
IBM Db2 11.5

Database Security Guide
2023-02-06

IBM

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2016, 2023 i

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

ii Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices iii

iv IBM Db2 11.5: Database Security Guide

About this book

The Database Security Guide describes how to use Db2® security features to implement and manage the
level of security you require for your database installation.

The Database Security Guide provides detailed information about:

• Managing the authentication of users who can access Db2 databases
• Setting up authorization to control user access to database objects and data

© Copyright IBM Corp. 2016, 2023 v

vi IBM Db2 11.5: Database Security Guide

Contents

Notices...i
Trademarks... ii
Terms and conditions for product documentation.. ii

About this book... v

Chapter 1. Db2 security model... 1
Authentication..2
Authorization..3
Security considerations when installing and using Db2... 4

File permission requirements for the instance and database directories.. 5
Authentication details..6

Authentication methods for servers.. 6
Authentication considerations for remote clients...11
Partitioned database authentication... 12
Kerberos authentication...12
Maintaining password information.. 17
Authentication and group cache..17
Token authentication..19

Authorization, privileges, and object ownership...25
Authorities overview...30
Internal system-defined routine..34
Instance level authorities...35
Database authorities.. 38
Schema authorities.. 45
Privileges.. 48
Authorization IDs in different contexts..55
Default privileges granted on creating a database..56
Default PUBLIC privilege for built-in routines... 58
Granting and revoking access.. 62
Controlling access for database administrators (DBAs)... 68
Gaining access to data through indirect means.. 69

Data encryption..71
Encryption of data at rest...72
Encryption of data in transit...106

Auditing DB2 activities.. 146
Introduction to the Db2 audit facility.. 146
Audit facility management...164

Security model for the db2cluster command... 167

Chapter 2. Roles.. 169
Creating and granting membership in roles..170
Role hierarchies... 171
Revoking privileges from roles.. 172
Delegating role maintenance by using the WITH ADMIN OPTION clause...173
Roles compared to groups...174
Using roles after migrating from Informix Dynamic Server..175

Chapter 3. Using trusted contexts and trusted connections................................. 177
Trusted contexts and trusted connections... 179

 vii

Role membership inheritance through a trusted context.. 181
Rules for switching the user ID... 182
Problem determination... 183

Chapter 4. Row and column access control (RCAC)..185
Row and column access control (RCAC) rules.. 185

SQL statements for managing RCAC rules.. 186
Built-in functions for managing RCAC permissions and masks..187

Scenario: ExampleHMO using row and column access control... 187
Security policies... 187
Database users and roles...188
Database tables... 189
Security administration..190
Row permissions.. 191
Column masks..192
Data insertion... 193
Data updates.. 193
Data queries... 194
View creation..195
Secure functions.. 196
Secure triggers... 198
Revoke authority.. 199

Scenario: ExampleBANK using row and column access control..199
Security policies... 199
Database users and roles...200
Database tables... 200
Row permissions.. 201
Column masks..202
Data queries... 202

Chapter 5. Label-Based Access Control (LBAC)... 205
LBAC security policies... 206
LBAC security label components.. 207

LBAC security label component type: SET.. 208
LBAC security label component type: ARRAY... 208
LBAC security label component type: TREE..209

LBAC security labels.. 212
Format for security label values..213
How LBAC security labels are compared.. 214
LBAC rule sets..215

LBAC rule set: DB2LBACRULES... 215
LBAC rule exemptions... 219
Built-in functions for managing LBAC security labels.. 220
Protection of data using LBAC...221
Reading of LBAC protected data... 222
Inserting of LBAC protected data..224
Updating of LBAC protected data..226
Deleting or dropping of LBAC protected data... 230
Removal of LBAC protection from data...233

Chapter 6. Using the system catalog for security information.............................. 235
Retrieving authorization names with granted privileges.. 236
Retrieving all names with DBADM authority... 236
Retrieving names authorized to access a table.. 237
Retrieving all privileges granted to users..237
Securing the system catalog view... 238

viii

Chapter 7. Firewall support..241
Packet filter firewalls... 241
Application proxy firewalls.. 241
Circuit level firewalls... 241
Stateful multi-layer inspection (SMLI) firewalls... 242

Chapter 8. Security plug-ins...243
Library locations.. 247
Naming conventions.. 247
Security plug-in support for two-part user IDs.. 248
API versioning..249
32-bit and 64-bit considerations.. 250
Problem determination... 250
Enabling plug-ins... 251

Group.. 251
Userid/password.. 252
GSS-API..253
Deploying a Kerberos plug-in...254

LDAP-based authentication and group lookup support... 255
Configuring transparent LDAP (AIX).. 256
Configuring transparent LDAP (Linux)... 259
Configuring the LDAP plug-in modules..267
Enabling the LDAP plug-in modules.. 270
Connecting with an LDAP user ID.. 271
Considerations for group lookup... 272
Troubleshooting... 273

Writing security plug-ins..273
How Db2 loads security plug-ins...273
Restrictions.. 274
Restrictions on security plug-ins... 276
Return codes.. 277
Error message handling for security plug-ins... 280
Calling sequences for the APIs..281

Chapter 9. Security plug-in APIs.. 285
APIs for group retrieval plug-ins... 286

db2secDoesGroupExist - Check if group exists.. 287
db2secFreeErrormsg - Free error message memory..287
db2secFreeGroupListMemory - Free groups list memory.. 288
db2secGetGroupsForUser - Get list of groups for user.. 288
db2secGroupPluginInit - Initialize group plug-in... 291
db2secPluginTerm - Clean up group plug-in resources..292

APIs for user ID/password authentication plug-ins... 292
db2secClientAuthPluginInit - Initialize client authentication plug-in..297
db2secClientAuthPluginTerm - Clean up client authentication plug-in resources.......................... 298
db2secDoesAuthIDExist - Check if authentication ID exists..298
db2secFreeInitInfo - Clean up resources held by the db2secGenerateInitialCred API..................299
db2secFreeToken - Free memory held by token...299
db2secGenerateInitialCred - Generate initial credentials..300
db2secGetAuthIDs - Get authentication ids... 301
db2secGetDefaultLoginContext - Get default login context...303
db2secProcessServerPrincipalName - Process service principal name returned from server.......304
db2secRemapUserid - Remap userid and password..305
db2secServerAuthPluginInit - Initialize server authentication plug-in..306
db2secServerAuthPluginTerm - Clean up server authentication plug-in resources........................308
db2secValidatePassword - Validate password... 309

 ix

Required APIs and definitions for GSS-API authentication plug-ins... 311
Restrictions for GSS-API authentication plug-ins...312

Chapter 10. Communication buffer exit libraries...313
Communication exit library deployment...313

Location.. 313
Naming conventions and permissions...314
Enabling outside of Db2 pureScale environments.. 315
Enabling in Db2 pureScale environments... 315
Problem determination.. 316

Communication exit library development...316
How a communication exit library is loaded... 316
Communication exit library APIs... 317
Communication buffer exit library functions structure...325
Information structure...326
Buffer structure.. 327
Control over connections... 327
API versions... 327
Error handing and return codes... 327
Restrictions.. 328
API calling sequences..329

Chapter 11. Audit facility record layouts...335
Audit record object types.. 335
Audit record layout for AUDIT events... 337
Audit record layout for CHECKING events..340
CHECKING access approval reasons.. 342
CHECKING access attempted types... 344
Audit record layout for OBJMAINT events..346
Audit record layout for SECMAINT events.. 350
SECMAINT privileges or authorities..355
Audit record layout for SYSADMIN events..358
Audit record layout for VALIDATE events..360
Audit record layout for CONTEXT events.. 362
Audit record layout for EXECUTE events.. 364
Audit events... 369

Chapter 12. Working with operating system security...377
Db2 and Windows security..377

Authentication scenarios... 378
Support for global groups.. 379
User authentication and group information with DB2 on Windows... 379
Defining which users hold SYSADM authority... 384
Windows LocalSystem account support..385
Extended Windows security using DB2ADMNS and DB2USERS groups..385
Considerations for Windows 7...388

Db2 and UNIX security.. 389
Db2 and Linux security.. 389

Change password support... 389
Deploying a change password plug-in...390
SELinux... 390

Index.. 393

x

Chapter 1. Db2 security model
Two modes of security control access to the Db2 database system data and functions. Access to the Db2
database system is managed by facilities that reside outside the Db2 database system (authentication),
whereas access within the Db2 database system is managed by the database manager (authorization).

Authentication
Authentication is the process by which a system verifies a user's identity. User authentication is
completed by a security facility outside the Db2 database system, through an authentication security
plug-in module. A default authentication security plug-in module that relies on operating-system-based
authentication is included when you install the Db2 database system. For your convenience, the Db2
database manager also ships with authentication plug-in modules for Kerberos and lightweight directory
access protocol (LDAP). To provide even greater flexibility in accommodating your specific authentication
needs, you can build your own authentication security plug-in module.

The authentication process produces a Db2 authorization ID. Group membership information for the
user is also acquired during authentication. Default acquisition of group information relies on an
operating-system based group-membership plug-in module that is included when you install the Db2
database system. If you prefer, you can acquire group membership information by using a specific
group-membership plug-in module, such as LDAP.

Authorization
After a user is authenticated, the database manager determines if that user is allowed to access Db2
data or resources. Authorization is the process whereby the Db2 database manager obtains information
about the authenticated user, indicating which database operations that user can perform, and which data
objects that user can access.

The different sources of permissions available to an authorization ID are as follows:

1. Primary permissions: those granted to the authorization ID directly.
2. Secondary permissions: those granted to the groups and roles in which the authorization ID is a

member.
3. Public permissions: those granted to PUBLIC.
4. Context-sensitive permissions: those granted to a trusted context role.

Authorization can be given to users in the following categories:

• System-level authorization

The system administrator (SYSADM), system control (SYSCTRL), system maintenance (SYSMAINT), and
system monitor (SYSMON) authorities provide varying degrees of control over instance-level functions.
Authorities provide a way both to group privileges and to control maintenance and utility operations for
instances, databases, and database objects.

• Database-level authorization

The security administrator (SECADM), database administrator (DBADM), database access control
(ACCESSCTRL), database data access (DATAACCESS), SQL administrator (SQLADM), workload
management administrator (WLMADM), and explain (EXPLAIN) authorities provide control within the
database. Other database authorities include LOAD (ability to load data into a table), and CONNECT
(ability to connect to a database).

• Schema-level authorization

The schema-level authorities have been designed on the same principle as the database authorities
and provide control over the objects defined in a schema. The schema administrator (SCHEMAADM),
schema access control administrator (ACCESSCTRL), and schema data access administrator
(DATAACCESS) have the privileges to create and manage objects in a schema, grant and revoke

© Copyright IBM Corp. 2016, 2023 1

privileges on objects defined in the schema and the schema itself, and access as well as manage data in
the schema respectively. The schema LOAD authority allows users to load data in to the tables defined
in the schema.

• Object-level authorization

Object level authorization involves checking privileges when an operation is performed on an object. For
example, to select from a table a user must have SELECT privilege on a table (as a minimum).

• Content-based authorization

Views provide a way to control which columns or rows of a table specific users can read. Label-based
access control (LBAC) determines which users have read and write access to individual rows and
individual columns.

You can use these features, in conjunction with the Db2 audit facility for monitoring access, to define and
manage the level of security your database installation requires.

Related information
Best practices: IBM Data Server Security

Authentication
Authentication of a user is completed using a security facility outside of the Db2 database system. The
security facility can be part of the operating system or a separate product.

The security facility requires two items to authenticate a user: a user ID and a password. The user ID
identifies the user to the security facility. By supplying the correct password, information known only to
the user and the security facility, the user's identity (corresponding to the user ID) is verified.

Note: In non-root installations, operating system-based authentication must be enabled by running the
db2rfe command.

After being authenticated:

• The user must be identified to Db2 using an SQL authorization name or authid. This name can be the
same as the user ID, or a mapped value. For example, on UNIX operating systems, when you are using
the default security plug-in module, a Db2 authid is derived by transforming to uppercase letters a UNIX
user ID that follows Db2 naming conventions.

• A list of groups to which the user belongs is obtained. Group membership may be used when
authorizing the user. Groups are security facility entities that must also map to Db2 authorization
names. This mapping is done in a method similar to that used for user IDs.

The Db2 database manager uses the security facility to authenticate users in one of two ways:

• A successful security system login is used as evidence of identity, and allows:

– Use of local commands to access local data
– Use of remote connections when the server trusts the client authentication.

• Successful validation of a user ID and password by the security facility is used as evidence of identity
and allows:

– Use of remote connections where the server requires proof of authentication
– Use of operations where the user wants to run a command under an identity other than the identity

used for login.

Note: On some UNIX systems, the Db2database manager can log failed password attempts with the
operating system, and detect when a client has exceeded the number of allowable login tries, as specified
by the LOGINRETRIES parameter.

2 IBM Db2 11.5: Database Security Guide

https://ibm.biz/BdqLsB

Authorization
Authorization is performed using Db2 facilities. Db2 tables and configuration files are used to record the
permissions associated with each authorization name.

When an authenticated user tries to access data, these recorded permissions are compared with the
permissions of:

• The authorization name of the user
• The groups to which the user belongs
• The roles granted to the user directly or indirectly through a group or a role
• The permissions acquired through a trusted context

Based on this comparison, the Db2 server determines whether to allow the requested access.

The types of permissions recorded are privileges, authority levels, and LBAC credentials.

A privilege defines a single permission for an authorization name, enabling a user to create or access
database resources. Privileges are stored in the database catalogs.

Authority levels provide a method of grouping privileges and control over database or schema operations.
Database and schema authorities are stored in the database catalogs; system authorities are associated
with group membership, and the group names that are associated with the authority levels are stored in
the database manager configuration file for a given instance.

LBAC credentials are LBAC security labels and LBAC rule exemptions that allow access to data protected
by label-based access control (LBAC). LBAC credentials are stored in the database catalogs.

Groups provide a convenient means of performing authorization for a collection of users without having
to grant or revoke privileges for each user individually. Unless otherwise specified, group authorization
names can be used anywhere that authorization names are used for authorization purposes. In general,
group membership is considered for dynamic SQL and non-database object authorizations (such as
instance level commands and utilities), but is not considered for static SQL. The exception to this general
case occurs when privileges are granted to PUBLIC: these are considered when static SQL is processed.
Specific cases where group membership does not apply are noted throughout the Db2 documentation,
where applicable.

A role is a database object that groups together one or more privileges and can be assigned to
users, groups, PUBLIC, or other roles by using a GRANT statement or to a trusted context by using a
CREATE TRUSTED CONTEXT or ALTER TRUSTED CONTEXT statement. A role can be specified for the
SESSION_USER ROLE connection attribute in a workload definition. When you use roles, you associate
access permissions on database objects with the roles. Users that are members of those roles then have
the privileges defined for the role with which to access database objects.

Roles provide similar functionality as groups; they perform authorization for a collection of users without
having to grant or revoke privileges for each user individually. One advantage of roles is that they are
managed by the Db2 database system. The permissions granted to roles are taken into consideration
during the authorization process for views, triggers, materialized query tables (MQTs), packages and SQL
routines, unlike the permissions granted to groups. Permissions granted to groups are not considered
during the authorization process for views, triggers, MQTs, packages and SQL routines, because the Db2
database system cannot discover when membership in a group changes, and so it cannot invalidate the
objects mentioned previously, if appropriate.

Note: Permissions granted to roles that are granted to groups are not considered during the authorization
process for views, triggers, MQTs, packages and SQL routines.

During an SQL statement processing, the permissions that the Db2 authorization model considers are the
union of the following permissions:

1. The permissions granted to the primary authorization ID associated with the SQL statement
2. The permissions granted to the secondary authorization IDs (groups or roles) associated with the SQL

statement

Chapter 1. Db2 security model 3

3. The permissions granted to PUBLIC, including roles that are granted to PUBLIC, directly or indirectly
through other roles.

4. The permissions granted to the trusted context role, if applicable.

Security considerations when installing and using the Db2
database manager

Security considerations are important to the Db2 administrator from the moment the product is installed.

To complete the installation of the Db2 database manager, a user ID, a group name, and a password are
required. The GUI-based Db2 database manager install program creates default values for different user
IDs and the group. Different defaults are created, depending on whether you are installing on Linux® and
UNIX or Windows operating systems:

• On UNIX and Linux operating systems, if you choose to create a Db2 instance in the instance setup
window, the Db2 database install program creates, by default, different users for the DAS (dasusr), the
instance owner (db2inst), and the fenced user (db2fenc). Optionally, you can specify different user
names

The Db2 database install program appends a number from 1-99 to the default user name, until a user
ID that does not already exist can be created. For example, if the users db2inst1 and db2inst2
already exist, the Db2 database install program creates the user db2inst3. If a number greater than
10 is used, the character portion of the name is truncated in the default user ID. For example, if the
user ID db2fenc9 already exists, the Db2 database install program truncates the c in the user ID, then
appends the 10 (db2fen10). Truncation does not occur when the numeric value is appended to the
default DAS user (for example, dasusr24).

• On Windows operating systems, the Db2 database install program creates, by default, the user
db2admin for the DAS user, the instance owner, and fenced users (you can specify a different user
name during setup, if you want). Unlike Linux and UNIX operating systems, no numeric value is
appended to the user ID.

To minimize the risk of a user other than the administrator from learning of the defaults and using them
in an improper fashion within databases and instances, change the defaults during the install to a new or
existing user ID of your choice.

Note: Response file installations do not use default values for user IDs or group names. These values
must be specified in the response file.

Passwords are very important when authenticating users. If no authentication requirements are set at
the operating system level and the database is using the operating system to authenticate users, users
will be allowed to connect. For example on Linux and UNIX operating systems, undefined passwords are
treated as NULL. In this situation, any user without a defined password will be considered to have a NULL
password. From the operating system's perspective, this is a match and the user is validated and able to
connect to the database. Use passwords at the operating system level if you want the operating system to
do the authentication of users for your database.

When working with partitioned database environments on Linux and UNIX operating systems in releases
of Db2 prior to version 11.5.6, the Db2 database manager by default uses the rsh utility to run some
commands on remote members. The rsh utility transmits passwords in clear text over the network, which
can be a security exposure if the Db2 server is not on a secure network. You can use the DB2RSHCMD
registry variable to set the remote shell program to a more secure alternative that avoids this exposure.
SSH is a more secure alternative, and is used by default starting from version 11.5.6. See the DB2RSHCMD
registry variable documentation for restrictions on remote shell configurations.

After installing the Db2 database manager, also review, and change (if required), the default privileges
that have been granted to users. By default, the installation process grants system administration
(SYSADM) privileges to the following users on each operating system:
Linux and UNIX operating systems

To a valid Db2 database user name that belongs to the primary group of the instance owner.

4 IBM Db2 11.5: Database Security Guide

Windows environments

• To members of the local Administrators group.
• If the Db2 database manager is configured to enumerate groups for users at the location where

the users are defined, to members of the Administrators group at the Domain Controller. You use
the DB2_GRP_LOOKUP environment variable to configure group enumeration on Windows operating
systems.

• If Windows extended security is enabled, to members of the DB2ADMNS group. The location of the
DB2ADMNS group is decided during installation.

• To the LocalSystem account

By updating the database manager configuration parameter sysadm_group, the administrator can
control which group of users possesses SYSADM privileges. You must use the following guidelines to
complete the security requirements for both the Db2 database installation and the subsequent instance
and database creation.

Any group defined as the system administration group (by updating sysadm_group) must exist. The
name of this group should allow for easy identification as the group created for instance owners. User
IDs and groups that belong to this group have system administrator authority for their corresponding
instances.

The administrator should consider creating an instance owner user ID that is easily recognized as being
associated with a particular instance. This user ID should have as one of its groups, the name of the
SYSADM group created previously. Another recommendation is to use this instance-owner user ID only
as a member of the instance owner group and not to use it in any other group. This should control the
proliferation of user IDs and groups that can modify the instance.

The created user ID must be associated with a password to provide authentication before being permitted
entry into the data and databases within the instance. The recommendation when creating a password is
to follow your organization's password naming guidelines.

Note: To avoid accidentally deleting or overwriting instance configuration or other files, administrators
should consider using another user account, which does not belong to the same primary group as the
instance owner, for day-to-day administration tasks that are performed on the server directly.

File permission requirements for the instance and database directories
The Db2 database system requires that your instance and database directories have a minimum level of
permissions.

Note: When the instance and database directories are created by the Db2 database manager, the
permissions are accurate and should not be changed.

The minimum permissions of the instance directory and the NODE000x/sqldbdir directory on UNIX and
Linux machines must be: u=rwx and go=rx. The meaning of the letters is explained in the following table:

Character Represents:

u User (owner)

g Group

o Other users

r Read

w Write

x Execute

For example, the permissions for the instance, db2inst1, in /home are:

drwxr-xr-x 36 db2inst1 db2grp1 4096 Jun 15 11:13 db2inst1

Chapter 1. Db2 security model 5

For the directories containing the databases, each and every directory level up to and including NODE000x
needs the following permissions:

drwxrwxr-x 11 db2inst1 db2grp1 4096 Jun 14 15:53 NODE0000/

For example, if a database is located in /db2/data/db2inst1/db2inst1/NODE0000 then the
directories: /db2, /db2/data, /db2/data/db2inst1, /db2/data/db2inst1/db2inst1 and /db2/
data/db2inst1/db2inst1/NODE0000 need drwxrwxr-x.

Within the NODE000x directory, the sqldbdir directory requires the permissions drwxrwxr-x, for
example:

drwx------ 5 db2inst1 db2grp1 256 Jun 14 14:17 SAMPLE/
drwxr-x--- 7 db2inst1 db2grp1 4096 Jun 14 13:26 SQL00001/
drwxrwxr-x 2 db2inst1 db2grp1 256 Jun 14 13:02 sqldbdir/

CAUTION: To maintain the security of your files, do not change the permissions on the DBNAME
directories (such as SAMPLE) and the SQLxxxx directories from the permissions they are assigned
when the Db2 database manager creates them.

Authentication details

Authentication methods for your server
Access to an instance or a database first requires that the user be authenticated. The authentication type
for each instance determines how and where a user will be verified.

Important: The DATA_ENCRYPT authentication type is deprecated and might be removed in a future
release. To encrypt data in-transit between clients and Db2 databases, we recommend that you use the
Db2 database system support of Transport Layer Security (TLS). For more information, see Configuring
TLS support in a Db2 instance in the Data encryption section of the Db2 Security Guide.

The authentication type is stored in the configuration file at the server. It is initially set when the instance
is created. There is one authentication type per instance, which covers access to that database server and
all the databases under its control.

If you intend to access data sources from a federated database, you must consider data source
authentication processing and definitions for federated authentication types.

Switching User on an Explicit Trusted Connection
For CLI/ODBC and XA CLI/ODBC applications, the authentication mechanism used when processing
a switch user request that requires authentication is the same as the mechanism used to originally
establish the trusted connection itself. Therefore, any other negotiated security attributes (for example,
encryption algorithm, encryption keys, and plug-in names) used during the establishment of the explicit
trusted connection are assumed to be the same for any authentication required for a switch user request
on that trusted connection. Java™ applications allow the authentication method to be changed on a switch
user request (by use of a datasource property).

Because a trusted context object can be defined such that switching user on a trusted connection does
not require authentication, in order to take full advantage of the switch user on an explicit trusted
connection feature, user-written security plug-ins must be able to:

• Accept a user ID-only token
• Return a valid Db2 authorization ID for that user ID

Note: An explicit trusted connection cannot be established if the CLIENT type of authentication is in
effect.

Authentication types provided
The following authentication types are provided:

6 IBM Db2 11.5: Database Security Guide

SERVER
Specifies that authentication occurs on the server through the security mechanism in effect for that
configuration, for example, through a security plug-in module. The default security mechanism is that
if a user ID and password are specified during the connection or attachment attempt, they are sent to
the server and compared to the valid user ID and password combinations at the server to determine if
the user is permitted to access the instance.

Note: The server code detects whether a connection is local or remote. For local connections,
when authentication is SERVER, a user ID and password are not required for authentication to be
successful.

SERVER_ENCRYPT
Specifies that the server accepts encrypted SERVER authentication schemes. If the client
authentication is not specified, the client is authenticated using the method selected at the server.
The user ID and password are encrypted when they are sent over the network from the client to the
server.

When the resulting authentication method negotiated between the client and server is
SERVER_ENCRYPT, you can choose to encrypt the user ID and password using an AES (Advanced
Encryption Standard) 256-bit algorithm. To do this, set the alternate_auth_enc database manager
configuration parameter. This configuration parameter has three settings:

• NOT_SPECIFIED (default) means that the server accepts the encryption algorithm that the client
proposes, including an AES 256-bit algorithm.

• AES_CMP means that if the connecting client proposes DES but supports AES encryption, the server
renegotiates for AES encryption.

• AES_ONLY means that the server accepts only AES encryption. If the client does not support AES
encryption, the connection is rejected.

AES encryption can be used only when the authentication method negotiated between the client and
server is SERVER_ENCRYPT.

SERVER_ENCRYPT_TOKEN
Specifies the server accepts token authentication, or encrypted SERVER authentication schemes.

If the client authentication is TOKEN, the client is authenticated using token authentication.

If the client authentication is SERVER_ENCRYPT, the client is authenticated using a user ID and
encrypted password.

If the client authentication is not specified, then the client will use an authentication type dependent
on the type of credentials provided.

For other authentication types, an authentication error is returned.

This value is only valid for SRVCON_AUTH and can not be specified for AUTHENTICATION. The
authentication type of the client cannot be specified as SERVER_ENCRYPT_TOKEN.

CLIENT
Specifies that authentication occurs on the database partition where the application is invoked using
operating system security. The user ID and password specified during a connection or attachment
attempt are compared with the valid user ID and password combinations on the client node to
determine whether the user ID is permitted access to the instance. No further authentication will take
place on the database server. This is sometimes called single signon.

If the user performs a local or client login, the user is known only to that local client workstation.

If the remote instance has CLIENT authentication, two other parameters determine the final
authentication type: trust_allclnts and trust_clntauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.

Chapter 1. Db2 security model 7

When the authentication type of CLIENT has been selected, an additional option might be
selected to protect against clients whose operating environment has no inherent security.

To protect against unsecured clients, the administrator can select Trusted Client Authentication
by setting the trust_allclnts parameter to NO. This implies that all trusted platforms can
authenticate the user on behalf of the server. Untrusted clients are authenticated on the Server
and must provide a user ID and password. You use the trust_allclnts configuration parameter
to indicate whether you are trusting clients. The default for this parameter is YES.

Note: It is possible to trust all clients (trust_allclnts is YES) yet have some of those clients as
those who do not have a native safe security system for authentication.

You might also want to complete authentication at the server even for trusted clients. To indicate
where to validate trusted clients, you use the trust_clntauth configuration parameter. The
default for this parameter is CLIENT.

Note: For trusted clients only, if no user ID or password is explicitly provided when attempting to
CONNECT or ATTACH, then validation of the user takes place at the client. The trust_clntauth
parameter is only used to determine where to validate the information provided on the USER or
USING clauses.

To protect against all clients, including JCC type 4 clients on z/OS® and System i® but excluding
native Db2 clients on z/OS, OS/390®, VM, VSE, and System i, set the trust_allclnts parameter
to DRDAONLY. Only these clients can be trusted to perform client-side authentication. All other
clients must provide a user ID and password to be authenticated by the server.

The trust_clntauth parameter is used to determine where the clients mentioned previously
are authenticated: if trust_clntauth is CLIENT, authentication takes place at the client. If
trust_clntauth is SERVER, authentication takes place at the client when no user ID and
password are provided and at the server when a user ID and password are provided.

Table 1. Authentication Modes using TRUST_ALLCLNTS and TRUST_CLNTAUTH Parameter Combinations.

trust_ allclnts trust_ clntauth Untrusted
non- DRDA
Client
Authen-
tication
(no user
ID &
password)

Untrusted
non- DRDA
Client
Authen-
tication
(with user
ID &
password)

Trusted
non- DRDA
Client
Authen-
tication
(no user
ID &
password)

Trusted
non- DRDA
Client
Authen-
tication
(with user
ID &
password)

DRDA
Client
Authen-
tication
(no user
ID &
password)

DRDA
Client
Authen-
tication
(with user
ID &
password)

YES CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT CLIENT

YES SERVER CLIENT SERVER CLIENT SERVER CLIENT SERVER

NO CLIENT SERVER SERVER CLIENT CLIENT CLIENT CLIENT

NO SERVER SERVER SERVER CLIENT SERVER CLIENT SERVER

DRDAONLY CLIENT SERVER SERVER SERVER SERVER CLIENT CLIENT

DRDAONLY SERVER SERVER SERVER SERVER SERVER CLIENT SERVER

DATA_ENCRYPT
The server accepts encrypted SERVER authentication schemes and the encryption of user data. The
authentication works the same way as that shown with SERVER_ENCRYPT. The user ID and password
are encrypted when they are sent over the network from the client to the server.

The following user data are encrypted when using this authentication type:

• SQL and XQuery statements.
• SQL program variable data.

8 IBM Db2 11.5: Database Security Guide

• Output data from the server processing of an SQL or XQuery statement and including a description
of the data.

• Some or all of the answer set data resulting from a query.
• Large object (LOB) data streaming.
• SQLDA descriptors.

DATA_ENCRYPT_CMP
The server accepts encrypted SERVER authentication schemes and the encryption of user
data. In addition, this authentication type allows compatibility with down level products not
supporting DATA_ENCRYPT authentication type. These products are permitted to connect with the
SERVER_ENCRYPT authentication type and without encrypting user data. Products supporting the
new authentication type must use it. This authentication type is only valid in the server's database
manager configuration file and is not valid when used on the CATALOG DATABASE command.

KERBEROS
Used when both the Db2 client and server are on operating systems that support the Kerberos
security protocol. The Kerberos security protocol performs authentication as a third party
authentication service by using conventional cryptography to create a shared secret key. This key
becomes a user's credential and is used to verify the identity of users during all occasions when local
or network services are requested. The key eliminates the need to pass the user name and password
across the network as clear text. Using the Kerberos security protocol enables the use of a single
sign-on to a remote Db2 database server. The KERBEROS authentication type is supported on various
operating systems, see the related information section for more information.

Kerberos authentication works as follows:

1. A user logging on to the client machine using a domain account authenticates to the Kerberos
key distribution center (KDC) at the domain controller. The key distribution center issues a ticket-
granting ticket (TGT) to the client.

2. During the first phase of the connection the server sends the target principal name, which is
the service account name for the Db2 database server service, to the client. Using the server's
target principal name and the target-granting ticket, the client requests a service ticket from the
ticket-granting service (TGS) which also resides at the domain controller. If both the client's ticket-
granting ticket and the server's target principal name are valid, the TGS issues a service ticket
to the client. The principal name recorded in the database directory can be specified as name/
instance@REALM. (This is in addition to DOMAIN\userID and userID@xxx.xxx.xxx.com formats
accepted on Windows.)

3. The client sends this service ticket to the server using the communication channel (which can be,
as an example, TCP/IP).

4. The server validates the client's server ticket. If the client's service ticket is valid, then the
authentication is completed.

It is possible to catalog the databases on the client machine and explicitly specify the Kerberos
authentication type with the server's target principal name. In this way, the first phase of the
connection can be bypassed.

If a user ID and a password are specified, the client will request the ticket-granting ticket for that user
account and use it for authentication.

KERBEROS_TOKEN
Specifies the server accepts token authentication, or Kerberos authentication.

If the client authentication is TOKEN, the client is authenticated using token authentication.

If the client authentication is Kerberos, the client is authenticated using the Kerberos security system.

If the client authentication is not specified, then the client will use an authentication type dependent
on the type of credentials provided. X

If the client authentication is not specified, then the client will use an authentication type dependent
on the type of credentials provided.

Chapter 1. Db2 security model 9

For other authentication types, an authentication error is returned.

This value is only valid for SRVCON_AUTH and can not be specified for AUTHENTICATION. The
authentication type of the client cannot be specified as KERBEROS_TOKEN.

KRB_SERVER_ENCRYPT
Specifies that the server accepts KERBEROS authentication or encrypted SERVER authentication
schemes. If the client authentication is KERBEROS, the client is authenticated using the Kerberos
security system. If the client authentication is SERVER_ENCRYPT, the client is authenticated using
a user ID and encryption password. If the client authentication is not specified, then the client will
use Kerberos if available, otherwise it will use password encryption. For other client authentication
types, an authentication error is returned. The authentication type of the client cannot be specified as
KRB_SERVER_ENCRYPT

Note: The Kerberos authentication types are supported on clients and servers running on specific
operating systems, see the related information section for more information. For Windows operating
systems, both client and server machines must either belong to the same Windows domain or belong
to trusted domains. This authentication type should be used when the server supports Kerberos and
some, but not all, of the client machines support Kerberos authentication.

KRB_SVR_ENC_TOKEN
Specifies the server accepts token authentication, Kerberos authentication or encrypted SERVER
authentication schemes. See the description of KRB_SERVER_ENCRYPT for more information
regarding the Kerberos and SERVER_ENCRYPT behaviour. This value is only valid for SRVCON_AUTH
and can not be specified for AUTHENTICATION. The authentication type of the client cannot be
specified as KRB_SVR_ENC_TOKEN.

GSSPLUGIN
Specifies the server accepts token authentication, Kerberos authentication or encrypted SERVER
authentication schemes. See the description of KRB_SERVER_ENCRYPT for more information
regarding the Kerberos and SERVER_ENCRYPT behavior. This value is only valid for SRVCON_AUTH and
can not be specified for AUTHENTICATION. The authentication type of the client cannot be specified
as KRB_SVR_ENC_TOKEN.

GSSPLUGIN_TOKEN
Specifies the server accepts token authentication, or plug-in authentication.

If the client authentication is TOKEN, the client is authenticated using token authentication.

If the client authentication is GSSPLUGIN, the client is authenticated using the first client-supported
plug-in in the list of server-supported plug-ins.

If the client authentication is not specified, then the client will use an authentication type dependent
on the type of credentials provided.

For other authentication types, an authentication error is returned.

This value is only valid for SRVCON_AUTH and can not be specified for AUTHENTICATION. The
authentication type of the client cannot be specified as GSSPLUGIN_TOKEN.

GSS_SERVER_ENCRYPT
Specifies that the server accepts plug-in authentication or encrypted server authentication schemes.
If client authentication occurs through a plug-in, the client is authenticated using the first client-
supported plug-in in the list of server-supported plug-ins.

If the client authentication is not specified and an implicit connect is being performed (that is,
the client does not supply a user ID and password when making the connection), the server
returns a list of server-supported plug-ins, the Kerberos authentication scheme (if one of the plug-
ins in the list is Kerberos-based), and the encrypted server authentication scheme. The client is
authenticated using the first supported plug-in found in the client plug-in directory. If the client does
not support any of the plug-ins that are in the list, the client is authenticated using the Kerberos
authentication scheme. If the client does not support the Kerberos authentication scheme, the
client is authenticated using the encrypted server authentication scheme, and the connection will
fail because of a missing password. A client supports the Kerberos authentication scheme if a Db2

10 IBM Db2 11.5: Database Security Guide

supplied Kerberos plug-in exists for the operating system, or a Kerberos-based plug-in is specified for
the srvcon_gssplugin_list database manager configuration parameter.

If the client authentication is not specified and an explicit connection is being performed (that is, both
the user ID and password are supplied), the authentication type is equivalent to SERVER_ENCRYPT. In
this case, the choice of the encryption algorithm used to encrypt the user ID and password depends
on the setting of the alternate_auth_enc database manager configuration parameter.

GSS_SVR_ENC_TOKEN
Specifies the server accepts token authentication, GSSPLUGIN authentication or encrypted SERVER
authentication schemes. See the description of GSS_SERVER_ENCRYPT for more information
regarding the GSSPLUGIN and SERVER_ENCRYPT behaviour.

This value is only valid for SRVCON_AUTH and can not be specified for AUTHENTICATION. The
authentication type of the client cannot be specified as GSS_SVR_ENC_TOKEN.

Token Authentication
When SRVCON_AUTH database manager configuration parameter has been configured with
one of SERVER_ENCRYPT_TOKEN, KERBEROS_TOKEN, KRB_SVR_ENC_TOKEN, GSSPLUGIN_TOKEN,
GSS_SVR_ENC_TOKEN, then the server can accept various tokens for authentication. The server
must be configured with a valid token configuration file. The supported tokens types in the
token configuration file must be the types specified by the client during the connection in the
ACCESSTOKENTYPE parameter. For more details, see Token authentication.

Authentication considerations for remote clients
When you catalog a database for remote access, you can specify the authentication type in the database
directory entry.

Important: The DATA_ENCRYPT authentication type is deprecated and might be removed in a future
release. To encrypt data in-transit between clients and Db2 databases, we recommend that you use the
Db2 database system support of Transport Layer Security (TLS). For more information, see Configuring
TLS support in a Db2 instance in the Data encryption section of the Db2 Security Guide.

The authentication type is not required. If it is not specified the client will try to connect using the
SERVER_ENCRYPT authentication type first. If the server does not support SERVER_ENCRYPT, the server
returns a list of the authentication types that it supports. The client will use the first authentication type
listed to connect to the server. While unspecified, the database catalog listed using the LIST DATABASE
DIRECTORY command will not show an authentication type. If the authentication type is not specified
in the database directory entry then the client may take longer to connect. If an authentication type is
specified, authentication can begin immediately provided that value specified matches that at the server.
If a mismatch is detected, Db2 database attempts to recover. Recovery may result in more flows to
reconcile the difference, or in an error if the Db2 database cannot recover. In the case of a mismatch, the
value at the server is assumed to be correct.

The authentication type DATA_ENCRYPT_CMP is designed to allow clients from a previous release that
does not support data encryption to connect to a server using SERVER_ENCRYPT authentication instead
of DATA_ENCRYPT. This authentication does not work when the following statements are true:

• The client level is Version 7.2.
• The gateway level is Version 8 FixPak 7 or later.
• The server is Version 8 FixPak 7 or later.

When these are all true, the client cannot connect to the server. To allow the connection, you must either
upgrade your client to Version 8 or later, or have your gateway level at Version 8 FixPak 6 or earlier.

The determination of the authentication type used when connecting is made by specifying the appropriate
authentication type as a database catalog entry at the gateway. This is true for both Db2 Connect
scenarios and for clients and servers in a partitioned database environment where the client has set the
DB2NODE registry variable. You will catalog the authentication type at the catalog partition with the intent
to "hop" to the appropriate partition. In this scenario, the authentication type cataloged at the gateway is
not used because the negotiation is solely between the client and the server.

Chapter 1. Db2 security model 11

You may have a need to catalog multiple database aliases at the gateway using different authentication
types if they need to have clients that use differing authentication types. When deciding which
authentication type to catalog at a gateway, you can keep the authentication type the same as that
used at the client and server; or, you can use the NOTSPEC authentication type with the understanding
that NOTSPEC defaults to SERVER.

Partitioned database authentication considerations
In a partitioned database, each partition of the database must have the same set of users and groups
defined. If the definitions are not the same, the user may be authorized to do different things on different
partitions.

Consistency across all partitions is recommended.

Kerberos authentication
Kerberos is a third-party network authentication protocol that employs a system of shared secret keys to
securely authenticate a user in an unsecured network environment. The Db2 database system provides
support for the Kerberos authentication protocol on AIX®, Linux IA32 and AMD64, and Windows operating
systems.

Introduction
Kerberos authentication is managed by a three-tiered system in which encrypted service tickets, rather
than a plain-text user ID and password pair, are exchanged between the application server and client.
These encrypted service tickets, called credentials, are provided by a separate server called the Kerberos
Key Distribution Center (KDC). Credentials have a finite lifetime and are understood only by the client and
the server. These features reduce the risk of a security exposure, even if the ticket is intercepted from the
network. Each user, or principal in Kerberos terms, possesses a private encryption key that is shared with
the KDC. Collectively, the principals and computers that are registered with a KDC are known as a realm.

One key feature of Kerberos is that it provides a single sign-on environment: a user must verify identity
only once to access the resources within the Kerberos realm. This single sign-on environment means that
a user can connect or attach to a Db2 database server without providing a user ID or password. Another
advantage is that the administration of user identification is simplified because Kerberos uses a central
repository for principals. Finally, Kerberos supports mutual authentication, which enables the client to
validate the identity of the server.

Setup
Before you can use Kerberos with a Db2 database system, you must install and configure the Kerberos
layer on all computers. For a typical configuration, you must meet the following requirements:

• Create the appropriate principals.
• Ensure that the client and server computers and principals belong to the same realm or to trusted

realms. Trusted realms are known as trusted domains in Windows terminology.
• Where appropriate, create server keytab files.
• Synchronize the time clocks on all computers. Kerberos typically permits a 5-minute time skew; if

there is more than a 5-minute time skew, a preauthentication error occurs during an attempt to obtain
credentials.

12 IBM Db2 11.5: Database Security Guide

Setting up Kerberos for a Db2 server
Before you can use Kerberos authentication with a Db2 database system, you must install and configure
the Kerberos layer on all computers. For a typical configuration, you must follow the instructions on this
page.

Before you begin
If you are using a Linux operating system, ensure that no Kerberos libraries other than the krb5 library
are installed on your system. Otherwise, Kerberos authentication fails, and a message is logged in the
db2diag log files.

If you are using a Linux operating system, uninstall any instances of the IBM® Network Authentication
Service (NAS) Toolkit, and remove any reference to the NAS installation path locations from the system
PATH variable.

About this task
The use of Kerberos authentication by a Db2 database depends on whether the security authentication
was successfully created using the credentials provided by the connecting application. Furthermore,
whenever available, Kerberos mutual authentication is supported, where the client and server must both
prove their identities to use Kerberos. However, other Kerberos features, such as the signing or encryption
of messages, are unavailable.

For additional details on installing and configuring Kerberos products on your systems, refer to the
documentation provided with your Kerberos product.

Kerberos support for a Db2 database system is provided through the IBMkrb5 GSS-API security plug-in.
This plug-in is used for both server and client authentication. The plug-in library is installed during Db2
installation in the following locations:

• On UNIX and Linux 32-bit operating systems: the sqllib/security32/plugin/IBM/client and
sqllib/security32/plugin/IBM/server directories

• On UNIX and Linux 64-bit operating systems: the sqllib/security64/plugin/IBM/client and
sqllib/security64/plugin/IBM/server directories

• On Windows operating systems: the sqllib\security\plugin\IBM\client and
sqllib\security\plugin\IBM\server directories

The source code for the UNIX and Linux plug-in, IBMkrb5.C, is available in the sqllib/samples/
security/plugins directory. For 64-bit Windows operating systems, the plug-in library is called
IBMkrb564.dll.

Kerberos and groups

Kerberos does not possess the concept of groups. As a result, the Db2 database instance relies upon
the local operating system to obtain a group list for a Kerberos principal. For UNIX and Linux operating
systems, this reliance requires an equivalent system account for each principal. For example, for the
principal name@REALM, the Db2 database product collects group information by querying the local
operating system for all group names to which the operating system user name belongs. If an operating
system user name does not exist, the AUTHID belongs only to the PUBLIC group.

On Windows operating systems, a domain account is automatically associated with a Kerberos principal.
The additional step of creating a separate operating system account is not required.

Kerberos keytab files

To accept security context requests, every Kerberos service on a UNIX or Linux operating system must
place its credentials in a keytab file. This requirement applies to those principals that the Db2 database
instance uses as server principals. Only the default keytab file is searched for the server key. For
instructions on adding a key to the keytab file, see the documentation provided with the Kerberos
product.

Chapter 1. Db2 security model 13

There is no concept of a keytab file on Windows operating systems; the system automatically handles
storing and acquiring the credentials for a principal.

You can specify the default keytab file name by using the KRB5_KTNAME environment variable. However,
because the server plug-in runs within a Db2 database engine process, this environment variable
might not be accessible. To avoid this situation, add the KRB5_KTNAME environment variable to the
DB2ENVLIST registry variable using the db2set command:

db2set DB2ENVLIST=KRB5_KTNAME

As keytab files are not used by Kerberos for Windows, this option is only available for a Linux or UNIX
server.

Procedure
To set up Kerberos for a Db2 server:
1. Install Kerberos by performing one of the following steps:

• For AIX operating systems, install the NAS (Network Authentication Services) Toolkit for Db2 on AIX,
Version 1.4 or later. You can download the NAS package from https://www.ibm.com/services/forms/
preLogin.do?source=dm-nas.

• For Linux operating systems, install the Kerberos package, krb5, that is included on your operating
system installation media.

• For Windows operating systems, enable the Active Directory on your domain controller.
2. Configure the Db2 product to use the Kerberos plug-in. See “Deploying a Kerberos plug-in” on page

254.
3. Restart the Db2 server.

Naming and mapping for Kerberos
Before you can use Kerberos with a Db2 database system, you must ensure that the client and server
computers and principals belong to the same realm or to trusted realms.

Client principals
Any unique identity that can receive Kerberos tickets for authentication is known as a principal. A
Kerberos principal identity is defined by either a two-part or multipart format, either name@REALM or
name/instance@REALM. Because the name component is used in the authorization ID (AUTHID) mapping,
the name must adhere to the Db2 database naming rules. Those rules limit a name to 128 characters and
restrict the choice of characters.

Note: Windows operating systems directly associate a Kerberos principal identity with a domain user.
An implication is that Kerberos authentication is unavailable to Windows operating systems that are not
associated with a domain or realm. Furthermore, Windows operating systems support only the two-part
format for defining principal identities, that is, name@domain.

Authorization ID mapping
Unlike operating system user IDs, whose scope of existence is usually restricted to a single computer,
Kerberos principals can be authenticated in realms other than their own. You can avoid the potential
problem of duplicate principal names by using the realm name to fully qualify the principal name. In
Kerberos, a fully qualified principal name takes the following form:

name/instance@REALM

where instance can be multiple instance names separated by a forward slash (/), for example, name/
instance1/instance2@REALM. Alternatively, you can omit the instance field.

The realm name must be unique within all the realms that are defined within a network. A one-to-one
mapping is needed between the authorization ID and the principal name, that is, the name field in the

14 IBM Db2 11.5: Database Security Guide

https://www.ibm.com/services/forms/preLogin.do?source=dm-nas
https://www.ibm.com/services/forms/preLogin.do?source=dm-nas

fully qualified principal. This simple mapping is needed because the authorization ID is used as the
default schema by the Db2 database manager and should be easily and logically derived. Be aware of the
potential issues caused by the following mappings:

• Principals with the same name but from different realms are mapped to the same authorization ID. For
example, the following two principal names both map to an authorization ID of gregor1x:

– gregor1x@EXAMPLE.COM
– gregor1x@WWW.COM

• Principals with the same name but on different instances are mapped to the same authorization ID. For
example, the following two principal names both map to an authorization ID of gregor1x:

– gregor1x/bigmachine@EXAMPLE.COM
– gregor1x/littlemachine@EXAMPLE.COM

Therefore, follow these guidelines:

• Maintain a unique namespace for a name in all the trusted realms that access the Db2 database server.
• Make all principals with the same name field, regardless of the instance, belong to the same user.

Server principals
On UNIX and Linux operating systems, the server principal name for the Db2 database instance is
assumed to be instance name/fully qualified hostname@REALM. This principal must be able to accept
Kerberos security contexts, and it must exist before you start the Db2 database instance, because the
server name is reported to the Db2 database instance by the plug-in at initialization time.

On Windows operating systems, the server principal is usually identified by the domain account that is
used to start the Db2 database service. An exception to this situation is when the instance is started
by the LocalSystem account. In this case, the server principal name is reported as host/hostname. This
identity is valid only if both the client and server belong to Windows domains.

Windows operating systems do not support names that have more than two parts. For example:
component/component@REALM. This creates an issue when a Windows client attempts to connect to
a UNIX server. As a result, if you require interoperability with UNIX Kerberos, you must create a mapping
between the Kerberos principal and a Windows account in the Windows domain. For instructions, see the
appropriate Windows documentation.

You can override the Kerberos server principal name that is used by the Db2 server on UNIX and Linux
operating systems by setting the DB2_KRB5_PRINCIPAL environment variable to the fully qualified
server principal name. The replacement server principal name is recognized by the Db2 database system
only after you restart the instance by issuing the db2start command.

Kerberos authentication enablement
Before you can use Kerberos with a Db2 database system, you must enable Kerberos authentication.

Enabling Kerberos authentication on the client
To enable Kerberos authentication on the client, set the clnt_krb_plugin database manager
configuration parameter to the name of the Kerberos plug-in that you are using.

For local authorizations, the client will use Kerberos if the authentication configuration parameter is
set to KERBEROS or KRB_SERVER_ENCRYPT. Otherwise, no client-side Kerberos support is assumed.

Important: No checks are performed to validate that Kerberos support is available.

Chapter 1. Db2 security model 15

To enable Kerberos authentication on outbound connections to a Db2 server, you instead specify
Kerberos as the authentication type when you catalog the database, as shown in the following example:

 CATALOG DATABASE testdb AT NODE testnode
 AUTHENTICATION KERBEROS TARGET PRINCIPAL
 service/host@REALM

However, if you do not provide authentication information, the server sends the name of the server
principal to the client.

Enabling Kerberos authentication on the server
To enable Kerberos authentication on the server, include the specific Kerberos plug-in name in the list of
plug-ins that you specify for the srvcon_gssplugin_list database manager configuration parameter
on the server. Having the Kerberos plug-in name in this list enables the client to scan the server and select
the Kerberos authentication method when making a connection.

If this configuration parameter is left empty and you set the authentication configuration parameter
to KERBEROS or KRB_SERVER_ENCRYPT, the default Kerberos plug-in, IBMkrb5, is used instead. You can
specify only one Kerberos plug-in.

Finally, to use Kerberos for authorization of incoming connections only, set thesvrcon_auth parameter
to one of the following two options:

• KERBEROS to use only Kerberos authentication; or
• KRB_SERVER_ENCRYPT to use Kerberos and SERVER_ENCRYPT authorization.

If you want to use Kerberos for incoming connections and local authorizations, leave the svrcon_auth
configuration parameter empty and set the value of the authentication configuration parameter to one
of the Kerberos options.

Kerberos plug-in creation
To customize the behavior of Kerberos authentication on a Db2 database system, you can develop your
own Kerberos authentication plug-ins.

Consider the following points when creating a Kerberos plug-in:

• Write the Kerberos plug-in as a GSS-API plug-in, but in the initialization function, set the plugintype
variable to DB2SEC_PLUGIN_TYPE_KERBEROS for the function pointer array that is returned to the Db2
database instance.

• Under certain conditions, the server reports the server principal name to the client. The Kerberos
plug-in must specify principals in the GSS_C_NT_USER_NAME format (that is, server/host@REALM). The
GSS_C_NT_HOSTBASED_SERVICE format (that is, service@host) is not supported.

Kerberos compatibility
Db2 Kerberos authentication is compatible with IBM System z®, IBM i, and Windows systems.

IBM System z and IBM i compatibility
To connect to a database on an IBM System z or IBM i system, you must catalog the database by using
the AUTHENTICATION and KERBEROS TARGET PRINCIPAL parameters of the CATALOG DATABASE
command.

Neither IBM System z nor IBM i operating systems support the mutual authentication security feature of
Kerberos.

Windows issues
When you are using Kerberos on Windows operating systems, be aware of the following issues:

16 IBM Db2 11.5: Database Security Guide

• Due to the manner in which Windows operating systems detect and report some errors, the following
conditions result in a client security plug-in error.

– Expired account
– Invalid password
– Expired password
– Password change forced by administrator
– Disabled account

Furthermore, in all cases, the Db2 administration log or the db2diag log files contain Logon failed
or Logon denied messages.

• If a domain account name is also defined locally, connections explicitly specifying the domain name and
password fail with the following error: The Local Security Authority cannot be contacted.
The error is a result of the Windows operating system locating the local user first. The solution is to fully
qualify the user in the connection string, for example name@DOMAIN.IBM.COM.

• Windows accounts cannot include the at sign (@) character in their names because the Db2 Kerberos
plug-in assumes that the character is the domain name separator.

• If the client and server are both on the Windows operating system, you can start the Db2 service using
the LocalSystem account. However, if the client and server are in different domains, the connection
can fail with an invalid target principal name error. To avoid this error, explicitly catalog the target
principal on the client with the CATALOG DATABASE command, using the fully qualified server host
name and the fully qualified domain name. Use the following format: host/server hostname@server
domain name. For example, host248/server34.toronto.ibm.com@TORONTO.IBM.COM. An alternative to
using the LocalSystem account is to use a valid domain account.

Maintaining passwords on servers
You might be required to perform password maintenance tasks. Because such tasks are typically required
at the server, and many users are not able or comfortable working with the server environment,
performing these tasks can pose a significant challenge. The Db2 database system provides a way to
update and verify passwords without having to be at the server.

You can assign new passwords when you connect to databases on the following servers for the indicated
(and later) releases: Db2 Universal Database Version 8 on AIX and Windows operating systems, Db2
Version 9.1 Fix Pack 3 or later on Linux operating systems, Db2 for z/OS Version 7, Db2 for IBM i V6R1.

For example, if an error message SQL1404N "Password expired" or SQL30082N "Security processing
failed with reason 1 (PASSWORD EXPIRED)" is received, use the CONNECT statement to change the
password as follows:

CONNECT TO database USER userid USING
 password NEW new_password CONFIRM new_password

Authentication and group cache
A new cache for both User ID and Password based authentication, and group plug-ins has been
introduced to relieve pressure on backend authentication mechanisms.

Attention: This feature is available in Db2 Version 11.5 Mod Pack 3 and later versions.

The authentication portion of the cache will store information about successful authentications and
compare the information from new, incoming authentication requests against the cached entries to see if
a valid match is found. If the match is found, the new authentication request is considered successful and
subsequent Db2 post-authentication processing begins.

This cache will only be applied to authentication requests associated with CONNECT requests that
provide passwords for authentication. The cache exists at each database member that receives CONNECT

Chapter 1. Db2 security model 17

requests, and the cache contents are independent of the contents of the cache at any other database
member.

The group portion of the cache will store a list of any external groups associated with a given User ID.
This list is normally returned as part of the authentication process. If a match for a User ID is found in the
group cache, the cached list of groups is returned and external group lookup is skipped.

Cache benefits
Enabling the cache is most beneficial when the authentication service for a Db2 instance is on a
remote host and there is no caching locally on the server. Overhead of the network communication and
overloading the authentication service can lead to significant delays when authenticating with the Db2
server, which results in slower connects. Using the ldap security plugin falls into this category.

Configuration
Both database configuration parameters for the authentication cache can be configured online and do not
require the database to be deactivated and reactivated.

The number of entries to be cached is determined by the user and indicated by a new database
configuration parameter. When the number of cached entries reaches the configured maximum value,
any new entry to be cached will force the eviction of an existing cache entry.

See the parameter AUTHN_CACHE_USERS for more information.

The duration of time when a cached entry is considered valid for comparison is determined by the user
and indicated by a new database configuration parameter. This duration begins when the cached entry
is first entered into the cache; once the duration is exceeded, the entry is no longer considered valid for
comparison against new requests and can be evicted.

See the parameter AUTHN_CACHE_DURATION for more information.

Cache monitoring and performance
The MON_GET_CONNECTION table function contains several metrics associated with the active
connections for a given database. One of these metrics, total_connect_authentication_time,
measures how long authentication took for a given connection. If the value for
total_connect_authentication_time goes down once the cache is enabled, then the cache is
working.

The MON_GET_DATABASE table function contains several metrics associated with the authentication
cache itself.

AUTHN_CACHE_LOOKUPS measures how many times the cache is searched for an entry.
AUTHN_CACHE_HITS, alternatively, measures how many times the Db2 server was able to find a valid
entry corresponding to a given user. The efficiency of the cache can be defined by how often the server
finds valid authentication information in the cache every time the server accesses it during authentication.
The cache efficiency or hit ratio can be calculated by (AUTHN_CACHE_HITS / AUTHN_CACHE_LOOKUPS).

If the hit ratio of the cache is low, there could be two reasons:

1. If the cache size is too small, this leads to constant eviction of valid entries. This lowers the probability
of finding cached authentication information for a given user.

2. The period for which an entry is valid in the cache before that user must be reauthenticated is too
short. This means entries are expiring too fast. In this case, if matching authentication information is
found for a connecting user, it cannot be used because it is expired.

The AUTHN_CACHE_EXPIRED_EVICTIONS monitoring metric counts how many times the system
evicted an expired entry from the cache. The AUTHN_CACHE_VALID_EVICTIONS metric counts
the number of evictions of entries that were still valid at the time of eviction. If the value of
AUTHN_CACHE_EXPIRED_EVICTIONS is growing faster than that of AUTHN_CACHE_VALID_EVICTIONS,

18 IBM Db2 11.5: Database Security Guide

it implies that the maximum duration an entry is valid in the cache is too short and should be increased. If
it is the opposite, then the cache is too small and increasing its size could improve the cache efficiency.

Password and group membership changes
Db2 is unaware when the password or group membership of a given user changes, therefore, any entries
in the cache containing stale information are still considered valid until they expire. In such a situation, a
stale group list may be returned, or authentication with an old password may be returned.

If a user’s password is changed and authentication is attempted with the new password, a stale entry
present in the cache will be updated and any future authentications with that new password will be
handled by the cache.

If a user’s group membership changes, the entry must expire, be evicted, or be flushed before the cache
can store updated group information.

To immediately invalidate all entries and flush the cache, the FLUSH AUTHENTICATION CACHE statement
can be run. See FLUSH AUTHENTICATION CACHE for more information.

Token authentication
Token authentication is a mechanism for generalizing tokens such that they can be used for
authentication to the Db2 server in a unified method. The token, represented as a string and a token
type are sent by the client to the server. The token is opaque to the client, but is understood and can be
validated by the server.

Note: This feature is available starting from Db2 version 11.5.4.

Currently, Db2 supports JSON Web Tokens (JWT).

Tokens are used in place of user IDs and passwords. They encapsulate both the identity of the user and
proof of that identity into a single entity. Tokens are generated outside of Db2 and passed as input on the
connect statement. If generated by an application or Identity Provider that uses the token for multiple
services, it can provide a form of single sign-on (SSO).

Not all interfaces that establish connections to the database server accept tokens instead of user ID
and passwords, only explicitly CONNECT statements do. For tools that establish local implicit connections
(specifying neither user ID nor password), token authentication must always be configured along with
an additional authentication mechanism such as SERVER_ENCRYPT, because there is no mechanism to
obtain a default token from the environment.

At the Db2 server, token authentication is configured by first creating a token configuration file
with details on how to validate the tokens, and then setting the SRVCON_AUTH database manager
configuration parameter to one of the *_TOKEN values.

At the client, token authentication is first configured for use by setting TOKEN as the desired
authentication mechanism, and then passing the token and type as input to the connect statement.

The tokens are not used for group membership, the configured group plug-in is used to lookup the users
group.

Token authentication refers to the ability for the Db2 server to directly validate the token contents and
authenticate the user. In addition, GSSAPI based security plug-ins can also take a token as input. That is
not considered token authentication, it is still plug-in authentication but with a token input. How the client
is configured will determine which security mechanism is used.

Token configuration file
In order to support token authentication, several configuration values are required to describe what types
of tokens are supported, and how they are to be validated.

Before you begin
Note: This feature is available starting from Db2 version 11.5.4.

Chapter 1. Db2 security model 19

A file, db2token.cfg must be created in the instance directory, which defaults to the following:

• Linux and UNIX (for serial or DPF) $INSTHOME/sqllib/cfg
• Linux and UNIX for pureScale (for serial or DPF): $INSTHOME/sqllib_shared/cfg
• Windows: C:\ProgramData\IBM\DB2\db2copy1\DB2\cfg

The configuration file must be owned by the instance owner with read/write permissions.

Procedure
On the Db2 server, create the token configuration file in a text editor.

Keywords

Consider a JWT to be validated as follows:

{
 "alg": "RS256",
 "typ": "JWT"
}
.
{
 "username": "admin",
 "sub": "admin",
 "iss": "KNOXSSO",
 "iat": 1579286619,
 "exp": 1579329819
 }
 .
 signature

and this example token configuration file:

VERSION=1
TOKEN_TYPES_SUPPORTED=JWT
JWT_KEYDB=/home/db2inst1/jwtkeys.p12

JWT_IDP_ISSUER=KNOXSSO
JWT_IDP_AUTHID_CLAIM=username
JWT_IDP_RSA_CERTIFICATE_LABEL=mylabel
JWT_IDP_ISSUER=A_SECOND_ISSUER
JWT_IDP_AUTHID_CLAIM=userid
JWT_IDP_RSA_CERTIFICATE_LABEL=aDifferentLabel

Common parameters:
VERSION

The version of the configuration file. (Mandatory)
TOKEN_TYPES_SUPPORTED

The types of tokens supported as a comma-separated list. Currently, JWT is the only supported token
type. (Mandatory)

JWT Parameters:
JWT_KEYDB

The path to local keystore file. (Mandatory)

Private keys, and public keys as certificates, are stored in a local keystore file with a corresponding
stash file (*.sth extension). This keystore is used to store keys for all IDP and key labels must be
unique across IDPs.

JWT IDP Group parameters:

The following parameters are grouped together and apply to a single IDP. The group starts with
JWT_IDP_ISSUER and succeeding keywords apply to that IDP until the next JWT_IDP_ISSUER is parsed.

JWT_IDP_ISSUER
The name of the issuer of the token. Corresponds to iss claim in the JWT and must match exactly.
Must appear first in a group of parameters particular to one IDP. (Mandatory)

20 IBM Db2 11.5: Database Security Guide

JWT_IDP_AUTHID_CLAIM
The claim within the JWT that specifies the key holding the authorization ID of the user connecting to
Db2. Must appear after JWT_IDP_ISSUER parameter. The value will depend on the contents specified
by IDP. It may be a value such as "username", "userid", "uid" or "sub". This is not the value of the
authid, but the key which identifies the authid in the token (see example above).

• Nested JSON is not supported for the claim

Rules for authid value in the token, which is looked up on the basis of this config parameter:

• The authorization ID in the token will be converted to uppercase.
• Additional parsing of the claim, such as separating a username portion of an email address, is not

supported, the claim is taken as-is.

JWT_IDP_SECRETKEY_LABEL
The label for the secret (symmetric) key used to verify the signature of the token using the HMAC-SHA
algorithm. Must appear after JWT_IDP_ISSUER parameter. (Optional)

JWT_IDP_RSA_CERTIFICATE_LABEL
The label for the certificate containing the public key used to verify the signature of the token using
the RSA algorithm. Must appear after JWT_IDP_ISSUER parameter. (Optional)

JWT_IDP_ECDSA_CERTIFICATE_LABEL
The label for the certificate containing the ECDSA public key, used to verify the signature of the token
using the ECDSA algorithm. Must appear after JWT_IDP_ISSUER parameter. (Optional)

JWT_IDP_PSS_CERTIFICATE_LABEL
The label for the certificate containing the RSA public key used to verify the signature of the token
using the PSS-RSA algorithm. Must appear after JWT_IDP_ISSUER parameter. (Optional)

Notes

• Unless otherwise indicated, do not use quotes around values
• With the exception of TOKEN_TYPES_SUPPORTED, the value for all other parameters is case-sensitive.

For example, the value for JWT_IDP_ISSUER must match exactly the iss value in the JWT.
• At least one IDP group must be specified.
• Starting from Db2 version 11.5.5, multiple labels are supported for JSON Web Tokens. Up to 10 issuers

can be specified. Each issuer can have a maximum of 5 labels for each label type. Each of the labels are
extracted and verified against token signature for verification.

• The maximum number of IDP groups is 6 for Db2 version 11.5.4, and 10 starting from version 11.5.5.
• For each IDP group, at least one of JWT_IDP_SECRETKEY_LABEL,
JWT_IDP_RSA_CERTIFICATE_LABEL, JWT_IDP_ECDSA_CERTIFICATE_LABEL,
JWT_IDP_PSS_CERTIFICATE_LABEL must be specified.

• Up to 5 labels can be specified for each label type per IDP group. Labels should be specified on
separate lines. For example:

JWT_IDP_SECRETKEY_LABEL=secretkeyLabel1
JWT_IDP_SECRETKEY_LABEL=secretkeyLabel2
JWT_IDP_SECRETKEY_LABEL=secretkeyLabel3
JWT_IDP_SECRETKEY_LABEL=secretkeyLabel4
JWT_IDP_SECRETKEY_LABEL=secretkeyLabel5

When multiple labels are used, each of the labels is extracted and an attempt is made to verify the
token signature with the label until verification is successful or all labels have been attempted.

• Take caution when deciding to use the HMAC-SHA signature algorithm for signing tokens, because the
key used to sign the token is the same as the one used to validate the signature. Therefore, anyone
that can check signatures can also generate them. This should only be used in scenarios where there is
strong trust between the issuer/signer (the IDP) and the verifier (Db2 instance owner).

Chapter 1. Db2 security model 21

Dynamic updates to the token configuration file
Dynamic updates allow you to update certificates that are close to their expiry dates without the need for
a temporary outage.

The token configuration will be automatically refreshed during TOKEN authentication when the following
conditions are met:

• The token configuration file on disk has an updated timestamp compared to the in-memory token
configuration currently used by Db2.

• Db2 was unable to authenticate the presented TOKEN. This can occur when a new token type or
verification certificate was added to the token configuration file.

Db2 will then read the updated token configuration from disk and attempt to authenticate presented
token. If the token was successfully authenticated using the on-disk configuration, the in-memory token
configuration will be updated and the connection will continue. If the token could not be verified using the
on-disk configuration, the in memory configuration will not be updated and an error will be returned.

This behavior can be turned off by setting the Db2 registry variable
DB2_REFRESH_TOKEN_CONFIG_ON_FAILURE to false. This registry variable is dynamic and can be
updated online.

db2set DB2_REFRESH_TOKEN_CONFIG_ON_FAILURE=false

The ADMIN_REFRESH_CONFIG stored procedure can be used to manually refresh the Db2 token
configuration file:

db2 call sysproc.admin_refresh_config('token')

JSON Web Tokens (JWT)
JSON Web Tokens (JWT) are used to securely transmit authentication information formatted as a JSON
object.

As JWT are digitally signed by the issuer, they can be used for authentication purposes by validating
the signature, without having to expose a password to Db2. A claim within the JWT identifies the user's
identity Db2.

Typically, it is an Identity Provider (IDP) product that will generate the JWT when a user logs in through
an application, although it is possible for an individual application to create a JWT itself. Db2 can validate
JWT but does not provide a method for generating them.

A diagram of the JWT workflow

22 IBM Db2 11.5: Database Security Guide

The issuer of the JWT must be identified in the token under the 'iss' claim. An exact match for the issuer
must be found in the token configuration file (db2token.cfg) in the JWT_IDP_ISSUER parameter in
order to locate keys for validating the JWT signature. A local keystore file of type PKCS#12 (*.p12) is used
to hold the keys and its location must be configured in the token configuration file.

The signature algorithm is declared as part of the JWT header. Db2 supports the following signature
algorithms:

• HMAC using SHA2 (HS256, HS384, HS512)
• RSASSA-PKCS1-v1 using SHA2 (RS256, RS384, RS512)
• ECDSA P-256 with SHA256 (ES256)
• ECDSA P-384 with SHA384 (ES384)
• ECDSA P-512 with SHA512 (ES512)
• Available starting from Db2 version 11.5.5:

– RSASSA-PSS using SHA-256 and MGF1 with SHA-256 (PS256)
– RSASSA-PSS using SHA-384 and MGF1 with SHA-384 (PS384)
– RSASSA-PSS using SHA-512 and MGF1 with SHA-512 (PS512)

Db2 does not support encrypted JWT. TLS/SSL is strongly recommended to protect the JWT while sent
over the network.

For Db2 to validate tokens signed with the indicated algorithm, you must configure the appropriate key.
A secret key that was used to sign the JWT must be configured if HS256, HS384 or HS512 is used. A
certificate with appropriate public key must be configured for each of RSA signature algorithms. The label
for these keys are specified in the db2token.cfg file.

To determine the identity of the token holder, Db2 examines the contents of the token itself. The token
configuration file, under the JWT_IDP_AUTHID_CLAIM parameter determines which claim within the
token holds the users identity. This claim will be taken as the authorization ID of the user within Db2.
While not required to be named so, the claim is often called "sub" (for subject) or "username". Individual
IDPs often include the ability to customize the JWT they produce, and it may even be possible to generate
a claim such as "db2authid".

Chapter 1. Db2 security model 23

No processing is performed on the value identified by the authid claim. For example if a claim identifies an
email address, it is not broken apart into username and domain portions, but kept as a whole.

The JWT must include an expiry time in the 'exp' claim, as Db2 does not support revoking methods.
Careful thought must be given to appropriate values for the expiry time. If the JWT were exposed to a
malicious user, a value that is too large increases the window during which it may be used. A value that
is too small may interfere with Db2 operations. Once a connection is established, the token can expire
without consequence. However, there are certain scenarios in which the token may be re-used, and if it
had expired prevent the operation from succeeding. Specifically:

• Automatic Client Reroute: re-establishing a new connection would reuse the existing token and fail if it
had expired.

• Federation connections to remote data source: When configured for single-sign on (SSO), outbound
connections to remote data sources will use the JWT that was used to connect to the Federation server.
If the token has expired, this connection will fail.

Often, when a JWT is generated, it is accompanied by a refresh token. Db2 does not support using a
refresh token to obtain a new, non-expired JWT.

Db2 does not obtain group information or other authorization details from the JWT. The standard group
plug-in is used to obtain groups for the user.

For the JWT to be validated by Db2, it must have the following properties:

• If a 'typ' claim is in the token header, it must have the value JWT. The claim is optional and does not
need to be present.

• An 'alg' claim of a supported algorithm, and appropriately configured key in the db2token.cfg file
• An 'iss' claim that matches an issuer in the db2token.cfg file.
• A JWT_IDP_AUTHID_CLAIM claim identifying the authorization ID of the user.
• An 'exp' claim with a value that has not expired

The JWT may contain any other claims, but they are ignored by Db2.

The following is a sample JWT header and claims.

Example HEADER:

{
 "alg": "RS256",
 "typ": "JWT"
}

Example PAYLOAD:

{
 "username": "admin",
 "sub": "admin",
 "iss": "KNOXSSO",
 "aud": "DSX",
 "role": "Admin",
 "permissions": [
 "administrator",
 "can_provision"
],
 "uid": "1000330999",
 "authenticator": "default",
 "display_name": "admin",
 "iat": 1579286619,
 "exp": 1579329819
 }

In this case

• The issuer is KNOXSSO.
• The JWT signing algorithm uses RS256 - (RSA signature with SHA256).
• The expiration time for JWT is set at 12 hours.

24 IBM Db2 11.5: Database Security Guide

• The "username" claim identifies the Db2 authorization ID.

Authorization, privileges, and object ownership
Users (identified by an authorization ID) can successfully execute operations only if they have the
authority to perform the specified function. To create a table, a user must be authorized to create tables;
to alter a table, a user must be authorized to alter the table; and so forth.

The database manager requires that each user be specifically authorized to use each database function
needed to perform a specific task. A user can acquire the necessary authorization through a grant of that
authorization to their user ID or through membership in a role or a group that holds that authorization.

There are three forms of authorization, administrative authority, privileges, and LBAC credentials. In
addition, ownership of objects brings with it a degree of authorization on the objects created. These forms
of authorization are discussed in the following section.

Administrative authority
The person or persons holding administrative authority are charged with the task of controlling the
database manager and are responsible for the safety and integrity of the data.

System-level authorization

The system-level authorities provide varying degrees of control over instance-level functions:

• SYSADM (system administrator) authority

The SYSADM (system administrator) authority provides control over all the resources created and
maintained by the database manager. The system administrator possesses all the authorities of
SYSCTRL, SYSMAINT, and SYSMON authority. The user who has SYSADM authority is responsible
both for controlling the database manager, and for ensuring the safety and integrity of the data.

• SYSCTRL authority

The SYSCTRL authority provides control over operations that affect system resources. For example,
a user with SYSCTRL authority can create, update, start, stop, or drop a database. This user can also
start or stop an instance, but cannot access table data. Users with SYSCTRL authority also have the
SYSMAINT and SYSMON authorities.

• SYSMAINT authority

The SYSMAINT authority provides the authority required to perform maintenance operations on all
databases associated with an instance. A user with SYSMAINT authority can update the database
configuration, backup a database or table space, restore an existing database, and monitor a
database. Like SYSCTRL, SYSMAINT does not provide access to table data. Users with SYSMAINT
authority also have SYSMON authority.

• SYSMON (system monitor) authority

The SYSMON (system monitor) authority provides the authority required to use the database system
monitor.

Database-level authorization

The database level authorities provide control within the database:

• DBADM (database administrator)

The DBADM authority level provides administrative authority over a single database. This database
administrator possesses the privileges required to create objects and issue database commands.

The DBADM authority can be granted only by a user with SECADM authority. The DBADM authority
cannot be granted to PUBLIC.

• SECADM (security administrator)

The SECADM authority level provides administrative authority for security over a single database.
The security administrator authority possesses the ability to manage database security objects

Chapter 1. Db2 security model 25

(database roles, audit policies, trusted contexts, security label components, and security labels) and
grant and revoke all database privileges and authorities. A user with SECADM authority can transfer
the ownership of objects that they do not own. They can also use the AUDIT statement to associate
an audit policy with a particular database or database object at the server.

The SECADM authority has no inherent privilege to access data stored in tables. It can only be
granted by a user with SECADM authority. The SECADM authority cannot be granted to PUBLIC.

• SQLADM (SQL administrator)

The SQLADM authority level provides administrative authority to monitor and tune SQL statements
within a single database. It can be granted by a user with ACCESSCTRL or SECADM authority.

• WLMADM (workload management administrator)

The WLMADM authority provides administrative authority to manage workload management
objects, such as service classes, work action sets, work class sets, and workloads. It can be granted
by a user with ACCESSCTRL or SECADM authority.

• EXPLAIN (explain authority)

The EXPLAIN authority level provides administrative authority to explain query plans without
gaining access to data. It can only be granted by a user with ACCESSCTRL or SECADM authority.

• ACCESSCTRL (database access control authority)

The ACCESSCTRL authority level provides administrative authority to issue the following GRANT
(and REVOKE) statements.

– GRANT (Database Authorities)

ACCESSCTRL authority does not give the holder the ability to grant ACCESSCTRL, DATAACCESS,
DBADM, or SECADM authority. Only a user who has SECADM authority can grant these authorities.

– GRANT (Global Variable Privileges)
– GRANT (Index Privileges)
– GRANT (Module Privileges)
– GRANT (Package Privileges)
– GRANT (Routine Privileges)
– GRANT (Schema Privileges)
– GRANT (Sequence Privileges)
– GRANT (Server Privileges)
– GRANT (Table, View, or Nickname Privileges)
– GRANT (Table Space Privileges)
– GRANT (Workload Privileges)
– GRANT (XSR Object Privileges)

ACCESSCTRL authority can only be granted by a user with SECADM authority. The ACCESSCTRL
authority cannot be granted to PUBLIC.

• DATAACCESS (database data access authority)

The DATAACCESS authority level provides the following privileges and authorities.

– LOAD authority
– SELECT, INSERT, UPDATE, DELETE privilege on tables, views, nicknames, and materialized query

tables
– EXECUTE privilege on packages
– EXECUTE privilege on modules
– EXECUTE privilege on routines

Except on the audit routines: AUDIT_ARCHIVE, AUDIT_LIST_LOGS, AUDIT_DELIM_EXTRACT.

26 IBM Db2 11.5: Database Security Guide

– READ privilege on all global variables and WRITE privilege on all global variables except variables
which are read-only

– USAGE privilege on all XSR objects
– USAGE privilege on all sequences

It can be granted only by a user who holds SECADM authority. The DATAACCESS authority cannot be
granted to PUBLIC.

• Database authorities (non-administrative)

To perform activities such as creating a table or a routine, or for loading data into a table, specific
database authorities are required. For example, the LOAD database authority is required for use of
the load utility to load data into tables (a user must also have the privilege to insert data into the
table).

Schema-level authorization

The schema-level authorities provide control over a schema. They cannot be granted to PUBLIC or be
granted with the WITH GRANT OPTION.

• SCHEMAADM (Schema administrator)

The SCHEMADM authority provides administrative authority over a single schema. The schema
administrator has the privilege to create and manage objects in the schema. It implicitly has the
schema LOAD authority.

• ACCESSCTRL (Schema access control authority)

The schema ACCESSCTRL authority provides the ability to grant and revoke all privileges on objects
defined in the schema. The schema ACCESSCTRL authority can also grant and revoke all schema-
level authorities and privileges on the schema except schema ACCESSCTRL itself.

• DATAACCESS (Schema data access authority)

The schema DATAACCESS authority allows users to read and write data on all objects existing in
the schema. The authority also gives users the permission to reference sequences and xsrobjects,
execute routines, modules, and packages defined the schema, and implicit schema LOAD authority.

• LOAD (Schema load authority)

The schema LOAD authority allows users to use the load utility to load data into tables defined in the
schema (the user must also have the privilege to insert data into the table).

Privileges
A privilege is a permission to perform an action or a task. Authorized users can create objects, have
access to objects they own, and can pass on privileges on their own objects to other users by using the
GRANT statement.

Privileges may be granted to individual users, to groups, or to PUBLIC. PUBLIC is a special group that
consists of all users, including future users. Users that are members of a group will indirectly take
advantage of the privileges granted to the group, where groups are supported.

The CONTROL privilege: Possessing the CONTROL privilege on an object allows a user to access that
database object, and to grant and revoke privileges to or from other users on that object.

Note: The CONTROL privilege only applies to tables, views, nicknames, indexes, and packages.

If a different user requires the CONTROL privilege to that object, a user with SECADM or ACCESSCTRL
authority could grant the CONTROL privilege to that object. The CONTROL privilege cannot be revoked
from the object owner, however, the object owner can be changed by using the TRANSFER OWNERSHIP
statement.

Individual privileges: Individual privileges can be granted to allow a user to carry out specific tasks on
specific objects. Users with the administrative authorities ACCESSCTRL or SECADM, or with the CONTROL
privilege, can grant and revoke privileges to and from users.

Chapter 1. Db2 security model 27

Individual privileges and database authorities allow a specific function, but do not include the right
to grant the same privileges or authorities to other users. The right to grant table, view, schema,
package, routine, and sequence privileges to others can be extended to other users through the WITH
GRANT OPTION on the GRANT statement. However, the WITH GRANT OPTION does not allow the
person granting the privilege to revoke the privilege once granted. You must have SECADM authority,
ACCESSCTRL authority, or the CONTROL privilege to revoke the privilege.

Privileges on objects in a package or routine: When a user has the privilege to execute a package
or routine, they do not necessarily require specific privileges on the objects used in the package or
routine. If the package or routine contains static SQL or XQuery statements, the privileges of the
owner of the package are used for those statements. If the package or routine contains dynamic SQL
or XQuery statements, the authorization ID used for privilege checking depends on the setting of the
DYNAMICRULES BIND option of the package issuing the dynamic query statements, and whether those
statements are issued when the package is being used in the context of a routine (except on the audit
routines: AUDIT_ARCHIVE, AUDIT_LIST_LOGS, AUDIT_DELIM_EXTRACT).

A user or group can be authorized for any combination of individual privileges or authorities. When a
privilege is associated with an object, that object must exist. For example, a user cannot be given the
SELECT privilege on a table unless that table has previously been created.

Note: Care must be taken when an authorization name representing a user or a group is granted
authorities and privileges and there is no user, or group created with that name. At some later time,
a user or a group can be created with that name and automatically receive all of the authorities and
privileges associated with that authorization name.

The REVOKE statement is used to revoke previously granted privileges. The revoking of a privilege from an
authorization name revokes the privilege granted by all authorization names.

Revoking a privilege from an authorization name does not revoke that same privilege from any other
authorization names that were granted the privilege by that authorization name. For example, assume
that CLAIRE grants SELECT WITH GRANT OPTION to RICK, then RICK grants SELECT to BOBBY and
CHRIS. If CLAIRE revokes the SELECT privilege from RICK, BOBBY and CHRIS still retain the SELECT
privilege.

LBAC credentials
Label-based access control (LBAC) lets the security administrator decide exactly who has write access
and who has read access to individual rows and individual columns. The security administrator configures
the LBAC system by creating security policies. A security policy describes the criteria used to decide who
has access to what data. Only one security policy can be used to protect any one table but different tables
can be protected by different security policies.

After creating a security policy, the security administrator creates database objects, called security labels
and exemptions that are part of that policy. A security label describes a certain set of security criteria.
An exemption allows a rule for comparing security labels not to be enforced for the user who holds the
exemption, when they access data protected by that security policy.

Once created, a security label can be associated with individual columns and rows in a table to protect the
data held there. Data that is protected by a security label is called protected data. A security administrator
allows users access to protected data by granting them security labels. When a user tries to access
protected data, that user's security label is compared to the security label protecting the data. The
protecting label blocks some security labels and does not block others.

Object ownership
When an object is created, one authorization ID is assigned ownership of the object. Ownership means the
user is authorized to reference the object in any applicable SQL or XQuery statement.

When an object is created within a schema, the authorization ID of the statement must have the required
privilege to create objects in the implicitly or explicitly specified schema. That is, the authorization name
must either be the owner of the schema, or possess the CREATEIN privilege on the schema.

28 IBM Db2 11.5: Database Security Guide

Note: This requirement is not applicable when creating table spaces, buffer pools or database partition
groups. These objects are not created in schemas.

When an object is created, the authorization ID of the statement is the definer of that object and by
default becomes the owner of the object after it is created.

Note: One exception exists. If the AUTHORIZATION option is specified for the CREATE SCHEMA
statement, any other object that is created as part of the CREATE SCHEMA operation is owned by the
authorization ID specified by the AUTHORIZATION option. Any objects that are created in the schema
after the initial CREATE SCHEMA operation, however, are owned by the authorization ID associated with
the specific CREATE statement.

For example, the statement CREATE SCHEMA SCOTTSTUFF AUTHORIZATION SCOTT CREATE TABLE
T1 (C1 INT) creates the schema SCOTTSTUFF and the table SCOTTSTUFF.T1, which are both owned
by SCOTT. Assume that the user BOBBY is granted the CREATEIN privilege on the SCOTTSTUFF schema
and creates an index on the SCOTTSTUFF.T1 table. Because the index is created after the schema,
BOBBY owns the index on SCOTTSTUFF.T1.

Privileges are assigned to the object owner based on the type of object being created:

• The CONTROL privilege is implicitly granted on newly created tables, indexes, and packages. This
privilege allows the object creator to access the database object, and to grant and revoke privileges to
or from other users on that object. If a different user requires the CONTROL privilege to that object,
a user with ACCESSCTRL or SECADM authority must grant the CONTROL privilege to that object. The
CONTROL privilege cannot be revoked by the object owner.

• The CONTROL privilege is implicitly granted on newly created views if the object owner has the
CONTROL privilege on all the tables, views, and nicknames referenced by the view definition.

• Other objects like triggers, routines, sequences, table spaces, and buffer pools do not have a CONTROL
privilege associated with them. The object owner does, however, automatically receive each of the
privileges associated with the object and those privileges are with the WITH GRANT OPTION, where
supported. Therefore the object owner can provide these privileges to other users by using the GRANT
statement. For example, if USER1 creates a table space, USER1 automatically has the USEAUTH
privilege with the WITH GRANT OPTION on this table space and can grant the USEAUTH privilege
to other users. In addition, the object owner can alter, add a comment on, or drop the object. These
authorizations are implicit for the object owner and cannot be revoked.

Certain privileges on the object, such as altering a table, can be granted by the owner, and can be
revoked from the owner by a user who has ACCESSCTRL or SECADM authority. Certain privileges on the
object, such as commenting on a table, cannot be granted by the owner and cannot be revoked from
the owner. Use the TRANSFER OWNERSHIP statement to move these privileges to another user. When
an object is created, the authorization ID of the statement is the definer of that object and by default
becomes the owner of the object after it is created. However, when you use the BIND command to create
a package and you specify the OWNER authorization id option, the owner of objects created by the static
SQL statements in the package is the value of authorization id. In addition, if the AUTHORIZATION clause
is specified on a CREATE SCHEMA statement, the authorization name specified after the AUTHORIZATION
keyword is the owner of the schema.

A security administrator or the object owner can use the TRANSFER OWNERSHIP statement to change
the ownership of a database object. An administrator can therefore create an object on behalf of an
authorization ID, by creating the object using the authorization ID as the qualifier, and then using the
TRANSFER OWNERSHIP statement to transfer the ownership that the administrator has on the object to
the authorization ID.

Chapter 1. Db2 security model 29

Authorities overview
Various administrative authorities exist at the instance level, at the database level, and at the schema
level. These administrative authorities group together certain privileges and authorities so that you can
grant them to the users who are responsible for these tasks in your database installation.

Instance level authorities
Instance level authorities enable you to perform instance-wide functions, such as creating and upgrading
databases, managing table spaces, and monitoring activity and performance on your instance. No
instance-level authority provides access to data in database tables. The following diagram summarizes
the abilities given by each of the instance level administrative authorities:

• SYSADM -for users managing the instance as a whole
• SYSCTRL -for users administering a database manager instance
• SYSMAINT -for users maintaining databases within an instance
• SYSMON -for users monitoring the instance and its databases

A user with a higher-level authority also has the abilities given by the lower level authorities. For example,
a user with SYSCTRL authority can perform the functions of users with SYSMAINT and SYSMON authority
as well.

30 IBM Db2 11.5: Database Security Guide

Figure 1. Instance-level authorities

Database level authorities
Database level authorities enable you to perform functions within a specific database, such as granting
and revoking privileges, inserting, selecting, deleting and updating data, and managing workloads.
The following diagram summarizes the abilities given by each of the database level authorities. The
administrative database authorities are:

• SECADM - for users managing security within a database
• DBADM - for users administering a database

Chapter 1. Db2 security model 31

• ACCESSCTRL - for users who need to grant and revoke authorities and privileges (except for SECADM,
DBADM, ACCESSCTRL, and DATAACCESS authority, SECADM authority is required to grant and revoke
these authorities)

• DATAACCESS - for users who need to access data
• SQLADM - for users who monitor and tune SQL queries
• WLMADM - for users who manage workloads
• EXPLAIN - for users who need to explain query plans (EXPLAIN authority does not give access to the

data itself)

The following diagram shows, where appropriate, which higher level authorities include the abilities given
by a lower level authority. For example, a user with DBADM authority can perform the functions of users
with SQLADM and EXPLAIN authority, and all functions except granting USAGE privilege on workloads, of
users with WLMADM authority.

32 IBM Db2 11.5: Database Security Guide

Figure 2. Database-level authorities

Chapter 1. Db2 security model 33

Schema level authorities
Schema level authorities enable you to perform functions within a specific schema, such as granting and
revoking privileges, inserting, selecting, deleting and updating data, and executing routines, modules, and
packages. The following diagram summarizes the abilities given by each of the schema level authorities.
The schema authorities are:

• SCHEMAADM - for users administering a schema.
• ACCESSCTRL - for users who need to grant authorities and privileges on a schema (except Schema

ACCESSCTRL) or on objects defined a schema.
• DATAACCESS - for users who need to read and write data on objects defined in a schema.
• LOAD - for users who need to use the load utility to insert data in tables defined in a schema.

The following diagram shows, where appropriate, which higher level authorities include the abilities given
by a lower level authority. For example, a user with DBADM authority can perform the functions of users
with SQLADM and EXPLAIN authority, and all functions except granting USAGE privilege on workloads, of
users with WLMADM authority.

Figure 3. Schema-level authorities

Internal system-defined routine
When Security Administrator (SECADM) users GRANT privileges to individual routines for users, SECADM
users might come across certain internal routines. When users do not have the required privileges for
these internal routines, operations that require the privilege of these internal routines might fail.

This table can be useful when deploying a restrictive database. Users can encounter missing privilege
errors on certain internal routines. SECADM must consult this table and the routine description to decide
whether they need to grant EXECUTE privilege on the specific internal routine that is failing with an
authorization error.

This table can also be useful when the SECADM is trying to harden/secure a non-restrictive database.
After you receive the report of privileges on internal routines that are granted to the special group
PUBLIC, a SECADM user can consult this table to decide which internal routines still need EXECUTE
privilege granted to specific users, roles, or groups.

34 IBM Db2 11.5: Database Security Guide

These internal routines, their respective description, and the appropriate criteria to use them in a GRANT
statement are as follows:

Table 2. Internal system-defined routine needed by non-SECADM users

Routine Name Description

Instance level authorities

System administration authority (SYSADM)
The SYSADM authority level is the highest level of administrative authority at the instance level.
Users with SYSADM authority can run some utilities and issue some database and database manager
commands within the instance.

SYSADM authority is assigned to the group specified by the sysadm_group configuration parameter.
Membership in that group is controlled outside the database manager through the security facility used
on your platform.

Only a user with SYSADM authority can perform the following functions:

• Upgrade a database
• Restore a database
• Change the database manager configuration file (including specifying the groups having SYSADM,

SYSCTRL, SYSMAINT, or SYSMON authority)

Note: In Db2 11.5.7 and later, use the SYSADM authority to perform the following actions:

• Grant and revoke table space privileges and can also use any table space.
• Grant and revoke CREATE_EXTERNAL_ROUTINE and CREATE_NOT_FENCED_ROUTINE privileges on

the database.
• Grant and revoke the EXECUTE privilege on the UTL_DIR module.
• Execute the UTL_DIR module dynamically.

Note: When a user with SYSADM authority creates a database, that user is automatically granted
ACCESSCTRL, DATAACCESS, DBADM and SECADM authority on the database. If you want to prevent
that user from accessing that database as a database administrator or a security administrator, you must
explicitly revoke these database authorities from the user.

In releases before Version 9.7, SYSADM authority included implicit DBADM authority and also provided
the ability to grant and revoke all authorities and privileges. In Version 9.7, the Db2 authorization model
has been updated to clearly separate the duties of the system administrator, the database administrator,
and the security administrator. As part of this enhancement, the abilities given by the SYSADM authority
have been reduced.

In Version 9.7, only SECADM authority provides the ability to grant and revoke all authorities and
privileges.

For a user holding SYSADM authority to obtain the same capabilities as in Version 9.5 (other than the
ability to grant SECADM authority), the security administrator must explicitly grant the user DBADM
authority and grant the user the new DATAACCESS and ACCESSCTRL authorities. These new authorities
can be granted by using the GRANT DBADM ON DATABASE statement with the WITH DATAACCESS and
WITH ACCESSCTRL options of that statement, which are default options. The DATAACCESS authority is
the authority that allows access to data within a specific database, and the ACCESSCTRL authority is the
authority that allows a user to grant and revoke privileges and non-administrative authorities within a
specific database.

Chapter 1. Db2 security model 35

Considerations for the Windows LocalSystem account
On Windows systems, when the sysadm_group database manager configuration parameter is not
specified, the LocalSystem account is considered a system administrator (holding SYSADM authority).
Any Db2 application that is run by LocalSystem is affected by the change in scope of SYSADM authority
in Version 9.7. These applications are typically written in the form of Windows services and run under
the LocalSystem account as the service logon account. If there is a need for these applications to
perform database actions that are no longer within the scope of SYSADM, you must grant the LocalSystem
account the required database privileges or authorities. For example, if an application requires database
administrator capabilities, grant the LocalSystem account DBADM authority using the GRANT (Database
Authorities) statement. Note that the authorization ID for the LocalSystem account is SYSTEM.

System control authority (SYSCTRL)
SYSCTRL authority is the highest level of system control authority. This authority provides the ability to
perform maintenance and utility operations against the database manager instance and its databases.
These operations can affect system resources, but they do not allow direct access to data in the
databases.

System control authority is designed for users administering a database manager instance containing
sensitive data.

SYSCTRL authority is assigned to the group specified by the sysctrl_group configuration parameter. If
a group is specified, membership in that group is controlled outside the database manager through the
security facility used on your platform.

Only a user with SYSCTRL authority or higher can perform the following actions:

• Update a database, node, or distributed connection services (DCS) directory
• Create or drop a database
• Drop, create, or alter a table space
• Use any table space
• Restore to a new or an existing database.

In addition, a user with SYSCTRL authority can perform the functions of users with system maintenance
authority (SYSMAINT) and system monitor authority (SYSMON).

Users with SYSCTRL authority also have the implicit privilege to connect to a database.

Note: When users with SYSCTRL authority create databases, they are automatically granted explicit
ACCESSCTRL, DATAACCESS, DBADM, and SECADM authorities on the database. If the database creator is
removed from the SYSCTRL group, and if you want to also prevent them from accessing that database as
an administrator, you must explicitly revoke the four administrative authorities mentioned previously.

System maintenance authority (SYSMAINT)
SYSMAINT authority is the second level of system control authority. This authority provides the ability to
perform maintenance and utility operations against the database manager instance and its databases.
These operations can affect system resources, but they do not allow direct access to data in the
databases.

System maintenance authority is designed for users maintaining databases within a database manager
instance that contains sensitive data.

SYSMAINT authority is assigned to the group specified by the sysmaint_group configuration parameter.
If a group is specified, membership in that group is controlled outside the database manager through the
security facility used on your platform.

Only a user with SYSMAINT or higher system authority can perform the following actions:

• Back up a database or table space
• Restore to an existing database

36 IBM Db2 11.5: Database Security Guide

• Perform roll forward recovery
• Force users off the system
• Start or stop an instance
• Restore a table space
• Run a trace, using the db2trc command
• Take database system monitor snapshots of a database manager instance or its databases.

A user with SYSMAINT authority can perform the following actions:

• Query the state of a table space
• Update log history files
• Quiesce a table space
• Reorganize a table
• Collect catalog statistics using the RUNSTATS utility.

Users with SYSMAINT authority also have the implicit privilege to connect to a database, and can perform
the functions of users with system monitor authority (SYSMON).

System monitor authority (SYSMON)
SYSMON authority provides the ability to take database system monitor snapshots of a database manager
instance or its databases.

SYSMON authority is assigned to the group specified by the sysmon_group configuration parameter. If
a group is specified, membership in that group is controlled outside the database manager through the
security facility used on your platform.

SYSMON authority enables the user to run the following commands:

• GET DATABASE MANAGER MONITOR SWITCHES
• GET MONITOR SWITCHES
• GET SNAPSHOT
• LIST (some commands):

– LIST ACTIVE DATABASES
– LIST APPLICATIONS
– LIST DATABASE PARTITION GROUPS
– LIST DCS APPLICATIONS
– LIST PACKAGES
– LIST TABLES
– LIST TABLESPACE CONTAINERS
– LIST TABLESPACES
– LIST UTILITIES

• RESET MONITOR
• UPDATE MONITOR SWITCHES

SYSMON authority enables the user to use the following APIs:

• db2GetSnapshot - Get Snapshot
• db2GetSnapshotSize - Estimate Size Required for db2GetSnapshot() Output Buffer
• db2MonitorSwitches - Get/Update Monitor Switches
• db2mtrk - Memory tracker
• db2ResetMonitor - Reset Monitor

Chapter 1. Db2 security model 37

SYSMON authority enables the user use the following SQL table functions:

• All snapshot table functions without previously running SYSPROC.SNAP_WRITE_FILE

SYSPROC.SNAP_WRITE_FILE takes a snapshot and saves its content into a file. If any snapshot table
functions are called with null input parameters, the file content is returned instead of a real-time system
snapshot.

Important: The SYSPROC.SNAP_WRITE_FILE procedure is deprecated and might be removed in a
future release. For more information, see "SNAP_WRITE_FILE procedure" in Administrative Routines
and Views.

Database authorities
Each database authority allows the authorization ID holding it to perform some particular type of action
on the database as a whole. Database authorities are different from privileges, which allow a certain
action to be taken on a particular database object, such as a table or an index.

These are the database authorities.

ACCESSCTRL
Allows the holder to grant and revoke all object privileges and database authorities except for
privileges on the audit routines, and ACCESSCTRL, DATAACCESS, DBADM, and SECADM authority.

BINDADD
Allows the holder to create new packages in the database.

CONNECT
Allows the holder to connect to the database.

CREATETAB
Allows the holder to create new tables in the database.

CREATE_EXTERNAL_ROUTINE
Allows the holder to create a procedure for use by applications and other users of the database.

CREATE_NOT_FENCED_ROUTINE
Allows the holder to create a user-defined function (UDF) or procedure that is not
fenced. CREATE_EXTERNAL_ROUTINE is automatically granted to any user who is granted
CREATE_NOT_FENCED_ROUTINE.

Attention: The database manager does not protect its storage or control blocks from UDFs or
procedures that are not fenced. A user with this authority must, therefore, be very careful to test
their UDF extremely well before registering it as not fenced.

DATAACCESS
Allows the holder to access data stored in database tables.

DBADM
Allows the holder to act as the database administrator. In particular it gives the holder all of the other
database authorities except for ACCESSCTRL, DATAACCESS, and SECADM.

EXPLAIN
Allows the holder to explain query plans without requiring them to hold the privileges to access data
in the tables referenced by those query plans.

IMPLICIT_SCHEMA
Allows any user to create a schema implicitly by creating an object using a CREATE statement with
a schema name that does not already exist. SYSIBM becomes the owner of the implicitly created
schema and PUBLIC is given the privilege to create objects in this schema.

LOAD
Allows the holder to load data into a table

QUIESCE_CONNECT
Allows the holder to access the database while it is quiesced.

SECADM
Allows the holder to act as a security administrator for the database.

38 IBM Db2 11.5: Database Security Guide

SQLADM
Allows the holder to monitor and tune SQL statements.

WLMADM
Allows the holder to act as a workload administrator. In particular, the holder of WLMADM authority
can create and drop workload manager objects, grant and revoke workload manager privileges, and
execute workload manager routines.

Only authorization IDs with the SECADM authority can grant the ACCESSCTRL, DATAACCESS, DBADM, and
SECADM authorities. All other authorities can be granted by authorization IDs that hold ACCESSCTRL or
SECADM authorities.

To remove any database authority from PUBLIC, an authorization ID with ACCESSCTRL or SECADM
authority must explicitly revoke it.

Security administration authority (SECADM)
SECADM authority is the security administration authority for a specific database. This authority allows
you to create and manage security-related database objects and to grant and revoke all database
authorities and privileges. Additionally, the security administrator can execute, and manage who else
can execute, the audit system routines.

SECADM authority has the ability to SELECT from the catalog tables and catalog views, but cannot access
data stored in user tables.

SECADM authority can be granted only by the security administrator (who holds SECADM authority) and
can be granted to a user, a group, or a role. PUBLIC cannot obtain the SECADM authority directly or
indirectly.

The database must have at least one authorization ID of type USER with the SECADM authority. The
SECADM authority cannot be revoked from every authorization ID of type USER.

SECADM authority gives a user the ability to perform the following operations:

• Create, alter, comment on, and drop:

– Audit policies
– Security label components
– Security policies
– Trusted contexts

• Create, comment on, and drop:

– Roles
– Security labels

• Grant and revoke database privileges and authorities
• Execute the following audit routines to perform the specified tasks:

– The SYSPROC.AUDIT_ARCHIVE stored procedure and table function archive audit logs.
– The SYSPROC.AUDIT_LIST_LOGS table function allows you to locate logs of interest.
– The SYSPROC.AUDIT_DELIM_EXTRACT stored procedure extracts data into delimited files for

analysis.

Also, the security administrator can grant and revoke EXECUTE privilege on these routines, therefore
enabling the security administrator to delegate these tasks, if required. Only the security administrator
can grant EXECUTE privilege on these routines. EXECUTE privilege WITH GRANT OPTION cannot be
granted for these routines (SQLSTATE 42501).

• Change the settings of the encrlib and encropts database configuration parameters.
• Execute the following security routines to perform the specified tasks:

– The SYSPROC.ADMIN_ROTATE_MASTER_KEY stored procedure to rotate the master key for an
encrypted database.

Chapter 1. Db2 security model 39

– The SYSPROC.ADMIN_GET_ENCRYPTION_INFO table function to return the encryption information
about the database.

• Use of the AUDIT statement to associate an audit policy with a particular database or database object at
the server

• Use of the TRANSFER OWNERSHIP statement to transfer objects not owned by the authorization ID of
the statement

No other authority gives these abilities.

Only the security administrator has the ability to grant other users, groups, or roles the ACCESSCTRL,
DATAACCESS, DBADM, and SECADM authorities.

In Version 9.7, the Db2 authorization model has been updated to clearly separate the duties of the system
administrator, the database administrator, and the security administrator. As part of this enhancement,
the abilities given by the SECADM authority have been extended. In releases before Version 9.7, SECADM
authority did not provide the ability to grant and revoke all privileges and authorities. Also, SECADM
authority could be granted only to a user, not to a role or a group. Additionally, SECADM authority did not
provide the ability to grant EXECUTE privilege to other users on the audit built-in procedures and table
function.

Database administration authority (DBADM)
DBADM authority is an administrative authority for a specific database. The database administrator
possesses the privileges that are required to create objects and issue database commands. DBADM
authority has SELECT privileges on system catalog tables and views, and can run all built-in Db2 routines,
except audit routines and the SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY procedure.

DBADM authority can only be granted or revoked by the security administrator (who holds SECADM
authority) and can be granted to a user, a group, or a role. PUBLIC cannot obtain the DBADM authority
either directly or indirectly.

Holding the DBADM authority for a database allows a user to perform these actions on that database:

• Create, alter, and drop non-security related database objects
• Read log files
• Create, activate, and drop event monitors
• Query the state of a table space
• Update log history files
• Quiesce a table space
• Use any table space
• Reorganize a table
• Collect catalog statistics using the RUNSTATS utility

SQLADM authority and WLMADM authority are subsets of the DBADM authority. WLMADM authority has
the additional ability to grant the USAGE privilege on workloads.

Granting DATAACCESS authority with DBADM authority
The security administrator can specify whether a database administrator can access data within the
database. DATAACCESS authority is the authority that allows access to data within a specific database.
The security administrator can use the WITH DATAACCESS option of the GRANT DBADM ON DATABASE
statement to provide a database administrator with this ability. If neither the WITH DATAACCESS or
WITHOUT DATAACCESS options are specified, by default DATAACCESS authority is granted.

To grant database administrator authority without DATAACCESS authority, use GRANT DBADM WITHOUT
DATAACCESS in your SQL statement.

40 IBM Db2 11.5: Database Security Guide

Granting ACCESSCTRL authority with DBADM authority
The security administrator can specify whether a database administrator can grant and revoke privileges
within the database. ACCESSCTRL authority is the authority that allows a user to grant and revoke
privileges and non-administrative authorities within a specific database. The security administrator can
use the WITH ACCESSCTRL option of the GRANT DBADM ON DATABASE statement to provide a database
administrator with this ability. If neither the WITH ACCESSCTRL or WITHOUT ACCESSCTRL options are
specified, by default ACCESSCTRL authority is granted.

To grant database administrator authority without ACCESSCTRL authority, use GRANT DBADM WITHOUT
ACCESSCTRL in your SQL statement.

Revoking DBADM authority
If a security administrator has granted DBADM authority that includes DATAACCESS or ACCESSCTRL
authority, to revoke these authorities, the security administrator must explicitly revoke DATAACCESS or
ACCESSCTRL authority. For example, if the security administrator grants DBADM authority to a user:

GRANT DBADM ON DATABASE TO user1

By default, DATAACCESS and ACCESSCTRL authority are also granted to user1.

Later, the security administrator revokes DBADM authority from user1:

REVOKE DBADM ON DATABASE FROM user1

Now user1 no longer holds DBADM authority, but still has both DATAACCESS and ACCESSCTRL authority.

To revoke these remaining authorities, the security administrator needs to revoke them explicitly:

REVOKE ACCESSCTRL, DATAACCESS ON DATABASE FROM user1

Differences for DBADM authority in prior releases
In Version 9.7, the Db2 authorization model has been updated to clearly separate the duties of the system
administrator, the database administrator, and the security administrator. As part of this enhancement,
the abilities given by the DBADM authority have changed. In releases before Version 9.7, DBADM
authority automatically included the ability to access data and to grant and revoke privileges for a
database. In Version 9.7, these abilities are given by the new authorities, DATAACCESS and ACCESSCTRL
as explained earlier.

Also, in releases before Version 9.7, granting DBADM authority automatically granted the following
authorities too:

• BINDADD
• CONNECT
• CREATETAB
• CREATE_EXTERNAL_ROUTINE
• CREATE_NOT_FENCED_ROUTINE
• IMPLICIT_SCHEMA
• QUIESCE_CONNECT
• LOAD

Before Version 9.7, when DBADM authority was revoked these authorities were not revoked.

In Version 9.7, these authorities are now part of DBADM authority. When DBADM authority is revoked in
Version 9.7, these authorities are lost.

Chapter 1. Db2 security model 41

However, if a user held DBADM authority when you upgraded to Version 9.7, these authorities are not
lost if DBADM authority is revoked. Revoking DBADM authority in Version 9.7 causes a user to lose these
authorities only if they acquired them through holding DBADM authority that was granted in Version 9.7.

Access control administration authority (ACCESSCTRL)
ACCESSCTRL authority is the authority required to grant and revoke privileges on objects within a specific
database. ACCESSCTRL authority has no inherent privilege to access data stored in tables, except the
catalog tables and views.

ACCESSCTRL authority can only be granted by the security administrator (who holds SECADM authority).
It can be granted to a user, a group, or a role. PUBLIC cannot obtain the ACCESSCTRL authority either
directly or indirectly. ACCESSCTRL authority gives a user the ability to perform the following operations:

• Grant and revoke the following administrative authorities:

– EXPLAIN
– SQLADM
– WLMADM

• Grant and revoke the following database authorities:

– BINDADD
– CONNECT
– CREATETAB
– CREATE_EXTERNAL_ROUTINE
– CREATE_NOT_FENCED_ROUTINE
– IMPLICIT_SCHEMA
– LOAD
– QUIESCE_CONNECT

• Grant and revoke all privileges on the following objects, regardless who granted the privilege:

– Global Variable
– Index
– Nickname
– Package
– Routine (except audit routines)
– Schema
– Sequence
– Server
– Table
– Table Space
– View
– XSR Objects

• SELECT privilege on the system catalog tables and views

This authority is a subset of security administrator (SECADM) authority.

Data access administration authority (DATAACCESS)
DATAACCESS is the authority that allows access to data within a specific database.

DATAACCESS authority can be granted only by the security administrator (who holds SECADM authority).
It can be granted to a user, a group, or a role. PUBLIC cannot obtain the DATAACCESS authority either
directly or indirectly.

42 IBM Db2 11.5: Database Security Guide

For all tables, views, materialized query tables, and nicknames it gives these authorities and privileges:

• LOAD authority on the database
• SELECT privilege (including system catalog tables and views)
• INSERT privilege
• UPDATE privilege
• DELETE privilege

In addition, DATAACCESS authority provides the following privileges:

• EXECUTE on all packages
• EXECUTE on all routines (except audit routines, the

SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY procedure, and the encryption related routines
ADMIN_ROTATE_MASTER_KEY and ADMIN_GET_ENCRYPTION_INFO)

• EXECUTE on all modules
• READ on all global variables and WRITE on all global variables except variables which are read-only
• USAGE on all XSR objects
• USAGE on all sequences

SQL administration authority (SQLADM)
SQLADM authority is the authority required to monitor and tune SQL statements.

SQLADM authority can be granted by the security administrator (who holds SECADM authority) or a user
who possesses ACCESSCTRL authority. SQLADM authority can be granted to a user, a group, a role, or to
PUBLIC. SQLADM authority gives a user the ability to perform the following functions:

• Execution of the following SQL statements:

– CREATE EVENT MONITOR
– DROP EVENT MONITOR
– EXPLAIN
– FLUSH EVENT MONITOR
– FLUSH OPTIMIZATION PROFILE CACHE
– FLUSH PACKAGE CACHE
– PREPARE
– REORG INDEXES/TABLE
– RUNSTATS
– SET EVENT MONITOR STATE

Note: If the DB2AUTH registry variable is set to SQLADM_NO_RUNSTATS_REORG, users with SQLADM
authority will not be able to perform reorg or runstats operations.

• Execution of certain clauses of the following workload manager SQL statements:

– The following clauses of the ALTER SERVICE CLASS statement:

- COLLECT AGGREGATE ACTIVITY DATA
- COLLECT AGGREGATE REQUEST DATA
- COLLECT REQUEST METRICS

– The following clause of the ALTER THRESHOLD statement

- WHEN EXCEEDED COLLECT ACTIVITY DATA

.
– The following clauses of the ALTER WORK ACTION SET statement that allow you to alter a work

action:

Chapter 1. Db2 security model 43

- ALTER WORK ACTION ... COLLECT ACTIVITY DATA
- ALTER WORK ACTION ... COLLECT AGGREGATE ACTIVITY DATA
- ALTER WORK ACTION ... WHEN EXCEEDED COLLECT ACTIVITY DATA

– The following clauses of the ALTER WORKLOAD statement:

- COLLECT ACTIVITY METRICS
- COLLECT AGGREGATE ACTIVITY DATA
- COLLECT LOCK TIMEOUT DATA
- COLLECT LOCK WAIT DATA
- COLLECT UNIT OF WORK DATA

• SELECT privilege on the system catalog tables and views
• EXECUTE privilege on all built-in Db2 routines (except audit routines and the

SET_MAINT_MODE_RECORD_NO_TEMPORALHISTORY procedure)

SQLADM authority is a subset of the database administrator (DBADM) authority.

EXPLAIN authority is a subset of the SQLADM authority.

Workload administration authority (WLMADM)
WLMADM authority is the authority required to manage workload objects for a specific database. This
authority allows you to create, alter, drop, comment on, and grant and revoke access to workload manager
objects.

WLMADM authority can be granted by the security administrator (who holds SECADM authority) or a user
who possesses ACCESSCTRL authority. WLMADM authority can be granted to a user, a group, a role, or to
PUBLIC. WLMADM authority gives a user the ability to perform the following operations:

• Create, alter, comment on, and drop the following workload manager objects:

– Histogram templates
– Service classes
– Thresholds
– Work action sets
– Work class sets
– Workloads

• Grant and revoke workload privileges
• Execute the built-in workload management routines.

WLMADM authority is a subset of the database administrator authority, DBADM.

Explain administration authority (EXPLAIN)
EXPLAIN authority is the authority required to explain query plans without gaining access to data for a
specific database. This authority is a subset of the database administrator authority and has no inherent
privilege to access data stored in tables.

EXPLAIN authority can be granted by the security administrator (who holds SECADM authority) or by a
user who possesses ACCESSCTRL authority. The EXPLAIN authority can be granted to a user, a group, a
role, or to PUBLIC. It gives the ability to execute the following SQL statements:

• EXPLAIN
• PREPARE
• DESCRIBE on output of a SELECT statement or of an XQuery statement

EXPLAIN authority also provides EXECUTE privilege on the built-in explain routines.

EXPLAIN authority is a subset of the SQLADM authority.

44 IBM Db2 11.5: Database Security Guide

LOAD authority
Users having LOAD authority at the database level, as well as INSERT privilege on a table, can use the
LOAD command to load data into a table.

Note: Having DATAACCESS authority gives a user full access to the LOAD command.

Users having LOAD authority at the database level, as well as INSERT privilege on a table, can LOAD
RESTART or LOAD TERMINATE if the previous load operation is a load to insert data.

Users having LOAD authority at the database level, as well as the INSERT and DELETE privileges on a
table, can use the LOAD REPLACE command.

If the previous load operation was a load replace, the DELETE privilege must also have been granted to
that user before the user can LOAD RESTART or LOAD TERMINATE.

If the exception tables are used as part of a load operation, the user must have INSERT privilege on the
exception tables.

The user with this authority can perform QUIESCE TABLESPACES FOR TABLE, RUNSTATS, and LIST
TABLESPACES commands.

Implicit schema authority (IMPLICIT_SCHEMA) considerations
When a new database is created, PUBLIC is given IMPLICIT_SCHEMA database authority, unless the
RESTRICTIVE option is specified on the CREATE DATABASE command.

With the IMPLICIT_SCHEMA authority, a user can create a schema by creating an object and specifying
a schema name that does not exist. SYSIBM becomes the owner of the implicitly created schema and
PUBLIC is given the privilege to create objects in this schema. When the database is restrictive, PUBLIC
does not have the CREATEIN privilege on the schema. The user who implicitly creates the schema has
CREATEIN privilege on the schema.

If control of who can implicitly create schema objects is required for the database, the database must
be created with the RESTRICTIVE option specified. If the database is not restrictive, IMPLICIT_SCHEMA
database authority must be revoked from PUBLIC. In this scenario, there are only three ways that a
schema object is created:

• Any user can create a schema with their own authorization name on a CREATE SCHEMA statement.
• Any user with DBADM authority can explicitly create any schema which does not exist, and can

optionally specify another user as the owner of the schema.
• Any user with DBADM authority has IMPLICIT_SCHEMA database authority, so that they can implicitly

create a schema with any name at the time they are creating other database objects.

Related information
Best practices: A practical guide to restrictive databases

Schema authorities
Schema authorities are designed to allow an authorization ID to perform certain duties on a schema,
i.e., schema administrator, schema access control manager, and schema data administrator. Schema
authorities have been designed on the same principle as the database authorities but are different from
them as their scope is limited only to the schema on which they are granted. Schema authorities are
also different from privileges, which allow a certain action to be taken on a particular schema or schema
object, such as a table or an index.

These are four schema authorities:

SCHEMAADM
Allows the authorization ID to act as the schema administrator.

Chapter 1. Db2 security model 45

https://ibm.biz/BdqLsE

Schema ACCESSCTRL
Allows the authorization ID to grant and revoke all privileges on objects defined in the schema. It
also allows the authorization ID to grant and revoke all schema authorities and privileges except for
schema ACCESSCTRL itself.

Schema DATAACCESS
Allows the authorization ID to access and manage data in a schema.

Schema LOAD
Allows the authorization ID to load data in to tables defined in the schema.

No schema authority can be granted to the special group PUBLIC directly or indirectly or be granted with
grant option.

Schema administration authority (SCHEMAADM)
SCHEMAADM authority is the administrative authority for a specific schema. The schema administrator
has the required privilege to create and manage objects in a schema.

SCHEMADM authority can only be granted or revoked by a user holding database SECADM or database
ACCESSCTRL authority or schema ACCESSCTRL authority. It can be granted to a user, a group, or a role.
However, it cannot be granted with grant option or be granted on any schema whose name begins with
the "SYS". Additionally, PUBLIC cannot obtain the SCHEMAADM authority directly or indirectly through a
role.

Having the SCHEMAADM authority on a schema gives a user the following privileges on that schema:

• Create, alter, and drop non-security related schema objects
• Reorganize indexes/tables in the schema
• Use RUNSTATS utility on tables defined in the schema
• Bind privilege on packages defined in the schema
• Schema LOAD authority

The authority is the subset of the database DBADM authority with its scope limited only to the schema on
which it is granted.

Schema access control authority (ACCESSCTRL)
Schema ACCESSCTRL authority allows users to grant and revoke privileges on objects within a specific
schema and on the schema itself. Schema ACCESSCTRL authority has no inherent privilege to access data
stored in any tables or views.

Schema ACCESSCTRL authority can only be granted or revoked by a user holding database SECADM or
database ACCESSCTRL authority. A user with schema ACCESSCTRL authority cannot grant or revoke the
authority from other users. It can be granted to a user, a group, or a role. However, it cannot be granted
with grant option or be granted on any schema whose name begins with the "SYS". Additionally, PUBLIC
cannot obtain the schema ACCESSCTRL authority directly or indirectly through a role.

ACCESSCTRL authority gives a user the ability to perform the following operations:

• Grant and revoke the following schema authorities and privileges:

– SCHEMAADM
– Schema DATAACCESS
– Schema LOAD
– CREATEIN
– ALTERIN
– DROPIN
– UPDATEIN
– SELECTIN

46 IBM Db2 11.5: Database Security Guide

– INSERTIN
– UPDATEIN
– DELETEIN
– EXECUTEIN

• Grant and revoke all privileges on the following objects defined in a schema:

– Global Variable
– Index
– Nickname
– Package
– Routine (except audit routines)
– Sequence
– Table
– View
– XSR Objects

The authority is the subset of the database ACCESSCTRL authority with its scope limited only to the
schema on which it is granted.

Schema data access authority (DATAACCESS)
Schema DATAACCESS authority allows users access to data within a specific schema on which it is
granted.

Schema DATAACCESS authority can only be granted or revoked by a user holding database SECADM or
database ACCESSCTRL authority or schema ACCESSCTRL authority. It can be granted to a user, a group,
or a role. However, it cannot be granted with grant option or be granted on any schema whose name
begins with the "SYS". Additionally, PUBLIC cannot obtain the Schema DATAACCESS authority directly or
indirectly through a role.

For all tables, views, materialized query tables, and nicknames defined in a schema it gives the following
authority and privileges:

• Schema LOAD authority
• SELECT privilege
• INSERT privilege
• UPDATE privilege
• DELETE privilege

In addition, schema DATAACCESS authority provides the following privileges:

• EXECUTE privilege on routines and packages defined in the schema
• READ, WRITE (except variables which are read-only) privilege on all global variables defined in the

schema
• USAGE privilege on all XSR objects defined in the schema
• USAGE privilege on all sequences defined in the schema

The authority is the subset of the database DATAACCESS authority with its scope limited only to the
schema on which it is granted.

Schema load authority (LOAD)
The schema LOAD authority allows users to use the LOAD utility on all tables defined in a schema as long
as they have DATAACCESS authority either at the database or the schema level for this schema, or the

Chapter 1. Db2 security model 47

relevant table-level privileges. It also gives the user the ability to run the RUNSTATS utility on the tables
defined in the schema.

The relevant table-level privileges are:

• Privilege to insert into a table for LOAD with mode INSERT, TERMINATE (to terminate a previous LOAD
INSERT), or RESTART (to restart a previous LOAD INSERT)

• Privilege to insert into and delete from a table for LOAD with mode REPLACE, TERMINATE (to terminate
a previous LOAD REPLACE), or RESTART (to restart a previous LOAD REPLACE)

• Privilege to insert into an exception table, if the exception table is used as part of LOAD operation

Schema LOAD authority can only be granted or revoked by a user holding database SECADM or database
ACCESSCTRL authority or schema ACCESSCTRL authority. It can be granted to a user, a group, or a role.
However, it cannot be granted with grant option or be granted on any schema whose name begins with
the "SYS". Additionally, PUBLIC cannot obtain the Schema LOAD authority directly or indirectly through a
role.

The authority is the subset of the database LOAD authority with its scope limited only to the schema on
which it is granted.

Privileges

Authorization ID privileges: SETSESSIONUSER
Authorization ID privileges involve actions on authorization IDs. There is currently only one such privilege:
the SETSESSIONUSER privilege.

The SETSESSIONUSER privilege can be granted to a user or to a group and allows the holder to switch
identities to any of the authorization IDs on which the privilege was granted. The identity switch is made
by using the SQL statement SET SESSION AUTHORIZATION. The SETSESSIONUSER privilege can only be
granted by a user holding SECADM authority.

Note: When you upgrade a Version 8 database to Version 9.1, or later, authorization IDs with explicit
DBADM authority on that database are automatically granted SETSESSIONUSER privilege on PUBLIC. This
prevents breaking applications that rely on authorization IDs with DBADM authority being able to set the
session authorization ID to any authorization ID. This does not happen when the authorization ID has
SYSADM authority but has not been explicitly granted DBADM.

Schema privileges and authorities
Schema privileges are in the object privilege category.

Object privileges are shown in Figure 4 on page 49.

48 IBM Db2 11.5: Database Security Guide

Figure 4. Object Privileges

Schema privileges and authorities involve actions on schemas in a database. A user, group, role, or
PUBLIC can be granted any of the following privileges:

• CREATEIN allows the user to create objects within the schema.
• ALTERIN allows the user to alter objects within the schema.
• DROPIN allows the user to drop objects from within the schema.
• SELECTIN allows the user to execute select query on tables within the schema
• UPDATEIN allows the user to update a table within the schema
• INSERTIN allows the user to insert data into a table within the schema
• DELETEIN allows the user to delete rows from tables within the schema
• EXECUTEIN allows the user to execute user-defined functions, methods, procedures, packages, or

modules defined in the schema.

Chapter 1. Db2 security model 49

Schema authorities
Schema LOAD authority:

The schema LOAD authority gives a user the right to use the LOAD utility on all existing and future tables
defined in this schema as long as they have either DATAACCESS on the database, DATAACCESS on this
schema, or the relevant table-level privileges. It also gives the user the ability to use RUNSTATS on
objects in this schema.

The relevant table-level privileges are:

• INSERT privilege on the table for LOAD with mode INSERT, TERMINATE (to terminate a previous LOAD
INSERT), or RESTART (to restart a previous LOAD INSERT)

• INSERT and DELETE privilege on the table for LOAD with mode REPLACE, TERMINATE (to terminate a
previous LOAD REPLACE), or RESTART (to restart a previous LOAD REPLACE)

• INSERT privilege on the exception table, if such a table is used as part of LOAD

SCHEMAADM authority:

The SCHEMAADM authority provides administrative authority over a single schema.

This schema administrator implicitly possesses the following for this schema:

• CREATEIN privilege
• ALTERIN privilege
• DROPIN privilege
• schema LOAD authority
• The ability to reorganize indexes/tables in this schema
• The ability to use RUNSTATS on objects in this schema
• The BINDADD authority for packages whose names are qualified by this schema

The SCHEMAADM authority can be granted only by a user with schema ACCESSCTRL, ACCESSCTRL, or
SECADM authority. The SCHEMAADM authority cannot be granted to PUBLIC.

Schema ACCESSCTRL authority:

The schema ACCESSCTRL authority provides administrative authority to issue the following statements
for this schema:

• GRANT (and REVOKE) SCHEMAADM authority
• GRANT (and REVOKE) schema DATACCESS authority
• GRANT (and REVOKE) schema LOAD authority
• GRANT (and REVOKE) CREATEIN privilege
• GRANT (and REVOKE) ALTERIN privilege
• GRANT (and REVOKE) DROPIN privilege
• GRANT (and REVOKE) SELECTIN privilege
• GRANT (and REVOKE) INSERTIN privilege
• GRANT (and REVOKE) UPDATEIN privilege
• GRANT (and REVOKE) DELETEIN privilege
• GRANT (and REVOKE) EXECUTEIN privilege
• GRANT (and REVOKE) READ, WRITE privileges on global variables defined in this schema
• GRANT (and REVOKE) CONTROL privilege on indexes defined in this schema
• GRANT (and REVOKE) EXECUTE privilege on modules defined in this schema
• GRANT (and REVOKE) BIND,CONTROL,EXECUTE privileges on packages defined in this schema
• GRANT (and REVOKE) EXECUTE privilege on routines defined in this schema

50 IBM Db2 11.5: Database Security Guide

• GRANT (and REVOKE) USAGE, ALTER privileges on sequences defined in this schema
• GRANT (and REVOKE) ALTER, CONTROL, DELETE, INDEX, INSERT, REFERENCES, SELECT, UPDATE

privileges for table, views, or nicknames defined in this schema
• GRANT (and REVOKE) USAGE privilege on XSR objects defined in this schema

Schema ACCESSCTRL authority can only be granted by a user with ACCESSCTRL or SECADM authority.
The schema ACCESSCTRL authority cannot be granted to PUBLIC.

Schema DATAACCESS authority:

The schema DATAACCESS authority level provides the following privileges and authorities within the
schema:

• LOAD authority
• SELECTIN privilege
• INSERTIN privilege
• UPDATEIN privilege
• DELETEIN privilege
• EXECUTE privilege on packages defined in this schema
• EXECUTE privilege on modules defined in this schema
• EXECUTE privilege on routines defined in this schema
• READ, WRITE (except variables which are read-only) privilege on all global variables defined in this

schema
• USAGE privilege on all XSR objects defined in this schema
• USAGE privilege on all sequences defined in this schema

Schema DATAACCESS can be granted only by a user who holds schema ACCESSCTRL, ACCESSCTRL, or
SECADM authority. The schema DATAACCESS authority cannot be granted to PUBLIC.

The owner of the schema has CREATEIN, ALTERIN, DROPIN, and SCHEMADM privileges. The owner also
gets the privilege to grant CREATEIN, ALTERIN, and DROPIN to others. The objects that are manipulated
within the schema object include: tables, views, indexes, packages, data types, functions, triggers,
procedures, and aliases.

Table space privileges
The table space privileges involve actions on the table spaces in a database. A user can be granted the
USE privilege for a table space, which then allows them to create tables within the table space.

The owner of the table space is granted USE privilege with the WITH GRANT OPTION on the table space
when it is created. Also, users who hold SECADM or ACCESSCTRL authority have the ability to grant USE
privilege on the table space.

Users who hold SYSADM or SYSCTRL authority are able to use any table space.

Upon creating a non-restrictive database, by default, the USE privilege for the table space USERSPACE1 is
granted to PUBLIC. This privilege can be later revoked.

You cannot GRANT the USE privilege to SYSCATSPACE and any other system temporary table spaces.

Table and view privileges
Table and view privileges involve actions on tables or views in a database.

A user must have CONNECT authority on the database to use any of the following privileges:

• CONTROL provides the user with all privileges for a table or view including the ability to drop it, and to
grant and revoke individual table privileges. You must have ACCESSCTRL or SECADM authority to grant
CONTROL. The creator of a table automatically receives CONTROL privilege on the table. The creator

Chapter 1. Db2 security model 51

of a view automatically receives CONTROL privilege only if they have CONTROL privilege on all tables,
views, and nicknames referenced in the view definition.

• ALTER allows the user to modify on a table, for example, to add columns or a unique constraint to
the table. A user with ALTER privilege can also COMMENT ON a table, or on columns of the table. For
information about the possible modifications that can be performed on a table, see the ALTER TABLE
and COMMENT statements.

• DELETE allows the user to delete rows from a table or view.
• INDEX allows the user to create an index on a table. Creators of indexes automatically have CONTROL

privilege on the index.
• INSERT allows the user to insert a row into a table or view, and to run the IMPORT utility.
• REFERENCES allows the user to create and drop a foreign key, specifying the table as the parent in a

relationship. The user might have this privilege only on specific columns.
• SELECT allows the user to retrieve rows from a table or view, to create a view on a table, and to run the
EXPORT utility.

• UPDATE allows the user to change an entry in a table, a view, or for one or more specific columns in a
table or view. The user may have this privilege only on specific columns.

The privilege to grant these privileges to others may also be granted using the WITH GRANT OPTION on
the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a table, all other privileges on that table
are automatically granted WITH GRANT OPTION. If you subsequently revoke the CONTROL privilege on
the table from a user, that user will still retain the other privileges that were automatically granted. To
revoke all the privileges that are granted with the CONTROL privilege, you must either explicitly revoke
each individual privilege or specify the ALL keyword on the REVOKE statement, for example:

 REVOKE ALL
 ON EMPLOYEE FROM USER HERON

When working with typed tables, there are implications regarding table and view privileges.

Note: Privileges may be granted independently at every level of a table hierarchy. As a result, a user
granted a privilege on a supertable within a hierarchy of typed tables may also indirectly affect any
subtables. However, a user can only operate directly on a subtable if the necessary privilege is held on
that subtable.

The supertable/subtable relationships among the tables in a table hierarchy mean that operations
such as SELECT, UPDATE, and DELETE will affect the rows of the operation's target table and all its
subtables (if any). This behavior can be called substitutability. For example, suppose that you have
created an Employee table of type Employee_t with a subtable Manager of type Manager_t. A manager
is a (specialized) kind of employee, as indicated by the type/subtype relationship between the structured
types Employee_t and Manager_t and the corresponding table/subtable relationship between the tables
Employee and Manager. As a result of this relationship, the SQL query:

 SELECT * FROM Employee

will return the object identifier and Employee_t attributes for both employees and managers. Similarly,
the update operation:

 UPDATE Employee SET Salary = Salary + 1000

will give a thousand dollar raise to managers as well as regular employees.

A user with SELECT privilege on Employee will be able to perform this SELECT operation even if they do
not have an explicit SELECT privilege on Manager. However, such a user will not be permitted to perform
a SELECT operation directly on the Manager subtable, and will therefore not be able to access any of the
non-inherited columns of the Manager table.

Similarly, a user with UPDATE privilege on Employee will be able to perform an UPDATE operation
on Manager, thereby affecting both regular employees and managers, even without having the explicit

52 IBM Db2 11.5: Database Security Guide

UPDATE privilege on the Manager table. However, such a user will not be permitted to perform UPDATE
operations directly on the Manager subtable, and will therefore not be able to update non-inherited
columns of the Manager table.

Package privileges
A package is a database object that contains the information needed by the database manager to access
data in the most efficient way for a particular application program. Package privileges enable a user to
create and manipulate packages.

The user must have CONNECT authority on the database to use any of the following privileges:

• CONTROL provides the user with the ability to rebind, drop, or execute a package as well as the ability
to extend those privileges to others. The creator of a package automatically receives this privilege. A
user with CONTROL privilege is granted the BIND and EXECUTE privileges, and can also grant these
privileges to other users by using the GRANT statement. (If a privilege is granted using WITH GRANT
OPTION, a user who receives the BIND or EXECUTE privilege can, in turn, grant this privilege to other
users.) To grant CONTROL privilege, the user must have ACCESSCTRL or SECADM authority.

• BIND privilege on a package allows the user to rebind or bind that package and to add new package
versions of the same package name and creator.

• EXECUTE allows the user to execute or run a package.

Note: All package privileges apply to all VERSIONs that share the same package name and creator.

In addition to these package privileges, the BINDADD database authority allows users to create new
packages or rebind an existing package in the database.

Objects referenced by nicknames need to pass authentication checks at the data sources containing
the objects. In addition, package users must have the appropriate privileges or authority levels for data
source objects at the data source.

It is possible that packages containing nicknames might require additional authorization steps because
Db2 database uses dynamic queries when communicating with Db2 Family data sources. The
authorization ID running the package at the data source must have the appropriate authority to execute
the package dynamically at that data source.

Index privileges
The creator of an index or an index specification automatically receives CONTROL privilege on the index.
CONTROL privilege on an index is really the ability to drop the index. To grant CONTROL privilege on an
index, a user must have ACCESSCTRL or SECADM authority.

The table-level INDEX privilege allows a user to create an index on that table.

The nickname-level INDEX privilege allows a user to create an index specification on that nickname.

Privileges on expression-based indexes
Special consideration must be given to privileges when you use expression-based indexes.

The authorization that is required to create an index with an expression-based key is the same
authorization that is required for a regular index. For details, refer to the "Authorization" section of the
CREATE INDEX topic in SQL Reference Volume 2.

When you create an expression-based index, two more database objects are system-generated and
associated with the index. The first is a statistical view, and the second is a package. These additional
objects are not system-generated when you create a regular index. A restricted set of privileges is granted
on these additional objects.

Chapter 1. Db2 security model 53

Statistical view privileges
Normally, the authorization ID must hold either SELECT or DATAACCESS privilege on the table to create a
statistical view. The same privilege is required to ALTER the same table to enable query optimization for
the view.

For a system-generated statistical view that is associated with an index, these privileges are not required.
The statistical view is automatically created if the authorization ID has the required authority to create an
index on the table. However, the set of privileges that is granted on the statistical view that is associated
with an index differ from a set of privileges on a normal statistical view. Namely, no privileges are granted
to any authorization ID on the statistical view, including the owner of the index. The owner of the index
is also the owner of the statistical view. No one, including authorization IDs with the SECADM or DBADM
authority can modify privileges on a statistical view. An attempt to GRANT or REVOKE a privilege on the
statistical view results in an error (SQLSTATE 42501).

The ability to issue RUNSTATS on the statistical view or manually update its statistics is governed by the
authorities and privileges on the underlying table.

The TRANSFER OWNERSHIP operation on the statistical view is not allowed and results in SQL20344N,
reason code 7. However, TRANSFER OWNERSHIP of an index with an expression-based key implicitly
transfers the ownership of the associated statistical view.

Package privileges
No extra privileges are required to run any statement or command in the system-generated package.
When an index is created with an expression-based key, any user with privileges on the table can use the
package. That is, any user with INSERT, UPDATE, DELETE, or SELECT on the table has EXECUTE privilege
on that package. This authorization is implicit as part of the statement or command that is run.

The TRANSFER OWNERSHIP operation on the package is not allowed and results in SQL20344N, reason
code 5. However, TRANSFER OWNERSHIP of an index with an expression-based key implicitly transfers
the ownership of the associated the package.

Sequence privileges
The creator of a sequence automatically receives the USAGE and ALTER privileges on the sequence. The
USAGE privilege is needed to use NEXT VALUE and PREVIOUS VALUE expressions for the sequence.

To allow other users to use the NEXT VALUE and PREVIOUS VALUE expressions, sequence privileges must
be granted to PUBLIC. This allows all users to use the expressions with the specified sequence.

ALTER privilege on the sequence allows the user to perform tasks such as restarting the sequence or
changing the increment for future sequence values. The creator of the sequence can grant the ALTER
privilege to other users, and if WITH GRANT OPTION is used, these users can, in turn, grant these
privileges to other users.

Routine privileges
Execute privileges involve actions on all types of routines such as functions, procedures, and methods
within a database. Once having EXECUTE privilege, a user can then invoke that routine, create a function
that is sourced from that routine (applies to functions only), and reference the routine in any DDL
statement such as CREATE VIEW or CREATE TRIGGER.

The user who defines the externally stored procedure, function, or method receives EXECUTE WITH
GRANT privilege. If the EXECUTE privilege is granted to another user via WITH GRANT OPTION, that user
can, in turn, grant the EXECUTE privilege to another user.

54 IBM Db2 11.5: Database Security Guide

Usage privilege on workloads
To enable use of a workload, a user who holds ACCESSCTRL, SECADM, or WLMADM authority can grant
USAGE privilege on that workload to a user, a group, or a role using the GRANT USAGE ON WORKLOAD
statement.

When the Db2 database system finds a matching workload, it checks whether the session user has USAGE
privilege on that workload. If the session user does not have USAGE privilege on that workload, then the
Db2 database system searches for the next matching workload in the ordered list. In other words, the
workloads that the session user does not have USAGE privilege on are treated as if they do not exist.

The USAGE privilege information is stored in the catalogs and can be viewed through the
SYSCAT.WORKLOADAUTH view.

The USAGE privilege can be revoked using the REVOKE USAGE ON WORKLOAD statement.

Users with the ACCESSCTRL, DATAACCESS, DBADM, SECADM, or WLMADM authority implicitly have the
USAGE privilege on all workloads.

The SYSDEFAULTUSERWORKLOAD workload and the USAGE privilege
USAGE privilege on SYSDEFAULTUSERWORKLOAD is granted to PUBLIC at database creation time, if the
database is created without the RESTRICT option. Otherwise, the USAGE privilege must be explicitly
granted by a user with ACCESSCTRL, WLMADM, or SECADM authority.

If the session user does not have USAGE privilege on any of the workloads, including
SYSDEFAULTUSERWORKLOAD, an SQL error is returned.

The SYSDEFAULTADMWORKLOAD workload and the USAGE privilege
USAGE privilege on SYSDEFAULTADMWORKLOAD cannot be explicitly granted to any user. Only users who
issue the SET WORKLOAD TO SYSDEFAULTADMWORKLOAD command and whose session authorization
ID has ACCESSCTRL, DATAACCESS, DBADM, WLMADM or SECADM authority are allowed to use this
workload.

The GRANT USAGE ON WORKLOAD and REVOKE USAGE ON WORKLOAD statements do not have any
effect on SYSDEFAULTADMWORKLOAD.

Authorization IDs in different contexts
An authorization ID is used for two purposes: identification and authorization checking. For example, the
session authorization ID is used for initial authorization checking.

When referring to the use of an authorization ID in a specific context, the reference to the authorization is
qualified to identify the context, as shown in the following section.

Contextual reference to authorization ID
Definition

System authorization ID
The authorization ID used to do any initial authorization checking, such as checking for CONNECT
privilege during CONNECT processing. As part of the authentication process during CONNECT
processing, an authorization ID compatible with Db2 naming requirements is produced that
represents the external user ID within the Db2 database system. The system authorization ID
represents the user that created the connection. Use the SYSTEM_USER special register to see the
current value of the system authorization ID. The system authorization ID cannot be changed for a
connection.

Session authorization ID
The authorization ID used for any session authorization checking subsequent to the initial checks
performed during CONNECT processing. The default value of the session authorization ID is the value
of the system authorization ID. Use the SESSION_USER special register to see the current value of
the session authorization ID. The USER special register is a synonym for the SESSION_USER special

Chapter 1. Db2 security model 55

register. The session authorization ID can be changed by using the SET SESSION AUTHORIZATION
statement.

Package authorization ID
The authorization ID used to bind a package to the database. This authorization ID is obtained from
the value of the OWNER authorization id option of the BIND command. The package authorization ID is
sometimes referred to as the package binder or package owner.

Routine owner authorization ID
The authorization ID listed in the system catalogs as the owner of the SQL routine that has been
invoked.

Routine invoker authorization ID
The authorization ID that is the statement authorization ID for the statement that invoked an SQL
routine.

Statement authorization ID
The authorization ID associated with a specific SQL statement that is to be used for any authorization
requirements as well as for determining object ownership (where appropriate). It takes its value from
the appropriate source authorization ID, depending on the type of SQL statement:

• Static SQL

The package authorization ID is used.
• Dynamic SQL (from non-routine context)

The table shows which authorization ID is used in each case:

Value of DYNAMICRULES option for issuing the
package Authorization ID used

RUN Session authorization ID

BIND Package authorization ID

DEFINERUN, INVOKERUN Session authorization ID

DEFINEBIND, INVOKEBIND Package authorization ID

• Dynamic SQL (from routine context)

The table shows which authorization ID is used in each case:

Value of DYNAMICRULES option for issuing the
package Authorization ID used

DEFINERUN, DEFINEBIND Routine owner authorization ID

INVOKERUN, INVOKEBIND Routine invoker authorization ID

Use the CURRENT_USER special register to see the current value of the statement authorization ID.
The statement authorization ID cannot be changed directly; it is changed automatically by the Db2
database system to reflect the nature of each SQL statement.

Default privileges granted on creating a database
When you create a database, default database level authorities and default object level privileges are
granted to you within that database.

The authorities and privileges that you are granted are listed according to the system catalog views where
they are recorded:

1. SYSCAT.DBAUTH

• The database creator is granted the following authorities:

– ACCESSCTRL

56 IBM Db2 11.5: Database Security Guide

– DATAACCESS
– DBADM
– SECADM

• In a non-restrictive database, the special group PUBLIC is granted the following authorities:

– CREATETAB
– BINDADD
– CONNECT
– IMPLICIT_SCHEMA

2. SYSCAT.TABAUTH

In a non-restrictive database, the special group PUBLIC is granted the following privileges:

• SELECT on all SYSCAT and SYSIBM tables
• SELECT and UPDATE on all SYSSTAT tables
• SELECT on the following views in schema SYSIBMADM:

– ALL_*
– USER_*
– ROLE_*
– SESSION_*
– DICTIONARY
– TAB

3. SYSCAT.ROUTINEAUTH

In a non-restrictive database, the special group PUBLIC is granted the following privileges:

• EXECUTE with GRANT on all procedures in schema SQLJ
• EXECUTE with GRANT on all functions and procedures in schema SYSFUN
• EXECUTE with GRANT on most functions and procedures in schema SYSPROC, for a list of exceptions

see “Default PUBLIC privilege for built-in routines” on page 58
• EXECUTE on all table functions in schema SYSIBM
• EXECUTE on all other procedures in schema SYSIBM

4. SYSCAT.MODULEAUTH

In a non-restrictive database, the special group PUBLIC is granted the following privileges:

• EXECUTE on the following modules in schema SYSIBMADM:

– DBMS_DDL
– DBMS_JOB
– DBMS_LOB
– DBMS_OUTPUT
– DBMS_SQL
– DBMS_STANDARD
– DBMS_UTILITY

5. SYSCAT.PACKAGEAUTH

• The database creator is granted the following privileges:

– CONTROL on all packages created in the NULLID schema
– BIND with GRANT on all packages created in the NULLID schema
– EXECUTE with GRANT on all packages created in the NULLID schema

Chapter 1. Db2 security model 57

• In a non-restrictive database, the special group PUBLIC is granted the following privileges:

– BIND on all packages created in the NULLID schema
– EXECUTE on all packages created in the NULLID schema

6. SYSCAT.SCHEMAAUTH

In a non-restrictive database, the special group PUBLIC is granted the following privileges:

• CREATEIN on schema SQLJ
• CREATEIN on schema NULLID

7. SYSCAT.TBSPACEAUTH

In a non-restrictive database, the special group PUBLIC is granted the USE privilege on table space
USERSPACE1.

8. SYSCAT.WORKLOADAUTH

In a non-restrictive database, the special group PUBLIC is granted the USAGE privilege on
SYSDEFAULTUSERWORKLOAD.

9. SYSCAT.VARIABLEAUTH

In a non-restrictive database, the special group PUBLIC is granted the READ privilege on schema
global variables in the SYSIBM schema, execpt for the following variables:

• SYSIBM.CLIENT_ORIGUSERID
• SYSIBM.CLIENT_USRSECTOKEN

A non-restrictive database is a database created without the RESTRICTIVE option on the CREATE
DATABASE command.

Related information
Best practices: A practical guide to restrictive databases

Default PUBLIC privilege for built-in routines
When a non-restrictive database is created, the special group PUBLIC is granted EXECUTE with GRANT to
the majority of built-in routines.

The exceptions are listed in Table 1. All the listed routines are in the schema SYSPROC.

Table 3. Built-in routines with no default PUBLIC privilege

Routine Name Routine Type

ADMIN_GET_INTRA_PARALLEL Function

ADMIN_GET_MEM_USAGE Function

ADMIN_GET_STORAGE_PATHS Function

ADMIN_GET_TAB_COMPRESS_INFO Function

ADMIN_GET_TAB_COMPRESS_INFO_V97 Function

ADMIN_GET_TAB_DICTIONARY_INFO Function

ADMIN_SET_INTRA_PARALLEL Procedure

AUDIT_ARCHIVE Function

AUDIT_ARCHIVE Procedure

AUDIT_DELIM_EXTRACT Procedure

AUDIT_LIST_LOGS Function

AUTOMAINT_GET_POLICYFILE Procedure

58 IBM Db2 11.5: Database Security Guide

https://ibm.biz/BdqLsE

Table 3. Built-in routines with no default PUBLIC privilege (continued)

Routine Name Routine Type

AUTOMAINT_GET_POLICY Procedure

AUTOMAINT_SET_POLICYFILE Procedure

AUTOMAINT_SET_POLICY Procedure

DB2_GET_CLUSTER_HOST_STATE Function

DB2_GET_INSTANCE_INFO Function

ENV_GET_DB2_EDU_SYSTEM_RESOURCES Function

ENV_GET_DB2_SYSTEM_RESOURCES Function

ENV_GET_NETWORK_RESOURCES Function

ENV_GET_REG_VARIABLES Function

ENV_GET_SYS_RESOURCES Function

ENV_GET_SYSTEM_RESOURCES Function

EVMON_UPGRADE_TABLES Procedure

EXPLAIN_FROM_ACTIVITY Procedure

EXPLAIN_FROM_CATALOG Procedure

EXPLAIN_FROM_DATA Procedure

EXPLAIN_FROM_SECTION Procedure

MON_CAPTURE_ACTIVITY_IN_PROGRESS Procedure

MON_COLLECT_STATS Procedure

MON_FORMAT_LOCK_NAME Function

MON_FORMAT_XML_COMPONENT_TIMES_BY_RO
W

Function

MON_FORMAT_XML_METRICS_BY_ROW Function

MON_FORMAT_XML_WAIT_TIMES_BY_ROW Function

MON_GET_ACTIVITY_DETAILS Function

MON_GET_ACTIVITY Function

MON_GET_AGENT Function

MON_GET_APPL_LOCKWAIT Function

MON_GET_AUTO_MAINT_QUEUE Function

MON_GET_AUTO_RUNSTATS_QUEUE Function

MON_GET_BUFFERPOOL Function

MON_GET_CF_CMD Function

MON_GET_CF Function

MON_GET_CF_WAIT_TIME Function

MON_GET_CONNECTION_DETAILS Function

MON_GET_CONNECTION Function

Chapter 1. Db2 security model 59

Table 3. Built-in routines with no default PUBLIC privilege (continued)

Routine Name Routine Type

MON_GET_CONTAINER Function

MON_GET_DATABASE_DETAILS Function

MON_GET_DATABASE Function

MON_GET_EXTENDED_LATCH_WAIT Function

MON_GET_EXTENT_MOVEMENT_STATUS Function

MON_GET_FCM_CONNECTION_LIST Function

MON_GET_FCM Function

MON_GET_GROUP_BUFFERPOOL Function

MON_GET_HADR Function

MON_GET_INDEX Function

MON_GET_INDEX_USAGE_LIST Function

MON_GET_INSTANCE Function

MON_GET_LOCKS Function

MON_GET_MEMORY_POOL Function

MON_GET_MEMORY_SET Function

MON_GET_PAGE_ACCESS_INFO Function

MON_GET_PKG_CACHE_STMT_DETAILS Function

MON_GET_PKG_CACHE_STMT Function

MON_GET_QUEUE_STATS Function

MON_GET_REBALANCE_STATUS Function

MON_GET_ROUTINE_DETAILS Function

MON_GET_ROUTINE_EXEC_LIST Function

MON_GET_ROUTINE Function

MON_GET_RTS_RQST Function

MON_GET_SECTION Function

MON_GET_SECTION_OBJECT Function

MON_GET_SECTION_ROUTINE Function

MON_GET_SERVERLIST Function

MON_GET_SERVICE_SUBCLASS_DETAILS Function

MON_GET_SERVICE_SUBCLASS Function

MON_GET_SERVICE_SUBCLASS_STATS Function

MON_GET_SERVICE_SUPERCLASS_STATS Function

MON_GET_TABLE Function

MON_GET_TABLESPACE Function

60 IBM Db2 11.5: Database Security Guide

Table 3. Built-in routines with no default PUBLIC privilege (continued)

Routine Name Routine Type

MON_GET_TABLESPACE_QUIESCER Function

MON_GET_TABLESPACE_RANGE Function

MON_GET_TABLE_USAGE_LIST Function

MON_GET_TRANSACTION_LOG Function

MON_GET_UNIT_OF_WORK_DETAILS Function

MON_GET_UNIT_OF_WORK Function

MON_GET_USAGE_LIST_STATUS Function

MON_GET_UTILITY Function

MON_GET_WORK_ACTION_SET_STATS Function

MON_GET_WORKLOAD_DETAILS Function

MON_GET_WORKLOAD Function

MON_GET_WORKLOAD_STATS Function

MON_INCREMENT_INTERVAL_ID Procedure

MON_SAMPLE_SERVICE_CLASS_METRICS Function

MON_SAMPLE_WORKLOAD_METRICS Function

SET_MAINT_MODE_RECORD_NO_TEMPORALHIST
ORY

Procedure

SYSTS_ALTER Procedure

SYSTS_CLEANUP Procedure

SYSTS_CLEAR_COMMANDLOCKS Procedure

SYSTS_CLEAR_EVENTS Procedure

SYSTS_CONFIGURE Procedure

SYSTS_CREATE Procedure

SYSTS_DISABLE Procedure

SYSTS_DROP Procedure

SYSTS_ENABLE Procedure

SYSTS_UPDATE Procedure

SYSTS_UPGRADE_CATALOG Procedure

SYSTS_UPGRADE_INDEX Procedure

WLM_ALTER_MEMBER_SUBSET Procedure

WLM_CANCEL_ACTIVITY Procedure

WLM_CAPTURE_ACTIVITY_IN_PROGRESS Procedure

WLM_COLLECT_STATS Procedure

WLM_CREATE_MEMBER_SUBSET Procedure

WLM_DROP_MEMBER_SUBSET Procedure

Chapter 1. Db2 security model 61

Table 3. Built-in routines with no default PUBLIC privilege (continued)

Routine Name Routine Type

WLM_GET_ACTIVITY_DETAILS Function

WLM_GET_CONN_ENV Function

WLM_GET_QUEUE_STATS Function

WLM_GET_SERVICE_CLASS_AGENTS Function

WLM_GET_SERVICE_CLASS_AGENTS_V97 Function

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURR
ENCES

Function

WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURR
ENCES_V97

Function

WLM_GET_SERVICE_SUBCLASS_STATS Function

WLM_GET_SERVICE_SUBCLASS_STATS_V97 Function

WLM_GET_SERVICE_SUPERCLASS_STATS Function

WLM_GET_WORK_ACTION_SET_STATS Function

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIE
S

Function

WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIE
S_V97

Function

WLM_GET_WORKLOAD_STATS Function

WLM_GET_WORKLOAD_STATS_V97 Function

WLM_SET_CLIENT_INFO Procedure

WLM_SET_CONN_ENV Procedure

Granting and revoking access

Granting privileges
To grant privileges on most database objects, you must have ACCESSCTRL authority, SECADM authority,
or CONTROL privilege on that object; or, you must hold the privilege WITH GRANT OPTION. Additionally,
users with SYSADM or SYSCTRL authority can grant table space privileges. You can grant privileges only
on existing objects.

About this task
To grant CONTROL privilege to someone else, you must have ACCESSCTRL or SECADM authority. To grant
ACCESSCTRL, DATAACCESS, DBADM or SECADM authority, you must have SECADM authority.

The GRANT statement allows an authorized user to grant privileges. A privilege can be granted to one
or more authorization names in one statement; or to PUBLIC, which makes the privileges available to all
users. Note that an authorization name can be either an individual user or a group.

On operating systems where users and groups exist with the same name, you should specify whether
you are granting the privilege to the user or group. Both the GRANT and REVOKE statements support
the keywords USER, GROUP, and ROLE. If these optional keywords are not used, the database manager
checks the operating system security facility to determine whether the authorization name identifies a
user or a group; it also checks whether an authorization ID of type role with the same name exists. If the
database manager cannot determine whether the authorization name refers to a user, a group, or a role,

62 IBM Db2 11.5: Database Security Guide

an error is returned. The following example grants SELECT privileges on the EMPLOYEE table to the user
HERON:

 GRANT SELECT
 ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to the group HERON:

 GRANT SELECT
 ON EMPLOYEE TO GROUP HERON

Note:

WITH GRANT OPTION is ignored when granting database authorities, index privileges, schema authorities
(SCHEMAADM, ACCESSCTRL, DATAACCESS, LOAD) and CONTROL privilege on tables or views.

Revoking privileges
The REVOKE statement allows authorized users to revoke privileges previously granted to other users.

About this task
To revoke privileges on database objects, you must have ACCESSCTRL authority, SECADM authority, or
CONTROL privilege on that object. Table space privileges can also be revoked by users with SYSADM
and SYSCTRL authority. Note that holding a privilege WITH GRANT OPTION is not sufficient to revoke
that privilege. To revoke CONTROL privilege from another user, you must have ACCESSCTRL, or SECADM
authority. To revoke ACCESSCTRL, DATAACCESS, DBADM or SECADM authority, you must have SECADM
authority. Table space privileges can be revoked only by a user who holds SYSADM, or SYSCTRL authority.
Privileges can only be revoked on existing objects.

Note: A user without ACCESSCTRL authority, SECADM authority, or CONTROL privilege is not able to
revoke a privilege that they granted through their use of the WITH GRANT OPTION. Also, there is no
cascade on the revoke to those who have received privileges granted by the person being revoked.

If an explicitly granted table (or view) privilege is revoked from a user with DATAACCESS authority,
privileges will not be revoked from other views defined on that table. This is because the view privileges
are available through the DATAACCESS authority and are not dependent on explicit privileges on the
underlying tables.

If a privilege has been granted to a user, a group, or a role with the same name, you must specify the
GROUP, USER, or ROLE keyword when revoking the privilege. The following example revokes the SELECT
privilege on the EMPLOYEE table from the user HERON:

 REVOKE SELECT
 ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table from the group HERON:

 REVOKE SELECT
 ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all members of that group. If an
individual name has been directly granted a privilege, it will keep it until that privilege is directly revoked.

If a table privilege is revoked from a user, privileges are also revoked on any view created by that user
which depends on the revoked table privilege. However, only the privileges implicitly granted by the
system are revoked. If a privilege on the view was granted directly by another user, the privilege is still
held.

You may have a situation where you want to GRANT a privilege to a group and then REVOKE the privilege
from just one member of the group. There are only a couple of ways to do that without receiving the error
message SQL0556N:

Chapter 1. Db2 security model 63

• You can remove the member from the group; or, create a new group with fewer members and GRANT
the privilege to the new group.

• You can REVOKE the privilege from the group and then GRANT it to individual users (authorization IDs).

Note: When CONTROL privilege is revoked from a user on a table or a view, the user continues to have
the ability to grant privileges to others. When given CONTROL privilege, the user also receives all other
privileges WITH GRANT OPTION. Once CONTROL is revoked, all of the other privileges remain WITH
GRANT OPTION until they are explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid, but can be validated if rebound
by a user with appropriate authority. Packages can also be rebuilt if the privileges are subsequently
granted again to the binder of the application; running the application will trigger a successful implicit
rebind. If privileges are revoked from PUBLIC, all packages bound by users having only been able to
bind based on PUBLIC privileges are invalidated. If DBADM authority is revoked from a user, all packages
bound by that user are invalidated including those associated with database utilities. Attempting to use a
package that has been marked invalid causes the system to attempt to rebind the package. If this rebind
attempt fails, an error occurs (SQLCODE -727). In this case, the packages must be explicitly rebound by a
user with:

• Authority to rebind the packages
• Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked.

If you define a trigger or SQL function based on one or more privileges and you lose one or more of these
privileges, the trigger or SQL function cannot be used.

Managing implicit authorizations by creating and dropping objects
The database manager implicitly grants certain privileges to a user that creates a database object such as
a table or a package. Privileges are also granted when objects are created by users with DBADM authority.
Similarly, privileges are removed when an object is dropped.

About this task
When the created object is a table, nickname, index, or package, the user receives CONTROL privilege on
the object. When the object is a view, the CONTROL privilege for the view is granted implicitly only if the
user has CONTROL privilege for all tables, views, and nicknames referenced in the view definition.

When the object explicitly created is a schema, the schema owner is given ALTERIN, CREATEIN, and
DROPIN privileges WITH GRANT OPTION. An implicitly created schema has CREATEIN granted to
PUBLIC.

Establishing ownership of a package
The BIND and PRECOMPILE commands create or change an application package. On either one, use the
OWNER option to name the owner of the resulting package.

About this task
There are simple rules for naming the owner of a package:

• Any user can name themselves as the owner. This is the default if the OWNER option is not specified.
• A user ID with DBADM authority can name any authorization ID as the owner using the OWNER option.

Not all operating systems that can bind a package using Db2 database products support the OWNER
option.

64 IBM Db2 11.5: Database Security Guide

Implicit privileges through a package
Access to data within a database can be requested by application programs, as well as by persons
engaged in an interactive workstation session. A package contains statements that allow users to perform
a variety of actions on many database objects. Each of these actions requires one or more privileges.

Privileges granted to individuals binding the package and to PUBLIC, as well as to the roles granted
to the individuals and to PUBLIC, are used for authorization checking when static SQL and XQuery
statements are bound. Privileges granted through groups, and the roles granted to groups, are not used
for authorization checking when static SQL and XQuery statements are bound.

Unless VALIDATE RUN is specified when binding the package, the user with a valid authorization ID who
binds a package must either:

• Have been granted all the privileges required to execute the static SQL or XQuery statements in the
package.

• Have acquired the necessary privileges through membership in one or more of:

– PUBLIC
– The roles granted to PUBLIC
– The roles granted to the user

If VALIDATE RUN is specified at BIND time, all authorization failures for any static SQL or XQuery
statements within this package will not cause the BIND to fail, and those SQL or XQuery statements
are revalidated at run time. PUBLIC, group, role, and user privileges are all used when checking to ensure
the user has the appropriate authorization (BIND or BINDADD privilege) to bind the package.

Packages may include both static and dynamic SQL and XQuery statements. To process a package with
static queries, a user need only have EXECUTE privilege on the package. This user can then implicitly
obtain the privileges of the package binder for any static queries in the package but only within the
restrictions imposed by the package.

If the package includes dynamic SQL or XQuery statements, the required privileges depend on the
value that was specified for DYNAMICRULES when the package was precompiled or bound. For more
information, see the topic that describes the effect of DYNAMICRULES on dynamic queries.

Indirect privileges through a package containing nicknames
When a package contains references to nicknames, authorization processing for package creators and
package users is slightly more complex.

When a package creator successfully binds packages that contain nicknames, the package creator
does not have to pass authentication checking or privilege checking for the tables and views that the
nicknames reference at the data source. However, the package executor must pass authentication and
authorization checking at data sources.

For example, assume that a package creator's .SQC file contains several SQL or XQuery statements. One
static statement references a local table. Another dynamic statement references a nickname. When the
package is bound, the package creator's authid is used to verify privileges for the local table and the
nickname, but no checking is done for the data source objects that the nickname identifies. When another
user executes the package, assuming they have the EXECUTE privilege for that package, that user does
not have to pass any additional privilege checking for the statement referencing the table. However,
for the statement referencing the nickname, the user executing the package must pass authentication
checking and privilege checking at the data source.

When the .SQC file contains only dynamic SQL and XQuery statements and a mixture of table and
nickname references, Db2 database authorization checking for local objects and nicknames is similar.
Package users must pass privilege checking for any local objects (tables, views) within the statements
and also pass privilege checking for nickname objects (package users must pass authentication and
privilege checking at the data source containing the objects that the nicknames identify). In both cases,
users of the package must have the EXECUTE privilege.

Chapter 1. Db2 security model 65

The authorization ID and password of the package executor is used for all data source authentication and
privilege processing. This information can be changed by creating a user mapping.

Note: Nicknames cannot be specified in static SQL and XQuery statements. Do not use the
DYNAMICRULES option (set to BIND) with packages containing nicknames.

It is possible that packages containing nicknames might require additional authorization steps because
Db2 database uses dynamic SQL when communicating with Db2 Family data sources. The authorization
ID running the package at the data source must have the appropriate authority to execute the package
dynamically at that data source.

Controlling access to data with views
A view provides a means of controlling access or extending privileges to a table.

Using a view allows the following kinds of control over access to a table:

• Access only to designated columns of the table.

For users and application programs that require access only to specific columns of a table, an
authorized user can create a view to limit the columns addressed only to those required.

• Access only to a subset of the rows of the table.

By specifying a WHERE clause in the subquery of a view definition, an authorized user can limit the rows
addressed through a view.

• Access only to a subset of the rows or columns in data source tables or views. If you are accessing data
sources through nicknames, you can create local Db2 database views that reference nicknames. These
views can reference nicknames from one or many data sources.

Note: Because you can create a view that contains nickname references for more than one data
source, your users can access data in multiple data sources from one view. These views are called
multi-location views. Such views are useful when joining information in columns of sensitive tables
across a distributed environment or when individual users lack the privileges needed at data sources for
specific objects.

To create a view, a user must have DATAACCESS authority, or CONTROL or SELECT privilege for each
table, view, or nickname referenced in the view definition. The user must also be able to create an
object in the schema specified for the view. That is, DBADM authority, CREATEIN privilege for an existing
schema, or IMPLICIT_SCHEMA authority on the database if the schema does not already exist.

If you are creating views that reference nicknames, you do not need additional authority on the data
source objects (tables and views) referenced by nicknames in the view; however, users of the view must
have SELECT authority or the equivalent authorization level for the underlying data source objects when
they access the view.

If your users do not have the proper authority at the data source for underlying objects (tables and views),
you can:

1. Create a data source view over those columns in the data source table that are OK for the user to
access

2. Grant the SELECT privilege on this view to users
3. Create a nickname to reference the view

Users can then access the columns by issuing a SELECT statement that references the new nickname.

The following scenario provides a more detailed example of how views can be used to restrict access to
information.

Many people might require access to information in the STAFF table, for different reasons. For example:

• The personnel department needs to be able to update and look at the entire table.

This requirement can be easily met by granting SELECT and UPDATE privileges on the STAFF table to the
group PERSONNL:

66 IBM Db2 11.5: Database Security Guide

 GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

• Individual department managers need to look at the salary information for their employees.

This requirement can be met by creating a view for each department manager. For example, the
following view can be created for the manager of department number 51:

 CREATE VIEW EMP051 AS
 SELECT NAME,SALARY,JOB FROM STAFF
 WHERE DEPT=51
 GRANT SELECT ON TABLE EMP051 TO JANE

The manager with the authorization name JANE would query the EMP051 view just like the STAFF table.
When accessing the EMP051 view of the STAFF table, this manager views the following information:

NAME SALARY JOB

Fraye 45150.0 Mgr

Williams 37156.5 Sales

Smith 35654.5 Sales

Lundquist 26369.8 Clerk

Wheeler 22460.0 Clerk

• All users need to be able to locate other employees. This requirement can be met by creating a view on
the NAME column of the STAFF table and the LOCATION column of the ORG table, and by joining the two
tables on their corresponding DEPT and DEPTNUMB columns:

 CREATE VIEW EMPLOCS AS
 SELECT NAME, LOCATION FROM STAFF, ORG
 WHERE STAFF.DEPT=ORG.DEPTNUMB
 GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following information:

NAME LOCATION

Molinare New York

Lu New York

Daniels New York

Jones New York

Hanes Boston

Rothman Boston

Ngan Boston

Kermisch Boston

Sanders Washington

Pernal Washington

James Washington

Sneider Washington

Marenghi Atlanta

O'Brien Atlanta

Quigley Atlanta

Chapter 1. Db2 security model 67

NAME LOCATION

Naughton Atlanta

Abrahams Atlanta

Koonitz Chicago

Plotz Chicago

Yamaguchi Chicago

Scoutten Chicago

Fraye Dallas

Williams Dallas

Smith Dallas

Lundquist Dallas

Wheeler Dallas

Lea San Francisco

Wilson San Francisco

Graham San Francisco

Gonzales San Francisco

Burke San Francisco

Quill Denver

Davis Denver

Edwards Denver

Gafney Denver

Controlling access for database administrators (DBAs)
You may want to monitor, control, or prevent access to data by database administrators (users holding
DBADM authority).

Monitoring access to data
You can use the Db2 audit facility to monitor access by database administrators. To do so, follow these
steps:

1. Create an audit policy that monitors the events you want to capture for users who hold DBADM
authority.

2. Associate this audit policy with the DBADM authority.

Controlling access to data
You can use trusted contexts in conjunction with a role to control access by database administrators. To
do so, follow these steps:

1. Create a role and grant DBADM authority to that role.
2. Define a trusted context and make the role the default role for this trusted context.

68 IBM Db2 11.5: Database Security Guide

Do not grant membership in the role to any authorization ID explicitly. This way, the role is available
only through this trusted context and a user acquires DBADM capability only when they are within the
confines of the trusted context.

3. There are two ways you can control how users access the trusted context:

• Implicit access: Create a unique trusted context for each user. When the user establishes a regular
connection that matches the attributes of the trusted context, they are implicitly trusted and gain
access to the role.

• Explicit access: Create a trusted context using the WITH USE FOR clause to define all users who
can access it. Create an application through which those users can make database requests.
The application establishes an explicit trusted connection, and when a user issues a request, the
application switches to that user ID and executes the request as that user on the database.

If you want to monitor the use of this trusted context, you can create an audit policy that captures the
events you are interested in for users of this trusted context. Associate this audit policy with the trusted
context.

Preventing access to data
To prevent access to data in tables, choose one of these options:

• To prevent access to data in all tables, revoke DATAACCESS from your DBADM user, role or group.
Alternatively, you could grant DBADM to the user, role or group of interest without the DATAACCESS
option

• To prevent access to data in one particular table, follow these steps:

– Assign a security label to every column in the table.
– Grant that security label to a role.
– Grant that role to all users (or roles) that have a legitimate need to access the table.

No user, regardless of their authority, will be able to access data in that table unless they are a member
in that role.

Gaining access to data through indirect means
To successfully manage security, you need to be aware of indirect ways that users can gain access to data.

The following list represents the indirect means through which users can gain access to data they might
not be authorized to access:

• Catalog views: The Db2 database system catalog views store metadata and statistics about database
objects. Users with SELECT access to the catalog views can gain some knowledge about data that they
might not be qualified for. For better security, make sure that only qualified users have access to the
catalog views.

Note: In Db2 Universal Database Version 8, or earlier, SELECT access on the catalog views was granted
to PUBLIC by default. In Db2 Version 9.1, or later, database systems, users can choose whether SELECT
access to the catalog views is granted to PUBLIC or not by using the new RESTRICTIVE option on the
CREATE DATABASE command.

• Explain snapshot: The explain snapshot is compressed information that is collected when an SQL or
XQuery statement is explained. It is stored as a binary large object (BLOB) in the EXPLAIN_STATEMENT
table, and contains column statistics that can reveal information about table data. For better security,
access to the explain tables should be granted to qualified users only.

• Section explain: The section explain procedures (EXPLAIN_FROM_SECTION,
EXPLAIN_FROM_CATALOG, EXPLAIN_FROM_ACTIVITY and EXPLAIN_FROM_DATA) can populate
explain tables with information from any section that resides in the package cache. This information
includes statement text which may contain input data values. For better security, access to the section
explain procedures and explain tables should be granted to qualified users only.

Chapter 1. Db2 security model 69

• Log reader functions: A user authorized to run a function that reads the logs can gain access to data
they might not be authorized for if they are able to understand the format of a log record. These
functions read the logs:

Function Authority needed in order to execute the function

db2ReadLog SYSADM or DBADM

db2ReadLogNoConn None.

• Replication: When you replicate data, even the protected data is reproduced at the target location. For
better security, make sure that the target location is at least as secure as the source location.

• Exception tables: When you specify an exception table while loading data into a table, users with
access to the exception table can gain information that they might not be authorized for. For better
security, only grant access to the exception table to authorized users and drop the exception table as
soon as you are done with it.

• Backup table space or database: Users with the authority to run the BACKUP DATABASE command
can take a backup of a database or a table space, including any protected data, and restore the data
somewhere else. The backup can include data that the user might not otherwise have access to.

The BACKUP DATABASE command can be executed by users with SYSADM, SYSCTRL, or SYSMAINT
authority.

• Set session authorization: In Db2 Universal Database Version 8, or earlier, a user with DBADM
authority could use the SET SESSION AUTHORIZATION SQL statement to set the session authorization
ID to any database user. In Db2 Version 9.1, or later, database systems a user must be explicitly
authorized through the GRANT SETSESSIONUSER statement before they can set the session
authorization ID.

When upgrading an existing Version 8 database to a Db2 Version 9.1, or later, database system,
however, a user with existing explicit DBADM authority (for example, granted in SYSCAT.DBAUTH) will
keep the ability to set the session authorization to any database user. This is allowed so that existing
applications will continue to work. Being able to set the session authorization potentially allows access
to all protected data. For more restrictive security, you can override this setting by executing the
REVOKE SETSESSIONUSER SQL statement.

• Lock monitoring: As part of the lock monitoring activity of Db2 database management systems, values
associated with parameter markers are written to the monitoring output when the HIST_AND_VALUES
collection level is specified. Values may also be embedded in the statement text captured by the lock
event monitor. A user with access to the monitoring output can gain access to information for which they
might not be authorized.

• Activity monitoring: As part of monitoring activities in a Db2 database management system using an
activity event monitor, the values associated with parameter markers are written to the monitoring
output when the VALUES clause is specified, and the statement text (which may contain input data
values) is written to the monitoring output when the WITH DETAILS clause is specified. A user with
access to the monitoring output can gain access to information for which they might not be authorized.
For better security, access to the CREATE EVENT MONITOR statement and any event monitor tables
should be granted to qualified users only.

• Package cache monitoring: As part of monitoring the package cache in a Db2 database management
system using a package cache event monitor, the statement text (which may contain input data values)
is written to the monitoring output whenever a section is ejected from the package cache. For better
security, access to the CREATE EVENT MONITOR statement and any event monitor tables should be
granted to qualified users only.

• Monitor table functions, views and reports: The following monitor table functions, views and reports
expose statement text for either currently executing statements or statements in the package cache:

– SYSPROC.MON_GET_ACTIVITY_DETALS
– SYSPROC.MON_GET_PKG_CACHE_STMT
– SYSPROC.MON_GET_PKG_CACHE_STMT_DETALS

70 IBM Db2 11.5: Database Security Guide

– SYSIBMADM.MON_PKG_CACHE_SUMMARY
– SYSIBMADM.MON_CURRENT_SQL
– SYSIBMADM.MON_LOCKWAITS
– SYSIBMADM.MONREPORT.LOCKWAIT
– SYSIBMADM.MONREPORT.CURRENTSQL
– SYSIBMADM.MONREPORT.PKGCACHE

The statement text may contain input data values. For better security, EXECUTE privilege on these table
functions and reports and SELECT privilege on these views should be granted to qualified users only.

• Traces: A trace can contain table data. A user with access to such a trace can gain access to information
that they might not be authorized for.

• Dump files: To help in debugging certain problems, Db2 database products might generate memory
dump files in the sqllib\db2dump directory. These memory dump files might contain table data. If
they do, users with access to the files can gain access to information that they might not be authorized
for. For better security you should limit access to the sqllib\db2dump directory.

• db2dart: The db2dart tool examines a database and reports any architectural errors that it finds. The
tool can access table data and Db2 does not enforce access control for that access. A user with the
authority to run the db2dart tool or with access to the db2dart output can gain access to information
that they might not be authorized for.

• REOPT bind option: When the REOPT bind option is specified, explain snapshot information for each
reoptimizable incremental bind SQL statement is placed in the explain tables at run time. The explain
will also show input data values.

• db2cat: The db2cat tool is used to dump a table's packed descriptor. The table's packed descriptor
contains statistics that can reveal information about a table's contents. A user who runs the db2cat
tool or has access to the output can gain access to information that they might not be authorized for.

Data encryption
The Db2 database system offers several ways to encrypt data, both while in storage, and while in transit
over the network.

Encrypting data at rest
Important: The DATA_ENCRYPT authentication type is deprecated and might be removed in a future
release. To encrypt data in-transit between clients and Db2 databases, we recommend that you use the
Db2 database system support of Transport Layer Security (TLS). For more information, see Configuring
TLS support in a Db2 instance in the Data encryption section of the Db2 Security Guide.

You have the following options for encrypting data at rest:

• You can use Db2 native encryption to encrypt your databases and backup images.
• You can use IBM InfoSphere® Guardium® Data Encryption to encrypt the underlying operating system

data and backup files.
• You can use encrypted file system (EFS) to encrypt your operating system data and backup files. Use

EFS if you are running a Db2 system on the AIX operating system, and you are interested in file-level
encryption only.

Encrypting data in transit
To encrypt data in-transit between clients and Db2 databases, use the Db2 database system support of
Transport Layer Security (TLS).

Attention: TLS was developed in 1999 as the successor to the popular encryption protocol Secure
Socket Layer (SSL). Because of the popularity of SSL, the acronym is now synonymous with
encryption technology and by association, TLS. As a result, some Db2 commands and database
objects that are related to TLS encryption still contain 'ssl' in their names. However, Db2 does not

Chapter 1. Db2 security model 71

use the SSL protocol for data encryption. Any references to SSL in this guide can be interpreted as
TLS.

• We recommend that you use Db2 support for TLS to encrypt communication between the following:

– Db2 clients and servers
– Primary and Standby nodes in a Db2 HADR environment
– Db2 clients and a Db2 Federation server

Note: Db2 Federation Server also supports TLS encryption of outbound transmissions to some data
sources.

Note: DATA_ENCRYPT and SERVER_ENCRYPT with DES use algorithms that are not compliant with NIST
SP 800-131A. If you must comply with NIST SP 800-131A, they must not be used. If compliance to NIST
SP 800-131A is not an issue, they are still valid.

The IBM Global Security Kit (GSKit)
Db2 uses the cryptographic and TLS capabilities of the IBM® Global Security Kit (GSKit) for encrypting
both data at rest (native encryption) and data in transit. The GSKit is used to implement the TLS protocol
that enable protected Db2 communications over the network.

For information about the GSKit tool GSKCapiCmd, download the GSKCapiCmd User's Guide from the Db2
Version 11.5 for Linux, UNIX, and Windows English Manuals page

Encryption of data at rest
To keep important data safe from unauthorized access, Db2 offers native encryption to protect databases
and backup images, IBM InfoSphere Guardium Data Encryption for underlying operating system data and
backup files, and (for Db2 on AIX users) Encrypted file system (EFS) for file-level encryption of operating
system data and backup files.

Db2 native encryption
Db2 native encryption provides a built-in encryption capability to protect database backup images and
key database files from inappropriate access while they are at rest on external storage media.

Encryption is a key component in the protection of offline data. Many government regulations and industry
standards require its use.

Db2 native encryption features:

• simple deployment
• does not require changes to the data schema or database applications
• free use on all supported Db2 platforms and configurations.

The encryption capabilities that are used by Db2 are FIPS 140-2 certified and employ NIST SP 800-131A
compliant cryptographic algorithms. Db2 also automatically detects and uses any underlying CPU
hardware acceleration for encryption when available.

When you encrypt a database, Db2 native encryption protects all files that contain your data, such as:

• All table spaces (both system-defined and user-defined)
• All types of data in a table space (including LOB and XML data types)
• All transaction logs, including archived log files
• LOAD COPY data
• LOAD staging files

Db2 native encryption can also be used to encrypt database backups, even if the source database is not
encrypted.

72 IBM Db2 11.5: Database Security Guide

https://www.ibm.com/support/pages/node/627743
https://www.ibm.com/support/pages/node/627743

Overview of Db2 native encryption
Db2 native encryption uses a two-tier approach to data encryption. Data is encrypted with a Data
Encryption Key (DEK), which is in turn encrypted with a Master Key (MK). The encrypted DEK is stored
with the data while the MK is stored in a keystore external to Db2.

Db2 native encryption ensures that the DEK is never exposed outside of the encrypted database,
transaction log, or backup file. There are no interfaces provided to access the DEK in either its clear
text or encrypted forms. As the MK is stored in a different location from the encrypted data, the chance of
the encrypted DEK being concurrently exposed with the MK used to encrypt it is very unlikely. Since the
risk of the DEK being exposed is extremely low, the need to rotate it is negligible. The rotation of the MK,
which is used to protect the DEK, can be done efficiently without the need to decrypt and re-encrypt the
data

Data Encryption Key (DEK)
Db2 encrypts data with a data encryption key (DEK) before the data is written to disk. The DEK is stored,
encrypted by the master key (MK), within the database or backup image. The DEK itself is generated by
Db2 as needed, such as when an encrypted database or encrypted database backup is created. A unique
DEK exists for each encrypted database and for each encrypted backup.

Master Key (MK)
A master key (MK) is an encryption key that is used to encrypt a data encryption key (DEK). Each
encrypted database is associated with one master key at one time. Unless directed otherwise, Db2
generates an MK automatically during these operations:

• Database creation
• Master key rotation
• Restoring into a new database

Master keys are identified by a label that Db2 uses to uniquely identify each master key. By default, Db2
creates a label for every new MK created. You can override this behavior by supplying a specific label for a
particular MK. Reasons for creating an MK with a particular label include:

• tracking the MK labels and their corresponding keys for offsite recovery without having the entire
keystore available on the backup site

• having an HADR pair that requires synchronized keys
• encrypting a backup for an unencrypted database

Keystore
Master keys are stored in a keystore. A keystore can be a file that is directly accessed by Db2 (local) or a
third-party keystore with which Db2 communicates over the network (centralized).

Note: A Db2 instance can be configured for one keystore for native encryption at one time.

Keystores supported by Db2

Db2 native encryption can interact with the following keystores:

• A local keystore file that follows the Public Key Cryptography Standards (PKCS) #12 archive file format
for storing cryptography objects

Note: PKCS is an OASIS standard for public key cryptography. The numbers 11 and 12 refer to specific
parts of the standard.

• A centralized keystore that is accessed using one of the following methods:

– Any key manager product that supports Key Management Interoperability Protocol (KMIP) version
1.1 or higher. A key manager is software that you can use to create, update, and secure a keystore.

Note: KMIP is an OASIS standard for network protocol that is related to key management.

Chapter 1. Db2 security model 73

– One of the following supported Hardware Security Modules (HSM) that use the PKCS #11 API:

- Gemalto Safenet HSM (formerly Luna) version 6.1 (firmware version 6.23.0) and higher
- nCipher nShield HSM, security world software version 11.50 and higher

MKs and the keystore

An MK can either be created directly within the keystore or generated by Db2, upon request, and stored
within the keystore. One or more MKs can exist and each MK can be referenced by different Db2
databases or backup images.

Keystore access by Db2 native encryption
Whenever Db2 needs access to the Data Encryption Key (DEK), the Master Key (MK) is used to decrypt the
DEK, which requires the keystore to be opened to access the MK. Depending on the type of keystore being
used, the MK is either fetched from the keystore into Db2 for decryption of the DEK, or the DEK is shipped
to the keystore for decryption.

The keystore access requests occur independently from each Db2 member that is associated with the
active database. The connection to the keystore, which is established by an access request, is maintained
during the requested action and is then released.

If the keystore is not available, Db2 attempts the request again on any keystore clones that are defined.
If none exist, Db2 attempts the request again on the primary keystore for a configurable number of retry
attempts. If the retry attempts fail, then Db2 returns an error.

The following are some of the points where access to the keystore is required by Db2:

• db2start
• Create Database
• Database start (for example, first connect to, or activation of, a database)
• Transaction log file access (for example, first use)
• Backup of a database
• Restore of a database
• Roll forward

The frequency of access to the keystore varies, depending on the specific processing that is occurring
within Db2. This frequency can change in subsequent updates to Db2. In places where Db2 knows that it
requires multiple accesses to the DEK, some caching of the DEK occurs in memory to reduce the impact
on Db2 performance.

Encryption considerations

Keystore availability and recoverability
One of the unique attributes of data encryption is that, while it effectively guards your offline data from
inappropriate access, it can also prevent you from accessing your own data, if you lose access to the
master key.

This potential access restriction makes managing the availability and recoverability of your keystore, and
its related credentials, a mission-critical aspect of your database environment.

Important: Do not lose access to your master key (MK). If you lose access to the MK, you irrevocably lose
access to the data in your encrypted database or database backup.

As you plan for this requirement, keystore network and availability issues become data availability issues.
As a result, you need to apply the same objectives to the planning for keystore availability as you do for
data availability.

74 IBM Db2 11.5: Database Security Guide

The impact of encryption on performance
Introducing Db2 native encryption to an existing database increases required system resources, and
impacts the throughput of running workloads.

The extent of this impact depends on two primary factors:

• Whether CPU hardware acceleration exists that can be leveraged by Db2
• How insulated your workload is from an increase in the latency of physical I/O requests

Db2 native encryption relies on the embedded IBM Global Security Kit (GSKit) software product to
recognize and leverage built-in CPU hardware acceleration where possible. This acceleration makes a
significant difference in the impact on both system resource consumption and application throughput. As
of Db2 11.1, Db2 leverages the following CPU enhancements:

• Intel Advanced Encryption Standard New Instructions (AES-NI) support
• Power8 in-core support for the AES
• zSeries CP Assist for Cryptographic Functions (CPACF)

Given that Db2 native encryption is implemented to encrypt and decrypt data as it goes to and from disk,
the effect of encryption appears on any physical I/O request from Db2. In practical terms, the effect is
that the I/O bandwidth of your system is reduced from its current level. How your workloads react to this
change determines the impact to performance.

Since this change in the latency of physical I/O can negate the tuned configuration of an existing database
system, it is recommended that you plan to retune a newly encrypted database. Retuning the database
ensures that the impact of any new physical I/O wait time that is introduced by encryption is properly
addressed.

The impact of encryption on database operations
In addition to keystore availability and recoverability issues, there are other factors that can impact your
database operations that you need to consider before encrypting a database.

The following section outlines changes that encryption can introduce to a production database
environment, and how to plan for them.

Management of keystore credentials
As part of its own protection mechanisms, the keystore that is used by Db2 has its own authentication
requirements. Users that attempt to access the keystore need to present valid credentials. Db2 needs
access to these credentials to initiate connections to the keystore. How these credentials are stored and
made available to Db2 in your environment needs to be considered. See the topics “Keystore selection”
on page 76 and “Keystore configuration” on page 76 for information on choosing and setting up a
keystore.

Keystore archiving and retention
While you must keep the keystore contents protected, you must also ensure that you keep all the master
keys for the lifetime of any database backups and logs that you create. To recover an old backup and
roll-forward through its related logs, you need the master key(s) that were used at the time that the
backup and logs were created.

Potential change in storage requirements for archived logs and database backups
Many Db2 customers rely on data deduplication techniques, provided by their media devices, to minimize
the size of archived transaction logs and database backups. But compression works by finding repeating
patterns in data, while encryption randomizes data. Because of this conflict, the compression of an
encrypted object does not reduce the objects size. As a result, you might need to change your approach
in this area by considering how to compress before encrypting your database, This could be done using
active compression within Db2 or by using the combined compression and encryption backup library
provided with Db2.

Chapter 1. Db2 security model 75

Keystore coordination between HADR databases
If you have an HADR system, both the primary and standby databases need to be encrypted. You will
need to consider how the keystore is shared between the sites.

Getting started with Db2 native encryption

Prerequisites for Db2 native encryption
To use Db2 native encryption, you must verify that GSKit is installed and configured.

Keystore selection
The first critical decision that must be made is which keystore to use to store the master key that is
required by Db2 native encryption.

Db2 can integrate with several types of keystores, each with its own strengths and weaknesses that need
to be evaluated against the projected needs of the database.

Choosing the keystore that is best for your environment depends on your current and future needs as well
as the following key attributes:

• Recovery options
• Availability options
• Flexibility
• Direct cost

For example, using a local PKCS #12 keystore file is the least expensive option in terms of direct
cost. However, it is also the option that requires you to implement all of the availability and recovery
considerations that are needed for a keystore. A local PCKS #12 keystore file also requires more manual
intervention when trying to share the same keystore across multiple members (for a Db2 pureScale® or
partitioned database) or among databases (for HADR). This can mean that the indirect costs of using a
local keystore file might far outweigh the savings in the direct costs. Using a more advanced keystore
approach might be more expensive initially, but it provides you with the flexibility to easily share the
keystore across the enterprise.

Keystore configuration
Once you have selected your keystore, you must implement it and configure Db2 to recognize the
keystore.

For instructions on how to implement a local PKCS #12 keystore file, refer to Creating a local keystore.

To interact with a centralized keystore using KMIP or PKCS #11, you must also create a keystore
configuration file to inform Db2 of the keystore behaviors and configuration. For information on how
to create a configuration file for a centralized keystore:

• For a keystore using KMIP, refer to Creating a KMIP configuration file.
• For a keystore using PKCS #11, refer to Creating a PKCS #11 configuration file

Once you have implemented your keystore and, if required, created the appropriate configuration file, you
can configure Db2 to recognize and interact with the keystore. This configuration is done by setting two
database manager configuration parameters: keystore_type and keystore_location. For more information,
see Configuring a Db2 instance to use a keystoreFor more information about the keystore_type and
keystore_location configuration parameters, see the Db2 Configuration Parameters Guide.

Local keystores

Creating a local keystore
You can create a keystore on the local system by using the GSKit library command gsk8capicmd_64.

About this task
Local keystore considerations for multi-member database

76 IBM Db2 11.5: Database Security Guide

https://www.ibm.com/support/pages/node/627743

When using a local keystore with a Db2 multi-member configuration, such as Db2 pureScale or Db2
Database Partitioning Facility, a copy of the keystore must be present on each member. In addition,
coordination of keystore updates must be done manually. For this reason, a centralized keystore is
recommended for these database environments.

Procedure
Log in as the Db2 instance owner, and then create the local keystore by running the gsk8capicmd_64
command.
Example

gsk8capicmd_64 -keydb -create -db "/home/thomas/keystores/ne-keystore.p12"
 -pw "g00d.pWd" -type pkcs12 -stash

Basic command syntax

gsk8capicmd_64 -keydb -create -db "<file-name>" -pw "<password>" -type pkcs12 -stash

• <file-name> is the full path and file name you want to give the keystore file
• Keystore format:

– For use with native encryption, the format of the keystore must be PKCS#12, so it is mandatory to
specify -type pkcs12

– PKCS#12 keystore file names must have the extension ".p12"
• Stashing the password:

– If you specify the -stash parameter, the keystore password is stored (or stashed) in a stash file
with the same base name as the keystore file but with the file extension ".sth".

– If the password is not stashed, you are prompted for a password whenever the database manager
accesses the keystore, including during db2start.

Note: You can stash the password in a stash file later by running the gsk8capicmd_64 command
with the -stashpw parameter.

Note: Stashing the password with the gsk8capicmd_64 command is intended to be used in a
local keystore only. Do not attempt to stash a password in a local keystore with the db2credman
command. The db2credman command is intended to be used with a PKCS #11 keystore.

For information about the full syntax of the gsk8capicmd_64 command, see the GSKCapiCmd Users
Guide .

Adding a master key to a local keystore
With Db2 native encryption, when you create a database with the ENCRYPT parameter, by default the
database manager creates a new master key for the database and adds that master key to the keystore.
Alternatively, you can generate a master key in a local keystore yourself, and then specify that your
generated master key should be used for a new database instead of the default.

Procedure
• Generate a master key in an existing, local keystore by issuing the gsk8capicmd_64 command.

Example

gsk8capicmd_64 -secretkey -create -db "/home/thomas/keystores/ne-keystore.p12"
 -stashed -label "my_manual_master_key" -size "16"

Basic syntax

gsk8capicmd_64 -secretkey -create -db "<keystore-file-name>"

Chapter 1. Db2 security model 77

http://public.dhe.ibm.com/ps/products/db2/info/vr105/pdf/en_US/GSK_8.0.15_CapiCmd_UserGuide.pdf
http://public.dhe.ibm.com/ps/products/db2/info/vr105/pdf/en_US/GSK_8.0.15_CapiCmd_UserGuide.pdf

 [-pw "<password>" | -stashed]
 -label "<label>" -size "<key-length-in-bytes>"

– <keystore-file-name> is the full path and name of the keystore file
– If the keystore password is stashed, you can specify the -stashed parameter to cause the

password to be retrieved from the stash file
– If the password is not stashed, you may specify the password with the -pw parameter
– If neither -stashed nor -pw is specified, you will be prompted for the keystore password

For information about the full syntax of the gsk8capicmd_64 command, see: GSKCapiCmd Users
Guide .

Centralized keystores

Setting up a centralized KMIP keystore
To set up a centralized keystore, with a key manager that is configured for the Key Management
Interoperability Protocol (KMIP), for use with Db2 native encryption, you need to create a KMIP keystore
configuration file. Once you have created the configuration file, you can enter parameter values to
configure Db2 communication between the Db2 instance and the key manager.

Before you begin
Set up the centralized key manager.

• If you are using IBM Security Key Lifecycle Manager, see: Quick Start Guide

Procedure
1. Create a KMIP keystore configuration file
2. Configure Db2 between the Db2 instance and the key manager, by using one of the following methods:

• The KMIP server must support TLS 1.2.
• All certificates must be signed with a signature algorithm that uses SHA2 (SHA256, SHA384,

SHA512). The use of SHA1 is not supported.
• All certificates must have a key size of at least 2048 bits.

Note: The "All certificates" mentioned above refers to the Db2 client certificate, the KMIP server
certificate, and any Certificate Authority (CA) and intermediate CA root certificates.

• Configure Db2 with ISKLM
• Configure Db2 with KeySecure

Note: Other key manager products can be configured in a similar manner.

What to do next
Configure the Db2 instance to use this centralized KMIP keystore to store database master keys for Db2
native encryption.

Creating a KMIP keystore configuration file
To use Db2 native encryption to store your master key or keys in a centralized keystore using KMIP, you
need to create a configuration file that lists details about the keystore.

Procedure
On the Db2 server, create the KMIP keystore configuration file in a text editor.
Example

VERSION=1
PRODUCT_NAME=ISKLM
ALLOW_KEY_INSERT_WITHOUT_KEYSTORE_BACKUP=true

78 IBM Db2 11.5: Database Security Guide

http://public.dhe.ibm.com/ps/products/db2/info/vr105/pdf/en_US/GSK_8.0.15_CapiCmd_UserGuide.pdf
http://public.dhe.ibm.com/ps/products/db2/info/vr105/pdf/en_US/GSK_8.0.15_CapiCmd_UserGuide.pdf
https://www.ibm.com/support/knowledgecenter/SSWPVP_4.0.0/com.ibm.sklm.doc/qsg_en.html

SSL_KEYDB=/home/userName/sqllib/security/keydb.p12
SSL_KEYDB_STASH=/home/userName/sqllib/security/keydb.sth
SSL_KMIP_CLIENT_CERTIFICATE_LABEL=db2_client_label
PRIMARY_SERVER_HOST=serverName.domainName
PRIMARY_SERVER_KMIP_PORT=kmipPortNumber
CLONE_SERVER_HOST=clone1.domainName
CLONE_SERVER_KMIP_PORT=kmipPortNumber
CLONE_SERVER_HOST=clone2.domainName
CLONE_SERVER_KMIP_PORT=kmipPortNumber

Keywords
VERSION

Required. Version of the configuration file. Currently, 1 is the only supported value.
PRODUCT_NAME

Required. Key manager product. Supported values:

• ISKLM for IBM Security Key Lifecycle Manager
• KEYSECURE for SafeNet KeySecure
• OTHER for any other key manager that supports the Key Management Interoperability Protocol

(KMIP) version 1.1 or higher

ALLOW_KEY_INSERT_WITHOUT_KEYSTORE_BACKUP
Optional: Allow the database manager to insert new keys into the KMIP key manager. New
keys are inserted when the CREATE DATABASE ENCRYPT or ADMIN_ROTATE_MASTER_KEY
commands are run without a specified existing master key label, or when the migration tool
db2p12tokmip is run. When this parameter is set to TRUE, new keys are allowed to be inserted,
if set to FALSE an error is returned if the database manager attempts to insert a new key. You
should only set this to TRUE if you are not creating your master keys within the KMIP key manager,
and you have an automated backup solution of your KMIP key manager for newly inserted keys.
This parameter must be set to TRUE if you are migrating keys by using the db2p12tokmip
command. It can be changed to FALSE after the tool has completed. Default value: FALSE.

ALLOW_NONCRITICAL_BASIC_CONSTRAINT
Optional. If you set the parameter to TRUE, this allows Db2 to use local Certificate Authority within
KMIP server that does not have a "critical" keyword set and avoids "414" error that is returned by
GSKit. This parameter was introduced in Db2 V11.1.2.2. Default value: FALSE.1

SSL_KEYDB
Required. Absolute path and name of the local keystore file that holds the TLS certificates for
communication between the Db2 server and the KMIP key manager.

SSL_KEYDB_STASH
Optional. Absolute path and name of the stash file for the local keystore that holds the TLS
certificates for communication between the Db2 server and the KMIP key manager. Default value:
None.

1 Error SQL1782N is returned by the GSKit layer (manifested as error DIA3604E: The TLS function
"gsk_secure_soc_init" failed with the return code "414" in "sqlccSSLSocketSetup" in the
db2diag.log) in case the basic constraints extension of the certificate that is issued by the Certificate
Authority (CA) does not have the 'critical' keyword asserted. Using the command "gsk8capicmd_64
-cert -details -db <filename> -stashed -label <localCALabel>" you can check the basic
constraints of the CA to see whether the keyword 'critical' is asserted. For a local CA the keyword 'critical'
might not be set.

Example:

Extensions
 basicConstraints
 ca = true
 pathLen = 140730370034921
 critical

Chapter 1. Db2 security model 79

SSL_KMIP_CLIENT_CERTIFICATE_LABEL
Required. The label of the TLS certificate for authenticating the client during communication with
the KMIP key manager.

SSL_KMIP_CLIENT_HOSTNAME_VALIDATION
If you set this value to BASIC, Db2 validates that the hostname of the KMIP server is contained
within the certificate used by the KMIP server when establishing the TLS connection. This
hostname is sourced from either the MASTER_SERVER_HOST or CLONE_SERVER_HOST parameter.
The validation rules follow RFC 6125 for validating the hostname in the common name or Subject
Alternate Name (SAN) fields of the certificate. The KMIP server product documentation will need
to be consulted to determine how to create an appropriate certificate. For more information about
TLS hostname validation, see “Hostname validation for Db2 11.5.6 clients” on page 112. If you
set this value to OFF, Db2 does not validate the hostname. Default value: OFF.

DEVICE_GROUP
Name of the KMIP key manager device group containing the keys used by the Db2 server. This
parameter is only required for IBM Security Key Lifecycle Manager (ISKLM).

PRIMARY_SERVER_HOST
Required. Host name or IP address of the KMIP key manager. (For ISKLM, this information is
available on the "Welcome" tab of the web console.)

PRIMARY_SERVER_KMIP_PORT
Required. The "KMIP TLS port" of the KMIP key manager. (For ISKLM, this information is available
on the "Welcome" tab of the web console.)

Note: The KMIP configuration file parameters MASTER_SERVER_HOST and
MASTER_SERVER_KMIP_PORT are still accepted but have been deprecated. Use
PRIMARY_SERVER_HOST and PRIMARY_SERVER_KMIP_PORT instead.

CLONE_SERVER_HOST
Optional. Host name or IP address of secondary KMIP keystore. Default value: None.
You can specify up to five clone servers by repeating the CLONE_SERVER_HOST and
CLONE_SERVER_KMIP_PORT parameter pairs in the configuration file, each host with a different
value. Clone servers are considered read-only and are only used for retrieving existing master
keys from the KMIP keystore. Clone servers are not used when inserting a new key, which occurs
when an existing master key label has not been specified for the CREATE DATABASE ENCRYPT or
ADMIN_ROTATE_MASTER_KEY commands, or for the db2p12tokmip executable.

CLONE_SERVER_KMIP_PORT
Optional. The "KMIP TLS port" of secondary KMIP keystore. Default value: None. You can specify
up to five clone servers by repeating the CLONE_SERVER_HOST and CLONE_SERVER_KMIP_PORT
parameter pairs in the configuration file, each host with a different value.

COMMUNICATION_ERROR_RETRY_TIME
Optional. The number of times the Db2 database manager cycles through the list of configured
master and clone KMIP key managers if the connection fails or an error is returned from all of
the KMIP key managers. A wait of a length specified in the ALL_SERVER_UNAVAILABLE_SLEEP
parameter is inserted before each cycle. Default value: 50.

UNAVAILABLE_SERVER_BLACKOUT_PERIOD
Optional. The amount of time, in seconds, to skip sending key requests to a particular master
or clone KMIP key manager after a failed connection attempt or it has returned errors. This
parameter was introduced in Db2 V11.1.2.2. Default value: 300 seconds.

(Optional) ALL_SERVER_UNAVAILABLE_SLEEP
When all master and clone KMIP key managers are unavailable and in a blackout period, this
parameter is the amount of time to wait, in seconds, before removing the blackout period and
reattempting connections to all KMIP key managers. This parameter was introduced in Db2
V11.1.2.2. Default value: 0 seconds.

80 IBM Db2 11.5: Database Security Guide

https://tools.ietf.org/html/rfc6125

TLS configuration between Db2 and the key manager
To store master keys in a centralized keystore with Db2 native encryption, you need to set up TLS
communication between the Db2 instance and the centralized key manager.

Configuring TLS between a Db2 instance and a centralized KMIP key manager (ISKLM)
To store master keys in a centralized keystore with Db2 native encryption, you need to set up TLS
communication between the Db2 instance and the centralized KMIP key manager.

Before you begin
On the Db2 server, create a local keystore to store TLS certificates.

About this task
• On the Db2 server, the gsk8capicmd_64 command is used to create, extract, and add TLS certificates

to the local keystore. For detailed information about the command, see: GSKCapiCmd Users Guide .
• Some examples below show self-signed certificates. Self-signed certificates are suitable for test

environments, but for production environments certificates that are signed by third party certificate
authorities are more appropriate.

• Some information about using the IBM Security Key Lifecycle Manager web interface and command line
interface is included below. For more complete information, see: Setup for TLS handshake between IBM
Security Key Lifecycle Manager server and client device .

Procedure
1. On the Db2 server: create an TLS signer certificate.

a) Create the certificate by issuing the gsk8capicmd_64 command.
Example

gsk8capicmd_64 -cert -create -db "clientkeydb.p12"
 -label "DB2_signer_certificate"
 -dn "CN=weblinux.Raleigh.ibm.com,O=ibm,OU=IBM HTTP Server,L=RTP,ST=NC,C=US"
 -sig_alg SHA256_WITH_RSA -size 2048

b) Extract the certificate to a file by issuing the gsk8capicmd_64 command.
Example

gsk8capicmd_64 -cert -extract -db "clientkeydb.p12"
 -label "DB2_signer_certificate"
 -target "/path/to/DB2_certificate_file.pem"
 -format ascii

c) Securely transmit the Db2 server certificate file to the centralized key manager.
2. On the centralized key manager: add the Db2 server certificate to the keystore.

The following substeps describe how to add a certificate to IBM Security Key Lifecycle Manager using
the web console.

a) Create a device group :

i) Select "Create" in the "Device Group" list of the "Advanced Configuration" tab.
ii) Select the device family "General Parallel File System (GPFS)" and then enter "DB2" as the new

device group name.
iii) Leave the "Enable machine affinity" check box unselected.

b) Import the DB2 server certificate file :

i) On the "Welcome" tab select your new group, "DB2".

Chapter 1. Db2 security model 81

http://public.dhe.ibm.com/ps/products/db2/info/vr105/pdf/en_US/GSK_8.0.15_CapiCmd_UserGuide.pdf
https://www-01.ibm.com/support/knowledgecenter/SSWPVP_2.6.0/com.ibm.sklm.doc/scenarios/cpt/cpt_ic_scenar_setup_ssl_handshake.html
https://www-01.ibm.com/support/knowledgecenter/SSWPVP_2.6.0/com.ibm.sklm.doc/scenarios/cpt/cpt_ic_scenar_setup_ssl_handshake.html
https://www-01.ibm.com/support/knowledgecenter/SSWPVP_2.6.0/com.ibm.sklm.doc/admin/tsk/tsk_ic_roles_devicetypecreate.html
https://www-01.ibm.com/support/knowledgecenter/SSWPVP_2.6.0/com.ibm.sklm.doc/scenarios/tsk/tsk_ic_admin_import_ssl-kmip_client_cert.html

ii) From the "Go to" list, select "Manage Keys and Devices". This will bring you to the Advanced
Configuration tab.

iii) Select "Certificates" from the "Add" list.
iv) Specify the certificate name and the file path when prompted.
v) In the "Advanced Configuration" window, select "Import" from the "Client Device

Communication Certificates" menu.
3. On the centralized key manager: create an TLS signer certificate.

The following substeps describe how to create a certificate and then extract it to a file using the IBM
Security Key Lifecycle Manager web console and command-line interface.

a) Create a self-signed certificate or obtain a certificate from a certificate authority .
b) Extract the certificate to a file using the command-line interface :

i) Enable the Jython scripting language.
Example

./wsadmin.sh -username "<admin-user>"
 -password "<password>" -lang jython

ii) Export the certificate using the tklmCertExport command.
Example

print AdminTask.tklmCertExport
 ('[-uuid CERTIFICATE-61f8e7ca-62aa-47d5-a915–8adbfbdca9de
 -format DER
 -fileName d:\\ISKLM_certificate_file.pem]')

c) Securely transmit the centralized key manager certificate file to the Db2 server.
4. On the Db2 server: add the centralized key manager certificate to the local keystore.

a) Add the certificate by issuing the gsk8capicmd_64 command.
Example

gsk8capicmd_64 -cert -add -db "clientkeydb.p12"
 -label "ISKLM_signer_certificate"
 -file "/path/to/ISKLM_certificate_file.pem"

Results
When the Db2 database manager connects to the centralized key manager, TLS communication will be
used.

What to do next

Configuring a Db2 instance to use a keystore

Note: TLS 1.3 support is available starting in SGKLM Version 4.1.1. For compatibility with Db2, SGKLM
installations running 4.1.1 FP1 to FP4 must apply a fix for IJ39961. Before turning on TLS 1.3, ensure that
Db2 is updated to version 11.5.8 or later. For more information, see TransportListener.ssl.protocols in the
SGKLM Documentation.

Configuring TLS between a Db2 instance and a centralized KMIP key manager (KeySecure)
To store master keys in a centralized KMIP keystore with Db2 native encryption, you need to set up TLS
communication between the Db2 instance and the centralized key manager.

Before you begin
On the Db2 server, create a local keystore to store TLS certificates.

82 IBM Db2 11.5: Database Security Guide

https://www-01.ibm.com/support/knowledgecenter/SSWPVP_2.6.0/com.ibm.sklm.doc/scenarios/tsk/tsk_ic_admin_create_ssl-kmip_server_cert.html
https://www-01.ibm.com/support/knowledgecenter/SSWPVP_2.6.0/com.ibm.sklm.doc/scenarios/cpt/cpt_ic_scenar_ca_certusage.html
https://www-01.ibm.com/support/knowledgecenter/SSWPVP_2.6.0/com.ibm.sklm.doc/reference/ref/ref_ic_cli.html
https://www-01.ibm.com/support/knowledgecenter/SSWPVP_2.6.0/com.ibm.sklm.doc/reference/ref/ref_ic_cli_cert_export.html
https://www.ibm.com/docs/en/sgklm/4.1.1?topic=values-transportlistenersslprotocols

About this task
• On the Db2 server, the gsk8capicmd_64 command is used to create, extract, and add TLS certificates

to the local keystore. For detailed information about the command, see the GSKCapiCmd Users Guide.

Procedure
On KeySecure, create a CA and add it to the Trusted CA list:
1. Verify that a CA certificate is created or installed. Make sure that the CA is added to the trusted CA list.
2. Make sure that a server certificate request is created and signed with the CA certificate.
3. Check that a Cryptographic Key Server is created. Also, verify that the appropriate authentication

settings are configured.
a) Ensure the appropriate Cryptographic Key Server Properties:

• Protocol: Select KMIP.
• IP: Select ALL or a specific IP address.
• Port: Select a port number. The standard KMIP port number is 5696. In the

centralized keystore configuration file, the value for the MASTER_SERVER_KMIP_PORT or
CLONE_SERVER_KMIP_PORT parameter must be configured according to the value specified for
the port number.

• Use TLS: Select True
• Server Certificate: Select the label of the server certificate.

b) Ensure the appropriate Authentication Settings:

• Password Authentication: Select Not Used.
• Client Certification Authentication: Select Used for TLS session and username.
• Trusted CA list Profile: Select the profile that contains the Trusted CA list to which the CA was

added.
• User name Field in Client Certificate: Select either the CN or OU value from the dropdown list.
• Require Client Certificate to Contain Source IP: Leave unticked.

c) Create a Local User whose user name matches the User name field in Client Certificate field in the
client certificate.

4. Download the CA certificate to the client keystore.
On the Db2 server, add the CA certificate and create a client certificate request:
5. Add the CA certificate that was previously downloaded to the local keystore.

gsk8capicmd_64 -cert -add -db "clientkeydb.p12" -stashed -label "trustedCA" -file
"trustedCA.crt"

6. Create a client certificate request.

gsk8capicmd_64 -certreq -create -db "clientkeydb.p12" -stashed -label "clientCert"
 -dn "CN=db2KeySecureUser,O=IBM,OU=DB2,L=Toronto,ST=Ontario,C=CA" -target
"client_cert_request.arm"

At your CA, sign the client certificate request:
7. Sign the client certificate request with the CA certificate, and then download the signed certificate.

On the Db2 server, add the signed client certificate:
8. Add the signed client certificate to the local keystore.

gsk8capicmd_64 -cert -receive -db "clientkeydb.p12" -stashed
 -file "client_cert_signed.arm"

Chapter 1. Db2 security model 83

http://public.dhe.ibm.com/ps/products/db2/info/vr105/pdf/en_US/GSK_8.0.15_CapiCmd_UserGuide.pdf

Results
When the Db2 database manager connects to the centralized KMIP key manager, TLS communication is
used.

What to do next

Configure the Db2 instance to use the centralized keystore

Migrating from a local keystore to a centralized KMIP keystore
If you want to migrate your Db2 local keystore to a centralized keystore that is configured for the Key
Management Interoperability Protocol (KMIP), you can copy your master keys to the centralized keystore
by issuing the db2p12tokmip command.

Before you begin
• Create a KMIP keystore configuration file
• Configure TLS between the DB2 instance and the centralized key manager

Procedure
1. Back up the centralized KMIP keystore. See: Backing up IBM Security Key Lifecycle Manager .
2. Set the allow_key_insert_without_keystore_backup parameter to TRUE in the centralized

KMIP keystore configuration file.
3. Copy all master keys from the local keystore to the centralized KMIP keystore by issuing the
db2p12tokmip command.
Example

db2p12tokmip -from /home/thomas/keystores/ne-keystore.p12
 -to /home/thomas/keystores/isklm.cfg

To see full syntax information, type db2p12tokmip -h in the Db2 command line window, or refer to
db2p12tokmip command topic in the Db2 Command Reference PDF.

4. Set the allow_key_insert_without_keystore_backup parameter to FALSE in the centralized
KMIP keystore configuration file.

What to do next
1. Configure the Db2 instance to use the centralized keystore.
2. Change the master key by running the ADMIN_ROTATE_MASTER_KEY procedure.

Setting up a centralized PKCS #11 keystore
To set up a PKCS #11 keystore for use with Db2 native encryption, begin by creating a PKCS #11 keystore
configuration file.

Before you begin
1. Install and configure the vendor software that lets you access the PKCS #11 keystore. Refer to

Overview of Db2 native encryption for a list of supported key managers.
2. Check the ability to connect to the PKCS #11 keystore by using vendor utilities. For example:

• For SafeNet (formerly Luna) hardware security module (HSM), use vtl verify
• For nCipher nShield HSM, use enquiry

84 IBM Db2 11.5: Database Security Guide

https://www-01.ibm.com/support/knowledgecenter/SSWPVP_2.6.0/com.ibm.sklm.doc/admin/tsk/tsk_ic_admin_backup_tklm20.html
https://www.ibm.com/support/pages/node/627743

Procedure
1. Create a PKCS #11 keystore configuration file
2. Create a stash file

What to do next
Configure the Db2 instance to use this centralized PKCS #11 keystore to store database master keys for
Db2 native encryption.

Creating a PKCS #11 keystore configuration file
To store master keys in a centralized PKCS #11 keystore with Db2 native encryption, you need to create a
configuration file that contains details about the PKCS #11 keystore.

Procedure
On the Db2 server, create the PKCS #11 keystore configuration file in a text editor.
Example

VERSION=1
PRODUCT_NAME=Luna
ALLOW_KEY_INSERT_WITHOUT_KEYSTORE_BACKUP=true
LIBRARY=/usr/safenet/lunaclient/luna6.1/lib/libCryptoki2_64.so
SLOT_LABEL=DB2Partition
NEW_OBJECT_TYPE=PRIVATE
KEYSTORE_STASH=/home/userName/sqllib/security/pkcs11_pw.sth

Keywords
VERSION

Required. Version of the configuration file. Currently, 1 is the only supported value.
PRODUCT_NAME

Optional. Use this value to override the PKCS #11 keystore type that is determined from product
information returned by PKCS #11 API calls.. Supported values are:

• Luna for SafeNet (formerly Luna) hardware security module (HSM)
• nCipher for nCipher nShield HSM (Thales is supported for backwards compatibility)
• Other for any other key manager that supports PKCS #11

ALLOW_KEY_INSERT_WITHOUT_KEYSTORE_BACKUP
Optional. Allow the database manager to insert new keys into the centralized key manager.
New keys are inserted when the CREATE DATABASE ENCRYPT or ADMIN_ROTATE_MASTER_KEY
commands are run without a specified existing master key label, or when the migration tool
db2p12tokmip is run. When this parameter is set to TRUE, new keys are allowed to be inserted,
if set to FALSE an error is returned if the database manager attempts to insert a new key. You
should only set this to TRUE if you are not creating your master keys within the centralized
key manager, and you have an automated backup solution of your centralized key manager for
newly inserted keys. This parameter must be set to TRUE if you are migrating keys by using the
db2p12tokmip command. It can be changed to FALSE after the tool has completed. Default
value: FALSE.

LIBRARY
Required. The absolute path and name (including extension) of the centralized PKCS #11 keystore
vendor-supplied shared library. The format is platform-dependent:
Examples for AIX or Linux:

/usr/safenet/lunaclient/luna6.1/lib/libCryptoki2_64.so
/opt/nfast/toolkits/pkcs11/libcknfast.so

Examples for Windows:
C:\safenet\lunaclient\luna6.1\lib\libCryptoki2_64.dll
C:\nfast\toolkits\pkcs11\libcknfast.dll

Chapter 1. Db2 security model 85

SLOT_LABEL
Optional. Identifies the slot in the HSM by a label. The label is a name that is defined by the
application, and is assigned during token initialization. If specified, the value must be 1 - 32
characters long. This parameter cannot be specified if SLOT_ID is specified.

SLOT_ID
Optional. Identifies the slot in the HSM by an ID. Must be an integer value. This parameter cannot
be specified if SLOT_LABEL is specified.

NEW_OBJECT_TYPE
Optional. Defines whether new master keys generated at the PKCS #11 keystore are created as
private or public objects. The default value is PRIVATE. The supported values are:

• PRIVATE for private objects
• PUBLIC for public objects

KEYSTORE_STASH
Optional. Absolute path and name of the stash file that holds the PKCS #11 keystore password.
The instance uses the stash file to authenticate to the PKCS #11 keystore.

What to do next
Create a stash file, if you choose to store the HSM credentials in a stash file.

Creating a stash file
Create a stash file to address operational concerns that involve access to PKCS #11 keystore credentials.

Before you begin
• Create a PKCS #11 keystore configuration file

About this task
A stash file stores the password of a keystore in obfuscated form. The stash file contributes to enhanced
operations. If you create a stash file, the database manager can access credentials that it requires to
log in to the PKCS #11 keystore. Without a stash file, the only realistic solutions to restart an instance
immediately in the event of an unplanned outage are less than ideal:

• Store the credentials in plain form so that an automated script can restart the instance. However, storing
the password in plain form is not desirable since it violates security policies and best practices.

• Have a DBA always available to provide the access credentials for the PKCS #11 keystore when
the instance restarts. However, having to rely on human intervention, with the expectancy of instant
response time, is rarely feasible from an operational perspective.

Restrictions

The following procedure is intended to be used in a PKCS #11 keystore. Do not attempt to stash
a password by using the gsk8capicmd_64 command, since that command is intended to be used
exclusively with a local keystore. Conversely, do not attempt to stash a password for a local keystore by
using the following procedure.

Procedure
To create a stash file in a PKCS #11 keystore:
1. Run the db2credman command to stash the provided password to a file.

db2credman -stash -password Str0ngPassw0rd -to /home/db2inst1/keystore/pkcs11_pw.sth

2. Update the PKCS #11 keystore configuration file by adding the KEYSTORE_STASH parameter.

...
KEYSTORE_STASH=/home/db2inst1/keystore/pkcs11_pw.sth

86 IBM Db2 11.5: Database Security Guide

3. Run the db2stop command to remove the in-memory copy of the password.
4. Run the db2start command without the OPEN KEYSTORE USING password option.

Results
The PKCS #11 keystore password is now stored in the stash file, in obfuscated form. The next operation
that requires the PKCS #11 keystore password will read it from the stash file.

What to do next
If you are currently using Db2 native encryption with master keys that are stored in a local keystore and
you want to start to use a PKCS #11 keystore instead, Migrate the local keystore to a PKCS #11 keystore.

If you decide to stop using the stash file, in favor of providing PKCS #11 keystore credentials on instance
start, follow these steps:

1. Run the db2start command with the OPEN KEYSTORE USING password option.
2. Update the PKCS #11 keystore configuration file by removing the KEYSTORE_STASH parameter.
3. Delete the stash file to eliminate any potential security risks that this unused file poses.

The next operation that requires the PKCS #11 keystore password will read it from memory.

Migrating from a local keystore to a centralized PKCS #11 keystore
If you want to migrate your Db2 nativity-encrypted local keystore to a centralized PKCS #11 keystore, you
can copy the master keys to the centralized keystore by issuing the db2p12top11 command.

Before you begin
• Create a centralized PKCS #11 keystore configuration file

Procedure
1. Back up the PKCS #11 keystore by using the vendor's key manager software.
2. Set the ALLOW_KEY_INSERT_WITHOUT_KEYSTORE_BACKUP parameter to TRUE in the centralized

PKCS #11 keystore configuration file.
3. If you are migrating to a hardware security module (HSM) of the nCipher nShield family, you

must assign the unwrap_kek parameter to the CKNFAST_OVERRIDE_SECURITY_ASSURANCES
environment variable.

4. Copy all master keys from the local keystore to the centralized PKCS #11 keystore by issuing the
db2p12top11 command.
Example

db2p12top11 -to ˜/pkcs11_keystore.cfg -pin Str0ngPassw0rd

To see full syntax information, type db2p12top11 -h in the Db2 Command Window, or refer to the
db2p12top11 command topic in the Db2 Command Reference PDF.

5. Set the ALLOW_KEY_INSERT_WITHOUT_KEYSTORE_BACKUP parameter to FALSE in the centralized
PKCS #11 keystore configuration file.

What to do next
1. Configure the DB2 instance to use the centralized PKCS #11 keystore.
2. Change the master key by running the ADMIN_ROTATE_MASTER_KEY procedure.

Chapter 1. Db2 security model 87

https://www.ibm.com/support/pages/node/627743

Configuring a Db2 instance to use a keystore
To configure a Db2 instance to use a keystore for native encryption, you need to set two database
manager configuration parameters: keystore_type and keystore_location.

Procedure
• For a local keystore, set keystore_type to "PKCS12", and set keystore_location to the absolute

path and file name of the local keystore file.
Example

update dbm cfg using keystore_location /home/thomas/keystores/ne-keystore.p12
keystore_type pkcs12

• For a centralized keystore, where the key manager product uses the Key Management Interoperability
Protocol (KMIP), set keystore_type to "KMIP", and set keystore_location to the absolute path
and file name of the centralized keystore configuration file.
Example

update dbm cfg using keystore_location /home/thomas/keystores/isklm.cfg keystore_type
kmip

• For a centralized keystore, where the hardware security module (HSM) uses the PKCS #11 keystore
API, set keystore_type to "PKCS11", and set keystore_location to the absolute path and file
name of the PKCS #11 keystore configuration file.
Example

update dbm cfg using keystore_location /home/thomas/keystores/pkcs11.cfg keystore_type
pkcs11

What to do next
Restart the database manager instance to cause the configuration changes to take effect.

Encrypted backups
With Db2 native encryption, you can encrypt your database, your database backups, or both. Database
backups can be encrypted regardless of whether the database itself is encrypted.

You can encrypt individual backups manually, by specifying the ENCRYPT option on the BACKUP
DATABASE command. You can also configure Db2 to automatically encrypt backups by setting the encrlib
and encropts database manager configuration parameters. By default, when an encrypted database
is created, these parameters are set to ensure that backups are automatically encrypted. For more
information, refer to Encrypted database backup images.

Important consideration for encrypted backups
When a database backup is encrypted, it is no longer affected by subsequent attempts to reduce its size.
Size reduction methods include attempts through compression or data deduplication technologies that
are offered on some storage media devices. Encryption removes repetitive patterns from the data that
these technologies rely upon. To reduce the size of database backups, compression needs to be applied
before encryption. Compression can be done by actively compressing the data in the database itself, or
by specifying the libdb2compr_encr.so or libdb2nx842_encr.a library on the BACKUP DATABASE
command.

Related information
BACKUP DATABASE command

88 IBM Db2 11.5: Database Security Guide

Encrypted database backup images
You can create an encrypted backup image of your database, then retrieve it using the RESTORE
DATABASE or RECOVER DATABASE command. RECOVER DATABASE runs both the RESTORE DATABASE
and ROLLFORWARD DATABASE command.

Encrypted database creation
The ENCRYPT keyword, which is an option of the CREATE DATABASE command, is used to encrypt a
database, and to set encryption options.

Creating an encrypted database
By default, when running the CREATE DATABASE command with no options beyond the ENCRYPT
keyword, a new master key is generated and inserted into the keystore as part of database creation.
The AES encryption algorithm, with a key length of 256, will be used to encrypt the database.

See Creating an encrypted database for detailed steps on using the ENCRYPT command when creating a
new database.

Encrypting an existing database
To encrypt an existing unencrypted database, it is necessary to unload and reload the database to ensure
that all of the data is encrypted. The most effective way to do this is to restore a full backup of the
database using the ENCRYPT option on the RESTORE DATABASE command. As with database creation, if
no further options are provided, the ENCRYPT option will cause a new master key to be generated and
inserted into the keystore. The master key is created with the AES encryption algorithm with a key length
of 256 to encrypt the database.

For more information on the restore approach, refer to Encrypting an existing database.

It is also possible to use HADR to minimize the outage time by having an unencrypted copy of the
database available on the standby while the primary is being encrypted. Refer to “Configuring native
encryption in an HADR environment” on page 93 for more information.

Creating an encrypted database
Create an encrypted database by specifying the ENCRYPT option when using the CREATE DATABASE
command.

Before you begin
• If you are using a local key manager, configure GSKit, then create the local keystore file and master key.
• If you are using a centralized keystore, with a key manager configured for the Key Management

Interoperability Protocol (KMIP), configure the KMIP key manager and master key. You must also have
TLS set up correctly between the KMIP key manager and your database server.

• If you are using a centralized keystore that utilizes a Hardware Security Module (HSM) configured for
the PKCS #11 API, create a PKCS #11 keystore configuration file. You must also create a stash file to
address operational concerns that involve access to PKCS #11 keystore credentials.

Procedure
• To create an encrypted database with the default settings, specify the ENCRYPT keyword on the

CREATE DATABASE command:

db2 create db <encrypted_database_name> encrypt

• To create an encrypted database with custom settings, specify the ENCRYPT keyword with additional
encryption options on the CREATE DATABASE command:

db2 create db <encrypted_database_name> encrypt
 cipher aes key length <length_of_data_encryption_key>
 master key label <master_key_label>

Chapter 1. Db2 security model 89

Where:

– CIPHER cipher-name specifies the encryption algorithm that is to be used for encrypting the
database.

– KEY LENGTH key-length specifies the length in bits of the data encryption key that is to be used for
encrypting the database.

– MASTER KEY LABEL label-name specifies a label for the master key that is used to encrypt the
database. If you specify this option, the master key must already exist. If you exclude this option, a
master key for the database is automatically generated and added to the keystore.

Results
The information in your database can be accessed only by using the appropriate stash file or password.

Encrypting an existing database
To encrypt the data in an existing, unencrypted database, you must create a backup image of the
database, drop it, and then restore it into an encrypted database.

Procedure
To encrypt an existing database:
1. Create a keystore. If you are using a local key manager. If you are using a centralized key manager,

ensure you have set up a centralized KMIP or PKCS #11 keystore.
2. Configure the database instance with the new keystore.
3. Generate a backup image of the database you would like to encrypt:

db2 backup database <database_name>

4. Drop the original copy of the database you wanted to encrypt:

db2 drop database <database_name>

5. Restore the backup image into a new encrypted database:

db2 restore database <database_name> into <new_database_name> encrypt

Note: This example uses the default set of RESTORE DATABASE encryption options to complete
the restore process. For a full set of available encryption and master key options, see the RESTORE
DATABASE command topic in the Db2 Command Reference PDF.

Results
The new database will contain the same information as the original, except with encrypted data.

Creating encrypted backup images
Create an encrypted backup image of your database using the BACKUP DATABASE command and
specifying which library you would like to use in backup operations.

Procedure
• If you have the encrlib value set in the database configuration file, simply run the BACKUP

DATABASE command:

db2 backup database <database_name>

• If you do not have the encrlib value set in the database configuration file, specify the encrypt
keyword:

db2 backup database <database_name> encrypt

90 IBM Db2 11.5: Database Security Guide

https://www.ibm.com/support/pages/node/627743

Note: These examples use the default set of options for backing up an encrypted database. For the full
set of encryption and master key options available, refer to the BACKUP DATABASE reference topic in
the Db2 Command
Reference PDF.

Encrypted database restoration
Retrieve encrypted backup images of your databases on the same system or on a different system.

One process is used to restore encrypted backup images to the same system, whether the key manager
is local or centralized. To restore an encrypted backup image, run the RESTORE DATABASE or RECOVER
DATABASE command.

If you restore an encrypted backup image to a different system with a centralized key manager, simply
configure the new system with the centralized key manager. If you are using local key management, you
must take into account the security settings of the original and new system.

Restoring encrypted backup images to the same system
You can restore an encrypted database backup image to the same system with the RESTORE DATABASE
command.

Procedure
Run the RESTORE DATABASE command:

db2 restore database <database_name> ENCRLIB 'db2encr.dll'

Note: While this example uses the db2encr.dll option for restoring an encrypted database, other
options are available. For the full set of encryption options, refer to the RESTORE DATABASE reference
topic in the Db2 Command
Reference PDF.

Restoring an encrypted backup image to a different system with a local key manager
To restore a backup image to a different system, the local keystore file on that system must have the
master key that is used by all the entities that are involved in the restoration. The entities include the
backup image and potentially the transaction log files from the source system. If the database on the
target system is also to be encrypted, it too needs to reference a master key in the local keystore file on
the target system.

About this task
A simple way to achieve this goal is to copy the keystore file securely from the source system to the target
system. If needed, add a new master key to the target system for the new copy of the database. You can
also copy the needed master keys to the target system and then add them to the local keystore file.

Procedure
The procedure depends on the security protocol:
• When the source system keystore file is to be copied to the target system:

a) Use a secure copy protocol such as SCP to copy the keystore and its associated stash file from
System A to System B. An SCP is available with most Secure Shell (SSH) implementations.

b) Update the value of the keystore_location database manager configuration parameter to point to
the copied keystore on System B.

c) If a new master key is wanted for the new database copy:

a. Have the System B administrator add the new master key for the database copy to the keystore
on System B.

b. Have the System B administrator restore the backup image on System B, specifying the new
master key on the restore command:

Chapter 1. Db2 security model 91

https://www.ibm.com/support/pages/node/627743
https://www.ibm.com/support/pages/node/627743
https://www.ibm.com/support/pages/node/627743
https://www.ibm.com/support/pages/node/627743

db2 restore database <database_name> encropts 'Master
Key Label=<systemB_admin_label>'
encrypt cipher aes key length <key_length_in_bits>

d) If using the same master key as the original database for the new copy, restore the backup image
on System B:

db2 restore database <database_name> encrypt;

• When the source system keystore file is not going to be used for the new system:
a) Add a new master key for the backup:

a. Add a new master key to the local keystone file on the source system for use by the backup.
b. Generate an encrypted backup on System A:

db2 backup database <database_name>
 encrypt encrlib 'db2encr.dll'
 encropts 'Master Key Label=<label_backup_admin>'

b) Extract the newly created master key from the key database:

gsk8capicmd_64 -secretkey -extract -db <source-key-database-path> -stashed -label
<label_backup_admin> -format ascii -target <extracted-key-file>

c) Send the secret key file for the backup master key securely to the System B administrator.
d) Have the System B administrator add the key to the keystore on System B:

gsk8capicmd_64 -secretkey -add -db <destination-key-database-path> -stashed -label
<label_backup_admin> -format ascii -file <extracted-key-file>

Note: When adding the secret key used to encrypt the backup to the destination key database, the
label used must be identical to the label of the secret key in the source key database.

e) If a new master key is wanted for the new database copy:

a. Have the System B administrator add the new master key for the database copy to the keystore
on System B.

b. Have the System B administrator restore the backup image on System B specifying the new
master key on the restore command:

db2 restore database <database_name> encropts 'Master Key Label=<systemB_admin_label>'
 encrypt cipher aes key length <key_length_in_bits>

f) If using the same master key as the backup for the database new copy, restore the backup image
on System B:

 db2 restore database <database_name> encrypt;

Restoring an encrypted backup image to a different system with a centralized key manager
If you are using a centralized key manager, restore an encrypted backup image on a different system
by configuring that system with the centralized key manager, then running the RESTORE DATABASE
command.

Procedure
To restore an encrypted backup image from System A to System B:
1. Copy the centralized keystore configuration file securely to System B.
2. Copy the keystore file which stores the TLS certificates securely to System B.
3. Configure System B with the centralized key manager by updating the keystore_location

configuration parameter. Also update the SSL_KEYDB keyword in the centralized keystore
configuration file to point to where you copied the keystore file with the TLS certificates. Update
SSL_KEYDB_STASH as well if you have a stash file.

92 IBM Db2 11.5: Database Security Guide

https://www.ibm.com/docs/en/db2/11.5?topic=keystore-adding-master-key

4. Restore the backup image on System B:

db2 restore database <database_name> encrypt;

Keystore migration
If you are implementing Db2 native encryption with a local PKCS #12 keystore file, you might want to
migrate the master keys that are stored in that file to a centralized keystore. Db2 provides tools to help
with this migration.

For detailed instructions to migrate your local keystore to a centralized keystore, refer to one of the
following tasks::

• Migrating from a local keystore to a centralized KMIP keystore
• Migrating from a local keystore to a centralized PKCS #11 keystore

Configuring native encryption in an HADR environment
When you are encrypting a Db2 HADR configuration, it is important to remember that you are encrypting
more than one database. Both the primary and standby databases need to be encrypted to provide the
highest level of security.

Before you begin

It is possible to run an encrypted primary database and an unencrypted standby database. However, this
configuration is recommended only if the standby database does not need to access any of the files that
are encrypted on the primary. An example of such an encrypted file is an archived transaction log file.

While the primary and standby databases each have an independent, unique data encryption key, they
must also have access to the same master key (MK). This access ensures that the MK label can flow
between the databases when a MK rotation is done, and when the primary and standby databases need to
access shared encrypted files.

It is recommended that all of the databases in an HADR environment have access to the same keystore.
This can be a PKCS12 key store on a shared file system, or a centralized key store such as a KMIP
key manager or PKCS11 hardware security module. It is not recommended to use separate PKCS12 key
stores, since they must be manually kept in sync. In cases where a centralized keystore is being used,
the databases might each be configured to treat different clones of the same keystore as their primary
keystore.

It is also recommended that you consider implementing encryption for the HADR communication as well,
to ensure that the data is never exposed. Refer to Configuring TLS for the communication between primary
and standby HADR servers for setup instructions.

Procedure
To implement an HADR relationship for encrypted database, take the following steps:

1. Create and configure a common keystore for both the primary and standby databases and place the
MK in the keystore. Save the keystore on a shared keystore service that can be accessed by both the
primary and standby databases.
For a non-encrypted database, configure Db2 to recognize the keystore. You can also migrate an old,
local keystore to a new centralized KMIP or PKCS #11 keystore on the primary node.

2. Back up the primary database:

db2 backup db <dbname>

3. Stop the HADR service on the primary node:

db2 stop hadr on db <dbname>

4. Deactivate the database on the standby node:

Chapter 1. Db2 security model 93

db2 deactivate db <dbname>

5. Drop the standby database:

db2 drop db <dbname>

6. Restore the database on the standby node with the ENCRYPT option, specifying the encryption
options and the label for the MK:

db2 restore db <dbname> encrypt

7. Start the encrypted standby database:

db2 start hadr on database <dbname> as standby

8. Reenter the HADR environment through the primary database:

db2 start hadr on database <dbname> as primary

9. When the standby database catches up to the primary database, run the following command on the
standby database to have it take over as the new primary:

db2 takeover hadr on db <dbname>

10. Repeat steps 2 through 8, using the new primary database as the starting point.
11. When the standby database catches up to the primary database, have it take over as the primary

database, to restore the HADR environment to its original configuration.
12. Repeat the entire procedure, as needed, for auxiliary standby databases.

Results
The primary and standby servers of your Db2 HADR configuration are now properly encrypted.

Encrypted database operations

Keystore availability
Access to the keystore is required for Db2 to work with an encrypted database. If the keystore is not
available, then the database is not available.

When using a local keystore file, you need to provide an identical copy of the keystore at each Db2
member that is associated with the database. If you choose to use a shared file system, ensure that
network access is maintained for that file system while Db2 is actively working with the encrypted
database.

Using a centralized keystore means that network communication exists between Db2 and the keystore,
and you need to account for potential network failures. With Db2, you can add multiple secondary
keystore definitions in the keystore configuration for those products that support this feature. Consult the
documentation for your keystore product to understand their recommendations for multiple secondary
keystore definitions.

Keystore best practices
Employ security best practices to keep your keystores and master keys secure.

Keystore credentials
Most keystore configurations require that credentials be passed to the keystore before access to the
stored keys is allowed. Since Db2 needs to have access to the keystore, Db2 also needs to have access to
the keystore credentials. This information is required when the db2start command is run. There are a
number of ways to securely provide Db2 the keystone credentials:

• A prompt for operator input of the credentials
• Access through a provided file argument

94 IBM Db2 11.5: Database Security Guide

• Use of a “stash” file

A stash file is an obfuscated file that contains the credentials that are needed to access the keystore. Set
this file to be readable by only the Db2 instance owner. Details on how to create a stash file is provided in
the detailed keystore configuration information.

Note: Ensure that you back up your passwords, in addition to using a stash file. This applies particularly
to the password used for a local keystore file. Should your stash file ever become corrupted, you will need
to manually supply the password. If you forget the password, and do not created a backup, access to your
keys and data is lost.

When creating or changing passwords for local keystone files, ensure that the passwords are strong, by
using the –strong parameter of the gsk8capicmd_64 command. For more information about the full
syntax of the gsk8capicmd_64 command, see: GSKCapiCmd Users Guide.

Keystore backups
The contents of your keystore are critical and it is important that you back up the keystore at regular
intervals. Backups should be done whenever the contents of the keystore changes, such as when a key or
certificate is added, a master key (MK) is rotated, or the password is changed.

Note: Backing up when there is a password change applies only to stash files, and not to all keystores. It
also applies to the local keystore files.

The keystore configuration files are not included as part of a Db2 database backup and must be backed up
manually. Keystore credentials, if stored on disk, must also be backed up manually.

For local keystore files, the configuration file is not included as part of a Db2 database backup and must
be backed up manually.

For a centralized keystore, consult the documentation for your keystore product to understand their
recommendations for keystore backups.

MK label uniqueness
Db2 uses the MK label to uniquely identify each MK, and stores the label value in each encrypted object,
be it a database, transaction log, or backup file. This stored label value identifies the MK that is used to
decrypt the data encryption key (DEK), which is used to encrypt the data in the object. It is critical to use
unique MK labels to avoid duplication. If unique labels are not used, access to encrypted data can be lost.
Access to encrypted data is lost when the MK that is retrieved from the keystore for a label is different
from the MK that is used to encrypt the DEK in the object.

Master key retention
MKs are needed to access the DEKs that are stored in encrypted databases, transaction logs, and backup
images. Since multiple MKs can exist over the life time of these objects, it is necessary to retain them
while the encrypted data is retained. Therefore, do not delete MKs from the keystore.

Keystore configuration changes
Thoughtful planning needs to precede any changes to the Db2 database managed keystore configuration
parameters or the contents of a keystore configuration, as not all changes can be completed online. Each
new key request reads these values when it is accessing the keystore. With some exceptions, changes to
these configuration values are reflected in the Db2 processing on the next key request. Although the Db2
database manager configuration parameters keystore_type and keystore_location are configurable online,
you should set them in the a single db2 update dbm cfg command. Otherwise, Db2 might attempt to
access the keystore between the updates and report an access error. For more information, see the Db2
Configuration Parameters Guide.

Changes to the SSL_KEYDB, SSL_KEYDB_STASH, and SSL_KMIP_CLIENT_CERTIFICATE_LABEL keystore
configuration values require an instance restart to take effect. Changes to the LIBRARY keystore
configuration value do not take effect until Db2 is restarted. Similarly, if the configuration value is not

Chapter 1. Db2 security model 95

http://public.dhe.ibm.com/ps/products/db2/info/vr105/pdf/en_US/GSK_8.0.15_CapiCmd_UserGuide.pdf
https://www.ibm.com/support/pages/node/627743
https://www.ibm.com/support/pages/node/627743

changed, changes to the physical copy of the library do not take effect until Db2 is restarted. As Db2 can
access the keystore periodically, it is highly recommended that you stop Db2 when making configuration
changes, to avoid potential errors. If a mixture of encrypted and unencrypted databases exists under the
same instance, it is sufficient to quiesce those databases that are encrypted.

Key rotation
Key rotation refers to the process of changing encryption keys and is often required for compliance
purposes. Key rotation is done to reduce the risk that can come from exposure of the key, while
it exists. Since the DEK used by Db2 for encryption is never outside of the encrypted database,
backup, or transaction log, there is little risk of exposure. The same is not true for the MK,
which lives outside of the database. Db2 provides a simple way to rotate the MK by using the
SYSPROC.ADMIN_ROTATE_MASTER_KEY procedure. This procedure decrypts the embedded DEK, using
the old MK, and then re-encrypts it with the new one. The rotation of the MK does not affect the
encryption of the DEK within existing backups or archived transaction logs, but it does affect future
DEK entries. A key rotation on the primary database in an HADR environment drives a key rotation
automatically on the standby. The change, however, does not occur until other log records are sent to
the standby database. If you want to force the rotated key to the standby, the archive log command can
be used to generate the log records that are needed to replay the rotation on the standby. When the MK
is rotated, the database begins to use the new key immediately, but access to the old MK value is still
needed in the following scenarios:

• Transaction log files that have not been reused since the key rotation
• Archived encrypted transaction log files that used the previous MK value
• Encrypted backup images that used the previous MK value

Do not delete an MK from the keystore unless you are certain it is no longer referenced by any encrypted
object.

Configuring native encryption in an HADR environment
When you are encrypting a Db2 HADR configuration, it is important to remember that you are encrypting
more than one database. Both the primary and standby databases need to be encrypted to provide the
highest level of security.

Before you begin

It is possible to run an encrypted primary database and an unencrypted standby database. However, this
configuration is recommended only if the standby database does not need to access any of the files that
are encrypted on the primary. An example of such an encrypted file is an archived transaction log file.

While the primary and standby databases each have an independent, unique data encryption key, they
must also have access to the same master key (MK). This access ensures that the MK label can flow
between the databases when a MK rotation is done, and when the primary and standby databases need to
access shared encrypted files.

It is recommended that all of the databases in an HADR environment have access to the same keystore.
This can be a PKCS12 key store on a shared file system, or a centralized key store such as a KMIP
key manager or PKCS11 hardware security module. It is not recommended to use separate PKCS12 key
stores, since they must be manually kept in sync. In cases where a centralized keystore is being used,
the databases might each be configured to treat different clones of the same keystore as their primary
keystore.

It is also recommended that you consider implementing encryption for the HADR communication as well,
to ensure that the data is never exposed. Refer to Configuring TLS for the communication between primary
and standby HADR servers for setup instructions.

Procedure
To implement an HADR relationship for encrypted database, take the following steps:

96 IBM Db2 11.5: Database Security Guide

1. Create and configure a common keystore for both the primary and standby databases and place the
MK in the keystore. Save the keystore on a shared keystore service that can be accessed by both the
primary and standby databases.
For a non-encrypted database, configure Db2 to recognize the keystore. You can also migrate an old,
local keystore to a new centralized KMIP or PKCS #11 keystore on the primary node.

2. Back up the primary database:

db2 backup db <dbname>

3. Stop the HADR service on the primary node:

db2 stop hadr on db <dbname>

4. Deactivate the database on the standby node:

db2 deactivate db <dbname>

5. Drop the standby database:

db2 drop db <dbname>

6. Restore the database on the standby node with the ENCRYPT option, specifying the encryption
options and the label for the MK:

db2 restore db <dbname> encrypt

7. Start the encrypted standby database:

db2 start hadr on database <dbname> as standby

8. Reenter the HADR environment through the primary database:

db2 start hadr on database <dbname> as primary

9. When the standby database catches up to the primary database, run the following command on the
standby database to have it take over as the new primary:

db2 takeover hadr on db <dbname>

10. Repeat steps 2 through 8, using the new primary database as the starting point.
11. When the standby database catches up to the primary database, have it take over as the primary

database, to restore the HADR environment to its original configuration.
12. Repeat the entire procedure, as needed, for auxiliary standby databases.

Results
The primary and standby servers of your Db2 HADR configuration are now properly encrypted.

General diagnostics and troubleshooting

Verifying a database is protected by native encryption
Verify whether or not your database is encrypted by native encryption by verifying the
value of the Encrypted database db configuration parameter. You can also use the
ADMIN_GET_ENCRYPTION_INFO table function if you would like more information on your encryption
settings.

Procedure
To verify that your database has been successfully encrypted by Db2 native encryption, ensure that the
value of the Encrypted database db configuration parameter value is YES:

db2 get db cfg for <example_encrypted_database>
 Encrypted database = YES

Chapter 1. Db2 security model 97

Verifying the database backup image is encrypted
By default, backups of encrypted databases are also encrypted. However, if you would still like to ensure
that your backup image is encrypted, you can run the db2ckbkp command and verify that it returns valid
values for compression.

Procedure
To verify that the database backup image is encrypted, run the db2ckbkp command:

db2ckbkp -h <backup_image> | grep Compression

If the image has been successfully encrypted by Db2 native encryption, the compression parameter
should return 2 if the backup image is encrypted, or 3 if it is both encrypted and compressed.

Determining whether hardware acceleration is being used
Db2 native encryption is designed to transparently recognize and take advantage of hardware
acceleration for cryptographic operations. This feature, provided by some Intel and Power processors,
dramatically reduces the impact of these operations on performance.

Procedure
To determine whether hardware acceleration is being used by Db2 for encryption:
1. Set the diaglevel configuration parameter to the value 3.
2. Start Db2.
3. Open the db2diag.log file and look for a message similar to the following example:

2018-03-03-00.33.33.097480-300 I5523A542 LEVEL: Event
PID : 67043698 TID : 1 KTID : 21103435
PROC : db2dasftool
INSTANCE: pbird NODE : 000
HOSTNAME: hotelaix15
EDUID : 1
FUNCTION: DB2 Common, Cryptography, cryptContextRealInit, probe:1774
DATA #1 : String, 37 bytes
CPU flags(string): 0x0000000000000006
DATA #2 : String, 37 bytes
CPU flags(Uint64): 0x0000000000000006
DATA #3 : String, 40 bytes
PowerPC VCipher capability not available
DATA #4 : String, 1 bytes

Results

A short text message is displayed in the DATA #3 line, indicating whether GSKit recognizes the presence
of hardware acceleration, and whether it uses it on your system. If acceleration is detected, the message
is displayed as Encryption hardware acceleration detected - "<the platform specific name>".

Related information
diaglevel - Diagnostic error capture level configuration parameter

Testing your keystore configuration
To test a new or changed valid keystore configuration file against a centralized keystore, without
disturbing your Db2 system, you can use the appropriate key migration tool.

Procedure
To test your keystore configuration file:
1. Create a temporary PKCS #12 local keystore file.
2. Place a dummy master key in the local keystore file.

98 IBM Db2 11.5: Database Security Guide

3. Place a copy of the new or modified Db2 keystore configuration file in a safe, temporary location (for
example, not one used by Db2).

4. Run the appropriate migration tool with the local keystore file as the source and pass the new or
modified keystore configuration file as input:

• For KMIP, run the db2p12tokmip command
• For PKCS #11, run the db2p12top11 command

Results
If successful, the dummy master key is replaced in the target centralized keystore.

Example

If you create a local keystore file that is called temporary.p12 and place a copy of the modified keystore
configuration in a file that is called testkeystore.cfg, you would test the validity of the keystore
configuration by running the following command:

db2p12top11 –from temporary.p12 –to testkeystore.cfg

Where to obtain diagnostic information
If Db2 is unable to access the keystore, or if it encounters a problem during its interaction with the
keystore, it places diagnostic information into the Db2 diagnostic log (db2diag.log).

In addition, if you are using a centralized keystore, the keystore might record diagnostic information of its
own that could further clarify the problem. Centralized keystores often use a diagnostic logging facility to
record such information.

Common problems with keystore integration
When you attempt to integrate Db2 with a keystore, some configuration issues might arise that cause
errors.

Lack of keystore credentials (SQL1728N rc = 3)
Issue

Db2 does not have access to the keystore, due to the lack of credentials.

Symptom

The -1728 SQLCODE with reason code 3 is returned.

Solution

To open the keystore, the db2start command must be executed again with the OPEN KEYSTORE
option and the needed credential; you do not need to issue a db2stop command before rerunning the
db2start command.

Error when DEVICE_GROUP parameter set (SQL1782N rc = 8)
Issue

Some KMIP keystores return an error when the DEVICE_GROUP parameter is set in the Db2 keystore
configuration file.

Symptom

The -1782 SQLCODE error with reason code 8 is returned.

Solution

The DEVICE_GROUP parameter needs to be set only when using the IBM Security Key Lifecycle Manager
(ISKLM) product. Remove the parameter for other KMIP keystore products.

Chapter 1. Db2 security model 99

Adding new certificates with gsk8capicmd_64(CTGSK2043W) generates an error
Issue

GSKit returns what appears to be an error when adding new certificates.

Symptom

The error that is returned appears similar to the following example:

$ gsk8capicmd_64 -cert -receive -db "clientkeydb.p12" -stashed -file
"client.crt" -default_cert yes
CTGSK2052W An invalid basic constraint extension was found. CTGSK2043W Key
entry validation failed.

Solution

What appears to be an error is a warning. The W at the end of both GSKit codes indicates
that it is a warning (for example, CTGSK2052W). The warning indicates that, while the certificate
was received, there might be some problems with it. In this case, GSKit is complaining that the
basic constraint was not properly set, which could lead to a future 414 error from GSKit if the
ALLOW_NONCRITICAL_BASIC_CONSTRAINT parameter is not set in the configuration.

Common GSKit errors
Db2 native encryption relies on the IBM® Global Security Kit (GSKit) product to process its cryptographic
requests. If the GSKit encounters an error, a message token is returned by Db2 in the SQLCA, along with
an appropriate SQLCODE, to report the error.

These tokens can take the form of GSKit Error: XXX (where 'XXX' is a number representing the
GSKIT return code) or, if the tokens are being returned with SQL1782N and reason code 5, they can be
concatenated with the reason code message token in the SQLCA in the form of 5:XXX.

To see the General, and Key Management return codes for the GSKit, see GSKit return codes.

The following information provides some details on how to address some common GSKit errors that can
arise with Db2 native encryption.

Note: Not all possible scenarios are represented in the following examples, only the ones most frequently
encountered.

GSKit: 407
This return code indicates that the specified label cannot be found. The most common cause of this error
is an incorrect value in the SSL_KMIP_CLIENT_CERTIFICATE_LABEL keystore configuration parameter,
which results in no matching certificate being found. This problem can be caused by a misspelling or
placing quotation marks around the label value. Another possible cause is that the label represents a
certificate without a private key that is required by Db2.

GSKit: 408
This return code indicates that the key file cannot be used because the specified key file password is
incorrect. The key file might also be corrupted.

This error can be returned in these scenarios:

• The password to access the key file is incorrect.
• Db2 does not have the correct permissions to access the password stash file, if a password stash file is

being used.
• The password stash file was created with an incompatible version of GSKit.

Note: GSKit version 8.0.50.69 (and higher) generates a password stash file that older versions of GSKit
cannot read. If you believe that this scenario might apply, try recreating the stash file with the current
GSKit version.

100 IBM Db2 11.5: Database Security Guide

http://www.ibm.com/support/knowledgecenter/SSAL2T_8.1.0/com.ibm.cics.tx.doc/reference/r_gskit_error_codes.html

GSKit: 410
This return code indicates that an incorrectly formatted TLS message was received from the partner in an
TLS relationship. This error can be returned when the computer that is attempting to access the keystore
does not have the required firewall access.

GSKit: 414
This return code indicates that an incorrectly formatted certificate was received from the partner in an
TLS relationship.

This error can be returned in these scenarios:

• You are using self-signed certificates and the certificate is missing.
• The certificate that is being used is from a local certificate authority that does not have the Basic
Constraints extension active.

Note: You can use the ALLOW_NONCRITICAL_BASIC_CONSTRAINT keystore configuration parameter
to bypass this problem.

Related tasks
“Encrypting an existing database” on page 90
To encrypt the data in an existing, unencrypted database, you must create a backup image of the
database, drop it, and then restore it into an encrypted database.

Performance tuning
The simplest statement that can be made about the impact of Db2 native encryption is that it effectively
reduces the physical I/O bandwidth on the Db2 system. How your workload reacts to this change
determines the impact to its overall performance.

Note: If enabling this feature on AIX, review the following for performance considerations.

Determining the actual impact on workload depends on a number of factors, such as:

• The amount and speed of CPU available for encryption and decryption, or the existence of CPU
hardware acceleration support.

• The amount of buffer pool page reuse by the workload or, how often the workload brings in new pages
or forces old ones out.

• The volume of physical read or write operations in the buffer pool relative to the throughput efficiency of
the background processes.

• The amount of non-buffer pool I/O such as LOBs.

The biggest factor in reducing the impact of Db2 native encryption is the existence of hardware
acceleration that can be used by Db2. After the use of hardware acceleration, the next best way to
further reduce the impact on workload is to do the following, where possible:

• Shelter the workload from the physical I/O by reducing I/O wait through normal tuning actions where
possible. For example, increase the buffer pool size to avoid having queries that are waiting on physical
I/O.

• Introduce parallelism for any work that is doing the physical I/O.

The latter recommendation comes from the fact that the number of cores that are being used for
encryption purposes is limited to the actual number of threads that are doing physical I/O. While each
thread runs on a single core and uses as much CPU processing power as it can, that core might not be
fully used, nor might all available cores be in use. So, it is possible to have a situation where you still have
CPU available to do work while your system is encountering more I/O wait time on physical I/O due to
encryption. The only way to overcome this behavior is, where possible, to increase the number of threads
that are doing the physical I/O. This means that you might find it helpful to increase the parallelism of
utilities and the background infrastructure in Db2, such as page cleaners, prefetchers, and so on..

Chapter 1. Db2 security model 101

https://www.ibm.com/docs/en/db2/11.5?topic=servers-aix

Do a full performance tuning exercise on a newly encrypted system, as new and possibly different
bottlenecks could be introduced from the reduced physical I/O volume. Follow the normal Db2 tuning
exercises to ensure that I/O latency is reduced. If excess CPU capacity exists, revisit areas where physical
I/O bottlenecks or latency exist to see whether parallelism can be increased in those areas. For more
information, see Performance overview and Tuning and Monitoring Database System Performance.

IBM InfoSphere Guardium Data Encryption for encryption of data at rest
IBM InfoSphere Guardium Data Encryption is a comprehensive software data security solution that when
used in conjunction with native Db2 security provides effective protection of the data and the database
application against a broad array of threats.

InfoSphere Guardium Data Encryption helps organizations ensure that private and confidential data is
strongly protected and in compliance with regulations and legislative acts. The key benefits of InfoSphere
Guardium Data Encryption are:

• Proven, strong data security for the Db2 database system
• Protection of live files, configuration files, log files and back-up data
• Transparent to application, database and storage environments
• Unified policy and key management for protecting data in both online and offline environments
• Meets performance requirements

InfoSphere Guardium Data Encryption enables you to encrypt offline database backups and to encrypt
online ("live") database files. This is encryption of data on the disk, sometimes called "data at rest" as
opposed to "data in flight", which is traveling over the network.

• For backups, data is encrypted as it is being backed up, so the data on the backup device is encrypted.
Should the data need to be recovered, the recovery server recognizes that the data is encrypted and will
un-encrypt the data.

• For database files, the operating system data files containing the data from the Db2 database are
encrypted. This protects the data files from unauthorized users trying to read the "raw" database file.

InfoSphere Guardium Data Encryption is transparent to users, databases, applications, and storage. No
code changes or changes to existing infrastructure are required. InfoSphere Guardium Data Encryption
can protect data in any storage environment, while users continue to access data the in the same way as
before.

InfoSphere Guardium Data Encryption can protect database applications, because it can prevent changes
to executable files, configuration files, libraries, and so on, thereby preventing attacks on the application.

Note: For Db2 pureScale environments, InfoSphere Guardium Data Encryption is supported only on AIX.
InfoSphere Guardium Data Encryption is not supported on other platforms that are running Db2 pureScale
environments.

Architecture of InfoSphere Guardium Data Encryption
InfoSphere Guardium Data Encryption is a set of agent and server software packages that you
administer by using a Web-based user-interface and command-line utilities. The InfoSphere Guardium
Data Encryption administrator configures security policies that govern how security and encryption are
implemented.

According to how these security policies are defined, the InfoSphere Guardium Data Encryption backup
agent encrypts Db2 backups, and the InfoSphere Guardium Data Encryption file system agent encrypts
Db2 data files.

The security server stores the security policies, encryption keys and event log files. Security policies
contain sets of security rules that must be satisfied in order to allow or deny access. Each security rule
evaluates who, what, when, and how protected data is accessed and, if these criteria match, the security
server either permits or denies access.

Figure 5 on page 103 illustrates the architecture of InfoSphere Guardium Data Encryption.

102 IBM Db2 11.5: Database Security Guide

https://www.ibm.com/docs/en/db2/11.5?topic=fundamentals-performance-tuning
https://community.ibm.com/community/user/datamanagement/blogs/rahul-kumar/2022/12/02/tuning-and-monitoring-database-system-performance?CommunityKey=ea909850-39ea-4ac4-9512-8e2eb37ea09a

Figure 5. Architecture of InfoSphere Guardium Data Encryption

File system agent
The InfoSphere Guardium Data Encryption file system agent process is always running in the background.
The agent intercepts any attempt to access data files, directories, or executables that you are protecting.
The InfoSphere Guardium Data Encryption file system agent forwards the access attempt to the security
server and, based upon the applied policy, the security server grants or denies the attempted access.

InfoSphere Guardium Data Encryption protection extends beyond simply allowing or denying access to
a file, you can also encrypt files. Just the file contents is encrypted, but the file metadata is left intact.
Therefore, you do not have to decrypt an encrypted file just to see it's name, timestamps, file type,
and so on. This allows data management applications to perform their functions without exposing the
file contents. For example, backup managers can backup specific data, without being able to see the
contents.

If an encrypted file is accessed by an unauthorized user, its contents are worthless without the
appropriate security server approval and encryption keys. However, users with the correct policies and
permissions are unaware that encryption and decryption are taking place.

Backup agent
All database backup functions that are normally performed by the Db2 backup API system are supported
by the InfoSphere Guardium Data Encryption server, including native database compression. Other than
an additional command-line argument, Db2 backup operators are unaware of InfoSphere Guardium Data
Encryption intervention. InfoSphere Guardium Data Encryption backs up and restores static data-at-rest
and active online data.

Basic backup and restore configuration is supported. In the basic configuration, data is encrypted and
backed up with one server and multiple agents; data is decrypted and restored on an agent that is
configured with the same server that was originally used to make the backup.

Chapter 1. Db2 security model 103

Single-site and multi-site configurations are also supported for backup and restore. In a single-site
scenario, configuration data is mirrored across multiple security servers in a single data center. In a
multi-site scenario, backups are restored on different security servers in different data centers.

Audit logging
InfoSphere Guardium Data Encryption agent activity is closely monitored and logged through a
centralized audit logging facility. All auditable events, including backups, restores, and security
administration operations can be logged. This includes InfoSphere Guardium Data Encryption system
events, such as initialization, shut down and restart; and network connects and disconnects between
different InfoSphere Guardium Data Encryption components.

Database encryption using AIX encrypted file system (EFS)
If you are running a Db2 system on the AIX operating system, you have the option to set up an encrypted
database by using AIX encrypted file system (EFS). For detailed information about EFS, see your AIX
documentation.

Note: If you are working in a partitioned database environment, to use EFS, your database should be in a
single database partition.

You can encrypt the operating system files that contain the data in database tables by using the
underlying EFS with JFS2 file system.

To set up encryption, the steps are as follows:

1. Enable EFS on the system.
2. Load the keystores for the user account under which the Db2 database daemons run.
3. Enable EFS on the database file system.
4. Determine the operating system file to encrypt.
5. Encrypt the file that contains the database table that requires EFS protection.

Enabling EFS on the system
Before you enable EFS, the clic.rte fileset must be installed. The clic.rte install image can be found
on the Expansion Pack CD.

Run the following command as root to enable EFS on the system:

% efsenable -a

You need to run the efsenable command only once.

Loading the keystores
In the following configuration examples, the Db2 user account under which the database daemons run is
called abst. The user abst must have a keystore and any group that abst is a member of must also have a
keystore.

1. All keystores must be associated with the abst process before starting the Db2 daemons.

You can verify that they are associated by using the efskeymgr -V command, as shown in the
following example:

lsuser abst
abst id=203 pgrp=abstgp groups=abstgp,staff ...

efskeymgr -V
List of keys loaded in the current process:
 Key #0:
 Kind User key
 Id (uid / gid) 203
 Type Private
key

104 IBM Db2 11.5: Database Security Guide

 Algorithm RSA_1024
 Validity Key is
valid
 Fingerprint
24c88df2:d91cb6a2:c3e11b6a:4c13f8b4:666fabd8

 Key #1:
 Kind Group
key
 Id (uid / gid) 1
 Type Private
key
 Algorithm RSA_1024
 Validity Key is
valid
 Fingerprint
03fead42:57e7646e:a1715626:cfa56c8e:8abed1c1

 Key #2:
 Kind Group
key
 Id (uid / gid) 212
 Type Private
key
 Algorithm RSA_1024
 Validity Key is
valid
 Fingerprint
339dfb19:bc850f4c:5551c975:7fe4961b:2dddf3bc

2. If there are no keystores shown as associated with the abst process, try loading the keystores using
the command: % efskeymgr -o ksh

This command prompts for the keystore password, which is initially set to the login password.
3. Confirm that the user and group keys are loaded by rerunning the command: % efskeymgr -V

Both the user and group keys should be listed. If the group keystores are still not listed, continue with
Step 4.

4. Depending on how a group was created, the group keystore may not exist. If the efskeymgr -V
command does not list the user's group keystores, you must create the group keystores.

As root or the RBAC role aix.efs_admin, create the group keystore:

% efskeymgr -C group_name

5. Assign group keystore access to each applicable user:

% efskeymgr -k group /group_name -s user/user_name

If a user is already logged in, they will not immediately have access to the group keystore, and they
should reload their keystore using the efskeymgr -o ksh command, or re-login.

Enabling EFS on the database file system
EFS only runs on JFS2 file systems and must be specifically enabled.

If your database resides on an existing file system, run the % chfs -a efs=yes filesystem
command to enable EFS, for example:

% chfs -a efs=yes /test01

If you are creating a new file system, you can enable EFS using the -a efs=yes option with the smit
command or the crfs command. For example:

% crfs -v jfs2 -a efs=yes -m mount_point -d device -A yes

EFS is now enabled on the file system but is not turned on. Turn on EFS only for the particular database
tables requiring encrypted data (for more information, see your AIX EFS documentation about the
efsmgr command and inheritance).

Chapter 1. Db2 security model 105

Determining the file to encrypt
To determine which file contains a particular database table that you want to protect with EFS encryption,
follow these steps that use the EMPLOYEE table as an example.

1. Use a query similar to the following example to find the TBSPACEID for the table:

SELECT TABNAME, TBSPACEID FROM syscat.tables WHERE tabname='EMPLOYEE'

Assume the results of this query are as follows:

TABNAME TBSPACEID

EMPLOYEE 2

2. Look up the table spaces for that TBSPACEID with a query similar to the following example:

LIST TABLESPACE CONTAINERS FOR 2

Assume the results of this query are as follows:

Container ID Name Type

0 /test01/abst/NODE0000/BAR/T0000002/C0000000.LRG File

You now know that this table space is contained in the operating system file called /test01/abst/
NODE0000/BAR/T0000002/C0000000.LRG. This is the file you need to encrypt.

Encrypting the file
First, as you would do before making any major change to data or databases, back up your database.

Follow these steps to encrypt the file:

1. List the file, for example:

ls -U /test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

-rw-------- 1 abst abstgp 33554432 Jul 30 18:01
/test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

2. Encrypt the file using the efsmgr command, for example:

efsmgr -e /test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

If you list the file again you will see an "e" at the end of the permissions string that indicates the file is
encrypted. For example:

ls -U /test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

-rw-------e 1 abst abstgp 33554432 Jul 30 18:03
/test01/abst/NODE0000/BAR/T0000002/C0000000.LRG

3. Start the Db2 database manager and use it as normal. All data added to the EMPLOYEE table and this
encrypted table space will be encrypted by EFS in the underlying file system. Whenever the data is
retrieved, it will be decrypted and presented as normal through the Db2 database manager.

Encryption of data in transit
Db2 uses the Transport Layer Security (TLS) protocol to securely transmit data between servers and
clients. TLS technology uses both asymmetric cryptography (for example, public key encryption) and
symmetric cryptography to make this work.

You can use TLS to protect data in transit on all networks that use TCP/IP. In other words, a TLS
connection is a secured TCP/IP connection.

106 IBM Db2 11.5: Database Security Guide

Public key encryption for server authentication
TLS uses public-key algorithms to exchange encryption key information and digital certificate information.
Public key encryption is used to ensure that a client can trust the certificate that is used by a server.

Public key cryptography uses two different encryption keys during a TLS session:

• A public key to encrypt data.
• An associated private key to decrypt it.

With public-key cryptography, the public key is not secret, but the messages it encrypts can be decrypted
only by using it's associated private key. The private key must be securely stored in a file that is called a
keystore.

Public-key algorithms alone do not ensure secure communication, you also need to verify the identity of
whoever is communicating with you. To do this authentication, TLS uses digital certificates.

Distribution and use of digital certificates
To facilitate encryption of data in a Db2 environment, the following tasks need to happen for each Db2
server within your organization:

1. A member of your organization uses GSKit to create a public and private key pair.
2. The public key is sent to a certificate authority (CA) where a certificate is created and signed.
3. The server's certificate (which includes the server's public key) is distributed to all of the Db2 clients

(and servers) within your organization for storage within their local keystores.

Once the certificates for each server have been distributed within your network, all of the parts needed to
make TLS work are in place.

Before data is encrypted for transmission between Db2 nodes in your network, a TLS handshake occurs.
This enables a client to check the validity of a server's certificate and, if the certificate is trusted, create a
session key by using the server's public key. The session key is used to encrypt data traveling between the
client and server for the duration of the connection.

Keystores
To ensure secure storage of private keys and certificates, you need to use a keystore. You can use
the IBM® Global Security Kit (GSKit) to create a PKCS#12 keystore (with the .p12 extension) or a CMS
keystore (with the .kdb extension).

Certificate Management System (CMS) is the native GSKit keystore, containing:

• X.509 certificates.
• Certificate requests (pending signing by an authority).
• Private keys for the stored certificates where applicable.

If a certificate has an associated private key, it is stored in an encrypted state in the keystore with its
associated certificate.

Note: Private keys cannot be stored without an associated certificate.

Creating a keystore with GSKit
A keystore is an industry recognized way of securely storing TLS private keys, root certificates, and
certificate chains. Db2 supports both the IBM proprietary Certificate Management System (CMS) format
and the Public-Key Cryptography Standards #12 (PKCS12) open standard format.

Before you begin
This procedure explains how to use the IBM Global Security Kit (GSKit) to create a keystore for digital
certificates and keys that enable secure transmission of data between servers and clients on your Db2
network, by using TLS.

Chapter 1. Db2 security model 107

https://www.ibm.com/docs/en/db2/11.5?topic=encryption-global-security-kit-installation-gskit

Before you attempt to user GSKit, verify that GSKit is installed properlyverify that GSKit is installed
properly.

About this task
For information about the GSKit tool GSKCapiCmd, see the GSKCapiCmd User's Guide.

Procedure
1. Use the GSKCapiCmd tool to create your keystore. The keystore must be of a CMS type

(extension .kdb) or a PKCS12 type (extension .p12).
The GSKCapiCmd is a non-Java-based command-line tool, and Java does not need to be installed on
your system to use this tool.

You start GSKCapiCmd by running the command,gskcapicmd as described in the GSKCapiCmd User's
Guide. The path for the command is sqllib/gskit/bin on Linux and UNIX operating systems, and
C:\Program Files\IBM\GSK8\bin on both 32-bit and 64-bit Windows operating systems. (On 64-
bit platforms, the 32-bit GSKit executable files and libraries are also present; in this case, the path for
the command is C:\Program Files (x86)\IBM\GSK8\bin.) Ensure PATH (on Windows operating
systems) includes the proper GSKit library path, and LIBPATH, SHLIB_PATH, or LD_LIBRARY_PATH
(on UNIX or Linux operating systems) include the proper GSKit library path, such as sqllib/lib64/
gskit.

For example, the following command creates a keystore that is called mykeystore.kdb and a stash
file that is called mykeystore.sth:

gsk8capicmd_64 -keydb -create -db "mykeystore.kdb" -pw "myServerPassw0rdpw0"
 -stash

A stash file is an obfuscated (altered to impair its readability by humans) form of a keystore password.
Having a stash file allows Db2 to access a keystore file without user intervention, and prevents the
keystore's files from being casually read.

The -stash option creates a stash file at the same path as the keystore, with a file extension of .sth.
At instance start-up, GSKit uses the stash file to obtain the password to the keystore.

Note: Use strong file system protection on the stash file. By default, only the instance owner has
access to this file (both read and write access).

2. Add a certificate for your server to your keystore.

What to do next
Viewing the contents of your keystore

To view the contents of your keystore, run the GSKit command gsk8capicmd_64 with the -cert -list
options. For example, the following command lists the contents of the keystore mydbserver.kdb:

gsk8capicmd_64 -cert -list -db mykeystore.p12 –stashed
Certificates found
* default, - personal, ! trusted, # secret key
! MyRootCA
- Db2Server

Where

• "!" identifies a certificate that is being trusted to sign other certificates. This option should appear only
before root and intermediate CA certificates.

• "-" identifies an end-point (or personal) certificate. Only end-point certificates are valid to specify in
SSL_SVR_LABEL.

Viewing details about a certificate in your keystore

108 IBM Db2 11.5: Database Security Guide

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.swg.tivoli.gskit.install.doc/doc/t0062024.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.swg.tivoli.gskit.install.doc/doc/t0062024.html
ftp://ftp.software.ibm.com/software/webserver/appserv/library/v80/GSK_CapiCmd_UserGuide.pdf

To view details about a certificate in your keystore file, such as the key size and CA information, run
the GSKit command gsk8capicmd_64 with the -cert -details options. For example, the following
command shows the details of the certificate db2Server from the keystore file mydbserver.kdb:

gsk8capicmd_64 -cert -details -label db2Server -db mydbserver.kdb -stashed

Simplify keystore setup in Microsoft Windows environments
You can simplify access to certificates on Db2 clients that run on Windows, by using the Microsoft
Certificate Store (MSCS).

You can integrate the IBM Global Security Kit (GSKit) with MSCS, which is a native component of
supported Windows operating systems.

The MSCS can be used to store both root certificates and endpoint certificates. If Windows servers on
your Db2 network are already using MSCS, it can save you the time and effort of creating your own
keystores.

Accessing the MSCS
You access the MSCS through the Internet Options dialog box (for example, Control Panel > Internet
Options). By clicking the Contents tab and then Certificates, you can access all of the certificates that are
contained in the MSCS.

Certificates include:

• Personal certificates that are issued to the current user account.
• Certificates that are assigned to other users on the current server.
• Intermediate and Root certificate authorities (CAs)
• Trusted and untrusted publishers of certificates

Note: Entries in the Friendly Name column equal the Label values that are found in a certificate file or
keystore. Watch for duplicate Friendly Name values as only the first occurrence is used by the MSCS.

You can use the MSCS to import or export certificates and certificate chains, or you can use the
command-line tools that are found in GSKit.

Integrating the MSCS with GSKit
To get GSKit to recognize the MSCS as a key database:

1. Log in to your Db2 server as the Db2 instance owner and set the following DBM CFG configuration
parameters:

SSL_[CLNT|SVR]_KEYDB GSK_MS_CERTIFICATE_STORE
SSL_[CLN|SVR]_STASH NULL

2. Open GSKit and run the gsk8capicmd_64 command with the -db option, by using
GSK_MS_CERTIFICATE_STORE as the target.

Note: GSKit works with certificates that are associated with the current user account, not the computer
account.

Digital certificates
A digital certificate consists of the public portion of a private/public key pair and metadata values that
identify the holder of the certificate (name, company name, certificate expiry date, etc.). A certificate is
said to be ‘signed’ when a CA or individual uses a private key to encrypt a hash of a message.

Signing of digital certificates
Note: In TLS encryption, a hash is a mathematical reworking of a message to reduce it to a manageable
size. It is created by using a hashing algorithm, which is included as part of a signed message.

Chapter 1. Db2 security model 109

The hash can be decrypted only by someone who has the public portion of the private/public key pair.
Decrypting the hash proves that the sender (or holder of the certificate) is trusted by the signer and that
secure communication can begin.

In the following diagram, the receiver of a signed message is verifying the identity of the signer.
Authentication is done by comparing a hash of the certificate that the receiver creates with a similar
hash that the signer created and then encrypted using their private key. The receiver uses the signer's
public key to decrypt the signer's signature to expose the original hash of the certificate.

If the two hashes match, then the receiver can trust the signature of the message, as only the signer could
have encrypted the hash with the private portion of their key pair.

Note: If you have a small network of only a few servers and clients, you can . You then send certificates
for each server to trusted clients within your network, and these clients trust the certificates as if they
were signed by a CA.

The certificate chain
Your certificate might in turn depend on the digital certificate of another CA; there might be a hierarchy
of certificates that are issued by multiple CAs, each depending on the validity of the next. However, the
receiver needs the public key of the root CA, eventually. The root CA is the CA at the top of the hierarchy,
and this hierarchy, or dependency, is known as a certificate chain.

To trust the validity of the digital certificate of the root CA, the user must receive that digital certificate
in a secure manner. Examples of secure transfer include downloading from an authenticated server, or
with preinstalled software received from a reliable source. Applications that send a digital certificate to a
receiver send not just their own certificate: They also all the CA digital certificates necessary to verify the
hierarchy of certificates up to the root CA certificate.

For a digital certificate to be entirely trustworthy, the owner of the digital certificate must be careful to
protect their private key in their keystore. If their private key has been compromised, an imposter could
misuse their digital certificate.

110 IBM Db2 11.5: Database Security Guide

Distributing a signed certificate
When you receive your signed certificates from a CA, you can use GSKit to add (receive) them to a
keystore and to import them to a certificate file. You can then distribute the certificate file to the Db2
servers and clients within your network. This process allows receiving clients and servers to validate a
sending server's certificate against the one that they added to their local keystore. Once the certificate is
validated, the client and server can establish encrypted communication.

Note: In some cases, your security team might do all the work for you. They might act as your CA and
create the needed keys and certificates for each Db2 server in your network. They might provide these
components in a certificate file like a *.crt or they might provide you with a keystore that contains all of
required elements.

The TLS handshake
During a TLS handshake, a public-key algorithm is used to securely exchange digital signatures and
encryption keys between a client and a server. This identity and key information is used to establish
a secure connection for the session between the client and the server. After the secure session is
established, data transmission between the client and server is encrypted using a symmetric algorithm,
such as AES.

The client and server perform the following steps during the TLS handshake:

1. The client requests a TLS connection and lists the default set of supported cipher suites.

Note: While the set of cipher suites used by the Db2 server can be altered, The client always uses the
default set.

2. The server responds with a selected cipher suite.
3. The server sends its digital certificate to the client.

4. The client verifies the validity of the server certificate ('Was this cert signed by someone I've been told
to trust?') by comparing a decrypted hash of the certificate against a similar one in its keystore.

Chapter 1. Db2 security model 111

5. If hostname validation is enabled, the client then checks that the hostname to which it is configured
to connect matches what is present in the certificate. This option is available in Db2 11.5.6 and later
clients.

6. If the server's certificate is trusted by the client, the client uses the server's public key to encrypt a
random number and send it to the server. The server then uses it's private key to decrypt the number,
which becomes the session key.

Note: Values assigned to the dbm cfg parameter SSL_CIPHERSPECS influence the size of the session
key.

7. The client and server securely exchange information using the negotiated session key.

Attention: The Db2 database system supports the (optional) authentication of the client during the
TLS handshake only when connecting to a Db2 for z/OS server.

Hostname validation for Db2 11.5.6 clients
Db2 11.5.6 clients can verify the hostname that appears in a Db2 server's Transport Layer Security (TLS,
formerly known as SSL) certificate against the server for which they are configured to connect. Using
hostname validation, Db2 clients have an added layer of security when negotiating secure connections to
Db2 servers during a TLS handshake.

How hostname validation works
When a Db2 client sends a client hello message to a Db2 server during a TLS handshake, the server
responds with it's own server hello message, which includes, among other things, its certificate. It is
at this point that the client authenticates the server using this certificate.

If hostname validation is enabled, the client verifies that the hostname to which it is configured to
connect matches one of the hostnames present in the certificate. The server’s identity can be represented
using different fields in the certificate. Once the client authenticates the server, both parties perform key
exchange and a successful TLS connection is established.

Here is an example scenario where the client connects to the database server at xyz.example.com with
TLS and hostname validation enabled:

1. A Db2 client initiates a connection with a Db2 server:

Hostname=xyz.example.com;Security=SSL;SSLClientHostnameValidation=Basic;Database=….

2. The server responds with its certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=xyz.example.com
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

112 IBM Db2 11.5: Database Security Guide

Extensions
 subjectAlternativeName
 dNSName: xyz.example.com

Signature Algorithm : SHA1WithRSASignature

3. The client performs hostname validation. In this case, it is successful because the certificate contains
xyz.example.com as its subject alternate name (SAN).

4. The rest of the handshake takes place and a secure connection is established with the server.

Note: If hostname validation fails, SQL20576N with SQLSTATE 08001 is returned to the client and an
error message is logged to the db2diag.log. This message includes one or more hostnames contained
in the server certificate and any hostnames that the client used to match against this certificate.

Configuring Db2 clients for hostname validation when negotiating a TLS connection
You can configure Db2 clients to validate the hostname of a Db2 instance when negotiating a Transport
Layer Security (TLS, formerly SSL) connection. While this feature can be used when connecting to any
supported Db2 server, it is only available in Db2 11.5.6 clients, or newer clients.

Hostname validation can be enabled for the following client interfaces.

• CLI/ODBC
• Embedded SQL
• JDBC

For CLI, ODBC or embedded SQL, the SSLClientHostnameValidation parameter needs to be set to
Basic in the connection string, db2cli.ini, or db2dsdriver.cfg.

For Java applications, the db2.jcc.sslClientHostnameValidation property needs to be set
to BASIC. For more information, see the description for the db2.jcc.sslClientHostnameValidation
configuration property in IBM Data Server Driver for JDBC and SQLJ configuration properties.

Configuring hostname validation for connections to alternate servers
The alternateserverlist Data Server Driver configuration parameter specifies alternate servers that
a Db2 client can use if the initial connection to the database fails.

As explained in the topic Configuration of Db2 automatic client reroute support for applications other than
Java, these alternate servers are not used after the initial connection.

When connecting to one of the alternate servers from this parameter, hostname validation is successful if
the server certificate matches one of the following:

• The primary hostname that the client configured
• The hostname of this alternate server as specified in alternateserverlist parameter

For example, if we have the following db2dsdriver.cfg file and the client tries the alternate
server abc.db2.example.com during the initial connection because xyz.db2.example.com is down, the
certificate returned by the server must include either abc.db2.example.com or xyz.db2.example.com
for hostname validation to be successful.

<configuration>
 <dsncollection>
 <dsn alias="test" name="testdb" host="xyz.db2.example.com" port="1234">
 </dsn>
 </dsncollection>
 <databases>
 <database name="testdb" host="xyz.db2.example.com" port="1234">
 <acr>
 <parameter name="enableAcr" value="true"/>
 <parameter name="maxAcrRetries" value="10"/>
 <parameter name="acrRetryInterval" value="5"/>
 <parameter name="enableAlternateServerListFirstConnect" value="true"/>
 <alternateserverlist>
 <server name="server1" hostname="abc.db2.example.com" port="1234"/>
 </alternateserverlist>
 </acr>
 </database>

Chapter 1. Db2 security model 113

 </databases>
</configuration>

Configuring hostname validation for connections to alternate groups
The alternategroup Data Server Driver configuration parameter specifies alternate groups that a Db2
client can use as an additional failover mechanism for the initial connection and existing connections.

If any alternate servers are cached for a given group in the srvrlst.xml file, they are added as alternate
servers to this group. Each alternate group’s representative host is always added as an alternate server to
the respective group, to ensure there is always at least one alternate server for a given alternate group.

When connecting to one of the alternate servers in an alternate group, hostname validation is successful if
the server certificate matches one of the following:

• The hostname representing the alternate group as specified in alternategroup parameter
• The hostname of the alternate server as specified in the server list returned by the server

For example, in the following db2dsdriver.cfg, we have an alternate group represented by
abc.db2.example.com. Let us say that a client connects to it because the primary group host,
xyz.db2.example.com, is down. For this example, let us assume that abc.db2.example.com returns
a server list (abc.db2.example.com and pqr.db2.example.com) that is associated with the alternate
group.

When the client reroutes to pqr.db2.example.com because the configured alternate group host,
abc.db2.example.com, is down, hostname validation succeeds only if the hostname in the
server’s returned certificate matches either the alternate group hostname configured at the
client, abc.db2.example.com, or the hostname in the server list that is returned to the client
(pqr.db2.example.com)

<configuration>
 <dsncollection>
 <dsn alias="test" name="testdb" host="xyz.db2.example.com" port="1234"/>
 </dsncollection>
<databases>

 <database name="testdb" host="xyz.db2.example.com" port="1234">
 <wlb>
 <parameter name="enableWLB" value="true" />
 </wlb>
 <acr>

 <alternategroup>
 <parameter name="enableAlternateGroupSeamlessACR" value="true"/>
 <database name="testdb" host="abc.db2.example.com" port="1234">
 </database>
 </alternategroup>

 <parameter name="acrRetryInterval" value="1" />
 <parameter name="enableACR" value="true" />
 <parameter name="enableseamlessACR" value="true" />
 <parameter name="maxAcrRetries" value="3" />
 </acr>

 <parameter name="TcpipConnectTimeout" value="1" />
 <parameter name="keepAliveTimeout" value="10" />
 </database>
</databases>
</configuration>

Related concepts
Alternate groups for connections to from non-Java clients

Adding a client affinity list to the db2dsdriver.cfg file for hostname validation
A client affinity lists allows a client to fail-over to one or more alternate servers in the given order.

When connecting to one of these alternate servers, hostname validation is successful if the server
certificate matches one of the following:

• The primary hostname to which the client is configured to connect

114 IBM Db2 11.5: Database Security Guide

• The hostname of an alternate server specified by the alternateserverlist parameter

For example, the following db2dsdriver.cfg file is configured so that the client's attempts to
connect are targeted at pqr.db2.example.com, abc.db2.example.com, and then xyz.db2.example.com
in sequence until a connection is established. For hostname validation to be successful for any of these
connections, the server’s certificate must match either xyz.db2.example.com or the hostname of the
alternate server to which the client is attempting to connect.

<configuration>
 <dsncollection>
 <dsn alias="test" name="testdb" host="xyz.db2.example.com" port="1234"/>
 </dsncollection>
<databases>

 <database name="testdb" host="xyz.db2.example.com" port="1234">

 <acr>

 <parameter name="enableAcr" value="true"/>
 <parameter name="maxAcrRetries" value="1"/>
 <parameter name="acrRetryInterval" value="2"/>

 <alternateserverlist>
 <server name="server1" hostname="xyz.db2.example.com" port="1234">
 </server>
 <server name="server2" hostname="abc.db2.example.com" port="1234">
 </server>
 <server name="server3" hostname="pqr.db2.example.com" port="1234">
 </server>
 </alternateserverlist>

 <affinitylist>
 <list name="list1" serverorder="server3,server2,server1">
 </list>
 </affinitylist>

 <clientaffinitydefined>
 <client name="client1" hostname="client.example.com" listname="list1">
 </client>
 </clientaffinitydefined>

 </acr>

 </database>
</databases>
</configuration>

Configuring Db2 instances for hostname validation
For hostname validation to work on your Db2 clients, the TLS certificates on the Db2 instances to which
they will connect need to include the required hostname information. You include this information when
creating the certificate signing request (CSR) for a CA-signed certificate or when creating a self-signed
certificate. The hostnames you include when creating this certificate depends on the configuration of the
Db2 server.

Applications beyond single server connections
Hostname validation is also supported for client connections to the following non-serial Db2 server
environments:

• Client connections to Db2 pureScale clusters.
• Client connections to HADR servers.
• Client connections to Db2 pureScale clusters in an HADR environment.
• Client connections to Database Partitioning Feature (DPF) clusters.
• Client connections to Db2 for z/OS servers.
• Outbound connections to Federated data sources.
• Client connections to Db2 servers with multiple host names (multi-homed).

Chapter 1. Db2 security model 115

Representing servers in a TLS certificate
Certificates need to be created for the Db2 servers to which your clients connect. These certificates are
generated from certificate signing requests (CSRs) sent to internal or third party certificate authorities for
signing, or are self-signed within your organization. Hostname validation at the Db2 client is successful if
the hostname which the client has been configured to connect matches one of the hostnames present in
the server certificate. There are several options for representing a Db2 instance in a certificate.

Examples included in this section apply to both and created using GSKit.

Using a common name (CN) value
The Common Name field in the subject name of the certificate can be used to specify the hostname of the
server. Hostname validation will be successful if the hostname that the client configured matches what is
present in the Common Name of the certificate.

• If a subject alternate name (SAN) entry is present in the certificate, then the common name is ignored.
• Wildcard (*) hostnames in the common name field are supported when performing hostname validation.

Warning: In accordance with RFC 6125, use a Subject Alternate Name (SAN) instead of a common
name to specify the server’s hostname in the certificate.

For example, to create a certificate with xyz.db2.example.com as the common name,
CN=xyz.db2.example.com needs to be present as part of the -dn option in the gsk8capicmd_64
-cert -create command (for self-signed certificates) or gsk8capicmd_64 -certreq command (for
CSRs).

The following example shows how the common name appears in the generated certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=xyz.db2.example.com
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Signature Algorithm : SHA1WithRSASignature

Using DNS Names as SAN values
One or more hostnames can be specified in the certificate using dNSName entries under the Subject
Alternate Name (SAN) extension. Hostname validation is successful if the hostname to which the client is
configured to connect matches at least one of the dNSName entries. These entries are also referred as
DNS Name in some places.

For example, to create a certificate with xyz.db2.example.com in the SAN, you include -san_dnsname
"xyz.db2.example.com" option of the GSKit command

The following example shows a certificate generated to include a single DNS name in the SAN.

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: xyz.db2.example.com

Signature Algorithm : SHA1WithRSASignature

To create a certificate with multiple DNS names in the SAN, simply separate them with commas (-
san_dnsname "xyz.db2.example.com,abc.db2.example2.com) in the GSKit command.

116 IBM Db2 11.5: Database Security Guide

https://tools.ietf.org/html/rfc6125

The following example shows a certificate generated to include multiple DNS names in the SAN:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: xyz.db2.example.com
 dNSName: abc.db2.example2.com

Signature Algorithm : SHA1WithRSASignature

You can also configure your certificate to include a common name value as well as a SAN value that is
used for hostname validation.

Note: With this configuration, the common name value is ignored when doing hostname validation since a
SAN is specified in the certificate.

To create a certificate with xyz.db2.example.com in the common name and abc.db2.example2.com
in the SAN, include both CN=xyz.db2.example.com as part of the -dn option and
"abc.db2.example2.com" as the -san_dnsname option in your GSKit command.

The following example shows a certificate generated to include both a common name value and a DNS
name in the SAN:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=xyz.db2.example.com
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: abc.db2.example2.com

Signature Algorithm : SHA1WithRSASignature

Using IP addresses as SAN values
You can specify one or more IP addresses in your GSKit command using the -san_ippaddr field.

As a best practice, use hostnames instead of IP addresses in the certificate for the following reasons:

• An IP address is not necessarily a reliable identifier for a server, due to private networks, NAT, etc.
• According to RFC 6125, less than 1% of TLS certificates issued use them.
• A certificate has to be recreated every time a server’s IP address changes.

However, if the client connects to a server using an IP address (IPV4 or IPV6), this IP address has to be
present in the server’s certificate for hostname validation to be successful.

Note: When an IP address is used to connect to a server, this address is not resolved to its hostname to
match against the server certificate when performing hostname validation.

To create a certificate with 127.0.0.1 in the SAN, include -san_ippaddr "127.0.0.1" in the GSKit
command.

The following example shows a certificate generated to include an IP address in the SAN:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA

Chapter 1. Db2 security model 117

https://tools.ietf.org/html/rfc6125

Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 iPAddress=127.0.0.1

Signature Algorithm : SHA1WithRSASignature

To create a certificate with multiple IP addresses in the SAN, simply separate them with commas
(-san_ipaddr "127.0.0.1,127.0.0.2") in the GSKit command.

The following example shows a certificate generated to include multiple IP addresses in the SAN:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 iPAddress=127.0.0.1
 iPAddress=127.0.0.2

Signature Algorithm : SHA1WithRSASignature

To create a certificate with a common name value as well as an IP address in the SAN, simply include both
of the options (-dn "CN=xyz.db2.example.com,..." -san_ipaddr "127.0.0.1") in the GSKit
command.

Note: In this case, the common name value is ignored when doing hostname validation since a SAN is
specified in the certificate.

The following example shows a certificate generated to include both a common name and an IP address
in the SAN:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=xyz.db2.example.com
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 iPAddress=127.0.0.1

Signature Algorithm : SHA1WithRSASignature

To create a certificate with both a DNS Name and an IP address in the SAN, simply add -san statements
for both options (-san_dnsname "xyz.db2.example.com" -san_ipaddr "127.0.0.1",) in the
GSKit command.

The following example shows a certificate generated to include both a DNS name and an IP address in the
SAN:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName

118 IBM Db2 11.5: Database Security Guide

 dNSName: xyz.db2.example.com
 iPAddress=127.0.0.1

Signature Algorithm : SHA1WithRSASignature

Using wildcards in hostnames
Certificates with wildcard character, *, as part of the hostnames are supported when performing
hostname validation on the client. However as specified in RFC 6125, the client employs the following
rules when comparing hostnames against wildcard certificates:

• The wildcard character can only be present in the left-most label and can only be included once.
• The wildcard character can only be used to match a single label.
• The wildcard character doesn’t have to be the only character in the label.
• The wildcard character can match zero or more characters in the label.

Note: The term label in these rules refers to domain name label. Labels are strung together separated
by dots to form a fully qualified hostname. For example, xyz, db2, example, and com are the labels that
constitute the fully qualified hostname, xyz.db2.example.com.

For example the following use of wildcards is permitted:

"*.db2.example.com"
"f*.db2.example.com"

However, the following examples are not permitted, as the wildcard is used in labels other than the
leftmost label in the hostname:

"foo.*.db2.example.com"
"*.db2.example.*.com"

To create a certificate with *.db2.example.com as the common name, include CN=*.db2.example.com
as part of the -dn field in the GSKit command

To create a certificate with *.db2.example.com in the SAN, include -san_dnsname
"*.db2.example.com" in the GSKit command. This allows the SAN to represent all hostnames in the
example.com domain.

The following example shows a certificate generated to include a single wildcard hostname in the SAN:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: *.db2.example.com

Signature Algorithm : SHA1WithRSASignature

To create a certificate with multiple wildcard hostnames in the SAN, you need to include both hostnames,
separated by a comma, within the -san_dnsname field of the GSKit command.

The following example shows a certificate generated to include multiple wildcard hostnames:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Chapter 1. Db2 security model 119

https://tools.ietf.org/html/rfc6125#section-6.4.3

Extensions
 subjectAlternativeName
 dNSName: *.db2.example.com
 dNSName: a*.db2.example2.com

Signature Algorithm : SHA1WithRSASignature

To create a certificate with a combination of hostnames and wildcard hostnames, simply include both in
the -san_dnsname field of the GSKit command.

-san_dnsname "xyz.db2.example.com,*.db2.example2.com"

Using short hostnames
A short hostname is essentially the first label of your fully qualified domain name (xyz.db2.example.com).
When a Db2 client is configured to connect to a server using a short hostname, this hostname is not
resolved into a fully qualified domain name when hostname validation is performed. The reasoning is that
figuring out which domain name to append to this short hostname depends on the contents of your /etc/
resolv.conf file. The client shouldn’t necessarily place its trust in the resolv.conf file, since it is
possible for this file to be modified by a remote actor through DHCP.

This is also the industry standard method of hostname validation.

Because of this, use of short hostnames is not recommend when configuring your Db2 clients for
hostname validation. However, your business may require you to use a short hostname when configuring
the server connection information on the client. When this is the case, the certificate returned by the
server during the TLS handshake must also contain this short hostname.

For example, if the client connects using a connection string that looks
like Hostname=xyz;Security=SSL;SSLClientHostnameValidation=Basic;Database=…, the
certificate returned by the server should look something like the following.

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=xyz.db2.example.com
Not Before : November 26, 20204:44:11 PM EST

Not After : November 27, 20214:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: xyz

Signature Algorithm : SHA1WithRSASignature

Configuring hostname validation for TLS connections to pureScale clusters
You can configure your Db2 clients to complete hostname validation during Transport Layer Security (TLS,
formerly SSL) connections to Db2 pureScale clusters.

The pureScale feature in Db2 provides continuous availability, extreme capacity, and application
transparency. A typical non-HADR pureScale cluster consists of the following components:

• Members that are responsible for processing transactions.
• A shared disk that all members can access.
• One or more cluster caching facilities (CFs) that coordinate data access in the cluster.
• Cluster services that oversee heartbeat failure detection and automatic recovery.

For hostname validation to be successful, one or more certificates must be set up on each server in one of
the following three ways:

• Using a separate certificate for each member in the cluster
• Using a common certificate containing multiple subject alternative names (SANs)
• Using a common certificate containing a wildcard hostname

120 IBM Db2 11.5: Database Security Guide

Using a separate certificate per member
The first way is to have a separate certificate per member in the cluster. In this configuration, each
member has its fully qualified hostname in its certificate.

For example, assume you have the following pureScale cluster with four members and two CFs.

cf1.db2.example.com - CF 1
cf2.db2.example.com - CF 2
h1.db2.example.com - Member 1
h2.db2.example.com - Member 2
h3.db2.example.com - Member 3
h4.db2.example.com - Member 4

If a client connects to h1.db2.example.com with a connection string that looks like
Hostname=h1.db2.example.com;Security=SSL;SSLClientHostnameValidation=Basic;Data
base=…, the certificate that is returned by this host must have h1.db2.example.com in the SAN or
Common Name for hostname validation to be successful.

The following example shows how the certificate appears for hostname validation to be successful. Note
the hostname in the Extensions section of the returned certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=h1.db2.example.com
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: h1.db2.example.com

Signature Algorithm : SHA1WithRSASignature

In most scenarios, this certificate setup is effective. However, if a member is identified by multiple
hostnames in the DNS, and the server-side /etc/nsswitch.conf file prioritizes dns over files for the
hosts database, these hostnames might need to be included in the certificate for hostname validation to
succeed during automatic client reroute (ACR) or workload balancing (WLB).

For example, if Member 2 can be reached using h2.db2.example.com and
anothername.db2.example.com, with both hostnames resolving to the same IP address, it is possible
for the latter hostname to be returned to the client as part of a server list. If that is the case, during client
reroute or workload balancing, the client uses anothername.db2.example.com to complete hostname
validation. If this hostname is not found in the member’s certificate, then validation fails.

The following example shows how the certificate appears for hostname validation to be successful. Note
the hostnames in the Extensions section of the returned certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=h2.db2.example.com
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: h2.db2.example.com
 dNSName: anothername.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Chapter 1. Db2 security model 121

Using a common certificate with multiple SANs
When using a common certificate for all hosts in the cluster, include multiple SAN entries with fully
qualified hostnames for each member in the cluster. This ensures that hostname validation is successful
since the returned certificate contains the member’s hostname, regardless of the member to which the
client connects. In addition, if a connection is routed to another member in the cluster due to workload
balancing or ACR, hostname validation is successful for the new connection, since the certificate returned
by this member contains the hostname that was originally configured on the client.

The following example shows how the certificate appears for hostname validation to be successful. Note
the hostnames that appear in the Extensions section:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: h1.db2.example.com
 dNSName: h2.db2.example.com
 dNSName: h3.db2.example.com
 dNSName: h4.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Using a common certificate with a wildcard hostname
When using a common certificate for all hosts in the cluster, rather than including multiple hostnames,
you can have a single SAN entry with a wildcard hostname that represents all of the hosts in the
cluster. When validating the hostname, the client acknowledges the wildcard hostname as representing
all members in the cluster. This ensures that, regardless of the member to which the client connects,
hostname validation is successful.

In addition, if a connection is routed to another member in the cluster due to workload balancing or ACR,
hostname validation is successful for this new connection since the certificate returned by this member
matches the hostname to which the client was originally configured.

The following example shows how the certificate appears for hostname validation to be successful. Note
the single SAN entry containing the wildcard symbol in the Extensions section:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: h*.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Note: Wildcard hostnames only represent members that share the same domain name, such as
example.com. For more information about the rules around use of wildcards, see Using wildcards in
hostnames.

It is possible to include both wildcard and non-wildcard hostnames in the SANs of a certificate.

122 IBM Db2 11.5: Database Security Guide

Adding and removing a member from a pureScale cluster
When adding a new member to the cluster, one or more of the server certificate might have to be updated
depending on how they’re set up. Please note that server certificates can be updated online: the instance
doesn’t have to be brought down to make this change.

If a separate certificate is used for each member in a cluster, the new member needs to have its fully
qualified hostname in its certificate. Since a separate certificate is used per member, the other members
in the cluster don’t need to be updated.

If a common certificate is used for all members in a cluster, the common certificate has to be recreated
to contain an additional SAN entry for this new member and all of the members in the cluster need to be
updated to use this newly created certificate if they’re not using a shared keystore.

If a common certificate containing a wildcard hostname is used for all members in a cluster, no updates
are needed given that the wildcard hostname in the common certificate can match the new hostname.
This certificate configuration might be preferable if new members are frequently added to the cluster
since it removes the need to keep creating new certificates.

When removing a member from the cluster, no changes to the certificate used by the cluster are required
for hostname validation to be successful.

IP addresses used in the nicbinding.cfg file
If the nicbinding.cfg file is configured to bind each member of a cluster to the IP address of a network
interface card (NIC), the server list returned to the client contains IP addresses instead of hostnames
for these members. This means that during client reroute or workload balancing, the IP address of the
corresponding member is what gets used for the connection and, by extension, hostname validation.

When referencing NIC addresses using the nicbinding.cfg file, use a common certificate for all
members in the cluster. The client validates the hostname in the certificate against the hostname to which
it was originally configured to connect, which is successful when using a common certificate.

The other option is to have a separate certificate per member, but include the member’s IP address in its
certificate. This configuration should be avoided.

Configuring hostname validation for TLS connections to Db2 servers in HADR environments
You can configure your Db2 clients to use hostname validation when attempting TLS connections to
servers in an HADR environment.

Connections to servers in HADR clusters not using a VIP
For hostname validation to be successful when attempting a TLS handshake with servers in an HADR
environment, the certificate returned by each host in the cluster must represent its fully qualified
hostname. This applies when the HADR cluster is not using a virtual IP address (VIP). To accomplish
this, you need to configure the server certificate using one of the following methods:

• Using a separate certificate per host
• Using a common certificate containing multiple subject alternative names (SANs)
• Using a common certificate containing a wildcard hostname

Using a separate certificate per host

When using a separate certificate for each host in the cluster, the certificate returned for each host must
contain its fully qualified hostname.

For example, let us say that we have the following HADR cluster with a primary and two standby hosts:

• primary.db2.example.com - Primary
• standby1.db2.example.com - Standby 1
• standby2.db2.example.com - Standby 2

Chapter 1. Db2 security model 123

If the client connects to the primary host with a connection string similar to the following,

Hostname=primary.db2.example.com;Security=SSL;SSLClientHostnameValidation=Basic;Database=…

then the certificate returned by this host must have primary.db2.example.com in the SAN or Common
Name.

Similarly, if the client connects to standby1.db2.example.com because it assumed the role of the
primary, or if reads on standby is enabled, then the certificate returned by this host must have
standby1.db2.example.com in the SAN or Common Name.

Using a common certificate containing multiple SANs

When creating a common certificate for all hosts in an HADR cluster, include multiple SAN entries with
fully qualified hostnames of each host in the cluster. This ensures that, whether the client connects to the
primary host or one of the standby hosts, hostname validation is successful.

Note the entries that appear in the Extensions section of the certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=ExampleCA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: primary.db2.example.com
 dNSName: standby1.db2.example.com
 dNSName: standby2.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Using a common certificate containing a wildcard hostname

When creating a common certificate for all hosts in an HADR cluster, rather than including multiple
hostnames, use a single SAN entry with a wildcard hostname that represents all of the hosts in the
cluster. This ensures that, whether the client connects to the primary host or one of the standby hosts,
hostname validation is successful.

Note the single SAN entry containing the wildcard symbol in the Extensions section:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=ExampleCA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: *.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Note: Wildcard hostnames only represent members that share the same domain name, such as
db2.example.com. For more information about the rules around use of wildcards, see Using wildcards in
hostnames.

It is possible to include both wildcard and non-wildcard hostnames in the SANs of a certificate.

Connections to servers in HADR clusters that use a VIP
In this configuration of HADR, there is a single virtual IP address. A cluster manager, such as TSA or
Pacemaker, specifies which machine in the cluster that the VIP points to at any given moment. If there is a

124 IBM Db2 11.5: Database Security Guide

power outage and the primary host goes down, the cluster manager initiates a failover to the standby host
to which the VIP now points.

From a Db2 client’s point of view, there is no change since it still uses the hostname associated with the
VIP to connect to the database. For hostname validation to be successful in this scenario, all of the hosts
in the cluster need to use a common certificate that represents this hostname.

For example, let us say we have the following HADR cluster, with v1.db2.example.com as the
hostname of the virtual IP address that points to one of the hosts at any given moment.

primary.db2.example.com - Primary
standby1.db2.example.com - Standby

When the client connects to v1.db2.example.com with a connection string similar to the following,

Hostname=v1.db2.example.com;Security=SSL;SSLClientHostnameValidation=Basic;Database=…

the certificate returned by all of the above hosts must contain v1.db2.example.com for hostname
validation to be successful.

Note the entry in the Extensions section in the following example certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: v1.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Connections to servers in HADR clusters using ACR
When creating certificates for an HADR cluster that is not using a VIP, the instructions listed in the HADR
with no VIP section is sufficient, if the UPDATE ALTERNATE SERVER command that is run on the primary
host uses the fully qualified hostname of the alternate server.

UPDATE ALTERNATE SERVER FOR DATABASE <DATABASE
 ALIAS> USING HOST <HOSTNAME> PORT <PORT NUMBER>

This hostname gets returned to the client as part of the server list. When the client connects to this
standby host during ACR, it uses this hostname to check against the server certificate.

You should avoid using a short hostname or an IP address when configuring this alternate server. For
more information, see “Using IP addresses as SAN values” on page 117 and “Using short hostnames” on
page 120. If your business requires you to use a short hostname or an IP address when configuring the
alternate server, this value must be present in the certificate setup on the standby host that is acting as
the alternate server.

The opposite applies if the primary host is acting as the alternate server for any of the standby hosts.

Similarly, with an HADR cluster that is using a VIP, following the recommendations listed in the HADR with
VIP section is sufficient.

Adding or removing a host from an HADR cluster
When adding a new host to an HADR cluster, each server certificate might have to be updated, depending
on how the certificates were configured.

Chapter 1. Db2 security model 125

If a separate certificate is used for each host, the new host needs to have its fully qualified hostname in
its certificate. Since a separate certificate is used per host, the other hosts in the cluster do not need to be
updated.

If a common certificate containing multiple SANs is used for all hosts in a cluster, the common certificate
has to be recreated to contain an additional SAN for this new host.

If a common certificate containing a wildcard hostname is used for all hosts in a cluster, no updates are
needed, so long as the wildcard hostname in the common certificate matches the new hostname.

If you are removing a host from an HADR cluster, no changes to the certificate used by the cluster are
required for hostname validation to be successful.

Configuring hostname validation for TLS connections to Db2 pureScale clusters in HADR environments
HADR can be enabled between two pureScale clusters, with one cluster acting as the primary host and
another acting as the standby node.

The processes for creating certificates for each pureScale cluster are sufficient if the fully qualified
hostname of the standby member is used in the UPDATE ALTERNATE SERVER command that is run on the
primary cluster.

UPDATE ALTERNATE SERVER FOR DATABASE <DATABASE
 ALIAS> USING HOST <HOSTNAME> PORT <PORT NUMBER>

This hostname is returned to the client as part of the server list. When the client connects to the
standby member during automatic client reroute (ACR), it uses this hostname to check against the server
certificate.

You should avoid using a short hostname or an IP address when configuring this alternate server. For
more information, see “Using IP addresses as SAN values” on page 117 and “Using short hostnames” on
page 120. If your business requires you to use a short hostname or an IP address when configuring the
alternate server, this value must be present in the certificate set up on the standby host that is acting as
the alternate server.

The opposite applies when a primary host is acting as the alternate server for the standby cluster.

Configuring hostname validation for TLS connections to Database Partitioning Feature (DPF) servers
The Database Partitioning Feature (DPF) is a Db2 scalability feature that enables you to divide a database
into multiple partitions, with each partition having its own set of resources. These partitions can be set
up on different hosts and the certificates on these hosts need to be set up in a specific way for hostname
validation to be successful.

Connecting to catalog partitions
The following example shows a four partition DPF cluster:

partition 0 - h1.db2.example.com (catalog partition)
partition 1 - h2.db2.example.com
partition 2 - h3.db2.example.com
partition 3 - h4.db2.example.com

If a client only connects to the catalog partition, then h1.db2.example.com must be the hostname that
is configured at the client and in the certificate for the catalog partition. Examine the following client
connection string:

Hostname=h1.db2.example.com;Security=SSL;SSLClientHostnameValidation=Basic;Database=…

Note the dNSName value in the Extensions section of the certificate returned by the DPF node::

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

126 IBM Db2 11.5: Database Security Guide

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: h1.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Connecting to non-catalog partitions
Clients can also connect directly to non-catalog partitions in a DPF cluster. For hostname validation to be
successful in this case, one or more certificates on the server must be set up in one of three ways:

• Using a separate certificate per host
• Using a common certificate containing multiple subject alternative names (SANs)
• Using a common certificate containing a wildcard hostname

Using a separate certificate for each DPF host

When creating a separate certificate for each host, the SAN or Common Name in the certificate must
contain the host's fully qualified hostname.

For example, if a client connects to h2.db2.example.com in the previously mentioned cluster, the
certificate returned by this host must contain h2.db2.example.com in the SAN or the Common Name
for hostname validation to be successful.

Using a common certificate with multiple SANs

When using a common certificate for all hosts in the cluster, include multiple SAN entries with fully
qualified hostname of each host in the cluster. This ensures that hostname validation is successful,
regardless of the partition to which the client connects, since the returned common certificate contains
the hostname to which the client is configured to connect.

Note the hostnames in the SAN in the Extensions section of the certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=ExampleCA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: h1.db2.example.com
 dNSName: h2.db2.example.com
 dNSName: h3.db2.example.com
 dNSName: h4.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Using a common certificate containing a wildcard hostname

When using a common certificate for all hosts in the cluster, rather than including multiple hostnames,
include a single SAN entry with a wildcard hostname that represents all of the hosts in the cluster. When
validating the hostname, the client acknowledges the wildcard hostname as representing all hosts in the
cluster. This ensures that, regardless of the host to which the client connects, hostname validation is
successful.

Note the single SAN entry containing the wildcard symbol in the Extensions section:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=ExampleCA
Subject : CN=none

Chapter 1. Db2 security model 127

Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: h*.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Note: Wildcard hostnames only represent hosts that share the same domain name, such as
db2.example.com. For more information about the rules around use of wildcards, see Using wildcards in
hostnames.

It is possible to include both wildcard and non-wildcard hostnames in the SANs of a certificate.

Adding and removing a host from a DPF cluster
When adding a new host to the cluster, one or more of the server certificate might have to be updated
depending on how they’re set up.

If a separate certificate is used for each host in a cluster, the new host needs to have its fully qualified
hostname in its certificate. Since a separate certificate is used per host, the other hosts in the cluster
don’t need to be updated.

If a common certificate is used for all hosts in a cluster, the common certificate has to be recreated to
contain an additional SAN entry for this new host and all of the hosts in the cluster need to be updated to
use this newly created certificate if they’re not using a shared keystore.

If a common certificate containing a wildcard hostname is used for all hosts in a cluster, no updates
are needed given that the wildcard hostname in the common certificate can match the new hostname.
This certificate configuration might be preferable if new hosts are frequently added to the cluster since it
removes the need to keep creating new certificates.

When removing a host from the cluster, no changes to the certificate used by the cluster are required for
hostname validation to be successful.

Node hopping
The SET CLIENT CONNECT_MEMBER <node number> parameter and the DB2NODE environment variable
allow the client to connect to a partition that is not part of the host to which it is configured to connect.
There are two separate connections established in this case:

• The connection between the client and the host to which it is configured to connect.
• The connection between the host and the partition specified in the CONNECT_MEMBER parameter.

The second connection is referred to as a hopped connection. TLS can be enabled for both connections,
but hostname validation can only be enabled for the first connection.

Configuring hostname validation for TLS connections to alternate servers, federated servers, and other
topologies
You can configure the Db2 11.5.6 client to validate hostnames of servers listed in returned certificates
when negotiating TLS connections to various Db2 instances. This topic discussed configuring hostname
validation for connections to alternate Db2 servers, federated data sources and other network topologies.

Connections to alternate servers
An alternate server is a Db2 server to which a Db2 client is rerouted during ACR, if the original connection
to the database is lost. For hostname validation to succeed for this rerouted connection, the hostname
in the certificate returned by the alternate server must match the hostname specified in the UPDATE
ALTERNATE SERVER command run on the original server:

UPDATE ALTERNATE SERVER FOR DATABASE USING <HOSTNAME> PORT <PORT NUMBER>

128 IBM Db2 11.5: Database Security Guide

Use a fully qualified hostname when running this command.

Connections to z/OS servers
In a sysplex environment, a Db2 client must connect to the Db2 for z/OS server using the hostname that
maps to the distributor’s IP address. When setting up certificates on the server, use a common certificate
across all the members containing this hostname.

For example, if a Db2 client attempts to connect to xyz.db2.example.com with a connection string that
includes the hostname, the returned certificate must include xyz.db2.example.com in the SAN or the
Common Name for hostname validation to be successful. This is regardless of where the connections gets
routed to by the distributor.

Example connection string:

 Hostname=xyz.db2.example.com;Security=SSL;SSLClientHostnameValidation=Basic;Database=…

The following example shows how the certificate should appear for hostname validation to be successful.

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: xyz.db2.example.com

Signature Algorithm : SHA1WithRSASignature

If a Db2 client is connecting to one of the sysplex members directly instead of going through the
distributor, the certificate returned by the target member must include the hostname of the member
to which the client is configured to connect.

Note: If an IP address is used instead of a hostname to connect to a Db2 for z/OS server, the certificate
returned by the server should contain this IP address for hostname validation to be successful.

Connections to federated data sources
When a federated data source is configured on a Db2 server, the server is acting as an application
requestor when communicating with this data source. TLS is supported for these outbound connections
and the following federated DRDA wrapper server option controls the hostname validation behavior.

Server option syntax:

SSL_HOSTNAMEVALIDATION = 'Basic' | 'OFF'

where

• Basic = Hostname validation is enabled
• OFF = Hostname validation is disabled. This is the default value.

Note: TLS needs to be enabled when setting SSL_HOSTNAMEVALIDATION to OFF.

This server option is restricted currently to the DRDA wrapper, and it can only be set when TLS is
enabled. When TLS is not enabled, setting SSL_HOSTNAMEVALIDATION to 'Basic' or 'OFF' for the
federation server generates the SQL1881N error. Use the following server options to enable TLS:

– SSL_KEYSTORE
– SSL_KEYSTASH
– SSL_SERVERCERTIFICATE

Chapter 1. Db2 security model 129

For more information, see “Hostname validation for Db2 11.5.6 clients” on page 112.

Connections to Db2 Connect gateways
When Db2 is acting as a gateway server, as is the case for a Db2 Connect server, hostname validation can
be enabled for inbound TLS connections.

You enable hostname validation for inbound connections by setting the SSLHostnameValidation
DS Driver parameter to Basic on the client. Hostname validation is not available for outbound TLS
connections from the Gateway server.

Connection to KMIP servers
If you set the SSL_KMIP_CLIENT_HOSTNAME_VALIDATION keyword in your keystore configuration file to
BASIC, Db2 validates that the hostname of the KMIP server is contained within the certificate used by the
KMIP server when establishing the TLS connection. For more information, see “Creating a KMIP keystore
configuration file” on page 78

Connections to multi-homed servers
A multi-homed server can be known by more than one hostname. This means that a Db2 client can
connect to the same database server using multiple hostnames. The server’s certificate must contain all
of the hostnames that the clients use to connect to the database.

For example, if a Db2 server is known by the hostnames xyz.db2.example1.com,
abc.db2.example2.com, and pqr.db2.example3.com, you must include these hostnames, separated by
commas, in the SAN statement of the GSKit command:

The following example shows how the certificate should appear for hostname validation to be successful.
Note the hostnames listed in the Extensions section of the returned certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=ExampleCA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: xyz.db2.example1.com
 dNSName: abc.db2.example2.com
 dNSName: pqr.db2.example3.com

Signature Algorithm : SHA1WithRSASignature

Note: Wild card hostnames can also be used if these hostnames are part of the same domain.

Connections using CNAME and DNAME DNS record names
In a DNS server, CNAME and DNAME records can be used to create aliases to a Db2 server’s hostname. If
a client connects to the database using an alias hostname, the server certificate must contain this alias in
the SAN statement or common name statement for hostname validation to be successful.

For example, if a client connects to xyz.db2.example.com, whose CNAME record in the DNS server points
to abc.db2.example.com, the server’s certificate needs to contain the alias in the SAN for hostname
validation to be successful.

Note the value in the Extensions section of the returned certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none

130 IBM Db2 11.5: Database Security Guide

Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: xyz.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Connections to multiple A records for IP addresses
Recommendations from the multi-homed servers section apply here as well. In short, if there are multiple
A records in the DNS for a given Db2 server, the certificate setup on the server should contain all of the
hostnames that the clients use to connect to the server.

Connections to distributors or load balancers
When a Db2 client connects to a distributor or a load balancer, the network traffic from the client is
redirected to an actual database server. The certificate returned by the target database server must
contain the hostname of the distributor or the load balancer in the SAN or Common Name for hostname
validation to be successful.

For example, if the client connects to xyz.balancer.com which is the hostname of a load balancer that
forwards traffic to the real target server, abc.db2.example.com, then the certificate returned by the
server must contain xyz.balancer.com as its SAN value.

Note the value in the Extensions section of the returned certificate:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=ExampleCA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: xyz.balancer.com

Signature Algorithm : SHA1WithRSASignature

Troubleshooting hostname validation at the client when negotiating a TLS connection
When hostname validation fails at the client during a TLS handshake, the details of the failure are saved to
the db2diag.log file.

Analyzing the details in the db2diag.log file
The first three data points in the db2diag.log record specify which hostnames the client used to perform
hostname validation against the server’s certificate. The rest of the data points list the hostnames that are
present in the common name or subject alternate name (SAN) of the certificate.

The following example shows the details of the db2daig.log file:

2021-04-06-16.35.00.951803-240 E9461858E1589 LEVEL: Error
PID : 2996888 TID : 140497763679360 PROC : db2bp
INSTANCE: <instance user> NODE : 000
HOSTNAME: <client hostname>
FUNCTION: DB2 UDB, common communication, sqlccHostnameValidationDumpCert, probe:500
MESSAGE : Failed to validate the hostname against the server certificate sent
 by the server. Dumping the expected hostname(s), certficate CN(s), and
 certificate SAN(s).
DATA #1 : String, 19 bytes
Hostname configured
DATA #2 : String
<Hostname that the client configured>
DATA #3 : String, 33 bytes

Chapter 1. Db2 security model 131

Hostname in the server list entry
DATA #4 : String
<Hostname associated with the server list entry>
DATA #5 : String, 47 bytes
Hostname of the last connected alternate server
DATA #7 : String, 29 bytes
Certificate Dump: Common Name
DATA #8 : String
<hostname in the common name of the subject>
DATA #9 : String, 52 bytes
Certificate Dump: Subject Alternative Name (DNSNAME)
DATA #10: String, 27 bytes
<Hostnames in the SAN>
DATA #11: String, 55 bytes
Certificate Dump: Subject Alternative Name (RFC822NAME)
DATA #12: String, 50 bytes
Server certificate does not have any RFC822 names.
DATA #13: String, 58 bytes
Certificate Dump: Subject Alternative Name (DIRECTORYNAME)
DATA #14: String, 53 bytes
Server certificate does not have any Directory names.
DATA #15: String, 48 bytes
Certificate Dump: Subject Alternative Name (URI)
DATA #16: String, 42 bytes
Server certificate does not have any URIs.
DATA #17: String, 54 bytes
Certificate Dump: Subject Alternative Name (IPADDRESS)
DATA #18: String, 50 bytes
Server certificate does not have any IP addresses.

Reviewing this data can help figure out why hostname validation is failing. For example, if the hostnames
in the Common Name and the SAN fields are not trusted, you should not connect to this server as a
malicious site could be intercepting the connection. However if these hostnames are trusted, then either
the configured hostname on the client is incorrect or the server certificate has been setup with incorrect
hostnames.

Consult the TLS hostname validation documentation for more information about how to properly create
server certificates for your environment.

Configuring hostname validation for encrypted communication between primary and
standby hosts in an HADR environment
Transport Layer Security can be used to encrypt communication between the primary and standby hosts
in a non-pureScale environment. You enable hostname validation for this communication, using the
HADR_SSL_HOST_VAL database configuration parameter.

The HADR_SSL_HOST_VAL database configuration keyword
The HADR_SSL_HOST_VAL database configuration keyword specifies whether hostname validation for
Transport Layer Security (TLS, formerly SSL) connections between primary and standby hosts is enabled.

The HADR_SSL_HOST_VAL keyword is currently supported on environments that do not use IBM
Db2 pureScale. If you upgrade from Enterprise Server Edition (ESE) to Db2 pureScale while the
HADR_SSL_HOST_VAL is set, db2checkSD returns the error DBT5038N. Users should set the value to
OFF before trying to upgrade to Db2 pureScale.

Changes to this parameter do not affect HADR connections that are already established. Change takes
effect for new connections between primary and standby servers.

When hostname validation fails for these connections, the ADM12510E admin message with reason code
14 is logged to the db2diag.log file. Message text for this reason code is as follows:

Hostname validation is enabled for SSL communication between
the primary and standby hosts and it failed because the specified
hostname does not match any of the hostname fields in the
certificate returned by this host. Details about this certificate
have been logged to the db2diag.log file.

For hostname validation to be successful, each host must set up a certificate that includes a SAN of its
fully qualified hostname. There are two ways to set up certificates in this way:

132 IBM Db2 11.5: Database Security Guide

• Using a separate certificate for the primary host and each standby host
• Using a common certificate for all hosts

Note: The following instructions for setting up hostname validation for primary and standby TLS
require that fully qualified hostnames are used when configuring the hadr_remote_host and
hadr_target_list database configuration parameters.

Using a separate certificate for the primary host and each standby host
When using a separate certificate for each host in an two-site multiple standby HADR cluster, each
host must include its the fully qualified hostname in the certificate it returns to its peer during the TLS
handshake.

The following example shows an HADR cluster containing a primary and two standby hosts:

primary.db2.example.com - Primary
standby1.db2.example.com - Standby 1
standby2.db2.example.com - Standby 2

The following example shows how the certificate on the primary host needs to be configured for
hostname validation to be successful when it communicates with the standby hosts. Note that the
SAN contains the fully qualified host name of the primary server, primary.db2.example.com, in the
Extensions section.

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: primary.db2.example.com

Signature Algorithm : SHA1WithRSASignature

As with the primary host, each standby host must contains its fully qualified hostname in its certificate.

The following example shows how the certificate on standby1 needs to be configured for successfully
communicating with the primary host when hostname validation is enabled. Note that the SAN contains
the fully qualified host name of the primary server, standby1.db2.example.com, in the Extensions
section :

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: standby1.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Using a common certificate for all hosts
When using a common certificate for all hosts in a two-site multiple standby HADR cluster, the certificate
you create must include representations for the hostnames of each host in the SAN.

There are two ways to configure the SAN to represent the hostnames of all hosts in the HADR cluster:

• Using multiple hostnames

Chapter 1. Db2 security model 133

• Using a wildcard hostname

Using multiple hostnames in the SAN

When using multiple hostname entries in the SAN, use the fully qualified hostname of each host.

The following example shows how a common certificate using multiple SAN entries is configured. Note
the fully qualified hostname entries for the SAN in the Extensions section:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=ExampleCA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: primary.db2.example.com
 dNSName: standby1.db2.example.com
 dNSName: standby2.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Using a wildcard hostname

One drawback of using multiple hostnames in the SAN is that every time a host is either added to, or
removed from, the cluster the certificate has to be recreated. If all of the hosts in the cluster are part of
the same sub-domain, a single wildcard hostname in the SAN can be used to represent all the hosts in the
cluster.

The following example shows how a common certificate using a single wildcard hostname is configured.
Note the single entry for the SAN in the Extensions section:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: *.db2.example.com

Signature Algorithm : SHA1WithRSASignature

Note: You can include both fully qualified hostnames and wildcard hostnames in the SAN.

Using hostname validation between HADR hosts in a NAT environment
Network Address Translation (NAT) is designed for IP address conservation. In certain HADR
configurations, the primary host is located inside a NAT environment, along with a subset of the
standby hosts. The remainder of the standby hosts are located outside of the NAT environment. In this
configuration, the primary host is known by different names to the different subsets of the standby hosts.
For hostname validation to work in a NAT environment, the certificate for the primary host must contain
the different hostnames that it is known by to the rest of the cluster. In addition, any of the standby hosts
behind the NAT that could potentially take over as the primary host must also contain all the different
hostnames that they could be identified as in their certificates.

The following example shows an HADR cluster, containing a primary host and two standby hosts:

nat.router.com/primary.xyz.com - Primary
standby1.xyz.com - Standby 1
standby2.abc.com - Standby 2

134 IBM Db2 11.5: Database Security Guide

• The primary host and standby 1 are inside a NAT environment.
• standby 2 is outside of the NAT environment.
• primary is known as nat.router.com to standby2.abc.com.
• primary is known as primary.xyz.com to standby1.xyz.com.
• the NAT router is exposed to the outside world as nat.router.com.

The following example shows how the certificate on primary needs to be configured, for hostname
validation to be successful when the standby and primary hosts communicate using TLS. Note that both
the nat.router.com and primary.xyz.com hostnames are included in the SAN:

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: nat.router.com
 dNSName: primary.xyz.com

Signature Algorithm : SHA1WithRSASignature

In addition, certificates on each of the standby hosts that are inside the NAT environment must contain
the NAT router hostname in their certificates. This enables these standby hosts to take over as primary in
the future, and ensures that hostname validation is successful after the transition.

The following example shows how the certificate of a standby server (standby 1), that sits inside the NAT
environment, needs to be configured to ensure that hostname validation is successful. Note the entries
for the SAN in the Extensions section :

Key Size : 2048
Version : X509 V3
Serial : xxx
Issuer : CN=Example Enterprise CA
Subject : CN=none
Not Before : November 26, 2020 4:44:11 PM EST

Not After : November 27, 2021 4:44:11 PM EST

Extensions
 subjectAlternativeName
 dNSName: nat.router.com
 dNSName: standby1.xyz.com

Signature Algorithm : SHA1WithRSASignature

TLS configuration of Db2
The Db2 database system supports the use of the Transport Layer Security (TLS) protocol, to enable a
client to validate the certificate of a Db2 server, and to provide private communication between the client
and server by use of encryption.

This section provided detailed instruction on how to configure Db2 environments for secure data transfer
using TLS.

Note: You can configure Db2 11.5.6 and newer clients to validate the hostname of Db2 instances to which
they are connecting, during a TLS handshake. For more information, see Hostname validation for Db2
11.5.6 clients.

Note: If enabling this feature on AIX, review the following performance considerations.

Chapter 1. Db2 security model 135

https://www.ibm.com/docs/en/db2/11.5?topic=servers-aix

Renewing a CA-signed certificate
Certificate authority (CA) signed certificates are only valid for a limited period of time. If a certificate is
close to expiry, it is possible to renew a certificate by recreating a new certificate signing request.

Before you begin
The new certificate signing request will contain the same details as the previous certificate.

To renew a self-signed certificate, a new certificate must be created. For more information, refer to .

About this task
For the purpose of this example, Db2 is assumed to have already been pre-configured with a key
database and a password stored in a stash file. We will refer to this keystore as server.p12 in this
example. This server.p12 is also presumed to have been configured with a CA-signed certificate by the
label of CA-Signed.

Procedure
1. Identify the expiring certificate and label by running:

 $ gsk8capicmd_64 -cert -list -db server.p12 -stashed

 Certificates found
 * default, - personal, ! trusted, # secret key
 ! My_CA_Root
 - CA-Signed <-----

 $ gsk8capicmd_64 -cert -details -label "CA-Signed" -db server.p12 -stashed

 Label : CA-Signed
 Key Size : 1024
 Version : X509 V3
 Serial : 7f9e2b79e210cc26
 Issuer : CN=CA,O=CA,C=US
 Subject : CN=host.mycompany.com,OU=unit,O=company
 Not Before : May 6, 2018 9:32:48 AM PDT
 Not After : May 6, 2019 9:32:48 AM PDT M <------------------
 ...

2. Recreate the certificate signing request for CA-Signed by running:

gsk8capicmd_64 -certreq -recreate -db server.p12 -stashed -label "CA-Signed" -target
new_cert_request.csr

3. Send the resulting new_cert_request.csr certificate to be signed by the original Certificate
Authority (CA).

4. Once the signed certificate has been returned, then receive it back into your server keystore by
running:

gsk8capicmd_64 -cert -receive -db server.p12 -stashed -file new_cert_signed.pem

In this example, the returned certificate is called new_cert_signed.pem.
5. Verify the new dates on the received certificate by running:

 gsk8capicmd_64 -cert -details -label CA-Signed -db server.p12 -stashed

 Label : CA-Signed
 Key Size : 1024
 Version : X509 V3
 Serial : 61840a0badecc11a
 Issuer : CN=CA,O=CA,C=US
 Subject : CN=host.mycompany.com,OU=unit,O=company
 Not Before : May 6, 2021 9:59:05 AM PDT
 Not After : *May 6, 2022 9:59:05* AM PDT

136 IBM Db2 11.5: Database Security Guide

6. If the Db2 level is Version 11.5 Mod Pack 3 or later, refresh the SSL certificate used by Db2
by attaching to the instance and updating the SSL_SVR_LABEL database manager configuration
parameter. This can be done by running:

db2 attach to <instance name>
db2 update dbm cfg using SSL_SVR_LABEL CA-Signed

7. If the Db2 level is Version 11.5 Mod Pack 2 or earlier, the instance must be recycled for the new
certificate to take effect. This can be done by running:

db2stop
db2start

Configuring TLS support in Db2 clients
You can configure Db2 client applications to use TLS data encryption. These can be Java clients or
non-Java clients.

Configuring TLS support in non-Java Db2 clients
You can configure Db2 database clients, such as CLI, CLP, and .Net Data Provider clients, to support
Transport Layer Security (TLS)for communication with the Db2 server.

Configuring TLS support in Java Db2 clients
The IBM Data Server Driver for JDBC and SQLJ provides support for Transport Layer Security (TLS)
encryption through the Java Secure Socket Extension (JSSE).

You can use TLS support in your Java applications if you use IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity to Db2 Version 10.5 or later.

Connections to all supported data servers can use server authentication. For server authentication, the
server sends a certificate to the client, and the client confirms the identity of the server. Connections to
Db2 for z/OS data servers can also use client authentication. For client authentication, the client sends
a certificate to the server, and the server confirms the identity of the client. Client authentication can be
used with TLS encryption or without TLS encryption.

To use TLS connections, you need to:

• Configure connections to the data server to use TLS.
• Configure your Java Runtime Environment to use TLS.

Configuring connections under the IBM Data Server Driver for JDBC and SQLJ to use TLS
To configure database connections under the IBM Data Server Driver for JDBC and SQLJ to use Transport
Layer Security (TLS), you need to set the DB2BaseDataSource.sslConnection property to true.

Before you begin
Before a connection to a data source can use Transport Layer Security (TLS), the port to which the
application connects must be configured in the database server as the TLS listener port.

Note: You can configure Db2 11.5.6 and newer clients to validate the hostname of Db2 instances to
which they are connecting, during a TLS handshake. For more information, see Configuring Db2 clients for
hostname validation when negotiating a TLS connection.

Procedure
1. Set DB2BaseDataSource.sslConnection on a Connection or DataSource instance.
2. Optional: Set the location of the truststore and the truststore password. The truststore location can be

set without the password, but it is best to set both values.
a) Set DB2BaseDataSource.sslTrustStoreLocation on a Connection or DataSource instance to

identify the location of the truststore.

Chapter 1. Db2 security model 137

Setting the sslTrustStoreLocation property is an alternative to
setting the Java javax.net.ssl.trustStore property. If you set
DB2BaseDataSource.sslTrustStoreLocation, javax.net.ssl.trustStore is not used.

b) Optional: Set DB2BaseDataSource.sslTrustStorePassword on a Connection or DataSource
instance to identify the truststore password.
Setting the sslTrustStorePassword property is an alternative to
setting the Java javax.net.ssl.trustStorePassword property. If you set
DB2BaseDataSource.sslTrustStorePassword, javax.net.ssl.trustStorePassword is
not used.

3. Optional: Set DB2BaseDataSource.sslCipherSuites on a Connection or DataSource instance,
if you do not want to use the default cipher suites that are enabled in the JRE (Java Runtime
Environment). The driver enables only the cipher suites that you set.

Example
The following example demonstrates how to set the sslConnection property on a Connection instance:

java.util.Properties properties = new java.util.Properties();
properties.put("user", "xxxx");
properties.put("password", "yyyy");
properties.put("sslConnection", "true");
java.sql.Connection con =
 java.sql.DriverManager.getConnection(url, properties);

Configuring the Java Runtime Environment to use TLS
Before you can use Transport Layer Security (TLS) connections in your JDBC and SQLJ applications, you
need to configure the Java Runtime Environment to use TLS. An example procedure is provided. However,
the procedure might be different depending on the Java Runtime Environment that you use.

Before you begin
Before you can configure your Java Runtime Environment for TLS, you need to satisfy the following
prerequisites:

• The Java Runtime Environment must include a Java security provider. The IBM JSSE provider or the
SunJSSE provider must be installed. The IBM JSSE provider is automatically installed with the IBM SDK
for Java.

Restriction: You can use the SunJSSE provider only with an Oracle Java Runtime Environment. The
SunJSSE provider does not work with an IBM Java Runtime Environment.

• TLS support must be configured on the database server.

Procedure
To configure your Java Runtime Environment to use TLS, follow these steps:
1. Import a certificate from the database server to a Java truststore on the client.

Use the Java keytool utility to import the certificate into the truststore.

Example: Suppose that the server certificate is stored in a file named cacerts. Issue the following
keytool utility statement to read the certificate from file jcc.cacert, and store it in a truststore
named cacerts.

keytool -import -file jcc.cacert -keystore cacerts

Example: Suppose that the server certificate is stored in a file named mydbserver.arm. Issue the
following keytool utility statement to read the certificate from file mydbserver.arm, and store it in
a truststore named mynewdbclient.jks.

keytool -import -trustcacerts -alias myalias -file mydbserver.arm -keystore mynewdbclient.jks

138 IBM Db2 11.5: Database Security Guide

2. Configure the Java Runtime Environment for the Java security providers by adding entries to the
java.security file.

The format of a security provider entry is:

security.provider.n=provider-package-name

A provider with a lower value of n takes precedence over a provider with a higher value of n.

The Java security provider entries that you add depend on whether you use the IBM JSSE provider or
the SunJSSE provider.

• If you use the SunJSSE provider, add entries for the Oracle security providers to your
java.security file.

• If you use the IBM JSSE provider, use one of the following methods:

– Use the IBMJSSE2 provider (supported for the IBM SDK for Java 1.4.2 and later):

Recommendation: Use the IBMJSSE2 provider, and use it in FIPS mode.

- If you do not need to operate in FIPS-compliant mode:

• For the IBM SDK for Java 1.4.2, add an entry for the IBMJSSE2Provider to
the java.security file. Ensure that an entry for the IBMJCE provider is in the
java.security file. The java.security file that is shipped with the IBM SDK for Java
contains an entry for entries for IBMJCE.

• For later versions of the IBM SDK for Java, ensure that entries for the IBMJSSE2Provider
and the IBMJCE provider are in the java.security file. The java.security file that is
shipped with the IBM SDK for Java contains entries for those providers.

- If you need to operate in FIPS-compliant mode:

• Add an entry for the IBMJCEFIPS provider to your java.security file before the entry for
the IBMJCE provider. Do not remove the entry for the IBMJCE provider.

• Enable FIPS mode in the IBMJSSE2 provider. See step “3” on page 140.
– Use the IBMJSSE provider (supported for the IBM SDK for Java 1.4.2 only):

- If you do not need to operate in FIPS-compliant mode, ensure that entries for the
IBMJSSEProvider and the IBMJCE provider are in the java.security file. The
java.security file that is shipped with the IBM SDK for Java contains entries for those
providers.

- If you need to operate in FIPS-compliant mode, add entries for the FIPS-approved provider
IBMJSSEFIPSProvider and the IBMJCEFIPS provider to your java.security file before
the entry for the IBMJCE provider.

Restriction: If you use the IBMJSSE provider on the Solaris operating system, you need to include
an entry for the SunJSSE provider before entries for the IBMJCE, IBMJCEFIPS, IBMJSSE, or
IBMJSSE2 providers.

Example: If you need to run in FIPS-compliant mode, and you enabled FIPS mode in the IBMJSSE2
provider, use a java.security file similar to this example:

Set the Java security providers
security.provider.1=com.ibm.jsse2.IBMJSSEProvider2
security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL

Example: If you need to run in FIPS-compliant mode, and you are using the IBMJSSE provider, use a
java.security file similar to this example:

Set the Java security providers
security.provider.1=com.ibm.fips.jsse.IBMJSSEFIPSProvider

Chapter 1. Db2 security model 139

security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS
security.provider.3=com.ibm.crypto.provider.IBMJCE
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.security.sasl.IBMSASL

Example: If you are using the SunJSSE provider, use a java.security file similar to this example:

Set the Java security providers
security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.rsajca.Provider
security.provider.3=com.sun.crypto.provider.SunJCE
security.provider.4=com.sun.net.ssl.internal.ssl.Provider

3. If you plan to use the IBM Data Server Driver for JDBC and SQLJ in FIPS-compliant mode, you need to
set the com.ibm.jsse2.JSSEFIPS Java system property:

com.ibm.jsse2.JSSEFIPS=true

Restriction: Non-FIPS-mode JSSE applications cannot run in a JVM that is in FIPS mode.

Restriction: When the IBMJSSE2 provider runs in FIPS mode, it cannot use hardware cryptography.
4. Configure the Java Runtime Environment for the TLS socket factory providers by adding entries to the
java.security file. This step is not necessary if you are using the SunJSSE provider and the Java
Runtime Environment, 7 or later.

The format of TLS socket factory provider entries is shown:

ssl.SocketFactory.provider=provider-package-name
ssl.ServerSocketFactory.provider=provider-package-name

Specify the TLS socket factory provider for the Java security provider that you are using.

Example: When you enable FIPS mode in the IBMJSSE2 provider, include TLS socket factory provider
entries in the java.security file:

Set the TLS socket factory provider
ssl.SocketFactory.provider=com.ibm.jsse2.SSLSocketFactoryImpl
ssl.ServerSocketFactory.provider=com.ibm.jsse2.SSLServerSocketFactoryImpl

Example: When you enable FIPS mode in the IBMJSSE provider, include TLS socket factory provider
entries in the java.security file:

Set the TLS socket factory provider
ssl.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory
ssl.ServerSocketFactory.provider=com.ibm.fips.jsse.JSSEServerSocketFactory

Example: When you use the SunJSSE provider, and the Java Runtime Environment, 6 or earlier,
include TLS socket factory provider entries:

Set the TLS socket factory provider
ssl.SocketFactory.provider=com.sun.net.ssl.internal.ssl.SSLSocketFactoryImpl
ssl.ServerSocketFactory.provider=com.sun.net.ssl.internal.ssl.SSLServerSocketFactoryImpl

5. Configure Java system properties to use the truststore.

To do that, set the following Java system properties:

javax.net.ssl.trustStore
Specifies the name of the truststore that you specified with the -keystore parameter in the keytool
utility in step “1” on page 138.

javax.net.ssl.trustStorePassword (optional)
Specifies the password for the truststore. You do not need to set a truststore password. However, if
you do not set the password, you cannot protect the integrity of the truststore.

Example: One way that you can set Java system properties is to specify them as the arguments
of the -D option when you run a Java application. Suppose that you want to run a Java application

140 IBM Db2 11.5: Database Security Guide

that is named MyTLS.java, which accesses a data source by using a TLS connection. If you defined a
truststore named cacerts, then the following command sets the truststore name when you run the
application.

java -Djavax.net.ssl.trustStore=cacerts MyTLS

6. To enable the Common Access Card (IBMCAC) provider, overwrite the default truststore and keystore
definitions:

-Djavax.net.ssl.trustStoreType=Windows-ROOT
-Djavax.net.ssl.keyStoreType=Windows-MY

Configuring TLS for the communication between primary and standby HADR servers
Transport Layer Security (TLS) is supported between the HADR primary and standby servers on
environments that do not use IBM Db2 pureScale.

Before you begin

Configuring TLS on all instances

To use TLS for the transmission of transaction logs between HADR primary and standby, you need to
configure Transport Layer Security (TLS) on all instances in HADR environment. The procedures are
similar to the ones described in Configuring TLS support in a Db2 instance. In particular, the steps
that describe how to set up your TLS key database and certificate must be done for all the instances.
The steps for configuring the HADR environment by using a self-signed certificate are described in the
following section.

Considerations for implementing TLS for HADR:

• It is possible to implement TLS via a shared key database. For example, the SSL_SVR_KEYDB
and SSL_SVR_STASH configuration parameters on all instances are set to a shared location. When
implementing TLS via a shared key database, it is important that the shared key database itself is
also highly available to avoid having a single point of failure.

• It is also possible to implement TLS on each instance via a separate key database. This can be done
either by executing the same set of commands on each instance to set up TLS key database and
certificate, or by creating the TLS key database and certificate on the first instance then copy them
to the other instance(s).

• When implementing TLS on each instance as a separate key database, it is important to have
completed all certificate updates to the key databases on all instances prior to making use of those
certifications in Db2.

An activated connection concentrator does not inhibit the use of TLS for HADR communications.

Prior to configuring TLS support, perform the following steps on each primary and standby in the
HADR configuration

Ensure that the path to the IBM Global Security Kit (GSKit) libraries appear in the LIBPATH,
SHLIB_PATH, or LD_LIBRARY_PATH environment variables on Linux and UNIX operating systems.
GSKit is automatically included when you install a Db2 database server product.

On UNIX and Linux operating systems, the GSKit libraries are located in sqllib/lib/gskit. On
Linux platforms, the GSKit is installed locally when Db2 is installed. The GSKit libraries are located
in sqllib/lib/gskit or sqllib/lib64/gskit. It is unnecessary to have another copy of GSKit
installed in a global location to start the instance. If a global copy of GSKit does exist, keep the version
of the global GSKit at the same version of the local GSKit.

For information about the GSKit tool GSKCapiCmd, see the GSKCapiCmd User's Guide, available at
ftp://ftp.software.ibm.com/software/webserver/appserv/library/v80/GSK_CapiCmd_UserGuide.pdf.

About this task

Chapter 1. Db2 security model 141

https://www.ibm.com/docs/en/db2/11.5?topic=certificate-configure-tls-db2-server
ftp://ftp.software.ibm.com/software/webserver/appserv/library/v80/GSK_CapiCmd_UserGuide.pdf

Configuring TLS support

The general steps for configuring TLS support are:

1. Create a key database on the primary and each standby instance to manage your digital
certificates. These certificates and encryption keys are used for establishing the TLS connections.

2. Configure the Db2 instance for TLS support. This step is done by Db2 instance owner.
3. Configured TLS for the particular database for which TLS is to be used.

The procedure section details this configuration process for the communication between primary and
standby HADR servers.

Restrictions

Table 4. TLS support between the HADR primary and standby servers:

Platform Supported starting in Db2 Version

Linux on AMD64 and Intel EM64T 11.1.1.1

All other platforms 11.1.3.3

Procedure
1. Create a key database and set up your digital certificates on the primary and standby instances.

a) Use the gskcapicmd command to create your key database. The key database must be of
a Certificate Management System (CMS) type (extension .kdb) or a Public-Key Cryptography
Standards #12 (PKCS12) type (extension .p12). GSKCapiCmd is a non Java based command-line
tool, and Java does not need to be installed on your system to use this tool.

The gskcapicmd command is described in the GSKCapiCmd User's Guide. The path for the
command is sqllib/gskit/bin on Linux and UNIX operating systems. On Linux and UNIX,
ensure that the LIBPATH, SHLIB_PATH, or LD_LIBRARY_PATH environment variables include the
proper GSKit library path, such as sqllib/lib64/gskit.

For example, the following command creates a key database that is called myprimary.kdb and a
stash file that is called myprimary.sth:

gsk8capicmd_64 -keydb -create -db "primary.kdb" -pw "myPrimaryPassw0rdpw0" -stash

The -stash option creates a stash file at the same path as the key database, with a file extension
of .sth. At instance start-up, GSKit uses the stash file to obtain the password to the key database.

When you create a key database, it is automatically populated with signer certificates from a few
certificate authorities (CAs), such as Verisign.

Note: You should use strong file system protection on the stash file. By default, only the instance
owner has read and write access to this file. Since this file is a user-managed file, it is not to
be stored in the Db2 sqllib directory. Create a keystore directory under each instance's home
directory to store the key database and stash files. For example,

mkdir /home/test/keystore

b) Add a certificate for your primary instance to your key database. The standby instance sends this
certificate to the primary instance during the TLS handshake to provide authentication for the
standby instance. To obtain a certificate, you can either use the gskcapicmd command to create
a new certificate request and submit it to a CA to be signed, or you can create a self-signed
certificate. The following examples are for a self-signed certificate:

To create a self-signed certificate with a label of myPrimarysigned, use the following gskcapicmd:

gsk8capicmd_64 -cert -create -db "primary.kdb" -pw "myPrimaryPassw0rdpw0" -label
"myPrimarysigned"

142 IBM Db2 11.5: Database Security Guide

 -dn
"CN=myhost.mycompany.com,O=myOrganization,OU=myOrganizationUnit,L=myLocation,ST=ON,C=CA"

To use a CA signed certificate, you must obtain one, as described in .
c) Extract the certificate that you created to a file so that you can distribute it to each standby

instance.

For example, the following gskcapicmd command extracts the certificate to a file called
primary.arm:

gsk8capicmd_64 -cert -extract -db "primary.kdb" -pw "myPrimaryPassw0rdpw0" -label
"myPrimarysigned"
 -target "primary.arm" -format ascii

d) Repeat steps “1.a” on page 142 through “1.c” on page 143 on each standby database.

To create a keydb on the standby:

gsk8capicmd_64 -keydb -create -db "standby1.kdb" -pw "myStandby1Passw0rdpw0" -stash

Create the certificate on the standby:

gsk8capicmd_64 -cert -create -db "standby1.kdb" -pw "myStandby1Passw0rdpw0" -label
"myStandby1signed"
 -dn
"CN=myhost.mycompany.com,O=myOrganization,OU=myOrganizationUnit,L=myLocation,ST=ON,C=CA"

Extract the standby certificate into a file called standby1.arm:

gsk8capicmd_64 -cert -extract -db "standby1.kdb" -pw "myStandby1Passw0rdpw0" -label
"myStandby1signed"
 -target "standby1.arm" -format ascii

2. Add the primary and standby certificates to the key database at each primary and standby instance.
a) FTP the file that contains the primary instance's certificate to the standby instance. This file was

extracted in a previous step into a file called primary.arm. Also, FTP the file that contains the
standby instance's certificate, standby1.arm, to the primary instance. Place these files into the
directory where you created your key database on each instance.

b) Add the primary instance's certificate into the standby's key database.

For example, the following gsk8capicmd command imports the certificate from the file
primary.arm into the key database called standby1.kdb:

gsk8capicmd_64 -cert -add -db "standby1.kdb" -pw "myStandby1Passw0rdpw0" -label
"myPrimarysigned"
 -file "primary.arm" -format ascii

c) On the primary instance, add the standby's certificate into the primary's key database.

For example, the following gsk8capicmd command imports the certificate from the file
standby1.arm into the key database called primary.kdb.

gsk8capicmd_64 -cert -add -db "primary.kdb" -pw "myPrimaryPassw0rdpw0" -label
"myStandby1signed"
 -file "standby1.arm" -format ascii

d) If multiple standby databases exist, the certificate from each instance in the HADR configuration
must be imported into the key database of each instance, in the same manner described in steps
“2.a” on page 143 through “2.c” on page 143.

3. Set up your Db2 instances for TLS support.
To set up your Db2 instances for TLS support, log in as the Db2 instance owner and set the following
configuration parameters. This step must be done on the Db2 instance of the primary and all standby
databases.

Chapter 1. Db2 security model 143

a) Set the ssl_svr_keydb configuration parameter to the fully qualified path of the key database file
on the instance. For example, on the primary instance:

db2 update dbm cfg using SSL_SVR_KEYDB /home/test/keystore/primary.kdb

On the standby instance:

db2 update dbm cfg using SSL_SVR_KEYDB /home/test/keystore/standby1.kdb

If ssl_svr_keydb is null (unset) on any instance in the HADR configuration, TLS support fails.

The paths do not have to be the same on the primary and each standby.
b) Set the ssl_svr_stash configuration parameter to the fully qualified path of the stash file. For

example, on the primary instance:

db2 update dbm cfg using SSL_SVR_STASH /home/test/keystore/primary.sth

On the standby instance:

db2 update dbm cfg using SSL_SVR_STASH /home/test/keystore/standby1.sth

If ssl_svr_stash is null (unset) on any instance in the HADR configuration, TLS support fails.

The paths do not have to be the same on the primary and each standby.
c) Restart each primary and standby Db2 instance.

db2stop

db2start

4. Enable TLS communications for each primary and standby database.

On the primary and each standby database, set the hadr_ssl_label database configuration
parameter to the label of the digital certificate, which you added in steps “1” on page 142 and “2” on
page 143. For example, on the primary database:

db2 update db cfg for db2db using HADR_SSL_LABEL myPrimarysigned

Where db2db is the database name and myPrimarysigned is the label that is created in step “1” on
page 142.

On the secondary database:

db2 update db cfg for db2db using HADR_SSL_LABEL myStandby1signed

If hadr_ssl_label is set for one primary or standby, then it must be set for all primary and standby
databases in the configuration. If hadr_ssl_label is not set for all databases, then some HADR
connections between primary and standby databases fail.

The label does not have to be the same on each primary and standby.

If the hadr_ssl_label is set, then both the ssl_svr_keydb and ssl_svr_stash must be set.
If not, then HADR cannot be started, or some HADR connections between primary and standby
databases fail.

Related reference
HADR_SSL_LABEL - Label name in the key file for TLS communication between HADR primary and
standby instances configuration parameter

144 IBM Db2 11.5: Database Security Guide

Configuring TLS support in federation server for DRDA wrapper
The Db2 database system supports Transport Layer Security (TLS), which means that a Db2 client
application that also supports Transport Layer Security (TLS) can connect to a Db2 database using a
Transport Layer Security (TLS) socket.

Before you begin
• Ensure to update DB2COMM registry variable

db2set -i db2inst1 DB2COMM=SSL

• Ensure to enable both TCP/IP and TLS communication protocols

db2set -i db2inst1 DB2COMM=SSL,TCPIP

Note: Specify different service ports for TLS and TCPIP.

• Ensure to enable TLS connection on data source side. For more information, see . Some important
configuration parameters are:

– SSL_SVR_KEYDB
– SSL_SVR_STASH
– SSL_SVR_LABEL
– SSL_SVCENAME

Procedure
To configure TLS support in a federation server:
1. Obtain the signer certificate of the server digital certificate on the client. The server certificate can

either be a self-signed certificate or a certificate signed by a certificate authority (CA).

• If your server certificate is a self-signed certificate, you must extract its signer certificate to a file on
the server computer and then distribute it to computers running clients that will be establishing TLS
connections to that server. See for information about how to extract the certificate to a file.

• If your server certificate is signed by a well known CA, your client key database might already
contain the CA certificate that signed your server certificate. If it does not, you must obtain the CA
certificate, which is usually done by visiting the website of the CA.

2. On the Db2 client system, use the GSKCapiCmd tool to create a key database, of CMS type.
The GSKCapiCmd tool is a non-Java-based command-line tool (Java does not need to be installed on
your system to use this tool).

You invoke GSKCapiCmd using the gskcapicmd command, as described in the GSKCapiCmd User's
Guide. The path for the command is sqllib/gskit/bin on Linux and UNIX operating systems, and
C:\Program Files\IBM\GSK8\bin on both 32-bit and 64-bit Windows operating systems. (On
64-bit operating systems, the 32-bit GSKit executable files and libraries are also present; in this case,
the path for the command is C:\Program Files (x86)\IBM\GSK8\bin.)

For example, the following command creates a key database called mydbclient.kdb and a stash file
called mydbclient.sth:

gsk8capicmd_64 -keydb -create -db "mydbclient.kdb" -pw "myClientPassw0rdpw0"
 -stash

The -stash option creates a stash file at the same path as the key database, with a file extension
of .sth. At connect time, GSKit uses the stash file to obtain the password to the key database.

3. Add the signer certificate into the client key database
.

Chapter 1. Db2 security model 145

For example, the following gsk8capicmd command imports the certificate from the file
mydbserver.arm into the key database called mydbclient.kdb:

gsk8capicmd_64 -cert -add -db "mydbclient.kdb" -pw "myClientPassw0rdpw0"
 -label "dbselfsigned" -file "mydbserver.arm" -format ascii -fips

4. To connect to the data source by using mydbclient.kdb and mydbclient.sth, perform the
following steps
a) Configure and start the federation server.
b) Run the CREATE SERVER command.

create server SERVERNAME type TYPE version Version_Number wrapper drda
authorization "uid" password "password" options(host remote_host, port port,
dbname 'database', ssl_keystore '/path_to_keystore/mydbclient.kdb', ssl_keystash '/
path_to_keystash/mydbclient.sth', password 'Y', pushdown 'Y'

c) Run the CREATE USER MAPPING command

create user mapping for user server SERVERNAME options(remote_authid
'remote_userid',remote_password 'remote_password')
If everything goes fine, now you are connect to data source using TLS. You can check it
on server side by issue command
netstat -anp | grep server_ssl_listen_port

Connection is established to the data source using TLS. Run the following command to check the
connection on the server side.

netstat -anp | grep server_ssl_listen_port

If the status of server TLS listen port is 'ESTABLISHED' then it is connected.
5. To connect to the data source by using the server signer certificate only, run the following command:

create server SERVERNAME type TYPE version Version_Number wrapper drda authorization
"uid" password "password" options(host remote_host, port port, dbname 'database',
ssl_servercertificate '/path_to_keystore/mydbserver.arm', password 'Y', pushdown 'Y'

Auditing DB2 activities

Introduction to the Db2 audit facility
To manage access to your sensitive data, you can use a variety of authentication and access control
mechanisms to establish rules and controls for acceptable data access. But to protect against and
discover unknown or unacceptable behaviors you can monitor data access by using the Db2 audit facility.

Successful monitoring of unwanted data access and subsequent analysis can lead to improvements in the
control of data access and the ultimate prevention of malicious or careless unauthorized access to data.
The monitoring of application and individual user access, including system administration actions, can
provide a historical record of activity on your database systems.

The Db2 audit facility generates, and allows you to maintain, an audit trail for a series of predefined
database events. The records generated from this facility are kept in an audit log file. The analysis of
these records can reveal usage patterns that would identify system misuse. Once identified, actions can
be taken to reduce or eliminate such system misuse.

The audit facility provides the ability to audit at both the instance and the individual database level,
independently recording all instance and database level activities with separate logs for each. The system
administrator (who holds SYSADM authority) can use the db2audit tool to configure audit at the instance
level as well as to control when such audit information is collected. The system administrator can use
the db2audit tool to archive both instance and database audit logs as well as to extract audit data from
archived logs of either type.

The security administrator (who holds SECADM authority within a database) can use audit policies in
conjunction with the SQL statement, AUDIT, to configure and control the audit requirements for an

146 IBM Db2 11.5: Database Security Guide

individual database. The security administrator can use the following audit routines to perform the
specified tasks:

• The SYSPROC.AUDIT_ARCHIVE stored procedure archives audit logs.
• The SYSPROC.AUDIT_LIST_LOGS table function allows you to locate logs of interest.
• The SYSPROC.AUDIT_DELIM_EXTRACT stored procedure extracts data into delimited files for analysis.

The security administrator can grant EXECUTE privilege on these routines to another user, therefore
enabling the security administrator to delegate these tasks, if required.

When working in a partitioned database environment, many of the auditable events occur at the database
partition at which the user is connected (the coordinator partition) or at the catalog partition (if they are
not the same database partition). The implication of this is that audit records can be generated by more
than one database partition. Part of each audit record contains information identifying the coordinator
partition and originating partition (the partition where audit record originated).

At the instance level, the audit facility must be stopped and started explicitly by use of the db2audit
start and db2audit stop commands. When you start instance-level auditing, the audit facility uses
existing audit configuration information. Since the audit facility is independent of the Db2 database server,
it will remain active even if the instance is stopped. In fact, when the instance is stopped, an audit record
may be generated in the audit log. To start auditing at the database level, first you need to create an audit
policy, then you associate this audit policy with the objects you want to monitor, such as, authorization
IDs, database authorities, trusted contexts or particular tables.

Categories of audit records
There are different categories of audit records that may be generated. In the following description of the
categories of events available for auditing, you should notice that following the name of each category is a
one-word keyword used to identify the category type. The categories of events available for auditing are:

• Audit (AUDIT). Generates records when audit settings are changed or when the audit log is accessed.
• Authorization Checking (CHECKING). Generates records during authorization checking of attempts to

access or manipulate Db2 database objects or functions.
• Object Maintenance (OBJMAINT). Generates records when creating or dropping data objects, and when

altering certain objects.
• Security Maintenance (SECMAINT). Generates records when:

– Granting or revoking object privileges or database authorities
– Granting or revoking security labels or exemptions
– Altering the group authorization, role authorization, or override or restrict attributes of an LBAC

security policy
– Granting or revoking the SETSESSIONUSER privilege
– Modifying any of the SYSADM_GROUP, SYSCTRL_GROUP, SYSMAINT_GROUP, or SYSMON_GROUP

configuration parameters.
• System Administration (SYSADMIN). Generates records when operations requiring SYSADM, SYSMAINT,

or SYSCTRL authority are performed.
• User Validation (VALIDATE). Generates records when authenticating users or retrieving system security

information.
• Operation Context (CONTEXT). Generates records to show the operation context when a database

operation is performed. This category allows for better interpretation of the audit log file. When used
with the log's event correlator field, a group of events can be associated back to a single database
operation. For example, a query statement for dynamic queries, a package identifier for static queries,
or an indicator of the type of operation being performed, such as CONNECT, can provide needed context
when analyzing audit results.

Note: The SQL or XQuery statement providing the operation context might be very long and is
completely shown within the CONTEXT record. This can make the CONTEXT record very large.

Chapter 1. Db2 security model 147

• Execute (EXECUTE). Generates records during the execution of SQL statements.

For any of the categories listed previously, you can audit failures, successes, or both.

Any operations on the database server may generate several records. The actual number of records
generated in the audit log depends on the number of categories of events to be recorded as specified by
the audit facility configuration. It also depends on whether successes, failures, or both, are audited. For
this reason, it is important to be selective of the events to audit.

Audit policies
The security administrator can use audit policies to configure the audit facility to gather information only
about the data and objects that are needed.

The security administrator can create audit policies to control what is audited within an individual
database. The following objects can have an audit policy associated with them:

• The entire database

All auditable events that occur within the database are audited according to the audit policy.
• Tables

All data manipulation language (DML) and XQUERY access to the table (untyped), MQT (materialized
query table), or nickname is audited. Only EXECUTE category audit events with or without data are
generated when the table is accessed even if the policy indicates that other categories should be
audited.

• Trusted contexts

All auditable events that happen within a trusted connection defined by the particular trusted context
are audited according to the audit policy.

• Authorization IDs representing users, groups, or roles

All auditable events that are initiated by the specified user are audited according to the audit policy.

All auditable events that are initiated by users that are a member of the group or role are audited
according to the audit policy. Indirect role membership, such as through other roles or groups, is also
included.

You can capture similar data by using the Work Load Management event monitors by defining a work
load for a group and capturing the activity details. You should be aware that the mapping to workloads
can involve attributes in addition to just the authorization ID, which can cause you to not achieve
the wanted granularity in auditing, or if those other attributes are modified, connections may map to
different (possibly unmonitored) workloads. The auditing solution provides a guarantee that a user,
group or role will be audited.

• Authorities (SYSADM, SECADM, DBADM, SQLADM, WLMADM, ACCESSCTRL, DATAACCESS, SYSCTRL,
SYSMAINT, SYSMON)

All auditable events that are initiated by a user that holds the specified authority, even if that authority is
unnecessary for the event, are audited according to the audit policy.

The security administrator can create multiple audit policies. For example, your company might want a
policy for auditing sensitive data and a policy for auditing the activity of users holding DBADM authority. If
multiple audit policies are in effect for a statement, all events required to be audited by each of the audit
policies are audited (but audited only once). For example, if the database's audit policy requires auditing
successful EXECUTE events for a particular table and the user's audit policy requires auditing failures
of EXECUTE events for that same table, both successful and failed attempts at accessing that table are
audited.

For a specific object, there can only be one audit policy in effect. For example, you cannot have multiple
audit policies associated with the same table at the same time.

An audit policy cannot be associated with a view or a typed table. Views that access a table that has an
associated audit policy are audited according to the underlying table's policy.

148 IBM Db2 11.5: Database Security Guide

The audit policy that applies to a table does not automatically apply to a MQT based on that table. If you
associate an audit policy with a table, associate the same policy with any MQT based on that table.

Auditing performed during a transaction is done based on the audit policies and their associations at the
start of the transaction. For example, if the security administrator associates an audit policy with a user
and that user is in a transaction at the time, the audit policy does not affect any remaining statements
performed within that transaction. Also, changes to an audit policy do not take effect until they are
committed. If the security administrator issues an ALTER AUDIT POLICY statement, it does not take effect
until the statement is committed.

The security administrator uses the CREATE AUDIT POLICY statement to create an audit policy, and the
ALTER AUDIT POLICY statement to modify an audit policy. These statements can specify:

• The status values for events to be audited: None, Success, Failure, or Both.

Only auditable events that match the specified status value are audited.
• The server behavior when errors occur during auditing.

The security administrator uses the AUDIT statement to associate an audit policy with the current
database or with a database object, at the current server. Any time the object is in use, it is audited
according to this audit policy.

To delete an audit policy, the security administrator uses the DROP statement. You cannot drop an audit
policy if it is associated with any object. Use the AUDIT REMOVE statement to remove any remaining
association with an object. To add metadata to an audit policy, the security administrator uses the
COMMENT statement.

Events generated before a full connection has been established
For some events generated during connect and a switch user operation, the only audit policy information
available is the policy that is associated with the database. These events are shown in the following table:

Table 5. Connection events

Event
Audit
category Comment

CONNECT CONTEXT

CONNECT_RESET CONTEXT

AUTHENTICATION VALIDATE This includes authentication during both connect and
switch user within a trusted connection.

CHECKING_FUNC CHECKING The access attempted is SWITCH_USER.

These events are audited based only on the audit policy associated with the database and not with audit
policies associated with any other object such as a user, their groups, or authorities. For the CONNECT
and AUTHENTICATION events that occur during connect, the instance-level audit settings are used until
the database is activated. The database is activated either during the first connection or when the
ACTIVATE DATABASE command is issued.

Effect of switching user
If a user is switched within a trusted connection, no remnants of the original user are left behind. In this
case, the audit policies associated with the original user are no longer considered, and the applicable
audit policies are re-evaluated according to the new user. Any audit policy associated with the trusted
connection is still in effect.

If a SET SESSION USER statement is used, only the session authorization ID is switched. The audit policy
of the authorization ID of the original user (the system authorization ID) remains in effect and the audit
policy of the new user is used as well. If multiple SET SESSION USER statements are issued within a

Chapter 1. Db2 security model 149

session, only the audit policies associated with the original user (the system authorization ID) and the
current user (the session authorization ID) are considered.

Data definition language restrictions
The following data definition language (DDL) statements are called AUDIT exclusive SQL statements:

• AUDIT
• CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY
• DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context being dropped is associated

with an audit policy

AUDIT exclusive SQL statements have some restrictions in their use:

• Each statement must be followed by a COMMIT or ROLLBACK.
• These statements cannot be issued within a global transaction, for example an XA transaction.

Only one uncommitted AUDIT exclusive DDL statement is allowed at a time across all partitions. If an
uncommitted AUDIT exclusive DDL statement is executing, subsequent AUDIT exclusive DDL statements
wait until the current AUDIT exclusive DDL statement commits or rolls back.

Note: Changes are written to the catalog, but do not take effect until COMMIT, even for the connection
that issues the statement.

Use cases

Example of auditing any access to a specific table

Consider a company where the EMPLOYEE table contains extremely sensitive information and the
company wants to audit any and all SQL access to the data in that table. The EXECUTE category can
be used to track all access to a table; it audits the SQL statement, and optionally the input data value
provided at execution time for that statement.

There are two steps to track activity on the table. First, the security administrator creates an audit policy
that specifies the EXECUTE category, and then the security administrator associates that policy with the
table:

CREATE AUDIT POLICY SENSITIVEDATAPOLICY
 CATEGORIES EXECUTE STATUS BOTH ERROR TYPE AUDIT
COMMIT

AUDIT TABLE EMPLOYEE USING POLICY SENSITIVEDATAPOLICY
COMMIT

Example of auditing any actions by specific authority

In order to complete their security compliance certification, a company must show that any and all
activities within the database by those people holding system administration (SYSADM) or database
administrative (DBADM) authority can be monitored.

To capture all actions within the database, both the EXECUTE and SYSADMIN categories should be
audited. The security administrator creates an audit policy that audits these two categories. The security
administrator can use the AUDIT statement to associate this audit policy with the SYSADM and DBADM
authorities. Any user that holds either SYSADM or DBADM authority will then have any auditable events
logged. The following example shows how to create such an audit policy and associate it with the SYSADM
and DBADM authorities:

CREATE AUDIT POLICY ADMINSPOLICY CATEGORIES EXECUTE STATUS BOTH,
 SYSADMIN STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT SYSADM, DBADM USING POLICY ADMINSPOLICY
COMMIT

150 IBM Db2 11.5: Database Security Guide

Example of auditing any access by a specific role

A company has allowed its web applications access to their corporate database. The exact individuals
using the web applications are unknown. Only the role that is used is known and that role is used to
manage the database authorizations. The company wants to monitor the actions of anyone who is a
member of that role in order to examine the requests they are submitting to the database and to ensure
that they only access the database through the web applications.

The EXECUTE category contains the necessary level of auditing to track the activity of the users for this
situation. The first step is to create the appropriate audit policy and associate it with the roles that are
used by the web applications (in this example, the roles are TELLER and CLERK):

CREATE AUDIT POLICY WEBAPPPOLICY CATEGORIES EXECUTE WITH DATA
 STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT ROLE TELLER, ROLE CLERK USING POLICY WEBAPPPOLICY
COMMIT

Example of enabling auditing for a database

A company wants to determine who is making DDL changes (example: ALTER TABLE) on the database
named SAMPLE.

CONNECT TO SAMPLE

CREATE AUDIT POLICY ALTPOLICY CATEGORIES AUDIT STATUS BOTH,
 OBJMAINT STATUS BOTH, CHECKING STATUS BOTH,
 EXECUTE STATUS BOTH, ERROR TYPE NORMAL

AUDIT DATABASE USING POLICY ALTPOLICY

Storage and analysis of audit logs
Archiving the audit log moves the active audit log to an archive directory while the server begins writing to
a new, active audit log. Later, you can extract data from the archived log into delimited files and then load
data from these files into Db2 database tables for analysis.

Configuring the location of the audit logs allows you to place the audit logs on a large, high-speed disk,
with the option of having separate disks for each member in a multiple member database environment,
such as a Db2 pureScale environment or a partitioned database environment. In a multiple member
database environment, the path for the active audit log can be a directory that is unique to each member.
Having a unique directory for each member helps to avoid file contention, because each member is
writing to a different disk.

The default path for the audit logs on Windows operating systems is instance\security\auditdata
and on Linux and UNIX operating systems is instance/security/auditdata. If you do not want to
use the default location, you can choose different directories (you can create new directories on your
system to use as alternative locations, if they do not already exist). To set the path for the active audit
log location and the archived audit log location, use the db2audit configure command with the
datapath and archivepath parameters, as shown in this example:

db2audit configure datapath /auditlog archivepath /auditarchive

The audit log storage locations you set using db2audit apply to all databases in the instance.

Note: If there are multiple instances on the server, then each instance should each have separate data
and archive paths.

The path for active audit logs (datapath) in a multiple member database
environment
In a multiple member database environment, the same active audit log location (set by the datapath
parameter) must be used on each member. There are two ways to accomplish this:

Chapter 1. Db2 security model 151

1. Use database member expressions when you specify the datapath parameter. Using database
member expressions allows the member number to be included in the path of the audit log files
and results in a different path on each database member.

2. Use a shared drive that is the same on all members.

You can use database member expressions anywhere within the value you specify for the datapath
parameter. For example, on a three member system, where the database member number is 10, the
following command:

db2audit configure datapath '/pathForNode $N'

uses the following paths:

• /pathForMember10
• /pathForMember20
• /pathForMember30

Note: You cannot use database member expressions to specify the archive log file path (archivepath
parameter).

Archiving active audit logs
The system administrator can use the db2audit tool to archive both instance and database audit logs as
well as to extract audit data from archived logs of either type.

The security administrator, or a user to whom the security administrator has granted EXECUTE privilege
on the audit routines, can archive the active audit log by running the SYSPROC.AUDIT_ARCHIVE
stored procedure. To extract data from the log and load it into delimited files, they can use the
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure.

These are the steps to archive and extract the audit logs using the audit routines:

1. Schedule an application to perform regular archives of the active audit log using the stored procedure
SYSPROC.AUDIT_ARCHIVE.

2. Determine which archived log files are of interest. Use the SYSPROC.AUDIT_LIST_LOGS table function
to list all of the archived audit logs.

3. Pass the file name as a parameter to the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure to
extract data from the log and load it into delimited files.

4. Load the audit data into Db2 database tables for analysis.

The archived log files do not need to be immediately loaded into tables for analysis; they can be saved for
future analysis. For example, they may only need to be looked at when a corporate audit is taking place.

If a problem occurs during archive, such as running out of disk space in the archive
path, or the archive path does not exist, the archive process fails and an interim log
file with the file extension .bk is generated in the audit log data path, for example,
db2audit.instance.log.0.20070508172043640941.bk. After the problem is resolved (by
allocating sufficient disk space in the archive path, or by creating the archive path) you must move this
interim log to the archive path. Then, you can treat it in the same way as a successfully archived log.

Archiving active audit logs in a multiple member database environment
In a multiple member database environment, if the archive command is issued while the instance is
running, the archive process automatically runs on every member. The same timestamp is used in the
archived log file name on all members. For example, on a three member system, where the database
member number is 10, the following command:

db2audit archive to /auditarchive

creates the following files:

152 IBM Db2 11.5: Database Security Guide

• /auditarchive/db2audit.log.10.timestamp
• /auditarchive/db2audit.log.20.timestamp
• /auditarchive/db2audit.log.30.timestamp

If the archive command is issued while the instance is not running, you can control on which member the
archive is run by one of the following methods:

• Use the node option with the db2audit command to perform the archive for the current member only.
• Use the db2_all command to run the archive on all members.

For example:

db2_all db2audit archive node to /auditarchive

This sets the DB2NODE environment variable to indicate on which members the command is invoked.

Alternatively, you can issue an individual archive command on each member separately. For example:

• On member 10:

db2audit archive node 10 to /auditarchive

• On member 20:

db2audit archive node 20 to /auditarchive

• On member 30:

db2audit archive node 30 to /auditarchive

Note: When the instance is not running, the timestamps in the archived audit log file names are not the
same on each member.

Note: It is recommended that the archive path is shared across all members, but it is not required.

Note: The AUDIT_DELIM_EXTRACT stored procedure and AUDIT_LIST_LOGS table function can only
access the archived log files that are visible from the current (coordinator) member.

Example of archiving a log and extracting data to a table

To ensure their audit data is captured and stored for future use, a company needs to create a new
audit log every six hours and archive the current audit log to a WORM drive. The company schedules
the following call to the SYSPROC.AUDIT_ARCHIVE stored procedure to be issued every six hours by the
security administrator, or by a user to whom the security administrator has granted EXECUTE privilege
on the AUDIT_ARCHIVE stored procedure. The path to the archived log is the default archive path, /
auditarchive, and the archive runs on all members:

CALL SYSPROC.AUDIT_ARCHIVE('/auditarchive', -2)

As part of their security procedures, the company has identified and defined a number of suspicious
behaviors or disallowed activities that it needs to watch for in the audit data. They want to extract all
the data from the one or more audit logs, place it in a relational table, and then use SQL queries to look
for these activities. The company has decided on appropriate categories to audit and has associated the
necessary audit policies with the database or other database objects.

For example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure to extract the
archived audit logs for all categories from all members that were created with a timestamp in April 2006,
using the default delimiter:

CALL SYSPROC.AUDIT_DELIM_EXTRACT(
 '', '', '/auditarchive', 'db2audit.%.200604%', '')

Chapter 1. Db2 security model 153

In another example, they can call the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure to extract
the archived audit records with success events from the EXECUTE category and failure events from the
CHECKING category, from a file with the timestamp they are interested in:

CALL SYSPROC.AUDIT_DELIM_EXTRACT('', '', '/auditarchive',
 'db2audit.%.20060419034937', 'category
 execute status success, checking status failure);

Audit log file names
The audit log files have names that distinguish whether they are instance-level or database-level logs and
which member they originate from in a multiple member database environment, such as a Db2 pureScale
environment or a partitioned database environment. Archived audit logs have the timestamp of when the
archive command was run appended to their file name.

Active audit log file names
In a multiple member database environment, the path for the active audit log can be a directory that is
unique to each member so that each member writes to an individual file. In order to accurately track the
origin of audit records, the member number is included as part of the audit log file name. For example,
on member 20, the instance level audit log file name is db2audit.instance.log.20. For a database
called testdb in this instance, the audit log file is db2audit.db.testdb.log.20.

In a single member database environment the member number is considered to be 0 (zero). In this case,
the instance level audit log file name is db2audit.instance.log.0. For a database called testdb in
this instance, the audit log file is db2audit.db.testdb.log.0.

Archived audit log file names
When the active audit log is archived, the current timestamp in the following format is appended to the
filename: YYYYMMDDHHMMSS (where YYYY is the year, MM is the month, DD is the day, HH is the hour,
MM is the minutes, and SS is the seconds.

The file name format for an archive audit log depends on the level of the audit log:
instance-level archived audit log

The file name of the instance-level archived audit log is:
db2audit.instance.log.member.YYYYMMDDHHMMSS.

database-level archived audit log
The file name of the database-level archived audit log is:
db2audit.dbdatabase.log.member.YYYYMMDDHHMMSS.

In a single member database environment, the value for member is 0 (zero).

The timestamp represents the time that the archive command was run, therefore it does not always
precisely reflect the time of the last record in the log. The archived audit log file may contain records with
timestamps a few seconds later than the timestamp in the log file name because:

• When the archive command is issued, the audit facility waits for the writing of any in-process records to
complete before creating the archived log file.

• In a multi-machine environment, the system time on a remote machine may not be synchronized with
the machine where the archive command is issued.

In a multiple member database environment, if the server is running when archive is run, the timestamp
is consistent across members and reflects the timestamp generated at the member at which the archive
was performed.

154 IBM Db2 11.5: Database Security Guide

Creating tables to hold the Db2 audit data
Before you can work with audit data in database tables, you need to create the tables to hold the data.
You should consider creating these tables in a separate schema to isolate the data in the tables from
unauthorized users.

Before you begin
• See the CREATE SCHEMA statement for the authorities and privileges that you require to create a

schema.
• See the CREATE TABLE statement for the authorities and privileges that you require to create a table.
• Decide which table space you want to use to hold the tables. (This topic does not describe how to create

table spaces.)

Note: The format of the tables you need to create to hold the audit data might change from release
to release. New columns might be added or the size of an existing column might change. The script,
db2audit.ddl, creates tables of the correct format to contain the audit records.

About this task
The examples that follow show how to create the tables to hold the records from the delimited files. If you
want, you can create a separate schema to contain these tables.

If you do not want to use all of the data that is contained in the files, you can omit columns from the table
definitions, or bypass creating certain tables, as required. If you omit columns from the table definitions,
you must modify the commands that you use to load data into these tables.

Procedure
1. Issue the db2 command to open a Db2 command window.
2. Optional: Create a schema to hold the tables.

For this example, the schema is called AUDIT:

 CREATE SCHEMA AUDIT

3. Optional: If you created the AUDIT schema, switch to the schema before creating any tables:

 SET CURRENT SCHEMA = 'AUDIT'

4. Run the script, db2audit.ddl, to create the tables that will contain the audit records.

The script db2audit.ddl is located in the sqllib/misc directory (sqllib\misc on Windows).
The script assumes that a connection to the database exists and that an 8K table space is available.
The command to run the script is: db2 +o -tf sqllib/misc/db2audit.ddl The tables that the
script creates are: AUDIT, CHECKING, OBJMAINT, SECMAINT, SYSADMIN, VALIDATE, CONTEXT, and
EXECUTE.

5. After you have created the tables, the security administrator can use the
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, or the system administrator can use the
db2audit extract command, to extract the audit records from the archived audit log files into
delimited files.
You can load the audit data from the delimited files into the database tables you just created.

Chapter 1. Db2 security model 155

Loading Db2 audit data into tables
After you have archived and extracted the audit log file into delimited files, and you have created the
database tables to hold the audit data, you can load the audit data from the delimited files into the
database tables for analysis.

About this task
You use the load utility to load the audit data into the tables. Issue a separate load command for each
table. If you omitted one or more columns from the table definitions, you must modify the version of the
LOAD command that you use to successfully load the data. Also, if you specified a delimiter character
other than the default when you extracted the audit data, you must also modify the version of the LOAD
command that you use.

Procedure
1. Issue the db2 command to open a Db2 command window.
2. To load the AUDIT table, issue the following command:

 LOAD FROM audit.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
 INSERT INTO schema.AUDIT

Note: Specify the DELPRIORITYCHAR modifier to ensure proper parsing of binary data.

Note: Specify the LOBSINFILE option of the LOAD command (due to the restriction that any inline
data for large objects must be limited to 32K). In some situations, you might also need to use the
LOBS FROM option.

Note: When specifying the file name, use the fully qualified path name. For example, if you have the
Db2 database system installed on the C: drive of a Windows operating system, you would specify
C:\Program Files\IBM\SQLLIB\instance\security\audit.del as the fully qualified file
name for the audit.del file.

3. To load the CHECKING table, issue the following command:

 LOAD FROM checking.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
 INSERT INTO schema.CHECKING

4. To load the OBJMAINT table, issue the following command:

 LOAD FROM objmaint.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
 INSERT INTO schema.OBJMAINT

5. To load the SECMAINT table, issue the following command:

 LOAD FROM secmaint.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
 INSERT INTO schema.SECMAINT

6. To load the SYSADMIN table, issue the following command:

 LOAD FROM sysadmin.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
 INSERT INTO schema.SYSADMIN

7. To load the VALIDATE table, issue the following command:

 LOAD FROM validate.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
 INSERT INTO schema.VALIDATE

8. To load the CONTEXT table, issue the following command:

 LOAD FROM context.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
 INSERT INTO schema.CONTEXT

9. To load the EXECUTE table, issue the following command:

156 IBM Db2 11.5: Database Security Guide

 LOAD FROM execute.del OF DEL MODIFIED BY DELPRIORITYCHAR LOBSINFILE
 INSERT INTO schema.EXECUTE

10. After you finish loading the data into the tables, delete the .del files from the security/
auditdata subdirectory of the sqllib directory.

11. When you have loaded the audit data into the tables, you are ready to select data from these tables
for analysis.

What to do next
If you have already populated the tables a first time, and want to do so again, use the INSERT option
to have the new table data added to the existing table data. If you want to have the records from
the previous db2audit extract operation removed from the tables, load the tables again using the
REPLACE option.

Audit archive and extract stored procedures
The security administrator can use the SYSPROC.AUDIT_ARCHIVE stored procedure and table function,
the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, and the SYSPROC.AUDIT_LIST_LOGS table
function to archive audit logs and extract data to delimited files.

The security administrator can delegate use of these routines to another user by granting the user
EXECUTE privilege on these routines. Only the security administrator can grant EXECUTE privilege on
these routines. EXECUTE privilege WITH GRANT OPTION cannot be granted for these routines (SQLSTATE
42501).

You must be connected to a database in order to use these stored procedures and table functions to
archive or list that database's audit logs.

If you copy the archived files to another database system, and you want to use the stored procedures and
table functions to access them, ensure that the database name is the same, or rename the files to include
the same database name.

These stored procedures and table functions do not archive or list the instance level audit log. The system
administrator must use the db2audit command to archive and extract the instance level audit log.

You can use these stored procedures and table functions to perform the following operations:

Table 6. Audit system stored procedures and table functions

Stored procedure and table
function Operation Comments

AUDIT_ARCHIVE Archives the current audit log. Takes the archive path as input. If
the archive path is not supplied, this
stored procedure takes the archive
path from the audit configuration file.

The archive is run on each member,
and a synchronized timestamp is
appended to the name of the audit
log file.

AUDIT_LIST_LOGS Returns a list of the archived
audit logs at the specified path,
for the current database.

Chapter 1. Db2 security model 157

Table 6. Audit system stored procedures and table functions (continued)

Stored procedure and table
function Operation Comments

AUDIT_
 DELIM_EXTRACT

Extracts data from the binary
archived logs and loads it into
delimited files.

The extracted audit records are
placed in a delimited format suitable
for loading into Db2 database tables.
The output is placed in separate files,
one for each category. In addition,
the file auditlobs is created to hold
any large objects that are included in
the audit data. The file names are:

• audit.del
• checking.del
• objmaint.del
• secmaint.del
• sysadmin.del
• validate.del
• context.del
• execute.del
• auditlobs

If the files already exist, the output
is appended to them. The auditlobs
file is created if the CONTEXT or
EXECUTE categories are extracted.
Only archived audit logs for the
current database can be extracted.
Only files that are visible to the
coordinator member are extracted.

Only the instance owner can delete
archived audit logs.

The EXECUTE category for auditing SQL statements
Use the EXECUTE category to accurately track the SQL statements that are issued by a user. In Version
9.5 and earlier releases, you had to use the CONTEXT category to find this information.

As part of a comprehensive security policy, a company can require the ability to retroactively go back
a set number of years and analyze the effects of any particular request against certain tables in their
database. To do this, a company must institute a policy of archiving their weekly backups and associated
log files such that they can reconstitute the database for any chosen moment in time. Also required, is
sufficient database audit information captured about every request made against the database to allow,
at any future time, the replay and analysis of any request against the relevant, restored database. This
requirement can cover both static and dynamic SQL statements.

This EXECUTE category captures the SQL statement text as well as the compilation environment and
other values that are needed to replay the statement at a later date. For example, replaying the statement
can show you exactly which rows a SELECT statement returned. In order to re-run a statement, the
database tables must first be restored to their state when the statement was issued.

When you audit using the EXECUTE category, the statement text for both static and dynamic SQL is
recorded, as are input parameter markers and host variables. You can configure the EXECUTE category to
be audited with or without input values.

Note: Global variables are not audited.

158 IBM Db2 11.5: Database Security Guide

The auditing of EXECUTE events takes place at the completion of the event (for SELECT statements this
is on cursor close). The status that the event completed with is also stored. Because EXECUTE events are
audited at completion, long-running queries do not immediately appear in the audit log.

Note: The preparation of a statement is not considered part of the execution. Most authorization checks
are performed at prepare time (for example, SELECT privilege). This means that statements that fail
during prepare due to authorization errors do not generate EXECUTE events.

Statement Value Index, Statement Value Type and Statement Value Data fields may be repeated for a
given execute record. For the report format generated by the extraction, each record lists multiple values.
For the delimited file format, multiple rows are used. The first row has an event type of STATEMENT
and no values. Following rows have an event type of DATA, with one row for each data value associated
with the SQL statement. You can use the event correlator and application ID fields to link STATEMENT
and DATA rows together. The columns Statement Text, Statement Isolation Level, and Compilation
Environment Description are not present in the DATA events.

The statement text and input data values that are audited are converted into the database code page
when they are stored on disk (all audited fields are stored in the database code page). No error is returned
if the code page of the input data is not compatible with the database code page; the unconverted data
will be logged instead. Because each database has it's own audit log, databases having different code
pages does not cause a problem.

ROLLBACK and COMMIT are audited when executed by the application, and also when issued implicitly as
part of another command, such as BIND.

After an EXECUTE event has been audited due to access to an audited table, all statements that affect
which other statements are executed within a unit of work, are audited. These statements are COMMIT,
ROLLBACK, ROLLBACK TO SAVEPOINT and SAVEPOINT.

Savepoint ID field
You can use the Savepoint ID field to track which statements were affected by a ROLLBACK TO
SAVEPOINT statement. An ordinary DML statement (such as SELECT, INSERT, and so on) has the current
savepoint ID audited. However, for the ROLLBACK TO SAVEPOINT statement, the savepoint ID that is
rolled back to will be audited instead. Therefore, every statement with a savepoint ID greater than or
equal to that ID will be rolled back, as demonstrated by the following example. The table shows the
sequence of statements run; all events with a Savepoint ID greater than or equal to 2 will be rolled back.
Only the value of 3 (from the first INSERT statement) is inserted into the table T1.

Table 7. Sequence of statements to demonstrate effect of ROLLBACK TO SAVEPOINT statement

Statement Savepoint ID

INSERT INTO T1 VALUES (3) 1

SAVEPOINT A 2

INSERT INTO T1 VALUES (5) 2

SAVEPOINT B 3

INSERT INTO T1 VALUES (6) 3

ROLLBACK TO SAVEPOINT A 2

COMMIT

WITH DATA option
Not all input values are audited when you specify the WITH DATA option. LOB, LONG, XML and structured
type parameters appear as NULL.

Date, time, and timestamp fields are recorded in ISO format.

Chapter 1. Db2 security model 159

If WITH DATA is specified in one policy, but WITHOUT DATA is specified in another policy associated with
objects involved in the execution of the SQL statement, then WITH DATA takes precedence and data is
audited for that particular statement. For example, if the audit policy associated with a user specifies
WITHOUT DATA, but the policy associated with a table specifies WITH DATA, when that user accesses
that table, the input data used for the statement is audited.

You are not able to determine which rows were modified on a positioned-update or positioned-delete
statement. Only the execution of the underlying SELECT statement is logged, not the individual FETCH. It
is not possible from the EXECUTE record to determine which row the cursor is on when the statement is
issued. When replaying the statement at a later time, it is only possible to issue the SELECT statement to
see what range of rows may have been affected.

Example of replaying past activities

Consider in this example that as part of their comprehensive security policy, a company requires that they
retain the ability to retroactively go back up to seven years to analyze the effects of any particular request
against certain tables in their database. To do this, they institute a policy of archiving their weekly backups
and associated log files such that they can reconstitute the database for any chosen moment in time.
They require that the database audit capture sufficient information about every request made against the
database to allow the replay and analysis of any request against the relevant, restored database. This
requirement covers both static and dynamic SQL statements.

This example shows the audit policy that must be in place at the time the SQL statement is issued, and
the steps to archive the audit logs and later to extract and analyze them.

1. Create an audit policy that audits the EXECUTE category and apply this policy to the database:

CREATE AUDIT POLICY STATEMENTS CATEGORIES EXECUTE WITH DATA
 STATUS BOTH ERROR TYPE AUDIT
COMMIT

AUDIT DATABASE USING POLICY STATEMENTS
COMMIT

2. Regularly archive the audit log to create an archive copy.

The following statement should be run by the security administrator, or a user to whom they
grant EXECUTE privilege for the SYSPROC.AUDIT_ARCHIVE stored procedure, on a regular basis, for
example, once a week or once a day, depending on the amount of data logged. These archived files
can be kept for whatever period is required. The AUDIT_ARCHIVE procedure is called with two input
parameters: the path to the archive directory and -2, to indicate that the archive should be run on all
members:

CALL SYSPROC.AUDIT_ARCHIVE('/auditarchive', -2)

3. The security administrator, or a user to whom they grant EXECUTE privilege for the
SYSPROC.AUDIT_LIST_LOGS table function, uses AUDIT_LIST_LOGS to examine all of the available
audit logs from April 2006, to determine which logs may contain the necessary data:

SELECT FILE FROM TABLE(SYSPROC.AUDIT_LIST_LOGS('/auditarchive'))
 AS T WHERE FILE LIKE 'db2audit.dbname.log.0.200604%'
FILE

...
db2audit.dbname.log.0.20060418235612
db2audit.dbname.log.0.20060419234937
db2audit.dbname.log.0.20060420235128

4. From this output, the security administrator observes that the necessary logs should be in one file:
db2audit.dbname.log.20060419234937. The timestamp shows this file was archived at the end
of the day for the day the auditors want to see.

The security administrator, or a user to whom they grant EXECUTE privilege for
the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure, uses this filename as input to
AUDIT_DELIM_EXTRACT to extract the audit data into delimited files. The audit data in these files

160 IBM Db2 11.5: Database Security Guide

can be loaded into Db2 database tables, where it can be analyzed to find the particular statement
the auditors are interested in. Even though the auditors are only interested in a single SQL statement,
multiple statements from the unit of work may need to be examined in case they have any impact on
the statement of interest.

5. In order to replay the statement, the security administrator must take the following actions:

• Determine the exact statement to be issued from the audit record.
• Determine the user who issued the statement from the audit record.
• Re-create the exact permissions of the user at the time they issued the statement, including any

LBAC protection.
• Reproduce the compilation environment, by using the compilation environment column in the audit

record in combination with the SET COMPILATION ENVIRONMENT statement.
• Restore the database to its exact state at the time the statement was issued.

To avoid disturbing the production system, any restore of the database and replay of the statement
should be done on a second database system. The security administrator, running as the user who
issued the statement, can reissue the statement as found in the statement text with any input
variables that are provided in the statement value data elements.

Enabling replay of past activities
As part of a comprehensive security policy, a company can require the ability to retroactively go back a set
number of years and analyze the effects of any particular request against certain tables in their database.

Before you begin
A company must institute a policy of archiving their weekly backups and associated log files such that
they can reconstitute the database for any chosen moment in time.

About this task
To allow, at any future time, the replay and analysis of any request against the relevant, restored
database, sufficient database audit information must be captured about every request made against the
database. This requirement can cover both static and dynamic SQL statements. The EXECUTE category,
when logged WITH DATA contains the necessary information to replay past SQL statements, assuming
that the data in the database is restored to the state it was when the statement was issued.

Restrictions

The following authority and privileges are required:

• SECADM authority is required to create the audit policies,
• EXECUTE privilege is required for the audit routines and procedures.

Procedure
To enable replay of past activities, as the SECADM:
1. Create an audit policy that audits the EXECUTE category and apply this policy to the database.

CREATE AUDIT POLICY STATEMENTS CATEGORIES EXECUTE WITH DATA
 STATUS BOTH ERROR TYPE AUDIT
COMMIT
AUDIT DATABASE USING POLICY STATEMENTS
COMMIT

2. Regularly archive the audit log to create an archive copy.
To archive the audit log, run the following command on a regular basis, specifying the path to the
archive directory and -2 to indicate the archive should be run on all members:

CALL SYSPROC.AUDIT_ARCHIVE('/auditarchive', -2)

Chapter 1. Db2 security model 161

3. Check that the audit log files were created.
These archived files will then be kept for the number of years specified by the company's business
policy.
To check the audit log files run:

SELECT FILE FROM SESSION.AUDIT_ARCHIVE_RESULTS

Results
Your environment is now set up so data and information is archived to allow future replay of logged
database activity.

Replaying past database activities
Replaying past database activity is possible if all required data, logs and information is available. This
reference topic shows how a SECADM might replay past database activity via example.

Description
At some point, company auditors might want to analyze the activities of a particular user that occurred in
the past. The SECADM can use the backup database images, coupled with the backup logs, and audit logs
to reconstitute the database in question and replay the activity the auditors want to analyze. Suppose the
activities of a particular user that occurred on April 19, 2006 are in question, the following example shows
the flow of how a SECADM would help the auditors carry out their analysis.

Examples

1. The SECADM would issue the AUDIT_LIST_LOGS to find all available audit logs from April 2006.

SELECT FILE FROM TABLE(SYSPROC.AUDIT_LIST_LOGS('/auditarchive'))
 AS T WHERE FILE LIKE 'db2audit.db.sample.log.0.200604%'
FILENAME

...
db2audit.db.sample.log.0.20060418235612
db2audit.db.sample.log.0.20060419234937
db2audit.db.sample.log.0.20060420235128

2. From this output, the SECADM observes that the necessary logs should be in the
db2audit.db.sample.log.20060419234937 file. The log was taken at the end of the business day on
April 19, 2006.

3. This is used as input to the SYSPROC.AUDIT_DELIM_EXTRACT stored procedure. The arguments
passed into the procedure are:

• character delimiter (default),
• output path,
• path to the archived audit logs,
• the filename filter to determine what files are extracted from,
• the status for each category to be extracted, in this case the only category is EXECUTE.

CALL SYSPROC.AUDIT_DELIM_EXTRACT('', '', '/auditarchive',
 'db2audit.db.sample.log.0.20060419234937',
 'category execute')

4. The audit data is now in delimited files. The SECADM will load the audit data from the EXECUTE
category into the AUDITDATA.EXECUTE table. The table can be created by executing the following:

db2 CONNECT TO sample
db2 SET CURRENT SCHEMA AUDITDATA
db2 -tvf sqllib/misc/db2audit.ddl

162 IBM Db2 11.5: Database Security Guide

5. Next, load the data from execute.del to the AUDITDATA.EXECUTE table. The do this run the following
command:

db2 LOAD FROM FILE execute.del OF DEL MODIFIED BY LOBSINFILE
 INSERT INTO AUDITDATA.EXECUTE

6. The SECADM now has all the audit data in the audit tables located within the AUDITDATA schema. This
data can now be analyzed to find the particular statement the auditors are interested in.

Note: Even though the auditors are only interested in a single SQL statement, multiple statements
from the unit of work may need to be examined in case they have any impact on the statement of
interest.

7. In order to replay the statement, the following actions must be taken:

• The exact statement issued must be determined from the audit record.
• The user who issued the statement must be determined from the audit record.
• The exact permissions of the user at the time they issued the statement must be re-created,

including any LBAC protection.
• The compilation environment must be reproduced, by using the compilation environment column in

the audit record in combination with the SET COMPILATION ENVIRONMENT statement.
• The exact state of the database at the time the statement was issued must be re-created.

Note: So as not to disturb the production system, any restore of the database and replay of the
statement should be done on a secondary database system.

8. The SECADM would need to roll forward to the time the statement will start executing. The statement
local start time (local_start_time) is part of the EXECUTE audit record. Using the following EXECUTE
audit record as an example:

timestamp=2006-04-10-13.20.51.029203;
 category=EXECUTE;
 audit event=STATEMENT;
 event correlator=1;
 event status=0;
 database=SAMPLE;
 userid=smith;
 authid=SMITH;
 session authid=SMITH;
 application id=*LOCAL.prodrig.060410172044;
 application name=myapp;
 package schema=NULLID;
 package name=SQLC2F0A;
 package section=201;
 uow id=2;
 activity id=3;
 statement invocation id=0;
 statement nesting level=0;
 statement text=SELECT * FROM DEPARTMENT WHERE DEPTNO = ? AND DEPTNAME = ?;
 statement isolation level=CS;
 compilation environment=
 isolation level=CS
 query optimization=5
 degree=1
 sqlrules=DB2
 refresh age=+00000000000000.000000
 schema=SMITH
 maintained table type=SYSTEM
 resolution timestamp=2006-04-10-13.20.51.000000
 federated asynchrony=0;
 value index=0;
 value type=CHAR;
 value data=C01;
 value index=1;
 value type=VARCHAR;
 value index=INFORMATION CENTER;
 local_start_time=2006-04-10-13.20.51.021507;

The rollforward statement would look like this:

Chapter 1. Db2 security model 163

ROLLFORWARD DATABASE sample
TO 2006-04-10-13.20.51.021507
USING LOCAL TIME AND COMPLETE

9. The compilation environment needs to be set as well. The compilation environment variable can be set
by the SET COMPILATION ENVIRONMENT statement. The SECADM, running as the user who issued
the statement, can now replay the statement as found in statement text with any input variables that
are provided in the statement value data elements. Here is a sample program in C embedded SQL
that will set the COMPILATION ENVIRONMENT and replay the SELECT statement the auditors want to
analyze:

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
 SQL TYPE IS BLOB(1M) hv_blob;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE c1 CURSOR FOR SELECT COMPENVDESC
 FROM AUDITDATA.EXECUTE TIMESAMP= '2006-04-10-13.20.51.029203';
EXEC SQL DECLARE c2 CURSOR FOR SELECT *
 FROM DEPARTMENT
 WHERE DEPTNO = 'C01'
 AND DEPTNAME = 'INFORMATION CENTER';
EXEC SQL OPEN c1;

EXEC SQL FETCH c1 INTO :hv_blob;

EXEC SQL SET COMPILATION ENVIRONMENT :hv_blob;

EXEC SQL OPEN c2;

....

EXEC SQL CLOSE c1;
EXEC SQL CLOSE c2;

Audit facility management

Audit facility behavior
This topic provides background information to help you understand how the timing of writing audit
records to the log can affect database performance; how to manage errors that occur within the audit
facility; and how audit records are generated in different situations.

Controlling the timing of writing audit records to the active log
The writing of the audit records to the active log can take place synchronously or asynchronously with
the occurrence of the events causing the generation of those records. The value of the audit_buf_sz
database manager configuration parameter determines when the writing of audit records is done.

If the value of audit_buf_sz is zero (0), the writing is done synchronously. The event generating the
audit record waits until the record is written to disk. The wait associated with each record causes the
performance of the Db2 database to decrease.

If the value of audit_buf_sz is greater than zero, the record writing is done asynchronously. The value
of the audit_buf_sz when it is greater than zero is the number of 4 KB pages used to create an internal
buffer. The internal buffer is used to keep a number of audit records before writing a group of them out to
disk. The statement generating the audit record as a result of an audit event will not wait until the record
is written to disk, and can continue its operation.

In the asynchronous case, it could be possible for audit records to remain in an unfilled buffer for some
time. To prevent this from happening for an extended period, the database manager forces the writing of
the audit records regularly. An authorized user of the audit facility can also flush the audit buffer with an
explicit request. Also, the buffers are automatically flushed during an archive operation.

There are differences when an error occurs dependent on whether there is synchronous or asynchronous
record writing. In asynchronous mode, there might be some records lost because the audit records are

164 IBM Db2 11.5: Database Security Guide

buffered before being written to disk. In synchronous mode, there might be one record lost because the
error could only prevent at most one audit record from being written.

Managing audit facility errors
The setting of the ERRORTYPE audit facility parameter controls how errors are managed between the Db2
database system and the audit facility. When the audit facility is active, and the setting of the ERRORTYPE
audit facility parameter is AUDIT, then the audit facility is treated in the same way as any other part
of Db2 database. An audit record must be written (to disk in synchronous mode; or to the audit buffer
in asynchronous mode) for an audit event associated with a statement to be considered successful.
Whenever an error is encountered when running in this mode, a negative SQLCODE is returned to the
application for the statement generating an audit record.

If the error type is set to NORMAL, then any error from db2audit is ignored and the operation's SQLCODE
is returned.

Audit records generated in different situations
Depending on the API or query statement and the audit settings, none, one, or several audit records might
be generated for a particular event. For example, an SQL UPDATE statement with a SELECT subquery
might result in one audit record containing the results of the authorization check for UPDATE privilege on a
table and another record containing the results of the authorization check for SELECT privilege on a table.

For dynamic data manipulation language (DML) statements, audit records are generated for all
authorization checking at the time that the statement is prepared. Reuse of those statements by the
same user will not be audited again since no authorization checking takes place at that time. However, if
a change was made to one of the catalog tables containing privilege information, then in the next unit of
work, the statement privileges for the cached dynamic SQL or XQuery statements are checked again and
one or more new audit records created.

For a package containing only static DML statements, the only auditable event that could generate
an audit record is the authorization check to see if a user has the privilege to execute that package.
The authorization checking and possible audit record creation required for the static SQL or XQuery
statements in the package is carried out at the time the package is precompiled or bound. The execution
of the static SQL or XQuery statements within the package is auditable using the EXECUTE category.
When a package is bound again either explicitly by the user, or implicitly by the system, audit records are
generated for the authorization checks required by the static SQL or XQuery statements.

For statements where authorization checking is performed at statement execution time (for example, data
definition language (DDL), GRANT, and REVOKE statements), audit records are generated whenever these
statements are used.

Note: When executing DDL, the section number recorded for all events (except the context events) in the
audit record will be zero (0) no matter what the actual section number of the statement might have been.

Audit facility tips and techniques
Best practices for managing your audit include regularly archiving the audit log, using the error type
AUDIT when you create an audit policy, and other tips as described here.

Archiving the audit log
You should archive the audit log on a regular basis. Archiving the audit log moves the current audit log to
an archive directory while the server begins writing to a new, active audit log. The name of each archived
log file includes a timestamp that helps you identify log files of interest for later analysis.

For long-term storage, you might want to compress groups of archived files.

For archived audit logs that you are no longer interested in, the instance owner can simply delete the files
from the operating system.

Chapter 1. Db2 security model 165

Error handling
When you create an audit policy, you should use the error type AUDIT, unless you are just creating a test
audit policy. For example, if the error type is set to AUDIT, and an error occurs, such as running out of disk
space, then an error is returned. The error condition must be corrected before any more auditable actions
can continue. However, if the error type was set to NORMAL, the logging would simply fail and no error is
returned to the user. Operation continues as if the error did not happen.

If a problem occurs during archive, such as running out of disk space in the archive
path, or the archive path does not exist, the archive process fails and an interim log
file with the file extension .bk is generated in the audit log data path, for example,
db2audit.instance.log.0.20070508172043640941.bk. After the problem is resolved (by
allocating sufficient disk space in the archive path, or by creating the archive path) you must move this
interim log to the archive path. Then, you can treat it in the same way as a successfully archived log.

DDL statement restrictions
Some data definition language (DDL) statements, called AUDIT exclusive SQL statements, do not take
effect until the next unit of work. Therefore, you are advised to use a COMMIT statement immediately
after each of these statements.

The AUDIT exclusive SQL statements are:

• AUDIT
• CREATE AUDIT POLICY, ALTER AUDIT POLICY, and DROP AUDIT POLICY
• DROP ROLE and DROP TRUSTED CONTEXT, if the role or trusted context being dropped is associated

with an audit policy

Table format for holding archived data might change
The security administrator can use the SYSPROC.AUDIT_DEL_EXTRACT stored procedure, or the system
administrator can use the db2audit extract command, to extract audit records from the archived
audit log files into delimited files. You can load the audit data from the delimited files into Db2 database
tables for analysis. The format of the tables you need to create to hold the audit data might change from
release to release.

Important: The script, db2audit.ddl, creates tables of the correct format to contain the audit records.
You should expect to run db2audit.ddl for each release, as columns might be added or the size of an
existing column might change.

Using CHECKING events
In most cases, when working with CHECKING events, the object type field in the audit record is the object
being checked to see if the required privilege or authority is held by the user ID attempting to access the
object. For example, if a user attempts to ALTER a table by adding a column, then the CHECKING event
audit record indicates the access attempted was "ALTER" and the object type being checked was "TABLE"
(not the column, because it is table privileges that are checked).

However, when the checking involves verifying if a database authority exists to allow a user ID to CREATE
or BIND an object, or to DROP an object, then although there is a check against the database, the object
type field will specify the object being created, bound, or dropped (rather than the database itself).

When creating an index on a table, the privilege to create an index is required, therefore the CHECKING
event audit record has an access attempt type of "index" rather than "create".

Audit records created for binding a package
When binding a package that already exists, then an OBJMAINT event audit record is created for the
DROP of the package and then another OBJMAINT event audit record is created for the CREATE of the
new copy of the package.

166 IBM Db2 11.5: Database Security Guide

Using CONTEXT event information after ROLLBACK
Data Definition Language (DDL) might generate OBJMAINT or SECMAINT events that are logged as
successful. It is possible however that following the logging of the event, a subsequent error might cause
a ROLLBACK to occur. This would leave the object as not created; or the GRANT or REVOKE actions as
incomplete. The use of CONTEXT events becomes important in this case. Such CONTEXT event audit
records, especially the statement that ends the event, indicates the nature of the completion of the
attempted operation.

The load delimiter
When extracting audit records in a delimited format suitable for loading into a Db2 database table, you
should be clear regarding the delimiter used within the statement text field. This can be done when
extracting the delimited file, using:

 db2audit extract delasc delimiter load_delimiter

The load _delimiter can be a single character (such as ") or a four-byte string representing a hexadecimal
value (such as "0x3b"). Examples of valid commands are:

 db2audit extract delasc
 db2audit extract delasc delimiter !
 db2audit extract delasc delimiter 0x3b

If you have used anything other than the default load delimiter as the delimiter when extracting, you
should use the MODIFIED BY option on the LOAD command. A partial example of the LOAD command
with "0x3b" used as the delimiter follows:

 db2 load from context.del of del modified by chardel0x3b replace into ...

This overrides the default load character string delimiter which is " (double quote).

Security model for the db2cluster command
The db2cluster command is the main interface into Db2 cluster services, and as such acts on both
the cluster manager and shared file system cluster provided for the IBM Db2 pureScale Feature. The
db2cluster command options that are available to a user depend on the user's authority.

In terms of the security model for the db2cluster command, there are three user groups, broken down
by the type of tasks each user group is likely to perform:

• Anyone with a userid on the system

Users in this group are able to use the db2cluster command to report information about the Db2
pureScale instance, but not to make any changes.

• The SYSADM, SYSCTL or SYSMAINT group

Users in this group are able to use the db2cluster command to keep the instance up and running,
and to perform some administrative tasks on the cluster manager. By definition, a user in this group is
either the userid of the instance, a member of the primary group of the instance owner, or a member
of a non-primary group of the instance owner. Db2 recommends that normal day to day activities are
performed using a userid with membership in a non-primary group of the instance owner

• The Db2 cluster services administrator

Users in this group have no requirements to access data in the database; this is an administrative role
used for:

– installation and configuration of the Db2 cluster services portion of Db2
– maintaining clustered instances in the cluster domain and maintaining the shared file system cluster

The Db2 cluster services administrator role is an end user with access to a root-owned userid for the
operating system; for example, an operating system administrator. Db2 cluster services can affect all

Chapter 1. Db2 security model 167

clustered environments, whether you are using the Db2 pureScale Feature or a partitioned database
environment with integrated HA. Therefore, roles such as DBADM, SECADM, SQLADM, WLMADM,
EXPLAIN, ACCESSCTRL, and DATAACCESS that act on databases, do not provide the appropriate level
of authority for cluster management. The Db2 cluster services administrator can be the same person as
someone with a userid in the SYSADM, SYSCTL or SYSMAINT groups.

Note: Just because a user has SYSADM privileges, it does not necessarily mean the user has operating
system administration privileges.

Cluster manager tasks for db2cluster
• Anyone with a userid on the system can retrieve information about the current state of the cluster

domain using the -list and -verify options.
• Users in the SYSADM, SYSMAINT or SYSCTL group can query and change the preferred primary cluster

caching facility using the -list and -set options. As well, these users can use the -clear -alert
option to clear alerts for any of the hosts, members, and cluster caching facilities in the current instance
(as defined by the DB2INSTANCE registry variable). Users in this group can also create and delete
cluster resources, and repair the cluster manager resource model; however, it is strongly recommended
that these tasks be performed only under the advisement of Db2 service personnel.

• The Db2 cluster services administrator can perform administrative tasks that affect Db2 cluster services
as a whole across all clustered instances on all hosts in the cluster domain. This user can perform
configuration tasks such as setting the tiebreaker device and the host failure detection time, using
the -set option. As well, the Db2 cluster services administrator can perform maintenance-related
tasks, such as putting hosts into maintenance mode, using the -enter option, or committing changes
or updates to the cluster manager, using the -commit option. This user can also perform advanced
maintenance operations on the cluster manager peer domain, such as creating, deleting, starting,
or stopping the domain, and adding or removing hosts; however, it is strongly recommended that
these tasks be performed only under the advisement of Db2 service personnel. Certain DB2® cluster
administrative commands require DB2INSTANCE environment variable to be set.

Shared file system tasks for db2cluster
• Anyone with a userid on the system can retrieve information about the current state of the cluster

domain using the -list and -verify options. These users can also perform a wide variety of file
system operations with the db2cluster command options, but what they can do is constrained
by regular file system permissions. As long as the userid running the command has read and write
ownership of the device being used, that user can create file systems and add disks. Once a file system
has been created or mounted, access to that file system is limited to the userid that created it and to the
Db2 cluster services administrator, so only those users can remove, delete, or rebalance a file system.
Either the userid that created it, or the Db2 cluster services administrator can create directories that are
accessible to other users, much as with a normal file system.

• The Db2 cluster services administrator can perform administrative tasks that affect Db2 cluster services
as a whole across all clustered instances on all hosts in the cluster domain. This user can change
options for the tiebreaker device, using the -set option. As well, the Db2 cluster services administrator
can perform maintenance-related tasks, such as putting hosts into maintenance mode, using the
-enter option, or committing changes or updates to the shared file system, using the -commit option.
This user can also perform advanced maintenance operations on the shared file system cluster, such
as creating, deleting, starting, or stopping the domain, and adding or removing hosts; however, it
is strongly recommended that these tasks be performed only under the advisement of Db2 service
personnel.

168 IBM Db2 11.5: Database Security Guide

Chapter 2. Roles
Roles simplify the administration and management of privileges by offering an equivalent capability as
groups but without the same restrictions.

A role is a database object that groups together one or more privileges and can be assigned to users,
groups, PUBLIC, or other roles by using a GRANT statement, or can be assigned to a trusted context by
using a CREATE TRUSTED CONTEXT or ALTER TRUSTED CONTEXT statement. A role can be specified for
the SESSION_USER ROLE connection attribute in a workload definition.

Roles provide several advantages that make it easier to manage privileges in a database system:

• Security administrators can control access to their databases in a way that mirrors the structure of
their organizations (they can create roles in the database that map directly to the job functions in their
organizations).

• Users are granted membership in the roles that reflect their job responsibilities. As their job
responsibilities change, their membership in roles can be easily granted and revoked.

• The assignment of privileges is simplified. Instead of granting the same set of privileges to each
individual user in a particular job function, the administrator can grant this set of privileges to a role
representing that job function and then grant that role to each user in that job function.

• A role's privileges can be updated and all users who have been granted that role receive the update; the
administrator does not need to update the privileges for every user on an individual basis.

• The privileges and authorities granted to roles are always used when you create views, triggers,
materialized query tables (MQTs), static SQL and SQL routines, whereas privileges and authorities
granted to groups (directly or indirectly) are not used.

This is because the Db2 database system cannot determine when membership in a group changes,
as the group is managed by third-party software (for example, the operating system or an LDAP
directory). Because roles are managed inside the database, the Db2 database system can determine
when authorization changes and act accordingly. Roles granted to groups are not considered, due to the
same reason groups are not considered.

• All the roles assigned to a user are enabled when that user establishes a connection, so all privileges
and authorities granted to roles are taken into account when a user connects. Roles cannot be explicitly
enabled or disabled.

• The security administrator can delegate management of a role to others.

All Db2 privileges and authorities that can be granted within a database can be granted to a role. For
example, a role can be granted any of the following authorities and privileges:

• DBADM, SECADM, DATAACCESS, ACCESSCTRL, SQLADM, WLMADM, LOAD, and IMPLICIT_SCHEMA
database authorities

• CONNECT, CREATETAB, CREATE_NOT_FENCED, BINDADD, CREATE_EXTERNAL_ROUTINE, or
QUIESCE_CONNECT database authorities

• Any database object privilege (including CONTROL)

A user's roles are automatically enabled and considered for authorization when a user connects to a
database; you do not need to activate a role by using the SET ROLE statement. For example, when you
create a view, a materialized query table (MQT), a trigger, a package, or an SQL routine, the privileges that
you gain through roles apply. However, privileges that you gain through roles granted to groups of which
you are a member do not apply.

A role does not have an owner. The security administrator can use the WITH ADMIN OPTION clause of the
GRANT statement to delegate management of the role to another user, so that the other user can control
the role membership.

© Copyright IBM Corp. 2016, 2023 169

Restrictions
There are a few restrictions in the use of roles:

• A role cannot own database objects.
• Permissions and roles granted to groups are not considered when you create the following database

objects:

– Packages containing static SQL
– Views
– Materialized query tables (MQT)
– Triggers
– SQL Routines

Only roles granted to the user creating the object or to PUBLIC, directly or indirectly (such as through a
role hierarchy), are considered when creating these objects.

Creating and granting membership in roles
The security administrator holds the authority to create, drop, grant, revoke, and comment on a role. The
security administrator uses the GRANT (Role) statement to grant membership in a role to an authorization
ID and uses the REVOKE (Role) statement to revoke membership in a role from an authorization ID.

The security administrator can delegate the management of membership in a role to an authorization ID
by granting the authorization ID membership in the role with the WITH ADMIN OPTION. The WITH ADMIN
OPTION clause of the GRANT (Role) statement gives another user the ability to:

• Grant roles to others.
• Revoke roles from others.
• Comment on the role.

The WITH ADMIN OPTION clause does not give the ability to:

• Drop the role.
• Revoke the WITH ADMIN OPTION for a role from an authorization ID.
• Grant WITH ADMIN OPTION to someone else (if you do not hold SECADM authority).

After the security administrator has created a role, the database administrator can use the GRANT
statement to assign authorities and privileges to the role. All Db2 privileges and authorities that can be
granted within a database can be granted to a role. Instance level authorities, such as SYSADM authority,
cannot be assigned to a role.

The security administrator, or any user who the security administrator has granted membership in a role
with WITH ADMIN OPTION can use the GRANT (Role) statement to grant membership in that role to other
users, groups, PUBLIC or roles. A user may have been granted membership in a role with WITH ADMIN
OPTION either directly, or indirectly through PUBLIC, a group or a role.

All the roles assigned to a user are enabled when that user establishes a session. All the privileges and
authorities associated with a user's roles are taken into account when the Db2 database system checks
for authorization. Some database systems use the SET ROLE statement to activate a particular role. The
Db2 database system supports SET ROLE to provide compatibility with other products using the SET ROLE
statement. In a Db2 database system, the SET ROLE statement checks whether the session user is a
member of the role and returns an error if they are not.

To revoke a user's membership in a role, the security administrator, or a user who holds WITH ADMIN
OPTION privilege on the role, uses the REVOKE (Role) statement.

170 IBM Db2 11.5: Database Security Guide

Example

A role has a certain set of privileges and a user who is granted membership in this role inherits those
privileges. This inheritance of privileges eliminates managing individual privileges when reassigning the
privileges of one user to another user. The only operations required when using roles is to revoke
membership in the role from one user and grant membership in the role to the other user.

For example, the employees BOB and ALICE, working in department DEV, have the privilege to SELECT
on the tables SERVER, CLIENT and TOOLS. One day, management decides to move them to a new
department, QA, and the database administrator has to revoke their privilege to select on tables SERVER,
CLIENT and TOOLS. Department DEV later hires a new employee, TOM, and the database administrator
has to grant SELECT privilege on tables SERVER, CLIENT and TOOLS to TOM.

When using roles, the following steps occur:

1. The security administrator creates a role, DEVELOPER:

CREATE ROLE DEVELOPER

2. The database administrator (who holds DBADM authority) grants SELECT on tables SERVER, CLIENT,
and TOOLS to role DEVELOPER:

GRANT SELECT ON TABLE SERVER TO ROLE DEVELOPER
GRANT SELECT ON TABLE CLIENT TO ROLE DEVELOPER
GRANT SELECT ON TABLE TOOLS TO ROLE DEVELOPER

3. The security administrator grants the role DEVELOPER to the users in department DEV, BOB and
ALICE:

GRANT ROLE DEVELOPER TO USER BOB, USER ALICE

4. When BOB and ALICE leave department DEV, the security administrator revokes the role DEVELOPER
from users BOB and ALICE:

REVOKE ROLE DEVELOPER FROM USER BOB, USER ALICE

5. When TOM is hired in department DEV, the security administrator grants the role DEVELOPER to user
TOM:

GRANT ROLE DEVELOPER TO USER TOM

Role hierarchies
A role hierarchy is formed when one role is granted membership in another role.

A role contains another role when the other role is granted to the first role. The other role inherits all
of the privileges of the first role. For example, if the role DOCTOR is granted to the role SURGEON, then
SURGEON is said to contain DOCTOR. The role SURGEON inherits all the privileges of role DOCTOR.

Cycles in role hierarchies are not allowed. A cycle occurs if a role is granted in circular way such that one
role is granted to another role and that other role is granted to the original role. For example, the role
DOCTOR is granted to role SURGEON, and then the role SURGEON is granted back to the role DOCTOR. If
you create a cycle in a role hierarchy, an error is returned (SQLSTATE 428GF).

Example of building a role hierarchy

The following example shows how to build a role hierarchy to represent the medical levels in a hospital.

Consider the following roles: DOCTOR, SPECIALIST, and SURGEON. A role hierarchy is built by granting a
role to another role, but without creating cycles. The role DOCTOR is granted to role SPECIALIST, and role
SPECIALIST is granted to role SURGEON.

Granting role SURGEON to role DOCTOR would create a cycle and is not allowed.

The security administrator runs the following SQL statements to build the role hierarchy:

Chapter 2. Roles 171

CREATE ROLE DOCTOR
CREATE ROLE SPECIALIST
CREATE ROLE SURGEON

GRANT ROLE DOCTOR TO ROLE SPECIALIST

GRANT ROLE SPECIALIST TO ROLE SURGEON

Effect of revoking privileges from roles
When privileges are revoked, this can sometimes cause dependent database objects, such as views,
packages or triggers, to become invalid or inoperative.

The following examples show what happens to a database object when some privileges are revoked from
an authorization identifier and privileges are held through a role or through different means.

Example of revoking privileges from roles

1. The security administrator creates the role DEVELOPER and grants the user BOB membership in this
role:

CREATE ROLE DEVELOPER
GRANT ROLE DEVELOPER TO USER BOB

2. User ALICE creates a table, WORKITEM:

CREATE TABLE WORKITEM (x int)

3. The database administrator grants SELECT and INSERT privileges on table WORKITEM to PUBLIC and
also to the role DEVELOPER:

GRANT SELECT ON TABLE ALICE.WORKITEM TO PUBLIC
GRANT INSERT ON TABLE ALICE.WORKITEM TO PUBLIC
GRANT SELECT ON TABLE ALICE.WORKITEM TO ROLE DEVELOPER
GRANT INSERT ON TABLE ALICE.WORKITEM TO ROLE DEVELOPER

4. User BOB creates a view, PROJECT, that uses the table WORKITEM, and a package, PKG1, that
depends on the table WORKITEM:

CREATE VIEW PROJECT AS SELECT * FROM ALICE.WORKITEM
PREP emb001.sqc BINDFILE PACKAGE USING PKG1 VERSION 1

5. If the database administrator revokes SELECT privilege on table ALICE.WORKITEM from PUBLIC, then
the view BOB.PROJECT remains operative and package PKG1 remains valid because the view definer,
BOB, still holds the privileges required through his membership in the role DEVELOPER:

REVOKE SELECT ON TABLE ALICE.WORKITEM FROM PUBLIC

6. If the database administrator revokes SELECT privilege on table ALICE.WORKITEM from the role
DEVELOPER, the view BOB.PROJECT becomes inoperative and package PKG1 becomes invalid
because the view and package definer, BOB, does not hold the required privileges through other
means:

REVOKE SELECT ON TABLE ALICE.WORKITEM FROM ROLE DEVELOPER

Example of revoking DBADM authority

In this example, the role DEVELOPER holds DBADM authority and is granted to user BOB.

1. The security administrator creates the role DEVELOPER:

CREATE ROLE DEVELOPER

2. The system administrator grants DBADM authority to the role DEVELOPER:

172 IBM Db2 11.5: Database Security Guide

GRANT DBADM ON DATABASE TO ROLE DEVELOPER

3. The security administrator grants user BOB membership in this role:

GRANT ROLE DEVELOPER TO USER BOB

4. User ALICE creates a table, WORKITEM:

CREATE TABLE WORKITEM (x int)

5. User BOB creates a view PROJECT that uses table WORKITEM, a package PKG1 that depends on table
WORKITEM, and a trigger, TRG1, that also depends on table WORKITEM:

CREATE VIEW PROJECT AS SELECT * FROM ALICE.WORKITEM
PREP emb001.sqc BINDFILE PACKAGE USING PKG1 VERSION 1
CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM
 FOR EACH STATEMENT MODE DB2SQL
 INSERT INTO ALICE.WORKITEM VALUES (1)

6. The security administrator revokes the role DEVELOPER from user BOB:

REVOKE ROLE DEVELOPER FROM USER BOB

Revoking the role DEVELOPER causes the user BOB to lose DBADM authority because the role that
held that authority was revoked. The view, package, and trigger are affected as follows:

• View BOB. PROJECT is still valid.
• Package PKG1 becomes invalid.
• Trigger BOB.TRG1 is still valid.

View BOB.PROJECT and trigger BOB.TRG1 are usable while package PKG1 is not usable. View and
trigger objects created by an authorization ID holding DBADM authority are not affected when DBADM
authority is lost.

Delegating role maintenance by using the WITH ADMIN OPTION
clause

Using the WITH ADMIN OPTION clause of the GRANT (Role) SQL statement, the security administrator
can delegate the management and control of membership in a role to someone else.

The WITH ADMIN OPTION clause gives another user the authority to grant membership in the role to
other users, to revoke membership in the role from other members of the role, and to comment on a role,
but not to drop the role.

The WITH ADMIN OPTION clause does not give another user the authority to grant WITH ADMIN OPTION
on a role to another user. It also does not give the authority to revoke WITH ADMIN OPTION for a role
from another authorization ID.

Example demonstrating use of the WITH ADMIN OPTION clause

1. A security administrator creates the role, DEVELOPER, and grants the new role to user BOB using the
WITH ADMIN OPTION clause:

CREATE ROLE DEVELOPER
GRANT ROLE DEVELOPER TO USER BOB WITH ADMIN OPTION

2. User BOB can grant membership in the role to and revoke membership from the role from other users,
for example, ALICE:

GRANT ROLE DEVELOPER TO USER ALICE
REVOKE ROLE DEVELOPER FROM USER ALICE

Chapter 2. Roles 173

3. User BOB cannot drop the role or grant WITH ADMIN OPTION to another user (only a security
administrator can perform these two operations). These commands issued by BOB will fail:

DROP ROLE DEVELOPER - FAILURE!
 - only a security administrator is allowed to drop the role
GRANT ROLE DEVELOPER TO USER ALICE WITH ADMIN OPTION - FAILURE!
 - only a security administrator can grant WITH ADMIN OPTION

4. User BOB cannot revoke role administration privileges (conferred by WITH ADMIN OPTION) from users
for role DEVELOPER, because he does not have security administrator (SECADM) authority. When BOB
issues the following command, it fails:

REVOKE ADMIN OPTION FOR ROLE DEVELOPER FROM USER SANJAY - FAILURE!

5. A security administrator is allowed to revoke the role administration privileges for role DEVELOPER
(conferred by WITH ADMIN OPTION) from user BOB , and user BOB still has the role DEVELOPER
granted:

REVOKE ADMIN OPTION FOR ROLE DEVELOPER FROM USER BOB

Alternatively, if a security administrator simply revokes the role DEVELOPER from user BOB, then BOB
loses all the privileges he received by being a member of the role DEVELOPER and the authority on the
role he received through the WITH ADMIN OPTION clause:

REVOKE ROLE DEVELOPER FROM USER BOB

Roles compared to groups
Privileges and authorities granted to groups are not considered when creating views, materialized query
tables (MQTs), SQL routines, triggers, and packages containing static SQL. Avoid this restriction by using
roles instead of groups.

Roles allow users to create database objects using their privileges acquired through roles, which are
controlled by the Db2 database system. Groups and users are controlled externally from the Db2
database system, for example, by an operating system or an LDAP server.

Example of replacing the use of groups with roles

This example shows how you can replace groups by using roles.

Assume that there are three groups, DEVELOPER_G, TESTER_G and SALES_G. The users BOB, ALICE, and
TOM are members of these groups, as shown in the following table:

Table 8. Example groups and users

Group Users belonging to this group

DEVELOPER_G BOB

TESTER_G ALICE, TOM

SALES_G ALICE, BOB

1. The security administrator creates the roles DEVELOPER, TESTER, and SALES to be used instead of the
groups.

CREATE ROLE DEVELOPER
CREATE ROLE TESTER
CREATE ROLE SALES

2. The security administrator grants membership in these roles to users (setting the membership of users
in groups was the responsibility of the system administrator):

174 IBM Db2 11.5: Database Security Guide

GRANT ROLE DEVELOPER TO USER BOB
GRANT ROLE TESTER TO USER ALICE, USER TOM
GRANT ROLE SALES TO USER BOB, USER ALICE

3. The database administrator can grant to the roles similar privileges or authorities as were held by the
groups, for example:

GRANT privilege ON object TO ROLE DEVELOPER

The database administrator can then revoke these privileges from the groups, as well as ask the
system administrator to remove the groups from the system.

Example of creating a trigger using privileges acquired through a role

This example shows that user BOB can successfully create a trigger, TRG1, when he holds the necessary
privilege through the role DEVELOPER.

1. First, user ALICE creates the table, WORKITEM:

CREATE TABLE WORKITEM (x int)

2. Then, the privilege to alter ALICE's table is granted to role DEVELOPER by the database administrator.

GRANT ALTER ON ALICE.WORKITEM TO ROLE DEVELOPER

3. User BOB successfully creates the trigger, TRG1, because he is a member of the role, DEVELOPER.

CREATE TRIGGER TRG1 AFTER DELETE ON ALICE.WORKITEM
 FOR EACH STATEMENT MODE DB2SQL INSERT INTO ALICE.WORKITEM VALUES (1)

Notes
• Roles that are granted to groups are not considered.

Using roles after migrating from IBM Informix Dynamic Server
If you have migrated from IBM Informix® Dynamic Server to the Db2 database system and are using roles
there are a few things you need to be aware of.

The Informix Dynamic Server (IDS) SQL statement, GRANT ROLE, provides the clause WITH GRANT
OPTION. The Db2 database system GRANT ROLE statement provides the clause WITH ADMIN OPTION
(this conforms to the SQL standard) that provides the same functionality. During an IDS to Db2 database
system migration, after the dbschema tool generates CREATE ROLE and GRANT ROLE statements, the
dbschema tool replaces any occurrences of WITH GRANT OPTION with WITH ADMIN OPTION.

In an IDS database system, the SET ROLE statement activates a particular role. The Db2 database system
supports the SET ROLE statement, but only to provide compatibility with other products using that SQL
statement. The SET ROLE statement checks whether the session user is a member of the role and returns
an error if they are not.

Example dbschema output

Assume that an IDS database contains the roles DEVELOPER, TESTER and SALES. Users BOB, ALICE,
and TOM have different roles granted to each of them; the role DEVELOPER is granted to BOB, the role
TESTER granted to ALICE, and the roles TESTER and SALES granted to TOM. To migrate to the Db2
database system, use the dbschema tool to generate the CREATE ROLE and GRANT ROLE statements for
the database:

CREATE ROLE DEVELOPER
CREATE ROLE TESTER
CREATE ROLE SALES

GRANT DEVELOPER TO BOB

Chapter 2. Roles 175

GRANT TESTER TO ALICE, TOM
GRANT SALES TO TOM

You must create the database in the Db2 database system, and then you can run the preceding
statements in that database to re-create the roles and assignment of the roles.

176 IBM Db2 11.5: Database Security Guide

Chapter 3. Using trusted contexts and trusted
connections

You can establish an explicit trusted connection by making a request within an application when a
connection to a Db2 database is established. The security administrator must have previously defined a
trusted context, using the CREATE TRUSTED CONTEXT statement, with attributes matching those of the
connection you are establishing (see Step 1, later).

Before you begin
The API you use to request an explicit trusted connection when you establish a connection depends on
the type of application you are using (see the table in Step 2).

After you have established an explicit trusted connection, the application can switch the user ID of the
connection to a different user ID using the appropriate API for the type of application (see the table in
Step 3).

Procedure
1. The security administrator defines a trusted context in the server by using the CREATE TRUSTED

CONTEXT statement.
For example:

CREATE TRUSTED CONTEXT MYTCX
 BASED UPON CONNECTION USING SYSTEM AUTHID NEWTON
 ATTRIBUTES (ADDRESS '192.0.2.1')
 WITH USE FOR PUBLIC WITHOUT AUTHENTICATION
 ENABLE

2. To establish a trusted connection, use one of the following APIs in your application:
Option Description

Application API

CLI/ODBC SQLConnect, SQLSetConnectAttr

XA CLI/ODBC Xa_open

JAVA getDB2TrustedPooledConnection, getDB2TrustedXAConnection

3. To switch to a different user, with or without authentication, use one of the following APIs in your
application:
Option Description

Application API

CLI/ODBC SQLSetConnectAttr

XA CLI/ODBC SQLSetConnectAttr

JAVA getDB2Connection, reuseDB2Connection

.NET DB2Connection.ConnectionString keywords: TrustedContextSystemUserID and
TrustedContextSystemPassword

The switching can be done either with or without authenticating the new user ID, depending on the
definition of the trusted context object associated with the explicit trusted connection. For example,
suppose that the security administrator creates the following trusted context object:

CREATE TRUSTED CONTEXT CTX1
 BASED UPON CONNECTION USING SYSTEM AUTHID USER1

© Copyright IBM Corp. 2016, 2023 177

 ATTRIBUTES (ADDRESS '192.0.2.1')
 WITH USE FOR USER2 WITH AUTHENTICATION,
 USER3 WITHOUT AUTHENTICATION
 ENABLE

Further, suppose that an explicit trusted connection is established. A request to switch the user
ID on the trusted connection to USER3 without providing authentication information is allowed
because USER3 is defined as a user of trusted context CTX1 for whom authentication is not required.
However, a request to switch the user ID on the trusted connection to USER2 without providing
authentication information will fail because USER2 is defined as a user of trusted context CTX1 for
whom authentication information must be provided.

Example of establishing an explicit trusted connection and switching the user

In the following example, a middle-tier server needs to issue some database requests on behalf of an
end-user, but does not have access to the end-user's credentials to establish a database connection on
behalf of that end-user.

You can create a trusted context object on the database server that allows the middle-tier server to
establish an explicit trusted connection to the database. After establishing an explicit trusted connection,
the middle-tier server can switch the current user ID of the connection to a new user ID without the need
to authenticate the new user ID at the database server. The following CLI code snippet demonstrates how
to establish a trusted connection using the trusted context, MYTCX, defined in Step 1, earlier, and how to
switch the user on the trusted connection without authentication.

int main(int argc, char *argv[])
{
 SQLHANDLE henv; /* environment handle */
 SQLHANDLE hdbc1; /* connection handle */
 char origUserid[10] = "newton";
 char password[10] = "test";
 char switchUserid[10] = "zurbie";
 char dbName[10] = "testdb";

// Allocate the handles
SQLAllocHandle(SQL_HANDLE_ENV, &henv);
SQLAllocHandle(SQL_HANDLE_DBC, &hdbc1);

// Set the trusted connection attribute
SQLSetConnectAttr(hdbc1, SQL_ATTR_USE_TRUSTED_CONTEXT,
SQL_TRUE, SQL_IS_INTEGER);

// Establish a trusted connection
SQLConnect(hdbc1, dbName, SQL_NTS, origUserid, SQL_NTS,
password, SQL_NTS);

//Perform some work under user ID "newton"
.

 // Commit the work
SQLEndTran(SQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Switch the user ID on the trusted connection
SQLSetConnectAttr(hdbc1,
SQL_ATTR_TRUSTED_CONTEXT_USERID, switchUserid,
SQL_IS_POINTER
);

//Perform new work using user ID "zurbie"
.

//Commit the work
SQLEndTranSQL_HANDLE_DBC, hdbc1, SQL_COMMIT);

// Disconnect from database
SQLDisconnect(hdbc1);

 return 0;

} /* end of main */

178 IBM Db2 11.5: Database Security Guide

What to do next
When does the user ID actually get switched?

After the command to switch the user on the trusted connection is issued, the switch user request
is not performed until the next statement is sent to the server. This is demonstrated by the following
example where the list applications command shows the original user ID until the next
statement is issued.

1. Establish an explicit trusted connection with USERID1.
2. Issue the switch user command, such as getDB2Connection for USERID2.
3. Run db2 list applications. It still shows that USERID1 is connected.
4. Issue a statement on the trusted connection, such as executeQuery("values current
sqlid"), to perform the switch user request at the server.

5. Run db2 list applications again. It now shows that USERID2 is connected.

Trusted contexts and trusted connections
A trusted context is a database object that defines a trust relationship for a connection between the
database and an external entity such as an application server.

The trust relationship is based upon the following set of attributes:

• System authorization ID: Represents the user that establishes a database connection
• IP address (or domain name): Represents the host from which a database connection is established
• Data stream encryption: Represents the encryption setting (if any) for the data communication between

the database server and the database client

When a user establishes a database connection, the Db2 database system checks whether the connection
matches the definition of a trusted context object in the database. When a match occurs, the database
connection is said to be trusted.

A trusted connection cannot be established if the connection is to a local database using inter-process
communication (IPC).

A trusted connection allows the initiator of this trusted connection to acquire additional capabilities
that may not be available outside the scope of the trusted connection. The additional capabilities vary
depending on whether the trusted connection is explicit or implicit.

The initiator of an explicit trusted connection has the ability to:

• Switch the current user ID on the connection to a different user ID with or without authentication
• Acquire additional privileges via the role inheritance feature of trusted contexts

An implicit trusted connection is a trusted connection that is not explicitly requested; the implicit trusted
connection results from a normal connection request rather than an explicit trusted connection request.
No application code changes are needed to obtain an implicit connection. Also, whether you obtain an
implicit trusted connection or not has no effect on the connect return code (when you request an explicit
trusted connection, the connect return code indicates whether the request succeeds or not). The initiator
of an implicit trusted connection can only acquire additional privileges via the role inheritance feature of
trusted contexts; they cannot switch the user ID.

How using trusted contexts enhances security
The three-tiered application model extends the standard two-tiered client and server model by placing
a middle tier between the client application and the database server. It has gained great popularity in
recent years particularly with the emergence of web-based technologies and the Java 2 Enterprise Edition
(J2EE) platform. An example of a software product that supports the three-tier application model is IBM
WebSphere® Application Server (WAS).

In a three-tiered application model, the middle tier is responsible for authenticating the users running
the client applications and for managing the interactions with the database server. Traditionally, all the

Chapter 3. Using trusted contexts and trusted connections 179

interactions with the database server occur through a database connection established by the middle tier
using a combination of a user ID and a credential that identify that middle tier to the database server.
This means that the database server uses the database privileges associated with the middle tier's user
ID for all authorization checking and auditing that must occur for any database access, including access
performed by the middle tier on behalf of a user.

While the three-tiered application model has many benefits, having all interactions with the database
server (for example, a user request) occur under the middle tier's authorization ID raises several security
concerns, which can be summarized as follows:

• Loss of user identity

Some enterprises prefer to know the identity of the actual user accessing the database for access
control purposes.

• Diminished user accountability

Accountability through auditing is a basic principle in database security. Not knowing the user's identity
makes it difficult to distinguish the transactions performed by the middle tier for its own purpose from
those performed by the middle tier on behalf of a user.

• Over granting of privileges to the middle tier's authorization ID

The middle tier's authorization ID must have all the privileges necessary to execute all the requests
from all the users. This has the security issue of enabling users who do not need access to certain
information to obtain access anyway.

• Weakened security

In addition to the privilege issue raised in the previous point, the current approach requires that the
authorization ID used by the middle tier to connect must be granted privileges on all resources that
might be accessed by user requests. If that middle-tier authorization ID is ever compromised, then all
those resources will be exposed.

• "Spill over" between users of the same connection

Changes by a previous user can affect the current user.

Clearly, there is a need for a mechanism whereby the actual user's identity and database privileges are
used for database requests performed by the middle tier on behalf of that user. The most straightforward
approach of achieving this goal would be for the middle-tier to establish a new connection using the
user's ID and password, and then direct the user's requests through that connection. Although simple,
this approach suffers from several drawbacks which include the following:

• Inapplicability for certain middle tiers. Many middle-tier servers do not have the user authentication
credentials needed to establish a connection.

• Performance overhead. There is an obvious performance overhead associated with creating a new
physical connection and re-authenticating the user at the database server.

• Maintenance overhead. In situations where you are not using a centralized security set up or are not
using single sign-on, there is maintenance overhead in having two user definitions (one on the middle
tier and one at the server). This requires changing passwords at different places.

The trusted contexts capability addresses this problem. The security administrator can create a trusted
context object in the database that defines a trust relationship between the database and the middle-tier.
The middle-tier can then establish an explicit trusted connection to the database, which gives the middle
tier the ability to switch the current user ID on the connection to a different user ID, with or without
authentication. In addition to solving the end-user identity assertion problem, trusted contexts offer
another advantage. This is the ability to control when a privilege is made available to a database user.
The lack of control on when privileges are available to a user can weaken overall security. For example,
privileges may be used for purposes other than they were originally intended. The security administrator
can assign one or more privileges to a role and assign that role to a trusted context object. Only trusted
database connections (explicit or implicit) that match the definition of that trusted context can take
advantage of the privileges associated with that role.

180 IBM Db2 11.5: Database Security Guide

Enhancing performance
When you use trusted connections, you can maximize performance because of the following advantages:

• No new connection is established when the current user ID of the connection is switched.
• If the trusted context definition does not require authentication of the user ID to switch to, then the

overhead associated with authenticating a new user at the database server is not incurred.

Example of creating a trusted context

Suppose that the security administrator creates the following trusted context object:

CREATE TRUSTED CONTEXT CTX1
 BASED UPON CONNECTION USING SYSTEM AUTHID USER2
 ATTRIBUTES (ADDRESS '192.0.2.1')
 DEFAULT ROLE managerRole
 ENABLE

If user user1 requests a trusted connection from IP address 192.0.2.1, the Db2 database system returns
a warning (SQLSTATE 01679, SQLCODE +20360) to indicate that a trusted connection could not be
established, and that user user1 simply got a non-trusted connection. However, if user user2 requests a
trusted connection from IP address 192.0.2.1, the request is honored because the connection attributes
are satisfied by the trusted context CTX1. Now that use user2 has established a trusted connection,
he or she can now acquire all the privileges and authorities associated with the trusted context role
managerRole. These privileges and authorities may not be available to user user2 outside the scope of
this trusted connection

Role membership inheritance through a trusted context
The current user of a trusted connection can acquire additional privileges through the automatic
inheritance of a role through the trusted context, if this was specified by the security administrator as
part of the relevant trusted context definition.

A role can be inherited by all users of the trusted connection by default. The security administrator can
also use the trusted context definition to specify a role for specific users to inherit.

The active roles that a session authorization ID can hold while on a trusted connection are:

• The roles of which the session authorization ID is normally considered a member, plus
• Either the trusted context default role or the trusted context user-specific role, if they are defined

Note:

• If you configure user authentication using a custom security plugin that is built such that the system
authorization ID and the session authorization ID produced by this security plug-in upon a successful
connection are different from each other, then a trusted contexts role cannot be inherited through that
connection, even if it is a trusted connection.

• Trusted context privileges acquired through a role are effective only for dynamic DML operations. They
are not effective for:

– DDL operations
– Non-dynamic SQL (operations involving static SQL statements such as BIND, REBIND, implicit rebind,

incremental bind, and so on)
• Trusted context privileges acquired through a role are not considered when evaluating EXECUTE

privilege on any packages required by the session.

Acquiring trusted context user-specific privileges
The security administrator can use the trusted context definition to associate roles with a trusted context
so that:

• All users of the trusted connection can inherit a specified role by default

Chapter 3. Using trusted contexts and trusted connections 181

• Specific users of the trusted connection can inherit a specified role

When the user on a trusted connection is switched to a new authorization ID and a trusted context
user-specific role exists for this new authorization ID, the user-specific role overrides the trusted context
default role, if one exists, as demonstrated in the example.

Example of creating a trusted context that assigns a default role and a user-specific role

Suppose that the security administrator creates the following trusted context object:

CREATE TRUSTED CONTEXT CTX1
 BASED UPON CONNECTION USING SYSTEM AUTHID USER1
 ATTRIBUTES (ADDRESS '192.0.2.1')
 WITH USE FOR USER2 WITH AUTHENTICATION,
 USER3 WITHOUT AUTHENTICATION
 DEFAULT ROLE AUDITOR
 ENABLE

When USER1 establishes a trusted connection, the privileges granted to the role AUDITOR are inherited
by this authorization ID. Similarly, these same privileges are also inherited by USER3 when the current
authorization ID on the trusted connection is switched to his or her user ID. (If the user ID of the
connection is switched to USER2 at some point, then USER2 would also inherit the trusted context default
role, AUDITOR.) The security administrator may choose to have USER3 inherit a different role than the
trusted context default role. They can do so by assigning a specific role to this user as follows:

CREATE TRUSTED CONTEXT CTX1
 BASED UPON CONNECTION USING SYSTEM AUTHID USER1
 ATTRIBUTES (ADDRESS '192.0.2.1')
 WITH USE FOR USER2 WITH AUTHENTICATION,
 USER3 WITHOUT AUTHENTICATION ROLE OTHER_ROLE
 DEFAULT ROLE AUDITOR
 ENABLE

When the current user ID on the trusted connection is switched to USER3, this user no longer inherits the
trusted context default role. Rather, they inherit the specific role, OTHER_ROLE, assigned to him or her by
the security administrator.

Rules for switching the user ID on an explicit trusted connection
On an explicit trusted connection, you can switch the user ID of the connection to a different user ID.
Certain rules apply.

1. If the switch request is not made from an explicit trusted connection, and the switch request is
sent to the server for processing, the connection is shut down and an error message is returned
(SQLSTATE 08001, SQLCODE -30082 with reason code 41).

2. If the switch request is not made on a transaction boundary, the transaction is rolled back, and the
switch request is sent to the server for processing, the connection is put into an unconnected state
and an error message is returned (SQLSTATE 58009, SQLCODE -30020).

3. If the switch request is made from within a stored procedure, an error message is returned (SQLCODE
-30090, reason code 29), indicating this is an illegal operation in this environment. The connection
state is maintained and the connection is not placed into an unconnected state. Subsequent requests
may be processed.

4. If the switch request is delivered to the server on an instance attach (rather than a database
connection), the attachment is shut down and an error message is returned (SQLCODE -30005).

5. If the switch request is made with an authorization ID that is not allowed on the trusted connection,
error (SQLSTATE 42517, SQLCODE -20361) is returned, and the connection is put in an unconnected
state.

6. If the switch request is made with an authorization ID that is allowed on the trusted connection WITH
AUTHENTICATION, but the appropriate authentication token is not provided, error (SQLSTATE 42517,
SQLCODE -20361) is returned, and the connection is put in an unconnected state.

182 IBM Db2 11.5: Database Security Guide

7. If the trusted context object associated with the trusted connection is disabled, and a switch request
for that trusted connection is made, error (SQLSTATE 42517, SQLCODE -20361) is returned, and the
connection is put in an unconnected state.

In this case, the only switch user request that is accepted is one that specifies the user ID that
established the trusted connection or the NULL user ID. If a switch to the user ID that established the
trusted connection is made, this user ID does not inherit any trusted context role (neither the trusted
context default role nor the trusted context user-specific role).

8. If the system authorization ID attribute of the trusted context object associated with the trusted
connection is changed, and a switch request for that trusted connection is made, error (SQLSTATE
42517, SQLCODE -20361) is returned, and the connection is put in an unconnected state.

In this case, the only switch user request that is accepted is one that specifies the user ID that
established the trusted connection or the NULL user ID. If a switch to the user ID that established the
trusted connection is made, this user ID does not inherit any trusted context role (neither the trusted
context default role nor the trusted context user-specific role).

9. If the trusted context object associated with the trusted connection is dropped, and a switch request
for that trusted connection is made, error (SQLSTATE 42517, SQLCODE -20361) is returned, and the
connection is put in an unconnected state.

In this case, the only switch user request that is accepted is one that specifies the user ID that
established the trusted connection or the NULL user ID. If a switch to the user ID that established the
trusted connection is made, this user ID does not inherit any trusted context role (neither the trusted
context default role nor the trusted context user-specific role).

10. If the switch request is made with a user ID allowed on the trusted connection, but that user ID does
not hold CONNECT privilege on the database, the connection is put in an unconnected state and an
error message is returned (SQLSTATE 08004, SQLCODE -1060).

11. If the trusted context system authorization ID appears in the WITH USE FOR clause, the Db2
database system honors the authentication setting for the system authorization ID on switch user
request to switch back to the system authorization ID. If the trusted context system authorization
ID does not appear in the WITH USE FOR clause, then a switch user request to switch back to the
system authorization ID is always allowed even without authentication.

Note: When the connection is put in the unconnected state, the only requests that are accepted and do
not result in returning the error "The application state is in error. A database connection does not exist."
(SQLCODE -900) are:

• A switch user request
• A COMMIT or ROLLBACK statement
• A DISCONNECT, CONNECT RESET or CONNECT request

Note: When the user ID on the trusted connection is switched to a new user ID, all traces of the
connection environment under the old user are gone. In other words, the switching of user IDs results
in an environment that is identical to a new connection environment. For example, if the old user ID on
the connection had any temporary tables or WITH HOLD cursors open, these objects are completely lost
when the user ID on that connection is switched to a new user ID.

Note: Java trusted connections do not have an unconnected state. If the switch user operation fails, Java
will throw an exception and the connection will be disconnected.

Trusted context problem determination
An explicit trusted connection is a connection that is successfully established by a specific, explicit
request for a trusted connection. When you request an explicit trusted connection and you do not qualify
for one, you get a regular connection and a warning (+20360).

To determine why a user could not establish a trusted connection, the security administrator needs to
look at the trusted context definition in the system catalogs and at the connection attributes. In particular,
the IP address from which the connection is established, the encryption level of the data stream or

Chapter 3. Using trusted contexts and trusted connections 183

network, and the system authorization ID making the connection. The -application option of the
db2pd utility returns this information, as well as the following additional information:

• Connection Trust Type: Indicates whether the connection is trusted or not. When the connection
is trusted, this also indicates whether this is an explicit trusted connection or an implicit trusted
connection.

• Trusted Context name: The name of the trusted context associated with the trusted connection.
• Role Inherited: The role inherited through the trusted connection.

The following are the most common causes of failing to obtain an explicit trusted connection:

• The client application is not using TCP/IP to communicate with the Db2 server. TCP/IP is the only
supported protocol for a client application to communicate with the Db2 server that can be used to
establish a trusted connection (explicit or implicit).

• The database server authentication type is set to CLIENT.
• The database server does not have an enabled trusted context object. The definition of the trusted

context object must explicitly state ENABLE in order for that trusted context to be considered for
matching the attributes of an incoming connection.

• The trusted context objects on the database server do not match the trust attributes that are presented.
For example, one of the following situations may apply:

– The system authorization ID of the connection does not match any trusted context object system
authorization ID.

– The IP address from which the connection originated does not match any IP address in the trusted
context object considered for the connection.

– The data stream encryption used by the connection does not match the value of the ENCRYPTION
attribute in the trusted context object considered for the connection.

You can use the db2pd tool to find out the IP address from which the connection is established, the
encryption level of the data stream or network used by the connection, and the system authorization
ID making the connection. You can consult the SYSCAT.CONTEXTS and SYSCAT.CONTEXTATTRIBUTES
catalog views to find out the definition of a particular trusted context object, such as its system
authorization ID, its set of allowed IP addresses and the value of its ENCRYPTION attribute.

The following are the most common causes of a switch user failure:

• The user ID to switch to does not have CONNECT privileges on the database. In this case, SQL1060N is
returned.

• The user ID to switch to, or PUBLIC, is not defined in the WITH USE FOR clause of the trusted context
object associated with the explicit trusted connection.

• Switching the user is allowed with authentication, but the user presents no credentials or the wrong
credentials.

• A switch-user request is not made on a transaction boundary.
• The trusted context that is associated with a trusted connection has been disabled, dropped, or altered.

In this case, only switching to the user ID that established the trusted connection is allowed.

184 IBM Db2 11.5: Database Security Guide

Chapter 4. Row and column access control (RCAC)
overview

Db2 10.1 introduces row and column access control (RCAC), as an additional layer of data security.
Row and column access control is sometimes referred to as fine-grained access control or FGAC. RCAC
controls access to a table at the row level, column level, or both. RCAC can be used to complement the
table privileges model.

To comply with various government regulations, you might implement procedures and methods to ensure
that information is adequately protected. Individuals in your organization are permitted access to only
the subset of data that is required to perform their job tasks. For example, government regulations in
your area might state that a doctor is authorized to view the medical records of their own patients, but
not of other patients. The same regulations might also state that, unless a patient gives their consent, a
healthcare provider is not permitted access to patient personal information, such as the patients home
phone number.

You can use row and column access control to ensure that your users have access to only the data
that is required for their work. For example, a hospital system running Db2 and RCAC can filter patient
information and data to include only that data which a particular doctor requires. Other patients do not
exist as far as the doctor is concerned. Similarly, when a patient service representative queries the patient
table at the same hospital, they are able to view the patient name and telephone number columns,
but the medical history column is masked for them. If data is masked, a NULL, or an alternate value is
displayed, instead of the actual medical history.

Row and column access control, or RCAC, has the following advantages:

• No database user is inherently exempted from the row and column access control rules.

Even higher level authorities such as users with DATAACCESS authority are not exempt from these rules.
Only users with security administrator (SECADM) authority can manage row and column access controls
within a database. Therefore, you can use RCAC to prevent users with DATAACCESS authority from
freely accessing all data in a database.

• Table data is protected regardless of how a table is accessed via SQL.

Applications, improvised query tools, and report generation tools are all subject to RCAC rules. The
enforcement is data-centric.

• No application changes are required to take advantage of this additional layer of data security.

That is, row and column level access controls are established and defined in a way that is not apparent
to existing applications. However, RCAC represents an important shift in paradigm in the sense that it
is no longer what is being asked but rather who is asking what. Result sets for the same query change
based on the context in which the query was asked and there is no warning or error returned. This
behavior is the exact intent of the solution. It means that application designers and DBAs must be
conscious that queries do not see the whole picture in terms of the data in the table, unless granted
specific permissions to do so.

Related information
Best practices: A practical guide to implementing row and column access control

Row and column access control (RCAC) rules
Row and column access control (RCAC) places access control at the table level around the data itself. SQL
rules created on rows and columns are the basis of the implementation of this capability.

Row and column access control is an access control model in which a security administrator manages
privacy and security policies. RCAC permits all users to access the same table, as opposed to alternative
views of a table. RCAC does however, restrict access to the table based upon individual user permissions

© Copyright IBM Corp. 2016, 2023 185

https://ibm.biz/BdqLsR

or rules as specified by a policy associated with the table. There are two sets of rules, one set operates on
rows, and the other on columns.

• Row permission

– A row permission is a database object that expresses a row access control rule for a specific table.
– A row access control rule is an SQL search condition that describes what set of rows a user has

access to.
• Column mask

– A column mask is a database object that expresses a column access control rule for a specific column
in a table.

– A column access control rule is an SQL CASE expression that describes what column values a user is
permitted to see and under what conditions.

SQL statements for managing RCAC rules
Using the following SQL statements, you can create, alter, and drop RCAC rules. For more information, see
the Db2 v11.5 SQL reference guide.

CREATE PERMISSION

ALTER PERMISSION

CREATE MASK

ALTER MASK

DROP

GRANT (database authorities)

REVOKE (database authorities)

AUDIT

COMMENT

CREATE TABLE

ALTER TABLE

RENAME

CREATE FUNCTION (external scalar)

CREATE FUNCTION (external table)

CREATE FUNCTION (OLE DB external table)

CREATE FUNCTION (SQL scalar, table, or row)

CREATE FUNCTION (sourced or template)

ALTER FUNCTION

CREATE TRIGGER

ALTER TRIGGER

186 IBM Db2 11.5: Database Security Guide

https://www.ibm.com/support/pages/node/627743

Built-in functions for managing RCAC permissions and masks
Use the following built-in scalar functions to express conditions in your permissions and masks. For
example, a user must belong to one or more roles, or to one or more groups to access a particular row.

Scenario: ExampleHMO using row and column access control
This scenario presents ExampleHMO, a national organization with a large and active list of patients, as
a user of row and column access control. ExampleHMO uses row and column access control to ensure
that their database policies reflect government regulatory requirements for privacy and security, as well
as management business objectives.

Organizations that handle patient health information and their personal information, like ExampleHMO,
must comply with government privacy and data protection regulations, for example the Health Insurance
Portability and Accountability Act (HIPAA). These privacy and data protection regulations ensure that any
sensitive patient medical or personal information is shared, viewed, and modified only by authorities who
are privileged to do so. Any violation of the act results in huge penalties including civil and criminal suits.

ExampleHMO must ensure that the data stored in their database systems is secure and only privileged
users have access to the data. According to typical privacy regulations, certain patient information can be
accessed and modified by only privileged users.

Scenario: ExampleHMO using row and column access control - Security
policies

ExampleHMO implements a security strategy where data access to databases are made available
according to certain security policies.

The security policies conform to government privacy and data protection regulations. The first column
outlines the policies and the challenges faced by the organization, the second column outlines the row
and column access control feature which addresses the challenge.

Security challenge
Row and column access control feature which
addresses the security challenge

Limiting column access to only privileged users.

For example, Jane, who is a drug researcher at a
partner company, is not permitted to view sensitive
patient medical information or personal data like
their insurance number.

Column masks can be used to filter or hide
sensitive data from Jane.

Limiting row access to only privileged users. Dr. Lee
is only permitted to view patient information for his
own patients, not all patients in the ExampleHMO
system.

Row permissions can be implemented to control
which user can view any particular row.

Restricting data on a need-to-know basis. Row permissions can help with this challenge as
well by restricting table level data at the user level.

Restricting other database objects like UDFs,
triggers, views on RCAC secured data.

Row and column access control protects data
at the data level. It is this data-centric nature
of the row and column access control solution
that enforces security policies on even database
objects like UDFs, triggers, and views.

Chapter 4. Row and column access control (RCAC) overview 187

Scenario: ExampleHMO using row and column access control - Database
users and roles

In this scenario, a number of different people create, secure, and use ExampleHMO data. These people
have different user rights and database authorities.

ExampleHMO implemented their security strategy to classify the way data is accessed from the database.
Internal and external access to data is based on the separation of duties to users who access the data and
their data access privileges. ExampleHMO created the following database roles to separate these duties:
PCP

For primary care physicians.
DRUG_RESEARCH

For researchers.
ACCOUNTING

For accountants.
MEMBERSHIP

For members who add patients for opt-in and opt-out.
PATIENT

For patients.

The following people create, secure, and use ExampleHMO data:
Alex

ExampleHMO Chief Security Administrator. He holds the SECADM authority.
Peter

ExampleHMO Database Administrator. He holds the DBADM authority.
Paul

ExampleHMO Database Developer. He has the privileges to create triggers and user-defined functions.
Dr. Lee

ExampleHMO Physician. He belongs to the PCP role.
Jane

Drug researcher at Innovative Pharmaceutical Company, a ExampleHMO partner. She belongs to the
DRUG_RESEARCH role.

John
ExampleHMO Accounting Department. He belongs to the ACCOUNTING role.

Tom
ExampleHMO Membership Officer. He belongs to the MEMBERSHIP role.

Bob
ExampleHMO Patient. He belongs to the PATIENT role.

If you want to try any of the example SQL statements and commands presented in this scenario, create
these user IDs with their listed authorities.

The following example SQL statements assume that the users have been created on the system. The
SQL statements create each role and grant SELECT and INSERT permissions to the various tables in the
ExampleHMO database to the users:

--Creating roles and granting authority

CREATE ROLE PCP;

CREATE ROLE DRUG_RESEARCH;

CREATE ROLE ACCOUNTING;

CREATE ROLE MEMBERSHIP;

CREATE ROLE PATIENT;

GRANT ROLE PCP TO USER LEE;

188 IBM Db2 11.5: Database Security Guide

GRANT ROLE DRUG_RESEARCH TO USER JANE;
GRANT ROLE ACCOUNTING TO USER JOHN;
GRANT ROLE MEMBERSHIP TO USER TOM;
GRANT ROLE PATIENT TO USER BOB;

Scenario: ExampleHMO using row and column access control - Database
tables

This scenario focuses on two tables in the ExampleHMO database: the PATIENT table and the
PATIENTCHOICE table.

The PATIENT table stores basic patient information and health information. This scenario considers the
following columns within the PATIENT table:
SSN

The patient's insurance number. A patient's insurance number is considered personal information.
NAME

The patient's name. A patient's name is considered personal information.
ADDRESS

The patient's address. A patient's address is considered personal information.
USERID

The patient's database ID.
PHARMACY

The patient's medical information.
ACCT_BALANCE

The patient's billing information.
PCP_ID

The patient's primary care physician database ID

The PATIENTCHOICE table stores individual patient opt-in and opt-out information which decides
whether a patient wants to expose his health information to outsiders for research purposes in this table.
This scenario considers the following columns within the PATIENTCHOICE table:
SSN

The patient's insurance number is used to match patients with their choices.
CHOICE

The name of a choice a patient can make.
VALUE

The decision made by the patients about the choice.
For example, the row 123-45-6789, drug_research, opt-in says that patient with SSN 123-45-6789
agrees to disclose their information for medical research purposes.

The following example SQL statements create the PATIENT, PATIENTCHOICE, and ACCT_HISTORY tables.
Authority is granted on the tables and data is inserted:

--Patient table storing information regarding patient
CREATE TABLE PATIENT (
 SSN CHAR(11),
 USERID VARCHAR(18),
 NAME VARCHAR(128),
 ADDRESS VARCHAR(128),
 PHARMACY VARCHAR(250),
 ACCT_BALANCE DECIMAL(12,2) WITH DEFAULT,
 PCP_ID VARCHAR(18)
);

--Patientchoice table which stores what patient opts
--to expose regarding his health information

CREATE TABLE PATIENTCHOICE (
 SSN CHAR(11),
 CHOICE VARCHAR(128),

Chapter 4. Row and column access control (RCAC) overview 189

 VALUE VARCHAR(128)
);

--Log table to track account balance
CREATE TABLE ACCT_HISTORY(
 SSN CHAR(11),
 BEFORE_BALANCE DECIMAL(12,2),
 AFTER_BALANCE DECIMAL(12,2),
 WHEN DATE,
 BY_WHO VARCHAR(20)
);

--Grant authority

GRANT SELECT, UPDATE ON TABLE PATIENT TO ROLE PCP;

GRANT SELECT ON TABLE PATIENT TO ROLE DRUG_RESEARCH;

GRANT SELECT, UPDATE ON TABLE PATIENT TO ROLE ACCOUNTING;
GRANT SELECT ON TABLE ACCT_HISTORY TO ROLE ACCOUNTING;

GRANT SELECT, UPDATE, INSERT ON TABLE PATIENT TO ROLE MEMBERSHIP;
GRANT INSERT ON TABLE PATIENTCHOICE TO ROLE MEMBERSHIP;

GRANT SELECT ON TABLE PATIENT TO ROLE PATIENT;

GRANT SELECT, ALTER ON TABLE PATIENT TO USER ALEX;

GRANT ALTER, SELECT ON TABLE PATIENT TO USER PAUL;
GRANT INSERT ON TABLE ACCT_HISTORY TO USER PAUL;

--Insert patient data

INSERT INTO PATIENT
 VALUES('123-55-1234', 'MAX', 'Max', 'First Strt', 'hypertension', 89.70,'LEE');
INSERT INTO PATIENTCHOICE
 VALUES('123-55-1234', 'drug-research', 'opt-out');

INSERT INTO PATIENT
 VALUES('123-58-9812', 'MIKE', 'Mike', 'Long Strt', null, 8.30,'JAMES');
INSERT INTO PATIENTCHOICE
 VALUES('123-58-9812', 'drug-research', 'opt-out');

INSERT INTO PATIENT
 VALUES('123-11-9856', 'SAM', 'Sam', 'Big Strt', null, 0.00,'LEE');
INSERT INTO PATIENTCHOICE
 VALUES('123-11-9856', 'drug-research', 'opt-in');

INSERT INTO PATIENT
 VALUES('123-19-1454', 'DUG', 'Dug', 'Good Strt', null, 0.00,'JAMES');
INSERT INTO PATIENTCHOICE
 VALUES('123-19-1454', 'drug-research', 'opt-in');

Scenario: ExampleHMO using row and column access control - Security
administration

Security administration and the security administrator (SECADM) role play important parts in securing
patient and company data at ExampleHMO. At ExampleHMO, management decided that different people
hold database administration authority and security administration authority.

The management team at ExampleHMO decides to create a role for administering access to their data.
The team also decides that even users with DATAACCESS authority are not able to view protected health
and personal data by default.

The management team selects Alex to be the sole security administrator for ExampleHMO. From now
on, Alex controls all data access authority. With this authority, Alex defines security rules such as row
permissions, column masks, and whether functions and triggers are secure or not. These rules control
which users have access to any given data under his control.

190 IBM Db2 11.5: Database Security Guide

After Peter, the database administrator, creates the required tables and sets up the required roles, duties
are separated. The database administration and security administration duties are separated by making
Alex the security administrator.

Peter connects to the database and grants Alex SECADM authority. Peter can grant SECADM authority
since he currently holds the DBADM, DATAACCESS, and SECADM authorities.

-- To separate duties of security administrator from system administrator,
-- the SECADMN Peter grants SECADM authority to user Alex.

GRANT SECADM ON DATABASE TO USER ALEX;

Alex, after receiving the SECADM authority, connects to the database and revokes the security
administrator privilege from Peter. The duties are now separated and Alex becomes the sole authority
to grant data access to others within and outside ExampleHMO. The following SQL statement shows how
Alex revoked SECADM authority from Peter:

--revokes the SECADMIN authority for Peter

REVOKE SECADM ON DATABASE FROM USER PETER;

Scenario: ExampleHMO using row and column access control - Row
permissions

Alex, the security administrator, starts to restrict data access on the ExampleHMO database by using row
permissions, a part of row and column access control. Row permissions filter the data returned to users
by row.

Patients are permitted to view their own data. A physician is permitted to view the data of all his
patients, but not the data of patients who see other physicians. Users belonging to the MEMBERSHIP,
ACCOUNTING, or DRUG_RESEARCH roles can access all patient information. Alex, the security
administrator, is asked to implement these permissions to restrict who can see any given row on a
need-to-know basis.

Row permissions restrict or filter rows based on the user who has logged on to the database. At
ExampleHMO, the row permissions create a horizontal data restriction on the table named PATIENT.

Alex implements the following row permissions so that a user in each role is restricted to view a result set
that they are privileged to view:

CREATE PERMISSION ROW_ACCESS ON PATIENT

-- Accounting information:
-- ROLE PATIENT is allowed to access his or her own row
-- ROLE PCP is allowed to access his or her patients' rows
-- ROLE MEMBERSHIP, ACCOUNTING, and DRUG_RESEARCH are
-- allowed to access all rows
--
FOR ROWS WHERE(VERIFY_ROLE_FOR_USER(SESSION_USER,'PATIENT') = 1
AND
PATIENT.USERID = SESSION_USER) OR
(VERIFY_ROLE_FOR_USER(SESSION_USER,'PCP') = 1
AND
PATIENT.PCP_ID = SESSION_USER) OR
 (VERIFY_ROLE_FOR_USER(SESSION_USER,'MEMBERSHIP') = 1 OR
 VERIFY_ROLE_FOR_USER(SESSION_USER,'ACCOUNTING') = 1 OR
 VERIFY_ROLE_FOR_USER(SESSION_USER, 'DRUG_RESEARCH') = 1)
ENFORCED FOR ALL ACCESS
ENABLE;

Alex observes that even after creating a row permission, all data can still be viewed by the other
employees. A row permission is not applied until it is activated on the table for which it was defined.
Alex must now activate the permission:

--Activate row access control to implement row permissions

ALTER TABLE PATIENT ACTIVATE ROW ACCESS CONTROL;

Chapter 4. Row and column access control (RCAC) overview 191

Scenario: ExampleHMO using row and column access control - Column
masks

Alex, the security administrator, further restricts data access on the ExampleHMO database by using
column masks, a part of row and column access control. Column masks hide data returned to users by
column unless they are permitted to view the data.

Patient payment details must only be accessible to the users in the accounts department. The account
balance must not be seen by any other database users. Alex is asked to prevent access by anyone other
than users belonging to the ACCOUNTING role.

Alex implements the following column mask so that a user in each role is restricted to view a result set
that they are privileged to view:

--Create a Column MASK ON ACCT_BALANCE column on the PATIENT table

CREATE MASK ACCT_BALANCE_MASK ON PATIENT FOR
--
-- Accounting information:
-- Role ACCOUNTING is allowed to access the full information
-- on column ACCT_BALANCE.
-- Other roles accessing this column will strictly view a
-- zero value.
--
COLUMN ACCT_BALANCE RETURN
 CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER,'ACCOUNTING') = 1
 THEN ACCT_BALANCE
 ELSE 0.00
 END
ENABLE;

Alex observes that even after creating a column mask, the data can still be viewed by the other
employees. A column mask is not applied until it is activated on the table for which it was defined.
Alex must now activate the mask:

--Activate column access control to implement column masks

ALTER TABLE PATIENT ACTIVATE COLUMN ACCESS CONTROL;

Alex is asked by management to hide the insurance number of the patients. Only a patient, physician,
accountant, or people in the MEMBERSHIP role can view the SSN column.

Also, to protect the PHARMACY detail of a patient, the information in the PHARMACY column must only
be viewed by a drug researcher or a physician. Drug researchers can see the data only if the patient has
agreed to disclose the information.

Alex implements the following column masks so that a user in each role is restricted to view a result set
that they are privileged to view:

CREATE MASK SSN_MASK ON PATIENT FOR
--
-- Personal contact information:
-- Roles PATIENT, PCP, MEMBERSHIP, and ACCOUNTING are allowed
-- to access the full information on columns SSN, USERID, NAME,
-- and ADDRESS. Other roles accessing these columns will
-- strictly view a masked value.

COLUMN SSN RETURN
 CASE WHEN
 VERIFY_ROLE_FOR_USER(SESSION_USER,'PATIENT') = 1 OR
 VERIFY_ROLE_FOR_USER(SESSION_USER,'PCP') = 1 OR
 VERIFY_ROLE_FOR_USER(SESSION_USER,'MEMBERSHIP') = 1 OR
 VERIFY_ROLE_FOR_USER(SESSION_USER,'ACCOUNTING') = 1
 THEN SSN
 ELSE CHAR('XXX-XX-' || SUBSTR(SSN,8,4)) END
ENABLE;

CREATE MASK PHARMACY_MASK ON PATIENT FOR
--
-- Medical information:
-- Role PCP is allowed to access the full information on
-- column PHARMACY.

192 IBM Db2 11.5: Database Security Guide

-- For the purposes of drug research, Role DRUG_RESEARCH can
-- conditionally see a patient's medical information
-- provided that the patient has opted-in.
-- In all other cases, null values are rendered as column
-- values.
--
COLUMN PHARMACY RETURN
 CASE WHEN
 VERIFY_ROLE_FOR_USER(SESSION_USER,'PCP') = 1 OR
 (VERIFY_ROLE_FOR_USER(SESSION_USER,'DRUG_RESEARCH')=1
 AND
 EXISTS (SELECT 1 FROM PATIENTCHOICE C
 WHERE PATIENT.SSN = C.SSN AND C.CHOICE = 'drug-research' AND C.VALUE = 'opt-in'))
 THEN PHARMACY
 ELSE NULL
END
ENABLE;

Alex observes that after creating these two column masks that the data is only viewable to the intended
users. The PATIENT table already had column access control activated.

Scenario: ExampleHMO using row and column access control - Data
insertion

When a new patient is admitted for treatment in the hospital, the new patient record must be added to the
ExampleHMO database.

Bob is a new patient, and his records must be added to the ExampleHMO database. A user with
the required security authority must create the new record for Bob. Tom, from the ExampleHMO
membership department, with the MEMBERSHIP role, enrolls Bob as a new member. After connecting
to the ExampleHMO database, Tom runs the following SQL statements to add Bob to the ExampleHMO
database:

INSERT INTO PATIENT
 VALUES('123-45-6789', 'BOB', 'Bob', '123 Some St.', 'hypertension', 9.00,'LEE');
INSERT INTO PATIENTCHOICE
 VALUES('123-45-6789', 'drug-research', 'opt-in');

Tom confirmed that Bob was added to the database by querying the same from the PATIENT table in the
ExampleHMO database:

Select * FROM PATIENT WHERE NAME = 'Bob';

SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID

----------- --------- ------- ------------- ------------ ------------- ------
123-45-6789 BOB Bob 123 Some St. XXXXXXXXXXX 0.00 LEE

Scenario: ExampleHMO using row and column access control - Data updates
While in the hospital, Bob gets his treatment changed. As a result his records in the ExampleHMO
database need updating.

Dr. Lee, who is Bob's physician, advises a treatment change and changes Bob's medicine. Bob's record in
the ExampleHMO systems must be updated. The row permission rules set in the ExampleHMO database
specify that anyone who cannot view the data in a row cannot update the data in that row. Since Bob's
PCPID contains Dr. Lee's ID, and the row permission is set, Dr. Lee can both view, and update Bob's record
using the following example SQL statement:

UPDATE PATIENT SET PHARMACY = 'codeine' WHERE NAME = 'Bob';

Dr. Lee checks the update:

Select * FROM PATIENT WHERE NAME = 'Bob';

SSN USERID NAME ADDRESS PHARMACY ACCT_BALANCE PCP_ID

Chapter 4. Row and column access control (RCAC) overview 193

----------- --------- ------- ------------ ----------- -------------- ------
123-45-6789 BOB Bob 123 Some St. codeine 0.00 LEE

Dug is a patient who is under the care of Dr. James, one of Dr. Lee's colleagues. Dr. Lee attempts the same
update on the record for Dug:

UPDATE PATIENT SET PHARMACY = 'codeine' WHERE NAME = 'Dug';
SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a query
 is an empty table. SQLSTATE=02000

Since Dug's PCPID does not contain Dr. Lee's ID, and the row permission is set, Dr. Lee cannot view, or
update Dug's record.

Scenario: ExampleHMO using row and column access control - Data queries
With row and column access control, people in different roles can have different result sets from the same
database queries. For example, Peter, the database administrator with DATAACCESS authority, cannot see
any data on the PATIENT table.

Peter, Bob, Dr. Lee, Tom, Jane, and John each connect to the database and try the following SQL query:

SELECT SSN, USERID, NAME, ADDRESS, PHARMACY, ACCT_BALANCE, PCP_ID FROM PATIENT;

Results of the query vary according to who runs the query. The row and column access control rules
created by Alex are applied on these queries.

Here is the result set Peter sees:

SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- --------- --------- ----------- ----------- ----------- -----------

 0 record(s) selected.

Even though there is data in the table and Peter is the database administrator, he lacks the authority to
see all data.

Here is the result set Bob sees:

SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- --------- --------- ----------- ----------- ----------- ------
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 0.00 LEE

1 record(s) selected.

Bob, being a patient, can only see his own data. Bob belongs to the PATIENT role. The PHARMACY and
ACC_BALANCE column data have been hidden from him.

Here is the result set Dr. Lee sees:

SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ------------------- ----------- ------
123-55-1234 MAX Max First Strt hypertension 0.00 LEE
123-11-9856 SAM Sam Big Strt High blood pressure 0.00 LEE
123-45-6789 BOB Bob 123 Some St.codeine 0.00 LEE

3 record(s) selected.

Dr. Lee can see only the data for patients under his care. Dr. Lee belongs to the PCP role. The
ACC_BALANCE column data is hidden from him.

Here is the result set Tom sees:

SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ----------- ----------- -----------
123-55-1234 MAX Max First Strt XXXXXXXXXXX 0.00 LEE

194 IBM Db2 11.5: Database Security Guide

123-58-9812 MIKE Mike Long Strt XXXXXXXXXXX 0.00 JAMES
123-11-9856 SAM Sam Big Strt XXXXXXXXXXX 0.00 LEE
123-19-1454 DUG Dug Good Strt XXXXXXXXXXX 0.00 JAMES
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 0.00 LEE

5 record(s) selected.

Tom can see all members. Tom belongs to the membership role. He is not privileged to see any data in the
PHARMACY and ACC_BALANCE columns.

Here is the result set Jane sees:

SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ------------------- ----------- -------
XXX-XX-1234 MAX Max First Strt XXXXXXXXXXX 0.00 LEE
XXX-XX-9812 MIKE Mike Long Strt XXXXXXXXXXX 0.00 JAMES
XXX-XX-9856 SAM Sam Big Strt High blood pressure 0.00 LEE
XXX-XX-1454 DUG Dug Good Strt Influenza 0.00 JAMES
XXX-XX-6789 BOB Bob 123 Some St.codeine 0.00 LEE

5 record(s) selected.

Jane can see all members. She belongs to the DRUG_RESEARCH role. The SSN and ACC_BALANCE
column data are hidden from her. The PHARMACY data is only available if the patients have opted-in to
share their data with drug research companies.

Here is the result set John sees:

SSN USERID NAME ADDRESS PHARMACY ACC_BALANCE PCP_ID

----------- -------- -------- ----------- ----------- ----------- --------
123-55-1234 MAX Max First Strt XXXXXXXXXXX 89.70 LEE
123-58-9812 MIKE Mike Long Strt XXXXXXXXXXX 8.30 JAMES
123-11-9856 SAM Sam Big Strt XXXXXXXXXXX 0.00 LEE
123-19-1454 DUG Dug Good Strt XXXXXXXXXXX 0.00 JAMES
123-45-6789 BOB Bob 123 Some St.XXXXXXXXXXX 9.00 LEE

5 record(s) selected.

John can see all members. He belongs to the ACCOUNTING role. The PHARMACY column data is hidden
from him.

Scenario: ExampleHMO using row and column access control - View creation
Views can be created on tables that have row and column access control defined. Alex, the security
administrator, is asked to create a view on the PATIENT table that medical researchers can use.

Researchers, that have a partnership with ExampleHMO, can have access to limited patient data if
patients have opted-in to permit this access. Alex and the IT team are asked to create a view to list
only specific information related to research of the patient. The report must contain the patient insurance
number, name of the patient and the disclosure option chosen by the patient.

The view created fetches the patient basic information and the health condition disclosure option. This
view ensures that patient information is protected and fetched only with their permission for any other
purpose.

Alex and the IT team implement the following view:

CREATE VIEW PATIENT_INFO_VIEW AS
SELECT P.SSN, P.NAME FROM PATIENT P, PATIENTCHOICE C
WHERE P.SSN = C.SSN AND
 C.CHOICE = 'drug-research' AND
 C.VALUE = 'opt-in';

After Alex and his team create the view, users can query the view. They see data according to the row and
column access control rules defined on the base tables on which the view is created.

Alex sees the following result-set from the following query on the view:

Chapter 4. Row and column access control (RCAC) overview 195

SELECT SSN, NAME FROM PATIENT_INFO_VIEW;

SSN NAME
----------- ----------

 0 record(s) selected.

Dr. Lee sees the following result-set from the following query on the view:

SELECT SSN, NAME FROM PATIENT_INFO_VIEW;

SSN NAME
----------- ----------
123-11-9856 Sam
123-45-6789 Bob

 2 record(s) selected.

Bob sees the following result-set from the following query on the view:

SELECT SSN, NAME FROM PATIENT_INFO_VIEW;

SSN NAME
----------- ----------
123-45-6789 Bob

 1 record(s) selected.

Scenario: ExampleHMO using row and column access control - Secure
functions

Functions must be deemed secure before they can be called within row and column access control
definitions. Alex, the security administrator, discusses how Paul, a database developer at ExampleHMO,
can create a secure function for his new accounting application.

After the privacy and security policy went into effect at ExampleHMO, Alex is notified that the accounting
department has developed a powerful accounting application. ExampleHMOAccountingUDF is a SQL
scalar user-defined function (UDF) that is used in the column mask ACCT_BALANCE_MASK on the
PATIENT.ACCT_BALANCE table and row.

Only UDFs that are secure can be invoked within a column mask. Alex first discusses the UDF with Paul,
who wrote the UDF, to ensure the operation inside the UDF is secure.

When Alex is satisfied that the function is secure, he grants a system privilege to Paul so Paul can alter the
UDF to be secure:

GRANT CREATE_SECURE_OBJECT ON DATABASE TO USER PAUL;

To create a secured UDF, or alter a UDF to be secured, a developer must be granted
CREATE_SECURE_OBJECT authority.

Paul creates the function:

CREATE FUNCTION EXAMPLEHMOACCOUNTINGUDF(X DECIMAL(12,2))
 RETURNS DECIMAL(12,2)
 LANGUAGE SQL
 CONTAINS SQL
 DETERMINISTIC
 NO EXTERNAL ACTION
 RETURN X*(1.0 + RAND(X));

Paul alters the function so it is secured:

ALTER FUNCTION EXAMPLEHMOACCOUNTINGUDF SECURED;

Alex now drops and recreates the mask ACC_BALANCE_MASK so the new UDF is used:

196 IBM Db2 11.5: Database Security Guide

--Drop the mask to recreate

DROP MASK ACCT_BALANCE_MASK;

CREATE MASK EXAMPLEHMO.ACCT_BALANCE_MASK ONPATIENT FOR
--
-- Accounting information:
-- Role ACCOUNTING is allowed to invoke the secured UDF
-- ExampleHMOAccountingUDFL passing column ACCT_BALANCE as
-- the input argument
-- Other ROLEs accessing this column will strictly view a
-- zero value.
--
COLUMN ACCT_BALANCE RETURN
CASE WHEN VERIFY_ROLE_FOR_USER(SESSION_USER,'ACCOUNTING') = 1
THEN EXAMPLEHMOACCOUNTINGUDF(ACCT_BALANCE)
ELSE 0.00
END
ENABLE;

Dr. Lee, who has the PCP role, must call a drug analysis user-defined function. DrugUDF returns patient
drug information. In the past, Dr. Lee issues a SELECT statement that calls DrugUDF and receives the
result set quickly. After the PATIENT table has been protected with row and column access control, the
same query takes more time to return a result set.

Dr. Lee consults with the ExampleHMO IT staff and Alex, the security administrator, about this
performance degradation. Alex tells Dr. Lee, if the UDF is not secure, the query cannot be optimized
as well and it takes longer to return a result set.

Alex looks into the UDF with Dr. Lee and the owner, Paul, to ensure the operation inside the UDF is secure.
Alex asks Paul to alter the UDF to be secure as Paul still has the CREATE_SECURE_OBJECT privilege
granted by Alex:

--Function for ExampleHMO Pharmacy department

CREATE FUNCTION DRUGUDF(PHARMACY VARCHAR(5000))
 RETURNS VARCHAR(5000)
 NO EXTERNAL ACTION
 BEGIN ATOMIC
 IF PHARMACY IS NULL THEN
 RETURN NULL;
 ELSE
 RETURN 'Normal';
 END IF;
 END;

--Secure the UDF

ALTER FUNCTION DRUGUDF SECURED;

--Grant execute permissions to Dr.Lee

GRANT EXECUTE ON FUNCTION DRUGUDF TO USER LEE;

Dr. Lee can issue the query and the query can be optimized as expected:

--Querying after the function is secured

SELECT PHARMACY FROM PATIENT
 WHERE DRUGUDF(PHARMACY) = 'Normal' AND SSN = '123-45-6789';

PHARMACY

codeine

 1 record(s) selected.

Chapter 4. Row and column access control (RCAC) overview 197

Scenario: ExampleHMO using row and column access control - Secure
triggers

Triggers defined on a table with row or column access control activated must be secure. Alex, the security
administrator, discusses how Paul, a database developer at ExampleHMO, can create a secure trigger for
his new accounting application.

Alex speaks to the accounting department and learns that an AFTER UPDATE trigger is needed for the
PATIENT table. This trigger monitors the history of the ACCT_BALANCE column.

Alex explains to Paul, who has the necessary privileges to create the trigger, that any trigger defined on
a row and column access protected table must be marked secure. Paul and Alex review the action of the
new trigger and deem it to be secure.

ExampleHMO_ACCT_BALANCE_TRIGGER monitors the ACCT_BALANCE column in the PATIENT table.
Every time that column is updated, the trigger is fired, and inserts the current account balance details into
the ACCT_HISTORY table.

Paul creates the trigger:

CREATE TRIGGER HOSPITAL.NETHMO_ACCT_BALANCE_TRIGGER
 AFTER UPDATE OF ACCT_BALANCE ON PATIENT
 REFERENCING OLD AS O NEW AS N
 FOR EACH ROW MODE DB2SQL SECURED
 BEGIN ATOMIC
 INSERT INTO ACCT_HISTORY
 (SSN, BEFORE_BALANCE, AFTER_BALANCE, WHEN, BY_WHO)
 VALUES(O.SSN, O.ACCT_BALANCE, N.ACCT_BALANCE,
 CURRENT TIMESTAMP, SESSION_USER);
END;

John, from the accounting department, must update the account balance for the patient Bob whose SSN
is '123-45-6789'.

John looks at the data for Bob before running the update:

SELECT ACCT_BALANCE FROM PATIENT WHERE SSN = '123-45-6789';

ACCT_BALANCE

9.00

 1 record(s) selected.

SELECT * FROM ACCT_HISTORY WHERE SSN = '123-45-6789';

SSN BEFORE_BALANCE AFTER_BALANCE WHEN BY_WHO
----------- -------------- -------------- ---------- --------------------

 0 record(s) selected.

John then runs the update:

UPDATE PATIENT SET ACCT_BALANCE = ACCT_BALANCE * 0.9 WHERE SSN = '123-45-6789';

Since there is a trigger defined on the PATIENT table, the update fires the trigger. Since the trigger is
defined SECURED, the update completes successfully. John looks at the data for Bob after running the
update:

SELECT ACCT_BALANCE FROM PATIENT WHERE SSN = '123-45-6789';

ACCT_BALANCE

8.10

 1 record(s) selected.

SELECT * FROM ACCT_HISTORY WHERE SSN = '123-45-6789';

SSN BEFORE_BALANCE AFTER_BALANCE WHEN BY_WHO
----------- -------------- -------------- ---------- --------------------

198 IBM Db2 11.5: Database Security Guide

123-45-6789 9.00 8.10 2010-10-10 JOHN
 1 record(s) selected.

Scenario: ExampleHMO using row and column access control - Revoke
authority

Alex, as security administrator, is responsible for controlling who can create secure objects. When
developers are done creating secure objects, Alex revokes their authority on the database.

Paul, the database developer, is done with development activities. Alex immediately revokes the create
authority from Paul:

REVOKE CREATE_SECURE_OBJECT ON DATABASE FROM USER PAUL;

If Paul must create secure objects in the future, he must speak to Alex to have the create authority
granted again.

Scenario: ExampleBANK using row and column access control
This scenario presents ExampleBANK, a banking institution with a large customer base spanning many
branches, as a user of row and column access control. ExampleBANK uses row and column access control
to ensure that their database policies reflect company requirements for privacy and security, as well as
management business objectives.

Organizations that handle client investments, savings, and their personal information, like ExampleBANK,
only share information within their organization on a must know basis. This data protection ensures that
any sensitive client financial or personal information is shared, viewed, and modified only by employees
who are privileged to do so.

Scenario: ExampleBANK using row and column access control - Security
policies

ExampleBANK implements a security strategy where data access to databases is made available
according to certain security policies.

The security policies conform to privacy and data protection regulations at ExampleBANK. The first
column outlines the policies and the challenges faced by ExampleBANK, the second column outlines the
row and column access control (RCAC) feature which addresses the challenge.

Security challenge
Row and column access control feature which
addresses the security challenge

Limiting row access to only authorized users.
Tellers are only permitted to view client data that
belong to their own branch, not all clients of
ExampleBANK in the company-wide system.

Row permissions can be implemented to control
which user can view any particular row.

The account number is accessible by customer
service representatives only when they are
using the account update application. This
application is identified through stored procedure
ACCOUNTS.ACCTUPDATE.

Column masks can be used to filter or
hide sensitive data from customer service
representatives if they query the data outside of
the ACCOUNTS.ACCTUPDATE application.

Chapter 4. Row and column access control (RCAC) overview 199

Scenario: ExampleBANK using row and column access control - Database
users and roles

In this scenario, a number of different people use ExampleBANK data. These people have different user
rights.

ExampleBANK implemented their security strategy to classify the way data is accessed from the
database. Internal access to data is based on the separation of duties to users who access the data
and their data access privileges. ExampleBANK created the following database roles to separate these
duties:
TELLER

For tellers of branch locations.
TELEMARKERTER

For telephone marketing and sales people.
CSR

For customer service representatives.

The following people use ExampleBANK data:
ZURBIE

A customer service representative at ExampleBANK. She belongs to the CSR role.
NEWTON

A teller at an ExampleBANK branch. He belongs to the TELLER role.
PLATO

A telephone marketing and sales person at ExampleBANK. He belongs to the TELEMARKETER role.

If you want to try any of the example SQL statements and commands presented in this scenario, create
these user IDs with their listed authorities.

The following example SQL statements assume that the users have been created on the system. The
SQL statements create each role and grant SELECT permission to the various tables in the ExampleBANK
database to the users:

--Creating roles and granting authority

CREATE ROLE TELLER;

CREATE ROLE CSR;

CREATE ROLE TELEMARKERTER;

GRANT ROLE TELLER TO USER NEWTON;
GRANT ROLE CSR TO USER ZURBIE;
GRANT ROLE TELEMARKERTER TO USER PLATO;

Scenario: ExampleBANK using row and column access control - Database
tables

This scenario focuses on two tables in the ExampleBANK database: the CUSTOMER table and the
INTERNAL_INFO table.

The INTERNAL_INFO table stores information about employees who work for ExampleBANK. This
scenario considers the following columns within the INTERNAL_INFO table:
HOME_BRANCH

The employee home branch ID.
EMP_ID

The employee ID.

The CUSTOMER table stores individual client information:

200 IBM Db2 11.5: Database Security Guide

ACCOUNT
The client account number.

NAME
The client name.

INCOME
The client income.

BRANCH
The client branch ID.

The following example SQL statements create the customer, and INTERNAL_INFO tables. Authority is
granted on the tables and data is inserted:

--Client table storing information regarding client information
CREATE TABLE RCACTSPM.CUSTOMER (
 ACCOUNT VARCHAR(19),
 NAME VARCHAR(20),
 INCOME INTEGER,
 BRANCH CHAR(1)
);

--Internal_info table which stores employee information

CREATE TABLE RCACTSPM.INTERNAL_INFO (
 HOME_BRANCH CHAR(1),
 EMP_ID VARCHAR(10));

--Grant authority

GRANT SELECT ON RCACTSPM.CUSTOMER TO USER NEWTON, USER ZURBIE, USER PLATO;

--Insert data

INSERT INTO RCACTSPM.CUSTOMER VALUES ('1111-2222-3333-4444', 'Alice', 22000, 'A');
INSERT INTO RCACTSPM.CUSTOMER VALUES ('2222-3333-4444-5555', 'Bob', 71000, 'A');
INSERT INTO RCACTSPM.CUSTOMER VALUES ('3333-4444-5555-6666', 'Carl', 123000, 'B');
INSERT INTO RCACTSPM.CUSTOMER VALUES ('4444-5555-6666-7777', 'David', 172000, 'C');

INSERT INTO RCACTSPM.INTERNAL_INFO VALUES ('A', 'NEWTON');
INSERT INTO RCACTSPM.INTERNAL_INFO VALUES ('B', 'ZURBIE');
INSERT INTO RCACTSPM.INTERNAL_INFO VALUES ('C', 'PLATO');

Scenario: ExampleBANK using row and column access control - Row
permissions

The security administrator at ExampleBANK, starts to restrict data access by using row permissions, a
part of row and column access control. Row permissions filter the data returned to users by row.

Tellers are permitted to view client data only from their home branch. Telemarketers and CSRs are
permitted to see all ExampleBANK clients in the system, but telemarketers cannot see the full account
number.

Row permissions restrict or filter rows based on the user who has logged on to the database. At
ExampleBANK, the row permissions create a horizontal data restriction on the CUSTOMER table.

The security administrator implements the following row permissions so that a user in each role is
restricted to view a result set that they are privileged to view:

CREATE PERMISSION TELLER_ROW_ACCESS ON RCACTSPM.CUSTOMER

-- Teller information:
-- ROLE TELLER is allowed to access client data only
-- in their branch.
--
FOR ROWS WHERE VERIFY_ROLE_FOR_USER(USER, 'TELLER') = 1
AND
BRANCH = (SELECT HOME_BRANCH FROM RCACTSPM.INTERNAL_INFO WHERE EMP_ID = USER)
ENFORCED FOR ALL ACCESS
ENABLE;

CREATE PERMISSION CSR_ROW_ACCESS ON RCACTSPM.CUSTOMER

Chapter 4. Row and column access control (RCAC) overview 201

-- CSR and telemarketer information:
-- ROLE TELEMARKETER and CSR are allowed to access all client
-- data rows in ExampleBANK.
--
FOR ROWS WHERE VERIFY_ROLE_FOR_USER (USER, 'CSR') = 1
OR
VERIFY_ROLE_FOR_USER (USER, 'TELEMARKETER') = 1
ENFORCED FOR ALL ACCESS
ENABLE;

The security administrator observes that even after creating a row permission, all data can still be viewed
by the employees. A row permission is not applied until it is activated on the table for which it was
defined. The security administrator must now activate the permission:

--Activate row access control to implement row permissions

ALTER TABLE RCACTSPM.CUSTOMER ACTIVATE ROW ACCESS CONTROL;

Scenario: ExampleBANK using row and column access control - Column
masks

The ExampleBANK security administrator, further restricts data access by using column masks, a part of
row and column access control. Column masks hide data returned to users or applications by column
unless they are permitted to view the data.

Customer service representatives can see all clients in the ExampleBANK system, but, they are not
permitted to view full account numbers unless they are using a specific application.

The security administrator implements the following column mask so that a customer service
representative is restricted to view a result set that they are privileged to view:

CREATE MASK ACCOUNT_COL_MASK ON RCACTSPM.CUSTOMER FOR
--
-- Account number information:
-- Role customer service representative (CSR) is allowed to
-- access account number information only when they are using
-- the account update application. This application is
-- identified through stored procedure ACCOUNTS.ACCTUPDATE.
-- If a CSR queries this data outside of this application, the
-- account information is masked and the first 12 digits are
-- replaced with "x".
--
COLUMN ACCOUNT RETURN
 CASE WHEN (VERIFY_ROLE_FOR_USER (USER, 'CSR') = 1 AND
 ROUTINE_SPECIFIC_NAME = 'ACCTUPDATE' AND
 ROUTINE_SCHEMA = 'ACCOUNTS' AND
 ROUTINE_TYPE = 'P')
 THEN ACCOUNT
 ELSE 'xxxx-xxxx-xxxx-' || SUBSTR(ACCOUNT,16,4)
 END
ENABLE;

The security administrator observes that even after creating a column mask, the data can still be viewed
by all employees. A column mask is not applied until it is activated on the table for which it was defined.
The security administrator must now activate the mask:

--Activate column access control to implement column masks

ALTER TABLE RCACTSPM.CUSTOMER ACTIVATE COLUMN ACCESS CONTROL;

Scenario: ExampleBANK using row and column access control - Data queries
With row and column access control, people in different roles can have different result sets from the same
database queries. For example, Newton, a teller, cannot see any data of clients outside of their branch.

Newton, Zurbie, and Plato each connect to the database and try the following SQL query:

202 IBM Db2 11.5: Database Security Guide

SELECT * FROM RCACTSPM.CUSTOMER;

Results of the query vary according to who runs the query. The row and column access control rules
created by the security administrator are applied on these queries.

Here is the result set Newton sees:

ACCOUNT NAME INCOME BRANCH
------------------- -------------------- ----------- ------
xxxx-xxxx-xxxx-4444 Alice 22000 A
xxxx-xxxx-xxxx-5555 Bob 71000 A

 2 record(s) selected.

Newton, being a teller at branch A, can see only ExampleBANK clients that belong to that branch.

Here is the result set Zurbie sees:

ACCOUNT NAME INCOME BRANCH
------------------- -------------------- ----------- ------
xxxx-xxxx-xxxx-4444 Alice 22000 A
xxxx-xxxx-xxxx-5555 Bob 71000 A
xxxx-xxxx-xxxx-6666 Carl 123000 B
xxxx-xxxx-xxxx-7777 David 172000 C

 4 record(s) selected.

Zurbie, being a customer service representative, can see all ExampleBANK clients in the system, but not
their full account number unless he uses the ACCOUNTS.ACCTUPDATE application. Since this query was
issued outside of ACCOUNTS.ACCTUPDATE, part of that number is masked.

Here is the result set Plato sees:

ACCOUNT NAME INCOME BRANCH
------------------- -------------------- ----------- ------
xxxx-xxxx-xxxx-4444 Alice 22000 A
xxxx-xxxx-xxxx-5555 Bob 71000 A
xxxx-xxxx-xxxx-6666 Carl 123000 B
xxxx-xxxx-xxxx-7777 David 172000 C

 4 record(s) selected.

Plato, being a telemarketer, can see all ExampleBANK clients in the system.

Chapter 4. Row and column access control (RCAC) overview 203

204 IBM Db2 11.5: Database Security Guide

Chapter 5. Label-based access control (LBAC)
Label-based access control (LBAC) greatly increases the control you have over who can access your data.
LBAC lets you decide exactly who has write access and who has read access to individual rows and
individual columns.

What LBAC does
The LBAC capability is very configurable and can be tailored to match your particular security
environment. All LBAC configuration is performed by a security administrator, which is a user that has
been granted the SECADM authority.

A security administrator configures the LBAC system by creating security label components. A security
label component is a database object that represents a criterion you want to use to determine if a
user should access a piece of data. For example, the criterion can be whether the user is in a certain
department, or whether they are working on a certain project. A security policy describes the criteria that
will be used to decide who has access to what data. A security policy contains one or more security label
components. Only one security policy can be used to protect any one table but different tables can be
protected by different security policies.

After creating a security policy, a security administrator creates objects, called security labels that are part
of that policy. Security labels contain security label components. Exactly what makes up a security label
is determined by the security policy and can be configured to represent the criteria that your organization
uses to decide who should have access to particular data items. If you decide, for example, that you want
to look at a person's position in the company and what projects they are part of to decide what data they
should see, then you can configure your security labels so that each label can include that information.
LBAC is flexible enough to let you set up anything from very complicated criteria, to a very simple system
where each label represents either a "high" or a "low" level of trust.

Once created, a security label can be associated with individual columns and rows in a table to protect the
data held there. Data that is protected by a security label is called protected data. A security administrator
allows users access to protected data by granting them security labels. When a user tries to access
protected data, that user's security label is compared to the security label protecting the data. The
protecting label will block some security labels and not block others.

A user, a role, or a group is allowed to hold security labels for multiple security policies at once. For any
given security policy, however, a use, a role, or a group can hold at most one label for read access and one
label for write access.

A security administrator can also grant exemptions to users. An exemption allows you to access protected
data that your security labels might otherwise prevent you from accessing. Together your security labels
and exemptions are called your LBAC credentials.

If you try to access a protected column that your LBAC credentials do not allow you to access then the
access will fail and you will get an error message.

If you try to read protected rows that your LBAC credentials do not allow you to read then Db2 acts
as if those rows do not exist. Those rows cannot be selected as part of any SQL statement that you
run, including SELECT, UPDATE, or DELETE. Even the aggregate functions ignore rows that your LBAC
credentials do not allow you to read. The COUNT(*) function, for example, will return a count only of the
rows that you have read access to.

Views and LBAC
You can define a view on a protected table the same way you can define one on a non-protected
table. When such a view is accessed the LBAC protection on the underlying table is enforced. The LBAC
credentials used are those of the session authorization ID. Two users accessing the same view might see
different rows depending on their LBAC credentials.

© Copyright IBM Corp. 2016, 2023 205

Referential integrity constraints and LBAC
The following rules explain how LBAC rules are enforced in the presence of referential integrity
constraints:

• Rule 1: The LBAC read access rules are NOT applied for internally generated scans of child tables. This
is to avoid having orphan children.

• Rule 2: The LBAC read access rules are NOT applied for internally generated scans of parent tables
• Rule 3: The LBAC write rules are applied when a CASCADE operation is performed on child tables. For

example, If a user deletes a parent, but cannot delete any of the children because of an LBAC write rule
violation, then the delete should be rolled-back and an error raised.

Storage overhead when using LBAC
When you use LBAC to protect a table at the row level, the additional storage cost is the cost of the row
security label column. This cost depends on the type of security label chosen. For example, if you create
a security policy with two components to protect a table, a security label from that security policy will
occupy 16 bytes (8 bytes for each component). Because the row security label column is treated as a not
nullable VARCHAR column, the total cost in this case would be 20 bytes per row. In general, the total
cost per row is (N*8 + 4) bytes where N is the number of components in the security policy protecting the
table.

When you use LBAC to protect a table at the column level, the column security label is meta-data (that
is, it is stored together with the column's meta-data in the SYSCOLUMNS catalog table). This meta-data
is simply the ID of the security label protecting the column. The user table does not incur any storage
overhead in this case.

What LBAC does not do
• LBAC will never allow access to data that is forbidden by discretionary access control.

Example: If you do not have permission to read from a table then you will not be allowed to read data
from that table--even the rows and columns to which LBAC would otherwise allow you access.

• Your LBAC credentials only limit your access to protected data. They have no effect on your access to
unprotected data.

• LBAC credentials are not checked when you drop a table or a database, even if the table or database
contains protected data.

• LBAC credentials are not checked when you back up your data. If you can run a backup on a table,
which rows are backed up is not limited in any way by the LBAC protection on the data. Also, data on the
backup media is not protected by LBAC. Only data in the database is protected.

• LBAC cannot be used to protect any of the following types of tables:

– A staging table
– A table that a staging table depends on
– A typed table

• LBAC protection cannot be applied to a nickname.

LBAC security policies
The security administrator uses a security policy to define criteria that determine who has write access
and who has read access to individual rows and individual columns of tables.

A security policy includes this information:

• What security label components are used in the security labels that are part of the policy
• What rules are used when comparing those security label components
• Which of certain optional behaviors are used when accessing data protected by the policy

206 IBM Db2 11.5: Database Security Guide

• What additional security labels and exemptions are to be considered when enforcing access to data
protected by the security policy. For example, the option to consider or not to consider security labels
granted to roles and groups is controlled through the security policy.

Every protected table must have one and only one security policy associated with it. Rows and columns in
that table can only be protected with security labels that are part of that security policy and all access of
protected data follows the rules of that policy. You can have multiple security policies in a single database
but you cannot have more than one security policy protecting any given table.

Creating a security policy
You must be a security administrator to create a security policy. You create a security policy with the SQL
statement CREATE SECURITY POLICY. The security label components listed in a security policy must be
created before the CREATE SECURITY POLICY statement is executed. The order in which the components
are listed when a security policy is created does not indicate any sort of precedence or other relationship
among the components but it is important to know the order when creating security labels with built-in
functions like SECLABEL.

From the security policy you have created, you can create security labels to protect your data.

Altering a security policy
A security administrator can use the ALTER SECURITY POLICY statement to modify a security policy.

Dropping a security policy
You must be a security administrator to drop a security policy. You drop a security policy using the SQL
statement DROP.

You cannot drop a security policy if it is associated with (added to) any table.

LBAC security label components overview
A security label component is a database object that is part of label-based access control (LBAC). You use
security label components to model your organization's security structure.

A security label component can represent any criteria that you might use to decide if a user should have
access to a given piece of data. Typical examples of such criteria include:

• How well trusted the user is
• What department the user is in
• Whether the user is involved in a particular project

Example: If you want the department that a user is in to affect which data they can access, you
could create a component named dept and define elements for that component that name the various
departments in your company. You would then include the component dept in your security policy.

An element of a security label component is one particular "setting" that is allowed for that component.

Example: A security label component that represents a level of trust might have the four elements: Top
Secret, Secret, Classified, and Unclassified.

Creating a security label component
You must be a security administrator to create a security label component. You create security label
components with the SQL statement CREATE SECURITY LABEL COMPONENT.

When you create a security label component you must provide:

• A name for the component
• What type of component it is (ARRAY, TREE, or SET)

Chapter 5. Label-based access control (LBAC) 207

• A complete list of allowed elements
• For types ARRAY and TREE you must describe how each element fits into the structure of the

component

After creating your security label components, you can create a security policy based on these
components. From this security policy, you can create security labels to protect your data.

Types of components
There are three types of security label components:

• TREE: Each element represents a node in a tree structure
• ARRAY: Each element represents a point on a linear scale
• SET: Each element represents one member of a set

The types are used to model the different ways in which elements can relate to each other. For example,
if you are creating a component to describe one or more departments in a company you would probably
want to use a component type of TREE because most business structures are in the form of a tree. If
you are creating a component to represent the level of trust that a person has, you would probably use a
component of type ARRAY because for any two levels of trust, one will always be higher than the other.

The details of each type, including detailed descriptions of the relationships that the elements can have
with each other, are described in their own section.

Altering security label components
The security administrator can use the ALTER SECURITY LABEL COMPONENT statement to modify a
security label component.

Dropping a security label component
You must be a security administrator to drop a security label component. You drop a security label
component with the SQL statement DROP.

LBAC security label component type: SET
SET is one type of security label component that can be used in a label-based access control (LBAC)
security policy.

Components of type SET are unordered lists of elements. The only comparison that can be made for
elements of this type of component is whether or not a given element is in the list.

LBAC security label component type: ARRAY
ARRAY is one type of security label component.

In the ARRAY type of component the order in which the elements are listed when the component is
created defines a scale with the first element listed being the highest value and the last being the lowest.

Example: If the component mycomp is defined in this way:

CREATE SECURITY LABEL COMPONENT mycomp
 ARRAY ['Top Secret', 'Secret', 'Employee', 'Public']

Then the elements are treated as if they are organized in a structure like this:

208 IBM Db2 11.5: Database Security Guide

In a component of type ARRAY, the elements can have these sorts of relationships to each other:
Higher than

Element A is higher than element B if element A is listed earlier in the ARRAY clause than element B.
Lower than

Element A is lower than element B if element A is listed later in the ARRAY clause than element B

LBAC security label component type: TREE
TREE is one type of security label component that can be used in a label-based access control (LBAC)
security policy.

In the TREE type of component the elements are treated as if they are arranged in a tree structure. When
you specify an element that is part of a component of type TREE you must also specify which other
element it is under. The one exception is the first element which must be specified as being the ROOT of
the tree. This allows you to organize the elements in a tree structure.

Example: If the component mycomp is defined this way:

CREATE SECURITY LABEL COMPONENT mycomp
TREE (
 'Corporate' ROOT,
 'Publishing' UNDER 'Corporate',
 'Software' UNDER 'Corporate',
 'Development' UNDER 'Software',
 'Sales' UNDER 'Software',
 'Support' UNDER 'Software'
 'Business Sales' UNDER 'Sales'
 'Home Sales' UNDER 'Sales'
)

Then the elements are treated as if they are organized in a tree structure like this:

Chapter 5. Label-based access control (LBAC) 209

In a component of type TREE, the elements can have these types of relationships to each other:
Parent

Element A is a parent of element B if element B is UNDER element A.

Example: This diagram shows the parent of the Business Sales element:

Child
Element A is a child of element B if element A is UNDER element B.

Example: This diagram shows the children of the Software element:

210 IBM Db2 11.5: Database Security Guide

Sibling
Two elements are siblings of each other if they have the same parent.

Example: This diagram shows the siblings of the Development element:

Ancestor
Element A is an ancestor of element B if it is the parent of B, or if it is the parent of the parent of B, and
so on. The root element is an ancestor of all other elements in the tree.

Example: This diagram shows the ancestors of the Home Sales element:

Descendent
Element A is a descendent of element B if it is the child of B, or if it is the child of a child of B, and so
on.

Example: This diagram shows the descendents of the Software element:

Chapter 5. Label-based access control (LBAC) 211

LBAC security labels
In label-based access control (LBAC) a security label is a database object that describes a certain set of
security criteria. Security labels are applied to data in order to protect the data. They are granted to users
to allow them to access protected data.

When a user tries to access protected data, their security label is compared to the security label that is
protecting the data. The protecting security label will block some security labels and not block others. If a
user's security label is blocked then the user cannot access the data.

Every security label is part of exactly one security policy and includes one value for each component
in that security policy. A value in the context of a security label component is a list of zero or more of
the elements allowed by that component. Values for ARRAY type components can contain zero or one
element, values for other types can have zero or more elements. A value that does not include any
elements is called an empty value.

Example: If a TREE type component has the three elements Human Resources, Sales, and Shipping then
these are some of the valid values for that component:

• Human Resources (or any of the elements by itself)
• Human Resources, Shipping (or any other combination of the elements as long as no element is

included more than once)
• An empty value

Whether a particular security label will block another is determined by the values of each component in
the labels and the LBAC rule set that is specified in the security policy of the table. The details of how the
comparison is made are given in the topic that discusses how LBAC security labels are compared.

When security labels are converted to a text string they use the format described in the topic that
discusses the format for security label values.

Creating security labels
You must be a security administrator to create a security label. You create a security label with the SQL
statement CREATE SECURITY LABEL. When you create a security label you provide:

• A name for the label
• The security policy that the label is part of
• Values for one or more of the components included in the security policy

Any components for which a value is not specified is assumed to have an empty value. A security label
must have at least one non-empty value.

212 IBM Db2 11.5: Database Security Guide

Altering security labels
Security labels cannot be altered. The only way to change a security label is to drop it and re-create it.
However, the components of a security label can be modified by a security administrator (using the ALTER
SECURITY LABEL COMPONENT statement).

Dropping security labels
You must be a security administrator to drop a security label. You drop a security label with the SQL
statement DROP. You cannot drop a security label that is being used to protect data anywhere in the
database or that is currently held by one or more users.

Granting security labels
You must be a security administrator to grant a security label to a user, a group, or a role. You grant a
security label with the SQL statement GRANT SECURITY LABEL. When you grant a security label you can
grant it for read access, for write access, or for both read and write access. A user, a group, or a role
cannot hold more than one security label from the same security policy for the same type of access.

Revoking security labels
You must be a security administrator to revoke a security label from a user, group, or role. To revoke a
security label, use the SQL statement REVOKE SECURITY LABEL.

Data types compatible with security labels
Security labels have a data type of SYSPROC.DB2SECURITYLABEL. Data conversion is supported between
SYSPROC.DB2SECURITYLABEL and VARCHAR(128) FOR BIT DATA.

Determining the security labels held by users
You can use the following query to determine the security labels that are held by users:

SELECT A.grantee, B.secpolicyname, c.seclabelname
FROM syscat.securitylabelaccess A, syscat.securitypolicies B, syscat.securitylabels
C
WHERE A.seclabelid = C.seclabelid and B.secpolicyid = C.secpolicyid

Format for security label values
Sometimes the values in a security label are represented in the form of a character string, for example
when using the built-in function SECLABEL.

When the values in a security label are represented as a string, they are in the following format:

• The values of the components are listed from left to right in the same order that the components are
listed in the CREATE SECURITY POLICY statement for the security policy

• An element is represented by the name of that element
• Elements for different components are separated by a colon (:)
• If more than one element are given for the same component the elements are enclosed in parentheses

(()) and are separated by a comma (,)
• Empty values are represented by a set of empty parentheses (())

Example: A security label is part of a security policy that has these three components in this order: Level,
Department, and Projects. The security label has these values:

Chapter 5. Label-based access control (LBAC) 213

Table 9. Example values for a security label

Component Values

Level Secret

Department Empty value

Projects • Epsilon 37
• Megaphone
• Cloverleaf

This security label values look like this as a string:

'Secret:():(Epsilon 37,Megaphone,Cloverleaf)'

How LBAC security labels are compared
When you try to access data protected by label-based access control (LBAC), your LBAC credentials are
compared to one or more security labels to see if the access is blocked. Your LBAC credentials are any
security labels you hold plus any exemptions that you hold.

There are only two types of comparison that can be made. Your LBAC credentials can be compared to a
single security label for read access or your LBAC credentials compared to a single security label for write
access. Updating and deleting are treated as being a read followed by a write. When an operation requires
multiple comparisons to be made, each is made separately.

Which of your security labels is used
Even though you might hold multiple security labels only one is compared to the protecting security label.
The label used is the one that meets these criteria:

• It is part of the security policy that is protecting the table being accessed.
• It was granted for the type of access (read or write).

If you do not have a security label that meets these criteria then a default security label is assumed that
has empty values for all components.

How the comparison is made
Security labels are compared component by component. If a security label does not have a value for one
of the components then an empty value is assumed. As each component is examined, the appropriate
rules of the LBAC rule set are used to decide if the elements in your value for that component should be
blocked by the elements in the value for the same component in the protecting label. If any of your values
are blocked then your LBAC credentials are blocked by the protecting security label.

The LBAC rule set used in the comparison is designated in the security policy. To find out what the rules
are and when each one is used, see the description of that rule set.

How exemptions affect comparisons
If you hold an exemption for the rule that is being used to compare two values then that comparison is not
done and the protecting value is assumed not to block the value in your security label.

Example: The LBAC rule set is DB2LBACRULES and the security policy has two components. One
component is of type ARRAY and the other is of type TREE. The user has been granted an exemption
on the rule DB2LBACREADTREE, which is the rule used for read access when comparing values of
components of type TREE. If the user attempts to read protected data then whatever value the user has
for the TREE component, even if it is an empty value, will not block access because that rule is not used.
Whether the user can read the data depends entirely on the values of the ARRAY component of the labels.

214 IBM Db2 11.5: Database Security Guide

LBAC rule sets overview
An LBAC rule set is a predefined set of rules that are used when comparing security labels. When the
values of a two security labels are being compared, one or more of the rules in the rule set will be used to
determine if one value blocks another.

Each LBAC rule set is identified by a unique name. When you create a security policy you must specify
the LBAC rule set that will be used with that policy. Any comparison of security labels that are part of that
policy will use that LBAC rule set.

Each rule in a rule set is also identified by a unique name. You use the name of a rule when you are
granting an exemption on that rule.

How many rules are in a set and when each rule is used can vary from rule set to rule set.

There is currently only one supported LBAC rule set. The name of that rule set is DB2LBACRULES.

LBAC rule set: DB2LBACRULES
The DB2LBACRULES LBAC rule set provides a traditional set of rules for comparing the values of security
label components. It protects from both write-up and write-down.

What are write-up and write down?
Write-up and write-down apply only to components of type ARRAY and only to write access. Write up
occurs when the value protecting data that you are writing to is higher than your value. Write-down is
when the value protecting the data is lower than yours. By default neither write-up nor write-down is
allowed, meaning that you can only write data that is protected by the same value that you have.

When comparing two values for the same component, which rules are used depends on the type of the
component (ARRAY, SET, or TREE) and what type of access is being attempted (read, or write). This table
lists the rules, tells when each is used, and describes how the rule determines if access is blocked.

Table 10. Summary of the DB2LBACRULES rules

Rule name

Used to
compare
values of
this type of
component

Used for
this type of
access

Access is blocked when this condition is
met

DB2LBACREADARRAY ARRAY Read The user's value is lower than the
protecting value.

DB2LBACREADSET SET Read There are one or more protecting values
that the user does not hold.

DB2LBACREADTREE TREE Read None of the user's values is equal to or an
ancestor of one of the protecting values.

DB2LBACWRITEARRAY ARRAY Write The user's value is higher than the
protecting value or lower than the
protecting value.1

DB2LBACWRITESET SET Write There are one or more protecting values
that the user does not hold.

DB2LBACWRITETREE TREE Write None of the user's values is equal to or an
ancestor of one of the protecting values.

Note:

Chapter 5. Label-based access control (LBAC) 215

1. The DB2LBACWRITEARRAY rule can be thought of as being two different rules combined. One
prevents writing to data that is higher than your level (write-up) and the other prevents writing to data
that is lower than your level (write-down). When granting an exemption to this rule you can exempt the
user from either of these rules or from both.

How the rules handle empty values
All rules treat empty values the same way. An empty value blocks no other values and is blocked by any
non-empty value.

DB2LBACREADSET and DB2LBACWRITESET examples
These examples are valid for a user trying to read or trying to write protected data. They assume that the
values are for a component of type SET that has these elements: one two three four

Table 11. Examples of applying the DB2LBACREADSET and DB2LBACWRITESET rules.

User's value Protecting value Access blocked?

'one' 'one' Not blocked. The values are the same.

'(one,two,three)' 'one' Not blocked. The user's value contains the
element 'one'.

'(one,two)' '(one,two,four)' Blocked. The element 'four' is in the
protecting value but not in the user's value.

'()' 'one' Blocked. An empty value is blocked by any
non-empty value.

'one' '()' Not blocked. No value is blocked by an
empty value.

'()' '()' Not blocked. No value is blocked by an
empty value.

DB2LBACREADTREE and DB2LBACWRITETREE
These examples are valid for both read access and write access. They assume that the values are for a
component of type TREE that was defined in this way:

CREATE SECURITY LABEL COMPONENT mycomp
TREE (
 'Corporate' ROOT,
 'Publishing' UNDER 'Corporate',
 'Software' UNDER 'Corporate',
 'Development' UNDER 'Software',
 'Sales' UNDER 'Software',
 'Support' UNDER 'Software'
 'Business Sales' UNDER 'Sales'
 'Home Sales' UNDER 'Sales'
)

This means the elements are in this arrangement:

216 IBM Db2 11.5: Database Security Guide

Table 12. Examples of applying the DB2LBACREADTREE and DB2LBACWRITETREE rules.

User's value Protecting value Access blocked?

'(Support,Sales)' 'Development' Blocked. The element 'Development'
is not one of the user's values and
neither 'Support' nor 'Sales' is an
ancestor of 'Development'.

'(Development,Software)' '(Business Sales,Publishing)' Not blocked. The element 'Software'
is an ancestor of 'Business Sales'.

'(Publishing,Sales)' '(Publishing,Support)' Not blocked. The element
'Publishing' is in both sets of values.

'Corporate' 'Development' Not blocked. The root value is an
ancestor of all other values.

'()' 'Sales' Blocked. An empty value is blocked
by any non-empty value.

'Home Sales' '()' Not blocked. No value is blocked by
an empty value.

'()' '()' Not blocked. No value is blocked by
an empty value.

DB2LBACREADARRAY examples
These examples are for read access only. They assume that the values are for a component of type ARRAY
that includes these elements in this arrangement:

Chapter 5. Label-based access control (LBAC) 217

Table 13. Examples of applying the DB2LBACREADARRAY rule.

User's value Protecting value Read access blocked?

'Secret' 'Employee' Not blocked. The element 'Secret' is higher than the
element 'Employee'.

'Secret' 'Secret' Not blocked. The values are the same.

'Secret' 'Top Secret' Blocked. The element 'Top Secret' is higher than the
element 'Secret'.

'()' 'Public' Blocked. An empty value is blocked by any non-
empty value.

'Public' '()' Not blocked. No value is blocked by an empty value.

'()' '()' Not blocked. No value is blocked by an empty value.

DB2LBACWRITEARRAY examples
These examples are for write access only. They assume that the values are for a component of type
ARRAY that includes these elements in this arrangement:

218 IBM Db2 11.5: Database Security Guide

Table 14. Examples of applying the DB2LBACWRITEARRAY rule.

User's value Protecting value Write access blocked?

'Secret' 'Employee' Blocked. The element 'Employee' is lower than the
element 'Secret'.

'Secret' 'Secret' Not blocked. The values are the same.

'Secret' 'Top Secret' Blocked. The element 'Top Secret' is higher than the
element 'Secret'.

'()' 'Public' Blocked. An empty value is blocked by any non-
empty value.

'Public' '()' Not blocked. No value is blocked by an empty value.

'()' '()' Not blocked. No value is blocked by an empty value.

LBAC rule exemptions
When you hold an LBAC rule exemption on a particular rule of a particular security policy, that rule is not
enforced when you try to access data protected by that security policy.

An exemption has no effect when comparing security labels of any security policy other than the one for
which it was granted.

Example:

There are two tables: T1 and T2. T1 is protected by security policy P1 and T2 is protected by security
policy P2. Both security policies have one component. The component of each is of type ARRAY. T1 and
T2 each contain only one row of data. The security label that you hold for read access under security
policy P1 does not allow you access to the row in T1. The security label that you hold for read access
under security policy P2 does not allow you read access to the row in T2.

Now you are granted an exemption on DB2LBACREADARRAY under P1. You can now read the row from
T1 but not the row from T2 because T2 is protected by a different security policy and you do not hold an
exemption to the DB2LBACREADARRAY rule in that policy.

You can hold multiple exemptions. If you hold an exemption to every rule used by a security policy then
you will have complete access to all data protected by that security policy.

Granting LBAC rule exemptions
You must be a security administrator to grant an LBAC rule exemption. To grant an LBAC rule exemption,
use the SQL statement GRANT EXEMPTION ON RULE.

When you grant an LBAC rule exemption you provide this information:

• The rule or rules that the exemption is for
• The security policy that the exemption is for
• The user, group, or role to which you are granting the exemption

Important: LBAC rule exemptions provide very powerful access. Do not grant them without careful
consideration.

Revoking LBAC rule exemptions
You must be a security administrator to revoke an LBAC rule exemption. To revoke an LBAC rule
exemption, use the SQL statement REVOKE EXEMPTION ON RULE.

Chapter 5. Label-based access control (LBAC) 219

Determining the rule exemptions held by users
You can use the following query to determine the rule exemptions that are held by users:

SELECT A.grantee, A.accessrulename, B.secpolicyname
FROM syscat.securitypolicyexemptions A, syscat.securitypolicies B
WHERE A.secpolicyid = B.secpolicyid

Built-in functions for managing LBAC security labels
The built-in functions SECLABEL, SECLABEL_BY_NAME, and SECLABEL_TO_CHAR are provided for
managing label-based access control (LBAC) security labels.

Each is described briefly here and in detail in the SQL Reference

SECLABEL
This built-in function is used to build a security label by specifying a security policy and values for each of
the components in the label. The returned value has a data type of DB2SECURITYLABEL and is a security
label that is part of the indicated security policy and has the indicated values for the components. It is not
necessary that a security label with the indicated values already exists.

Example: Table T1 has two columns, the first has a data type of DB2SECURITYLABEL and the second has
a data type of INTEGER. T1 is protected by security policy P1, which has three security label components:
level, departments, and groups. If UNCLASSIFIED is an element of the component level, ALPHA and
SIGMA are both elements of the component departments, and G2 is an element of the component groups
then a security label could be inserted like this:

INSERT INTO T1 VALUES
 (SECLABEL('P1', 'UNCLASSIFIED:(ALPHA,SIGMA):G2'), 22)

SECLABEL_BY_NAME
This built-in function accepts the name of a security policy and the name of a security label that is
part of that security policy. It then returns the indicated security label as a DB2SECURITYLABEL. You
must use this function when inserting an existing security label into a column that has a data type of
DB2SECURITYLABEL.

Example: Table T1 has two columns, the first has a data type of DB2SECURITYLABEL and the second has
a data type of INTEGER. The security label named L1 is part of security policy P1. This SQL inserts the
security label:

INSERT INTO T1 VALUES (SECLABEL_BY_NAME('P1', 'L1'), 22)

This SQL statement does not work:

INSERT INTO T1 VALUES (P1.L1, 22) // Syntax Error!

SECLABEL_TO_CHAR
This built-in function returns a string representation of the values that make up a security label.

Example: Column C1 in table T1 has a data type of DB2SECURITYLABEL. T1 is protected by security
policy P1, which has three security label components: level, departments, and groups. There is one row in
T1 and the value in column C1 that has these elements for each of the components:

Component Elements

level SECRET

departments DELTA and SIGMA

220 IBM Db2 11.5: Database Security Guide

Component Elements

groups G3

A user that has LBAC credentials that allow reading the row executes this SQL statement:

SELECT SECLABEL_TO_CHAR('P1', C1) AS C1 FROM T1

The output looks like this:

C1

'SECRET:(DELTA,SIGMA):G3'

Protection of data using LBAC
Label-based access control (LBAC) can be used to protect rows of data, columns of data, or both. Data in a
table can only be protected by security labels that are part of the security policy protecting the table. Data
protection, including adding a security policy, can be done when creating the table or later by altering the
table.

You can add a security policy to a table and protect data in that table as part of the same CREATE TABLE
or ALTER TABLE statement.

As a general rule you are not allowed to protect data in such a way that your current LBAC credentials do
not allow you to write to that data.

Adding a security policy to a table
You can add a security policy to a table when you create the table by using the SECURITY POLICY clause
of the CREATE TABLE statement. You can add a security policy to an existing table by using the ADD
SECURITY POLICY clause of the ALTER TABLE statement. You do not need to have SECADM authority or
have LBAC credentials to add a security policy to a table.

Adding a security policy to a table does not activate row or column protection by itself. It simply
associates a security policy with the table which is to be used when row or column protection
is activated. Refer to the “Protecting rows” on page 221 and “Protecting columns” on page 222
sections below for more information on how to activate row and column protection. The value of the
PROTECTIONGRANULARITY column in the SYSCAT.TABLES catalog view indicates what level of LBAC
protection is currently active for a table.

Security policies cannot be added to types of tables that cannot be protected by LBAC. See the overview
of LBAC for a list of table types that cannot be protected by LBAC.

No more than one security policy can be added to any table.

Protecting rows
You can allow protected rows in a new table by including a column with a data type of
DB2SECURITYLABEL when you create the table. The CREATE TABLE statement must also add a security
policy to the table. You do not need to have SECADM authority or have any LBAC credentials to create
such a table.

You can allow protected rows in an existing table by adding a column that has a data type of
DB2SECURITYLABEL. To add such a column, either the table must already be protected by a security
policy or the ALTER TABLE statement that adds the column must also add a security policy to the table.
When the column is added, the security label you hold for write access is used to protect all existing rows.
If you do not hold a security label for write access that is part of the security policy protecting the table
then you cannot add a column that has a data type of DB2SECURITYLABEL.

After a table has a column of type DB2SECURITYLABEL you protect each new row of data by storing a
security label in that column. The details of how this works are described in the topics about inserting

Chapter 5. Label-based access control (LBAC) 221

and updating LBAC protected data. You must have LBAC credentials to insert rows into a table that has a
column of type DB2SECURITYLABEL.

A column that has a data type of DB2SECURITYLABEL cannot be dropped and cannot be changed to any
other data type.

Protecting columns
You can protect a column when you create the table by using the SECURED WITH column option of the
CREATE TABLE statement. You can add protection to an existing column by using the SECURED WITH
option in an ALTER TABLE statement.

To protect a column with a particular security label you must have LBAC credentials that allow you to
write to data protected by that security label. You do not have to have SECADM authority.

Columns can only be protected by security labels that are part of the security policy protecting the table.
You cannot protect columns in a table that has no security policy. You are allowed to protect a table with a
security policy and protect one or more columns in the same statement.

You can protect any number of the columns in a table but a column can be protected by no more than one
security label.

Reading of LBAC protected data
When you try to read data protected by label-based access control (LBAC), your LBAC credentials for
reading are compared to the security label that is protecting the data. If the protecting label does not
block your credentials you are allowed to read the data.

In the case of a protected column the protecting security label is defined in the schema of the table. The
protecting security label for that column is the same for every row in the table. In the case of a protected
row the protecting security label is stored in the row in a column of type DB2SECURITYLABEL. It can be
different for every row in the table.

The details of how your LBAC credentials are compared to a security label are given in the topic about how
LBAC security labels are compared.

Reading protected columns
When you try to read from a protected column your LBAC credentials are compared with the security label
protecting the column. Based on this comparison access will either be blocked or allowed. If access is
blocked then an error is returned and the statement fails. Otherwise, the statement proceeds as usual.

Trying to read a column that your LBAC credentials do not allow you to read, causes the entire statement
to fail.

Example:

Table T1 has two protected columns. The column C1 is protected by the security label L1. The column C2
is protected by the security label L2.

Assume that user Jyoti has LBAC credentials for reading that allow access to security label L1 but not to
L2. If Jyoti issues the following SQL statement, the statement will fail:

SELECT * FROM T1

The statement fails because column C2 is included in the SELECT clause as part of the wildcard (*).

If Jyoti issues the following SQL statement it will succeed:

SELECT C1 FROM T1

The only protected column in the SELECT clause is C1, and Jyoti's LBAC credentials allow her to read that
column.

222 IBM Db2 11.5: Database Security Guide

Reading protected rows
If you do not have LBAC credentials that allow you to read a row it is as if that row does not exist for you.

When you read protected rows, only those rows to which your LBAC credentials allow read access are
returned. This is true even if the column of type DB2SECURITYLABEL is not part of the SELECT clause.

Depending on their LBAC credentials, different users might see different rows in a table that has protected
rows. For example, two users executing the statement SELECT COUNT(*) FROM T1 may get different
results if T1 has protected rows and the users have different LBAC credentials.

Your LBAC credentials affect not only SELECT statements but also other SQL statements like UPDATE, and
DELETE. If you do not have LBAC credentials that allow you to read a row, you cannot affect that row.

Example:

Table T1 has these rows and columns. The column ROWSECURITYLABEL has a data type of
DB2SECURITYLABEL.

Table 15. Example values in table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Bird 55 L2

Assume that user Dan has LBAC credentials that allow him to read data that is protected by security label
L1 but not data protected by L2 or L3.

Dan issues the following SQL statement:

SELECT * FROM T1

The SELECT statement returns only the row for Miller. No error messages or warning are returned.

Dan's view of table T1 is this:

Table 16. Example values in view of table T1

LASTNAME DEPTNO ROWSECURITYLABEL

Miller 77 L1

The rows for Rjaibi, Fielding, and Bird are not returned because read access is blocked by their security
labels. Dan cannot delete or update these rows. They will also not be included in any aggregate functions.
For Dan it is as if those rows do not exist.

Dan issues this SQL statement:

SELECT COUNT(*) FROM T1

The statement returns a value of 1 because only the row for Miller can be read by the user Dan.

Reading protected rows that contain protected columns
Column access is checked before row access. If your LBAC credentials for read access are blocked by the
security label protecting one of the columns you are selecting then the entire statement fails. If not, the
statement continues and only the rows protected by security labels to which your LBAC credentials allow
read access are returned.

Chapter 5. Label-based access control (LBAC) 223

Example

The column LASTNAME of table T1 is protected with the security label L1. The column DEPTNO
is protected with security label L2. The column ROWSECURITYLABEL has a data type of
DB2SECURITYLABEL. T1, including the data, looks like this:

Table 17. Example values in table T1

LASTNAME
Protected by L1

DEPTNO
Protected by L2 ROWSECURITYLABEL

Rjaibi 55 L2

Miller 77 L1

Fielding 11 L3

Assume that user Sakari has LBAC credentials that allow reading data protected by security label L1 but
not L2 or L3.

Sakari issues this SQL statement:

SELECT * FROM T1

The statement fails because the SELECT clause uses the wildcard (*) which includes the column DEPTNO.
The column DEPTNO is protected by security label L2, which Sakari's LBAC credentials do not allow her to
read.

Sakari next issues this SQL statement:

SELECT LASTNAME, ROWSECURITYLABEL FROM T1

The select clause does not include any columns that Sakari is not able to read so the statement continues.
Only one row is returned, however, because each of the other rows is protected by security label L2 or L3.

Table 18. Example output from query on table T1

LASTNAME ROWSECURITYLABEL

Miller L1

Inserting of LBAC protected data
When you try to insert data into a protected column, or to insert a new row into a table with protected
rows, your LBAC credentials determine how that INSERT statement is handled.

Inserting to protected columns
When you try to insert data into a protected column your LBAC credentials for writing are compared
with the security label protecting that column. Based on this comparison access will either be blocked or
allowed.

The details of how two security labels are compared are given in the topic about how LBAC security labels
are compared.

If access is allowed, the statement proceeds as usual. If access is blocked, then the insert fails and an
error is returned.

If you are inserting a row but do not provide a value for a protected column then a default value is inserted
if one is available. This happens even if your LBAC credentials do not allow write access to that column. A
default is available in the following cases:

• The column was declared with the WITH DEFAULT option

224 IBM Db2 11.5: Database Security Guide

• The column is a generated column
• The column has a default value that is given through a BEFORE trigger
• The column has a data type of DB2SECURITYLABEL, in which case security label that you hold for write

access is the default value

Inserting to protected rows
When you insert a new row into a table with protected rows, you do not have to provide a value for the
column that is of type DB2SECURITYLABEL. If you do not provide a value for that column, the column is
automatically populated with the security label you have been granted for write access. If you have not
been granted a security label for write access, an error is returned and the insert fails.

By using built-in functions like SECLABEL, you can explicitly provide a security label to be inserted in
a column of type DB2SECURITYLABEL. The provided security label is only used, however, if your LBAC
credentials would allow you to write to data that is protected with the security label you are trying to
insert.

If you provide a security label that you would not be able to write, then what happens depends on the
security policy that is protecting the table. If the security policy has the RESTRICT NOT AUTHORIZED
WRITE SECURITY LABEL option, then the insert fails and an error is returned. If the security policy
does not have the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option or if it instead has the
OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL option, then the security label you provide is
ignored and if you hold a security label for write access, it is used instead. If you do not hold a security
label for write access, an error is returned.

Examples

Table T1 is protected by a security policy named P1 that was created without the RESTRICT NOT
AUTHORIZED WRITE SECURITY LABEL option. Table T1 has two columns but no rows. The columns
are LASTNAME and LABEL. The column LABEL has a data type of DB2SECURITYLABEL.

User Joe holds a security label L2 for write access. Assume that the security label L2 allows him to write
to data protected by security label L2 but not to data protected by security labels L1 or L3.

Joe issues the following SQL statement:

INSERT INTO T1 (LASTNAME, DEPTNO) VALUES ('Rjaibi', 11)

Because no security label was included in the INSERT statement, Joe's security label for write access is
inserted into the LABEL row.

Table T1 now looks like this:

Table 19. Values in the example table T1 after first INSERT statement

LASTNAME LABEL

Rjaibi L2

Joe issues the following SQL statement, in which he explicitly provides the security label to be inserted
into the column LABEL:

INSERT INTO T1 VALUES ('Miller', SECLABEL_BY_NAME('P1', 'L1'))

The SECLABEL_BY_NAME function in the statement returns a security label that is part of security policy
P1 and is named L1. Joe is not allowed to write to data that is protected with L1 so he is not allowed to
insert L1 into the column LABEL.

Because the security policy protecting T1 was created without the RESTRICT NOT AUTHORIZED WRITE
SECURITY LABEL option the security label that Joe holds for writing is inserted instead. No error or
message is returned.

Chapter 5. Label-based access control (LBAC) 225

The table now looks like this:

Table 20. Values in example table T1 after second INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

If the security policy protecting the table had been created with the RESTRICT NOT AUTHORIZED WRITE
SECURITY LABEL option then the insert would have failed and an error would have been returned.

Next Joe is granted an exemption to one of the LBAC rules. Assume that his new LBAC credentials allow
him to write to data that is protected with security labels L1 and L2. The security label granted to Joe for
write access does not change, it is still L2.

Joe issues the following SQL statement:

INSERT INTO T1 VALUES ('Bird', SECLABEL_BY_NAME('P1', 'L1'))

Because of his new LBAC credentials Joe is able to write to data that is protected by the security label L1.
The insertion of L1 is therefore allowed. The table now looks like this:

Table 21. Values in example table T1 after third INSERT statement

LASTNAME LABEL

Rjaibi L2

Miller L2

Bird L1

Updating of LBAC protected data
Your LBAC credentials must allow you write access to data before you can update it. In the case of
updating a protected row, your LBAC credentials must also allow read access to the row.

Updating protected columns
When you try to update data in a protected column, your LBAC credentials are compared to the security
label protecting the column. The comparison made is for write access. If write access is blocked then an
error is returned and the statement fails, otherwise the update continues.

The details of how your LBAC credentials are compared to a security label are given in the topic about how
LBAC security labels are compared.

Example:

Assume there is a table T1 in which column DEPTNO is protected by a security label L2 and column
PAYSCALE is protected by a security label L3. T1, including its data, looks like this:

Table 22. Table T1

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 11 7

3 Bird 11 9

226 IBM Db2 11.5: Database Security Guide

User Lhakpa has no LBAC credentials. He issues this SQL statement:

UPDATE T1 SET EMPNO = 4
 WHERE LASTNAME = "Bird"

This statement executes without error because it does not update any protected columns. T1 now looks
like this:

Table 23. Table T1 After Update

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 11 7

4 Bird 11 9

Lhakpa next issues this SQL statement:

UPDATE T1 SET DEPTNO = 55
 WHERE LASTNAME = "Miller"

This statement fails and an error is returned because DEPTNO is protected and Lhakpa has no LBAC
credentials.

Assume Lhakpa is granted LBAC credentials and that allow the access summarized in the following table.
The details of what those credentials are and what elements are in the security labels are not important
for this example.

Security label protecting the data Can read? Can Write?

L2 No Yes

L3 No No

Lhakpa issues this SQL statement again:

UPDATE T1 SET DEPTNO = 55
 WHERE LASTNAME = "Miller"

This time the statement executes without error because Lhakpa's LBAC credentials allow him to write to
data protected by the security label that is protecting the column DEPTNO. It does not matter that he is
not able to read from that same column. The data in T1 now looks like this:

Table 24. Table T1 After Second Update

EMPNO LASTNAME

DEPTNO
Protected by
L2

PAYSCALE
Protected by
L3

1 Rjaibi 11 4

2 Miller 55 7

4 Bird 11 9

Next Lhakpa issues this SQL statement:

UPDATE T1 SET DEPTNO = 55, PAYSCALE = 4
 WHERE LASTNAME = "Bird"

Chapter 5. Label-based access control (LBAC) 227

The column PAYSCALE is protected by the security label L3 and Lhakpa's LBAC credentials do not allow
him to write to it. Because Lhakpa is unable to write to the column, the update fails and no data is
changed.

Updating protected rows
If your LBAC credentials do not allow you to read a row, then it is as if that row does not exist for you so
there is no way for you to update that row. For rows that you are able to read, you must also be able to
write to the row in order to update it.

When you try to update a row, your LBAC credentials for writing are compared to the security label
protecting the row. If write access is blocked, the update fails and an error is returned. If write access is
not blocked, then the update continues.

The update that is performed is done the same way as an update to a non-protected row except for the
treatment of the column that has a data type of DB2SECURITYLABEL. If you do not explicitly set the value
of that column, it is automatically set to the security label that you hold for write access. If you do not
have a security label for write access, an error is returned and the statement fails.

If the update explicitly sets the column that has a data type of DB2SECURITYLABEL, then your LBAC
credentials are checked again. If the update you are trying to perform would create a row that your
current LBAC credentials would not allow you to write to, then what happens depends on the security
policy that is protecting the table. If the security policy has the RESTRICT NOT AUTHORIZED WRITE
SECURITY LABEL option, then the update fails and an error is returned. If the security policy does not
have the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option or if it instead has the OVERRIDE
NOT AUTHORIZED WRITE SECURITY LABEL option, then the security label you provide is ignored and if
you hold a security label for write access, it is used instead. If you do not hold a security label for write
access, an error is returned.

Example:

Assume that table T1 is protected by a security policy named P1 and has a column named LABEL that has
a data type of DB2SECURITYLABEL.

T1, including its data, looks like this:

Table 25. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

2 Miller 11 L2

3 Bird 11 L3

Assume that user Jenni has LBAC credentials that allow her to read and write data protected by the
security labels L0 and L1 but not data protected by any other security labels. The security label she holds
for both read and write is L0. The details of her full credentials and of what elements are in the labels are
not important for this example.

Jenni issues this SQL statement:

SELECT * FROM T1

Jenni sees only one row in the table:

Table 26. Jenni's SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 11 L1

228 IBM Db2 11.5: Database Security Guide

The rows protected by labels L2 and L3 are not included in the result set because Jenni's LBAC
credentials do not allow her to read those rows. For Jenni it is as if those rows do not exist.

Jenni issues these SQL statements:

UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11;
SELECT * FROM T1;

The result set returned by the query looks like this:

Table 27. Jenni's UPDATE & SELECT Query Result

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

The actual data in the table looks like this:

Table 28. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L0

2 Miller 11 L2

3 Bird 11 L3

The statement executed without error but affected only the first row. The second and third rows are
not readable by Jenni so they are not selected for update by the statement even though they meet the
condition in the WHERE clause.

Notice that the value of the LABEL column in the updated row has changed even though that column was
not explicitly set in the UPDATE statement. The column was set to the security label that Jenni held for
writing.

Now Jenni is granted LBAC credentials that allow her to read data protected by any security label. Her
LBAC credentials for writing do not change. She is still only able to write to data protected by L0 and L1.

Jenni again issues this SQL statement:

UPDATE T1 SET DEPTNO = 44 WHERE DEPTNO = 11

This time the update fails because of the second and third rows. Jenni is able to read those rows, so they
are selected for update by the statement. She is not, however, able to write to them because they are
protected by security labels L2 and L3. The update does not occur and an error is returned.

Jenni now issues this SQL statement:

UPDATE T1
 SET DEPTNO = 55, LABEL = SECLABEL_BY_NAME('P1', 'L2')
 WHERE LASTNAME = "Rjaibi"

The SECLABEL_BY_NAME function in the statement returns the security label named L2. Jenni is trying to
explicitly set the security label protecting the first row. Jenni's LBAC credentials allow her to read the first
row, so it is selected for update. Her LBAC credentials allow her to write to rows protected by the security
label L0 so she is allowed to update the row. Her LBAC credentials would not, however, allow her to write
to a row protected by the security label L2, so she is not allowed to set the column LABEL to that value.
The statement fails and an error is returned. No columns in the row are updated.

Jenni now issues this SQL statement:

UPDATE T1 SET LABEL = SECLABEL_BY_NAME('P1', 'L1') WHERE LASTNAME = "Rjaibi"

The statement succeeds because she would be able to write to a row protected by the security label L1.

Chapter 5. Label-based access control (LBAC) 229

T1 now looks like this:

Table 29. Table T1

EMPNO LASTNAME DEPTNO LABEL

1 Rjaibi 44 L1

2 Miller 11 L2

3 Bird 11 L3

Updating protected rows that contain protected columns
If you try to update protected columns in a table with protected rows then your LBAC credentials must
allow writing to of all of the protected columns affected by the update, otherwise the update fails and
an error is returned. This is as described in section about updating protected columns, earlier. If you
are allowed to update all of the protected columns affected by the update you will still only be able to
update rows that your LBAC credentials allow you to both read from and write to. This is as described
in the section about updating protected rows, earlier. The handling of a column with a data type of
DB2SECURITYLABEL is the same whether the update affects protected columns or not.

If the column that has a data type of DB2SECURITYLABEL is itself a protected column then your LBAC
credentials must allow you to write to that column or you cannot update any of the rows in the table.

Deleting or dropping of LBAC protected data
Your ability to delete data in tables protected by LBAC depend on your LBAC credentials.

Deleting protected rows
If your LBAC credentials do not allow you to read a row, it is as if that row does not exist for you so there
is no way for you to delete it. To delete a row that you are able to read, your LBAC credentials must also
allow you to write to the row. To delete any row in a table that has protected columns you must have LBAC
credentials that allow you to write to all protected columns in the table.

When you try to delete a row, your LBAC credentials for writing are compared to the security label
protecting the row. If the protecting security label blocks write access by your LBAC credentials, the
DELETE statement fails, an error is returned, and no rows are deleted.

Example

Protected table T1 has these rows:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Assume that user Pat has LBAC credentials such that her access is as summarized in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

230 IBM Db2 11.5: Database Security Guide

The exact details of her LBAC credentials and of the security labels are unimportant for this example.

Pat issues the following SQL statement:

SELECT * FROM T1 WHERE DEPTNO != 999

The statement executes and returns this result set:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

The last row of T1 is not included in the results because Pat does not have read access to that row. It
is as if that row does not exist for Pat.

Pat issues this SQL statement:

DELETE FROM T1 WHERE DEPTNO != 999

Pat does not have write access to the first or third row, both of which are protected by L2. So even
though she can read the rows she cannot delete them. The DELETE statement fails and no rows are
deleted.

Pat issues this SQL statement:

DELETE FROM T1 WHERE DEPTNO = 77;

This statement succeeds because Pat is able to write to the row with Miller in the LASTNAME column.
That is the only row selected by the statement. The row with Fielding in the LASTNAME column is
not selected because Pat's LBAC credentials do not allow her to read that row. That row is never
considered for the delete so no error occurs.

The actual rows of the table now look like this:

LASTNAME DEPTNO LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

Deleting rows that have protected columns
To delete any row in a table that has protected columns you must have LBAC credentials that allow you to
write to all protected columns in the table. If there is any row in the table that your LBAC credentials do
not allow you to write to then the delete will fail and an error will be returned.

If the table has both protected columns and protected rows then to delete a particular row you must have
LBAC credentials that allow you to write to every protected column in the table and also to read from and
write to the row that you want to delete.

Example

In protected table T1, the column DEPTNO is protected by the security label L2. T1 contains these
rows:

Chapter 5. Label-based access control (LBAC) 231

LASTNAME
DEPTNO
Protected by L2 LABEL

Rjaibi 55 L2

Miller 77 L1

Bird 55 L2

Fielding 77 L3

Assume that user Benny has LBAC credentials that allow him the access summarized in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes No

L3 No No

The exact details of his LBAC credentials and of the security labels are unimportant for this example.

Benny issues the following SQL statement:

DELETE FROM T1 WHERE DEPTNO = 77

The statement fails because Benny does not have write access to the column DEPTNO.

Now Benny's LBAC credentials are changed so that he has access as summarized in this table:

Security label Read access? Write access?

L1 Yes Yes

L2 Yes Yes

L3 Yes No

Benny issues this SQL statement again:

DELETE FROM T1 WHERE DEPTNO = 77

This time Benny has write access to the column DEPTNO so the delete continues. The delete
statement selects only the row that has a value of Miller in the LASTNAME column. The row that
has a value of Fielding in the LASTNAME column is not selected because Benny's LBAC credentials do
not allow him to read that row. Because the row is not selected for deletion by the statement it does
not matter that Benny is unable to write to the row.

The one row selected is protected by the security label L1. Benny's LBAC credentials allow him to
write to data protected by L1 so the delete is successful.

The actual rows in table T1 now look like this:

LASTNAME
DEPTNO
Protected by L2 LABEL

Rjaibi 55 L2

Bird 55 L2

Fielding 77 L3

232 IBM Db2 11.5: Database Security Guide

Dropping protected data
You cannot drop a column that is protected by a security label unless your LBAC credentials allow you to
write to that column.

A column with a data type of DB2SECURITYLABEL cannot be dropped from a table. To remove it you
must first drop the security policy from the table. When you drop the security policy the table is no longer
protected with LBAC and the data type of the column is automatically changed from DB2SECURITYLABEL
to VARCHAR(128) FOR BIT DATA. The column can then be dropped.

Your LBAC credentials do not prevent you from dropping entire tables or databases that contain protected
data. If you would normally have permission to drop a table or a database you do not need any LBAC
credentials to do so, even if the database contains protected data.

Removal of LBAC protection from data
You must have SECADM authority to remove the security policy from a table. To remove the security
policy from a table you use the DROP SECURITY POLICY clause of the ALTER TABLE statement. This also
automatically removes protection from all rows and all columns of the table.

Removing protection from rows
In a table that has protected rows every row must be protected by a security label. There is no way to
remove LBAC protection from individual rows.

A column of type DB2SECURITYLABEL cannot be altered or removed except by removing the security
policy from the table.

Removing protection from columns
Protection of a column can be removed using the DROP COLUMN SECURITY clause of the SQL statement
ALTER TABLE. To remove the protection from a column you must have LBAC credentials that allow you to
read from and write to that column in addition to the normal privileges and authorities needed to alter a
table.

Chapter 5. Label-based access control (LBAC) 233

234 IBM Db2 11.5: Database Security Guide

Chapter 6. Using the system catalog for security
information

Information about each database is automatically maintained in a set of views called the system catalog,
which is created when the database is created. This system catalog describes tables, columns, indexes,
programs, privileges, and other objects.

The following views and table functions list information about privileges held by users, identities of users
granting privileges, and object ownership:

SYSCAT.COLAUTH
Lists the column privileges

SYSCAT.DBAUTH
Lists the database privileges

SYSCAT.INDEXAUTH
Lists the index privileges

SYSCAT.MODULEAUTH
Lists the module privileges

SYSCAT.PACKAGEAUTH
Lists the package privileges

SYSCAT.PASSTHRUAUTH
Lists the server privilege

SYSCAT.ROLEAUTH
Lists the role privileges

SYSCAT.ROUTINEAUTH
Lists the routine (functions, methods, and stored procedures) privileges

SYSCAT.SCHEMAAUTH
Lists the schema privileges

SYSCAT.SEQUENCEAUTH
Lists the sequence privileges

SYSCAT.SURROGATEAUTHIDS
Lists the authorization IDs for which another authorization ID can act as a surrogate.

SYSCAT.TABAUTH
Lists the table and view privileges

SYSCAT.TBSPACEAUTH
Lists the table space privileges

SYSCAT.VARIABLEAUTH
Lists the variable privileges

SYSCAT.WORKLOADAUTH
Lists the workload privileges

SYSCAT.XSROBJECTAUTH
Lists the XSR object privileges

Privileges granted to users by the system will have SYSIBM as the grantor. SYSADM, SYSMAINT SYSCTRL,
and SYSMON are not listed in the system catalog.

The CREATE and GRANT statements place privileges in the system catalog. Users with ACCESSCTRL and
SECADM authority can grant and revoke SELECT privilege on the system catalog views.

© Copyright IBM Corp. 2016, 2023 235

Retrieving authorization names with granted privileges
You can use the PRIVILEGES and other administrative views to retrieve information about the
authorization names that have been granted privileges in a database.

About this task
For example, the following query retrieves all explicit privileges and the authorization IDs to which they
were granted, plus other information, from the PRIVILEGES administrative view:

SELECT AUTHID, PRIVILEGE, OBJECTNAME, OBJECTSCHEMA, OBJECTTYPE
 FROM SYSIBMADM.PRIVILEGES

The following query uses the AUTHORIZATIONIDS administrative view to find all the authorization IDs
that have been granted privileges or authorities, and to show their types:

SELECT AUTHID, AUTHIDTYPE FROM SYSIBMADM.AUTHORIZATIONIDS

You can also use the SYSIBMADM.OBJECTOWNERS administrative view and the
SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID table function to find security-related information.

Prior to Version 9.1, no single system catalog view contained information about all privileges. For releases
earlier than version 9.1, the following statement retrieves all authorization names with privileges:

 SELECT DISTINCT GRANTEE, GRANTEETYPE, 'DATABASE' FROM SYSCAT.DBAUTH
 UNION
 SELECT DISTINCT GRANTEE, GRANTEETYPE, 'TABLE ' FROM SYSCAT.TABAUTH
 UNION
 SELECT DISTINCT GRANTEE, GRANTEETYPE, 'PACKAGE ' FROM SYSCAT.PACKAGEAUTH
 UNION
 SELECT DISTINCT GRANTEE, GRANTEETYPE, 'INDEX ' FROM SYSCAT.INDEXAUTH
 UNION
 SELECT DISTINCT GRANTEE, GRANTEETYPE, 'COLUMN ' FROM SYSCAT.COLAUTH
 UNION
 SELECT DISTINCT GRANTEE, GRANTEETYPE, 'SCHEMA ' FROM SYSCAT.SCHEMAAUTH
 UNION
 SELECT DISTINCT GRANTEE, GRANTEETYPE, 'SERVER ' FROM SYSCAT.PASSTHRUAUTH
 ORDER BY GRANTEE, GRANTEETYPE, 3

Periodically, the list retrieved by this statement should be compared with lists of user and group names
defined in the system security facility. You can then identify those authorization names that are no longer
valid.

Note: If you are supporting remote database clients, it is possible that the authorization name is defined
at the remote client only and not on your database server machine.

Retrieving all names with DBADM authority
The following statement retrieves all authorization names that have been directly granted DBADM
authority:

About this task
 SELECT DISTINCT GRANTEE, GRANTEETYPE FROM SYSCAT.DBAUTH
 WHERE DBADMAUTH = 'Y'

236 IBM Db2 11.5: Database Security Guide

Retrieving names authorized to access a table
You can use the PRIVILEGES and other administrative views to retrieve information about the
authorization names that have been granted privileges in a database.

About this task
The following statement retrieves all authorization names (and their types) that are directly authorized to
access the table EMPLOYEE with the qualifier JAMES:

SELECT DISTINCT AUTHID, AUTHIDTYPE FROM SYSIBMADM.PRIVILEGES
 WHERE OBJECTNAME = 'EMPLOYEE' AND OBJECTSCHEMA = 'JAMES'

For releases earlier than Version 9.1, the following query retrieves the same information:

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
 WHERE TABNAME = 'EMPLOYEE'
 AND TABSCHEMA = 'JAMES'
 UNION
 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH
 WHERE TABNAME = 'EMPLOYEE'
 AND TABSCHEMA = 'JAMES'

To find out who can update the table EMPLOYEE with the qualifier JAMES, issue the following statement:

 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
 WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND
 (CONTROLAUTH = 'Y' OR
 UPDATEAUTH IN ('G','Y'))
 UNION
 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.DBAUTH
 WHERE DBADMAUTH = 'Y'
 UNION
 SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH
 WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND
 PRIVTYPE = 'U'

This retrieves any authorization names with DBADM authority, as well as those names to which CONTROL
or UPDATE privileges have been directly granted.

Remember that some of the authorization names may be groups, not just individual users.

Retrieving all privileges granted to users
By making queries on the system catalog views, users can retrieve a list of the privileges they hold and a
list of the privileges they granted other users.

About this task
You can use the PRIVILEGES and other administrative views to retrieve information about the
authorization names that were granted privileges in a database. For example, the following query
retrieves all the privileges that are granted to the current session authorization ID:

SELECT * FROM SYSIBMADM.PRIVILEGES
 WHERE AUTHID = SESSION_USER AND AUTHIDTYPE = 'U'

The keyword SESSION_USER in this statement is a special register that is equal to the value of the current
user's authorization name.

For releases earlier than Version 9.1, the following examples provide similar information. For example, the
following statement retrieves a list of the database privileges that were directly granted to the individual
authorization name JAMES:

 SELECT * FROM SYSCAT.DBAUTH
 WHERE GRANTEE = 'JAMES' AND GRANTEETYPE = 'U'

Chapter 6. Using the system catalog for security information 237

The following statement retrieves a list of the table privileges that were directly granted by the user
JAMES:

 SELECT * FROM SYSCAT.TABAUTH
 WHERE GRANTOR = 'JAMES'

The following statement retrieves a list of the individual column privileges that were directly granted by
the user JAMES:

 SELECT * FROM SYSCAT.COLAUTH
 WHERE GRANTOR = 'JAMES'

Securing the system catalog view
Because the system catalog views describe every object in the database, if you have sensitive data, you
might want to restrict their access.

About this task
The following authorities have SELECT privilege on all catalog tables:

• ACCESSCTRL
• DATAACCESS
• DBADM
• SECADM
• SQLADM

In addition, the following instance level authorities have the ability to select
from SYSCAT.BUFFERPOOLS, SYSCAT.DBPARTITIONGROUPS, SYSCAT.DBPARTITIONGROUPDEF,
SYSCAT.PACKAGES, and SYSCAT.TABLES:

• SYSADM
• SYSCTRL
• SYSMAINT
• SYSMON

You can use the CREATE DATABASE ... RESTRICTIVE command to create a database in which no privileges
are automatically granted to PUBLIC. In this case, none of the following normal default grant actions
occur:

• CREATETAB
• BINDADD
• CONNECT
• IMPLICIT_SCHEMA
• EXECUTE with GRANT on all procedures in schema SQLJ
• EXECUTE with GRANT on all functions and procedures in schema SYSPROC
• BIND on all packages created in the NULLID schema
• EXECUTE on all packages created in the NULLID schema
• CREATEIN on schema SQLJ
• CREATEIN on schema NULLID
• USE on table space USERSPACE1
• SELECT access to the SYSIBM catalog tables
• SELECT access to the SYSCAT catalog views
• SELECT access to the SYSIBMADM administrative views

238 IBM Db2 11.5: Database Security Guide

• SELECT access to the SYSSTAT catalog views
• UPDATE access to the SYSSTAT catalog views

If you have created a database using the RESTRICTIVE option, no permissions are granted to PUBLIC. You
can run the following query to verify that no schemas are accessibly by PUBLIC:

SELECT DISTINCT OBJECTSCHEMA FROM SYSIBMADM.PRIVILEGES WHERE AUTHID='PUBLIC'

OBJECTSCHEMA

For releases earlier than Version 9.1 of the Db2 database manager, during database creation, SELECT
privilege on the system catalog views is granted to PUBLIC. In most cases, this does not present any
security problems. For very sensitive data, however, it may be inappropriate, as these tables describe
every object in the database. If this is the case, consider revoking the SELECT privilege from PUBLIC; then
grant the SELECT privilege as required to specific users. Granting and revoking SELECT on the system
catalog views is done in the same way as for any view, but you must have either ACCESSCTRL or SECADM
authority to do this.

At a minimum, if you don't want any user to be able to know what objects other users have access to, you
should consider restricting access to the following catalog and administrative views:

• SYSCAT.COLAUTH
• SYSCAT.DBAUTH
• SYSCAT.INDEXAUTH
• SYSCAT.PACKAGEAUTH
• SYSCAT.PASSTHRUAUTH
• SYSCAT.ROUTINEAUTH
• SYSCAT.SCHEMAAUTH
• SYSCAT.SECURITYLABELACCESS
• SYSCAT.SECURITYPOLICYEXEMPTIONS
• SYSCAT.SEQUENCEAUTH
• SYSCAT.SURROGATEAUTHIDS
• SYSCAT.TABAUTH
• SYSCAT.TBSPACEAUTH
• SYSCAT.XSROBJECTAUTH
• SYSIBMADM.AUTHORIZATIONIDS
• SYSIBMADM.OBJECTOWNERS
• SYSIBMADM.PRIVILEGES

This would prevent information about user privileges from becoming available to everyone with access to
the database.

You should also examine the columns for which statistics are gathered. Some of the statistics recorded
in the system catalog contain data values which could be sensitive information in your environment. If
these statistics contain sensitive data, you may want to revoke SELECT privilege from PUBLIC for the
SYSCAT.COLUMNS and SYSCAT.COLDIST catalog views.

If you want to limit access to the system catalog views, you could define views to let each authorization
name retrieve information about its own privileges.

For example, the following view MYSELECTS includes the owner and name of every table on which a
user's authorization name has been directly granted SELECT privilege:

 CREATE VIEW MYSELECTS AS
 SELECT TABSCHEMA, TABNAME FROM SYSCAT.TABAUTH
 WHERE GRANTEETYPE = 'U'

Chapter 6. Using the system catalog for security information 239

 AND GRANTEE = USER
 AND SELECTAUTH = 'Y'

The keyword USER in this statement is equal to the value of the current session authorization name.

The following statement makes the view available to every authorization name:

 GRANT SELECT ON TABLE MYSELECTS TO PUBLIC

And finally, remember to revoke SELECT privilege on the view and base table by issuing the following two
statements:

 REVOKE SELECT ON TABLE SYSCAT.TABAUTH FROM PUBLIC

 REVOKE SELECT ON TABLE SYSIBM.SYSTABAUTH FROM PUBLIC

240 IBM Db2 11.5: Database Security Guide

Chapter 7. Firewall support
A firewall is a set of related programs, located at a network gateway server, that are used to prevent
unauthorized access to a system or network.

There are four types of firewalls:

1. Network level, packet-filter, or screening router firewalls
2. Classical application level proxy firewalls
3. Circuit level or transparent proxy firewalls
4. Stateful multi-layer inspection (SMLI) firewalls

There are existing firewall products that incorporate one of the firewall types listed previously. There are
many other firewall products that incorporate some combination of the types listed previously.

Screening router firewalls
The screening router firewall is also known as a network level or packet-filter firewall. Such a firewall
works by screening incoming packets by protocol attributes. The protocol attributes screened may
include source or destination address, type of protocol, source or destination port, or some other
protocol-specific attributes.

For all firewall solutions (except SOCKS), you need to ensure that all the ports used by Db2 database are
open for incoming and outgoing packets. Db2 database uses port 523 for the Db2 Administration Server
(DAS), which is used by the Db2 database tools. Determine the ports used by all your server instances by
using the services file to map the service name in the server database manager configuration file to its
port number.

In addition, for partitioned database environments and Db2 pureScale environments, if the
DB2_FIREWALL_PORT_RANGE registry variable has been set, connections must be allowed on the
specified port range between members of the same Db2 instance. If this registry variable has not
been set, connections must be allowed on all non-privileged ports between members of the same Db2
instance. Non-privileged ports have port numbers greater than or equal to 1024.

Application proxy firewalls
A proxy or proxy server is a technique that acts as an intermediary between a Web client and a Web
server. A proxy firewall acts as a gateway for requests arriving from clients.

When client requests are received at the firewall, the final server destination address is determined by the
proxy software. The application proxy translates the address, performs additional access control checking
and logging as necessary, and connects to the server on behalf of the client.

The Db2 Connect product on a firewall machine can act as a proxy to the destination server. Also, a
Db2 database server on the firewall, acting as a hop server to the final destination server, acts like an
application proxy.

Circuit level firewalls
The circuit level firewall is also known as a transparent proxy firewall.

A transparent proxy firewall does not modify the request or response beyond what is required for proxy
authentication and identification. An example of a transparent proxy firewall is SOCKS.

The Db2 database system supports SOCKS Version 4.

© Copyright IBM Corp. 2016, 2023 241

Stateful multi-layer inspection (SMLI) firewalls
The stateful multi-layer inspection (SMLI) firewall uses a sophisticated form of packet-filtering that
examines all seven layers of the Open System Interconnection (OSI) model.

Each packet is examined and compared against known states of friendly packets. While screening router
firewalls only examine the packet header, SMLI firewalls examine the entire packet including the data.

242 IBM Db2 11.5: Database Security Guide

Chapter 8. Security plug-ins
Authentication for the Db2 database system is done using security plug-ins. A security plug-in is a
dynamically loadable library that provides authentication security services.

Important: The DATA_ENCRYPT authentication type is deprecated and might be removed in a future
release. To encrypt data in-transit between clients and Db2 databases, we recommend that you use the
Db2 database system support of Transport Layer Security (TLS). For more information, see Configuring
TLS support in a Db2 instance in the Data encryption section of the Db2 Security Guide.

Group retrieval plug-in
Retrieves group membership information for a particular user.

User ID/password authentication plug-in
The following authentication types are implemented using a user ID and password authentication
plug-in:

• CLIENT
• SERVER
• SERVER_ENCRYPT
• DATA_ENCRYPT
• DATA_ENCRYPT_CMP

These authentication types determine how and where authentication of a user occurs. The
authentication type that is used is determined by the following method:

• For connect or attach operations, if you specify a value for the srvcon_auth configuration
parameter, then that value takes precedence over the value of the authentication configuration
parameter.

• In all other cases, the value of the authentication configuration parameter is used.

GSS-API authentication plug-in
GSS-API is formally known as Generic Security Service Application Program Interface, Version 2 (IETF
RFC2743) and Generic Security Service API Version 2: C-Bindings (IETF RFC2744). The Kerberos
protocol is the predominant means of implementing the GSS-API authentication mechanism. The
following authentication types are implemented using GSS-API authentication plug-ins:

• KERBEROS
• GSSPLUGIN
• KRB_SERVER_ENCRYPT
• GSS_SERVER_ENCRYPT

KRB_SERVER_ENCRYPT and GSS_SERVER_ENCRYPT support both GSS-API authentication and user
ID/password authentication. However, GSS-API authentication is the preferred authentication type.
Client-side Kerberos support is available on AIX, Windows, and Linux operating systems. For Windows
operating systems, Kerberos support is enabled by default.

The Db2 database manager supports these plug-ins at both the client and the server.

Note: Authentication types determine how and where a user is authenticated. To use a particular
authentication type, set the value of the authentication database manager configuration parameter.

You can use each of the plug-ins independently, or with the other plug-ins. For example, you might
use a specific sever-side authentication plug-in, but accept the Db2 default values for client and group
authentication. Alternatively, you might have only a group retrieval, or a client authentication plug-in, but
without a server-side plug-in.

If you want to use GSS-API authentication, plug-ins are required on both the client and the server.

© Copyright IBM Corp. 2016, 2023 243

The default behavior for authentication is to use a user ID/password plug-in that implements an
operating-system-level mechanism to authenticate.

The Db2 database product includes plug-ins for group retrieval, user ID/password authentication, and
GSS-API authentication. You can customize Db2 client and server authentication behavior further by
developing your own plug-ins, or by purchasing plug-ins from a third party.

Deployment of security plug-ins on Db2 clients
Db2 clients can support one group retrieval plug-in and one user ID/password authentication plug-in.

Alternatively, clients using GSS-API authentication plug-in determine which plug-in to use by scanning
the list of implemented GSS-API plug-ins on the Db2 server. The first authentication plug-in name that
matches a GSS-API authentication plug-in implemented on the client is the one chosen. You specify the
list of implemented server GSS-API plug-ins using the srvcon_gssplugin_list database manager
configuration parameter. The following figure portrays the security plug-in infrastructure on a Db2 client:

Figure 6. Deploying Security Plug-ins on Db2 Clients

Deployment of security plug-ins on Db2 servers
Db2 servers can support one group retrieval plug-in, one user ID/password authentication plug-in, and
multiple GSS-API plug-ins. You can specify the available GSS-API plug-ins as a list of values for the
srvcon_gssplugin_list database manager configuration parameter. However, only one GSS-API
plug-in in this list can be a Kerberos plug-in.

In addition to deploying the server-side security plug-ins on your database server, you might have to
deploy client authentication plug-ins on your database server. When you run instance-level operations,
such as the db2start and db2trc commands, the Db2 database manager performs authorization
checking for these operations using client authentication plug-ins. Therefore, you might need to install
the client authentication plug-in that corresponds to the authentication plug-in on the server. This plug-in
name is specified by the authentication database manager configuration parameter on the server.

You can set the authentication and srvcon_auth configuration parameters to different values.
This scenario causes one mechanism to be used to authenticate database connections and the other
mechanism to be used for local authorization.

The most common method for this approach is to:

• Set the srvcon_auth configuration parameter to GSSPLUGIN; and
• Set the authentication configuration parameter to SERVER.

244 IBM Db2 11.5: Database Security Guide

The srvcon_auth configuration parameter is a means to override the authentication type used by
incoming connections. These connections use the authentication method specified by the srvcon_auth
configuration parameter, but if this value is left empty, the value of the authentication parameter is
used instead.

If you do not use client authentication plug-ins on the database server, instance-level operations, such as
the db2start command, fail.

The following figure outlines the security authentication plug-in infrastructure on a Db2 server:

Figure 7. Deploying Security Plug-ins on Db2 Servers

Enabling security plug-ins
You can specify the plug-ins to use for each authentication mechanism by setting database manager
configuration parameters. The following table outlines these parameters:

Table 30. Database Manager configuration parameters for security authentication plug-ins

Description Parameter name

Client Userid-Password Plugin CLNT_PW_PLUGIN

Client Kerberos Plugin CLNT_KRB_PLUGIN

Group Plugin GROUP_PLUGIN

GSS Plugin for Local Authorization LOCAL_GSSPLUGIN

Server Plugin Mode SRV_PLUGIN_MODE

Server List of GSS Plugins SRVCON_GSSPLUGIN_LIST

Server Userid-Password Plugin SRVCON_PW_PLUGIN

Server Connection Authentication SRVCON_AUTH

Database manager authentication AUTHENTICATION

If you do not set the values for these parameters, the default plug-ins that the Db2 product supplies
are used for group retrieval, user ID/password management, and Kerberos authentication (if the
authenticationparameter is set to KERBEROS on the server). However, a default GSS-API plug-in is
not provided. Therefore, if you specify an authentication type of GSSPLUGIN for the authentication
parameter, you must also specify a GSS-API authentication plug-in for the srvcon_gssplugin_list
configuration parameter.

Chapter 8. Security plug-ins 245

Loading security plug-ins
All of the supported plug-ins that are identified by the database manager configuration parameters are
loaded when the database manager starts.

During connect or attach operations, the Db2 client loads a plug-in that is appropriate for the security
mechanism that the client negotiated with the server. A client application can cause multiple security
plug-ins to be concurrently loaded and used. This situation can occur, for example, in a threaded program
that has concurrent connections to different databases from different instances. In this scenario, the
client program makes an initial connection to server A that uses a GSS-API plug-in (G1). Server A sends
a list of supported plug-ins to the client, and the matching G1 plug-in is loaded on the client. The client
program then has another thread, which connects to server B that uses a GSS-API plug-in (G2). The client
is informed about G2, which is then loaded, and now both G1 and G2 plug-ins are simultaneously in use
on the client.

Actions other than connect or attach operations (such as updating the database manager configuration,
starting and stopping the database manager, or turning a Db2 trace on and off) also require an
authorization mechanism. For such actions, the Db2 client program loads a plug-in that is specified by
another database manager configuration parameter:

• If you set the authentication configuration parameter to GSSPLUGIN, the Db2 database manager
uses the plug-in specified by the local_gssplugin configuration parameter.

• If you set the authentication configuration parameter to KERBEROS, the Db2 database manager
uses the plug-in specified by the clnt_krb_plugin configuration parameter.

• Otherwise, the Db2 database manager uses the plug-in specified by the clnt_pw_plugin
configuration parameter.

Security plug-ins are supported for connections made to the database server over both IPv4 and IPv6
address protocols.

Developing security plug-ins
If you are developing a security authentication plug-in, you must implement the standard authentication
functions used by the Db2 database manager. The functionality that you must implement for the three
types of plug-ins:

Group retrieval plug-in

• Find and return the list of groups to which a user belongs

User ID/password authentication plug-in

• Identify the default security context (for a client plug-in only)
• Validate and, optionally, change a password
• Determine whether a particular string represents a valid user (for a server plug-in only)
• Modify the user ID or password that is provided on the client before it is sent to the server (for a

client plug-in only)
• Return the Db2 authorization ID that is associated with a particular user

GSS-API authentication plug-in

• Identify the default security context (for a client plug-in only)
• Implement the required GSS-API functions
• Generate initial credentials based on a user ID and password and, optionally, change a password

(for a client plug-in only)
• Create and accept security tickets
• Return the Db2 authorization ID that is associated with a particular GSS-API security context

You can pass a user ID of up to 255 characters for a connect statement that you issue through the CLP or
via a dynamic SQL statement.

246 IBM Db2 11.5: Database Security Guide

Important: The integrity of your Db2 database system installation can be compromised if security
plug-ins are not adequately coded, reviewed, and tested. The Db2 database product takes precautions
against many common types of failures, but it cannot guarantee complete integrity if user-written security
plug-ins are deployed.

Security plug-in library locations
After you acquire your security plug-ins (either by developing them yourself, or purchasing them from a
third party), copy them to specific locations on your database server.

Db2 clients looks for client-side user authentication plug-ins in the following directory:

• UNIX 32-bit: $DB2PATH/security32/plugin/client
• UNIX 64-bit: $DB2PATH/security64/plugin/client
• WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\client

Note: On Windows-based platforms, the subdirectories instance name and client are not created
automatically. The instance owner has to manually create them.

The Db2 database manager looks for server-side user authentication plug-ins in the following directory:

• UNIX 32-bit: $DB2PATH/security32/plugin/server
• UNIX 64-bit: $DB2PATH/security64/plugin/server
• WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\server

Note: On Windows-based platforms, the subdirectories instance name and server are not created
automatically. The instance owner has to manually create them.

The Db2 database manager looks for group plug-ins in the following directory:

• UNIX 32-bit: $DB2PATH/security32/plugin/group
• UNIX 64-bit: $DB2PATH/security64/plugin/group
• WINDOWS 32-bit and 64-bit: $DB2PATH\security\plugin\instance name\group

Note: On Windows-based platforms, the subdirectories instance name and group are not created
automatically. The instance owner has to manually create them.

Security plug-in naming conventions
Security plug-in libraries must have a platform-specific file name extension. Security plug-in libraries
written in C or C++ must have a platform-specific file name extension:

• Windows: .dll
• AIX: .a or .so, and if both extensions exist, .a extension is used.
• Linux and HP IPF: .so

Note: Users can also develop security plug-ins with the Db2 Universal JDBC Driver.

For example, assume you have a security plug-in library called MyPlugin. For each supported operating
system, the appropriate library file name follows:

• Windows 32-bit: MyPlugin.dll
• Windows 64-bit: MyPlugin64.dll
• AIX 32 or 64-bit: MyPlugin.a or MyPlugin.so
• SUN 32 or 64-bit, Linux 32 or 64 bit, HP 32 or 64 bit on IPF: MyPlugin.so

Note: The suffix "64" is only required on the library name for 64-bit Windows security plug-ins.

When you update the database manager configuration with the name of a security plug-in, use the full
name of the library without the "64" suffix and omit both the file extension and any qualified path portion

Chapter 8. Security plug-ins 247

of the name. Regardless of the operating system, a security plug-in library called MyPlugin would be
registered as follows:

UPDATE DBM CFG USING CLNT_PW_PLUGIN MyPlugin

The security plug-in name is case sensitive, and must exactly match the library name. Db2 database
systems use the value from the relevant database manager configuration parameter to assemble the
library path, and then uses the library path to load the security plug-in library.

To avoid security plug-in name conflicts, you should name the plug-in using the authentication method
used, and an identifying symbol of the firm that wrote the plug-in. For instance, if the company Foo,
Inc. wrote a plug-in implementing the authentication method FOOsomemethod, the plug-in could have a
name like FOOsomemethod.dll.

The maximum length of a plug-in name (not including the file extension and the "64" suffix) is limited to
32 bytes. There is no maximum number of plug-ins supported by the database server, but the maximum
length of the comma-separated list of plug-ins in the database manager configuration is 255 bytes. Two
defines located in the include file sqlenv.h identifies these two limits:

#define SQL_PLUGIN_NAME_SZ 32 /* plug-in name */
#define SQL_SRVCON_GSSPLUGIN_LIST_SZ 255 /* GSS API plug-in list */

The security plug-in library files must have the following file permissions:

• Owned by the instance owner.
• Readable by all users on the system.
• Executable by all users on the system.

Security plug-in support for two-part user IDs
The Db2 database manager on Windows supports the use of two-part user IDs, and the mapping of
two-part user IDs to two-part authorization IDs.

For example, consider a Windows operating system two-part user ID composed of a domain and user ID
such as: MEDWAY\pieter. In this example, MEDWAY is a domain and pieter is the user name. In Db2
database systems, you can specify whether this two-part user ID should be mapped to either a one-part
authorization ID or a two-part authorization ID.

The mapping of a two-part user ID to a two-part authorization ID is supported, but is not the default
behavior. By default, both one-part user IDs and two-part user IDs map to one-part authorization IDs. The
mapping of a two-part user ID to a two-part authorization ID is supported, but is not the default behavior.

The default mapping of a two-part user ID to a one-part user ID allows a user to connect to the database
using:

db2 connect to db user MEDWAY\pieter using pw

In this situation, if the default behavior is used, the user ID MEDWAY\pieter is resolved to the
authorization ID PIETER. If the support for mapping a two-part user ID to a two-part authorization ID is
enabled, the authorization ID would be MEDWAY\PIETER.

To enable Db2 to map two-part user IDs to two-part authorization IDs, Db2 supplies two sets of
authentication plug-ins:

• One set exclusively maps a one-part user ID to a one-part authorization ID and maps a two-part user-ID
to a one-part authorization ID.

• Another set maps both one-part user ID or two-part user ID to a two-part authorization ID.

If a user name in your work environment can be mapped to multiple accounts defined in different
locations (such as local account, domain account, and trusted domain accounts), you can specify the
plug-ins that enable two-part authorization ID mapping.

248 IBM Db2 11.5: Database Security Guide

It is important to note that a one-part authorization ID, such as, PIETER and a two-part authorization
ID that combines a domain and a user ID like MEDWAY\pieter are functionally distinct authorization
IDs. The set of privileges associated with one of these authorization IDs can be completely distinct from
the set of privileges associated with the other authorization ID. Care should be taken when working with
one-part and two-part authorization IDs.

The following table identifies the kinds of plug-ins supplied by Db2 database systems, and the plug-in
names for the specific authentication implementations.

Table 31. Db2 security plug-ins

Authentication type Name of one-part user ID plug-
in

Name of two-part user ID plug-
in

User ID/password (client) IBMOSauthclient IBMOSauthclientTwoPart

User ID/password (server) IBMOSauthserver IBMOSauthserverTwoPart

Kerberos IBMkrb5 IBMkrb5TwoPart

Note: On Windows 64-bit platforms, the characters "64" are appended to the plug-in names listed here.

When you specify an authentication type that requires a user ID/password or Kerberos plug-in, the
plug-ins that are listed in the "Name of one-part user ID plug-in" column in the previous table are used by
default.

To map a two-part user ID to a two-part authorization ID, you must specify that the two-part plug-in,
which is not the default plug-in, be used. Security plug-ins are specified at the instance level by setting
the security related database manager configuration parameters as follows:

For server authentication that maps two-part user IDs to two-part authorization IDs, you must set:

• srvcon_pw_plugin to IBMOSauthserverTwoPart
• clnt_pw_plugin to IBMOSauthclientTwoPart

For client authentication that maps two-part user IDs to two-part authorization IDs, you must set:

• srvcon_pw_plugin to IBMOSauthserverTwoPart
• clnt_pw_plugin to IBMOSauthclientTwoPart

For Kerberos authentication that maps two-part user IDs to two-part authorization IDs, you must set:

• srvcon_gssplugin_list to IBMOSkrb5TwoPart
• clnt_krb_plugin to IBMkrb5TwoPart

The security plug-in libraries accept two-part user IDs specified in a Microsoft Windows Security Account
Manager compatible format. For example, in the format: domain\user ID. Both the domain and user ID
information will be used by the Db2 authentication and authorization processes at connection time.

You should consider implementing the two-part plug-ins when creating new databases to avoid conflicts
with one-part authorization IDs in existing databases. New databases that use two-part authorization IDs
must be created in a separate instance from databases that use single-part authorization IDs.

Security plug-in API versioning
The Db2 database system supports version numbering of the security plug-in APIs. These version
numbers are integers starting with 1 for Db2 UDB, Version 8.2.

The version number that Db2 passes to the security plug-in APIs is the highest version number of the API
that Db2 can support, and corresponds to the version number of the structure. If the plug-in can support
a higher API version, it must return function pointers for the version that Db2 has requested. If the plug-in
only supports a lower version of the API, the plug-in should specify the function pointers for the lower
version. In either situation, the security plug-in APIs should return the version number for the API it is
supporting in the version field of the functions structure.

Chapter 8. Security plug-ins 249

For Db2, the version numbers of the security plug-ins will only change when necessary (for example,
when there are changes to the parameters of the APIs). Version numbers will not automatically change
with Db2 release numbers.

32-bit and 64-bit considerations for security plug-ins
In general, a 32-bit Db2 instance uses the 32-bit security plug-in and a 64-bit Db2 instance uses the
64-bit security plug-in. However, on a 64-bit instance, Db2 supports 32-bit applications, which require
the 32-bit plug-in library.

A database instance where both the 32-bit and the 64-bit applications can run is known as a hybrid
instance. If you have a hybrid instance and intend to run 32-bit applications, ensure that the required
32-bit security plug-ins are available in the 32-bit plug-in directory. For 64-bit Db2 instances on Linux and
UNIX operating systems, excluding Linux on IPF, the directories security32 and security64 appear.
For a 64-bit Db2 instance on Windows on x64 or IPF, both 32-bit and 64-bit security plug-ins are located
in the same directory, but 64-bit plug-in names have a suffix, "64".

If you want to upgrade from a 32-bit instance to a 64-bit instance, you should obtain versions of your
security plug-ins that are recompiled for 64-bit.

If you acquired your security plug-ins from a vendor that does not supply 64-bit plug-in libraries, you can
implement a 64-bit stub that executes a 32-bit application. In this situation, the security plug-in is an
external program rather than a library.

Security plug-in problem determination
Problems with security plug-ins are reported in two ways: through SQL errors and through the
administration notification log.

Following are the SQLCODE values related to security plug-ins:

• SQLCODE -1365 is returned when a plug-in error occurs during db2start or db2stop.
• SQLCODE -1366 is returned whenever there is a local authorization problem.
• SQLCODE -30082 is returned for all connection-related plug-in errors.

The administration notification logs are a good resource for debugging and administrating security plug-
ins. To see the an administration notification log file on UNIX, check sqllib/db2dump/instance
name.N.nfy. To see an administration notification log on Windows operating systems, use the Event
Viewer tool. The Event Viewer tool can be found by navigating from the Windows operating system
"Start" button to Settings -> Control Panel -> Administrative Tools -> Event Viewer.
Following are the administration notification log values related to security plug-ins:

• 13000 indicates that a call to a GSS-API security plug-in API failed with an error, and returned an
optional error message.

SQLT_ADMIN_GSS_API_ERROR (13000)
Plug-in "plug-in name" received error code "error code" from
GSS API "gss api name" with the error message "error message"

• 13001 indicates that a call to a Db2 security plug-in API failed with an error, and returned an optional
error message.

SQLT_ADMIN_PLUGIN_API_ERROR(13001)
Plug-in "plug-in name" received error code "error code" from Db2
security plug-in API "gss api name" with the error message
"error message"

• 13002 indicates that Db2 failed to unload a plug-in.

SQLT_ADMIN_PLUGIN_UNLOAD_ERROR (13002)
Unable to unload plug-in "plug-in name". No further action required.

• 13003 indicates a bad principal name.

250 IBM Db2 11.5: Database Security Guide

SQLT_ADMIN_INVALID_PRIN_NAME (13003)
The principal name "principal name" used for "plug-in name"
is invalid. Fix the principal name.

• 13004 indicates that the plug-in name is not valid. Path separators (On UNIX "/" and on Windows "\")
are not allowed in the plug-in name.

SQLT_ADMIN_INVALID_PLGN_NAME (13004)
The plug-in name "plug-in name" is invalid. Fix the plug-in name.

• 13005 indicates that the security plug-in failed to load. Ensure the plug-in is in the correct directory and
that the appropriate database manager configuration parameters are updated.

SQLT_ADMIN_PLUGIN_LOAD_ERROR (13005)
Unable to load plug-in "plug-in name". Verify the plug-in existence and
directory where it is located is correct.

• 13006 indicates that an unexpected error was encountered by a security plug-in. Gather all the
db2support information, if possible capture a db2trc, and then call IBM support for further
assistance.

SQLT_ADMIN_PLUGIN_UNEXP_ERROR (13006)
Plug-in encountered unexpected error. Contact IBM Support for further assistance.

Note: If you are using security plug-ins on a Windows 64-bit database server and are seeing a load error
for a security plug-in, see the topics about 32-bit and 64-bit considerations and security plug-in naming
conventions. The 64-bit plug-in library requires the suffix "64" on the library name, but the entry in the
security plug-in database manager configuration parameters should not indicate this suffix.

Enabling plug-ins

Deploying a group retrieval plug-in
To customize the Db2 security system's group retrieval behavior, you can develop your own group retrieval
plug-in or buy one from a third party.

Before you begin
After you acquire a group retrieval plug-in that is suitable for your database management system, you can
deploy it.

Procedure
• To deploy a group retrieval plug-in on the database server, perform the following steps:

a) Copy the group retrieval plug-in library into the server's group plug-in directory.
b) Update the database manager configuration parameter group_plugin with the name of the plug-

in.
• To deploy a group retrieval plug-in on database clients, perform the following steps:

a) Copy the group retrieval plug-in library in the client's group plug-in directory.
b) On the database client, update the database manager configuration parameter group_plugin

with the name of the plug-in.

Chapter 8. Security plug-ins 251

Deploying a user ID/password plug-in
To customize the Db2 security system's user ID/password authentication behavior, you can develop your
own user ID/password authentication plug-ins or buy one from a third party.

Before you begin
Depending on their intended usage, all user ID-password based authentication plug-ins must be placed
in either the client plug-in directory or the server plug-in directory. If a plug-in is placed in the client
plug-in directory, it will be used both for local authorization checking and for validating the client when it
attempts to connect with the server. If the plug-in is placed in the server plug-in directory, it will be used
for handling incoming connections to the server and for checking whether an authorization ID exists and
is valid whenever the GRANT statement is issued without specifying either the keyword USER or GROUP.
In most situations, user ID/password authentication requires only a server-side plug-in. It is possible,
though generally deemed less useful, to have only a client user ID/password plug-in. It is possible, though
quite unusual to require matching user ID/password plug-ins on both the client and the server.

Note: You must stop the Db2 server or any applications using the plug-ins before you deploy a new
version of an existing plug-in. Undefined behavior including traps will occur if a process is still using a
plug-in when a new version (with the same name) is copied over it. This restriction is not in effect when
you deploy a plugin for the first time or when the plug-in is not in use.

After you acquire user ID/password authentication plug-ins that are suitable for your database
management system, you can deploy them.

Procedure
• To deploy a user ID/password authentication plug-in on the database server, perform the following

steps on the database server:
a) Copy the user ID/password authentication plug-in library in the server plug-in directory.
b) Update the database manager configuration parameter srvcon_pw_plugin with the name of the

server plug-in.
This plug-in is used by the server when it is handling CONNECT and ATTACH requests.

c) Either:

– Set the database manager configuration parameter srvcon_auth to the CLIENT, SERVER, or
SERVER_ENCRYPT authentication type. Or:

– Set the database manager configuration parameter srvcon_auth to NOT_SPECIFIED and set
authentication to CLIENT, SERVER, or SERVER_ENCRYPT authentication type.

• To deploy a user ID/password authentication plug-in on database clients, perform the following steps
on each client:
a) Copy the user ID/password authentication plug-in library in the client plug-in directory.
b) Update the database manager configuration parameter clnt_pw_plugin with the name of the

client plug-in. This plug-in is loaded and called regardless of where the authentication is being
done, not only when the database configuration parameter, authentication is set to CLIENT.

• For local authorization on a client, server, or gateway using a user ID/password authentication plug-in,
perform the following steps on each client, server, or gateway:
a) Copy the user ID/password authentication plug-in library in the client plug-in directory on the

client, server, or gateway.
b) Update the database manager configuration parameter clnt_pw_plugin with the name of the

plug-in.
c) Set the authentication database manager configuration parameter to CLIENT, SERVER, or
SERVER_ENCRYPT.

252 IBM Db2 11.5: Database Security Guide

Deploying a GSS-API plug-in
To customize the Db2 security system's authentication behavior, you can develop your own authentication
plug-ins using the GSS-API, or buy one from a third party.

Before you begin
In the case of plug-in types other than Kerberos, you must have matching plug-in names on the client
and the server along with the same plug-in type. The plug-ins on the client and server need not be from
the same vendor, but they must generate and consume compatible GSS-API tokens. Any combination
of Kerberos plug-ins deployed on the client and the server is acceptable since Kerberos plug-ins are
standardized. However, different implementations of less standardized GSS-API mechanisms, such as
x.509 certificates, might only be partially compatible with Db2 database systems. Depending on their
intended usage, all GSS-API authentication plug-ins must be placed in either the client plug-in directory
or the server plug-in directory. If a plug-in is placed in the client plug-in directory, it will be used for local
authorization checking and when a client attempts to connect with the server. If the plug-in is placed
in the server plug-in directory, it will be used for handling incoming connections to the server and for
checking whether an authorization ID exists and is valid whenever the GRANT statement is issued without
specifying either the keyword USER or GROUP.

Note: You must stop the Db2 server or any applications using the plug-ins before you deploy a new
version of an existing plug-in. Undefined behavior including traps will occur if a process is still using a
plug-in when a new version (with the same name) is copied over it. This restriction is not in effect when
you deploy a plugin for the first time or when the plug-in is not in use.

After you acquire GSS-API authentication plug-ins that are suitable for your database management
system, you can deploy them.

Procedure
• To deploy a GSS-API authentication plug-in on the database server, perform the following steps on the

server:
a) Copy the GSS-API authentication plug-in library in the server plug-in directory.

You can copy numerous GSS-API plug-ins into this directory.
b) Update the database manager configuration parameter srvcon_gssplugin_list with an

ordered, comma-delimited list of the names of the plug-ins installed in the GSS-API plug-in
directory.

c) Either:

– Setting the database manager configuration parameter srvcon_auth to GSSPLUGIN or
GSS_SERVER_ENCRYPT is a way to enable the server to use GSSAPI PLUGIN authentication
method. Or:

– Setting the database manager configuration parameter srvcon_auth to NOT_SPECIFIED and
setting authentication to GSSPLUGIN or GSS_SERVER_ENCRYPT is a way to enable the
server to use GSSAPI PLUGIN authentication method.

• To deploy a GSS-API authentication plug-in on database clients, perform the following steps on each
client:
a) Copy the GSS-API authentication plug-in library in the client plug-in directory.

You can copy numerous GSS-API plug-ins into this directory. The client selects a GSS-API plug-in
for authentication during a CONNECT or ATTACH operation by picking the first GSS-API plug-in
contained in the server's plug-in list that is available on the client.

b) Optional: Catalog the databases that the client will access, indicating that the client will only accept
a GSS-API authentication plug-in as the authentication mechanism.
For example:

CATALOG DB testdb AT NODE testnode AUTHENTICATION GSSPLUGIN

Chapter 8. Security plug-ins 253

• For local authorization on a client, server, or gateway using a GSS-API authentication plug-in, perform
the following steps:
a) Copy the GSS-API authentication plug-in library in the client plug-in directory on the client, server,

or gateway.
b) Update the database manager configuration parameter local_gssplugin with the name of the

plug-in.
c) Set the authentication database manager configuration parameter to GSSPLUGIN, or
GSS_SERVER_ENCRYPT.

Deploying a Kerberos plug-in
To customize the Kerberos authentication behavior of the Db2 security system, you can develop your own
Kerberos authentication plug-ins or purchase one from a third party.

Before you begin
If you want to deploy a new version of an existing plug-in, you must stop the Db2 server and any
applications using the plug-in. Undefined behaviors, including traps, occur if a process is using a plug-in
when you deploy a new version of that plug-in (with the same name).

About this task
The Kerberos authentication plug-in can be deployed on a database server or a database client.

Procedure
• To deploy a Kerberos authentication plug-in on the database server, perform the following steps on the

server:
a) Copy the Kerberos authentication plug-in library into the server plug-in directory.
b) Update the setting of the srvcon_gssplugin_list database manager configuration parameter,

which is an ordered, comma-delimited list, to include the Kerberos server plug-in name. Only one
plug-in in this list can be a Kerberos plug-in. If there is no Kerberos plug-in in the list, an error
is returned. If there is more than one Kerberos plug-in in the list, an error is returned. If the
configuration parameter value is blank and the authentication configuration parameter is set to
KERBEROS or KRB_SVR_ENCRYPT, the default Db2 Kerberos plug-in, IBMkrb5, is used.

c) If necessary, set the value of the srvcon_auth database manager configuration parameter.
If you want to deploy a Kerberos plug-in, the acceptable values for the srvcon_auth database
manager configuration parameter are as follows:

– KERBEROS
– KRB_SERVER_ENCRYPT
– GSSPLUGIN
– GSS_SERVER_ENCRYPT
– Blank, but only if the authentication configuration parameter is set to one of the previous

values in this list.
• To deploy a Kerberos authentication plug-in on a database client, perform the following steps on the

client:
a) Copy the Kerberos authentication plug-in library into the client plug-in directory.
b) Set the clnt_krb_plugin database manager configuration parameter to the name of the

Kerberos plug-in. If the value of the clnt_krb_plugin configuration parameter is blank, the client
cannot use Kerberos authentication. On Windows, the default value is IBMkrb5. It only needs to
be altered for a customized Kerberos plugin. On UNIX, the value must be set since the default
value is blank. For local authorization on a client, server, or gateway using a Kerberos authentication
plug-in, perform the following steps:

254 IBM Db2 11.5: Database Security Guide

a. Copy the Kerberos authentication plug-in library in the client plug-in directory on the client,
server, or gateway.

b. Set the clnt_krb_plugin database manager configuration parameter to the name of the
plug-in.

c. Set the authentication database manager configuration parameter to KERBEROS or
KRB_SERVER_ENCRYPT.

c) Optional: Catalog the databases that the client will access, indicating that the client will use only a
Kerberos authentication plug-in. The following example catalogs the testdb database:

CATALOG DB testdb AT NODE testnode AUTHENTICATION KERBEROS
 TARGET PRINCIPAL service/host@REALM

LDAP-based authentication and group lookup support
The Db2 database manager and Db2 Connect support LDAP-based authentication and group lookup
functionality through the use of LDAP security plug-in modules and also through transparent LDAP

LDAP-based authentication support has been enhanced on the AIX operating system. Starting with Db2
V9.7 Fix Pack 1, transparent LDAP support has also been extended to Linux operating systems at the
same version levels that the Db2 product supports. LDAP now enables central management of user
authentication and group membership using transparent LDAP authentication. You can configure Db2
instances to authenticate users and acquire their groups through the operating system. The operating
system will, in turn, perform the authentication through an LDAP server. To enable transparent LDAP
authentication, set the DB2AUTH miscellaneous registry variable to OSAUTHDB. Supported operating
systems are:

• AIX
• Linux

Another option for implementing LDAP-based authentication is through the use of LDAP security plug-ins.
LDAP security plug-in modules allow the Db2 database manager to authenticate users defined in an LDAP
directory, removing the requirement that users and groups be defined to the operating system at the
same version levels that the Db2 product supports.

The LDAP security plugins support any RFC2307 compliant LDAP server.

Note: When you use the LDAP plug-in modules, all users associated with the database must be defined on
the LDAP server. This includes both the Db2 instance owner ID as well as the fenced user. (These users
are typically defined in the operating system, but must also be defined in LDAP.) Similarly, if you use the
LDAP group plug-in module, any groups required for authorization must be defined on the LDAP server.
This includes the SYSADM, SYSMAINT, SYSCTRL and SYSMON groups defined in the database manager
configuration.

Db2 security plug-in modules are available for server-side authentication, client-side authentication and
group lookup, described later. Depending on your specific environment, you may need to use one, two or
all three types of plug-in.

To use Db2 security plug-in modules, follow these steps:

1. Decide if you need server, client, or group plug-in modules, or a combination of these modules.
2. Configure the plug-in modules by setting values in the IBM LDAP security plug-in configuration file

(default name is IBMLDAPSecurity.ini). You will need to consult with your LDAP administrator to
determine appropriate values.

3. Enable the plug-in modules
4. Test connecting with various LDAP User IDs.

Chapter 8. Security plug-ins 255

Server authentication plug-in
The server authentication plug-in module performs server validation of user IDs and passwords supplied
by clients on CONNECT and ATTACH statements. It also provides a way to map LDAP user IDs to Db2
authorization IDs, if required. The server plug-in module is generally required if you want users to
authenticate to the Db2 database manager using their LDAP user ID and password.

Client authentication plug-in
The client authentication plug-in module is used where user ID and password validation occurs on the
client system; that is, where the Db2 server is configured with SRVCON_AUTH or AUTHENTICATION
settings of CLIENT. The client validates any user IDs and passwords supplied on CONNECT or ATTACH
statements, and sends the user ID to the Db2 server. Note that CLIENT authentication is difficult to
secure, and not generally recommended.

The client authentication plug-in module may also be required if the local operating system user IDs on
the database server are different from the Db2 authorization IDs associated with those users. You can use
the client-side plugin to map local operating system user IDs to Db2 authorization IDs before performing
authorization checks for local commands on the database server, such as for:db2start.

Group lookup plug-in
The group lookup plug-in module retrieves group membership information from the LDAP server for a
particular user. It is required if you want to use LDAP to store your group definitions. The most common
scenario is where:

• All users and groups are defined in the LDAP server
• Any users defined locally on the database server are also defined with the same user ID on the LDAP

server (including the instance owner and the fenced user)
• Password validation occurs on the Db2 server (that is, an AUTHENTICATION or SRVCON_AUTH value of

SERVER or SERVER_ENCRYPT is set in the server DBM config file).

It is generally sufficient to install only the server authentication plug-in module and the group lookup
plug-in module on the server. Db2 clients typically do not need to have the LDAP plug-in module installed.

It is possible to use only the LDAP group lookup plug-in module in combination with some other form
of authentication plug-in (such as Kerberos). In this case, the LDAP group lookup plug-in module will
be provided the Db2 authorization IDs associated with a user. The plug-in module searches the LDAP
directory for a user with a matching AUTHID_ATTRIBUTE, then retrieves the groups associated with that
user object.

Configuring transparent LDAP for authentication and group lookup (AIX)
Starting in Db2 V9.7, transparent LDAP-based authentication and group look up are supported on the AIX
operating system. Some configuration steps are required before this support is enabled.

Before you begin
These steps assume that the LDAP server is RFC 2307 compliant and configured to store user and group
information.

Procedure
1. To configure your AIX client system for LDAP, perform the following steps:

a) Log in as a user with root authority.
b) Ensure that the LDAP client file set has been installed on your AIX system.

256 IBM Db2 11.5: Database Security Guide

AIX works with all versions of LDAP clients: ITDS V6.1 which ships with AIX V6.1, and ITDS V6.2
which ships with the AIX expansion pack. The following shows ITDS V5.2 file sets installed on and
AIX system:

$ lslpp -l "ldap*"
 Fileset Level State Description
 --
Path: /usr/lib/objrepos
 ldap.client.adt 5.2.0.0 COMMITTED Directory Client SDK
 ldap.client.rte 5.2.0.0 COMMITTED Directory Client Runtime (No
 SSL)
 ldap.html.en_US.config 5.2.0.0 COMMITTED Directory Install/Config
 Gd-U.S. English
 ldap.html.en_US.man 5.2.0.0 COMMITTED Directory Man Pages - U.S.
 English
 ldap.msg.en_US 5.2.0.0 COMMITTED Directory Messages - U.S.
 English

Path: /etc/objrepos
 ldap.client.rte 5.2.0.0 COMMITTED Directory Client Runtime (No
 SSL)

c) Using the mksecldap command with the -c option, configure the client.
For more information about the mksecldap command and how to use it to configure the client, see
Setting up an IBM Security Directory Server

d) Update the default stanza in the /etc/security/user file.
The SYSTEM attribute in the /etc/security/user file is used to specify the authentication
method used for user management. To enable LDAP authentication, set the SYSTEM attribute in the
default stanza to include LDAP in addition to local user authentication. The default stanza must be
modified so that LDAP is searched for users that are not defined locally. For example:

chsec -f /etc/security/user -s default -a "SYSTEM=files or LDAP"

Db2 supports the following SYSTEM attribute values:

• LDAP
• KRB5LDAP
• KRB5ALDAP
• files
• KRB5files
• KRB5Afiles

Configurations that use other SYSTEM attribute values might work, but are not supported.

For more information on the stanza SYSTEM attribute, see User authentication.
For more details, refer to the redbook titled, Integrating AIX into Heterogeneous LDAP Environments,
at: http://www.redbooks.ibm.com/abstracts/sg247165.html

2. To configure transparent LDAP authentication on your Db2 instance:
a) Set the DB2AUTH miscellaneous registry variable to OSAUTHDB. As a user with SYSADM authority

run db2set DB2AUTH=OSAUTHDB.
b) Using the UPDATE DBM CFG command, set the authentication on the database server instance to

any one of the following:

• SERVER
• SERVER_ENCRYPT

c) Ensure that you are using the default Client Userid-Password Plugin (clnt_pw_plugin),
Server Userid-Password Plugin (srvcon_pw_plugin) and Group Plugin
(group_plugin).

d) Restart the Db2 instance.

Chapter 8. Security plug-ins 257

http://www.ibm.com/support/knowledgecenter/ssw_aix_72/com.ibm.aix.security/setup_ldap_sec_info_server.htm
http://www.ibm.com/support/knowledgecenter/ssw_aix_72/com.ibm.aix.security/user_authentication.htm
http://www.redbooks.ibm.com/abstracts/sg247165.html

Considerations when using various authentication methods
Transparent LDAP-based authentication and group look up support on AIX extends support to Kerberos
authentication.

Additional work was done on AIX for using Kerberos authentication with Transparent LDAP. The following
is what needs to be included in /usr/lib/security/methods.cfg and /etc/security/users
when there is a need to manage accounts in different locations and use different authentication methods,
such as Kerberos.

In /usr/lib/security/methods.cfg you need to have the following to have files, LDAP and Kerberos
authentication.

Note: KRB5A is for using Microsoft Active Directory as the Keberos Key Distribution Center (KDC).

For LDAP:

 program = /usr/lib/security/LDAP
 program_64 =/usr/lib/security/LDAP64

For KRB5A:

 program = /usr/lib/security/KRB5A
 program_64 = /usr/lib/security/KRB5A_64
 options = tgt_verify=no,authonly,is_kadmind_compat=no

For KRB5:

 program = /usr/lib/security/KRB5
 program_64 = /usr/lib/security/KRB5_64
 options = kadmind=no

For KRB5Afiles:

 options = db=BUILTIN,auth=KRB5A

For KRB5files:

 options = db=BUILTIN,auth=KRB5

For KRB5ALDAP:

 options = db=LDAP,auth=KRB5A

For KRB5LDAP:

 options = db=LDAP,auth=KRB5

Examples

The following example shows four accounts managed differently. Each uses different authentication
methods.

If frank's account is stored on file and is authenticated using files, then this is what frank's stanza would
look like in /etc/security/users.

frank:
 SYSTEM = files
 registry = files

If karen's account is stored on file and is authenticated using Kerberos, then this is what karen's stanza
would look like in /etc/security/users.

karen:
 SYSTEM = KRB5files
 registry = KRB5files

258 IBM Db2 11.5: Database Security Guide

If luke's account is stored on LDAP and is authenticated using Kerberos, then this is what luke's stanza
would look like in /etc/security/users.

luke:
 SYSTEM = KRB5LDAP
 registry = KRB5LDAP

If lucy's account is stored on LDAP and is authenticated using LDAP, then this is what lucy's stanza would
look like in /etc/security/users.

lucy:
 SYSTEM = LDAP
 registry = LDAP

To determine if a user is defined on LDAP you can use the following command to query a user.

$ lsuser -R LDAP lucy
lucy id=1234 pgrp=staff groups=staff home=/home/lucy shell=/bin/ksh registry=LDAP

Configuring transparent LDAP for authentication and group lookup (Linux)
To ensure that the Db2 database server transparently uses LDAP-based authentication on the Linux
operating system, use Pluggable Authentication Modules (PAM). Your LDAP server should already be
configured to store user and group information.

Before you begin
Before attempting to configure transparent LDAP on your system , ensure that the following conditions
exist:

• An RFC 2307 compliant LDAP server is set up on your system.
• The required client software packages and dependencies are installed on your system.

– For RHEL 7 systems, run the following command:

yum install openldap openldap-clients sssd sssd-client authconfig

– For RHEL 8 systems, run the following command:

yum install openldap openldap-clients sssd sssd-client authselect

– For SUSE Linux Enterprise Server (SLES) 12 or 15 systems, run the following command:

zypper install sssd-ldap sssd

– For Ubuntu systems, run the following command:

apt install sssd-ldap ldap-utils

About this task
The procedure configures the System Security Services Daemon (SSSD) and its associated PAM module
(pam_sss) to provide authentication services to the operating system and Db2. Using SSSD is the
recommended configuration.

Note: SSSD requires TLS support to be enabled at the LDAP server.

Configurations that use pam_ldap, pam_unix, pam_unix2, and pam_krb5 for authentication are
also supported by Db2. Configurations using other PAM modules might work, but are unsupported.
If the desired authentication method is already configured on the system, go to Db2 Authentication
Configuration.

To successfully configure transparent LDAP, the following details are needed:

Chapter 8. Security plug-ins 259

• Hostname of the LDAP server
• Port of the LDAP server (default for full time TLS is 636, if StartTLS is supported, the default is 389)
• LDAP search base DN
• The root certificate, or the URL to the root certificate, for the LDAP server.
• If authentication is required, the Bind DN and password

For the purposes of this procedure, the following details are used for the LDAP configuration:

Item Value

Hostname ldap.example.com

Port 636 (Default for LDAP over TLS)

TLS enabled Yes

TLS certificate URL http://example.com/cacombined.pem

LDAP search base DN ou=Anytown, o=example.com

Authentication Not required

Procedure
1. Enable system LDAP authentication through SSSD. If the desired authentication method has already

been configured on the system, go to step 2.
2. Configure Db2 to use Pluggable Authentication Modules (PAM), also known as Transparent LDAP, to

authenticate with the operating system.
3. Optional: Configure any additional authentication options.

System authentication configuration
You enable system LDAP authentication through the System Security Services Daemon (SSSD). The
correct procedure for configuring system authentication depends on your operating system.

If the desired authentication method is already configured on the system, refer to Db2 authentication
configuration.

Important: All the following commands must be run as root.

RHEL 6 and RHEL 7 configuration using authconfig
1. Back up the current authentication configuration for your system:

authconfig --savebackup=config_backup

Your backup is saved to the following folder: /var/lib/authconfig/backup-config_backup.
2. Configure your system using the authconfig command:

authconfig --enableshadow --passalgo=sha512 --enablesssd --enablesssdauth --enableldap --
enableldapauth --enableldaptls --ldapserver="ldap.example.com"
--ldaploadcacert="http://example.com/cacombined.pem" --ldapbasedn="ou=Anytown,o=example.com"
--update

where
--enableshadow

Enable authentication of local users.
--passalgo=sha512

Use SHA512 hashes for passwords of local users.
--enablesssd --enablesssdauth

Enable authentication using System Security Services Daemon (SSSD).

260 IBM Db2 11.5: Database Security Guide

http://example.com/cacombined.pem

--enableldap --enableldapauth
Enable LDAP as an authentication provider in SSSD.

--ldapserver=
Hostname of the LDAP server.

--enableldaptls
Enable secure LDAP (LDAP over TLS).

--ldaploadcacert=
Save the CA certificate for the LDAP server from the given URL.

--ldapbasedn=
LDAP search base distinguished name (DN).

--update
Commit the authconfig changes to the system

3. If the CA certificate is present in a file instead of being available at a given URL, remove the --
ldaploadcacert option of the authconfig command. Copy the certificate to the directory specified
by the ldap_tls_cacertdir parameter under the [domain/default] section of /etc/sssd/
sssd.conf. This is usually /etc/openldap/cacerts.

4. Once the necessary certificates have been added to /etc/openldap/cacerts, rename the files in
the cacerts directory so that the SSSD can properly recognize the certificate:

cacertdir_rehash /etc/openldap/cacerts

5. Restart and enable the SSSD service for the authentication changes to take effect:

systemctl restart sssd
systemctl enable sssd

Note: For more information, refer to the following RHEL documentation.

RHEL 8 configuration using authselect
1. Enable the SSSD authentication profile:

authselect select sssd

2. Add the LDAP server URL and the base search DN to the /etc/openldap/ldap.conf file:

URI ldap://ldap.example.com/
BASE ou=Anytown,o=example.com

3. If the directory /etc/openldap/cacerts does not exist, create the directory.
4. Copy the certificate to /etc/openldap/cacerts. If the certificate is available from a URL, you can

download it using the following command:

wget <certificate URL> -P /etc/openldap/cacerts

5. Examine the downloaded file and determine if there are multiple certificates present in the file.

If there is only one certificate present in the file, run the following commands to configure the
certificate for use:

a. Rename the files in the cacerts directory, so that the SSSD properly recognizes the certificates:

openssl rehash /etc/openldap/cacerts

b. Add the following line to the /etc/openldap/ldap.conf file:

TLS_CACERTDIR /etc/openldap/cacerts

Chapter 8. Security plug-ins 261

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/authconfig-install

If multiple certificates are present in the PEM file containing the CA certificate, add the following line to
the /etc/openldap/ldap.conf file, using TLS_CACERT in place of TLS_CACERTDIR:

TLS_CACERT /etc/openldap/cacerts/<cacombined.pem>

where <cacombined.pem> is the file name of the certificate.
6. In the /etc/sssd directory, create the file sssd.conf with the following contents:

[domain/default]

autofs_provider = ldap
cache_credentials = True
ldap_search_base = ou=Anytown,o=example.com
id_provider = ldap
auth_provider = ldap
chpass_provider = ldap
ldap_uri = ldap://ldap.example.com/
ldap_id_use_start_tls = True
ldap_tls_cacertdir = /etc/openldap/cacerts
[sssd]
services = nss, pam, autofs

domains = default
[nss]
homedir_substring = /home

Update the ldap_search_base parameter with the base DN, and update ldap_uri with the URL to
the LDAP server.

If multiple certificates are present in the PEM file used in step 5, remove the ldap_tls_cacertdir
parameter, and add the following in its place:

ldap_tls_cacert = /etc/openldap/cacerts/cacombined.pem

7. Change the permissions on the /etc/sssd/sssd.conf file:

chmod 600 /etc/sssd/sssd.conf

8. Restart and enable SSSD:

systemctl restart sssd
systemctl enable sssd

SLES 12 and SLES 15 configurations
1. Add SSSD to the system PAM configuration:

pam-config --add --sss

2. Add the LDAP server URL and the base search DN to the /etc/openldap/ldap.conf file:

URI ldap://ldap.example.com/
BASE ou=Anytown,o=example.com

3. If it does not exist, create the directory /etc/openldap/cacerts.
4. Copy the CA certificate file for the LDAP server to /etc/openldap/cacerts.
5. Set up the directory so that the SSSD can find the appropriate certificates:

c_rehash /etc/openldap/cacerts

6. Add the following line to the /etc/openldap/ldap.conf file:

TLS_CACERTDIR /etc/openldap/cacerts

7. The contents of the /etc/nsswitch.conf file must be modified to instruct the system to look for
user information using SSSD.

262 IBM Db2 11.5: Database Security Guide

Add the sss option to the passwd and group properties to enable authentication of both local and
LDAP users. For example:

passwd: files sss
group: files sss

8. Add the following contents to the beginning of the /etc/sssd/sssd.conf file:

[domain/default]
cache_credentials = True
ldap_search_base = ou=Anytown,o=example.com
id_provider = ldap
auth_provider = ldap
chpass_provider = ldap
ldap_uri = ldap://ldap.example.com/
ldap_id_use_start_tls = True
ldap_tls_cacertdir = /etc/openldap/cacerts

Update the ldap_search_base parameter with the base DN, and update ldap_uri with the URL to
the LDAP server.

9. Add the following line under the [sssd] section of /etc/sssd/sssd.conf:

domains = default

10. Enable and restart SSSD for the changes to take effect:

chkconfig sssd on
systemctl restart sssd

Ubuntu 18.04 and Ubuntu 20.04 configurations
1. Add SSSD to the system PAM configuration:

pam-auth-update --enable sss

2. Copy the CA certificate file for the LDAP server to /usr/local/share/ca-certificates. If the
certificate is available from a URL, you can download it using the following command:

wget <certificate URL> -P /usr/local/share/ca-certificates

3. If the CA certificate does not have a .crt extension, rename the file. For example:

mv /usr/local/share/ca-certificates/cacombined.pem /usr/local/share/ca-certificates/
cacombined.crt

4. Instruct the system to trust the CA certificate:

update-ca-certificates

5. You can configure your system to use the certificate only for LDAP, if you do not wish to have the
system trust the CA certificate.

Edit the /etc/ldap/ldap.conf file and update the TLS_CACERT parameter to point to the CA
certificate present in /usr/local/share/ca-certificates. For example:

TLS_CACERT /usr/local/share/ca-certificates/cacombined.crt

6. Create the /etc/sssd/sssd.conf file with the following contents:

[sssd]
services = nss, pam
domains = default

[domain/default]
id_provider = ldap
auth_provider = ldap
chpass_provider = ldap
cache_credentials = True

Chapter 8. Security plug-ins 263

ldap_uri = ldap://ldap.example.com/
ldap_search_base = ou=Anytown,o=example.com

ldap_id_use_start_tls = True

Update the ldap_search_base parameter with the base DN, and update ldap_uri with the URL to
the LDAP server.

7. Change the permissions on the /etc/sssd/sssd.conf file by running:

chmod 600 /etc/sssd/sssd.conf

8. Restart and enable SSSD by running:

systemctl restart sssd.service
systemctl enable sssd.service

Authentication Configuration Verification
If LDAP is configured successfully, LDAP users should be able to log in to the system and, using the id
command, should be able to resolve the userid and groups of an LDAP user. For example:

$ id db2inst1
uid=1007(db2inst1) gid=1007(db2inst1) groups=1007(db2inst1),7777(ldapgroup)

Db2 authentication configuration
These are the authentication configurations for Db2 based on your operating system.

The Db2 PAM configuration file must be created first before you can configure the authentication. The
next steps are different based on your operating system.

Red Hat configuration
The OS configuration steps must be run as root.

1. For Db2 to mirror the system authentication configuration, create the configuration file /etc/
pam.d/db2 (the Db2 PAM configuration file) with the following content:

 #%PAM-1.0
 auth include system-auth
 account include system-auth
 password include system-auth
 session include system-auth

The Db2 PAM configuration file should be owned and writable only by root.

SLES configuration
The OS configuration steps must be run as root.

1. For Db2 to mirror the system authentication configuration, create the configuration file /etc/
pam.d/db2 (the Db2 PAM configuration file) with the following content:

 #%PAM-1.0
 auth include common-auth
 account include common-account
 password include common-password
 session include common-session

The Db2 PAM configuration file should be owned and writable only by root.

Ubuntu Configuration
The OS configuration steps must be run as root.

264 IBM Db2 11.5: Database Security Guide

1. For Db2 to mirror the system authentication configuration, create the configuration file /etc/
pam.d/db2 (the Db2 PAM configuration file) with the following content:

 @include common-auth
 @include common-account
 @include common-password
 @include common-session

The Db2 PAM configuration file should be owned and writable only by root.

Db2 configuration
Once the PAM configuration is completed, users need to configure Db2 to enable authentication through
the operating system. The Db2 commands must be run as a user with SYSADM authority.

1. Set the DB2AUTH miscellaneous registry variable to OSAUTHDB by running:

db2set DB2AUTH=OSAUTHDB

2. Set the authentication on the server to any one of the following:

SERVER
SERVER_ENCRYPT

3. Ensure that you are using the default Client Userid-Password Plugin (clnt_pw_plugin), Server
Userid-Password Plugin (srvcon_pw_plugin) and Group Plugin (group_plugin).

4. Restart the Db2 instance.

Additional configuration options
These are additional configuration options to keep in mind as users configure LDAP-based authentication.

Making customizations to the PAM configuration of Db2
To make customizations to the Db2 PAM configuration that do not apply to the rest of the system, make a
copy of the system PAM configuration to create the Db2 PAM configuration file.

• On RHEL systems run:

cp /etc/pam.d/system-auth /etc/pam.d/db2

• On SLES and Ubuntu systems run:

cat /etc/pam.d/common-auth /etc/pam.d/common-account /etc/pam.d/common-password /etc/pam.d/
common-session > /etc/pam.d/db2

If this step is done, the Db2 authentication configuration will not match the system authentication
configuration and future changes made to the system authentication configuration may not be reflected in
Db2.

Enforce password history and password quality requirements during a password
change
Because the Db2 check password daemons run as the root user, some PAM modules such as
pam_pwhistory and pam_pwquality will not enforce password requirements.

To ensure password quality and history requirements are enforced for a password change, the
enforce_for_root option must be added to the module's entry in the PAM configuration file.

Chapter 8. Security plug-ins 265

Alternate group base DN
If the base DN for group searches is different than the default search base, add the following line to the
[domain/default] section of the /etc/sssd/sssd.conf file:

ldap_group_search_base = <Group base DN>

LDAP authenticated bind
If your LDAP server requires authentication (anonymous binds are not allowed), add the following lines
to the [domain/default] section of the /etc/sssd/sssd.conf file after running the authconfig or
authselect commands:

ldap_default_bind_dn=<bind DN>
ldap_default_authtok=<password>

Then, restart the SSSD for the changes to take effect by running:

systemctl restart sssd

Disallow interactive login from all LDAP users by changing the default shell
Add the following parameter under the [domain/default] section of the /etc/sssd/sssd.conf file.
This will override the shell of all users authenticated through SSSD and will prevent an interactive login
but will allow users to authenticate with Db2.

• For RHEL and SLES: override_shell = /sbin/nologin
• For Ubuntu: override_shell = /usr/sbin/nologin

Control who can login to the server using the pam_access module
More granular control over who is allowed access to the system can be provided by the pam_access
module. It can be enabled using the following commands based on your operating system:

• RHEL 7: authconfig --enablepamaccess --update
• RHEL 8: authselect select sssd with with-pamaccess
• SLES: pam-config --add --access
• Ubuntu: Add the following line to the beginning of /etc/pam.d/common-account: account
required pam_access.so

Then modify the /etc/security/access.conf file and add the following lines:

+ : root wheel : ALL
+ : db2inst1 : ALL
-: ALL : ALL

This configuration will allow root, members of the wheel group, and the Db2 instance owner (db2inst1)
access to the system.

To allow other users to log in to Db2 only, take a backup of the Db2 PAM configuration file and run the
following command based on your operating system:

• For RHEL:

 grep -v pam_access.so /etc/pam.d/system-auth > /etc/pam.d/db2

• For SLES and Ubuntu:

grep -v pam_access.so /etc/pam.d/common-auth /etc/pam.d/common-account /etc/pam.d/common-
password /etc/pam.d/common-session > /etc/pam.d/db2

266 IBM Db2 11.5: Database Security Guide

This will make a copy of the system authentication configuration, except for lines containing the
pam_access.so module. This will allow any user to connect to Db2, but they will be denied access
to other services in the operating system.

Note: The Db2 authentication configuration will no longer match the system authentication configuration.

Configuring the LDAP plug-in modules
To configure the LDAP plug-in modules, you need to update your IBM LDAP security plug-in configuration
file to suit your environment. In most cases, you will need to consult with your LDAP administrator to
determine the appropriate configuration values.

Important: Use of versions 1.0 and 1.1 of the Transport Layer Security (TLS) protocol is deprecated. We
recommend to use TLS version 1.2.

Note: If enabling this feature on AIX, review the following for performance considerations.

The default name and location for the IBM LDAP security plug-in configuration file is:

• On UNIX: INSTHOME/sqllib/cfg/IBMLDAPSecurity.ini
• On Windows: %DB2PATH%\cfg\IBMLDAPSecurity.ini

Optionally, you can specify the location of this file using the DB2LDAPSecurityConfig environment
variable. On Windows, you should set DB2LDAPSecurityConfig in the global system environment, to
ensure it is picked up by the Db2 service.

The following tables provide information to help you determine appropriate configuration values.

Table 32. Server-related values

Parameter Description

LDAP_HOST The name of your LDAP server(s).
This is a space separated list of LDAP server host names
or IP addresses, with an optional port number for each one.
For example: host1[:port] [host2:[port2] ...]
The default port number is 389, or 636 if TLS is enabled.

ENABLE_SSL To enable TLS support, set ENABLE_SSL to TRUE. This is an optional
parameter; it defaults to
FALSE (no TLS support).

SSL_KEYFILE The path for the TLS keyring.
A keyfile is only required if your LDAP server is using a
certificate that is not automatically trusted by your GSKit
installation.
For example:SSL_KEYFILE = /home/db2inst1/
IBMLDAPSecurity.kdb

SSL_PW The TLS keyring password. For example: SSL_PW = keyfile-
password

SECURITY_PROTOCOL To enable TLS 1.2 support, set SECURITY_PROTOCOL to TLSV12.
To enable TLS 1.0, 1.1, and 1.2 support, set SECURITY_PROTOCOL to
ALL.
By default, SECURITY_PROTOCOL is not set. This setting means TLS 1.2
is not supported.

Chapter 8. Security plug-ins 267

https://www.ibm.com/docs/en/db2/11.5?topic=servers-aix

Table 32. Server-related values (continued)

Parameter Description

SSL_EXTN_SIGALG SSL_EXTN_SIGALG specifies a list of signature algorithms that will be
supported for a TLS secured LDAP connection.
When using TLS 1.2, a value for SSL_EXTN_SIGALG should be specified,
otherwise the server may assume only RSA+SHA1 is supported. This
is a problem with some LDAP servers because they require that all
certificates be signed with SHA2 or better.
SSL_EXTN_SIGALG can be set to one of the following values (multiple
values can be specified, separated by commas):

GSK_TLS_SIGALG_RSA_WITH_SHA224
GSK_TLS_SIGALG_RSA_WITH_SHA256
GSK_TLS_SIGALG_RSA_WITH_SHA384
GSK_TLS_SIGALG_RSA_WITH_SHA512
GSK_TLS_SIGALG_ECDSA_WITH_SHA224
GSK_TLS_SIGALG_ECDSA_WITH_SHA256
GSK_TLS_SIGALG_ECDSA_WITH_SHA384
GSK_TLS_SIGALG_ECDSA_WITH_SHA512

SASL_BIND The SASL_BIND keyword is available starting in version 11.5.6.

When SASL_BIND is set to true in the IBMLDAPSecurity.ini file,
the LDAP plugin will add a PasswordPolicyRequest control when
authenticating users. This indicates to the LDAP server that the LDAP
plugin is requesting data about the state of a user's password, and that
the server should respond with a passwordPolicyResponse.

If a passwordPolicyResponse control is included in the response
from the LDAP server, the LDAP plugin will examine the
passwordPolicyResponse to determine the status of the user's
password. If the passwordPolicyResponse indicates that the user's
password is expired, or must change before the next logon, authentication
will be denied.

Table 33. User-related values

Parameter Description

USER_
 OBJECTCLASS

The LDAP object class used for users.
Generally, set USER_OBJECTCLASS to inetOrgPerson (the user
for Microsoft Active Directory)
For example: USER_OBJECTCLASS = inetOrgPerson

USER_BASEDN The LDAP base DN to use when searching for users.
If not specified, user searches start at the root of the
LDAP directory. Some LDAP servers require that you
specify a value for this parameter.
For example: USER_BASEDN = o=ibm

268 IBM Db2 11.5: Database Security Guide

Table 33. User-related values (continued)

Parameter Description

USERID_
 ATTRIBUTE

The LDAP user attribute that represents the user ID.
The USERID_ATTRIBUTE attribute is combined with the
USER_OBJECTCLASS and USER_BASEDN (if specified)
to construct an LDAP search filter when a user issues a
Db2 CONNECT statement with an unqualified user ID.
For example, if USERID_ATTRIBUTE = uid, then issuing
this statement:
 db2 connect to MYDB user bob using bobpass
results in the following search filter:
&(objectClass=inetOrgPerson)(uid=bob)

AUTHID_
 ATTRIBUTE

The LDAP user attribute that represents the Db2 authorization ID.
Usually this is the same as the USERID_ATTRIBUTE.
For example: AUTHID_ATTRIBUTE = uid

Table 34. Group-related values

Parameter Description

GROUP_
 OBJECTCLASS

The LDAP object class used for groups.
Generally this is groupOfNames or groupOfUniqueNames
(for Microsoft Active Directory, it is group)
For example: GROUP_OBJECTCLASS = groupOfNames

GROUP_BASEDN The LDAP base DN to use when searching for groups
If not specified, group searches start at the root of the
LDAP directory. Some LDAP servers require that you
specify a value for this parameter.
For example: GROUP_BASEDN = o=ibm

GROUPNAME_
 ATTRIBUTE

The LDAP group attribute that represents the name of the
group.
For example: GROUPNAME_ATTRIBUTE = cn

GROUP_LOOKUP_
 METHOD

Determines the method used to find the group memberships for a user.
Possible values are:

• SEARCH_BY_DN Indicates to search for groups that list the user as
a member. Membership is indicated by the group attribute defined as
GROUP_LOOKUP_ATTRIBUTE (typically, member or uniqueMember).

• USER_ATTRIBUTE In this case, a user's groups are listed as attributes of
the user object itself. This setting indicates to search for the user attribute
defined as GROUP_LOOKUP_ATTRIBUTE to get the user's groups (typically
memberOf for Microsoft Active Directory or ibm-allGroups for IBM Tivoli®
Directory Server).

For example:GROUP_LOOKUP_METHOD = SEARCH_BY_DN
GROUP_LOOKUP_METHOD = USER_ATTRIBUTE

Chapter 8. Security plug-ins 269

Table 34. Group-related values (continued)

Parameter Description

GROUP_LOOKUP_
 ATTRIBUTE

Name of the attribute used to determine group membership, as described for
GROUP_LOOKUP_METHOD.

For example:
GROUP_LOOKUP_ATTRIBUTE = member
GROUP_LOOKUP_ATTRIBUTE = ibm-allGroups

NESTED_GROUPS If NESTED_GROUPS is TRUE, the Db2 database manager recursively searches
for group membership by attempting to look up the group memberships for
every group that is found.

Cycles (such as A belongs to B, and B belongs to A) are
handled correctly.
This parameter is optional, and defaults to FALSE.

Table 35. Miscellaneous values

Parameter Description

SEARCH_DN,
SEARCH_PW

If your LDAP server does not support anonymous access, or if anonymous access is
not sufficient when searching for users or groups, then you can optionally define a
DN and password that will be used to perform searches.

For example:
SEARCH_DN = cn=root
SEARCH_PW = rootpassword

DEBUG Set DEBUG to TRUE to write extra information to the db2diag log files to aid in
debugging LDAP related issues.

Most of the additional information is logged at
DIAGLEVEL 4 (INFO).
DEBUG defaults to false.

Enabling the LDAP plug-in modules
Compiled binary LDAP plug-in modules are found in your Db2 instance directory.

The following tables show where the LDAP plug-in modules are located on your Db2 instance.

Table 36. For 64-bit UNIX and Linux systems

Plug-in module
type Location

server /sqllib/security64/plugin/IBM/server

client /sqllib/security64/plugin/IBM/client

group /sqllib/security64/plugin/IBM/group

Table 37. For 32-bit UNIX and Linux systems

Plug-in module
type Location

server /sqllib/security32/plugin/IBM/server

270 IBM Db2 11.5: Database Security Guide

Table 37. For 32-bit UNIX and Linux systems (continued)

Plug-in module
type Location

client /sqllib/security32/plugin/IBM/client

group /sqllib/security32/plugin/IBM/group

Table 38. For Windows systems (both 64-bit and 32-bit)

Plug-in module
type Location

server %DB2PATH%\security\plugin\IBM\instance-name\server

client %DB2PATH%\security\plugin\IBM\instance-name\client

group %DB2PATH%\security\plugin\IBM\instance-name\group

Note: 64-bit Windows plug-in modules include the digits 64 in the file name.

Use the Db2 command line processor to update the database manager configuration to enable the plug-in
modules that you require:

• For the server plug-in module:

UPDATE DBM CFG USING SRVCON_PW_PLUGIN IBMLDAPauthserver

• For the client plug-in module:

UPDATE DBM CFG USING CLNT_PW_PLUGIN IBMLDAPauthclient

• For the group plug-in module:

UPDATE DBM CFG USING GROUP_PLUGIN IBMLDAPgroups

Terminate all running Db2 command line processor backend processes, by using the db2 terminate
command, and then stop and restart the instance by using the db2stop and db2start commands.

Connecting with an LDAP user ID
After the LDAP security plug-ins have been configured in a Db2 instance, a user can connect to the
databases using a variety of different user strings.

The location of an object within an LDAP directory is defined by its distinguished name (DN). A DN is
typically a multi-part name that reflects some sort of hierarchy, for example:

cn=John Smith, ou=Sales, o=WidgetCorp

A user's user ID is defined by an attribute associated with the user object (typically the uid
attribute). It may be a simple string (such as jsmith), or look like an email address (such as
jsmith@sales.widgetcorp.com), that reflects part of the organizational hierarchy.

A user's Db2 authorization ID is the name associated with that user within the Db2 database.

In the past, users were typically defined in the server's host operating system, and the user ID and
authorization ID were the same (though the authorization ID is usually in uppercase). The Db2 LDAP
plug-in modules give you the ability to associate different attributes of the LDAP user object with the
user ID and the authorization ID. In most cases, the user ID and authorization ID can be the same string,
and you can use the same attribute name for both the USERID_ATTRIBUTE and the AUTHID_ATTRIBUTE.
However, if in your environment the user ID attribute typically contains extra information that you do
not want to carry over to the authorization ID, you can configure a different AUTHID_ATTRIBUTE in the

Chapter 8. Security plug-ins 271

plug-in initialization file. The value of the AUTHID_ATTRIBUTE attribute is retrieved from the server and
used as the internal Db2 representation of the user.

For example, if your LDAP user IDs look like email addresses (such as jsmith@sales.widgetcorp.com), but
you would rather use just the user portion (jsmith) as the Db2 authorization ID, then you can:

1. Associate a new attribute containing the shorter name with all user objects on your LDAP server
2. Configure the AUTHID_ATTRIBUTE with the name of this new attribute

Users are then able to connect to a Db2 database by specifying their full LDAP user ID and password, for
example:

db2 connect to MYDB user 'jsmith@sales.widgetcorp.com' using 'pswd'

But internally, the Db2 database manager refers to the user using the short name retrieved using the
AUTHID_ATTRIBUTE (jsmith in this case).

After an LDAP plug-in module has been enabled and configured, a user can connect to a Db2 database
using a variety of different strings:

• A full DN. For example:

connect to MYDB user 'cn=John Smith, ou=Sales, o=WidgetCorp'

• A partial DN, provided that a search of the LDAP directory using the partial DN and the appropriate
search base DN (if defined) results in exactly one match. For example:

connect to MYDB user 'cn=John Smith' connect to MYDB user uid=jsmith

• A simple string (containing no equals signs). The string is qualified with the USERID_ATTRIBUTE and
treated as a partial DN. For example:

connect to MYDB user jsmith

Note: Any string supplied on a CONNECT statement or ATTACH command must be delimited with single
quotation marks if it contains spaces or special characters.

You must configure the CLNT_PW_PLUGIN and GROUP_PLUGIN parameters on the Db2 client if you want
to use full or partial DNs:

update dbm cfg using CLNT_PW_PLUGIN IBMLDAPauthclient
update dbm cfg using GROUP_PLUGIN IBMLDAPgroups

You must also update the LDAP plug-in configuration file, IBMLDAPSecurityt.ini.

Considerations for group lookup
Group membership information is typically represented on an LDAP server either as an attribute of the
user object, or as an attribute of the group object:

• As an attribute of the user object

Each user object has an attribute called GROUP_LOOKUP_ATTRIBUTE that you can query to retrieve all
of the group membership for that user.

• As an attribute of the group object

Each group object has an attribute, also called GROUP_LOOKUP_ATTRIBUTE, that you can use to list all
the user objects that are members of the group. You can enumerate the groups for a particular user by
searching for all groups that list the user object as a member.

Many LDAP servers can be configured in either of these ways, and some support both methods at the
same time. Consult with your LDAP administrator to determine how your LDAP server is configured.

When configuring the LDAP plug-in modules, you can use the GROUP_LOOKUP_METHOD parameter to
specify how group lookup should be performed:

272 IBM Db2 11.5: Database Security Guide

• If you need to use the GROUP_LOOKUP_ATTRIBUTE attribute of the user object to find group
membership, set GROUP_LOOKUP_METHOD = USER_ATTRIBUTE

• If you need to use the GROUP_LOOKUP_ATTRIBUTE attribute of the group object to find group
membership, set GROUP_LOOKUP_METHOD = SEARCH_BY_DN

Many LDAP servers use the GROUP_LOOKUP_ATTRIBUTE attribute of the group object to determine
membership. They can be configured as shown in this example:

GROUP_LOOKUP_METHOD = SEARCH_BY_DN
GROUP_LOOKUP_ATTRIBUTE = groupOfNames

Microsoft Active Directory typically stores group membership as a user attribute, and could be configured
as shown in this example:

GROUP_LOOKUP_METHOD = USER_ATTRIBUTE
GROUP_LOOKUP_ATTRIBUTE = memberOf

The IBM Tivoli Directory Server supports both methods at the same time. To query the group membership
for a user you can make use of the special user attribute ibm-allGroups, as shown in this example:

GROUP_LOOKUP_METHOD = USER_ATTRIBUTE
GROUP_LOOKUP_ATTRIBUTE = ibm-allGroups

Other LDAP servers may offer similar special attributes to aid in retrieving group membership. In general,
retrieving membership through a user attribute is faster than searching for groups that list the user as a
member.

Troubleshooting authenticating LDAP users or retrieving groups
If you encounter problems authenticating LDAP users or retrieving their groups, the db2diag log files and
administration log are a good source of information to aid in troubleshooting.

The LDAP plug-in modules typically log LDAP return codes, search filters, and other useful data when a
failure occurs. If you enable the DEBUG option in the LDAP plug-in configuration file, the plug-in modules
will log even more information in the db2diag log files. While this might be an aid in troubleshooting, it
is not recommended for extended use on production systems due to the overhead associated with writing
all of the extra data to a single file.

Ensure that the diaglevel configuration parameter in the database manager is set to 4 so that all
messages from the LDAP plug-in modules will be captured.

Writing security plug-ins

How Db2 loads security plug-ins
So that the Db2 database system has the necessary information to call security plug-in functions, a
security plug-in must have a correctly set up initialization function.

Each plug-in library must contain an initialization function with a specific name determined by the plug-in
type:

• Server side authentication plug-in: db2secServerAuthPluginInit()
• Client side authentication plug-in: db2secClientAuthPluginInit()
• Group plug-in: db2secGroupPluginInit()

This function is known as the plug-in initialization function. The plug-in initialization function initializes
the specified plug-in and provides Db2 with information that it requires to call the plug-in's functions. The
plug-in initialization function accepts the following parameters:

• The highest version number of the function pointer structure that the Db2 instance invoking the plug-in
can support

Chapter 8. Security plug-ins 273

• A pointer to a structure containing pointers to all the APIs requiring implementation
• A pointer to a function that adds log messages to the db2diag log files
• A pointer to an error message string
• The length of the error message

The following is a function signature for the initialization function of a group retrieval plug-in:

 SQL_API_RC SQL_API_FN db2secGroupPluginInit(
 db2int32 version,
 void *group_fns,
 db2secLogMessage *logMessage_fn,
 char **errormsg,
 db2int32 *errormsglen);

Note: If the plug-in library is compiled as C++, all functions must be declared with: extern "C". Db2
relies on the underlying operating system dynamic loader to handle the C++ constructors and destructors
used inside of a C++ user-written plug-in library.

The initialization function is the only function in the plug-in library that uses a prescribed function name.
The other plug-in functions are referenced through function pointers returned from the initialization
function. Server plug-ins are loaded when the Db2 server starts. Client plug-ins are loaded when required
on the client. Immediately after Db2 loads a plug-in library, it will resolve the location of this initialization
function and call it. The specific task of this function is as follows:

• Cast the functions pointer to a pointer to an appropriate functions structure
• Specify the pointers to the other functions in the library
• Specify the version number of the function pointer structure being returned

Db2 can potentially call the plug-in initialization function more than once. This situation can occur when
an application dynamically loads the Db2 client library, unloads it, and reloads it again, then performs
authentication functions from a plug-in both before and after reloading. In this situation, the plug-in
library might not be unloaded and then re-loaded; however, this behavior varies depending on the
operating system.

Another example of Db2 issuing multiple calls to a plug-in initialization function occurs during the
execution of stored procedures or federated system calls, where the database server can itself act as
a client. If the client and server plug-ins on the database server are in the same file, Db2 could call the
plug-in initialization function twice.

If the plug-in detects that db2secGroupPluginInit is called more than once, it should handle this
event as if it was directed to terminate and reinitialize the plug-in library. As such, the plug-in initialization
function should do the entire cleanup tasks that a call to db2secPluginTerm would do before returning
the set of function pointers again.

On a Db2 server running on a UNIX or Linux-based operating system, Db2 can potentially load and
initialize plug-in libraries more than once in different processes.

Restrictions for developing security plug-in libraries
There are certain restrictions that affect how you develop plug-in libraries.

The following list outlines the restrictions for developing plug-in libraries.
C-linkage

Plug-in libraries must be linked with C-linkage. Header files providing the prototypes, data structures
needed to implement the plug-ins, and error code definitions are provided for C/C++ only. Functions
that Db2 will resolve at load time must be declared with extern "C" if the plug-in library is compiled as
C++.

.NET common language runtime is not supported
The .NET common language runtime (CLR) is not supported for compiling and linking source code for
plug-in libraries.

274 IBM Db2 11.5: Database Security Guide

Signal handlers
Plug-in libraries must not install signal handlers or change the signal mask, because this will interfere
with the Db2 signal handlers. Interfering with the Db2 signal handlers could seriously interfere with
the ability for Db2 to report and recover from errors, including traps in the plug-in code itself. Plug-in
libraries should also never throw C++ exceptions, as this can also interfere with the error handling
used in Db2.

Thread-safe
Plug-in libraries must be thread-safe and re-entrant. The plug-in initialization function is the only API
that is not required to be re-entrant. The plug-in initialization function could potentially be called
multiple times from different processes; in which case, the plug-in will cleanup all used resources and
reinitialize itself.

Exit handlers and overriding standard C library and operating system calls
Plug-in libraries should not override standard C library or operating system calls. Plug-in libraries
should also not install exit handlers or pthread_atfork handlers. The use of exit handlers is not
recommended because they could be unloaded before the program exits.

Library dependencies
On Linux or UNIX, the processes that load the plug-in libraries can be setuid or setgid, which
means that they will not be able to rely on the $LD_LIBRARY_PATH, $SHLIB_PATH, or $LIBPATH
environment variables to find dependent libraries. Therefore, plug-in libraries should not depend on
additional libraries, unless any dependent libraries are accessible through other methods, such as the
following situations:

• By being in /lib or /usr/lib
• By having the directories they reside in being specified OS-wide (such as in the ld.so.conf file on

Linux)
• By being specified in the RPATH in the plug-in library itself

This restriction is not applicable to Windows operating systems.
Symbol collisions

When possible, plug-in libraries should be compiled and linked with any available options that reduce
the likelihood of symbol collisions, such as those that reduce unbound external symbolic references.
For example, use of the "-Bsymbolic" linker option on HP and Linux can help prevent problems related
to symbol collisions. However, for plug-ins written on AIX, do not use the "-brtl" linker option
explicitly or implicitly.

32-bit and 64-bit applications
32-bit applications must use 32-bit plug-ins. 64-bit applications must use 64-bit plug-ins. Refer to
the topic about 32-bit and 64-bit considerations for more details.

Text strings
Input text strings are not guaranteed to be null-terminated, and output strings are not required to be
null-terminated. Instead, integer lengths are given for all input strings, and pointers to integers are
given for lengths to be returned.

Passing authorization ID parameters
An authorization ID (authid) parameter that Db2 passes into a plug-in (an input authid parameter)
will contain an upper-case authid, with padded blanks removed. An authid parameter that a plug-in
returns to Db2 (an output authid parameter) does not require any special treatment, but Db2 will fold
the authid to upper-case and pad it with blanks according to the internal Db2 standard.

Size limits for parameters
The plug-in APIs use the following as length limits for parameters:

#define DB2SEC_MAX_AUTHID_LENGTH 255
#define DB2SEC_MAX_USERID_LENGTH 255
#define DB2SEC_MAX_USERNAMESPACE_LENGTH 255
#define DB2SEC_MAX_PASSWORD_LENGTH 255
#define DB2SEC_MAX_DBNAME_LENGTH 128

A particular plug-in implementation may require or enforce smaller maximum lengths for the
authorization IDs, user IDs, and passwords. In particular, the operating system authentication plug-

Chapter 8. Security plug-ins 275

ins supplied with Db2 database systems are restricted to the maximum user, group and namespace
length limits enforced by the operating system for cases where the operating system limits are lower
than those stated previously.

Security plug-in library extensions in AIX
On AIX systems, security plug-in libraries can have a file name extension of .a or .so. The mechanism
used to load the plug-in library depends on which extension is used:

• Plug-in libraries with a file name extension of .a are assumed to be archives containing shared
object members. These members must be named shr.o (32-bit) or shr64.o (64-bit). A single archive
can contain both the 32-bit and 64-bit members, allowing it to be deployed on both types of
platforms.

For example, to build a 32-bit archive style plug-in library:

 xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp
 ar rv MyPlugin.a shr.o

• Plug-in libraries with a file name extension of .so are assumed to be dynamically loadable shared
objects. Such an object is either 32-bit or 64-bit, depending on the compiler and linker options used
when it was built. For example, to build a 32-bit plug-in library:

 xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always assumed to be dynamically
loadable shared objects.

Fork
Plug-in libraries should not fork because file descriptors and sockets will be duplicated in the child
process, and this can cause hangs or incorrect behavior. In particular, it can cause false file lock
conflicts if child was forked when we had an open file descriptor on that file. There is also the
possibility that the fork will inherit many other resources like semaphores.

Restrictions on security plug-ins
There are certain restrictions on the use of security plug-ins.

Db2 database family support restrictions
You cannot use a GSS-API plug-in to authenticate connections between Db2 clients on Linux, UNIX, and
Windows and another Db2 family servers such as Db2 for z/OS.

You also cannot authenticate connections from another Db2 database family product, acting as a client, to
a Db2 server on Linux, UNIX, or Windows.

If you use a Db2 client on Linux, UNIX, or Windows to connect to other Db2 database family servers, you
can use client-side user ID/password plug-ins (such as the IBM shipped operating system authentication
plug-in), or you can write your own user ID/password plug-in. You can also use the built-in Kerberos
plug-ins, or implement your own.

With a Db2 client on Linux, UNIX, or Windows, you should not catalog a database using the GSSPLUGIN
authentication type.

Restrictions on the authorization ID: In Db2 Version 9.5 and later, you can have a 128-byte
authorization ID. However, when the authorization ID is interpreted as an operating system user ID or
group name, Db2 imposed naming restrictions apply. For example, the Linux and UNIX operating systems
can contain up to 8 characters and the Windows operating systems can contain up to 30 characters for
user IDs and group names. Therefore, if you want to connect as a user that has a 128-byte authorization
ID, you need to write your own security plug-in. In the plug-in, you can use the extended sizes for
the authorization ID. For example, you can give your security plug-in a 30-byte user ID and, during
authentication, it returns a 128-byte authorization ID that you can connect to.

276 IBM Db2 11.5: Database Security Guide

InfoSphere Federation Server support restrictions
Db2 II does not support the use of delegated credentials from a GSS_API plug-in to establish outbound
connections to data sources. Connections to data sources must continue to use the CREATE USER
MAPPING command.

Database Administration Server support restrictions
The Db2 Administration Server (DAS) does not support security plug-ins. The DAS only supports the
operating system authentication mechanism.

Security plug-in problem and restriction for Db2 clients (Windows)
When developing security plug-ins that will be deployed in Db2 clients on Windows operating systems,
do not unload any auxiliary libraries in the plug-in termination function. This restriction applies to
all types of client security plug-ins, including group, user ID and password, Kerberos, and GSS-API
plug-ins. Since these termination APIs such as db2secPluginTerm, db2secClientAuthPluginTerm and
db2secServerAuthPluginTerm are not called on any Windows platform, you need to do the appropriate
resource cleanup.

This restriction is related to cleanup issues associated with the unloading of DLLs on Windows.

Loading plug-in libraries on AIX with extension of .a or .so
On AIX, security plug-in libraries can have a file name extension of .a or .so. The mechanism used to
load the plug-in library depends on which extension is used:

• Plug-in libraries with a file name extension of .a

Plug-in libraries with file name extensions of .a are assumed to be archives containing shared object
members. These members must be named shr.o (32-bit) or shr64.o (64-bit). A single archive can
contain both the 32-bit and 64-bit members, allowing it to be deployed on both types of platforms.

For example, to build a 32-bit archive style plug-in library:

 xlc_r -qmkshrobj -o shr.o MyPlugin.c -bE:MyPlugin.exp
 ar rv MyPlugin.a shr.o

• Plug-in libraries with a file name extension of .so

Plug-in libraries with file name extensions of .so are assumed to be dynamically loadable shared
objects. Such an object is either 32-bit or 64-bit, depending on the compiler and linker options used
when it was built. For example, to build a 32-bit plug-in library:

 xlc_r -qmkshrobj -o MyPlugin.so MyPlugin.c -bE:MyPlugin.exp

On all platforms other than AIX, security plug-in libraries are always assumed to be dynamically loadable
shared objects.

GSS-API security plug-ins do not support message encryption and signing
Message encryption and signing is not available in GSS-API security plug-ins.

Return codes for security plug-ins
All security plug-in APIs must return an integer value to indicate the success or failure of the execution of
the API. A return code value of 0 indicates that the API ran successfully. All negative return codes, with
the exception of -3, -4, and -5, indicate that the API encountered an error.

All negative return codes returned from the security-plug-in APIs are mapped to SQLCODE -1365,
SQLCODE -1366, or SQLCODE -30082, with the exception of return codes with the -3, -4, or -5. The

Chapter 8. Security plug-ins 277

values -3, -4, and -5 are used to indicate whether or not an authorization ID represents a valid user or
group.

All the security plug-in API return codes are defined in db2secPlugin.h, which can be found in the Db2
include directory: SQLLIB/include.

Details regarding all of the security plug-in return codes are presented in the following table:

Table 39. Security plug-in return codes

Return
code

Define value Meaning Applicable APIs

0 DB2SEC_PLUGIN_OK The plug-in API executed
successfully.

All

-1 DB2SEC_PLUGIN_UNKNOWNERR
OR

The plug-in API encountered an
unexpected error.

All

-2 DB2SEC_PLUGIN_BADUSER The user ID passed in as input
is not defined.

db2secGenerateInitialCre
d
db2secValidatePassword
db2secRemapUserid
db2secGetGroupsForUser

-3 DB2SEC_PLUGIN
_INVALIDUSERORGROUP

No such user or group. db2secDoesAuthIDExist
db2secDoesGroupExist

-4 DB2SEC_PLUGIN
_USERSTATUSNOTKNOWN

Unknown user status. This is
not treated as an error by
Db2; it is used by a GRANT
statement to determine if an
authid represents a user or an
operating system group.

db2secDoesAuthIDExist

-5 DB2SEC_PLUGIN
_GROUPSTATUSNOTKNOWN

Unknown group status. This
is not treated as an error by
Db2; it is used by a GRANT
statement to determine if an
authid represents a user or an
operating system group.

db2secDoesGroupExist

-6 DB2SEC_PLUGIN_UID_EXPIRE
D

User ID expired. db2secValidatePassword
db2GetGroupsForUser
db2secGenerateInitialCre
d

-7 DB2SEC_PLUGIN_PWD_EXPIRE
D

Password expired. db2secValidatePassword
db2GetGroupsForUser
db2secGenerateInitialCre
d

-8 DB2SEC_PLUGIN_USER_REVOK
ED

User revoked. db2secValidatePassword
db2GetGroupsForUser

-9 DB2SEC_PLUGIN
_USER_SUSPENDED

User suspended. db2secValidatePassword
db2GetGroupsForUser

278 IBM Db2 11.5: Database Security Guide

Table 39. Security plug-in return codes (continued)

Return
code

Define value Meaning Applicable APIs

-10 DB2SEC_PLUGIN_BADPWD Bad password. db2secValidatePassword
db2secRemapUserid
db2secGenerateInitialCre
d

-11 DB2SEC_PLUGIN
_BAD_NEWPASSWORD

Bad new password. db2secValidatePassword
db2secRemapUserid

-12 DB2SEC_PLUGIN
_CHANGEPASSWORD
_NOTSUPPORTED

Change password not
supported.

db2secValidatePassword
db2secRemapUserid
db2secGenerateInitialCre
d

-13 DB2SEC_PLUGIN_NOMEM Plug-in attempt to allocate
memory failed due to
insufficient memory.

All

-14 DB2SEC_PLUGIN_DISKERROR Plug-in encountered a disk
error.

All

-15 DB2SEC_PLUGIN_NOPERM Plug-in attempt to access a
file failed because of wrong
permissions on the file.

All

-16 DB2SEC_PLUGIN_NETWORKERR
OR

Plug-in encountered a network
error.

All

-17 DB2SEC_PLUGIN
_CANTLOADLIBRARY

Plug-in is unable to load a
required library.

db2secGroupPluginInit
db2secClientAuthPluginIn
it
db2secServerAuthPluginIn
it

-18 DB2SEC_PLUGIN_CANT
_OPEN_FILE

Plug-in is unable to open and
read a file for a reason other
than missing file or inadequate
file permissions.

All

-19 DB2SEC_PLUGIN_FILENOTFOU
ND

Plug-in is unable to open and
read a file, because the file is
missing from the file system.

All

-20 DB2SEC_PLUGIN
_CONNECTION_DISALLOWED

The plug-in is refusing the
connection because of the
restriction on which database
is allowed to connect, or the
TCP/IP address cannot connect
to a specific database.

All server-side plug-in APIs.

-21 DB2SEC_PLUGIN_NO_CRED GSS API plug-in only: initial
client credential is missing.

db2secGetDefaultLoginCon
text
db2secServerAuthPluginIn
it

Chapter 8. Security plug-ins 279

Table 39. Security plug-in return codes (continued)

Return
code

Define value Meaning Applicable APIs

-22 DB2SEC_PLUGIN_CRED_EXPIR
ED

GSS API plug-in only: client
credential has expired.

db2secGetDefaultLoginCon
text
db2secServerAuthPluginIn
it

-23 DB2SEC_PLUGIN
_BAD_PRINCIPAL_NAME

GSS API plug-in only: the
principal name is invalid.

db2secProcessServer
 PrincipalName

-24 DB2SEC_PLUGIN
_NO_CON_DETAILS

This return code is returned
by the db2secGetConDetails
callback (for example, from Db2
to the plug-in) to indicate that
Db2 is unable to determine the
client's TCP/IP address.

db2secGetConDetails

-25 DB2SEC_PLUGIN
_BAD_INPUT_PARAMETERS

Some parameters are not valid
or are missing when plug-in API
is called.

All

-26 DB2SEC_PLUGIN
_INCOMPATIBLE_VER

The version of the APIs
reported by the plug-in is not
compatible with Db2.

db2secGroupPluginInit
db2secClientAuthPluginIn
it
db2secServerAuthPluginIn
it

-27 DB2SEC_PLUGIN_PROCESS_LI
MIT

Insufficient resources are
available for the plug-in to
create a new process.

All

-28 DB2SEC_PLUGIN_NO_LICENSE
S

The plug-in encountered a user
license problem. A possibility
exists that the underlying
mechanism license has reached
the limit.

All

-29 DB2SEC_PLUGIN_ROOT_NEEDE
D

The plug-in is trying to run an
application that requires root
privileges.

All

-30 DB2SEC_PLUGIN_UNEXPECTED
_
SYSTEM_ERROR

The plug-in encountered an
unexpected system error. A
possibility exists that the
current system configuration is
not supported.

All

Error message handling for security plug-ins
When an error occurs in a security plug-in API, the API can return an ASCII text string in the errormsg
field to provide a more specific description of the problem than the return code.

For example, the errormsg string can contain "File /home/db2inst1/mypasswd.txt does not
exist." Db2 will write this entire string into the Db2 administration notification log, and will also include
a truncated version as a token in some SQL messages. Because tokens in SQL messages can only be of
limited length, these messages should be kept short, and important variable portions of these messages

280 IBM Db2 11.5: Database Security Guide

should appear at the front of the string. To aid in debugging, consider adding the name of the security
plug-in to the error message.

For non-urgent errors, such as password expired errors, the errormsg string will only be dumped when
the DIAGLEVEL database manager configuration parameter is set at 4.

The memory for these error messages must be allocated by the security plug-in. Therefore, the plug-ins
must also provide an API to free this memory: db2secFreeErrormsg.

The errormsg field will only be checked by Db2 if an API returns a non-zero value. Therefore, the plug-in
should not allocate memory for this returned error message if there is no error.

At initialization time a message logging function pointer, logMessage_fn, is passed to the group, client,
and server plug-ins. The plug-ins can use the function to log any debugging information to the db2diag
log files. For example:

 // Log an message indicate init successful
 (*(logMessage_fn))(DB2SEC_LOG_CRITICAL,
 "db2secGroupPluginInit successful",
 strlen("db2secGroupPluginInit successful"));

For more details about each parameter for the db2secLogMessage function, refer to the initialization
API for each of the plug-in types.

Calling sequences for the security plug-in APIs
The sequence with which the Db2 database manager calls the security plug-in APIs varies according to
the scenario in which the security plug-in API is called.

These are the main scenarios in which the Db2 database manager calls security plug-in APIs:

• On a client for a database connection (implicit and explicit)

– CLIENT
– Server-based (SERVER, SERVER_ENCRYPT)
– GSSAPI and Kerberos

• On a client, server, or gateway for local authorization
• On a server for a database connection
• On a server for a grant statement
• On a server to get a list of groups to which an authorization ID belongs

Note: The Db2 database servers treat database actions requiring local authorizations, such as db2start,
db2stop, and db2trc like client applications.

For each of these operations, the sequence with which the Db2 database manager calls the security
plug-in APIs is different. Following are the sequences of APIs called by the Db2 database manager for
each of these scenarios.
CLIENT - implicit

When the user-configured authentication type is CLIENT, the Db2 client application calls the following
security plug-in APIs:

• db2secGetDefaultLoginContext();
• db2secValidatePassword();
• db2secFreetoken();

For an implicit authentication, that is, when you connect without specifying a particular user ID or
password, the db2secValidatePassword API is called if you are using a user ID/password plug-in.
This API permits plug-in developers to prohibit implicit authentication if necessary.

CLIENT - explicit
On an explicit authentication, that is, when you connect to a database in which both the user ID and
password are specified, if the authentication database manager configuration parameter is set

Chapter 8. Security plug-ins 281

to CLIENT, the Db2 client application calls the following security plug-in APIs multiple times if the
implementation requires it:

• db2secRemapUserid();
• db2secValidatePassword();
• db2secFreeToken();

Server-based (SERVER, SERVER_ENCRYPT) - implicit
On an implicit authentication, when the client and server negotiate user ID/password authentication
(for example, when the srvcon_auth parameter at the server is set to SERVER; SERVER_ENCRYPT),
the client application calls the following security plug-in APIs:

• db2secGetDefaultLoginContext();
• db2secFreeToken();

Server-based (SERVER, SERVER_ENCRYPT) - explicit
On an explicit authentication, when the client and server negotiate userid/password authentication
(for example, when the srvcon_auth parameter at the server is set to SERVER; SERVER_ENCRYPT),
the client application calls the following security plug-in APIs:

• db2secRemapUserid();

GSSAPI and Kerberos - implicit
On an implicit authentication, when the client and server negotiate GSS-API or Kerberos
authentication (for example, when the srvcon_auth parameter at the server is set to
KERBEROS; KRB_SERVER_ENCRYPT, GSSPLUGIN, or GSS_SERVER_ENCRYPT), the client application
calls the following security plug-in APIs. (The call to gss_init_sec_context() uses
GSS_C_NO_CREDENTIAL as the input credential.)

• db2secGetDefaultLoginContext();
• db2secProcessServerPrincipalName();
• gss_init_sec_context();
• gss_release_buffer();
• gss_release_name();
• gss_delete_sec_context();
• db2secFreeToken();

With multi-flow GSS-API support, gss_init_sec_context() can be called multiple times if the
implementation requires it.

GSSAPI and Kerberos - explicit
If the negotiated authentication type is GSS-API or Kerberos, the client application calls the following
security plug-in APIs for GSS-API plug-ins in the following sequence. These APIs are used for both
implicit and explicit authentication unless otherwise stated.

• db2secProcessServerPrincipalName();
• db2secGenerateInitialCred(); (For explicit authentication only)
• gss_init_sec_context();
• gss_release_buffer ();
• gss_release_name();
• gss_release_cred();
• db2secFreeInitInfo();
• gss_delete_sec_context();
• db2secFreeToken();

The API gss_init_sec_context() might be called multiple times if a mutual authentication token
is returned from the server and the implementation requires it.

282 IBM Db2 11.5: Database Security Guide

On a client, server, or gateway for local authorization
For a local authorization, the Db2 command being used calls the following security plug-in APIs:

• db2secGetDefaultLoginContext();
• db2secGetGroupsForUser();
• db2secFreeToken();
• db2secFreeGroupList();

These APIs are called for both user ID/password and GSS-API authentication mechanisms.
On a server for a database connection

For a database connection on the database server, the Db2 agent process or thread calls the following
security plug-in APIs for the user ID/password authentication mechanism:

• db2secValidatePassword(); Only if the authentication database configuration parameter
is not CLIENT

• db2secGetAuthIDs();
• db2secGetGroupsForUser();
• db2secFreeToken();
• db2secFreeGroupList();

For a CONNECT to a database, the Db2 agent process thread calls the following security plug-in APIs
for the GSS-API authentication mechanism:

• gss_accept_sec_context();
• gss_release_buffer();
• db2secGetAuthIDs();
• db2secGetGroupsForUser();
• gss_delete_sec_context();
• db2secFreeGroupListMemory();

On a server for a GRANT statement
For a GRANT statement that does not specify the USER or GROUP keyword, (for example, "GRANT
CONNECT ON DATABASE TO user1"), the Db2 agent process or thread must be able to determine
if user1 is a user, a group, or both. Therefore, the Db2 agent process or thread calls the following
security plug-in APIs:

• db2secDoesGroupExist();
• db2secDoesAuthIDExist();

On a server to get a list of groups to which an authid belongs
From your database server, when you need to get a list of groups to which an authorization ID belongs,
the Db2 agent process or thread calls the following security plug-in API with only the authorization ID
as input:

• db2secGetGroupsForUser();

There will be no token from other security plug-ins.

Chapter 8. Security plug-ins 283

284 IBM Db2 11.5: Database Security Guide

Chapter 9. Security plug-in APIs
To enable you to customize the Db2 database system authentication and group membership lookup
behavior, the Db2 database system provides APIs that you can use to modify existing plug-in modules or
build new security plug-in modules.

When you develop a security plug-in module, you need to implement the standard authentication or group
membership lookup functions that the Db2 database manager will invoke. For the three available types of
plug-in modules, the functionality you need to implement is as follows:
Group retrieval

Retrieves group membership information for a given user and determines if a given string represents a
valid group name.

User ID/password authentication
Authentication that identifies the default security context (client only), validates and optionally
changes a password, determines if a given string represents a valid user (server only), modifies the
user ID or password provided on the client before it is sent to the server (client only), returns the Db2
authorization ID associated with a given user.

GSS-API authentication
Authentication that implements the required GSS-API functions, identifies the default security
context (client side only), generates initial credentials based on user ID and password, and optionally
changes password (client side only), creates and accepts security tickets, and returns the Db2
authorization ID associated with a given GSS-API security context.

The following list shows the definitions for terminology used in the descriptions of the plug-in APIs.
Plug-in

A dynamically loadable library that Db2 will load to access user-written authentication or group
membership lookup functions.

Implicit authentication
A connection to a database without specifying a user ID or a password.

Explicit authentication
A connection to a database in which both the user ID and password are specified.

Authid
An internal ID representing an individual or group to which authorities and privileges within the
database are granted. Internally, a Db2 authid is folded to upper-case and is a minimum of 8
characters (blank padded to 8 characters). Currently, Db2 requires authids, user IDs, passwords,
group names, namespaces, and domain names that can be represented in 7-bit ASCII.

Local authorization
Authorization that is local to the server or client that implements it, that checks if a user is authorized
to perform an action (other than connecting to the database), such as starting and stopping the
database manager, turning Db2 trace on and off, or updating the database manager configuration.

Namespace
A collection or grouping of users within which individual user identifiers must be unique. Common
examples include Windows domains and Kerberos Realms. For example, within the Windows domain
"usa.company.com" all user names must be unique. For example, "user1@usa.company.com". The
same user ID in another domain, as in the case of "user1@canada.company.com", however refers to a
different person. A fully qualified user identifier includes a user ID and namespace pair; for example,
"user@domain.name" or "domain\user".

Input
Indicates that Db2 will enter in the value for the security plug-in API parameter.

Output
Indicates that the security plug-in API will specify the value for the API parameter.

© Copyright IBM Corp. 2016, 2023 285

APIs for group retrieval plug-ins
For the group retrieval plug-in module, you need to implement the following APIs:

• db2secGroupPluginInit

Note: The db2secGroupPluginInit API takes as input a pointer, *logMessage_fn, to an API with the
following prototype:

SQL_API_RC (SQL_API_FN db2secLogMessage)
(
db2int32 level,
void *data,
db2int32 length
);

The db2secLogMessage API allows the plug-in to log messages to the db2diag log files for debugging
or informational purposes. This API is provided by the Db2 database system, so you need not
implement it.

• db2secPluginTerm
• db2secGetGroupsForUser
• db2secDoesGroupExist
• db2secFreeGroupListMemory
• db2secFreeErrormsg
• The only API that must be resolvable externally is db2secGroupPluginInit. This API will take a
void * parameter, which should be cast to the type:

typedef struct db2secGroupFunctions_1
{
db2int32 version;
db2int32 plugintype;
SQL_API_RC (SQL_API_FN * db2secGetGroupsForUser)
(
const char *authid,
db2int32 authidlen,
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
const void *token,
db2int32 tokentype,
db2int32 location,
const char *authpluginname,
db2int32 authpluginnamelen,
void **grouplist,
db2int32 *numgroups,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secDoesGroupExist)
(
const char *groupname,
db2int32 groupnamelen,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeGroupListMemory)
(
void *ptr,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)
(
char *msgtobefree
);

286 IBM Db2 11.5: Database Security Guide

SQL_API_RC (SQL_API_FN * db2secPluginTerm)
(
char **errormsg,
db2int32 *errormsglen
);

} db2secGroupFunctions_1;

The db2secGroupPluginInit API assigns the addresses for the rest of the externally available
functions.

Note: The _1 indicates that this is the structure corresponding to version 1 of the API. Subsequent
interface versions will have the extension _2, _3, and so on.

db2secDoesGroupExist API - Check if group exists
Determines whether an authid represents a group.

If the groupname exists, the API must be able to return the value DB2SEC_PLUGIN_OK, to
indicate success. It must also be able to return the value DB2SEC_PLUGIN_INVALIDUSERORGROUP
if the group name is not valid. It is permissible for the API to return the value
DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN if it is impossible to determine if the input is a
valid group. If an invalid group (DB2SEC_PLUGIN_INVALIDUSERORGROUP) or group not known
(DB2SEC_PLUGIN_GROUPSTATUSNOTKNOWN) value is returned, Db2 might not be able to determine
whether the authid is a group or user when issuing the GRANT statement without the keywords USER and
GROUP, which would result in the error SQLCODE -569, SQLSTATE 56092 being returned to the user.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secDoesGroupExist)
 (const char *groupname,
 db2int32 groupnamelen,
 char **errormsg,
 db2int32 *errormsglen);

db2secDoesGroupExist API parameters
groupname

Input. An authid, upper-cased, with no trailing blanks.
groupnamelen

Input. Length in bytes of the groupname parameter value.
errormsg

Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secDoesGroupExist API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secFreeErrormsg API - Free error message memory
Frees the memory used to hold an error message from a previous API call. This is the only API that does
not return an error message. If this API returns an error, Db2 will log it and continue.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secFreeErrormsg)
 (char *errormsg);

Chapter 9. Security plug-in APIs 287

db2secFreeErrormsg API parameters
errormsg

Input. A pointer to the error message allocated from a previous API call.

db2secFreeGroupListMemory API - Free group list memory
Frees the memory used to hold the list of groups from a previous call to db2secGetGroupsForUser
API.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secFreeGroupListMemory)
 (void *ptr,
 char **errormsg,
 db2int32 *errormsglen);

db2secFreeGroupListMemory API parameters
ptr

Input. Pointer to the memory to be freed.
errormsg

Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secFreeGroupListMemory API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in the
errormsg parameter.

db2secGetGroupsForUser API - Get list of groups for user
Returns the list of groups to which a user belongs.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secGetGroupsForUser)
 (const char *authid,
 db2int32 authidlen,
 const char *userid,
 db2int32 useridlen,
 const char *usernamespace,
 db2int32 usernamespacelen,
 db2int32 usernamespacetype,
 const char *dbname,
 db2int32 dbnamelen,
 void *token,
 db2int32 tokentype,
 db2int32 location,
 const char *authpluginname,
 db2int32 authpluginnamelen,
 void **grouplist,
 db2int32 *numgroups,
 char **errormsg,
 db2int32 *errormsglen);

db2secGetGroupsForUser API parameters
authid

Input. This parameter value is an SQL authid, which means that Db2 converts it to an uppercase
character string with no trailing blanks. Db2 always provides a non-null value for the authid
parameter. The API must be able to return a list of groups to which the authid belongs without
depending on the other input parameters. It is permissible to return a shortened or empty list if this
cannot be determined.

288 IBM Db2 11.5: Database Security Guide

If a user does not exist, the API must return the return code DB2SEC_PLUGIN_BADUSER. Db2 does
not treat the case of a user not existing as an error, since it is permissible for an authid to not have any
groups associated with it. For example, the db2secGetAuthids API can return an authid that does
not exist on the operating system. The authid is not associated with any groups, however, it can still be
assigned privileges directly.

If the API cannot return a complete list of groups using only the authid, then there will be some
restrictions on certain SQL functions related to group support. For a list of possible problem scenarios,
see the Usage notes section in this topic.

authidlen
Input. Length in bytes of the authid parameter value. The Db2 database manager always provides a
non-zero value for the authidlen parameter.

userid
Input. This is the user ID corresponding to the authid. When this API is called on the server in a
non-connect scenario, this parameter will not be filled by Db2.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained. When the user ID is not available, this
parameter will not be filled by the Db2 database manager.

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. The type of namespace. Valid values for the usernamespacetype parameter (defined in
db2secPlugin.h) are:

• DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username style like domain\myname
• DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username style like

myname@domain.ibm.com

Currently, the Db2 database system only supports the value
DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not available, the
usernamespacetype parameter is set to the value DB2SEC_USER_NAMESPACE_UNDEFINED
(defined in db2secPlugin.h).

dbname
Input. Name of the database being connected to. This parameter can be NULL in a non-connect
scenario.

dbnamelen
Input. Length in bytes of the dbname parameter value. This parameter is set to 0 if dbname parameter
is NULL in a non-connect scenario.

token
Input. A pointer to data provided by the authentication plug-in. It is not used by Db2. It provides the
plug-in writer with the ability to coordinate user and group information. This parameter might not be
provided in all cases (for example, in a non-connect scenario), in which case it will be NULL. If the
authentication plug-in used is GSS-API based, the token will be set to the GSS-API context handle
(gss_ctx_id_t).

tokentype
Input. Indicates the type of data provided by the authentication plug-in. If the authentication plug-in
used is GSS-API based, the token will be set to the GSS-API context handle (gss_ctx_id_t). If the
authentication plug-in used is user ID/password based, it will be a generic type. Valid values for the
tokentype parameter (defined in db2secPlugin.h) are:

• DB2SEC_GENERIC: Indicates that the token is from a user ID/password based plug-in.
• DB2SEC_GSSAPI_CTX_HANDLE: Indicates that the token is from a GSS-API (including Kerberos)

based plug-in.

Chapter 9. Security plug-in APIs 289

location
Input. Indicates whether Db2 is calling this API on the client side or server side. Valid values for the
location parameter (defined in db2secPlugin.h) are:

• DB2SEC_SERVER_SIDE: The API is to be called on the database server.
• DB2SEC_CLIENT_SIDE: The API is to be called on a client.

authpluginname
Input. Name of the authentication plug-in that provided the data in the token. The
db2secGetGroupsForUser API might use this information in determining the correct group
memberships. This parameter might not be filled by Db2 if the authid is not authenticated (for
example, if the authid does not match the current connected user).

authpluginnamelen
Input. Length in bytes of the authpluginname parameter value.

grouplist
Output. List of groups to which the user belongs. The list of groups must be returned as a pointer
to a section of memory allocated by the plug-in containing concatenated varchars (a varchar is a
character array in which the first byte indicates the number of bytes following the first byte). The
length is an unsigned char (1 byte) and that limits the maximum length of a groupname to 255
characters. For example, "\006GROUP1\007MYGROUP\008MYGROUP3". Each group name should be
a valid Db2 authid. The memory for this array must be allocated by the plug-in. The plug-in must
therefore provide an API, such as the db2secFreeGroupListMemory API that Db2 will call to free
the memory.

numgroups
Output. The number of groups contained in the grouplist parameter.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secGetGroupsForUser API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

Usage notes
The following list describes the scenarios that which problems can occur if an incomplete group list is
returned by this API to Db2:

• Alternate authorization is provided in CREATE SCHEMA statement. Group lookup will be performed
against the AUTHORIZATION NAME parameter if there are nested CREATE statements in the CREATE
SCHEMA statement.

• Processing a jar file in an MPP environment. In an MPP environment, the jar processing request is sent
from the coordinator node with the session authid. The catalog node received the requests and process
the jar files based on the privilege of the session authid (the user executing the jar processing requests).

– Install jar file. The session authid needs to have one of the following rights: DBADM, or CREATEIN
(implicit or explicit on the jar schema). The operation will fail if the rights stated previously are
granted to group containing the session authid, but not explicitly to the session authid.

– Remove jar file. The session authid needs to have one of the following rights: DBADM, or DROPIN
(implicit or explicit on the jar schema), or is the definer of the jar file. The operation will fail if the
rights stated previously are granted to group containing the session authid, but not explicitly to the
session authid, and if the session authid is not the definer of the jar file.

– Replace jar file. This is same as removing the jar file, followed by installing the jar file. Both of the
scenarios described previously apply.

• When SET SESSION_USER statement is issued. Subsequent Db2 operations are run under the context
of the authid specified by this statement. These operations will fail if the privileges required are owned
by one of the SESSION_USER's group is not explicitly granted to the SESSION_USER authid.

290 IBM Db2 11.5: Database Security Guide

db2secGroupPluginInit API - Initialize group plug-in
Initialization API, for the group-retrieval plug-in, that the Db2 database manager calls immediately after
loading the plug-in.

API and data structure syntax
SQL_API_RC SQL_API_FN db2secGroupPluginInit
 (db2int32 version,
 void *group_fns,
 db2secLogMessage *logMessage_fn,
 char **errormsg,
 db2int32 *errormsglen);

db2secGroupPluginInit API parameters
version

Input. The highest version of the API supported by the instance loading that plugin. The value
DB2SEC_API_VERSION (in db2secPlugin.h) contains the latest version number of the API that the
Db2 database manager currently supports.

group_fns
Output. A pointer to the db2secGroupFunctions_<version_number>
(also known as group_functions_<version_number>) structure. The
db2secGroupFunctions_<version_number> structure contains pointers to the APIs
implemented for the group-retrieval plug-in. In future, there might be different versions of
the APIs (for example, db2secGroupFunctions_<version_number>), so the group_fns
parameter is cast as a pointer to the db2secGroupFunctions_<version_number> structure
corresponding to the version the plug-in has implemented. The first parameter of the
group_functions_<version_number> structure tells Db2 the version of the APIs that the plug-in
has implemented. Note: The casting is done only if the Db2 version is higher or equal to the version
of the APIs that the plug-in has implemented. The version number represents the version of the APIs
implemented by the plugin, and the pluginType should be set to DB2SEC_PLUGIN_TYPE_GROUP.

logMessage_fn
Input. A pointer to the db2secLogMessage API, which is implemented by the Db2 database
system. The db2secGroupPluginInit API can call the db2secLogMessage API to log messages
to the db2diag log files for debugging or informational purposes. The first parameter (level) of
db2secLogMessage API specifies the type of diagnostic errors that will be recorded in the db2diag
log files and the last two parameters are the message string and its length. The valid values for the
first parameter of db2secLogMessage API (defined in db2secPlugin.h) are:

• DB2SEC_LOG_NONE: (0) No logging
• DB2SEC_LOG_CRITICAL: (1) Severe Error encountered
• DB2SEC_LOG_ERROR: (2) Error encountered
• DB2SEC_LOG_WARNING: (3) Warning
• DB2SEC_LOG_INFO: (4) Informational

The message text shows up in the db2diag log files only if the value of the level parameter of the
db2secLogMessage API is less than or equal to the diaglevel database manager configuration
parameter. So for example, if you use the DB2SEC_LOG_INFO value, the message text shows up in the
db2diag log files only if the diaglevel database manager configuration parameter is set to 4.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secGroupPluginInit API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

Chapter 9. Security plug-in APIs 291

db2secPluginTerm - Clean up group plug-in resources
Frees resources used by the group-retrieval plug-in.

This API is called by the Db2 database manager just before it unloads the group-retrieval plug-in. It
should be implemented in a manner that it does a proper cleanup of any resources the plug-in library
holds, for example, free any memory allocated by the plug-in, close files that are still open, and close
network connections. The plug-in is responsible for keeping track of these resources in order to free
them. This API is not called on any Windows operating systems.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secPluginTerm)
 (char **errormsg,
 db2int32 *errormsglen);

db2secPluginTerm API parameters
errormsg

Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secPluginTerm API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

APIs for user ID/password authentication plug-ins
For the user ID/password plug-in module, you need to implement the following client-side APIs:

• db2secClientAuthPluginInit

Note: The db2secClientAuthPluginInit API takes as input a pointer, *logMessage_fn, to an API
with the following prototype:

SQL_API_RC (SQL_API_FN db2secLogMessage)
(
db2int32 level,
void *data,
db2int32 length
);

The db2secLogMessage API allows the plug-in to log messages to the db2diag log files for debugging
or informational purposes. This API is provided by the Db2 database system, so you do not need to
implement it.

• db2secClientAuthPluginTerm
• db2secGenerateInitialCred (Only used for gssapi)
• db2secRemapUserid (Optional)
• db2secGetDefaultLoginContext
• db2secValidatePassword
• db2secProcessServerPrincipalName (This is only for GSS-API)
• db2secFreeToken (Functions to free memory held by the DLL)
• db2secFreeErrormsg
• db2secFreeInitInfo
• The only API that must be resolvable externally is db2secClientAuthPluginInit. This API will take

a void * parameter, which should be cast to either:

typedef struct db2secUseridPasswordClientAuthFunctions_1
{

292 IBM Db2 11.5: Database Security Guide

db2int32 version;
db2int32 plugintype;

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)
(
char authid[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *authidlen,
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
db2int32 useridtype,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void **token,
char **errormsg,
db2int32 *errormsglen
);
/* Optional */
SQL_API_RC (SQL_API_FN * db2secRemapUserid)
(
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
char password[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *passwordlen,
char newpassword[DB2SEC_MAX_PASSWORD_LENGTH],
db2int32 *newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secValidatePassword)
(
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpassword,
db2int32 newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
db2Uint32 connection_details,
void **token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeToken)
(
void **token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)
(
char *errormsg
);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)
(
char **errormsg,
db2int32 *errormsglen
);
}

or

typedef struct db2secGssapiClientAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;

Chapter 9. Security plug-in APIs 293

SQL_API_RC (SQL_API_FN * db2secGetDefaultLoginContext)
(
char authid[DB2SEC_MAX_AUTHID_LENGTH],
db2int32 *authidlen,
char userid[DB2SEC_MAX_USERID_LENGTH],
db2int32 *useridlen,
db2int32 useridtype,
char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
db2int32 *usernamespacelen,
db2int32 *usernamespacetype,
const char *dbname,
db2int32 dbnamelen,
void **token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secProcessServerPrincipalName)
(
const void *data,
gss_name_t *gssName,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secGenerateInitialCred)
(
const char *userid,
db2int32 useridlen,
const char *usernamespace,
db2int32 usernamespacelen,
db2int32 usernamespacetype,
const char *password,
db2int32 passwordlen,
const char *newpassword,
db2int32 newpasswordlen,
const char *dbname,
db2int32 dbnamelen,
gss_cred_id_t *pGSSCredHandle,
void **initInfo,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeToken)
(
void *token,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)
(
char *errormsg
);

SQL_API_RC (SQL_API_FN * db2secFreeInitInfo)
(
void *initInfo,
char **errormsg,
db2int32 *errormsglen
);

SQL_API_RC (SQL_API_FN * db2secClientAuthPluginTerm)
(
char **errormsg,
db2int32 *errormsglen
);

/* GSS-API specific functions -- refer to db2secPlugin.h
 for parameter list*/

 OM_uint32 (SQL_API_FN * gss_init_sec_context)(<parameter list>);
 OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);
 OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);
 OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);
 OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);
 OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);
 }

294 IBM Db2 11.5: Database Security Guide

You should use the db2secUseridPasswordClientAuthFunctions_1 structure if you are writing a
user ID/password plug-in. If you are writing a GSS-API (including Kerberos) plug-in, you should use the
db2secGssapiClientAuthFunctions_1 structure.

For the user ID/password plug-in library, you will need to implement the following server-side APIs:

• db2secServerAuthPluginInit

The db2secServerAuthPluginInit API takes as input a pointer, *logMessage_fn, to the
db2secLogMessage API, and a pointer, *getConDetails_fn, to the db2secGetConDetails API
with the following prototypes:

SQL_API_RC (SQL_API_FN db2secLogMessage)
(
db2int32 level,
void *data,
db2int32 length
);

SQL_API_RC (SQL_API_FN db2secGetConDetails)
(
db2int32 conDetailsVersion,
const void *pConDetails
);

The db2secLogMessage API allows the plug-in to log messages to the db2diag log files for
debugging or informational purposes. The db2secGetConDetails API allows the plug-in to
obtain details about the client that is trying to attempt to have a database connection. Both the
db2secLogMessage API and db2secGetConDetails API are provided by the Db2 database system,
so you do not need to implement them. The db2secGetConDetails API in turn, takes as its second
parameter,pConDetails, a pointer to one of the following structures:

db2sec_con_details_1:

typedef struct db2sec_con_details_1
{
 db2int32 clientProtocol;
 db2Uint32 clientIPAddress;
 db2Uint32 connect_info_bitmap;
 db2int32 dbnameLen;
 char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];
} db2sec_con_details_1;

db2sec_con_details_2:

typedef struct db2sec_con_details_2
{
 db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */
 db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */
 db2Uint32 connect_info_bitmap;
 db2int32 dbnameLen;
 char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];
 db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */
} db2sec_con_details_2;

db2sec_con_details_3:

typedef struct db2sec_con_details_3
{
 db2int32 clientProtocol; /* See SQL_PROTOCOL_ in sqlenv.h */
 db2Uint32 clientIPAddress; /* Set if protocol is TCPIP4 */
 db2Uint32 connect_info_bitmap;
 db2int32 dbnameLen;
 char dbname[DB2SEC_MAX_DBNAME_LENGTH + 1];
 db2Uint32 clientIP6Address[4];/* Set if protocol is TCPIP6 */
 db2Uint32 clientPlatform; /* SQLM_PLATFORM_* from sqlmon.h */
 db2Uint32 _reserved[16];
} db2sec_con_details_3;

The possible values for conDetailsVersion are DB2SEC_CON_DETAILS_VERSION_1,
DB2SEC_CON_DETAILS_VERSION_2, and DB2SEC_CON_DETAILS_VERSION_3 representing the
version of the API.

Chapter 9. Security plug-in APIs 295

Note: While using db2sec_con_details_1, db2sec_con_details_2, or
db2sec_con_details_3, consider the following:

– Existing plugins that are using the db2sec_con_details_1 structure and the
DB2SEC_CON_DETAILS_VERSION_1 value will continue to work as they did with Version 8.2 when
calling the db2GetConDetails API. If this API is called on an IPv4 platform, the client IP address
is returned in the clientIPAddress field of the structure. If this API is called on an IPv6 platform,
a value of 0 is returned in the clientIPAddress field. To retrieve the client IP address on an IPv6
platform, the security plug-in code should be changed to use either the db2sec_con_details_2
structure and the DB2SEC_CON_DETAILS_VERSION_2 value, or the db2sec_con_details_3
structure and the DB2SEC_CON_DETAILS_VERSION_3 value.

– New plugins should use the db2sec_con_details_3 structure and the
DB2SEC_CON_DETAILS_VERSION_3 value. If the db2secGetConDetails API is called on
an IPv4 platform, the client IP address is returned in the clientIPAddress field of the
db2sec_con_details_3 structure and if the API is called on an IPv6 platform the client
IP address is returned in the clientIP6Address field of the db2sec_con_details_3
structure. The clientProtocol field of the connection details structure will be set to one of
SQL_PROTOCOL_TCPIP (IPv4, with v1 of the structure), SQL_PROTOCOL_TCPIP4 (IPv4, with v2 of
the structure) or SQL_PROTOCOL_TCPIP6 (IPv6, with v2 or v3 of the structure).

– The structure db2sec_con_details_3 is identical to the structure db2sec_con_details_2
except that it contains an additional field (clientPlatform) that identifies the client platform type
(as reported by the communication layer) using platform type constants defined in sqlmon.h, such
as SQLM_PLATFORM_AIX.

• db2secServerAuthPluginTerm
• db2secValidatePassword
• db2secGetAuthIDs
• db2secDoesAuthIDExist
• db2secFreeToken
• db2secFreeErrormsg
• The only API that must be resolvable externally is db2secServerAuthPluginInit. This API will take

a void * parameter, which should be cast to either:

typedef struct db2secUseridPasswordServerAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;

 /* parameter lists left blank for readability
 see above for parameters */
SQL_API_RC (SQL_API_FN * db2secValidatePassword)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);
SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secFreeToken)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();
} userid_password_server_auth_functions;

or

typedef struct db2secGssapiServerAuthFunctions_1
{
db2int32 version;
db2int32 plugintype;
gss_buffer_desc serverPrincipalName;
gss_cred_id_t ServerCredHandle;
SQL_API_RC (SQL_API_FN * db2secGetAuthIDs)(<parameter list);
SQL_API_RC (SQL_API_FN * db2secDoesAuthIDExist)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secFreeErrormsg)(<parameter list>);
SQL_API_RC (SQL_API_FN * db2secServerAuthPluginTerm)();

/* GSS-API specific functions
refer to db2secPlugin.h for parameter list*/
OM_uint32 (SQL_API_FN * gss_accept_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_display_name)(<parameter list>);

296 IBM Db2 11.5: Database Security Guide

OM_uint32 (SQL_API_FN * gss_delete_sec_context)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_display_status)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_buffer)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_cred)(<parameter list>);
OM_uint32 (SQL_API_FN * gss_release_name)(<parameter list>);

} gssapi_server_auth_functions;

You should use the db2secUseridPasswordServerAuthFunctions_1 structure if you are writing a
user ID/password plug-in. If you are writing a GSS-API (including Kerberos) plug-in, you should use the
db2secGssapiServerAuthFunctions_1 structure.

db2secClientAuthPluginInit API - Initialize client authentication plug-in
Initialization API, for the client authentication plug-in, that the Db2 database manager calls immediately
after loading the plug-in.

API and data structure syntax
SQL_API_RC SQL_API_FN db2secClientAuthPluginInit
 (db2int32 version,
 void *client_fns,
 db2secLogMessage *logMessage_fn,
 char **errormsg,
 db2int32 *errormsglen);

db2secClientAuthPluginInit API parameters
version

Input. The highest version number of the API that the Db2 database manager currently supports. The
DB2SEC_API_VERSION value (in db2secPlugin.h) contains the latest version number of the API
that Db2 currently supports.

client_fns
Output. A pointer to memory provided by the Db2 database manager for
a db2secGssapiClientAuthFunctions_<version_number> structure (also known as
gssapi_client_auth_functions_<version_number>), if GSS-API authentication is used, or
a db2secUseridPasswordClientAuthFunctions_<version_number> structure (also known
as userid_password_client_auth_functions_<version_number>), if userid/password
authentication is used. The db2secGssapiClientAuthFunctions_<version_number> structure
and db2secUseridPasswordClientAuthFunctions_<version_number> structure contain
pointers to the APIs implemented for the GSS-API authentication plug-in and userid/
password authentication plug-in. In future versions of Db2, there might be different
versions of the APIs, so the client_fns parameter is cast as a pointer to the
gssapi_client_auth_functions_<version_number> structure corresponding to the version
the plug-in has implemented.

The first parameter of the gssapi_client_auth_functions_<version_number> structure or
the userid_password_client_auth_functions_<version_number> structure tells the Db2
database manager the version of the APIs that the plug-in has implemented.

Note: The casting is done only if the Db2 version is higher or equal to the version of the APIs that the
plug-in has implemented.

Inside the gssapi_server_auth_functions_<version_number> or
userid_password_server_auth_functions_<version_number> structure, the plugintype
parameter should be set to one of DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,
DB2SEC_PLUGIN_TYPE_GSSAPI, or DB2SEC_PLUGIN_TYPE_KERBEROS. Other values can be
defined in future versions of the API.

logMessage_fn
Input. A pointer to the db2secLogMessage API, which is implemented by the Db2 database
manager. The db2secClientAuthPluginInit API can call the db2secLogMessage API to log

Chapter 9. Security plug-in APIs 297

messages to the db2diag log files for debugging or informational purposes. The first parameter
(level) of db2secLogMessage API specifies the type of diagnostic errors that will be recorded in
the db2diag log files and the last two parameters are the message string and its length. The valid
values for the first parameter of db2secLogMessage API (defined in db2secPlugin.h) are:

• DB2SEC_LOG_NONE (0) No logging
• DB2SEC_LOG_CRITICAL (1) Severe Error encountered
• DB2SEC_LOG_ERROR (2) Error encountered
• DB2SEC_LOG_WARNING (3) Warning
• DB2SEC_LOG_INFO (4) Informational

The message text will show up in the db2diag log files only if the value of the 'level' parameter of
the db2secLogMessage API is less than or equal to the diaglevel database manager configuration
parameter. For example, if you use the DB2SEC_LOG_INFO value, the message text will appear in the
db2diag log files only if the diaglevel database manager configuration parameter is set to 4.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secClientAuthPluginInit API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secClientAuthPluginTerm API - Clean up client authentication plug-in
resources

Frees resources used by the client authentication plug-in.

This API is called by the Db2 database manager just before it unloads the client authentication plug-in.
It should be implemented in a manner that it does a proper cleanup of any resources the plug-in library
holds, for example, free any memory allocated by the plug-in, close files that are still open, and close
network connections. The plug-in is responsible for keeping track of these resources in order to free
them. This API is not called on any Windows operating systems.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secClientAuthPluginTerm)
 (char **errormsg,
 db2int32 *errormsglen);

db2secClientAuthPluginTerm API parameters
errormsg

Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secClientAuthPluginTerm API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secDoesAuthIDExist - Check if authentication ID exists
Determines if the authid represents an individual user (for example, whether the API can map the
authid to an external user ID).

The API should return the value DB2SEC_PLUGIN_OK if it is successful - the authid is valid,
DB2SEC_PLUGIN_INVALID_USERORGROUP if it is not valid, or DB2SEC_PLUGIN_USERSTATUSNOTKNOWN
if the authid existence cannot be determined.

298 IBM Db2 11.5: Database Security Guide

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secDoesAuthIDExist)
 (const char *authid,
 db2int32 authidlen,
 char **errormsg,
 db2int32 *errormsglen);

db2secDoesAuthIDExist API parameters
authid

Input. The authid to validate. This is upper-cased, with no trailing blanks.
authidlen

Input. Length in bytes of the authid parameter value.
errormsg

Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secDoesAuthIDExist API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length of the error message string in errormsg
parameter.

db2secFreeInitInfo API - Clean up resources held by the
db2secGenerateInitialCred

Frees any resources allocated by the db2secGenerateInitialCred API. This can include, for example,
handles to underlying mechanism contexts or a credential cache created for the GSS-API credential
cache.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secFreeInitInfo)
 (void *initinfo,
 char **errormsg,
 db2int32 *errormsglen);

db2secFreeInitInfo API parameters
initinfo

Input. A pointer to data that is not known to the Db2 database manager. The plug-in can use this
memory to maintain a list of resources that are allocated in the process of generating the credential
handle. These resources are freed by calling this API.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secFreeInitInfo API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secFreeToken API - Free memory held by token
Frees the memory held by a token. This API is called by the Db2 database manager when it no longer
needs the memory held by the token parameter.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secFreeToken)
 (void *token,

Chapter 9. Security plug-in APIs 299

 char **errormsg,
 db2int32 *errormsglen);

db2secFreeToken API parameters
token

Input. Pointer to the memory to be freed.
errormsg

Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secFreeToken API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secGenerateInitialCred API - Generate initial credentials
The db2secGenerateInitialCred API obtains the initial GSS-API credentials based on the user ID
and password that are passed in.

For Kerberos, this is the ticket-granting ticket (TGT). The credential handle that is returned in
pGSSCredHandle parameter is the handle that is used with the gss_init_sec_context API and must
be either an INITIATE or BOTH credential. The db2secGenerateInitialCred API is only called when
a user ID, and possibly a password are supplied. Otherwise, the Db2 database manager specifies the
value GSS_C_NO_CREDENTIAL when calling the gss_init_sec_context API to signify that the default
credential obtained from the current login context is to be used.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secGenerateInitialCred)
 (const char *userid,
 db2int32 useridlen,
 const char *usernamespace,
 db2int32 usernamespacelen,
 db2int32 usernamespacetype,
 const char *password,
 db2int32 passwordlen,
 const char *newpassword,
 db2int32 newpasswordlen,
 const char *dbname,
 db2int32 dbnamelen,
 gss_cred_id_t *pGSSCredHandle,
 void **InitInfo,
 char **errormsg,
 db2int32 *errormsglen);

db2secGenerateInitialCred API parameters
userid

Input. The user ID whose password is to be verified on the database server.
useridlen

Input. Length in bytes of the userid parameter value.
usernamespace

Input. The namespace from which the user ID was obtained.
usernamespacelen

Input. Length in bytes of the usernamespace parameter value.
usernamespacetype

Input. The type of namespace.
password

Input. The password to be verified.

300 IBM Db2 11.5: Database Security Guide

passwordlen
Input. Length in bytes of the password parameter value.

newpassword
Input. A new password if the password is to be changed. If no change is requested, the
newpassword parameter is set to NULL. If it is not NULL, the API should validate the old
password before setting the password to its new value. The API does not have to honor a request
to change the password, but if it does not, it should immediately return with the return value
DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without validating the old password.

newpasswordlen
Input. Length in bytes of the newpassword parameter value.

dbname
Input. The name of the database being connected to. The API is free to ignore this parameter, or the
API can return the value DB2SEC_PLUGIN_CONNECTION_DISALLOWED if it has a policy of restricting
access to certain databases to users who otherwise have valid passwords.

dbnamelen
Input. Length in bytes of the dbname parameter value.

pGSSCredHandle
Output. Pointer to the GSS-API credential handle.

InitInfo
Output. A pointer to data that is not known to Db2. The plug-in can use this memory to maintain
a list of resources that are allocated in the process of generating the credential handle. The Db2
database manager calls the db2secFreeInitInfo API at the end of the authentication process, at
which point these resources are freed. If the db2secGenerateInitialCred API does not need to
maintain such a list, then it should return NULL.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secGenerateInitialCred API execution is not successful.

Note: For this API, error messages should not be created if the return value indicates a bad user ID
or password. An error message should be returned only if there is an internal error in the API that
prevented it from completing properly.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secGetAuthIDs API - Get authentication IDs
Returns an SQL authid for an authenticated user. This API is called during database connections for both
user ID/password and GSS-API authentication methods.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secGetAuthIDs)
 (const char *userid,
 db2int32 useridlen,
 const char *usernamespace,
 db2int32 usernamespacelen,
 db2int32 usernamespacetype,
 const char *dbname,
 db2int32 dbnamelen,
 void **token,
 char SystemAuthID[DB2SEC_MAX_AUTHID_LENGTH],
 db2int32 *SystemAuthIDlen,
 char InitialSessionAuthID[DB2SEC_MAX_AUTHID_LENGTH],
 db2int32 *InitialSessionAuthIDlen,
 char username[DB2SEC_MAX_USERID_LENGTH],
 db2int32 *usernamelen,
 db2int32 *initsessionidtype,
 char **errormsg,
 db2int32 *errormsglen);

Chapter 9. Security plug-in APIs 301

db2secGetAuthIDs API parameters
userid

Input. The authenticated user. This is usually not used for GSS-API authentication unless a trusted
context is defined to permit switch user operations without authentication. In those situations, the
user name provided for the switch user request is passed in this parameter.

useridlen
Input. Length in bytes of the userid parameter value.

usernamespace
Input. The namespace from which the user ID was obtained.

usernamespacelen
Input. Length in bytes of the usernamespace parameter value.

usernamespacetype
Input. Namespace type value. Currently, the only supported namespace type value is
DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a username style like domain\myname).

dbname
Input. The name of the database being connected to. The API can ignore this, or it can return differing
authids when the same user connects to different databases. This parameter can be NULL.

dbnamelen
Input. Length in bytes of the dbname parameter value. This parameter is set to 0 if dbname parameter
is NULL.

token
Input or output. Data that the plug-in might pass to the db2secGetGroupsForUser API. For GSS-
API, this is a context handle (gss_ctx_id_t). Ordinarily, token is an input-only parameter and
its value is taken from the db2secValidatePassword API. It can also be an output parameter
when authentication is done on the client and therefore db2secValidatePassword API is not
called. In environments where a trusted context is defined that allows switch user operations without
authentication, the db2secGetAuthIDs API must be able to accommodate receiving a NULL value
for this token parameter and be able to derive a system authorization ID based on the userid and
useridlen input parameters mentioned previously.

SystemAuthID
Output. The system authorization ID that corresponds to the ID of the authenticated user. The size is
255 bytes, but the Db2 database manager currently uses only up to (and including) 30 bytes.

SystemAuthIDlen
Output. Length in bytes of the SystemAuthID parameter value.

InitialSessionAuthID
Output. Authid used for this connection session. This is usually the same as the SystemAuthID
parameter but can be different in some situations, for example, when issuing a SET SESSION
AUTHORIZATION statement. The size is 255 bytes, but the Db2 database manager currently uses
only up to (and including) 30 bytes.

InitialSessionAuthIDlen
Output. Length in bytes of the InitialSessionAuthID parameter value.

username
Output. A username corresponding to the authenticated user and authid. This will be used only for
auditing and will be logged in the "User ID" field in the audit record for CONNECT statement. If the API
does specify the username parameter, the Db2 database manager copies it from the userid.

usernamelen
Output. Length in bytes of the username parameter value.

initsessionidtype
Output. Session authid type indicating whether the InitialSessionAuthid parameter is a role or
an authid. The API should return one of the following values (defined in db2secPlugin.h):

• DB2SEC_ID_TYPE_AUTHID (0)

302 IBM Db2 11.5: Database Security Guide

• DB2SEC_ID_TYPE_ROLE (1)

Currently, Db2 only supports authid (DB2SEC_ID_TYPE_AUTHID).
errormsg

Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secGetAuthIDs API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secGetDefaultLoginContext API - Get default login context
Determines the user associated with the default login context, that is, determines the Db2 authid of the
user invoking a Db2 command without explicitly specifying a user ID (either an implicit authentication to a
database, or a local authorization). This API must return both an authid and a user ID.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secGetDefaultLoginContext)
 (char authid[DB2SEC_MAX_AUTHID_LENGTH],
 db2int32 *authidlen,
 char userid[DB2SEC_MAX_USERID_LENGTH],
 db2int32 *useridlen,
 db2int32 useridtype,
 char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
 db2int32 *usernamespacelen,
 db2int32 *usernamespacetype,
 const char *dbname,
 db2int32 dbnamelen,
 void **token,
 char **errormsg,
 db2int32 *errormsglen);

db2secGetDefaultLoginContext API parameters
authid

Output. The parameter in which the authid should be returned. The returned value must conform to
Db2 authid naming rules, or the user will not be authorized to perform the requested action.

authidlen
Output. Length in bytes of the authid parameter value.

userid
Output. The parameter in which the user ID associated with the default login context should be
returned.

useridlen
Output. Length in bytes of the userid parameter value.

useridtype
Input. Indicates if the real or effective user ID of the process is being specified. On Windows, only the
real user ID exists. On UNIX and Linux, the real user ID and effective user ID can be different if the
uid user ID for the application is different than the ID of the user executing the process. Valid values
for the userid parameter (defined in db2secPlugin.h) are:
DB2SEC_PLUGIN_REAL_USER_NAME

Indicates that the real user ID is being specified.
DB2SEC_PLUGIN_EFFECTIVE_USER_NAME

Indicates that the effective user ID is being specified.

Note: Some plug-in implementations might not distinguish between the real and effective user ID.
In particular, a plug-in that does not use the UNIX or Linux identity of the user to establish the Db2
authorization ID can safely ignore this distinction.

Chapter 9. Security plug-in APIs 303

usernamespace
Output. The namespace of the user ID.

usernamespacelen
Output. Length in bytes of the usernamespace parameter value. Under the limitation that the
usernamespacetype parameter must be set to the value DB2SEC_NAMESPACE_SAM_COMPATIBLE
(defined in db2secPlugin.h), the maximum length currently supported is 15 bytes.

usernamespacetype
Output. Namespace type value. Currently, the only supported namespace type is
DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a username style like domain\myname).

dbname
Input. Contains the name of the database being connected to, if this call is being used in the context
of a database connection. For local authorization actions or instance attachments, this parameter is
set to NULL.

dbnamelen
Input. Length in bytes of the dbname parameter value.

token
Output. This is a pointer to data allocated by the plug-in that it might pass to subsequent
authentication calls in the plug-in, or possibly to the group retrieval plug-in. The structure of this
data is determined by the plug-in writer.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that
can be returned in this parameter if the db2secGetDefaultLoginContext API execution is not
successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secProcessServerPrincipalName API - Process service principal name
returned from server

The db2secProcessServerPrincipalName API processes the service principal name returned from
the server and returns the principal name in the gss_name_t internal format to be used with the
gss_init_sec_context API.

The db2secProcessServerPrincipalName API also processes the service principal name cataloged
with the database directory when Kerberos authentication is used. Ordinarily, this conversion uses
the gss_import_name API. After the context is established, the gss_name_t object is freed
through the call to gss_release_name API. The db2secProcessServerPrincipalName API
returns the value DB2SEC_PLUGIN_OK if the gssName parameter points to a valid GSS name; a
DB2SEC_PLUGIN_BAD_PRINCIPAL_NAME error code is returned if the principal name is invalid.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secProcessServerPrincipalName)
 (const char *name,
 db2int32 namelen,
 gss_name_t *gssName,
 char **errormsg,
 db2int32 *errormsglen);

db2secProcessServerPrincipalName API parameters
name

Input. Text name of the service principal in GSS_C_NT_USER_NAME format; for example, service/
host@REALM.

304 IBM Db2 11.5: Database Security Guide

namelen
Input. Length in bytes of the name parameter value.

gssName
Output. Pointer to the output service principal name in the GSS-API internal format.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can
be returned in this parameter if the db2secProcessServerPrincipalName API execution is not
successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secRemapUserid API - Remap user ID and password
This API is called by the Db2 database manager on the client side to remap a given user ID and password
(and possibly new password and usernamespace) to values different from those given at connect time.

The Db2 database manager only calls this API if a user ID and a password are supplied at connect time.
This prevents a plug-in from remapping a user ID by itself to a user ID/password pair. This API is optional
and is not called if it is not provided or implemented by the security plug-in.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secRemapUserid)
 (char userid[DB2SEC_MAX_USERID_LENGTH],
 db2int32 *useridlen,
 char usernamespace[DB2SEC_MAX_USERNAMESPACE_LENGTH],
 db2int32 *usernamespacelen,
 db2int32 *usernamespacetype,
 char password[DB2SEC_MAX_PASSWORD_LENGTH],
 db2int32 *passwordlen,
 char newpasswd[DB2SEC_MAX_PASSWORD_LENGTH],
 db2int32 *newpasswdlen,
 const char *dbname,
 db2int32 dbnamelen,
 char **errormsg,
 db2int32 *errormsglen);

db2secRemapUserid API parameters
userid

Input or output. The user ID to be remapped. If there is an input user ID value, then the API must
provide an output user ID value that can be the same or different from the input user ID value. If there
is no input user ID value, then the API should not return an output user ID value.

useridlen
Input or output. Length in bytes of the userid parameter value.

usernamespace
Input or output. The namespace of the user ID. This value can optionally be remapped. If no input
parameter value is specified, but an output value is returned, then the usernamespace will be
used by the Db2 database manager only for CLIENT type authentication and is disregarded for other
authentication types.

usernamespacelen
Input or output. Length in bytes of the usernamespace parameter value. Under
the limitation that the usernamespacetype parameter must be set to the value
DB2SEC_NAMESPACE_SAM_COMPATIBLE (defined in db2secPlugin.h), the maximum length
currently supported is 15 bytes.

Chapter 9. Security plug-in APIs 305

usernamespacetype
Input or output. Old and new namespace type value. Currently, the only supported namespace
type value is DB2SEC_NAMESPACE_SAM_COMPATIBLE (corresponds to a username style like
domain\myname).

password
Input or output. As an input, it is the password that is to be remapped. As an output it is the remapped
password. If an input value is specified for this parameter, the API must be able to return an output
value that differs from the input value. If no input value is specified, the API must not return an output
password value.

passwordlen
Input or output. Length in bytes of the password parameter value.

newpasswd
Input or output. As an input, it is the new password that is to be set. As an output it is the confirmed
new password.

Note: This is the new password that is passed by the Db2 database manager into the newpassword
parameter of the db2secValidatePassword API on the client or the server (depending on the
value of the authentication database manager configuration parameter). If a new password was
passed as input, then the API must be able to return an output value and it can be a different new
password. If there is no new password passed in as input, then the API should not return an output
new password.

newpasswdlen
Input or output. Length in bytes of the newpasswd parameter value.

dbname
Input. Name of the database to which the client is connecting.

dbnamelen
Input. Length in bytes of the dbname parameter value.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secRemapUserid API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secServerAuthPluginInit - Initialize server authentication plug-in
The db2secServerAuthPluginInit API is the initialization API for the server authentication plug-in
that the Db2 database manager calls immediately after loading the plug-in.

In the case of GSS-API, the plug-in is responsible for filling in the server's principal name in
the serverPrincipalName parameter inside the gssapi_server_auth_functions structure at
initialization time and providing the server's credential handle in the serverCredHandle parameter
inside the gssapi_server_auth_functions structure. The freeing of the memory allocated to hold
the principal name and the credential handle must be done by the db2secServerAuthPluginTerm API
by calling the gss_release_name and gss_release_cred APIs.

API and data structure syntax
SQL_API_RC SQL_API_FN db2secServerAuthPluginInit
 (db2int32 version,
 void *server_fns,
 db2secGetConDetails *getConDetails_fn,
 db2secLogMessage *logMessage_fn,
 char **errormsg,
 db2int32 *errormsglen);

306 IBM Db2 11.5: Database Security Guide

db2secServerAuthPluginInit API parameters
version

Input. The highest version number of the API that the Db2 database manager currently supports. The
DB2SEC_API_VERSION value (in db2secPlugin.h) contains the latest version number of the API
that the Db2 database manager currently supports.

server_fns
Output. A pointer to memory provided by the Db2 database manager for
a db2secGssapiServerAuthFunctions_<version_number> structure (also known as
gssapi_server_auth_functions_<version_number>), if GSS-API authentication is used, or
a db2secUseridPasswordServerAuthFunctions_<version_number> structure (also known
as userid_password_server_auth_functions_<version_number>), if userid/password
authentication is used. The db2secGssapiServerAuthFunctions_<version_number> structure
and db2secUseridPasswordServerAuthFunctions_<version_number> structure contain
pointers to the APIs implemented for the GSS-API authentication plug-in and userid/password
authentication plug-in.

The server_fns parameter is cast as a pointer to the
gssapi_server_auth_functions_<version_number> structure corresponding to
the version the plug-in has implemented. The first parameter
of the gssapi_server_auth_functions_<version_number> structure or the
userid_password_server_auth_functions_<version_number> structure tells theDb2
database manager the version of the APIs that the plug-in has implemented.

Note: The casting is done only if the Db2 version is higher or equal to the version of the APIs that the
plug-in has implemented.

Inside the gssapi_server_auth_functions_<version_number> or
userid_password_server_auth_functions_<version_number> structure, the plugintype
parameter should be set to one of DB2SEC_PLUGIN_TYPE_USERID_PASSWORD,
DB2SEC_PLUGIN_TYPE_GSSAPI, or DB2SEC_PLUGIN_TYPE_KERBEROS. Other values can be
defined in future versions of the API.

getConDetails_fn
Input. Pointer to the db2secGetConDetails API, which is implemented by Db2. The
db2secServerAuthPluginInit API can call the db2secGetConDetails API in any one of the
other authentication APIs to obtain details related to the database connection. These details include
information about the communication mechanism associated with the connection (such as the IP
address, in the case of TCP/IP), which the plug-in writer might need to reference when making
authentication decisions. For example, the plug-in could disallow a connection for a particular user,
unless that user is connecting from a particular IP address. The use of the db2secGetConDetails
API is optional.

If the db2secGetConDetails API is called in a situation not involving a database connection, it
returns the value DB2SEC_PLUGIN_NO_CON_DETAILS, otherwise, it returns 0 on success.

The db2secGetConDetails API takes two input parameters; pConDetails, which is a
pointer to the db2sec_con_details_<version_number> structure, and conDetailsVersion,
which is a version number indicating which db2sec_con_details structure to use. Possible
values are DB2SEC_CON_DETAILS_VERSION_1 when db2sec_con_details1 is used or
DB2SEC_CON_DETAILS_VERSION_2 when db2sec_con_details2. The recommended version
number to use is DB2SEC_CON_DETAILS_VERSION_2.

Upon a successful return, the db2sec_con_details structure (either db2sec_con_details1 or
db2sec_con_details2) will contain the following information:

• The protocol used for the connection to the server. The listing of protocol definitions can be found in
the file sqlenv.h (located in the include directory) (SQL_PROTOCOL_*). This information is filled
out in the clientProtocol parameter.

Chapter 9. Security plug-in APIs 307

• The TCP/IP address of the inbound connect to the server if the clientProtocol is
SQL_PROTOCOL_TCPIP or SQL_PROTOCOL_TCPIP4. This information is filled out in the
clientIPAddress parameter.

• The database name the client is attempting to connect to. This will not be set for instance
attachments. This information is filled out in the dbname and dbnameLen parameters.

• A connection information bit-map that contains the same details as documented in the
connection_details parameter of the db2secValidatePassword API. This information is
filled out in the connect_info_bitmap parameter.

• The TCP/IP address of the inbound connect to the server if the clientProtocol is
SQL_PROTOCOL_TCPIP6. This information is filled out in the clientIP6Address parameter and
it is only available if DB2SEC_CON_DETAILS_VERSION_2 is used for db2secGetConDetails API
call.

logMessage_fn

Input. A pointer to the db2secLogMessage API, which is implemented by the Db2 database
manager. The db2secClientAuthPluginInit API can call the db2secLogMessage API to log
messages to the db2diag log files for debugging or informational purposes. The first parameter
(level) of db2secLogMessage API specifies the type of diagnostic errors that will be recorded in
the db2diag log files and the last two parameters are the message string and its length. The valid
values for the first parameter of db2secLogMessage API (defined in db2secPlugin.h) are:

• DB2SEC_LOG_NONE (0): No logging
• DB2SEC_LOG_CRITICAL (1): Severe Error encountered
• DB2SEC_LOG_ERROR (2): Error encountered
• DB2SEC_LOG_WARNING (3): Warning
• DB2SEC_LOG_INFO (4): Informational

The message text will appear in the db2diag log files only if the value of the level parameter of
the db2secLogMessage API is less than or equal to the diaglevel database manager configuration
parameter.

So for example, if you use the DB2SEC_LOG_INFO value, the message text will appear in the db2diag
log files only if the diaglevel database manager configuration parameter is set to 4.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secServerAuthPluginInit API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secServerAuthPluginTerm API - Clean up server authentication plug-in
resources

The db2secServerAuthPluginTerm API frees resources used by the server authentication plug-in.

This API is called by the Db2 database manager just before it unloads the server authentication plug-in.
It should be implemented in a manner that it does a proper cleanup of any resources the plug-in library
holds, for example, free any memory allocated by the plug-in, close files that are still open, and close
network connections. The plug-in is responsible for keeping track of these resources in order to free
them. This API is not called on any Windows operating systems.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secServerAuthPluginTerm)
 (char **errormsg,
 db2int32 *errormsglen);

308 IBM Db2 11.5: Database Security Guide

db2secServerAuthPluginTerm API parameters
errormsg

Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secServerAuthPluginTerm API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

db2secValidatePassword API - Validate password
Provides a method for performing user ID and password style authentication during a database connect
operation.

Note: When the API is run on the client side, the API code is run with the privileges of the user
executing the CONNECT statement. This API will only be called on the client side if the authentication
configuration parameter is set to CLIENT.

When the API is run on the server side, the API code is run with the privileges of the instance owner.

The plug-in writer should take the previous scenarios into consideration if authentication requires special
privileges (such as root level system access on UNIX).

This API must return the value DB2SEC_PLUGIN_OK (success) if the password is valid, or an error code
such as DB2SEC_PLUGIN_BADPWD if the password is invalid.

API and data structure syntax
 SQL_API_RC (SQL_API_FN *db2secValidatePassword)
 (const char *userid,
 db2int32 useridlen,
 const char *usernamespace,
 db2int32 usernamespacelen,
 db2int32 usernamespacetype,
 const char *password,
 db2int32 passwordlen,
 const char *newpasswd,
 db2int32 newpasswdlen,
 const char *dbname,
 db2int32 dbnamelen,
 db2Uint32 connection_details,
 void **token,
 char **errormsg,
 db2int32 *errormsglen);

db2secValidatePassword API parameters
userid

Input. The user ID whose password is to be verified.
useridlen

Input. Length in bytes of the userid parameter value.
usernamespace

Input. The namespace from which the user ID was obtained.
usernamespacelen

Input. Length in bytes of the usernamespace parameter value.
usernamespacetype

Input. The type of namespace. Valid values for the usernamespacetype parameter (defined in
db2secPlugin.h) are:

• DB2SEC_NAMESPACE_SAM_COMPATIBLE Corresponds to a username style like domain\myname
• DB2SEC_NAMESPACE_USER_PRINCIPAL Corresponds to a username style like

myname@domain.ibm.com

Chapter 9. Security plug-in APIs 309

Currently, the Db2 database system only supports the value
DB2SEC_NAMESPACE_SAM_COMPATIBLE. When the user ID is not available, the
usernamespacetype parameter is set to the value DB2SEC_USER_NAMESPACE_UNDEFINED
(defined in db2secPlugin.h).

password
Input. The password to be verified.

passwordlen
Input. Length in bytes of the password parameter value.

newpasswd
Input. A new password, if the password is to be changed. If no change is requested, this
parameter is set to NULL. If this parameter is not NULL, the API should validate the old
password before changing it to the new password. The API does not have to fulfill a request
to change the password, but if it does not, it should immediately return with the return value
DB2SEC_PLUGIN_CHANGEPASSWORD_NOTSUPPORTED without validating the old password.

newpasswdlen
Input. Length in bytes of the newpasswd parameter value.

dbname
Input. The name of the database being connected to. The API is free to ignore the dbname parameter,
or it can return the value DB2SEC_PLUGIN_CONNECTIONREFUSED if it has a policy of restricting
access to certain databases to users who otherwise have valid passwords. This parameter can be
NULL.

dbnamelen
Input. Length in bytes of the dbname parameter value. This parameter is set to 0 if dbname parameter
is NULL.

connection_details
Input. A 32-bit parameter of which 3 bits are currently used to store the following information:

• The rightmost bit indicates whether the source of the user ID is the default from the
db2secGetDefaultLoginContext API, or was explicitly provided during the connect.

• The second-from-right bit indicates whether the connection is local (using Inter Process
Communication (IPC) or a connect from one of the nodes in the db2nodes.cfg in the partitioned
database environment), or remote (through a network or loopback). This gives the API the
ability to decide whether clients on the same machine can connect to the Db2 server without a
password. Due to the default operating-system-based user ID/password plugin, local connections
are permitted without a password from clients on the same machine (assuming the user has
connect privileges).

• The third-from-right bit indicates whether the Db2 database manager is calling the API from the
server side or client side.

The bit values are defined in db2secPlugin.h:

• DB2SEC_USERID_FROM_OS (0x00000001) Indicates that the user ID is obtained from OS and not
explicitly given on the connect statement.

• DB2SEC_CONNECTION_ISLOCAL (0x00000002) Indicates a local connection.
• DB2SEC_VALIDATING_ON_SERVER_SIDE (0x0000004) Indicates whether the Db2 database

manager is calling from the server side or client side to validate password. If this bit value is set,
then the Db2 database manager is calling from server side; otherwise, it is calling from the client
side.

The Db2 database system default behavior for an implicit authentication is to allow the connection
without any password validation. However, plug-in developers can disallow implicit authentication by
returning a DB2SEC_PLUGIN_BADPASSWORD error.

310 IBM Db2 11.5: Database Security Guide

token
Input/output. A pointer to data which can be passed as a parameter to subsequent API calls during
the current connection. Possible APIs that might be called include db2secGetAuthIDs API and
db2secGetGroupsForUser API.

errormsg
Output. A pointer to the address of an ASCII error message string allocated by the plug-in that can be
returned in this parameter if the db2secValidatePassword API execution is not successful.

errormsglen
Output. A pointer to an integer that indicates the length in bytes of the error message string in
errormsg parameter.

Required APIs and definitions for GSS-API authentication plug-ins
The following table is a complete list of GSS-APIs required for the Db2 security plug-in interface.

The supported APIs follow these specifications: Generic Security Service Application Program Interface,
Version 2 (IETF RFC2743) and Generic Security Service API Version 2: C-Bindings (IETF RFC2744).
Before implementing a GSS-API based plug-in, you should have a complete understanding of these
specifications.

Table 40. Required APIs and Definitions for GSS-API authentication plug-ins

API type API name Description

Client-side APIs gss_init_sec_context Initiate a security context with a
peer application.

Server-side APIs gss_accept_sec_context Accept a security context initiated
by a peer application.

Server-side APIs gss_display_name Convert an internal format name to
text.

Common APIs gss_delete_sec_context Delete an established security
context.

Common APIs gss_display_status Obtain the text error message
associated with a GSS-API status
code.

Common APIs gss_release_buffer Delete a buffer.

Common APIs gss_release_cred Release local data structures
associated with a GSS-API
credential.

Common APIs gss_release_name Delete internal format name.

Required definitions GSS_C_DELEG_FLAG Requests delegation.

Required definitions GSS_C_EMPTY_BUFFER Signifies that the
gss_buffer_desc does not
contain any data.

Required definitions GSS_C_GSS_CODE Indicates a GSS major status code.

Required definitions GSS_C_INDEFINITE Indicates that the mechanism does
not support context expiration.

Required definitions GSS_C_MECH_CODE Indicates a GSS minor status code.

Required definitions GSS_C_MUTUAL_FLAG Mutual authentication requested.

Chapter 9. Security plug-in APIs 311

Table 40. Required APIs and Definitions for GSS-API authentication plug-ins (continued)

API type API name Description

Required definitions GSS_C_NO_BUFFER Signifies that the gss_buffer_t
variable does not point to a valid
gss_buffer_desc structure.

Required definitions GSS_C_NO_CHANNEL_BINDINGS No communication channel
bindings.

Required definitions GSS_C_NO_CONTEXT Signifies that the gss_ctx_id_t
variable does not point to a valid
context.

Required definitions GSS_C_NO_CREDENTIAL Signifies that gss_cred_id_t
variable does not point to a valid
credential handle.

Required definitions GSS_C_NO_NAME Signifies that the gss_name_t
variable does not point to a valid
internal name.

Required definitions GSS_C_NO_OID Use default authentication
mechanism.

Required definitions GSS_C_NULL_OID_SET Use default mechanism.

Required definitions GSS_S_COMPLETE API completed successfully.

Required definitions GSS_S_CONTINUE_NEEDED Processing is not complete and the
API must be called again with the
reply token received from the peer.

Restrictions for GSS-API authentication plug-ins
The following list describes the restrictions for GSS-API authentication plug-ins.

• The default security mechanism is always assumed; therefore, there is no OID consideration.
• The only GSS services requested in gss_init_sec_context() are mutual authentication and

delegation. The Db2 database manager always requests a ticket for delegation, but does not use that
ticket to generate a new ticket.

• Only the default context time is requested.
• Context tokens from gss_delete_sec_context() are not sent from the client to the server and

vice-versa.
• Anonymity is not supported.
• Channel binding is not supported
• If the initial credentials expire, the Db2 database manager does not automatically renew them.
• The GSS-API specification stipulates that even if gss_init_sec_context() or
gss_accept_sec_context() fail, either function must return a token to send to the peer.
However, because of DRDA limitations, the Db2 database manager only sends a token if
gss_init_sec_context() fails and generates a token on the first call.

312 IBM Db2 11.5: Database Security Guide

Chapter 10. Communication buffer exit libraries
With communication buffer exit libraries, you can examine communication buffers to provide solutions
such as auditing or other security solutions that are based on the contents of the buffers.

Important: The DATA_ENCRYPT authentication type is deprecated and might be removed in a future
release. To encrypt data in-transit between clients and Db2 databases, we recommend that you use the
Db2 database system support of Transport Layer Security (TLS). For more information, see Configuring
TLS support in a Db2 instance in the Data encryption section of the Db2 Security Guide.

Db2 provides access to each buffer received from clients, and each buffer about to be sent to clients.
Buffers are provided before they are encrypted with either DATA_ENCRYPT authentication or TLS. Db2
uses the DRDA protocol to communicate between clients and the server. The communication buffers that
are passed to the communication buffer exit library are formatted according to the DRDA protocol. The
communication buffer exit library must understand the DRDA protocol that is used for communication.

Db2 provides the buffers regardless of communication protocol. Communication buffer exit libraries work
consistently with TCPIP (IPv4 and IPv6), TLS, Inter-Process Communication (IPC), and named pipe.

In addition to the buffers, Db2 also makes available identity information, including the user name and
session authorization ID established for the connection to the database. This information is useful for
scenarios that involve GSS-API plug-ins such as Kerberos. In this scenario, there is no standard user
name, but rather generic tickets from which the database manager derives the user name. This detail is
not available solely by looking at the communication buffer.

The database manager ensures that only trusted libraries are loaded. The libraries must be installed in a
specific location that can be modified by only the instance owner. Furthermore, only a user with SYSADM
authority can enable the library. This authority level is the same which is required to enable encryption
(DATA_ENCRYPT or TLS).

The communication buffer exit library can terminate a connection if any buffer provided contains data that
the library considers harmful. Both data that is sent to the server, and data that is returned to the client
is included. For example, the communication buffer exit library might detect that the data returned from
a select statement is inappropriate for the client to receive. A return code from the library indicates to
the database manager that the connection must be terminated. The database managers stops that or any
further communication buffers to the client and terminates the connection.

Note: Third-party vendors typically provide these communication buffer exit libraries. Db2 does provide
samples of libraries in the sqllib/samples/security/commexit directory. You might choose to
develop your own libraries with the samples as a guide.

Communication exit library deployment
Certain considerations must be taken with the deployment of a communication exit library.

In typical scenarios communication exit libraries are provided by vendors. In these scenarios, the
deployment of communication exit libraries is handled by the vendor supplied installation scripts. The
deployment steps are outlined here so you can deploy your own communication exit library if you
choose to do so. The steps apply to the deployment of both runtime communication exit libraries and
communication buffer exit libraries.

Communication exit library location
Communication exit libraries must exist in specific directories.

The database manager looks for communication exit libraries in the following directories:
Linux and UNIX 32-bit

$DB2PATH/security32/plugin/commexit

© Copyright IBM Corp. 2016, 2023 313

Linux and UNIX 64-bit
$DB2PATH/security64/plugin/commexit

Windows 32-bit and 64-bit
$DB2PATH\security\plugin\commexit\instance_name

Note: On Windows operating systems, the subdirectories instance_name and commexit are not
created automatically. The instance owner must manually create them.

Naming conventions and permissions of communication exit libraries
Communication exit libraries must adhere to platform-specific naming and permission rules.

The maximum length of a communication exit library name, not including the file extension and the 64
suffix, is limited to 32 bytes.

The following list outlines the naming convention for the library file extension on each operating system:
AIX

The extension must be .a or .so

Note: If both the .a and .so extensions exist, .a is used.

Linux and HP IPF
The extension must be.so

Windows
The extension must be .dll

The following list outlines the permission for the library file on each operating system:
UNIX and Linux

Owned by the instance owner and readable and executable by only the instance owner.
Windows

Owned by a member of the DB2AMINS group and readable and executable by a member of the
DB2ADMINS group.

Examples

The following example shows the communication exit library extensions on a library that is called
mycommexit on all operating systems:

• AIX 64-bit mycommexit.a or mycommexit.so
• Linux 32-bit, or 64-bit, HP 64-bit on IPF: mycommexit.so
• Windows 32-bit: mycommexit.dll
• Windows 64-bit: mycommexit64.dll

Note: The file name suffix 64 is required only on the library name for Windows 64-bit.

When you update the database manager configuration with the name of a communication exit library,
use the full name of the library without the 64 suffix. The file extension, and qualified path to the file,
must not be specified either when you update the database manager configuration.

The following example updates the database manager configuration on a Windows 64-bit system that
sets the mycommexit64.dll library as the communication exit library.

UPDATE DBM CFG USING COMM_EXIT_LIST mycommexit

Note: The COMM_EXIT_LIST name is case-sensitive, and must exactly match the library name.

314 IBM Db2 11.5: Database Security Guide

Enabling communication exit libraries outside of Db2 pureScale
environments

The steps that are outlined in this task are typically run by third party supplied installation scripts. The
steps are outlined to help you enable a communication exit library that you develop.

Before you begin
You must have SYSADM authority to run the steps in this task.

Restrictions

The communication exit library files must follow strict file permission guidelines. For more information
about these guidelines, see the related concepts.

Procedure
To enable a communication exit library:
1. Stop the database manager. To stop the database manager, run the db2stop command.
2. Copy the communication exit library file to the correct directory.

For more information about the location of communication exit libraries, see the related concepts. The
file can be a symbolic link to another location if wanted.

3. Update the database manager configuration parameter COMM_EXIT_LIST with the name of the
library.
To update the configuration parameter, use the UPDATE DBM CFG command.

4. Start the database manager. To start the database manager, run the db2start command.

Results
The library is loaded and initialized.

Enabling communication exit libraries in Db2 pureScale environments
The steps that are outlined in this task are typically run by third party supplied installation scripts. The
steps are outlined to help you enable a communication exit library that you develop.

About this task
By using a communication exit library that contains a version number in the file name, and a symbolic link
to this file for a library without the version number, it is possible to deploy the library on a member by
member basis. In this scenario, it is not necessary to stop the whole instance, only individual members.

Restrictions

The communication exit library files must follow strict file permission guidelines. For more information
about these guidelines, see the related concepts.

Procedure
To enable a communication exit library:
1. Copy the communication exit library that contains the version number in file name to the correct

directory.
For more about the location of communication exit libraries, see the related concepts.

2. Create a symbolic link from the library without a version to the library that contains the version in the
file name.

3. Update the database manager configuration parameter comm_exit_list with the name of the
library.

Chapter 10. Communication buffer exit libraries 315

To update the configuration parameter, use the UPDATE DBM CFG command.
4. Stop each member individually.

To stop each member, run the db2stop command on each member
5. Restart the stopped members.

To start the stopped members, run the db2start command.

Results
The library is loaded and initialized.

Communication exit library problem determination
Some options are available to help diagnose problems with a communication exit library.

The communication exit library is not provided as part of Db2. Rather, it is a library that you install. It
might be automatically installed and configured by a tool or application that you are using, or it might be
written by you.

The name of the library that is specified in the database manager configuration parameter
comm_exit_list gives some indication as to the source of the library.

If you experience any issue with the library, the documentation for the tool or application must be
consulted. The tool or application documentation outlines what problem determination steps must be
taken.

An interface to write to the db2diag log files is available to communication exit libraries. The db2diag
log files can be checked whether there are concerns if the library is functioning properly.

If there are concerns about the performance of the communication exit library, monitoring wait times can
be used to investigate how long the library is taking. For more information about these monitor tools, see
the related reference.

Communication exit library development
Certain considerations must be taken with the development of a communication exit library.

In typical scenarios communication exit libraries are provided by vendors. In these scenarios, the
development of communication buffer exit libraries is handled by the vendor.

Communication exit libraries are C or C++ shared objects that are dynamically loaded into the process
space of the database manager. You can develop your own library if you choose to do so.

How a communication exit library is loaded
When the database manager is started, the communication exit library is dynamically loaded and
initialized. The library must contain the initialization function db2commexitInit. This function is known
as the library initialization function.

The library initialization function initializes the specified communication exit library. The initialization
provides the database manager with the information needed to call the library functions. The library
initialization function accepts the following parameters:

• The highest version number of the function pointer structure that the database instance which starts
the library can support.

• A pointer to a structure which contains pointers to all the APIs that require implementation.
• A pointer to a function that adds log messages to the db2diag log files.
• A pointer to an error message string.
• The length of the error message.

The function signature for the initialization function is:

316 IBM Db2 11.5: Database Security Guide

 SQL_API_RC SQL_API_FN db2commexitInit
 (db2int32 version,
 void *commexit_fns,
 db2commexitLogMessage *logMessage_fn,
 char **errormsg,
 db2int32 *errormsglen);

The initialization function is the only function in the library that uses a prescribed function name. The
other library functions are referenced through function pointers that are returned from the initialization
function.

The specific tasks of this function are:

• Cast the functions pointer to a pointer of an appropriate functions structure.
• Assign the pointers to the other functions in the library.
• Assign the version number of the function pointer structure that is returned.

The communication exit library infrastructure supports both the communication buffer exit library and the
runtime communication exit library. The input version parameter contains the highest version numbers
for both of these libraries. This function must use the DB2COMMEXIT_GET_BUFFER_FN_VER macro to
obtain the highest supported version number of the function pointer structure for DRDA style functions.
The function must also use the DB2COMMEXIT_GET_RUNTIME_FN_VER macro to obtain the highest
supported version number of the function pointer structure for the runtime communication exit library
functions.

To use the communication buffer exit library, this function must cast commexit_fns to
db2commexitFunctions_v1. The function must also define the function pointers and call the
DB2COMMEXIT_SET_BUFFER_FN_VER macro to set the version number. To use the runtime
communication exit library, this function must cast commexit_fns to db2commexitRuntimeFunctions_v1.
The function must also define the function pointers and call the DB2COMMEXIT_SET_RUNTIME_FN_VER
macro to set the version number. Only one of the macros must be called by this function.

The function db2commexitInit must be declared extern "C" if the library is compiled as C++.

Communication exit library APIs
APIs are implemented in the communication exit library. Some of the following APIs can be called by both
communication buffer exit libraries and runtime communication exit libraries. Other APIs can be called by
only one of those communication exit library types.

db2commexitInit API - Initialization
When the database manager is started with the db2start command, the communication buffer exit
library is loaded. Immediately following the load of the library, this function is called. This function is
responsible for initializing the communication buffer exit library. The function is also responsible for
returning all of the implemented functions back to the database manager. It can be called by both types
of communication exit libraries.

This function must be declared extern "C" if the library is compiled as C++.

This function is not required to be threadsafe, since it is only called a single time.

API header file
db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitInit)
(
 db2int32 version,
 void *commexit_fns,
 db2commexitLogMessage *logMessage_fn,
 char **errormsg,

Chapter 10. Communication buffer exit libraries 317

 db2int32 *errormsglen
);

db2commexiInit API Parameters
version

Input. The highest version of the API supported by the instance loading that library. The value
DB2COMMEXIT_API_VERSION, in db2commexit.h, contains the latest version number of the API
that the database manager currently supports. If the library implements a communication buffer exit
library, then db2commexitInit function must call the DB2COMMEXIT_GET_BUFFER_FN_VER macro
to get the highest version of the API supported. If the library implements a runtime communication
exit library, then db2commexitInit function must call the DB2COMMEXIT_GET_RUNTIME_FN_VER
macro to get the highest version of the API supported.

commexit_fns
Output. A pointer to the db2commexitFunctions_<version_number> structure, that
contains pointers to the APIs implemented for the communication buffer exit
library. There might be different versions of the APIs, so the commexit_fns
parameter is cast to the db2commexitFunctions_<version_number> structure
corresponding to the version implemented by the library. The first parameter of the
db2commexitFunctions_<version_number> structure indicates the version of the APIs
implemented by the plug-in. If the library implements a communication buffer exit library, the
version number must by set by calling the DB2COMMEXIT_SET_BUFFER_FN_VER macro. If the
library implements a runtime communication exit library, the version number must be set by calling
the DB2COMMEXIT_SET_RUNTIME_FN_VER macro. Another member, nonSQLAPIVersion, of the
structure tells the database manager which version number of the non-SQL APIs that the library can
handle. Currently, only DB2COMMEXIT_NONSQL_API_VERSION_KEPLER is supported.

logMessage_fn
Input. A pointer to the db2commexitLogMessage API, which is implemented by the database
manager. The db2commexitInit API can call the db2commexitLogMessage API to log messages
to the db2diag log files for debugging or informational purposes. The first parameter of the
db2commexitLogMessage API specifies the type of diagnostic errors that are recorded in the
db2diag log files and the last two parameters are the message string and its length. The valid values
for the first parameter of the db2commexitLogMessage API, defined in db2commexit.h, are:

• DB2COMMEXIT_LOG_NONE: (0) No logging
• DB2COMMEXIT_LOG_CRITICAL: (1) Severe Error encountered
• DB2COMMEXIT_LOG_ERROR: (2) Error encountered
• DB2COMMEXIT_LOG_WARNING: (3) Warning
• DB2COMMEXIT_LOG_INFO: (4) Informational

The message text is logged in the db2diag log files only if the value of the 'level' parameter of
the db2commexitLogMessage API is less than or equal to the diaglevel database manager
configuration parameter. For example, if you use the DB2COMMEXIT_LOG_INFO value, the message
text is logged only if the diaglevel database manager configuration parameter is set to 4.

errormsg
Output. A pointer to the address of an ASCII error message string. This pointer is allocated by the
plug-in and can be returned in this parameter if the function execution is not successful. This memory
is freed by calling db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error message string in the
errormsg parameter.

318 IBM Db2 11.5: Database Security Guide

db2commexitTerm API - Termination
This function frees resources that are used by the communication exit library. It can be called by both
types of communication exit libraries.

This API is called by the database manager just before it unloads the communication exit library during
db2stop processing. The API must be implemented in a manner so it does a complete cleanup of any
resources the library holds. For instance, the API must free any memory that is allocated by the library,
close files that are still open, and close network connections. The library is responsible for tracking these
resources to free them.

This function is not required to be threadsafe as it is called only one time.

API header file
db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitTerm)
(
 char **errormsg,
 db2int32 *errormsglen
);

db2commexitTerm API Parameters
errormsg

Output. A pointer to the address of an ASCII error message string that is allocated by
the communication buffer exit library. This error messages string might be returned in this
parameter if the function execution is not successful. This memory is freed by calling
db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error message string in the
errormsg parameter.

db2commexitRegister API - Registration
This function registers the agent to the connection. It is applicable only in communication buffer exit
libraries.

This function is called by the database manager whenever an agent accepts a socket and starts receiving
and sending data on the socket. This activity is typically associated with a new SQL connection to the
database or instance attachment.

This function is also called when an idle connection is dispatched to an agent to handle a new request
from the client.

This function is not directly associated with SQL connections to the database. An input parameter to the
function differentiates between a new socket and existing one that is dispatched to a new agent.

API header file
db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitRegister)
(
 void ** pConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 db2int32 state,

Chapter 10. Communication buffer exit libraries 319

 db2int64 * pReservedFlags,
 char ** errormsg,
 db2int32 * errormsglen
);

db2commexitRegister API Parameters
pConnectionContext

Input/output. A pointer to communication buffer exit library-specific data. This pointer is specific to
the inbound connection. This parameter is passed as input to each function call for that connection.
The library might allocate and store connection-specific information and make it available in each
function call. The memory for the parameter must be freed in the call to db2commexitDeregister.
The database manager cannot access the memory pointed to by this parameter.

pCommInfo
Input. A pointer to a structure that contains information which identifies the database server
and protocol-specific information for the incoming connection. Some of the fields in the structure
are not setup until multiple buffers are exchanged with the client. The fields are available in
later calls to db2commexitRecv and db2commexitSend. This scenario applies specifically to
inbound_appl_id, outbound_appl_id, and connection_type. When these values are known,
the connection_type parameter indicates whether the connection is for a local database or a
gateway connection.

State
Input. Indicates under which condition the function called. Possible values are:

• NEW_CONNECTION - indicates a new physical incoming client connection.
• AGENT_ASSOCIATION - indicates an existing idle client connection that becomes active again and is

associated with an agent to handle the request.

pReservedFlags
Input/output. Reserved for future use. The value must be set to 0 on output.

errormsg
Output. A pointer to the address of an ASCII error message string that is allocated by
the communication buffer exit library. This error messages string might be returned in this
parameter if the function execution is not successful. This memory is not freed by calling
db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error message string in the
errormsg parameter.

db2commexitDeregister API - Deregistration
This function releases the agent from the connection with which it was associated. It is applicable only in
communication buffer exit libraries.

This function is called by the database manager whenever the agent stops handling requests on the
connection. This situation occurs when the physical connection with the client is terminated, or the client
is idle and the agent is disassociating with it.

API header file
db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitDeregister)
(
 void * pConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 db2int32 state,
 db2int64 * pReservedFlags,

320 IBM Db2 11.5: Database Security Guide

 char ** errormsg,
 db2int32 * errormsglen
);

db2commexitDeregister API Parameters
pConnectionContext

Input. A pointer to communication buffer exit library-specific data. This pointer is specific to the
inbound connection. This parameter is passed as input to each function call for that connection. The
database manager cannot access the memory pointed to by this parameter. This memory must be
deallocated by this function.

pCommInfo
Input. A pointer to a structure that contains information which identifies the database server and
protocol-specific information for the incoming connection.

State
Input. Indicates under which condition the function is called. Possible values are

• CONNECTION_TERM - indicates that the physical connection with the client is terminated.
• AGENT_DISASSOCIATION - indicates that the client connection is idle and the agent is

disassociated from it.

pReservedFlags
Input/Output. Reserved for future use. The value must be set to 0 on output.

errormsg
Output. A pointer to the address of an ASCII error message string that is allocated by
the communication buffer exit library. This error messages string might be returned in this
parameter if the function execution is not successful. This memory is not freed by calling
db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error message string in the
errormsg parameter.

db2commexitRecv API - Receive
This function is called for each buffer that the database manager receives from a client. It is applicable
only in communication buffer exit libraries.

This function is called by the database manager immediately after it receives a communication buffer
from the client. The function is called after the buffer is decrypted so that the communication buffer exit
library can access the unencrypted buffer.

API header file
db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitRecv)
(
 void * pConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 const db2commexitBuffer * pBuffer,
 db2int64 * pReservedFlags,
 char ** errormsg,
 db2int32 * errormsglen
);

Chapter 10. Communication buffer exit libraries 321

db2commexitRecv API Parameters
pConnectionContext

Input. A pointer to communication buffer exit library-specific data. This pointer is specific to the
inbound connection. This parameter is passed as input to each function call for that connection. The
database manager cannot access the memory pointed to by this parameter. This memory must be
deallocated by this function.

pCommInfo
Input. A pointer to a structure that contains information which identifies the database server
and protocol-specific information for the incoming connection. Some of the fields in the structure
are not setup until multiple buffers are exchanged with the client. The fields are available in
later calls to db2commexitRecv and db2commexitSend. This scenario applies specifically to
inbound_appl_id, outbound_appl_id, and connection_type.

pBuffer
Input. A pointer to a structure that contains the length of the buffer that is received by the database
manager and a pointer to the buffer. If the buffer is encrypted, it is unencrypted before this function is
called.

pReservedFlags
Input/Output. The bit DB2COMMEXIT_RECV_IN_FLAG_END_DECRYPT is set to indicate that this call
is the final call to this function for a DSS that is encrypted. The length of the DSS that is passed
as input indicates the length of the encrypted DSS. However, the DSS is then unencrypted and the
padding removed. Since there is always padding, the length of the DSS is less than indicated. The
length indicated in the pBuffer structure is the final data for the DSS. It is possible that it is zero if a
full block size of padding is added.
For output, this value is reserved for future use. The value must be set to 0 on output.

errormsg
Output. A pointer to the address of an ASCII error message string that is allocated by
the communication buffer exit library. This error messages string might be returned in this
parameter if the function execution is not successful. This memory is not freed by calling
db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error message string in the
errormsg parameter.

db2commexitSend API - Send
This function is called for each buffer that the database manager sends to a client. It is applicable only in
communication buffer exit libraries.

This function is called by the database manager immediately before a communication buffer is sent to the
client. The function is called before the buffer is encrypted so that the communication buffer exit library
can access the unencrypted buffer.

API header file
db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitSend)
(
 void * pConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 const db2commexitBuffer * pBuffer,
 db2int64 * pReservedFlags,
 char ** errormsg,
 db2int32 * errormsglen
);

322 IBM Db2 11.5: Database Security Guide

db2commexitSend API Parameters
pConnectionContext

Input. A pointer to communication buffer exit library-specific data. This pointer is specific to the
inbound connection. This parameter is passed as input to each function call for that connection. The
database manager cannot access the memory pointed to by this parameter.

pCommInfo
Input. A pointer to a structure that contains information which identifies the database server
and protocol-specific information for the incoming connection. Some of the fields in the structure
are not setup until multiple buffers are exchanged with the client. The fields are available in
later calls to db2commexitRecv and db2commexitSend. This scenario applies specifically to
inbound_appl_id, outbound_appl_id, and connection_type.

pBuffer
Input. A pointer to a structure that contains the length of the buffer that is sent to the client and a
pointer to the buffer. If the buffer is encrypted, it is unencrypted before this function is called.

pReservedFlags
Input/Output. The bit DB2COMMEXIT_SEND_IN_FLAG_PURGE is set if the database manager
encounters an error and must purge some buffers that were prepared to send to the client. Some
of these buffers might be input to the communication buffer exit library.
For output, this value is reserved for future use. The value must be set to 0 on output.

errormsg
Output. A pointer to the address of an ASCII error message string that is allocated by
the communication buffer exit library. This error messages string might be returned in this
parameter if the function execution is not successful. This memory is not freed by calling
db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error message string in the
errormsg parameter.

db2commexitUserIdentity API - User identity
This function is called to provide the identity of the user for the current socket. It is applicable only in
communication buffer exit libraries.

This function is called to inform the communication buffer exit library of the user name and session
authorized ID used to establish the connection. The function is also called if these parameters
change because of a trusted context switch user or SET SESSION AUTHORIZATION. The user name
and session authorization ID are not determined until after the database manager authenticates the
user. This function is not called until db2commexitRegister and multiple db2commexitSend and
db2commexitRecv functions are called during authentication.

API header file
db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitUserIdentity)
(
 void * pConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 db2int32 state,
 db2int32 usernameLen,
 const char * pUserame,
 db2int32 sessionAuthidLen,
 const char * pSessionAuthid,
 db2int64 * pReservedFlags,
 char ** errormsg,
 db2int32 * errormsglen
);

Chapter 10. Communication buffer exit libraries 323

db2commexitUserIdentity API Parameters
pConnectionContext

Input. A pointer to communication buffer exit library-specific data. This pointer is specific to the
inbound connection. This parameter is passed as input to each function call for that connection. The
database manager does not access the memory pointed to by this parameter.

pCommInfo
Input. A pointer to a structure that contains information which identifies the database server
and protocol-specific information for the incoming connection. Some of the fields in the structure
are not setup until multiple buffers are exchanged with the client. The fields are available in
later calls to db2commexitRecv and db2commexitSend. This scenario applies specifically to
inbound_appl_id, outbound_appl_id, and connection_type.

State
Input. Indicates under which condition the function is called. Possible values are:

• DB2COMMEXIT_USERIDENT_NEW_CONNECTION - a new connection.
• DB2COMMEXIT_USERIDENT_TC_SWITCH_USER - a trusted context switch user is issued.
• DB2COMMEXIT_USERIDENT_SET_SESSION_USER - SET SESSION AUTHORIZATION SQL statement

is issued to change the session authorization ID.

usernameLen
Input. The length of pUsername.

pUsername
Input. The user name that is used to establish the connection.

sessionAuthidLen
Input. The length of pSessionAuthid.

pSessionAuthid
Input. The session authorization ID established for this connection.

pReservedFlags
Input/Output. Reserved for future use. The value must be set to 0 on output.

errormsg
Output. A pointer to the address of an ASCII error message string that is allocated by
the communication buffer exit library. This error messages string might be returned in this
parameter if the function execution is not successful. This memory is not freed by calling
db2commexitFreeErrormsg.

errormsglen
Output. A pointer to an integer that indicates the length, in bytes, of the error message string in the
errormsg parameter.

db2commexitFreeErrormsg API - Free error message memory
This function frees the memory that is used to hold an error message from a previous API call. It is
applicable for both types of communication exit libraries.

API header file
db2commexit.h

API and data structure syntax
SQL_API_RC (SQL_API_FN * db2commexitFreeErrormsg)
 (char * errormsg);

324 IBM Db2 11.5: Database Security Guide

db2commexitFreeErrormsg API Parameters
errormsg

Input. A pointer to the error message returned from a previous API call.

Communication buffer exit library functions structure
The db2commexitInit function takes a void * commexit_fns parameter. This parameter is cast
to the version-specific structure which contains all of the functions that are implemented by the
communication buffer exit library. The db2commexitInit function must assign the function pointers
so that the database manager can call those functions.

The structure that must be completed, including a function pointer for each API, follows.

struct db2commexitFunctions_v1
{
 db2int32 version;

 SQL_API_RC (SQL_API_FN * db2commexitTerm)
 (
 char **errormsg,
 db2int32 *errormsglen
);

 SQL_API_RC (SQL_API_FN * db2commexitRegister)
 (
 void ** ppConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 db2int32 state,
 db2int64 * pReservedFlags,
 char ** errormsg,
 db2int32 * errormsglen
);

 SQL_API_RC (SQL_API_FN * db2commexitDeregister)
 (
 void * pConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 db2int32 state,
 db2int64 * pReservedFlags,
 char ** errormsg,
 db2int32 * errormsglen
);

 SQL_API_RC (SQL_API_FN * db2commexitRecv)
 (
 void * pConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 const db2commexitBuffer * pBuffer,
 db2int64 * pReservedFlags,
 char ** errormsg,
 db2int32 * errormsglen
);

 SQL_API_RC (SQL_API_FN * db2commexitSend)
 (
 void * pConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 const db2commexitBuffer * pBuffer,
 db2int64 * pReservedFlags,
 char ** errormsg,
 db2int32 * errormsglen
);

 SQL_API_RC (SQL_API_FN * db2commexitUserIdentity)
 (
 void * pConnectionContext,
 const db2commexitCommInfo_v1 * pCommInfo,
 db2int32 state,
 db2int32 usernameLen,
 const char * pUserame,
 db2int32 sessionAuthidLen,
 const char * pSessionAuthid,
 db2int64 * pReservedFlags,
 char ** errormsg,
 db2int32 * errormsglen
);

Chapter 10. Communication buffer exit libraries 325

 SQL_API_RC (SQL_API_FN * db2commexitFreeErrormsg)
 (
 char * errormsg
);

};

Communication buffer exit library information structure
The information structure indicates the communication protocol information for the current physical
connection.

The db2commexitCommInfo_v1 structure that is passed to each communication buffer exit library
function follows. This structure is included in the db2commexit.h file.

struct db2commexitIPV4Info
{
 sockaddr_in client_sockaddr;
 sockaddr_in server_sockaddr;
};

struct db2commexitIPV6Info
{
 sockaddr_in6 client_sockaddr;
 sockaddr_in6 server_sockaddr;
};

struct db2commexitIPCInfo
{
 void * pSharedMemSegmentHandle;
};

struct db2commexitNamedPipeInfo
{
 void * handle;
};

struct db2commexitCommInfo_v1
{
 db2int32 clientProtocol; // SQL_PROTOCOL_ ...
 db2int32 connectionType; // unknown, local or gateway

 db2int32 hostnameLen;
 db2int32 instanceLen;
 db2int32 dbnameLen;
 db2int32 dbaliasLen;
 db2int32 inbound_appl_id_len;
 db2int32 outbound_appl_id_len;

 db2int32 clientPID; // Client PID
 db2int32 reserved2;

 db2NodeType member;

 char hostname[SQL_HOSTNAME_SZ+1];
 char instance[DB2COMMEXIT_INSTANCE_SZ + 1];
 char dbname[DB2COMMEXIT_DBNAME_SZ + 1];
 char dbalias[DB2COMMEXIT_DBNAME_SZ + 1];
 char inbound_appl_id[SQLM_APPLID_SZ + 1];
 char outbound_appl_id[SQLM_APPLID_SZ + 1];

 char reservedChar1[128];

 union
 {
 db2commexitIPV4Info ipv4Info;
 db2commexitIPV6Info ipv6Info;
 db2commexitIPCInfo ipcInfo;
 db2commexitNamedPipeInfo namedPipeInfo;
 }
};

326 IBM Db2 11.5: Database Security Guide

Communication exit library buffer structure
The buffer structure is the structure that is passed as input to communication exit library functions.

The buffer structure follows:

struct db2commexitBuffer
{
 const unsigned char * pBuffer;
 db2int64 buffer_len;

 db2int32 reserved1;
 db2int32 reserved2;
};

Communication buffer exit library control over connections
The communication buffer exit library can force a drop of the connection to the client at any time.

If the communication buffer exit library returns the appropriate error return code on any of
the calls to db2commexitUserIdentity, db2commexitRegister, db2commexitDeregister,
db2commexitRecv, or db2commexitSend, the database manager immediately closes the connection
with the client.

This capability allows the communication buffer exit library to determine, based on the buffers reviewed,
if some inappropriate activity is taking place. If such a determination is made, any further action by the
database manager for that connection can be prevented.

Communication exit library API versions
The Db2 database system supports multiple versions of communication exit library APIs. Versions are
numbered with integers that start with 1.

The version number that the database manager passes to the security library initialization function is the
highest supported version number of the API.

The communication exit library infrastructure supports both communication buffer exit libraries and
runtime communication exit libraries. The input version parameter contains the highest version numbers
for both sets of the libraries. Functions must use the DB2COMMEXIT_GET_BUFFER_FN_VER macro to
obtain the highest supported version number of the function pointer structure for DRDA style functions.
Functions must use the DB2COMMEXIT_GET_RUNTIME_FN_VER macro to obtain the highest supported
version number of the function pointer structure for the runtime communication exit library functions.

This function must cast commexit_fns to db2commexitFunctions_v1, define the function pointers, and
call the DB2COMMEXIT_SET_BUFFER_FN_VER macro to set the version number. To use the runtime
communication exit library, this function must cast commexit_fns to db2commexitRuntimeFunctions_v1.
The function must also define the function pointers, and call the DB2COMMEXIT_SET_RUNTIME_FN_VER
macro to set the version number. Only one of the macros must be called by this function.

The version numbers of the communication exit library APIs change only when necessary. For example,
when there are changes to the parameters of the APIs. Version numbers are not automatically changed
with database manager release numbers.

The version numbers allow the introduction of new or changed APIs. Library support for older versions is
maintained

Communication exit library error handing and return codes
When an error occurs in a communication exit library API, the API can return an ASCII text string in the
errormsg field. That ASCII text string provides a more specific description of the problem than the return
code. The database manager writes this entire string into the db2diag log files.

The memory for these error messages must be allocated by the communication exit library. Therefore, the
library must also provide an API to free this memory: db2commexitFreeErrormsg.

Chapter 10. Communication buffer exit libraries 327

In addition to the errormsg field, at initialization time a message log function pointer, logMessage_fn,
is passed to the communication buffer exit library. The library can use the function to log any debugging
information to the db2diag log files. For example:

// Log an message indicate init successful
 (*(logMessage_fn))(DB2COMMEXIT_LOG_CRITICAL,
 "comm exit initialization successful",
 strlen("comm. exit initialization successful"));

For more details about each parameter for the db2secLogMessage function, refer to the initialization
API db2commexitInit in the related reference.

Return codes
Table 41. Return codes that a communication exit library can return to the database manager.

Return code Define value Details

0 DB2COMMEXIT_SUCCESS Successful execution

-1 DB2COMMEXIT_ERR_UNKNOWN The library encountered an unexpected error.

-2 DB2COMMEXIT_ERR_DROP_CONNECTION The library determined that the connection for
which it was called must be terminated.

Communication exit library development restrictions
Certain restrictions and considerations must be taken when you develop a communication exit library.

Restrictions
C-linkage

The communication exit library must be written in C or C++ and linked with C-linkage. Header files
that provide the prototypes, data structures that are required to implement the libraries, and error
code definitions are provided only for C and C++. The function db2commexitInit must be declared
extern "C" if the library is compiled as C++.

Signal handlers
The communication exit library must not install signal handlers or change the signal mask. Doing so
interferes with the signal handlers of the database manager. Interfering with the database manager
signal handlers might seriously interfere with the ability to report and recover from errors.

Exceptions
The communication exit library APIs must not throw C++ exceptions. Such exceptions can interfere
with database manager error handling.

Thread-safe
The communication exit library functions must be thread-safe. The db2commexitInit and
db2commexitTerm functions are the only APIs that are not required to be thread-safe.

Exit handlers
The communication exit library must not install exit handlers or pthread_atfork handlers. The
use of exit handlers is not supported because the communication exit library is unloaded before the
database manager process exits.

Fork/threads
The communication exit library must not call, fork, or create new threads. This situation can lead to
undefined behavior such as traps in the database manager.

Library dependencies
On Linux and UNIX, the communication exit library is loaded from a process that is setuid or
setgid. It cannot rely on the LD_LIBRARY_PATH, SHLIB_PATH, or LIBPATH environment variables
to find dependent libraries. Therefore, the library must not depend on more libraries, unless any
dependent libraries are accessible through other methods, such as:

• The dependent libraries exist in /lib or /usr/lib.

328 IBM Db2 11.5: Database Security Guide

• The directories in which dependent libraries are found are specified OS-wide (such as in the
ld.so.conf file on Linux).

• Dependent libraries are specified in the RPATH in the library itself.

Symbol collisions
When possible, communication exit libraries might be compiled and linked with any available options
that reduce the likelihood of symbol collisions. Such as, options that reduce unbound external
symbolic references. For example, use of the -Bsymboliclinker option on HP and Linux can help
prevent problems that are related to symbol collisions. However, for libraries that are written on AIX,
do not use the -brtl linker option explicitly or implicitly.

32-bit versus 64-bit considerations
The database manager has both 32-bit and 64-bit versions, depending on the operating system.
A 32-bit communication exit library must be enabled on a 32-bit database manager. A 64-bit
communication exit library must be enabled on a 64-bit database manager. You cannot mix the two.

Stored procedures, triggers, and other internal SQL
Stored procedure interaction with the server is passed onto the communication exit library. Much of
the interaction does not occur over standard communication channels and does not fit the model
that is used for the exit library. Similarly, triggers, and other sources of internal SQL do not pass over
standard communication channels and are not passed onto the communication exit library.

Communication buffers must not be manipulated
It is expected that the communication exit library does not manipulate or change the buffers that it is
passed.

Rolling updates support
Db2 supports updating the fix pack level of individual members in Db2 pureScale environments
without stopping other members. This operation is known as rolling updates. Similarly, it is possible
to update the level of the library that is used on individual members. It is possible that two
different versions of the communication exit library might be running simultaneously on two different
members. Similarly, each member can be at a different fix pack level. The communication exit library
must tolerate such conditions without error.

Loading plug-in libraries on AIX with an extension of .a or .so
On AIX, security plug-in libraries can have a file name extension of .a or .so. The mechanism that is
used to load the plug-in library depends on which extension is used:

• Plug-in libraries with a file name extension of .a

Plug-in libraries with file name extensions of .a are assumed to be archives which contain shared
object members. These members must be named shr.o for 32-bit or shr64.o for 64-bit. A single
archive can contain both the 32-bit and 64-bit members, allowing it to be deployed on both types of
operating systems.

• Plug-in libraries with a file name extension of .so

Plug-in libraries with file name extensions of .so are assumed to be dynamically loadable shared
objects. Such an object is 32-bit or 64-bit depending on the compiler and linker options that are
used when it was built.

On all operating systems, other than AIX, security plug-in libraries are always assumed to be
dynamically loadable shared objects.

Communication exit library API calling sequences
API calling sequences differ depending on specific scenarios and which exit library you use.

The following topics outline specific scenarios that you must be aware of when you develop
communication exit libraries. Some topics apply to only communication buffer exit libraries. Some topics
apply to only runtime communication exit libraries. Some topics apply to both types of communication
exit libraries. The topics help you determine the calling sequence most appropriate for your environment.

Chapter 10. Communication buffer exit libraries 329

API calling sequence - Normal connect in a single agent
The most typical scenario is a client that connects to the database manager, issuing some SQL, and then
disconnecting. This API calling sequence applies to communication buffer exit libraries.

In this case, a single agent, or thread handles the connection, and the following calls are made:

1. db2commexitRegister for a new socket connection.
2. db2commexitRecv and db2commexitSend to handle authentication, possibly multiple times.
3. db2commexitUserIdentity for a new connection
4. db2commexitRecv and db2commexitSend to handle clients SQL requests, possibly multiple times.
5. db2commexitDeregister to terminate socket connection.

API calling sequence - Connect without a connect reset
This scenario covers a connect over an existing socket. The client might initiate another SQL connection
without first issuing a connect reset. Two API calling sequences are illustrated. One shows how to
implement the sequence for a runtime communication exit library. The other shows how to implement the
sequence for a communication buffer exit library.

Communication buffer exit library
When the database manager receives the SQL connect statement from the client, it implicitly drives
an internal connect reset before it continues with the connect. Regular requests and replies flow back
and forth as there is no change to the status of the socket. In this case, a single agent is handling
all requests. As the buffers that contain the connect request from the client is made available through
db2commexitRecv, the communication buffer exit library is able to determine a new connect is started
when the buffer is parsed. The following calls are made:

1. db2commexitRegister for a new socket connection.
2. db2commexitRecv and db2commexitSend to handle authentication, possibly multiple times.
3. db2commexitUserIdentity for a new connection.
4. db2commexitRecv and db2commexitSend to handle client SQL requests, possibly multiple times.
5. db2commexitRecv and db2commexitSend to handle authentication, possibly multiple times.
6. db2commexitUserIdentity for a new connection.
7. db2commexitRecv and db2commexitSend to handle client SQL requests, possibly multiple times.
8. db2commexitDeregister to terminate socket connection.

Note: db2commexitRegister and db2commexitDeregister are called only a single time each, even
though the database manager processed two SQL connections.

Runtime communication exit library
When the database manager receives the SQL connect statement from the client, it implicitly drives an
internal connect reset before it continues with the connect. In this case, a single agent is handling all
requests. The following calls are made:

1. db2commexitSessionInit for a new connection.
2. db2commexitSQL* to handle SQL requests.
3. db2commexitSessionTerm to close a connection.
4. db2commexitSessionInit for a new connection.
5. db2commexitSQL* to handle SQL requests.
6. db2commexitSessionTerm to close a connection.

330 IBM Db2 11.5: Database Security Guide

API calling sequence - Trusted context and switch user
This scenario is similar to connecting without a connect reset. The difference is the client requests a
trusted context switch user rather than sending a new SQL connect request. Two API calling sequences
are illustrated. One shows how to implement the sequence for a runtime communication exit library. The
other shows how to implement the sequence for a communication buffer exit library.

Communication buffer exit library
The following calls are made:

1. db2commexitRegister for a new socket connection.
2. db2commexitRecv and db2commexitSend to handle authentication, possibly multiple times.
3. db2commexitUserIdentity for a new connection
4. db2commexitRecv and db2commexitSend to handle clients SQL requests, possibly multiple times.
5. db2commexitRecv and db2commexitSend to handle authentication, possibly multiple times.

At some future point, the client sends a trusted context switch user request to the server to switch the
user for the connection.

6. db2commexitUserIdentity for a trusted context switch user.
7. db2commexitRecv and db2commexitSend to handle clients SQL requests, possibly multiple times.
8. db2commexitDeregister to terminate socket connection.

Runtime communication exit library
The following calls are made:

1. db2commexitSessionInit for a new connection.
2. db2commexitSQL* to handle SQL requests.
3. db2commexitSessionTerm to close a user session.
4. db2commexitSessionInit for a new user session.
5. db2commexitSQL* to handle SQL requests.
6. db2commexitSessionTerm to close a connection.

API calling sequence - Connection concentrator
This scenario covers the API calling sequence when connection concentrator is used. The connection
concentrator feature allows the database manager to handle many more clients than there are
coordinating agents or threads. This API calling sequence applies to communication buffer exit libraries.

When a client reaches a unit of work boundary and does not send another request immediately, client
sockets are placed into an idle pool. The agent that previously handled client requests moves on to
another client. When the idle socket has data to read, a dispatcher finds an idle agent to handle it. Over
the life of an SQL connection, there might be multiple agents that handle the client requests. Each time
the socket is moved in and out of the idle pool, db2commexitDeregister and db2commexitRegister
are called. The following calls are made:

1. db2commexitRegister for a new socket connection.
2. db2commexitRecv and db2commexitSend to handle authentication, possibly multiple times.
3. db2commexitUserIdentity for a new connection
4. db2commexitRecv and db2commexitSend to handle client SQL requests, possibly multiple times.

The client does not send another request immediately and the socket is placed into an idle pool.
5. db2commexitDeregister to disassociate with the agent.

Chapter 10. Communication buffer exit libraries 331

At some future point, the client sends another request, at which point the dispatcher chooses an idle
agent. The agent is likely a different one than used previously:

6. db2commexitRegister to associate an agent.
7. db2commexitRecv and db2commexitSend to handle client SQL requests, possibly multiple times.
8. db2commexitDeregister to terminate socket connection.

Note: There are multiple calls to db2commexitRegister and db2commexitDeregister for a single
SQL connection.

API calling sequence - SET SESSION AUTHORIZATION statement
This scenario covers the API calling sequence when the SET SESSION AUTHORIZATION statement is
used. Two API calling sequences are illustrated. One shows how to implement the sequence for a runtime
communication exit library. The other shows how to implement the sequence for a communication buffer
exit library.

Communication buffer exit library
The SET SESSION AUTHORIZATION statement changes the session authorization ID in use for the current
connection. Db2commexitUserIdentity is called to inform the communication buffer exit library that
identity information changed for the current connection. The following calls are made:

1. db2commexitRegister for a new socket connection.
2. db2commexitRecv and db2commexitSend to handle authentication, possibly multiple times.
3. db2commexitUserIdentity for a new connection.
4. db2commexitRecv and db2commexitSend to handle clients SQL requests, possibly multiple times.

The user issues a SET SESSION AUTHORIZATION statement. This request is passed to
db2commexitRecv. It is no different from other SQL statement.

5. db2commexitUserIdentity for a SET SESSION AUTHORIZATION.
6. db2commexitRecv and db2commexitSend to handle client SQL requests, possibly multiple times.
7. db2commexitDeregister to terminate socket connection.

Runtime communication exit library
The SET SESSION AUTHORIZATION statement changes the session authorization ID in use for the current
connection. Db2commexitSetSessionAuth is called to inform the communication buffer exit library
that identity information changed for the current connection. The following calls are made:

1. db2commexitSessionInit for a new connection.
2. db2commexitSQL* to handle new SQL requests.

The user issues a SET SESSION AUTHORIZATION statement. This request is no different from other
SQL statement

3. db2commexitSetSessionAuth for a SET SESSION AUTHORIZATION.
4. db2commexitSQL* to handle new SQL requests.
5. db2commexitSessionTerm to close the connection.

Considerations for setting the target logical node
Considerations must be taken when you set the target logical node with the DB2NODE variable, or with
the SET CLIENT command. The information applies to communication buffer exit libraries.

In a partitioned database environment, if the client specifies a member through the DB2NODE variable
that is not the member it is configured to connect to, the database manager switches the connection
to the new member specified in the variable. The client connection is forwarded through the connected

332 IBM Db2 11.5: Database Security Guide

member to the remote member. In this case, the communication buffer exit library is called at both
members. There are a few features to note:

• At the connected member, the client address reflects the actual client.
• At the remote member, the client address reflects the connected member.
• The outbound application id at the connected member is the same as the inbound application id at the

remote member.
• At the connected member, the database alias used reflects the database alias provided by the actual

client.
• At the remote member, the database alias used is the actual database name.

When the application IDs are established, the connectionType in the db2commexitCommInfo_v1
structure is set to GATEWAY.

Considerations for a connect gateway
Considerations must be taken when the database manager acts as a connect gateway to another DRDA
database server.

When Db2 acts as a connect gateway, the communication exit library is called in the same
manner as a standard connection. When authentication is complete and the application IDs are
established, the connectionType in the db2commexitCommInfo_v1 structure is set to GATEWAY.
The outbound_application_id matches the application ID for the connection at the DRDA database
server.

Considerations for DATA_ENCRYPT
Considerations must be taken when the DATA_ENCRYPT authentication type is used. The information
applies to only communication buffer exit libraries.

Important: The DATA_ENCRYPT authentication type is deprecated and might be removed in a future
release. To encrypt data in-transit between clients and Db2 databases, we recommend that you use the
Db2 database system support of Transport Layer Security (TLS). For more information, see Configuring
TLS support in a Db2 instance in the Data encryption section of the Db2 Security Guide.

The handling of communications that is protected with the authentication type DATA_ENCRYPT requires
special mention. Unlike SSL, the encryption and decryption necessary to support DATA_ENCRYPT is run
by the database manager. It is run after data is received from the client and before a reply is sent to the
client.

Receive and DATA_ENCRYPT
When an encrypted DSS is received from the client, the buffer is decrypted as needed by the database
manager. That is, the whole buffer is not decrypted all at one time. The communication buffer exit library
is called with the decrypted data as it is decrypted.

The DSS length, or the DSS continuation length if the DSS is longer than a logical record, contains the
length of the encrypted DSS. It does not contain the length of the decrypted buffer. As the encryption
always adds padding, this length is always larger than the plaintext length. The length of the padding for
DSS is a maximum of 8 bytes.

When the final call to db2CommexitRecv is made, the DB2COMMEXIT_RECV_IN_FLAG_END_DECRYPT
flag is passed as input to indicate the end of the encrypted DSS.

Note: It is possible the length in such a case is 0, indicating that a full block size of padding is added.

Send and DATA_ENCRYPT
When a DSS reply to the client is encrypted, multiple plaintext DSS and encrypted DSS might make
up the buffer which is sent to the client. As these DSS are prepared, they are passed as input to the
db2commexitSend routine. These passes are done one at a time as the plaintext data must be used

Chapter 10. Communication buffer exit libraries 333

as input before encryption. The database manager might receive an error condition which requires it
to purge previously prepared, but not sent, DSS. The communication buffer exit library might already
know about these libraries. The db2CommexitSend function is called with a length of 0 and a flag
DB2COMMEXIT_SEND_IN_FLAG_PURGE indicating that a purge occurred.

334 IBM Db2 11.5: Database Security Guide

Chapter 11. Audit facility record layouts
When an audit record is extracted from the audit log, each record has one of the formats shown in the
following tables. Each table is preceded by a sample record.

The description of each item in the record is shown one row at a time in the associated table. Each item is
shown in the table in the same order as it is output in the delimited file after the extract operation.

Note:

1. Depending on the audit event, not all fields in the audit records will have values. When there is no
values in the field, the field will not be shown in the audit output.

2. Some fields such as "Access Attempted" are stored in the delimited ASCII format as bit maps. In this
flat report file, however, these fields appear as a set of strings representing the bit map values.

Audit record object types
The following table shows for each audit record object type whether it can generate CHECKING,
OBJMAINT, and SECMAINT events.

Table 42. Audit Record Object Types Based on Audit Events

Object type CHECKING events OBJMAINT events SECMAINT events

ACCESS_RULE X

ALIAS X X

ALL X

AUDIT_POLICY X X

BUFFERPOOL X X

CHECK_CONSTRAINT X

DATABASE X X

DATA TYPE X

EVENT_MONITOR X X

FOREIGN_KEY X

FUNCTION X X X

FUNCTION MAPPING X X

GLOBAL_VARIABLE X X X

HISTOGRAM TEMPLATE X X

INDEX X X X

INDEX EXTENSION X

INSTANCE X

JAR_FILE X

MASK X X X

METHOD_BODY X X X

MODULE X X X

© Copyright IBM Corp. 2016, 2023 335

Table 42. Audit Record Object Types Based on Audit Events (continued)

Object type CHECKING events OBJMAINT events SECMAINT events

NICKNAME X X X

NODEGROUP X X

NONE X X X

OPTIMIZATION PROFILE X

PACKAGE X X X

PACKAGE CACHE X

PERMISSION X X X

PRIMARY_KEY X

REOPT_VALUES X

ROLE X X X

SCHEMA X X X

SECURITY LABEL X X

SECURITY LABEL COMPONENT X

SECURITY POLICY X X

SEQUENCE X X

SERVER X X X

SERVER OPTION X X

SERVICE CLASS X X

STORED_PROCEDURE X X X

SUMMARY TABLES X X X

TABLE X X X

TABLESPACE X X X

TENANT X X

THRESHOLD X X

TRIGGER X

TRUSTED CONTEXT X X X

TYPE MAPPING X X

TYPE&TRANSFORM X X

UNIQUE_CONSTRAINT X

USER MAPPING X X

USER_TEMPORARY_TABLE X X X

VIEW X X X

WORK ACTION SET X X

WORK CLASS SET X X

336 IBM Db2 11.5: Database Security Guide

Table 42. Audit Record Object Types Based on Audit Events (continued)

Object type CHECKING events OBJMAINT events SECMAINT events

WORKLOAD X X X

WRAPPER X X

XSR object X X X

Audit record layout for AUDIT events
The following table shows the layout of the audit record for AUDIT events.

Sample audit record:

timestamp=2007-04-10-08.29.52.000001;
category=AUDIT;
audit event=START;
event correlator=0;
event status=0;
userid=newton;
authid=NEWTON;
application id=*LOCAL_APPLICATION;
application name=db2audit.exe;

Table 43. Audit Record Layout for AUDIT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 AUDIT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the AUDIT
category in “Audit events” on page 369.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0
 Failed event < 0

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Chapter 11. Audit facility record layouts 337

Table 43. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Package Section SMALLINT Section number in package being used at the time the audit event
occurred

Package Version VARCHAR(64) Version of the package in use at the time the audit event
occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event
occurred. This is the SQLU_TID structure that is part of the
transaction logs.

Global Transaction
ID

VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that
is part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register at
the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context
Name

VARCHAR(255) The name of the trusted context associated with the trusted
connection.

Connection Trust
Type

CHAR(1) Possible values are:

'' - NONE
'1' - IMPLICIT_TRUSTED_CONNECTION
'2' - EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Policy Name VARCHAR(128) The audit policy name.

Policy Association
Object Type

CHAR(1) The type of the object that the audit policy is associated with.
Possible values include:

• N = Nickname
• S = MQT
• T = Table (untyped)
• i = Authorization ID
• g= Authority
• x = Trusted context
• blank = Database

338 IBM Db2 11.5: Database Security Guide

Table 43. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Policy Association
Subobject Type

CHAR(1) The type of sub-object that the audit policy is associated with. If
the Object Type is ? (authorization id), then possible values are:

• U = User
• G = Group
• R = Role

Policy Association
Object Name

VARCHAR(128) The name of the object that the audit policy is associated with.

Policy Association
Object Schema

VARCHAR(128) The schema name of the object that the audit policy is associated
with. This is NULL if the Policy Association Object Type identifies
an object to which a schema does not apply.

Audit Status CHAR(1) The status of the AUDIT category in an audit policy. Possible
values are:

• B-Both
• F-Failure
• N-None
• S-Success

Checking Status CHAR(1) The status of the CHECKING category in an audit policy. Possible
values are:

• B-Both
• F-Failure
• N-None
• S-Success

Context Status CHAR(1) The status of the CONTEXT category in an audit policy. Possible
values are:

• B-Both
• F-Failure
• N-None
• S-Success

Execute Status CHAR(1) The status of the EXECUTE category in an audit policy. Possible
values are:

• B-Both
• F-Failure
• N-None
• S-Success

Execute With Data CHAR(1) The WITH DATA option of the EXECUTE category in the audit
policy. Possible values are:

• Y-WITH DATA
• N-WITHOUT DATA

Chapter 11. Audit facility record layouts 339

Table 43. Audit Record Layout for AUDIT Events (continued)

NAME FORMAT DESCRIPTION

Objmaint Status CHAR(1) The status of the OBJMAINT category in an audit policy. Possible
values are:

• B-Both
• F-Failure
• N-None
• S-Success

Secmaint Status CHAR(1) The status of the SECMAINT category in an audit policy. See Audit
Status field for possible values.

Sysadmin Status CHAR(1) The status of the SYSADMIN category in an audit policy. Possible
values are:

• B-Both
• F-Failure
• N-None
• S-Success

Validate Status CHAR(1) The status of the VALIDATE category in an audit policy. Possible
values are:

• B-Both
• F-Failure
• N-None
• S-Success

Error Type CHAR(8) The error type in an audit policy. Possible values are: AUDIT and
NORMAL.

Data Path VARCHAR(1024) The path to the active audit logs specified on the db2audit
configure command.

Archive Path VARCHAR(1024) The path to the archived audit logs specified on the db2audit
configure command

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Tenant name VARCHAR(128) Tenant name in use at the time the audit event occurred.

Audit record layout for CHECKING events
The format of the audit record for CHECKING events is shown in the following table.

Sample audit record:

timestamp=1998-06-24-08.42.11.622984;
category=CHECKING;
audit event=CHECKING_OBJECT;
event correlator=2;
event status=0;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.newton.980624124210;
application name=testapp;
package schema=NULLID;
package name=SYSSH200;

340 IBM Db2 11.5: Database Security Guide

package section=0;
object schema=GSTAGER;
object name=NONE;
object type=REOPT_VALUES;
access approval reason=DBADM;
access attempted=STORE;

Table 44. Audit record layout for CHECKING events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 CHECKING

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the CHECKING
category in “Audit events” on page 369.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0
 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator Member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible
values include: those shown in the topic titled "Audit record
object types".

Access Approval
Reason

CHAR(34) Indicates the reason why access was approved for this audit
event. Possible values include: those shown in the topic titled
"List of possible CHECKING access approval reasons".

Access Attempted CHAR(34) Indicates the type of access that was attempted. Possible
values include: those shown in the topic titled "List of possible
CHECKING access attempted types".

Chapter 11. Audit facility record layouts 341

Table 44. Audit record layout for CHECKING events (continued)

NAME FORMAT DESCRIPTION

Package Version VARCHAR (64) Version of the package in use at the time that the audit event
occurred.

Checked
Authorization ID

VARCHAR(128) Authorization ID is checked when it is different than the
authorization ID at the time of the audit event. For example, this
can be the target owner in a TRANSFER OWNERSHIP statement.

When the audit event is SWITCH_USER, this field represents the
authorization ID that is switched to.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event
occurred. This is the SQLU_TID structure that is part of the
transaction logs.

Global Transaction
ID

VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that
is part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register at
the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context
Name

VARCHAR(255) The name of the trusted context associated with the trusted
connection.

Connection Trust
Type

CHAR(1) Possible values are:

'' - NONE
'1' - IMPLICIT_TRUSTED_CONNECTION
'2' - EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Tenant name VARCHAR(128) Tenant name in use at the time the audit event occurred.

CHECKING access approval reasons
The following list shows the possible CHECKING access approval reasons.

Note that an audit record might contain multiple access approval reasons, for example: access
approval reason=DATAACCESS,ACCESSCTRL;. When multiple access approval reasons are present,
the user must have all stated authorities and privileges in order to pass the authorization check for the
attempted access.

0x00000000000000000000000000000001 ACCESS DENIED
Access is not approved; rather, it was denied.

0x00000000000000000000000000000002 SYSADM
Access is approved; the application or user has SYSADM authority.

342 IBM Db2 11.5: Database Security Guide

0x00000000000000000000000000000004 SYSCTRL
Access is approved; the application or user has SYSCTRL authority.

0x00000000000000000000000000000008 SYSMAINT
Access is approved; the application or user has SYSMAINT authority.

0x00000000000000000000000000000010 DBADM
Access is approved; the application or user has DBADM authority.

0x00000000000000000000000000000020 DATABASE
Access is approved; the application or user has an explicit privilege on the database.

0x00000000000000000000000000000040 OBJECT
Access is approved; the application or user has a privilege on the object or function.

0x00000000000000000000000000000080 DEFINER
Access is approved; the application or user is the definer of the object or function.

0x00000000000000000000000000000100 OWNER
Access is approved; the application or user is the owner of the object or function.

0x00000000000000000000000000000200 CONTROL
Access is approved; the application or user has CONTROL privilege on the object or function.

0x00000000000000000000000000000400 BIND
Access is approved; the application or user has bind privilege on the package.

0x00000000000000000000000000000800 SYSQUIESCE
Access is approved; if the instance or database is in quiesce mode, the application or user may
connect or attach.

0x00000000000000000000000000001000 SYSMON
Access is approved; the application or user has SYSMON authority.

0x00000000000000000000000000002000 SECADM
Access is approved; the application or user has SECADM authority.

0x00000000000000000000000000004000 SETSESSIONUSER
Access is approved; the application or user has SETSESSIONUSER authority.

0x00000000000000000000000000008000 TRUSTED_CONTEXT_MATCH
Connection attributes matched the attributes of a unique trusted context defined at the Db2 server.

0x00000000000000000000000000010000 TRUSTED_CONTEXT_USE
Access is approved to use a trusted context.

0x00000000000000000000000000020000 SQLADM
Access is approved; the application or user has SQLADM authority.

0x00000000000000000000000000040000 WLMADM
Access is approved; the application or user has WLMADM authority.

0x00000000000000000000000000080000 EXPLAIN
Access is approved; the application or user has EXPLAIN authority.

0x00000000000000000000000000100000 DATAACCESS
Access is approved; the application or user has DATAACCESS authority.

0x00000000000000000000000000200000 ACCESSCTRL
Access is approved; the application or user has ACCESSSCTRL authority.

0x00000000000000000000000000400000 CREATE_SECURE_OBJECT
Access is approved; the application or user has the SECUREOBJECTAUTH authority.

0x00000000000000000000000000800000 SCHEMA
Access is approved; the application or user has the SELECTIN, INSERTIN, UPDATEIN, or DELETEIN
privileges or the SCHEMA_LOAD authority.

0x00000000000000000000000001000000 SCHEMAADM
Access is approved; the application or user has the SCHEMAADM authority.

0x00000000000000000000000002000000 SCHEMA_ACCESSCTRL
Access is approved; the application or user has the SCHEMA_ACCESSCTRL authority.

Chapter 11. Audit facility record layouts 343

0x00000000000000000000000004000000 SCHEMA_DATAACCESS
Access is approved; the application or user has the SCHEMA_DATAACCESS authority.

CHECKING access attempted types
The following list shows the possible CHECKING access attempted types.

If Audit Event is CHECKING_TRANSFER, then the audit entry reflects that a privilege is held or not.

0x00000000000000000000000000000001 CONTROL
Attempt to verify whether CONTROL privilege is held.

0x00000000000000000000000000000002 ALTER
Attempt to alter an object or to verify whether ALTER privilege is held if Audit Event is
CHECKING_TRANSFER.

0x00000000000000000000000000000004 DELETE
Attempt to delete an object or to verify whether DELETE privilege is held if Audit Event is
CHECKING_TRANSFER.

0x00000000000000000000000000000008 INDEX
Attempt to use an index or to verify whether INDEX privilege is held if Audit Event is
CHECKING_TRANSFER.

0x00000000000000000000000000000010 INSERT
Attempt to insert into an object or to verify whether INSERT privilege is held if Audit Event is
CHECKING_TRANSFER.

0x00000000000000000000000000000020 SELECT
Attempt to query a table or view or to verify whether SELECT privilege is held if Audit Event is
CHECKING_TRANSFER.

0x00000000000000000000000000000040 UPDATE
Attempt to update data in an object or to verify whether UPDATE privilege is held if Audit Event is
CHECKING_TRANSFER.

0x00000000000000000000000000000080 REFERENCE
Attempt to establish referential constraints between objects or to verify whether REFERENCE
privilege is held if Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000000000100 CREATE
Attempt to create an object.

0x00000000000000000000000000000200 DROP
Attempt to drop an object.

0x00000000000000000000000000000400 CREATEIN
Attempt to create an object within another schema.

0x00000000000000000000000000000800 DROPIN
Attempt to drop an object found within another schema.

0x00000000000000000000000000001000 ALTERIN
Attempt to alter or modify an object found within another schema.

0x00000000000000000000000000002000 EXECUTE
Attempt to execute or run an application or to invoke a routine, create a function sourced from the
routine (applies to functions only), or reference a routine in any DDL statement or to verify whether
EXECUTE privilege is held if Audit Event is CHECKING_TRANSFER.

0x00000000000000000000000000004000 BIND
Attempt to bind or prepare an application.

0x00000000000000000000000000008000 SET_EVENT MONITOR
Attempt to set event monitor switches.

0x00000000000000000000000000010000 SET_CONSTRAINTS
Attempt to set constraints on an object.

344 IBM Db2 11.5: Database Security Guide

0x00000000000000000000000000020000 COMMENT ON
Attempt to create comments on an object.

0x00000000000000000000000000040000 GRANT
Attempt to grant privileges or roles on an object to another authorization ID.

0x00000000000000000000000000080000 REVOKE
Attempt to revoke privileges or roles from an object from an authorization ID.

0x00000000000000000000000000100000 LOCK
Attempt to lock an object.

0x00000000000000000000000000200000 RENAME
Attempt to rename an object.

0x00000000000000000000000000400000 CONNECT
Attempt to connect to a database.

0x00000000000000000000000000800000 MEMBER_OF_SYS_GROUP
Attempt to access or use a member of the SYS group.

0x00000000000000000000000001000000 ALL
Attempt to execute a statement with all required privileges on objects held (only used for DBADM/
SYSADM).

0x00000000000000000000000002000000 DROP ALL
Attempt to drop multiple objects.

0x00000000000000000000000004000000 LOAD
Attempt to load a table in a table space.

0x00000000000000000000000008000000 USE
Attempt to create a table in a table space or to verify whether USE privilege is held if Audit Event is
CHECKING_TRANSFER.

0x00000000000000000000000010000000 SET_SESSION_USER
Attempt to execute the SET SESSION_USER statement.

0x00000000000000000000000020000000 FLUSH
Attempt to execute the FLUSH statement.

0x00000000000000000000000040000000 STORE
Attempt to view the values of a reoptimized statement in the EXPLAIN_PREDICATE table.

0x00000000000000000000000100000000 SET_OWNER
Attempt to set an owner that does not match the current user when binding a package.

0x00000000000000000000000200000000 SET_PASSTHRU
Attempt to issue the SET PASSTHRU statement.

0x00000000000000000000000400000000 TRANSFER
Attempt to transfer an object.

0x00000000000000000000000800000000 ALTER_WITH_GRANT
Attempt to verify whether ALTER with GRANT privilege is held.

0x00000000000000000000001000000000 DELETE_WITH_GRANT
Attempt to verify whether DELETE with GRANT privilege is held.

0x00000000000000000000002000000000 INDEX_WITH_GRANT
Attempt to verify whether INDEX with GRANT privilege is held

0x00000000000000000000004000000000 INSERT_WITH_GRANT
Attempt to verify whether INSERT with GRANT privilege is held.

0x00000000000000000000008000000000 SELECT_WITH_GRANT
Attempt to verify whether SELECT with GRANT privilege is held.

0x00000000000000000000010000000000 UPDATE_WITH_GRANT
Attempt to verify whether UPDATE with GRANT privilege is held.

0x00000000000000000000020000000000 REFERENCE_WITH_GRANT
Attempt to verify whether REFERENCE with GRANT privilege is held.

Chapter 11. Audit facility record layouts 345

0x00000000000000000000040000000000 USAGE
Attempt to use a sequence or an XSR object or to verify whether USAGE privilege is held if Audit Event
is CHECKING_TRANSFER.

0x00000000000000000000080000000000 SET ROLE
Attempt to set a role.

0x00000000000000000000100000000000 EXPLICIT_TRUSTED_CONNECTION
Attempt to establish an explicit trusted connection.

0x00000000000000000000200000000000 IMPLICIT_TRUSTED_CONNECTION
Attempt to establish an implicit trusted connection.

0x00000000000000000000400000000000 READ
Attempt to read a global variable.

0x00000000000000000000800000000000 WRITE
Attempt to write a global variable.

0x00000000000000000001000000000000 SWITCH_USER
Attempt to switch a user ID on an explicit trusted connection.

0x00000000000000000002000000000000 AUDIT_USING
Attempt to associate an audit policy with an object.

0x00000000000000000004000000000000 AUDIT_REPLACE
Attempt to replace an audit policy association with an object.

0x00000000000000000008000000000000 AUDIT_REMOVE
Attempt to remove an audit policy association with an object.

0x00000000000000000010000000000000 AUDIT_ARCHIVE
Attempt to archive the audit log.

0x00000000000000000020000000000000 AUDIT_EXTRACT
Attempt to extract the audit log.

0x00000000000000000040000000000000 AUDIT_LIST_LOGS
Attempt to list the audit logs.

0x00000000000000000080000000000000 IGNORE_TRIGGERS
Attempt to ignore the triggers associated with a database object.

0x00000000000000000100000000000000 PREPARE
Attempt to prepare an SQL statement and the user does not hold the necessary object level privilege
or DATAACCESS authority.

0x00000000000000000200000000000000 DESCRIBE
Attempt to describe a statement and the user does not hold the necessary object level privilege or
DATAACCESS authority.

0x00000000000000000400000000000000 SET_USAGELIST
Attempt to set the usage list state.

Audit record layout for OBJMAINT events
The format of the audit record for OBJMAINT events is shown in the following table.

Sample audit record:

timestamp=1998-06-24-08.42.41.957524;
category=OBJMAINT;
audit event=CREATE_OBJECT;
event correlator=3;
event status=0;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.newton.980624124210;
application name=testapp;
package schema=NULLID;
package name=SQLC28A1;

346 IBM Db2 11.5: Database Security Guide

package section=0;
object schema=BOSS;
object name=AUDIT;
object type=TABLE;

Table 45. Audit Record Layout for OBJMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 OBJMAINT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the OBJMAINT
category in “Audit events” on page 369.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0
 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(256) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible
values include: those shown in the topic titled "Audit record
object types".

Package Version VARCHAR(64) Version of the package in use at the time the audit event
occurred.

Security Policy
Name

VARCHAR(128) The name of the security policy if the object type is TABLE and
that table is associated with a security policy.

Chapter 11. Audit facility record layouts 347

Table 45. Audit Record Layout for OBJMAINT Events (continued)

NAME FORMAT DESCRIPTION

Alter Action VARCHAR(32) Specific Alter operation

Possible values include:

• ADD_PROTECTED_COLUMN
• ADD_COLUMN_PROTECTION
• DROP_COLUMN_PROTECTION
• ADD_ROW_PROTECTION
• ADD_SECURITY_POLICY
• ADD_ELEMENT
• ADD COMPONENT
• USE GROUP AUTHORIZATIONS
• IGNORE GROUP AUTHORIZATIONS
• USE ROLE AUTHORIZATIONS
• IGNORE ROLE AUTHORIZATIONS
• OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
• RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL
• SECURE
• UNSECURE
• ENABLE
• DISABLE
• ACTIVATE_ROW_ACCESS_CONTROL
• ACTIVATE_COLUMN_ACCESS_CONTROL
• ACTIVATE_ROW_COLUMN_ACCESS_CONTROL

Protected Column
Name

VARCHAR(128) If the Alter Action is ADD_COLUMN_PROTECTION or
DROP_COLUMN_PROTECTION this is the name of the affected
column.

Column Security
Label

VARCHAR(128) The security label protecting the column specified in the field
Column Name.

Security Label
Column Name

VARCHAR(128) Name of the column containing the security label protecting the
row.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event
occurred. This is the SQLU_TID structure that is part of the
transaction logs.

Global Transaction
ID

VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that
is part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register at
the time the audit event occurred.

348 IBM Db2 11.5: Database Security Guide

Table 45. Audit Record Layout for OBJMAINT Events (continued)

NAME FORMAT DESCRIPTION

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context
Name

VARCHAR(255) The name of the trusted context associated with the trusted
connection.

Connection Trust
Type

CHAR(1) Possible values are:

'' - NONE
'1' - IMPLICIT_TRUSTED_CONNECTION
'2' - EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Object Module VARCHAR(128) Name of module to which the object belongs.

Associated Object
Name

VARCHAR(128) Name of the object for which an association exists. The meaning
of the association depends on the Object Type for the event. If the
Object Type is PERMISSION or MASK, then the associated object
is the table on which the permission or mask has been created.

Associated Object
Schema

VARCHAR(128) Name of the object schema for which an association exists. The
meaning of the association depends on the Object Type for the
event.

Associated Object
Type

VARCHAR(128) The type of the object for which an association exists. The
meaning of the association depends on the Object Type for the
event.

Associated
Subobject Type

VARCHAR(128) The type of the subobject for which an association exists. The
meaning of the association depends on the Object Type for the
event. If the Object Type is MASK and the associated object type
is TABLE, then the associated subobject is the column of the table
on which the mask has been created.

Associated
Subobject Name

VARCHAR(128) Name of the subobject for which an association exists. The
meaning of the association depends on the Object Type for the
event.

Secured VARCHAR(32) Specifies if the object is a secured object.

State VARCHAR(32) The state of the object. The state depends on the Object Type.
Possible values include:

• ENABLED
• DISABLED

Access Control VARCHAR(32) Specifies what access control the object is protected with.
Possible values include:

• ROW - Row access control has been activated on the object
• COLUMN - Column access control has been activated on the

object
• ROW_COLUMN - Row and column access control has been

activated on the object

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Chapter 11. Audit facility record layouts 349

Table 45. Audit Record Layout for OBJMAINT Events (continued)

NAME FORMAT DESCRIPTION

Tenant name VARCHAR(128) Tenant name in use at the time the audit event occurred.

Audit record layout for SECMAINT events
The format of the audit record for SECMAINT events is shown in the following table.

Sample audit record:

timestamp=1998-06-24-11.57.45.188101;
category=SECMAINT;
audit event=GRANT;
event correlator=4;
event status=0;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.boss.980624155728;
application name=db2bp;
package schema=NULLID;
package name=SQLC28A1;
package section=0;
object schema=BOSS;
object name=T1;
object type=TABLE;
grantor=BOSS;
grantee=WORKER;
grantee type=USER;
privilege=SELECT;

Table 46. Audit Record Layout for SECMAINT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 SECMAINT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the SECMAINT
category in “Audit events” on page 369.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0
 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

350 IBM Db2 11.5: Database Security Guide

Table 46. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Object Schema VARCHAR(128) Schema of the object for which the audit event was generated.

If the object type field is ACCESS_RULE then this field contains
the security policy name associated with the rule. The name of
the rule is stored in the field Object Name.

If the object type field is SECURITY_LABEL, then this field
contains the name of the security policy that the security label
is part of. The name of the security label is stored in the field
Object Name.

Object Name VARCHAR(128) Name of object for which the audit event was generated.

Represents a role name when the audit event is any of:

• ADD_DEFAULT_ROLE
• DROP_DEFAULT_ROLE
• ALTER_DEFAULT_ROLE
• ADD_USER
• DROP_USER
• ALTER_USER_ADD_ROLE
• ALTER_USER_DROP_ROLE
• ALTER_USER_AUTHENTICATION

If the object type field is ACCESS_RULE then this field contains
the name of the rule. The security policy name associated with
the rule is stored in the field Object Schema.

If the object type field is SECURITY_LABEL, then this field
contains the name of the security label. The name of the security
policy that it is part of is stored in the field Object Schema.

Object Type VARCHAR(32) Type of object for which the audit event was generated. Possible
values include: those shown in the topic titled "Audit record
object types".

The value is ROLE when the audit event is any of:

• ADD_DEFAULT_ROLE
• DROP_DEFAULT_ROLE
• ALTER_DEFAULT_ROLE
• ADD_USER
• DROP_USER
• ALTER_USER_ADD_ROLE
• ALTER_USER_DROP_ROLE
• ALTER_USER_AUTHENTICATION

Chapter 11. Audit facility record layouts 351

Table 46. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Grantor VARCHAR(128) The ID of the grantor or the revoker of the privilege or authority.

Grantee VARCHAR(128) Grantee ID for which a privilege or authority was granted or
revoked.

Represents a trusted context object when the audit event is any
of:

• ADD_DEFAULT_ROLE
• DROP_DEFAULT_ROLE
• ALTER_DEFAULT_ROLE
• ADD_USER, DROP_USER
• ALTER_USER_ADD_ROLE
• ALTER_USER_DROP_ROLE
• ALTER_USER_AUTHENTICATION

Grantee Type VARCHAR(32) Type of the grantee that was granted to or revoked from.
Possible values include: USER, GROUP, ROLE, AMBIGUOUS, or is
TRUSTED_CONTEXT when the audit event is any of:

• ADD_DEFAULT_ROLE
• DROP_DEFAULT_ROLE
• ALTER_DEFAULT_ROLE
• ADD_USER
• DROP_USER
• ALTER_USER_ADD_ROLE
• ALTER_USER_DROP_ROLE
• ALTER_USER_AUTHENTICATION

Privilege or
Authority

CHAR(34) Indicates the type of privilege or authority granted or revoked.
Possible values include: those shown in the topic titled "List of
possible SECMAINT privileges or authorities".

The value is ROLE MEMBERSHIP when the audit event is any of
the following:

• ADD_DEFAULT_ROLE, DROP_DEFAULT_ROLE
• ALTER_DEFAULT_ROLE
• ADD_USER
• DROP_USER
• ALTER_USER_ADD_ROLE
• ALTER_USER_DROP_ROLE
• ALTER_USER_AUTHENTICATION

Package Version VARCHAR(64) Version of the package in use at the time the audit event
occurred.

352 IBM Db2 11.5: Database Security Guide

Table 46. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Access Type VARCHAR(32) The access type for which a security label is granted.

Possible values:

• READ
• WRITE
• ALL

The access type for which a security policy is altered. Possible
values:

• USE GROUP AUTHORIZATIONS
• IGNORE GROUP AUTHORIZATIONS
• USE ROLE AUTHORIZATIONS
• IGNORE ROLE AUTHORIZATIONS
• OVERRIDE NOT AUTHORIZED WRITE SECURITY LABEL
• RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL

Assumable Authid VARCHAR(128) When the privilege granted is a SETSESSIONUSER privilege this
is the authorization ID that the grantee is allowed to set as the
session user.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event
occurred. This is the SQLU_TID structure that is part of the
transaction logs.

Global Transaction
ID

VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that
is part of the transaction logs.

Grantor Type VARCHAR(32) Type of the grantor. Possible values include: USER.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register at
the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context
User

VARCHAR(128) Identifies a trusted context user when the audit event is
ADD_USER or DROP_USER.

Trusted Context
User Authentication

INTEGER Specifies the authentication setting for a trusted context
user when the audit event is ADD_USER, DROP_USER or
ALTER_USER_AUTHENTICATION

1 : Authentication is required
0 : Authentication is not required

Trusted Context
Name

VARCHAR(255) The name of the trusted context associated with the trusted
connection.

Chapter 11. Audit facility record layouts 353

Table 46. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Connection Trust
Type

CHAR(1) Possible values are:

'' - NONE
'1' - IMPLICIT_TRUSTED_CONNECTION
'2' - EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Associated Object
Name

VARCHAR(128) Name of the object for which an association exists. The meaning
of the association depends on the Object Type for the event. If the
Object Type is PERMISSION or MASK, then the Associated Object
is the table on which that permission or mask has been created.

Associated Object
Schema

VARCHAR(128) Name of the object schema for which an association exists. The
meaning of the association depends on the Object Type of the
event.

Associated Object
Type

VARCHAR(128) The type of the object for which an association exists. The
meaning of the association depends on the Object Type of the
event.

Associated
Subobject Type

VARCHAR(128) The type of the subobject for which an association exists. The
meaning of the association depends on the Object Type of the
event. If the Object Type is MASK and the Associated Object type
is TABLE, then the associated subobject is the column of the table
on which the mask has been created.

Associated
Subobject Name

VARCHAR(128) Name of the subobject for which an association exists. The
meaning of the association depends on the Object Type of the
event.

Alter Action VARCHAR(32) Specific Alter Action.

Possible values include:

• SECURE
• UNSECURE
• ENABLE
• DISABLE
• ACTIVATE_ROW_ACCESS_CONTROL
• ACTIVATE_COLUMN_ACCESS_CONTROL
• ACTIVATE_ROW_COLUMN_ACCESS_CONTROL

Secured VARCHAR(32) Specifies if the object is a secure object.

State VARCHAR(32) Specifies the state of the object. The state depends on the Object
Type.

Possible values include:

• ENABLED
• DISABLED

354 IBM Db2 11.5: Database Security Guide

Table 46. Audit Record Layout for SECMAINT Events (continued)

NAME FORMAT DESCRIPTION

Access Control VARCHAR(32) Specifies what access control type the object is protected with.

Possible values include:

• ROW - Row access control has been activated for the object
• COLUMN - Column access control has been activated for the

object
• ROW_COLUMN - Row and column access have been activated

for the object

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Tenant name VARCHAR(128) Tenant name in use at the time the audit event occurred.

SECMAINT privileges or authorities
The following list shows the possible SECMAINT privileges or authorities.

0x00000000000000000000000000000001 Control Table
Control privilege granted or revoked on or from a table or view.

0x00000000000000000000000000000002 ALTER
Privilege granted or revoked to alter a table or sequence.

0x00000000000000000000000000000004 ALTER with GRANT
Privilege granted or revoked to alter a table or sequence with granting of privileges allowed.

0x00000000000000000000000000000008 DELETE TABLE
Privilege granted or revoked to drop a table or view.

0x00000000000000000000000000000010 DELETE TABLE with GRANT
Privilege granted or revoked to drop a table with granting of privileges allowed.

0x00000000000000000000000000000020 Table Index
Privilege granted or revoked on or from an index.

0x00000000000000000000000000000040 Table Index with GRANT
Privilege granted or revoked on or from an index with granting of privileges allowed.

0x00000000000000000000000000000080 Table INSERT
Privilege granted or revoked on or from an insert on a table or view.

0x00000000000000000000000000000100 Table INSERT with GRANT
Privilege granted or revoked on or from an insert on a table with granting of privileges allowed.

0x00000000000000000000000000000200 Table SELECT
Privilege granted or revoked on or from a select on a table.

0x00000000000000000000000000000400 Table SELECT with GRANT
Privilege granted or revoked on or from a select on a table with granting of privileges allowed.

0x00000000000000000000000000000800 Table UPDATE
Privilege granted or revoked on or from an update on a table or view.

0x00000000000000000000000000001000 Table UPDATE with GRANT
Privilege granted or revoked on or from an update on a table or view with granting of privileges
allowed.

0x00000000000000000000000000002000 Table REFERENCE
Privilege granted or revoked on or from a reference on a table.

Chapter 11. Audit facility record layouts 355

0x00000000000000000000000000004000 Table REFERENCE with GRANT
Privilege granted or revoked on or from a reference on a table with granting of privileges allowed.

0x00000000000000000000000000020000 CREATEIN Schema
CREATEIN privilege granted or revoked on or from a schema.

0x00000000000000000000000000040000 CREATEIN Schema with GRANT
CREATEIN privilege granted or revoked on or from a schema with granting of privileges allowed.

0x00000000000000000000000000080000 DROPIN Schema
DROPIN privilege granted or revoked on or from a schema.

0x00000000000000000000000000100000 DROPIN Schema with GRANT
DROPIN privilege granted or revoked on or from a schema with granting of privileges allowed.

0x00000000000000000000000000200000 ALTERIN Schema
ALTERIN privilege granted or revoked on or from a schema.

0x00000000000000000000000000400000 ALTERIN Schema with GRANT
ALTERIN privilege granted or revoked on or from a schema with granting of privileges allowed.

0x00000000000000000000000000800000 DBADM Authority
DBADM authority granted or revoked.

0x00000000000000000000000001000000 CREATETAB Authority
Createtab authority granted or revoked.

0x00000000000000000000000002000000 BINDADD Authority
Bindadd authority granted or revoked.

0x00000000000000000000000004000000 CONNECT Authority
CONNECT authority granted or revoked.

0x00000000000000000000000008000000 Create not fenced Authority
Create not fenced authority granted or revoked.

0x00000000000000000000000010000000 Implicit Schema Authority
Implicit schema authority granted or revoked.

0x00000000000000000000000020000000 Server PASSTHRU
Privilege granted or revoked to use the pass-through facility with this server (federated database data
source).

0x00000000000000000000000040000000 ESTABLISH TRUSTED CONNECTION
Trusted connection was created

0x00000000000000000000000100000000 Table Space USE
Privilege granted or revoked to create a table in a table space.

0x00000000000000000000000200000000 Table Space USE with GRANT
Privilege granted or revoked to create a table in a table space with granting of privileges allowed.

0x00000000000000000000000400000000 Column UPDATE
Privilege granted or revoked on or from an update on one or more specific columns of a table.

0x00000000000000000000000800000000 Column UPDATE with GRANT
Privilege granted or revoked on or from an update on one or more specific columns of a table with
granting of privileges allowed.

0x00000000000000000000001000000000 Column REFERENCE
Privilege granted or revoked on or from a reference on one or more specific columns of a table.

0x00000000000000000000002000000000 Column REFERENCE with GRANT
Privilege granted or revoked on or from a reference on one or more specific columns of a table with
granting of privileges allowed.

0x00000000000000000000004000000000 LOAD Authority
LOAD authority granted or revoked.

0x00000000000000000000008000000000 Package BIND
BIND privilege granted or revoked on or from a package.

356 IBM Db2 11.5: Database Security Guide

0x00000000000000000000010000000000 Package BIND with GRANT
BIND privilege granted or revoked on or from a package with granting of privileges allowed.

0x00000000000000000000020000000000 EXECUTE
EXECUTE privilege granted or revoked on or from a package or a routine.

0x00000000000000000000040000000000 EXECUTE with GRANT
EXECUTE privilege granted or revoked on or from a package or a routine with granting of privileges
allowed.

0x00000000000000000000080000000000 EXECUTE IN SCHEMA
EXECUTE privilege granted or revoked for all routines in a schema.

0x00000000000000000000100000000000 EXECUTE IN SCHEMA with GRANT
EXECUTE privilege granted or revoked for all routines in a schema with granting of privileges allowed.

0x00000000000000000000200000000000 EXECUTE IN TYPE
EXECUTE privilege granted or revoked for all routines in a type.

0x00000000000000000000400000000000 EXECUTE IN TYPE with GRANT
EXECUTE privilege granted or revoked for all routines in a type with granting of privileges allowed.

0x00000000000000000000800000000000 CREATE EXTERNAL ROUTINE
CREATE EXTERNAL ROUTINE privilege granted or revoked.

0x00000000000000000001000000000000 QUIESCE_CONNECT
QUIESCE_CONNECT privilege granted or revoked.

0x00000000000000000004000000000000 SECADM Authority
SECADM authority granted or revoked

0x00000000000000000008000000000000 USAGE Authority
USAGE privilege granted or revoked on or from a sequence

0x00000000000000000010000000000000 USAGE with GRANT Authority
USAGE privilege granted or revoked on or from a sequence with granting of privileges allowed.

0x00000000000000000020000000000000 WITH ADMIN Option
WITH ADMIN Option is granted or revoked to or from a role.

0x00000000000000000040000000000000 SETSESSIONUSER Privilege
SETSESSIONUSER granted or revoked

0x00000000000000000080000000000000 Exemption
Exemption granted or revoked

0x00000000000000000100000000000000 Security label
Security label granted or revoked

0x00000000000000000200000000000000 WRITE with GRANT
Privilege granted or revoked to write a global variable with granting of privileges allowed.

0x00000000000000000400000000000000 Role Membership
Role membership that is granted or revoked

0x00000000000000000800000000000000 Role Membership with ADMIN Option
Role membership with ADMIN Option that is granted or revoked

0x00000000000000001000000000000000 READ
Privilege granted or revoked to read a global variable.

0x00000000000000002000000000000000 READ with GRANT
Privilege granted or revoked to read a global variable with granting of privileges allowed.

0x00000000000000004000000000000000 WRITE
Privilege granted or revoked to write a global variable.

0x00000000000000010000000000000000 SQLADM
SQLADM authority granted or revoked.

0x00000000000000020000000000000000 WLMADM
WLMADM authority granted or revoked.

Chapter 11. Audit facility record layouts 357

0x00000000000000040000000000000000 EXPLAIN
EXPLAIN authority granted or revoked.

0x00000000000000080000000000000000 DATAACCESS
DATAACCESS authority granted or revoked.

0x00000000000000100000000000000000 ACCESSCTRL
ACCESSCTRL authority granted or revoked.

0x00000000000000200000000000000000 CREATE_SECURE_OBJECT
CREATE_SECURE_OBJECT authority granted or revoked.

0x00000000000000400000000000000000 SELECTIN
SELECTIN privilege granted or revoked.

0x00000000000000800000000000000000 SELECTIN with GRANT
SELECTIN with GRANT privilege granted or revoked.

0x00000000000001000000000000000000 INSERTIN
INSERTIN privilege granted or revoked.

0x00000000000002000000000000000000 INSERTIN with GRANT
INSERTIN with GRANT privilege granted or revoked.

0x00000000000004000000000000000000 UPDATEIN
UPDATEIN privilege granted or revoked.

0x00000000000008000000000000000000 UPDATEIN with GRANT
UPDATEIN with GRANT privilege granted or revoked.

0x00000000000010000000000000000000 DELETEIN
DELETEIN privilege granted or revoked.

0x00000000000020000000000000000000 DELETEIN with GRANT
DELETEIN with GRANT privilege granted or revoked.

0x00000000000040000000000000000000 EXECUTEIN
EXECUTEIN privilege granted or revoked.

0x00000000000080000000000000000000 EXECUTEIN with GRANT
EXECUTEIN with GRANT privilege granted or revoked.

0x00000000000100000000000000000000 SCHEMA_LOAD
SCHEMA_LOAD authority granted or revoked.

0x00000000000200000000000000000000 SCHEMAADM
SCHEMAADM authority granted or revoked.

0x00000000000400000000000000000000 SCHEMA_ACCESSCTRL
SCHEMA_ACCESSCTRL authority granted or revoked.

0x00000000000800000000000000000000 SCHEMA_DATAACCESS
SCHEMA_DATAACCESS authority granted or revoked.

Audit record layout for SYSADMIN events
The following table shows the audit record layout for SYSADMIN events.

Sample audit record:

timestamp=1998-06-24-11.54.04.129923;
category=SYSADMIN;
audit event=DB2AUDIT;
event correlator=1;
event status=0;
userid=boss;authid=BOSS;
application id=*LOCAL.boss.980624155404;
application name=db2audit;

358 IBM Db2 11.5: Database Security Guide

Table 47. Audit Record Layout for SYSADMIN Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 SYSADMIN

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for
the SYSADMIN category in “Audit events” on page
369.

Event Correlator INTEGER Correlation identifier for the operation being
audited. Can be used to identify what audit records
are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE
where

 Successful event > = 0
 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was
generated. Blank if this was an instance level audit
event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event
occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event
occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the
audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event
occurred.

Package Section
Number

SMALLINT Section number in package being used at the time
the audit event occurred.

Package Version VARCHAR(64) Version of the package in use at the time the audit
event occurred.

Local Transaction ID VARCHAR(10) FOR BIT
DATA

The local transaction ID in use at the time the audit
event occurred. This is the SQLU_TID structure that
is part of the transaction logs.

Global Transaction ID VARCHAR(30) FOR BIT
DATA

The global transaction ID in use at the time the
audit event occurred. This is the data field in the
SQLP_GXID structure that is part of the transaction
logs.

Chapter 11. Audit facility record layouts 359

Table 47. Audit Record Layout for SYSADMIN Events (continued)

NAME FORMAT DESCRIPTION

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special
register at the time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME
special register at the time the audit event
occurred.

Client Application Name VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME
special register at the time the audit event
occurred.

Client Accounting String VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG
special register at the time the audit event
occurred.

Trusted Context Name VARCHAR(255) The name of the trusted context associated with
the trusted connection.

Connection Trust Type CHAR(1) Possible values are:

'' - NONE
'1' - IMPLICIT_TRUSTED_CONNECTION
'2' - EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global
variable at the time the audit event occurred.

Event Details VARCHAR(2048) Information that is specific to the audit event.

Tenant name VARCHAR(128) Tenant name in use at the time the audit event
occurred.

Audit record layout for VALIDATE events
The format of the audit record for VALIDATE events is shown in the following table.

Sample audit record:

timestamp=2007-05-07-10.30.51.585626;
category=VALIDATE;
audit event=AUTHENTICATION;
event correlator=1;
event status=0;
userid=newton;
authid=NEWTON;
execution id=gstager;
application id=*LOCAL.gstager.070507143051;
application name=db2bp;
auth type=SERVER;
plugin name=IBMOSauthserver;

Table 48. Audit Record Layout for VALIDATE Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

360 IBM Db2 11.5: Database Security Guide

Table 48. Audit Record Layout for VALIDATE Events (continued)

NAME FORMAT DESCRIPTION

Category CHAR(8) Category of audit event. Possible values are:

 VALIDATE

Audit Event VARCHAR(32) Specific Audit Event.

Possible values include: GET_GROUPS,
GET_USERID, AUTHENTICATE_PASSWORD, VALIDATE_USER,
AUTHENTICATION and GET_USERMAPPING_FROM_PLUGIN.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

Event Status INTEGER Status of audit event, represented by an SQLCODE where

 Successful event > = 0
 Failed event < 0

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

Execution ID VARCHAR(1024) Execution ID in use at the time of the audit event.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Authentication Type VARCHAR(32) Authentication type at the time of the audit event.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Package Version VARCHAR(64) Version of the package in use at the time the audit event
occurred.

Plug-in Name VARCHAR(32) The name of the plug-in in use at the time the audit event
occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event
occurred. This is the SQLU_TID structure that is part of the
transaction logs.

Global Transaction
ID

VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that
is part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Chapter 11. Audit facility record layouts 361

Table 48. Audit Record Layout for VALIDATE Events (continued)

NAME FORMAT DESCRIPTION

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register at
the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context
Name

VARCHAR(255) The name of the trusted context associated with the trusted
connection.

Connection Trust
Type

CHAR(1) Possible values are:

'' - NONE
'1' - IMPLICIT_TRUSTED_CONNECTION
'2' - EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The name of the role inherited through the trusted context.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Tenant name VARCHAR(128) Tenant name in use at the time the audit event occurred.

Audit record layout for CONTEXT events
The following table shows the audit record layout for CONTEXT events.

Sample audit record:

timestamp=1998-06-24-08.42.41.476840;
category=CONTEXT;
audit event=EXECUTE_IMMEDIATE;
event correlator=3;
database=FOO;
userid=boss;
authid=BOSS;
application id=*LOCAL.newton.980624124210;
application name=testapp;
package schema=NULLID;
package name=SQLC28A1;
package section=203;
text=create table audit(c1 char(10), c2 integer);

Table 49. Audit Record Layout for CONTEXT Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event.

Category CHAR(8) Category of audit event. Possible values are:

 CONTEXT

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer to the section for the CONTEXT
category in “Audit events” on page 369.

Event Correlator INTEGER Correlation identifier for the operation being audited. Can be used
to identify what audit records are associated with a single event.

362 IBM Db2 11.5: Database Security Guide

Table 49. Audit Record Layout for CONTEXT Events (continued)

NAME FORMAT DESCRIPTION

Database Name CHAR(8) Name of the database for which the event was generated. Blank if
this was an instance level audit event.

User ID VARCHAR(1024) User ID at time of audit event.

When the audit event is SWITCH_USER, this field
represents the user ID that is switched to.

Authorization ID VARCHAR(128) Authorization ID at time of audit event.

When the audit event is SWITCH_USER, this field
represents the authorization ID that is switched to.

Origin Node Number SMALLINT Member number at which the audit event occurred.

Coordinator Node
Number

SMALLINT Member number of the coordinator member.

Application ID VARCHAR(255) Application ID in use at the time the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the time the audit event occurred.

Package Schema VARCHAR(128) Schema of the package in use at the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the time the audit event occurred.

Package Section
Number

SMALLINT Section number in package being used at the time the audit event
occurred.

Statement Text CLOB(8M) Text of the SQL or XQuery statement, if applicable. Null if no SQL
or XQuery statement text is available.

Package Version VARCHAR(64) Version of the package in use at the time the audit event
occurred.

Local Transaction ID VARCHAR(10) FOR
BIT DATA

The local transaction ID in use at the time the audit event
occurred. This is the SQLU_TID structure that is part of the
transaction logs.

Global Transaction
ID

VARCHAR(30) FOR
BIT DATA

The global transaction ID in use at the time the audit event
occurred. This is the data field in the SQLP_GXID structure that
is part of the transaction logs.

Client User ID VARCHAR(255) The value of the CURRENT CLIENT USERID special register at the
time the audit event occurred.

Client Workstation
Name

VARCHAR(255) The value of the CURRENT CLIENT_WRKSTNNAME special
register at the time the audit event occurred.

Client Application
Name

VARCHAR(255) The value of the CURRENT CLIENT_APPLNAME special register at
the time the audit event occurred.

Client Accounting
String

VARCHAR(255) The value of the CURRENT CLIENT_ACCTNG special register at
the time the audit event occurred.

Trusted Context
Name

VARCHAR(255) The name of the trusted context associated with the
trusted connection.

Chapter 11. Audit facility record layouts 363

Table 49. Audit Record Layout for CONTEXT Events (continued)

NAME FORMAT DESCRIPTION

Connection Trust
Type

CHAR(1) Possible values are:

'' - NONE
'1' - IMPLICIT_TRUSTED_CONNECTION
'2' - EXPLICIT_TRUSTED_CONNECTION

Role Inherited VARCHAR(128) The role inherited through a trusted connection.

Original User ID VARCHAR(1024) The value of the CLIENT_ORIGUSERID global variable at the time
the audit event occurred.

Tenant name VARCHAR(128) Tenant name in use at the time the audit event occurred.

Audit record layout for EXECUTE events
The following table describes all of the fields that are audited as part of the EXECUTE category.

Sample audit record:

Note: Unlike other audit categories, the EXECUTE category, when the audit log is viewed in a table format,
can show multiple rows describing one event. The first record describes the main event, and its event
column contains the key word STATEMENT. The remaining rows describe the parameter markers or host
variables, one row per parameter, and their event column contains the key word DATA. When the audit log
is viewed in report format, there is one record, but it has multiple entries for the Statement Value. The
DATA key word is only be present in table format.

timestamp=2006-04-10-13.20.51.029203;
 category=EXECUTE;
 audit event=STATEMENT;
 event correlator=1;
 event status=0;
 database=SAMPLE;
 userid=smith;
 authid=SMITH;
 session authid=SMITH;
 application id=*LOCAL.prodrig.060410172044;
 application name=myapp;
 package schema=NULLID;
 package name=SQLC2F0A;
 package section=201;
 uow id=2;
 activity id=3;
 statement invocation id=0;
 statement nesting level=0;
 statement text=SELECT * FROM DEPARTMENT WHERE DEPTNO = ? AND DEPTNAME = ?;
 statement isolation level=CS;
 compilation environment=
 isolation level=CS
 query optimization=5
 degree=1
 sqlrules=DB2
 refresh age=+00000000000000.000000
 schema=SMITH
 maintained table type=SYSTEM
 resolution timestamp=2006-04-10-13.20.51.000000
 federated asynchrony=0;
 value index=0;
 value type=CHAR;
 value data=C01;
 value index=1;
 value type=VARCHAR;
 value extended indicator=-1;
 value index=INFORMATION CENTER;
 local_start_time=2006-04-10-13.20.51.021507

364 IBM Db2 11.5: Database Security Guide

Table 50. Audit Record Layout for EXECUTE Events

NAME FORMAT DESCRIPTION

Timestamp CHAR(26) Date and time of the audit event

Category CHAR(8) Category of audit event. Possible
values are: EXECUTE

Audit Event VARCHAR(32) Specific Audit Event.

For a list of possible values, refer
to the section for the EXECUTE
category in “Audit events” on
page 369.

Event Correlator INTEGER Correlation identifier for the
operation being audited. Can
be used to identify what audit
records are associated with a
single event.

Event Status INTEGER Status of audit event,
represented by an SQLCODE
where Successful event > = 0
Failed event < 0

Database Name CHAR(8) Name of the database for which
the event was generated. Blank if
this was an instance level audit
event

User ID VARCHAR(1024) User ID at time of audit event.

Authorization ID VARCHAR(128) The Statement Authorization ID
at time of audit event.

Session Authorization ID VARCHAR(128) The Session Authorization ID at
the time of the audit event.

Origin Node Number SMALLINT Member number at which the
audit event occurred

Coordinator Node Number SMALLINT Member number of the
coordinator member

Application ID VARCHAR(255) Application ID in use at the time
the audit event occurred.

Application Name VARCHAR(1024) Application name in use at the
time the audit event occurred.

Client User ID VARCHAR(255) The value of the CURRENT
CLIENT USERID special register
at the time the audit event
occurred

Client Accounting String VARCHAR(255) The value of the CURRENT
CLIENT_ACCTNG special register
at the time the audit event
occurred

Chapter 11. Audit facility record layouts 365

Table 50. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Client Workstation Name VARCHAR(255) The value of the CURRENT
CLIENT_WRKSTNNAME special
register at the time the audit
event occurred

Client Application Name VARCHAR(255) The value of the CURRENT
CLIENT_APPLNAME special
register at the time the audit
event occurred

Trusted Context Name VARCHAR(255) The name of the trusted context
associated with the trusted
connection.

Connection Trust type CHAR(1) Possible values are:

'' - NONE
'1' -
IMPLICIT_TRUSTED_CONNECTIO
N
'2' -
EXPLICIT_TRUSTED_CONNECTIO
N

Role Inherited VARCHAR(128) The role inherited through a
trusted connection.

Package Schema VARCHAR(128) Schema of the package in use at
the time of the audit event.

Package Name VARCHAR(128) Name of package in use at the
time the audit event occurred.

Package Section SMALLINT Section number in package being
used at the time the audit event
occurred.

Package Version VARCHAR(164) Version of the package in use
at the time the audit event
occurred.

Local Transaction ID VARCHAR(10) FOR BIT DATA The local transaction ID in use
at the time the audit event
occurred. This is the SQLU_TID
structure that is part of the
transaction logs.

Global Transaction ID VARCHAR(30) FOR BIT DATA The global transaction ID in use
at the time the audit event
occurred. This is the data field in
the SQLP_GXID structure that is
part of the transaction logs

UOW ID BIGINT The unit of work identifier in
which an activity originates.
This value is unique within an
application ID for each unit of
work.

366 IBM Db2 11.5: Database Security Guide

Table 50. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Activity ID BIGINT The unique activity ID within the
unit of work.

Statement Invocation ID BIGINT An identifier that distinguishes
one invocation of a routine from
others at the same nesting level
within a unit of work. It is unique
within a unit of work for a specific
nesting level.

Statement Nesting Level BIGINT The level of nesting or recursion
in effect when the statement
was being run; each level of
nesting corresponds to nested
or recursive invocation of a
stored procedure or user-defined
function (UDF).

Activity Type VARCHAR(32) The type of activity.

Possible values are:

• READ_DML
• WRITE_DML
• DDL
• CALL
• OTHER

Statement Text CLOB(8M) Text of the SQL or XQuery
statement, if applicable.

Statement Isolation Level CHAR(8) The isolation value in effect for
the statement while it was being
run.

Possible values are:

• NONE (no isolation specified)
• UR (uncommitted read)
• CS (cursor stability)
• RS (read stability)
• RR (repeatable read)

Compilation Environment
Description

BLOB(8K) The compilation environment
used when compiling the SQL
statement. You can provide
this element as input to
the COMPILATION_ENV table
function, or to the SET
COMPILATION ENVIRONMENT
SQL statement

Chapter 11. Audit facility record layouts 367

Table 50. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Rows Modified INTEGER Contains the total number
of rows deleted, inserted, or
updated as a result of both:

• The enforcement of constraints
after a successful delete
operation

• The processing of triggered
SQL statements from activated
inlined triggers

If compound SQL is invoked,
contains an accumulation of the
number of such rows for all sub-
statements. In some cases, when
an error is encountered, this
field contains a negative value
that is an internal error pointer.
This value is equivalent to the
sqlerrd(5) field of the SQLCA.

Rows Returned BIGINT Contains the total number of
rows returned by the statement.

Savepoint ID BIGINT The Savepoint ID in effect for the
statement while it is being run.
If the Audit Event is SAVEPOINT,
RELEASE_SAVEPOINT or
ROLLBACK_SAVEPOINT, then the
Savepoint ID is the save point
that is being set, released, or
rolled back to.

Statement Value Index INTEGER The position of the input
parameter marker or host
variable used in the SQL
statement.

Statement Value Type CHAR(16) A string representation of the
type of a data value associated
with the SQL statement.
INTEGER or CHAR are examples
of possible values.

Statement Value Data CLOB(128K) A string representation of a data
value to the SQL statement.
LOB, LONG, XML, and structured
type parameters are not present.
Date, time, and timestamp fields
are recorded in ISO format.

368 IBM Db2 11.5: Database Security Guide

Table 50. Audit Record Layout for EXECUTE Events (continued)

NAME FORMAT DESCRIPTION

Statement Value Extended
Indicator

INTEGER The value of the extended
indicator specified for this
statement value. The possible
values are:

• 0 if the statement value was
specified as assigned by the
indicator value,

• -1 if NULL was specified by the
indicator value,

• -5 if DEFAULT was specified by
the indicator value,

• -7 if UNASSIGNED was
specified by the indicator value.

Local Start Time CHAR(26) The time that this activity began
working on the partition. This
field can be an empty string when
the activity does not require a
package, that is, for CONNECT,
CONNECT RESET, COMMIT, and
ROLLBACK, as an example. The
value is logged in local time.

Original User ID VARCHAR(1024) The value of the
CLIENT_ORIGUSERID global
variable at the time the audit
event occurred.

Tenant name VARCHAR(128) Tenant name in use at the time
the audit event occurred.

Audit events
For each audit category, certain types of events can create audit records.

Events for the AUDIT category
• ALTER_AUDIT_POLICY
• ARCHIVE
• AUDIT_REMOVE
• AUDIT_REPLACE
• AUDIT_USING
• CONFIGURE
• CREATE_AUDIT_POLICY
• DB2AUD
• DROP_AUDIT_POLICY
• EXTRACT
• FLUSH
• LIST_LOGS

Chapter 11. Audit facility record layouts 369

• PRUNE (not generated in Version 9.5, and later).
• START
• STOP
• UPDATE_DBM_CFG

Events for the CHECKING category
• CHECKING_FUNCTION
• CHECKING_MEMBERSHIP_IN_ROLES
• CHECKING_OBJECT
• CHECKING_TRANSFER

Events for the CONTEXT category
• ADD_NODE
• ATTACH
• BACKUP_DB
• BIND
• CLOSE_CONTAINER_QUERY
• CLOSE_CURSOR
• CLOSE_HISTORY_FILE
• CLOSE_TABLESPACE_QUERY
• COMMIT
• CONNECT
• CONNECT_RESET
• CREATE_DATABASE
• DARI_START
• DARI_STOP
• DBM_CFG_OPERATION
• DESCRIBE
• DESCRIBE_DATABASE
• DETACH
• DISCOVER
• DROP_DATABASE
• ENABLE_MULTIPAGE
• ESTIMATE_SNAPSHOT_SIZE
• EXECUTE
• EXECUTE_IMMEDIATE
• EXTERNAL_CANCEL
• FETCH_CONTAINER_QUERY
• FETCH_CURSOR
• FETCH_HISTORY_FILE
• FETCH_TABLESPACE
• FORCE_APPLICATION
• GET_DB_CFG

370 IBM Db2 11.5: Database Security Guide

• GET_DFLT_CFG
• GET_SNAPSHOT
• GET_TABLESPACE_STATISTIC
• HADR
• IMPLICIT_REBIND
• LOAD_MSG_FILE
• LOAD_TABLE
• OPEN_CONTAINER_QUERY
• OPEN_CURSOR
• OPEN_HISTORY_FILE
• OPEN_TABLESPACE_QUERY
• PREPARE
• PRUNE_RECOVERY_HISTORY
• QUIESCE_TABLESPACE
• READ_ASYNC_LOG_RECORD
• REBIND
• REDISTRIBUTE
• REORG
• REQUEST_ROLLBACK
• RESET_DB_CFG
• RESET_MONITOR
• RESTORE_DB
• ROLLBACK
• ROLLFORWARD_DB
• RUNSTATS
• SET_APPL_PRIORITY
• SET_MONITOR
• SET_RUNTIME_DEGREE
• SET_TABLESPACE_CONTAINERS
• SINGLE_TABLESPACE_QUERY
• SWITCH_USER
• UNLOAD_TABLE
• UNQUIESCE_TABLESPACE
• UPDATE_AUDIT
• UPDATE_DBM_CFG
• UPDATE_RECOVERY_HISTORY

Events for the EXECUTE category
• COMMIT Execution of a COMMIT statement
• CONNECT Establishment of a database connection
• CONNECT RESET Termination of a database connection
• DATA A host variable or parameter marker data values for the statement

Chapter 11. Audit facility record layouts 371

This event is repeated for each host variable or parameter marker that is part of the statement. It is only
present in a delimited extract of an audit log.

• GLOBAL COMMIT Execution of a COMMIT within a global transaction
• GLOBAL ROLLBACK Execution of a ROLLBACK within a global transaction
• RELEASE SAVEPOINT Execution of a RELEASE SAVEPOINT statement
• ROLLBACK Execution of a ROLLBACK statement
• SAVEPOINT Execution of a SAVEPOINT statement
• STATEMENT Execution of an SQL statement
• SWITCH USER Switching of a user within a trusted connection

Events for the OBJMAINT category
• ALTER_OBJECT (generated when altering protected tables and when altering modules)
• CREATE_OBJECT
• DROP_OBJECT
• RENAME_OBJECT

Events for the SECMAINT category
• ADD_DEFAULT_ROLE
• ADD_USER
• ALTER_DEFAULT_ROLE
• ALTER_OBJECT
• ALTER SECURITY POLICY
• ALTER_USER_ADD_ROLE
• ALTER_USER_AUTHENTICATION
• ALTER_USER_DROP_ROLE
• CREATE_OBJECT
• DROP_DEFAULT_ROLE
• DROP_OBJECT
• DROP_USER
• GRANT
• IMPLICIT_GRANT
• IMPLICIT_REVOKE
• RENAME_OBJECT
• REVOKE
• SET_SESSION_USER
• TRANSFER_OWNERSHIP
• UPDATE_DBM_CFG

Events for the SYSADMIN category
• ACTIVATE_DB
• ADD_NODE
• ALTER_BUFFERPOOL
• ALTER_DATABASE
• ALTER_NODEGROUP

372 IBM Db2 11.5: Database Security Guide

• ALTER_TABLESPACE
• ATTACH_DEBUGGER
• BACKUP_DB
• CATALOG_DB
• CATALOG_DCS_DB
• CATALOG_NODE
• CHANGE_DB_COMMENT
• CLOSE_CONTAINER_QUERY
• CLOSE_TABLESPACE_QUERY
• COMMIT_DSF_CFS
• COMMIT_DSF_CM
• COMMIT_DSF_INSTANCE
• CREATE_BUFFERPOOL
• CREATE_DATABASE
• CREATE_DB_AT_NODE
• CREATE_EVENT_MONITOR
• CREATE_INSTANCE
• CREATE_NODEGROUP
• CREATE_TABLESPACE
• DB2AUD
• DB2AUDIT
• DB2REMOT
• DB2SET
• DB2TRC
• DEACTIVATE_DB
• DELETE_INSTANCE
• DESCRIBE_DATABASE
• DROP_BUFFERPOOL
• DROP_DATABASE
• DROP_EVENT_MONITOR
• DROP_NODEGROUP
• DROP_NODE_VERIFY
• DROP_TABLESPACE
• ENABLE_MULTIPAGE
• ESTIMATE_SNAPSHOT_SIZE
• FETCH_CONTAINER_QUERY
• FETCH_TABLESPACE
• FORCE_APPLICATION
• GET_SNAPSHOT
• GET_TABLESPACE_STATISTIC
• GRANT_DBADM (V97:no longer generated)
• GRANT_DB_AUTH (V97:no longer generated)
• KILLDBM

Chapter 11. Audit facility record layouts 373

• LIST_DRDA_INDOUBT_TRANSACTIONS
• LOAD_TABLE
• MAINTENANCE_DSF_MODE
• MERGE_DBM_CONFIG_FILE
• MIGRATE_DB
• MIGRATE_DB_DIR
• MIGRATE_SYSTEM_DIRECTORY
• OPEN_CONTAINER_QUERY
• OPEN_TABLESPACE_QUERY
• PRUNE_RECOVERY_HISTORY
• QUIESCE_TABLESPACE
• READ_ASYNC_LOG_RECORD
• REDISTRIBUTE_NODEGROUP
• RENAME_TABLESPACE
• RESET_ADMIN_CFG
• RESET_DBM_CFG
• RESET_DB_CFG
• RESET_MONITOR
• RESTORE_DB
• REVOKE_DBADM (V97:no longer generated)
• REVOKE_DB_AUTH (V97:no longer generated)
• ROLLFORWARD_DB
• SET_APPL_PRIORITY
• SET_EVENT_MONITOR_STATE
• SET_RUNTIME_DEGREE
• SET_TABLESPACE_CONTAINERS
• SINGLE_TABLESPACE_QUERY
• START_CF
• START_DB2
• START_DSF_INSTANCE
• START_HADR
• STOP_CF
• STOP_DB2
• STOP_DSF_INSTANCE
• STOP_HADR
• TAKEOVER_HADR
• UNCATALOG_DB
• UNCATALOG_DCS_DB
• UNCATALOG_NODE
• UNLOAD_TABLE
• UPDATE_ADMIN_CFG
• UPDATE_CLI_CONFIGURATION
• UPDATE_DSF_MEMBER_OR_CF

374 IBM Db2 11.5: Database Security Guide

• UPDATE_DB_VERSION
• UPDATE_DBM_CFG
• UPDATE_DB_CFG
• SET_MONITOR
• UPDATE_RECOVERY_HISTORY

Events for the VALIDATE category
• AUTHENTICATE
• CHECK_GROUP_MEMBERSHIP (not generated in Version 9.5, and later)
• GET_USERMAPPING_FROM_PLUGIN
• GET_GROUPS (not generated in Version 9.5, and later)
• GET_USERID (not generated in Version 9.5, and later)

Chapter 11. Audit facility record layouts 375

376 IBM Db2 11.5: Database Security Guide

Chapter 12. Working with operating system security
Operating systems provide security features that you can use to support security for your database
installation.

Db2 and Windows security
A Windows domain is an arrangement of client and server computers referenced by a specific and unique
name; and, that share a single user accounts database called the Security Access Manager (SAM). One
of the computers in the domain is the domain controller. The domain controller manages all aspects of
user-domain interactions.

The domain controller uses the information in the domain user accounts database to authenticate users
logging onto domain accounts. For each domain, one domain controller is the primary domain controller
(PDC). Within the domain, there may also be backup domain controllers (BDC) which authenticate user
accounts when there is no primary domain controller or the primary domain controller is not available.
Backup domain controllers hold a copy of the Windows Security Account Manager (SAM) database which
is regularly synchronized against the master copy on the PDC.

User accounts, user IDs, and passwords only need to be defined at the primary domain controller to be
able to access domain resources.

Note: Two-part user IDs are supported by the CONNECT statement and the ATTACH command. The
qualifier of the SAM-compatible user ID is a name of the style 'Domain\User' which has a maximum length
of 15 characters.

During the setup procedure when a Windows server is installed, you may select to create:

• A primary domain controller in a new domain
• A backup domain controller in a known domain
• A stand-alone server in a known domain.

Selecting "controller" in a new domain makes that server the primary domain controller.

The user may log on to the local machine, or when the machine is installed in a Windows Domain, the user
may log on to the Domain. To authenticate the user, Db2 checks the local machine first, then the Domain
Controller for the current Domain, and finally any Trusted Domains known to the Domain Controller.

To illustrate how this works, suppose that the Db2 instance requires Server authentication. The
configuration is as follows:

© Copyright IBM Corp. 2016, 2023 377

Figure 8. Authentication Using Windows Domains

Each machine has a security database, Security Access Management (SAM). DC1 is the domain controller,
in which the client machine, Ivan, and the Db2 server, Servr, are enrolled. TDC2 is a trusted domain for
DC1 and the client machine, Abdul, is a member of TDC2's domain.

Authentication scenarios

A scenario with server authentication (Windows)
The following example demonstrates authentication of a user by a server.

1. Abdul logs on to the TDC2 domain (that is, he is known in the TDC2 SAM database).
2. Abdul then connects to a Db2 database that is cataloged to reside on SRV3:

 db2 connect to remotedb user Abdul using fredpw

3. SRV3 determines where Abdul is known. The API that is used to find this information first searches
the local machine (SRV3) and then the domain controller (DC1) before trying any trusted domains.
Username Abdul is found on TDC2. This search order requires a single namespace for users and
groups.

4. SRV3 then:

a. Validates the username and password with TDC2.
b. Finds out whether Abdul is an administrator by asking TDC2.
c. Enumerates all Abdul's groups by asking TDC2.

A scenario with client authentication and a Windows client machine
The following example demonstrates authentication of a user by a client computer.

1. Dale, the administrator, logs on to SRV3 and changes the authentication for the database instance to
Client:

 db2 update dbm cfg using authentication client
 db2stop
 db2start

378 IBM Db2 11.5: Database Security Guide

2. Ivan, at a Windows client machine, logs on to the DC1 domain (that is, he is known in the DC1 SAM
database).

3. Ivan then connects to a Db2 database that is cataloged to reside on SRV3:

 DB2 CONNECT to remotedb user Ivan using johnpw

4. Ivan's machine validates the username and password. The API used to find this information first
searches the local machine (Ivan) and then the domain controller (DC1) before trying any trusted
domains. Username Ivan is found on DC1.

5. Ivan's machine then validates the username and password with DC1.
6. SRV3 then:

a. Determines where Ivan is known.
b. Finds out whether Ivan is an administrator by asking DC1.
c. Enumerates all Ivan's groups by asking DC1.

Note: Before attempting to connect to the Db2 database, ensure that Db2 Security Service has been
started. The Security Service is installed as part of the Windows installation. Db2 is then installed and
"registered" as a Windows service however, it is not started automatically. To start the Db2 Security
Service, enter the NET START DB2NTSECSERVER command.

Support for global groups (Windows)
The Db2 database system supports global groups.

To use global groups, you must include global groups inside a local group. When the Db2 database
manager enumerates all the groups that a person is a member of, it also lists the local groups that the
user is a member of indirectly (by the virtue of being in a global group that is itself a member of one or
more local groups).

Global groups are used in two possible situations:

• Included inside a local group. Permission must be granted to this local group.
• Included on a domain controller. Permission must be granted to the global group.

User authentication and group information with DB2 on Windows

User name and group name restrictions (Windows)
There are a few limitations that are specific to the Windows environment. Be aware that general Db2
object naming rules also apply.

• User names under Windows are not case sensitive; however, passwords are case sensitive.
• User names and group names can be a combination of upper- and lowercase characters. However, they

are usually converted to uppercase when used within the Db2 database. For example, if you connect
to the database and create the table schema1.table1, this table is stored as SCHEMA1.TABLE1 within
the database. (If you want to use lowercase object names, issue commands from the command line
processor, enclosing the object names in quotation marks, or use third-party ODBC front-end tools.)

• The Db2 database manager supports a single namespace. That is, when running in a trusted domains
environment, you should not have a user account of the same name that exists in multiple domains, or
that exists in the local SAM of the server machine and in another domain.

• A user name should not be the same name as a group name.
• A local group should not have the same name as a domain level group.

Chapter 12. Working with operating system security 379

Groups and user authentication on Windows
Users are defined on Windows by creating user accounts using the Windows administration tool called the
"User Manager". An account containing other accounts, also called members, is a group.

Groups give Windows administrators the ability to grant rights and permissions to the users within the
group at the same time, without having to maintain each user individually. Groups, like user accounts, are
defined and maintained in the Security Access Manager (SAM) database.

There are two types of groups:

• Local groups. A local group can include user accounts created in the local accounts database. If the
local group is on a machine that is part of a domain, the local group can also contain domain accounts
and groups from the Windows domain. If the local group is created on a workstation, it is specific to that
workstation.

• Global groups. A global group exists only on a domain controller and contains user accounts from the
domain's SAM database. That is, a global group can only contain user accounts from the domain on
which it is created; it cannot contain any other groups as members. A global group can be used in
servers and workstations of its own domain, and in trusting domains.

Trust relationships between domains on Windows
Trust relationships are an administration and communication link between two domains. A trust
relationship between two domains enables user accounts and global groups to be used in a domain
other than the domain where the accounts are defined.

Account information is shared to validate the rights and permissions of user accounts and global
groups residing in the trusted domain without being authenticated. Trust relationships simplify user
administration by combining two or more domains into an single administrative unit.

There are two domains in a trust relationship:

• The trusting domain. This domain trusts another domain to authenticate users for them.
• The trusted domain. This domain authenticates users on behalf of (in trust for) another domain.

Trust relationships are not transitive. This means that explicit trust relationships need to be established
in each direction between domains. For example, the trusting domain may not necessarily be a trusted
domain.

Authentication with groups and domain security (Windows)
The Db2 database system allows you to specify either a local group or a global group when granting
privileges or defining authority levels.

About this task
A user is determined to be a member of a group if the user's account is defined explicitly in the local or
global group, or implicitly by being a member of a global group defined to be a member of a local group.

The Db2 database manager supports the following types of groups:

• Local groups
• Global groups
• Global groups as members of local groups.

The Db2 database manager enumerates the local and global groups of which the user is a member,
using the security database where the user was found. The Db2 database system provides an override
that forces group enumeration to occur on the local Windows server where the Db2 database is
installed, regardless of where the user account was found. This override can be achieved using the
following commands:

– For global settings:

380 IBM Db2 11.5: Database Security Guide

 db2set -g DB2_GRP_LOOKUP=local

– For instance settings:

 db2set -i instance_name DB2_GRP_LOOKUP=local

After issuing this command, you must stop and start the Db2 database instance for the change to
take effect. Then create local groups and include domain accounts or global groups in the local group.

To view all Db2 profile registry variables that are set, type

 db2set -all

If the DB2_GRP_LOOKUP profile registry variable is set to local, then the Db2 database manager tries
to enumerate the user's groups on the local machine only. If the user is not defined as a member of a
local group, or of a global group nested in a local group, then group enumeration fails. The Db2 database
manager does not try to enumerate the user's groups on another machine in the domain or on the domain
controllers.

If the Db2 database manager is running on a machine that is a primary or backup domain controller in
the resource domain, it is able to locate any domain controller in any trusted domain. This occurs because
the names of the domains of backup domain controllers in trusted domains are only known if you are a
domain controller.

Using an access token to acquire users' group information (Windows)
An access token is an object that describes the security context of a process or thread. The information
in an access token includes the identity and privileges of the user account associated with the process or
thread.

When you log on, the system verifies your password by comparing it with information stored in a security
database. If the password is authenticated, the system produces an access token. Every process run on
your behalf uses a copy of this access token.

An access token can also be acquired based on cached credentials. After you have been authenticated to
the system, your credentials are cached by the operating system. The access token of the last logon can
be referenced in the cache when it is not possible to contact the domain controller.

The access token includes information about all of the groups you belong to: local groups and various
domain groups (global groups, domain local groups, and universal groups).

Note: Group lookup using client authentication is not supported using a remote connection even though
access token support is enabled.

To enable access token support, you must use the db2set command to update the DB2_GRP_LOOKUP
registry variable. DB2_GRP_LOOKUP can have up to two parameters, separated by a comma:

• The first parameter is for conventional group lookup and can take the values: " ", "LOCAL", or "DOMAIN".
• The second parameter is for token style group lookup and can take the values: "TOKEN",

"TOKENDOMAIN", or "TOKENLOCAL".

If the second parameter (TOKEN, TOKENDOMAIN, or TOKENLOCAL) is specified, it takes precedence over
conventional group enumeration. If token group enumeration fails, conventional group lookup occurs, if
the first parameter of DB2_GRP_LOOKUP was specified.

The meaning of the values TOKEN, TOKENDOMAIN, and TOKENLOCAL are as follows:

• TOKENLOCAL

The token is used to enumerate groups at the local machine (this is equivalent to conventional "LOCAL"
group lookup).

• TOKENDOMAIN

Chapter 12. Working with operating system security 381

The token is used to enumerate groups at the location where the user is defined (at local machine for
a local user and at the domain for a domain user). This is equivalent to conventional " ", or "DOMAIN"
group lookup.

• TOKEN

The token is used to enumerate groups at both the domain and on the local machine. For a local user,
the groups returned will contain local groups. For a domain user, the groups returned will contain both
domain and local groups. There is no equivalent in conventional group lookup.

For example, the following setting of DB2_GRP_LOOKUP enables access token support for enumerating
local groups:

 db2set DB2_GRP_LOOKUP=LOCAL,TOKENLOCAL

The next example enables access token support for enumerating groups at both the local machine as well
as the location where the user ID is defined (if the account is defined at the domain):

 db2set DB2_GRP_LOOKUP=,TOKEN

This final example enables access token support for enumerating domain groups at the location where
the user ID is defined:

 db2set DB2_GRP_LOOKUP=DOMAIN,TOKENDOMAIN

Note: Access token support can be enabled with all authentications types except CLIENT authentication.

The DB2_GRP_LOOKUP environment variable and Db2 group enumeration
(Windows)
On Windows, a user can belong to groups defined at the domain level, groups defined on the local
machine, or to both.

The DB2_GRP_LOOKUP environment variable controls whether groups are enumerated on the local
machine, or where the users are defined (on the local machine if they are a local user, or at the
domain level if they are a domain user). Therefore, when the security administrator grants authorities
and privileges, care must be taken that DB2_GRP_LOOKUP is set as intended and the correct users receive
the intended authorization.

If the DB2_GRP_LOOKUP profile registry variable is not set:

1. The Db2 database system first tries to find the user on the same machine.
2. If the user name is defined locally, the user is authenticated locally.
3. If the user is not found locally, the Db2 database system attempts to find the user name on it's

domain, and then on trusted domains.

For example, consider the following situation where DB2_GRP_LOOKUP is not set:

1. The domain user DUSER1 is a member of the local group, GROUP1.
2. The security administrator (who holds SECADM authority) grants DBADM authority to group GROUP1.

GRANT DBADM ON database TO GROUP GROUP1

3. Because DB2_GRP_LOOKUP is not set, groups are enumerated where users are defined. So, groups for
DUSER1 are enumerated at the domain level. Since DUSER1 does not belong to group GROUP1 at the
domain level, DUSER1 does not receive DBADM authority.

Further, consider this more complex scenario involving the UPGRADE DATABASE command where
DB2_GRP_LOOKUP is not set:

1. The domain user DUSER2 is a member of the local Administrators group.
2. The sysadm_group configuration parameter is not set, therefore members of the local Administrators

group automatically hold SYSADM authority.

382 IBM Db2 11.5: Database Security Guide

3. User DUSER2 is able to issue the UPGRADE DATABASE command (since DUSER2 holds SYSADM
authority). The UPGRADE DATABASE command grants DBADM authority on the database being
upgraded to the SYSADM group, in this case, the Administrators group.

4. Because DB2_GRP_LOOKUP is not set, groups are enumerated where users are defined. So, groups for
DUSER2 are enumerated at the domain level. Since DUSER2 does not belong to the Administrators
group at the domain level, DUSER2 does not receive DBADM authority.

Possible solutions for this scenario are to make one of the following changes:

• Set DB2_GRP_LOOKUP = local
• Add the users that should have DBADM authority to the Administrators or GROUP1 group at the Domain

Controller.

You can use the SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID table function to verify the
authorities held by a user, as shown in the following example for DUSER1:

SELECT AUTHORITY, D_USER, D_GROUP, D_PUBLIC, ROLE_USER, ROLE_GROUP, ROLE_PUBLIC,
D_ROLE
 FROM TABLE (SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID ('DUSER1', 'U')) AS T
 ORDER BY AUTHORITY

You can use the SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID table function to verify the groups to
which the Db2 database manager has determined a user belongs, as shown in the following example for
DUSER1:

SELECT * FROM TABLE (SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID ('DUSER1')) AS T

Note: If you use the same group name at both the domain level and on the local machine, because the
Db2 database manager does not fully qualify the groups, this can lead to confusion.

Authentication using an ordered domain list
User IDs may be defined more than once in a trusted domain forest. A trusted domain forest is a
collection of domains that are interrelated through a network.

About this task
It is possible for a user on one domain to have the same user ID as that for another user on a different
domain. This may cause difficulties when attempting to do any of the following actions:

• Authenticating multiple users having the same user ID but on different domains.
• Group lookup for the purposes of granting and revoking privileges based on groups.
• Validation of passwords.
• Control of network traffic.

To prevent difficulties arising from the possibility of multiple users with the same user ID across a domain
forest, you should use an ordered domain list as defined using the db2set and the registry variable
DB2DOMAINLIST. When setting the order, the domains to be included in the list are separated by a
comma. You must make a conscious decision regarding the order that the domains are searched when
authenticating users.

Those user IDs that are present on domains further down the domain list will have to be renamed by you
if they are to be authenticated for access.

Control of access can be done through the domain list. For example, if the domain of a user is not in the
list, the user will not be allowed to connect.

Note: The DB2DOMAINLIST registry variable is effective only when CLIENT authentication is set in the
database manager configuration and is needed if a single signon from a Windows desktop is required in a
Windows domain environment. DB2DOMAINLIST is supported by some versions of Db2 servers however
DB2DOMAINLIST will not be enforced if neither the client nor the server are in a Windows environment.

Chapter 12. Working with operating system security 383

Domain security support (Windows)
The following example illustrates how the Db2 database management system can support Windows
domain security. The connection works because the user name and local group are on the same domain.

The connection works in the following scenario because the user name and local or global group are on
the same domain.

Note that the user name and local or global group do not need to be defined on the domain where the
database server is running, but they must be on the same domain as each other.

Table 51. Successful Connection Using a Domain Controller

Domain1 Domain2

A trust relationship exists with Domain2. • A trust relationship exists with Domain1.
• The local or global group grp2 is defined.
• The user name id2 is defined.
• The user name id2 is part of grp2.

The Db2 server runs in this domain. The following Db2
commands are issued from it:

 REVOKE CONNECT ON db FROM public
 GRANT CONNECT ON db TO GROUP grp2
 CONNECT TO db USER id2

The local or global domain is scanned but id2 is not
found. Domain security is scanned.

 The user name id2 is found on this domain. Db2 gets
additional information about this user name (that is, it
is part of the group grp2).

The connection works because the user name and
local or global group are on the same domain.

Defining which users hold SYSADM authority (Windows)
Certain users have SYSADM authority if the sysadm_group database manager configuration parameter is
not set (that is, it is NULL).

These users are:

• Members of the local Administrators group
• Members of the Administrators group at the Domain Controller, if the Db2 database manager is
configured to enumerate groups for users at the location where the users are defined (you can use
the DB2_GRP_LOOKUP environment variable to configure group enumeration)

• Members of the DB2ADMNS group, if Windows extended security is enabled. The location of the
DB2ADMNS group is decided during installation.

• The LocalSystem account

There are cases where the previously mentioned default behavior is not desirable. You can use the
sysadm_group database manager configuration parameter to override this behavior by using one of the
following methods:

• Create a local group on the Db2 server machine and add to it users (domain users or local users) that
you want to have SYSADM authority. The Db2 database manager should be configured to enumerate
groups for the user on the local machine.

384 IBM Db2 11.5: Database Security Guide

• Create a domain group and add to it the users that you want to have SYSADM authority. The Db2
database manager should be configured to enumerate groups for users at the location where the users
are defined.

Then update the sysadm_group database manager configuration parameter to this group, using the
following commands:

 DB2 UPDATE DBM CFG USING SYSADM_GROUP group_name
 DB2STOP
 DB2START

Windows LocalSystem account support
On Windows platforms, the Db2 database system supports applications running under the context of
the LocalSystem account (LSA) with local implicit connection. The authorization ID for the LocalSystem
account is SYSTEM.If you are using a non-English version of a Windows operating system, you need
to check that the authorization ID for the LocalSystem account does not have an invalid character. For
example, if you are using a French version of a Windows operating system, the LocalSystem account is
Système, but you cannot use this account as an authorization ID because it has an invalid character, è.

The LocalSystem account is considered a system administrator (holding SYSADM authority) when the
sysadm_group database manager configuration parameter is set to NULL.

If there is a need for applications running under the context of the LocalSystem account to perform
database actions that are not within the scope of SYSADM, you must grant the LocalSystem account the
required database privileges or authorities. For example, if an application requires database administrator
capabilities, grant the LocalSystem account DBADM authority using the GRANT (Database Authorities)
statement.

Developers writing applications to be run under this account need to be aware that the Db2 database
system has restrictions on objects with schema names starting with "SYS". Therefore if your applications
contain DDL statements that create Db2 database objects, they should be written such that:

• For static queries, they should be bound with a value for the QUALIFIER options other than the default
one (SYSTEM).

• For dynamic queries, the objects to be created should be explicitly qualified with a schema name
supported by the Db2 database manager, or the CURRENT SCHEMA register must be set to a schema
name supported by the Db2 database manager.

Group information for the LocalSystem account is gathered at the first group lookup request after the Db2
database instance is started and is not refreshed until the instance is restarted.

Extended Windows security using the DB2ADMNS and DB2USERS groups
Extended security is enabled by default in all Db2 database products on Windows operating systems
except IBM Data Server Runtime Client and Db2 Drivers. IBM Data Server Runtime Client and Db2 Drivers
do not support extended security on Windows platforms.

An Enable operating system security check box appears on the Enable operating system security for
Db2 objects panel when you install Db2 database products. Unless you disable this option, the installer
creates two new groups, DB2ADMNS and DB2USERS. DB2ADMNS is the Db2 Administrators Group and
DB2USERS is the Db2 Users Group. DB2ADMNS and DB2USERS are the default group names; optionally,
you can specify different names for these groups at installation time (if you select silent installation, you
can change these names within the installation response file). If you choose to use groups that exist on
your system, be aware that the privileges of these groups are modified. They are given the privileges, as
required, listed in the table, below.

It is important to understand that these groups are used for protection at the operating-system level
and are in no way associated with Db2 authority levels. However, the Db2 Administrators Group (ex.
DB2ADMNS) is used as the default group for SYSADM, SYSMAINT, and SYSCTRL when no values
are specified for database manager configuration parameters SYSADM_GROUP, SYSMAINT_GROUP and

Chapter 12. Working with operating system security 385

SYSCTRL_GROUP. It is recommended that if you are specifying a SYSADM group, then that group should
be the Db2 Administrators Group. This setting can be established after installation, by an administrator.

Note: You can specify your Db2 Administrators Group (DB2ADMNS or the name you chose during
installation) and Db2 Users Group (DB2USERS or the name you chose during installation) either as local
groups or as domain groups. Both groups must be of the same type, so either both local or both domain.

If you change the computer name, and the computer groups DB2ADMNS and DB2USERS are local
computer groups, you must update the DB2_ADMINGROUP and DB2_USERSGROUP global registries.
To update the registry variables after renaming and restarting the computer run the following command:

1. Open a command prompt.
2. Run the db2extsec command to update security settings:

db2extsec -a new computer name\DB2ADMNS -u new computer name\DB2USERS

Note: If extended security is enabled in Db2 database products on Windows 7, only users that belong
to the DB2ADMNS group can run the graphical Db2 administration tools. In addition, members of the
DB2ADMNS group need to launch the tools with full administrator privileges. This is accomplished by
right-clicking on the shortcut and then choosing "Run as administrator".

Abilities acquired through the DB2ADMNS and DB2USERS groups
The DB2ADMNS and DB2USERS groups provide members with the following abilities:

• DB2ADMNS

Full control over all Db2 objects (see the following list of protected objects)
• DB2USERS

Read and Execute access for all Db2 objects located in the installation and instance directories, but no
access to objects under the database system directory and limited access to IPC resources

For certain objects, there may be additional privileges available, as required (for example, write
privileges, add or update file privileges, and so on). Members of this group have no access to objects
under the database system directory.

Note: The meaning of Execute access depends on the object; for example, for a .dll or .exe file having
Execute access means you have authority to execute the file, however, for a directory it means you have
authority to traverse the directory.

Ideally, all Db2 administrators should be members of the DB2ADMNS group (as well as being members
of the local Administrators group), but this is not a strict requirement. Everyone else who requires access
to the Db2 database system must be a member of the DB2USERS group. To add a user to one of these
groups:

1. Launch the Users and Passwords Manager tool.
2. Select the user name to add from the list.
3. Click Properties. In the Properties window, click the Group membership tab.
4. Select the Other radio button.
5. Select the appropriate group from the drop-down list.

Adding extended security after installation (db2extsec command)
If the Db2 database system was installed without extended security enabled, you can enable it by
executing the command db2extsec. To execute the db2extsec command you must be a member of the
local Administrators group so that you have the authority to modify the ACL of the protected objects.

You can run the db2extsec command multiple times, if necessary, however, if this is done, you cannot
disable extended security unless you issue the db2extsec -r command immediately after each execution
of db2extsec.

386 IBM Db2 11.5: Database Security Guide

Removing extended security
CAUTION: Do not remove extended security after it has been enabled unless absolutely
necessary.

You can remove extended security by running the command db2extsec -r, however, this will only succeed
if no other database operations (such as creating a database, creating a new instance, adding table
spaces, and so on) have been performed after enabling extended security. The safest way to remove
the extended security option is to uninstall the Db2 database system, delete all the relevant Db2
directories (including the database directories) and then reinstall the Db2 database system without
extended security enabled.

Protected objects
The static objects that can be protected using the DB2ADMNS and DB2USERS groups are:

• File system

– File
– Directory

• Services
• Registry keys

The dynamic objects that can be protected using the DB2ADMNS and DB2USERS groups are:

• IPC resources, including:

– Pipes
– Semaphores
– Events

• Shared memory

Privileges owned by the DB2ADMNS and DB2USERS groups
The privileges assigned to the DB2ADMNS and DB2USERS groups are listed in the following table:

Table 52. Privileges for DB2ADMNS and DB2USERS groups

Privilege DB2ADMNS DB2USERS Reason

Create a token object
(SeCreateTokenPrivilege)

Y N Token manipulation (required for certain
token manipulation operations and used in
authentication and authorization)

Replace a process level token
(SeAssignPrimaryTokenPrivilege)

Y N Create process as another user

Increase quotas
(SeIncreaseQuotaPrivilege)

Y N Create process as another user

Act as part of the operating system
(SeTcbPrivilege)

Y N LogonUser

Generate security audits
(SeSecurityPrivilege)

Y N Manipulate audit and security log

Take ownership of files or other
objects (SeTakeOwnershipPrivilege)

Y N Modify object ACLs

Increase scheduling priority
(SeIncreaseBasePriorityPrivilege)

Y N Modify the process working set

Chapter 12. Working with operating system security 387

Table 52. Privileges for DB2ADMNS and DB2USERS groups (continued)

Privilege DB2ADMNS DB2USERS Reason

Backup files and directories
(SeBackupPrivilege)

Y N Profile/Registry manipulation (required to
perform certain user profile and registry
manipulation routines: LoadUserProfile,
RegSaveKey(Ex), RegRestoreKey,
RegReplaceKey, RegLoadKey(Ex))

Restore files and directories
(SeRestorePrivilege)

Y N Profile/Registry manipulation (required to
perform certain user profile and registry
manipulation routines: LoadUserProfile,
RegSaveKey(Ex), RegRestoreKey,
RegReplaceKey, RegLoadKey(Ex))

Debug programs
(SeDebugPrivilege)

Y N Token manipulation (required for certain
token manipulation operations and used in
authentication and authorization)

Manage auditing and security log
(SeAuditPrivilege)

Y N Generate auditing log entries

Log on as a service
(SeServiceLogonRight)

Y N Run Db2 as a service

Access this computer from the
network (SeNetworkLogonRight)

Y Y Allow network credentials (allows the
Db2 database manager to use the
LOGON32_LOGON_NETWORK option to
authenticate, which has performance
implications)

Impersonate a client
after authentication
(SeImpersonatePrivilege)

Y N Client impersonation (required
for Windowsto allow use of
certain APIs to impersonate Db2
clients: ImpersonateLoggedOnUser,
ImpersonateSelf, RevertToSelf, and so on)

Lock pages in memory
(SeLockMemoryPrivilege)

Y N Large Page support

Create global objects
(SeCreateGlobalPrivilege)

Y Y Terminal Server support (required on
Windows)

Considerations for Windows7: User Access Control feature
The User Access Control (UAC) feature of Windows 7 impacts the Db2 database system in the following
ways.

Starting applications with full administrative privileges
On Windows 7, by default, applications start with only standard user rights, even if the user is a local
administrator. To start an application with further privileges, you need to launch the command from
a command window that is running with full administrative privileges. The Db2 installation process
creates a shortcut called "Command window - Administrator" specifically for Windows 7 users. It is
recommended that you launch this shortcut if you want to run administrative commands.

If you do not have full administrative privileges and you attempt to perform Db2 administration tasks from
a command prompt or graphical tool on Windows 7, you can encounter various error messages implying
that your access is denied and the tasks will fail to complete successfully.

388 IBM Db2 11.5: Database Security Guide

To determine whether the action you are performing is considered to be an administration task, check
whether any of the following are true:

• It requires SYSADM, SYSCTRL or SYSMAINT authority
• It modifies registry keys under the HKLM branch in the registry
• It writes to the directories under the Program Files directory

For example, the following actions are all considered to be administration tasks:

• Creating and dropping Db2 instances
• Starting and stopping Db2 instances
• Creating databases
• Updating database manager configuration parameters or Db2 Administration Server (DAS) configuration

parameters
• Updating CLI configuration parameters and configuring system data source names (DSN)
• Starting the Db2 trace facility
• Running the db2pd utility
• Changing Db2 profile registry variables

To resolve the problem, you must perform Db2 administration tasks from a command prompt or graphical
tool that is running with full administrator privileges. To launch a command prompt or graphical tool with
full administrator privileges, right-click on the shortcut and then select Run as administrator.

Note: If extended security is enabled, you also need to be a member of the DB2ADMNS group in order to
launch the graphical administration tools (such as the IBM Data Studio).

User data location
User data (for example, files under instance directories) is stored in
ProgramData\IBM\DB2\copy_name, where copy_name is the name of the Db2 copy (by default,
DB2COPY1 is the name of the first copy installed). On Windows versions other than Windows 7, user data
is stored in Documents and Settings\All Users\Application Data\IBM\DB2\copy_name.

Db2 and UNIX security
There are some security considerations specific to UNIX platforms that you need to be aware of.

The Db2 database does not support root acting directly as a database administrator. You should use su -
<instance owner> as the database administrator.

For security reasons, in general, do not use the instance name as the Fenced ID. However, if you are
not planning to use fenced UDFs or stored procedures, you can set the Fenced ID to the instance name
instead of creating another user ID.

The recommendation is to create a user ID that is recognized as being associated with this group. The
user for fenced UDFs and stored procedures is specified as a parameter of the instance creation script
(db2icrt ... -u <FencedID>). This is not required if you install the Db2 Clients or the Db2 Software
Developer's Kit.

Db2 and Linux security
There are some security considerations specific to Linux platforms that you might need to be aware of.

Change password support (Linux)
Db2 database products provide support for changing passwords on Linux operating systems.

This support is implemented through the use of security plug-in libraries called
IBMOSchgpwdclient.so and IBMOSchgpwdserver.so.

Chapter 12. Working with operating system security 389

To enable password change support on Linux, set the database manager configuration parameter
clnt_pw_plugin to IBMOSchgpwdclient and srvcon_pw_plugin to IBMOSchgpwdserver.

You must also create a PAM configuration file called "db2" in the /etc/pam.d directory.

Deploying a change password plug-in
To enable support for changing passwords in the Db2 database products on Linux or AIX, you must
configure the Db2 instance to use Transparent LDAP.

About this task
Important: The IBMOSchgpwdclient and IBMOSchgpwdserver plugins have been deprecated
as of Db2 version 11.5, and will be removed in a future release. The default password plugins
(IBMOSauthserver and IBMOSauthclient) are functionally identical, and should be used instead of
the change password plugins.

Procedure
To configure transparent LDAP, refer to the following documentation based on your specific operating
system:

• For Linux, refer to: “Configuring transparent LDAP for authentication and group lookup (Linux) ” on page
259.

• For AIX, refer to: “Configuring transparent LDAP for authentication and group lookup (AIX)” on page
256.

SELinux
SELinux (Security Enhanced Linux) is code that runs in user-space, taking advantage of kernel code (Linux
Security Modules) to provide Mandatory Access Control (MAC) over system resources. Processes are
confined to domains, which can be thought of as sandboxes. Access to system objects and capabilities
like files, message queues, semaphores, networking is controlled on a per-domain basis following the
principle of least privilege.

Directories and files are labeled with a persistent type in SELinux that is separate from usual UNIX
Discretionary Access Controls (DAC). This extra layer allows tighter control over access to objects: if
an intruder gains control of a process owned by a user, access to all files owned by that user is not
automatically granted. The type of access (read, write, create) can also be controlled by SELinux.

SELinux can operate in three modes: disabled, permissive, or enforcing. Switching between modes may
require a reboot.

• "Disabled" means no access checking or logging is performed.
• "Permissive" means access violations are logged, but are permitted to occur.
• "Enforcing" means the policy is enforced, and access will be denied if it has not been permitted in the

policy.

SELinux depends on operating system configurations that exist outside of Db2. Db2 is not an "SELinux-
aware" application that is aware of SELinux in operation, and as such does not make dynamic changes
to SELinux properties while the database server is in operation. Thus all configuration changes must be
made to the policy files that governs behavior permitted by Db2.

When Db2 is installed, and the default "targeted" policy is configured, the Db2 processes will run in the
"unconfined" domain. This will work and Db2 is able to run as it did before SELinux was introduced or
enabled.

For samples on SELinux policies, refer to SELinux sample policies.

Sample policy files are provided to enable Db2 processes to run in the confined domain providing
additional protection. These samples are provided as a starting point, they will require modification for

390 IBM Db2 11.5: Database Security Guide

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.apdv.samptop.doc/doc/r0052930.html

your environment. Db2 technical support is not able to assist with the configuration of SELinux or the
use of the samples. Any failures introduced by SELinux policies are the customers responsibilities to
resolve. However, the use of Db2 in an environment where SELinux is in permissive or enforcing modes is
supported, as long as failures are not the result of SELinux policy configuration.

Chapter 12. Working with operating system security 391

392 IBM Db2 11.5: Database Security Guide

Index

Special Characters
.NET

.Net Data Provider clients 137
GSKit 137
TLS 137

A
access control

authentication 6
column-specific 205
DBADM (database administration) authority 68
fine-grained row and column

See RCAC 185
label-based access control 205
row-specific 205
tables 66
views 66

access tokens
Windows 381

ACCESSCTRL (access control) authority
details 42
overview 38

ACCESSCTRL authority 45, 46
adding a master key to a local keystore 77
AIX

authentication methods 258
configuring transparent LDAP 256

AIX encrypted file system (EFS) 104
already 90
ALTER privilege 51, 54
alternate_auth_enc configuration parameter

encrypting using AES 256–bit algorithm 6
APIs

communication exit library
db2commexitDeregister 320
db2commexitFreeErrormsg 324
db2commexitInit 317
db2commexitRecv 321
db2commexitRegister 319
db2commexitSend 322
db2commexitTerm 319
db2commexitUserIdentity 323
overview 317

group plug-in
db2secDoesGroupExist 287
db2secFreeErrormsg 287
db2secFreeGroupListMemory 288
db2secGetGroupsForUser 288
db2secGroupPluginInit 291
db2secPluginTerm 292

group retrieval plug-in 286
security plug-in

db2secClientAuthPluginInit 297
db2secClientAuthPluginTerm 298
db2secDoesAuthIDExist 298

APIs (continued)
security plug-in (continued)

db2secDoesGroupExist 287
db2secFreeErrormsg 287
db2secFreeGroupListMemory 288
db2secFreeInitInfo 299
db2secFreeToken 299
db2secGenerateInitialCred 300
db2secGetAuthIDs 301
db2secGetDefaultLoginContext 303
db2secGetGroupsForUser 288
db2secGroupPluginInit 291
db2secPluginTerm 292
db2secProcessServerPrincipalName 304
db2secRemapUserid 305
db2secServerAuthPluginInit 306
db2secServerAuthPluginTerm 308
db2secValidatePassword 309
overview 285

user ID/password plug-ins 292
archivepath parameter 151
archiving

audit log files 151
AUDIT events 369
audit facility

actions 146
archive 157
asynchronous record writing 164
audit data in tables

creating tables 155
loading tables 156

audit events table 337
authorities 146
behavior 164
CHECKING access approval reasons 342
CHECKING access attempted types 344
checking events table 340
CONTEXT events table 362
error handling 164
ERRORTYPE parameter 164
events 146
EXECUTE events 158, 364
EXECUTE timestamp 161
object record types 335
OBJMAINT events table 346
overview 146
policies 148
privileges 146
record layouts 335
record object types 335
records for EXECUTE events 364
SECMAINT authorities 355
SECMAINT events table 350
SECMAINT privileges 355
synchronous record writing 164
SYSADMIN events table 358
techniques 165

Index 393

audit facility (continued)
tips 165
VALIDATE events table 360

audit logs
archiving 151, 157
file names 154
location 151

audit_buf_sz configuration parameter
determining timing of writing audit records 164

authentication
details 2
domain security 380
groups 380
GSS-API 243
ID and password 243
Kerberos 12, 243
LDAP users 273
lookup

configuring 256, 259
methods 6
ordered domain list 383
overview 1
partitioned databases 12
plug-ins

API for checking whether authentication ID exists
298
API for cleaning up client authentication plug-in
resources 298
API for cleaning up resources held by
db2secGenerateInitialCred API 299
API for cleaning up server authentication plug-in
resources 308
API for getting authentication IDs 301
API for initializing client authentication plug-in 297
API for initializing server authentication plug-in 306
API for validating passwords 309
APIs for user ID/ password authentication plug-ins
292
deploying 251, 252, 254, 390
LDAP 255
library locations 247
security 243

remote clients 11
security plug-ins 243
two-part user IDs 248
types

CLIENT 6
DATA_ENCRYPT 6
DATA_ENCRYPT_CMP 6
GSS_SERVER_ENCRYPT 6
GSSPLUGIN 6
KERBEROS 6
KRB_SERVER_ENCRYPT 6
SERVER 6
SERVER_ENCRYPT 6

AUTHID_ATTRIBUTE 267
authorities

access control (ACCESSCTRL) 42
audit policy 148
data access (DATAACCESS) 42
database administration (DBADM) 40, 45
explain administration (EXPLAIN) 44
implicit schema (IMPLICIT_SCHEMA) 45
LOAD 45

authorities (continued)
overview 25, 30
removing DBADM from SYSCTRL 36
security administrator (SECADM) 39
SQL administration (SQLADM) 43
system administration (SYSADM) 35
system control (SYSCTRL) 36
system maintenance (SYSMAINT) 36
system monitor (SYSMON) 37
workload administration (WLMADM) 44

authorization IDs
details 3
implicit authorizations 64
LDAP 271
security model overview 1
SETSESSIONUSER privilege 48
trusted client 6
types 55

authorization names
creating views for privileges information 238
retrieving

names with DBADM authority 236
names with granted privileges 236
names with table access authority 237
privileges granted to 237

B
backup image 89–92, 98
backups

encrypting 102
security risks 69, 102

BIND command
package re-creation

ownership 64
BIND privilege 53
BINDADD authority

details 38
binding

rebinding invalid packages 63
built-in views

AUTHORIZATIONIDS
example 236
restricting access 238

OBJECTOWNERS
restricting access 238

PRIVILEGES
example 236
restricting access 238

C
centralized key manager 78, 81, 82, 84
centralized keystore 78, 84
check backup image is encrypted 98
check if database is encrypted 97
CHECKING events 369
client authentication plug-ins 255
CLIENT authentication type

details 6
columns

LBAC protection
adding 221

394 IBM Db2 11.5: Database Security Guide

columns (continued)
LBAC protection (continued)

removing 233
LBAC-protected

dropping 230
inserting 224
reading 222
updating 226

communication buffer exit library
developing

control over connections 327
DATA_ENCRYPT authentication 333
functions structure 325
information structure 326

overview 313
communication exit library

APIs
db2commexitDeregister 320
db2commexitFreeErrormsg 324
db2commexitInit 317
db2commexitRecv 321
db2commexitRegister 319
db2commexitSend 322
db2commexitTerm 319
db2commexitUserIdentity 323

deploying 313
developing

API calling sequences (connection concentrator)
331
API calling sequences (no connect reset) 330
API calling sequences (normal connect) 330
API calling sequences (overview) 329
API calling sequences (SET SESSION
AUTHORIZATION) 332
API calling sequences (trusted context) 331
API versions 327
buffer structure 327
connect gateway 333
error handling 327
overview 316
restrictions 328
return codes 327
target logical node 332

enabling 315
library loading 316
location 313
naming conventions 314
permissions 314
problem determination 316

configuration
LDAP

plug-ins 267
routines and views 22

Configuration file
PKCS #11 85

configuring
Java Runtime Environment 138

CONNECT authority 38
CONTEXT events 369
CONTROL privilege

details 51
implicit 64
packages 53
views 51

create backup image 90
create database 89
CREATE DATABASE command

RESTRICTIVE option 238
create encrypted database 89
create keystore 76
create master key 77
CREATE ROLE statement

creating roles 170
granting membership in roles 170

CREATE TRUSTED CONTEXT statement
example 181

CREATE_EXTERNAL_ROUTINE authority 38
CREATE_NOT_FENCED_ROUTINE authority 38
CREATETAB authority 38
Creating a stash file 86
creating encrypted backup images 89
cryptography 72

D
data

audit
creating tables 155
loading into tables 156

encrypting 71
indirect access 69
inserting

LBAC-protected 224
label-based access control (LBAC)

adding protection 221
inserting 224
overview 221
reading 222
unprotecting 233
updating 226

security
overview 1
system catalog 238

data at rest 102
DATAACCESS (data access) authority

details 42
overview 38

DATAACCESS authority 45, 47
database authorities

granting
overview 38

overview 38
revoking 38

database backup image 90, 98
database directories

permissions 5
database is encrypted 97
database objects

roles 169
database-level authorities

overview 30
databases

accessing
default authorities 56
default privileges 56
implicit privileges through packages 65

label-based access control (LBAC) 205
datapath parameter 151

Index 395

DB2 native encryption
Data encryption key 72
encrlib 72
encropts 72
Key manager 72
Keystore 72
keystore_location 72
keystore_type 72
Master key 72

DB2_GRP_LOOKUP environment variable 382, 384
DB2_GRP_LOOKUP registry variable 381
DB2ADMNS group

defining who holds SYSADM authority 384
details 385

db2audit.log file 146
db2cluster command

Db2 cluster services administrator 167
security model 167

DB2LBACRULES LBAC rule set 215
DB2LDAPSecurityConfig environment variable

overview 267
db2p12tokmip 84
DB2SECURITYLABEL data type

providing explicit values 220
viewing as string 220

DB2USERS user group
details 385

DBADM (database administration) authority
controlling access 68
details 40
overview 38
retrieving names 236

debugging
security plug-ins 250

decrypt 72
default privileges 56
DELETE privilege 51
different location 91
different systems 91, 92
distinguished name (DN) 271
domain controller

overview 377
domains

ordered domain list 383
security

authentication 380
trust relationships 380
Windows 384

dynamic SQL
EXECUTE privilege 65

Dynamic updates
token configuration file 22

E
efsenable command 104
efskeymgr command 104
efsmgr command 104
ENABLE_SSL parameter 267
encrlib 90
encropts 90
encrypt database 90
encrypted backup image 90–92
encrypted database 89

encrypted file system (EFS) 104
encryption

data 71
enumeration of groups 382
error messages

security plug-ins 280
errors

switching user 183
trusted contexts 183

ExampleBANK RCAC scenario
column masks 202
data queries 202
database tables 200
database users and roles 200
introduction 199
row permissions 201
security policy 199

ExampleHMO RCAC scenario
column masks 192
data queries 194
data updates 193
database tables 189
database users and roles 188
inserting data 193
introduction 187
revoke authority 199
row permissions 191
secure functions 196
secure triggers 198
security administration 190
security policy 187
view creation 195

EXECUTE category
audit information 161
audit records 364
overview 158
replaying activities 162

EXECUTE events 369
EXECUTE privilege

database access 65
packages 53
routines 54

existing database 90
EXPLAIN authority

details 44
overview 38

explicit trusted connections
establishing 177
user ID switching 177, 182

extended Windows security 385

F
FGAC

See RCAC 185
file names

audit logs 154
fine-grained access control

See RCAC 185
firewalls

application proxy 241
circuit level 241
details 241
screening router 241

396 IBM Db2 11.5: Database Security Guide

firewalls (continued)
stateful multi-layer inspection (SMLI) 242

functions
privileges 54
scalar

DECRYPT_BIN 71
DECRYPT_CHAR 71
ENCRYPT 71
GETHINT 71

G
global group support 379
GRANT statement

example 62
implicit authorizations 64
overview 62

group lookup support
details 255, 272

GROUP_BASEDN parameter 267
GROUP_LOOKUP_ATTRIBUTE attribute 272
GROUP_LOOKUP_METHOD parameter

configuring LDAP plug-in modules 267, 272
GROUP_OBJECTCLASS parameter 267
GROUPNAME_ATTRIBUTE parameter 267
groups

access token 381
enumeration (Windows) 382
names 379
roles comparison 174
selecting 4
user authentication 380

gsk8capicmd 76
GSKCapiCmd tool

configuring Transport Layer Security (TLS) support 137,
145

GSKit
configuring Transport Layer Security (TLS) support 137,
145

GSS-APIs
authentication plug-ins 311

H
handshakes

overview 135

I
IBMLDAPSecurity.ini file 267
IKEYCMD tool 137, 145
iKeyman tool 137, 145
implicit authorization

managing 64
IMPLICIT_SCHEMA (implicit schema) authority

details 45
overview 38

import master key 77
INDEX privilege

details 53
indexes

INDEX privilege
expression-based indexes 53

indexes (continued)
privileges

expression-based indexes 53
overview 53

insert master key 77
INSERT privilege 51
instance directories 5
instances

authorities 30
Internal system-defined routine

SECADM 34
Internal system-defined routines 34
ISKLM 78, 81

K
Kerberos authentication protocol

enabling 15
IBM i compatibility 16
mapping 14
naming 14
overview 12
plug-ins

creating 16
deploying 254

principals 14
server 6
setting up 13
System z compatibility 16
Windows compatibility 16

key manager 78
Key store, testing configuration 98
keydb 76
keystore

configuring 88
Keystore

accessing 74
availability 74, 94
best practices 94
choosing 76
configuring 76
integration

common problems 99
recoverability 74

KRB_SERVER_ENCRYPT authentication type 6

L
label-based access control

See LBAC 205
LBAC

credentials 205
dropping columns 230
inserting data 224
overview 25, 205
protected tables 205
reading data 222
removing protection 233
rule exemptions

details 219
effect on security label comparisons 214

rule sets
comparing security labels 214

Index 397

LBAC (continued)
rule sets (continued)

DB2LBACRULES 215
overview 215

security administrators 205
security labels

ARRAY component type 208
comparisons 214
compatible data types 212
components 207
creating 212
details 212
dropping 212
granting 212
overview 205
revoking 212
SET component type 208
string format 213
TREE component type 209

security policies
adding to a table 221
details 206
overview 205

updating data 226
LDAP

plug-ins 267, 270
security plug-ins 255
transparent

AIX 256
Kerberos 258
Linux 259

LDAP_HOST parameter 267
libraries

security plug-ins
loading in DB2 273
restrictions 274

Linux
security 389
transparent LDAP 259

Linux security 390
LOAD authority

details 45
overview 38

local key manager 91, 92
local keystore 76, 77
local keystore file 77
LocalSystem account

authorization 35
support 385
SYSADM authority 384

logs
audit 146

M
master key 77
methods

privileges 54
migrate 84
Migrating

Local keystore to PKCS #11 keystore 87
migration

roles 175

N
naming conventions

Windows restrictions 379
native encryption

configuring for HADR 93, 96
database backup 88
database creation 89
database migration 93
diagnostic information

obtaining 99
GSKit

common errors 100
hardware acceleration

determining use 98
impact on database operations 75
impact on performance 75
overview 73
performance tuning 101

NESTED_GROUPS parameter 267
nicknames

privileges
indirect through packages 65

O
objects

ownership 25
OBJMAINT events 369
ordered domain lists 383
ownership

database objects 25, 235

P
packages

access privileges for queries 65
authorization IDs

derivation 55
use 55

ownership 64
privileges

overview 53
revoking (overview) 63

passwords
changing

Linux 389
maintaining on servers 17

permissions
authorization overview 3
column-specific protection 205
directories 5
row-specific protection 205

PKCS #11 configuration file 85
PKCS #11 key manager 84
PKCS #11 keystore

Migrating from local keystore 87
Set up 84
Stash file 86

PKCS#12 76
plug-ins

group retrieval 286
GSS-API authentication 311

398 IBM Db2 11.5: Database Security Guide

plug-ins (continued)
LDAP 255
security

APIs 281, 285
deploying 251–254, 390
error messages 280
naming conventions 247
restrictions (GSS-API authentication)
312
restrictions (plug-in libraries) 274
restrictions (summary) 276
return codes 277
versions 249

user ID/password authentication 292
pluggable authentication module

AIX 256
Linux 259

PRECOMPILE command
OWNER option 64

prerequisite 78, 81, 82
Prerequisites 76
Prerequisites for DB2 native encryption 76
privileges

acquiring through trusted context roles 181
ALTER

sequences 54
tables 51

CONTROL 51
DELETE 51
EXECUTE

routines 54
GRANT statement 62
granting

roles 174
hierarchy 25
INDEX 51
indexes

expression-based indexes 53
overview 53

indirect
packages containing nicknames 65

individual 25
information about granted

retrieving 236, 237
INSERT 51
overview 25
ownership 25
packages

creating 53
implicit 25

planning 3
REFERENCES 51
revoking

overview 63
roles 172

roles 169
schemas 48
SELECT 51
SETSESSIONUSER 48
system catalog

privilege information 235
restricting access 238

table spaces 51
tables 51

privileges (continued)
UPDATE 51
USAGE

sequences 54
workloads 55

views 51
Privileges

Public
Routine 58

problem determination
security plug-ins 250

procedures
privileges 54

PUBLIC
database authorities automatically granted 38

Public Key Cryptography Standard #12 76

Q
QUIESCE_CONNECT authority 38

R
RCAC

conditions in masks 187
conditions in permissions 187
ExampleBANK scenario 199
ExampleHMO scenario 187
overview 185
rules

overview 185
SQL statements 186

scalar functions 187
scenarios

ExampleBANK 199
ExampleHMO 187

records
audit 146

recover database 91
recover encrypted backup image 91
recovering an encrypted database 89
REFERENCES privilege 51
replaying activities

example 162
requirement 78, 81, 82
restore 91, 92
restore database 91, 92
restore encrypted backup image 91
restoring encrypted backup images 89
RESTRICTIVE parameter of CREATE DATABASE command

denying privileges to PUBLIC 238
Retrieving encrypted database 89
REVOKE statement

example 63
implicit issuance 64
overview 63

roles
creating 170
details 169
hierarchies 171
migrating from IBM Informix Dynamic Server 175
revoking privileges 172
versus groups 174

Index 399

roles (continued)
WITH ADMIN OPTION clause 173

routine invoker authorization IDs 55
routines

built-in
configuration 22

Routines
Privilege

Public 58
routines and views

configuration 22
row and column access control

See RCAC 185
rows

deleting
LBAC-protected data 230

inserting
LBAC-protected data 224

protecting with LBAC 221
reading when using LBAC 222
removing LBAC 233
updating

LBAC-protected data 226
rule sets (LBAC)

details 215
exemptions 219

S
SafeNet

KeySecure 82
same location 91
Savepoint ID field 158
Schema access control authority 46
Schema administration authority 46
schema authorities 45
Schema data access authority 47
Schema load authority 47
SCHEMAADM authority 45, 46
schemas

privileges 48
SEARCH_DN parameter 267
SEARCH_PW parameter 267
SECADM

Internal system-defined routine 34
SECADM (security administrator) authority

details 39
overview 38

SECLABEL scalar function
overview 220

SECLABEL_BY_NAME scalar function
overview 220

SECLABEL_TO_CHAR scalar function
overview 220

SECMAINT events 369
security

authentication 2
CLIENT level 6
column-specific 205
communication buffer exit libraries

control over connections 327
DATA_ENCRYPT authentication 333
functions structure 325
overview 313

security (continued)
communication buffer exit library

information structure 326
communication exit libraries

API calling sequences (connection concentrator)
331
API calling sequences (no connect reset) 330
API calling sequences (normal connection) 330
API calling sequences (overview) 329
API calling sequences (SET SESSION
AUTHORIZATION statement) 332
API calling sequences (trusted context) 331
API summary 317
API versions 327
buffer structure 327
connect gateway 333
deploying 313
developing 316, 328
enabling 315
error handling 327
library loading 316
location 313
naming conventions 314
permissions 314
problem determination 316
restrictions 328
return codes 327
target logical node 332

data 1
db2extsec command 385
disabling extended security 385
enabling extended security 385
explicit trusted connections 177
extended security 385
fine-grained access control

See RCAC 185
indirect access to data 69
label-based access control (LBAC) 205
passwords on servers 17
plug-ins

32-bit considerations 250
64-bit considerations 250
API calling sequence 281
APIs 285, 287, 288, 291, 292, 297–301, 303–306,
308, 309
APIs (group retrieval) 286
APIs (GSS-API) 311
APIs (user ID/password) 292
APIs (versions) 249
deploying 243, 251–254, 276, 390
developing 243, 274
enabling 243
error messages 280
group retrieval 251
GSS-API (deploying) 253
GSS-API (restrictions) 312
IBMOSchgpwdclient 390
IBMOSchgpwdserver 390
initialization 273
Kerberos 254
LDAP (Lightweight Directory Access Protocol) 255
libraries 247
loading 243, 273
naming 247

400 IBM Db2 11.5: Database Security Guide

security (continued)
plug-ins (continued)

overview 243
problem determination 250
restrictions on libraries 274
return codes 277
SQLCODE values 250
SQLSTATE values 250
two-part user ID support 248
user ID/password 252

row and column access control
See RCAC 185

row-specific 205
trusted contexts 179
UNIX 389
Windows

domain security 384
extended 385
overview 377
users 384

security enhanced linux 390
security labels (LBAC)

ARRAY component type 208
compatible data types 212
components 207
overview 212
policies

details 206
SET component type 208
string format 213
TREE component type 209

security token
authentication 19
config 19
configuration 19

SELECT privilege 51
sequences

privileges 54
server authentication plug-ins 255
SERVER authentication type

overview 6
SERVER_ENCRYPT authentication type

overview 6
session authorization IDs

overview 55
SET ENCRYPTION PASSWORD statement

encrypting passwords 71
SETSESSIONUSER privilege

details 48
SQL statements

authorization IDs 55
SQLADM (SQL administration) authority

details 43
overview 38

SSL
configuring

DB2 clients 145
handshake 135
IBM Data Server Driver for JDBC and SQLJ 137
overview 135
sslConnection property 137

ssl_clnt_keydb configuration parameter
configuring TLS 137, 145

ssl_clnt_stash configuration parameter

ssl_clnt_stash configuration parameter (continued)
configuring TLS 137

SSL_EXTN_SIGALG 267
SSL_KEYFILE 267
SSL_PW 267
SSLClientKeystash configuration parameter 137
SSLClientKeystash connection string parameter 137
SSLClientKeystoredb connection string parameter 137
sslConnection property 137
Statement Value Data field 158
Statement Value Index field 158
Statement Value Type field 158
static SQL

EXECUTE privilege 65
switching

user IDs 177, 182
SYSADM (system administration) authority

details 35
Windows 384

sysadm_group configuration parameter
Windows 384

SYSADMIN events 369
SYSCAT views

security issues 235
SYSCTRL (system control) authority

details 36
SYSDEFAULTADMWORKLOAD workload 55
SYSDEFAULTUSERWORKLOAD workload 55
SYSMAINT (system maintenance) authority

details 36
SYSMON (system monitor) authority

details 37
SYSPROC.AUDIT_ARCHIVE stored procedure 151, 157
SYSPROC.AUDIT_DELIM_EXTRACT stored procedure 151,
157
SYSPROC.AUDIT_LIST_LOGS stored procedure 157
system authorization IDs 55
system catalogs

listing privileges 235
retrieving

authorization names with privileges 236
names with DBADM authority 236
names with table access authority 237
privileges granted to names 237

security 238

T
table spaces

privileges 51
tables

access control 66
audit policies 148
inserting into LBAC-protected 224
LBAC effect on reading 222
privileges 63
protecting with LBAC 205, 221
removing LBAC protection 233
retrieving information

authorized names 237
revoking privileges 63

TLS
CATALOG TCPIP NODE command 137
CLI clients 137

Index 401

TLS (continued)
CLP clients 137
configuring

DB2 clients 137
native encryption 81

embedded SQL clients 137
TLS (transport layer security) 135
TLS configuration

primary and secondary HADR servers
Linux AMD64/Intel 141

Token authentication
details 19

Token configuration file
details 19

Transport Layer Security (TLS)
overview 135

troubleshooting
security plug-ins 250

trust relationships
Windows 380

trusted clients
CLIENT authentication type 6

trusted connections
establishing explicit trusted connections 177
overview 179

trusted contexts
audit policies 148
overview 179
problem determination 183
role membership inheritance 181

U
UDFs

non-fenced 38
UPDATE privilege 51
updates

effects of LBAC on 226
USAGE privilege

details 54
workloads 55

user IDs
LDAP 271
selecting 4
switching 182
two-part 248

user names
Windows restrictions 379

USER_BASEDN 267
USER_OBJECTCLASS 267
USERID_ATTRIBUTE 267

V
VALIDATE events 369
verify 97
verifying the database backup image is encrypted 89
views

access privileges examples 66
column access 66
privileges information 238
row access 66
table access control 66

W
Windows

extended security 385
LocalSystem account (LSA) support 385
scenarios

client authentication 378
server authentication 378

user accounts
access tokens 381

windows 7
User Access Control (UAC) feature 388

WITH ADMIN OPTION clause
delegating role maintenance 173

WITH DATA option
details 158

WLMADM (workload administration) authority
details 44
overview 38

write-down
details 215

write-up
details 215

X
XQuery

dynamic 65
static 65

402 IBM Db2 11.5: Database Security Guide

IBM®

	Contents
	Notices
	Trademarks
	Terms and conditions for product documentation

	About this book
	Chapter 1. Db2 security model
	Authentication
	Authorization
	Security considerations when installing and using Db2
	File permission requirements for the instance and database directories

	Authentication details
	Authentication methods for servers
	Authentication considerations for remote clients
	Partitioned database authentication
	Kerberos authentication
	Setting up Kerberos
	Naming and mapping for Kerberos
	Kerberos authentication enablement
	Kerberos plug-in creation
	Kerberos compatibility

	Maintaining password information
	Authentication and group cache
	Token authentication
	Token configuration file
	Dynamic updates to the token configuration file

	JSON Web Tokens (JWT)

	Authorization, privileges, and object ownership
	Authorities overview
	Internal system-defined routine
	Instance level authorities
	System administration authority (SYSADM)
	System control authority (SYSCTRL)
	System maintenance authority (SYSMAINT)
	System monitor authority (SYSMON)

	Database authorities
	Security administration authority (SECADM)
	Database administration authority (DBADM)
	Access control authority (ACCESSCTRL)
	Data access authority (DATAACCESS)
	SQL administration authority (SQLADM)
	Workload administration authority (WLMADM)
	Explain authority (EXPLAIN)
	LOAD authority
	Implicit schema authority (IMPLICIT_SCHEMA) considerations

	Schema authorities
	Schema administration authority (SCHEMAADM)
	Schema access control authority (ACCESSCTRL)
	Schema data access authority (DATAACCESS)
	Schema load authority (LOAD)

	Privileges
	Authorization ID privileges: SETSESSIONUSER
	Schema privileges
	Table space privileges
	Table and view privileges
	Package privileges
	Index privileges
	Privileges on expression-based indexes

	Sequence privileges
	Routine privileges
	Usage privilege on workloads

	Authorization IDs in different contexts
	Default privileges granted on creating a database
	Default PUBLIC privilege for built-in routines
	Granting and revoking access
	Granting privileges
	Revoking privileges
	Managing implicit authorizations by creating and dropping objects
	Establishing ownership of packages
	Implicit privileges through packages
	Indirect privileges through packages containing nicknames
	Controlling access to data with views

	Controlling access for database administrators (DBAs)
	Gaining access to data through indirect means

	Data encryption
	Encryption of data at rest
	Db2 native encryption
	Overview
	Keystore access

	Encryption considerations
	Keystore availability and recoverability
	The impact of encryption on performance
	The impact of encryption on database operations

	Getting started with Db2 native encryption
	Prerequisites
	Keystore selection
	Keystore configuration
	Local keystores
	Creating a local keystore
	Adding a master key

	Centralized keystores
	KMIP keystore
	KMIP Configuration file
	TLS configuration between Db2 and the key manager
	Configuring TLS (ISKLM)
	Configuring TLS (KeySecure)

	Migrating from local to KMIP

	PKCS #11 keystore
	Configuration file
	Creating a stash file
	Migrating from local to PKCS #11

	Configuring a Db2 instance to use as a keystore

	Encrypted backups
	Encrypted database backup images

	Encrypted database creation
	Creating an encrypted database
	Encrypting an existing database
	Creating encrypted backup images

	Encrypted database restoration
	Restoring encrypted backup images to the same system
	Restoring an encrypted backup image to a different system (local keystore)
	Restoring an encrypted backup image to a different system (centralized keystore)

	Keystore migration
	Configuring native encryption in an HADR environment

	Encrypted database operations
	Keystore availability
	Keystore best practices

	Configuring native encryption in an HADR environment
	General diagnostics and troubleshooting
	Verifying a database is protected by native encryption
	Verifying the database backup image is encrypted
	Determining whether hardware acceleration is being used
	Testing your keystore configuration
	Where to obtain diagnostic information
	Common problems with keystore integration
	Common GSKit errors

	Performance tuning

	IBM InfoSphere Guardium Data Encryption
	Database encryption using AIX Encrypted File System

	Encryption of data in transit
	Keystores
	Creating a keystore with GSKit
	Simplify keystore setup in Microsoft Windows environments

	Digital certificates
	The TLS handshake
	Hostname validation
	Configuring Db2 clients
	Client connections to alternate servers
	Client connections to alternate groups
	Client affinity lists

	Configuring Db2 instances
	Representing servers in a certificate
	Connections to servers in pureScale clusters
	Connections to servers in HADR environments
	Connections to pureScale clusters in HADR environments
	Connections to DPF servers
	Connections to other topologies

	Troubleshooting hostname validation
	Communication between primary and standby hosts in HADR

	TLS configuration of Db2
	Renewing a CA-signed certificate
	Configuring TLS support in Db2 clients
	Configuring TLS support in non-Java Db2 clients
	Configuring TLS support in Java Db2 clients
	Configuring connections under the IBM Data Server Driver for JDBC and SQLJ to use TLS
	Configuring the Java Runtime Environment to use TLS

	Configuring TLS for the communication between primary and standby HADR servers
	Configuring TLS support in federation server for DRDA wrapper

	Auditing DB2 activities
	Introduction to the Db2 audit facility
	Audit policies
	Storage and analysis of audit logs
	Audit log file names
	Creating tables for Db2 audit data
	Loading Db2 audit data into tables
	Audit archive and extract stored procedures

	The EXECUTE category for auditing SQL statements
	Enabling replay of past activities
	Replaying past database activities

	Audit facility management
	Audit facility behavior
	Audit facility tips and techniques

	Security model for the db2cluster command

	Chapter 2. Roles
	Creating and granting membership in roles
	Role hierarchies
	Revoking privileges from roles
	Delegating role maintenance by using the WITH ADMIN OPTION clause
	Roles compared to groups
	Using roles after migrating from Informix Dynamic Server

	Chapter 3. Using trusted contexts and trusted connections
	Trusted contexts and trusted connections
	Role membership inheritance through a trusted context
	Rules for switching the user ID
	Problem determination

	Chapter 4. Row and column access control (RCAC)
	Row and column access control (RCAC) rules
	SQL statements for managing RCAC rules
	Built-in functions for managing RCAC permissions and masks

	Scenario: ExampleHMO using row and column access control
	Security policies
	Database users and roles
	Database tables
	Security administration
	Row permissions
	Column masks
	Data insertion
	Data updates
	Data queries
	View creation
	Secure functions
	Secure triggers
	Revoke authority

	Scenario: ExampleBANK using row and column access control
	Security policies
	Database users and roles
	Database tables
	Row permissions
	Column masks
	Data queries

	Chapter 5. Label-Based Access Control (LBAC)
	LBAC security policies
	LBAC security label components
	LBAC security label component type: SET
	LBAC security label component type: ARRAY
	LBAC security label component type: TREE

	LBAC security labels
	Format for security label values
	How LBAC security labels are compared
	LBAC rule sets
	LBAC rule set: DB2LBACRULES

	LBAC rule exemptions
	Built-in functions for managing LBAC security labels
	Protection of data using LBAC
	Reading of LBAC protected data
	Inserting of LBAC protected data
	Updating of LBAC protected data
	Deleting or dropping of LBAC protected data
	Removal of LBAC protection from data

	Chapter 6. Using the system catalog for security information
	Retrieving authorization names with granted privileges
	Retrieving all names with DBADM authority
	Retrieving names authorized to access a table
	Retrieving all privileges granted to users
	Securing the system catalog view

	Chapter 7. Firewall support
	Packet filter firewalls
	Application proxy firewalls
	Circuit level firewalls
	Stateful multi-layer inspection (SMLI) firewalls

	Chapter 8. Security plug-ins
	Library locations
	Naming conventions
	Security plug-in support for two-part user IDs
	API versioning
	32-bit and 64-bit considerations
	Problem determination
	Enabling plug-ins
	Group
	Userid/password
	GSS-API
	Deploying a Kerberos plug-in

	LDAP-based authentication and group lookup support
	Configuring transparent LDAP (AIX)
	Considerations when using various authentication methods

	Configuring transparent LDAP (Linux)
	System authentication configuration
	Db2 authentication configuration
	Additional configuration options

	Configuring the LDAP plug-in modules
	Enabling the LDAP plug-in modules
	Connecting with an LDAP user ID
	Considerations for group lookup
	Troubleshooting

	Writing security plug-ins
	How Db2 loads security plug-ins
	Restrictions
	Restrictions on security plug-ins
	Return codes
	Error message handling for security plug-ins
	Calling sequences for the APIs

	Chapter 9. Security plug-in APIs
	APIs for group retrieval plug-ins
	db2secDoesGroupExist - Check if group exists
	db2secFreeErrormsg - Free error message memory
	db2secFreeGroupListMemory - Free groups list memory
	db2secGetGroupsForUser - Get list of groups for user
	db2secGroupPluginInit - Initialize group plug-in
	db2secPluginTerm - Clean up group plug-in resources

	APIs for user ID/password authentication plug-ins
	db2secClientAuthPluginInit - Initialize client authentication plug-in
	db2secClientAuthPluginTerm - Clean up client authentication plug-in resources
	db2secDoesAuthIDExist - Check if authentication ID exists
	db2secFreeInitInfo - Clean up resources held by the db2secGenerateInitialCred API
	db2secFreeToken - Free memory held by token
	db2secGenerateInitialCred - Generate initial credentials
	db2secGetAuthIDs - Get authentication ids
	db2secGetDefaultLoginContext - Get default login context
	db2secProcessServerPrincipalName - Process service principal name returned from server
	db2secRemapUserid - Remap userid and password
	db2secServerAuthPluginInit - Initialize server authentication plug-in
	db2secServerAuthPluginTerm - Clean up server authentication plug-in resources
	db2secValidatePassword - Validate password

	Required APIs and definitions for GSS-API authentication plug-ins
	Restrictions for GSS-API authentication plug-ins

	Chapter 10. Communication buffer exit libraries
	Communication exit library deployment
	Location
	Naming conventions and permissions
	Enabling outside of Db2 pureScale environments
	Enabling in Db2 pureScale environments
	Problem determination

	Communication exit library development
	How a communication exit library is loaded
	Communication exit library APIs
	db2commexitInit - Initialization
	db2commexitTerm - Termination
	db2commexitRegister - Registration
	db2commexitDeregister - Deregistration
	db2commexitRecv - Receive
	db2commexitSend - Send
	db2commexitUserIdentity - User identity
	db2commexitFreeErrormsg - Free error message memory

	Communication buffer exit library functions structure
	Information structure
	Buffer structure
	Control over connections
	API versions
	Error handing and return codes
	Restrictions
	API calling sequences
	Normal connect in a single agent
	Connect without a connect reset
	Trusted context and switch user
	Connection concentrator
	SET SESSION AUTHORIZATION statement
	Setting the target logical node
	Connect gateway
	DATA_ENCRYPT

	Chapter 11. Audit facility record layouts
	Audit record object types
	Audit record layout for AUDIT events
	Audit record layout for CHECKING events
	CHECKING access approval reasons
	CHECKING access attempted types
	Audit record layout for OBJMAINT events
	Audit record layout for SECMAINT events
	SECMAINT privileges or authorities
	Audit record layout for SYSADMIN events
	Audit record layout for VALIDATE events
	Audit record layout for CONTEXT events
	Audit record layout for EXECUTE events
	Audit events

	Chapter 12. Working with operating system security
	Db2 and Windows security
	Authentication scenarios
	Server authentication
	Client authentication and Windows client computers

	Support for global groups
	User authentication and group information with DB2 on Windows
	User name and group name restrictions (Windows)
	Groups and user authentication
	Trust relationships between domains
	Authentication with groups and domain security
	Using an access token to acquire users' group information (Windows)
	DB2_GRP_LOOKUP and Db2 group enumeration
	Authentication using an ordered domain list
	Domain security support (Windows)

	Defining which users hold SYSADM authority
	Windows LocalSystem account support
	Extended Windows security using DB2ADMNS and DB2USERS groups
	Considerations for Windows 7

	Db2 and UNIX security
	Db2 and Linux security
	Change password support
	Deploying a change password plug-in
	SELinux

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

