred tree for a given schema graph identifier.

Table 291. SYSCAT.XDBMAPSHREDTREES Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

SCHEMAGRAPHID INTEGER Schema graph identifier, which is unique
within an XDB map identifier.

SHREDTREEID INTEGER Shred tree identifier, which is unique within
an XDB map identifier.

MAPPINGDESCRIPTION CLOB (1M) Y Diagnostic mapping information.

SYSCAT.XMLSTRINGS
Each row represents a single string and its unique string ID, used to condense structural XML data. The
string is provided in both UTF-8 encoding and database code page encoding.

Table 292. SYSCAT.XMLSTRINGS Catalog View

Column Name Data Type Nullable Description

STRINGID INTEGER Unique string ID.

STRING VARCHAR (1001) The string represented in the database
code page.

STRING_UTF8 VARCHAR (1001) The string in UTF-8 encoding (as stored in
the catalog table).

Chapter 1. Structured Query Language (SQL) 2109

SYSCAT.XSROBJECTAUTH
Each row represents a user, group, or role that has been granted the USAGE privilege on a particular XSR
object.

Table 293. SYSCAT.XSROBJECTAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) • S = Grantor is the system
• U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) • G = Grantee is a group
• R = Grantee is a role
• U = Grantee is an individual user

OBJECTID BIGINT Identifier for the XSR object.

USAGEAUTH CHAR (1) Privilege to use the XSR object and its
components.

• N = Not held
• Y = Held

SYSCAT.XSROBJECTCOMPONENTS
Each row represents an XSR object component.

Table 294. SYSCAT.XSROBJECTCOMPONENTS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

COMPONENTID BIGINT Unique generated identifier for an XSR
object component.

TARGETNAMESPACE VARCHAR (1001) Y String identifier for the target namespace.

SCHEMALOCATION VARCHAR (1001) Y String identifier for the schema location.

COMPONENT BLOB (30M) External representation of the component.

CREATE_TIME TIMESTAMP Time at which the XSR object component
was registered.

STATUS CHAR (1) Registration status.

• C = Complete
• I = Incomplete

2110 IBM Db2 V11.5: SQL Reference

SYSCAT.XSROBJECTDEP
Each row represents a dependency of an XSR object on some other object. The XSR object depends on
the object of type BTYPE of name BNAME, so a change to the object affects the XSR object.

Table 295. SYSCAT.XSROBJECTDEP Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

BTYPE CHAR (1) Type of object on which there is a
dependency. Possible values are:

• A = Table alias
• B = Trigger
• C = Column
• F = Routine
• G = Global temporary table
• H = Hierachy table
• I = Index
• K = Package
• L = Detached table
• N = Nickname
• O = Privilege dependency on all subtables

or subviews in a table or view hierarchy
• Q = Sequence
• R = User-defined data type
• S = Materialized query table
• T = Table (not typed)
• U = Typed table
• V = View (not typed)
• W = Typed view
• X = Index extension
• Z = XSR object
• m = Module
• q = Sequence alias
• u = Module alias
• v = Global variable
• * = Anchored to the row of a base table

BSCHEMA VARCHAR (128) Schema name of the object on which there
is a dependency.

BMODULENAME VARCHAR (128) Y Unqualified name of the module to which
the object on which a dependency belongs.
The null value if not a module object.

Chapter 1. Structured Query Language (SQL) 2111

Table 295. SYSCAT.XSROBJECTDEP Catalog View (continued)

Column Name Data Type Nullable Description

BNAME VARCHAR (128) Unqualified name of the object on which
there is a dependency. For routines (BTYPE
= 'F'), this is the specific name.

BMODULEID INTEGER Y Identifier for the module of the object on
which there is a dependency.

TABAUTH SMALLINT Y If BTYPE = 'O', 'S', 'T', 'U', 'V', 'W', or 'v',
encodes the privileges on the table or view
that are required by a dependent trigger;
null value otherwise.

SYSCAT.XSROBJECTDETAILS
Each row represents an XML schema repository object.

Table 296. SYSCAT.XSROBJECTDETAILS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XML
schema object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XML schema object.

OBJECTNAME VARCHAR (128) Unqualified name of the XML schema
object.

GRAMMAR BLOB (127M) Y Binary representation of the grammar for
the XML schema object.

PROPERTIES BLOB (4190000) Y Properties document for the XML schema
object.

SYSCAT.XSROBJECTHIERARCHIES
Each row represents the hierarchical relationship between an XSR object and its components.

Table 297. SYSCAT.XSROBJECTHIERARCHIES Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Identifier for an XSR object.

COMPONENTID BIGINT Identifier for an XSR component.

HTYPE CHAR (1) Hierarchy type.

• D = Document
• N = Top-level namespace
• P = Primary document

TARGETNAMESPACE VARCHAR (1001) Y String identifier for the component's target
namespace.

SCHEMALOCATION VARCHAR (1001) Y String identifier for the component's
schema location.

2112 IBM Db2 V11.5: SQL Reference

SYSCAT.XSROBJECTS
Each row represents an XML schema repository object.

Table 298. SYSCAT.XSROBJECTS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR
object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

TARGETNAMESPACE VARCHAR (1001) Y String identifier for the target namespace,
or public identifier.

SCHEMALOCATION VARCHAR (1001) Y String identifier for the schema location, or
system identifier.

OBJECTINFO XML Y Metadata document.

OBJECTTYPE CHAR (1) XSR object type.

• D = DTD
• E = External entity
• S = XML schema

OWNER VARCHAR (128) Authorization ID of the owner of the XSR
object.

OWNERTYPE CHAR (1) • S = The owner is the system
• U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the object was registered.

ALTER_TIME TIMESTAMP Time at which the object was last updated
(replaced).

STATUS CHAR (1) Registration status.

• C = Complete
• I = Incomplete
• R = Replace
• T = Temporary

DECOMPOSITION CHAR (1) Indicates whether or not decomposition
(shredding) is enabled on this XSR object.

• N = Not enabled
• X = Inoperative
• Y = Enabled

REMARKS VARCHAR (254) Y User-provided comments, or the null value.

Chapter 1. Structured Query Language (SQL) 2113

SYSIBM.SYSDUMMY1
Contains one row. This view is available for applications that require compatibility with Db2 for z/OS.

Table 299. SYSIBM.SYSDUMMY1 Catalog View

Column Name Data Type Nullable Description

IBMREQD CHAR (1) 'Y'

SYSSTAT.COLDIST
Each row represents the nth most frequent value of some column, or the nth quantile (cumulative
distribution) value of the column. Applies to columns of real tables only (not views). No statistics are
recorded for inherited columns of typed tables.

Table 300. SYSSTAT.COLDIST Catalog View

Column Name Data Type Nullable Updat-
able

Description

TABSCHEMA VARCHAR (128) Schema name of the table to which the
statistics apply.

TABNAME VARCHAR (128) Unqualified name of the table to which
the statistics apply.

COLNAME VARCHAR (128) Name of the column to which the
statistics apply.

TYPE CHAR (1) • F = Frequency value
• Q = Quantile value

SEQNO SMALLINT If TYPE = "F", n in this column
identifies the nth most frequent value.
If TYPE = "Q", n in this column
identifies the nth quantile value.

COLVALUE1 VARCHAR (254) Y Y Data value as a character literal or a
null value.

VALCOUNT BIGINT Y If TYPE = "F", VALCOUNT is the number
of occurrences of COLVALUE in the
column. If TYPE = "Q", VALCOUNT is
the number of rows whose value is less
than or equal to COLVALUE.

DISTCOUNT2 BIGINT Y Y If TYPE = "Q", this column records the
number of distinct values that are less
than or equal to COLVALUE (the null
value if unavailable).

Note:

1. In the catalog view, the value of COLVALUE is always shown in the database code page and can contain
substitution characters. However, the statistics are gathered internally in the code page of the column's
table, and will therefore use actual column values when applied during query optimization.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

2114 IBM Db2 V11.5: SQL Reference

SYSSTAT.COLGROUPDIST
Each row represents the value of the column in a column group that makes up the nth most frequent
value of the column group or the nth quantile value of the column group.

Table 301. SYSSTAT.COLGROUPDIST Catalog View

Column Name Data Type Nullable Updat-
able

Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) • F = Frequency value
• Q = Quantile value

ORDINAL SMALLINT Ordinal number of the column in the
column group.

SEQNO SMALLINT If TYPE = 'F', n in this column identifies
the nth most frequent value. If TYPE =
'Q', n in this column identifies the nth
quantile value.

COLVALUE VARCHAR (254) Y Data value as a character literal or a
null value.

SYSSTAT.COLGROUPDISTCOUNTS
Each row represents the distribution statistics that apply to the nth most frequent value of a column group
or the nth quantile of a column group.

Table 302. SYSSTAT.COLGROUPDISTCOUNTS Catalog View

Column Name Data Type Nullable Updat-
able

Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) • F = Frequency value
• Q = Quantile value

SEQNO SMALLINT Sequence number n representing the
nth TYPE value.

VALCOUNT BIGINT Y If TYPE = 'F', VALCOUNT is the number
of occurrences of COLVALUE for the
column group with this SEQNO. If TYPE
= 'Q', VALCOUNT is the number of rows
whose value is less than or equal to
COLVALUE for the column group with
this SEQNO.

DISTCOUNT BIGINT Y If TYPE = 'Q', this column records the
number of distinct values that are less
than or equal to COLVALUE for the
column group with this SEQNO (the null
value if unavailable).

Chapter 1. Structured Query Language (SQL) 2115

SYSSTAT.COLGROUPS
Each row represents a column group and statistics that apply to the entire column group.

Table 303. SYSSTAT.COLGROUPS Catalog View

Column Name Data Type Nullable Updat-
able

Description

COLGROUPSCHEMA VARCHAR (128) Schema name of the column group.

COLGROUPNAME VARCHAR (128) Unqualified name of the column group.

COLGROUPID INTEGER Identifier for the column group.

COLGROUPCARD BIGINT Y Cardinality of the column group.

NUMFREQ_VALUES SMALLINT Number of frequent values collected
for the column group.

NUMQUANTILES SMALLINT Number of quantiles collected for the
column group.

SYSSTAT.COLUMNS
Each row represents a column defined for a table, view, or nickname.

Table 304. SYSSTAT.COLUMNS Catalog View

Column Name Data Type Nullable Updat-
able

Description

TABSCHEMA VARCHAR (128) Schema name of the table, view, or
nickname that contains the column.

TABNAME VARCHAR (128) Unqualified name of the table, view, or
nickname that contains the column.

COLNAME VARCHAR (128) Name of the column.

COLCARD BIGINT Y Number of distinct values in the
column; -1 if statistics are not
collected; -2 for inherited columns and
columns of hierarchy tables.

HIGH2KEY1 VARCHAR (254) Y Y Second-highest data value.
Representation of numeric data
changed to character literals. Empty
if statistics are not collected. Empty
for inherited columns and columns of
hierarchy tables.

LOW2KEY1 VARCHAR (254) Y Y Second-lowest data value.
Representation of numeric data
changed to character literals. Empty
if statistics are not collected. Empty
for inherited columns and columns of
hierarchy tables.

2116 IBM Db2 V11.5: SQL Reference

Table 304. SYSSTAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Updat-
able

Description

AVGCOLLEN INTEGER Y Average space in bytes when the
column is stored in database memory
or a temporary table. For LOB data
types that are not inlined, LONG
data types, and XML documents, the
value used to calculate the average
column length is the length of the
data descriptor. An extra byte is
required if the column is nullable; -1
if statistics have not been collected;
-2 for inherited columns and columns
of hierarchy tables. Note: The average
space required to store the column on
disk may be different than the value
represented by this statistic.

NUMNULLS BIGINT Y Number of null values in the column; -1
if statistics are not collected.

PCTINLINED SMALLINT Percentage of inlined data for columns
with VARCHAR, VARGRAPHIC, LOB, or
XML data types. -1 if statistics have
not been collected or the column data
type does not support storing data
outside the row. Also -1 for VARCHAR
and VARGRAPHIC column if the table
is organized by column or the table
is organized by row and the row size
of the table does not exceed the
maximum record length for the page
size of the table space.

SUB_COUNT SMALLINT Y Average number of sub-elements in the
column. Applicable to character string
columns only.

SUB_DELIM_LENGTH SMALLINT Y Average length of the delimiters that
separate each sub-element in the
column. Applicable to character string
columns only.

AVGCOLLENCHAR INTEGER Y Average number of characters (based
on the collation in effect for the
column) required for the column; -1
if the data type of the column is
long, LOB, or XML or if statistics have
not been collected; -2 for inherited
columns and columns of hierarchy
tables.

Chapter 1. Structured Query Language (SQL) 2117

Table 304. SYSSTAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Updat-
able

Description

PCTENCODED SMALLINT Y Percentage of values that are encoded
as a result of compression for a column
in a column-organized table; -1 if
the table is not organized by column
or if statistics are not collected; -2
for inherited columns and columns of
hierarchy tables.

PAGEVARIANCERATIO DOUBLE Y Reserved for future use.

AVGENCODEDCOLLEN DOUBLE Y Average space in bytes when the
column is stored in database memory,
taking into account that some of the
column values might be compressed;
-1 if the table is not organized by
column or if statistics are not collected;
-2 for inherited columns and columns
of hierarchy tables.

Note:

1. In the catalog view, the values of HIGH2KEY and LOW2KEY are always shown in the database code page
and can contain substitution characters. However, the statistics are gathered internally in the code page of
the column's table, and will therefore use actual column values when applied during query optimization.

SYSSTAT.INDEXES
Each row represents an index. Indexes on typed tables are represented by two rows: one for the "logical
index" on the typed table, and one for the "H-index" on the hierarchy table.

Table 305. SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable Updat-
able

Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

TABSCHEMA VARCHAR (128) Schema name of the table or nickname
on which the index is defined.

TABNAME VARCHAR (128) Unqualified name of the table or
nickname on which the index is
defined.

COLNAMES VARCHAR (640) This column is no longer used and
will be removed in the next release.
Use SYSCAT.INDEXCOLUSE for this
information.

NLEAF BIGINT Y Number of leaf pages; -1 if statistics
are not collected.

NLEVELS SMALLINT Y Number of index levels; -1 if statistics
are not collected.

2118 IBM Db2 V11.5: SQL Reference

Table 305. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Updat-
able

Description

FIRSTKEYCARD BIGINT Y Number of distinct first-key values; -1 if
statistics are not collected.

FIRST2KEYCARD BIGINT Y Number of distinct keys using the
first two columns of the index; -1 if
statistics are not collected, or if not
applicable.

FIRST3KEYCARD BIGINT Y Number of distinct keys using the
first three columns of the index; -1 if
statistics are not collected, or if not
applicable.

FIRST4KEYCARD BIGINT Y Number of distinct keys using the
first four columns of the index; -1 if
statistics are not collected, or if not
applicable.

FULLKEYCARD BIGINT Y Number of distinct full-key values; -1 if
statistics are not collected.

CLUSTERRATIO4 SMALLINT Y Degree of data clustering with
the index; -1 if statistics are
not collected or if detailed index
statistics are collected (in which case,
CLUSTERFACTOR will be used instead).

CLUSTERFACTOR4 DOUBLE Y Finer measurement of the degree of
clustering; -1 if statistics are not
collected or if the index is defined on
a nickname.

SEQUENTIAL_PAGES BIGINT Y Number of leaf pages located on disk
in index key order with few or no large
gaps between them; -1 if statistics are
not collected.

DENSITY INTEGER Y Ratio of SEQUENTIAL_PAGES to
number of prefetched pages.
Expressed as a percentage; -1 if
statistics are not collected.

PAGE_FETCH_PAIRS4 VARCHAR (520) Y A list of pairs of integers, represented
in character form. Each pair represents
the number of pages in a hypothetical
buffer, and the number of page
fetches required to scan the table
with this index using that hypothetical
buffer. Zero-length string if no data is
available.

NUMRIDS4 BIGINT Y Total number of row identifiers (RIDs)
or block identifiers (BIDs) in the index;
-1 if not known.

Chapter 1. Structured Query Language (SQL) 2119

Table 305. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Updat-
able

Description

NUMRIDS_DELETED4 BIGINT Y Total number of row identifiers (or
block identifiers) in the index that
are marked deleted, excluding those
identifiers on leaf pages on which all
the identifiers are marked deleted.

NUM_EMPTY_LEAFS BIGINT Y Total number of index leaf pages that
have all of their row identifiers (or
block identifiers) marked deleted.

AVERAGE_RANDOM_
FETCH_PAGES1,2,4

DOUBLE Y Average number of random table pages
between sequential page accesses
when fetching using the index; -1 if not
known.

AVERAGE_RANDOM_
PAGES2

DOUBLE Y Average number of random table pages
between sequential page accesses; -1
if not known.

AVERAGE_SEQUENCE_ GAP2 DOUBLE Y Gap between index page sequences.
Detected through a scan of index
leaf pages, each gap represents the
average number of index pages that
must be randomly fetched between
sequences of index pages; -1 if not
known.

AVERAGE_SEQUENCE_
FETCH_GAP1,2,4

DOUBLE Y Gap between table page sequences
when fetching using the index.
Detected through a scan of index
leaf pages, each gap represents the
average number of table pages that
must be randomly fetched between
sequences of table pages; -1 if not
known.

AVERAGE_SEQUENCE_
PAGES2

DOUBLE Y Average number of index pages that
are accessible in sequence (that is,
the number of index pages that the
prefetchers would detect as being in
sequence); -1 if not known.

AVERAGE_SEQUENCE_
FETCH_PAGES1,2,4

DOUBLE Y Average number of table pages that
are accessible in sequence (that is,
the number of table pages that the
prefetchers would detect as being in
sequence) when fetching using the
index; -1 if not known.

AVGPARTITION_
CLUSTERRATIO3,4

SMALLINT Y Degree of data clustering within
a single data partition. -1 if the
table is not partitioned, if statistics
are not collected, or if detailed
statistics are collected (in which case
AVGPARTITION_ CLUSTERFACTOR will
be used instead).

2120 IBM Db2 V11.5: SQL Reference

Table 305. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Updat-
able

Description

AVGPARTITION_
CLUSTERFACTOR3,4

DOUBLE Y Finer measurement of the degree of
clustering within a single data partition.
-1 if the table is not partitioned, if
statistics are not collected, or if the
index is defined on a nickname.

AVGPARTITION_PAGE_
FETCH_PAIRS3,4

VARCHAR (520) Y A list of paired integers in character
form. Each pair represents a potential
buffer pool size and the corresponding
page fetches required to access
a single data partition from the
table. Zero-length string if no data
is available, or if the table is not
partitioned.

DATAPARTITION_
CLUSTERFACTOR

DOUBLE Y A statistic measuring the "clustering"
of the index keys with regard to data
partitions. It is a number between 0
and 1, with 1 representing perfect
clustering and 0 representing no
clustering.

INDCARD BIGINT Y Cardinality of the index. This might be
different from the cardinality of the
table for indexes that do not have a
one-to-one relationship between the
table rows and the index entries.

PCTPAGESSAVED SMALLINT Approximate percentage of pages
saved in the index as a result of index
compression. -1 if statistics are not
collected.

AVGLEAFKEYSIZE INTEGER Y Average index key size for keys on leaf
pages in the index.

AVGNLEAFKEYSIZE INTEGER Y Average index key size for keys on non-
leaf pages in the index.

Chapter 1. Structured Query Language (SQL) 2121

Table 305. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Updat-
able

Description

Note:

1. When using DMS table spaces, this statistic cannot be computed.
2. Prefetch statistics are not gathered during a LOAD...STATISTICS USE PROFILE, or a CREATE

INDEX...COLLECT STATISTICS operation, or when the database configuration parameter seqdetect is turned
off.

3. AVGPARTITION_CLUSTERRATIO, AVGPARTITION_CLUSTERFACTOR, and
AVGPARTITION_PAGE_FETCH_PAIRS measure the degree of clustering within a single data partition (local
clustering). CLUSTERRATIO, CLUSTERFACTOR, and PAGE_FETCH_PAIRS measure the degree of clustering
in the entire table (global clustering). Global clustering and local clustering values can diverge significantly if
the table partitioning key is not a prefix of the index key, or when the table partitioning key and the index key
are logically independent of each other.

4. This statistic cannot be updated if the index type is 'XPTH' (an XML path index).
5. Because logical indexes on an XML column do not have statistics, the SYSSTAT.INDEXES catalog view

excludes rows whose index type is 'XVIL'.
6. There is a limitation for small and medium indexes. The density column will have values, which are not

counted as described above. This behavior will not impact optimizer costing.

SYSSTAT.ROUTINES
Each row represents a user-defined routine (scalar function, table function, sourced function, method, or
procedure). Does not include built-in functions.

Table 306. SYSSTAT.ROUTINES Catalog View

Column Name Data Type Nullable Updat-
able

Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine
if ROUTINEMODULENAME is null;
otherwise schema name of the module
to which the routine belongs.

ROUTINEMODULENAME VARCHAR (128) Unqualified name of the module to
which the routine belongs. The null
value if not a module routine.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

ROUTINETYPE CHAR (1) Type of routine.

• F = Function
• M = Method
• P = Procedure

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be
system-generated).

IOS_PER_INVOC DOUBLE Y Estimated number of inputs/outputs
(I/Os) per invocation; 0 is the default;
-1 if not known.

2122 IBM Db2 V11.5: SQL Reference

Table 306. SYSSTAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Updat-
able

Description

INSTS_PER_INVOC DOUBLE Y Estimated number of instructions per
invocation; 450 is the default; -1 if not
known.

IOS_PER_ARGBYTE DOUBLE Y Estimated number of I/Os per input
argument byte; 0 is the default; -1 if
not known.

INSTS_PER_ARGBYTE DOUBLE Y Estimated number of instructions per
input argument byte; 0 is the default;
-1 if not known.

PERCENT_ARGBYTES SMALLINT Y Estimated average percent of input
argument bytes that the routine will
actually read; 100 is the default; -1 if
not known.

INITIAL_IOS DOUBLE Y Estimated number of I/Os performed
the first time that the routine is
invoked; 0 is the default; -1 if not
known.

INITIAL_INSTS DOUBLE Y Estimated number of instructions
executed the first time the routine is
invoked; 0 is the default; -1 if not
known.

CARDINALITY BIGINT Y Predicted cardinality of a table
function; -1 if not known, or if the
routine is not a table function.

SELECTIVITY DOUBLE Y For user-defined predicates; -1 if there
are no user-defined predicates.

SYSSTAT.TABLES
Each row represents a table, view, alias, or nickname. Each table or view hierarchy has one additional
row representing the hierarchy table or hierarchy view that implements the hierarchy. Catalog tables and
views are included.

Table 307. SYSSTAT.TABLES Catalog View

Column Name Data Type Nullabl
e

Updat-
able

Description

TABSCHEMA VARCHAR (128) Schema name of the object.

TABNAME VARCHAR (128) Unqualified name of the object.

CARD BIGINT Y Total number of rows in the table; -1
if statistics are not collected.

NPAGES BIGINT Y Total number of pages on which
the rows of the table exist; -1 for
a view or alias, or if statistics are
not collected; -2 for a subtable or
hierarchy table.

Chapter 1. Structured Query Language (SQL) 2123

Table 307. SYSSTAT.TABLES Catalog View (continued)

Column Name Data Type Nullabl
e

Updat-
able

Description

MPAGES BIGINT Y Total number of pages for table
metadata. Non-zero only for a table
that is organized by column; -1 for
a view, an alias, or if statistics are
not collected; -2 for subtables or
hierarchy tables.

FPAGES BIGINT Y Total number of pages; -1 for a
view or alias, or if statistics are
not collected; -2 for a subtable or
hierarchy table.

NPARTITIONS BIGINT Reserved for future use.

NFILES BIGINT Reserved for future use.

TABLESIZE BIGINT Reserved for future use.

OVERFLOW BIGINT Y Total number of overflow records in
the table; -1 for a view or alias, or if
statistics are not collected; -2 for a
subtable or hierarchy table.

CLUSTERED CHAR (1) Y • T = Table is clustered by insert
time

• Y = Table is clustered by
dimensions (even if only by one
dimension)

• Null value = Table is not clustered
by dimensions or insert time

ACTIVE_BLOCKS BIGINT Y Total number of active blocks
in the table, or -1. Applies to
multidimensional clustering (MDC)
tables or insert time clustering (ITC)
tables only.

AVGCOMPRESSEDROWSIZE SMALLINT Y Average length (in bytes) of
compressed rows in this table; -1 if
statistics are not collected.

AVGROWCOMPRESSIONRATIO REAL Y For compressed rows in the table,
this is the average compression
ratio by row; that is, the average
uncompressed row length divided by
the average compressed row length;
-1 if statistics are not collected.

AVGROWSIZE SMALLINT Average length (in bytes) of both
compressed and uncompressed
rows in this table; -1 if statistics are
not collected.

2124 IBM Db2 V11.5: SQL Reference

Table 307. SYSSTAT.TABLES Catalog View (continued)

Column Name Data Type Nullabl
e

Updat-
able

Description

PCTROWSCOMPRESSED REAL Y Compressed rows as a percentage
of the total number of rows in
the table; -1 if statistics are not
collected.

PCTPAGESSAVED SMALLINT N Approximate percentage of pages
saved in a row-organized table
as a result of row compression.
For a column-organized table, the
estimate is based on the number
of data pages needed to store
the table in uncompressed row
organization.-1 if statistics are not
collected.

PCTEXTENDEDROWS REAL Extended rows as a percentage
of the total number of rows in
the table; -1 if statistics are not
collected.

SQL and XML limits
The tables in this topic describe SQL and XML limits. Adhering to the most restrictive case can help you to
design application programs that are easily portable.

Table 308 on page 2125 lists limits in bytes. These limits are enforced after conversion from the
application code page to the database code page when creating identifiers. The limits are also enforced
after conversion from the database code page to the application code page when retrieving identifiers
from the database. If during either of these processes the identifier length limit is exceeded, truncation
occurs, or an error is returned.

Character limits vary depending on the code page of the database and the code page of the application.
For example, because the width of a UTF-8 character can range 1 - 4 bytes, the character limit for an
identifier in a Unicode table whose limit is 128 bytes must range 32 - 128 characters, depending on which
characters are used. If an attempt is made to create an identifier whose name is longer than the limit for
this table after conversion to the database code page, an error is returned.

Applications that store identifier names must be able to handle the potentially increased size of identifiers
after code page conversion occurs. When identifiers are retrieved from the catalog, they are converted
to the application code page. Conversion from the database code page to the application code page can
result in an identifier becoming longer than the byte limit for the table. If a host variable that is declared
by the application cannot store the entire identifier after code page conversion, it is truncated. If that is
unacceptable, the host variable can be increased in size to be able to accept the entire identifier name.

The same rules apply to Db2 utilities retrieving data and converting it to a user-specified code page. If a
Db2 utility, such as export, is retrieving the data and forcing conversion to a user-specified code page (by
using the export CODEPAGE modifier or the DB2CODEPAGE registry variable), and the identifier expands
beyond the limit that is documented in this table because of code page conversion, an error might be
returned or the identifier might be truncated.

Table 308. Identifier Length Limits

Description Maximum in Bytes

Alias name 128

Attribute name 128

Chapter 1. Structured Query Language (SQL) 2125

Table 308. Identifier Length Limits (continued)

Description Maximum in Bytes

Audit policy name 128

Authorization name (can be single-byte characters only) 128

Buffer pool name 18

Column name2 128

Constraint name 128

Correlation name 128

Cursor name 128

Data partition name 128

Data source column name 255

Data source index name 128

Data source name 128

Data source table name (remote-table-name) 128

Database partition group name 128

Database partition name 128

Event monitor name 128

External program name 128

Function mapping name 128

Group name 128

Host identifier1 255

Identifier for a data source user (remote-authorization-name) 128

Identifier in an SQL procedure (condition name, for loop identifier,
label, result set locator, statement name, variable name)

128

Index name 128

Index extension name 18

Index specification name 128

Label name 128

Namespace uniform resource identifier (URI) 1000

Nickname 128

Package name 128

Package version ID 64

Parameter name 128

Password to access a data source 32

Procedure name 128

Role name 128

Savepoint name 128

2126 IBM Db2 V11.5: SQL Reference

Table 308. Identifier Length Limits (continued)

Description Maximum in Bytes

Schema name2,3 128

Security label component name 128

Security label name 128

Security policy name 128

Sequence name 128

Server (database alias) name 8

Specific name 128

SQL condition name 128

SQL variable name 128

Statement name 128

Storage Group 128

Table name 128

Table space name 18

Transform group name 18

Trigger name 128

Trusted context name 128

Type mapping name 18

User-defined function name 128

User-defined method name 128

User-defined type name2 128

View name 128

Wrapper name 128

XML element name, attribute name, or prefix name 1000

XML schema location uniform resource identifier (URI) 1000

Note:

1. Individual host language compilers might have a more restrictive limit on variable names.
2. The SQLDA structure is limited to storing 30-byte column names, 18-byte user-defined type names,

and 8-byte schema names for user-defined types. Because the SQLDA is used in the DESCRIBE
statement, embedded SQL applications that use the DESCRIBE statement to retrieve column or
user-defined type name information must conform to these limits.

3. Schema names that are shorter than 8-bytes are padded with blanks and stored in the catalog as
8-byte names.

Table 309. Numeric Limits

Description Limit

Smallest SMALLINT value -32,768

Chapter 1. Structured Query Language (SQL) 2127

Table 309. Numeric Limits (continued)

Description Limit

Largest SMALLINT value +32,767

Smallest INTEGER value -2,147,483,648

Largest INTEGER value +2,147,483,647

Smallest BIGINT value -9,223,372,036,854,775,808

Largest BIGINT value +9,223,372,036,854,775,807

Largest decimal precision 31

Maximum exponent (Emax) for
REAL values

38

Smallest REAL value -3.402E+38

Largest REAL value +3.402E+38

Minimum exponent (Emin) for
REAL values

-37

Smallest positive REAL value +1.175E-37

Largest negative REAL value -1.175E-37

Maximum exponent (Emax) for
DOUBLE values

308

Smallest DOUBLE value -1.79769E+308

Largest DOUBLE value +1.79769E+308

Minimum exponent (Emin) for
DOUBLE values

-307

Smallest positive DOUBLE value +2.225E-307

Largest negative DOUBLE value -2.225E-307

Maximum exponent (Emax) for
DECFLOAT(16) values

384

Smallest DECFLOAT(16) value1 -9.999999999999999E+384

Largest DECFLOAT(16) value 9.999999999999999E+384

Minimum exponent (Emin) for
DECFLOAT(16) values

-383

Smallest positive DECFLOAT(16)
value

1.000000000000000E-383

Largest negative DECFLOAT(16)
value

-1.000000000000000E-383

Maximum exponent (Emax) for
DECFLOAT(34) values

6144

Smallest DECFLOAT(34) value1 -9.999999999999999999999999999999999E+6144

Largest DECFLOAT(34) value 9.999999999999999999999999999999999E+6144

Minimum exponent (Emin) for
DECFLOAT(34) values

-6143

2128 IBM Db2 V11.5: SQL Reference

Table 309. Numeric Limits (continued)

Description Limit

Smallest positive DECFLOAT(34)
value

1.000000000000000000000000000000000E-6143

Largest negative DECFLOAT(34)
value

-1.000000000000000000000000000000000E-6143

Note:

1. These are the limits of normal decimal floating-point numbers. Valid decimal floating-point values
include the special values NAN, -NAN, SNAN, -SNAN, INFINITY, and -INFINITY. In addition, valid
values include subnormal numbers.

Subnormal numbers are nonzero numbers whose adjusted exponents are less than Emin. For a
subnormal number, the minimum value of the exponent is Emin - (precision-1), called Etiny, where
precision is the working precision (16 or 34). That is, subnormal numbers extend the range of
numbers close to zero by 15 or 33 orders of magnitude for DECFLOAT(16) or DECFLOAT(34),
respectively. Subnormal numbers are different from normal numbers because the maximum
number of digits for a subnormal number is less than the working precision (16 or 34). Decimal
floating-point cannot represent the subnormal numbers with the same accuracy as it can
represent normal numbers. The smallest positive subnormal number for DECFLOAT(34) is 1x10-6176,
which contains only one digit, whereas the smallest positive normal number for DECFLOAT(34)
is 1.000000000000000000000000000000000x10-6143, which contains 34 digits. The smallest
positive subnormal number for DECFLOAT(16) is 1x10-398.

Table 310. String Limits

Description Limit

Maximum length of CHAR (in bytes or OCTETS) 255

Maximum length of CHAR (in CODEUNITS32) 63

Maximum length of VARCHAR (in bytes or OCTETS)2 32,672

Maximum length of VARCHAR (in CODEUNITS32)2 8168

Maximum length of LONG VARCHAR (in bytes)1 32,700

Maximum length of CLOB (in bytes or OCTETS) 2,147,483,647

Maximum length of CLOB (in CODEUNITS32) 536,870,911

Maximum length of serialized XML (in bytes) 2,147,483,647

Maximum length of GRAPHIC (in double-byte characters or
CODEUNITS16)

127

Maximum length of GRAPHIC (in CODEUNITS32) 63

Maximum length of VARGRAPHIC (in double-byte characters or
CODEUNITS16)2

16,336

Maximum length of VARGRAPHIC (in CODEUNITS32) 8168

Maximum length of LONG VARGRAPHIC (in double-byte characters)1 16,350

Maximum length of DBCLOB (in double-byte characters or
CODEUNITS16)

1,073,741,823

Maximum length of DBCLOB (in CODEUNITS32) 536,870,911

Maximum length of BINARY (in bytes) 255

Chapter 1. Structured Query Language (SQL) 2129

Table 310. String Limits (continued)

Description Limit

Maximum length of VARBINARY (in bytes)2 32,672

Maximum length of BLOB (in bytes) 2,147,483,647

Maximum length of character constant 32,672

Maximum length of graphic constant 16,336

Maximum length of concatenated character string 2,147,483,647

Maximum length of concatenated graphic string 1,073,741,823

Maximum length of concatenated binary string 2,147,483,647

Maximum number of hexadecimal constant digits 32,672

Largest instance of a structured type column object at run time (in
gigabytes)

1

Maximum size of a catalog comment (in bytes) 254

Note:

1. The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated and might be removed in a
future release.

2. For page size-specific string limits for column-organized tables, see Table 311 on page 2130.

Table 311. Page Size-specific String Limits for Column-organized Tables

Description 4K page size
limit

8K page size
limit

16K page size
limit

32K page size
limit

Maximum length of VARCHAR (in
bytes)

3920 8016 16,208 32,592

Maximum length of VARCHAR (in
CODEUNITS32)

980 2004 4052 8148

Maximum length of VARGRAPHIC
(in bytes)

1960 4008 8104 16,296

Maximum length of VARBINARY
(in bytes)

3920 8016 16,208 32,592

Note: A column-organized table has an overhead of 176 bytes per page.

Table 312. Page Size-specific String Limits for Column-organized Tables. These limits are only applicable
when you increase the column length by using ALTER TABLE

Description 4K page size limit 8K page size limit 16K page size
limit

32K page size
limit

Maximum length
of VARCHAR (in
bytes)

3888 7984 16,176 32,560

Maximum length of
VARGRAPHIC (in
bytes)

1944 3992 8088 16,280

2130 IBM Db2 V11.5: SQL Reference

Table 313. XML Limits

Description Limit

Maximum depth of an XML document (in levels) 125

Maximum size of an XML schema document (in bytes) 31,457,280

Table 314. Datetime Limits

Description Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.0000000
00000

Largest TIMESTAMP value 9999-12-31-24.00.00.0000000
00000

Smallest timestamp precision 0

Largest timestamp precision 12

Table 315. Database Manager Limits

Category Description Limit

Applications Maximum number of host variable declarations in
a precompiled program3

Storage. This number
can go down with

future versions. It is
recommended to stay

under 10000.

Maximum length of a host variable value (in
bytes)

2,147,483,647

Maximum number of declared cursors in a
program

storage

Maximum number of rows that are changed in a
unit of work

storage

Maximum number of cursors that are opened at
one time

storage

Maximum number of connections per process
within a database client

512

Maximum number of simultaneously opened LOB
locators in a transaction

4,194,304

Maximum size of an SQLDA (in bytes) storage

Maximum number of prepared statements storage

Chapter 1. Structured Query Language (SQL) 2131

Table 315. Database Manager Limits (continued)

Category Description Limit

Buffer Pools Maximum NPAGES in a buffer pool for 32-bit
releases

1,048,576

Maximum NPAGES in a buffer pool for 64-bit
releases

2,147,483,647

Maximum total size of all buffer pool slots (4K) 2,147,483,646

Concurrency Maximum number of concurrent users of a
server4

64,000

Maximum number of concurrent users per
instance

64,000

Maximum number of concurrent applications per
database

60,000

Maximum number of databases per instance
concurrently in use

256

Constraints Maximum number of constraints on a table storage

Maximum number of columns in a UNIQUE
constraint (supported through a UNIQUE index)

64

Maximum combined length of columns in
a UNIQUE constraint (supported through a
UNIQUE index, in bytes)8

8192

Maximum number of referencing columns in a
foreign key

64

Maximum combined length of referencing
columns in a foreign key (in bytes)8

8192

Maximum length of a check constraint
specification (in bytes)

65,535

Databases Maximum database partition number 999

Maximum members in a Db2 pureScale
environment

128

2132 IBM Db2 V11.5: SQL Reference

Table 315. Database Manager Limits (continued)

Category Description Limit

Indexes Maximum number of indexes on a table 32,767 or storage

Maximum number of columns in an index key 64

Maximum length of an index key, including all
overhead6 8

indexpagesize/4

Maximum length of a variable index key part (in
bytes)7

1022 or storage

Maximum size of an index per database partition
in an SMS table space (in terabytes)6

64

Maximum size of an index per database partition
in a regular DMS table space (in gigabytes)6

512

Maximum size of an index per database partition
in a large DMS table space (in terabytes)6

64

Maximum length of a variable index key part for
an index over XML data (in bytes)7

pagesize/4 - 207

Log records Maximum Log Sequence Number 0xFFFF FFFF FFFF
FFFF

Monitoring Maximum number of simultaneously active event
monitors

128

In a partitioned database environment,
maximum number of simultaneously active
GLOBAL event monitors

32

Routines Maximum number of parameters in a procedure
with LANGUAGE SQL

32,767

Maximum number of parameters in an external
procedure with PROGRAM TYPE MAIN

32,767

Maximum number of parameters in an external
procedure with PROGRAM TYPE SUB

90

Maximum number of parameters in a cursor
value constructor

32,767

Maximum number of parameters in a user-
defined function

90

Maximum number of nested levels for routines 64

Maximum number of schemas in the SQL path 64

Maximum length of the SQL path (in bytes) 2048

Security Maximum number of elements in a security label
component of type set or tree

64

Maximum number of elements in a security label
component of type array

65,535

Maximum number of security label components
in a security policy

16

Chapter 1. Structured Query Language (SQL) 2133

Table 315. Database Manager Limits (continued)

Category Description Limit

SQL Maximum total length of an SQL statement (in
bytes)

2,097,152

Maximum number of tables that are referenced
in an SQL statement or a view

storage

Maximum number of host variable references in a
dynamic SQL statement

32,767

Maximum number of constants in a statement storage

Maximum number of elements in a select list6 2048

Maximum number of predicates in a WHERE or
HAVING clause

storage

Maximum number of columns in a GROUP BY
clause6

2048

Maximum total length of columns in a GROUP BY
clause (in bytes)6

32,677

Maximum number of columns in an ORDER BY
clause6

2048

Maximum total length of columns in an ORDER
BY clause (in bytes)6

32,677

Maximum level of subquery nesting storage

Maximum number of subqueries in a single
statement

storage

Maximum number of values in an insert
operation6

2048

Storage Groups Maximum number of storage groups in a
database

256

Maximum number of storage paths in a storage
group

128

Maximum length of a storage path (in bytes) 175

2134 IBM Db2 V11.5: SQL Reference

Table 315. Database Manager Limits (continued)

Category Description Limit

Tables and Views Maximum number of columns in a table 6 10 2048

Maximum number of columns in a view1 5000

Maximum number of columns in a data source
table or view that is referenced by a nickname

5000

Maximum number of columns in a distribution
key5

500

Maximum length of a row, including all overhead2
6 9

32,677

Maximum number of rows in a non-partitioned
table, per database partition

128 x 1010

Maximum number of rows in a data partition, per
database partition

128 x 1010

Maximum size of a table per database partition in
a regular table space (in gigabytes)3 6

512

Maximum size of a table per database partition in
a large DMS table space (in terabytes)6

64

Maximum number of data partitions for a single
table

32,767

Maximum number of table partitioning columns 16

Maximum number of fields in a user-defined row
data type

1012

Table Spaces Maximum size of a LOB object per table or per
table partition (in terabytes)

4

Maximum size of an LF object per table or per
table partition (in terabytes)

2

Maximum number of table spaces in a database 32,768

Maximum number of tables in an SMS table
space

65,532

Maximum size of a regular DMS table space (in
gigabytes) 3 6

512

Maximum size of a large DMS table space (in
terabytes) 3 6

64

Maximum size of a temporary DMS table space
(in terabytes) 3 6

64

Maximum number of table objects in a DMS table
space

See Table 316 on page
2136

Triggers Maximum runtime depth of cascading triggers 16

User-defined Types Maximum number of attributes in a structured
type

4082

Chapter 1. Structured Query Language (SQL) 2135

Table 315. Database Manager Limits (continued)

Category Description Limit

Workload Manager Maximum number of user-defined service
superclasses per database

64

Maximum number of user-defined service
subclasses per service superclass

61

Open Files Maximum number of files opened by a single Db2
instance. This includes, but not limited to, table
space container files and transaction log files for
all databases in the instance. In addition, the
operating system might impose a lower limit.

65534

Note:

1. This maximum can be achieved by using a join in the CREATE VIEW statement. Selecting from such
a view is subject to the limit of most elements in a select list.

2. The actual data for BLOB, CLOB, LONG VARCHAR, DBCLOB, and LONG VARGRAPHIC columns are
not included in this count. However, information about the location of that data does take up some
space in the row.

3. The numbers that are shown are architectural limits and approximations. The practical limits might
be less.

4. The actual value is controlled by the max_connections and max_coordagents database
manager configuration parameters.

5. This is an architectural limit. The limit on the most columns in an index key should be used as the
practical limit.

6. For page size-specific values, see Table 316 on page 2136.
7. This is limited only by the longest index key, including all overhead (in bytes). As the number of

index key parts increases, the maximum length of each key part decreases.
8. The maximum can be less, depending on index options.
9. If the extended_row_sz database configuration parameter is set to ENABLE and there are

VARCHAR, VARBINARY, or VARGRAPHIC columns in the table, the maximum row size is 1,048,319
bytes, which includes all overhead.

10. Must account for columns that are generated internally by the database manager. The
RANDOM_DISTRIBUTION_KEY is an example: it is created for random distribution tables that use
the random by generation method.

Table 316. Database Manager Page Size-specific Limits

Description 4K page size
limit

8K page size
limit

16K page size
limit

32K page size
limit

Maximum number of table
objects in a DMS table space1

51,9712

53,2123
53,299 53,747 54,264

Maximum number of columns in
a row-organized table

500 1012 1012 2048

Maximum number of columns in
a column-organized table

2048 2048 2048 2048

Maximum length of a row in a
row-organized table, including all
overhead

4005 8101 16,293 32,677

2136 IBM Db2 V11.5: SQL Reference

Table 316. Database Manager Page Size-specific Limits (continued)

Description 4K page size
limit

8K page size
limit

16K page size
limit

32K page size
limit

Maximum length of a row
in a column-organized table,
including all overhead

1,048,319 1,048,319 1,048,319 1,048,319

Maximum size of a table per
database partition in a regular
table space (in gigabytes)

64 128 256 512

Maximum size of a table per
database partition in a large DMS
table space (in terabytes)

8 16 32 64

Maximum length of an index key,
including all overhead (in bytes)

1024 2048 4096 8192

Maximum size of an index per
database partition in an SMS
table space (in terabytes)

8 16 32 64

Maximum size of an index per
database partition in a regular
DMS table space (in gigabytes)

64 128 256 512

Maximum size of an index per
database partition in a large DMS
table space (in terabytes)

8 16 32 64

Maximum size of a regular
DMS table space per database
partition (in gigabytes)

64 128 256 512

Maximum size of a large DMS
table space (in terabytes)

8 16 32 64

Maximum size of a temporary
DMS table space (in terabytes)

8 16 32 64

Maximum number of elements in
a select list

5004 10125 10125 2048

Maximum number of columns in
a GROUP BY clause

500 10125 10125 2048

Maximum total length of columns
in a GROUP BY clause (in bytes)

4005 8101 16,293 32,677

Maximum number of columns in
an ORDER BY clause

500 10125 10125 2048

Maximum total length of columns
in an ORDER BY clause (in bytes)

4005 8101 16,293 32,677

Maximum number of values in an
insert operation

500 10125 10125 2048

Maximum number of SET clauses
in a single update operation

500 10125 10125 2048

Maximum records per page for a
regular table space

251 253 254 253

Chapter 1. Structured Query Language (SQL) 2137

Table 316. Database Manager Page Size-specific Limits (continued)

Description 4K page size
limit

8K page size
limit

16K page size
limit

32K page size
limit

Maximum records per page for a
large table space

287 580 1165 2335

Note:

1. Table objects include table data, indexes, LONG VARCHAR columns, LONG VARGRAPHIC columns,
and LOB columns. Table objects that are in the same table space as the table data do not count extra
toward the limit. However, each table object that is in a different table space than the table data does
contribute one toward the limit for each table object type per table in the table space in which the
table object resides.

2. When extent size is two pages.
3. When extent size is any size other than two pages.
4. In cases where the only system temporary table space is 4KB and the data overflows to the sort

buffer, an error is generated. If the result set can fit into memory, there is no error.
5. May be up to 2048 for columnar tables.

Reserved schema names and reserved words
There are restrictions on the use of certain names that are required by the database manager.

In some cases, names are reserved, and cannot be used by application programs. In other cases, certain
names are not recommended for use by application programs, although their use is not prevented by the
database manager.

The reserved schema names are:

• SYSCAT
• SYSFUN
• SYSIBM
• SYSIBMADM
• SYSPROC
• SYSPUBLIC
• SYSSTAT

It is strongly recommended that schema names never begin with the 'SYS' prefix, because 'SYS', by
convention, is used to indicate an area that is reserved by the system. No aliases, global variables,
triggers, user-defined functions, or user-defined types can be placed into a schema whose name starts
with 'SYS' (SQLSTATE 42939).

The DB2QP schema and the SYSTOOLS schema are set aside for utilities used by the database. It
is recommended that users not explicitly define objects in these schemas, although their use is not
prevented by the database manager.

It is recommended that schema names never begin with the 'Q' prefix, because on other Db2 database
managers 'Q', by convention, is used to indicate an area reserved by the system.

It is also recommended that SESSION not be used as a schema name. Because declared temporary
tables must be qualified by SESSION, it is possible to have an application declare a temporary table with
a name that is identical to that of a persistent table, complicating the application logic. To avoid this
possibility, do not use the schema SESSION except when dealing with declared temporary tables.

Keywords can be used as ordinary identifiers, except in a context where they could also be interpreted as
SQL keywords. In such cases, the word must be specified as a delimited identifier. For example, COUNT
cannot be used as a column name in a SELECT statement, unless it is delimited.

2138 IBM Db2 V11.5: SQL Reference

ISO/ANSI SQL2003 and other IBM database products include reserved words that are not enforced by
Db2; however, it is recommended that these words not be used as ordinary identifiers, because it reduces
portability.

For portability across the IBM database products, the following words should be considered reserved
words:

ACTIVATE DOUBLE LOCALE
RESULT WLM
ADD DROP LOCALTIME
RESULT_SET_LOCATOR WRITE
AFTER DSSIZE LOCALTIMESTAMP
RETURN XMLELEMENT
ALIAS DYNAMIC LOCATOR
RETURNS XMLEXISTS
ALL EACH LOCATORS
REVOKE XMLNAMESPACES
ALLOCATE EDITPROC LOCK
RIGHT YEAR
ALLOW ELSE LOCKMAX
ROLE YEARS
ALTER ELSEIF LOCKSIZE ROLLBACK
AND ENABLE LONG ROUND_CEILING
ANY ENCODING LOOP ROUND_DOWN
AS ENCRYPTION MAINTAINED ROUND_FLOOR
ASENSITIVE END MATERIALIZED ROUND_HALF_DOWN
ASSOCIATE END-EXEC MAXVALUE ROUND_HALF_EVEN
ASUTIME ENDING MICROSECOND ROUND_HALF_UP
AT ERASE MICROSECONDS ROUND_UP
ATTRIBUTES ESCAPE MINUTE ROUTINE
AUDIT EVERY MINUTES ROW
AUTHORIZATION EXCEPT MINVALUE ROWNUMBER
AUX EXCEPTION MODE ROWS
AUXILIARY EXCLUDING MODIFIES ROWSET
BEFORE EXCLUSIVE MONTH ROW_NUMBER
BEGIN EXECUTE MONTHS RRN
BETWEEN EXISTS NAN RUN
BINARY EXIT NEW SAVEPOINT
BUFFERPOOL EXPLAIN NEW_TABLE SCHEMA
BY EXTENDED NEXTVAL SCRATCHPAD
CACHE EXTERNAL NO SCROLL
CALL EXTRACT NOCACHE SEARCH
CALLED FENCED NOCYCLE SECOND
CAPTURE FETCH NODENAME SECONDS
CARDINALITY FIELDPROC NODENUMBER SECQTY
CASCADED FILE NOMAXVALUE SECURITY
CASE FINAL NOMINVALUE SELECT
CAST FIRST1 NONE SENSITIVE
CCSID FOR NOORDER SEQUENCE
CHAR FOREIGN NORMALIZED SESSION
CHARACTER FREE NOT2 SESSION_USER
CHECK FROM NOTNULL SET
CLONE FULL NULL SIGNAL
CLOSE FUNCTION NULLS SIMPLE
CLUSTER GENERAL NUMPARTS SNAN
COLLECTION GENERATED OBID SOME
COLLID GET OF SOURCE
COLUMN GLOBAL OFF SPECIFIC
COMMENT GO OFFSET SQL
COMMIT GOTO OLD SQLID
CONCAT GRANT OLD_TABLE STACKED
CONDITION GRAPHIC ON STANDARD
CONNECT GROUP OPEN START
CONNECTION HANDLER OPTIMIZATION STARTING
CONSTRAINT HASH OPTIMIZE STATEMENT
CONTAINS HASHED_VALUE OPTION STATIC

1 As of Db2 Version 11.1.0.0, FIRST is a SQL keyword in some expression
contexts, for example, within an OLAP specification. This means FIRST, when
used as an identifier, must be delimited when used within these contexts.

2 As of Db2 Version 11.1.1.1, NOT is a valid operator in certain contexts, for
example, within a select-list. This means NOT, when used as an identifier,
must be delimited when used within these contexts.

Chapter 1. Structured Query Language (SQL) 2139

CONTINUE HAVING OR STATMENT
COUNT HINT ORDER STAY
COUNT_BIG HOLD OUT STOGROUP
CREATE HOUR OUTER STORES
CROSS HOURS OVER STYLE
CURRENT IDENTITY OVERRIDING SUBSTRING
CURRENT_DATE IF PACKAGE SUMMARY
CURRENT_LC_CTYPE IMMEDIATE PADDED SYNONYM
CURRENT_PATH IMPORT PAGESIZE SYSFUN
CURRENT_SCHEMA IN PARAMETER SYSIBM
CURRENT_SERVER INCLUDING PART SYSPROC
CURRENT_TIME INCLUSIVE PARTITION SYSTEM
CURRENT_TIMESTAMP INCREMENT PARTITIONED SYSTEM_USER
CURRENT_TIMEZONE INDEX PARTITIONING TABLE
CURRENT_USER INDICATOR PARTITIONS TABLESPACE
CURSOR INDICATORS PASSWORD THEN
CYCLE INF PATH TIME
DATA INFINITY PERCENT TIMESTAMP
DATABASE INHERIT PIECESIZE TO
DATAPARTITIONNAME INNER PLAN TRANSACTION
DATAPARTITIONNUM INOUT POSITION TRIGGER
DATE INSENSITIVE PRECISION TRIM
DAY INSERT PREPARE TRUNCATE
DAYS INTEGRITY PREVVAL TYPE
DB2GENERAL INTERSECT PRIMARY UNDO
DB2GENRL INTO PRIQTY UNION
DB2SQL IS PRIVILEGES UNIQUE
DBINFO ISNULL PROCEDURE UNTIL
DBPARTITIONNAME ISOBID PROGRAM UPDATE
DBPARTITIONNUM ISOLATION PSID USAGE
DEALLOCATE ITERATE PUBLIC USER
DECLARE JAR QUERY USING
DEFAULT JAVA QUERYNO VALIDPROC
DEFAULTS JOIN RANGE VALUE
DEFINITION KEEP RANK VALUES
DELETE KEY READ VARIABLE
DENSERANK LABEL READS VARIANT
DENSE_RANK LANGUAGE RECOVERY VCAT
DESCRIBE LAST3 REFERENCES VERSION
DESCRIPTOR LATERAL REFERENCING VIEW
DETERMINISTIC LC_CTYPE REFRESH VOLATILE
DIAGNOSTICS LEAVE RELEASE VOLUMES
DISABLE LEFT RENAME WHEN
DISALLOW LIKE REPEAT WHENEVER
DISCONNECT LIMIT RESET WHERE
DISTINCT LINKTYPE RESIGNAL WHILE
DO LOCAL RESTART WITH
DOCUMENT LOCALDATE RESTRICT WITHOUT

ISO/ANSI SQL2003 reserved words that are not in the previous list:

ABS GROUPING REGR_INTERCEPT
ARE INT REGR_R2
ARRAY INTEGER REGR_SLOPE
ASYMMETRIC INTERSECTION REGR_SXX
ATOMIC INTERVAL REGR_SXY
AVG LARGE REGR_SYY
BIGINT LEADING ROLLUP
BLOB LN SCOPE
BOOLEAN LOWER SIMILAR
BOTH MATCH SMALLINT
CEIL MAX SPECIFICTYPE
CEILING MEMBER SQLEXCEPTION
CHAR_LENGTH MERGE SQLSTATE
CHARACTER_LENGTH METHOD SQLWARNING
CLOB MIN SQRT
COALESCE MOD STDDEV_POP
COLLATE MODULE STDDEV_SAMP
COLLECT MULTISET SUBMULTISET
CONVERT NATIONAL SUM
CORR NATURAL SYMMETRIC
CORRESPONDING NCHAR TABLESAMPLE
COVAR_POP NCLOB TIMEZONE_HOUR

3 As of Db2 Version 11.1.0.0, LAST is a SQL keywords in some expression
contexts, for example, within an OLAP specification. This means LAST, when
used as an identifier, must be delimited when used within these contexts.

2140 IBM Db2 V11.5: SQL Reference

COVAR_SAMP NORMALIZE TIMEZONE_MINUTE
CUBE NULLIF TRAILING
CUME_DIST NUMERIC TRANSLATE
CURRENT_DEFAULT_TRANSFORM_GROUP OCTET_LENGTH TRANSLATION
CURRENT_ROLE ONLY TREAT
CURRENT_TRANSFORM_GROUP_FOR_TYPE OVERLAPS TRUE
DEC OVERLAY UESCAPE
DECIMAL PERCENT_RANK UNKNOWN
DEREF PERCENTILE_CONT UNNEST
ELEMENT PERCENTILE_DISC UPPER
EXEC POWER VAR_POP
EXP REAL VAR_SAMP
FALSE RECURSIVE VARBINARY
FILTER REF VARCHAR
FLOAT REGR_AVGX VARYING
FLOOR REGR_AVGY WIDTH_BUCKET
FUSION REGR_COUNT WINDOW
 WITHIN

Communications areas, descriptor areas, and exception tables

SQLCA (SQL communications area)
An SQLCA is a collection of variables that is updated at the end of the execution of every SQL statement.

A program that contains executable SQL statements and is precompiled with option LANGLEVEL SAA1
(the default) or MIA must provide exactly one SQLCA, though more than one SQLCA is possible by having
one SQLCA per thread in a multi-threaded application.

When a program is precompiled with option LANGLEVEL SQL92E, an SQLCODE or SQLSTATE variable
may be declared in the SQL declare section or an SQLCODE variable can be declared somewhere in the
program.

An SQLCA should not be provided when using LANGLEVEL SQL92E. The SQL INCLUDE statement can
be used to provide the declaration of the SQLCA in all languages but REXX. The SQLCA is automatically
provided in REXX.

To display the SQLCA after each command executed through the command line processor, issue the
command db2 -a. The SQLCA is then provided as part of the output for subsequent commands. The
SQLCA is also dumped in the db2diag log file.

SQLCA field descriptions
Table 317. Fields of the SQLCA. The field names shown are those present in an SQLCA that is obtained
via an INCLUDE statement.

Name Data Type Field Values

sqlcaid CHAR(8) An "eye catcher" for storage dumps containing "SQLCA". The sixth
byte is "L" if line number information is returned from parsing an SQL
routine, SQL trigger, or dynamic compound SQL statement. The sixth
byte is "M" if the line number and object ID information is returned
from executing a compiled SQL routine, compiled SQL trigger, or
dynamic compound SQL (compiled) statement.

sqlcabc INTEGER Contains the length of the SQLCA, 136.

Chapter 1. Structured Query Language (SQL) 2141

Table 317. Fields of the SQLCA. The field names shown are those present in an SQLCA that is obtained
via an INCLUDE statement. (continued)

Name Data Type Field Values

sqlcode INTEGER Contains the SQL return code:
0

Successful execution (although one or more SQLWARN indicators
may be set).

positive
Successful execution, but with a warning condition.

negative
Error condition.

sqlerrml SMALLINT Length indicator for sqlerrmc, in the range 0 through 70. 0 means
that the value of sqlerrmc is not relevant.

sqlerrmc VARCHAR (70) Contains one or more tokens, separated by X'FF', which are
substituted for variables in the descriptions of error conditions.

This field is also used when a successful connection is completed.

When a NOT ATOMIC compound SQL statement is issued, it can
contain information about seven or fewer errors.

The last token might be followed by X'FF'. The sqlerrml value will
include any trailing X'FF'.

sqlerrp CHAR(8) Starting with V11.1, the format of the SQLERRP field is changed to
SQLvvrrmm, where:

• vv represents the version number
• rr represents the release number
• m represents the modification value

The following examples illustrate the relationship between the
product signature and the new token in the SQLERRP field. All
subsequent fix packs for a given Mod Pack return the same SQLERRP
value.

Product SQLERRP
signature token
Db2 10.5.0.7 SQL10057
Db2 11.0.0.0 SQL11010
Db2 11.1.1.1 SQL11011
Db2 11.1.2.0 SQL11012

sqlerrd ARRAY Six INTEGER variables that provide diagnostic information. These
values are generally empty if there are no errors, except for
sqlerrd(6) from a partitioned database.

sqlerrd(1) INTEGER If connection is invoked and successful, contains the maximum
expected difference in length of mixed character data (CHAR
data types) when converted to the database code page from the
application code page. A value of 0 or 1 indicates no expansion;
a value greater than 1 indicates a possible expansion in length; a
negative value indicates a possible contraction.

On successful return from an SQL procedure, contains the return
status value from the SQL procedure.

2142 IBM Db2 V11.5: SQL Reference

Table 317. Fields of the SQLCA. The field names shown are those present in an SQLCA that is obtained
via an INCLUDE statement. (continued)

Name Data Type Field Values

sqlerrd(2) INTEGER If connection is invoked and successful, contains the maximum
expected difference in length of mixed character data (CHAR data
types) when converted to the application code page from the
database code page. A value of 0 or 1 indicates no expansion; a value
greater than 1 indicates a possible expansion in length; a negative
value indicates a possible contraction. If the SQLCA results from
a NOT ATOMIC compound SQL statement that encountered one or
more errors, the value is set to the number of statements that failed.

sqlerrd(3) INTEGER If PREPARE is invoked and successful, contains an estimate of
the number of rows that will be returned. After INSERT, UPDATE,
DELETE, or MERGE, contains the actual number of rows that qualified
for the operation. For a TRUNCATE statement, the value will be -1.
If compound SQL is invoked, contains an accumulation of all sub-
statement rows. If CONNECT is invoked, contains 1 if the database
can be updated, or 2 if the database is read only.

If the OPEN statement is invoked, and the cursor contains SQL data
change statements, this field contains the sum of the number of
rows that qualified for the embedded insert, update, delete, or merge
operations.

If an error is encountered during the compilation of an SQL
routine, trigger, or dynamic compound SQL (inlined or compiled)
statement, sqlerrd(3) contains the line number where the error was
encountered. The sixth byte of sqlcaid must be "L" for this entry to be
a valid line number.

If an error is encountered during the execution of a compiled SQL
routine, trigger, or dynamic SQL (compiled) statement, sqlerrd(3)
contains the line number where the error was raised. The sixth byte
of sqlcaid must be "M" for this to be a valid line number.

sqlerrd(4) INTEGER If PREPARE is invoked and successful , contains a relative cost
estimate of the resources required to process the statement. If
compound SQL is invoked, contains a count of the number of
successful sub-statements. If CONNECT is invoked, contains 0 for
a one-phase commit from a client which is not at the latest level; 1
for a one-phase commit; 2 for a one-phase, read-only commit; and 3
for a two-phase commit.

If an error is encountered during the execution of a compiled
SQL routine or trigger, sqlerrd(4) contains an integer number that
uniquely identifies the routine or trigger within which the error was
raised. The sixth byte of sqlcaid must be "M" for this entry to be a
valid line number

Chapter 1. Structured Query Language (SQL) 2143

Table 317. Fields of the SQLCA. The field names shown are those present in an SQLCA that is obtained
via an INCLUDE statement. (continued)

Name Data Type Field Values

sqlerrd(5) INTEGER Contains the total number of rows deleted, inserted, or updated as a
result of both:

• The enforcement of constraints after a successful delete operation
• The processing of triggered SQL statements from activated inlined

triggers

If compound SQL is invoked, contains an accumulation of the
number of such rows for all sub-statements. In some cases, when
an error is encountered, this field contains a negative value that
is an internal error pointer. If CONNECT is invoked, contains an
authentication type value:

• 0 for server authentication
• 1 for client authentication
• 2 for authentication using Db2 Connect
• 4 for SERVER_ENCRYPT authentication
• 5 for authentication using Db2 Connect with encryption;
• 7 for KERBEROS authentication
• 9 for GSSPLUGIN authentication
• 11 for DATA_ENCRYPT authentication
• 255 for unspecified authentication.

Important: The DATA_ENCRYPT authentication type is deprecated
and might be removed in a future release. To encrypt data in-transit
between clients and Db2 databases, we recommend that you use the
Db2 database system support of Transport Layer Security (TLS). For
more information, see Encryption of data in transit

sqlerrd(6) INTEGER For a partitioned database, contains the partition number of the
database partition that encountered the error or warning. If no
errors or warnings were encountered, this field contains the partition
number of the coordinator partition. The number in this field is the
same as that specified for the database partition in the db2nodes.cfg
file.

sqlwarn Array A set of warning indicators, each containing a blank or W. If
compound SQL is invoked, contains an accumulation of the warning
indicators set for all sub-statements.

sqlwarn0 CHAR(1) Blank if all other indicators are blank; contains "W" if at least one
other indicator is not blank.

sqlwarn1 CHAR(1) Contains "W" if the value of a string column was truncated when
assigned to a host variable. Contains "N" if the null terminator was
truncated. Contains "A" if the CONNECT or ATTACH is successful, and
the authorization name for the connection is longer than 8 bytes.
Contains "P" if the PREPARE statement relative cost estimate stored
in sqlerrd(4) exceeded the value that could be stored in an INTEGER
or was less than 1, and either the CURRENT EXPLAIN MODE or the
CURRENT EXPLAIN SNAPSHOT special register is set to a value other
than NO.

2144 IBM Db2 V11.5: SQL Reference

https://www.ibm.com/docs/en/db2/11.5?topic=encryption-data-in-transit

Table 317. Fields of the SQLCA. The field names shown are those present in an SQLCA that is obtained
via an INCLUDE statement. (continued)

Name Data Type Field Values

sqlwarn2 CHAR(1) Contains "W" if null values were eliminated from the argument of an
aggregate function. a

If CONNECT is invoked and successful, contains "D" if the database is
in quiesce state, or "I" if the instance is in quiesce state.

sqlwarn3 CHAR(1) Contains "W" if the number of columns is not equal to the number
of host variables. Contains "Z" if the number of result set locators
specified on the ASSOCIATE LOCATORS statement is less than the
number of result sets returned by a procedure.

sqlwarn4 CHAR(1) Contains "W" if a prepared UPDATE or DELETE statement does not
include a WHERE clause.

sqlwarn5 CHAR(1) Contains "E" if an error was tolerated during SQL statement
execution.

sqlwarn6 CHAR(1) Contains "W" if the result of a date calculation was adjusted to avoid
an impossible date.

sqlwarn7 CHAR(1) If CONNECT is invoked and successful, contains a "B" if the server is
BigSQL, or "D" if the server is Db2 Warehouse on Cloud.

sqlwarn8 CHAR(1) Contains "W" if a character that could not be converted was
replaced with a substitution character. Contains "Y" if there was an
unsuccessful attempt to establish a trusted connection.

sqlwarn9 CHAR(1) Contains "W" if arithmetic expressions with errors were ignored
during aggregate function processing.

sqlwarn10 CHAR(1) Contains "W" if there was a conversion error when converting a
character data value in one of the fields in the SQLCA.

sqlstate CHAR(5) A return code that indicates the outcome of the most recently
executed SQL statement.

a Some functions may not set SQLWARN2 to W, even though null values were eliminated, because the
result was not dependent on the elimination of null values.

Error reporting
The order of error reporting is:

1. Severe error conditions are always reported. When a severe error is reported, there are no additions to
the SQLCA.

2. If no severe error occurs, a deadlock error takes precedence over other errors.
3. For all other errors, the SQLCA for the first negative SQL code is returned.
4. If no negative SQL codes are detected, the SQLCA for the first warning (that is, positive SQL code) is

returned.

In a partitioned database system, the exception to this rule occurs if a data manipulation operation
is invoked against a table that is empty on one database partition, but has data on other database
partitions. SQLCODE +100 is only returned to the application if agents from all database partitions
return SQL0100W, either because the table is empty on all database partitions, or there are no more
rows that satisfy the WHERE clause in an UPDATE statement.

Chapter 1. Structured Query Language (SQL) 2145

SQLCA usage in partitioned database systems
In partitioned database systems, one SQL statement may be executed by a number of agents on different
database partitions, and each agent may return a different SQLCA for different errors or warnings. The
coordinator agent also has its own SQLCA.

To provide a consistent view for applications, all SQLCA values are merged into one structure, and SQLCA
fields indicate global counts, such that:

• For all errors and warnings, the sqlwarn field contains the warning flags received from all agents.
• Values in the sqlerrd fields indicating row counts are accumulations from all agents.

Note: SQLSTATE 09000 might not be returned every time an error occurs during the processing of a
triggered SQL statement.

SQLDA (SQL descriptor area)
An SQLDA is a collection of variables that is required for execution of the SQL DESCRIBE statement.

The SQLDA variables are options that can be used by the PREPARE, OPEN, FETCH, and EXECUTE
statements. An SQLDA communicates with dynamic SQL; it can be used in a DESCRIBE statement,
modified with the addresses of host variables, and then reused in a FETCH or EXECUTE statement.

SQLDAs are supported for all languages, but predefined declarations are provided only for C, REXX,
FORTRAN, and COBOL.

The meaning of the information in an SQLDA depends on its use. In PREPARE and DESCRIBE, an SQLDA
provides information to an application program about a prepared statement. In OPEN, EXECUTE, and
FETCH, an SQLDA describes host variables.

In DESCRIBE and PREPARE, if any one of the columns being described is either a LOB type (LOB locators
and file reference variables do not require doubled SQLDAs), reference type, or a user-defined type, the
number of SQLVAR entries for the entire SQLDA will be doubled. For example:

• When describing a table with 3 VARCHAR columns and 1 INTEGER column, there will be 4 SQLVAR
entries

• When describing a table with 2 VARCHAR columns, 1 CLOB column, and 1 integer column, there will be
8 SQLVAR entries

In EXECUTE, FETCH, and OPEN, if any one of the variables being described is a LOB type (LOB locators
and file reference variables do not require doubled SQLDAs) or a structured type, the number of SQLVAR
entries for the entire SQLDA must be doubled. (Distinct types and reference types are not relevant in
these cases, because the additional information in the double entries is not required by the database.
Array, cursor and row types are not supported as SQLDA variables in EXECUTE, FETCH and OPEN
statements.)

SQLDA field descriptions
An SQLDA consists of four variables followed by an arbitrary number of occurrences of a sequence
of variables collectively named SQLVAR. In OPEN, FETCH, and EXECUTE, each occurrence of SQLVAR
describes a host variable. In DESCRIBE and PREPARE, each occurrence of SQLVAR describes a column of
a result table or a parameter marker. There are two types of SQLVAR entries:

• Base SQLVARs: These entries are always present. They contain the base information about the column,
parameter marker, or host variable such as data type code, length attribute, column name, host variable
address, and indicator variable address.

• Secondary SQLVARs: These entries are only present if the number of SQLVAR entries is doubled as
per the rules outlined previously. For user-defined types (excluding reference types), they contain the
user-defined type name. For reference types, they contain the target type of the reference. For LOBs,
they contain the length attribute of the host variable and a pointer to the buffer that contains the actual
length. (The distinct type and LOB information does not overlap, so distinct types can be based on LOBs

2146 IBM Db2 V11.5: SQL Reference

without forcing the number of SQLVAR entries on a DESCRIBE to be tripled.) If locators or file reference
variables are used to represent LOBs, these entries are not necessary.

In SQLDAs that contain both types of entries, the base SQLVARs are in a block before the block of
secondary SQLVARs. In each, the number of entries is equal to the value in SQLD (even though many of
the secondary SQLVAR entries may be unused).

The circumstances under which the SQLVAR entries are set by DESCRIBE is detailed in “Effect of
DESCRIBE on the SQLDA” on page 2151.

Fields in the SQLDA header
Table 318. Fields in the SQLDA Header

C Name SQL Data
Type

Usage in DESCRIBE and PREPARE (set
by the database manager except for
SQLN)

Usage in FETCH, OPEN, and EXECUTE
(set by the application before
executing the statement)

sqldaid CHAR(8) The seventh byte of this field is a
flag byte named SQLDOUBLED. The
database manager sets SQLDOUBLED to
the character "2" if two SQLVAR entries
have been created for each column;
otherwise it is set to a blank (X'20' in
ASCII, X'40' in EBCDIC). See “Effect of
DESCRIBE on the SQLDA” on page 2151
for details on when SQLDOUBLED is set.

The seventh byte of this field is
used when the number of SQLVARs is
doubled. It is named SQLDOUBLED. If
any of the host variables being described
is a structured type, BLOB, CLOB, or
DBCLOB, the seventh byte must be set
to the character "2"; otherwise it can
be set to any character but the use of
a blank is recommended.

sqldabc INTEGER For 32 bit, the length of the SQLDA,
equal to SQLN*44+16. For 64 bit,
the length of the SQLDA, equal to
SQLN*56+16

For 32 bit, the length of the SQLDA, >=
to SQLN*44+16. For 64 bit, the length of
the SQLDA, >= to SQLN*56+16.

sqln SMALLINT Unchanged by the database manager.
Must be set to a value greater than
or equal to zero before the DESCRIBE
statement is executed. Indicates the
total number of occurrences of SQLVAR.

Total number of occurrences of SQLVAR
provided in the SQLDA. SQLN must be
set to a value greater than or equal to
zero.

sqld SMALLINT Set by the database manager to the
number of columns in the result table or
to the number of parameter markers.

The number of host variables described
by occurrences of SQLVAR.

Chapter 1. Structured Query Language (SQL) 2147

Fields in an occurrence of a base SQLVAR
Table 319. Fields in a Base SQLVAR

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, and EXECUTE

sqltype SMALLINT Indicates the data type of the column or
parameter marker, and whether it can
contain nulls. (Parameter markers are
always considered nullable.) Table 321
on page 2152 lists the allowable values
and their meanings.

Note that for a distinct, array, cursor,
row, or reference type, the data type of
the base type is placed into this field.
For a structured type, the data type of
the result of the FROM SQL transform
function of the transform group (based
on the CURRENT DEFAULT TRANSFORM
GROUP special register) for the type
is placed into this field. There is no
indication in the base SQLVAR that it is
part of the description of a user-defined
type or reference type.

Same for host variable. Host variables
for datetime values must be character
string variables. For FETCH, a datetime
type code means a fixed-length
character string. If sqltype is an even
number value, the sqlind field is ignored.

sqllen SMALLINT The length attribute of the column
or parameter marker. For datetime
columns and parameter markers, the
length of the string representation of the
values. See Table 321 on page 2152.

Note that the value is set to 0 for large
object strings (even for those whose
length attribute is small enough to fit
into a two byte integer).

The length attribute of the host variable.
See Table 321 on page 2152.

Note that the value is ignored by the
database manager for CLOB, DBCLOB,
and BLOB columns. The len.sqllonglen
field in the Secondary SQLVAR is used
instead.

sqldata pointer For string SQLVARS, sqldata contains
the code page. For character-string
SQLVARs where the column is defined
with the FOR BIT DATA attribute,
sqldata contains 0. For other character-
string SQLVARS, sqldata contains
either the SBCS code page for
SBCS data, or the SBCS code page
associated with the composite MBCS
code page for MBCS data. For
Japanese EUC, Traditional Chinese EUC,
and Unicode UTF-8 character-string
SQLVARS, sqldata contains 954, 964,
and 1208 respectively.

For all other column types, sqldata is
undefined.

Contains the address of the host variable
(where the fetched data will be stored).

2148 IBM Db2 V11.5: SQL Reference

Table 319. Fields in a Base SQLVAR (continued)

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, and EXECUTE

sqlind pointer For character-string SQLVARS, sqlind
contains 0, except for MBCS data, when
sqlind contains the DBCS code page
associated with the composite MBCS
code page.

For all other types, sqlind is undefined.

Contains the address of an associated
indicator variable, if there is one;
otherwise, not used. If sqltype is an
even number value, the sqlind field is
ignored.

sqlname VARCHAR
(30)

Contains the unqualified name of the
column or parameter marker.

For columns and parameter markers
that have a system-generated name, the
thirtieth byte is set to X'FF'. For column
names specified by the AS clause, this
byte is X'00'.

When connecting to a host database,
sqlname can be set to indicate a FOR
BIT DATA string as follows:

• The sixth byte of the SQLDAID in the
SQLDA header is set to "+"

• The length of sqlname is 8
• The first two bytes of sqlname are

X'0000'
• The third and fourth bytes of sqlname

are X'0000'
• The remaining four bytes of sqlname

are reserved and should be set to
X'00000000'

When working with XML data, sqlname
can be set to indicate an XML subtype as
follows:

• The length of sqlname is 8
• The first two bytes of sqlname are

X'0000'
• The third and fourth bytes of sqlname

are X'0000'
• The fifth byte of sqlname is X'01'
• The remaining three bytes of sqlname

are reserved and should be set to
X'000000'

Fields in an occurrence of a secondary SQLVAR
Table 320. Fields in a Secondary SQLVAR

Name Data Type Usage in DESCRIBE and
PREPARE

Usage in FETCH, OPEN, and
EXECUTE

len.sqllonglen INTEGER The length attribute of a
BLOB, CLOB, or DBCLOB
column or parameter
marker.

The length attribute of a BLOB,
CLOB, or DBCLOB host variable.
The database manager ignores the
SQLLEN field in the Base SQLVAR
for the data types. The length
attribute stores the number of bytes
for a BLOB or CLOB, and the
number of double-byte characters
for a DBCLOB.

Chapter 1. Structured Query Language (SQL) 2149

Table 320. Fields in a Secondary SQLVAR (continued)

Name Data Type Usage in DESCRIBE and
PREPARE

Usage in FETCH, OPEN, and
EXECUTE

reserve2 CHAR(3) for 32
bit, and
CHAR(11) for 64
bit.

Not used. Not used.

sqlflag4 CHAR(1) The value is X'01' if
the SQLVAR represents
a reference type with
a target type named in
sqldatatype_name. The
value is X'12' if the
SQLVAR represents a
structured type, with the
user-defined type name
in sqldatatype_name.
Otherwise, the value is
X'00'.

Set to X'01' if the SQLVAR
represents a reference type
with a target type named in
sqldatatype_name. Set to X'12' if
the SQLVAR represents a structured
type, with the user-defined
type name in sqldatatype_name.
Otherwise, the value is X'00'.

sqldatalen pointer Not used. Used for BLOB, CLOB, and DBCLOB
host variables only.

If this field is the null value, then
the actual length (in double-byte
characters) should be stored in the
4 bytes immediately before the
start of the data and SQLDATA
should point to the first byte of the
field length.

If this field is not the null value,
it contains a pointer to a 4 byte
long buffer that contains the actual
length in bytes (even for DBCLOB)
of the data in the buffer pointed
to from the SQLDATA field in the
matching base SQLVAR.

Note that, whether or not this field
is used, the len.sqllonglen field
must be set.

sqldatatype_name VARCHAR(27) For a user-defined type,
the database manager
sets this to the fully
qualified user-defined
type name.1 For a
reference type, the
database manager sets
this to the fully qualified
type name of the target
type of the reference.

For structured types, set to the fully
qualified user-defined type name in
the format indicated in the table
note.1

reserved CHAR(3) Not used. Not used.

2150 IBM Db2 V11.5: SQL Reference

Table 320. Fields in a Secondary SQLVAR (continued)

Name Data Type Usage in DESCRIBE and
PREPARE

Usage in FETCH, OPEN, and
EXECUTE

1 The first 8 bytes contain the schema name of the type (extended to the right with spaces, if necessary). Byte
9 contains a dot (.). Bytes 10 to 27 contain the low order portion of the type name, which is not extended to the
right with spaces.

Note that, although the prime purpose of this field is for the name of user-defined types, the field is also set for
IBM predefined data types. In this case, the schema name is SYSIBM, and the low order portion of the name is
the name stored in the TYPENAME column of the DATATYPES catalog view. For example:

type name length sqldatatype_name
--------- ------ ----------------
A.B 10 A .B
INTEGER 16 SYSIBM .INTEGER
"Frank's".SMINT 13 Frank's .SMINT
MY."type " 15 MY .type

Effect of DESCRIBE on the SQLDA
For a DESCRIBE OUTPUT or PREPARE OUTPUT INTO statement, the database manager always sets SQLD
to the number of columns in the result set, or the number of output parameter markers. For a DESCRIBE
INPUT or PREPARE INPUT INTO statement, the database manager always sets SQLD to the number of
input parameter markers in the statement. Note that a parameter marker that corresponds to an INOUT
parameter in a CALL statement is described in both the input and output descriptors.

The SQLVARs in the SQLDA are set in the following cases:

• SQLN >= SQLD and no entry is either a LOB, user-defined type or reference type

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.
• SQLN >= 2*SQLD and at least one entry is a LOB, user-defined type or reference type

Two times SQLD SQLVAR entries are set, and SQLDOUBLED is set to "2".
• SQLD <= SQLN < 2*SQLD and at least one entry is a distinct, array, cursor, row, or reference type, but

there are no LOB entries or structured type entries

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN bind option is
YES, a warning SQLCODE +237 (SQLSTATE 01594) is issued.

The SQLVARs in the SQLDA are NOT set (requiring allocation of additional space and another DESCRIBE)
in the following cases:

• SQLN < SQLD and no entry is either a LOB, user-defined type or reference type

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN bind option is YES, a
warning SQLCODE +236 (SQLSTATE 01005) is issued.

Allocate SQLD SQLVARs for a successful DESCRIBE.
• SQLN < SQLD and at least one entry is a distinct, array, cursor, row, or reference type, but there are no

LOB entries or structured type entries

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN bind option is YES, a
warning SQLCODE +239 (SQLSTATE 01005) is issued.

Allocate 2*SQLD SQLVARs for a successful DESCRIBE including the names of the distinct, array, cursor,
and row types and target types of reference types.

• SQLN < 2*SQLD and at least one entry is a LOB or a structured type

No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning SQLCODE +238 (SQLSTATE
01005) is issued (regardless of the setting of the SQLWARN bind option).

Allocate 2*SQLD SQLVARs for a successful DESCRIBE.

Chapter 1. Structured Query Language (SQL) 2151

References in the previous lists to LOB entries include distinct type entries whose source type is a LOB
type.

The SQLWARN option of the BIND or PREP command is used to control whether the DESCRIBE (or
PREPARE INTO) will return the warning SQLCODEs +236, +237, +239. It is recommended that your
application code always consider that these SQLCODEs could be returned. The warning SQLCODE +238 is
always returned when there are LOB or structured type entries in the select list and there are insufficient
SQLVARs in the SQLDA. This is the only way the application can know that the number of SQLVARs must
be doubled because of a LOB or structured type entry in the result set.

If a structured type entry is being described, but no FROM SQL transform is defined (either because no
TRANSFORM GROUP was specified using the CURRENT DEFAULT TRANSFORM GROUP special register
(SQLSTATE 42741) or because the name group does not have a FROM SQL transform function defined
(SQLSTATE 42744)), the DESCRIBE will return an error. This error is the same error returned for a
DESCRIBE of a table with a structured type entry.

If the database manager returns identifiers that are longer than those that can be stored in the SQLDA,
the identifier is truncated and a warning is returned (SQLSTATE 01665); however, when the name of
a structured type is truncated, an error is returned (SQLSTATE 42622). For details on identifier length
limitations, see "SQL and XQuery limits" .

SQLTYPE and SQLLEN
Table 321 on page 2152 shows the values that may appear in the SQLTYPE and SQLLEN fields of the
SQLDA. In DESCRIBE and PREPARE INTO, an even value of SQLTYPE means that the column does not
allow nulls, and an odd value means the column does allow nulls. In FETCH, OPEN, and EXECUTE, an
even value of SQLTYPE means that no indicator variable is provided, and an odd value means that SQLIND
contains the address of an indicator variable.

Table 321. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE

SQLTYPE Column data type
for DESCRIBE and
PREPARE INTO

SQLLEN for
DESCRIBE and
PREPARE INTO

Host variable
data type for
FETCH, OPEN, and
EXECUTE

SQLLEN for
FETCH, OPEN, and
EXECUTE

384/385 date 10 fixed-length
character string
representation of a
date

length attribute of
the host variable

388/389 time 8 fixed-length
character string
representation of a
time

length attribute of
the host variable

392/393 timestamp 19 for
TIMESTAMP(0)
otherwise 20+p for
TIMESTAMP(p)

fixed-length
character string
representation of a
timestamp

length attribute of
the host variable

400/401 N/A N/A NULL-terminated
graphic string

length attribute of
the host variable

404/405 BLOB 0 * BLOB Not used. *

408/409 CLOB 0 * CLOB Not used. *

412/413 DBCLOB 0 * DBCLOB Not used. *

448/449 varying-length
character string

length attribute of
the column

varying-length
character string

length attribute of
the host variable

2152 IBM Db2 V11.5: SQL Reference

Table 321. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE (continued)

SQLTYPE Column data type
for DESCRIBE and
PREPARE INTO

SQLLEN for
DESCRIBE and
PREPARE INTO

Host variable
data type for
FETCH, OPEN, and
EXECUTE

SQLLEN for
FETCH, OPEN, and
EXECUTE

452/453 fixed-length
character string

length attribute of
the column

fixed-length
character string

length attribute of
the host variable

456/457 long varying-length
character string

length attribute of
the column

long varying-length
character string

length attribute of
the host variable

460/461 not applicable not applicable NULL-terminated
character string

length attribute of
the host variable

464/465 varying-length
graphic string

length attribute of
the column

varying-length
graphic string

length attribute of
the host variable

468/469 fixed-length graphic
string

length attribute of
the column

fixed-length graphic
string

length attribute of
the host variable

472/473 long varying-length
graphic string

length attribute of
the column

long graphic string length attribute of
the host variable

480/481 floating-point 8 for double
precision, 4 for
single precision

floating-point 8 for double
precision, 4 for
single precision

484/485 packed decimal precision in byte 1;
scale in byte 2

packed decimal precision in byte 1;
scale in byte 2

492/493 big integer 8 big integer 8

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

908/909 varying-length
binary string

length attribute of
the column

varying-length
binary string

length attribute of
the host variable

912/913 fixed-length binary
string

length attribute of
the column

fixed-length binary
string

length attribute of
the host variable

916/917 not applicable not applicable BLOB file reference
variable

267

920/921 not applicable not applicable CLOB file reference
variable

267

924/925 not applicable not applicable DBCLOB file
reference variable.

267

960/961 not applicable not applicable BLOB locator 4

964/965 not applicable not applicable CLOB locator 4

968/969 not applicable not applicable DBCLOB locator 4

988/989 XML 0 not applicable; use
an XML AS <string
or binary LOB type>
host variable instead

not used

Chapter 1. Structured Query Language (SQL) 2153

Table 321. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE (continued)

SQLTYPE Column data type
for DESCRIBE and
PREPARE INTO

SQLLEN for
DESCRIBE and
PREPARE INTO

Host variable
data type for
FETCH, OPEN, and
EXECUTE

SQLLEN for
FETCH, OPEN, and
EXECUTE

996 decimal floating-
point

8 for DECFLOAT(16),
16 for
DECFLOAT(34)

decimal floating-
point

8 for DECFLOAT(16),
16 for
DECFLOAT(34)

2440/2441 row not applicable row not used

2440/2441 cursor not applicable row not used

Note:

• The len.sqllonglen field in the secondary SQLVAR contains the length attribute of the column.
• The SQLTYPE has changed from previous versions for portability reasons. The values from the previous

version (see previous version SQL Reference) continue to be supported.

Unrecognized and unsupported SQLTYPEs
The values that appear in the SQLTYPE field of the SQLDA are dependent on the level of data type support
available at the sender as well as at the receiver of the data. This is particularly important as new data
types are added to the product.

New data types may or may not be supported by the sender or receiver of the data and may or may not
even be recognized by the sender or receiver of the data. Depending on the situation, the new data type
may be returned, or a compatible data type agreed upon by both the sender and receiver of the data may
be returned or an error may result.

When the sender and receiver agree to use a compatible data type, the following table indicates the
mapping that will take place. This mapping will take place when at least one of the sender or the receiver
does not support the data type provided. The unsupported data type can be provided by either the
application or the database manager.

Data Type Compatible Data Type

BIGINT DECIMAL(19, 0)

ROWID VARCHAR(40) FOR BIT DATA

Note that no indication is given in the SQLDA that the data type is substituted.

Packed decimal numbers
Packed decimal numbers are stored in a variation of Binary Coded Decimal (BCD) notation. In BCD, each
nybble (four bits) represents one decimal digit. For example, 0001 0111 1001 represents 179. Therefore,
read a packed decimal value nybble by nybble. Store the value in bytes and then read those bytes in
hexadecimal representation to return to decimal. For example, 0001 0111 1001 becomes 00000001
01111001 in binary representation. By reading this number as hexadecimal, it becomes 0179.

The decimal point is determined by the scale. In the case of a DEC(12,5) column, for example, the
rightmost 5 digits are to the right of the decimal point.

Sign is indicated by a nybble to the right of the nybbles representing the digits. A positive or negative sign
is indicated as follows:

2154 IBM Db2 V11.5: SQL Reference

Table 322. Values for Sign Indicator of a Packed Decimal Number

Sign Binary representation Decimal representation Hexadecimal
representation

Positive (+) 1100 12 C

Negative (-) 1101 13 D

In summary:

• To store any value, allocate p/2+1 bytes, where p is precision.
• Assign the nybbles from left to right to represent the value. If a number has an even precision, a

leading zero nybble is added. This assignment includes leading (insignificant) and trailing (significant)
zero digits.

• The sign nybble will be the second nybble of the last byte.

For example:

Column Value Nybbles in Hexadecimal Grouped by Bytes

DEC(8,3) 6574.23 00 65 74 23 0C

DEC(6,2) -334.02 00 33 40 2D

DEC(7,5) 5.2323 05 23 23 0C

DEC(5,2) -23.5 02 35 0D

SQLLEN field for decimal
The SQLLEN field contains the precision (first byte) and scale (second byte) of the decimal column. If
writing a portable application, the precision and scale bytes should be set individually, versus setting
them together as a short integer. This will avoid integer byte reversal problems.

For example, in C:

 ((char *)&(sqlda->sqlvar[i].sqllen))[0] = precision;
 ((char *)&(sqlda->sqlvar[i].sqllen))[1] = scale;

Exception tables
Exception tables are user-created tables that mimic the definition of the tables that are specified to be
checked using the SET INTEGRITY statement with the IMMEDIATE CHECKED option. They are used to
store copies of the rows that violate constraints in the tables being checked.

The exception tables that are used by the load utility are identical to the ones described here, and can
therefore be reused during checking with the SET INTEGRITY statement.

Rules for creating an exception table
The rules for creating an exception table are as follows:

• If the table is protected by a security policy, the exception table must be protected by the same security
policy.

• The first "n" columns of the exception table are the same as the columns of the table being checked.
All column attributes, including name, data type, and length should be identical. For protected columns,
the security label protecting the column must be the same in both tables.

• All of the columns of the exception table must be free of constraints and triggers. Constraints include
referential integrity and check constraints, as well as unique index constraints that could cause errors
on insert.

Chapter 1. Structured Query Language (SQL) 2155

• The "(n+1)" column of the exception table is an optional TIMESTAMP column. This serves to identify
successive invocations of checking by the SET INTEGRITY statement on the same table, if the rows
within the exception table have not been deleted before issuing the SET INTEGRITY statement to check
the data. The timestamp precision can be any value from 0 to 12 and the value assigned will be the
result of CURRENT TIMESTAMP special register

• The "(n+2)" column should be of type CLOB(32K) or larger. This column is optional but recommended,
and will be used to give the names of the constraints that the data within the row violates. If this column
is not provided (as could be warranted if, for example, the original table had the maximum number of
columns allowed), then only the row where the constraint violation was detected is copied.

• The exception table should be created with both "(n+1)" and "(n+2)" columns.
• There is no enforcement of any particular name for the previously listed additional columns. However,

the type specification must be exactly followed.
• No additional columns are allowed.
• If the original table has generated columns (including the IDENTITY property), the corresponding

columns in the exception table should not specify the generated property.
• Users invoking the SET INTEGRITY statement to check data must hold the INSERT privilege on the

exception tables.
• The exception table cannot be a data partitioned table, a range clustered table, or a detached table.
• The exception table cannot be a materialized query table or a staging table.
• The exception table cannot have any dependent refresh immediate materialized query tables or any

dependent propagate immediate staging tables.

The information in the "message" column has the following structure:

Table 323. Exception Table Message Column Structure

Field
numbe
r

Contents Size Comments

1 Number of constraint violations 5 bytes Right justified padded with "0"

2 Type of first constraint violation 1 byte • "D" - Delete Cascade violation
• "F" - Foreign Key violation
• "G" - Generated Column violation
• "I" - Unique Index violationa

• "K" - Check Constraint violation
• "L" - LBAC Write rules violation
• "P" - Data Partitioning violation
• "S" - Invalid Row Security Label
• "X" - Index defined on XML column

violationd

3 Length of constraint/columnb /index IDc 5 bytes Right justified padded with "0"

4 Constraint name/Column nameb/index IDc length from the previous field

5 Separator 3 bytes <space><colon><space>

2156 IBM Db2 V11.5: SQL Reference

Table 323. Exception Table Message Column Structure (continued)

Field
numbe
r

Contents Size Comments

6 Type of next constraint violation 1 byte • "D" - Delete Cascade violation
• "F" - Foreign Key violation
• "G" - Generated Column violation
• "I" - Unique Index violation
• "K" - Check Constraint violation
• "L" - LBAC Write rules violation
• "P" - Data Partitioning violation
• "S" - Invalid Row Security Label
• "X" - Index defined on XML column

violationd

7 Length of constraint/column/index ID 5 bytes Right justified padded with "0"

8 Constraint name/Column name/Index ID length from the previous field

..... Repeat Field 5 through 8 for each violation

• a Unique index violations will not occur during checking using the SET INTEGRITY statement, unless it is after an attach operation. This
will be reported, however, when running LOAD if the FOR EXCEPTION option is chosen. However, LOAD will not report check constraint,
generated column, foreign key, delete cascade, or data partitioning violations in the exception tables.

• b To retrieve the expression of a generated column from the catalog views, use a select statement. For example, if field 4 is
MYSCHEMA.MYTABLE.GEN_1, then SELECT SUBSTR(TEXT, 1, 50) FROM SYSCAT.COLUMNS WHERE TABSCHEMA='MYSCHEMA' AND
TABNAME='MYNAME' AND COLNAME='GEN_1'; will return the first fifty bytes of the expression, in the form "AS (<expression>)"

• c To retrieve an index ID from the catalog views, use a select statement. For example, if field 4 is 1234, then SELECT INDSCHEMA,
INDNAME FROM SYSCAT.INDEXES WHERE IID=1234.

• d For Index defined on XML column violations, the constraint name, column name, or index ID field identifies the XML column that had
an integrity violation in one of its indexes. It does not identify the index that had the integrity violation. It identifies only the name of the
XML column on which the index violation occurs. For example, the value "X00006XTCOLZ" in the message column indicates an index
violation occurred in one of the indexes on the XTCOL2 column.

Handling rows in an exception table
The information in exception tables can be processed in various ways. Data can be corrected and rows
re-inserted into the original tables.

If there are no INSERT triggers on the original table, transfer the corrected rows by issuing an INSERT
statement with a subquery on the exception table.

If there are INSERT triggers, and you want to complete the load operation with the corrected rows from
exception tables without firing the triggers:

• Design the INSERT triggers to be fired depending on the value in a column that has been defined
explicitly for the purpose.

• Unload data from the exception tables and append it using the load utility. In this case, if you want to
recheck the data, note that constraints checking is not confined to the appended rows.

• Save the trigger definition text from the relevant system catalog view. Then drop the INSERT trigger and
use INSERT to transfer the corrected rows from the exception tables. Finally, re-create the trigger using
the saved trigger definition.

No explicit provision is made to prevent the firing of triggers when inserting rows from exception tables.

Only one violation per row is reported for unique index violations.

If values with LONG VARCHAR, LONG VARGRAPHIC, or LOB data types are in the table, the values are not
inserted into the exception table in the case of unique index violations.

Chapter 1. Structured Query Language (SQL) 2157

Querying exception tables
The message column structure in an exception table is a concatenated list of constraint names, lengths,
and delimiters, as described earlier. This information can be queried.

For example, to retrieve a list of all violations, repeating each row with only the constraint name, assume
that the original table T1 had two columns, C1 and C2. Assume also, that the corresponding exception
table, E1, has columns C1 and C2, corresponding to those in T1, as well as a message column, MSGCOL.
The following query uses recursion to list one constraint name per row (repeating rows that have more
than one violation):

WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS
 (SELECT C1, C2, MSGCOL,
 CHAR(SUBSTR(MSGCOL, 12,
 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),
 1,
 15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))
 FROM E1
 UNION ALL
 SELECT C1, C2, MSGCOL,
 CHAR(SUBSTR(MSGCOL, J+6,
 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),
 I+1,
 J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))
 FROM IV
 WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))
) SELECT C1, C2, CONSTNAME FROM IV;

To list all of the rows that violated a particular constraint, the previous query could be extended as
follows:

WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS
 (SELECT C1, C2, MSGCOL,
 CHAR(SUBSTR(MSGCOL, 12,
 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),
 1,
 15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))
 FROM E1
 UNION ALL
 SELECT C1, C2, MSGCOL,
 CHAR(SUBSTR(MSGCOL, J+6,
 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),
 I+1,
 J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))
 FROM IV
 WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))
) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTNAME = 'constraintname';

The following query could be used to obtain all of the check constraint violations:

WITH IV (C1, C2, MSGCOL, CONSTNAME, CONSTTYPE, I, J) AS
 (SELECT C1, C2, MSGCOL,
 CHAR(SUBSTR(MSGCOL, 12,
 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),
 CHAR(SUBSTR(MSGCOL, 6, 1)),
 1,
 15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))
 FROM E1
 UNION ALL
 SELECT C1, C2, MSGCOL,
 CHAR(SUBSTR(MSGCOL, J+6,
 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),
 CHAR(SUBSTR(MSGCOL, J, 1)),
 I+1,
 J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))
 FROM IV
 WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))
) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTTYPE = 'K';

2158 IBM Db2 V11.5: SQL Reference

Regular expression control characters
Control characters are metacharacters, operators, and replacement text characters that can be used in
regular expressions.

Only half-width characters are recognized. Any full-width characters that correspond to the characters in
the following tables are not recognized.

Table 324. Regular expression metacharacters

Character

Allowed
outside of
sets

Allowed
inside of
sets Description

\a Yes Yes Match a BELL, \u0007

\A Yes Match at the beginning of the input. Differs from ^ in that \A
does not match after a new line within the input.

\b Yes Match if the current position is a word boundary. Boundaries
occur at the transitions between word (\w) and non-word (\W)
characters, with combining marks ignored.

\B Yes Match if the current position is not a word boundary.

\cX Yes Yes Match a control-X character.

\d Yes Yes Match any character with the Unicode General Category of Nd
(Number, Decimal Digit.)

\D Yes Yes Match any character that is not a decimal digit.

\e Yes Yes Match an ESCAPE, \u001B

\E Yes Yes Terminates a \Q ... \E quoted sequence.

\f Yes Yes Match a FORM FEED, \u000C.

\G Yes Match if the current position is at the end of the previous
match.

\n Yes Yes Match a LINE FEED, \u000A

\N{UNICODE
CHARACTER NAME}

Yes Yes Match the named character.

\p{UNICODE
PROPERTY NAME}

Yes Yes Match any character with the specified Unicode Property.

\P{UNICODE
PROPERTY NAME}

Yes Yes Match any character not having the specified Unicode
Property.

\Q Yes Yes Places quotation marks around all following characters until
\E

\r Yes Yes Match a CARRIAGE RETURN, \u000D

\s Yes Yes Match a white space character. White space is defined as
[\t\n\f\r\p{Z}]

\S Yes Yes Match a non-white space character.

\t Yes Yes Match a HORIZONTAL TABULATION, \u0009

\uhhhh Yes Yes Match the character with the hex value hhhh

Chapter 1. Structured Query Language (SQL) 2159

Table 324. Regular expression metacharacters (continued)

Character

Allowed
outside of
sets

Allowed
inside of
sets Description

\Uhhhhhhhh Yes Yes Match the character with the hex value hhhhhhhh. Exactly 8
hex digits must be provided, even though the largest Unicode
code point is \U0010ffff

\w Yes Yes Match a word character. Word characters are as follows:

[\p{Alphabetic}
 \p{Mark}
 \p{Decimal_Number}
 \p{Connector_Punctuation}
 \u200c
 \u200d]

\W Yes Yes Match a non-word character.

\x{hhhh} Yes Yes Match the character with hex value hhhh. From one to 6 hex
digits can be supplied.

\xhh Yes Yes Match the character with two-digit hex value hh

\X Yes Match a Grapheme Cluster.

\Z Yes Match if the current position is at the end of input, but before
the final line terminator, if one exists.

\z Yes Match if the current position is at the end of input.

\n Yes Back Reference. Match whatever the nth capturing group
matched. n must be a number > 1 and < total number of
capture groups in the pattern.

\0ooo Yes Yes Match an Octal character. 'ooo' is from one to three octal
digits. 0377 is the largest allowed Octal character. The leading
zero is required; it distinguishes Octal constants from back
references.

[pattern] Yes Yes Match any one character from the set.

. Yes Match any character.

^ Yes Match at the beginning of a line.

$ Yes Match at the end of a line.

\ Yes Places quotation marks around the character that follows.
Characters that must have surrounding quotation marks to be
treated as literals are * ? + [() { } ^ $ | \ . /

\ Yes Places quotation marks around the character that follows.
Characters that must be quoted to be treated as literals are
[] \
Characters that might need to be quoted, depending on the
context are - &

Table 325. Regular expression operators

Operator Description

| Alternation. A|B matches either A or B

2160 IBM Db2 V11.5: SQL Reference

Table 325. Regular expression operators (continued)

Operator Description

* Match 0 or more times. Match as many times as possible.

+ Match 1 or more times. Match as many times as possible.

? Match zero or one time. Prefer one.

{n} Match exactly n times.

{n,} Match at least n times. Match as many times as possible.

{n,m} Match between n and m times. Match as many times as possible, but not more than m.

*? Match 0 or more times. Match as few times as possible.

+? Match 1 or more times. Match as few times as possible.

?? Match zero or one time. Prefer zero.

{n}? Match exactly n times.

{n,}? Match at least n times, but no more than required for an overall pattern match.

{n,m}? Match between n and m times. Match as few times as possible, but not less than n

*+ Match 0 or more times. Match as many times as possible when first encountered, do
not retry with fewer even if overall match fails (Possessive Match)

++ Match 1 or more times. Possessive match.

?+ Match zero or 1 time. Possessive match.

{n}+ Match exactly n times.

{n,}+ Match at least n times. Possessive Match.

{n,m}+ Match between n and m times. Possessive Match.

(...) Capturing parentheses. Range of input that matched the parenthesized subexpression
is available after the match.

(?: ...) Non-capturing parentheses. Groups the included pattern, but does not provide
capturing of matching text. More efficient than capturing parentheses.

(?> ...) Atomic-match parentheses. First match of the parenthesized subexpression is the only
one tried. If it does not lead to an overall pattern match, back up the search for a
match to a position before the "(?>"

(?# ...) Free-format comment (?# comment)

(?= ...) Look-ahead assertion. True if the parenthesized pattern matches at the current input
position, but does not advance the input position.

(?! ...) Negative look-ahead assertion. True if the parenthesized pattern does not match at the
current input position. Does not advance the input position.

(?<= ...) Look-behind assertion. True if the parenthesized pattern matches text that precedes
the current input position. The last character of the match is the input character just
before the current position. Does not alter the input position. The length of possible
strings that is matched by the look-behind pattern must not be unbounded (no * or +
operators.)

Chapter 1. Structured Query Language (SQL) 2161

Table 325. Regular expression operators (continued)

Operator Description

(?<!...) Negative Look-behind assertion. True if the parenthesized pattern does not match text
that precedes preceding the current input position. The last character of the match is
the input character just before the current position. Does not alter the input position.
The length of possible strings that is matched by the look-behind pattern must not be
unbounded (no * or + operators.)

(?ismwx-
ismwx: ...)

Flag settings. Evaluate the parenthesized expression with the specified flags enabled
or disabled.

(?ismx-ismx) Flag settings. Change the flag settings. Changes apply to the portion of the pattern that
follows the setting. For example, (?i) changes to a not case-sensitive match.

Table 326. Set expressions (character classes)

Example expression Description

[abc] Match any of the characters a, b, or c

[^abc] Negation - match any character except a, b, or c

[A-M] Range - match any character from A to M. The characters to
include are determined by Unicode code point order.

[\u0000-\U0010ffff] Range - match all characters.

[\p{Letter}]
[\p{General_Category=Letter}]
[\p{L}]

Characters with Unicode Category = Letter. All forms that
are shown are equivalent.

[\P{Letter}] Negated property. (Uppercase \P) Match everything except
Letters.

[\p{numeric_value=9}] Match all numbers with a numeric value of 9. Any Unicode
Property might be used in set expressions.

[\p{Letter}&&\p{script=cyrillic}] Logical AND or intersection. Match the set of all Cyrillic
letters.

[\p{Letter}--\p{script=latin}] Subtraction. Match all non-Latin letters.

[[a-z][A-Z][0-9]] [a-zA-Z0-9]] Implicit Logical OR or Union of Sets. The examples match
ASCII letters and digits. The two forms are equivalent.

[:script=Greek:] Alternate POSIX-like syntax for properties. Equivalent to
\p{script=Greek}

Explain tables
The Explain tables capture access plans when the Explain facility is activated.

The Explain tables must be created before Explain can be invoked. You can create them using one of the
following methods:

• Call the SYSPROC.SYSINSTALLOBJECTS procedure:

CONNECT TO database-name
CALL SYSPROC.SYSINSTALLOBJECTS('EXPLAIN', 'C',
 CAST (NULL AS VARCHAR(128)), CAST (NULL AS VARCHAR(128)))

This call creates the explain tables under the SYSTOOLS schema. To create them under a different
schema, specify a schema name as the last parameter in the call.

2162 IBM Db2 V11.5: SQL Reference

• Run the EXPLAIN.DDL command file:

CONNECT TO database-name
db2 -tf EXPLAIN.DDL

This command file creates explain tables under the current schema. The location of this command file
depends on the operating system, as illustrated in the following table:

Operating system Location of the EXPLAIN command file

Linux
AIX

Located in the INSTHOME/sqllib/misc
directory. INSTHOME is the instance home
directory.

Windows Located at the DB2PATH\misc directory on
Windows operating systems. DB2PATH is the
location where you install your Db2 copy

Calling the SYSPROC.SYSINSTALLOBJECTS procedure is preferred over using the EXPLAIN.DDL file
since it can automatically adapt to different database configurations. For example, if BLOCKNONLOGGED
parameter is set to yes, then some statements in EXPLAIN.DDL fail because NOT LOGGED
clause is used for LOB columns. However, if BLOCKNONLOGGED parameter is set to yes then the
SYSPROC.SYSINSTALLOBJECTS procedure automatically avoids the use of NOT LOGGED clause.

Db2 modification packs can occasionally contain changes to the format of one or more of the Explain
tables. When such changes occur, existing Explain tables will need to be re-created, as discussed above,
or be updated using either the db2exmig tool or the SYSINSTALLOBJECTS procedure (using the M
action). Failure to update existing Explain tables can result in one of the following errors occurring during
use of the Explain facility or one of its related tools: SQL0206N, SQL0220N, SQL1184N.

Note: The format of the Explain tables has been changed in version 11.5.5.

The Explain facility uses the following IDs as the schema when qualifying Explain tables that it is
populating:

• The session authorization ID for dynamic SQL
• The statement authorization ID for static SQL
• The SYSTOOLS schema if explain tables do not exist with the authorization ID schema

The schema can be associated with a set of Explain tables, or aliases that point to a set of Explain tables
under a different schema. If no Explain tables are found under the schema, the Explain facility checks for
Explain tables under the SYSTOOLS schema and attempts to use those tables.

The population of the Explain tables by the Explain facility will not activate triggers or referential or
check constraints. For example, if an insert trigger were defined on the EXPLAIN_INSTANCE table, and an
eligible statement were explained, the trigger would not be activated.

To improve the performance of the Explain facility in a partitioned database system, it is recommended
that the Explain tables be created in a single partition database partition group, preferably on the same
database partition to which you will be connected when compiling the query.

ADVISE_INDEX table
The ADVISE_INDEX table represents the recommended indexes.

Table 327. ADVISE_INDEX Table. PK means that the column is part of a primary key; FK means that the column
is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain
request.

Chapter 1. Structured Query Language (SQL) 2163

Table 327. ADVISE_INDEX Table. PK means that the column is part of a primary key; FK means that the column
is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic
statement was explained or name of the source
file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No No Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is
relevant.

STMTNO INTEGER No No Statement number within package to which this
explain information is related.

SECTNO INTEGER No No Section number within package to which this
explain information is related.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP
or CLI, the default value is a sequentially
incremented value. Otherwise, the default value
is the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through
CLP (excluding the EXPLAIN SQL statement),
the default value is "CLP". For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
"CLI". Otherwise, the default value used is
blanks.

NAME VARCHAR(128) No No Name of the index.

CREATOR VARCHAR(128) No No Qualifier of the index name.

TBNAME VARCHAR(128) No No Name of the table or nickname on which the
index is defined.

TBCREATOR VARCHAR(128) No No Qualifier of the table name.

COLNAMES CLOB(2M) No No List of column names.

UNIQUERULE CHAR(1) No No Unique rule:

• D = Duplicates allowed
• P = Primary index
• U = Unique entries only allowed

COLCOUNT SMALLINT No No Number of columns in the key plus the number of
include columns if any.

IID SMALLINT No No Internal index ID.

2164 IBM Db2 V11.5: SQL Reference

Table 327. ADVISE_INDEX Table. PK means that the column is part of a primary key; FK means that the column
is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

NLEAF BIGINT No No Number of leaf pages; -1 if statistics are not
gathered.

NLEVELS SMALLINT No No Number of index levels; -1 if statistics are not
gathered.

FIRSTKEYCARD BIGINT No No Number of distinct first key values; -1 if statistics
are not gathered.

FULLKEYCARD BIGINT No No Number of distinct full key values; -1 if statistics
are not gathered.

CLUSTERRATIO SMALLINT No No Degree of data clustering with the index; -1
if statistics are not gathered or if detailed
index statistics are gathered (in which case,
CLUSTERFACTOR will be used instead).

AVGPARTITION_
CLUSTERRATIO

SMALLINT No No Degree of data clustering within a single
data partition. -1 if the table is not table
partitioned, if statistics are not gathered, or if
detailed statistics are gathered (in which case
AVGPARTITION_CLUSTERFACTOR will be used
instead).

AVGPARTITION_
CLUSTERFACTOR

DOUBLE No No Finer measurement of the degree of clustering
within a single data partition. -1 if the table is not
table partitioned, if statistics are not gathered, or
if the index is defined on a nickname.

AVGPARTITION_PAGE_
FETCH_PAIRS

VARCHAR(520) No No A list of paired integers in character form. Each
pair represents a potential buffer pool size
and the corresponding page fetches required to
access a single data partition from the table.
Zero-length string if no data is available, or if the
table is not table partitioned.

DATAPARTITION_
CLUSTERFACTOR

DOUBLE No No A statistic measuring the "clustering" of the
index keys with regard to data partitions. This
field holds a number between zero and one,
with one representing perfect clustering and zero
representing no clustering.

CLUSTERFACTOR DOUBLE No No Finer measurement of degree of clustering, or
-1 if detailed index statistics have not been
gathered or if the index is defined on a nickname.

USERDEFINED SMALLINT No No Defined by the user.

Chapter 1. Structured Query Language (SQL) 2165

Table 327. ADVISE_INDEX Table. PK means that the column is part of a primary key; FK means that the column
is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

SYSTEM_REQUIRED SMALLINT No No • 1 if one or the other of the following conditions
is met:

– This index is required for a primary or unique
key constraint, or this index is a dimension
block index or composite block index for a
multi-dimensional clustering (MDC) table.

– This is an index on the (OID) column of a
typed table.

• 2 if both of the following conditions are met:

– This index is required for a primary or unique
key constraint, or this index is a dimension
block index or composite block index for an
MDC table.

– This is an index on the (OID) column of a
typed table.

• 0 otherwise.

CREATE_TIME TIMESTAMP No No Time when the index was created.

STATS_TIME TIMESTAMP Yes No Last time when any change was made to
recorded statistics for this index. Null if no
statistics available.

PAGE_FETCH_PAIRS VARCHAR(520) No No A list of pairs of integers, represented in
character form. Each pair represents the number
of pages in a hypothetical buffer, and the number
of page fetches required to scan the table with
this index using that hypothetical buffer. (Zero-
length string if no data available.)

REMARKS VARCHAR(254) Yes No User-supplied comment, or null.

DEFINER VARCHAR(128) No No User who created the index.

CONVERTED CHAR(1) No No Reserved for future use.

SEQUENTIAL_PAGES BIGINT No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
(-1 if no statistics are available.)

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of pages
in the range of pages occupied by the index,
expressed as a percent (integer between 0 and
100, -1 if no statistics are available.)

FIRST2KEYCARD BIGINT No No Number of distinct keys using the first two
columns of the index (-1 if no statistics or
inapplicable)

FIRST3KEYCARD BIGINT No No Number of distinct keys using the first three
columns of the index (-1 if no statistics or
inapplicable)

2166 IBM Db2 V11.5: SQL Reference

Table 327. ADVISE_INDEX Table. PK means that the column is part of a primary key; FK means that the column
is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

FIRST4KEYCARD BIGINT No No Number of distinct keys using the first four
columns of the index (-1 if no statistics or
inapplicable)

PCTFREE SMALLINT No No Percentage of each index leaf page to be
reserved during initial building of the index. This
space is available for future inserts after the
index is built.

UNIQUE_COLCOUNT SMALLINT No No The number of columns required for a unique
key. Always <=COLCOUNT. < COLCOUNT only
if there a include columns. -1 if index has no
unique key (permits duplicates)

MINPCTUSED SMALLINT No No If not zero, then online index defragmentation
is enabled, and the value is the threshold of
minimum used space before merging pages.

REVERSE_SCANS CHAR(1) No No • Y = Index supports reverse scans
• N = Index does not support reverse scans

USE_INDEX CHAR(1) Yes No • Y = index recommended or evaluated
• N = index not to be recommended
• R = an existing clustering RID index was

recommended (by the Design Advisor) to be
unclustered; this is the case when a new
clustering RID index is recommended for the
table

• I = Ignore an existing non-unique index. The
EXISTS column should be "Y" in this case or the
index will not be ignored.

CREATION_TEXT CLOB(2M) No No The SQL statement used to create the index.

PACKED_DESC BLOB(1M) Yes No Internal description of the table.

RUN_ID TIMESTAMP Yes FK A value corresponding to the START_TIME of a
row in the ADVISE_INSTANCE table, linking it to
the same Design Advisor run.

INDEXTYPE VARCHAR(4) No No Type of index.

• CLUS = Clustering
• REG = Regular
• DIM = Dimension block index
• BLOK = Block index

EXISTS CHAR(1) No No Set to "Y" if the index exists in the database
catalog or "N" if the index does not currently exist
in the catalog.

RIDTOBLOCK CHAR(1) No No Set to "Y" if the RID index was used to make a
block index in the Design Advisor.

Chapter 1. Structured Query Language (SQL) 2167

Table 327. ADVISE_INDEX Table. PK means that the column is part of a primary key; FK means that the column
is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

NULLKEYS CHAR(1) No No Specifies whether null keys are indexed.

• N = Keys that contain all null values are
not indexed (not considering columns or
expressions from the INCLUDE clause)

• Y = Keys that contain all null values are indexed
(not considering columns or expressions from
the INCLUDE clause)

ADVISE_INSTANCE table
The ADVISE_INSTANCE table contains information about db2advis execution, including start time.

Contains one row for each execution of db2advis. Other ADVISE tables have a foreign key (RUN_ID) that
links to the START_TIME column of the ADVISE_INSTANCE table for rows created during the same Design
Advisor run.

Table 328. ADVISE_INSTANCE Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

START_TIME TIMESTAMP No PK Time at which db2advis execution begins.

END_TIME TIMESTAMP No No Time at which db2advis execution ends.

MODE VARCHAR(4) No No The value that was specified with the -m option
on the Design Advisor; for example, 'MC' to
specify MQT and MDC.

WKLD_COMPRESSION CHAR(4) No No The workload compression under which the
Design Advisor was run.

STATUS CHAR(9) No No The status of a Design Advisor run. Status can
be 'STARTED', 'COMPLETED' (if successful), or an
error number that is prefixed by 'EI' for internal
errors or 'EX' for external errors, in which case
the error number represents the SQLCODE.

ADVISE_MQT table
The ADVISE_MQT table contains information about materialized query tables (MQT) recommended by the
Design Advisor.

Table 329. ADVISE_MQT Table. PK means that the column is part of a primary key; FK means that the column is
part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

2168 IBM Db2 V11.5: SQL Reference

Table 329. ADVISE_MQT Table. PK means that the column is part of a primary key; FK means that the column is
part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No No Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is
relevant.

STMTNO INTEGER No No Statement number within package to which this
Explain information is related.

SECTNO INTEGER No No Statement number within package to which this
Explain information is related.

NAME VARCHAR(128) No No MQT name.

CREATOR VARCHAR(128) No No MQT creator name.

IID SMALLINT No No Internal identifier.

CREATE_TIME TIMESTAMP No No Time at which the MQT was created.

STATS_TIME TIMESTAMP Yes No Time at which statistics were taken.

NUMROWS DOUBLE No No The number of estimated rows in the MQT.

NUMCOLS SMALLINT No No Number of columns defined in the MQT.

ROWSIZE DOUBLE No No Average length (in bytes) of a row in the MQT.

BENEFIT FLOAT No No Reserved for future use.

USE_MQT CHAR(1) Yes No Set to 'Y' when the MQT is recommended.

MQT_SOURCE CHAR(1) Yes No Indicates where the MQT candidate was
generated. Set to 'I' if the MQT candidate is a
refresh-immediate MQT, or 'D' if it can only be
created as a full refresh-deferred MQT.

QUERY_TEXT CLOB(2M) No No Contains the query that defines the MQT.

CREATION_TEXT CLOB(2M) No No Contains the CREATE TABLE DDL for the MQT.

SAMPLE_TEXT CLOB(2M) No No Contains the sampling query that is used to get
detailed statistics for the MQT. Only used when
detailed statistics are required for the Design
Advisor. The resulting sampled statistics will be
shown in this table. If null, then no sampling
query was created for this MQT.

COLSTATS CLOB(2M) No No Contains the column statistics for the MQT (if
not null). These statistics are in XML format and
include the column name, column cardinality
and, optionally, the HIGH2KEY and LOW2KEY
values.

EXTRA_INFO BLOB(2M) No No Reserved for miscellaneous output.

Chapter 1. Structured Query Language (SQL) 2169

Table 329. ADVISE_MQT Table. PK means that the column is part of a primary key; FK means that the column is
part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

TBSPACE VARCHAR(128) No No The table space that is recommended for the
MQT.

RUN_ID TIMESTAMP Yes FK A value corresponding to the START_TIME of a
row in the ADVISE_INSTANCE table, linking it to
the same Design Advisor run.

REFRESH_TYPE CHAR(1) No No Set to 'I' for immediate or 'D' for deferred.

EXISTS CHAR(1) No No Set to 'Y' if the MQT exists in the database
catalog.

ADVISE_PARTITION table
The ADVISE_PARTITION table contains information about database partitions recommended by the
Design Advisor, and can only be populated in a partitioned database environment.

Table 330. ADVISE_PARTITION Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No No Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is
relevant.

STMTNO INTEGER No No Statement number within package to which this
Explain information is related.

SECTNO INTEGER No No Statement number within package to which this
Explain information is related.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP
or CLI, the default value is a sequentially
incremented value. Otherwise, the default value
is the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

2170 IBM Db2 V11.5: SQL Reference

Table 330. ADVISE_PARTITION Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through
CLP (excluding the EXPLAIN SQL statement),
the default value is 'CLP'. For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
'CLI'. Otherwise, the default value used is blanks.

TBNAME VARCHAR(128) Yes No Specifies the table name.

TBCREATOR VARCHAR(128) Yes No Specifies the table creator name.

PMID SMALLINT Yes No Specifies the distribution map ID.

TBSPACE VARCHAR(128) Yes No Specifies the table space in which the table
resides.

COLNAMES CLOB(2M) Yes No Specifies database partition column names,
separated by commas.

COLCOUNT SMALLINT Yes No Specifies the number of database partitioning
columns.

REPLICATE CHAR(1) Yes No Specifies whether or not the database partition is
replicated.

COST DOUBLE Yes No Specifies the cost of using the database partition.

USEIT CHAR(1) Yes No Specifies whether or not the database partition is
used in EVALUATE PARTITION mode. A database
partition is used if USEIT is set to 'Y' or 'y'.

RUN_ID TIMESTAMP Yes FK A value corresponding to the START_TIME of a
row in the ADVISE_INSTANCE table, linking it to
the same Design Advisor run.

ADVISE_TABLE table
The ADVISE_TABLE table stores the data definition language (DDL) for table creation, using the final
Design Advisor recommendations for materialized query tables (MQTs), multidimensional clustered tables
(MDCs), and database partitioning.

Table 331. ADVISE_TABLE Table. PK means that the column is part of a primary key; FK means that the column
is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

RUN_ID TIMESTAMP Yes FK A value corresponding to the START_TIME of a
row in the ADVISE_INSTANCE table, linking it to
the same Design Advisor run.

TABLE_NAME VARCHAR(128) No No Name of the table.

TABLE_SCHEMA VARCHAR(128) No No Name of the table creator.

TABLESPACE VARCHAR(128) No No The table space in which the table is to be
created.

Chapter 1. Structured Query Language (SQL) 2171

Table 331. ADVISE_TABLE Table. PK means that the column is part of a primary key; FK means that the column
is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

SELECTION_FLAG VARCHAR(4) No No Indicates the recommendation type. Valid values
are 'M' for MQT, 'P' for database partitioning, and
'C' for MDC. This field can include any subset of
these values. For example, 'MC' indicates that the
table is recommended as an MQT and an MDC
table.

TABLE_EXISTS CHAR(1) No No Set to 'Y' if the table exists in the database
catalog.

USE_TABLE CHAR(1) No No Set to 'Y' if the table has recommendations from
the Design Advisor.

GEN_COLUMNS CLOB(2M) No No Contains a generated columns string if this row
includes an MDC recommendation that requires
generated columns in the create table DDL.

ORGANIZE_BY CLOB(2M) No No For MDC recommendations, contains the
ORGANIZE BY clause of the create table DDL.

CREATION_TEXT CLOB(2M) No No Contains the create table DDL.

ALTER_COMMAND CLOB(2M) No No Contains an ALTER TABLE statement for the
table.

ADVISE_WORKLOAD table
The ADVISE_WORKLOAD table represents the statement that makes up the workload.

Table 332. ADVISE_WORKLOAD Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

WORKLOAD_NAME CHAR(128) No No Name of the collection of SQL statements
(workload) to which this statement belongs.

STATEMENT_NO INTEGER No No Statement number within the workload to which
this explain information is related.

STATEMENT_TEXT CLOB(1M) No No Content of the SQL statement.

STATEMENT_TAG VARCHAR(256) No No Identifier tag for each explained SQL statement.

FREQUENCY INTEGER No No The number of times this statement appears
within the workload.

IMPORTANCE DOUBLE No No Importance of the statement.

WEIGHT DOUBLE No No Priority of the statement.

COST_BEFORE DOUBLE Yes No The cost of the query (in timerons) if the
recommendations are not created.

2172 IBM Db2 V11.5: SQL Reference

Table 332. ADVISE_WORKLOAD Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

COST_AFTER DOUBLE Yes No The cost of the query (in timerons) if the
recommendations are created. COST_AFTER
reflects all recommendations except those
that pertain to clustered indexes and
multidimensional clustering (MDC).

COMPILABLE CHAR(17) Yes No Indicates any query compile errors that occurred
while trying to prepare the statement. If this
column is NULL or does not start with SQLCA,
the SQL query could be compiled by db2advis.
If a compile error is found by db2advis or the
Design Advisor, the COMPILABLE column value
consists of an 8 byte long SQLCA.sqlcaid field,
followed by a colon (:) and an 8 byte long
SQLCA.sqlstate field, which is the return code for
the SQL statement.

EXPLAIN_ACTUALS table
The EXPLAIN_ACTUALS table contains Explain section actuals information.

Table 333. EXPLAIN_ACTUALS Table. PK means that the column is part of a primary key; FK means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic statement
was explained or name of the source file when static SQL
was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO INTEGER No FK Statement number within package to which this Explain
information is related.

SECTNO INTEGER No FK Section number within package to which this Explain
information is related.

OPERATOR_ID INTEGER No FK Unique ID for this operator within this query.

DBPARTITIONNUM INTEGER No No The partition number of the database partition where the
operator has run.

PREDICATE_ID INTEGER Yes No ID of the predicate applied on this operator. NULL if the
actuals are operator actuals.

HOW_APPLIED CHAR(10) Yes No How predicate is used by this operator. NULL if
PREDICATE_ID is NULL.

ACTUAL_TYPE VARCHAR(12) No No The type of the actual.

ACTUAL_VALUE DOUBLE Yes No The value of the actual. NULL if actual is not available for
this operator.

Chapter 1. Structured Query Language (SQL) 2173

EXPLAIN_ARGUMENT table
The EXPLAIN_ARGUMENT table represents the unique characteristics for each individual operator, if
there are any.

Table 334. EXPLAIN_ARGUMENT Table. PK means that the column is part of a primary key; FK means that the column is part of a foreign
key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic statement
was explained or name of the source file when static SQL
was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is relevant.

STMTNO INTEGER No FK Statement number within package to which this Explain
information is related.

SECTNO INTEGER No FK Section number within package to which this Explain
information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

ARGUMENT_TYPE CHAR(8) No No The type of argument for this operator.

ARGUMENT_VALUE VARCHAR(1024) Yes No The value of the argument for this operator. NULL if the
value is in LONG_ARGUMENT_VALUE.

LONG_ARGUMENT_
VALUE

CLOB(2M) Yes No The value of the argument for this operator, when the text
will not fit in ARGUMENT_VALUE. NULL if the value is in
ARGUMENT_VALUE.

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

AGGMODE COMPLETE
PARTIAL
HASHED PARTIAL
HASHED COMPLETE
INTERMEDIATE
FINAL
COMPLETE UNIQUE
PARTIAL UNIQUE
INTERMEDIATE UNIQUE
FINAL UNIQUE

Indicates how the operator aggregates
values; for example, whether the
aggregation is complete or partial
aggregation.

HASHED COMPLETE identifies a column-
organized data grouping.

APREUSE TRUE Indicates if access plan reuse bind option is
in effect for this statement.

BACKJOIN TRUE
FALSE

Indicates whether the ZZJOIN operator is
used as a backjoin in the all-probe list-
prefetch plan.

BITFLTR INTEGER
FALSE

Size of a hash join bit filter. A hash join
bit filter can sometimes also be used by a
table queue.

2174 IBM Db2 V11.5: SQL Reference

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

BLDLEVEL Database build identifier. Internal identification string for source
code version. Db2 vVV.RR.MM.FF :
nYYMMDDHHMM, for example Db2
v11.1.1.1: n1610171423

BLKLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT SHARE
NONE
SHARE
UPDATE

Block level lock intent.

BUFFSCAN

Attention:
This column
is available
in the
container-
only release
of Db2
Version 11.5
Mod Pack 1
and later
versions.

FALSE
TRUE

Buffered scan.

BUFFSORT TRUE Indicates whether SORT is used as a
buffering operation.

BUSTSENS YES
NO

Indicates whether the BUSTIMESENSITIVE
bind option is in effect for this statement.

BY DPART TRUE
FALSE

Indicates whether ZZJN is performed
across the dimensions of a data partitioned
table.

Chapter 1. Structured Query Language (SQL) 2175

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

CONCACCR Each row of this type will contain:

• Level of the setting for this statement:
BIND

Application BIND with
CONCURRENT ACCESS RESOLUTION
option

PREP

Statement prepared with
CONCURRENT ACCESS RESOLUTION
attributes

• The concurrent access resolution in
effect:
USE CURRENTLY COMMITTED

Concurrent access resolution
of application bind or
statement prepare is
USE CURRENTLY COMMITTED

WAIT FOR OUTCOME

Concurrent access resolution
of application bind or
statement prepare is
WAIT FOR OUTCOME

Indicates the concurrent access resolution
used to generate the access plan for this
statement.

CSERQY TRUE
FALSE

Remote query is a common subexpression.

CSETEMP TRUE
FALSE

Temporary Table over Common
Subexpression Flag.

CUR_COMM TRUE Access currently committed rows when
the value for the database configuration
parameter cur_commit is not DISABLE.
This access plan is enabled for applicable
statements by using either:

• CONCURRENT ACCESS RESOLUTION
with the USE CURRENTLY COMMITTED
option on bind or prepare

• The database configuration parameter
cur_commit with a value of ON

2176 IBM Db2 V11.5: SQL Reference

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

DEGREE INTEGER If the RETURN operator represents
the return from column-organized data
processing of the insertion, update, or
deletion of rows, the DEGREE of the
RETURN operator represents the maximum
degree of all the subsections involved in
the statement. The degree of parallelism
for specific subsections is indicated by the
DEGREE argument on plan operators below
the RETURN operator.

If the insert/update/delete statements
is modifying a column-organized target
table, the DEGREE of INSERT/UPDATE/
DELETE operator is the number of parallel
subagents that are used for the INSERT/
UPDATE/DELETE operators.

DIRECT TRUE Direct fetch indicator.

DPESTFLG TRUE
FALSE

Indicates whether or not the DPNUMPRT
value is based on an estimate. Possible
values are "TRUE" (DPNUMPRT represents
the estimated number of accessed
data partitions) or "FALSE" (DPNUMPRT
represents the actual number of accessed
data partitions).

DPFXMLMV REFERENCE
COMBINATION

Indicates whether XML column data is
moved between DPF partitions.

DPLSTPRT NONE
CHARACTER

Represents accessed data partitions. It
is a comma-delimited list (for example:
1,3,5) or a hyphenated list (for example:
1-5) of accessed data partitions. A value
of "NONE" means that no data partition
remains after specified predicates have
been applied.

DPNUMPRT INTEGER Represents the actual or estimated number
of data partitions accessed.

DSTSEVER Server name Destination (ship from) server.

DUPLWARN TRUE
FALSE

Duplicates Warning flag.

Chapter 1. Structured Query Language (SQL) 2177

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

EARLYOUT LEFT
LEFT (REMOVE INNER DUPLICATES)
RIGHT
GROUPBY
NONE

Early out indicator. LEFT indicates that each
row from the outer table only needs to be
joined with at most one row from the inner
table. LEFT (REMOVE INNER DUPLICATES)
indicates that an attempt to remove some
duplicate rows from the inner table has
taken place. RIGHT indicates that each
row from the inner table only needs to
be joined with at most one row from the
outer table. NONE indicates no early out
processing. GROUPBY indicates that early
out processing is allowed because of a
group by operation.

ENVVAR Each row of this type will contain:

• Environment variable name
• Environment variable value

Environment variable affecting the
optimizer

ERRTOL Each row of this type will contain an
SQLSTATE and SQLCODE pair.

A list of errors to be tolerated.

EXTROWS Y
N
The argument does not show in the explain
tables and formatted output when the
value is "N".

Indicates that the maximum row size of the
system temporary table might be too large
to fit in a 32K page. Some rows might need
to be represented as a large object (LOB).

EVALUNCO TRUE Evaluate uncommitted data using lock
deferral. This is enabled with the
DB2_EVALUNCOMMITTED registry variable.

EXECUTID An opaque
binary token
formatted as
an hexadecimal
string representing
the executable ID.

Indicates the executable ID of the section
being explained.

FETCHMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
FETCH operator.

2178 IBM Db2 V11.5: SQL Reference

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

FILTER Each row of this type contains the following
items:

• Filter type identifier (BIT or RANGE)
• Target operator identifier
• Size, in bytes, for bit filters; blank for

range filters

Each item in the preceding list is separated
by a colon and a space.

Indicates that a hash join bit filter or a
hash join range filter is built at the current
operator and provides details for that filter.
The use of a filter allows the elimination
of rows as early as possible during query
execution.

A hash join bit filter is a space efficient
data structure that is used to test whether
an element is a member of a set. The
following is an example of a hash join bit
filter argument value:

BIT: 13: 8192

A range filter consists of a minimum and
a maximum value that defines the valid
range for a column value. The following
is an example of a hash join range filter
argument value:

RANGE: 13

FLTRAPPL TQ PUSHDOWN Indicates the bit filter application method
used by the optimizer. A value of "TQ
PUSHDOWN" indicates that the bit filter
operation has been pushed down. This
argument will not be included at all when
the optimizer does not use a pushdown
with the hash join.

GREEDY TRUE Indicates whether the optimizer used a
greedy algorithm to plan access.

GLOBLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
NO LOCK OBTAINED
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Represents global lock intent information
for a partitioned table object.

GROUPBYC TRUE
FALSE

Whether Group By columns were provided.
This argument can be associated with a
GRPBY operator or with a TEMP operator
when it is part of a query with multiple
distinct aggregations.

Chapter 1. Structured Query Language (SQL) 2179

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

GROUPBYN Integer Number of comparison columns. This
number may be less than the number
of columns present in the GROUP BY
clause of the SQL statement if predicates
eliminated the need to compare some
columns. This argument can be associated
with a GRPBY operator or with a TEMP
operator when it is part of a query with
multiple distinct aggregations.

GROUPBYR Each row of this type will contain:

• Ordinal value of column in group by
clause (followed by a colon and a space)

• Name of column

Group By requirement. This argument can
be associated with a GRPBY operator or
with a TEMP operator when it is part of a
query with multiple distinct aggregations.

GROUPS Integer Number of times the operator will repeat.

HASHCODE 24
32

Size (in bits) of hash join hash code used
for hash joins. A hash join hash code can
sometimes also be used by a table queue.

HASHTBSZ INTEGER The number of expected entries in the hash
table of a hash join.

IDXMSTLY TRUE Indicates whether the FETCH is performed
over block identifiers returned from a multi
dimensional clustered index.

IDXOVTMP TRUE
FALSE

Indicates whether the scan builds an index
or a fast integer sort structure for random
access of the temporary tables.

If value is "TRUE", the scan builds an
index over the temporary tables for random
access of the temporary tables.

If value is "FALSE", the scan builds a fast
integer sort structure for random access of
the temporary tables.

INNERCOL Each row of this type will contain:

• Ordinal value of column in order
(followed by a colon and a space)

• Name of column
• Order value

(A)
Ascending

(D)
Descending

Inner order columns.

INPUTXID A context node identifier INPUTXID identifies the input context node
used by the XSCAN operator.

2180 IBM Db2 V11.5: SQL Reference

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

ISCANMAX IGNORE
INTEGER

Override value for MAXPAGES argument on
ISCAN operator.

JN INPUT INNER
OUTER

Indicates if operator is the operator feeding
the inner or outer of a join.

JUMPSCAN TRUE
FALSE

Indicates that the index scan is a jump
scan.

LCKAVOID TRUE Lock avoidance: row access will avoid
locking committed data.

LISTENER TRUE
FALSE

Listener Table Queue indicator.

MAX CARD INTEGER The maximum possible output cardinality
for an operator. The value represents
the sum across all database partitions
on which the operator is executing in a
partitioned database environment.

MAXPAGES ALL
NONE
INTEGER

Maximum pages expected for Prefetch.

MAXRIDS NONE
INTEGER

Maximum Row Identifiers to be included in
each list prefetch request.

MXPPSCAN TRUE
FALSE

Provides additional information about how
MAXPAGES is calculated in the case
of a jump scan. A jump scan can be
conceptualized as multiple contiguous
scans separated by jumps.

If the value is "TRUE", then MAXPAGES
is the number of pages that are expected
to be accessed by each contiguous scan
individually.

If the value is "FALSE", then MAXPAGES is
the number of pages that are expected to
be accessed by all the contiguous scans in
total.

NUMROWS INTEGER Number of rows expected to be sorted.

ONEFETCH TRUE
FALSE

Indicates the GROUP BY conditions are
satisfied by the first row produced by the
input stream.

OPROFERR TRUE
FALSE

Indicates that one or more errors occurred
while parsing or applying the optimization
profile. For details, see explain diagnostic
messages.

Chapter 1. Structured Query Language (SQL) 2181

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

OUTERCOL Each row of this type will contain:

• Ordinal value of column in order
(followed by a colon and a space)

• Name of column
• Order value

(A)
Ascending

(D)
Descending

Outer order columns.

OUTERJN LEFT
RIGHT
FULL
LEFT (ANTI)
RIGHT (ANTI)

Outer join indicator.

OVERHEAD DOUBLE Optimizer used OVERHEAD value.

PARTCOLS Name of Column Partitioning columns for operator.

PBLKLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Positioning scan table lock intent.

PGLOLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Positioning scan global table lock intent.

PLANID Hexadecimal string representing a BIGINT
value

Identifier uniquely representing a query
plan configuration for a given statement.
The layout of the operators, accessed
objects and relevant operator arguments
and other plan properties affecting
performance are represented by this value.

PREFETCH DYNAMIC LIST
LIST
NONE
READAHEAD
SEQUENTIAL
SEQUENTIAL, READAHEAD

Type of prefetch eligible.

2182 IBM Db2 V11.5: SQL Reference

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

PFTCHSZ INTEGER Optimizer used PREFETCHSIZE value.

PROWLOCK EXCLUSIVE
NONE
REUSE SHARE
SHORT (INSTANT) SHARE
UPDATE

Positioning scan row lock intent.

PTABLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Positioning scan table lock intent.

RAND ACC TRUE Indicates that the regular TEMP table
allows random access. Random access is
required for the ZZJN operator.

REOPT ALWAYS
ONCE

The statement is optimized using bind-
in values for parameter markers, host
variables, and special registers.

RMTQTXT Query text Remote Query Text

RNG_PROD Function name Range producing function for extended
index access.

ROWLOCK EXCLUSIVE
NONE
REUSE SHARE
SHORT (INSTANT) SHARE
UPDATE

Row Lock Intent.

ROWWIDTH INTEGER Width of row to be sorted.

RSUFFIX Query text Remote SQL suffix.

SCANDIR FORWARD
REVERSE

Scan Direction.

SCANGRAN INTEGER Intrapartition parallelism, granularity of the
intrapartition parallel scan, expressed in
SCANUNITs.

SCANTYPE LOCAL PARALLEL Intrapartition parallelism, index scan, table
scan, or column-organized data scan.

SCANUNIT ROW
PAGE

Intrapartition parallelism, scan granularity
unit.

SEMEVID Hexadecimal string representing a BIGINT
value

Identifier for semantic environment at
the time the statement was compiled.
SEMEVID corresponds to monitoring
element SEMANTIC_ENV_ID.

Chapter 1. Structured Query Language (SQL) 2183

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

SEMIJOIN TRUE
FALSE

This argument on the HSJOIN operator
indicates whether column-organized
processing should deploy the semi-join
optimization technique to reduce the size
of the hash table that is created for large
hash join inner tables.

SHARED TRUE Intrapartition parallelism, shared TEMP
indicator.

SHRCSE TRUE Temporary table over common
subexpression shared between
subsections.

SKIP_INS TRUE Skip inserted. Row access will skip
uncommitted inserted rows. This behavior
is enabled with the DB2_SKIPINSERTED
registry variable or when currently
committed semantics are in effect.

SKIPDKEY TRUE Skip deleted keys. Row access will skip
uncommitted deleted keys. This behavior
is enabled with the DB2_SKIPDELETED
registry variable.

SKIPDROW TRUE Skip deleted rows. Row access will skip
uncommitted deleted rows. This behavior
is enabled with the DB2_SKIPDELETED
registry variable.

SKIPLOCK TRUE The concurrent access resolution "skip
locked data" is in effect.

SLOWMAT TRUE
FALSE

Slow Materialization flag.

SNGLPROD TRUE
FALSE

Intrapartition parallelism sort or temp
produced by a single agent.

SORTKEY Each row of this type will contain:

• Ordinal value of column in key (followed
by a colon and a space)

• Name of column
• Order value

(A)
Ascending

(D)
Descending

(R)
Random

Sort key columns.

2184 IBM Db2 V11.5: SQL Reference

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

SORTTYPE GLOBAL
MERGE
PARTITIONED
ROUND ROBIN
REPLICATED
SHARED

Intrapartition parallelism, sort type.

SRCSEVER Server name Source (ship to) server.

SPEED SLOW
FAST

"SLOW" indicates that the scan is expected
to progress slowly over the table. For
example, if the scan is the outer of a nested
loop join). "FAST" indicates that the scan
is expected to progress with higher speed.
This information is used to group scans
together for efficient sharing of bufferpool
records.

SPILLED INTEGER Estimated number of pages in SORT spill.

SQLCA Warning information Warnings and reason codes issued during
Explain operation.

STARJOIN YES The IXAND operator is part of a star join

STMTHEAP INTEGER Size of statement heap at start of
statement compile.

STMTID Hexadecimal string representing a BIGINT
value

Identifier uniquely representing a
normalized form of the SQL statement.
The statement normalization follows the
optimization profile's inexact matching
rules.

STREAM TRUE
FALSE

Remote source is streaming.

SYSTSENS YES
NO

Indicates that the SYSTIMESENSITIVE bind
option is in effect

TABLOCK EXCLUSIVE
INTENT EXCLUSIVE
INTENT NONE
INTENT SHARE
REUSE
SHARE
SHARE INTENT EXCLUSIVE
SUPER EXCLUSIVE
UPDATE

Table Lock Intent.

TBISOLVL UNCOMMITED READ
READ STABILITY
CURSOR STABILITY
REPEATABLE READ

Indicates the isolation level used by the
operator to access the specific table

TEMPSIZE INTEGER Temporary table page size.

Chapter 1. Structured Query Language (SQL) 2185

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

THROTTLE TRUE
FALSE

Throttling improves the performance of
other scans that would otherwise lag
behind and be forced to reread the same
pages. "TRUE" if the scan can be throttled.
"FALSE" if the scan must not be throttled.

TMPCMPRS YES
ELIGIBLE

The value YES indicates that compression
is applied. The value ELIGIBLE indicates
that compression may be applied if the
table becomes large enough. The absence
of TMPCMPRS indicates that the temporary
table is not compressed.

TQDEGREE INTEGER Intrapartition parallelism, number of
subagents accessing Table Queue.

If the TQ operator represents the
transition between column-organized
data processing and row-organized data
processing, the TQDEGREE argument
indicates the number of column-organized
processing subagents that are used to
process the query in parallel.

TQMERGE TRUE
FALSE

Merging (sorted) Table Queue indicator.

TQNUMBER INTEGER Table queue identification number.

TQREAD READ AHEAD
STEPPING
SUBQUERY STEPPING

Table Queue reading property.

TQSECNFM INTEGER Subsection number at the sending end of
the table queue.

TQSECNTO INTEGER Subsection number at the receiving end of
the table queue.

TQSEND BROADCAST
DIRECTED
SCATTER
SUBQUERY DIRECTED

Table Queue send property.

TQ TYPE LOCAL Intrapartition parallelism, Table Queue.

2186 IBM Db2 V11.5: SQL Reference

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

TQORIGIN ASYNCHRONY
XTQ
COLUMN-ORGANIZED DATA
ROW-ORGANIZED DATA

The reason that Table Queue was
introduced into the access plan.

COLUMN-ORGANIZED DATA indicates that
the TQ operator is being used to transfer
data from column-organized processing to
row-organized processing.

ROW-ORGANIZED DATA indicates that the
TQ operator is being used to transfer data
from row-organized processing to column-
organized processing.

COLUMN-ORGANIZED DATA or ROW-
ORGANIZED DATA values result in the TQ
operator being displayed as CTQ in the
access plan.

TRUNCTQ INPUT
OUTPUT
INPUT AND OUTPUT

Truncated Table Queue indicator. INPUT
indicates that truncation occurs on input
to the Table Queue. OUPUT indicates that
truncation occurs on output from the Table
Queue. INPUT and OUTPUT indicates that
truncation occurs on both input to the
Table Queue and on output from the Table
Queue.

TRUNCSRT TRUE Truncated sort (limits number of rows
produced).

TUPBLKSZ INTEGER Component of the total sort heap required
to perform a hash join that determines
the number of bytes that a tuple will be
stored in. This can be used by service to
diagnose memory, temporary table and to
some degree sort heap usage.

UNIQUE TRUE
FALSE
HASHED PARTIAL
HASHED COMPLETE

This operator eliminates rows having
duplicate values for a set of columns.

HASHED PARTIAL indicates that a partial
early distinct operation was performed
to efficiently remove many, if not all,
duplicates. This reduces the amount of
data that must be processed later in the
query evaluation.

HASHED COMPLETE indicates that hashing
is used to eliminate duplicates during
column-organized data processing.

UNIQKEY Each row of this type will contain:

• Ordinal value of column in key (followed
by a colon and a space)

• Name of Column

Unique key columns.

Chapter 1. Structured Query Language (SQL) 2187

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

UR_EXTRA TRUE Uncommitted read isolation, but with extra
processing to ensure correct isolation. This
access has extra table level locking; the
same table level locking as cursor stability.
Also, when the statement is executing,
the isolation level might upgrade to cursor
stability, for example, if an online load is
running concurrently.

Another part of the statement execution
plan will ensure the isolation level is
correct, such as a FETCH operator at a
higher isolation level.

USAGE SCALAR_SUBQUERY Indicates how the NLJOIN operator is
being used. SCALAR_SUBQUERY indicates
that the NLJOIN operator is being used to
apply a scalar subquery predicate.

Hash join is the only join method used
for column-organized tables. However, the
optimizer uses the NLJOIN operator to
model the application of scalar subqueries
during column-organized data processing.

One of the input legs to the NLJOIN
operator is the single value that is
computed by the scalar subquery. The
other input to the operator is the data
stream whose predicate references the
scalar value.

VISIBLE TRUE
FALSE

Whether shared scans are visible to other
shared scans. A shared scan that is visible
can influence the behavior of other scans.
Examples of affected behavior include start
location and throttling.

VOLATILE TRUE Volatile table

WRAPPING TRUE
FALSE

Whether a shared scan is allowed to start
at any record in the table and wrap once
it reaches the last record. Wrapping allows
bufferpool records to be shared with other
ongoing scans.

XFERRATE DOUBLE Optimizer used TRANSFERRATE value.

XDFOUT DECIMAL XDFOUT indicates the expected number of
documents to be returned by the XISCAN
operator for each context node.

XLOGID An identifier consisting of an SQL schema
name and the name of an index over XML
data

XLOGID identifies the index over XML data
chosen by the optimizer for the XISCAN
operator.

2188 IBM Db2 V11.5: SQL Reference

Table 335. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE
Value

Possible ARGUMENT_VALUE Values Description

XPATH An XPATH expression and result set in an
internal format

This argument indicates the evaluation
of an XPATH expression by the XSCAN
operator.

XPHYID An identifier consisting of an SQL schema
name and the name of a physical index
over XML data

XPHYID identifies the physical index that
is associated with an index over XML data
used by the XISCAN operator.

EXPLAIN_DIAGNOSTIC table
The EXPLAIN_DIAGNOSTIC table contains an entry for each diagnostic message produced for a particular
instance of an explained statement in the EXPLAIN_STATEMENT table.

The EXPLAIN_GET_MSGS table function queries the EXPLAIN_DIAGNOSTIC and
EXPLAIN_DIAGNOSTIC_DATA Explain tables and returns formatted messages.

Table 336. EXPLAIN_DIAGNOSTIC Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK,
FK

Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK,
FK

Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK,
FK

Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK,
FK

Schema, or qualifier, of source of Explain
request.

SOURCE_VERSION VARCHAR(64) No PK,
FK

Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No PK,
FK

Level of Explain information for which this row is
relevant. Valid values are:
O

Original text (as entered by user)
P

PLAN SELECTION

STMTNO INTEGER No PK,
FK

Statement number within package to which this
Explain information is related. Set to 1 for
dynamic Explain SQL statements. For static SQL
statements, this value is the same as the value
used for the SYSCAT.STATEMENTS catalog view.

Chapter 1. Structured Query Language (SQL) 2189

Table 336. EXPLAIN_DIAGNOSTIC Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

SECTNO INTEGER No PK,
FK

Section number within package that contains
this SQL statement. For dynamic Explain SQL
statements, this is the section number used to
hold the section for this statement at run time.
For static SQL statements, this value is the same
as the value used for the SYSCAT.STATEMENTS
catalog view.

DIAGNOSTIC_ID INTEGER No PK ID of the diagnostic for a particular instance of a
statement in the EXPLAIN_STATEMENT table.

CODE INTEGER No No A unique number assigned to each diagnostic
message. The number can be used by a message
API to retrieve the full text of the diagnostic
message.

EXPLAIN_DIAGNOSTIC_DATA table
The EXPLAIN_DIAGNOSTIC_DATA table contains message tokens for specific diagnostic messages that
are recorded in the EXPLAIN_DIAGNOSTIC table. The message tokens provide additional information that
is specific to the execution of the SQL statement that generated the message.

The EXPLAIN_GET_MSGS table function queries the EXPLAIN_DIAGNOSTIC and
EXPLAIN_DIAGNOSTIC_DATA Explain tables, and returns formatted messages.

Table 337. EXPLAIN_DIAGNOSTIC_DATA Table. PK means that the column is part of a primary key; FK means
that the column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain
request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant. Valid values are:
O

Original text (as entered by user)
P

PLAN SELECTION

2190 IBM Db2 V11.5: SQL Reference

Table 337. EXPLAIN_DIAGNOSTIC_DATA Table. PK means that the column is part of a primary key; FK means
that the column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

STMTNO INTEGER No FK Statement number within package to which this
Explain information is related. Set to 1 for
dynamic Explain SQL statements. For static SQL
statements, this value is the same as the value
used for the SYSCAT.STATEMENTS catalog view.

SECTNO INTEGER No FK Section number within package that contains
this SQL statement. For dynamic Explain SQL
statements, this is the section number used to
hold the section for this statement at run time.
For static SQL statements, this value is the same
as the value used for the SYSCAT.STATEMENTS
catalog view.

DIAGNOSTIC_ID INTEGER No PK ID of the diagnostic for a particular instance of a
statement in the EXPLAIN_STATEMENT table.

ORDINAL INTEGER No No Position of token in the full message text.

TOKEN VARCHAR(1000) Yes No Message token to be inserted into the full
message text; might be truncated.

TOKEN_LONG BLOB(3M) Yes No More detailed information, if available.

EXPLAIN_INSTANCE table
The EXPLAIN_INSTANCE table is the main control table for all Explain information. Each row of data in the
Explain tables is explicitly linked to one unique row in this table.

The EXPLAIN_INSTANCE table gives basic information about the source of the SQL statements being
explained as well as information about the environment in which the explanation took place.

Table 338. EXPLAIN_INSTANCE Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK Schema, or qualifier, of source of Explain
request.

SOURCE_VERSION VARCHAR(64) No PK Version of the source of the Explain request.

Chapter 1. Structured Query Language (SQL) 2191

Table 338. EXPLAIN_INSTANCE Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_OPTION CHAR(1) No No Indicates what Explain Information was
requested for this request.

Possible values are:
P

PLAN SELECTION
S

Section Explain

SNAPSHOT_TAKEN CHAR(1) No No Indicates whether an Explain Snapshot was
taken for this request.

Possible values are:
Y

Yes, an Explain Snapshot(s) was taken
and stored in the EXPLAIN_STATEMENT
table. Regular Explain information was also
captured.

N
No Explain Snapshot was taken. Regular
Explain information was captured.

O
Only an Explain Snapshot was taken. Regular
Explain information was not captured.

DB2_VERSION CHAR(7) No No Release number for the Db2 product that
processed this explain request. Format is:
VV.RR.M., where:
vv

Version number
rr

Release number
m

Modification pack
To see the complete product signature
information for an EXPLAIN instance, review
BLDLEVEL argument row recorded in the
“EXPLAIN_ARGUMENT table” on page 2174.

SQL_TYPE CHAR(1) No No Indicates whether the Explain Instance was for
static or dynamic SQL.

Possible values are:
S

Static SQL
D

Dynamic SQL

2192 IBM Db2 V11.5: SQL Reference

Table 338. EXPLAIN_INSTANCE Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

QUERYOPT INTEGER No No Indicates the query optimization class used
by the SQL Compiler at the time of the
Explain invocation. The value indicates what
level of query optimization was performed by
the SQL Compiler for the SQL statements being
explained.

BLOCK CHAR(1) No No Indicates what type of cursor blocking was used
when compiling the SQL statements.

Possible values are:
N

No Blocking
U

Block Unambiguous Cursors
B

Block All Cursors

ISOLATION CHAR(2) No No Indicates what type of isolation was used when
compiling the SQL statements.

Possible values are:
RR

Repeatable Read
RS

Read Stability
CS

Cursor Stability
UR

Uncommitted Read

BUFFPAGE INTEGER No No Contains the value of the buffpage database
configuration setting at the time of the Explain
invocation.

Important: The buffpage database
configuration is deprecated and might be remove
in a future release.

AVG_APPLS INTEGER No No Contains the value of the avg_appls
configuration parameter at the time of the
Explain invocation.

SORTHEAP INTEGER No No Contains the value of the sortheap database
configuration parameter at the time of the
Explain invocation.

LOCKLIST INTEGER No No Contains the value of the locklist database
configuration parameter at the time of the
Explain invocation.

Chapter 1. Structured Query Language (SQL) 2193

Table 338. EXPLAIN_INSTANCE Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

MAXLOCKS SMALLINT No No Contains the value of the maxlocks database
configuration parameter at the time of the
Explain invocation.

LOCKS_AVAIL INTEGER No No Contains the number of locks assumed to be
available by the optimizer for each user. (Derived
from locklist and maxlocks.)

CPU_SPEED DOUBLE No No Contains the value of the cpuspeed database
manager configuration parameter at the time of
the Explain invocation.

REMARKS VARCHAR(254) Yes No User-provided comment.

DBHEAP INTEGER No No Contains the value of the dbheap database
configuration parameter at the time of Explain
invocation.

COMM_SPEED DOUBLE No No Contains the value of the comm_bandwidth
database configuration parameter at the time of
Explain invocation.

PARALLELISM CHAR(2) No No Possible values are:

• N = No parallelism
• P = Intrapartition parallelism
• IP = Interpartition parallelism
• BP = Intrapartition parallelism and

interpartition parallelism

DATAJOINER CHAR(1) No No Possible values are:

• N = Non-federated systems plan
• Y = Federated systems plan

EXECUTABLE_ID VARCHAR(32)
FOR BIT DATA

Yes No A binary token generated on the data server that
uniquely identifies the SQL statement section
that was executed.

EXECUTION_TIME TIMESTAMP Yes No Time the section started execution.

EXPLAIN_OBJECT table
The EXPLAIN_OBJECT table identifies those data objects required by the access plan generated to satisfy
the SQL statement.

Table 339. EXPLAIN_OBJECT Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

2194 IBM Db2 V11.5: SQL Reference

Table 339. EXPLAIN_OBJECT Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OBJECT_SCHEMA VARCHAR(128) No No Schema to which this object belongs.

OBJECT_NAME VARCHAR(128) No No Name of the object.

OBJECT_TYPE CHAR(2) No No Descriptive label for the type of object.

CREATE_TIME TIMESTAMP Yes No Time of Object's creation; null if a table function.

STATISTICS_TIME TIMESTAMP Yes No Last time of update to statistics for this object;
null if statistics do not exist for this object.

COLUMN_COUNT SMALLINT No No Number of columns in this object.

ROW_COUNT INTEGER No No Estimated number of rows in this object.

WIDTH INTEGER No No The average width of the object in bytes. Set to -1
for an index.

PAGES BIGINT No No Estimated number of pages that the object
occupies in the buffer pool. Set to -1 for a table
function.

DISTINCT CHAR(1) No No Indicates whether the rows in the object are
distinct (that is, whether there are duplicates).

Possible values are:
Y

Yes
N

No

TABLESPACE_NAME VARCHAR(128) Yes No Name of the table space in which this object is
stored; set to null if no table space is involved.

Chapter 1. Structured Query Language (SQL) 2195

Table 339. EXPLAIN_OBJECT Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

OVERHEAD DOUBLE No No Total estimated overhead, in milliseconds, for a
single random I/O to the specified table space.
Includes controller overhead, disk seek, and
latency times. Set to -1 if:

• no table space is involved
• a partitioned object is involved and the

respective table spaces for the partitions have
different values

• a partitioned object is involved and the
EXPLAIN_OBJECT table is populated using
section explain

TRANSFER_RATE DOUBLE No No Estimated time to read a data page, in
milliseconds, from the specified table space. Set
to -1 if:

• no table space is involved
• a partitioned object is involved and the

respective table spaces for the partitions have
different values

• a partitioned object is involved and the
EXPLAIN_OBJECT table is populated using
section explain

PREFETCHSIZE INTEGER No No Number of data pages to be read when prefetch
is performed. Set to -1 if:

• no table space is involved
• a partitioned object is involved and the

respective table spaces for the partitions have
different values

• a partitioned object is involved and the
EXPLAIN_OBJECT table is populated using
section explain

EXTENTSIZE INTEGER No No Size of extent, in data pages. This many pages are
written to one container in the table space before
switching to the next container. Set to -1 for a
table function.

CLUSTER DOUBLE No No Degree of data clustering with the index. If >= 1,
this is the CLUSTERRATIO. If >= 0 and < 1, this is
the CLUSTERFACTOR. Set to -1 for a table, table
function, or if this statistic is not available.

NLEAF BIGINT No No Number of leaf pages this index object's values
occupy. Set to -1 for a table, table function, or if
this statistic is not available.

NLEVELS INTEGER No No Number of index levels in this index object's tree.
Set to -1 for a table, table function, or if this
statistic is not available.

2196 IBM Db2 V11.5: SQL Reference

Table 339. EXPLAIN_OBJECT Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

FULLKEYCARD BIGINT No No Number of distinct full key values contained in
this index object. Set to -1 for a table, table
function, or if this statistic is not available.

OVERFLOW BIGINT No No Total number of overflow records in the table.
Set to -1 for an index, table function, or if this
statistic is not available.

FIRSTKEYCARD BIGINT No No Number of distinct first key values. Set to -1 for
a table, table function, or if this statistic is not
available.

FIRST2KEYCARD BIGINT No No Number of distinct first key values using the first
2 columns of the index. Set to -1 for a table, table
function, or if this statistic is not available.

FIRST3KEYCARD BIGINT No No Number of distinct first key values using the first
3 columns of the index. Set to -1 for a table, table
function, or if this statistic is not available.

FIRST4KEYCARD BIGINT No No Number of distinct first key values using the first
4 columns of the index. Set to -1 for a table, table
function, or if this statistic is not available.

SEQUENTIAL_PAGES BIGINT No No Number of leaf pages located on disk in index key
order with few or no large gaps between them.
Set to -1 for a table, table function, or if this
statistic is not available.

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of pages
in the range of pages occupied by the index,
expressed as a percentage (integer between 0
and 100). Set to -1 for a table, table function, or if
this statistic is not available.

STATS_SRC CHAR(1) No No Indicates the source for the statistics. Set to 1 if
from single node.

AVERAGE_SEQUENCE_
GAP

DOUBLE No No Gap between sequences.

AVERAGE_SEQUENCE_
FETCH_GAP

DOUBLE No No Gap between sequences when fetching using the
index.

AVERAGE_SEQUENCE_
PAGES

DOUBLE No No Average number of index pages accessible in
sequence.

AVERAGE_SEQUENCE_
FETCH_PAGES

DOUBLE No No Average number of table pages accessible in
sequence when fetching using the index.

AVERAGE_RANDOM_
PAGES

DOUBLE No No Average number of random index pages between
sequential page accesses.

AVERAGE_RANDOM_
FETCH_PAGES

DOUBLE No No Average number of random table pages between
sequential page accesses when fetching using
the index.

NUMRIDS BIGINT No No Total number of row identifiers in the index.

Chapter 1. Structured Query Language (SQL) 2197

Table 339. EXPLAIN_OBJECT Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

NUMRIDS_DELETED BIGINT No No Total number of psuedo-deleted row identifiers in
the index.

NUM_EMPTY_LEAFS BIGINT No No Total number of empty leaf pages in the index.

ACTIVE_BLOCKS BIGINT No No Total number of active multidimensional
clustering (MDC) blocks in the table.

NUM_DATA_PART INTEGER No No Number of data partitions for a partitioned table.
Set to 1 if the table is not partitioned.

NULLKEYS CHAR(1) Yes No Specifies whether null keys are indexed.

• N = Keys that contain all null values are
not indexed (not considering columns or
expressions from the INCLUDE clause)

• Y = Keys that contain all null values are indexed
(not considering columns or expressions from
the INCLUDE clause)

A null value indicates that this object is not an
index.

OBJECT_TENANTID INTEGER No No ID for tenant where object is defined.

Table 340. Possible OBJECT_TYPE Values

Value Description

IX Index

NK Nickname

RX RCT index

DP Data partitioned table

TA Table

TF Table function

+A Compiler-referenced alias

+C Compiler-referenced constraint

+F Compiler-referenced function

+G Compiler-referenced trigger

+N Compiler-referenced nickname

+T Compiler-referenced table

+V Compiler-referenced view

XI Logical XML index

PI Physical XML index

LI Partitioned index

2198 IBM Db2 V11.5: SQL Reference

Table 340. Possible OBJECT_TYPE Values (continued)

Value Description

LX Partitioned logical XML index

LP Partitioned physical XML index

CO Column-organized table

EXPLAIN_OPERATOR table
The EXPLAIN_OPERATOR table contains all the operators needed to satisfy the query statement by the
query compiler.

Table 341. EXPLAIN_OPERATOR Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No PK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No PK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No PK Statement number within package to which this
explain information is related.

SECTNO INTEGER No PK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No PK Unique ID for this operator within this query.

OPERATOR_TYPE CHAR(6) No No Descriptive label for the type of operator.

TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
executing the chosen access plan up to and
including this operator.

IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page I/Os)
of executing the chosen access plan up to and
including this operator.

CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions)
of executing the chosen access plan up to and
including this operator.

FIRST_ROW_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the first row for the access plan up to
and including this operator. This value includes
any initial overhead required.

Chapter 1. Structured Query Language (SQL) 2199

Table 341. EXPLAIN_OPERATOR Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

RE_TOTAL_COST DOUBLE No No Estimated cumulative cost (in timerons) of
fetching the next row for the chosen access plan
up to and including this operator.

RE_IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page I/Os)
of fetching the next row for the chosen access
plan up to and including this operator.

RE_CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions)
of fetching the next row for the chosen access
plan up to and including this operator.

COMM_COST DOUBLE No No Estimated cumulative communication cost (in
TCP/IP frames) of network traffic flowing across
a single network adapter when executing the
chosen access plan up to and including this
operator. (See notes 1 and 2.)

FIRST_COMM_COST DOUBLE No No Estimated cumulative communications cost (in
TCP/IP frames) of network traffic flowing across
a single network adapter when fetching the
first row for the chosen access plan up to and
including this operator. This value includes any
initial overhead required. (See notes 1 and 2.)

BUFFERS DOUBLE No No Estimated buffer requirements for this operator
and its inputs.

REMOTE_TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of
performing operation(s) on remote database(s).

REMOTE_COMM_COST DOUBLE No No Estimated cumulative communication cost of
executing the chosen remote access plan up to
and including this operator.

Note:

1. If there is more than one network adapter involved, the cumulative communication cost for the
adapter with the highest value is returned.

2. This value only includes the costs of network traffic between physical machines. It does not
include the virtual communication costs between node partitions on the same physical machine in
a partitioned database environment.

Table 342. OPERATOR_TYPE values

Value Description

CMPEXP Represent the projection of columns and expression from a subselect in the optimized
version of an SQL statement

DELETE Delete

EISCAN Extended Index Scan

FETCH Fetch

FILTER Filter rows

2200 IBM Db2 V11.5: SQL Reference

Table 342. OPERATOR_TYPE values (continued)

Value Description

GENROW Generate Row

GRPBY Group By

HSJOIN Hash Join

INSERT Insert

IXAND Dynamic Bitmap Index ANDing

IXSCAN Relational index scan

MSJOIN Merge Scan Join

NLJOIN Nested loop Join

REBAL Rebalance rows between SMP subagents

RETURN Result

RIDSCN Row Identifier (RID) Scan

RPD Remote PushDown

SHIP Ship query to remote system

SORT Sort

TBFUNC In-stream table function operator

TBSCAN Table Scan

TEMP Temporary Table Construction

TQ Table Queue

UNION Union

UNIQUE Duplicate Elimination

UPDATE Update

XISCAN Index scan over XML data

XSCAN XML document navigation scan

XANDOR Index ANDing and ORing over XML data

ZZJOIN Zigzag join

EXPLAIN_PREDICATE table
The EXPLAIN_PREDICATE table identifies which predicates are applied by a specific operator.

Table 343. EXPLAIN_PREDICATE Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

Chapter 1. Structured Query Language (SQL) 2201

Table 343. EXPLAIN_PREDICATE Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

PREDICATE_ID INTEGER No No Unique ID for this predicate for the specified
operator.

A value of "-1" is shown for operator predicates
constructed by the Explain tool which are
not optimizer objects and do not exist in the
optimizer plan.

HOW_APPLIED CHAR(10) No No How predicate is being used by the specified
operator.

WHEN_EVALUATED CHAR(3) No No Indicates when the subquery used in this
predicate is evaluated.

Possible values are:
blank

This predicate does not contain a subquery.
EAA

The subquery used in this predicate is
evaluated at application (EAA). That is, it is
re-evaluated for every row processed by the
specified operator, as the predicate is being
applied.

EAO
The subquery used in this predicate is
evaluated at open (EAO). That is, it is
re-evaluated only once for the specified
operator, and its results are re-used in the
application of the predicate for each row.

MUL
There is more than one type of subquery in
this predicate.

RELOP_TYPE CHAR(2) No No The type of relational operator used in this
predicate.

2202 IBM Db2 V11.5: SQL Reference

Table 343. EXPLAIN_PREDICATE Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

SUBQUERY CHAR(1) No No Whether or not a data stream from a subquery is
required for this predicate. There may be multiple
subquery streams required.

Possible values are:
N

No subquery stream is required
Y

One or more subquery streams is required

FILTER_FACTOR DOUBLE No No The estimated fraction of rows that will be
qualified by this predicate.

A value of "-1" is shown when FILTER_FACTOR is
not applicable. FILTER_FACTOR is not applicable
for operator predicates constructed by the
Explain tool which are not optimizer objects and
do not exist in the optimizer plan.

PREDICATE_TEXT CLOB(2M) Yes No The text of the predicate as recreated from the
internal representation of the SQL or XQuery
statement. If the value of a host variable, special
register, or parameter marker is used during
compilation of the statement, this value will
appear at the end of the predicate text enclosed
in a comment.

The value will be stored in the
EXPLAIN_PREDICATE table only if the statement
is executed by a user who has DBADM authority,
or if the DB2_VIEW_REOPT_VALUES registry
variable is set to YES; otherwise, an empty
comment will appear at the end of the predicate
text.

Null if not available.

RANGE_NUM INTEGER Yes No Range of data partition elimination predicates,
which enables the grouping of predicates that are
used for data partition elimination by range. Null
value for all other predicate types.

INDEX_COLSEQ INTEGER No No Indicates the index column that the predicate
belongs to if it is part of a key predicate. A key
predicate always belongs to one index key part.

A value of "-1" is shown for predicates that are
not part of a key predicate.

Table 344. Possible HOW_APPLIED Values

Value Description

BIT_FLTR Predicate is applied as a bit filter

Chapter 1. Structured Query Language (SQL) 2203

Table 344. Possible HOW_APPLIED Values (continued)

Value Description

BSARG Evaluated as a sargable predicate once for every block

DPSTART Start key predicate used in data partition elimination

DPSTOP Stop key predicate used in data partition elimination

ESARG Evaluated as a sargable predicate by external reader.

JOIN Used to join tables

RANGE_FLTR Predicate is applied as a range filter

RESID Evaluated as a residual predicate

SARG Evaluated as a sargable predicate for index or data page

GAP_START Used as a start condition on an index gap

GAP_STOP Used as a stop condition on an index gap

START Used as a start condition

STOP Used as a stop condition

FEEDBACK Zigzag join feedback predicate

Table 345. Possible RELOP_TYPE Values

Value Description

blanks Not Applicable

EQ Equals

GE Greater Than or Equal

GT Greater Than

IN In list

IC In list, sorted during query optimization

IR In list, sorted at runtime

LE Less Than or Equal

LK Like

LT Less Than

NE Not Equal

NL Is Null

NN Is Not Null

RE REGEXP_LIKE

EXPLAIN_STATEMENT table
The EXPLAIN_STATEMENT table contains the text of the SQL statement as it exists for the different levels
of Explain information.

The original SQL statement as entered by the user is stored in this table along with the version used
(by the optimizer) to choose an access plan to satisfy the SQL statement. The latter version may bear

2204 IBM Db2 V11.5: SQL Reference

little resemblance to the original as it may have been rewritten or enhanced with additional predicates
as determined by the SQL Compiler. In addition, if statement concentrator is enabled and the statement
was changed as a result of statement concentrator, the effective SQL statement will also be stored in this
table. This statement will resemble the original statement except that the literal values will be replaced
with system generated named parameter markers. The plan information will be based on the effective
statement in this case.

Table 346. EXPLAIN_STATEMENT Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK,
FK

Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No PK,
FK

Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK,
FK

Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK,
FK

Schema, or qualifier, of source of Explain
request.

SOURCE_VERSION VARCHAR(64) No PK,
FK

Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No PK Level of Explain information for which this row is
relevant.

Valid values are:
E

Effective SQL text
F

Statement with row and column access
control applied, before optimization

O
Original Text (as entered by user)

P
PLAN SELECTION

S
Section Explain

STMTNO INTEGER No PK Statement number within package to which
this explain information is related. Set to 1 for
dynamic Explain SQL statements. For static SQL
statements, this value is the same as the value
used for the SYSCAT.STATEMENTS catalog view.

SECTNO INTEGER No PK Section number within package that contains
this SQL statement. For dynamic Explain SQL
statements, this is the section number used to
hold the section for this statement at runtime.
For static SQL statements, this value is the same
as the value used for the SYSCAT.STATEMENTS
catalog view.

Chapter 1. Structured Query Language (SQL) 2205

Table 346. EXPLAIN_STATEMENT Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.
For dynamic SQL statements (excluding the
EXPLAIN SQL statement) issued through CLP
or CLI, the default value is a sequentially
incremented value. Otherwise, the default value
is the value of STMTNO for static SQL statements
and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.
For dynamic SQL statements issued through
CLP (excluding the EXPLAIN SQL statement),
the default value is "CLP". For dynamic SQL
statements issued through CLI (excluding the
EXPLAIN SQL statement), the default value is
"CLI". Otherwise, the default value used is
blanks.

STATEMENT_TYPE CHAR(2) No No Descriptive label for type of query being
explained.

Possible values are:
CL

Call
CP

Compound SQL (Dynamic)
D

Delete
DC

Delete where current of cursor
I

Insert
M

Merge
S

Select
SI

Set Integrity or Refresh Table
U

Update
UC

Update where current of cursor

2206 IBM Db2 V11.5: SQL Reference

Table 346. EXPLAIN_STATEMENT Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

UPDATABLE CHAR(1) No No Indicates if this statement is considered
updatable. This is particularly relevant to SELECT
statements which may be determined to be
potentially updatable.

Possible values are:
' '

Not applicable (blank)
N

No
Y

Yes

DELETABLE CHAR(1) No No Indicates if this statement is considered
deletable. This is particularly relevant to SELECT
statements which may be determined to be
potentially deletable.

Possible values are:
' '

Not applicable (blank)
N

No
Y

Yes

TOTAL_COST DOUBLE No No Estimated total cost (in timerons) of executing
the chosen access plan for this statement; set
to 0 (zero) if EXPLAIN_LEVEL is O or E (original
or effective text) since no access plan has been
chosen at this time.

STATEMENT_TEXT CLOB(2M) No No Text or portion of the text of the SQL statement
being explained. The text shown for the Plan
Selection or Section Explain levels of Explain
has been reconstructed from the internal
representation and is SQL-like in nature; that is,
the reconstructed statement is not guaranteed to
follow correct SQL syntax.

SNAPSHOT BLOB(10M) Yes No Snapshot of internal representation for this SQL
statement at the Explain_Level shown.

Column is set to NULL if EXPLAIN_LEVEL is not
P (Plan Selection) since no access plan has been
chosen at the time that this specific version of
the statement is captured.

Chapter 1. Structured Query Language (SQL) 2207

Table 346. EXPLAIN_STATEMENT Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

QUERY_DEGREE INTEGER No No Indicates the degree of intrapartition parallelism
at the time of Explain invocation. For the original
statement, this contains the directed degree
of intrapartition parallelism. Otherwise, this
contains the degree of intrapartition parallelism
generated for the plan to use.

EXPLAIN_STREAM table
The EXPLAIN_STREAM table represents the input and output data streams between individual operators
and data objects. The data objects themselves are represented in the EXPLAIN_OBJECT table. The
operators involved in a data stream are to be found in the EXPLAIN_OPERATOR table.

Table 347. EXPLAIN_STREAM Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key.

Column Name Data Type Nullable
?

Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain
request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic
statement was explained or name of the source
file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is
relevant.

STMTNO INTEGER No FK Statement number within package to which this
explain information is related.

SECTNO INTEGER No FK Section number within package to which this
explain information is related.

STREAM_ID INTEGER No No Unique ID for this data stream within the
specified operator.

SOURCE_TYPE CHAR(1) No No Indicates the source of this data stream:
O

Operator
D

Data Object

SOURCE_ID SMALLINT No No Unique ID for the operator within this query that
is the source of this data stream. Set to -1 if
SOURCE_TYPE is 'D'.

2208 IBM Db2 V11.5: SQL Reference

Table 347. EXPLAIN_STREAM Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

TARGET_TYPE CHAR(1) No No Indicates the target of this data stream:
O

Operator
D

Data Object

TARGET_ID SMALLINT No No Unique ID for the operator within this query that
is the target of this data stream. Set to -1 if
TARGET_TYPE is 'D'.

OBJECT_SCHEMA VARCHAR(128) Yes No Schema to which the affected data object
belongs. Set to null if both SOURCE_TYPE and
TARGET_TYPE are 'O'.

OBJECT_NAME VARCHAR(128) Yes No Name of the object that is the subject of data
stream. Set to null if both SOURCE_TYPE and
TARGET_TYPE are 'O'.

STREAM_COUNT DOUBLE No No Estimated cardinality of data stream.

COLUMN_COUNT SMALLINT No No Number of columns in data stream.

PREDICATE_ID INTEGER No No If this stream is part of a subquery for a
predicate, the predicate ID will be reflected here,
otherwise the column is set to -1.

COLUMN_NAMES CLOB(2M) Yes No This column contains the names and ordering
information of the columns involved in this
stream.

These names will be in the format of:

NAME1(A) + NAME2(D) + NAME3(E) + NAME4

Where (A) indicates a column in ascending order,
(D) indicates a column in descending order, and
no ordering information indicates that either the
column is not ordered or ordering is not relevant.

(E) indicates a column in a column-organized
table which is encoded as a result of
compression, and can occur with or without
ordering information.

PMID SMALLINT No No Distribution map ID.

Chapter 1. Structured Query Language (SQL) 2209

Table 347. EXPLAIN_STREAM Table. PK means that the column is part of a primary key; FK means that the
column is part of a foreign key. (continued)

Column Name Data Type Nullable
?

Key? Description

SINGLE_NODE CHAR(5) Yes No Indicates whether this data stream is on a single
or on multiple database partitions:
MULT

On multiple database partitions
COOR

On coordinator node
HASH

Directed using hashing
RID

Directed using the row ID
FUNC

Directed using a function (HASHEDVALUE() or
DBPARTITIONNUM())

CORR
Directed using a correlation value

Numeric
Directed to predetermined single node

PARTITION_COLUMNS CLOB(2M) Yes No List of the columns on which this data stream is
distributed.

SEQUENCE_SIZES CLOB(2M) Yes No Lists the expected sequence size for XML
columns, or shows "NA" (not applicable) for any
non-XML columns in the data stream.

Set to null if there is not at least one XML column
in the data stream.

OBJECT_TENANTID INTEGER Yes No ID for tenant where object is defined.

OBJECT_METRICS table
The OBJECT_METRICS table contains runtime statistics collected for each object referenced in a specific
execution of a section (identified by executable ID) at a specific time (identified by execution time).

If object statistics are collected on multiple database members, there will be a row per database member
for each object. If it is a partitioned object, then there will be one row per data partition.

The OBJECT_METRICS table is populated only if section actuals were captured by the activity event
monitor.

Table 348. OBJECT_METRICS table

Column Name Data Type Nullable
?

Key? Description

EXECUTABLE_ID VARCHAR(32)
FOR BIT DATA

No PK A binary token generated on the data server that
uniquely identifies the SQL statement section
that was executed.

EXECUTION_TIME TIMESTAMP No PK Time the section started execution.

OBJECT_SCHEMA VARCHAR(128) No PK Schema to which this object belongs.

2210 IBM Db2 V11.5: SQL Reference

Table 348. OBJECT_METRICS table (continued)

Column Name Data Type Nullable
?

Key? Description

OBJECT_NAME VARCHAR(128) No PK Name of the object.

OBJECT_TYPE CHAR(2) No PK Descriptive label for the type of object. Possible
values:
IX

Index
DP

Data partitioned table
TA

Table
PI

Physical XML Index
LI

Partitioned index
LP

Partitioned physical XML index

OBJECT_TENANTID INTEGER No PK ID for tenant where object is defined.

MEMBER SMALLINT No PK The database member where the object statistics
is collected.

DATA_PARTITION_ID INTEGER No PK The identifier of the data partition for which
information is returned . This element is
applicable only to partitioned tables or indexes.

ROWS_READ BIGINT Yes No The total number of rows read.

ROWS_INSERTED BIGINT Yes No The total number of row insertions attempted.

ROWS_UPDATED BIGINT Yes No The total number of row updates attempted.

ROWS_DELETED BIGINT Yes No The total number of row deletions attempted.

OVERFLOW_CREATES BIGINT Yes No The number of overflowed rows created on this
table object.

OVERFLOW_ACCESSES BIGINT Yes No The number of accesses (reads and writes) to
overflowed rows of this table object.

LOCK_WAIT_TIME BIGINT Yes No The total elapsed time spent waiting for local
locks. The value is given in milliseconds.

LOCK_WAIT_TIME_
GLOBAL

BIGINT Yes No The total elapsed time spent waiting for global
locks. The value is given in milliseconds.

LOCK_WAITS BIGINT Yes No The total number of times that the section waited
on locks.

LOCK_WAITS_
GLOBAL

BIGINT Yes No The total number of times that the section waited
on global locks.

LOCK_ESCALS BIGINT Yes No The total number of times that local locks have
been escalated.

LOCK_ESCALS_
GLOBAL

BIGINT Yes No The total number of times that global locks have
been escalated.

Chapter 1. Structured Query Language (SQL) 2211

Table 348. OBJECT_METRICS table (continued)

Column Name Data Type Nullable
?

Key? Description

DIRECT_WRITES BIGINT Yes No The total number of write operations that do not
use a buffer pool.

DIRECT_WRITE_REQS BIGINT Yes No The total number of requests to perform a direct
write of one or more sectors of data.

DIRECT_READS BIGINT Yes No The total number of read operations that do not
use a buffer pool.

DIRECT_READ_REQS BIGINT Yes No The total number of requests to perform a direct
read of one or more sectors of data.

OBJECT_DATA_
L_READS

BIGINT Yes No Indicates the number of data pages which have
been requested for the table (logical).

OBJECT_DATA_
P_READS

BIGINT Yes No Indicates the number of data pages read in for
the table (physical).

OBJECT_DATA_
GBP_L_READS

BIGINT Yes No The number of times a Group Buffer Pool (GBP)
dependent data page was attempted to be read
for the table from the group buffer pool because
the page was either invalid or not present in the
Local Buffer Pool (LBP).

OBJECT_DATA_
GBP_P_READS

BIGINT Yes No The number of times a Group Buffer Pool (GBP)
dependent data page was read for the table into
the local buffer pool from disk because it was not
found in the group buffer pool.

OBJECT_DATA_
GBP_INVALID_PAGES

BIGINT Yes No The number of times a data page for XML Storage
(XDAs) was attempted to be read for the table
from the group buffer pool because the page was
invalid in the local buffer pool.

OBJECT_DATA_
LBP_PAGES_FOUND

BIGINT Yes No The number of times a data page for the table
was present in the local buffer pool.

OBJECT_DATA_
GBP_INDEP_PAGES_
FOUND_IN_LBP

BIGINT Yes No The number of group buffer pool (GBP)
independent data pages found in the local buffer
pool (LBP) by the agent.

OBJECT_XDA_
L_READS

BIGINT Yes No Indicates the number of data pages for XML
Storage (XDAs) which have been requested for
the table (logical).

OBJECT_XDA_
P_READS

BIGINT Yes No Indicates the number of data pages for XML
storage (XDAs) read in for the table (physical).

OBJECT_XDA_
GBP_L_READS

BIGINT Yes No The number of times a Group Buffer Pool (GBP)
dependent data page for XML Storage (XDAs) was
attempted to be read for the table from the group
buffer pool because the page was either invalid
or not present in the Local Buffer Pool (LBP).

OBJECT_XDA_
GBP_P_READS

BIGINT Yes No The number of times a Group Buffer Pool (GBP)
dependent data page for XML Storage (XDAs) was
read for the table into the local buffer pool from
disk because it was not found in the GBP.

2212 IBM Db2 V11.5: SQL Reference

Table 348. OBJECT_METRICS table (continued)

Column Name Data Type Nullable
?

Key? Description

OBJECT_XDA_
GBP_INVALID_PAGES

BIGINT Yes No The number of times a data page was attempted
to be read for the table from the group buffer
pool because the page was invalid in the local
buffer pool.

OBJECT_XDA_
LBP_PAGES_FOUND

BIGINT Yes No The number of times a XML Storage (XDAs) data
page for the table was present in the local buffer
pool.

OBJECT_XDA_
GBP_INDEP_PAGES_
FOUND_IN_LBP

BIGINT Yes No The number of group buffer pool (GBP)
independent XML storage object (XDA) data
pages found in the local buffer pool (LBP) by the
agent.

OBJECT_INDEX_
L_READS

BIGINT Yes No Indicates the number of index pages which have
been requested for the index (logical).

OBJECT_INDEX_
P_READS

BIGINT Yes No Indicates the number of index pages read in for
the index (physical).

OBJECT_INDEX_
GBP_L_READS

BIGINT Yes No The number of times a Group Buffer Pool (GBP)
dependent index page was attempted to be read
for the index from the group buffer pool because
the page was either invalid or not present in the
Local Buffer Pool (LBP).

OBJECT_INDEX_
GBP_P_READS

BIGINT Yes No The number of times a Group Buffer Pool (GBP)
dependent index page was read for the index into
the local buffer pool from disk because it was not
found in the GBP.

OBJECT_INDEX_
GBP_INVALID_PAGES

BIGINT Yes No The number of times an index page was
attempted to be read for the index from the
group buffer pool because the page was invalid
in the local buffer pool.

OBJECT_INDEX_
LBP_PAGES_FOUND

BIGINT Yes No The number of times an index page for the index
was present in the local buffer pool.

OBJECT_INDEX_
GBP_INDEP_PAGES_
FOUND_IN_LBP

BIGINT Yes No The number of group buffer pool (GBP)
independent index pages found in the local buffer
pool (LBP) by the agent.

OBJECT_COL_L_READS BIGINT Yes No The number of column-organized pages that are
logically read from the buffer pool for a table.

OBJECT_COL_P_READS BIGINT Yes No The number of column-organized pages that are
physically read for a table.

OBJECT_COL_GBP_
L_READS

BIGINT Yes No The number of times that a group buffer
pool (GBP) dependent column-organized page is
requested from the GBP for a table. The page is
requested because a valid version of the page
does not exist in the local buffer pool (LBP).

Chapter 1. Structured Query Language (SQL) 2213

Table 348. OBJECT_METRICS table (continued)

Column Name Data Type Nullable
?

Key? Description

OBJECT_COL_GBP_
P_READS

BIGINT Yes No The number of times that a group buffer pool
(GBP) dependent column-organized page is read
into the local buffer pool (LBP) from disk for a
table. The page is read from disk into the LBP
because the page is not in the GBP.

OBJECT_COL_GBP_
INVALID_PAGES

BIGINT Yes No The number of times that a column-organized
page is requested from the group buffer pool
(GBP) for a table. The page is requested because
the version of the page in the local buffer pool
(LBP) is invalid. Outside of a Db2 pureScale
environment, this value is null.

OBJECT_COL_LBP_
PAGES_FOUND

BIGINT Yes No The number of times that a column-organized
page for a table is present in the local buffer pool
(LBP).

OBJECT_COL_GBP_
INDEP_PAGES_
FOUND_IN_LBP

BIGINT Yes No The number of group buffer pool (GBP)
independent column-organized pages found in a
local buffer pool (LBP) by an agent.

OBJECT_DATA_
CACHING_TIER_
L_READS

BIGINT Yes No Reserved for future use.

OBJECT_DATA_
CACHING_TIER_
PAGES_FOUND

BIGINT Yes No Reserved for future use.

OBJECT_DATA_
CACHING_TIER_
GBP_INVALID_PAGES

BIGINT Yes No Reserved for future use.

OBJECT_DATA_
CACHING_TIER_
GBP_INDEP_
PAGES_FOUND

BIGINT Yes No Reserved for future use.

OBJECT_XDA_
CACHING_TIER_
L_READS

BIGINT Yes No Reserved for future use.

OBJECT_XDA_
CACHING_TIER_
PAGES_FOUND

BIGINT Yes No Reserved for future use.

OBJECT_XDA_
CACHING_TIER_
GBP_INVALID_PAGES

BIGINT Yes No Reserved for future use.

OBJECT_XDA_
CACHING_TIER_
GBP_INDEP_
PAGES_FOUND

BIGINT Yes No Reserved for future use.

OBJECT_INDEX_
CACHING_TIER_
L_READS

BIGINT Yes No Reserved for future use.

2214 IBM Db2 V11.5: SQL Reference

Table 348. OBJECT_METRICS table (continued)

Column Name Data Type Nullable
?

Key? Description

OBJECT_INDEX_
CACHING_TIER_
PAGES_FOUND

BIGINT Yes No Reserved for future use.

OBJECT_INDEX_
CACHING_TIER_
GBP_INVALID_PAGES

BIGINT Yes No Reserved for future use.

OBJECT_INDEX_
CACHING_TIER_
GBP_INDEP_
PAGES_FOUND

BIGINT Yes No Reserved for future use.

OBJECT_COL_
CACHING_TIER_
L_READS

BIGINT Yes No Reserved for future use.

OBJECT_COL_
CACHING_TIER_
PAGES_FOUND

BIGINT Yes No Reserved for future use.

OBJECT_COL_
CACHING_TIER_
GBP_INVALID_PAGES

BIGINT Yes No Reserved for future use.

OBJECT_COL_
CACHING_TIER_
GBP_INDEP_
PAGES_FOUND

BIGINT Yes No Reserved for future use.

EXT_TABLE_RECV_
WAIT_TIME

BIGINT Yes No Total time the agent spent waiting for the
external table readers to read and process data
from external tables. The value is given in
milliseconds.

EXT_TABLE_
RECVS_TOTAL

BIGINT Yes No Total number of buffers that were received by the
agent from the external table readers.

EXT_TABLE_
RECV_VOLUME

BIGINT Yes No Total volume that were received by the agent
from the external table readers. The value is
given in bytes.

EXT_TABLE_
READ_VOLUME

BIGINT Yes No Total volume that was read by the external table
reader from physical devices, such as disks. The
value is given in bytes.

EXT_TABLE_SEND_
WAIT_TIME

BIGINT Yes No Total time the agent spent waiting for the sent
data to be processed and written by the external
table writers. The value is given in milliseconds.

EXT_TABLE_
SENDS_TOTAL

BIGINT Yes No Total number of buffers that were sent to the
external table writers.

EXT_TABLE_
SEND_VOLUME

BIGINT Yes No Total volume that was sent by the agent to the
external table writers. The value is given in bytes.

EXT_TABLE_
WRITE_VOLUME

BIGINT Yes No Total volume that was written by the external
writers to physical devices, such as disks. The
value is given in bytes.

Chapter 1. Structured Query Language (SQL) 2215

Explain register values
The tables in this topic describe the interaction of the CURRENT EXPLAIN MODE and CURRENT EXPLAIN
SNAPSHOT special register values, both with each other and with the PREP and BIND commands.

With dynamic SQL, the CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special register
values interact as follows.

Table 349. Interaction of Explain Special Register Values (Dynamic SQL)

EXPLAIN
SNAPSHOT

values

EXPLAIN MODE values

NO YES EXPLAIN REOPT RECOMMEND
INDEXES

EVALUATE
INDEXES

NO • Results of
query returned.

• Explain tables
populated.

• Results of
query returned.

• Explain tables
populated.

• Results of
query not
returned
(dynamic
statements not
executed).

• Explain tables
populated
when a
statement
qualifies for
reoptimization
at execution
time.

• Results of
query returned.

• Explain tables
populated.

• Results of
query not
returned
(dynamic
statements not
executed).

• Indexes
recommended.

• Explain tables
populated.

• Results of
query not
returned
(dynamic
statements not
executed).

• Indexes
evaluated.

YES • Explain
Snapshot
taken.

• Results of
query returned.

• Explain tables
populated.

• Explain
Snapshot
taken.

• Results of
query returned.

• Explain tables
populated.

• Explain
Snapshot
taken.

• Results of
query not
returned
(dynamic
statements not
executed).

• Explain tables
populated
when a
statement
qualifies for
reoptimization
at execution
time.

• Explain
Snapshot
taken.

• Results of
query returned.

• Explain tables
populated.

• Explain
Snapshot
taken.

• Results of
query not
returned
(dynamic
statements not
executed).

• Indexes
recommended.

• Explain tables
populated.

• Explain
Snapshot
taken.

• Results of
query not
returned
(dynamic
statements not
executed).

• Indexes
evaluated.

EXPLAIN • Explain
Snapshot
taken.

• Results of
query not
returned
(dynamic
statements not
executed).

• Explain tables
populated.

• Explain
Snapshot
taken.

• Results of
query not
returned
(dynamic
statements not
executed).

• Explain tables
populated.

• Explain
Snapshot
taken.

• Results of
query not
returned
(dynamic
statements not
executed).

• Explain tables
populated
when a
statement
qualifies for
reoptimization
at execution
time.

• Explain
Snapshot taken
when a
statement
qualifies for
reoptimization
at execution
time.

• Results of
query not
returned
(dynamic or
incremental-
bind
statements not
executed).

• Explain tables
populated.

• Explain
Snapshot
taken.

• Results of
query not
returned
(dynamic
statements not
executed).

• Indexes
recommended.

• Explain tables
populated.

• Explain
Snapshot
taken.

• Results of
query not
returned
(dynamic
statements not
executed).

• Indexes
evaluated.

2216 IBM Db2 V11.5: SQL Reference

Table 349. Interaction of Explain Special Register Values (Dynamic SQL) (continued)

EXPLAIN
SNAPSHOT

values

EXPLAIN MODE values

NO YES EXPLAIN REOPT RECOMMEND
INDEXES

EVALUATE
INDEXES

REOPT • Explain
Snapshot taken
when a
statement
qualifies for
reoptimization
at execution
time.

• Results of
query returned.

• Explain tables
populated.

• Explain
Snapshot taken
when a
statement
qualifies for
reoptimization
at execution
time.

• Results of
query returned.

• Explain tables
populated.

• Explain
Snapshot taken
when a
statement
qualifies for
reoptimization
at execution
time.

• Results of
query not
returned
(dynamic or
incremental-
bind
statements not
executed).

• Explain tables
populated
when a
statement
qualifies for
reoptimization
at execution
time.

• Explain
Snapshot taken
when a
statement
qualifies for
reoptimization
at execution
time.

• Results of
query returned.

• Explain tables
populated.

• Explain
Snapshot taken
when a
statement
qualifies for
reoptimization
at execution
time.

• Results of
query not
returned
(dynamic or
incremental-
bind
statements not
executed).

• Indexes
recommended.

• Explain tables
populated.

• Explain
Snapshot taken
when a
statement
qualifies for
reoptimization
at execution
time.

• Results of
query not
returned
(dynamic or
incremental-
bind
statements not
executed).

• Indexes
evaluated.

The CURRENT EXPLAIN MODE special register interacts with the EXPLAIN bind option in the following
way for dynamic SQL.

Table 350. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE

EXPLAIN MODE
values

EXPLAIN Bind option values

NO YES REOPT ALL

NO • Results of query
returned.

• Explain tables
populated for
static SQL.

• Results of query
returned.

• Explain tables
populated for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain tables
populated for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain tables
populated for
static SQL.

• Explain tables
populated for
dynamic SQL.

• Results of query
returned.

Chapter 1. Structured Query Language (SQL) 2217

Table 350. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE (continued)

EXPLAIN MODE
values

EXPLAIN Bind option values

NO YES REOPT ALL

YES • Explain tables
populated for
dynamic SQL.

• Results of query
returned.

• Explain tables
populated for
static SQL.

• Explain tables
populated for
dynamic SQL.

• Results of query
returned.

• Explain tables
populated for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain tables
populated for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain tables
populated for
static SQL.

• Explain tables
populated for
dynamic SQL.

• Results of query
returned.

EXPLAIN • Explain tables
populated for
dynamic SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Explain tables
populated for
static SQL.

• Explain tables
populated for
dynamic SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Explain tables
populated for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain tables
populated for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of
query not
returned (dynamic
statements not
executed).

• Explain tables
populated for
static SQL.

• Explain tables
populated for
dynamic SQL.

• Results of
query not
returned (dynamic
statements not
executed).

2218 IBM Db2 V11.5: SQL Reference

Table 350. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE (continued)

EXPLAIN MODE
values

EXPLAIN Bind option values

NO YES REOPT ALL

REOPT • Explain tables
populated for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain tables
populated for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain tables
populated for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain tables
populated for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain tables
populated for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain tables
populated for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain tables
populated for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

RECOMMEND
INDEXES

• Explain tables
populated for
dynamic SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Recommend
indexes.

• Explain tables
populated for
static SQL.

• Explain tables
populated for
dynamic SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Recommend
indexes.

• Explain tables
populated for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain tables
populated for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of
query not
returned (dynamic
statements not
executed).

• Recommend
indexes.

• Explain tables
populated for
static SQL.

• Explain tables
populated for
dynamic SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Recommend
indexes.

Chapter 1. Structured Query Language (SQL) 2219

Table 350. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE (continued)

EXPLAIN MODE
values

EXPLAIN Bind option values

NO YES REOPT ALL

EVALUATE INDEXES • Explain tables
populated for
dynamic SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Evaluate indexes.

• Explain tables
populated for
static SQL.

• Explain tables
populated for
dynamic SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Evaluate indexes.

• Explain tables
populated for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain tables
populated for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of
query not
returned (dynamic
statements not
executed).

• Evaluate indexes.

• Explain tables
populated for
static SQL.

• Explain tables
populated for
dynamic SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Evaluate indexes.

The CURRENT EXPLAIN SNAPSHOT special register interacts with the EXPLSNAP bind option in the
following way for dynamic SQL.

Table 351. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT

EXPLAIN
SNAPSHOT values

EXPLSNAP Bind option values

NO YES REOPT ALL

NO • Results of query
returned.

• Explain Snapshot
taken for static
SQL.

• Results of query
returned.

• Explain Snapshot
taken for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain Snapshot
taken for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain Snapshot
taken for static
SQL.

• Explain Snapshot
taken for dynamic
SQL.

• Results of query
returned.

2220 IBM Db2 V11.5: SQL Reference

Table 351. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT (continued)

EXPLAIN
SNAPSHOT values

EXPLSNAP Bind option values

NO YES REOPT ALL

YES • Explain Snapshot
taken for dynamic
SQL.

• Results of query
returned.

• Explain Snapshot
taken for static
SQL.

• Explain Snapshot
taken for dynamic
SQL.

• Results of query
returned.

• Explain Snapshot
taken for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain Snapshot
taken for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain Snapshot
taken for static
SQL.

• Explain Snapshot
taken for dynamic
SQL.

• Results of query
returned.

EXPLAIN • Explain Snapshot
taken for dynamic
SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Explain Snapshot
taken for static
SQL.

• Explain Snapshot
taken for dynamic
SQL.

• Results of
query not
returned (dynamic
statements not
executed).

• Explain Snapshot
taken for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain Snapshot
taken for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of
query not
returned (dynamic
statements not
executed).

• Explain Snapshot
taken for static
SQL.

• Explain Snapshot
taken for dynamic
SQL.

• Results of
query not
returned (dynamic
statements not
executed).

Chapter 1. Structured Query Language (SQL) 2221

Table 351. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT (continued)

EXPLAIN
SNAPSHOT values

EXPLSNAP Bind option values

NO YES REOPT ALL

REOPT • Explain Snapshot
taken for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain Snapshot
taken for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain Snapshot
taken for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain Snapshot
taken for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain Snapshot
taken for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

• Explain Snapshot
taken for
static SQL
when statement
qualifies for
reoptimization at
execution time.

• Explain Snapshot
taken for
dynamic SQL
when statement
qualifies for
reoptimization at
execution time.

• Results of query
returned.

2222 IBM Db2 V11.5: SQL Reference

Index

A
ABS scalar function 276
ABSVAL scalar function 276
access control

group authorization 800
role authorization 800

ACOS scalar function
details 276

ADD_DAYS scalar function
details 277

ADD_HOURS scalar function
details 278

ADD_MINUTES scalar function
details 279

ADD_MONTHS scalar function 280
ADD_SECONDS scalar function

details 281
ADD_YEARS scalar function

details 282
ADVISE_INDEX table 2163
ADVISE_INSTANCE table 2168
ADVISE_MQT table 2168
ADVISE_PARTITION table 2170
ADVISE_TABLE table 2171
ADVISE_WORKLOAD table 2172
AGE scalar function

details 283
aggregate

MEDIAN 258
PERCENT_RANK 262
PERCENTILE_CONT 260
PERCENTILE_DISC 261

aggregate functions
ARRAY_AGG 240
COUNT 246
COVARIANCE_SAMP 249
details 240
MEDIAN 258
MIN 259
PERCENT_RANK 262
PERCENTILE_CONT 260
PERCENTILE_DISC 261
STDDEV_SAMP 267
TRIM_ARRAY 546
UNNEST 624
VARIANCE_SAMP 270

aliases
adding comments to catalog 973
CREATE ALIAS statement 1019
details 5
dropping 1616
TABLE_NAME function 520
TABLE_SCHEMA function 521

ALL clause
quantified predicate 197
SELECT statement 640

ALLOCATE CURSOR statement 749
ALTER AUDIT POLICY statement 750
ALTER BUFFERPOOL statement 752
ALTER DATABASE PARTITION GROUP statement 754
ALTER DATABASE statement

details 757
ALTER EVENT MONITOR statement

details 761
ALTER FUNCTION statement 766
ALTER HISTOGRAM TEMPLATE statement 769
ALTER INDEX statement 770
ALTER MASK statement 771
ALTER METHOD statement 772
ALTER NICKNAME statement 779
ALTER NODEGROUP statement

See ALTER DATABASE PARTITION GROUP statement
754

ALTER PACKAGE statement 788
ALTER PERMISSION statement 790
ALTER PROCEDURE (External) statement 791
ALTER PROCEDURE (Sourced) statement 794
ALTER PROCEDURE (SQL) statement 795
ALTER SCHEMA statement 796
ALTER SECURITY LABEL COMPONENT statement 797
ALTER SECURITY POLICY statement 800
ALTER SEQUENCE statement 803
ALTER SERVER statement 806
ALTER SERVICE CLASS statement 809
ALTER STOGROUP statement

details 818
ALTER TABLE statement

details 822
ALTER TABLESPACE statement

details 880
ALTER THRESHOLD statement 893
ALTER TRIGGER statement 905
ALTER TRUSTED CONTEXT statement 906
ALTER TYPE (Structured) statement 913
ALTER USAGE LIST statement 919
ALTER USER MAPPING statement 920
ALTER VIEW statement

details 922
ALTER WORK ACTION SET statement 923
ALTER WORK CLASS SET statement 936
ALTER WORKLOAD statement

details 941
ALTER WRAPPER statement 954
ALTER XSROBJECT statement 955
ambiguous cursors 1581
ambiguous reference errors 5
analytics

in-database 644
anchored data types

resolving anchor object 79
AND truth table 191
ANY clause 197
arithmetic

Index 2223

arithmetic (continued)
adding values 268
AVG function 244
CORRELATION function 245
COVARIANCE function 248
decimal values from numeric expressions 331
finding maximum value 257
floating-point values from numeric expressions 339,
455
floating-point values from string expressions 455
integer values

returning from expressions 290, 379
operators 132
parameter markers 1752
regression functions 264
small integer values

returning from expressions 502
STDDEV function 266
VARIANCE function 269

array constructors 160
ARRAY element

specification 159
ARRAY_AGG function 240
ARRAY_DELETE scalar function 284
ARRAY_EXISTS predicate 199
ARRAY_FIRST scalar function 285
ARRAY_LAST scalar function 286
ARRAY_NEXT scalar function 286
ARRAY_PRIOR scalar function 287
arrays

values 42
AS clause

ORDER BY clause 703
SELECT clause 640

ASCII scalar function
details 288

ASCII_STR scalar function
details 288

ASIN scalar function
details 289

assembler application host variables 1653
assignments

basic SQL operations 55
ASSOCIATE LOCATORS statement 956
ASUTIME

CREATE FUNCTION (external scalar) statement 1140
CREATE FUNCTION (external table) statement 1166
CREATE PROCEDURE (external) statement 1292
CREATE PROCEDURE (SQL) statement 1312

ATAN scalar function
details 289

ATAN2 scalar function
details 289

ATANH scalar function 290
attributes

names 5
AUDIT statement 958
authorization IDs

details 5
global variables 109
granting control

database operations 1675
indexes 1684

granting schema privileges 1696

authorization IDs (continued)
public control on index 1684
revoking authorities 1771

authorization names
details 5
restrictions 5

AVG aggregate function 244

B
BASE_TABLE function 618
basic predicate 193
BEGIN DECLARE SECTION statement 961
BETWEEN predicate 199
BIGINT data type

CREATE TABLE statement 1351
overview 29
precision 29
sign 29

BIGINT function 290
BINARY data type

details 37
binary large objects (BLOBs)

scalar function 295
tables 1351

BINARY scalar function
details 292

binary string data types 37
binding

function semantics 131
GRANT statement 1687
method semantics 131
revoking BIND privilege 1781

bit data 31
bit manipulation functions 293
BITAND function 293
BITANDNOT function 293
BITNOT function 293
BITOR function 293
BITXOR function 293
BLOB data type

CREATE TABLE statement 1351
details 37
scalar function 295

Boolean predicates 196
BOOLEAN scalar function

details 295
BPCHAR

details 296
BSON_TO_JSON

details 296
BTRIM function 297
buffer pools

creating 1024
dropping 1616
names 5
page size 1024
setting size 752, 1024

built-in functions
details 112
overview 224
string units 31

built-in global variables
details 218

2224 IBM Db2 V11.5: SQL Reference

built-in global variables (continued)
overview 108

built-in procedures 631
byte length

data type values 402

C
caching

EXECUTE statement 1645
CALL statement

details 962
CARDINALITY function 298
CASCADE delete rule 1351
CASE expression 150
case sensitivity

token identifiers 4
CASE statement

details 969
CAST specification 152
casting

CAST specification 152
details 47
structured type expression to subtype 182
XML values

XMLCAST specification 158
catalog views

ATTRIBUTES 1934
AUDITPOLICIES 1936
AUDITUSE 1938
BUFFERPOOLDBPARTITIONS 1938
BUFFERPOOLEXCEPTIONS 1939
BUFFERPOOLS 1939
CASTFUNCTIONS 1940
CHECKS 1941
COLAUTH 1942
COLCHECKS 1943
COLDIST 1943, 2114
COLGROUPCOLS 1944
COLGROUPDIST 1945, 2115
COLGROUPDISTCOUNTS 1945, 2115
COLGROUPS 1946, 2116
COLIDENTATTRIBUTES 1946
COLOPTIONS 1947
COLUMNS 1947, 2116
COLUSE 1953
CONDITIONS 1954
CONSTDEP 1954
CONTEXTATTRIBUTES 1955
CONTEXTS 1955
CONTROLDEP 1956
CONTROLS 1957
DATAPARTITIONEXPRESSION 1959
DATAPARTITIONS 1959
DATATYPEDEP 1962
DATATYPES 1963
DBAUTH 1967
DBPARTITIONGROUPDEF 1969
DBPARTITIONGROUPS 1970
EVENTMONITORS 1971
EVENTS 1973
EVENTTABLES 1973
EXTERNALTABLEOPTIONS 1975
FULLHIERARCHIES 1977

catalog views (continued)
FUNCMAPOPTIONS 1978
FUNCMAPPARMOPTIONS 1978
FUNCMAPPINGS 1978
HIERARCHIES 1979
HISTOGRAMTEMPLATEBINS 1980
HISTOGRAMTEMPLATES 1980
HISTOGRAMTEMPLATEUSE 1981
INDEXAUTH 1981
INDEXCOLUSE 1982
INDEXDEP 1983
INDEXES 1985, 2118
INDEXEXPLOITRULES 1992
INDEXEXTENSIONDEP 1993
INDEXEXTENSIONMETHODS 1994
INDEXEXTENSIONPARMS 1994
INDEXEXTENSIONS 1995
INDEXOPTIONS 1996
INDEXPARTITIONS 1996
INDEXXMLPATTERNS 1999
INVALIDOBJECTS 2000
KEYCOLUSE 2001
MEMBERSUBSETATTRS 2001
MEMBERSUBSETMEMBERS 2002
MEMBERSUBSETS 2002
MODULEAUTH 2003
MODULEOBJECTS 2003
MODULES 2004
NAMEMAPPINGS 2005
NICKNAMES 2005
overview 1927, 1929
PACKAGEAUTH 2008
PACKAGEDEP 2009
PACKAGES 2011
PARTITIONMAPS 2020
PASSTHRUAUTH 2021
PERIODS 2021
PREDICATESPECS 2021
read-only 1927
REFERENCES 2022
ROLEAUTH 2023
ROLES 2023
ROUTINEAUTH 2024
ROUTINEDEP 2025
ROUTINEOPTIONS 2027
ROUTINEPARMOPTIONS 2027
ROUTINEPARMS 2028
ROUTINES 2030, 2122
ROUTINESFEDERATED 2041
ROWFIELDS 2043
SCHEMAAUTH 2044
SCHEMATA 2046
SCPREFTBSPACES 2047
SECURITYLABELACCESS 2048
SECURITYLABELCOMPONENTELEMENTS 2049
SECURITYLABELCOMPONENTS 2049
SECURITYLABELS 2049
SECURITYPOLICIES 2050
SECURITYPOLICYCOMPONENTRULES 2051
SECURITYPOLICYEXEMPTIONS 2051
SEQUENCEAUTH 2052
SEQUENCES 2052
SERVEROPTIONS 2055
SERVERS 2055

Index 2225

catalog views (continued)
SERVICECLASSES 2055
STATEMENTS 2059
STATEMENTTEXTS 2060
STOGROUPS 2060
SURROGATEAUTHIDS 2061
SYSDUMMY1 2114
TABAUTH 2061
TABCONST 2063
TABDEP 2064
TABDETACHEDDEP 2066
TABLES 2066, 2123
TABLESPACES 2076
TABOPTIONS 2078
TBSPACEAUTH 2079
THRESHOLDS 2079
TRANSFORMS 2082
TRIGDEP 2083
TRIGGERS 2085
TYPEMAPPINGS 2087
updatable 1927
USAGELISTS 2091
USEROPTIONS 2091
VARIABLEAUTH 2092
VARIABLEDEP 2093
VARIABLES 2094
VIEWS 2096
WORKACTIONS 2097
WORKACTIONSETS 2100
WORKCLASSATTRIBUTES 2101
WORKCLASSES 2103
WORKCLASSSETS 2103
WORKLOADAUTH 2103
WORKLOADCONNATTR 2104
WORKLOADS 2104
WRAPOPTIONS 2108
WRAPPERS 2108
XDBMAPGRAPHS 2109
XDBMAPSHREDTREES 2109
XMLSTRINGS 2109
XSROBJECTAUTH 2110
XSROBJECTCOMPONENTS 2110
XSROBJECTDEP 2111
XSROBJECTDETAILS 2112
XSROBJECTHIERARCHIES 2112
XSROBJECTS 2113

catalogs
COMMENT statement 973

CEIL scalar function 299
CEILING scalar function

details 299
CHAR data type

details 31
CHAR scalar function

details 300
CHAR VARYING data type 1351
character conversion

assignments 55
comparisons 55
strings

rules for operations combining 77
rules when comparing 77

CHARACTER data type 1351
character strings

character strings (continued)
assignments 55
BLOB string representation 295
BTRIM scalar function 297
comparisons 55
double-byte character strings 573
equality 55
overview 31
POSSTR scalar function 446
returning from host variable name 543
SQL statement creation 1653
string constants 83
translating string syntax 543
VARCHAR scalar function 557
VARGRAPHIC scalar function 573

character subtypes 31
CHARACTER VARYING data type 1351
CHARACTER_LENGTH scalar function 306
characters

SQL language elements 3
check constraints

ALTER TABLE statement 822
CREATE TABLE statement 1351
INSERT statement 1721

CHR scalar function 307
CLIENT_HOST global variable 219
CLIENT_IPADDR global variable 219
CLIENT_ORIGUSERID global variable 219
CLIENT_USRSECTOKEN global variable 220
CLOB data type

columns 1351
details 31
function 308

CLOSE statement
details 971

closed state
cursors 1746

COALESCE scalar function
details 308
result data types 71

coded character set identifier (CCSID)
CREATE TABLE statement 1351
DECLARE GLOBAL TEMPORARY TABLE statement 1586

collating sequences
COLLATION_KEY_BIT scalar function 310
string comparison rules 55

COLLATION_KEY scalar function
details 309

COLLATION_KEY_BIT scalar function 310
COLLID

CREATE FUNCTION (external scalar) statement 1140
CREATE FUNCTION (external table) statement 1166
CREATE PROCEDURE (external) statement 1292
CREATE PROCEDURE (SQL) statement 1312

columns
adding

ALTER TABLE statement 822
ambiguous name reference errors 5
averaging set of values 244
BASIC predicate 193
BETWEEN predicate 199
comment additions in catalog 973
constraints

names 1351

2226 IBM Db2 V11.5: SQL Reference

columns (continued)
correlation 245
covariance 248
DISTINCT predicate 201
EXISTS predicate 202
functions 112
granting add privileges 1710
GROUP BY clause 691
grouping column names in GROUP BY clause 691
HAVING clause 685
IN predicate 203
index keys 1240
LIKE predicate 206
maximum value 257
names

INSERT statement 1721
ORDER BY clause 703
overview 5

nested table expressions 5
null values

ALTER TABLE statement 822
result columns 640

result data 640, 643, 644
scalar fullselect 5
searching using WHERE clause 690
SELECT clause 640
standard deviation 266
string assignment rules 55
subqueries 5
trigger event predicates 213
undefined name reference errors 5
updating 1905
values

adding 268
inserting 1721

variance 269
COMMENT statement 973
comments

catalog table 973
host language 4
SQL

format 4
static statements 737

SQL static statements 740
COMMIT statement

details 982
common table expressions

select-statement 715
common-table-expression clause

details 716
examples 717

COMPARE_DECFLOAT scalar function 311
comparisons

predicates 193, 214
SQL 55
value with collection 199

compatibility
data types 55
rules 55

compilation
conditional (SQL) 741

compiled compound statement
details 991

component-name

component-name (continued)
details 5

composite column values 691
compound SQL statements

embedded 988
inlined 984
overview 984

CONCAT scalar function
details 312

concatenation
distinct type 132
operators 132

concurrency
LOCK TABLE statement 1732

concurrent-access-resolution-clause 722
condition handlers

declaring 991
condition names

SQL procedures 5
conditional compilation

SQL 741
CONNECT statement

type 1 1006
type 2 1012

conservative binding semantics 131
constant global variables 108
constants

details 83
constraints

adding comments to catalog 973
adding with ALTER TABLE statement 822
dropping 822
explain tables 2162
names 5

containers
CREATE TABLESPACE statement 1428

conventions
highlighting 3
Unicode 3

conversion
character string to executable SQL 1653
character string to timestamp 525
datetime to string variable 55
datetime values from CHAR 300
DBCS from mixed SBCS and DBCS 573
decimal values from numeric expressions 331
double-byte character string 573
floating-point values from numeric expressions 339,
455
floating-point values from string expressions 455
numeric 55
rules

assignments 55
comparisons 55
strings 77

correlated references
nested table expressions 5
scalar fullselect 5
subquery 5
subselect 644

CORRELATION function 245
correlation names

FROM clause 643, 644
overview 5

Index 2227

correlation names (continued)
SELECT clause 640

COS scalar function
details 313

COSH scalar function 313
COT scalar function

details 314
COUNT function 246
COUNT_BIG function 247
COVARIANCE function 248
COVARIANCE_SAMP aggregate function 249
CREATE ALIAS statement 1019
CREATE AUDIT POLICY statement 1022
CREATE BUFFERPOOL statement 1024
CREATE DATABASE PARTITION GROUP statement 1027
CREATE DISTINCT TYPE statement

see CREATE TYPE statement, distinct type 1487
CREATE EVENT MONITOR (activities) statement 1046
CREATE EVENT MONITOR (change history) statement 1055
CREATE EVENT MONITOR (locking) statement 1061
CREATE EVENT MONITOR (package cache) statement 1065
CREATE EVENT MONITOR (statistics) statement 1071
CREATE EVENT MONITOR (threshold violations) statement
1081
CREATE EVENT MONITOR (unit of work) statement 1091
CREATE EVENT MONITOR statement 1029
CREATE FUNCTION (aggregate interface) statement 1124
CREATE FUNCTION MAPPING statement 1224
CREATE FUNCTION statement

external scalar 1140
external table 1166
OLE external table 1187
overview 1123
sourced 1196
SQL row 1208
SQL scalar 1208
SQL table 1208
template 1196

CREATE GLOBAL TEMPORARY TABLE statement
details 1228

CREATE HISTOGRAM TEMPLATE statement 1239
CREATE INDEX EXTENSION statement 1261
CREATE INDEX statement

details 1240
CREATE MASK statement 1266
CREATE METHOD statement

details 1271
CREATE MODULE statement 1276
CREATE NICKNAME statement

details 1277
CREATE NODEGROUP statement 1027
CREATE PERMISSION statement 1288
CREATE PROCEDURE statement

CASE statement 969
compound SQL 991
compound SQL (inlined) statement 984
condition handlers 991
DECLARE statement 991
external 1292
FOR statement 1668
GET DIAGNOSTICS statement 1671
GOTO statement 1674
handler statement 991
IF statement 1718

CREATE PROCEDURE statement (continued)
ITERATE statement 1730
LEAVE statement 1731
LOOP statement 1733
overview 1291
REPEAT statement 1766
RETURN statement 1769
SIGNAL statement 1889
sourced 1307
SQL 1312
variables 991
WHILE statement 1926

CREATE ROLE statement
details 1320

CREATE SCHEMA statement 1321
CREATE SECURITY LABEL COMPONENT statement 1324
CREATE SECURITY LABEL statement 1326
CREATE SECURITY POLICY statement 1327
CREATE SEQUENCE statement 1328
CREATE SERVER statement 1343
CREATE SERVICE CLASS statement 1333
CREATE STOGROUP statement

details 1349
CREATE SYNONYM statement 1351
CREATE TABLE statement

details 1351
CREATE TABLESPACE statement

details 1428
CREATE THRESHOLD statement

details 1443
CREATE TRANSFORM statement

details 1457
CREATE TRIGGER statement 1460
CREATE TRUSTED CONTEXT statement

details 1474
CREATE TYPE MAPPING statement

details 1521
CREATE TYPE statement

array type 1480
details 1479
distinct type 1487
row type 1495
structured type 1500

CREATE USAGE LIST statement 1527
CREATE USER MAPPING statement

details 1529
CREATE VARIABLE statement 1531
CREATE VIEW statement 1539
CREATE WORK ACTION SET statement 1552
CREATE WORK CLASS SET statement 1560
CREATE WORKLOAD statement

details 1564
CREATE WRAPPER statement

details 1579
cross-tabulation rows 691
CUBE grouping

examples 691
query description 691

CUME_DIST
details 250

CURRENT CLIENT_ACCTNG special register 91
CURRENT CLIENT_APPLNAME special register 91
CURRENT CLIENT_USERID special register 92
CURRENT CLIENT_WRKSTNNAME special register 92

2228 IBM Db2 V11.5: SQL Reference

CURRENT DATE special register 92
CURRENT DBPARTITIONNUM special register 93
CURRENT DECFLOAT ROUNDING MODE special register

details 93
SET CURRENT DECFLOAT ROUNDING MODE statement
1816

CURRENT DEFAULT TRANSFORM GROUP special register 94
CURRENT DEGREE special register

details 94
SET CURRENT DEGREE statement 1818

CURRENT EXPLAIN MODE special register
details 95
SET CURRENT EXPLAIN MODE statement 1820

CURRENT EXPLAIN SNAPSHOT special register
details 96
SET CURRENT EXPLAIN SNAPSHOT statement 1822

CURRENT FEDERATED ASYNCHRONY special register 97
CURRENT FUNCTION PATH special register

details 101
SET CURRENT FUNCTION PATH statement 1868
SET CURRENT PATH statement 1868
SET PATH statement 1868

CURRENT IMPLICIT XMLPARSE OPTION special register
details 97
SET CURRENT IMPLICIT XMLPARSE OPTION statement
1825

CURRENT ISOLATION special register
details 98
SET CURRENT ISOLATION statement 1826

CURRENT LOCALE LC_MESSAGES special register 98
CURRENT LOCALE LC_TIME special register 98
CURRENT LOCK TIMEOUT special register

details 99
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
special register 99
CURRENT MDC ROLLOUT MODE special register 99
CURRENT MEMBER special register

details 99
CURRENT OPTIMIZATION PROFILE special register

details 100
SET CURRENT OPTIMIZATION PROFILE statement
1834
SET CURRENT TEMPORAL BUSINESS_TIME statement
1846
SET CURRENT TEMPORAL SYSTEM_TIME statement
1847

CURRENT PACKAGE PATH special register 100
CURRENT PATH special register

details 101
SET CURRENT FUNCTION PATH statement 1868
SET CURRENT PATH statement 1868
SET PATH statement 1868

CURRENT QUERY OPTIMIZATION special register
details 101
SET CURRENT QUERY OPTIMIZATION statement 1841

CURRENT REFRESH AGE special register
details 102
SET CURRENT REFRESH AGE statement 1843

CURRENT SCHEMA special register
details 102

CURRENT SERVER special register 102
CURRENT SQL_CCFLAGS special register 102
CURRENT SQLID special register 102
CURRENT TEMPORAL BUSINESS_TIME special register 103

CURRENT TEMPORAL SYSTEM_TIME special register 104
CURRENT TIME special register 105
CURRENT TIMESTAMP special register 105
CURRENT TIMEZONE special register 107
CURRENT USER special register 107
cursor data types

casting 47
cursor predicates

details 200
cursor variables

names 5
cursors

active set association 1746
ambiguous 1581
closed state 1746
current row 1659
DECLARE CURSOR statement 1581
declaring

SQL statement syntax 1581
deleting 1599
location in table as result of FETCH statement 1659
moving position using FETCH 1659
names

allocating 749
defining 5

opening 1746
preparing for application use 1746
read-only

conditions 1581
result table relationship 1581
units of work

conditional states 1581
terminating for 1806

updatable
determining 1581

WITH HOLD
lock clause of COMMIT statement 982

D
data

decrypting 335
integrity

locks 1732
mixed

DISTINCT predicate 201
LIKE predicate 206
overview 31

data sources
identifying 5

data structures
packed decimal 2146

data types
abstract 913, 1500
ALTER TYPE statement 913
anchored

overview 43
resolving anchor object 79, 80

array 42
BIGINT 29
binary string 37
BOOLEAN 41
CHAR 31
character string 31

Index 2229

data types (continued)
CLOB 31
CREATE TYPE (structured) statement 1500
cursor

values 42
DATE 38
datetime 38
DBCLOB 35
DECIMAL

overview 29
declared 991
determining for untyped expressions 182
distinct

CREATE TYPE (distinct) statement 1487
DOUBLE 29
fixed-length binary strings 37
floating-point

overview 29
graphic string 35
INTEGER

overview 29
numeric

overview 29
partition compatibility 82
promotion 46
REAL 29
result columns 640
SMALLINT 29
SQL

overview 28
structured

ALTER TYPE (structured) statement 913
CREATE TYPE (structured) statement 1500

TIME 38
TIMESTAMP 38
TYPE_ID function 550
TYPE_NAME function 551
TYPE_SCHEMA function 552
user-defined

CREATE TYPE (distinct) statement 1487
overview 43

VARCHAR
overview 31

VARGRAPHIC 35
varying-length binary strings 37
XML

values 42
XQuery

casting 47
database authorities

granting
GRANT (database authorities) statement 1675

database global variables 108
database manager

limits 2125
database partition compatibility

overview 82
database partition groups

adding comments to catalog 973
adding partitions 754
creating 1027
distribution map creation 1027
dropping partitions 754

database-managed space (DMS)

database-managed space (DMS) (continued)
table spaces

CREATE TABLESPACE statement 1428
databases

accessing
granting authority 1675

CREATE TABLESPACE statement 1428
DATAPARTITIONNUM scalar function 314
DATE data type

overview 38
WEEK_ISO scalar function 581

date data types
operations 145

DATE function 315
date functions

DAY 320
DAYS 323
MONTH 425
YEAR 615

DATE_PART
details 316

DATE_TRUNC
details 318

dates
arithmetic 396, 433
string representation formats 38

DATETIME
details 316

DAY scalar function 320
DAYNAME scalar function

details 321
DAYOFMONTH scalar function

details 322
DAYOFWEEK scalar function

details 322
DAYOFWEEK_ISO scalar function

details 323
DAYOFYEAR scalar function

details 323
DAYS scalar function 323
DAYS_BETWEEN scalar function

details 324
DAYS_TO_END_OF_MONTH scalar function

details 325
db2nodes.cfg file

ALTER DATABASE PARTITION GROUP statement 754
CONNECT (type 1) statement 1006
CREATE DATABASE PARTITION GROUP statement 1027
DBPARTITIONNUM function 326

DB2SECURITYLABEL data type
CREATE TABLE statement 1351

DBADM (database administration) authority
granting 1675

DBCLOB data type
CREATE TABLE statement 1351
details 35

DBCLOB function
details 325

DBPARTITIONNUM function 326
DEC scalar function 331
DECFLOAT scalar function 327
DECFLOAT_FORMAT scalar function 329
decimal constants 83
decimal conversion 55

2230 IBM Db2 V11.5: SQL Reference

DECIMAL data type
assignments 55
conversion

floating-point 55
precision 29
sign 29

DECIMAL scalar function 331
declarations

inserting into program 1719
XMLNAMESPACES 596

DECLARE CURSOR statement
details 1581

DECLARE GLOBAL TEMPORARY TABLE statement
details 1586

DECLARE statements
BEGIN DECLARE SECTION statement 961
compound SQL 991
END DECLARE SECTION statement 1645

DECODE scalar function 334
DECRYPT_BIN function 335
DECRYPT_CHAR function 335
DEGREES scalar function

details 337
deletable views

overview 1539
DELETE statement

details 1599
delimiters

token 4
dependent objects

DROP statement 1616
deprecated functionality

SQL statements
ALTER DATABASE 757

DEREF function
details 337

dereference operation 161
DESCRIBE INPUT statement 1608
DESCRIBE OUTPUT statement 1611
DESCRIBE statement

details 1608
prepared statements

DESCRIBE INPUT statement 1608
DESCRIBE OUTPUT statement 1611

descriptor-name in syntax diagrams 5
DIFFERENCE scalar function

details 338
DIGITS function 338
DISCONNECT statement 1614
DISTINCT keyword

aggregate function 240
subselect statement 640

DISTINCT predicate 201
distinct types

arithmetic operands 132
comparisons

overview 55
concatenation 132
constants 83
CREATE TYPE (distinct) statement 1487
DROP statement 1616
names 5
overview 43

DOUBLE data type

DOUBLE data type (continued)
CHAR scalar function 300
precision 29
sign 29

DOUBLE scalar function
details 339

DOUBLE_PRECISION scalar function 339
double-byte character set (DBCS)

characters truncated during assignment 55
returning strings 573

double-precision floating-point data type
overview 29

DROP statement
details 1616
transforms 1616

durations
overview 145

dynamic dispatch 125
dynamic SQL

compound statements 984
cursors

DECLARE CURSOR statement 737, 738
DESCRIBE INPUT statement 1608
DESCRIBE OUTPUT statement 1611
EXECUTE IMMEDIATE statement

details 1653
EXECUTE statement

details 1645
invoking SQL statements 737, 738

FETCH statement
details 1659
invoking SQL statements 737, 738

invoking statements 737, 738
OPEN statement 737, 738
PREPARE statement

details 1752
invoking SQL statements 737, 738
using DESCRIBE 1608, 1611

SQLDA
details 2146

E
embedded SQL applications

character string format statements 1653
EXECUTE IMMEDIATE statement 1653
overview 737, 738

empty strings
character 31
graphic 35

EMPTY_BLOB scalar function 340
EMPTY_CLOB scalar function 340
EMPTY_DBCLOB scalar function 340
EMPTY_NCLOB scalar function 340
ENCRYPT scalar function 341
encryption

ENCRYPT function 341
GETHINT function 352
XMLGROUP function 273
XMLROW function 603

END DECLARE SECTION statement 1645
error conditions 3
error messages

column masks 771, 1266

Index 2231

error messages (continued)
return codes 737, 739
row permissions 790, 1288
SQLCA definitions 2141
triggers

execution 1460
typed tables 905

errors
cursors 1746
FETCH statement 1659
UPDATE statement 1905

ESCAPE clauses
DISTINCT predicate 201
LIKE predicate 206

evaluation order
expressions 132

event monitors
CREATE EVENT MONITOR statement 1029
DROP statement 1616
EVENT_MON_STATE function 343
FLUSH EVENT MONITOR statement 1663
names 5
SET EVENT MONITOR STATE statement 1850

EXCEPT operator of fullselect 710
exception tables

SET INTEGRITY statement 1851
structure 2155

EXCLUSIVE MODE connection 1006
executable SQL statements 737–739
EXECUTE IMMEDIATE statement

details 1653
embedded 737, 738

EXECUTE privilege
functions 112
methods 125

EXECUTE statement
details 1645
embedded 737, 738

EXISTS predicate 202
EXP scalar function

details 343
EXPLAIN statement

details 1655
explain tables

overview 2162
EXPLAIN_ACTUALS table 2173
EXPLAIN_ARGUMENT table 2174
EXPLAIN_DIAGNOSTIC table

details 2189
EXPLAIN_DIAGNOSTIC_DATA table

details 2190
EXPLAIN_INSTANCE table 2191
EXPLAIN_OBJECT table 2194
EXPLAIN_OPERATOR table 2199
EXPLAIN_PREDICATE table 2201
EXPLAIN_STATEMENT table 2204
EXPLAIN_STREAM table 2208
exposed correlation names 5
expressions

CASE 150
details 132
field reference 157
GROUP BY clause 691
ORDER BY clause 703

expressions (continued)
row 189
ROW CHANGE 175
SELECT clause 640
sql-json-path-expression 179
structured type 182
subselect 640

external functions
overview 112

EXTRACT scalar function 344

F
FETCH clause 705
FETCH statement

cursor prerequisites for executing 1659
details 1659

field references
row types 157

file reference variables
BLOBs 5
CLOBs 5
DBCLOBs 5

FIRST_DAY scalar function
details 348

fixed-length binary strings
overview 37

fixed-length character string 31
fixed-length graphic string 35
FLOAT data type

CREATE TABLE statement 1351
precision 29
sign 29

FLOAT function 348
FLOAT4

details 349
FLOAT8

details 349
floating-point constants 83
floating-point data types

assignments 55
conversion 55

FLOOR function
details 349

FLUSH BUFFERPOOLS statement 1663
FLUSH EVENT MONITOR statement 1663
FLUSH FEDERATED CACHE statement 1664
FLUSH OPTIMIZATION PROFILE CACHE statement 1665
FLUSH PACKAGE CACHE statement 1667, 1668
FOR FETCH ONLY clause

SELECT statement 715
FOR READ ONLY clause

SELECT statement 715
FOR statement 1668
foreign keys

adding 822
constraint names 1351
dropping 822

FREE LOCATOR statement 1671
FROM clause

DELETE statement 1599
identifiers 5
subselect 643, 644
table-reference 644

2232 IBM Db2 V11.5: SQL Reference

FROM_UTC_TIMESTAMP scalar function
details 350

fullselect
CREATE VIEW statement 1539
detailed syntax 710
examples 710, 714
initializing 715
iterative 715
multiple operations 710
ORDER BY clause 703
queries 714
scalar 132
subquery role 5
table references 644

function
aggregate

COVARIANCE_SAMP 249
JSON_ARRAYAGG 252
STDDEV_SAMP 267
VARIANCE_SAMP 270

column
COVARIANCE_SAMP 249
STDDEV_SAMP 267
VARIANCE_SAMP 270

function designator syntax element 745
FUNCTION scalar function 314
functions

adding comments to catalog 973
aggregate

ARRAY_AGG 240
COUNT 246
CUME_DIST 250
details 240
LISTAGG 255
MEDIAN 258
MIN 259
PERCENT_RANK 262
PERCENTILE_CONT 260
PERCENTILE_DISC 261
TRIM_ARRAY 546
UNNEST 624
XMLAGG 271

best fit 112
bit manipulation 293
built-in 112, 224
casting

CAST 152
XMLCAST 158

column
ARRAY_AGG 240
AVG 244
CORR 245
CORRELATION 245
COUNT 246
COUNT_BIG 247
COVAR 248
COVARIANCE 248
LISTAGG 255
MAX 257
MEDIAN 258
MIN 259
overview 112
PERCENT_RANK 262
PERCENTILE_CONT 260

functions (continued)
column (continued)

PERCENTILE_DISC 261
REGR_AVGX 264
REGR_AVGY 264
REGR_COUNT 264
REGR_ICPT 264
REGR_INTERCEPT 264
REGR_R2 264
REGR_SLOPE 264
REGR_SXX 264
REGR_SXY 264
REGR_SYY 264
regression 264
STDDEV 266
SUM 268
TRIM_ARRAY 546
UNNEST 624
VAR 269
VARIANCE 269
XMLAGG 271

external
overview 112

invoking 112
LISTAGG 255
mappings 5
names 5
OLAP 163
overloaded 112
overview 224
procedures 631
row 112
scalar

ABS 276
ABSVAL 276
ACOS 276
ADD_DAYS 277
ADD_HOURS 278
ADD_MINUTES 279
ADD_MONTHS 280
ADD_SECONDS 281
ADD_YEARS 282
AGE 283
ARRAY_DELETE 284
ARRAY_FIRST 285
ARRAY_LAST 286
ARRAY_NEXT 286
ARRAY_PRIOR 287
ASCII 288
ASCII_STR 288
ASIN 289
ATAN 289
ATAN2 289
ATANH 290
AVG 244
BIGINT 290
BINARY 292
BITAND 293
BITANDNOT 293
BITNOT 293
BITOR 293
BITXOR 293
BLOB 295
BOOLEAN 295

Index 2233

functions (continued)
scalar (continued)

BPCHAR 296
BSON_TO_JSON 296
BTRIM 297
CARDINALITY 298
CEIL 299
CEILING 299
CHAR 300
CHARACTER_LENGTH 306
CHR 307
CLOB 308
COALESCE 308
COLLATION_KEY 309
COLLATION_KEY_BIT 310
COMPARE_DECFLOAT 311
CONCAT 312
COS 313
COSH 313
COT 314
DATE 315
DATE_PART 316
DATE_TRUNC 318
DATETIME 316
DAY 320
DAYNAME 321
DAYOFMONTH 322
DAYOFWEEK 322
DAYOFWEEK_ISO 323
DAYOFYEAR 323
DAYS 323
DAYS_BETWEEN 324
DAYS_TO_END_OF_MONTH 325
DBCLOB 325
DBPARTITIONNUM 326
DEC 331
DECFLOAT 327
DECFLOAT_FORMAT 329
DECIMAL 331
DECODE 334
DECRYPT_BIN 335
DECRYPT_CHAR 335
DEGREES 337
DEREF 337
DIFFERENCE 338
DIGITS 338
DOUBLE 339
DOUBLE_PRECISION 339
EMPTY_BLOB 340
EMPTY_CLOB 340
EMPTY_DBCLOB 340
EMPTY_NCLOB 340
ENCRYPT 341
EVENT_MON_STATE 343
EXP 343
EXTRACT 344
FIRST_DAY 348
FLOAT 348
FLOAT4 349
FLOAT8 349
FLOOR 349
FROM_UTC_TIMESTAMP 350
FUNCTION 314
GENERATE_UNIQUE 351

functions (continued)
scalar (continued)

GETHINT 352
GRAPHIC 353
GREATEST 358
GROUPING 251
HASH 359
HASH4 360
HASH8 361
HASHEDVALUE 361
HEX 362
HOUR 364
HOURS_BETWEEN 365
IDENTITY_VAL_LOCAL 366
IFNULL 369
INITCAP 369
INSERT 371
INSTR 374
INSTR2 375
INSTR4 375
INSTRB 376
INT 376, 379
INT2 381
INT4 381
INT8 381
INTEGER 379
INTERVAL 376
INTNAND 381
INTNNOT 381
INTNOR 381
INTNXOR 381
ISNULL 383
JSON_ARRAY 383
JSON_OBJECT 386
JSON_QUERY 389
JSON_TO_BSON 392
JSON_VALUE 393
JULIAN_DAY 396
LAST_DAY 396
LCASE 397
LCASE (locale sensitive) 397
LCASE (SYSFUN schema) 397
LEAST 398
LEFT 398
LENGTH 402
LENGTH2 404
LENGTH4 404
LENGTHB 404
LN 404
LOCATE 405
LOCATE_IN_STRING 408
LOG10 410
LONG_VARCHAR 411
LONG_VARGRAPHIC 411
LOWER 411
LOWER (locale sensitive) 412
LPAD 414
LTRIM 416
LTRIM (SYSFUN schema) 418
MAX 418
MAX_CARDINALITY 419
MICROSECOND 419
MIDNIGHT_SECONDS 420
MIN 421

2234 IBM Db2 V11.5: SQL Reference

functions (continued)
scalar (continued)

MINUTE 421
MINUTES_BETWEEN 422
MOD 423, 424
MONTH 425
MONTHNAME 425
MONTHS_BETWEEN 426
MULTIPLY_ALT 427
NCHAR 429
NCHR 430
NCLOB 431
NEXT_DAY 433
NEXT_MONTH 434
NEXT_QUARTER 435
NEXT_WEEK 435
NEXT_YEAR 436
NODENUMBER (see functions,
scalar, DBPARTITIONNUM) 326
NORMALIZE_DECFLOAT 436
NOW 437
NULLIF 437
NUMERIC 438
NVARCHAR 431
NVL 438
OCTET_LENGTH 439
OVERLAY 440
overview 112, 275
PARAMETER 443
PARTITION (see functions,
scalar, HASHEDVALUE) 361
POSITION 444
POSSTR 446
POW 448
POWER 448, 451
QUANTIZE 448
QUARTER 450
QUOTE_IDENT 450
QUOTE_LITERAL 451
RAISE_ERROR 452
RAND 453
RAND (SYSIBM schema) 453
RANDOM 454
RAWTOHEX 454
REAL 455
REC2XML 456
REGEXP_COUNT 460
REGEXP_EXTRACT 462
REGEXP_INSTR 462
REGEXP_LIKE 465
REGEXP_MATCH_COUNT 467
REGEXP_REPLACE 468
REGEXP_SUBSTR 470
REPEAT 473
REPEAT (SYSFUN schema) 474
REPLACE 475
REPLACE (SYSFUN schema)
478
RID 479
RID_BIT 479
RIGHT 481
ROUND 485
ROUND_TIMESTAMP 490
RPAD 491

functions (continued)
scalar (continued)

RTRIM 494
RTRIM (SYSFUN schema) 496
SECLABEL 496
SECLABEL_BY_NAME 497
SECLABEL_TO_CHAR 497
SECOND 499
SECONDS_BETWEEN 500
SIGN 501
SIN 501
SINH 502
SMALLINT 502
SOUNDEX 503
SPACE 504
SQRT 504
STRIP 505
STRLEFT 506
STRPOS 506
STRRIGHT 506
SUBSTR 506
SUBSTR4 512
SUBSTRB 515
SUBSTRING 518
TABLE_NAME 520
TABLE_SCHEMA 521
TAN 522
TANH 523
THIS_MONTH 523
THIS_QUARTER 523
THIS_WEEK 524
THIS_YEAR 524
TIME 525
TIMESTAMP 525
TIMESTAMP_FORMAT 527
TIMESTAMP_ISO 532
TIMESTAMPDIFF 533
TIMEZONE 535
TO_CHAR 536
TO_CLOB 537
TO_DATE 537
TO_HEX 537
TO_MULTI_BYTE 538
TO_NCHAR 539
TO_NCLOB 539
TO_NUMBER 539
TO_SINGLE_BYTE 540
TO_TIMESTAMP 540
TO_UTC_TIMESTAMP 541
TOTALORDER 542
TRANSLATE 543
TRIM 545
TRUNC 548
TRUNC_TIMESTAMP 547
TRUNCATE 548
TYPE_ID 550
TYPE_NAME 551
TYPE_SCHEMA 552
UCASE 552
UCASE (locale sensitive) 552
UNICODE_STR 553
UPPER 554
UPPER (locale sensitive) 554
VALUE 556

Index 2235

functions (continued)
scalar (continued)

VARBINARY 556
VARCHAR 557
VARCHAR_FORMAT 564
VARGRAPHIC 573
VERIFY_GROUP_FOR_USER
578
VERIFY_ROLE_FOR_USER 579
VERIFY_TRUSTED_CONTEXT_R
OLE_FOR_USER 579
WEEK 580
WEEK_ISO 581
WEEKS_BETWEEN 581
WIDTH_BUCKET 582
XMLATTRIBUTES 585
XMLCOMMENT 586
XMLCONCAT 586
XMLDOCUMENT 587
XMLELEMENT 588
XMLFOREST 594
XMLGROUP 273
XMLNAMESPACES 596
XMLPARSE 597
XMLPI 599
XMLQUERY 600
XMLROW 603
XMLSERIALIZE 605
XMLTEXT 606
XMLVALIDATE 607
XMLXSROBJECTID 611
XSLTRANSFORM 612
YEAR 615
YEARS_BETWEEN 615
YMD_BETWEEN 616

signatures 112
sourced

overview 112
SQL 112
summary 224
table

BASE_TABLE 618
JSON_TABLE 619
overview 112, 617
XMLTABLE 626

templates
details 1224

transformation 1457
Unicode databases 275
user-defined 112, 630

G
GENERATE_UNIQUE function 351
generated columns

CREATE TABLE statement 1351
GET DIAGNOSTICS statement 1671
GETHINT function 352
global variables

assigning values 111
authorizations 109
built-in 218
CLIENT_HOST 219
CLIENT_IPADDR 219

global variables (continued)
CLIENT_ORIGUSERID 219
CLIENT_USRSECTOKEN 220
MON_INTERVAL_ID 220
NLS_STRING_UNITS 221
overview 108
PACKAGE_NAME 221
PACKAGE_SCHEMA 221
PACKAGE_VERSION 222
references 743
resolving references to 110
restrictions 111
retrieving values 111
ROUTINE_MODULE 222
ROUTINE_SCHEMA 222
ROUTINE_SPECIFIC_NAME 223
ROUTINE_TYPE 223
SQL_COMPAT 224
TRUSTED_CONTEXT 224
types 108

GOTO statement
details 1674

GRANT statement
database authorities 1675
exemptions 1680
global variable privileges 1682
index privileges 1684
nickname privileges 1710
package privileges 1687
roles 1690
routine privileges 1692
schema privileges 1696
security labels 1701
sequence privileges 1703
server privileges 1705
SETSESSIONUSER privilege 1707
table privileges 1710
table space privileges 1708
view privileges 1710
workload privileges 1716
XSR object privileges 1717

graphic data
string constants 83
strings

returning from host variable 543
translating string syntax 543

GRAPHIC data type
CREATE TABLE statement 1351
details 35

GRAPHIC function 353
graphic strings

national character strings 36
GREATEST function 358
GROUP BY clause 691
GROUPING function 251
grouping sets 691
grouping-expression 691
groups

names 5

H
HASH

details 359

2236 IBM Db2 V11.5: SQL Reference

HASH4
details 360

HASH8
details 361

HASHEDVALUE function 361
hashing on partition keys 1351
HAVING clause 702
HEX function 362
hexadecimal constants 83
HEXTORAW function 364
host identifiers

overview 5
host variables

assigning values from a row
SELECT INTO statement 1810
VALUES INTO statement 1921

BEGIN DECLARE SECTION statement 961
BLOB 5
CLOB 5
DBCLOB 5
declaring

BEGIN DECLARE SECTION statement 961
cursors 1581
END DECLARE SECTION statement 1645

embedded SQL statements 737, 739
END DECLARE SECTION statement 1645
EXECUTE IMMEDIATE statement 1653
FETCH statement 1659
indicator variables 5
inserting in rows 1721
linking active set with cursor 1746
overview 5
parameter marker substitution 1645
REXX applications 961
statement strings 1752
syntax diagrams 5

HOUR scalar function
details 364

HOURS_BETWEEN scalar function
details 365

I
identifiers

cursor-name 5
delimited 5
host 5
length limits 2125
ordinary 5
resolving 5
SQL 5

identity columns
CREATE TABLE statement 1351

IDENTITY_VAL_LOCAL function 366
IF statement

SQL 1718
IFNULL scalar function

details 369
implicit connections

CONNECT statement 1006
implicit schemas

GRANT (database authorities) statement 1675
REVOKE (database authorities) statement 1771

IN predicate 203

in-database analytics
SAS embedded process 644

INCLUDE statement
details 1719

index over XML data
CREATE INDEX statement

details 1240
indexes

catalog specification comments 973
correspondence to inserted row values 1721
dropping 1616
granting control 1684, 1710
names

overview 5
primary key constraint 1351
unique constraint 1351

primary key 822
privileges

revoking 1778
renaming 1762
unique key 822

indicator variables
details 5

INITCAP scalar function 369
inoperative triggers 905, 1460
inoperative views 1539
INSERT function 371
INSERT statement 1721
insertable views

creating 1539
INSTR scalar function 374
INSTR2 scalar function

details 375
INSTR4 scalar function

details 375
INSTRB scalar function

details 376
INT

details 376
INT function

details 379
INT2

details 381
INT4

details 381
INT8

details 381
integer constants

details 83
INTEGER data type

CREATE TABLE statement 1351
precision 29
sign 29

INTEGER function
details 379

integer values from expressions
INTEGER function 379

integers
decimal conversion summary 55
ORDER BY clause 703

integrity constraints 973
intermediate result tables 643, 644, 685, 690, 691, 702,
725
INTERSECT operator 710

Index 2237

INTERVAL scalar function
details 376

INTNAND
details 381

INTNNOT
details 381

INTNOR
details 381

INTNXOR
details 381

ISNULL scalar function
details 383

isolation clause 707
isolation levels

DELETE statement 1599
INSERT statement 1721
SELECT statement 1810
select-statement 715
UPDATE statement 1905

isolation-clause 722
ITERATE statement

details 1730
iterative fullselect 715

J
joins

CREATE TABLE statement 1351
subselect component of fullselect 685
tables 685
types 685

JSON_ARRAY
details 383

JSON_ARRAYAGG
aggregate function 252

JSON_EXISTS predicate 205
JSON_OBJECT

details 386
JSON_QUERY

details 389
JSON_TABLE

details 619
JSON_TO_BSON

details 392
JSON_VALUE

details 393
JULIAN_DAY scalar function

details 396

L
labels

durations 145
GOTO statement 1674
SQL procedures 5, 744

large integers 29
large objects (LOBs)

details 37
locators

details 37
overview 37

LAST_DAY scalar function 396
lateral correlation 685

LBAC
ALTER SECURITY LABEL COMPONENT statement 797
ALTER SECURITY POLICY statement 800
CREATE SECURITY LABEL COMPONENT statement 1324
CREATE SECURITY LABEL statement 1326
CREATE SECURITY POLICY statement 1327
exception tables 2155
GRANT (exemption) statement 1680
GRANT (security label) statement 1701
limits 2125
REVOKE (exemption) statement 1775
REVOKE (security label) statement 1792
rule exemptions

GRANT (exemption) statement 1680
REVOKE (exemption) statement 1775

security label components
ALTER SECURITY LABEL COMPONENT statement
797
CREATE SECURITY LABEL COMPONENT statement
1324

security labels
ALTER SECURITY LABEL COMPONENT statement
797
component name length 2125
CREATE SECURITY LABEL COMPONENT statement
1324
CREATE SECURITY LABEL statement 1326
GRANT (security label) statement 1701
name length 2125
REVOKE (security label) statement 1792

security policies
ALTER SECURITY POLICY statement 800
CREATE SECURITY POLICY statement 1327
name length 2125

LCASE (locale sensitive) scalar function
overview 397

LCASE (SYSFUN schema) scalar function
details 397

LEAST function 398
LEAVE statement

details 1731
LEFT scalar function

details 398
LENGTH scalar function

details 402
LENGTH2

details 404
LENGTH4

details 404
LENGTHB scalar function

details 404
LIKE predicate 206
limits

SQL 2125
LISTAGG aggregate function 255
literals

details 83
LN function

details 404
loads

granting database authority 1675
LOCATE scalar function

details 405
LOCATE_IN_STRING scalar function 408

2238 IBM Db2 V11.5: SQL Reference

locators
ASSOCIATE LOCATORS statement 956
FREE LOCATOR statement 1671
LOBs 37
variable details 5

LOCK TABLE statement
details 1732

lock-request-clause 722
locks

COMMIT statement 982
INSERT statement 1721
LOCK TABLE statement 1732
restricting access 1732
terminating for unit of work 1806
UPDATE statement 1905

LOG10 scalar function
details 410

logical operators
search rules 191

logs
creating tables without initial logging 1351

LONG_VARCHAR function
details 411

LONG_VARGRAPHIC function
details 411

LOOP statement
SQL 1733

LOWER (locale sensitive) scalar function 412
LOWER scalar function 411
LPAD scalar function 414
LTRIM (SYSFUN schema) scalar function

details 418
LTRIM scalar function

details 416

M
maintained-by-system global variables 108
maintained-by-user global variables 108
masks

ALTER MASK statement 771
CREATE MASK statement 1266

MAX function 257, 418
MAX_CARDINALITY function 419
MEDIAN function 258
MERGE statement 1735
method designator syntax element 745
methods

best fit 125
built-in 125
dynamic dispatch 125
external 125
invoking 162
names 5
overloaded 125
signatures 125
SQL 125
type preserving 125
user-defined 125

MICROSECOND function 419
MIDNIGHT_SECONDS function 420
MIN aggregate function 259
MIN scalar function 421
MINUTE scalar function

MINUTE scalar function (continued)
details 421

MINUTES_BETWEEN scalar function
details 422

MOD function
details 424

MOD scalar function
details 423

MODE keyword 1732
modules

altering 773
creating 1276

MON_INTERVAL_ID global variable
details 220

MONTH scalar function
details 425

MONTHNAME scalar function
details 425

months
date arithmetic 280, 426

MONTHS_BETWEEN scalar function 426
MQTs

defining 1351
REFRESH TABLE statement 1757

multiple row VALUES clause
result data type 71

MULTIPLY_ALT function 427

N
naming conventions

identifiers 5
qualified column rules 5

national character strings 36
NCHAR national character string 36
NCHAR scalar function 429
NCHR scalar function

details 430
NCLOB national character string 36
NCLOB scalar function 431
nested table expressions

subselect 640, 644, 691, 703
NEXT_DAY scalar function 433
NEXT_MONTH

details 434
NEXT_QUARTER

details 435
NEXT_WEEK

details 435
NEXT_YEAR

details 436
nicknames

creating 1277
FROM clause

exposed names 5
nonexposed names 5
subselect 640

privileges
granting 1710
revoking 1799

qualifying column names 5
SELECT clause 640

NLS_STRING_UNITS global variable 221
NO ACTION delete rule 1351

Index 2239

NODENUMBER function 326
non-executable SQL statements

invoking 737, 738
precompiler requirements 737

non-exposed correlation name in FROM clause 5
NORMALIZE_DECFLOAT scalar function 436
NOWn

details 437
NULL

SQL value
assigning 55
grouping-expressions 691
indicator variables 5
occurrences in duplicate rows 640
overview 28
result columns 640

NULL predicate 210
NULL-terminated character strings 31
NULLIF function 437
numbers

precision 2146
scale 2146

NUMERIC
details 438

numeric assignments in SQL operations 55
numeric comparisons in SQL operations 55
NUMERIC data type

precision 29
sign 29

numeric data types
summary 29

NVARCHAR national character string 36
NVARCHAR scalar function 431
NVL scalar function 438
NVL2 scalar function 438

O
object identifiers

See OIDs 1351
OBJECT_METRICS table 2210
objects

tables 5
OCTET_LENGTH scalar function 439
OFFSET clause 706
OIDs

columns
overview 1351

CREATE TABLE statement 1351
CREATE VIEW statement 1539

OLAP
functions 163
specification 163

OPEN statement
details 1746

operands
decimal 132
floating-point 132
integer 132
result data type 71
strings 132

operations
assignments 55
comparisons 55

operations (continued)
datetime 145
dereference 161

operators
arithmetic 132

optimize-for-clause 721
OR truth table 191
ORDER BY clause

culturally correct collation 310
SELECT statement 703

order of evaluation 132
ordinary tokens 4
outer joins

joined tables 685
OVERLAPS predicate 210
OVERLAY scalar function 440
overloaded functions

multiple function instances 112
overloaded methods 125

P
PACKAGE_NAME global variable 221
PACKAGE_SCHEMA global variable 221
PACKAGE_VERSION global variable 222
packages

ALTER TABLE statement 822
authority to create 1675
authorization IDs

binding 5
dynamic statements 5

catalog comments 973
COMMIT statement effect on cursors 982
deleting 1616
names

overview 5
privileges

granting 1687
revoking using REVOKE (package privileges)
statement 1781
revoking using REVOKE (table, view, or nickname
privileges) statement 1799

PARAMETER function 443
parameter markers

dynamic SQL
host variables 5

EXECUTE statement 1645
OPEN statement 1746
password rules 1752
PREPARE statement 1752
typed 1752
untyped 182, 1752

parameters
naming conventions 5

PARTITION function 361
partitioned database environments

partition compatibility 82
partitioning keys

adding 822
defining when creating tables 1351
dropping 822

partitioning maps
creating for database partition groups 1027

paths

2240 IBM Db2 V11.5: SQL Reference

paths (continued)
SQL 112

pattern matching
Unicode databases 78

PERCENT_RANK function 262
PERCENTILE_CONT function 260
PERCENTILE_DISC function 261
performance

partitioning key recommendation 1351
permissions

ALTER PERMISSION statement 790
CREATE PERMISSION statement 1288

PIPE statement 1750
POSITION scalar function 444
positional updating of columns by row 1905
POSSTR function 446
POW

details 448
POWER scalar function

details 448
precedence

SQL 132
precision

numbers
SQLLEN field 2146

precompilation
external text files 1719
INCLUDE statement 1719
non-executable SQL statements 737
SQLCA 1719
SQLDA 1719

predicates
ARRAY_EXISTS 199
basic 193
BETWEEN 199
Boolean 196
cursor 190
DISTINCT 201
EXISTS 202
IN 203
IS FOUND 200
IS NOT FOUND 200
IS NOT OPEN 200
IS OPEN 200
JSON_EXISTS 205
LIKE 206
NULL 210
OVERLAPS 210
overview 190
quantified 197
REGEXP_LIKE 211
trigger event 213
TYPE 214
VALIDATED 215
XMLEXISTS 216

PREPARE statement
details 1752
dynamically declaring 1752
embedded 737, 738
variable substitution in OPEN statement 1746

prepared SQL statements
executing 1645
host variable substitution 1645
obtaining information

prepared SQL statements (continued)
obtaining information (continued)

DESCRIBE INPUT statement 1608
DESCRIBE OUTPUT statement 1611

primary keys
adding

ALTER TABLE statement 822
CREATE TABLE statement 1351

dropping by using ALTER TABLE statement 822
privileges required 1710

privileges
databases

revoking 1789
EXECUTE

functions 112
methods 125

indexes
revoking 1778

packages
revoking 1781, 1799

revoking
REVOKE statement 1799

procedure designator syntax element 745
procedures

authorization for creating
CREATE PROCEDURE (external) statement 1292
CREATE PROCEDURE (SQL) statement 1312

built-in 631
CALL statement 962
CREATE PROCEDURE statement 1291
creating 1292, 1312
names

overview 5
overview 631
XSR_ADDSCHEMADOC 631
XSR_COMPLETE 632
XSR_DTD 633
XSR_EXTENTITY 634
XSR_REGISTER 635
XSR_UPDATE 637

PROGRAM option for DB2 for z/OS
compatibility

DROP statement 1616
PROGRAM TYPE

CREATE FUNCTION (external scalar) statement 1140
CREATE FUNCTION (external table) statement 1166

PUBLIC AT ALL LOCATIONS 1710

Q
QNames

reserved qualifiers 2138
uses 5

quantified predicates 197
QUANTIZE scalar function 448
QUARTER scalar function

details 450
queries

authorization IDs 638
examples

SELECT statement 715
fullselect 710
overview 638
recursive 715

Index 2241

queries (continued)
select-statement 715
subselect 639
table expressions 638

question mark
parameter markers 1645

QUOTE_IDENT scalar function
details 450

QUOTE_LITERAL scalar function
details 451

R
RADIANS scalar function

details 451
RAISE_ERROR scalar function 452
RAND (SYSIBM schema) scalar function

details 453
RAND scalar function

details 453
RANDOM

details 454
RAWTOHEX

details 454
read-only cursors

ambiguous 1581
read-only views

creating 1539
read-only-clause 721
REAL function

details 455
REAL SQL data type

CREATE TABLE statement 1351
precision 29
sign 29

REC2XML function 456
records

locks on row data 1721
recursion queries 715
recursive common table expressions 715
reference types

casting 47
comparisons 55
DEREF function 337
details 43

references
labels 744
SQL condition names 744
SQL cursor names 745
SQL statement names 745

referential constraints
adding comments to catalog 973

REFRESH TABLE statement 1757
REGEXP_COUNT scalar function

details 460
REGEXP_EXTRACT scalar function

details 462
REGEXP_INSTR scalar function

details 462
REGEXP_LIKE predicate 211
REGEXP_LIKE scalar function

details 465
REGEXP_MATCH_COUNT scalar function

details 467

REGEXP_REPLACE scalar function
details 468

REGEXP_SUBSTR scalar function
details 470

regression functions
details 264

Regular expressions
Control characters 2159
metacharacters 2159
operators 2159
replacement text characters 2159

RELEASE (connection) statement 1760
RELEASE SAVEPOINT statement 1761
remote access

CONNECT statement 1006
successful connections 1006
unsuccessful connections 1006

remote authorization names 5
remote function names 5
remote type names 5
remote-object-name 5
remote-schema-name 5
remote-table-name 5
RENAME statement 1762
RENAME STOGROUP statement

details 1764
RENAME TABLESPACE statement 1765
REPEAT (SYSFUN schema) scalar function

details 474
REPEAT scalar function

details 473
REPEAT statement

details 1766
REPLACE (SYSFUN schema) scalar function 478
REPLACE scalar function

details 475
reserved qualifiers 2138
reserved schemas 2138
reserved words 2138
RESIGNAL statement 1767
resolution

data types 80
functions 112
methods 125

RESTRICT delete rule 1351
result columns

subselect 640
result data types 71
result sets

returning
SQL procedures 991

result tables
queries 638

return codes
embedded statements 737, 739
executable SQL statements 737, 739

RETURN statement
details 1769

REVOKE statement
database authorities 1771
exemptions 1775
global variable privileges 1777
index privileges 1778
module privileges 1780

2242 IBM Db2 V11.5: SQL Reference

REVOKE statement (continued)
nickname privileges 1799
package privileges 1781
roles 1783
routine privileges 1785
schema privileges 1789
security labels 1792
sequence privileges 1793
server privileges 1795
SETSESSIONUSER privilege 1797
table privileges 1799
table space privileges 1798
view privileges 1799
workload privileges 1804
XSR object privileges 1805

REXX language
END DECLARE SECTION statement 1645

RID function 479
RID_BIT function 479
RIGHT scalar function

details 481
ROLLBACK statement

details 1806
ROLLUP grouping of GROUP BY clause 691
ROUND scalar function

details 485
ROUND_TIMESTAMP scalar function 490
ROUTINE_MODULE global variable 222
ROUTINE_SCHEMA global variable 222
ROUTINE_SPECIFIC_NAME global variable 223
ROUTINE_TYPE global variable 223
routines

procedures
overview 631

ROW anchored data type 43
ROW CHANGE expression 175
row data types

CREATE TYPE (cursor) statement 1485
field references 157
row expressions 189

row fullselect
UPDATE statement 1905

row functions
overview 112

rows
assigning values to host variables

SELECT INTO statement 1810
VALUES INTO statement 1921

COUNT_BIG function 247
cursors

effect of closing on FETCH statement 971
FETCH statement 1746
location in result tables 1581

deleting
DELETE statement 1599

FETCH request 1581
granting privileges 1710
GROUP BY clause 691
HAVING clause 685
index keys with UNIQUE clause 1240
indexes 1240
inserting

INSERT statement 1721
locks

rows (continued)
locks (continued)

effect on cursor of WITH HOLD 1581
INSERT statement 1721

restrictions leading to failure 1721
search conditions 191
SELECT clause 640
updating

column values by using UPDATE statement 1905
RPAD scalar function 491
RTRIM (SYSFUN schema) scalar function 496
RTRIM scalar function

details 494
runtime authorization IDs 5

S
sampling

subselect tablesample-clause 644
SAVEPOINT statement 1808
savepoints

names 5
releasing 1761
ROLLBACK statement with TO SAVEPOINT clause 1806

scalar fullselect expressions 132
scalar functions

DEC 331
DECIMAL 331
HEXTORAW 364
NVL2 438
overview 112, 275
SUBSTR2 509
VARCHAR_BIT_FORMAT 563
VARCHAR_FORMAT_BIT 572

scale
comparisons in SQL 55
decimal numbers 2146
determined by SQLLEN variable 2146
number conversion in SQL 55

schemas
adding comments to catalog 973
CREATE SCHEMA statement 1321
implicit

granting authority 1675
revoking authority 1771

names
overview 5
reserved 2138

reserved names 2138
scope

adding
ALTER TABLE statement 822
ALTER VIEW statement 922

defining
added columns 822
CREATE TABLE statement 1351
CREATE VIEW statement 1539

overview 43
search conditions

AND logical operator 191
DELETE statement 1599
details 191
HAVING clause 685
NOT logical operator 191

Index 2243

search conditions (continued)
OR logical operator 191
order of evaluation 191
UPDATE statement 1905
WHERE clause 690

SECADM (security administrator) authority
granting 1675
revoking 1771

SECLABEL scalar function
details 496

SECLABEL_BY_NAME scalar function
details 497

SECLABEL_TO_CHAR scalar function
details 497

SECOND scalar function
details 499

SECONDS_BETWEEN scalar function
details 500

security
CONNECT statement 1006

security labels (LBAC)
ALTER SECURITY LABEL COMPONENT statement 797
component name length 2125
CREATE SECURITY LABEL COMPONENT statement 1324
CREATE SECURITY LABEL statement 1326
GRANT (security label) statement 1701
name length 2125
policies

ALTER SECURITY POLICY statement 800
CREATE SECURITY POLICY statement 1327
name length 2125

REVOKE (security label) statement 1792
security-label-name identifier 5
security-policy-name identifier 5
SELECT clause

details 640
SELECT INTO statement

details 1810
select list

details 640
SELECT statement

cursors 1581
evaluating for result table of OPEN statement cursor
1746
fullselect detailed syntax 710
overview 1810
retrieving results from data change statement 725
subselects 640
VALUES clause 710

select-statement SQL statement construct
common-table-expression clause 716
concurrent-access-resolution-clause 722
definition 739
details 715
examples 715, 724
invoking

dynamically 739
overview 737
statically 739

isolation-clause 722
lock-request-clause 722
optimize-for-clause 721
read-only-clause 721
update-clause 720

sequences
dropping 1616
ordering 351
values 176

servers
granting privileges 1705
names 5

session global variables 108
SESSION USER special register 107
SET COMPILATION ENVIRONMENT statement 1813
SET CONNECTION statement 1814
SET CONSTRAINTS statement 1851
SET CURRENT DECFLOAT ROUNDING MODE statement 1816
SET CURRENT DEFAULT TRANSFORM GROUP statement
1817
SET CURRENT DEGREE statement 1818
SET CURRENT EXPLAIN MODE statement 1820
SET CURRENT EXPLAIN SNAPSHOT statement 1822
SET CURRENT FEDERATED ASYNCHRONY statement 1824
SET CURRENT FUNCTION PATH statement 1868
SET CURRENT IMPLICIT XMLPARSE OPTION statement
1825
SET CURRENT ISOLATION statement 1826
SET CURRENT LOCALE LC_MESSAGES statement 1827
SET CURRENT LOCALE LC_TIME statement 1828
SET CURRENT LOCK TIMEOUT statement 1829
SET CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION statement 1830
SET CURRENT MDC ROLLOUT MODE statement 1832
SET CURRENT OPTIMIZATION PROFILE statement 1834
SET CURRENT PACKAGE PATH statement 1836
SET CURRENT PACKAGESET statement 1839
SET CURRENT PATH statement 1868
SET CURRENT QUERY OPTIMIZATION statement

details 1841
SET CURRENT REFRESH AGE statement 1843
SET CURRENT SQL_CCFLAGS statement 1845
SET CURRENT SQLID statement 1871
SET CURRENT TEMPORAL BUSINESS_TIME statement 1846
SET CURRENT TEMPORAL SYSTEM_TIME statement 1847
SET ENCRYPTION PASSWORD statement

details 1848
SET EVENT MONITOR STATE statement 1850
set integrity pending state

SET INTEGRITY statement 1851
SET INTEGRITY statement

details 1851
SET NULL delete rule 1351
set operators

EXCEPT 710
INTERSECT 710
result data types 71
UNION 710

SET PASSTHRU statement
details 1867
independence from COMMIT statement 982
independence from ROLLBACK statement 1806

SET PATH statement 1868
SET ROLE statement 1870
SET SCHEMA statement 1871
SET SERVER OPTION statement

details 1873
independence from COMMIT statement 982
independence from ROLLBACK statement 1806

2244 IBM Db2 V11.5: SQL Reference

SET SESSION AUTHORIZATION statement 1874
SET USAGE LIST STATE statement 1876
SET variable statement 1878
SETSESSIONUSER privilege

GRANT (SETSESSIONUSER privilege) statement 1707
required for SET SESSION AUTHORIZATION statement
1874
REVOKE (SETSESSIONUSER privilege) statement 1797

SHARE MODE connection 1006
shift-in characters

not truncated by assignments 55
SIGN scalar function

details 501
SIGNAL statement 1889
signatures

functions 112
methods 125

SIN scalar function
details 501

single-byte character set (SBCS) data 31
single-precision floating-point data type 29, 1351
SINH scalar function 502
small integer values from expressions

SMALLINT function 502
small integers

See SMALLINT data type 29
SMALLINT data type

CREATE TABLE statement 1351
precision 29
sign 29

SMALLINT function 502
SOME quantified predicate 197
sorting

ordering of results 55
string comparisons 55

SOUNDEX scalar function
details 503

sourced functions
overview 112

SPACE scalar function
details 504

spaces
rules governing 4

special registers
CLIENT ACCTNG 91
CLIENT APPLNAME 91
CURRENT CLIENT_ACCTNG 91
CURRENT CLIENT_APPLNAME 91
CURRENT CLIENT_USERID 92
CURRENT CLIENT_WRKSTNNAME 92
CURRENT DATE 92
CURRENT DBPARTITIONNUM 93
CURRENT DECFLOAT ROUNDING MODE 93
CURRENT DEFAULT TRANSFORM GROUP 94
CURRENT DEGREE 94
CURRENT EXPLAIN MODE 95, 2216
CURRENT EXPLAIN SNAPSHOT 96, 2216
CURRENT FEDERATED ASYNCHRONY 97
CURRENT FUNCTION PATH 101
CURRENT IMPLICIT XMLPARSE OPTION 97
CURRENT ISOLATION 98
CURRENT LOCALE LC_MESSAGES 98
CURRENT LOCALE LC_TIME 98
CURRENT LOCK TIMEOUT 99

special registers (continued)
CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION 99
CURRENT MDC ROLLOUT MODE 99
CURRENT MEMBER 99
CURRENT NODE

See special registers, CURRENT MEMBER 99
CURRENT OPTIMIZATION PROFILE 100
CURRENT PACKAGE PATH 100
CURRENT PATH 101
CURRENT QUERY OPTIMIZATION 101
CURRENT REFRESH AGE 102
CURRENT SCHEMA 102
CURRENT SERVER 102
CURRENT SQL_CCFLAGS 102
CURRENT SQLID 102
CURRENT TEMPORAL BUSINESS_TIME 103
CURRENT TEMPORAL SYSTEM_TIME 104
CURRENT TIME 105
CURRENT TIMESTAMP 105
CURRENT TIMEZONE 107
CURRENT USER 107
overview 88
SESSION USER 107
SYSTEM_USER 108
updatable 88
USER 108

specific names 5
specifications

ARRAY element 159
CAST 152
OLAP 163
XMLCAST 158

SQL
assignments 55
comparisons 55
objects

deleting 1616
operations

basic 55
overview 1
parameters 743
paths 112
return codes 737
size limits 2125
variables

compound SQL (compiled) statement 991
compound SQL (inlined) statement 984
names 5
references 743

SQL comments
bracketed 740
simple 740

SQL condition names
references 744

SQL cursor names
references 745

SQL functions
overview 112

SQL path
overview 5

SQL procedures
CASE statement 969
compiled compound statement 991

Index 2245

SQL procedures (continued)
compound SQL (inlined) statement 984
condition handlers

declaring 991
DECLARE statement 984, 991
FOR statement 1668
GET DIAGNOSTICS statement 1671
GOTO statement 1674
IF statement 1718
ITERATE statement 1730
LEAVE statement 1731
LOOP statement 1733
REPEAT statement 1766
RETURN statement 1769
SIGNAL statement 1889
variables 984, 991
WHILE statement 1926

SQL return codes 739
SQL statement names

references 745
SQL statements

ALLOCATE CURSOR 749
ALTER AUDIT POLICY 750
ALTER BUFFERPOOL 752
ALTER DATABASE 757
ALTER DATABASE PARTITION GROUP 754
ALTER EVENT MONITOR 761
ALTER FUNCTION 766
ALTER HISTOGRAM TEMPLATE 769
ALTER INDEX 770
ALTER MASK 771
ALTER METHOD 772
ALTER MODULE 773
ALTER NICKNAME 779
ALTER NODEGROUP

See SQL statements, ALTER DATABASE PARTITION
GROUP 754

ALTER PACKAGE 788
ALTER PERMISSION 790
ALTER PROCEDURE (external) 791
ALTER PROCEDURE (sourced) 794
ALTER PROCEDURE (SQL) 795
ALTER SCHEMA 796
ALTER SECURITY LABEL COMPONENT 797
ALTER SECURITY POLICY 800
ALTER SEQUENCE 803
ALTER SERVER 806
ALTER SERVICE CLASS 809
ALTER STOGROUP 818
ALTER TABLE 822
ALTER TABLESPACE 880
ALTER THRESHOLD 893
ALTER TRIGGER 905
ALTER TRUSTED CONTEXT 906
ALTER TYPE (structured) 913
ALTER USAGE LIST 919
ALTER USER MAPPING 920
ALTER VIEW 922
ALTER WORK ACTION SET 923
ALTER WORK CLASS SET 936
ALTER WORKLOAD 941
ALTER WRAPPER 954
ALTER XSROBJECT 955
ASSOCIATE LOCATORS 956

SQL statements (continued)
AUDIT 958
BEGIN DECLARE SECTION 961
CALL 962
CLOSE 971
COMMENT 973
COMMIT 982
compound (embedded) 988
compound SQL 984
CONNECT

type 1 1006
type 2 1012

control 743
CREATE ALIAS 1019
CREATE AUDIT POLICY 1022
CREATE BUFFERPOOL 1024
CREATE DATABASE PARTITION GROUP 1027
CREATE EVENT MONITOR 1029
CREATE EVENT MONITOR (activities) 1046
CREATE EVENT MONITOR (change history) 1055
CREATE EVENT MONITOR (package cache) 1065
CREATE EVENT MONITOR (statistics) 1071
CREATE EVENT MONITOR (threshold violations) 1081
CREATE FUNCTION

external scalar 1140
external table 1166
OLE DB external table 1187
overview 1123
sourced 1196
SQL row 1208
SQL scalar 1208
SQL table 1208
template 1196

CREATE FUNCTION (aggregate interface) 1124
CREATE FUNCTION MAPPING 1224
CREATE GLOBAL TEMPORARY TABLE 1228
CREATE HISTOGRAM TEMPLATE 1239
CREATE INDEX 1240
CREATE INDEX EXTENSION 1261
CREATE MASK 1266
CREATE METHOD 1271
CREATE MODULE 1276
CREATE NICKNAME 1277
CREATE NODEGROUP

See SQL statements, CREATE DATABASE
PARTITION GROUP 1027

CREATE PERMISSION 1288
CREATE PROCEDURE

external 1292
overview 1291
sourced 1307
SQL 1312

CREATE ROLE 1320
CREATE SCHEMA 1321
CREATE SECURITY LABEL 1326
CREATE SECURITY LABEL COMPONENT 1324
CREATE SECURITY POLICY 1327
CREATE SEQUENCE 1328
CREATE SERVER 1343
CREATE SERVICE CLASS 1333
CREATE STOGROUP 1349
CREATE TABLE 1351
CREATE TABLESPACE 1428
CREATE THRESHOLD 1443

2246 IBM Db2 V11.5: SQL Reference

SQL statements (continued)
CREATE TRANSFORM 1457
CREATE TRIGGER 1460
CREATE TRUSTED CONTEXT 1474
CREATE TYPE

array 1480
distinct 1487
overview 1479
row 1495
structured 1500

CREATE TYPE MAPPING 1521
CREATE USAGE LIST 1527
CREATE USER MAPPING 1529
CREATE VARIABLE 1531
CREATE VIEW 1539
CREATE WORK ACTION SET 1552
CREATE WORK CLASS SET 1560
CREATE WORKLOAD 1564
CREATE WRAPPER 1579
DECLARE CURSOR 1581
DECLARE GLOBAL TEMPORARY TABLE 1586
DELETE 1599
DESCRIBE 1608
DESCRIBE INPUT 1608
DESCRIBE OUTPUT 1611
DISCONNECT 1614
DROP 1616
embedded 737, 738
END DECLARE SECTION 1645
EXECUTE 1645
EXECUTE IMMEDIATE 1653
EXPLAIN 1655
FETCH 1659
FLUSH BUFFERPOOLS 1663
FLUSH EVENT MONITOR 1663
FLUSH FEDERATED CACHE 1664
FLUSH OPTIMIZATION PROFILE CACHE 1665
FLUSH PACKAGE CACHE 1667, 1668
FREE LOCATOR 1671
GRANT

database authorities 1675
exemption 1680
global variable privileges 1682
index privileges 1684
module privileges 1686
nickname privileges 1710
package privileges 1687
role 1690
routine privileges 1692
schema privileges 1696
security label 1701
sequence privileges 1703
server privileges 1705
SETSESSIONUSER privilege 1707
table privileges 1710
table space privileges 1708
view privileges 1710
workload privileges 1716
XSR object privileges 1717

INCLUDE 1719
INSERT 1721
interactive entry 737, 739
invoking 737
LOCK TABLE 1732

SQL statements (continued)
MERGE 1735
names 5
OPEN 1746
overview 727
PIPE 1750
PREPARE 1752
REFRESH TABLE 1757
RELEASE (connection) 1760
RELEASE SAVEPOINT 1761
RENAME 1762
RENAME STOGROUP 1764
RENAME TABLESPACE 1765
RESIGNAL 1767
REVOKE

database authorities 1771
exemption 1775
global variable privileges 1777
index privileges 1778
nickname privileges 1799
package privileges 1781
role 1783
routine privileges 1785
schema privileges 1789
security label 1792
sequence privileges 1793
server privileges 1795
SETSESSIONUSER privilege 1797
table privileges 1799
table space privileges 1798
view privileges 1799
workload privileges 1804
XSR object privileges 1805

ROLLBACK 1806
SAVEPOINT 1808
SELECT 1810
SELECT INTO 1810
SET COMPILATION ENVIRONMENT 1813
SET CONNECTION 1814
SET CONSTRAINTS 1851
SET CURRENT DECFLOAT ROUNDING MODE 1816
SET CURRENT DEFAULT TRANSFORM GROUP 1817
SET CURRENT DEGREE 1818
SET CURRENT EXPLAIN MODE 1820
SET CURRENT EXPLAIN SNAPSHOT 1822
SET CURRENT FEDERATED ASYNCHRONY 1824
SET CURRENT FUNCTION PATH 1868
SET CURRENT IMPLICIT XMLPARSE OPTION 1825
SET CURRENT ISOLATION 1826
SET CURRENT LOCALE LC_MESSAGES 1827
SET CURRENT LOCK TIMEOUT 1829
SET CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION 1830
SET CURRENT MDC ROLLOUT MODE 1832
SET CURRENT OPTIMIZATION PROFILE 1834
SET CURRENT PACKAGE PATH 1836
SET CURRENT PACKAGESET 1839
SET CURRENT PATH 1868
SET CURRENT QUERY OPTIMIZATION 1841
SET CURRENT REFRESH AGE 1843
SET CURRENT SQL_CCFLAGS 1845
SET CURRENT TEMPORAL BUSINESS_TIME 1846
SET CURRENT TEMPORAL SYSTEM_TIME 1847
SET ENCRYPTION PASSWORD 1848

Index 2247

SQL statements (continued)
SET EVENT MONITOR STATE 1850
SET INTEGRITY 1851
SET PASSTHRU 1867
SET PATH 1868
SET ROLE 1870
SET SCHEMA 1871
SET SERVER OPTION 1873
SET SESSION AUTHORIZATION 1874
SET USAGE LIST STATE 1876
SET variable 1878
strings

creating 1653
PREPARE statement 1752

TRANSFER OWNERSHIP 1892
TRUNCATE 1902
UPDATE 1905
VALUES 1921
VALUES INTO 1921
WHENEVER 1924
WITH HOLD cursor attribute 1581

SQL subqueries
WHERE clause 690

SQL syntax
AVG aggregate function 244
basic predicate 193
BETWEEN predicate 199
comparing two predicates 193, 214
CORRELATION aggregate function 245
COUNT_BIG function 247
COVARIANCE aggregate function 248
DISTINCT predicate 201
EXISTS predicate 202
GENERATE_UNIQUE function 351
GROUP BY clause 691
IN predicate 203
JSON_EXISTS predicate 205
LIKE predicate 206
order of execution for multiple operations 710
regression functions 264
search conditions 191
SELECT clause 640
STDDEV aggregate function 266
trigger event predicates 213
TYPE predicate 214
VARIANCE aggregate function 269
WHERE clause search conditions 690

SQL_COMPAT global variable 224
sql-json-path-expression 179
SQLCA structure

details 2141
error reporting 2141
overview 739
partitioned database systems 2141
UPDATE statement 1905
viewing interactively 2141

SQLCODE
details 739

SQLD field in SQLDA 2146
SQLDA

contents 2146
DESCRIBE INPUT statement 1608
DESCRIBE OUTPUT statement 1611
FETCH statement 1659

SQLDABC field in SQLDA 2146
SQLDAID field in SQLDA 2146
SQLDATA field in SQLDA 2146
SQLDATALEN field in SQLDA 2146
SQLDATATYPE_NAME field in SQLDA 2146
SQLIND field in SQLDA 2146
SQLLEN field in SQLDA 2146
SQLLONGLEN field in SQLDA 2146
SQLN field in SQLDA 2146
SQLNAME field in SQLDA 2146
SQLSTATE

overview 739
RAISE_ERROR function 452

SQLTYPE field in SQLDA 2146
SQLVAR field in SQLDA 2146
SQRT scalar function

details 504
start key values 1261
static SQL

DECLARE CURSOR statement 737, 739
FETCH statement 737
invoking 737, 739
OPEN statement 737
select-statement 737, 739
statements 737, 739

STAY RESIDENT
CREATE FUNCTION (external scalar) statement 1140
CREATE FUNCTION (external table) statement 1166
CREATE PROCEDURE statement 1292, 1312

STDDEV function 266
STDDEV_SAMP aggregate function 267
stop key values 1261
storage structures

ALTER BUFFERPOOL statement 752
ALTER TABLESPACE statement 880
CREATE BUFFERPOOL statement 1024
CREATE TABLESPACE statement 1428

string units in built-in functions 31
strings

assignment conversion rules 55
Unicode comparisons 78

STRIP scalar function 505
STRLEFT

details 506
STRPOS scalar name

details 506
STRRIGHT

details 506
structured types

CREATE TRANSFORM statement 1457
details 43
DROP statement 1616
expressions 182
host variables

details 5
sub-total rows 691
subqueries

HAVING clause 685
identifiers 5
WHERE clause 690

subselect
details 639
HAVING clause 702, 705
isolation clause 707

2248 IBM Db2 V11.5: SQL Reference

subselect (continued)
OFFSET clause 706

subselect queries
examples 688, 696, 708
fetch-clause 705
isolation-clause 707
offset-clause 706

SUBSTR scalar function 506
SUBSTR2 function 509
SUBSTR4 scalar function

details 512
SUBSTRB scalar function 515
SUBSTRING scalar function

details 518
substrings

SUBSTR function 506
SUM function 268
summary tables

overview 1351
super-aggregate rows 691
super-groups 691
supertypes

identifier names 5
symmetric super-aggregate rows 691
synonyms

CREATE ALIAS statement 1019
DROP ALIAS statement 1616
qualifying column names 5

syntax diagrams
reading 1

system catalogs
views

details 1927
SYSTEM USER special register 108
system-managed space (SMS)

table spaces
CREATE TABLESPACE statement 1428

T
TABLE clause

subselect 644
table expressions

common 715
overview 638

table functions
details 112
overview 617

table spaces
adding comments to catalog 973
buffer pools 1024
creating

CREATE TABLESPACE statement 1428
deleting

DROP statement 1616
dropping

DROP statement 1616
granting privileges 1708
identifying 1351
indexes 1351
names 5
page sizes 1428
renaming 1765
revoking privileges 1798

TABLE_NAME function 520
TABLE_SCHEMA function 521
table-reference 644
tables

adding columns 822
adding comments to catalog 973
aliases 1019, 1616
altering

ALTER TABLE statement 822
authorization for creating 1351
catalog views on system tables 1927
correlation names 5
creating

CREATE TABLE statement 1351
granting authority 1675

deleting 1616
designator to avoid ambiguity 5
dropping 1616
exception 1851, 2155
exposed names in FROM clause 5
FROM clause 643, 644
generated columns 822
granting privileges 1710
indexes 1240
inserting rows 1721
joining

CREATE TABLE statement 1351
names

ALTER TABLE statement 822
CREATE TABLE statement 1351
details 5
FROM clause 643
LOCK TABLE statement 1732

nested table expressions 5
non-exposed names in FROM clause 5
qualified column names 5
renaming 1762
restricting shared access 1732
revoking privileges 1799
scalar fullselect 5
schemas 1321
subqueries 5
temporary

OPEN statement 1746
typed

triggers 1460
unique correlation names 5
updating by row and column 1905

TAN scalar function
details 522

TANH scalar function 523
temporary tables

OPEN statement 1746
termination

units of work 982, 1806
THIS_MONTH

details 523
THIS_QUARTER

details 523
THIS_WEEK

details 524
THIS_YEAR

details 524
time

Index 2249

time (continued)
expressions 525
format conversion 300
hour values in expressions 364
returning

microseconds from datetime value 419
minutes from datetime value 421
seconds from datetime value 499
time stamp from values 525
values based on time 525

string representation formats 38
TIME data types

CREATE TABLE statement 1351
operations 145
overview 38

TIME functions 525
time stamps

GENERATE_UNIQUE function 351
rounding 490
string representation formats 38
truncating 547

TIMESTAMP data type
CREATE TABLE statement 1351
details 38
WEEK scalar function 580
WEEK_ISO scalar function 581

TIMESTAMP function 525
TIMESTAMP_FORMAT function 527
TIMESTAMP_ISO function 532
TIMESTAMPDIFF scalar function

details 533
TIMEZONE scalar function

details 535
TO_CHAR function 536
TO_CLOB scalar function 537
TO_DATE function 537
TO_HEX

details 537
TO_MULTI_BYTE scalar function

details 538
TO_NCHAR scalar function 539
TO_NCLOB scalar function 539
TO_NUMBER scalar function 539
TO_SINGLE_BYTE scalar function 540
TO_TIMESTAMP scalar function 540
TO_UTC_TIMESTAMP

details 541
tokens

details 4
TOTALORDER scalar function 542
TRANSFER OWNERSHIP statement 1892
transform functions

CREATE TRANSFORM statement 1457
transformations

DROP statement 1616
TRANSLATE scalar function 543
trigger event predicates 213
triggered SQL statements

SET variable 1878
triggers

adding comments to catalog 973
ALTER TRIGGER statement 905
CREATE TRIGGER statement 1460
dropping 1616

triggers (continued)
error messages 1460
Explain tables 2162
inoperative 905, 1460
INSERT statement 1721
maximum name length 2125
names 5
typed tables 1460
UPDATE statement 1905

TRIM scalar function 545
TRIM_ARRAY function 546
TRUNC scalar function

details 548
TRUNC_TIMESTAMP scalar function 547
TRUNCATE scalar function

details 548
TRUNCATE statement

details 1902
truncation

numbers 55
TRUSTED_CONTEXT global variable 224
truth tables 191
truth valued logic 191
type names 5
TYPE predicate

format 214
TYPE_ID function

details 550
TYPE_NAME function

details 551
TYPE_SCHEMA function

details 552
type-mapping-name 5
type-preserving methods 125
typed tables

names 5
typed views

creating 1539
defining subviews 1539
names 5

U
UCASE (locale sensitive) scalar function 552
UCASE scalar function

details 552
UDFs

CREATE FUNCTION statement
external scalar 1140
external table 1166
OLE DB external table 1187
overview 1123
sourced 1196
SQL scalar, table, or row 1208
template 1196

details 112, 630
DROP statement 1616
REVOKE (database authorities) statement 1771

UDTs
adding comments to catalog 973
casting 47
CREATE TRANSFORM statement 1457
CREATE TYPE (distinct) statement 1487
details 43

2250 IBM Db2 V11.5: SQL Reference

UDTs (continued)
distinct types

CREATE TABLE statement 1351
details 43

reference types 43
structured types 43, 1351

unary operators
minus sign 132
plus sign 132

undefined reference errors 5
Unicode

conventions 3
conversion to uppercase 4

Unicode UCS-2 encoding
functions 275
pattern matching 78
string comparisons 78

UNICODE_STR scalar function
details 553

UNION operator
role in comparison of fullselect 710

unique constraints
adding with ALTER TABLE statement 822
creating with CREATE TABLE statement 1351
dropping with ALTER TABLE statement 822

unique correlation names 5
unique keys

ALTER TABLE statement 822
CREATE TABLE statement 1351

units of work
cancelling changes 1806
COMMIT statement 982
initiation closes cursors 1746
prepared statements 1752
ROLLBACK statement 1806
terminating

commits 982
destroys prepared statements 1752
without saving changes 1806

UNNEST function 624
unqualified names 5
untyped expressions

determining data types 182
UPDATE statement 1905
update-clause 720
updates

updatable special registers 88
updatable views 1539

UPPER (locale sensitive) scalar function 554
UPPER scalar function 554
usage lists

creating 1527
deleting using DROP statement 1616

USER special register 108
user-defined array types 42
user-defined functions

See UDFs 630
user-defined global variables 108
user-defined methods

details 125

V
VALIDATED predicate 215

VALUE function 556
values

null 28
overview 28
sequence 176

VALUES clause
fullselect 710
loading one row 1721
rules for number of values 1721

VALUES INTO statement 1921
VALUES statement 1921
VARBINARY data type

details 37
VARBINARY scalar function

details 556
VARCHAR data type

CREATE TABLE statement 1351
details 31
DOUBLE_PRECISION or DOUBLE scalar function 339
WEEK scalar function 580
WEEK_ISO scalar function 581

VARCHAR function 557
VARCHAR_BIT_FORMAT function 563
VARCHAR_FORMAT function 564
VARCHAR_FORMAT_BIT function 572
VARGRAPHIC data type

details 35
VARGRAPHIC function 573
variables

global
assigning values 111
authorizations 109
built-in 218
overview 108
resolving references to 110
restrictions 111
retrieving values 111
types 108

resolving global variable references 110
VARIANCE aggregate function 269
VARIANCE_SAMP aggregate function 270
varying-length binary strings

overview 37
varying-length character string 31
varying-length graphic string 35
VERIFY_GROUP_FOR_USER scalar function 578
VERIFY_ROLE_FOR_USER scalar function 579
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER scalar
function 579
views

adding comments to catalog 973
aliases 1019, 1616
column names 1539
CONTROL privilege 1710
creating 1539
deletable 1539
dropping 1616
exposed names in FROM clause 5
FROM clause 5, 640
granting privileges 1710
inoperative 1539
insertable 1539
inserting rows 1721
names

Index 2251

views (continued)
names (continued)

ALTER VIEW statement 922
FROM clauses 643
identifiers 5
SELECT clauses 640

non-exposed names in FROM clause 5
preventing view definition loss with WITH CHECK
OPTION 1905
qualifying column names 5
read-only 1539
revoking privileges 1799
schemas 1321
updatable 1539
updating rows by columns 1905
WITH CHECK OPTION 1905

W
WEEK scalar function

details 580
WEEK_ISO scalar function

details 581
WEEKS_BETWEEN

details 581
WHENEVER statement

changing flow of control 737
details 1924

WHERE clause
DELETE statement 1599
subselect component of fullselect 690
UPDATE statement 1905

WHILE statement
details 1926

WIDTH_BUCKET scalar function
details 582

wild cards
DISTINCT predicate 201
LIKE predicate 206

WITH common table expression
select-statement 715

words
SQL reserved 2138

wrappers
names 5

X
XML

CREATE INDEX statement 1240
size limits 2125
values 42

XML data
CREATE INDEX statement 1240

XML data type
restrictions 42

XML indexes
CREATE INDEX statement 1240

XMLAGG aggregate function
details 271

XMLATTRIBUTES scalar function
details 585

XMLCAST specification

XMLCAST specification (continued)
details 158

XMLCOMMENT scalar function
details 586

XMLCONCAT scalar function 586
XMLDOCUMENT scalar function

details 587
XMLELEMENT scalar function

details 588
XMLEXISTS predicate

details 216
XMLFOREST scalar function

details 594
XMLGROUP aggregate function

details 273
XMLNAMESPACES declaration

details 596
XMLPARSE scalar function

details 597
XMLPI scalar function

details 599
XMLQUERY scalar function

details 600
XMLROW scalar function

details 603
XMLSERIALIZE scalar function

details 605
XMLTABLE table function

details 626
XMLTEXT scalar function

details 606
XMLVALIDATE scalar function

details 607
XMLXSROBJECTID scalar function 611
XSLTRANSFORM scalar function

details 612
XSR_ADDSCHEMADOC procedure 631
XSR_COMPLETE procedure 632
XSR_DTD procedure 633
XSR_EXTENTITY procedure 634
XSR_REGISTER procedure 635
XSR_UPDATE procedure 637

Y
YEAR scalar function

details 615
YEARS_BETWEEN scalar function

details 615
YMD_BETWEEN scalar function

details 616

2252 IBM Db2 V11.5: SQL Reference

IBM®

	Contents
	Notices
	Trademarks
	Terms and conditions for product documentation

	Tables
	Chapter 1. SQL
	How to read the syntax diagrams
	Conventions used for the SQL topics
	Error conditions
	Highlighting conventions
	Conventions describing Unicode data

	Language elements
	Characters
	Tokens
	Identifiers
	Data types
	Data type list
	Numbers
	Character strings
	Graphic strings
	National character strings
	Binary strings
	Large objects (LOBs)
	Datetime values
	Boolean values
	Cursor values
	XML values
	Array values
	Anchored types
	User-defined types

	Promotion of data types
	Casting between data types
	Assignments and comparisons
	Rules for result data types
	Rules for string conversions
	String comparisons in a Unicode database
	Resolving the anchor object for an anchored type
	Resolving the anchor object for an anchored row type
	Database partition-compatible data types

	Constants
	Special registers
	CURRENT CLIENT_ACCTNG
	CURRENT CLIENT_APPLNAME
	CURRENT CLIENT_USERID
	CURRENT CLIENT_WRKSTNNAME
	CURRENT DATE
	CURRENT DBPARTITIONNUM
	CURRENT DECFLOAT ROUNDING MODE
	CURRENT DEFAULT TRANSFORM GROUP
	CURRENT DEGREE
	CURRENT EXPLAIN MODE
	CURRENT EXPLAIN SNAPSHOT
	CURRENT FEDERATED ASYNCHRONY
	CURRENT IMPLICIT XMLPARSE OPTION
	CURRENT ISOLATION
	CURRENT LOCALE LC_MESSAGES
	CURRENT LOCALE LC_TIME
	CURRENT LOCK TIMEOUT
	CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
	CURRENT MDC ROLLOUT MODE
	CURRENT MEMBER
	CURRENT OPTIMIZATION PROFILE
	CURRENT PACKAGE PATH
	CURRENT PATH
	CURRENT QUERY OPTIMIZATION
	CURRENT REFRESH AGE
	CURRENT SCHEMA
	CURRENT SERVER
	CURRENT SQL_CCFLAGS
	CURRENT TEMPORAL BUSINESS_TIME
	CURRENT TEMPORAL SYSTEM_TIME
	CURRENT TIME
	CURRENT TIMESTAMP
	CURRENT TIMEZONE
	CURRENT USER
	SESSION_USER
	SYSTEM_USER
	USER

	Global variables
	Types of global variables
	Authorization required for global variables
	Resolution of global variable references
	Using global variables

	Functions
	Methods
	Conservative binding semantics
	Expressions
	Datetime operations and durations
	CASE expression
	CAST specification
	Field reference
	XMLCAST specification
	ARRAY element specification
	Array constructor
	Dereference operation
	Method invocation
	OLAP specification
	ROW CHANGE expression
	Sequence reference
	sql-json-path-expression
	Subtype treatment
	Determining data types of untyped expressions

	Row expression
	Predicates
	Search conditions
	Basic predicate
	Boolean predicate
	Quantified predicate
	ARRAY_EXISTS predicate
	BETWEEN predicate
	Cursor predicates
	DISTINCT predicate
	EXISTS predicate
	IN predicate
	JSON_EXISTS predicate
	LIKE predicate
	NULL predicate
	OVERLAPS predicate
	REGEXP_LIKE predicate
	Trigger event predicates
	TYPE predicate
	VALIDATED predicate
	XMLEXISTS predicate

	Built-in global variables
	CLIENT_HOST global variable
	CLIENT_IPADDR global variable
	CLIENT_ORIGUSERID global variable
	CLIENT_USRSECTOKEN global variable
	MON_INTERVAL_ID global variable
	NLS_STRING_UNITS global variable
	PACKAGE_NAME global variable
	PACKAGE_SCHEMA global variable
	PACKAGE_VERSION global variable
	ROUTINE_MODULE global variable
	ROUTINE_SCHEMA global variable
	ROUTINE_SPECIFIC_NAME global variable
	ROUTINE_TYPE global variable
	SQL_COMPAT global variable
	TRUSTED_CONTEXT global variable

	Built-in functions
	Aggregate functions
	ARRAY_AGG
	AVG
	CORRELATION
	COUNT
	COUNT_BIG
	COVARIANCE
	COVARIANCE_SAMP
	CUME_DIST
	GROUPING
	JSON_ARRAYAGG
	LISTAGG
	MAX
	MEDIAN
	MIN
	PERCENTILE_CONT
	PERCENTILE_DISC
	PERCENT_RANK
	Regression functions (REGR_AVGX, REGR_AVGY, REGR_COUNT, ...)
	STDDEV
	STDDEV_SAMP
	SUM
	VARIANCE
	VARIANCE_SAMP
	XMLAGG
	XMLGROUP

	Scalar functions
	ABS or ABSVAL
	ACOS
	ADD_DAYS
	ADD_HOURS
	ADD_MINUTES
	ADD_MONTHS
	ADD_SECONDS
	ADD_YEARS
	AGE
	ARRAY_DELETE
	ARRAY_FIRST
	ARRAY_LAST
	ARRAY_NEXT
	ARRAY_PRIOR
	ASCII
	ASCII_STR
	ASIN
	ATAN
	ATAN2
	ATANH
	BIGINT
	BINARY
	BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT
	BLOB
	BOOLEAN
	BPCHAR
	BSON_TO_JSON
	BTRIM
	CARDINALITY
	CEILING or CEIL
	CHAR
	CHARACTER_LENGTH
	CHR
	CLOB
	COALESCE
	COLLATION_KEY
	COLLATION_KEY_BIT
	COMPARE_DECFLOAT
	CONCAT
	COS
	COSH
	COT
	CURSOR_ROWCOUNT
	DATAPARTITIONNUM
	DATE
	DATETIME
	DATE_PART
	DATE_TRUNC
	DAY
	DAYNAME
	DAYOFMONTH
	DAYOFWEEK
	DAYOFWEEK_ISO
	DAYOFYEAR
	DAYS
	DAYS_BETWEEN
	DAYS_TO_END_OF_MONTH
	DBCLOB
	DBPARTITIONNUM
	DECFLOAT
	DECFLOAT_FORMAT
	DECIMAL or DEC
	DECODE
	DECRYPT_BIN and DECRYPT_CHAR
	DEGREES
	DEREF
	DIFFERENCE
	DIGITS
	DOUBLE_PRECISION or DOUBLE
	EMPTY_BLOB, EMPTY_CLOB, EMPTY_DBCLOB, and EMPTY_NCLOB
	ENCRYPT
	EVENT_MON_STATE
	EXP
	EXTRACT
	FIRST_DAY
	FLOAT
	FLOAT4
	FLOAT8
	FLOOR
	FROM_UTC_TIMESTAMP
	GENERATE_UNIQUE
	GETHINT
	GRAPHIC
	GREATEST
	HASH
	HASH4
	HASH8
	HASHEDVALUE
	HEX
	HEXTORAW
	HOUR
	HOURS_BETWEEN
	IDENTITY_VAL_LOCAL
	IFNULL
	INITCAP
	INSERT
	INSTR
	INSTR2
	INSTR4
	INSTRB
	INT
	INTERVAL
	INTEGER
	INT2
	INT4
	INT8
	INTNAND, INTNOR, INTNXOR, and INTNNOT
	ISNULL
	JSON_ARRAY
	JSON_OBJECT
	JSON_QUERY
	JSON_TO_BSON
	JSON_VALUE
	JULIAN_DAY
	LAST_DAY
	LCASE
	LCASE (locale sensitive)
	LCASE (SYSFUN schema)
	LEAST
	LEFT
	LENGTH
	LENGTH2
	LENGTH4
	LENGTHB
	LN
	LOCATE
	LOCATE_IN_STRING
	LOG10
	LONG_VARCHAR
	LONG_VARGRAPHIC
	LOWER
	LOWER (locale sensitive)
	LPAD
	LTRIM
	LTRIM (SYSFUN schema)
	MAX
	MAX_CARDINALITY
	MICROSECOND
	MIDNIGHT_SECONDS
	MIN
	MINUTE
	MINUTES_BETWEEN
	MOD
	MOD (SYSFUN schema)
	MONTH
	MONTHNAME
	MONTHS_BETWEEN
	MULTIPLY_ALT
	NCHAR
	NCHR
	NCLOB
	NVARCHAR
	NEXT_DAY
	NEXT_MONTH
	NEXT_QUARTER
	NEXT_WEEK
	NEXT_YEAR
	NORMALIZE_DECFLOAT
	NOW
	NULLIF
	NUMERIC
	NVL
	NVL2
	OCTET_LENGTH
	OVERLAY
	PARAMETER
	POSITION
	POSSTR
	POW
	POWER
	QUANTIZE
	QUARTER
	QUOTE_IDENT
	QUOTE_LITERAL
	RADIANS
	RAISE_ERROR
	RAND (SYSFUN schema)
	RAND (SYSIBM schema)
	RANDOM
	RAWTOHEX
	REAL
	REC2XML
	REGEXP_COUNT
	REGEXP_EXTRACT
	REGEXP_INSTR
	REGEXP_LIKE
	REGEXP_MATCH_COUNT
	REGEXP_REPLACE
	REGEXP_SUBSTR
	REPEAT
	REPEAT (SYSFUN schema)
	REPLACE
	REPLACE (SYSFUN schema)
	RID and RID_BIT
	RIGHT
	ROUND
	ROUND_TIMESTAMP
	RPAD
	RTRIM
	RTRIM (SYSFUN schema)
	SECLABEL
	SECLABEL_BY_NAME
	SECLABEL_TO_CHAR
	SECOND
	SECONDS_BETWEEN
	SIGN
	SIN
	SINH
	SMALLINT
	SOUNDEX
	SPACE
	SQRT
	STRIP
	STRLEFT
	STRPOS
	STRRIGHT
	SUBSTR
	SUBSTR2
	SUBSTR4
	SUBSTRB
	SUBSTRING
	TABLE_NAME
	TABLE_SCHEMA
	TAN
	TANH
	THIS_MONTH
	THIS_QUARTER
	THIS_WEEK
	THIS_YEAR
	TIME
	TIMESTAMP
	TIMESTAMP_FORMAT
	TIMESTAMP_ISO
	TIMESTAMPDIFF
	TIMEZONE
	TO_CHAR
	TO_CLOB
	TO_DATE
	TO_HEX
	TO_MULTI_BYTE
	TO_NCHAR
	TO_NCLOB
	TO_NUMBER
	TO_SINGLE_BYTE
	TO_TIMESTAMP
	TO_UTC_TIMESTAMP
	TOTALORDER
	TRANSLATE
	TRIM
	TRIM_ARRAY
	TRUNC_TIMESTAMP
	TRUNCATE or TRUNC
	TYPE_ID
	TYPE_NAME
	TYPE_SCHEMA
	UCASE
	UCASE (locale sensitive)
	UNICODE_STR
	UPPER
	UPPER (locale sensitive)
	VALUE
	VARBINARY
	VARCHAR
	VARCHAR_BIT_FORMAT
	VARCHAR_FORMAT
	VARCHAR_FORMAT_BIT
	VARGRAPHIC
	VERIFY_GROUP_FOR_USER
	VERIFY_ROLE_FOR_USER
	VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER
	WEEK
	WEEK_ISO
	WEEKS_BETWEEN
	WIDTH_BUCKET
	XMLATTRIBUTES
	XMLCOMMENT
	XMLCONCAT
	XMLDOCUMENT
	XMLELEMENT
	XMLFOREST
	XMLNAMESPACES
	XMLPARSE
	XMLPI
	XMLQUERY
	XMLROW
	XMLSERIALIZE
	XMLTEXT
	XMLVALIDATE
	XMLXSROBJECTID
	XSLTRANSFORM
	YEAR
	YEARS_BETWEEN
	YMD_BETWEEN

	Table functions
	BASE_TABLE
	JSON_TABLE
	UNNEST
	XMLTABLE

	User-defined functions

	Built-in procedures
	XSR_ADDSCHEMADOC
	XSR_COMPLETE
	XSR_DTD
	XSR_EXTENTITY
	XSR_REGISTER
	XSR_UPDATE

	Queries
	Queries and table expressions
	subselect
	select-clause
	from-clause
	table-reference
	joined-table
	Examples of subselect queries with joins

	where-clause
	group-by-clause
	Examples of grouping sets, cube, and rollup

	having-clause
	order-by-clause
	fetch-clause
	offset-clause
	isolation-clause
	Examples of subselect queries

	fullselect
	Examples of fullselect queries

	select-statement
	common-table-expression
	Recursion example: bill of materials

	update-clause
	read-only-clause
	optimize-for-clause
	isolation-clause
	lock-request-clause
	concurrent-access-resolution-clause
	Examples of select-statement queries
	Result sets from SQL data changes

	Statements
	How SQL statements are invoked
	Embedding a statement in an application program
	Dynamic preparation and execution
	Static invocation of a select-statement
	Dynamic invocation of a select-statement
	Interactive invocation
	SQL use with other host systems

	Detecting and processing error and warning conditions in host language applications
	SQL comments
	Conditional compilation in SQL
	About SQL control statements
	References to SQL parameters, SQL variables, and global variables
	References to SQL labels
	References to SQL condition names
	References to SQL statement names
	References to SQL cursor names

	Function, method, and procedure designators
	ALLOCATE CURSOR
	ALTER AUDIT POLICY
	ALTER BUFFERPOOL
	ALTER DATABASE PARTITION GROUP
	ALTER DATABASE
	ALTER EVENT MONITOR
	ALTER FUNCTION
	ALTER HISTOGRAM TEMPLATE
	ALTER INDEX
	ALTER MASK
	ALTER METHOD
	ALTER MODULE
	ALTER NICKNAME
	ALTER PACKAGE
	ALTER PERMISSION
	ALTER PROCEDURE (external)
	ALTER PROCEDURE (sourced)
	ALTER PROCEDURE (SQL)
	ALTER SCHEMA
	ALTER SECURITY LABEL COMPONENT
	ALTER SECURITY POLICY
	ALTER SEQUENCE
	ALTER SERVER
	ALTER SERVICE CLASS
	ALTER STOGROUP
	ALTER TABLE
	ALTER TABLESPACE
	ALTER THRESHOLD
	ALTER TRIGGER
	ALTER TRUSTED CONTEXT
	ALTER TYPE (structured)
	ALTER USAGE LIST
	ALTER USER MAPPING
	ALTER VIEW
	ALTER WORK ACTION SET
	ALTER WORK CLASS SET
	ALTER WORKLOAD
	ALTER WRAPPER
	ALTER XSROBJECT
	ASSOCIATE LOCATORS
	AUDIT
	BEGIN DECLARE SECTION
	CALL
	CASE
	CLOSE
	COMMENT
	COMMIT
	Compound SQL
	Compound SQL (inlined)
	Compound SQL (embedded)
	Compound SQL (compiled)
	CONNECT (type 1)
	CONNECT (type 2)
	CREATE ALIAS
	CREATE AUDIT POLICY
	CREATE BUFFERPOOL
	CREATE DATABASE PARTITION GROUP
	CREATE EVENT MONITOR
	CREATE EVENT MONITOR (activities)
	CREATE EVENT MONITOR (change history)
	CREATE EVENT MONITOR (locking)
	CREATE EVENT MONITOR (package cache)
	CREATE EVENT MONITOR (statistics)
	CREATE EVENT MONITOR (threshold violations)
	CREATE EVENT MONITOR (unit of work)
	CREATE EXTERNAL TABLE
	CREATE FUNCTION
	CREATE FUNCTION (aggregate interface)
	CREATE FUNCTION (external scalar)
	CREATE FUNCTION (external table)
	CREATE FUNCTION (OLE DB external table)
	CREATE FUNCTION (sourced or template)
	CREATE FUNCTION (SQL scalar, table, or row)
	CREATE FUNCTION MAPPING
	CREATE GLOBAL TEMPORARY TABLE
	CREATE HISTOGRAM TEMPLATE
	CREATE INDEX
	CREATE INDEX EXTENSION
	CREATE MASK
	CREATE METHOD
	CREATE MODULE
	CREATE NICKNAME
	CREATE PERMISSION
	CREATE PROCEDURE
	CREATE PROCEDURE (external)
	CREATE PROCEDURE (sourced)
	CREATE PROCEDURE (SQL)
	CREATE ROLE
	CREATE SCHEMA
	CREATE SECURITY LABEL COMPONENT
	CREATE SECURITY LABEL
	CREATE SECURITY POLICY
	CREATE SEQUENCE
	CREATE SERVICE CLASS
	CREATE SERVER
	CREATE STOGROUP
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLESPACE
	CREATE THRESHOLD
	CREATE TRANSFORM
	CREATE TRIGGER
	CREATE TRUSTED CONTEXT
	CREATE TYPE
	CREATE TYPE (array)
	CREATE TYPE (cursor)
	CREATE TYPE (distinct)
	CREATE TYPE (row)
	CREATE TYPE (structured)
	CREATE TYPE MAPPING
	CREATE USAGE LIST
	CREATE USER MAPPING
	CREATE VARIABLE
	CREATE VIEW
	CREATE WORK ACTION SET
	CREATE WORK CLASS SET
	CREATE WORKLOAD
	CREATE WRAPPER
	DECLARE CURSOR
	DECLARE GLOBAL TEMPORARY TABLE
	DELETE
	DESCRIBE
	DESCRIBE INPUT
	DESCRIBE OUTPUT
	DISCONNECT
	DROP
	END DECLARE SECTION
	EXECUTE
	EXECUTE IMMEDIATE
	EXPLAIN
	FETCH
	FLUSH BUFFERPOOLS
	FLUSH EVENT MONITOR
	FLUSH FEDERATED CACHE
	FLUSH OPTIMIZATION PROFILE CACHE
	FLUSH PACKAGE CACHE
	FLUSH AUTHENTICATION CACHE
	FOR
	FREE LOCATOR
	GET DIAGNOSTICS
	GOTO
	GRANT (database authorities)
	GRANT (exemption)
	GRANT (global variable privileges)
	GRANT (index privileges)
	GRANT (module privileges)
	GRANT (package privileges)
	GRANT (role)
	GRANT (routine privileges)
	GRANT (schema privileges and authorities)
	GRANT (security label)
	GRANT (sequence privileges)
	GRANT (server privileges)
	GRANT (SETSESSIONUSER privilege)
	GRANT (table space privileges)
	GRANT (table, view, or nickname privileges)
	GRANT (workload privileges)
	GRANT (XSR object privileges)
	IF
	INCLUDE
	INSERT
	ITERATE
	LEAVE
	LOCK TABLE
	LOOP
	MERGE
	OPEN
	PIPE
	PREPARE
	REFRESH TABLE
	RELEASE (connection)
	RELEASE SAVEPOINT
	RENAME
	RENAME STOGROUP
	RENAME TABLESPACE
	REPEAT
	RESIGNAL
	RETURN
	REVOKE (database authorities)
	REVOKE (exemption)
	REVOKE (global variable privileges)
	REVOKE (index privileges)
	REVOKE (module privileges)
	REVOKE (package privileges)
	REVOKE (role)
	REVOKE (routine privileges)
	REVOKE (schema privileges and authorities)
	REVOKE (security label)
	REVOKE (sequence privileges)
	REVOKE (server privileges)
	REVOKE (SETSESSIONUSER privilege)
	REVOKE (table space privileges)
	REVOKE (table, view, or nickname privileges)
	REVOKE (workload privileges)
	REVOKE (XSR object privileges)
	ROLLBACK
	SAVEPOINT
	SELECT
	SELECT INTO
	SET COMPILATION ENVIRONMENT
	SET CONNECTION
	SET CURRENT DECFLOAT ROUNDING MODE
	SET CURRENT DEFAULT TRANSFORM GROUP
	SET CURRENT DEGREE
	SET CURRENT EXPLAIN MODE
	SET CURRENT EXPLAIN SNAPSHOT
	SET CURRENT FEDERATED ASYNCHRONY
	SET CURRENT IMPLICIT XMLPARSE OPTION
	SET CURRENT ISOLATION
	SET CURRENT LOCALE LC_MESSAGES
	SET CURRENT LOCALE LC_TIME
	SET CURRENT LOCK TIMEOUT
	SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
	SET CURRENT MDC ROLLOUT MODE
	SET CURRENT OPTIMIZATION PROFILE
	SET CURRENT PACKAGE PATH
	SET CURRENT PACKAGESET
	SET CURRENT QUERY OPTIMIZATION
	SET CURRENT REFRESH AGE
	SET CURRENT SQL_CCFLAGS
	SET CURRENT TEMPORAL BUSINESS_TIME
	SET CURRENT TEMPORAL SYSTEM_TIME
	SET ENCRYPTION PASSWORD
	SET EVENT MONITOR STATE
	SET INTEGRITY
	SET PASSTHRU
	SET PATH
	SET ROLE
	SET SCHEMA
	SET SERVER OPTION
	SET SESSION AUTHORIZATION
	SET USAGE LIST STATE
	SET variable
	SIGNAL
	TRANSFER OWNERSHIP
	TRUNCATE
	UPDATE
	VALUES
	VALUES INTO
	WHENEVER
	WHILE

	Catalog views
	Road map to the catalog views
	SYSCAT.ATTRIBUTES
	SYSCAT.AUDITPOLICIES
	SYSCAT.AUDITUSE
	SYSCAT.BUFFERPOOLDBPARTITIONS
	SYSCAT.BUFFERPOOLEXCEPTIONS
	SYSCAT.BUFFERPOOLS
	SYSCAT.CASTFUNCTIONS
	SYSCAT.CHECKS
	SYSCAT.COLAUTH
	SYSCAT.COLCHECKS
	SYSCAT.COLDIST
	SYSCAT.COLGROUPCOLS
	SYSCAT.COLGROUPDIST
	SYSCAT.COLGROUPDISTCOUNTS
	SYSCAT.COLGROUPS
	SYSCAT.COLIDENTATTRIBUTES
	SYSCAT.COLOPTIONS
	SYSCAT.COLUMNS
	SYSCAT.COLUSE
	SYSCAT.CONDITIONS
	SYSCAT.CONSTDEP
	SYSCAT.CONTEXTATTRIBUTES
	SYSCAT.CONTEXTS
	SYSCAT.CONTROLDEP
	SYSCAT.CONTROLS
	SYSCAT.DATAPARTITIONEXPRESSION
	SYSCAT.DATAPARTITIONS
	SYSCAT.DATATYPEDEP
	SYSCAT.DATATYPES
	SYSCAT.DBAUTH
	SYSCAT.DBPARTITIONGROUPDEF
	SYSCAT.DBPARTITIONGROUPS
	SYSCAT.EVENTMONITORS
	SYSCAT.EVENTS
	SYSCAT.EVENTTABLES
	SYSCAT.EXTERNALTABLEOPTIONS
	SYSCAT.FULLHIERARCHIES
	SYSCAT.FUNCMAPOPTIONS
	SYSCAT.FUNCMAPPARMOPTIONS
	SYSCAT.FUNCMAPPINGS
	SYSCAT.HIERARCHIES
	SYSCAT.HISTOGRAMTEMPLATEBINS
	SYSCAT.HISTOGRAMTEMPLATES
	SYSCAT.HISTOGRAMTEMPLATEUSE
	SYSCAT.INDEXAUTH
	SYSCAT.INDEXCOLUSE
	SYSCAT.INDEXDEP
	SYSCAT.INDEXES
	SYSCAT.INDEXEXPLOITRULES
	SYSCAT.INDEXEXTENSIONDEP
	SYSCAT.INDEXEXTENSIONMETHODS
	SYSCAT.INDEXEXTENSIONPARMS
	SYSCAT.INDEXEXTENSIONS
	SYSCAT.INDEXOPTIONS
	SYSCAT.INDEXPARTITIONS
	SYSCAT.INDEXXMLPATTERNS
	SYSCAT.INVALIDOBJECTS
	SYSCAT.KEYCOLUSE
	SYSCAT.MEMBERSUBSETATTRS
	SYSCAT.MEMBERSUBSETMEMBERS
	SYSCAT.MEMBERSUBSETS
	SYSCAT.MODULEAUTH
	SYSCAT.MODULEOBJECTS
	SYSCAT.MODULES
	SYSCAT.NAMEMAPPINGS
	SYSCAT.NICKNAMES
	SYSCAT.PACKAGEAUTH
	SYSCAT.PACKAGEDEP
	SYSCAT.PACKAGES
	SYSCAT.PARTITIONMAPS
	SYSCAT.PASSTHRUAUTH
	SYSCAT.PERIODS
	SYSCAT.PREDICATESPECS
	SYSCAT.REFERENCES
	SYSCAT.ROLEAUTH
	SYSCAT.ROLES
	SYSCAT.ROUTINEAUTH
	SYSCAT.ROUTINEDEP
	SYSCAT.ROUTINEOPTIONS
	SYSCAT.ROUTINEPARMOPTIONS
	SYSCAT.ROUTINEPARMS
	SYSCAT.ROUTINES
	SYSCAT.ROUTINESFEDERATED
	SYSCAT.ROWFIELDS
	SYSCAT.SCHEMAAUTH
	SYSCAT.SCHEMATA
	SYSCAT.SCPREFTBSPACES
	SYSCAT.SECURITYLABELACCESS
	SYSCAT.SECURITYLABELCOMPONENTELEMENTS
	SYSCAT.SECURITYLABELCOMPONENTS
	SYSCAT.SECURITYLABELS
	SYSCAT.SECURITYPOLICIES
	SYSCAT.SECURITYPOLICYCOMPONENTRULES
	SYSCAT.SECURITYPOLICYEXEMPTIONS
	SYSCAT.SEQUENCEAUTH
	SYSCAT.SEQUENCES
	SYSCAT.SERVEROPTIONS
	SYSCAT.SERVERS
	SYSCAT.SERVICECLASSES
	SYSCAT.STATEMENTS
	SYSCAT.STOGROUPS
	SYSCAT.STATEMENTTEXTS
	SYSCAT.SURROGATEAUTHIDS
	SYSCAT.TABAUTH
	SYSCAT.TABCONST
	SYSCAT.TABDEP
	SYSCAT.TABDETACHEDDEP
	SYSCAT.TABLES
	SYSCAT.TABLESPACES
	SYSCAT.TABOPTIONS
	SYSCAT.TBSPACEAUTH
	SYSCAT.THRESHOLDS
	SYSCAT.TRANSFORMS
	SYSCAT.TRIGDEP
	SYSCAT.TRIGGERS
	SYSCAT.TYPEMAPPINGS
	SYSCAT.USAGELISTS
	SYSCAT.USEROPTIONS
	SYSCAT.VARIABLEAUTH
	SYSCAT.VARIABLEDEP
	SYSCAT.VARIABLES
	SYSCAT.VIEWS
	SYSCAT.WORKACTIONS
	SYSCAT.WORKACTIONSETS
	SYSCAT.WORKCLASSATTRIBUTES
	SYSCAT.WORKCLASSES
	SYSCAT.WORKCLASSSETS
	SYSCAT.WORKLOADAUTH
	SYSCAT.WORKLOADCONNATTR
	SYSCAT.WORKLOADS
	SYSCAT.WRAPOPTIONS
	SYSCAT.WRAPPERS
	SYSCAT.XDBMAPGRAPHS
	SYSCAT.XDBMAPSHREDTREES
	SYSCAT.XMLSTRINGS
	SYSCAT.XSROBJECTAUTH
	SYSCAT.XSROBJECTCOMPONENTS
	SYSCAT.XSROBJECTDEP
	SYSCAT.XSROBJECTDETAILS
	SYSCAT.XSROBJECTHIERARCHIES
	SYSCAT.XSROBJECTS
	SYSIBM.SYSDUMMY1
	SYSSTAT.COLDIST
	SYSSTAT.COLGROUPDIST
	SYSSTAT.COLGROUPDISTCOUNTS
	SYSSTAT.COLGROUPS
	SYSSTAT.COLUMNS
	SYSSTAT.INDEXES
	SYSSTAT.ROUTINES
	SYSSTAT.TABLES

	SQL and XML limits
	Reserved schema names and reserved words
	Communications areas, descriptor areas, and exception tables
	SQLCA (SQL communications area)
	SQLDA (SQL descriptor area)
	Exception tables

	Regular expression control characters
	Explain tables
	ADVISE_INDEX
	ADVISE_INSTANCE
	ADVISE_MQT
	ADVISE_PARTITION
	ADVISE_TABLE
	ADVISE_WORKLOAD
	EXPLAIN_ACTUALS
	EXPLAIN_ARGUMENT
	EXPLAIN_DIAGNOSTIC
	EXPLAIN_DIAGNOSTIC_DATA
	EXPLAIN_INSTANCE
	EXPLAIN_OBJECT
	EXPLAIN_OPERATOR
	EXPLAIN_PREDICATE
	EXPLAIN_STATEMENT
	EXPLAIN_STREAM
	OBJECT_METRICS

	Explain register values

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

